CICS Transaction Server for z/OS
Version 5 Release 5

Using Web Services with CICS

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
631.

This edition applies to the IBM® CICS® Transaction Server for z/0S® Version 5 Release 5 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2020.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

AboUt this PDF......c.ciuiiiiiiiiieiiiiieiiiiiiiiiiietiesietiestatsscssssssssssssssssssssssassssssssssssnnse vii
Chapter 1. CICS and web ServiCes......ccciciieiieiienienieiiiieiiecieiieniesiesiececscssssessassasses 1
CICS aNd SOAP WED SEIVICES ..evuviirierieiriieiieestesteesieesteesieestessseesssessseesssessseesseessseessasssseessessssesssesssseessasnns 3
Message handlers and PIPELINES. ... e eree e e e s raee e e bee e s be e e e bee e s abaeesnbaeenareas 4
SOAP NOUES....eiiieeieertt ettt ettt ste et ste s te e st e s te e bt e sabe e beesabesssaesssessseesssessseensaesaseenseesaseensaesasesnseenes 12
SOAP messages and the application data StruCTUIE.......cocciieecieiceecceeccee e 12
WSDL and the application data StrUCTUIE.......ccccuiiiiciee et e e 15
WSDL and message eXChange PAttEINS......ccciiicciiiiiiieecciieeccee et etee e etee e estee e etae e e stee e sbeeeebaeesbaeenans 16
The wWeb Service BiNAING file.....ccuii e e rre e s ree e e ree e s ree e nneas 17
SOAP architecture and mMessage fOrMat......ciic e re e s e e e s raeeeaes 18
Planning t0 USE SOAP WED SEIVICES.....ciiciieiciieeciieecciiee ettt e ettt e ecte e seteesstteesesteessstessesseesseeessseesnseeannns 26
CICS aNd JSON WED SEIVICES...cccutiriirieirierittestesieestesiteeseesseesteesseesseessseesseesssessseesssesnsessssessesssassseenses 27
ConCePtS Of ISON WED SEIVICES.....uiiiciiieeciiieeiieeectee et e e e este e e sre e eetaeeesaree e asee s saeeesseeesseeesseeenseenn 28
Concepts of RESTTUL JSON WED SEIVICES......uuiiiiiiiciieectteeete ettt eee et stee e s vae e e be e e sbae e s aaeeenns 30
Planning t0 USE JSON WED SEIVICES....cccuiiiiciiiiceie et e ettt ectte e ette e etee e s ette e s etee e s tae e ebee e sbeeesnraeesnsaeesnseas 31

(03 (O = TaTe B4 L O 1S O0c] 1 1 (=1 HR RPN 33
Capabilities of Z/OS CONNECE FOr CICS......ciiciiiciee ettt ere e eeee e etee e e rree e e bee e s bee e s aee e sareeeeanes 37
Chapter 2. Configuring web services in CICS......c.cccieiieieniiniinnieiiniienieiiencacecsncsans 39
Configuring your CICS SyStem fOr WED SEIVICES.....cccuiieiiieeciee ettt et esve e e are e s ar e e s aaeeeas 39
CICS reSOUICES TOr WED SEIVICES....ciiciiiiiiiiiiieeteert ettt ettt e be e st e s be e saaesbeesaaesateensaesasesnsens 39
Configuring CICS to use the IBM MQ tranSPOIt....cccceeiccieeieiieeeieeeeieeceieeceteeesteeesave e eseeeesaeeeeenseeenes 42
Interoperability between the web services assistant and WSRR..........ccoecieeeiieeciieecciee e 48
Creating the Web Services iNfrastrUCTUIE.......ciiciii ittt ee e e te e seatee e erraeenes 49
The Web ServiCes INfrasStrUCTUIE.....civciiicieiieeieete ettt sre s st be e st e e be e saaessbeesaaesneeen 50
Creating the CICS infrastructure for a SOAP SErviCe ProVider.......cccecceeeecieeeiieeecieeecieeeeeeeeeeee e 58
Creating the CICS infrastructure for a SOAP SErviCe reqUESTENuiiiiiieeecieeeeiee e et eereeeeveeeeaaee s 59
Creating the CICS infrastructure for a JSON SErviCe proVider.......cccccveeecveeecieeeeieeeeieeeeeeeeeceeeeecaneens 61
Creating the CICS infrastructure for a non-Java JSON service provider.......cccoeeeceeeeceeeeceeeeecreeeenne 62
Configuring z/OS CoNNECE FOr CICS.....oiiiiiiecciee ettt ettt e ecee e e etee e e sta e e sbeeesstaeesebaeesbaeessaeessaeesnns 63
Pipeling CONfIGUIrAtION fIlES.....uuii ittt e e s tr e e e srae e s ba e e sbaeesbaeesnraeennes 78
APPLCALION NANALEIS ... ettt et eete e e bt e e s bt e e sbteesbaeesbaeessaeesseeesaseeenans 123
LY PN - UaTe | (=T TSR 125
The SOAP MESSAZE NaNALEIS......ci ettt e e e e e s te e e e te e e s bae e e bee e e araeeeataeennees 132
Containers used in the PIPELINE........cc i e e e e e e e aee e aaeas 136
Runtime proCessing fOr WED SEIVICES.....cccuiiiiiieeieeccite ettt ree e bae e aee e ee e e aee e enns 161
Support for Web ServiCes tranSaCtioNS........cccueeicieeiciee ettt et e te e te e e ee e e te e e saae e e aaeeenes 168
Support for MTOM/XOP optimization of binary data........cccccueeeiieeeciieeiiieecee e 176
Support for Web Services AdAreSSING. ..o cciee it cciee et ccte e et esetteeecrreessraeessvaeesssaeesseeesnseeesans 183
SUPPOIE FOF SAMLuiiitiieceeeee ettt e e et e e et e e et e e e bt e e s bteeesteeesteeesasessseeenssnesnseeeanseean 202
Chapter 3. Developing web Services.......ccciiieiieiiniiiiniieniiieiienieiieiieiecscscsennens 203
Creating @ JSON WED SEBIVICE....iciiiicieecieeeie et e e e te e e te e e te e e te e e te e e s abe e e abee e ateeesaseesnnsaