
CICS Transaction Server for z/OS
Version 5 Release 5

CICSPlex SM Application Programming
Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
141.

This edition applies to the IBM® CICS® Transaction Server for z/OS® Version 5 Release 5 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this PDF...vii

Chapter 1. An overview of the CICSPlex SM API... 1
Supported environments and languages.. 1
Available interfaces..2
Connecting to CICSPlex SM... 2

The connection process... 4
Security considerations..5

Compatibility between environments... 6
Compatibility between releases of CICSPlex SM..6

Special considerations for REXX applications... 7
Accessing resource tables from a new release... 8
Accessing resource tables from a previous release..8

Sample programs...10

Chapter 2. Using the CICSPlex SM API... 11
CICSPlex SM managed objects... 11

Types of managed objects... 11
CICSPlex SM resource tables.. 13

Building a customized resource table record..14
How to create copybooks for customized resource table records... 15

Selecting managed objects... 16
Setting the context and scope... 16
Using filter expressions..17

Working with result sets.. 20
An overview of result set commands...21
Retrieving records from a result set.. 24
Positioning the record pointer in a result set.. 27
Processing selected records in a result set...28
Summarizing the records in a result set.. 30
Sorting the records in a result set..34

Modifying managed resources.. 35
Modifying resource attributes..35
Performing an action against a resource... 36
Working with CICSPlex SM and CICS definitions.. 37

Asynchronous processing..45
Using the LISTEN command.. 45
Using the NOWAIT option.. 46
Using tokens to identify a request... 46
Using the ADDRESS command...47
Using the RECEIVE command..47

Using CICSPlex SM tokens.. 48
Using metadata resource tables... 48

ATTR... 49
ATTRAVA...57
METADESC..57
METANAME...59
METAPARM... 60
OBJACT...62
OBJECT...64

 iii

PARMAVA..66
Using CRESxxxx resource tables...67
Querying the CICSPlex SM API exit...67

Chapter 3. Writing an EXEC CPSM program.. 69
Using the resource table copy books.. 69

How to access the copy books...69
Copybook names and aliases...69
Copybook format..70
Copybook data characteristics.. 70
Supplied copy books.. 71

Language and environment considerations.. 78
Assembler considerations... 78
PL/I considerations.. 79
NetView considerations... 79
User-replaceable programs... 79
CICS Global User exit programs.. 79
Status programs... 80

Translating your program.. 80
Specifying the CPSM translator option.. 80

Compiling your program.. 81
Assembler considerations... 81
PL/I considerations.. 82
COBOL considerations... 82
C and C++ considerations.. 82

Link editing your program..82
Assembler considerations... 83
PL/I, COBOL, and C considerations... 83

Run-time considerations... 84

Chapter 4. Dealing with exception conditions... 85
Default CICSPlex SM exception handling..85
Using the RESPONSE and REASON options..85

Types of responses.. 85
Testing for RESPONSE and REASON... 87

Retrieving FEEDBACK records...89
Using the FEEDBACK command.. 89
Evaluating a FEEDBACK record..89
Availability of FEEDBACK records..91
An example of FEEDBACK for a result set... 92
Additional processing for BAS... 92
Evaluating error result set records.. 93
Evaluating BINSTERR resource table records...93
Evaluating BINCONRS resource table records..94
Evaluating BINCONSC resource table records..95
An example of a BAS error result set...96

Retrieving MASQRYER records..97
Evaluating a MASQRYER record...97
Availability of MASQRYER records...98

Chapter 5. Writing a REXX program..99
Accessing the API environment.. 99
Specifying an API command... 100
Accessing resource table data.. 100

Translating attribute values...102
Processing CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and

CREATETIME attributes..102

iv

The INSTALLAGENT, INSTALLTIME, INSTALLUSRID, and BASDEFINEVER attributes.................. 103
Processing FEEDBACK attributes.. 103

Chapter 6. REXX error handling..105
Translation errors.. 105
Run-time errors... 106
TPARSE and TBUILD errors... 106
Messages... 106
EYU_TRACE data..107

Appendix A. BINCONRS, BINCONSC, and BINSTERR error codes........................ 109

Appendix B. CICSPlex SM API sample programs...111
EYU#API1..111
EYUCAPI2.. 114
EYUAAPI3.. 119
EYULAPI4...131

Notices..141

Index.. 147

 v

vi

About this PDF

This PDF describes how you can write applications to access the services of the CICSPlex SM element of
CICS Transaction Server for z/OS. Reference information about the commands used is in the PDF called
CICSPlex SM Application Programming Reference.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2020 vii

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html

viii CICS TS for z/OS: CICSPlex SM Application Programming Guide

Chapter 1. An overview of the CICSPlex SM API
The CICSPlex® SM application programming interface (API) provides you with access to CICS system
management information and allows you to invoke CICSPlex SM services from an external program.

The API can provide a single interface for programs that are designed to monitor and control the CICS
systems in your enterprise. In addition, the API provides an interface to CICSPlex SM itself. So you can
also write programs to access the administrative functions that control the way CICSPlex SM operates.

Some typical uses of the API include:

• Monitoring key resources in your CICS environment.
• Changing the status of CICS resources relative to other conditions in your enterprise.
• Controlling the flow of change to your CICS environment.
• Passing the information that is provided by CICSPlex SM to an automation product.
• Developing alternative display and report formats for CICS and CICSPlex SM data.
• Processing CICSPlex SM notifications about events such as:

– Real-time analysis thresholds being reached
• Creating and maintaining CICSPlex SM definitions for Business Application Services, for workload

management, real-time analysis, and resource monitoring.
• Creating and maintaining CICS resource definitions in the CICSPlex SM data repository.

Depending on the query structure, a CICSPlex SM API command can be executed and satisfied in the
CMAS, or routed to every MAS within the scope of the command. Where the request is routed to a MAS, it
is processed by a system task that uses the CONL transaction identifier, or offloaded to an instance of a
system task that uses the CONA transaction identifier if configured as such.

Note: By default, CICSPlex SM API requests directed to a MAS run at a priority of 255, and issuing
numerous and frequent CICSPlex SM API requests can impact workload that is running at a lower priority.
However, there is a way to lower the priority of CICSPlex SM API requests:

• CICSPlex SM transaction CONL, which by default handles most requests that are directed to the MAS
through the API, WUI, and RTA, runs at priority 255 (unchangeable).

• CICSPlex SM API requests can be offloaded to transaction CONA, and their priority changed by
specifying MASALTLRTCNT in EYUPARM. For more information, see Controlling the number of long
running tasks in a MAS.

It is also possible to offload some RTA processing to a system task that uses the COIR transaction
identifier, by requesting a separate task in the RTA EVALDEF. Use the COIRTASKPRI CICSPlex SM system
parameter to adjust the priority of the COIR system task. For more information, see CICSPlex SM system
parameters.

CICSPlex SM provides several sample programs. Sample programs for each supported language are
distributed in source form. These samples are provided to illustrate the types of programs you can write
and the commands you need to use in those programs. For more information, see CICSPlex SM API
sample programs.

Supported environments and languages
The API can be called from programs running in a variety of environments.

• z/OS Batch
• TSO
• IBM Tivoli® NetView®

• CICS element of CICS Transaction Server for z/OS

© Copyright IBM Corp. 1974, 2020 1

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cpsm/dfha1b20.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cpsm/dfha1b20.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cpsm/dfha1hd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cpsm/dfha1hd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/cpsm/eyup1kx.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/cpsm/eyup1kx.html

Note: The CICSPlex SM API cannot be called from within a NetView RODM method. For details on the
restrictions that apply to RODM method services, see IBM Tivoli NetView for z/OS Resource Object Data
Manager and GMFHS Programmer's Guide.

Available interfaces
CICSPlex SM provides two interfaces for API users.

Command-level interface
This interface uses the CICS translator to accept EXEC CPSM statements and translate them into the
appropriate sequence of instructions in the source language. These instructions are then linked to an
interface stub routine that is supplied by CICSPlex SM.

The command-level interface is available for programs written in the following languages:

• Assembler Version 2 and later
• OS PL/I Optimizing Compiler Version 2.3 and later
• COBOL Compiler Version 1.3.2 and later
• C Version 2.1. and later

Table 1 on page 2 shows which languages are supported by the command-level interface in each
environment.

Table 1. Programming languages supported by the command-level interface

Environment Assembler COBOL PL/I C

CICS TS Yes Yes Yes Yes

MVS™ Batch Yes Yes Yes Yes

MVS TSO Yes Yes Yes Yes

MVS NetView Yes Yes Yes

Runtime interface
The runtime interface supports programs written as REXX EXECs in the following MVS environments:

• Batch
• TSO
• NetView.

This interface consists of a REXX function package that is supplied by CICSPlex SM. The function
package accepts commands in the form of text strings and generates the appropriate API calls.

Connecting to CICSPlex SM
You can think of a CICSPlex SM API program as existing in or having access to three environments.

User environment
The program itself and the environment in which it runs, such as MVS or CICS.

CICSPlex SM environment
The data that CICSPlex SM maintains and the services it provides to the program.

Managed resource environment
The resources that CICSPlex SM manages and which the program can access.

2 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSZJDU_6.2.1/com.ibm.itnetviewforzos.doc_6.2.1/dqimst.htm
https://www.ibm.com/support/knowledgecenter/SSZJDU_6.2.1/com.ibm.itnetviewforzos.doc_6.2.1/dqimst.htm

Before your program can access the CICSPlex SM environment and the resources it manages, you must
establish a connection to CICSPlex SM. This connection is called an API processing thread and serves two
basic purposes:

• When a thread is created, the user is identified so that security validation and auditing of the program's
operations can take place transparently.

• There are implicit relationships between some API functions, and those relationships are maintained at
the thread level. Each thread is considered a unique API user and no resources can cross the boundary
of a thread.

Once a thread is created, your program can issue commands within the context of the local CMAS. The
local CMAS is dictated by where and how the connect command is issued:

• If issued in a CICS system, it is the local CMAS to that CICS system.
• If issued as a batch job and no CMAS is stated explicitly, the local CMAS is the last CMAS started.
• If issued as a batch job and a CMAS within the MVS image is included in the CONNECT command, it is

that CMAS.

You can look at data from CMASs other than the local CMAS but you cannot change the context to point
directly to them.

A simple API program would establish only a single thread. You could establish the thread, perform the
operations, and then terminate the thread. A more complex program might maintain several concurrent
threads to perform parallel operations that would be prohibited on a single thread or to simplify the
correlation of commands and results.

You can use the following commands to manage an API thread:
CONNECT

Establishes a connection to CICSPlex SM, defines an API processing thread, and provides default
settings for the thread. The thread is maintained by the CMAS that is supporting your API session.

DISCONNECT
Disconnects an API processing thread from CICSPlex SM and releases any resources associated with
the thread.

QUALIFY
Defines the CICSPlex SM context and scope for subsequent commands issued by the thread.

TERMINATE
Terminates all API processing on all the threads created by the CICS or MVS task that issues the
command.

These commands manage the connection between the user environment (your program) and CICSPlex
SM; they do not affect the managed resources. Figure 1 on page 4 illustrates the impact these
commands have on the API environment.

Chapter 1. An overview of the CICSPlex SM API 3

Figure 1. API commands involved in managing a thread

For complete descriptions of these commands, see CICSPlex SM API commands.

The connection process
The process of connecting to CICSPlex SM varies according to what type of program you write and where
it runs.

For programs written using the command-level interface, keep in mind the following requirements:
CICS

A program written to run as a CICS application must be linked with the proper stub routine and must
run in a CICS system that is being actively managed by CICSPlex SM as a local MAS.

A connection is established first to the MAS agent code that resides in the CICS system and then to
the CMAS that controls that MAS. On the CONNECT command, you must specify a CONTEXT of the
local CMAS.

Batch, NetView, or TSO
A program written to run as a batch job or under NetView or TSO must be linked with the proper stub
routine and must run in the same MVS image as the CMAS to which you want to connect.

In these environments, if there is more than one CMAS in the MVS image, the API selects a suitable
CMAS and establishes a connection. The following rules apply to the selection of a CMAS:

• The CMAS must be running the same version of CICSPlex SM as the run-time module (EYU9AB00).
• If the context specified on the CONNECT command is a CMAS, CICSPlex SM connects to that CMAS.

If that CMAS is either not active or not running the appropriate version of CICSPlex SM, the
CONNECT command fails.

• If the context specified on CONNECT is a CICSplex, CICSPlex SM selects a CMAS running the
appropriate version that participates in the management of the CICSplex.

4 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-cpsm/eyup2km.html

• If no context is specified on CONNECT, CICSPlex SM connects to the CMAS that was most recently
started, provided it is running the appropriate version of CICSPlex SM>.

The CICSPlex SM API also supports another type of batch environment. A program can issue API
commands from an address space that is running a CICS system without itself being a CICS
transaction. In other words, the program can run as a separate MVS task in the same address space
as the CICS system. This type of program must be linked with the batch environment stub routine and
the connection process is the same as for other batch programs.

Note: A program that is a CICS transaction must be run in a CICS system that is a CICSPlex SM local
MAS.

For details on the stub routines that are required for each of these environments, see “Link editing your
program” on page 82.

Note: For programs written in REXX, the connection process is the same as for a command-level program
that runs in the same environment (batch, TSO, or NetView). No stub routine is required, but the REXX
function package that is supplied by CICSPlex SM must have been properly installed.

MVS restrictions: Upon successful completion of a CONNECT request, a thread token is returned to the
user. All subsequent commands referring to this thread token must be issued from the same MVS TCB
that issued the connection request

Security considerations
When an API program requests a connection to CICSPlex SM, the CMAS being connected to attempts to
extract user authorization data from the environment. How the connection is established depends upon
whether such authorization data exists and whether security is active in the CMAS.

If security exists
Regardless of whether CMAS security is active, if a security environment exists where the API
program is running:

• The API security routine, EYU9XESV, is not called.
• The USER and SIGNONPARM options on the CONNECT command are ignored.
• The API program is connected with the user ID of the invoking user, as obtained from the accessor

environment element (ACEE).

Note: If CMAS security is not active, the ACEE user ID is not validated by CICSPlex SM.

This type of security environment may exist when a program runs under TSO, batch, NetView, or a
local MAS where CICS security is active. Security checking is performed by the environment where the
API program is running.

If security does not exist and CMAS security is not active

• The API security routine, EYU9XESV, is not called.
• The USER and SIGNONPARM options on the CONNECT command are ignored.
• No sign-on is performed. However, the user ID specified in the XESV_CONN_USERID field of the

security routine parameter block, EYUBXESV, is associated with the connection.

This type of security environment may exist when a program runs under a local MAS where CICS
security is not active. Since CMAS security is not active, no security checking is performed.

If security does not exist and CMAS security is active

• The API security routine, EYU9XESV, is called.
• The USER and SIGNONPARM values from the CONNECT command are passed to EYU9XESV.
• A sign-on is performed using the user ID returned by EYU9XESV, but no password checking is

performed. By default, EYU9XESV returns the default CICS user ID for the CMAS (the DFLT_UID
value).

This type of security environment might exist when a program runs under a local MAS where CICS
security is not active. Since CMAS security is active, security checking is performed by EYU9XESV.

Chapter 1. An overview of the CICSPlex SM API 5

Table 2 on page 6 summarizes the levels of API security and the conditions under which they are
implemented.

Table 2. Possible API security environments

Environment
Security

CMAS Security No CMAS Security

YES EYU9XESV not called.

CONNECT options ignored.

User ID=ACEE.

EYU9XESV not called.

CONNECT options ignored.

User ID=ACEE (not checked).

NO EYU9XESV called.

CONNECT options passed.

User ID=As returned by EYU9XESV (sign-
on with no password checking).

EYU9XESV not called.

CONNECT options ignored.

User ID= XESV_CONN_USERID (no sign-
on).

For a description of the USER and SIGNONPARM options, see the API CONNECT command. See CONNECT
command. For a description of EYU9XESV and information on customizing this security routine, see CICS
security.

Compatibility between environments
Once you have written a CICSPlex SM API program to run in one environment, you can take that program
and run it in another environment with only minor modifications.

For example, if you want to take a CICS application written with EXEC CPSM commands and convert it to
an MVS batch program, you should:

• Make the appropriate code changes, such as:

– Remove any EXEC CICS commands that may be included
– Add the necessary MVS calls

• Relink-edit the program with the batch environment stub routine.

Note: A REXX program can be moved from one MVS environment (batch, TSO, or NetView) to another
without modification, provided you have not used any environment-specific functions.

Before you try to move an EXEC CPSM program to an environment other than the one for which it was
written, you should review the following sections:

• “Language and environment considerations” on page 78
• “Translating your program” on page 80
• “Link editing your program” on page 82.

Compatibility between releases of CICSPlex SM
When you have written an API program to run under one release of CICSPlex SM, you can continue to
access the data provided by that release, or you can access the data available from a later release of the
product.

In general, if you plan to access more than one release of the CICSPlex SM API, keep the following in
mind:
Run-time environment

The run-time version of a CICSPlex SM API program is equal to the level of the CMAS to which it
connects:

6 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-cpsm/eyup2ah.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-cpsm/eyup2ah.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/security.html

• For a program written to run as a CICS application, the run-time version is that of the CMAS to which
the MAS is connected.

• For a program written to run as a batch job or under NetView or TSO, the version is determined by
the version of the CICSPlex SM run-time module (EYU9AB00), which is distributed in the version's
SEYUAUTH library.

The run-time version of a program must be greater than or equal to:

• The version of the stub routine module (EYU9AxSI) with which the program was link edited.

– For CICS programs, the stub module is called EYU9AMSI and is distributed in the version's
SEYULOAD library.

– For batch, TSO, or NetView programs, the module is called EYU9ABSI and is distributed in the
version's SEYUAUTH library.

In addition, the version of the stub module for any separately link edited and called programs must
be the same as the version used to link edit the program that issued the CONNECT command.

• The value specified on the VERSION option of the CONNECT command.

Note: For programs written in REXX, the run-time version must be greater than or equal to the version
of the function package (EYU9AR00), which is distributed in the version's SEYUAUTH library.

VERSION option
The VERSION option on the CONNECT command controls which release of CICSPlex SM resource
tables are available to your program (resource tables are the external representation of CICSPlex SM
data).

• An API program cannot access data from a release of CICSPlex SM earlier than Release 2 (the
release in which the API was introduced). The VERSION value must be set to 0120 or greater.

• An API program cannot access data from a release of CICSPlex SM later than the run-time module
that you specify. The VERSION value must be less than or equal to the release of the run-time
module.

• An API program can access data from a later release of CICSPlex SM than that which the program
was originally written for, provided:

– You compile your program using the appropriate copy books for the version specified.
– Your program is compatible with the copy books for the version specified.

CONTEXT option
The CONTEXT option that is supported by various API commands determines which CICS systems
your program receives data from. The CONTEXT value can be set to any CMAS or CICSplex running
any currently supported release of CICSPlex SM. Note, however, that the release level of the CMAS or
CICSplex must be the same as the release of the run-time module.

CURRENT option
When specifying the CURRENT option, the record pointer does not move (that is, a subsequent FETCH
retrieves the same record). Previously, the record pointer moved to the next record. For further
information, see “Positioning the record pointer in a result set” on page 27.

Special considerations for REXX applications
If you have REXX application programs you should be aware of how CICSPlex SM behaves in the case
where you apply a PTF to some members of a CICSplex but not others, you modify a REXX API program to
put a value in a new table field introduced by the PTF and the REXX program then connects to a CMAS
which has not had the PTF applied, and which therefore has no definition for the new field.

In this case:

1. The CMAS does not transmit the value of the new field to the maintenance point CMAS.
2. The maintenance point CMAS transforms the record area to give a default value to the new field. The

new value might be different from that originally specified by the REXX program.

Chapter 1. An overview of the CICSPlex SM API 7

3. The maintenance point CMAS then broadcasts the record back to the originating CMAS, but transforms
the record back to remove the new field. At this point, the maintenance point repository will not
contain the intended value, (it will contain the default value) and when it has broadcast the record
back to the originating CMAS, this repository will have had the intended value removed.

4. If the same REXX program issues a TPARSE of the record, the value of the field is still the same as it
was at the time it was created, and is not changed by the TPARSE. This might cause the program to
indicate, wrongly, that the field contains the intended value, whereas, in the maintenance point
repository, the field has the default value, and in the back-level CMAS repository, the field does not
exist.

5. If a REXX API program subsequently connects to the back-level CMAS and issues a TPARSE of the
record, the new field will not be populated by the TPARSE. In this case the field will have the normal
REXX default value - the field value will be the same as the field name.

If the set of circumstances described above applies to you, and might cause you a problem, your REXX
program should contain code to issue a QUERY to obtain and verify the record length.

Accessing resource tables from a new release
You can access the most up-to-date CICSPlex SM resource tables by running an existing program under a
new release of the API.

Note: To take full advantage of a new CICSPlex SM function (such as Business Application Services),
however, you would have to modify an existing program or create a new one.

To run an existing API program under a new release of CICSPlex SM:

• Make sure the following are available to your program:

– The runtime module for the new release (EYU9AB00 from the new release's SEYUAUTH library)
– A CMAS that is running the new release

• Change the VERSION value on the CONNECT command to reflect the new release of CICSPlex SM and
relink-edit the program using the stub module supplied in the new release.

• Review the possible effects of any changes to the CICSPlex SM resource tables.

Attributes may be added to a resource table in a new release, which could affect your program's
references to that table. And with the addition or modification of attributes, the length of a given
resource table may change from one release to another. The resource table copy books that are
distributed with the new release are a good source of information about such changes.

Note: If there is no requirement to take advantage of the new function in the release it is possible to
continue to run an existing API program unaltered, provided the VERSION value on the CONNECT
command reflects the link-edit level used.

If your program receives RESPONSE and REASON values of INVALIDPARM LENGTH when you run it
under a new release of CICSPlex SM, the table length may have increased and your data buffer may not
be long enough to accommodate the new resource table records.

• If you are using customized views of resource tables, you are advised to check that the names of any
new resource tables do not duplicate the names of your customized views, as this could affect your
processing. For further details, see “Building a customized resource table record” on page 14.

For a complete list of new and changed resource tables in a given release, see CICSPlex SM resource
tables in Reference.

Accessing resource tables from a previous release
You can continue accessing the resource tables supplied with a previous release of CICSPlex SM.

In order to do this you must:

• Specify the release of CICSPlex SM data that you want to access on the VERSION option of the
CONNECT command.

8 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

• Use the run-time module (EYU9AB00) supplied with the release you want to access or a subsequent
release that supports it.

• Use a version of the stub module (EYU9AxSI) that is less than or equal to the run-time module.

Table 3 on page 9 illustrates some valid combinations of the VERSION option, stub module and run-
time module for accessing data from different releases of CICSPlex SM.

Table 3. Valid ways to access data from different releases

VERSION value Stub module
(EYU9AxSI)

Run-time
module
(EYU9AB00)

CMASs
available

CMAS used Data available

0220 V2R2 V2R2 V1R2 V1R3
V1R4 V2R1
V2R2

V2R2 V2R2

0120 V1R2 V1R2 V1R2 V1R2 V1R2

0120 V1R2 V1R3 V1R3 V1R3 V1R2

0120 V1R3 V1R3 V1R2 V1R3 V1R3 V1R2

0120 V1R4 V1R4 V1R2 V1R3
V1R4

V1R2 V1R2

0130 V1R3 V1R3 V1R2 V1R3 V1R3 V1R3

0130 V1R3 V1R4 V1R2 V1R3
V1R4

V1R4 V1R3

0130 V1R4 V1R4 V1R2 V1R3
V1R4

V1R4 V1R3

0140 V1R4 V1R4 V1R2 V1R3
V1R4

V1R4 V1R4

0210 V2R1 V2R1 V1R2 V1R3
V1R4 V2R1

V2R1 V2R1

Table 4 on page 9 shows some invalid combinations of the VERSION option, run-time module, and stub
module and describes why they produce an error.

Table 4. Common errors in accessing different releases

VERSION value Stub module
(EYU9AxSI)

Run-time
module
(EYU9AB00)

CMASs
available

Error description

0140 V2R1 V1R4 V1R4 V2R1 Stub module release level is greater
than run-time module.

0210 V2R1 V1R4 V1R4 V2R1 Stub module release level is greater
than run-time module.

0210 V1R4 V1R4 V1R4 VERSION value is greater than run-
time module.

0210 V2R1 V2R1 V1R4 No CMAS available at the required
run-time level.

Note: For programs written in REXX, the compatibility issues are similar. The Release 2 function package
(which contains the necessary stub module) can run successfully with either the Release 2 or Release 3
run-time module. The Release 3 function package, however, cannot run with the Release 2 run-time
module; the Release 3 module is required.

Chapter 1. An overview of the CICSPlex SM API 9

Sample programs
Sample programs for each supported language are distributed with CICSPlex SM in source form. These
samples are provided to illustrate the types of programs you can write and the commands you need to
use in those programs.

The sample programs are distributed in members called EYUxAPIn, where x is a 1-character language
identifier and n is a sequential program identifier. For example, EYUCAPI1 is sample program number 1
coded in C. They are all located in the SEYUSAMP library.

Details of the sample programs are shown in the following table.

Table 5. Sample programs provided with CICSPlex SM

Language Programs Library

Assembler EYUAAPI1 EYUAAPI2 EYUAAPI3 SEYUSAMP

COBOL EYULAPI1 EYULAPI2 EYULAPI4 SEYUSAMP

PL/I EYUPAPI1 EYUPAPI2 SEYUSAMP

C EYUCAPI1 EYUCAPI2 SEYUSAMP

REXX EYU#API1 EYU#API2 EYU#API3 SEYUSAMP

A listing is provided for each sample program (in one of its supported languages) in CICSPlex SM API
sample programs.

Note: Additional sample CICSPlex SM /> API programs are available via the IBM CICS SupportPacs
system at:

http://www-01.ibm.com/support/docview.wss?uid=swg27007241

10 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/cpsm/eyup1kx.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/cpsm/eyup1kx.html

Chapter 2. Using the CICSPlex SM API
You need to understand a number of concepts before you use the CICSPlex SM API, including managed
objects, resource tables, and result sets.

CICSPlex SM managed objects
CICSPlex SM is an object-oriented system. This means that each resource in the CICSPlex SM
environment is an instance of an object. Each object is considered to be a specific type and each has a
unique, formally defined name.

Types of managed objects
There are various types of objects in the CICSPlex SM environment. Some objects, such as CICS systems,
programs, and transactions are real-world resources that CICSPlex SM manages. Definition objects, such
as monitor specifications and workload definitions, are resources created solely for use within CICSPlex
SM.

An event is an example of a run-time object that is generated as a result of CICSPlex SM processing.

The CICSPlex SM managed objects can be grouped into the following categories:

• Managed CICS resources

– CICS resources
– Monitored CICS resources

• CICS resource definitions
• CICSPlex SM definitions
• CICSPlex SM manager resources
• CICSPlex SM notifications
• CICSPlex SM meta-data.

Managed CICS resources
These objects represent actual CICS resources that exist in the CICS systems being managed by
CICSPlex SM.

Each object of this type describes a CICS resource that CICSPlex SM can report on and manipulate.
Managed objects exist for all the resources that are available to CICSPlex SM using standard CICS
interfaces. In some cases, the CICSPlex SM managed objects offer a more definitive representation of the
resources than CICS does. For example, the LOCTRAN and REMTRAN objects, which CICSPlex SM uses to
distinguish between local transactions and remote transactions, are combined by CICS as transactions.

In addition to the standard CICS resources, CICSPlex SM creates managed objects as a result of its
resource monitoring activity. Monitored CICS resources contain a subset of the resource attributes,
normally those that reflect the state and consumption characteristics of the resource. In addition,
CICSPlex SM may provide derived attributes that show resource utilization as an average, rate, or
percentage. MLOCTRAN and MREMTRAN are examples of monitored CICS resource objects; they are
derived from the LOCTRAN and REMTRAN CICS resource objects. A monitored CICS resource object can
exist after the associated CICS resource object is removed from the CICS system, or even after the
system itself is shut down.

© Copyright IBM Corp. 1974, 2020 11

CICS resource definitions
These objects represent definitions of CICS resources that CICSPlex SM can assign to, and possibly install
in, CICS systems.

The actual definitions are stored in the CICSPlex SM data repository as definition records. For example,
the TRANDEF object represents a CICS transaction that can be assigned both locally and remotely to
multiple CICS systems throughout the CICSplex.

Assigning CICS resources to CICS systems enables CICSPlex SM to manage those resources as a logical
group, such as an application. In addition, CICSPlex SM can install instances of a resource in CICS
systems that support the EXEC CICS CREATE command.

CICSPlex SM definitions
These objects represent the definitions that are used by CICSPlex SM management applications.

The actual definitions are stored in the CICSPlex SM data repository as definition records. For example,
the MONSPEC object represents a user-defined monitor specification that CICSPlex SM uses to establish
resource monitoring in a CICS system.

Any changes you make to CICSPlex SM definitions are automatically distributed throughout the CICSplex.
In addition, certain definitions are bound to other definitions for the purpose of referential integrity. If you
remove one of these definitions, all the related definitions are also removed. For example, removing a
CPLEXDEF object causes all definition objects for that CICSplex to be automatically removed from all
CMASs that manage the CICSplex.

CICSPlex SM manager resources
These objects represent run-time resources that are either built from CICSPlex SM definitions or created
by CICSPlex SM management applications during processing.

You can manipulate a CICSPlex SM manager resource without necessarily affecting the underlying
definition. The RTAACTV object is an example of a CICSPlex SM manager resource; it describes the
currently installed RTADEF and STATDEF definition objects.

There are other CICSPlex SM manager resources that are not directly related to any definition. For
example, the CRESCONN object is a Topology Services resource map that describes the CICS connections
in an active MAS.

CICSPlex SM notifications
CICSPlex SM notifications are really messages that are generated asynchronously by a CICSPlex SM
managed object.

Notifications describe an interesting event related to the object. CICSPlex SM manager resources can
register interest in one or more of these events. When a notification is generated, the manager resource
performs whatever processing is needed based on the event that occurred.

An API program can also register interest in events that generate CICSPlex SM notifications. The
EMSTATUS, EMASSICK, and EMASWELL objects are examples of notification messages generated by the
CICSPlex SM MAS agent. These notifications describe the current state of the MAS.

The ERMCxxxx objects are generated by CICSPlex SM when a Topology resource map is changed.
CICSPlex SM maintains resource maps which describe the topology of certain CICS resources in the
MASs. CICS resources for which resource maps are maintained have a corresponding ERMCxxxx
notification object. The CICSPlex SM agent detects the installations and discards of these CICS resources
and causes the Topology resource map to be updated. For example, if a file definition is installed in a
MAS, the Topology resource map will be changed and an ERMCFILE notification will be generated. The
ACTION attribute of the ERMCFILE notification indicates that an install has occurred. Furthermore, for a
local MAS, the CICSPlex SM MAS agent detects updates to these CICS resources. For example, if a
program is disabled, the ERMCPRGM notification will be generated with the ACTION attribute indicating
an update.

12 CICS TS for z/OS: CICSPlex SM Application Programming Guide

CICSPlex SM meta-data
These objects describe the structure of CICSPlex SM managed resources. This information is maintained
in an object directory that exists in each active CMAS.

An API program can request the following types of meta-data from the object directory:
OBJECT

General characteristics of an object
OBJACT

Valid actions for an object
METADESC

Basic description of an object's attributes
ATTR

Complete description of an object's attributes
ATTRAVA

Valid EYUDA or CVDA values for an attribute
METANAME

All CVDAS, CVDAT, and EYUDA information
METAPARM

Description of a parameter for an action
PARMAVA

Description of the values allowed for a parameter

CICSPlex SM resource tables
Each CICSPlex SM managed object is represented externally by a resource table.

A resource table defines all the attributes of an object. The attributes represent the collection of data that
is available for that object.

The formal object name is used as the name of the resource table that describes the object's attributes.
You identify an object in your API program by specifying its resource table name. For example, to find out
about the programs in one or more CICS systems, you could access the PROGRAM object. PROGRAM is
the name of the CICSPlex SM resource table that describes CICS programs.

Each instance of an object is formatted as a resource table record that describes an actual resource in the
CICSPlex SM environment. The object attributes are presented in the individual fields of a resource table
record. It is important to note that a resource table is not itself an object. A resource table record is
merely the format in which information about a managed object is returned by CICSPlex SM. This
information includes the current attribute values, the actions that the object supports, and the releases of
CICS for which the object is valid.

There is a resource table type for each type of CICSPlex SM managed object:
Resource table type

Object type

CICS Definition
CICS resource definitions

CICS Resource
CICS resources

CICS Monitored
Monitored CICS resources

CPSM Definition
CICSPlex SM definitions

CPSM Manager
CICSPlex SM manager resources

Chapter 2. Using the CICSPlex SM API 13

CPSM Notification
CICSPlex SM notifications

CPSM MetaData
CICSPlex SM metadata

CPSM Configuration
CICSPlex SM configuration definitions

For a summary of the CICSPlex SM resource tables by type and complete descriptions of specific resource
tables see CICSPlex SM resource tables in Reference.

Restricted Resource Table Attributes

Certain attributes in the CICSPlex SM resource tables are for internal use only; they cannot be modified or
manipulated by an API program.

In CICS Resource and CICS Monitored tables, CICSPlex SM uses the following attributes to identify
uniquely which CICS system contains the resource:

• EYU_CICSNAME
• EYU_CICSREL.

These attributes are included in every CICS Resource and CICS Monitored resource table record. You can
specify these attributes in a GROUP command to summarize the records in a result set. However, you
should not specify these attributes in an ORDER, SPECIFY FILTER, or SPECIFY VIEW command.

CPSM Definition and CICS Definition tables include a CHANGETIME attribute, that reflects the date and
time at which the definition was last modified. CICS Definition tables also include a CREATETIME
attribute, that is the date and time at which the definition was created. Attribute fields (CHANGEAGENT,
CHANGEAGREL and CHANGEUSRID) are for BAS resource definitions. These attributes display details as
to how the resource was defined or last modified, the level of CICS system running when the resource
was defined or last modified and the ID of the user who created or modified the resource definition
CICSPlex SM is solely responsible for maintaining the CHANGEAGENT, CHANGEAGREL, CHANGETIME,
CREATETIME and CHANGEUSRID attributes; do not attempt to modify these attribute values.

Building a customized resource table record
Normally, when you create a result set, each resource table record contains the complete set of attributes
in the format defined by CICSPlex SM. There might be times, however, when you want to work with a
subset of those attributes or work with them in a different order. The SPECIFY VIEW command lets you
decide which attributes of a resource table to include in a record and what order to present them in. In
effect, you are building a temporary, custom-made resource table.

You can build views only for resource tables with a type of CICS Resource; you cannot build views for any
other type of resource table. Also, a view can be built from the attributes of only one resource table at a
time. You cannot combine attributes from different resource tables into a single view. You can specify the
EYU_CICSNAME and EYU_CICSREL attributes in an order expression to identify the CICS system from
which a view record was collected.

When you build a resource table view, you have to give it a name. The name you assign to a view takes
precedence over any existing resource table names. This means you can redefine an existing resource
table name to represent a subset of the attributes in a different order than they appear in the original
table.

For ease of maintenance of your programs, give unique names to your customized resource table views. If
you do not use unique names, you cannot access another view with the same name in the same
processing thread without the programming overhead of discarding the original view. When you upgrade
your version of CICSPlex SM, check that any new resource tables do not duplicate your customized view
names.

14 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

To define to CICSPlex SM which resource table attributes you want to include and in what order, you
specify an order expression on the FIELDS option of the SPECIFY VIEW command. This expression is
similar to the one you use when sorting records in a result set with the ORDER command. The order
expression consists of a list of the attributes to be included in the view.

The syntax of an order expression for building a view is:
Order Expression – Building a View

,

attr

.

attr
Is the name of an attribute in the resource table.

You can specify as many attribute names as you like, but the total length of an order expression,
including commas and blank spaces, must not exceed 255 characters. If you do not specify an
attribute name, the order expression contains the name of the first attribute in the resource table, for
example, the JOBNAME attribute in the CICSRGN resource table.

For example, to build a limited view of the LOCTRAN resource table, you can specify:

 TRANID,STATUS,USECOUNT,PROGRAM,PRIORITY,TRANCLASS.

An order expression must be followed by either blank spaces or null characters to the end of the specified
buffer. That is, the buffer length you specify (using the LENGTH option) must not include any data other
than an order expression. Once a view is built, you can specify it on the OBJECT option of a GET
command. The resource table records returned by GET include only those attributes you named in the
order expression on the SPECIFY VIEW command.

Any views that you build are associated with the specific processing thread on which you build them; they
cannot be shared by other processing threads. When you terminate your processing thread, any views you
built on it are discarded. You can also choose to discard a view at any time by using the DISCARD
command.

How to create copybooks for customized resource table records
You can build a structure for your customized view by using the SPECIFY VIEW, GET and FETCH
commands to move the data into your structure.

For example:

* SPECIFY VIEW *

 STRING 'POOLNAME,MINITEMLEN,QUELENGTH,NUMITEMS,'
 'RECOVSTATUS,MAXITEMLEN,LASTUSEDINT,'
 'NAME,TRANSID,LOCATION.'
 DELIMITED BY SIZE INTO BUFFERA.
 MOVE 96 TO BUFFERL.
 EXEC CPSM SPECIFY
 VIEW('VTSQSHR')
 FIELDS(BUFFERA)
 LENGTH(BUFFERL)
 OBJECT('TSQSHR')
 THREAD(TTKN(1))
 RESPONSE(SMRESP)
 REASON(SMRESP2)
 END-EXEC.

Figure 2. SPECIFY VIEW command to build a structure

The associated structure will consist of each attribute specified in the SPECIFY VIEW FIELDS keyword
and is shown in Figure 3 on page 16.

Chapter 2. Using the CICSPlex SM API 15

 01 VTSQSHR.
* Shared Temporary Storage Queue
 02 POOLNAME PIC X(0008).
* TS Pool Name
 02 MINITEMLEN PIC S9(0004) USAGE BINARY.
* Smallest item Length in bytes
 02 QUELENGTH PIC S9(0008) USAGE BINARY.
* Total length in bytes . FLENGT
 02 NUMITEMS PIC S9(0004) USAGE BINARY.
* Number items in queue
 02 RECOVSTATUS PIC S9(0008) USAGE BINARY.
* Recovery Status
 02 MAXITEMLEN PIC S9(0004) USAGE BINARY.
* Largest item length in bytes
 02 LASTUSEDINT PIC S9(0008) USAGE BINARY.
* Interval since last use
 02 NAME-R PIC X(0016).
* Queue Name -- RESERVED WORD --
 02 TRANSID PIC X(0004).
* Trans that created tsqueue
 02 LOCATION PIC S9(0008) USAGE BINARY.
* Queue Location

Figure 3. Structure of a customized view

Note that the EYU-CICSNAME, EYU-CICSREL, and EYU-RESERVED attributes or any field alignment or
padding attributes are not used in this structure.

Selecting managed objects
Any given API program is likely to be interested in only a subset of the CICSPlex SM managed objects.

You can identify the managed objects you want to work with by:

• Setting the context and scope for your program
• Using filter expressions on individual commands.

Setting the context and scope
The set of managed objects that your API program can work with is determined primarily by the context
and scope associated with the processing thread.

As with all CICSPlex SM operations, the context and scope of an API program identify the CICS systems
on which the program can act.

In general, you can set the context and scope values as follows:
CONTEXT

For most operations in a CICSplex, the context is the name of the CICSplex. For operations related to
CMAS configuration (such as defining CICSplexes or CMAS communication links), the context must be
a CMAS name and for applications executing in a CICS local MAS the CMAS name must be the local
CMAS name.

SCOPE
When the context is a CICSplex, the scope can be:

• The CICSplex itself
• A CICS system or CICS system group within the CICSplex
• A logical scope, as defined in a CICSPlex SM resource description (RESDESC)

When the context is a CMAS, the scope value is ignored. There are also a number of resources for
which the scope value is ignored. These are identified by the SCOPE applies field in the description of
resource tables in CICSPlex SM resource tables in Reference.

You can set a default context and scope for your program by using one of these commands:
CONNECT

Defines a default context and scope when the API processing thread is established.

16 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

QUALIFY
Changes the default context and scope for subsequent commands issued on the thread.

The values you set on either of these commands are in effect for all API commands that use context and
scope.

Alternatively, you can specify context and scope values for individual API commands. The following
commands support one or both of the CONTEXT and SCOPE options:

• CREATE
• GET
• LISTEN
• PERFORM OBJECT
• REMOVE
• UPDATE.

The context and scope values you set on any of these commands are in effect for that command alone. If
you specified a default context and scope for the thread, the values on any of these commands
temporarily override the default values. If you did not specify a default context and scope and you issue a
command that expects these values (such as GET), you must specify a context and scope on the
command.

Using filter expressions
If you are only interested in certain programs, you can use a filter expression to limit the number of
records returned based on the current values of certain PROGRAM attributes.

A request for CICSPlex SM managed object data can produce a large number of resource table records.
The default is to return all the resource table records that exist for a given object within the current
context and scope. For example, if you ask for PROGRAM object data, you receive a resource table record
for every program in every CICS system in the current context and scope.

How you can use filter expressions
You can use filter expressions in one of two ways.

• With the CRITERIA option of a GET or PERFORM OBJECT command to filter the resource table records
returned by that command. The filter expression is used only once and is discarded when the command
that used it completes its processing.

• With a SPECIFY FILTER command to define a filter that can be used repeatedly.

Once a filter is defined, you can use it with these commands to limit the resource table records being
processed:

– COPY
– DELETE
– FETCH
– GET
– GROUP
– LISTEN
– LOCATE
– MARK
– PERFORM OBJECT
– PERFORM SET
– REFRESH
– SET
– UNMARK

Chapter 2. Using the CICSPlex SM API 17

A filter expression that you define with the SPECIFY FILTER command is available to your program until
you either discard it (with the DISCARD command) or terminate the processing thread.

How to build a filter expression
A filter expression is a character string that defines logical expressions to be used in filtering resource
table records.

A filter expression can be made up of one or more attribute expressions in the form:
Filter Expression

logic_expr .

logic_expr
AND/OR

NOT

attr_expr

(logic_expr)

attr_expr
attr oper value

where:
attr

Is the name of an attribute in the resource table.

You can name the same attribute more than once in a filter expression.

Note: In a filter expression you cannot specify the EYU_CICSREL attribute, or attributes with a
maximum length over 256 bytes.

oper
Is one of the following comparison operators:
<

Less than
<=

Less than or equal to
=

Equal to
>=

Greater than or equal to
>

Greater than
¬=

Not equal to

Important: Use less than (<) or greater than (>) operators in your CRITERIA expression instead of
equal (=), when you are working with store clock based fields. If you are directly using the CICSPlex
SM API, or the CMCI and require to select records that are based on a specific store clock value, a
compound CRITERIA expression can be used. For example, "RESPTIME>='0000:00:00.008351' AND
RESPTIME<'0000:00:00.008352'.".

value
Is the value for which the attribute is being tested. The value must be a valid one for the resource
table attribute.
Generic values

If the attribute accepts character data, this value can be a generic. Generic values can contain:

18 CICS TS for z/OS: CICSPlex SM Application Programming Guide

• An asterisk (*), to represent any number of characters, including zero. The asterisk must be the
last or only character in the specified value. For example:

 TRANID=PAY*.

• A plus sign (+), to represent a single character. A + can appear in one or more positions in the
specified value. For example:

 TRANID=P++9.

Note:

1. Generic value checking is applied only to the filter value. For example, a filter value of
USERID=S* returns resource table records that have a user ID starting with S. However, a filter
value of USERID=SMITH does not return resource table records that appear to contain generic
characters, for example, those with a user ID of S*.

2. For hexadecimal data types, the data must be converted to hexadecimal before appending the
asterisk (*) for the generic search. The plus sign (+) is not supported for hexadecimal data
types.

3. The Web User Interface does not support the use of embedded generic characters in attribute
filters in WLM active views such as EYUSTARTWLMATAFF. A single asterisks (*) may be used to
request all values.

Imbedded blanks or special characters

If the value contains imbedded blanks or special characters (such as periods, commas, or equal
signs), the entire value string must be enclosed in single quotes. For example:

 TERMID='Z AB'.

To include a single quote or apostrophe in a value, you must repeat the character, like this:

 DESCRIPTION='October''s Payroll'.

Note: Be sure to consider the quoting conventions of your programming language when using
single quotes in a CICSPlex SM value string.

Hexadecimal data
If the attribute has a datatype of HEX the value must be in hexadecimal notation.

For example, the NAME attribute of the REQID resource table is a HEX datatype. To specify a
name equal to 01234567 the value, using hexadecimal notation, would be

 NAME=F0F1F2F3F4F5F6F7.

AND/OR
Combines attribute expressions into compound logic expressions using the logical operators AND and
OR, like this:

 attr_expr AND attr_expr.

Filter expressions are evaluated from left to right. You can use parentheses to vary the meaning of a
filter expression. For example, this expression:

 attr_expr AND (attr_expr OR attr_expr).

has a different meaning than this one:

 (attr_expr AND attr_expr) OR attr_expr.

NOT
Negates one or more attribute expressions.

Chapter 2. Using the CICSPlex SM API 19

You can negate a single attribute expression, like this:

 NOT attr_expr.

You can also negate multiple attribute expressions or even a whole filter expression, like this:

 NOT (attr_expr OR attr_expr).

Note that you must place parentheses around the attribute expressions (or the filter expression) to be
negated.

Note: A filter expression must be followed by either blank spaces or null characters to the end of the
specified buffer. That is, the buffer length you specify (using the LENGTH option) should not include any
data other than a filter expression.

For example, the following is a simple filter expression that you could use to select LOCTRAN objects
representing local transactions that are enabled and have a storage violation count greater than zero:

 STATUS=ENABLED AND STGVCNT>0.

You can build more complex filter expressions to select objects with a very specific combination of
attributes. For example, to select LOCTRAN objects that:

• Have a transaction ID starting with P
• Have a program name starting with PAY
• Are enabled
• Have a nonzero use count and storage violations, or have been restarted.

you could specify a filter expression like this:

 (TRANID=P* AND PROGRAM=PAY* AND STATUS=ENABLED) AND
 ((USECOUNT>0 AND STGVCNT>0) OR NOT RESTARTCNT=0).

Note that the RESTARTCNT attribute in this example could also have been specified with the greater than
operator instead of the NOT operator.

Parameter expressions
Parameter expressions support additional capabilities for some objects, in addition to facilities provided
by filters, in order to reduce the number of records in a result set.

The syntax to be used for parameter expressions is the same as that described in “Performing an action
against a resource” on page 36. For example, to build a result set containing completed task history
(HTASK) records that finished between 05:00pm and 05:05pm on the 17th of July 2006, use the
following parameter expression:

 PARM('STARTDATE(07/17/2006) STARTTIME(17:00)
 INTERVAL(300).')

See CICSPlex SM resource tables in Reference for a description of the parameters for GET.

Working with result sets
CICSPlex SM places the resource table records that you select in a result set. A result set is a logical
group of resource table records that can be accessed, reviewed, and manipulated by an API program.

A result set can be created in one of two ways:

• By a direct API request to obtain resource data. The GET command is the primary means of collecting
resource data and creating a result set.

• By an API request that manipulates one result set to create another. COPY is an example of a command
that can create a new result set from the records in an existing one. The result set from which records
are being copied is referred to as the source result set. The one being copied to is the target result set.

20 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

The resource table records in a result set must all represent one type of managed object. That is, a result
set that contains PROGRAM resource table records cannot also contain LOCTRAN resource table records.
The resource table records must also be collected from the same CICSPlex SM context. So a result set
that contains records from one CICSplex cannot be used to hold records from any other CICSplex. Once a
result set is created, its resource type and context are fixed. The only way to change the type or context of
a result set is to completely replace the contents of the result set with new resource table records.

Keep in mind that a resource table record in a result set is not the actual managed object; it is a report of
the managed object's attributes at the point in time when data was collected. This is an important
distinction because the actual managed object may have changed or may no longer exist by the time the
resource table record is returned to your program. The number of records returned may vary as managed
objects come and go, but the structure of the records in a result set remains constant.

A simple API program might deal with only one result set at a time. Each new request for data could
create a result set that replaces the previous one. A more complex program might maintain several result
sets concurrently and control the retention of those result sets more directly.

An overview of result set commands
You can use the following commands to create result sets and manage the resources that they represent.

GET
Returns a result set containing selected resource table records that represent instances of a managed
resource.

PERFORM
Performs an action on one or more managed resources. PERFORM SET acts upon the resource table
records in an existing result set. PERFORM OBJECT does not require a result set to exist; it creates
one implicitly.

REFRESH
Refreshes the data for some or all of the managed resources as represented by resource table records
in a result set.

SET
Modifies the attributes of one or more managed resources as represented by resource table records
in a result set.

These commands affect not only the resource table records in a result set, but also the managed
resources that those records represent. Figure 4 on page 22 illustrates the relationship of these
commands to the API environment.

Chapter 2. Using the CICSPlex SM API 21

Figure 4. API commands that manipulate managed resources

Once a result set is created, you can perform various operations on the records it contains. You can sort,
mark, copy, delete, and summarize the records in a result set. Most importantly, perhaps, you can retrieve
records from a result set into local storage where they can be processed by your program.

You can use the following commands to manipulate one or more records in a result set:
COPY

Copies some or all of the resource table records in one result set to another result set.
DELETE

Deletes one or more resource table records from a result set.
EXPAND

Returns a result set containing all of the records summarized in a summary record.
FETCH

Retrieves data and status information for one or more resource table records in a result set.
GROUP

Returns a summarized result set by grouping some or all of the resource table records in a result set.
LOCATE

Positions the record pointer within a result set.
MARK

Marks selected resource table records in a result set.
ORDER

Sorts the resource table records in a result set.
UNMARK

Removes the marks placed on resource table records by a previous MARK command.

22 CICS TS for z/OS: CICSPlex SM Application Programming Guide

These commands affect only the current contents of a result set; they have no impact on the managed
resources that the result set represents. Figure 5 on page 23 illustrates the relationship of these
commands to the API environment.

Figure 5. API commands that manipulate result set records

CICSPlex SM also provides tools for managing result sets as a whole: filters and views for controlling the
contents of a result set and commands for reviewing and discarding result sets.

You can use the following commands to manage result sets and their contents:
DISCARD

Discards a result set.
QUERY

Retrieves information about a result set and the resource table records it contains.
SPECIFY FILTER

Defines an attribute or value filter that can be used to control the contents of a result set.
SPECIFY VIEW

Builds a customized view of a resource table that can be used to control the contents of a result set
These commands affect only an existing or newly created result set; they have no impact on the managed
resources that the result set represents. Figure 6 on page 24 illustrates the relationship of these
commands to the API environment.

Chapter 2. Using the CICSPlex SM API 23

Figure 6. API commands that manipulate result sets

Retrieving records from a result set
Once you have created a result set (using the GET command), you can transfer some or all of the records
it contains to local storage for processing.

You can use the FETCH command to retrieve a single resource table record, multiple selected records, or
the entire result set at one time.

Each resource table record that you retrieve contains current data about the managed resource that it
represents. Each record also contains certain status information that is maintained by CICSPlex SM.

This status information is presented as a resource table called OBJSTAT. The contents of the OBJSTAT
resource table are described below:

In effect, each record in a result set contains a pair of resource tables: an instance of the OBJSTAT
resource table followed by an instance of the resource table that was requested. The managed resource
data and the OBJSTAT status information can be retrieved either as a pair or separately, depending on the
option you specify with the FETCH command:
DATA

Retrieves only the specified resource table data.
STATUS

Retrieves only the OBJSTAT status information.
BOTH

Retrieves both the resource table data and the OBJSTAT status information.
Figure 7 on page 25 illustrates the information available in result set records and the FETCH commands
you can use to retrieve that information.

24 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Figure 7. Using FETCH to retrieve result set records

The result set referenced by TOKENA was created by issuing a GET command for LOCTRAN records. Each
record in the result set consists of LOCTRAN data and OBJSTAT data.

You can use the FETCH commands shown in Figure 7 on page 25 to selectively retrieve some or all of the
data. For example, Figure 8 on page 25 shows the output of a FETCH DATA command.

Figure 8. Sample FETCH DATA output

OBJSTAT
The OBJSTAT resource table provides status information for a specific record in a result set.

Name
Description

RECORDNUM
The number of the record within the result set.

CONTEXT
The context in effect when the data for the record was collected.

CICSNAME
The name of the CICS system from which the data was collected.

CICSREL
The release level of the CICS system from which the data was collected.

Chapter 2. Using the CICSPlex SM API 25

OBJECT
The name of the managed object to which the data refers.

OBJTYPE
The data type of the managed object:
1

CICSPlex SM resource
2

Logical view
RECTYPE

The type of record data:
1

Detail data
2

Summary data
LASTOPER

The last operation performed against the object:
1

COPY operation
2

DELETE operation
3

GET operation
4

MARK operation
5

REFRESH operation
6

PERFORM OBJECT operation
7

PERFORM SET operation
8

SET operation
9

UNMARK operation
STATUS

The current record status:

1... X'80' The record is MARKED
.... ...1 X'01' Operation error

The attribute is not valid in the version of CICS if the bit is set on.
CNTRECORDS

The record count. For RECTYPE=1 the record count is zero. For RECTYPE=2 the record count will
reflect the number of detail records.

KEYLEN
The length of the key data.

KEYDATA
The native key data

RESERVE1
Reserved area for future use.

26 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Positioning the record pointer in a result set
CICSPlex SM maintains a current record pointer in each result set. When you first create a result set (with
a GET command, for example), the pointer is positioned at the top of the result set. The first command
that you issue against the result set affects the first record.

In most cases, when you issue FETCH commands to retrieve records from the result set, the record
pointer is positioned to the next record in the result set (that is, the record following the last record that
was fetched). However, certain API commands always act upon the last record that was fetched. When
you issue any of these commands after a FETCH command, the record pointer is not advanced to the next
record:

• COPY
• DELETE
• MARK
• UNMARK
• PERFORM SET CURRENT
• REFRESH CURRENT
• SET CURRENT

The record pointer in a result set may move either forward or backward, depending on the direction in
which you are retrieving records. If you issue a FETCH command and no records are found that match the
specified criteria, no records are retrieved. In that case, the pointer is positioned to the top or bottom of
the result set, depending on the direction the pointer was moving.

If you issue a FETCH command and there is insufficient storage to retrieve all of the records, the pointer is
positioned at the last record that would have been retrieved if there had been enough space. The pointer
is not positioned at the last record that was retrieved. To be certain of the pointer's location, you should
use the LOCATE command to explicitly position it within the result set.

The GET and FETCH commands leave the record pointer in specific, predefined positions, but other API
commands do not. Many API commands manipulate records or update the data in a result set. The
position of the record pointer after one of these commands depends on a combination of factors,
including the options that you specified on the command. The pointer may have moved forward or
backward one or more records, or it may be positioned to the top or bottom of the result set. If you
specified the CURRENT option, the record pointer does not move; it remains positioned on the current
record after the command is complete.

For this reason, CICSPlex SM provides the LOCATE command, which lets you explicitly position the record
pointer within a result set. If you want to use the record pointer after issuing any of these commands, first
use the LOCATE command to reposition it:

• COPY
• DELETE
• GETDEF
• GROUP
• MARK
• ORDER
• PERFORM OBJECT
• PERFORM SET
• REFRESH
• SET
• UNMARK.

Chapter 2. Using the CICSPlex SM API 27

Processing selected records in a result set
If you want to process a subset of the resource table records in a result set, you can identify the records
you are interested in.

You can do this by:

• Using the SPECIFY FILTER command to define a filter for selecting records, as described in “Using filter
expressions” on page 17.

• Using the MARK and UNMARK commands to mark the records.

Using MARK and UNMARK
The MARK command enables you to mark some or all of the resource table records in a result set for
future reference.

The UNMARK command removes existing marks from selected records. Once you have marked records in
a result set, you can refer to the records that are either marked or not marked in subsequent commands.
The following API commands support the MARKED and NOTMARKED options:

• COPY
• DELETE
• FETCH
• GROUP
• LOCATE
• PERFORM SET
• REFRESH
• SET

For example, Figure 9 on page 29 shows a result set in which selected resource table records have been
marked. The MARKED option is then used with the FETCH command to retrieve only those records that
are marked.

28 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Figure 9. Marking and retrieving records in a result set

Identifying the records to be marked
By default, when you issue a MARK or UNMARK command, only the current resource table record is
marked or unmarked.

But there are a variety of ways that you can identify the records to be marked:

• To mark a specific record other than the current record, use the POSITION option and identify the
record by its relative position in the result set.

• To mark one or more records that meet previously defined filtering criteria, use the FILTER or
NOTFILTER option.

• To mark all the records in a result set, use the ALL option.

In addition to these options, you can use the PARM option to identify a list of records to be marked. To
use the PARM option, you specify a character string of record numbers in a parameter expression. The
parameter expression can contain:

• Individual record numbers, separated by commas.
• Ranges of record numbers, with the low and high numbers separated by a colon.

The whole parameter expression must end with a period.

For example, to mark records 1, 3, 6 through 9, and 24 in a result set, you would specify:

 PARM('1,3,6:9,24.')

When you use the PARM option, you must also use the PARMLEN option to specify the length of the buffer
that contains the parameter expression.

Note:

1. Negative values and 0 are not valid record numbers. If you specify an invalid record number, the MARK
(or UNMARK) command returns RESPONSE and REASON values of INVALIDPARM PARM.

Chapter 2. Using the CICSPlex SM API 29

2. If you mistakenly specify the higher value in a range first (such as 9:6), CICSPlex SM reverses the
values to produce a valid range.

3. If you mistakenly specify a single value preceded or followed by a colon (such as 6:), the colon is
ignored. CICSPlex SM marks only the specified record.

Identifying records that could not be marked
When you are marking or unmarking records, it might be useful to know if all the records you identified
were successfully processed.

For example, you might mistakenly ask CICSPlex SM to mark or unmark a record that was previously
deleted from the result set. Or you might identify a record number that is out of range for the result set.

You can use the COUNT option on a MARK or UNMARK command to determine the number of records that
could not be marked or unmarked. You can also use the INTO and LENGTH options to identify a buffer to
receive a list of records that could not be marked. When deciding on the length of the INTO buffer, keep in
mind that it must be long enough to hold the maximum number of record numbers that could result from
your MARK request (if none of them can be marked). Furthermore, all record numbers are listed
individually (not by range) in the INTO buffer and are separated by commas. So if you specified the PARM
option like this:

 PARM('1,3:6,12,15.')

the INTO buffer would have to be long enough to hold the following character string:

 1,3,4,5,6,12,15

If the INTO buffer you specify is not long enough to hold a complete list of records that could not be
marked, you receive a RESPONSE value of WARNING AREATOOSMALL. In that case, the INTO buffer
returns a partial list of records and the LENGTH value is set to the buffer length that would be required for
a complete list. You could then resubmit the MARK command with the appropriate LENGTH value to
determine which records could not be marked.

How to remove the marks in a result set
You can use the UNMARK command to remove some or all of the marks placed on resource table records
by a previous MARK command. However, if you want to mark other records at the same time, you can
save a step by using the RESET option of the MARK command.

By default, the records you specify on a MARK command are marked in addition to any records that are
already marked in the result set. That is, any resource table records that were marked previously remain
marked unless you use the RESET option. RESET wipes the result set clean of any previous marks. So the
records identified on the current MARK command are the only records marked when processing is
complete. Using the RESET option on a MARK command is an alternative to using the UNMARK command
before the MARK command.

Note: Any marks that you placed on resource table records are also removed when you use the COPY
command to copy those records from one result set to another.

Summarizing the records in a result set
If you want to analyze or modify a large number of records in a result set, you might find it useful to
summarize those records.

The GROUP command lets you summarize the records in a result set based upon the value of some
resource table attribute.

Note: You can summarize only on those attributes that have a length of 251 or less.

When you issue a GROUP command, CICSPlex SM summarizes the records in one result set to create a
new, summarized result set. A summarized result set is a special type of result set. It contains summary
resource table records that correspond to one or more records in the source result set.

For example, you could use the GROUP command to summarize a result set that contains LOCTRAN
resource table records. If you want to group the records according to the value of the STATUS attribute,

30 CICS TS for z/OS: CICSPlex SM Application Programming Guide

the summarized result set would contain, at most, two records: one representing those records with a
STATUS value of ENABLED, and one representing those with a STATUS of DISABLED. Figure 10 on page
31 illustrates this use of the GROUP command.

Figure 10. Using GROUP to summarize result set records

In general, you can work with a summarized result set in the same ways that you do a regular result set.
You can use the FETCH command to retrieve records from a summarized result set. You can also retrieve
the individual records of the source result set on which the summary is based. The DETAIL option of the
FETCH command lets you retrieve that subset of records in the source result set that correspond to a
particular summary record.

Figure 11 on page 31 shows an example of fetching the detail records associated with a summary
record. In this case, the summary record was a LOCTRAN record that represented all enabled
transactions.

Figure 11. Sample FETCH DETAIL output

You can modify the records in a summarized result set using the PERFORM or SET commands. This is
equivalent to modifying all the records in the source result set that are represented by a given summary
record. However, since each record in a summarized result set has a single OBJSTAT record associated
with it (rather than one for each of the source records being modified), you may want to use the FETCH
DETAIL command to determine the results of a summary action.

Another method of working with individual records from a summarized result set is by using the EXPAND
command. This is similar to the FETCH command when used with the DETAIL option, but EXPAND creates
a new result set containing one record for each of the records summarized by GROUP in an individual
summary record. This allows you to perform further actions on the result set including using additional
GROUP or FETCH commands. EXPAND includes a number of options for manipulating the record counter
in order to select the summarized record you want to work with. It can also be used in conjunction with
the MARK and UNMARK commands.

The OBJSTAT records in a source result set are not summarized when you issue a GROUP command. So
the OBJSTAT records in a summarized result set do not represent the OBJSTAT information for all of the
source records. However, the OBJSTAT records in a summarized result set do include a summary count,
which indicates how many source records were combined to produce each summary record.

A summarized result set and its source result set should be thought of as a pair to be used together. They
share certain attributes and the summarized result set has certain dependencies on the source result set:

Chapter 2. Using the CICSPlex SM API 31

• A summarized result set cannot exist without the source result set from which it was built. If you
discard a source result set, all the summarized result sets that were built from it are also discarded.

• You can reuse a summarized result set only to resummarize the records in the same source result set.
An existing summarized result set cannot be used as the target of a GROUP command for a different
source result set.

• A summarized result set cannot be used as the source of a COPY command.
• If you modify a source or summarized result set in any way, all the summarized result sets that have

been built from the source result set are rebuilt.

Note: To prevent this from happening, you can specify the NOREFRESH option on the PERFORM or SET
command.

Specifying summary expressions
The attributes of a summary record are set according to a summary option that is appropriate for the
attribute's data type. For each resource table attribute, CICSPlex SM defines a default summary option.
CICSPlex SM uses these defaults when summarizing records unless you explicitly override them.

You tell CICSPlex SM how to summarize the attributes in a record by specifying a summary expression on
the SUMOPT option of the GROUP command. A summary expression is a character string that consists of
one or more summary options and the resource table attributes to which they apply.

The syntax of a summary expression is:
Summary Expression

sumopt (

,

attr) .

where:
sumopt

Is the summary option to be used for the specified resource table attributes:
AVG

Provides the average attribute value. Valid for numeric fields only.
DIF

Provides those characters that are common to all underlying records and displays an asterisk (*)
for those not common. Valid for character fields only.

LIKE
Provides the CVDA or EYUDA value, if all records contain a common value. Otherwise, displays
N/A. Valid for CVDA and EYUDA fields only.

MAX
Provides the maximum attribute value.

MIN
Provides the minimum attribute value.

SUM
Provides the sum of the attribute values. Valid for numeric fields only.

You can specify the same summary option more than once in a summary expression.
attr

Is the name of an attribute in the resource table.

Note: You can summarize only on those attributes that have a length of 251 or less.

You can specify as many attribute names for each summary option as you like.

32 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Note: A summary expression must be followed by either blank spaces or null characters to the end of the
specified buffer. That is, the buffer length you specify (using the LENGTH option) should not include any
data other than a summary expression.

For example, you could use a summary expression like this when grouping LOCTRAN records:

 SUM(USECOUNT) MAX(PRIORITY,TWASIZE).

By default, the values for these attributes would be averaged. But this summary expression specifies that
each summary record should include the sum of all USECOUNT values and the maximum PRIORITY and
TWASIZE values.

Table 6 on page 33 shows the valid summary options for the various datatypes.

Table 6.

Valid summary options by attribute data type

AVG DIF LIKE MAX MIN SUM

ADDRESS X X

AVG X X X X

AVG3 X X X X

BIN X X X X

BIT X X

CHAR X X X

CODEBIN X X X X

COMPID X X

CVDAS X X X

CVDAT X X X

DATE X X

DATETIME X X

DEC X X

DECSTP X X

EYUDA X X X

HCHAR X X X

HEX X X X

HHMM X X

INTVMSEC X X X X

INTVSEC X X X X

INTVSTCK X X X X

INTVUSEC X X X X

INTV16US X X X X

PCT X X X X

PCT3 X X X X

Chapter 2. Using the CICSPlex SM API 33

Table 6. (continued)

Valid summary options by attribute data type

RATE X X X X

RATE3 X X X X

RATIO X X X X

RESTYPE X X

SCLOCK X X X X

SCLOCK12 X X X X

SUM X X X X

SUM3 X X X X

TEXT X X X

TIMESTP X X

Sorting the records in a result set
The records in a result set are normally sorted by the key attributes for that resource table.

In the case of CICS Resource and CICS Monitored tables, records are sorted by the CICS system from
which they were collected. In working with result sets, you may find it easier to process the records if
they are in some logical order of your own choosing. The ORDER command in the CICSPlex SM API lets
you sort the records in a result set according to the values of a particular resource table attribute. If you
are using the CICS management client interface (CMCI), use the ORDERBY parameter instead.

If you are using the CICSPlex SM API you can choose how the records are sorted by specifying an order
expression on the BY option of the ORDER command. If you are using the CICS management client
interface (CMCI) you can specify how the records are sorted using the ORDERBY parameter. An order
expression is a character string that consists of one or more attribute names to be used in sorting the
resource table records.

The syntax of an order expression for sorting records is:
Order Expression – Sorting Records

,

attr

/D

.

where:
attr

Is the name of an attribute in the resource table.

You can specify as many attribute names as you like, but the total length of an order expression,
including commas and blank spaces, must not exceed 255 characters.

/D
Indicates the attribute values should be sorted in descending order. By default, the values are sorted
in ascending order.

Note: An order expression must be followed by either blank spaces or null characters to the end of the
specified buffer. That is, the buffer length you specify (using the LENGTH option) should not include any
data other than an order expression.

For example, to sort a result set of LOCTRAN records by transaction ID and enabled status, you could
specify:

34 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 TRANID,STATUS.

In this example, transaction ID is the primary sort key and enabled status is the secondary sort key.

To sort records in descending order of use count, add /D to the end of the attribute name, like this:

 USECOUNT/D

Modifying managed resources
You can modify the resources managed by CICSPlex SM in various ways. The actions described here are
issued against resource table records in a result set. However, the changes that you request are made to
the actual resources which those records represent.

Modifying resource attributes
You can change the current value of a resource attribute by using the SET or UPDATE command.

SET modifies the attributes of a CICS resource, while UPDATE modifies CICSPlex SM and CICS definitions.
The MODIFY option of these commands accepts a modification expression, which is a character string
that defines the attribute changes to be made.

A modification expression can be made up of one or more attribute expressions in the form:
Modification Expression

,

attr = value .

where:
attr

Is the name of a modifiable attribute in the resource table.
value

Is the value to which you want the attribute set. The following restrictions apply:

• The value must be a valid one for the attribute.
• If the value contains imbedded blanks or special characters (such as periods, commas, or equal

signs), the entire value string must be enclosed in single quotes, like this:

 DESCRIPTION='Payroll.OCT'

• To include a single quote or apostrophe in a value, you must repeat the character, like this:

 DESCRIPTION='October''s Payroll'

Note: Be sure to consider the quoting conventions of your programming language when using single
quotes in a CICSPlex SM value string.

Note: A modification expression must be followed by either blank spaces or null characters to the end of
the specified buffer. That is, the buffer length you specify (using the LENGTH option) should not include
any data other than a modification expression.

For example, to disable one or more local transactions (LOCTRAN), you could specify:

 STATUS=DISABLED.

in the MODIFY option of a SET command.

If you issue a SET command against CICS systems that do not support the requested modification, the
request is ignored for those CICS systems. If your context and scope consist solely of CICS systems that
do not support the modification, you receive RESPONSE and REASON values of NOTAVAILABLE SCOPE.

Chapter 2. Using the CICSPlex SM API 35

To change the task storage location of a CICS transaction definition (TRANDEF), you could specify:

 TASKDATALOC=ANY

in the MODIFY option of an UPDATE command.

Note that the MODIFY option of UPDATE is valid only for CICS Definition resource tables.

For a list of the attributes for each resource and their valid values, see CICSPlex SM resource tables in
Reference.

Performing an action against a resource
In addition to modifying individual attributes, you can also perform actions against many resources by
using either of the PERFORM commands; PERFORM OBJECT or PERFORM SET.

The difference between these two commands is that PERFORM SET performs an action against the
resource table records in an existing result set, while PERFORM OBJECT first creates a result set and then
performs the requested action.

Some actions are self-contained and self-explanatory; specifying the action is enough to indicate the
changes to be made to the resource. For example, you can discard a local file by issuing the DISCARD
action against a LOCFILE resource table record.

Other actions require you to specify additional parameters. For these actions you might require a
parameter expression to obtain the function you need. A parameter expression can be made up of one or
more parm expressions in the form:
Parameter Expression

parm_expr + .

parm_expr:
parm_name

. parm_value .

+

where:

• parm_name is the name of a parameter associated with the action.
• parm_value is the value associated with the specified parameter name, if applicable.

Multiple instances of parm_exp should be delimited by spaces. The parameter expression buffer is
terminated with a period (.).

Examples

• To disable a local file (LOCFILE), you must indicate how to handle a file that is currently busy. To do
that, you could specify the following parameter expression:

PARM('BUSY(cvda).')

where cvda is a valid CVDA value for the file busy condition, for example WAIT, NOWAIT or FORCE.
• To request a dump of a CICS region (CICSRGN) specifying the dump code and title of the dump, you

could use the following parameter expression:

PARM('DUMPCODE(PMR12345) TITLE('Doc for PMR12345').')

Note that if the parm_value contains special characters such as spaces or periods, the value must be
enclosed in single quotes. Also note that all parameter values are folded to upper case.

36 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

If you issue a PERFORM command against CICS systems that do not support the requested action, the
request is ignored for those CICS systems. If your context and scope consist solely of CICS systems that
do not support the action, you receive RESPONSE and REASON values of NOTAVAILABLE SCOPE.

The PERFORM OBJECT command does not require an existing result set, as it will effectively run a GET
command followed be a PERFORM SET. In this case any parameter expression may be passed on the GET
or PERFORM SET phase of the command depending on whether the parameter expression is valid on the
GET or PERFORM SET as follows:

• If the parameter expression is valid for GET it is used on the GET phase of the PERFORM OBJECT
command

• If the parameter expression is valid for PERFORM it is used on the PERFORM SET phase of the
PERFORM OBJECT command.

• If the parameter expression is valid for GET and PERFORM it is used on the GET and PERFORM SET
phases of the PERFORM OBJECT command. This rule may mean that some actions are not possible via
PERFORM OBJECT. Instead separate GET and PERFORM SET commands may be required to achieve
the intended results.

• If the parameter is not valid for GET or PERFORM, then an INVALIDPARM PARM condition will be raised.

For a list of the valid actions for each resource and their required parameters, see CICSPlex SM resource
tables in Reference.

Working with CICSPlex SM and CICS definitions
When you work with CICSPlex SM and CICS definitions there are some special API commands and
command options available.

Creating, updating, and removing definitions
You can use certain API commands to maintain the CICSPlex SM and CICS definitions in your data
repository.

CREATE
Creates a new CICSPlex SM or CICS definition using the attribute values you specify. The new
definition is stored in the data repository.

UPDATE
Updates an existing CICSPlex SM> or CICS definition according to the attribute values you specify.
The updated definition replaces the existing definition in the data repository.

REMOVE
Removes a CICSPlex SM or CICS definition from the data repository.

Note:

1. Before you can update or remove a definition you must use the FETCH command to retrieve the
appropriate resource table record from a result set.

2. For CICSPlex SM definitions that have a CICSplex as their context (such as workload management or
real-time analysis definitions), any changes you make are automatically distributed to all the CMASs
involved in managing the CICSplex.

With each of these commands, you use the FROM option to supply a CICSPlex SM Definition or CICS
definition resource table record for the definition you are working with. The record must include all of the
attributes in the resource table for the definition. If you do not want to specify certain optional attributes,
you must set those fields to null (that is zero) values.

As an alternative, when you are updating CICS definitions, you can use the RESULT and MODIFY options
of the UPDATE command. These options enable you to modify multiple definitions at one time (this is the
equivalent of issuing the ALTER action command from the CICSPlex SM end-user interface).

To update CICS definitions, identify a result set that contains CICS Definition resource table records in the
RESULT option. Then use the MODIFY option to specify the changes to be made to the definitions.
MODIFY accepts a modification expression, as described in “Modifying resource attributes” on page 35.

Chapter 2. Using the CICSPlex SM API 37

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

The CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and CREATETIME attributes
When you work with existing CICSPlex SM or CICS definitions, keep in mind that the first 8 bytes of each
record contain an attribute called CHANGETIME, reflects the date and time when the record was last
modified. CICS Definition records also include a CREATETIME attribute, which is the date and time the
definition was created.

Attribute fields CHANGEAGENT, CHANGEAGREL, and CHANGEUSRID in the resource table resource
definition record, combined with the existing CHANGETIME and CREATETIME attributes, form the
resource definition signature and are valid only for BAS resource definitions.

CHANGEAGENT displays how the resource was defined or last modified. CHANGEAGREL contains the
level of CICS system that created or last modified the resource definition. CHANGEUSRID contains the
user ID that created or last modified the resource definition.

The CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and CREATETIME attributes are
maintained internally by CICSPlex SM >. Do not attempt to modify these attribute values. When you
update or remove a definition resource table record, the CHANGETIME and CREATETIME values you
return to CICSPlex SM must be the same values you received.

Using the PARM option
For most CICSPlex SM and CICS definitions, all of the information needed to process an API request is
included in the attributes of the resource table.

Some definitions, however, allow you to supply optional data and some require additional data. For those
definitions, you have to specify the PARM option on the appropriate API command:

• CREATE
• UPDATE
• REMOVE
• GET

The PARM option accepts a parameter expression, which is a character string that defines the parameters
required for a definition to be processed.

For example, suppose you want to create an LNKSMSCG definition, which is a CICSPlex SM definition that
describes the association between a CICS system group and a monitor specification (MONSPEC). Before
CICSPlex SM can process your request, it must know how to handle other links that may be affected by
the change. So when you issue the CREATE command, you must specify a parameter expression like this
on the PARM option:

 PARM('FORCE.')

which tells CICSPlex SM that all CICS systems in the CICS system group are to inherit the new
specification.

The PARM option is especially useful when working with CICS definitions. For each CICS Definition
resource table there is another resource table that describes the definition's association with a resource
group (RESGROUP), if one exists. For example, the CONNDEF resource table represents a connection
definition and the CONINGRP resource table represents an association between a connection definition
and a resource group. The RESGROUP parameter provided with the CREATE and GET commands for CICS
Definitions simplifies the processing of these records.

When you create a CICS Definition record, you can identify an existing resource group to which the
definition should be added. To do this, use the PARM option to identify the resource group like this:

 PARM('RESGROUP(resgroup).')

Using the RESGROUP parameter automatically creates an xxxINGRP record (such as a CONINGRP
record), which describes the association between the CICS definition and its resource group.

38 CICS TS for z/OS: CICSPlex SM Application Programming Guide

When you use the GET command to request CICS Definition records from the data repository, you can
select definitions according to the resource group to which they belong. Use the PARM option to identify
the resource group:

 PARM('RESGROUP(resgroup).')

CICSPlex SM selects CICS definitions only from the specified resource group. If you do not use the PARM
option, CICSPlex SM selects definitions from all resource groups, according to the other criteria you
specify on the GET command.

Note: For a complete list of the CREATE, UPDATE, REMOVE, and GET parameters required (or supported)
by a given resource table, see CICSPlex SM resource tables in Reference.

Special considerations for CSD resources
CICSPlex SM supports the management of CSD resource definitions with certain limitations.

Compatibility mode is not supported by the CICSPlex SM API.

For a CSD request, you must specify the scope as an individual CICS system. Logical scopes, CICS system
groups, and CICSplex names cannot be used. Specifying the scope of individual CICS systems means that
you cannot issue commands to multiple systems concurrently.

>

BAS-specific attributes that are not valid for CSD are ignored if they are specified on a CREATE or UPDATE
request.

The CSDLOCK and CSDUNLOCK actions have limited capability in the CICSPlex SM API because the
requests they generate always use the same values to authenticate. The values used by these actions are
the OPIDENT of the PLTPIUSR, and the APPLID for the CICS system specified in the SCOPE. You can use
these actions to prevent inadvertent updates, however; you are not recommended to use them for
security.

You cannot use an EXEC CPSM COPY command in any of the following situations:

• To copy resource table records from a CSD result set to a non-CSD result set.
• To copy resource table records from a non-CSD result set to a CSD result set.
• To copy resource table records from a CSD result set to a CSD result set in a different scope.

Example of using the CICSPlex SM API to install a file definition
You can use the CICSPlex SM API to install a CICS resource definition either from the CSD or by using
BAS.

To simplify the example, only the attributes that relate to the task have been included. For example, the
THREAD and RESULT attributes are omitted from CRITERIA, and the LENGTH and PARMLEN values are
omitted from PARM.

Installing a file using BAS

This example shows the installation of a single CICS file definition, filedef_name, into a CICS System,
cics_system_name, in the CICSplex, cicsplex_name.

CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name) 1

GET OBJECT(FILEDEF)
 CRITERIA(NAME=filedef_name AND DEFVER=def_ver.) 2

PERFORM SET ACTION(INSTALL)
 PARM(TARGET(cics_system_name) USAGE(LOCAL).) 3

Chapter 2. Using the CICSPlex SM API 39

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

Installing a tailored file using BAS

This example shows a method of tailoring the installed attributes, including name, of a single CICS file
definition, filedef_name. This can be used to exploit the use of template definitions or to provide region
specific variations to attributes. In the example the CICS file definition, filedef_name, will be installed
into a CICS System, cics_system_name, in the CICSplex, cicsplex_name, as CICS file,
cics_file_name, and Status, cics_file_status.

CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name) 1
GET OBJECT(FILEDEF)
 CRITERIA(NAME=filedef_name AND DEFVER=def_ver.) 2
PERFORM SET ACTION(INSTALL)
 PARM(TARGET(cics_system_name) USAGE(LOCAL) 3
 OVERRIDE(NAME=cics_file_name,STATUS=cics_file_status)
 OVERTYPE)TARGET).) 5

 3 The TARGET parameter specifies the CICS system, or systems, into which BAS will install the
resources.

 5 The OVERRIDE parameter specifies the attribute_name=attribute_new_value pairings that will
be used at install time by the resource. The OVERTYPE parameter says where the OVERRIDE will be
applied.

Installing a file from the CSD

This example shows the installation of a single CICS file definition, filedef_name, into a CICS System,
cics_system_name, in the CSD group csd_group_name.

CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name) 1

GET OBJECT(FILEDEF)
 SCOPE(cics_system_name) 1
 PARM(CSDGROUP(csd_group_name).) 4
 CRITERIA(NAME=filedef_name.) 2

PERFORM SET ACTION(CSDINSTALL)

 1 The SCOPE value is not used for BAS installs. For CSD installs the active SCOPE must be the name of
the CICS system whose CSD the resources are extracted from, and into which definitions are installed.

 2 The DEFVER attribute specifies the definition version of a resource, this is useful if you have more than
one resource with the same name. If you are installing a resource using BAS and you have more than one
resource with the same name, you must specify both the resource name and the definition version. Do not
use the DEFVER attribute with resources defined in the CSD.

 3 The TARGET parameter specifies the CICS system, or systems, into which BAS will install the
resources.

 4 The CSDGROUP parameter specifies that the resource definition objects are to be retrieved from the
CSD associated with the CICS system in the SCOPE.

Example of using the CICSPlex SM API to install a CICS connection definition
You can use the CICSPlex SM API to install a CICS connection definition either from the CSD, or from the
CICSPlex SM data repository using BAS.

The installation of CICS connection definitions differs from the installation of other CICS resources in that
they must be installed with at least one associated session definition. In BAS the installation of CICS
connection definitions is achieved through the use of a Resource Assignment (RASGNDEF). In the CSD
installation of CICS connection definitions is achieved by installing the connection and session from a
group.

40 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Installing a connection definition using BAS

This example shows the installation of a CICS connection definition, conndef_name, into a CICS System,
cics_system_name, in the CICSplex, cicsplex_name.

CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(CONNDEF)
 CRITERIA(NAME=conndef_name AND DEFVER=def_ver.))

PERFORM SET ACTION(INSTALL)
 PARM(TARGET(cics_system_name)
 USAGE(LOCAL)
 REFASSIGN(rasgndef_name).) 1

Installing a connection definition from the CSD

This example shows the installation of a CICS connection definition, condef_name, defined to the CSD
group, csd_group_name, into a CICS System, cics_system_name.

CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(CSDGROUP) 2
 SCOPE(cics_system_name)
 CRITERIA(NAME=csd_group_name.)

PERFORM SET ACTION(CSDINSTALL) 3

 1 The REFASSIGN parameter is required for a CONNDEF install. The value is the Resource Assignment
(RASGNDEF) that identifies the session definition or definitions in a Resource Group (RESGROUP) to be
installed with the connection definition.

 2 One of CSDGROUP, CSDINGRP, CSDINLST, or CSDLIST must be used to install connection definitions
from the CSD and must include at least one connection and session pair in the result set being installed.

 3 The CSDINSTALL action does not require any parameters because the OBJECT is a CSD only resource.

Example of using the CICSPlex SM API to install a remote CICS transaction definition
You can use the CICSPlex SM API to install a remote CICS transaction definition either from the CSD or by
using BAS.

For resources which support Function Shipping, BAS provides the ability to install both the local and
remote definitions of the resource simultaneously. If you are installing from the CSD, discrete local and
remote definitions must be installed separately.

Installing a remote CICS transaction definition using BAS

This example shows the installation of a local CICS transaction definition, trandef_name, into a routing
CICS System, cics_system_local, and the reciprocal remote definition, with the same name, into the
target CICS System, cics_system_remote, both of which are in the CICSplex, cicsplex_name.

CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(TRANDEF)
 CRITERIA(NAME=trandef_name AND DEFVER=def_ver.))

PERFORM SET ACTION(INSTALL)
 PARM(TARGET(cics_system_remote)
 USAGE(REMOTE)
 MODE(DYNAM)
 RELATED(cics_system_local).)

Installing a remote CICS transaction definition from the CSD

This example shows the installation of a local CICS transaction definition, trandef_name, into the local
CICS System, cics_system_local, in the CSD group, csd_group_local. This is followed by a

Chapter 2. Using the CICSPlex SM API 41

separate install of the reciprocal remote definition, into the target CICS System, cics_system_remote,
in the CSD group, csd_group_remote.

CONNECT CONTEXT(cicsplex_name) SCOPE(cicsplex_name)

GET OBJECT(TRANDEF)
 SCOPE(cics_system_local)
 PARM(CSDGROUP(csd_group_local).)
 CRITERIA(NAME=trandef_name.)

PERFORM SET ACTION(CSDINSTALL)

GET OBJECT(TRANDEF)
 SCOPE(cics_system_remote)
 PARM(CSDGROUP(csd_group_remote).)
 CRITERIA(NAME=trandef_name.)

PERFORM SET ACTION(CSDINSTALL)

Example of using the CICSPlex SM API to create an ATOM service definition
You can use the CICSPlex SM API to create a CICS ATOM service definition in both the CICS CSD and in
CICSPlex SM BAS.

Create an ATOM service definition using BAS

This example shows the creation of a CICS ATOM service definition, atomdef_name, using BAS.

CONNECT CONTEXT(cicsplex_name) 1

CRERESG_RESGROUP = resgroup_name
CRERESG_DESCRIPTION = “Sample BAS Resource Group”

CREATE OBJECT(RESGROUP)
 FROM(CRERESG)
 LENGTH(resgroup_tbl_len) 2

CREATOM_DEFVER = "1"; 3
CREATOM_NAME = atomdef_name;
CREATOM_DESCRIPTION = “Dummy FILE ATOM Service”;
CREATOM_STATUS = "ENABLED”;
CREATOM_ATOMTYPE = "FEED";
CREATOM_RESOURCETYPE = "FILE";
CREATOM_RESOURCENAME = atomdef_file_name;
CREATOM_BINDFILE = atomdef_bindfile_name;
CREATOM_CONFILE = atomdef_configfile_name;

CREATE OBJECT(ATOMDEF)
 FROM(CREATOM)
 LENGTH(atomdef_tbl_len)
 PARM(RESGROUP(resgroup_name).) 4

Create an ATOM service definition from the CSD

This example shows the creation of a CICS ATOM service definition, atomdef_name, into a CICS System,
cics_system_name, in the CSD group csd_group_name.

CONNECT CONTEXT(cicsplex_name)

CREATOM_CSDGROUP = csd_group_name; 5
CREATOM_NAME = atomdef_name;
CREATOM_DESCRIPTION = “Dummy FILE ATOM Service”;
CREATOM_STATUS = "ENABLED”;
CREATOM_ATOMTYPE = "FEED";
CREATOM_RESOURCETYPE = "FILE";
CREATOM_RESOURCENAME = atomdef_file_name;
CREATOM_BINDFILE = atomdef_bindfile_name;
CREATOM_CONFILE = atomdef_configfile_name;

CREATE OBJECT(ATOMDEF)
 SCOPE(cics_system_name) 6
 FROM(CREATOM)
 LENGTH(atomdef_tbl_len)
 PARM(CSD.) 7

42 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 1 BAS resource definitions are stored in the CICSplex identified by the CONTEXT parameter. Do not
specify the SCOPE parameter for BAS resource definitions.

 2 If the RESGROUP parameter is specified on the CREATE command, the RESGROUP must have already
been defined to the CICSplex.

 3 If you are defining a BAS resource, you must specify a value for the DEFVER parameter. If the DEFVER
parameter and the CSDGROUP parameter are both specified the CSDGROUP parameter is ignored.

 4 Adding a BAS CICS resource definition to a resource group is optional. If you specify the RESGROUP
parameter, the CICS resource definition is associated with a BAS resource group. Resource definitions
can also be explicitly added to one or more resource groups using a PERFORM command with the action
set to ACTION=ADDTOGRP.

 5 The CSDGROUP parameter specifies the CSD group in which the resource definition are created. All CSD
resource definitions must have belong to a group; if the group does not already exist in the CSD it is
created dynamically.

 6 The SCOPE parameter specifies the name of the CICS system using the CSD in which the definition is to
be created.

 7 Specifying the CSD attribute on the PARM parameter identifies the resource definition as a CSD
resource definition.

Example of using the CICSPlex SM API to add a CSD group to a list
You can use the CICSPlex SM API to add a CSD group to a list.

Adding a CSD group to a list

CONNECT CONTEXT(cicsplex_name)
 SCOPE(cics_system_name) 1

GET OBJECT(CSDGROUP)
 CRITERIA(NAME=csd_group_new.)

PERFORM SET ACTION(CSDADD)
 PARM(TO_LIST(csd_list_name)
 ADD_CSDGROUP(csd_group_old)
 ADD_LOCATION(AFTER)) 2

 1 The value of the SCOPE parameter must be the name of the CICS system using the CSD in which the
group to be added, and the list that it is added to, are defined. For a PERFORM SET command the SCOPE
parameter must be specified as the active scope for the thread because the PERFORM command must
have the same scope as the GET command and it cannot be specified explicitly on the command. The
SCOPE parameter is specified by a CONNECT or QUALIFY command.

 2 The example adds the group, csd_group_new after the csd_group_old in the list csd_list_name,
as specified by ADD_LOCATION(AFTER).

Example of using the CICSPlex SM API to delete a CSD resource from a group
You can use the CICSPlex SM API to delete a resource from a group.

Deleting a CSD resource from a group

This example shows the deletion of a CICS transaction definition trandef_name, defined to a CSD group,
csd_group_name, in the CSD used by CICS System, cics_system_name.

CONNECT CONTEXT(cicsplex_name)
 SCOPE(cics_system_name) 1

GET OBJECT(TRANDEF)
 CRITERIA(NAME=trandef_name.)
 PARM(CSDGROUP(csd_group_name).) 2
 RESULT(result_set_token)

FETCH INTO(trandef_record_buffer)
 LENGTH(trandef_record_length)
 RESULT(result_set_token)

Chapter 2. Using the CICSPlex SM API 43

REMOVE OBJECT(TRANDEF)
 FROM(trandef_record_buffer)
 LENGTH(trandef_record_length)
 PARM(CSD.) 3

 1 The value of the SCOPE parameter for both the GET and REMOVE commands must be the name of the
CICS system which is using the CSD.

 2 The CSDGROUP parameter on the transaction definition, TRANDEF, identifies the resource as being
defined to the CSD, and specifies the CSD group in which it is defined.

 3 The CSD parameter identifies the CICS transaction definition record, which was retrieved by the FETCH
command, as a CSD resource. The transaction definition record contains both the name of the transaction
definition and the CSD group it is currently defined in, and from which it will be deleted.

Example of using the CICSPlex SM API to remove a CSD group from a list
You can use the CICSPlex SM API to remove a CSD group from a CSD list.

Remove a CSD group from a list

This example shows the removal of a CSD group, csd_group_name, from a CSD list, csd_list_name, in
the CSD used by the CICS System, cics_system_name.

CONNECT CONTEXT(cicsplex_name)
 SCOPE(cics_system_name) 1

GET OBJECT(CSDINLST)
 CRITERIA(CSDLIST=csd_list_name
 AND CSDGROUP=csd_group_name.)
 RESULT(result_set_token)

FETCH INTO(csdinlst_record_buffer)
 LENGTH(csdinlst_record_length)
 RESULT(result_set_token)

REMOVE OBJECT(CSDINLST)
 FROM(csdinlst_record_buffer)
 LENGTH(csdinlst_record_length)

 1 The value of the SCOPE parameter for both the GET and REMOVE commands must be the name of the
CICS system which is using the CSD.

Example of using the CICSPlex SM API to delete a CSD group
You can use the CICSPlex SM API to delete a CSD group from the CSD.

Delete a CSD group

This example shows the deletion of a CSD group, csd_group_name, all the CICS resource definitions in
the group, and all references to the group in CSD lists in the CSD used by the CICS System,
cics_system_name.

CONNECT CONTEXT(cicsplex_name)
 SCOPE(cics_system_name) 1

GET OBJECT(CSDGROUP)
 CRITERIA(NAME=csd_group_name.)
 RESULT(result_set_token)

FETCH INTO(csdgroup_record_buffer)
 LENGTH(csdgroup_record_length)
 RESULT(result_set_token)

REMOVE OBJECT(CSDGROUP)
 FROM(csdgroup_record_buffer)
 LENGTH(csdgroup_record_length)
 PARM(LISTREMOVE.)

44 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 1 The value of the SCOPE parameter for both the GET and REMOVE commands must be the name of the
CICS system which is using the CSD.

 2 The LISTREMOVE parameter removes the CSD group from all lists in the CSD. If this parameter is not
specified, the CSD group is deleted but references to the group remain in any CSD lists to which it
belonged.

Asynchronous processing
Most CICSPlex SM API commands normally function in a synchronous manner, where your program
issues a request and then waits until command processing is complete.

The CANCEL command cancels an outstanding LISTEN request. The other commands can be used in
either a synchronous or asynchronous manner. If you specify the NOWAIT option on any of these
commands, the request is processed asynchronously.

The API commands you can use to monitor and receive the results of asynchronous processing are:

• ADDRESS
• RECEIVE.

Figure 12 on page 45 illustrates the relationship of these commands to the API environment.

Figure 12. API commands for asynchronous processing

Using the LISTEN command
Many of the resources that are managed by CICSPlex SM can notify the system when events occur that
are considered significant to the CICSplex.

Such events are not scheduled and cannot be anticipated, so a program designed to process these
notifications must do so asynchronously. You can identify the event notifications you are interested in by
using the LISTEN command.

Chapter 2. Using the CICSPlex SM API 45

The events that can be listened for are represented by resource tables with a type of notification. For
example, an EMASSICK notification is produced by a MAS when a condition occurs that adversely affects
the health of the CICS system. For a list of the notification resource tables, and complete descriptions of
other resource tables, see CICSPlex SM resource tables in Reference.

When you issue a LISTEN command, the resulting notifications are added to an outstanding data queue
for the API processing thread. The number of completed asynchronous requests, including event
notifications and requests issued with the NOWAIT option, is reported by the SENTINEL option of the
ADDRESS command. You can retrieve the event notifications by issuing a RECEIVE command.

Using the NOWAIT option
If you specify the NOWAIT option on a GET, PERFORM OBJECT, PERFORM SET, REFRESH, or SET
command, the request does not complete processing immediately. Instead, the request is scheduled for
processing, the command returns a RESPONSE value of SCHEDULED, and control returns to your
program.

While the asynchronous request is executing, your program can perform other processing, even issuing
another CICSPlex SM API command. However, as long as a command is active, the result set it has been
given to process is unavailable. A RESPONSE value of INUSE is returned if you try to access a result set
that is still being processed by an asynchronous request.

An ASYNCREQ resource table record is produced when the asynchronous request completes. The number
of completed asynchronous requests, including ASYNCREQ records that represent requests issued with
the NOWAIT option, is reported by the SENTINEL option of the ADDRESS command. You can retrieve
ASYNCREQ records by issuing a RECEIVE command.

The ASYNCREQ resource table includes much of the information that is normally returned by the
command itself. Because control returns to your program before the command completes processing,
that information is not available to the command. The information returned in the ASYNCREQ resource
table includes:

• The command that was issued.
• The associated result set token.
• The RESPONSE and REASON values returned by the command.
• The diagnostic data normally returned in a FEEDBACK resource table record, if the RESPONSE value is

not OK.
• A user-defined token that identifies the asynchronous request, if one was specified.

Note: To access the ASYNCREQ data from a REXX program, you can use either the CICSPlex SM TPARSE
command with the ASIS option or the REXX SUBSTR function.

Using tokens to identify a request
To keep track of the asynchronous requests your program issues, you can assign each request a unique
identifying token.

This allows your program to correlate LISTEN requests and requests made with the NOWAIT option with
the results of a subsequent RECEIVE command. The CICSPlex SM API makes no use of any tokens you
define. User token values are held until the associated requests are complete and then returned to your
program by the RECEIVE command. You can use any 1- to 4-character value as an identifying token. For
example, you might specify:

• A literal constant
• An offset of a service routine
• The address of a data structure.

46 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

Using the ADDRESS command
When you issue a CONNECT command and an API processing thread is established, two control fields are
created in the MVS address space or CICS system where the program is running.

By requesting the addresses of these thread control fields, you can determine if asynchronous output is
available without the need for polling or suspending processing.

You can use the ADDRESS ECB() SENTINEL() command to request the addresses of these fields:
ECB

The ECB is posted by the API each time an asynchronous request completes and is added to the
thread's outstanding data queue. With the ECB address, you can:

• Test the appropriate MVS post bits to determine if output is available.
• Issue an MVS WAIT command in a batch, TSO, or NetView program.
• Issue an EXEC CICS WAITCICS or WAIT EXTERNAL command in a CICS program.

The ECB field is cleared whenever the counter value in the SENTINEL field reaches 0.
SENTINEL

The sentinel is a 4-byte counter of completed asynchronous requests associated with the thread.

The sentinel value increases each time an asynchronous request completes. Examples of completed
asynchronous requests include:

• An event occurs that is named in a LISTEN command
• A command that was issued with the NOWAIT option completes processing.

The sentinel value decreases when a RECEIVE command is issued.

Note:

1. You should use the ADDRESS command before issuing the RECEIVE command. If the sentinel value is
0, it means there are no completed asynchronous requests to be received.

2. Because of the nature of asynchronous processing, the sentinel value may understate the actual
number of outstanding requests at any point in time. When processing multiple asynchronous
requests, you should issue the RECEIVE IMMEDIATE command until a response of NODATA is
returned to ensure that all output has been received.

Using the RECEIVE command
You can use the RECEIVE command to determine if any of the asynchronous requests you issued have
completed.

RECEIVE returns the output from those requests. The output returned can be:

• A resource table record representing an event named in a previous LISTEN command
• An ASYNCREQ resource table record representing completion of an asynchronous GET, PERFORM,

REFRESH, or SET request.

Note: Before you issue the RECEIVE command, you should issue the ADDRESS command and check the
SENTINEL value to determine if there are any outstanding asynchronous requests to be received. If the
sentinel value is 0, there are no outstanding asynchronous requests to be received.

As an example, your program might issue a LISTEN command and a GET command with the NOWAIT
operand on the same API thread. Then, in response to a RECEIVE command, you would receive either an
ASYNCREQ resource table record for the GET command or a resource table record associated with the
event you were listening for.

Alternatively, you can use multiple API threads to separate the output returned by subsequent RECEIVE
commands. For example, you might create one thread and use it only for receiving event notifications
from the LISTEN command. You might also create another thread for use by other API functions. In this
way, you can control what output is returned by the RECEIVE commands issued against each thread.

Chapter 2. Using the CICSPlex SM API 47

Another reason you might want to create multiple API threads is because each thread can have only 256
asynchronous requests outstanding at one time. If your program issues a large number of asynchronous
requests on a single API thread, you should issue the RECEIVE command at regular intervals. If a
processing thread reaches its maximum of 256, asynchronous requests are discarded and are not
processed.

By default, the RECEIVE command waits until asynchronous output is available before returning control
to your program. This means processing is suspended until an asynchronous request completes. As an
alternative to waiting indefinitely, you can specify one of these options on the RECEIVE command:
DELAY(data-value)

Checks for asynchronous output, waits the specified number of seconds for output to become
available, and then returns control to the processing thread, with or without output.

IMMEDIATE
Checks for asynchronous output and then immediately returns control to the processing thread,
whether or not any output is available.

Using CICSPlex SM tokens
Many of the CICSPlex SM API commands are interrelated; you use them in conjunction with each other to
accomplish the objectives of your program. For example, you issue a GET command to build a result set
and then issue a FETCH command to access the resource table records in that result set.

To correlate the results of various operations with subsequent requests that you make, CICSPlex SM
assigns 4-byte tokens to the following objects of the API environment:

• Processing threads
• Result sets
• Filters
• Views
• LISTEN requests.

So, for example, each processing thread has a unique, 4-byte identifying token. You must specify a thread
token on each API command that your program issues to identify the thread where it should be
processed. Likewise, once a result set or filter is created, you refer to it on subsequent commands by
supplying the token value assigned to it by CICSPlex SM. And each LISTEN request is given a token so
that you can cancel the request using the CANCEL command.

Note:

1. CICSPlex SM assigns a token to views for internal use only. Externally, you refer to a view by the name
which you assigned to it.

2. There is a limit to the number of CICSPlex SM tokens available to each processing thread. In general,
the number of result sets, filters, views, and LISTEN requests created on a processing thread cannot
exceed 255.

Token values are not only unique for individual objects, but the structure of the tokens varies by object
type. So a thread token cannot be mistaken by CICSPlex SM for any other type of token. If you specify an
invalid token (such as, a result set token on the FILTER option), you receive a RESPONSE value of
INVALIDPARM.

Using metadata resource tables
The GETDEF command is used to obtain records describing the structure of the CICSPlex SM managed
objects, including general characteristics, valid actions, and object attributes.

The OBJECT option of the GETDEF command identifies the type of metadata to be retrieved. The contents
of the following metadata resource tables are described:

48 CICS TS for z/OS: CICSPlex SM Application Programming Guide

• ATTR
• ATTRAVA
• METADESC
• METANAME
• METAPARM
• OBJACT
• OBJECT
• PARMAVA

ATTR
The ATTR resource table contains detailed information for a specific attribute of a managed object.

Attribute
Description

OBJECT
The name of the managed object to which the specific attribute belongs.

TABLEVER
The version of the table identified by the OBJECT attribute.

NAME
The name of the specific attribute. 1 to 12 characters in length.

ID
The ID of the attribute

LENGTH
The length of the data associated with the attribute. Not to be confused with the length of the ATTR
attribute NAME.

OFFSET
The offset in the resource table at which the attribute data begins.

DATATYPE
The data type of the attribute data:
COMPID

CICSPlex SM component ID
BINARY

Binary
RATE

Rate to 1 decimal place
PERCENT

Percentage to 1 decimal place
SUM

Sum of values to 1 decimal place
RATIO

Ratio
AVERAGE

Average to 1 decimal place
TIMESTP

Time stamp
BIT

Bit string
TEXT

Text

Chapter 2. Using the CICSPlex SM API 49

CHAR
Character

EYUDA
EYUDA

CVDAS
Standard CVDA

CVDAT
Terminal CVDA

RESTYPE
Restype

DECIMAL
Packed Decimal

DECDATE
Date in decimal form

ILABEL
Internal Label

HHMM
Binary Hours/Minutes

SCLOCK
CMF 8 byte interval store clock

SCLOCK12
CMF 12 byte interval store clock

INTUSEC
Interval in microseconds

INTMSEC
Interval in milliseconds

INT16US
Interval in 16 microseconds

INTSEC
Interval in Seconds

INTTSTP
Interval Timestamp Delta

DATETIME
Date Time Group

DECTSTP
Decimal Timestamp

ADDRESS
Address

CNUMERIC
Coded Numeric

HIDCHAR
Non Display Character

HEX
Hexadecimal

TBLVER
Resource table version

RATE3
Rate to 3 decimal places

PERCENT3
Percentage to 3 decimal places

50 CICS TS for z/OS: CICSPlex SM Application Programming Guide

SUM3
Sum of values to 3 decimal places

AVERAGE3
Average to 3 decimal places

DECTIME
Time in units of tenths of a second

DECTIMES
Time in units of seconds

SUMOPT
The default summary option used for the attribute:
AVG

Average
DIFF

Difference
MIN

Minimum
MAX

Maximum
SUM

Summary
LIKE

Like
IDATATYPE

A numeric value which represents the internal data type
0

Component
4

Numeric
8

Rate
12

Percent
16

Sum
20

Ratio
24

Average
28

Timestamp
32

Bit
36

Text
40

Character
44

EYUDA

Chapter 2. Using the CICSPlex SM API 51

48
CVDA standard

52
CVDA terminal

56
Resource type

60
Packed decimal

64
Packed decimal date

68
Internal label field

72
HHMM

76
Interval store clock, 8 byte

80
Interval microseconds

84
Interval milliseconds

88
Interval 16 microseconds

92
Interval seconds

96
Store clock delta

100
Date time group

104
Packed decimal timestamp to tenths of seconds

108
Address

112
Codes numeric

116
Non-display character

120
Hexadecimal

124
Table version

128
Binary derived rate to 3 decimal places

132
Binary derived percent to 3 decimal places

136
Binary derived sum to 3 decimal places

140
Binary derived average to three deecimal places

144
Packed decimal time to seconds

52 CICS TS for z/OS: CICSPlex SM Application Programming Guide

148
Packed decimal time to tenths of seconds

152
Interval store clock, 12 byte

SETVALID
Whether or not the attribute may be set/modified: Y or N

REQUIRED
Whether or not the attribute is required for CREATE: Y or N

AVAAVAIL
Whether or not attribute value assertion information is available for the attribute: Y or N. When
available, refer to the ATTR attributes:

• AVACOUNT

Use the ATTRAVA resource table to obtain attribute value assertion information.
CICSVALAVAIL

Whether or not CICS validity data is available: Y or N. When available, refer to the ATTR attributes:

• VALCICSESA
• VALCICSVSE
• VALCICSOS2
• VALCICSWNT
• VALCICSES2

HDRTXTAVAIL
Whether or not attribute header text is available: Y or N. When available, refer to the ATTR attributes:

• HDRTEXT

VALSETAVAIL
Whether or not value set information is available: Y or N. When available, refer to the ATTR attributes:

• VALCOUNT

Use the ATTRAVA resource table to obtain value set information.
SOURCE

The source of the attribute data:
V

Created by CICSPlex SM
I

Acquired from CICS INQ
S

Acquired from CICS STATS
P

Acquired from CICS CMF data
KEY

Whether or not the attribute participates in the key of the managed object: 0 or n, where 0 means the
attribute is not part of the key, and n means the part number of the key.

AVACOUNT
The number of attribute value assertions for the attribute. This value corresponds to the number of
ATTRAVA resource table records available with a LISTTYPE value of AVA for the attribute. Only
present if the AVAAVAIL attribute is Y.

VALCOUNT
The number of value set values for the attribute. This value corresponds to the number of ATTRAVA
resource table records available with a LISTTYPE value of VALUE for the attribute. Only present if the
VALSETAVAIL attribute is Y.

Chapter 2. Using the CICSPlex SM API 53

VALCICSESA
First byte of flags indicating whether or not the attribute is valid in different versions of CICS:

1... X'80' CICS/MVS 2.1.2
.1.. X'40' CICS/ESA 3.3.0
..1. X'20' CICS/ESA 4.1.0
...1 X'10' CICS Transaction Server for
 OS/390 Release 1
.... 1... X'08' CICS Transaction Server for
 OS/390 Release 2
.... .1.. X'04' CICS Transaction Server for
 OS/390 Release 3
.... ..1. X'02' CICS Transaction Server for
 z/OS Version 2 Release 1
.... ...1 X'01' CICS Transaction Server for
 z/OS Version 2 Release 2

The attribute is not valid in the version of CICS if the bit is set on. VALCICSES2 contains a second byte
of flags.

VALCICSVSE
Flags indicating whether or not the attribute is valid in different versions of CICS/VSE:

1... X'80' CICS/VSE 2.2.0
.1.. X'40' CICS/VSE 2.3.0
..1. X'20' CICS/VSE 4.1.0
...1 1111 Reserved

The attribute is not valid in the version of CICS if the bit is set on.
VALCICSOS2

Flags indicating whether or not the attribute is valid in different versions of CICS OS/2:

1... X'80' CICS OS/2 2.0.1
.1.. X'40' CICS OS/2 3.0.0
..1. X'20' CICS OS/2 3.1.0
...1 1111 Reserved

The attribute is not valid in the version of CICS if the bit is set on.
VALCICSWNT

Flags indicating whether or not the attribute is valid in different versions of TXSeries®:

1... X'80' CICS for TXSeries 4.3.0
.1.. X'40' CICS for TXSeries 5.0.0
..11 1111 Reserved

The attribute is not valid in the version of CICS if the bit is set on.
VALCICSES2

Second byte of flags indicating whether or not the action is valid in different versions of CICS
Transaction Server for z/OS:

.1.. X'40' CICS Transaction Server for z/OS, Version 3 Release 1

..1. X'20' CICS Transaction Server for z/OS, Version 3 Release 2

...1 X'10' CICS Transaction Server for z/OS, Version 4 Release 1

.... 1... X'08' CICS Transaction Server for z/OS, Version 4 Release 2

.... .1.. X'04' CICS Transaction Server for z/OS, Version 5 Release 1

.... ..1. X'02' CICS Transaction Server for z/OS, Version 5 Release 2

.... ...1 X'01' CICS Transaction Server for z/OS, Version 5 Release 3

The action is not valid in the version of CICS if the bit is set on. The first byte of flags is contained in
VALCICSESA.

VALCICSES3
Third byte of flags indicating whether or not the action is valid in different versions of CICS
Transaction Server for z/OS:

1... X'80' CICS Transaction Server for z/OS, Version 5 Release 4

54 CICS TS for z/OS: CICSPlex SM Application Programming Guide

SETCICSESA
First byte of flags indicating whether or not the attribute is modifiable in different versions of CICS:

1... X'80' CICS/MVS 2.1.2
.1.. X'40' CICS/ESA 3.1.0
..1. X'20' CICS/ESA 4.1.0
...1 X'10' CICS Transaction Server for
 OS/390 Release 1
.... 1... X'08' CICS Transaction Server for
 OS/390 Release 2
.... .1.. X'04' CICS Transaction Server for
 OS/390 Release 3
.... ..1. X'02' CICS Transaction Server for
 z/OS Version 2 Release 1
.... ...1 X'01' CICS Transaction Server for
 z/OS Version 2 Release 2

The attribute is not modifiable in the version of CICS if the bit is set on. A second byte of flags is
contained in SETCICSES2.

SETCICSES2
Second byte of flags indicating whether or not the attribute is modifiable in different versions of CICS
Transaction Server for z/OS:

.1.. X'40' CICS Transaction Server for z/OS, Version 3 Release 1

..1. X'20' CICS Transaction Server for z/OS, Version 3 Release 2

...1 X'10' CICS Transaction Server for z/OS, Version 4 Release 1

.... 1... X'08' CICS Transaction Server for z/OS, Version 4 Release 2

.... .1.. X'04' CICS Transaction Server for z/OS, Version 5 Release 1

.... ..1. X'02' CICS Transaction Server for z/OS, Version 5 Release 2

.... ...1 X'01' CICS Transaction Server for z/OS, Version 5 Release 3

The attribute is not modifiable in the version of CICS if the bit is set on
SETCICSES3

Third byte of flags indicating whether or not the attribute is modifiable in different versions of CICS
Transaction Server for z/OS:

1... X'80' CICS Transaction Server for z/OS, Version 5 Release 4

SETCICSVSE
Flags indicating whether or not the attribute is modifiable in different versions of CICS/VSE:

1... X'80' CICS/VSE 2.2.0
.1.. X'40' CICS/VSE 2.3.0
..1. X'20' CICS/VSE 4.1.0
...1 1111 Reserved

The attribute is not modifiable in the version of CICS if the bit is set on.
SETCICSOS2

Flags indicating whether or not the attribute is modifiable in different versions of CICS OS/2:

1... X'80' CICS OS/2 2.0.1
.1.. X'40' CICS OS/2 3.0.0
..1. X'20' CICS OS/2 3.1.0
...1 1111 Reserved

The attribute is not modifiable in the version of CICS if the bit is set on.
SETCICSWNT

Flags indicating whether or not the attribute is modifiable in different versions of TXSeries:

1... X'80' CICS for TXSeries 4.3.0
.1.. X'40' CICS for TXSeries 5.0.0
..11 1111 Reserved

The attribute is not modifiable in the version of CICS if the bit is set on.
IGNVALUE

The value that signifies Not Applicable or Ignore for the attribute.

Chapter 2. Using the CICSPlex SM API 55

LOWVALUE
The lowest value allowed in the range of valid values for the attribute.

HIGHVALUE
The highest value allowed in the range of valid values for the attribute.

HDRTEXT
The header text of the attribute. Only present if the HDRTXTAVAIL attribute value is Y.

DESC
The description of the attribute.

DEFAULT
The default value for the attribute, if any.

UCHAR
Whether or not the attribute value is uppercase: Y or N.

CICSSETAVAIL
Indicates whether or not the SET command is valid for an attribute: Y or N. When set to Y, the
following ATTR attributes indicate the levels of different CICS products for which the command is
valid:

• SETCICSESA
• SETCICSVSE
• SETCICSOS2
• SETCICSWNT
• SETCICSES2

SORT
Indicates whether or not the attribute participates in ORDER
Y

The attribute participates in ORDER
N

The attribute does not participate in ORDER
FILTER

Indicates whether or not the attribute participates in SPECIFY FILTER
Y

The attribute participates in SPECIFY FILTER
N

The attribute does not participate in SPECIFY FILTER
SUMMARISE

Eligibility of the attribute for summarizing
Y

The attribute may be summarized
N

The attribute may not be summarized
VIEWMOD

Eligibility of the attribute for view support
Y

The attribute is eligible for view support
N

The attribute is not eligible for view support
INHERIT

Indicates whether or not the attribute participates in inheritance

56 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Y
The attribute participates in inheritance

N
The attribute does not participate in inheritance

ATTRAVA
Information in this resource table is available only when the AVAAVAIL or VALSETAVAIL attributes of the
ATTR resource table have a value of Y.

The ATTRAVA resource table provides an acceptable value for a specific attribute of a managed object.
The set of ATTRAVA base tables for a specific attribute provide the list of all acceptable values.

However, please note that the attribute may support a range of values (for example, zero to 999) and
there are no ATTRAVA base tables for the range values. There also may not be an ATTRAVA base table for
the default value for the attribute. The default value, and the highest and lowest in range values can be
found from the ATTR base table for the attribute.

Attribute
Description

OBJECT
The name of the managed object to which the specific attribute belongs.

TABLEVER
The version of the table identified by the OBJECT attribute.

NAME
The name of the specific attribute. 1 to 12 characters in length.

AVAVALUE
A value for the attribute.

LISTTYPE
Indicates if the AVAVALUE data is an attribute value assertion or other acceptable value for the
attribute:
AVA

A value derived from an attribute value assertion
VALUE

At present, this is only used to return the special value meaning "ignore"
IOTYPE

Indicates whether the attribute value is used for input, output, or input and output operations:
I

Input
O

Output
B

Input and output

METADESC
The METADESC resource table provides basic structure and layout information for a specific attribute of a
managed object.

Attribute
Description

NAME
The name of the specific attribute. 1 to 12 characters in length.

LENGTH
The length of the data associated with the attribute. Not to be confused with the length of the
METADESC attribute NAME.

Chapter 2. Using the CICSPlex SM API 57

OFFSET
The offset in the resource table at which the attribute data begins.

DATATYPE
The data type of the attribute data:
0

Component Identifier
4

Binary Numeric
8

Binary Derived Rate
12

Binary Derived Percent
16

Binary Derived Sum
20

Binary Derived Ratio
24

Binary Derived Average
28

Operating system timestamp
32

Bit
36

Text
40

Character
44

EYUDA
48

CVDA Standard
52

CVDA Terminal
56

Resource Type
60

Packed Decimal
64

Packed decimal date
68

Internal Label Field
72

Binary HHMM
76

Interval store clock, 8 byte
80

Interval Microseconds
84

Interval Milliseconds

58 CICS TS for z/OS: CICSPlex SM Application Programming Guide

88
Interval 16 Microseconds

92
Interval Seconds

96
Interval Store Clock delta

100
Date Time Group

104
Packed Decimal Timestamp to tenths of seconds

108
Address

112
Coded Numeric

116
Non Display Character

120
Hexadecimal

124
Table version

128
Binary derived rate to 3 decimal places

132
Binary derived percent to 3 decimal places

136
Binary derived sum to 3 decimal places

140
Binary derived average to three decimal places

144
Packed decimal timestamp to seconds

148
Packed decimal timestamp to tenths of seconds

152
Interval store clock, 12 byte

INHERIT
Whether or not the attribute value is inheritable: Y or N. Valid only for CICSPlex SM definition resource
tables that participate in CICSplex inheritance.

METANAME
The METANAME resource table contains information about all CVDASs, CVDATs, and EYUDAs.

Attribute
Description

NAMETYPE
Type of data
1

CVDAS
2

CVDAT

Chapter 2. Using the CICSPlex SM API 59

3
EYUDA

VALUE
Numeric value of CVDA or EYUDA

NAME
Name of CVDA or EYUDA

DESCRIPTION
Description of CVDA or EYUDA

METAPARM
The METAPARM resource table contains information about a parameter for an action.

Attribute
Description

TABLE
Table name

ACTION
Action name

NAME
Parameter name as it appears in the API PARM string

ID
Parameter number

GROUP_ID
Multiple parameters may be related to each other in the sense that only one of a group may be
specified. Parameters that are related in this way will have the same group ID.

REQUIRED
Indicates whether or not the parameter is required
Y

The parameter is required
N

The parameter is not required
WORKLOAD

Indicates whether or not the parameter is a workload name
Y

The parameter is a workload name
N

The parameter is not a workload name
WRKLOWNER

Indicates whether or not the parameter is the name of a workload owner
Y

The parameter is the name of a workload owner
N

The parameter is not the name of a workload owner
VALUE

Parameter value
MODE

Method by which parameter is applied
1

Copy from base table

60 CICS TS for z/OS: CICSPlex SM Application Programming Guide

2
Array of values

3
Bit setting

4
Keyword in API parameter string:

5
Filter string

6
API keyword with value

7
Base table field with existence bit

8
API modification string

Modes 3 and 4 appear in the API parameter string as stand-alone keywords. Modes 2, 5, 6 and 8
appear in the API parameter string as keywords with a value. Modes 1 and 7 do not appear in the API
parameter string.

DESCRIPTION
Description

CICSVALAVAIL
Indicates whether or not CICS validity data is available
Y

CICS validity data is available
N

CICS validity data is not available
VALCICSESA

First byte of flags indicating whether or not the parameter is valid in different versions of CICS:

1... X'80' CICS/MVS 2.1.2
.1.. X'40' CICS/ESA 3.3.0
..1. X'20' CICS/ESA 4.1.0
...1 X'10' CICS Transaction Server for OS/390 Release 1
.... 1... X'08' CICS Transaction server for OS/390 Release 2
.... .1.. X'04' CICS Transaction Server for OS/390 Release 3
.... ..1. X'02' CICS Transaction Server for z/OS, Version 2 Release 1
.... ...1 X'01' CICS Transaction Server for z/OS, Version 2 Release 2

The parameter is not valid in the version of CICS if the bit is set on. The second byte of flags is
contained in VALCICSES2.

VALCICSES2
Second byte of flags indicating whether or not the parameter is valid in different versions of CICS
Transaction Server for z/OS:

1... X'80' CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X'40' CICS Transaction Server for z/OS, Version 3 Release 1
..1. X'20' CICS Transaction Server for z/OS, Version 3 Release 2
...1 X'10' CICS Transaction Server for z/OS, Version 4 Release 1
.... 1... X'08' CICS Transaction Server for z/OS, Version 4 Release 2
.... .1.. X'04' CICS Transaction Server for z/OS, Version 5 Release 1
.... ..1. X'02' CICS Transaction Server for z/OS, Version 5 Release 2
.... ...1 X'01' CICS Transaction Server for z/OS, Version 5 Release 3

The parameter is not valid in the version of CICS if the bit is set on. The first byte of flags is contained
in VALCICSESA.

Chapter 2. Using the CICSPlex SM API 61

VALCICSES3
Third byte of flags indicating whether or not the parameter is valid in different versions of CICS
Transaction Server for z/OS:

1... X'80' CICS Transaction Server for z/OS, Version 5 Release 4

VALCICSVSE
Flags indicating whether or not the parameter is valid in different versions of CICS Transaction Server
for VSE:

1... X'80' CICS/VSE 2.2.0
.1.. X'40' CICS/VSE 2.3.0
..1. X'20' CICS/VSE 4.1.0
...1 1111 Reserved

The parameter is not valid in the version of CICS if the bit is set on.
VALCICSOS2

Flags indicating whether or not the parameter is valid in different versions of CICS OS/2:

1... X'80' CICS OS/2 2.0.1
.1.. X'40' CICS OS/2 3.0.0
..1. X'20' CICS OS/2 3.1.0
...1 1111 Reserved

The parameter is not valid in the version of CICS if the bit is set on.
VALCICSWNT

Flags indicating whether or not the parameter is valid in different versions of TXSeries:

1... X'80' CICS for TXSeries 4.3.0
.1.. X'40' CICS for TXSeries 5.0.0
..11 1111 Reserved

The parameter is not valid in the version of CICS if the bit is set on.

OBJACT
The OBJACT resource table contains action information for a specific managed object.

Attribute
Description

OBJECT
The name of the managed object to which the specific action applies.

TABLEVER
The version of the table identified by the OBJECT attribute.

ACTION
The name of the action. 1 to 12 characters in length.

VALCICSESA
First byte of flags indicating whether or not the action is valid in different versions of CICS:

1... X'80' CICS/MVS 2.1.2
.1.. X'40' CICS/ESA 3.3.0
..1. X'20' CICS/ESA 4.1.0
...1 X'10' CICS Transaction Server for OS/390 Release 1
.... 1... X'08' CICS Transaction server for OS/390 Release 2
.... .1.. X'04' CICS Transaction Server for OS/390 Release 3
.... ..1. X'02' CICS Transaction Server for z/OS, Version 2 Release 1
.... ...1 X'01' CICS Transaction Server for z/OS Version 2 Release 2

The action is not valid in the version of CICS if the bit is set on. The second byte of flags is contained in
VALCICSES2.

62 CICS TS for z/OS: CICSPlex SM Application Programming Guide

VALCICSVSE
Flags indicating whether or not the action is valid in different versions of CICS Transaction Server for
VSE:

1... X'80' CICS/VSE 2.2.0
.1.. X'40' CICS/VSE 2.3.0
..1. X'20' CICS/VSE 4.1.0
...1 1111 Reserved

The action is not valid in the version of CICS if the bit is set on.
VALCICSOS2

Flags indicating whether or not the action is valid in different versions of CICS OS/2:

1... X'80' CICS OS/2 2.0.1
.1.. X'40' CICS OS/2 3.0.0
..1. X'20' CICS OS/2 3.1.0
...1 1111 Reserved

The action is not valid in the version of CICS if the bit is set on.
VALCICSWNT

Flags indicating whether or not the action is valid in different versions of TXSeries:

1... X'80' CICS for TXSeries 4.3.0
.1.. X'40' CICS for TXSeries 5.0.0
..11 1111 Reserved

The action is not valid in the version of CICS if the bit is set on.
VALCICSES2

Second byte of flags indicating whether or not the action is valid in different versions of CICS
Transaction Server for z/OS:

1... X'80' CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X'40' CICS Transaction Server for z/OS, Version 3 Release 1
..1. X'20' CICS Transaction Server for z/OS, Version 3 Release 2
...1 X'10' CICS Transaction Server for z/OS, Version 4 Release 1
.... 1... X'08' CICS Transaction Server for z/OS, Version 4 Release 2
.... .1.. X'04' CICS Transaction Server for z/OS, Version 5 Release 1
.... ..1. X'02' CICS Transaction Server for z/OS, Version 5 Release 2
.... ...1 X'01' CICS Transaction Server for z/OS, Version 5 Release 3

The action is not valid in the version of CICS if the bit is set on. The first byte of flags is contained in
VALCICSESA.

DESCRIPTION
The description of the action

ID
The number of the action

PARMCOUNT
The number of parameters for this action

APIPERFORM
Indicates whether or not an action is valid for EXEC CPSM PERFORM, GET, SET, CREATE, UPDATE, and
REMOVE.
N

The action is not valid.
Y

The action is valid.

Chapter 2. Using the CICSPlex SM API 63

OBJECT
The OBJECT resource table contains detailed information for a specific managed object.

Attribute
Description

NAME
The name of the managed object. 1 to 8 characters in length.

ID
The numeric resource table ID.

NUMTBLVER
The number of different versions of the managed object which are known to exist.

HIGHTBLVER
The number of the highest version of the managed object.

RELTBLVER
The version of the managed object at the current CICSPlex SM release.

OWNERNAME
The name of the component which owns the managed object.

CREATREL
CICSPlex SM release at which the managed object was introduced.

QUERYREL
CICSPlex SM release of the querying CMAS.

OBJTYPE
The object type of the managed object:
C

CICS Resource
M

Monitored CICS Resource
D

CPSM Definition
V

CPSM Resource
O

CPSM Metadata
N

CPSM Notification
R

CICS Resource Definition
L

CPSM Configuration Definition
CURTBLVER

Version of the managed object at the current CONNECT version
CURNUMATTR

Number of attributes in the managed object at the current CONNECT version
CURSTGSIZE

External length of the managed object at the current CONNECT version
CURCPSMREL

CICSPlex SM release when the version of the managed object at the current CONNECT version was
created

CURVALRTA
Whether or not the managed object is valid for use with RTA: Y or N.

64 CICS TS for z/OS: CICSPlex SM Application Programming Guide

CURVALUTL
Whether or not the managed object is valid for use with the batch utility: Y or N.

CURGETVAL
Whether or not the managed object is valid for GET requests: Y or N.

CURSETVAL
Whether or not the managed object is valid for SET requests: Y or N.

CURCREVAL
Whether or not the managed object is valid for CREATE requests: Y or N.

CURUPDVAL
Whether or not the managed object is valid for UPDATE requests: Y or N.

CURREMVAL
Whether or not the managed object is valid for REMOVE requests: Y or N.

CURACTVAL
Whether or not the managed object has actions defined: Y or N.

Use the OBJACT resource table to obtain action information.

CURVALESA
First byte of flags indicating whether or not the managed object is valid in different versions of CICS:

1... X'80' CICS/MVS 2.1.2
.1.. X'40' CICS/ESA 3.3.0
..1. X'20' CICS/ESA 4.1.0
...1 X'10' CICS Transaction Server for OS/390 Release 1
.... 1... X'08' CICS Transaction Server for OS/390 Release 2
.... .1.. X'04' CICS Transaction Server for OS/390 Release 3
.... ..1. X'02' CICS Transaction Server for z/OS Version 2 Release 1
.... ...1 X'01' CICS Transaction Server for z/OS Version 2 Release 2

The object is not valid in the version of CICS if the bit is set on. The second byte of flags is contained in
CURVALES2.

CURVALES2
Second byte of flags indicating whether or not the managed object is valid in different versions of CICS
Transaction Server for z/OS:

1... X'80' CICS Transaction Server for z/OS, Version 2 Release 3
.1.. X'40' CICS Transaction Server for z/OS, Version 3 Release 1
..1. X'20' CICS Transaction Server for z/OS, Version 3 Release 2
...1 X'10' CICS Transaction Server for z/OS, Version 4 Release 1
.... 1... X'08' CICS Transaction Server for z/OS, Version 4 Release 2
.... .1.. X'04' CICS Transaction Server for z/OS, Version 5 Release 1
.... ..1. X'02' CICS Transaction Server for z/OS, Version 5 Release 2
.... ...1 X'01' CICS Transaction Server for z/OS, Version 5 Release 3

The managed object is not valid in the version of CICS if the bit is set on. The first byte of flags is
contained in CURVALESA.

CURVALES3
Third byte of flags indicating whether or not the managed object is valid in different versions of CICS
Transaction Server for z/OS:

1... X'80' CICS Transaction Server for z/OS, Version 5 Release 4

CURVALVSE
Flags indicating whether or not the managed object is valid in different versions of CICS/VSE:

1... X'80' CICS/VSE 2.2.0
.1.. X'40' CICS/VSE 2.3.0
..1. X'20' CICS/VSE 4.1.0
...1 1111 Reserved

The object is not valid in the version of CICS if the bit is set on.

Chapter 2. Using the CICSPlex SM API 65

CURVALOS2
Flags indicating whether or not the managed object is valid in different versions of CICS OS/2:

1... X'80' CICS OS/2 2.0.1
.1.. X'40' CICS OS/2 3.0.0
..1. X'20' CICS OS/2 3.1.0
...1 1111 Reserved

The object is not valid in the version of CICS if the bit is set on.
CURVALWNT

Flags indicating whether or not the managed object is valid in different versions of TXSeries:

1... X'80' CICS for TXSeries 4.3.0
.1.. X'40' CICS for TXSeries 5.0.0
..11 1111 Reserved

The object is not valid in the version of CICS if the bit is set on.
DESC

The description of the managed object.
VIEWMOD

Eligibility of the managed object for view support
Y

The managed object is eligible for view support
N

The managed object is not eligible for view support
APIPREFIX

Indicates whether or not an API prefix is required
Y

An API prefix is required
N

An API prefix is not required
SCOPESORT

Y
The API sorts by scope

N
The API does not sort by scope

SCOPEREQ
Y

Scope must be specified
N

Scope need not be specified

PARMAVA
The PARMAVA resource table provides information about the values that may be specified for a
parameter.

Attribute
Description

PARMIDN
Parameter number

PARMAVAIDN
AVA number for parameter

LITERAL
Parameter literal

66 CICS TS for z/OS: CICSPlex SM Application Programming Guide

VALUE
Parameter value in numeric form

VALUENAME
Parameter value as a character string

Using CRESxxxx resource tables
The CRESxxxx resource tables are externalized versions of the topology resource maps, and are usually
updated when a resource is installed, added, discarded or removed. This information is captured via the
CICS XRSINDI global user exit, or for CRESIPCN, via the XMEOUT message exit.

In addition, a small number of CRESxxxx resource tables are also updated when the characteristics of an
existing resource is modified. Those CRESxxxx resource tables that are updated regularly at MAS
heartbeat time are:

• CRESDSNM data set
• CRESFECO FEPI connection
• CRESGLUE global user exit
• CRESSDMP system dump code
• CRESTDMP transaction dump code
• CRESTRUE task-related user exit

An application program that needs to be informed when any of the CRESxxxx topology resource maps is
changed can use the API LISTEN command to register an interest in the corresponding ERMCxxxx CPSM
notification resource table.

Note: When an IPCONN is acquired, or released, owing to the synchronization of the states on both sides
of the connection, the actual values returned may be a combination of Obtaining and Acquired, or
Freeing and Released, for the instigator and partner resource respectively.

Querying the CICSPlex SM API exit
In a CICS LMAS environment the CICSPlex SM API function is implemented via a task-related user exit.
CICS application programs can use the EXEC CICS INQUIRE EXITPROGRAM command to retrieve
information about the CICSPlex SM API task-related user exit.

 EXEC CICS INQUIRE EXITPROGRAM(EYU9XLAP)
 CONNECTST(cvda)
 QUALIFIER(data-area)

In CICS systems that support the CONNECTST and QUALIFIER keywords of the INQUIRE EXITPROGRAM
command, CONNECTST returns a CVDA indicating the status of the CICSPlex SM API task-related user
exit, and QUALIFIER returns the name of the CICSplex to which the LMAS is connected. For more
information about the INQUIRE EXITPROGRAM command, see INQUIRE EXITPROGRAM.

Chapter 2. Using the CICSPlex SM API 67

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_inquireexitprogram.html

68 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Chapter 3. Writing an EXEC CPSM program
You can use the CICSPlex SM command-level interface to write an API program. Language-specific copy
books are supplied for each CICSPlex SM resource table.

Using the resource table copy books
The CICSPlex SM API accepts and returns resource data in the form of records that contain the resource
attributes.

For example, if you issue a FETCH command against a result set containing LOCTRAN resource table
records, the API returns all the attributes for a given transaction in a single record. Your program must
identify an area of storage to receive the resource table records.

Note: This method of returning data differs from the EXEC CICS system programming interface, where
you must fetch each attribute of a resource individually.

To simplify the use of these resource table records, CICSPlex SM provides a set of copy books for each
resource table that you can access from an API program. By including these copy books in your program,
you can access the resource table data in the appropriate structure and format for the language you are
using.

How to access the copy books
The copy books are installed as part of the CICSPlex SM installation process.

The copy books are installed as part of the CICSPlex SM installation process. They are placed into the
following libraries:
Assembler

CICSTS55.CPSM.SEYUMAC
COBOL

CICSTS55.CPSM.SEYUCOB
PL1

CICSTS55.CPSM.SEYUPL1
C

CICSTS55.CPSM.SEYUC370

If you want to include the copy books in your program, make sure the appropriate library is available to
the assemble or compile step.

Note: The CICSPlex SM API uses variable names that begin with EYU. Make sure your program does not
define variables or structures with variable names that are the same as variable names generated by the
translator or declared in the resource table copy books. Also be careful that your program does not
implicitly generate such variable names.

Copybook names and aliases
Each CICSPlex SM resource table has a name that is unique within the product.

In addition, a unique name is created for each copy book version of the resource table in each language.
The copy book names take the form:

 EYUtnnnn

where:
t

Identifies which language the copy book supports, as one of the following:

© Copyright IBM Corp. 1974, 2020 69

A
Assembler

P
PL/I

L
COBOL

C
C

nnnn
Is a 4-character numeric resource table identifier.

For example:
EYUA0001

Is the Assembler DSECT for the CICSRGN resource table.
EYUC2451

Is the C structured data type for the CMAS resource table.
To make the copy books easy to reference in your program, CICSPlex SM provides alias support for the
copy book names. The appropriate data set contains the following two entries for each resource table:
EYUtnnnn

The resource table copy book name.
formname

The format name alias, which is the resource table name as described in CICSPlex SM resource tables
in Reference.

So, using the previous example, the Assembler DSECT for the CICSRGN resource table could be referred
to as either EYUA0001 or its alias, CICSRGN.

Copybook format
Each copy book contains a prologue that describes the resource table and its characteristics.

The copy book prologue includes:

• Valid API operations
• Any parameters that are required for an operation
• Valid API actions
• CICS releases that do not support the resource table, if any.

A description is provided for each attribute of the resource table. In addition, the following information is
provided for an attribute, if appropriate:

• Whether the attribute can be modified by a SET command
• CICS releases that do not support the attribute, if any
• CICS releases that do not allow the attribute to be modified, if any.

Copybook data characteristics
Each resource table that can be processed by an API program contains data values for each of its
attributes.

The attribute values are presented in an internal format that is appropriate for the data type and the
environment in which the program is running:

• Standard System/390® data formats are used. No translation or formatting operations are performed on
the attribute values.

• For programs written in C, variable-length character fields do not contain the zero-byte ending
delimiter.

70 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

• The lengths of all resource table records are a multiple of 8 bytes. Each copy book contains a definition
of the resource table length.

• System/390 boundary alignments are observed for all data types. That means all resource table records
are maintained internally starting on doubleword-aligned storage locations. Alignment fields are
automatically generated in each copy book. These alignment fields, which contain binary zeros, have
names like:

 EYU_RSVnnnn

Make sure the data areas your program uses to send and receive resource table records have proper
boundary alignment.

Supplied copy books
Resource table copy books are supplied for each language.

Assembler copy books
Assembler copy books are distributed in CICSTS55.CPSM.SEYUMAC.

Distributed as:
DSECTs

Copybook names:
EYUAnnnn

Note the following as you use the Assembler copy books:

• DSECT and DS statements are used to describe the resource table.
• The DSECT name is the resource table format name (such as, EMASSTRT).
• The attribute names are a concatenation of the resource table format name and the attribute name,

connected by an underscore (such as, EMASSTRT_CMASNAME).
• EQU statements are used to describe the setting of indicator fields for bit, binary, and character values.
• The table length field is a concatenation of the resource table format name and the constant TBL_LEN,

connected by an underscore (such as, EMASSTRT_TBL_LEN).

The resource table data types are defined using the data definition operands of the DS statement. The
following data type definitions are used:

 DS X - Bit, binary values greater than 8 bytes
 - Odd number binary values less than 8 bytes
 - Mixed character and binary data

 DS H - 2-byte binary numeric values

 DS F - 4-byte binary numeric values
 - 4-byte intervals

 DS D - Time stamps and 8-byte intervals
 - 8-byte numeric values

 DS P - Packed decimal data

 DS C - Character data

Figure 13 on page 72 is a representative extract of an Assembler resource table copy book:

Chapter 3. Writing an EXEC CPSM program 71

 --
 * Name = EYUA2400 *
 * Format Name = EMASSTRT *
 * Version = 0001 *
 * Status = CPSMREL(0310) *
 * Function = Base Table Structure generator *
 * Format definition for this element = EMASSTRT *
 * Valid Operations = None *
 * Valid Actions = None *
 --
 EMASSTRT DSECT Notify CICS System Start Event
 EMASSTRT_CMASNAME DS CL0008 CMAS Name
 EMASSTRT_PLEXNAME DS CL0008 CICSPlex Name
 EMASSTRT_CSYSNAME DS CL0008 CICS System Name
 EMASSTRT_MON_SPEC DS CL0008 Monitor Spec Name
 EMASSTRT_RTA_SPEC DS CL0008 Real Time Analysis Spec Name
 EMASSTRT_WLM_SPEC DS CL0008 Work Load Manager Spec Name
 EMASSTRT_STATUS DS XL0001 Status
 EMASSTRT_STATUS_LOCAL EQU 128 Local MAS
 EMASSTRT_STATUS_REMOTE EQU 64 Remote MAS
 EMASSTRT_DYNROUTE DS XL0001 Dynamic Routing Mode
 EMASSTRT_DYNROUTE_ACTIVE EQU 1 Routing ACTIVE
 EMASSTRT_DYNROUTE_SUSPEND EQU 2 Routing SUSPENDED
 EMASSTRT_DYNTYPE DS CL0003 Dynamic Routing Type
 EMASSTRT_DYNTYPE_WLMTOR EQU C'TOR' Routing TOR
 EMASSTRT_DYNTYPE_WLMAOR EQU C'AOR' Routing AOR
 EMASSTRT_DESC DS CL0030 Description
 EMASSTRT_CSYSAPPL DS CL0008 CICS System VTAM APPLID
 EMASSTRT_EYU_RSV0015 DS XL0005 Alignment Padding
 EMASSTRT_MASSTART DS D MAS Start STCK Value
 EMASSTRT_TMEZONEO DS XL0001 Time Zone Offset
 EMASSTRT_TMEZONE DS CL0001 Time Zone
 EMASSTRT_EYU_RSV0019 DS XL0002 Alignment Padding
 EMASSTRT_DAYLGHTSV DS F DayLight saving in effect
 EMASSTRT_SYSID DS CL0004 MAS System Id
 EMASSTRT_OPSYSREL DS CL0004 MAS Op Sys Release
 EMASSTRT_MVSNAME DS CL0004 MVS System Name
 EMASSTRT_JOBNAME DS CL0008 MAS Job Name
 EMASSTRT_CECNAME DS CL0008 CEC Name
 EMASSTRT_SYSPLEX DS CL0008 SYSPlex Name
 EMASSTRT_EYU_RSV0257 DS XL0004 Alignment Padding
 EMASSTRT_TBL_LEN EQU 152 Current Table size

Note: VTAM® is now z/OS Communications Server.

Figure 13. Sample Assembler copy book

PL/I copy books
PL/I copy books are distributed in CICSTS55.CPSM.SEYUPL1.

Distributed as:
Based structures

Copybook names:
EYUPnnnn

Note the following as you use the PL/I copy books:

• The variable EYUPTPTR must be explicitly declared as follows:

 DCL EYUPTPTR POINTER;

• The structure level 1 name is the resource table format name (such as, EMASSTRT).
• The attribute names are used as subordinate level names.
• For attributes that describe bit indicators, subordinate structure levels are used. Each bit indicator is

assigned a unique name.
• All other indicator attributes result in constant declarations being generated at the end of the resource

table. These constants can be used for assignment or evaluation of the attribute. The constant name is
a concatenation of the resource table name, the attribute name, and the indicator name, connected by
underscores (such as, EMASSTRT_DYNROUTE_ACTIVE).

72 CICS TS for z/OS: CICSPlex SM Application Programming Guide

• The table length field is a concatenation of the resource table format name and the constant TBL_LEN,
connected by an underscore (such as, EMASSTRT_TBL_LEN).

The resource table data types are mapped into the valid set of PL/I data types. However, exact mapping is
not always possible. The resource table data types are mapped as follows:

 BIT(8) ALIGNED - 1-byte binary numeric values

 FIXED BIN(15) - 2-byte binary numeric values

 FIXED BIN(31) - 4-byte binary numeric values
 - 4-byte intervals

 (2) FIXED BIN(31) - Time stamps and 8-byte intervals
 - 8-byte binary numeric values
 (an array of two fullwords)

 FIXED DEC(n) - Packed decimal data

 CHAR(nnnn) - Character data
 - Binary values greater than 8 bytes
 - Odd number binary values less than 8 bytes

Figure 14 on page 74 is a representative extract of a PL/I resource table copy book:

Chapter 3. Writing an EXEC CPSM program 73

 /*--*/
 /* Name = EYUP2400 */
 /* Format Name = EMASSTRT */
 /* Version = 0001 */
 /* Status = CPSMREL(0310) */
 /* Function = Base Table Structure generator */
 /* Format definition for this element = EMASSTRT */
 /* Valid Operations = None */
 /* Valid Actions = None */
 /*--*/

 DCL 01 EMASSTRT BASED(EYUPTPTR), /* Notify CICS System Start Event*/
 02 CMASNAME CHAR(0008),
 /* CMAS Name */
 02 PLEXNAME CHAR(0008),
 /* CICSPlex Name */
 02 CSYSNAME CHAR(0008),
 /* CICS System Name */
 02 MON_SPEC CHAR(0008),
 /* Monitor Spec Name */
 02 RTA_SPEC CHAR(0008),
 /* Real Time Analysis Spec Name */
 02 WLM_SPEC CHAR(0008),
 /* Work Load Manager Spec Name */

 02 STATUS,
 /* Status */
 03 LOCAL BIT(1) UNALIGNED,
 /* Local MAS */
 03 REMOTE BIT(1) UNALIGNED,
 /* Remote MAS */
 03 RSVD0003 BIT(1) UNALIGNED,
 /* Reserved */
 03 RSVD0004 BIT(1) UNALIGNED,
 /* Reserved */
 03 RSVD0005 BIT(1) UNALIGNED,
 /* Reserved */
 03 RSVD0006 BIT(1) UNALIGNED,
 /* Reserved */
 03 RSVD0007 BIT(1) UNALIGNED,
 /* Reserved */
 03 RSVD0008 BIT(1) UNALIGNED,
 /* Reserved */

 02 DYNROUTE BIT(8) ALIGNED,
 /* Dynamic Routing Mode */
 02 DYNTYPE CHAR(0003),
 /* Dynamic Routing Type */
 02 DESC CHAR(0030),
 /* Description */
 02 CSYSAPPL CHAR(0008),
 /* CICS System VTAM APPLID */
 02 EYU_RSV0015 CHAR(0005),
 /* Alignment Padding */
 02 MASSTART(2) FIXED BIN(31),
 /* MAS Start STCK Value */
 02 TMEZONEO BIT(8) ALIGNED,
 /* Time Zone Offset */
 02 TMEZONE CHAR(0001),
 /* Time Zone */
 02 EYU_RSV0019 CHAR(0002),
 /* Alignment Padding */
 02 DAYLGHTSV FIXED BIN(31),
 /* DayLight saving in effect */
 02 SYSID CHAR(0004),
 /* MAS System Id */
 02 OPSYSREL CHAR(0004),
 /* MAS Op Sys Release */
 02 MVSNAME CHAR(0004),
 /* MVS System Name */
 02 JOBNAME CHAR(0008),
 /* MAS Job Name */
 02 CECNAME CHAR(0008),
 /* CEC Name */
 02 SYSPLEX CHAR(0008),
 /* SYSPlex Name */
 02 EYU_RSV0257 CHAR(0004);
 /* Alignment Padding */

Note: VTAM is now z/OS Communications Server.

 /*--*/
 /* */
 /* EMASSTRT Constants for Table */
 /* */
 /*--*/
 DCL EMASSTRT_DYNROUTE_ACTIVE BIT(8) ALIGNED STATIC INIT('01'BX);
 /* Routing ACTIVE */
 DCL EMASSTRT_DYNROUTE_SUSPEND BIT(8) ALIGNED STATIC INIT('02'BX);
 /* Routing SUSPENDED */
 DCL EMASSTRT_DYNTYPE_WLMTOR CHAR(3) STATIC INIT('TOR');
 /* Routing TOR */
 DCL EMASSTRT_DYNTYPE_WLMAOR CHAR(3) STATIC INIT('AOR');
 /* Routing AOR */
 DCL EMASSTRT_TBL_LEN FIXED BIN(15) STATIC INIT(152);

Figure 14. Sample PL/I copy book

COBOL copy books
COBOL copy books are distributed in CICSTS55.CPSM.SEYUCOB.
Distributed as:

Structures

74 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Copybook names:
EYULnnnn

Note the following as you use the COBOL copy books:

• The structure level 1 name is the resource table format name (such as, EMASSTRT).
• The attribute names are used as subordinate level names.
• For attributes that describe indicators, subordinate 88 levels are used. Each indicator is assigned a

unique name. Hexadecimal literals are used to describe the content of the indicator setting.
• By default,CICSPlex SM attribute names are formed with a connecting underscore character, as in

WLM_SPEC. However, earlier versions of COBOL that are supported by CICS do not support
underscores. All attribute names that contain underscores are therefore converted in the copy books to
use hyphens, as in WLM-SPEC. When attribute names are passed to the API, they must contain the
underscore character, not the hyphen.

• All the resource tables use apostrophe characters as literal delimiters. When you translate or compile
your program with a supplied copy book, you must specify the APOST option. Otherwise, you will
receive COBOL warning messages.

• COBOL reserves many words for its own use. Some of the CICSPlex SM resource table and attribute
names conflict with these reserved words. To prevent such a conflict, any CICSPlex SM name that
conflicts with a COBOL reserved word is modified by adding a suffix of -R. For example, the name of the
CONNECT resource table becomes CONNECT-R and the name of the STATUS attribute becomes
STATUS-R. The comment area for a name that would conflict with COBOL shows the description “--
RESERVED WORD --”. When resource table or attribute names are passed to the API, they must not
include the -R suffix.

• COBOL does not support duplicate names at different levels in the same data structure. Some of the
CICSPlex SM attribute names are the same as resource table names. To prevent a duplicate name
problem, any attribute name that is the same as a resource table name is modified by adding a suffix of
-A. For example, the name of the DSNAME attribute becomes DSNAME-A. The name of the DSNAME
resource table remains unchanged. The comment area for an attribute that has the same name as a
resource table shows the description “-- RESERVED WORD --”. When attribute names are passed to the
API, they must not include the -A suffix.

• The table length field is a concatenation of the resource table format name and the constant TBL-LEN,
connected by a hyphen (such as, EMASSTRT-TBL-LEN).

Mapping of the resource table data types to COBOL data types

The resource table data types are mapped into the valid set of COBOL data types. However, exact
mapping is not always possible. The resource table data types are mapped as follows:

 PIC S9(0004) USAGE BINARY - 2-byte binary numeric values

 PIC S9(0008) USAGE BINARY - 4-byte binary numeric values
 - 4-byte intervals

 PIC S9(0016) USAGE BINARY - Time stamps and 8-byte intervals
 - 8-byte binary numeric values

 PIC S9(nnnn) USAGE PACKED-DECIMAL - Packed decimal data

 PIC X(0001) - 1-byte binary and bit indicators

 PIC X(nnnn) - Character data
 - Binary values greater than 8 bytes
 - Odd number binary values less than
 8 bytes

Chapter 3. Writing an EXEC CPSM program 75

Sample COBOL copy book

This sample is a representative extract of a COBOL resource table copy book:

 * ---*
 * Name = EYUL2400 *
 * Format Name = EMASSTRT *
 * Version = 0001 *
 * Status = CPSMREL(0310) *
 * Function = Base Table Structure generator *
 * Format definition for this element = EMASSTRT *
 * Valid Operations = None *
 * Valid Actions = None *
 * ---*
 01 EMASSTRT.
 * Notify CICS System Start Event
 02 CMASNAME PIC X(0008).
 * CMAS Name
 02 PLEXNAME PIC X(0008).
 * CICSPlex Name
 02 CSYSNAME PIC X(0008).
 * CICS System Name
 02 MON-SPEC PIC X(0008).
 * Monitor Spec Name
 02 RTA-SPEC PIC X(0008).
 * Real Time Analysis Spec Name
 02 WLM-SPEC PIC X(0008).
 * Work Load Manager Spec Name
 02 STATUS-R PIC X(0001).
 * Status -- RESERVED WORD --
 88 LOCAL VALUE X'80'.
 * Local MAS
 88 REMOTE VALUE X'40'.
 * Remote MAS
 02 DYNROUTE PIC X(0001).
 * Dynamic Routing Mode
 88 ACTIVE VALUE X'01'.
 * Routing ACTIVE
 88 SUSPEND VALUE X'02'.
 * Routing SUSPENDED
 02 DYNTYPE PIC X(0003).
 * Dynamic Routing Type
 88 WLMTOR VALUE 'TOR'.
 * Routing TOR
 88 WLMAOR VALUE 'AOR'.
 * Routing AOR
 02 DESC PIC X(0030).
 * Description
 02 CSYSAPPL PIC X(0008).
 * CICS System VTAM APPLID
 02 EYU-RSV0015 PIC X(0005).

Note: VTAM is now z/OS Communications Server.

 * Alignment Padding
 02 MASSTART PIC S9(0016) USAGE BINARY.
 * MAS Start STCK Value
 02 TMEZONEO PIC X(0001).
 * Time Zone Offset
 02 TMEZONE PIC X(0001).
 * Time Zone
 02 EYU-RSV0019 PIC X(0002).
 * Alignment Padding
 02 DAYLGHTSV PIC S9(0008) USAGE BINARY.
 * DayLight saving in effect
 02 SYSID PIC X(0004).
 * MAS System Id
 02 OPSYSREL PIC X(0004).
 * MAS Op Sys Release
 02 MVSNAME PIC X(0004).
 * MVS System Name
 02 JOBNAME PIC X(0008).
 * MAS Job Name
 02 CECNAME PIC X(0008).
 * CEC Name
 02 SYSPLEX PIC X(0008).
 * SYSPlex Name
 02 EYU-RSV0257 PIC X(0004).
 * Alignment Padding

76 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 * ---*
 * *
 * EMASSTRT Constants for Table *
 * *
 * ---*
 01 EMASSTRT-TBL-LEN PIC S9(4) USAGE BINARY VALUE 152.

C copy books
C copy books are distributed in CICSTS55.CPSM.CPSM.SEYUC370.

Distributed as:
Structured data types

Copybook names:
EYUCnnnn

Note the following as you use the C copy books:

• Typedef statements are used to describe the resource table.
• The structure name is the resource table format name (such as, EMASSTRT).
• The attribute names are used as subordinate names.
• For attributes that describe bit indicators, #define statements are generated at the end of the resource

table Each #define statement identifies a single indicator value. These constants can be used for
assignment or evaluation of the attribute. The constant name is a concatenation of the resource table
name, the attribute name, and the indicator name, connected by underscores (such as,
EMASSTRT_DYNROUTE_ACTIVE).

• The copy books use trigraphs, which are multi-character combinations, to represent square brackets.
• Any variable-length data that you send to the API must be padded with blanks to the end of the field.

The API does not insert the zero-byte ending delimiter.
• The table length field is a concatenation of the resource table format name and the constant TBL_LEN,

connected by an underscore (such as, EMASSTRT_TBL_LEN).

The resource table data types are mapped into the valid set of C data types. However, exact mapping is
not always possible. The resource table data types are mapped as follows:

 char - 1-byte binary numeric values

 short int - 2-byte binary numeric values

 long - 4-byte binary numeric values
 - 4-byte intervals

 long 2 - Time stamps and 8-byte intervals
 8- byte binary numeric values
 (an array of two fullwords)

 char nnnn - Packed decimal data

 char nnnn - Character data
 - Binary values greater than 8 bytes
 - Odd number binary values less than 8 bytes

Figure 15 on page 78 is a representative extract of a C resource table copy book:

Chapter 3. Writing an EXEC CPSM program 77

 /*--*
 * Name = EYUC2400 *
 * Format Name = EMASSTRT *
 * Version = 0001 *
 * Status = CPSMREL(0310) *
 * Function = Base Table Structure generator *
 * Format definition for this element = EMASSTRT *
 * Valid Operations = None *
 * Valid Actions = None *
 --/
 typedef struct EMASSTRT {
 char CMASNAME??(8??); /* CMAS Name */
 char PLEXNAME??(8??); /* CICSPlex Name */
 char CSYSNAME??(8??); /* CICS System Name */
 char MON_SPEC??(8??); /* Monitor Spec Name */
 char RTA_SPEC??(8??); /* Real Time Analysis Spec Name */
 char WLM_SPEC??(8??); /* Work Load Manager Spec Name */
 char STATUS; /* Status */
 char DYNROUTE; /* Dynamic Routing Mode */
 char DYNTYPE??(3??); /* Dynamic Routing Type */
 char DESC??(30??); /* Description */
 char CSYSAPPL??(8??); /* CICS System VTAM APPLID */
 char EYU_RSV0015??(5??); /* Alignment Padding */
 long MASSTART??(2??); /* MAS Start STCK Value */
 char TMEZONEO; /* Time Zone Offset */
 char TMEZONE; /* Time Zone */
 char EYU_RSV0019??(2??); /* Alignment Padding */
 long DAYLGHTSV; /* Daylight saving in effect */
 char SYSID??(4??); /* MAS System Id */
 char OPSYSREL??(4??); /* MAS Op Sys Release */
 char MVSNAME??(4??); /* MVS System Name */
 char JOBNAME??(8??); /* MAS Job Name */
 char CECNAME??(8??); /* CEC Name */
 char SYSPLEX??(8??); /* SYSPlex Name */
 char EYU_RSV0257??(4??); /* Alignment Padding */
 } EMASSTRT;

Note: VTAM is now z/OS Communications Server.

 /*--*
 * *
 * EMASSTRT Defines for Table *
 * *
 --/
 #define EMASSTRT_STATUS_LOCAL 128
 #define EMASSTRT_STATUS_REMOTE 64
 #define EMASSTRT_DYNROUTE_ACTIVE 1
 #define EMASSTRT_DYNROUTE_SUSPEND 2
 #define EMASSTRT_DYNTYPE_WLMTOR "TOR"
 #define EMASSTRT_DYNTYPE_WLMAOR "AOR"
 #define EMASSTRT_TBL_LEN 152

Figure 15. Sample C copy book

Language and environment considerations
You must consider both the language and environment when writing a CICSPlex SM API program.

All of the usual language considerations that apply to the various environments (CICS, MVS batch, TSO,
and NetView) also apply to CICSPlex SM programs written to run in those environments.

Assembler considerations
For Assembler programs that run in an MVS batch, TSO, or NetView environment, you need to be aware of
some special considerations.

• Since the program does not execute in CICS, do not use the DFHEIENT or DFHEIRET macros. Instead,
use the CICS translator options NOEPILOG, NOPROLOG, and NOSYSEIB.

• You must explicitly code the DFHEISTG and DFHEIEND macros to provide the required work areas for
EXEC CPSM commands. Your program is responsible for acquiring storage for the DFHEISTG area and
setting up any necessary base registers before making any EXEC CPSM calls. This storage can be
acquired dynamically using local GETMAIN services or, if the program is nonreentrant, the storage can

78 CICS TS for z/OS: CICSPlex SM Application Programming Guide

be defined directly in the program area. Reentrant programs are recommended if there is any possibility
of the program being used concurrently in the same address space.

• You must make the appropriate CICS macro library available in the SYSLIB concatenation for the
Assembler step. The DFHEISTG, DFHEIEND, and DFHSCALL macros are fetched from this library.

• Add a storage declaration of 64 fullwords in length with a label of DFHEIPL. This is required as a result
of dependency on the DFHSCALL macro. The CICSPlex SM batch sample API program EYUAAPI3 that is
located in the SEYUSAMP library provides such an example.

PL/I considerations
For PL/I programs, you need to be aware of the following special consideration regarding the variable
EYUPTPTR.

• The variable EYUPTPTR must be explicitly declared as follows:

 DCL EYUPTPTR POINTER;

NetView considerations
If you plan to run C programs under NetView, you need to be aware of several special considerations.

• Depending on which resource tables you access, you may encounter some name conflicts between the
CICSPlex SM #define statements for resource table attributes and the standard NetView #define
statements. For example, the NetView statement #include "dsic.h" generates the following define
statement:

 #define COMMAND "COMMAND "

Some of the CICSPlex SM resource tables use COMMAND as an attribute name. If you use #include
"dsic.h" as supplied by NetView, the resource table attribute names are converted and cannot be
processed by CICSPlex SM.

One way of handling any potential conflicts is to undefine the COMMAND value, like this:

 #include "dsic.h"
 #undef COMMAND
 #include "feedback.h"
 .
 .
 .

If you want to, you can also redefine the COMMAND value using a new name that does not conflict with
any resource table attribute name, like this:

 #include "dsic.h"
 #undef COMMAND
 #define XCOMMAND "COMMAND "
 #include "feedback.h"
 .
 .
 .

User-replaceable programs
The CICSPlex SM API cannot be used from within the user-replaceable programs EYU9XESV and
EYU9WRAM.

CICS Global User exit programs
You can use the CICSPlex SM API from within the CICS XICEREQ Global User Exit program. You must
avoid recursion within the CICSPlex SM API program and the exit should not delay any requests issued by
CICSPlex SM-related tasks.

It is not advisable to use the CICSPlex SM API from within other CICS Global User Exit points, because the
results are unpredictable.

Chapter 3. Writing an EXEC CPSM program 79

Status programs
The CICSPlex SM API cannot be used from within a program that is invoked through the STATDEF view.
Where access to the API is required, you must start another task and invoke the API from the new task.

Translating your program
Separate translation is the process of converting programs into executable code that the compiler (or
assembler) can understand.

Some compilers allow you to use the integrated CICS translator approach, where the compiler
interfaces with CICS at compile time to interpret CICS commands and convert them automatically to calls
to CICS service routines. If you use the integrated CICS translator approach many of the translation tasks
are done for you. For details of the integrated CICS translator see The integrated CICS translator.

For programs written using the command-level interface, you must use a language translator to interpret
the source program for the API. Any external program that contains EXEC CPSM commands must be
processed by the appropriate version of the CICS command level translator.

The CICS TS translator supports EXEC CPSM commands. If you are using Business Application Services
(BAS) to create CICS resource definitions, be sure to use the appropriate version of the translator for the
definitions you are creating.

Note: To determine who is allowed to use the CPSM option on the CICS translator, you can use RACF® to
control who is allowed to load the DFHSMTAB table at translation time. For a description of RACF program
control, see the z/OS Security Server RACF Security Administrator's Guide. DFHSMTAB is the language
definition table that defines the CICSPlex SM API commands. It is loaded only on demand.

Specifying the CPSM translator option
Because CICSPlex SM uses the CICS translator, you can use your CICS translate JCL as a model for
translating CICSPlex SM API programs.

You must specify one additional translator option, called CPSM, in order to translate CICSPlex SM
programs. The CPSM option can be specified by using either the PARM operand of the EXEC statement or
a language-specific XOPTS options statement.

If your program also contains EXEC CICS commands, those commands are processed in the same
translation step. The CICS translator inserts the necessary variable and invocation definitions required for
proper execution of the program.

When using the CICSPlex SM API in a non-CICS environment, be sure to remove any CICS or SP translator
options, and only specify the CPSM translator option.

As a result of the translation process, EXEC CPSM statements are replaced with language specific calls to
an EXEC interface stub program.

Sample Assembler translation
To specify the CPSM translator option, use either the PARM or the XOPTS operand of the EXEC statement
or the XOPTS options statement.

Use PARM like this:

 //TRANSLAT EXEC PGM=DFHEAP1$,PARM='CPSM',REGION=4096K

or XOPTS like this:

 *ASM XOPTS(...CPSM)

80 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/compiler/dfhp3_transl_integ.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.icha700/toc.htm

Sample PL/I translation
To specify the CPSM translator option, use either the PARM operand of the EXEC statement or the XOPTS
options statement.

Use PARM , like this:

 //TRANSLAT EXEC PGM=DFHEPP1$,PARM='CPSM',REGION=4096K

or XOPTS , like this:

 *PROCESS XOPTS(...CPSM)

Sample COBOL translation
To specify the CPSM translator option, you can use one of three methods.

Use the PARM operand of the EXEC statement, like this:

 //TRANSLAT EXEC PGM=DFHECP1$,PARM='COBOL3,CPSM',REGION=4096K

or (for the separate translator) an XOPTS options statement, like this:

 PROCESS XOPTS(...CPSM)

or (for the integrated translator) a CICS compiler option like this:

CICS('opt1 opt2 optn ...')

Note that when you translate a COBOL program, you must specify both the CPSM and the COBOL3
translator options.

Sample C translation
To specify the CPSM translator option, use either the PARM operand of the EXEC statement or the XOPTS
options statement.

Use PARM like this:

 //TRANSLAT EXEC PGM=DFHEDP1$,PARM='CPSM',REGION=4096K

or XOPTS like this:

 #pragma XOPTS(...CPSM)

Compiling your program
Compiling a CICSPlex SM API program is similar to compiling a CICS program. You can use your CICS
compile JCL as a model and then make the following modifications according to the language you are
using.

Assembler considerations
To assemble CICSPlex SM programs, you must include a SYSLIB statement for the
CICSTS55.CPSM.SEYUMAC macro library in your compile JCL.

 //ASM EXEC PGM=ASMA90,REGION=4096K
 .
 .
 .
 //SYSLIB DD DSN=CICSTS55.CPSM.SEYUMAC,DISP=SHR
 .
 .
 .

Chapter 3. Writing an EXEC CPSM program 81

PL/I considerations
To compile CICSPlex SM programs, include a SYSLIB statement for the CICSTS55.CPSM.SEYUPL1 macro
library in your compile JCL.

 //COMPILE EXEC PGM=IBMZPLI,REGION=1000K,
 // PARM='OBJECT,MACRO,LIST'
 .
 .
 .
 //SYSLIB DD DSN=CICSTS55.CPSM.SEYUPL1,DISP=SHR
 .
 .
 .

See Changes to CICS support for application programming languages for information about supported
PL/I compilers.

COBOL considerations
To compile CICSPlex SM programs, include a SYSLIB statement for the CICSTS55.CPSM.SEYUCOB macro
library in your compile JCL.

 //COMPILE EXEC PGM=IGYCRCTL,REGION=4096K
 .
 .
 .
 //SYSLIB DD DSN=CICSTS55.CPSM.SEYUCOB,DISP=SHR
 .
 .
 .

See Changes to CICS support for application programming languages for information about supported
COBOL compilers.

C and C++ considerations
To compile CICSPlex SM programs, include a SYSLIB statement for the CICSTS55.CPSM.SEYUC370
macro library in your compile JCL.

 //COMPILE EXEC PGM=EDCCOMP,REGION=4096K
 .
 .
 .
 //SYSLIB DD DSN=CICSTS55.CPSM.SEYUC370,DISP=SHR
 .
 .
 .

See Changes to CICS support for application programming languages for information about supported C
and C++ compilers.

Link editing your program
The CICS translator inserts a call to the CICSPlex SM EXEC interface stub program.

The stub entry name is not the name of an object or load module. Because CICSPlex SM API programs
can run in a variety of environments, the stub reference must be resolved to a module consistent with the
intended usage. This resolution is performed at link-edit time using the INCLUDE linkage editor control
statement.

You must link edit all program load modules with the correct CICSPlex SM stub module for the
environment where the program will run. To do this, specify one of the following stub modules in the
INCLUDE statement:
EYU9AMSI

For CICS TS programs. EYU9AMSI is supplied in the CICSTS55.CPSM.SEYULOAD library.

82 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/upgrading/changes/compiler_changes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/upgrading/changes/compiler_changes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/upgrading/changes/compiler_changes.html

EYU9ABSI
For batch, TSO, or NetView programs. EYU9ABSI is supplied in the CICSTS55.CPSM.SEYUAUTH
library.

Each of these stub modules contains the appropriate entrypoint identifier. The services provided by the
entrypoint are unique to the type of execution environment. Failure to include the appropriate stub
module and SYSLIB dataset during the linkedit step will result in a message reporting that symbol EYUEI1
is unresolved, similar to the following IEW2456E SYMBOL EYUEI1 UNRESOLVED.

Note: You should not attempt to run a program identified as a CICS program in a batch environment.
Likewise, batch programs are not suitable for running under CICS.

You can use your CICS link-edit JCL as a model for link editing CICSPlex SM programs. Be sure to review
the language-specific considerations in the remainder of this section and modify your JCL accordingly.

In addition, if your program contains EXEC CICS commands, you should review the link-edit
considerations. Likewise, if your program runs under NetView, refer to the NetView information for your
programming language: IBM Tivoli NetView for z/OS Programming: Assembler or IBM Tivoli NetView for
z/OS Programming: PL/I and C.

Assembler considerations
Assembler load modules can reside in 24- or 31-bit storage and can be entered in either addressing
mode.

To link edit an Assembler module to run with a CICSPlex SM program, you must include a SYSLIB
statement for the SEYULOAD load library in your link-edit step. This allows you to include the appropriate
CICSPlex SM stub module when link editing. For example:

 //LKED EXEC PGM IEWL,
 // PARM='XREF,LET,LIST,AMODE=ANY,RMODE=31',
 // REGION=4096K,COND=(7,LT,ASM)
 .
 .
 .
 //SYSLIB DD DSN=CICSTS55.CPSM.SEYULOAD,DISP=SHR
 .
 .
 .
 INCLUDE SYSLIB(userprog)
 INCLUDE SYSLIB(EYU9AMSI)
 NAME LMODNAME(R)

PL/I, COBOL, and C considerations
PL/I, COBOL, and C load modules can reside in 24- or 31-bit storage and can be entered in either
addressing mode.

To link edit a module to run with a CICSPlex SM program, you must include a SYSLIB statement for the
SEYULOAD load library in your link-edit step. This allows you to include the appropriate CICSPlex SM stub
module when link editing. For example:

 //LKED EXEC PGM=IEWL,
 // PARM='XREF,LET,LIST,AMODE=ANY,RMODE=31',
 // REGION=4096K,COND=(8,LE,COMPILE)
 .
 .
 .
 //SYSLIB DD DSN=CICSTS55.CPSM.SEYULOAD,DISP=SHR
 .
 .
 .
 INCLUDE SYSLIB(userprog)
 INCLUDE SYSLIB(EYU9AMSI)
 NAME LMODNAME(R)

Chapter 3. Writing an EXEC CPSM program 83

https://www.ibm.com/support/knowledgecenter/SSZJDU_6.2.1/com.ibm.itnetviewforzos.doc_6.2.1/dqemst.htm
https://www.ibm.com/support/knowledgecenter/SSZJDU_6.2.1/com.ibm.itnetviewforzos.doc_6.2.1/dqfmst.htm
https://www.ibm.com/support/knowledgecenter/SSZJDU_6.2.1/com.ibm.itnetviewforzos.doc_6.2.1/dqfmst.htm

Run-time considerations
You need to be aware of a number of run-time considerations:

• The run-time version of a CICSPlex SM API program is equal to the level of the CMAS to which it
connects:

– For a program written to run as a CICS application, the run-time version is that of the CMAS to which
the MAS is connected.

– For a program written to run as a batch job or under NetView or TSO, the version is determined by the
version of the CICSPlex SM run-time module (EYU9AB00).

EYU9AB00 is distributed in CICSTS55.CPSM.SEYUAUTH At run time,CICSPlex SM must find
EYU9AB00 in the STEPLIB, MVS linklist, or LPA library concatenation.

• The run-time version of a program must be greater than or equal to:

– The version of the stub routine module (EYU9AxSI) with which the program was link edited.
– The value specified on the VERSION option of the CONNECT command.

• For programs written in PL/I, COBOL, or C, a set of run-time libraries is shipped with the language
compiler. To run a CICSPlex SM program written in one of these languages, you must modify your
environment startup procedure to reference the appropriate run-time libraries for the language.

• Before running anyCICSPlex SM program under CICS, make sure the program and its associated
transaction are defined to CEDA. The program may be defined with an EXECKEY value of either User or
CICS. The associated transaction may be defined with a TASKDATAKEY value of either User or CICS.

84 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Chapter 4. Dealing with exception conditions
Several tools and techniques are available for dealing with error conditions in a CICSPlex SM API
program.

Default CICSPlex SM exception handling
The CICSPlex SM API writes an exception trace, in the form of a user trace record, to the CICS trace data
set.

Resources available via the CICSPlex SM API are not recoverable, and, therefore, resources updated
before the exception are neither recovered nor are they available for backout by the application using
EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK commands.

Using the RESPONSE and REASON options
The RESPONSE and REASON options are required on each API command.

You should specify these options as user-defined variables to receive the numeric response and reason
values returned by a command. You can then convert the numeric values into more meaningful character
equivalents. In general, RESPONSE describes the result of command processing and REASON further
qualifies the response to certain commands.

Note: The TBUILD and TPARSE commands, which can be used only with the REXX run-time interface, do
not use the RESPONSE and REASON options. The result of these REXX-specific processes is returned by
their STATUS option. For more information, see Chapter 6, “REXX error handling,” on page 105.

Types of responses
An API command can return normal, warning or error response codes.

The character equivalents of the RESPONSE and REASON values that can be returned are given in the
description of each command. For a summary of RESPONSE and REASON character values by command,
see CICSPlex SM API commands. For a list of RESPONSE and REASON character values and their numeric
equivalents, also see RESPONSE and REASON values.

Normal responses
A normal response indicates the API command completed processing successfully.

A normal response indicates the API command completed processing successfully. The following values
represent a normal response:
OK

The command was successfully processed and control was returned to the program. There are no
reasons associated with a response of OK.

SCHEDULED
A command that was issued with the NOWAIT option has been scheduled for processing. The actual
result of command processing is returned by the RECEIVE command in an ASYNCREQ resource table
record. There are no reasons associated with a response of SCHEDULED.

Warning responses
A warning response indicates the API command was successfully processed, but a condition occurred
that should be investigated.

A REASON value is also returned that describes the condition. The following values represent a warning
response:

© Copyright IBM Corp. 1974, 2020 85

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-cpsm/eyup2km.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-cpsm/eyup2kr.html

NODATA
A command that normally results in data being returned to the program was processed successfully,
but there was no data to return. The reasons for a NODATA response are given with the commands
that return it.

WARNING
A command that normally results in data being returned to the program was processed successfully,
but not all of the available data was returned. A typical reason for this response might be that the
output area provided by the program was not large enough to hold all the data. The actual reasons for
a WARNING response are given with the commands that return it.

Error responses
An error response indicates the API command was not successful. One or more REASON values are also
returned that describe the error.

Note: Note that, except for the FAILED error response, these response codes usually indicate either an
error in the user's API program (for example, failing to discard resources when they are no longer
required), or an error with the CICSPlex SM environment (for example, a CMAS or MAS is not available).

The following values represent an error response:
BUSY

A resource referred to by the command is currently being processed by another command. This
situation can occur when a command that was previously issued with the NOWAIT option is
processing a resource that is required by the current command. The reasons for a BUSY response are
given with the commands that return it.

DUPE
A resource referred to by the command already exists. The reasons for a DUPE response are given
with the commands that return it.

ENVIRONERROR
An environmental condition (such as short on storage) prevented the command from being processed.
The reasons for an ENVIRONERROR response are given with the commands that return it.

FAILED
An unexpected problem occurred during command processing. The reasons for a FAILED response
are given with the commands that return it.

In the case of a FAILED EXCEPTION response, you should check the following sources for information
related to the condition:

• EYULOG
• Job log
• AUXTRACE data set

INCOMPATIBLE
Two or more resources referred to by the command are incompatible. The reasons for an
INCOMPATIBLE response are given with the commands that return it.

INUSE
A resource referred to by the command is in use and, therefore, cannot be discarded. The reasons for
an INUSE response are given with the commands that return it.

INVALIDATA
The command parameter list contains invalid data. The reason for an INVALIDATA response is always
the name of the parameter that contains invalid data. The reasons are given with the commands that
return this response.

INVALIDCMD
The command is invalid as indicated by the reason code:
Filter

The filter that is being built is too large or complex.

86 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Length
The total length of all the inputs used in the command exceeds the maximum limit.

N_A
The command is invalid. Check which version of the CICS translator was used to translate the API
command. Also check that the command being used is available on the CICSPlex SM release that
the program is using.

INVALIDPARM
The command parameter list is invalid. There are a variety of situations that could result in an
INVALIDPARM response. For example:
Syntax error

The syntax of an input parameter is incorrect (for example, a resource table name begins with a
numeric character).

Null parameter address
An input parameter could not be found because the generated address for that parameter is 0.

The reason for an INVALIDPARM response is always the name of the parameter that is invalid. The
reasons are given with the commands that return this response.

NOTAVAILABLE
A required CMAS or MAS resource is not available. The reasons for a NOTAVAILABLE response are
given with the commands that return it.

NOTFOUND
A resource referred to by the command could not be found. The reasons for a NOTFOUND response
are given with the commands that return it.

NOTPERMIT
The API request is not permitted by the external security manager (ESM) at your enterprise. The
reasons for a NOTPERMIT response are given with the commands that return it.

SERVERGONE
The CMAS to which the processing thread was connected is no longer active. There are no reasons
associated with a response of SERVERGONE.

TABLEERROR
An error was detected in a resource table record (either a result set record or a CICSPlex SM definition
record). The reasons for a TABLEERROR response are given with the commands that return it.

VERSIONINVL
An invalid version of CICSPlex SM was detected. The reasons for a VERSIONINVL response are given
with the commands that return it.

Testing for RESPONSE and REASON
To evaluate the results of an API command, you code the RESPONSE and REASON options on the
command and follow the command immediately with a test of the returned values.

The RESPONSE and REASON options return numeric values. Different built-in functions are provided for
converting and testing the numeric response and reason values in the command-level interface and the
REXX run-time interface.

Using the command-level interface
When you are using the CICSPlex SM command-level interface, you can use the EYUVALUE built-in
function to convert and test the numeric RESPONSE and REASON values returned by an API command.

As an example, consider this API command:

 EXEC CPSM CONNECT
 CONTEXT(WCONTEXT)
 SCOPE(WSCOPE)
 VERSION('0310')
 THREAD(WTHREAD)
 RESPONSE(WRESPONSE)
 REASON(WREASON)

Chapter 4. Dealing with exception conditions 87

 .
 .

To test for the RESPONSE value in each of the supported languages, you could code:
COBOL or PL/I:

IF WRESPONSE NOT = EYUVALUE(OK) GO TO NOCONNECT.

C:

if (WRESPONSE ¬= EYUVALUE(OK)) { goto NOCONNECT; }

Assembler language:

CLC WRESPONSE,EYUVALUE(OK)
BNE NOCONNECT

which the built-in function changes to:

CLC WRESPONSE,=F'1024'

You can use EYUVALUE in the same way to test for the REASON value, if the RESPONSE is one that
returns a reason.

Using the REXX run-time interface
When you are using the REXX run-time interface, you can use the EYURESP and EYUREAS built-in
functions to convert and test the numeric RESPONSE and REASON values returned by an API command.

As an example, consider this API command:

 var = EYUAPI('CONNECT' ,
 'CONTEXT('WCONTEXT')' ,
 'SCOPE('WSCOPE')' ,
 'VERSION(0310)' ,
 'THREAD(WTHREAD)' ,
 'RESPONSE(WRESPONSE)' ,
 'REASON(WREASON)')
 .
 .

To test for the RESPONSE value, you could code:

 If WRESPONSE <> EYURESP(OK) Then Signal NOCONNECT

to compare the numeric RESPONSE value returned in WRESPONSE with the numeric equivalent of OK.

Alternatively, you could code:

 If EYURESP(WRESPONSE) <> "OK" Then Signal NOCONNECT

to convert the numeric RESPONSE value to its character equivalent first.

Note: The RESPONSE and REASON options report only run-time errors. Errors in interpreting an API
command are reported in either the REXX RC variable or the variable assigned to a REXX function.

88 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Retrieving FEEDBACK records
In addition to the specific values returned by a command's RESPONSE and REASON options, CICSPlex SM
also provides diagnostic data in the form of FEEDBACK resource table records. This data can help you
evaluate the results of an API command, especially if the command did not complete successfully.

Using the FEEDBACK command
You can retrieve diagnostic data about a previously issued API command by issuing the FEEDBACK
command.

The type of command for which you want diagnostic data affects how you specify the FEEDBACK
command and where the data is placed:
A command that processed a result set

Use the RESULT option of the FEEDBACK command to retrieve data about the last command that
processed a specific result set.

If the command that processed the result set returned a RESPONSE other than OK, a FEEDBACK
resource table record is appended to the end of each resource table record in the result set that had
an error associated with it. You can use the FIRST, NEXT, and COUNT options of the FEEDBACK
command to retrieve multiple FEEDBACK records.

The diagnostic data in a result set is available to the FEEDBACK command until another command
processes the same result set. At that point, the data is replaced with FEEDBACK records for the
subsequent command.

Note: No FEEDBACK records are produced if the command that processed the result set returned a
RESPONSE of OK.

A command that did not process a result set
Use the FEEDBACK command without the RESULT option to retrieve data about the command issued
immediately before FEEDBACK.

The FEEDBACK resource table records are returned in a separate feedback area. The records in that
feedback area are cleared and refreshed for each command that is not result set-oriented. So for
commands that place their diagnostic data in the feedback area rather than in a result set, FEEDBACK
can retrieve data only for the most recently issued command.

Once you have issued the FEEDBACK command to retrieve diagnostic data for a command, the feedback
record or area is cleared. You cannot request the same FEEDBACK resource table records more than
once.

Evaluating a FEEDBACK record
The diagnostic data for a CICSPlex SM API command is presented in a FEEDBACK resource table record.
The attributes of that resource table provide a variety of information about the completion status of an
API command.

Note: This section provides general information about FEEDBACK records. The FEEDBACK resource table
copy book that is supplied by CICSPlex SM provides a detailed description of the contents and structure
of a FEEDBACK record. See CICSPlex SM resource tables in Reference or the supplied copy book when
writing a program that uses the FEEDBACK command.

To identify which API operation the FEEDBACK record applies to, check the values in these fields:
COMMAND

A numeric code that identifies the command to which this FEEDBACK record applies. The API
commands and their numeric equivalents are given in Table 7 on page 90.

Chapter 4. Dealing with exception conditions 89

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

Table 7. Numeric codes and API commands

Numeric code Mnemonic Command

02 CANCEL Cancel

03 CONNECT Connect

04 COPY Copy

05 CREATE Create

06 DELETE Delete

07 DISCARD Discard

08 DISCONN Disconnect

09 FETCH Fetch

10 GET Get

11 LOCATE Locate

12 MARK Mark

13 ORDER Order

14 PERFSET Perform Set

15 PERFOBJ Perform Object

16 QUALIFY Qualify

17 QUERY Query

18 RECEIVE Receive

19 REMOVE Remove

20 FILTER Specify Filter

21 UNMARK Unmark

22 ADDRESS Address

23 GETDEF Getdef

24 LISTEN Listen

25 REFRESH Refresh

26 SET Set

27 VIEW Specify View

28 TERM Terminate

29 TRANS Translate

30 GROUP Group by

31 UPDATE Update

32 FEEDBACK Feedback

33 EXPAND Expand

OBJECT
The CICSPlex SM object that the command was issued against.

90 CICS TS for z/OS: CICSPlex SM Application Programming Guide

OBJECT_ACT
The action that was being performed against the CICSPlex SM object.

RSLTRECID
If the FEEDBACK record applies to a result set, the numeric ID of the result set record associated with
this FEEDBACK record.

To determine what type of problem the FEEDBACK record describes, check the values in these fields:
ATTRDATAVAL

Indicates whether attribute data is available for the command. Attribute data is included only if the
command itself did not complete successfully.

If the ATTRDATAVAL value is Y, the FEEDBACK record identifies as many as five attributes
(ATTR_NM1 through ATTR_NM5) that contributed to the error. Each attribute is identified by its name
and its offset and relative number within the resource table record. The data type and length of each
attribute is also included.

If the ATTRDATAVAL value is N, you can ignore the ATTR_ fields.

CEIBDATAVAL
Indicates whether CICS EIB data is available for the command. EIB data is included only if the
command encountered a CICS error.

If the CEIBDATAVAL value is Y, the FEEDBACK record includes the EIBFN, RESP, and RESP2 values as
provided by CICS. Note that if the RESP value indicates a NOTAUTH condition that was raised due to
CICSPlex SM simulated security, EIBFN is not set.

If the CEIBDATAVAL value is N, you can ignore the CEIBFN, CEIBRESP, and CEIBRESP1 fields.

ERRCODEVAL
Indicates whether a CICSPlex SM error code is available for the command. An error code is included
only if the command itself did not complete successfully.

If the ERRCODEVAL value is Y, the FEEDBACK record includes a numeric ERROR_CODE value. Each
resource table copy book includes a list of the error codes for that object and their meanings.

If the ERRCODEVAL value is N, you can ignore the ERROR_CODE field, as well as the RESPONSE and
REASON fields.

For some API operations that affect BAS resources, the FEEDBACK record may point to additional
diagnostic data in an error result set. For more information about using the diagnostic data in error result
sets, see “Additional processing for BAS” on page 92.

Availability of FEEDBACK records
In general, FEEDBACK records are produced for all API commands, whether they are successful or not.
However, for some API commands and in some situations, FEEDBACK records are not produced because
they would not provide useful diagnostic data.

FEEDBACK records are not available for these commands:
DISCONNECT and TERMINATE

When you disconnect an API processing thread from CICSPlex SM, any remaining diagnostic data is
discarded.

FEEDBACK
The FEEDBACK command cannot report on its own processing.

TBUILD and TPARSE
These REXX-specific commands issue a series of API commands internally and reuse the same
feedback area. Therefore, the feedback area cannot represent the entire sequence of events.

FEEDBACK records are also not available in these situations:

• A command processes a result set and completes with a RESPONSE value of OK, and no additional
information was returned by CICS in the EIBRESP2 field.

Chapter 4. Dealing with exception conditions 91

• A command is processed asynchronously (that is, you specify the NOWAIT option). The diagnostic data
for asynchronous requests is returned in the ASYNCREQ notification resource table.

An example of FEEDBACK for a result set
As an example of how you can use FEEDBACK data, this example illustrates the results of issuing a SET
command. In this case, SET was issued to modify the service status of CONNECT records in the result set
referenced by TOKENC.

Figure 16. Using SET to modify result set records

One of the connections (C002 in MAS1B) was not successfully taken out of service by the SET command.
The ServStatus field is still set to INSERVICE and there is a pointer to FEEDBACK data.

Figure 17 on page 92 shows how you can use the FEEDBACK command to retrieve the FEEDBACK
records associated with the result set referenced by TOKENC.

Figure 17. Using FEEDBACK to retrieve diagnostic data for a result set

The FEEDBACK record shown in Figure 17 on page 92 reveals the cause of the problem. CICSPlex SM
returned RESPONSE and REASON values of TABLEERROR DATAERROR, which means the value
associated with one or more resource table attributes is invalid. Furthermore, CICS responded to the SET
request for this connection with RESP(16) RESP2(2). A check of the CICS response codes indicates that
the attempt to take the connection out of service was invalid because the connection is currently
acquired.

Note: The LASTOPER and STATUS attributes of the OBJSTAT resource table and some of the FEEDBACK
attributes are binary fields (that is, they are represented by a bit being set on or off). For detailed
information about the attribute values for a given resource table, see CICSPlex SM resource tables in
Reference or the supplied copy books.

Additional processing for BAS
For API operations that affect BAS resources, the diagnostic data in a FEEDBACK record may not be
enough to fully describe an error condition.

In these cases, the FEEDBACK record points to an error result set. An error result set is identified by the
following fields:
ERR_RESULT

A 4-byte token identifying an error result set.

92 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

ERR_COUNT
The number of records in the error result set referenced by ERR_RESULT.

ERR_OBJECT
The type of records in the error result set referenced by ERR_RESULT. This value is the 1- to 8-
character name of a CICSPlex SM resource table, and may be BINSTERR, BINCONRS, BINCONSC, or
FEEDBACK.

Note: For details of the BINSTERR, BINCONRS, and BINCONSC resource tables, see CICSPlex SM
resource tables in Reference.

Evaluating error result set records
If the ERR_OBJECT field of the FEEDBACK record contains FEEDBACK, the error result set contains errors
that arose when CICSPlex SM attempted to update CICS resources.

In response to the API command:

 UPDATE RESULT(token) MODIFY(string)

CICSPlex SM tries to update multiple CICS definition records in a result set according to the supplied
modification string. For each CICS definition that could not be modified, an error record is created in the
error result set. The RESPONSE and REASON values returned are TABLEERROR and DATAERROR.

The records are standard FEEDBACK records. To access the error result records, use the FEEDBACK
command to retrieve diagnostic data about each of the CICS definitions in the ERR_RESULT result set.
The ERR_COUNT value in the original FEEDBACK record for the UPDATE command indicates how many
records are in the ERR_RESULT result set and therefore the number of times you should issue the
FEEDBACK command against the ERR_RESULT result set.

Evaluating BINSTERR resource table records
If the ERR_OBJECT field of the FEEDBACK record contains BINSTERR, errors were encountered while
CICS resources were being installed.

In response to one of the following API commands:

 PERFORM OBJECT ACTION(INSTALL)
 PERFORM SET ACTION(INSTALL)

CICSPlex SM tries to install CICS resources in one or more active CICS regions. A BINSTERR record is
created for each CICS resource that cannot be installed. The RESPONSE and REASON values returned are
TABLEERROR and DATAERROR.

The BINSTERR records that you receive contain the following information:
CMASNAME

The 1- to 8-character name of a CMAS that manages the specified CICSplex.
PLEXNAME

The 1- to 8-character name of the CICSplex to which the specified CICS system belongs.
CICSNAME

The 1- to 8-character name of the CICS system into which the resource could not be installed.
RESNAME

The name of the CICS resource that could not be installed.
RESVER

The version of the CICS definition that represents the resource being installed.
ERRCODE

A numeric CICSPlex SM error code. See BINSTERR. The BINSTERR resource table copy book also
contains a list of the error codes and their meanings.

CRESP1
The RESP value as returned by CICS.

Chapter 4. Dealing with exception conditions 93

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/eyup1k4.html

CRESP2
The RESP2 value as returned by CICS.

CEIBFN
The EIBFN value as returned by CICS.

To access the error result set records, use the FETCH command to retrieve the BINSTERR records from
the ERR_RESULT result set. The ERR_COUNT value in the FEEDBACK record for the PERFORM command
indicates how many records are in the ERR_RESULT result set and therefore the number of times you
should issue the FETCH command against the ERR_RESULT result set.

Evaluating BINCONRS resource table records
If the ERR_OBJECT field of the FEEDBACK record contains BINCONRS, inconsistent resource set errors
were encountered when attempting to update or create the specified definition.

In response to one of the following API commands:

 CREATE OBJECT(basdef)
 UPDATE OBJECT(basdef)

CICSPlex SM tries to create or update one of the following Business Application Services definitions:

• RASGNDEF (resource assignment)
• RASINDSC (resource assignment in resource description)
• RESDESC (resource description)
• RESGROUP (resource group)
• RESINDSC (resource group in resource description)

A BINCONRS resource table record is created for each CICS definition that would cause an inconsistent
set error. The RESPONSE and REASON values returned are TABLEERROR and DATAERROR.

The BINCONRS records that you receive contain the following information:
CMASNAME

The 1- to 8-character name of a CMAS that manages the specified CICSplex.
PLEXNAME

The 1- to 8-character name of the CICSplex to which the specified CICS system belongs.
CICSNAME

The 1- to 8-character name of the CICS system that experienced inconsistent resource set errors.
RESTYPE

The type of CICS resource.
ERROP

A numeric value that identifies the operation being performed when the error occurred (such as
updating a RASGNDEF). See BINCONRS. The BINCONRS resource table copy book also contains a list
of the ERROP values and their meanings.

CANDNAME
The name of the candidate resource

CANDVER
The version of the candidate resource

CANDRGRP
The group of the candidate resource

CANDRASG
The assignment of the candidate resource

CANDRDSC
The description of the candidate resource

CANDUSAGE
The candidate assignment usage

94 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/eyup1k2.html

CANDSGRP
The candidate system group

CANDTYPE
The candidate system type

CANDASGOVR
The candidate assignment override

EXISTNAME
The name of the existing resource

EXISTVER
The version of the existing resource

EXISTRGRP
The group of the existing resource

EXISTRASG
The assignment of the existing resource

EXISTRDSC
The description of the existing resource

EXISTUSAGE
The existing assignment usage

EXISTSGRP
The existing system group

EXISTTYPE
The existing system type

EXISTASGOVR
The existing assignment override

To access the error result records, use the FETCH command to retrieve the BINCONRS records from the
ERR_RESULT result set. The ERR_COUNT value in the FEEDBACK record for the CREATE or UPDATE
command indicates how many records are in the ERR_RESULT result set and therefore the number of
times you should issue the FETCH command against the ERR_RESULT result set.

Evaluating BINCONSC resource table records
If the ERR_OBJECT field contains BINCONSC, inconsistent scope errors were encountered while
attempting to update or create the specified definition.

If the ERR_OBJECT field contains BINCONSC, inconsistent scope errors were encountered while
attempting to update or create the specified definition. In response to one of the following API
commands:

 CREATE OBJECT(basdef)
 UPDATE OBJECT(basdef)

The RESPONSE and REASON values returned are TABLEERROR and DATAERROR.

BINCONSC records contain the following information:
CMASNAME

The 1- to 8-character name of a CMAS that manages the specified CICSplex.
PLEXNAME

The 1- to 8-character name of the CICSplex to which the specified CICS system belongs.
CICSNAME

The 1- to 8-character name of the CICS system that experienced inconsistent scope errors.
ERROP

A numeric value that identifies the operation being performed when the error occurred (such as
updating a RASGNDEF). See BINCONSC. The BINCONSC resource table copy book also contains a list
of the ERROP values and their meanings.

Chapter 4. Dealing with exception conditions 95

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/eyup1k3.html

ERRCODE
A numeric CICSPlex SM error code. See BINCONSC. The BINCONSC resource table copy book
contains a list of the error codes and their meanings.

TARGSCOPE
The name of the target scope

TARGRASG
The assignment for the target scope

TARGRDSC
The description for the target

RELSCOPE
The name of the related scope

RELRASG
The assignment for the related scope

RELRDSC
The description for the related scope

To access the error result records, use the FETCH command to retrieve the BINCONSC records from the
ERR_RESULT result set. The ERR_COUNT value in the FEEDBACK record for the CREATE or UPDATE
command indicates how many records are in the ERR_RESULT result set and therefore the number of
times you should issue the FETCH command against the ERR_RESULT result set.

An example of a BAS error result set
As an example of how you can the FEEDBACK data to obtain BAS error result set information,this example
illustrates the results of issuing a PERFORM OBJECT command. In this case, PERFORM OBJECT
ACTION(INSTALL) was issued to install the CONNDEF definitions in the result set referenced by TOKENC.

Figure 18. Using PERFORM OBJECT to install BAS definitions

One of the connection definitions (CON02, z/OS Communications Server) was not successfully installed
by the PERFORM OBJECT command. There is a pointer to the FEEDBACK data.

Figure 19 on page 96 shows how you can use the FEEDBACK command to retrieve the FEEDBACK
records associated with the result set referenced by TOKENC.

Figure 19. Using FEEDBACK to retrieve diagnostic data for a result set

96 CICS TS for z/OS: CICSPlex SM Application Programming Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/eyup1k3.html

The FEEDBACK data shown in Figure 19 on page 96 reveals the cause of the problem. CICSPlex SM
returned RESPONSE and REASON values of TABLEERROR DATAERROR, which means that one or more
connection definitions did not install successfully. Furthermore, the ERR_RESULT attribute points to an
error result set which contains a single BINSTERR resource table record.

Figure 20. BINSTERR error result set

The BINSTERR error result set referenced by TOKENE, and shown in Figure 20 on page 97 is accessed
using a FETCH command.

Figure 21. Using FETCH to retrieve BINSTERR records

Figure 21 on page 97 shows how you can use the FETCH command to retrieve the BINSTERR records
associated with the error result set referenced by TOKENE.

Retrieving MASQRYER records
When a command directed at CICS operate resources fails to complete because one or more target
systems do not respond in a timely manner, CICSPlex SM provides more diagnostic data in the form of
MASQRYER resource table records. This data can help you identify MASs or CMASs that failed to respond,
and the reason for the failure.

The set of MASQRYER resource table records generated by an API command can be interrogated by
adding the QUERYERROR parameter to a QUERY command directed at the result set acted on by the
previous GET, PERFORM, or SET command. MASQRYER resource table records can be retrieved by adding
the QUERYERROR parameter to a FETCH command directed at the result set acted on by the previous GET,
PERFORM, or SET command.

Evaluating a MASQRYER record
A MASQRYER record contains fields identifying a CMAS or MAS which did not respond in a timely manner
to an API request.

Note: This section provides general information about MASQRYER records. The MASQRYER resource
table copy book that is supplied by CICSPlex SM provides a detailed description of the contents and
structure of a MASQRYER record. You should refer to CICSPlex SM resource tables in Reference or the
supplied copy book when writing a program that uses the MASQRYER resource.

To identify regions which failed to respond to a request, check the values in these fields:
PLEXNAME

The CONTEXT of the API request.
CICSNAME

The name of the CMAS or MAS which failed to respond.
ERRORTYPE

A value identifying the reason why the region was unable to respond.
CICSTYPE

C = CMAS, M = MAS

Chapter 4. Dealing with exception conditions 97

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-restables/cdmdet_all.html

Availability of MASQRYER records
MASQRYER resource table records may be produced by any GET, PERFORM OBJECT, PERFORM SET,
REFRESH, or SET command retrieving or acting on a CICS Operate resource table. MASQRYER records will
be produced if a response is not received from one or more of the regions in the target scope for a
request.

MASQRYER records are not available in these situations:

• A command processes a result set and completes with a RESPONSE value of OK.
• A command processes a result set and completes with a RESPONSE value of FAILED.

98 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Chapter 5. Writing a REXX program
You can use the REXX run-time interface to write an API program. You access the API through the REXX
function package that is supplied with CICSPlex SM.

Accessing the API environment
The REXX run-time interface does not require any translation of API commands. The commands are
interpreted by a REXX function package that is supplied by CICSPlex SM.

For instructions on installing the REXX function package, see Installing the REXX function package.

The first call to CICSPlex SM in your program must be an EYUINIT or EYUAPI function. EYUINIT is the
primary means of initializing the API environment. However, if EYUINIT is not issued first, the EYUAPI
function initializes the environment.

Note: Your program must be an EYUINIT or EYUAPI function. EYUINIT is the primary means of initializing
the API environment. However, if EYUINIT is not issued first, the EYUAPI function initializes the
environment.

For example, sample program EYU#API1, which is distributed in the CICSTS22.CPSM.SEYUSAMP library,
begins like this:

 Say 'Initializing API...'
 XX = EYUINIT()
 If XX <> 0 Then Signal UNEXPECTED
 Say 'Establishing connection...'
 XX = EYUAPI('CONNECT' ,
 'CONTEXT('W_CONTEXT')' ,
 'SCOPE('W_SCOPE')' ,
 'VERSION(0310)' ,
 'THREAD(W_THREAD)' ,
 'RESPONSE(W_RESPONSE)' ,
 'REASON(W_REASON)')
 If XX <> 0 Then Signal UNEXPECTED

In this example, the EYUINIT function is issued first to initialize the API environment. Then an EYUAPI
function is used to issue the API CONNECT command.

Once you have issued an EYUINIT or EYUAPI function, you can:

• Issue any other CICSPlex SM function.
• Access the host subcommand environment by issuing the REXX ADDRESS command.

Once the API environment is initialized, it exists until it is terminated, either by your program or by REXX.
Therefore, the final call to CICSPlex SM in your program should always be an EYUTERM function. If you do
not issue EYUTERM, some REXX resources, such as storage, may remain allocated and REXX becomes
responsible for releasing them.

For example, sample program EYU#API1 ends like this:

 XX = EYUAPI('TERMINATE RESPONSE(W_RESPONSE) REASON(W_REASON)')
 XX = EYUTERM()

In this example, the EYUAPI function is used to issue an API TERMINATE command. Then EYUTERM is
issued to terminate the API environment and release its allocated resources.

Using the EYUTERM function is always a good idea. However, if the CICSPlex SM host subcommand
environment is installed at your enterprise (as opposed to being called from the function package), you
may not need to use the EYUTERM function at the end of every program. Depending on the programming
guidelines at your enterprise, the REXX resources that remain allocated can be reused by the next
CICSPlex SM API program that accesses the host subcommand environment.

© Copyright IBM Corp. 1974, 2020 99

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1ay.html

Specifying an API command
When you write a program in REXX, you pass a character image of the command to be issued to the REXX
function package supplied by CICSPlex SM.

The command string can include imbedded REXX variables, as appropriate. You can specify the command
in one of two ways:

• Invoke the EYUAPI function with the name of the command as its parameter.
• Use the REXX ADDRESS command to pass subsequent statements to the function package.

Note: You can also use the REXX PARSE VALUE command to pass API commands to the function
package. However, the processing overhead of PARSE VALUE is quite high. Furthermore, the EYUAPI
function returns only a single character (0 or 1), so there is no need to parse its results. For these reasons,
using PARSE VALUE is not recommended.

The following example shows a partial GET command as it would be issued using the EYUAPI function:

 var = EYUAPI('GET OBJECT(LOCTRAN)...')

var is the variable assigned to receive the return code from the EYUAPI function.

The next example shows the same GET command being issued by the REXX ADDRESS command:

 ADDRESS CPSM 'GET OBJECT(LOCTRAN)...'

When the data in a REXX variable is to be passed to the function package the text portion of the API
command must be terminated, the REXX variable provided, and the rest of the API command completed.
The following is an example of a complete GET command that demonstrates the imbedded use of REXX
variables:

 var = EYUAPI('GET OBJECT(LOCTRAN)' ,
 'RESULT(setvar) THREAD(THRD1)' ,
 'RESPONSE(rspvar) REASON(reavar)')

In this example, the result set to receive the LOCTRAN objects, and the RESPONSE and REASON options
are all specified as REXX variables.

Because of the way REXX handles variable substitution, you must keep in mind whether a variable is
being used to send data to the API, receive data from the API, or both. The next example shows a
CONNECT command where the USER and VERSION options send data to the API. The THREAD,
RESPONSE, and REASON options all name variables to receive data from the API. Note that names of
variables that receive data are specified as part of the command.

 var = EYUAPI('CONNECT USER('userid') VERSION(0310)' ,
 'THREAD(thdtkn) RESPONSE(rspvar) REASON(reavar)')

In those cases where you want to access a resource table, special processing is required. An example of
this is a FETCH command, which requires an INTO option to define where the resource table data should
be placed for processing by your program. In REXX, you must specify the INTO option as the prefix of a
stem variable to receive one or more resource table records. The zero entry of the stem variable indicates
the number of records returned.

Accessing resource table data
Because of the way CICSPlex SM supplies resource table data to REXX, two additional commands are
provided as part of the REXX function package.

These commands are:

100 CICS TS for z/OS: CICSPlex SM Application Programming Guide

TPARSE
Extracts individual resource table attributes from a record and places them into standard REXX
variables. The resource table record itself can be supplied in any valid REXX variable, including a stem
variable.

You can use TPARSE to break down and access the attribute data in a resource table record.

TBUILD
Builds a CPSM Definition or CICS Definition resource table record from a set of variables that you
supply. Each variable must contain an individual resource table attribute.

You can use TBUILD to build the resource table record for a definition that you want to create,
update, or remove in the CICSPlex SM data repository.

Note: TBUILD only uses attributes that you specify; it does not assume any default values for optional
attributes. If you do not supply a variable for an attribute that is optional, the corresponding field in
the resource table record is initialized according to its data type (that is, character fields are set to
blanks, binary data and EYUDA values are set to zeroes).

The variables that represent the resource table attributes are created either by CICSPlex SM, in the case
of TPARSE, or by you, in the case of TBUILD. The variable names are formed by adding a prefix to the
attribute name, like this:

 prefix_fieldname

where:
prefix

Is a text string that you supply. The maximum allowable length for a prefix is determined by REXX and
the environment in which the program runs.

fieldname
Is the name of an attribute in the resource table.

An underscore character (_) must be inserted between the prefix and the attribute name.

When a program written in REXX passes resource table records to the API, the format and layout of the
record must be exactly as it is defined by CICSPlex SM.

Best practices for using TBUILD and TPARSE

The TBUILD and TPARSE processors require significant sets of internal storage structures to execute.
Where possible, these structures are reused for the execution of consecutive TBUILD and TPARSE
commands. But over time storage fragmentation will arise, causing the eventual consumption of an
increasing amount of address space storage. TPARSE and TBUILD failures will occur because of storage
unavailability.

This issue should not cause ill effects to applications that execute in the form of a single logical pass.
However, applications that run in the form of extended long running processes might start to report
TPARSE and TBUILD failures.

To resolve this issue, you can insert EYUINIT() and EYUTERM() calls to cause these structures to be
released and reallocated with each process pass.

For example, observe the following code:

Chapter 5. Writing a REXX program 101

 XX = EYUINIT();
 XX = EYUAPI('CONNECT CONTEXT('my_context') THREAD(TTKN.1) ;
 Do Forever;
 /* perform application processing that includes TPARSE or TBUILD commands */
 ...
 ...
 If Loop_Termination = True then
 Signal EndJob;
 End; /* Do Forever */
 EndJob:
 XX = EYUAPI('DISCONNECT THREAD(TTKN.1) ;
 XX = EYUTERM();
 Return;

If the Do Forever loop executes TBUILD or TPARSE calls, over time the executions will fail because of
storage fragmentation. The recommended solution is to insert EYUINIT() and EYUTERM() calls inside the
loop, as follows, to cause these structures to be released and reallocated with each process pass:

 Do Forever;
 XX = EYUINIT();
 XX = EYUAPI('CONNECT CONTEXT('my_context') THREAD(TTKN.1) ;
 /* perform application processing that includes TPARSE or TBUILD commands */
 ...
 ...
 XX = EYUAPI('DISCONNECT THREAD(TTKN.1) ;
 XX = EYUTERM();
 TTKN. = '00'X; /* Reset the Thread Token */
 If Loop_Termination = True then
 Signal EndJob;
 End; /* Do Forever */
EndJob:
 Return;

Translating attribute values
The TBUILD and TPARSE commands use the TRANSLATE API command when processing certain
resource table attributes.

For example, EYUDA and CVDA values are maintained in a resource table record in their numeric form. By
default, the TPARSE command converts these values into a displayable character form. TBUILD, on the
other hand, converts any EYUDA or CVDA character values that you supply into their numeric equivalents.

However, if you use the ASIS option on these commands, attribute values are not converted. If you
specify ASIS on the TPARSE command, you must also specify ASIS on the TBUILD command when you
rebuild the record so that the API does not try to reconvert the values.

If you specify ASIS on the TPARSE command and then decide you want to convert the attribute values,
you can use the TRANSLATE API command.

Processing CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and
CREATETIME attributes

The first 8 bytes of every CPSM Definition and CICS Definition resource table record contain an attribute
called CHANGETIME, which reflects the date and time at which the record was last modified. CICS
Definition records also include a CREATETIME attribute, which is the date and time at which the definition
was created.

CICS Definition records also include a CREATETIME attribute, which is the date and time at which the
definition was created.

Attribute fields CHANGEAGENT, CHANGEAGREL, and CHANGEUSRID in the resource table resource
definition record, combined with the existing CHANGETIME and CREATETIME attributes, form the
resource definition signature and are valid only for BAS resource definitions.

CHANGEAGENT displays how the resource was defined or last modified. CHANGEAGREL contains the
level of CICS system that created or last modified the resource definition. CHANGEUSRID contains the
user ID that created or last modified the resource definition.

102 CICS TS for z/OS: CICSPlex SM Application Programming Guide

You can use the Operations base table resource name and the BAS resource definition version to identify
the resource definition used to install a resource. However, the BAS definition record might have changed
since the resource was installed. Compare the CHANGETIME value in the Operations base table record
with the CHANGETIME value in the BAS resource definition record to see if the time values correspond.
You can only compare the first word of the STCK time values because the CHANGETIME value in the BAS
record is in full local STCK format but the CHANGETIME value in the Operations base table record is in
reduced granularity STCK format. This restriction also applies when comparing a BAS resource definition
CREATETIME with the corresponding Operations base table DEFINETIME STCK values.

The CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID and CREATETIME attributes are
maintained internally by CICSPlex SM; do not attempt to modify these attribute values. When you update
a resource table record, the CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID and
CREATETIME values you pass to the TBUILD command must be the same values you received from
TPARSE.

By default, the TPARSE command translates the CHANGETIME and CREATETIME values into displayable,
character values. However, the character forms of these values cannot be passed back to TBUILD. So, if
you plan to update a definition and then rebuild the resource table record, you should use the ASIS option
on the TPARSE and TBUILD commands. When you use ASIS, the CHANGETIME and CREATETIME values
appear as 16-byte hexadecimal values.

The INSTALLAGENT, INSTALLTIME, INSTALLUSRID, and BASDEFINEVER attributes
Attribute fields, INSTALLAGENT, INSTALLTIME, INSTALLUSRID, and BASDEFINEVER are in the CICSPlex
SM Operations resource tables for a number of resource types. The combined INSTALLAGENT,
INSTALLTIME, and INSTALLUSRID fields form the installation signature for a resource. The installation
signature shows how, when, and by whom each resource is installed.

Being able to display information about when the resource was installed helps with problem
determination and the details improve the auditing and tracing of resources.

INSTALLAGENT displays how the resource was installed, INSTALLTIME is the time when the resource
was installed and INSTALLUSRID is the ID of the user who installed the resource. For further details see
Summary of the resource signature field values.

The Operations base tables that support the installation signature are: ATOMSERV, BUNDLE, CONNECT,
DB2CONN, DB2ENTRY, DB2TRN, DOCTEMP, EJCOSE, EJDJAR, ENQMODEL, EXTRATDQ, INDTDQ,
INTRATDQ, IPCONN, JRNLMODL, LIBRARY, LOCFILE, LOCTRAN, PIPELINE, PROCTYP, PROFILE,
PROGRAM, REMFILE, REMTDQ, REMTRAN, RQMODEL, TCPIPS, TRANCLAS, TSMODEL, URIMAP, and
WEBSERV.

To display the installation signature using the CICSPlex SM DETAILED view, a Resource signature local
link is provided at the bottom of the display that links to a separate view showing the resource signature
attributes for the resource.

The BASDEFINEVER attribute in an Operations resource table shows the value of the BAS resource
definition version that is installed. Use the BASDEFINEVER attribute in CICSPlex SM API requests to
identify the BAS resource definition used to install a resource. The attribute is a binary halfword that
contains the nn portion of the DEFINESOURCE CPSMnn string for resources with a CHANGEAGENT value
of DREPAPI.

The INSTALLAGENT, INSTALLTIME, INSTALLUSRID, and BASDEFINEVER attributes are maintained
internally by CICSPlex SM; do not attempt to modify these attribute values.

Processing FEEDBACK attributes
Having used a TPARSE command to extract the individual resource table attributes additional processing
may be required before the data can be used in subsequent API commands.

The ERR_RESULT error result set token is returned in decimal format and must be converted to character
format before it can be used in a RESULT() option. To do this you can use the D2X() and X2C() REXX built-
in functions, for example:

Chapter 5. Writing a REXX program 103

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/system/resourcesigtable.html

var = X2C(RIGHT(D2X(FEEDBACK_ERR_RESULT),8,'0'))

104 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Chapter 6. REXX error handling
Several types of errors are associated with REXX run-time interface.

Translation errors
Errors that occur while REXX is trying to interpret a CICSPlex SM API command result in a REXX return
code.

Errors that occur while REXX is trying to interpret a CICSPlex SM API command result in a REXX return
code. If REXX cannot process a command string or function, the run-time interface sets the REXX return
code in one of two places:
RC variable

When the ADDRESS CPSM command is used.

The return code value is one of the following:
0

The command was successfully processed.
8

The command contained syntax errors that prevented REXX from processing it. EYUARnnnn
messages that describe the error are written to the destination defined on your system for IRXSAY
WRITEERR output.

16
The command could not be processed because of some system failure (such as a lack of storage).
REXX messages that describe the error may be produced.

-3
The CICSPlex SM API environment is not available. This condition can occur if the function
package is not properly installed. If the function package is installed, it could mean that you did
not issue at least one EYUxxxx REXX function before invoking the ADDRESS CPSM command.

Function variable
When an EYUxxxx REXX function is used.

For most EYUxxxx functions, the return code value is one of the following:
0

The function was successfully processed.
1

The function failed. EYUARnnnn messages that describe the error are written to the destination
defined on your system for IRXSAY WRITEERR output.

For the EYURESP and EYUREAS functions, the return code is either the numeric equivalent of the
value being translated or -1, if the translation failed.

In general, if the REXX return code is anything other than:
0

From EYUAPI, EYUINIT, or EYUTERM
A valid RESPONSE or REASON value

From EYURESP or EYUREAS
the API command was not successfully interpreted by REXX and, therefore, was not passed to CICSPlex
SM for processing. If a command is not processed, the RESPONSE and REASON values are not set and
you do not need to check them.

If the return code is 0, the API command was interpreted by REXX and passed to CICSPlex SM. Note that
a return code of 0 does not indicate whether the command was successfully processed by CICSPlex SM.

© Copyright IBM Corp. 1974, 2020 105

To determine the results of an API command, refer to the RESPONSE and REASON values returned by the
command.

Run-time errors
Errors that occur while CICSPlex SM is trying to process an API command are reported by the RESPONSE
and REASON values for the command.

Errors that occur while CICSPlex SM is trying to process an API command are reported by the RESPONSE
and REASON values for the command. For more information, see “Using the RESPONSE and REASON
options” on page 85.

TPARSE and TBUILD errors
The results of a TPARSE or TBUILD command are returned by the STATUS option, which is a required
option on those commands. The STATUS option serves a similar purpose to the RESPONSE and REASON
options on other API commands.

The STATUS option returns the REXX status value in character form as one of the following:

OK
The command completed processing successfully.

SYNTAX ERROR
The command could not be processed because of a syntax error. EYUARnnnn messages that describe
the error are written to the destination defined on your system for IRXSAY WRITEERR output.

FAILURE
The command failed as a result of either of the following causes:

• Some of the data that the command was attempting to process is invalid.
• The storage needed for processing the command is not available.

Note: Storage unavailability could occur because processing of TBUILD and TPARSE commands
might cause storage fragmentation over time, resulting in the eventual consumption of an increasing
amount of address space storage. For details about this cause of failure and the best practice that
you can follow to avoid this issue, see “Accessing resource table data” on page 100.

Trace data is written to a REXX stem variable called EYU_TRACE. EYUARnnnn messages that describe
the failure might also be written to the destination defined on your system for IRXSAY WRITEERR
output. In addition, some failures attempt to issue a region dump to the EYU#DUMP dataset. You
should only include an EYU#DUMP DD statement in your execution JCL at the request of IBM Support.

Messages
Many of the error conditions you might encounter when using the REXX run-time interface are
accompanied by messages that describe the error.

Many of the error conditions you might encounter when using the REXX run-time interface are
accompanied by messages that describe the error. These messages, which begin with the prefix
EYUARnnnn, are written to the destination defined on your system for IRXSAY WRITEERR output. By
default, such output goes to one of the following places:

• For a program running in TSO foreground, the output goes to the terminal.
• For a program running in background, the output goes to the SYSTSPRT DD destination.

106 CICS TS for z/OS: CICSPlex SM Application Programming Guide

EYU_TRACE data
The run-time interface creates a REXX stem variable called EYU_TRACE anytime an error occurs that
warrants tracing.

The run-time interface creates a REXX stem variable called EYU_TRACE anytime an error occurs that
warrants tracing. Such conditions include:

• A STATUS of FAILURE from a TBUILD or TPARSE command
• A return code other than 0 from an EYUxxxx function.

The zero entry of the stem array indicates the number of trace records that were produced. Entries 1
through n contain the actual trace records.

If you are having problems with a REXX program or the run-time interface, IBM support may request the
trace records from EYU_TRACE. CICSPlex SM distributes a REXX EXEC that IBM support will ask you to
include in your REXX program to format and print the EYU_TRACE records. The formatting routine is
called EYU#TRCF and is distributed in the SEYUCLIB library. EYU#TRCF should be used only at the
request of IBM support.

Chapter 6. REXX error handling 107

108 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Appendix A. BINCONRS, BINCONSC, and BINSTERR
error codes

The BINCONRS, BINCONSC, and BINSTERR copy books contain error codes.

See Retrieving FEEDBACK records for information on interpreting feedback error result sets containing
these error codes.

© Copyright IBM Corp. 1974, 2020 109

110 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Appendix B. CICSPlex SM API sample programs
CICSPlex SM provides several sample programs.

Each sample program is shown here in one of the languages in which it is distributed. For a list of the
sample programs provided in each language and the libraries where they are distributed, see Sample
programs.

Note: Additional sample CICSPlex SM API programs are available through the IBM CICS SupportPacs
system at https://www.ibm.com/support/docview.wss?uid=swg27007241

EYU#API1
Program EYU#API1 is written in REXX for the TSO environment.

About EYU#API1

This program does the following processing:

• Establishes a connection to the API.
• Creates a result set containing all PROGRAM resource table records that do not begin with DFH, EYU, or
IBM.

• Retrieves each record in the result set.
• Translates any CICS CVDA attributes into meaningful character values.
• Displays each record on the terminal, showing the program name, language, enable status, and CEDF

status.
• Terminates the API connection.

Commands used: CONNECT, FETCH, GET, TERMINATE, TRANSLATE

/* REXX */
/**/
/* */
/* MODULE NAME = EYU#API1 */
/* */
/* DESCRIPTIVE NAME = CPSM Sample API Program 1 */
/* (Sample REXX Version) */
/* */
/* 5695-081 */
/* COPYRIGHT = NONE */
/* */
/* STATUS = %CP00 */
/* */
/* FUNCTION = */
/* */
/* To provide an example of the use of the following EXEC CPSM */
/* commands: CONNECT, GET, FETCH, TRANSLATE, TERMINATE. */
/* */
/* When invoked, the program depends upon the values held in the */
/* W_CONTEXT and W_SCOPE declarations when establishing a */
/* connection with CICSPlex SM. They must take the following */
/* values: */
/* */
/* W_CONTEXT = The name of a CMAS or CICSplex. Refer to the */
/* description of the EXEC CPSM CONNECT command */
/* for further information regarding the CONTEXT */
/* option. */
/* */
/* W_SCOPE = The name of a CICSplex, CICS system, or CICS */
/* system group within the CICSplex. Refer to the */
/* description of the EXEC CPSM CONNECT command */
/* for further information regarding the SCOPE */
/* option. */
/* */
/* This sample requires no parameters at invocation time. */

© Copyright IBM Corp. 1974, 2020 111

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cpsm/eyup1ak.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cpsm/eyup1ak.html
https://www.ibm.com/support/docview.wss?uid=swg27007241

/* */
/* The sample establishes an API connection and issues a GET */
/* command to create a result set containing program resource */
/* table records which match the criteria. */
/* */
/* Using the FETCH command each record in the result set is */
/* retrieved. Once retrieved the TRANSLATE command is used to */
/* convert those attributes of each record which are EYUDA or */
/* CVDA values into meaningful character representations. A */
/* record is then displayed on the terminal showing the program */
/* name, language, program status, and CEDF status. */
/* */
/* Finally, the API connection is terminated. */
/* */
/*--*/
/*NOTES : */
/* DEPENDENCIES = S/390, TSO */
/* RESTRICTIONS = None */
/* REGISTER CONVENTIONS = */
/* MODULE TYPE = Executable */
/* PROCESSOR = REXX */
/* ATTRIBUTES = Read only, Serially Reusable */
/* */

/*--*/
/* */
/*ENTRY POINT = EYU#API1 */
/* */
/* PURPOSE = All Functions */
/* */
/* LINKAGE = From TSO as a REXX EXEC. */
/* */
/* INPUT = None. */
/* */
/*--*/
/* */

Address 'TSO'
Parse Value 0 0 With W_RESPONSE W_REASON .
/*--*/
/* CHANGE W_CONTEXT AND W_SCOPE TO MATCH YOUR INSTALLATION */
/*--*/
W_CONTEXT = 'RTGA'
W_SCOPE = 'RTGA'
/*--*/
/* OBTAIN A CPSM API CONNECTION. */
/* */
/* THE API WILL RETURN A TOKEN IDENTIFYING THE THREAD IN */
/* VARIABLE W_THREAD. */
/*--*/
Say 'Initializing API...'
XX = EYUINIT()
If XX <> 0 Then Signal UNEXPECTED
Say 'Establishing connection...'
XX = EYUAPI('CONNECT' ,
 'CONTEXT('W_CONTEXT')' ,
 'SCOPE('W_SCOPE')' ,
 'VERSION(0310)' ,
 'THREAD(W_THREAD)' ,
 'RESPONSE(W_RESPONSE)' ,
 'REASON(W_REASON)')
If XX <> 0 Then Signal UNEXPECTED
If W_RESPONSE <> EYURESP(OK) Then Signal NO_CONNECT
/*--*/
/* GET THE PROGRAM RESOURCE TABLE. */
/* */
/* CREATE A RESULT SET CONTAINING ENTRIES FOR ALL PROGRAMS */
/* WITH NAMES NOT BEGINNING DFH, EYU or IBM. */
/* THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED IN */
/* VARIABLE W_RECCNT. */
/*--*/
Say 'Get the PROGRAM resource table...'
W_CRITERIA = 'NOT (PROGRAM=DFH* OR PROGRAM=EYU* OR PROGRAM=IBM*).'
W_CRITERIALEN = 'LENGTH'(W_CRITERIA)
XX = EYUAPI('GET OBJECT(PROGRAM)' ,
 'CRITERIA(W_CRITERIA)' ,
 'LENGTH('W_CRITERIALEN')' ,
 'COUNT(W_RECCNT)' ,
 'RESULT(W_RESULT)' ,

112 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 'THREAD(W_THREAD)' ,
 'RESPONSE(W_RESPONSE)' ,
 'REASON(W_REASON)')
If XX <> 0 Then Signal UNEXPECTED
If W_RESPONSE <> EYURESP(OK) Then Signal NO_GET

/*--*/
/* RETRIEVE INFORMATION ABOUT EACH PROGRAM. */
/* */
/* FETCH EACH ENTRY AND USE TPARSE TO OBTAIN EACH ATTRIBUTE. */
/* DISPLAY DETAILS OF EACH PROGRAM TO THE USER. */
/*--*/
Say 'Fetching' W_RECCNT 'PROGRAM entries...'
Say 'Program Language Status CEDF Status'
W_INTO_OBJECTLEN = 136 /* LENGTH OF PROGRAM TABLE */
Do III = 1 To W_RECCNT
 XX = EYUAPI('FETCH INTO(W_INTO_OBJECT)' ,
 'LENGTH(W_INTO_OBJECTLEN)' ,
 'RESULT(W_RESULT)' ,
 'THREAD(W_THREAD)' ,
 'RESPONSE(W_RESPONSE)' ,
 'REASON(W_REASON)')
 If XX <> 0 Then Signal UNEXPECTED
 If W_RESPONSE <> EYURESP(OK) Then Signal NO_FETCH
 XX = EYUAPI('TPARSE OBJECT(PROGRAM)' ,
 'PREFIX(PGM)' ,
 'STATUS(W_RESPONSE)' ,
 'VAR(W_INTO_OBJECT.1)' ,
 'THREAD(W_THREAD)')
 If W_RESPONSE <> 'OK' Then Signal UNEXPECTED
 W_TEXT = PGM_PROGRAM
 W_TEXT = 'OVERLAY'(PGM_LANGUAGE,W_TEXT,10)
 W_TEXT = 'OVERLAY'(PGM_STATUS,W_TEXT,23)
 W_TEXT = 'OVERLAY'(PGM_CEDFSTATUS,W_TEXT,36)
 Say W_TEXT
End III
Signal ENDIT

/*--*/
/* PROCESSING FOR API FAILURES. */
/*--*/
UNEXPECTED:
 W_MSG_TEXT = 'UNEXPECTED ERROR.'
 Signal SCRNLOG
NO_CONNECT:
 W_MSG_TEXT = 'ERROR CONNECTING TO API.'
 Signal SCRNLOG
NO_GET:
 W_MSG_TEXT = 'ERROR GETTING RESOURCE TABLE.'
 Signal SCRNLOG
NO_FETCH:
 W_MSG_TEXT = 'ERROR FETCHING RESULT SET.'
 Signal SCRNLOG
SCRNLOG:
 Say W_MSG_TEXT
 Say 'RESPONSE='||W_RESPONSE ,
 'REASON='||W_REASON 'RESULT='XX
ENDIT:
/*--*/
/* TERMINATE API CONNECTION. */
/*--*/
XX = EYUAPI('TERMINATE RESPONSE(W_RESPONSE) REASON(W_REASON)')
XX = EYUTERM()
Exit

The C/370, COBOL, and PL/I versions of EYUxAPI1 are written for the CICS environment and can be
converted to run in the MVS batch environment by commenting the EXEC CICS SEND commands and
uncommenting the preceding language specific output statements.

Appendix B. CICSPlex SM API sample programs 113

EYUCAPI2
Program EYUCAPI2 is written in C for the CICS enviornment.

About EYUxAPI2

This program does the following processing:

• Establishes a connection to the API.
• Defines a filter to identify PROGRAM resource table records with a language attribute of Assembler.
• Creates a result set containing all PROGRAM resource table records that do not begin with DFH, EYU, or
IBM.

• Marks those records in the result set that match the specified filter (LANGUAGE=ASSEMBLER).
• Copies the marked records to a new result set.
• Deletes the marked records from the original result set.
• For each result set (LANGUAGE=ASSEMBLER and LANGUAGE≠ASSEMBLER):

– Retrieves each record.
– Translates any CICS CVDA attributes.
– Displays each record on the terminal.

• Terminates the API connection.

Commands used: CONNECT, COPY, DELETE, FETCH, GET, LOCATE, MARK, SPECIFY FILTER,
TERMINATE, TRANSLATE

 /**/
 /* */
 /* MODULE NAME = EYUCAPI2 */
 /* */
 /* DESCRIPTIVE NAME = CPSM Sample API Program 2 */
 /* (Sample C Version) */
 /* */
 /* 5695-081 */
 /* COPYRIGHT = NONE */
 /* */
 /* STATUS = %CP00 */
 /* */
 /* FUNCTION = */
 /* */
 /* To provide an example of the use of the following EXEC CPSM */
 /* commands: CONNECT, SPECIFY FILTER, GET, MARK, COPY, DELETE, */
 /* LOCATE, FETCH, TRANSLATE, TERMINATE. */
 /* */
 /* When invoked, the program depends upon the values held in the */
 /* W_CONTEXT and W_SCOPE declarations when establishing a */
 /* connection with CICSPlex SM. They must take the following */
 /* values: */
 /* */
 /* W_CONTEXT = The name of a CMAS or CICSplex. Refer to the */
 /* description of the EXEC CPSM CONNECT command */
 /* for further information regarding the CONTEXT */
 /* option. */
 /* */
 /* W_SCOPE = The name of a CICSplex, CICS system, or CICS */
 /* system group within the CICSplex. Refer to the */
 /* description of the EXEC CPSM CONNECT command */
 /* for further information regarding the SCOPE */
 /* option. */
 /* */
 /* This sample requires no parameters at invocation time. */
 /* */
 /* The sample establishes an API connection and issues a SPECIFY */
 /* FILTER command to create a filter which will match only */
 /* specific program resource table records. The filter is used */
 /* later in the program by the MARK command. */
 /* */
 /* A GET command is issued to create a result set containing */
 /* program resource table records which match the criteria. The */

114 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 /* result set is then used by the MARK command to flag records */
 /* meeting the previous filter specification. The marked records */
 /* are then COPYed to a new result set, and then DELETEd from */
 /* the original result set. After this sequence of commands we */
 /* have two results sets; one containing records which did not */
 /* meet the filter specification (that is, records where the */
 /* LANGUAGE is not ASSEMBLER), and one containing records */
 /* which did match the filter (that is, records where the */
 /* LANGUAGE is ASSEMBLER). */
 /* */
 /* Taking each of the two results sets in turn a LOCATE command */
 /* is used to ensure we start at the top of the result set */
 /* before a FETCH command is used to retrieve each record in */
 /* the result set. Once retrieved the TRANSLATE command is used */
 /* to convert those attributes of each record which are EYUDA */
 /* or CVDA values into meaningful character representations. A */
 /* record is then displayed on the terminal showing the program */
 /* name, language, program status, and CEDF status. */
 /* */
 /* Finally, the API connection is terminated. */
 /* */

* --*
 /*NOTES : */
 /* DEPENDENCIES = S/390, CICS */
 /* RESTRICTIONS = None */
 /* REGISTER CONVENTIONS = */
 /* MODULE TYPE = Executable */
 /* PROCESSOR = C */
 /* ATTRIBUTES = Read only, Serially Reusable */
 /* */
 /*--*/
 /* */
 /*ENTRY POINT = EYUCAPI2 */
 /* */
 /* PURPOSE = All Functions */
 /* */
 /* LINKAGE = From CICS either with EXEC CICS LINK or as a CICS */
 /* transaction. */
 /* */
 /* INPUT = None. */
 /* */
 /*--*/
 /* */
#include <PROGRAM>
void main()
{
/*--*/
/* CHANGE W_CONTEXT AND W_SCOPE TO MATCH YOUR INSTALLATION */
/*--*/
char *W_CONTEXT = "RTGA ";
char *W_SCOPE = "RTGA ";
int W_RESPONSE;
int W_REASON;
int W_THREAD;
char *W_CRITERIA;
int W_CRITERIALEN;
int W_FILTER_TOKEN;
int W_RESULT = 0;
int W_COUNT;
int W_RESULT2 = 0;
int W_COUNT2;
int III;
int JJJ;
int W_RESULT_TOK;
int W_RECCNT;
PROGRAM W_INTO_OBJECT;
int W_INTO_OBJECTLEN;
char W_TRANSCVDA??(12??);
char W_TEXT??(81??);
char W_MSG_TEXT??(81??);
W_TEXT??(80??) = 0x13;
W_MSG_TEXT??(80??) = 0x13;
/*--*/
/* OBTAIN A CPSM API CONNECTION. */
/* */
/* THE API WILL RETURN A TOKEN IDENTIFYING THE THREAD IN */
/* VARIABLE W_THREAD. */
/*--*/
strcpy(W_TEXT,"Establishing connection...");
/* printf("Establishing connection...\n"); */

Appendix B. CICSPlex SM API sample programs 115

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) ERASE;
EXEC CPSM CONNECT
 CONTEXT(W_CONTEXT)
 SCOPE(W_SCOPE)
 VERSION("0310")
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_CONNECT; }

/*--*/
/* CREATE A FILTER. */
/* */
/* CREATE A FILTER WHICH WILL MATCH ONLY THOSE PROGRAMS WITH */
/* A LANGUAGE OF ASSEMBLER. */
/* THE FILTER WILL BE USED IN A SUBSEQUENT MARK COMMAND. */
/*--*/
strcpy(W_TEXT,"Create a filter... ");
/* printf("Create a filter...\n"); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
W_CRITERIA = "LANGUAGE=ASSEMBLER.";
W_CRITERIALEN = strlen(W_CRITERIA);
EXEC CPSM SPECIFY FILTER(W_FILTER_TOKEN)
 CRITERIA(W_CRITERIA)
 LENGTH(W_CRITERIALEN)
 OBJECT("PROGRAM ")
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_FILTER; }

/*--*/
/* GET THE PROGRAM RESOURCE TABLE. */
/* */
/* CREATE A RESULT SET CONTAINING ENTRIES FOR ALL PROGRAMS */
/* WITH NAMES NOT BEGINNING DFH, EYU OR IBM. */
/* THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED IN */
/* VARIABLE W_COUNT. */
/*--*/
strcpy(W_TEXT,"Get the PROGRAM resource table...");
/* printf("Get the PROGRAM resource table...\n"); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
W_CRITERIA = "NOT (PROGRAM=DFH* OR PROGRAM=EYU* OR PROGRAM=IBM*).";
W_CRITERIALEN = strlen(W_CRITERIA);
EXEC CPSM GET OBJECT("PROGRAM ")
 CRITERIA(W_CRITERIA)
 LENGTH(W_CRITERIALEN)
 COUNT(W_COUNT)
 RESULT(W_RESULT)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_GET; }
sprintf(W_TEXT,"Total number of entries: %d", W_COUNT);
/* printf(W_TEXT); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
/*--*/
/* MARK SELECTED PROGRAM ENTRIES. */
/* */
/* USING THE FILTER WE MARK THOSE ENTRIES IN THE RESULT SET */
/* WHICH MEET THE FILTER SPECIFICATION IE. THOSE ENTRIES WITH */
/* A LANGUAGE OF ASSEMBLER. */
/*--*/
strcpy(W_TEXT,"Mark LANGUAGE=ASSEMBLER entries...");
/* printf("Mark LANGUAGE=ASSEMBLER entries...\n"); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
EXEC CPSM MARK FILTER(W_FILTER_TOKEN)
 RESULT(W_RESULT)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_MARK; }

/*--*/
/* COPY MARKED ENTRIES TO ANOTHER RESULT SET. */
/* */
/* HAVING MARKED ENTRIES IN THE RESULT SET WE CAN COPY THEM */
/* TO A NEW RESULT SET. */
/* AFTER THIS COMMAND WE WILL HAVE TWO RESULT SETS. ONE */

116 CICS TS for z/OS: CICSPlex SM Application Programming Guide

/* CONTAINING ALL THE PROGRAM ENTRIES, AND THE OTHER CONTAINING */
/* JUST THOSE ENTRIES WITH A LANGUAGE OF ASSEMBLER. */
/*--*/
strcpy(W_TEXT,"Copy marked entries... ");
/* printf("Copy marked entries...\n"); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
EXEC CPSM COPY FROM(W_RESULT)
 TO(W_RESULT2)
 MARKED
 COUNT(W_COUNT2)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_COPY; }
sprintf(W_TEXT,"Number of entries copied: %d", W_COUNT2);
/* printf(W_TEXT); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
/*--*/
/* DELETE MARKED ENTRIES FROM RESULT SET. */
/* */
/* WE CAN NOW DELETE THE MARKED ENTRIES FROM THE ORIGINAL */
/* RESULT SET. */
/* AFTER THIS COMMAND WE HAVE TWO RESULT SETS. ONE RESULT SET */
/* CONTAINING ENTRIES WITH LANGUAGE NOT ASSEMBLER, AND THE */
/* OTHER CONTAINING ENTRIES WITH A LANGUAGE OF ASSEMBLER. */
/*--*/
strcpy(W_TEXT,"Delete marked entries... ");
/* printf("Delete marked entries...\n"); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
EXEC CPSM DELETE MARKED
 COUNT(W_COUNT)
 RESULT(W_RESULT)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_DELETE; }
sprintf(W_TEXT,"Number of entries remaining: %d", W_COUNT);
/* printf(W_TEXT); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

/*--*/
/* RETRIEVE INFORMATION ABOUT EACH PROGRAM. */
/* */
/* FETCH EACH ENTRY, USE INCLUDED STRUCTURE TO OBTAIN EACH */
/* ATTRIBUTE AND USE TRANSLATE TO CONVERT CICS CVDAS. */
/* DISPLAY DETAILS OF EACH PROGRAM TO THE USER. */
/*--*/
W_INTO_OBJECTLEN = PROGRAM_TBL_LEN;
for (JJJ = 1; JJJ <= 2; JJJ++)
 {
 if (JJJ == 1)
 {
 sprintf(W_TEXT,"Fetching %d non-ASSEMBLER PROGRAM entries...\n",
 W_COUNT);
 W_RESULT_TOK = W_RESULT;
 W_RECCNT = W_COUNT;
 }
 else
 {
 sprintf(W_TEXT,"Fetching %d ASSEMBLER PROGRAM entries...\n",
 W_COUNT2);
 W_RESULT_TOK = W_RESULT2;
 W_RECCNT = W_COUNT2;
 }
 /* printf(W_TEXT); */
 EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
 EXEC CPSM LOCATE TOP
 RESULT(W_RESULT_TOK)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
 if (W_RESPONSE != EYUVALUE(OK)) { goto NO_LOCATE; }
 strcpy(W_TEXT,"Program Language Status CEDF Status");
 /* printf("Program Language Status CEDF Status\n"); */
 EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
 for (III = 1; III <= W_RECCNT; III++)
 {
 EXEC CPSM FETCH INTO(&W_INTO_OBJECT)
 LENGTH(W_INTO_OBJECTLEN)
 RESULT(W_RESULT_TOK)
 THREAD(W_THREAD)

Appendix B. CICSPlex SM API sample programs 117

 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
 if (W_RESPONSE != EYUVALUE(OK)) { goto NO_FETCH; }
 memcpy(W_TEXT,W_INTO_OBJECT.PROGRAM,8);
 EXEC CPSM TRANSLATE OBJECT("PROGRAM ")
 ATTRIBUTE("LANGUAGE ")
 FROMCV(W_INTO_OBJECT.LANGUAGE)
 TOCHAR(W_TRANSCVDA)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
 if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }
 memcpy(W_TEXT+9,W_TRANSCVDA,12);
 EXEC CPSM TRANSLATE OBJECT("PROGRAM ")
 ATTRIBUTE("STATUS ")
 FROMCV(W_INTO_OBJECT.STATUS)
 TOCHAR(W_TRANSCVDA)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;

 if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }
 memcpy(W_TEXT+22,W_TRANSCVDA,12);
 EXEC CPSM TRANSLATE OBJECT("PROGRAM ")
 ATTRIBUTE("CEDFSTATUS ")
 FROMCV(W_INTO_OBJECT.CEDFSTATUS)
 TOCHAR(W_TRANSCVDA)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
 if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }
 memcpy(W_TEXT+35,W_TRANSCVDA,12);
 /* printf("%s\n",W_TEXT); */
 EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
 }
 }
goto ENDIT;
/*--*/
/* PROCESSING FOR API FAILURES. */
/*--*/
NO_CONNECT:
 strcpy(W_MSG_TEXT,"ERROR CONNECTING TO API.\n");
 goto SCRNLOG;
NO_FILTER:
 strcpy(W_MSG_TEXT,"ERROR CREATING FILTER.\n");
 goto SCRNLOG;
NO_GET:
 strcpy(W_MSG_TEXT,"ERROR GETTING RESOURCE TABLE.\n");
 goto SCRNLOG;
NO_MARK:
 strcpy(W_MSG_TEXT,"ERROR MARKING RESULT SET.\n");
 goto SCRNLOG;
NO_COPY:
 strcpy(W_MSG_TEXT,"ERROR COPYING RESULT SET.\n");
 goto SCRNLOG;
NO_DELETE:
 strcpy(W_MSG_TEXT,"ERROR DELETING FROM RESULT SET.\n");
 goto SCRNLOG;
NO_LOCATE:
 strcpy(W_MSG_TEXT,"ERROR LOCATING TO TOP OF RESULT SET.\n");
 goto SCRNLOG;
NO_FETCH:
 strcpy(W_MSG_TEXT,"ERROR FETCHING RESULT SET.\n");
 goto SCRNLOG;
NO_TRANSLATE:
 strcpy(W_MSG_TEXT,"ERROR TRANSLATING ATTRIBUTE\n");
 goto SCRNLOG;
SCRNLOG:
 /* printf(W_MSG_TEXT); */
 EXEC CICS SEND FROM(W_MSG_TEXT) LENGTH(81) WAIT;
 sprintf(W_MSG_TEXT,"RESPONSE=%d REASON=%d\n",W_RESPONSE,W_REASON);
 /* printf(W_MSG_TEXT); */
 EXEC CICS SEND FROM(W_MSG_TEXT) LENGTH(81) WAIT;
ENDIT:
/*--*/
/* TERMINATE API CONNECTION. */
/*--*/
EXEC CPSM TERMINATE RESPONSE(W_RESPONSE) REASON(W_REASON);
EXEC CICS RETURN;
}

118 CICS TS for z/OS: CICSPlex SM Application Programming Guide

The C, C++, COBOL, and PL/I versions of EYUxAPI2 are written for the CICS environment and can be
converted to run in the MVS batch environment by commenting the EXEC CICS SEND commands and
uncommenting the preceding language specific output statements.

EYUAAPI3
Program EYUAAPI3 is written in Assembler for the MVS batch environment.

About EYUAAPI3

This program does the following processing:

• Establishes a connection to the API with the context set to an existing CICSplex.
• Verifies that a proposed new CICSplex name is not already defined to CICSPlex SM as a CICSplex,

CMAS, CICS system, or CICS system group.
• Creates a result set containing the CPLEXDEF resource table record for the existing CICSplex definition

and retrieves that record.
• Creates a new CPLEXDEF resource table record using the existing record as a model.
• Creates a result set containing the CICSPLEX resource table records associated with the existing

CICSplex and retrieves those records.
• Creates new CICSPLEX resource table records using the existing records as models.
• Sequentially retrieves all the resource table records associated with the existing CICSplex, including

CICS systems, CICS system groups, workload management definitions, real-time analysis definitions,
and resource monitoring definitions.

• Creates all the necessary resource table records for the new CICSplex using the existing records as
models.

• If an error occurs before all the necessary resource table records are created, removes the new
CICSplex definition.

• Disconnects the API processing thread.

Commands used: CONNECT, CREATE, DISCARD, DISCONNECT, FETCH, GET, PERFORM OBJECT,
QUALIFY, QUERY, REMOVE

*
EYUAAPI3 TITLE 'EYUAAPI3 - CPSM SAMPLE API PROGRAM 3 - ASSEMBLER'

* *
* MODULE NAME = EYUAAPI3 *
* *
* DESCRIPTIVE NAME = API sample program 3 ASSEMBLER Version *
* *
* 5695-081 *
* COPYRIGHT = NONE *
* *
* STATUS = %CP00 *
* *
* FUNCTION = *
* *
* To mirror an existing PLEX to a new PLEX. *
* *
* When invoked, the program depends upon the values held in the *
* OLDPLEX, NEWPLEX, and MPCMAS variables. They must be set to *
* the following values: *
* *
* OLDPLEX = The name of an existing PLEX that will be mirrored. *
* *
* NEWPLEX = The name that will be given to the new PLEX. *
* *
* MPCMAS = The maintenance point CMAS of the OLDPLEX. This *
* will also be the MP for the NEWPLEX. *
* *
* This sample requires no parameters at invocation time. *
* *
* The sample processes as follows: *

Appendix B. CICSPlex SM API sample programs 119

* *
* - a CONNECTion is established to CPSM, with the CONTEXT and *
* SCOPE of the OLDPLEX. *
* *
* - since a PLEX can be either a CONTEXT or SCOPE, we verify *
* that the NEWPLEX is not already a valid CONTEXT (i.e, an *
* existing CICSplex or CMAS) or SCOPE in the OLDPLEX (i.e, *
* an existing CICS system or CICS system group). *
* *
* - we GET the CPLEXDEF record for the OLDPLEX, and use this as *
* a module to CREATE the NEWPLEX. *
* *
* - we GET the CICSPLEX records for the OLDPLEX, and use these *
* to add the CMASs in the OLDPLEX to the NEWPLEX. *
* *
* - using a list that contains CICSplex definitions including *
* CICS systems, CICS system groups, workload management *
* definitions, real-time analysis definitions and resource *
* monitoring definitions, we GET and FETCH the records from *
* the OrigPlex, and CREATE them in the NewPlex. *
* *
* - we then DISCONNECT from CPSM. *
* *

* --*
* *
* NOTES : *
* DEPENDENCIES = S/370 *
* RESTRICTIONS = None *
* REGISTER CONVENTIONS = *
* R0 Workarea / external call parameter pointer *
* R1 Workarea / external call parameter pointer *
* R2 Resource Table record pointer *
* R3 Loop counter *
* R4 List pointer *
* R5 Loop counter *
* R6 Unused *
* R7 Unused *
* R8 Unused *
* R9 Subroutine linkage *
* R10 Subroutine linkage *
* R11 Base register *
* R12 Base register *
* R13 Workarea pointer *
* R14 External call linkage *
* R15 External call linkage *
* *
* MODULE TYPE = Executable *
* PROCESSOR = Assembler *
* ATTRIBUTES = Read only, Serially Reusable *
* AMODE(31), RMODE(ANY) *
* *
* --*
* *
* ENTRY POINT = EYUAAPI3 *
* *
* PURPOSE = All Functions *
* *
* LINKAGE = Executed as a batch program. *
* *
* INPUT = None *
* *
* OUTPUT = File for messages. *
* DDNAME = SYSPRINT *
* DSORG = PS *
* RECFM = FB *
* LRECL = 80 *
* BLKSIZE = a multiple of 80 *
* *
* --*
 EJECT
EYUAAPI3 CSECT
 STM R14,R12,12(R13)
 LR R12,R15
 USING EYUAAPI3,R12

* GETMAIN working storage and set up SA chain. *

 GETMAIN R,LV=WORKLEN
 ST R13,4(,1)
 ST R1,8(,R13)

120 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 L R1,24(,R13)
 L R13,8(,R13)
 USING SAVEAREA,R13

* Preset return code to error - will change to 0 if all ok. *

 MVC RETCODE,=F'8'

* OPEN file for error messages. *

 OPEN (SYSPRINT,OUTPUT)

* Specify variables: OLDPLEX, NEWPLEX, MPCMAS *
* *
* Ensure that the values specified are valid NAME type (i.e, *
* valid member name) or following code will fail. *

 MVC OLDPLEX,=CL8'plexold' *** SPECIFY AS DESIRED ***
 MVC NEWPLEX,=CL8'plexnew' *** SPECIFY AS DESIRED ***
 MVC MPCMAS,=CL8'mpcmas' *** SPECIFY AS DESIRED ***

* Connect to CPSM API via OLDPLEX. *

 MVC CONTEXT,OLDPLEX
 EXEC CPSM CONNECT X
 CONTEXT(CONTEXT) X
 VERSION(=CL4'0130') X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BNE ERRCON No - msgs and out

* Verify that the desired NEWPLEX name is not already a *
* PLEX or CMAS. We do this by trying to set the CONTEXT *
* to the NEWPLEX name. If successful (NEWPLEX already exists *
* as a CONTEXT) issue messages and get out. *

 EXEC CPSM QUALIFY X
 CONTEXT(NEWPLEX) X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BE ERRNISPC Yes - already a CONTEXT

* Verify that the NEWPLEX name is not already a *
* CSYSDEF or CSYSGRP in the old, soon to be new, CICSplex. *
* *
* Here we will start issuing EXEC CPSM GET requests, to *
* get result sets of different Resource Tables. We make *
* the call through the GETOBJ subroutine. Variable OBJECT *
* must be set with the Resource Table name. If we only want *
* a subset of the records for a given Resource Table, we also *
* set variable CRITERIA with a selection criteria string. *
* This string can contain references to any fields in the *
* Resource Table, connected by logical operators, and must *
* end with a period - . -. Variable CRITLEN must be loaded *
* with the length of the criteria string. *
* *
* We will check the RESPONSE from GET calls inline, instead *
* of in the subroutine. The reason for this is that sometimes *
* a RESPONSE of OK will mean that we have a problem (e.g., *
* the NEWPLEX name already exists as a CICS System name). *

*
* Ask for a CSYSSYS record equal to the NEWPLEX name.
*
 MVC OBJECT,=CL8'CSYSDEF'
 MVC CRITERIA(5),=CL5'NAME='
 MVC CRITERIA+5(8),NEWPLEX
 MVI CRITERIA+13,C'.'
 MVC CRITLEN,=F'14'
 BAS R10,GETOBJ Build result set
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BE ERRNISC Yes - already a CICS system
 CLC RESPONSE,EYUVALUE(NODATA) No CSYSDEF with NEWPLEX name?
 BE NOTCSYS Yes - continue

Appendix B. CICSPlex SM API sample programs 121

 B ERRGETO No - some error - msgs and out
NOTCSYS DS 0H
*
* Ask for a CSYSGRP record equal to the NEWPLEX name.
*
 MVC OBJECT,=CL8'CSYSGRP'
 MVC CRITERIA(6),=CL6'GROUP='
 MVC CRITERIA+6(8),NEWPLEX
 MVI CRITERIA+14,C'.'
 MVC CRITLEN,=F'15'
 BAS R10,GETOBJ Build the result set
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BE ERRNISS Yes - already a system group
 CLC RESPONSE,EYUVALUE(NODATA) No CSYSGRP with NEWPLEX name?
 BE NOTCGRP Yes - continue
 B ERRGETO No - some error - msgs and out
NOTCGRP DS 0H

* If we have gotten this far, we know that NEWPLEX is not *
* already the name of a CICSplex, CMAS, CICS System, or *
* CICS System group - so we can start building the NEWPLEX. *
* *
* Switch CONTEXT to MPCMAS to build NEWPLEX and add CMASs. *

 MVC CONTEXT,MPCMAS

* Build new plex using OLDPLEX as a model. *
* *
* The record that defines a CICSplex is the CPLEXDEF Resource *
* Table. We will GET the OLDPLEX CPLEXDEF record, modify *
* it as needed, and then CREATE the NEWPLEX CPLEXDEF records. *
* This creates the NEWPLEX. *

 MVI PLEXBLT,C'N' Indicate NEWPLEX not built yet
*
* First GET CPLEXDEF record for the OLDPLEX.
*
 MVC OBJECT,=CL8'CPLEXDEF'
 MVC CRITERIA(9),=CL9'CICSPLEX='
 MVC CRITERIA+9(8),OLDPLEX
 MVI CRITERIA+17,C'.'
 MVC CRITLEN,=F'18'
 BAS R10,GETOBJ Build result set
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BNE ERRGETO No - msgs and out
*
* Here we start using the GETBUF subroutine. This subroutine
* GETMAINs a buffer into which we can FETCH the records of the
* result set that we last issued a GET for.
*
 BAS R10,GETBUF Get storage to receive recs
*
* Here we start using the FETCH subroutine. This subroutine
* reads all the records from the result set into the buffer.
* On return to mainline, R2 points to the first record in
* the buffer.
*
 BAS R10,FETCH Sets R2 to fetched record
*
* Change the OLDPLEX CPLEXDEF record into the NEWPLEX
* CPLEXDEF record.
*
 USING CPLEXDEF,R2 Map the record
 MVC CPLEXDEF_CICSPLEX,NEWPLEX X
 Set CICSplex name to NEWPLEX
 MVC CPLEXDEF_DESC,=CL30'API cloned from' X
 Modify CICSPlex
 MVC CPLEXDEF_DESC+16(8),OLDPLEX X
 description
 MVC NEWPLXD(CPLEXDEF_TBL_LEN),0(R2) X
 Save NEWPLEX def and len
 MVC NEWPLXDL,=A(CPLEXDEF_TBL_LEN) X
 for possible later REMOVE

*
* Here we start using the CREATE subroutine. This subroutine
* will cause a CPSM Resource Table record to be built. Variable
* OBJECT needs to be preset to the Resource Table name, the
* Resource Table record to be built must be pointed to by R2

122 CICS TS for z/OS: CICSPlex SM Application Programming Guide

* and must be filled out before called CREATE.
*
 BAS R10,CREATE CREATE NEWPLEX
 MVI PLEXBLT,C'Y' Indicate NEWPLEX now built
*
* Here we start using the FREEBUF subroutine. This subroutine
* FREEMAINs the buffer into which we FETCHed the records.
*
 BAS R10,FREEBUF Free record storage
*
* When a result set is built (in our program by either GET or
* PERFORM) an id is associated with the result set and placed
* into the variable pointed to by keyword RESULT (for GET we
* are using variable RESULT - for PERFORM, RESULT2). This is
* done so that subsequent calls can reference the result set
* built (e.g, FETCH can retrieve records for GET). When we
* are done using a result set, we must DISCARD it, so that
* CPSM frees us resources allocated for the result set.
* Note that we have not done this with the 2 previous GETs
* we did since the object of them was to NOT get a result set.
* If any of the previous GETs caused a result set to get built,
* we DISCONNECT from CPSM - which causes all our resources to
* be released - and exit.
*
 MVC RESULTD,RESULT Copy GET result set id for X
 DISCARD
 BAS R10,DISCARD Discard the GET result set
 DROP R2 Drop mapping to CPLEXDEF rec

* Add CMASs in OLDPLEX to NEWPLEX. *
* *
* There is a CICSPLEX Resource Table record for each CMAS *
* that participates in the management of a plex. We first *
* ask for all the CICSPLEX records for OLDPLEX, and use *
* this info to add the CMASs to the NEWPLEX. *

* Ask for the CICSPLEX records from the OLDPLEX.
*
 MVC OBJECT,=CL8'CICSPLEX'
 MVC CRITERIA(9),=CL9'PLEXNAME='
 MVC CRITERIA+9(8),OLDPLEX
 MVI CRITERIA+17,C'.'
 MVC CRITLEN,=F'18'
 BAS R10,GETOBJ Build result set
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BNE ERRGETO no - msgs and out
 BAS R10,GETBUF Get storage for records
 BAS R10,FETCH Points R2 to first record
 USING CICSPLEX,R2 Map the Resource Table
 L R5,COUNT Will loop the number of X
 returned CMASs
* The MP CMAS is added to the CICSplex when the CPLEXDEF
* record was CREATEd. To add any other CMASs to the CICSplex
* we issue a PERFORM against the CPLEXDEF record for NEWPLEX,
* with a parm = CICSPLEX(newplex) CMAS(cmasname).
*
 MVC ADDCPARM(ADDCLEN),ADDC Build most of parm
 MVC PARMLEN,=A(ADDCLEN) Set its length
 MVC ADDCPLEX,NEWPLEX Add CICSplex name to parm
 MVC OBJECT,=CL8'CPLEXDEF' PERFORM against CPLEXDEF
ADDCMAS DS 0H
 CLC CICSPLEX_CMASNAME,MPCMAS CMAS = MPCMAS?
 BE NOADDMP Yes - don't add it then
 MVC ADDCCMAS,CICSPLEX_CMASNAME X
 Add CMAS name to PARM X
 This comes from the CICSPLEX X
 records.

*
* Note that we already have the CICSPLEX result set active,
* with the id in RESULT. So here we will use RESULT2 for
* result set that is built for each PERFORM.
*
 MVC RESULT2,=F'0' Always build new result set
 EXEC CPSM PERFORM X
 OBJECT(OBJECT) X
 ACTION(=CL12'ASSIGN') X
 PARM(ADDCPARM) X
 PARMLEN(PARMLEN) X
 RESULT(RESULT2) X
 CONTEXT(CONTEXT) X

Appendix B. CICSPlex SM API sample programs 123

 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BNE ERRPERF no - msgs and out
 MVC RESULTD,RESULT2 Copy PERFORM result set id for X
 DISCARD
 BAS R10,DISCARD Discard the PERFORM result set
NOADDMP DS 0H
*
* We need to get to the next CICSPLEX record for the next CMAS.
* The GETBUF subroutine places into variable RECLEN the length
* of the Resource Table record. We now add this to the address
* of the current record to point to the next record.
*
 A R2,RECLEN
 BCT R5,ADDCMAS Add the next CMAS
*
* No more CICSPLEX records - discard the CICSPLEX result set
* and continue on.
*
 BAS R10,FREEBUF Free FETCHed record storage
 MVC OBJECT,=CL8'CICSPLEX' For possible DISCARD error msg
 MVC RESULTD,RESULT Copy GET result set id for X
 DISCARD
 BAS R10,DISCARD Discard the GET result set
 DROP R2 Drop mapping to CICSPLEX rec

* Take all defs in OLDPLEX and put into NEWPLEX. *
* *
* We have a list of all CICSplex Resource Table names. We *
* loop through this list, getting all the records for a *
* specific Resource Table from the OLDPLEX and adding them *
* to the NEWPLEX. *

 MVC CRITLEN,=F'0' Want all records from each X
 Resource Table - so we don't X
 want a CRITERIA for GET.
 LA R3,DEFNUM Get number of Resource Tables
 LA R4,DEFLIST Point R4 to first Resource X
 Table in list
BLDLOOP DS 0H
 MVC OBJECT,0(R4) Move in Resource Table name
*
* Get old data - set CONTEXT to OLDPLEX.
*
 MVC CONTEXT,OLDPLEX
 MVC SCOPE,OLDPLEX
 BAS R10,GETOBJ Build result set
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BE GOTDEFS Yes - FETCH and add
 CLC RESPONSE,EYUVALUE(NODATA) No records returned?
 BE NODATA Yes - on to next Resource Tab
 B ERRGETO GET error - msgs and out
GOTDEFS DS 0H
 BAS R10,GETBUF Get storage for records
 BAS R10,FETCH Point R2 to first record
 L R5,COUNT Load number of records for loop
*
* Add new data - set CONTEXT to NEWPLEX.
*
 MVC CONTEXT,NEWPLEX
CRELOOP DS 0H
*
* We need to check if the object being created is a RTAINAPS
* table. If it is, we need to check if the SCOPE is the
* OLDPLEX name - and if so, change it to the NEWPLEX name.
* The RTAINAPS table is the only resource table in our list
* that may have the OLDPLEX specified as a SCOPE.
*
 CLC OBJECT,=CL8'RTAINAPS' Creating an RTAINAPS?
 BNE CRELOOP2 No, just CREATE it
 USING RTAINAPS,R2 May to the record
 CLC RTAINAPS_SCOPE,OLDPLEX Is SCOPE equal to OLDPLEX?
 BNE CRELOOP2 No, don't change record
 MVC RTAINAPS_SCOPE,NEWPLEX Alter SCOPE to NEWPLEX
 DROP R2 Drop mapping to RTAINAPS rec
CRELOOP2 DS 0H
 BAS R10,CREATE CREATE record in NEWPLEX
 A R2,RECLEN Point to next record

124 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 BCT R5,CRELOOP Loop
 BAS R10,FREEBUF Release record storage
 MVC RESULTD,RESULT Copy GET result set id for X
 DISCARD
 BAS R10,DISCARD Discard the GET result set
NODATA DS 0H
 LA R4,8(,R4) Point to next Resource Table
 BCT R3,BLDLOOP Do next Resource Table
*
* We have gone through all the Resource Tables ok. Set
* the return code to 0.
*
 MVC RETCODE,=F'0'

* Disconnect the connection and exit the program. *

EXITDISC DS 0H
 EXEC CPSM DISCONNECT X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
EXIT DS 0H
 CLOSE (SYSPRINT)

* Unchain save area, FREEMAIN working storage, and restore *
* registers. *

 L R2,RETCODE Retrieve return code
 L R13,4(,R13)
 L R1,8(,R13)
 FREEMAIN R,A=(R1),LV=WORKLEN
 L R14,12(,R13)
 LR R15,R2
 LM R0,R12,20(R13)
 LA R15,0
 BR R14

* Error routines. *

ERRCON DS 0H
 MVC OUTLINE,=CL80'Error: Connecting to the API'
 BAS R9,PUTMSG
 BAS R10,DORR Format and msg RESPONSE/REASON
 B EXIT Exit
ERRNISPC DS 0H
 MVC OUTLINE,=CL80'Error: NEWPLEX is already defined as a CICX
 Splex or CMAS'
 BAS R9,PUTMSG
 B EXITDISC DISCONNECT and exit
ERRNISC DS 0H
 MVC OUTLINE,=CL80'Error: NEWPLEX is already defined as a CICX
 S system in the OLDPLEX'
 BAS R9,PUTMSG
 B EXITDISC DISCONNECT and exit
ERRNISS DS 0H
 MVC OUTLINE,=CL80'Error: NEWPLEX is already defined as a CICX
 S system group in the OLDPLEX'
 BAS R9,PUTMSG
 B EXITDISC DISCONNECT and exit
ERRPERF DS 0H
 MVC OUTLINE,=CL80'Error: Adding a CMAS to the NEWPLEX'
 BAS R9,PUTMSG
 MVC OUTLINE,=CL80' '
 MVC OUTTXT1,=CL10'CMASNAME:'
 MVC OUTDAT1,ADDCCMAS
 BAS R9,PUTMSG
 BAS R10,DORR Format and msg RESPONSE/REASON
 B EXITERR
ERRGETO DS 0H
 MVC OUTLINE,=CL80'Error: GETting an object'
 BAS R9,PUTMSG
 B DOOBJMSG
ERRQUERY DS 0H
 MVC OUTLINE,=CL80'Error: QUERYing a record size.'
 BAS R9,PUTMSG
 B DOOBJMSG
ERRFETCH DS 0H
 MVC OUTLINE,=CL80'Error: FETCHing an object.'

Appendix B. CICSPlex SM API sample programs 125

 BAS R9,PUTMSG
 B DOOBJMSG
ERRCREAT DS 0H
 MVC OUTLINE,=CL80'Error: CREATEing an object.'
 BAS R9,PUTMSG
 B DOOBJMSG
ERRDISCA DS 0H
 MVC OUTLINE,=CL80'Error: DISCARDing object.'
 BAS R9,PUTMSG
DOOBJMSG DS 0H
 MVC OUTLINE,=CL80' '
 MVC OUTTXT1,=CL10'OBJECT:'
 MVC OUTDAT1,OBJECT
 BAS R9,PUTMSG
 BAS R10,DORR
EXITERR DS 0H
 CLI PLEXBLT,C'Y' Did we CREATE the NEWPLEX?
 BNE EXITDISC No - just DISCONNECT and exit

*
* We had already CREATEd the NEWPLEX when an error occurred
* so we want to delete the NEWPLEX before ending our program.
*
 EXEC CPSM REMOVE X
 OBJECT(=CL8'CPLEXDEF') X
 FROM(NEWPLXD) X
 LENGTH(NEWPLXDL) X
 CONTEXT(MPCMAS) X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BE EXITDISC Yes - DISCONNECT and exit
 MVC OUTLINE,=CL80'Error: REMOVEing NEWPLEX.'
 BAS R9,PUTMSG
 BAS R10,DORR
 B EXITDISC DISCONNECT and exit

* End of error routines. *

* Subroutines. *

PUTMSG DS 0H
 PUT SYSPRINT,OUTLINE
 BR R9
DORR DS 0H

* Subroutine: DORR *
* Entry: Via BAS R10,DORR *
* Function: Put out error messages indicating what function *
* failed and the RESPONSE and REASON from that *
* function. *
* Processing: - Format the EXEC CPSM RESPONSE and move to the *
* OUTLINE. *
* - Format the EXEC CPSM REASON and move to the *
* OUTLINE. *
* - Call the PUTMSG subroutine to send the *
* RESPONSE/REASON data to SYSPRINT. *
* - Return to caller. *

 MVC OUTLINE,=CL80' ' clear format area
 MVC OUTTXT1,=CL10'RESPONSE:' move in
 L R3,RESPONSE load up the RESPONSE
 CVD R3,DOUBLE convert to decimal
 MVC OUTDAT1(6),=XL6'402020202120' move in EDIT pattern
 ED OUTDAT1(6),DOUBLE+5 EDIT RESPONSE to format area
 MVC OUTTXT2,=CL10'REASON:' constant data
 L R3,REASON load up the REASON
 CVD R3,DOUBLE convert to decimal
 MVC OUTDAT2(6),=XL6'402020202120' move in EDIT pattern
 ED OUTDAT2(6),DOUBLE+5 EDIT REASON to format area
 BAS R9,PUTMSG SEND it
 MVC OUTLINE,=CL80' ' clear out OUTLINE again
 BAS R9,PUTMSG put out blank line
 BR R10 return to caller

GETOBJ DS 0H

* Subroutine: GETOBJ *
* Entry: Via BAS R10,GETOBJ *

126 CICS TS for z/OS: CICSPlex SM Application Programming Guide

* Function: Issue the EXEC CPSM GET command to create a *
* result set for a specific object. Note that *
* all operands for GET must be preset in *
* mainline code - except for RESULT. *
* Processing: - Clear out the result set id - RESULT - so *
* that a new result set is always built. It *
* is the responsibility of mainline to DISCARD *
* any previous result set for GET. *
* - Determine if the GET request has a CRITERIA *
* and use the proper EXEC CPSM GET call. *
* - Note that GETOBJ does not check the RESPONSE *
* from CPSM - this is done in mainline. *
* - Return to caller. *

 MVC RESULT,=F'0' Always get new result set
 CLC CRITLEN,=F'0'
 BE GETNOCRT
 EXEC CPSM GET X
 OBJECT(OBJECT) X
 CRITERIA(CRITERIA) X
 LENGTH(CRITLEN) X
 COUNT(COUNT) X
 RESULT(RESULT) X
 THREAD(THREAD) X
 CONTEXT(CONTEXT) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 BR R10
GETNOCRT DS 0H
 EXEC CPSM GET X
 OBJECT(OBJECT) X
 COUNT(COUNT) X
 RESULT(RESULT) X
 THREAD(THREAD) X
 CONTEXT(CONTEXT) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 BR R10

GETBUF DS 0H

* Subroutine: GETBUF *
* Entry: Via BAS R10,GETBUF *
* Function: Get a buffer to hold all the records contained *
* in the last result set we build though GET. *
* Processing: - Issue EXEC CPSM QUERY to get the length of *
* the Resource Table record. We use the same *
* OBJECT and RESULT from the GET. Variable *
* RECLEN gets the record length. *
* - Check the RESPONSE from QUERY and issue msgs *
* and EXIT if not OK. *
* - Multiple the RECLEN times the COUNT (returned *
* from last GET) to determine the buffer size *
* required and GETMAIN it. *
* - Save the buffer length (BUFLEN) and buffer *
* address (BUFFER) for the FREEMAIN call in *
* the FREEBUF subroutine. *
* - Return to caller. *

 EXEC CPSM QUERY X
 OBJECT(OBJECT) X
 DATALENGTH(RECLEN) X
 RESULT(RESULT) X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
 BNE ERRQUERY No - msgs and out
 L R0,RECLEN
 L R1,COUNT
 MR R0,R0
 GETMAIN R,LV=(R1)
 ST R0,BUFLEN
 ST R1,BUFFER
 BR R10
FREEBUF DS 0H

* Subroutine: FREEBUF *
* Entry: Via BAS R10,FREEBUF *
* Function: To FREEMAIN the buffer created to hold the *
* records from the last result set we built . *

Appendix B. CICSPlex SM API sample programs 127

* through GET. *
* Processing: - Use BUFLEN and BUFFER from GETBUF, FREEMAIN *
* the buffer area. *
* - Return to caller. *

 L R0,BUFLEN
 L R1,BUFFER
 FREEMAIN R,A=(R1),LV=(R0)
 BR R10

FETCH DS 0H

* Subroutine: FETCH *
* Entry: Via BAS R10,FETCH *
* Function: Issue the EXEC CPSM FETCH command to retrieve *
* the result set created by the last GET. *
* mainline code - except for RESULT. *
* Processing: - For FETCH we must provide a receiving area *
* and length. We put in the area length into *
* R2 and the area length in variable LENGTH. *
* Note that we got both the area and length *
* in the GETBUF routine. *
* - Issue the FETCH request using the result set *
* id - RESULT - from the last GET. *
* - Check the RESPONSE - if not OK, issue msgs *
* and exit. *
* - Return to caller. *

 L R2,BUFFER
 MVC LENGTH,BUFLEN
 EXEC CPSM FETCH X
 ALL X
 INTO(0(,R2)) X
 LENGTH(LENGTH) X
 COUNT(COUNT) X
 RESULT(RESULT) X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK)
 BNE ERRFETCH
 BR R10

CREATE DS 0H

* Subroutine: CREATE *
* Entry: Via BAS R10,CREATE *
* Function: Issue the EXEC CPSM CREATE to build a Resource *
* Table record. *
* Processing: - Place the length of the record to be build *
* (RECLEN from GETBUF) into variable LENGTH. *
* R2 should have been set by mainline to point *
* to the record itself. *
* - When CREATEing a LNKxxCG record (spec to *
* group link) we need to specify a parm - *
* NONE. - to indicate that we only want the *
* CREATE to associate the spec to the group. *
* Any systems in the group that need to be *
* added to the spec have already been done *
* by CREATE of LNKxxCS records (spec to *
* system link). If this is a LNKxxCG record, *
* set the PARM and PARMLENgth. *
* - Issue the proper format of EXEC CPSM CREATE *
* (either with PARM/PARMLEN or without). *
* - Check the RESPONSE - if not OK, issue msgs *
* and exit. *
* - Return to caller. *

 MVC LENGTH,RECLEN
 CLC OBJECT(4),=CL4'LNKS'
 BNE CRENOPRM
 CLC OBJECT+6(2),=CL2'CG'
 BNE CRENOPRM
 MVC PARM,=CL5'NONE.'
 MVC PARMLEN,=F'5'
 EXEC CPSM CREATE X
 OBJECT(OBJECT) X
 FROM(0(,R2)) X
 LENGTH(LENGTH) X
 PARM(PARM) X

128 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 PARMLEN(PARMLEN) X
 THREAD(THREAD) X
 CONTEXT(CONTEXT) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 B CRECHKRR
CRENOPRM DS 0H
 EXEC CPSM CREATE X
 OBJECT(OBJECT) X
 FROM(0(,R2)) X
 LENGTH(LENGTH) X
 THREAD(THREAD) X
 CONTEXT(CONTEXT) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
CRECHKRR DS 0H
 CLC RESPONSE,EYUVALUE(OK)
 BNE ERRCREAT
 BR R10

DISCARD DS 0H

* Subroutine: DISCARD *
* Entry: Via BAS R10,DISCARD *
* Function: Issue the EXEC CPSM DISCARD to discard a result *
* set built by CPSM. In our program, both GET *
* and PERFORM build result sets. *
* Processing: - Issue EXEC CPSM DISCARD for the result set. *
* The result set id must be placed into *
* RESULTD by mainline. *
* - Check the RESPONSE - if not OK, issue msgs *
* and exit. *
* - Return to caller. *

 EXEC CPSM DISCARD X
 RESULT(RESULTD) X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK)
 BNE ERRDISCA
 BR R10

* End of subroutines. *

* Copy the CPSM definitions from OrigPlex to NewPlex *
* *
* Following is a list of all CPSM Resource Tables that will *
* be copied into NewPlex. The order that they are in (which *
* is the order they will be built in our program) is *
* important, since some Resource Tables will reference other *
* Resource Tables previously built. The order of the following *
* list is OK for the current release of CPSM. *
* *

DEFLIST DS 0C
 DC CL8'PERIODEF' Time period definitions
 DC CL8'ACTION ' RTA action definitions
 DC CL8'CSYSDEF ' CICS system definitions
 DC CL8'CSYSGRP ' CICS system group definitions
 DC CL8'CSGLCGCS' CICS systems in groups links
 DC CL8'CSGLCGCG' CICS groups in groups links
 DC CL8'MONDEF ' Monitor definitions
 DC CL8'MONGROUP' MON group definitions
 DC CL8'MONSPEC ' MON specification definitions
 DC CL8'MONINGRP' MON def in MON group links
 DC CL8'MONINSPC' MON spec to MON group links
 DC CL8'LNKSMSCS' MON spec to CICS system links
 DC CL8'LNKSMSCG' MON spec to CICS group links
 DC CL8'EVALDEF ' RTA evaluation definitions
 DC CL8'RTADEF ' Real time analysis definitions
 DC CL8'STATDEF ' User status probe definitions
 DC CL8'RTAGROUP' RTA group definitions
 DC CL8'RTASPEC ' RTA specification definitions
 DC CL8'RTAINGRP' RTADEF in RTA group links
 DC CL8'STAINGRP' STATDEF in RTA group links
 DC CL8'RTAINSPC' RTA spec to RTA group links
 DC CL8'LNKSRSCS' RTA spec to CICS group links

Appendix B. CICSPlex SM API sample programs 129

 DC CL8'LNKSRSCG' RTA spec to CICS system links
 DC CL8'APSPEC ' RTA/APM specification defs
 DC CL8'RTAINAPS' RTA/APM spec to RTA group links
 DC CL8'CMDMPAPS' RTA spec to primary CMAS links
 DC CL8'CMDMSAPS' RTA spec to secondary CMAS links
 DC CL8'TRANGRP ' transaction group definitions
 DC CL8'WLMDEF ' Workload definitions
 DC CL8'WLMGROUP' WLM group definitions
 DC CL8'WLMSPEC ' WLM specification definitions
 DC CL8'DTRINGRP' Transactions in trangrp links
 DC CL8'WLMINGRP' WLM def in WLM group links
 DC CL8'WLMINSPC' WLM spec to WLM group links
 DC CL8'LNKSWSCS' WLM spec to CICS group links
 DC CL8'LNKSWSCG' WLM spec to CICS system links
DEFNUM EQU (*-DEFLIST)/8
ADDC DS 0X
 DC CL09'CICSPLEX('
 DC CL08' '
 DC CL07') CMAS('
 DC CL08' '
 DC CL02').'
ADDCLEN EQU *-ADDC
SYSPRINT DCB DDNAME=SYSPRINT,DSORG=PS,MACRF=PM
WORKSTOR DSECT
SAVEAREA DS 18F
DFHEIPL DS 13F
 DS 51F

DOUBLE DS D
RETCODE DS F
RESPONSE DS F
REASON DS F
THREAD DS F
RESULT DS F
RESULT2 DS F
RESULTD DS F
COUNT DS F
LENGTH DS F
PARMLEN DS F
BUFLEN DS F
BUFFER DS F
RECLEN DS F
NEWPLXDL DS F
CRITLEN DS F
CRITERIA DS CL80
CONTEXT DS CL8
SCOPE DS CL8
OBJECT DS CL8
OLDPLEX DS CL8
NEWPLEX DS CL8
MPCMAS DS CL8
OUTLINE DS 0CL80
OUTTXT1 DS CL10
OUTDAT1 DS CL8
 DS CL2
OUTTXT2 DS CL10
OUTDAT2 DS CL8
 DS CL42
PARM DS CL5
PLEXBLT DS CL1
ADDCPARM DS 0XL(ADDCLEN)
 DS CL09
ADDCPLEX DS CL08
 DS CL07
ADDCCMAS DS CL08
 DS CL02
 DS D
NEWPLXD DS XL(CPLEXDEF_TBL_LEN)
WORKLEN EQU *-WORKSTOR
 COPY CPLEXDEF
 COPY CICSPLEX
 COPY RTAINAPS
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8

130 CICS TS for z/OS: CICSPlex SM Application Programming Guide

R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END EYUAAPI3

EYULAPI4
Program EYULAPI4 is written in COBOL for the CICS environment.

About EYULAPI4

This program does the following processing:

• Establishes a connect to the API.
• Creates a BAS definition for a TS Model (TSMDEF) specifying a version of 1.
• Creates a result set containing the previously defined TSMDEF.
• Issues a PERFORM OBJECT command to INSTALL the TSMDEF into the target scope.
• Terminates the API connection.
• BAS errors are processed using BINCONRS, BINCONSC, and BINSTERR resource table records.

Commands used: CONNECT, CREATE, GET, PERFORM OBJECT, FEEDBACK, FETCH, TERMINATE,
TRANSLATE

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EYULAPI4

 * *
 * MODULE NAME = EYULAPI4 *
 * *
 * DESCRIPTIVE NAME = CPSM SAMPLE API PROGRAM 4 *
 * (SAMPLE COBOL VERSION) *
 * *
 * COPYRIGHT = Licensed Materials - Property of IBM *
 * 5695-081 *
 * (C) Copyright IBM Corp. 1995, 1997 *
 * All Rights Reserved *
 * *
 * US Government Users Restricted Rights - Use, *
 * duplication or disclosure restricted by GSA ADP *
 * Schedule Contract with IBM Corp. *
 * *
 * STATUS = %CP00 *
 * *
 * FUNCTION = *
 * *
 * TO PROVIDE AN EXAMPLE OF THE USE OF THE FOLLOWING EXEC CPSM *
 * COMMANDS: CONNECT, CREATE, FEEDBACK, FETCH, GET, *
 * PERFORM OBJECT, TERMINATE. *
 * *
 * WHEN INVOKED, THE PROGRAM DEPENDS UPON THE VALUES HELD IN THE *
 * W-CONTEXT AND W-SCOPE DECLARATIONS WHEN ESTABLISHING A *
 * CONNECTION WITH CICSPLEX SM. THEY MUST TAKE THE FOLLOWING *
 * VALUES: *
 * *
 * W-CONTEXT = THE NAME OF A CMAS OR CICSPLEX. REFER TO THE *
 * DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND *
 * FOR FURTHER INFORMATION REGARDING THE CONTEXT *
 * OPTION. *
 * *
 * W-SCOPE = THE NAME OF A CICSPLEX, CICS SYSTEM, OR CICS *
 * SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE *
 * DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND *
 * FOR FURTHER INFORMATION REGARDING THE SCOPE *
 * OPTION. *
 * *
 * THIS SAMPLE REQUIRES NO PARAMETERS AT INVOCATION TIME. *
 * *

Appendix B. CICSPlex SM API sample programs 131

 * WHEN CREATING THE BAS DEFINITION THE PROGRAM DEPENDS UPON THE *
 * VALUES HELD IN THE W-DEFNAME AND W-DEFPREFIX DECLARATIONS. *
 * THEY MUST TAKE THE FOLLOWING VALUES: *
 * *
 * W-DEFNAME = THE NAME OF THE CREATED BAS DEFINITION. A *
 * 1 TO 8 CHARACTER VALUE. *
 * *
 * W-DEFPFIX = THE MODEL PREFIX OF THE CREATED BAS DEFINITION. *
 * A 1 TO 16 CHARACTER VALUE. *
 * *
 * *

 * WHEN INSTALLING THE BAS DEFINITION THE PROGRAM USES THE *
 * VALUE HELD IN THE W-TSCOPE DECLARATION AS THE TARGET FOR *
 * THE INSTALL OPERATION. IT MUST TAKE THE FOLLOWING VALUE : *
 * *
 * W-TSCOPE = THE NAME OF A CICS SYSTEM, OR CICS *
 * SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE *
 * DESCRIPTION OF THE TARGET PARAMETER OF AN *
 * INSTALL ACTION IN THE RESOURCE TABLE REFERENCE *
 * FOR FURTHER INFORMATION REGARDING THE TARGET *
 * SCOPE VALUE. *
 * *
 * *
 * THE SAMPLE ESTABLISHES AN API CONNECTION AND ISSUES A CREATE *
 * COMMAND TO CREATE A BAS DEFINITION. A GET COMMAND IS ISSUED *
 * TO OBTAIN A RESULT SET CONTAINING THE CREATED BAS DEFINITION. *
 * *
 * USING THE PERFORM OBJECT ACTION(INSTALL) COMMAND EACH RECORD *
 * IN THE RESULT SET IS INSTALLED INTO THE TARGET SCOPE *
 * IDENTIFIED BY THE W-SCOPE DECLARATION. *
 * *
 * FINALLY, THE API CONNECTION IS TERMINATED. *
 * *
 * ANY BAS ERRORS ARE REPORTED USING THE BINCONRS, BINCONSC, AND *
 * BINSTERR RESOURCE TABLES. *
 * *

 * NOTES : *
 * DEPENDENCIES = S/390, CICS *
 * RESTRICTIONS = NONE *
 * REGISTER CONVENTIONS = *
 * MODULE TYPE = EXECUTABLE *
 * PROCESSOR = COBOL *
 * ATTRIBUTES = READ ONLY, SERIALLY REUSABLE *
 * *
 * --- *
 * ENTRY POINT = EYULAPI4 *
 * *
 * PURPOSE = ALL FUNCTIONS. *
 * *
 * LINKAGE = FROM CICS EITHER WITH EXEC CICS LINK OR AS A CICS *
 * TRANSACTION. *
 * *
 * INPUT = NONE. *
 * *
 * --- *
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * CHANGE W-CONTEXT AND W-SCOPE TO MATCH YOUR INSTALLATION *
 * CHANGE W-DEFNAME AND W-DEFPFIX FOR THE CREATE COMMAND. *
 * CHANGE W-TSCOPE FOR THE PERFORM OBJECT COMMAND. *

 01 W-CONTEXT PIC X(8) VALUE 'RTGA '.
 01 W-SCOPE PIC X(8) VALUE 'RTGA '.
 01 W-DEFNAME PIC X(8) VALUE 'EYULAPI4'.
 01 W-DEFPFIX PIC X(16) VALUE 'EYUL* '.
 01 W-TSCOPE PIC X(8) VALUE 'RTGF '.

 01 W-RESPONSE PIC S9(8) USAGE BINARY.
 01 W-REASON PIC S9(8) USAGE BINARY.
 01 W-BUFFER PIC X(32767).
 01 W-BUFFERLEN PIC S9(8) COMP.
 01 W-FBBUFF PIC X(248).
 01 W-FBTTKN PIC S9(8) COMP.
 01 W-THREAD PIC S9(8) USAGE BINARY.

132 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 01 W-RESULT PIC S9(8) USAGE BINARY.
 01 W-RECCNT PIC S9(8) USAGE BINARY.
 01 W-CRITERIA PIC X(80) VALUE SPACES.
 01 W-CRITERIALEN PIC S9(8) USAGE BINARY.
 01 W-PARM PIC X(80) VALUE SPACES.
 01 W-PARMLEN PIC S9(8) USAGE BINARY.
 01 W-MSG-TEXT.
 02 W-TEXT PIC X(80) VALUE SPACES.
 02 W-LINECTL PIC X(1) VALUE X'13'.
 01 ARRAYS.
 02 CH8ARR OCCURS 20 TIMES PIC X(8).
 02 FULLARR OCCURS 60 TIMES PIC S9(8) COMP.
 01 III PIC S9(8) VALUE ZERO.
 01 CODEV PIC S9(8) COMP.
 01 CHARV PIC X(12).
 01 LASTCMD PIC X(20).
 01 LASTTHR PIC S9(8) COMP.
 01 LASTRES PIC S9(8) COMP VALUE 0.
 01 BINZERO PIC X(1) VALUE X'00'.
 01 BLNKPAD PIC X(40)
 VALUE ' '.
 01 FBCHAR2 PIC X(2).
 01 FBHALF4 REDEFINES FBCHAR2.
 02 FBHALF PIC S9(4) COMP.
 01 PICZZZ9A PIC ZZZ9.
 01 PICZZZ9B PIC ZZZ9.
 01 PICZZZ9 PIC ZZZ9.
 01 PYCZZZ9 PIC ZZZ9.
 01 PIKZZZ9 PIC ZZZ9.
 01 PYKZZZ9 PIC ZZZ9.
 01 PICZZZZZZZ9 PIC ZZZZZZZ9.
 01 CHR8 PIC X(8).
 01 CHR12 PIC X(12).
 01 CHAR6 PIC X(6).
 01 CHAR12 PIC X(12).
 * Include the resource table copybooks...
 COPY TSMDEF.
 COPY FEEDBACK.
 COPY BINCONRS.
 COPY BINCONSC.
 COPY BINSTERR.

 * Start of LINKAGE section *

 LINKAGE SECTION.

 PROCEDURE DIVISION.
 EYULAPI4-START SECTION.
 EYULAPI4-00.

 * OBTAIN A CPSM API CONNECTION. *
 * *
 * THE API WILL RETURN A TOKEN IDENTIFYING THE THREAD IN *
 * VARIABLE W-THREAD. *

 MOVE 'Establishing Connection...' TO W-TEXT.
 * DISPLAY W-TEXT.
 EXEC CICS SEND FROM(W-TEXT) LENGTH(81) ERASE END-EXEC.
 EXEC CPSM CONNECT
 CONTEXT(W-CONTEXT)
 SCOPE(W-SCOPE)
 VERSION('0140')
 THREAD(W-THREAD)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.
 IF W-RESPONSE NOT = EYUVALUE(OK) GO TO NO-CONNECT.

 * CREATE A TS MODEL DEFINITION (TSMDEF) *
 * *
 * A TSMDEF is created with a version of 1. *

 INITIALIZE TSMDEF.
 MOVE X'01' TO DEFVER OF TSMDEF.
 MOVE W-DEFNAME TO NAME-R OF TSMDEF.

Appendix B. CICSPlex SM API sample programs 133

 MOVE W-DEFPFIX TO PREFIX OF TSMDEF.
 MOVE DFHVALUE(AUXILIARY) TO LOCATION OF TSMDEF.
 MOVE EYUVALUE(NO) TO RECOVERY OF TSMDEF.
 MOVE EYUVALUE(NO) TO SECURITY-R OF TSMDEF.
 MOVE 'Sample TSMDEF definition' TO DESCRIPTION OF TSMDEF.
 * Copy the definition into our buffer...
 MOVE TSMDEF TO W-BUFFER.
 MOVE TSMDEF-TBL-LEN TO W-BUFFERLEN.
 MOVE 'Creating TSMDEF...' TO W-TEXT.
 * DISPLAY W-TEXT.
 EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.
 EXEC CPSM CREATE
 OBJECT('TSMDEF')
 FROM(W-BUFFER)
 LENGTH(W-BUFFERLEN)
 THREAD(W-THREAD)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.
 MOVE 'CREATE' TO LASTCMD.
 MOVE W-THREAD TO LASTTHR.
 MOVE 0 TO LASTRES.
 IF W-RESPONSE NOT = EYUVALUE(OK) GO TO UNEXPECTED.

 * GET THE TSMDEF RESOURCE TABLE. *
 * *
 * CREATE A RESULT SET CONTAINING ENTRIES FOR ALL TSMDEFS *
 * WITH NAMES EQUAL TO THE VALUE OF W-DEFNAME. . *
 * THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED *
 * IN VARIABLE W-RECCNT. *

 MOVE 'Get the created TSMDEF Resource Table...' TO W-TEXT.
 * DISPLAY W-TEXT.
 EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.
 STRING 'NAME=' DELIMITED BY SIZE
 W-DEFNAME DELIMITED BY SIZE
 '.' DELIMITED BY SIZE
 INTO W-CRITERIA.
 MOVE LENGTH OF W-CRITERIA TO W-CRITERIALEN.
 MOVE BINZERO TO W-RESULT.
 EXEC CPSM GET OBJECT('TSMDEF')
 CRITERIA(W-CRITERIA)
 LENGTH(W-CRITERIALEN)
 COUNT(W-RECCNT)
 RESULT(W-RESULT)
 THREAD(W-THREAD)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.
 IF W-RESPONSE NOT = EYUVALUE(OK) GO TO NO-GET.

 * INSTALL EACH RECORD INTO THE SCOPE IDENTIFIED BY THE *
 * VALUE OF W-TSCOPE. *

 MOVE W-RECCNT TO PICZZZZZZZ9.
 STRING 'Installing ' DELIMITED BY SIZE
 PICZZZZZZZ9 DELIMITED BY SIZE
 ' TSMDEF Entries...' DELIMITED BY SIZE
 INTO W-TEXT.
 * DISPLAY W-TEXT
 EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.
 STRING '(USAGE(LOCAL) TARGET(' DELIMITED BY SIZE
 W-TSCOPE DELIMITED BY SIZE
 ')).' DELIMITED BY SIZE
 INTO W-PARM.
 MOVE LENGTH OF W-PARM TO W-PARMLEN.

 EXEC CPSM PERFORM OBJECT('TSMDEF')
 ACTION('INSTALL')
 PARM(W-PARM)
 PARMLEN(W-PARMLEN)
 RESULT(W-RESULT)
 THREAD(W-THREAD)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.
 MOVE 'PERFORM OBJECT' TO LASTCMD.

134 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 MOVE W-THREAD TO LASTTHR.
 MOVE W-RESULT TO LASTRES.
 IF W-RESPONSE NOT = EYUVALUE(OK) GO TO UNEXPECTED.

 MOVE 'Completed. Remove TSMDEF to re-run.' TO W-TEXT.
 GO TO SCRNLOG2.

 **
 * Branch here if an unexpected CPSM error occurs *
 **
 UNEXPECTED.
 MOVE W-RESPONSE TO PICZZZ9.
 STRING '*** RESPONSE=' DELIMITED BY SIZE PICZZZ9
 DELIMITED BY SIZE BLNKPAD DELIMITED BY SIZE INTO W-TEXT.
 PERFORM SCRNLOG2.
 MOVE W-REASON TO PICZZZ9.
 STRING '*** REASON=' DELIMITED BY SIZE PICZZZ9
 DELIMITED BY SIZE BLNKPAD DELIMITED BY SIZE INTO W-TEXT.
 PERFORM SCRNLOG2.
 MOVE '*** Unexpected error condition arose' TO W-TEXT.
 PERFORM SCRNLOG2.
 * Obtain FEEDBACK information
 IF LASTCMD = 'DISCONNECT' GO TO NOFEED.
 IF LASTCMD = 'FEEDBACK' GO TO NOFEED.
 IF LASTCMD = 'TERMINATE' GO TO NOFEED.
 STRING
 '*** Getting FEEDBACK data for ' DELIMITED BY SIZE
 LASTCMD DELIMITED BY SIZE
 INTO W-TEXT.
 PERFORM SCRNLOG2.
 STRING
 BLNKPAD DELIMITED BY SIZE
 BLNKPAD DELIMITED BY SIZE
 INTO W-TEXT.
 * Get the FEEDBACK data
 GETFEED.
 * Clear error result set count
 MOVE 0 TO FULLARR(1).
 PERFORM GETFB THROUGH EGETFB
 * Display FEEDBACK information
 * Display information
 IF W-RESPONSE = EYUVALUE(OK)
 PERFORM DISPFEED
 IF FULLARR(1) NOT = 0 PERFORM GETFERT THROUGH EGETFER END-I
 -F
 IF LASTRES NOT = 0 GO TO GETFEED END-IF
 MOVE '*** End of FEEDBACK data' TO W-TEXT
 PERFORM SCRNLOG2
 GO TO NOFEED
 END-IF.
 MOVE W-RESPONSE TO PICZZZ9.
 MOVE W-REASON TO PYCZZZ9.
 STRING '*** FEEDBACK not available (' DELIMITED BY SIZE
 PICZZZ9 DELIMITED BY SIZE ',' DELIMITED BY SIZE
 PYCZZZ9 DELIMITED BY SIZE ')' DELIMITED BY SIZE
 BLNKPAD DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 NOFEED.
 EXEC CICS DELAY FOR SECONDS(10) END-EXEC.
 * Exit from test case
 EXEC CICS RETURN END-EXEC.
 GOBACK.
 EXIT.

 * This subroutine obtains the FEEDBACK data *

 GETFB.
 * Use exact buffer size
 MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.
 IF LASTRES = 0 GO TO NORESULT.
 RESULT.
 EXEC CPSM FEEDBACK
 INTO(W-FBBUFF) LENGTH(W-BUFFERLEN)
 RESULT(LASTRES)
 THREAD(LASTTHR)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)

Appendix B. CICSPlex SM API sample programs 135

 END-EXEC.

 * If command didn't execute, get FEEDBACK no result set
 * Command didn't execute?
 IF W-RESPONSE = EYUVALUE(NODATA)
 MOVE 0 TO LASTRES
 GO TO NORESULT
 END-IF.
 GO TO ENDFBACK.
 NORESULT.
 * Use exact buffer size
 MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.
 EXEC CPSM FEEDBACK
 INTO(W-FBBUFF) LENGTH(W-BUFFERLEN)
 THREAD(LASTTHR)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.

 ENDFBACK.
 EGETFB.
 EXIT.

 **
 * Branch here if FEEDBACK Error Result Token available *
 **
 GETFERT.
 MOVE ERR-OBJECT OF FEEDBACK TO CH8ARR(1).
 STRING
 '*** Getting ' DELIMITED BY SIZE
 CH8ARR(1) DELIMITED BY SIZE
 ' error result set data for FEEDBACK' DELIMITED BY SIZE
 INTO W-TEXT.
 PERFORM SCRNLOG2.
 FERTRES.
 * Use largest buffer size
 MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.
 EXEC CPSM FETCH
 INTO(W-BUFFER) LENGTH(W-BUFFERLEN)
 RESULT(ERR-RESULT OF FEEDBACK)
 THREAD(LASTTHR)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.

 * Display FEEDBACK Error Result Token information
 * Display information
 IF W-RESPONSE = EYUVALUE(OK)
 IF CH8ARR(1)= 'FEEDBACK'
 MOVE W-BUFFER TO W-FBBUFF
 PERFORM DISPFEED
 END-IF
 IF CH8ARR(1)= 'BINSTERR'
 PERFORM DISPBIER
 END-IF
 IF CH8ARR(1)= 'BINCONRS'
 PERFORM DISPBIRS
 END-IF
 IF CH8ARR(1)= 'BINCONSC'
 PERFORM DISPBISC
 END-IF
 GO TO FERTRES
 END-IF.
 MOVE W-RESPONSE TO PICZZZ9.
 MOVE W-REASON TO PYCZZZ9.
 STRING '*** FEEDBACK not available (' DELIMITED BY SIZE
 PICZZZ9 DELIMITED BY SIZE ',' DELIMITED BY SIZE
 PYCZZZ9 DELIMITED BY SIZE ')' DELIMITED BY SIZE
 BLNKPAD DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 EGETFER.
 EXIT.

 * This subroutine displays FEEDBACK information *

 DISPFEED.
 MOVE W-FBBUFF TO FEEDBACK.

136 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 STRING BINZERO COMMAND OF FEEDBACK DELIMITED BY SIZE
 INTO FBCHAR2.
 MOVE FBHALF TO PICZZZ9.
 MOVE RESPONSE OF FEEDBACK TO PYCZZZ9.
 MOVE REASON OF FEEDBACK TO PIKZZZ9.
 MOVE RSLTRECID OF FEEDBACK TO PYKZZZ9.
 MOVE SPACES TO W-TEXT.
 STRING 'Cmd=' PICZZZ9 ' Attr=' ATTRDATAVAL OF
 FEEDBACK ' Eib=' CEIBDATAVAL OF FEEDBACK ' Err='
 ERRCODEVAL OF FEEDBACK ' Rspn=' PYCZZZ9 ' Reas='
 PIKZZZ9 ' ResId=' PYKZZZ9
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE ERROR-CODE OF FEEDBACK TO PICZZZ9.
 MOVE CEIBRESP OF FEEDBACK TO PYCZZZ9.
 MOVE CEIBRESP1 OF FEEDBACK TO PIKZZZ9.
 MOVE CEIBFN OF FEEDBACK TO PYKZZZ9.
 MOVE SPACES TO W-TEXT.
 STRING ' ECode=' PICZZZ9 ' RESP=' PYCZZZ9
 ' RESP1=' PIKZZZ9 ' EibFn=' PYKZZZ9 ' Obj='
 OBJECT-A OF FEEDBACK ' OAct=' OBJECT-ACT OF FEEDBACK
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE SPACES TO W-TEXT.
 STRING ' Att1=' ATTR-NM1 OF FEEDBACK ' 2='
 ATTR-NM2 OF FEEDBACK ' 3=' ATTR-NM3 OF FEEDBACK
 ' 4=' ATTR-NM4 OF FEEDBACK ' 5=' ATTR-NM5 OF
 FEEDBACK DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE ERR-COUNT OF FEEDBACK TO PICZZZ9.
 MOVE SPACES TO W-TEXT.
 STRING ' FObj=' ERR-OBJECT OF FEEDBACK
 ' FCnt=' PICZZZ9
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE ERR-COUNT OF FEEDBACK TO FULLARR(1).
 EXIT.

 * This subroutine displays BINSTERR information *

 DISPBIER.
 MOVE W-BUFFER TO BINSTERR.
 MOVE SPACES TO W-TEXT.
 STRING 'CMAS=' CMASNAME OF BINSTERR ' Plex='
 PLEXNAME OF BINSTERR ' CSys=' CICSNAME OF BINSTERR
 ' ResName=' RESNAME OF BINSTERR
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE RESVER OF BINSTERR TO PICZZZ9.
 MOVE ERRCODE OF BINSTERR TO PYCZZZ9.
 MOVE CRESP1 OF BINSTERR TO PIKZZZ9.
 MOVE CRESP2 OF BINSTERR TO PYKZZZ9.
 MOVE SPACES TO W-TEXT.
 STRING ' ResVer=' PICZZZ9 ' ECode=' PYCZZZ9
 ' RESP=' PIKZZZ9 ' RESP1=' PYKZZZ9
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE CEIBFN OF BINSTERR TO PICZZZ9.
 MOVE SPACES TO W-TEXT.
 STRING ' EibFn=' PICZZZ9
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 EXIT.

 * This subroutine displays BINCONRS information *

 DISPBIRS.
 MOVE W-BUFFER TO BINCONRS.
 MOVE ERROP OF BINCONRS TO PICZZZ9.
 MOVE SPACES TO W-TEXT.
 STRING 'CMAS=' CMASNAME OF BINCONRS ' Plex='
 PLEXNAME OF BINCONRS ' CSys=' CICSNAME OF BINCONRS
 ' ResType=' RESTYPE OF BINCONRS ' EOp=' PICZZZ9
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE CANDVER OF BINCONRS TO PICZZZ9.

Appendix B. CICSPlex SM API sample programs 137

 MOVE SPACES TO W-TEXT.
 STRING ' CandName=' CANDNAME OF BINCONRS
 ' CandVer=' PICZZZ9 ' CResGrp=' CANDRGRP OF BINCONRS
 ' CResAss=' CANDRASG OF BINCONRS ' CResDes='
 CANDRDSC OF BINCONRS
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE CANDUSAGE OF BINCONRS TO CODEV.
 MOVE 'BINCONRS' TO CHR8.
 MOVE 'CANDUSAGE' TO CHR12.
 PERFORM XCV2CH
 MOVE CHARV TO CHAR6.
 MOVE CANDTYPE OF BINCONRS TO CODEV.
 MOVE 'BINCONRS' TO CHR8.
 MOVE 'CANDTYPE' TO CHR12.
 PERFORM XCV2CH
 MOVE CHARV TO CHAR12.
 MOVE CANDASGOVR OF BINCONRS TO CODEV.
 MOVE 'BINCONRS' TO CHR8.
 MOVE 'CANDASGOVR' TO CHR12.
 PERFORM XCV2CH
 MOVE SPACES TO W-TEXT.
 STRING ' CandUsa=' CHAR6
 ' CandSGrp=' CANDSGRP OF BINCONRS
 ' CandSTyp=' CHAR12 ' CandAssO=' CHARV
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE EXISTVER OF BINCONRS TO PICZZZ9.
 MOVE EXISTUSAGE OF BINCONRS TO CODEV.
 MOVE 'BINCONRS' TO CHR8.
 MOVE 'EXISTUSAGE' TO CHR12.
 PERFORM XCV2CH
 MOVE SPACES TO W-TEXT.
 STRING ' ExistName=' EXISTNAME OF BINCONRS
 ' ExistVer=' PICZZZ9 ' EResGrp=' EXISTRGRP OF
 BINCONRS ' EResAss=' EXISTRASG OF BINCONRS
 ' EResDes=' EXISTRDSC OF BINCONRS ' ExistUsa=' CHARV
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE EXISTTYPE OF BINCONRS TO CODEV.
 MOVE 'BINCONRS' TO CHR8.
 MOVE 'EXISTTYPE' TO CHR12.
 PERFORM XCV2CH
 MOVE CHARV TO CHAR12.
 MOVE EXISTASGOVR OF BINCONRS TO CODEV.
 MOVE 'BINCONRS' TO CHR8.
 MOVE 'EXISTASGOVR' TO CHR12.
 PERFORM XCV2CH
 MOVE SPACES TO W-TEXT.
 STRING ' ExistSGrp=' EXISTSGRP OF BINCONRS
 ' ExistSTyp=' CHAR12 ' ExistAssO=' CHARV
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 EXIT.

 * This subroutine displays BINCONSC information *

 DISPBISC.
 MOVE W-BUFFER TO BINSTERR.
 MOVE ERROP OF BINCONSC TO PICZZZ9.
 MOVE ERRCODE OF BINCONSC TO PYCZZZ9.
 MOVE SPACES TO W-TEXT.
 STRING 'CMAS=' CMASNAME OF BINCONSC ' Plex='
 PLEXNAME OF BINCONSC ' EOp=' PICZZZ9 ' ECode='
 PYCZZZ9 ' TScope=' TARGSCOPE OF BINCONSC
 ' TAssgn=' TARGRASG OF BINCONSC
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 MOVE SPACES TO W-TEXT.
 STRING ' TDesc=' TARGRDSC OF BINCONSC ' RScope='
 RELSCOPE OF BINCONSC ' RAssgn=' RELRASG OF BINCONSC
 ' RDesc=' RELRDSC OF BINCONSC ' CSys=' CICSNAME OF
 BINCONSC
 DELIMITED BY SIZE INTO W-TEXT END-STRING.
 PERFORM SCRNLOG2.
 EXIT.

138 CICS TS for z/OS: CICSPlex SM Application Programming Guide

 **
 * This subroutine converts coded value to character string *
 **
 XCV2CH.
 * Use new thread for TRANSLATE
 EXEC CPSM CONNECT
 VERSION('0140')
 THREAD(W-FBTTKN)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.

 * Translate internal coded value to character value
 EXEC CPSM TRANSLATE
 OBJECT(CHR8)
 ATTRIBUTE(CHR12)
 FROMCV(CODEV) TOCHAR(CHARV)
 THREAD(W-FBTTKN)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
 END-EXEC.
 EXIT.

 * PROCESSING FOR API FAILURES. *

 NO-CONNECT.
 MOVE 'ERROR CONNECTING TO API.' TO W-MSG-TEXT.
 GO TO SCRNLOG.
 NO-CREATE.
 MOVE 'ERROR CREATING DEFINITION.' TO W-MSG-TEXT.
 GO TO SCRNLOG.
 NO-GET.
 MOVE 'ERROR GETTING RESOURCE TABLE.' TO W-MSG-TEXT.
 GO TO SCRNLOG.
 NO-INSTALL.
 MOVE 'ERROR INSTALLING RESULT SET.' TO W-MSG-TEXT.
 GO TO SCRNLOG.
 NO-TRANSLATE.
 MOVE 'ERROR TRANSLATING ATTRIBUTE.' TO W-MSG-TEXT.
 GO TO SCRNLOG.
 SCRNLOG.
 * DISPLAY W-MSG-TEXT.
 EXEC CICS SEND FROM(W-MSG-TEXT) LENGTH(81) WAIT END-EXEC.
 MOVE W-RESPONSE TO PICZZZ9A.
 MOVE W-REASON TO PICZZZ9B.
 STRING 'RESPONSE=' DELIMITED BY SIZE
 PICZZZ9A DELIMITED BY SIZE
 ' REASON= ' DELIMITED BY SIZE
 PICZZZ9B DELIMITED BY SIZE
 INTO W-MSG-TEXT.
 SCRNLOG2.
 * DISPLAY W-MSG-TEXT.
 EXEC CICS SEND FROM(W-MSG-TEXT) LENGTH(81) WAIT END-EXEC.

 ENDIT.

 * TERMINATE API CONNECTION. *

 EXEC CPSM TERMINATE RESPONSE(W-RESPONSE) REASON(W-REASON)
 END-EXEC.
 EXEC CICS RETURN END-EXEC.
 * GOBACK
 EXIT.
 EYULAPI4-END.

The COBOL version of EYUxAPI4 is written for the CICS environment and can be converted to run in the
MVS/ESA batch environment by commenting the EXEC CICS SEND commands and uncommenting the
preceding language specific output statement.

Appendix B. CICSPlex SM API sample programs 139

140 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2020 141

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 5 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• CICS security
• Developing for external interfaces
• Reference: application developmenth
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 5 , but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
5 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

142 Notices

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/developing_sysprogs.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/interfaces/externalInterfaces.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-systemprogramming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java™ Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 5 , but that
might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Notices 143

https://www.ibm.com/legal/copytrade.shtml

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

144 Notices

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 145

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

146 CICS TS for z/OS: CICSPlex SM Application Programming Guide

Index

A
accessing API from REXX 99
accessing CICSPlex SM 2
accessing resource tables from REXX 100
actions, performing 36
Assembler language programs

compiling 81
language considerations 78
link editing 83
run-time considerations 84
supported environments 2
translating 80
using resource table copy books 71

asynchronous processing
overview 45
using ADDRESS 47
using LISTEN 45
using NOWAIT 46
using RECEIVE 47
using tokens 46

ASYNCREQ records
description 46
retrieving 47

attribute expression
in filter expression 18
in modification expression 35

attributes, resource table
modifying 35
ordering 14
translating

in REXX program 102
availability, CICS release 1

B
BINCONRS resource table records 94, 95
BINCONSC resource table records 94, 95
BINSTERR resource table records 93

C
C programs

compiling 82
link editing 83
run-time considerations 84
running under 79
supported environments 2
translating 81
using resource table copy books 77

C++ programs
compiling 82

CHANGEAGENT attribute
description 38

CHANGEAGREL attribute
description 38

CHANGETIME attribute

CHANGETIME attribute (continued)
description 14, 38
processing with REXX 102

CHANGEUSRID attribute
description 38

CICS definitions
description 12
working with 37

CICS Global User exit programs 79
CICS release availability 1
CICS resources, managed

description 11
resource tables 13

CICSPlex SM API in status program 80
CICSPlex SM API in user-replaceable program 79
CICSPlex SM API task related user exit 67
CICSPlex SM definitions

description 12
resource tables 13
working with 37

CICSPlex SM manager resources
description 12
resource tables 13

CICSPlex SM meta-data
description 13
resource tables 13

CICSPlex SM notifications
description 12
processing 45
resource tables 13

CICSPlex SM tokens 48
COBOL programs

compiling 82
link editing 83
run-time considerations 84
supported environments 2
translating 81
using resource table copy books 74

command responses
testing for

using the command-level interface 87
using the run-time interface 88

types 85
command-level interface

compiling a program 81
environment considerations 78
language considerations 78
link editing a program 82
run-time considerations 84
supported environments 2
translating a program 80
using resource table copy books 69

compatibility of API programs
between environments 6
between releases 6

compiling a command-level program 81
CONNECT command

Index 147

CONNECT command (continued)
using 3

connecting to CICSPlex SM 2
context

description 16
specifying on commands 17

copy books, resource table
accessing 69
Assembler 71
BINCONRS 94
BINCONSC 95
BINSTERR 93
C 77
COBOL 74
data characteristics 70
description 69
format 70
names and aliases 69
PL/I 72

CREATETIME attribute
description 38
processing with REXX 102

CRESxxxx resource tables 67
customizing resource table records 14

D
definitions, CICS

description 12
working with 37

definitions, CICSPlex SM
description 12
resource tables 13
working with 37

dumps
requesting 36

E
ECB field

description 47
environment

compatibility 6
considerations 79
support 1

ERR_RESULT token 103
error codes 109
error handling

in REXX programs 105
using error result sets 92
using FEEDBACK data 89
using MASQRYER data 97
using RESPONSE and REASON 85

error result set
description 92
fields in FEEDBACK record 91
for BAS definitions 94, 95
for installing CICS resources 93
for updating CICS definitions 93

event control block (ECB)
description 47

event, listening for 45
EXPAND command 31

expanding records
in a summarized result set 31

expression
attribute

in filter expression 18
in modification expression 35

filter 17
modification 35
order 15, 34
parameter 36, 38
summary 32

EYU_ attributes 14
EYU_TRACE stem variable 107
EYU9XESV security routine

considerations 5
EYU9XLAP 67
EYUAPI function

using 100
EYUREAS function

using 88
EYURESP function

using 88
EYUTERM function

using 99
EYUVALUE function

using for response and reason 87

F
FEEDBACK attributes

processing with REXX 103
FEEDBACK command

using 89
feedback records

availability 91
description 89
example 92
location 89
retrieving 89

FETCH command
using 24

filter
description 17

filter expression
description 17
generic values 18

filtering result set records 17
function package, REXX 99

G
GROUP command

using 30

I
integrated CICS translator 80

L
language considerations

Assembler 78
PL/I 79

148 CICS TS for z/OS: CICSPlex SM Application Programming Guide

link editing a command-level program 82
LISTEN command

using 45
listening for event 45
local file

disabling 36
LOCATE command

using 27
locating a result set record 27
LOCFILE

disabling 36

M
managed CICS resources

description 11
resource tables 13

managed object
modifying 35
selecting 16
types 11

MARK command
using 28

MASQRYER command
using 97

masqryer records
availability 98
description 97

meta-data, CICSPlex SM
description 13
resource tables 13

migrating an API program 6
modification expression

description 35
modifying CICS definitions 37
modifying CICSPlex SM definitions 37
modifying resource attributes 35

N
notifications, CICSPlex SM

description 12
processing 45
resource tables 13

NOWAIT option, using 46

O
objects, managed by CICSPlex SM

modifying 35
selecting 16
types 11

OBJSTAT records
description 24
in summarized result set 31
retrieving 24

OBJSTAT resource table records 25
ORDER command

using 34
order expression

description 15, 34
ordering result set records 34

P
parameter expression

for CICS definitions 29, 38
for CICSPlex SM definitions 38
when performing an action 36

PERFORM OBJECT command
using parameter expression with 36

performing actions 36
PL/I programs

compiling 82
language considerations 79
link editing 83
run-time considerations 84
supported environments 2
translating 81
using resource table copy books 72

programs, sample
descriptions 10
list of supplied 10
listings 111

R
REASON option

using 85
RECEIVE command

using 47
record pointer, positioning 27
release compatibility 6
resource table

copy books 69
customizing 14
description 13
restricted attributes 14
SCOPE applies field 16
translating attributes

in REXX program 102
using with command-level interface 69
using with REXX 100
view 14

resource table copy books
accessing 69
Assembler 71
BINCONRS 94
BINCONSC 95
BINSTERR 93
C 77
COBOL 74
data characteristics 70
description 69
format 70
names and aliases 69
PL/I 72

RESPONSE option
using 85

responses, command
testing for

using the command-level interface 87
using the run-time interface 88

types 85
restricted resource table attributes 14
result set

commands

Index 149

result set (continued)
commands (continued)

overview 21
creating 20
description 20
positioning record pointer 27
records

customizing 14
filtering 17
locating 27
retrieving 24
sorting 34
summarizing 30

result set, error
description 92
fields in FEEDBACK record 91
for BAS definitions 94, 95
for installing CICS resources 93
for updating CICS definitions 93

retrieving ASYNCREQ records 47
retrieving FEEDBACK records 89
retrieving MASQRYER records 97
retrieving OBJSTAT records 24
retrieving result set records 24
REXX function package 99
REXX processing

CHANGETIME attribute 102
CREATETIME attribute 102
FEEDBACK attribute 103

REXX run-time interface
accessing resource tables 100
EYU_TRACE data 107
function package 99
messages 106
run-time errors 106
STATUS values 106
supported environments 2
translation errors 105
using 99

run-time considerations, command-level 84
run-time errors, REXX 106

S
sample programs

descriptions 10
list of supplied 10
listings 111

scheduling a request 46
scope

description 16
specifying on commands 17

security
considerations 5

selecting managed objects
using context and scope 16
using filter expressions 17

sentinel field
description 47

sorting result set records 34
SPECIFY VIEW command

using 14
status program

CICSPlex SM API 80

STATUS values, interpreting 106
summarized result set

description 30
summarizing result set records 30
summary expression

description 32
summary options

description 32
supported environments 1

T
task related user exit 67
TBUILD command

handling errors 106
using 100

tokens
CICSPlex SM 48
user-defined 46

TPARSE command
handling errors 106
using 100

translating
command-level program 80
resource table attributes

in REXX program 102
RESPONSE and REASON values

using the command-level interface 87
using the run-time interface 88

translation errors, REXX 105

U
UNMARK command

using 28
user tokens 46
user-replaceable program

CICSPlex SM API 79

V
view

description 14

W
Web User Interface

filter expressions 19

X
XICEREQ 79

150 CICS TS for z/OS: CICSPlex SM Application Programming Guide

IBM®

	Contents
	About this PDF
	Chapter 1. An overview of the CICSPlex SM API
	Supported environments and languages
	Available interfaces
	Connecting to CICSPlex SM
	The connection process
	Security considerations

	Compatibility between environments
	Compatibility between releases of CICSPlex SM
	Special considerations for REXX applications
	Accessing resource tables from a new release
	Accessing resource tables from a previous release

	Sample programs

	Chapter 2. Using the CICSPlex SM API
	CICSPlex SM managed objects
	Types of managed objects
	Managed CICS resources
	CICS resource definitions
	CICSPlex SM definitions
	CICSPlex SM manager resources
	CICSPlex SM notifications
	CICSPlex SM meta-data

	CICSPlex SM resource tables
	Building a customized resource table record
	How to create copybooks for customized resource table records

	Selecting managed objects
	Setting the context and scope
	Using filter expressions
	How you can use filter expressions
	How to build a filter expression
	Parameter expressions

	Working with result sets
	An overview of result set commands
	Retrieving records from a result set
	OBJSTAT

	Positioning the record pointer in a result set
	Processing selected records in a result set
	Using MARK and UNMARK
	Identifying the records to be marked
	Identifying records that could not be marked
	How to remove the marks in a result set

	Summarizing the records in a result set
	Specifying summary expressions

	Sorting the records in a result set

	Modifying managed resources
	Modifying resource attributes
	Performing an action against a resource
	Working with CICSPlex SM and CICS definitions
	Creating, updating, and removing definitions
	The CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and CREATETIME attributes
	Using the PARM option
	Special considerations for CSD resources
	Example of using the CICSPlex SM API to install a file definition
	Example of using the CICSPlex SM API to install a CICS connection definition
	Example of using the CICSPlex SM API to install a remote CICS transaction definition
	Example of using the CICSPlex SM API to create an ATOM service definition
	Example of using the CICSPlex SM API to add a CSD group to a list
	Example of using the CICSPlex SM API to delete a CSD resource from a group
	Example of using the CICSPlex SM API to remove a CSD group from a list
	Example of using the CICSPlex SM API to delete a CSD group

	Asynchronous processing
	Using the LISTEN command
	Using the NOWAIT option
	Using tokens to identify a request
	Using the ADDRESS command
	Using the RECEIVE command

	Using CICSPlex SM tokens
	Using metadata resource tables
	ATTR
	ATTRAVA
	METADESC
	METANAME
	METAPARM
	OBJACT
	OBJECT
	PARMAVA

	Using CRESxxxx resource tables
	Querying the CICSPlex SM API exit

	Chapter 3. Writing an EXEC CPSM program
	Using the resource table copy books
	How to access the copy books
	Copybook names and aliases
	Copybook format
	Copybook data characteristics
	Supplied copy books
	Assembler copy books
	PL/I copy books
	COBOL copy books
	C copy books

	Language and environment considerations
	Assembler considerations
	PL/I considerations
	NetView considerations
	User-replaceable programs
	CICS Global User exit programs
	Status programs

	Translating your program
	Specifying the CPSM translator option
	Sample Assembler translation
	Sample PL/I translation
	Sample COBOL translation
	Sample C translation

	Compiling your program
	Assembler considerations
	PL/I considerations
	COBOL considerations
	C and C++ considerations

	Link editing your program
	Assembler considerations
	PL/I, COBOL, and C considerations

	Run-time considerations

	Chapter 4. Dealing with exception conditions
	Default CICSPlex SM exception handling
	Using the RESPONSE and REASON options
	Types of responses
	Normal responses
	Warning responses
	Error responses

	Testing for RESPONSE and REASON
	Using the command-level interface
	Using the REXX run-time interface

	Retrieving FEEDBACK records
	Using the FEEDBACK command
	Evaluating a FEEDBACK record
	Availability of FEEDBACK records
	An example of FEEDBACK for a result set
	Additional processing for BAS
	Evaluating error result set records
	Evaluating BINSTERR resource table records
	Evaluating BINCONRS resource table records
	Evaluating BINCONSC resource table records
	An example of a BAS error result set

	Retrieving MASQRYER records
	Evaluating a MASQRYER record
	Availability of MASQRYER records

	Chapter 5. Writing a REXX program
	Accessing the API environment
	Specifying an API command
	Accessing resource table data
	Translating attribute values
	Processing CHANGEAGENT, CHANGEAGREL, CHANGETIME, CHANGEUSRID, and CREATETIME attributes
	The INSTALLAGENT, INSTALLTIME, INSTALLUSRID, and BASDEFINEVER attributes
	Processing FEEDBACK attributes

	Chapter 6. REXX error handling
	Translation errors
	Run-time errors
	TPARSE and TBUILD errors
	Messages
	EYU_TRACE data

	Appendix A. BINCONRS, BINCONSC, and BINSTERR error codes
	Appendix B. CICSPlex SM API sample programs
	EYU#API1
	EYUCAPI2
	EYUAAPI3
	EYULAPI4

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

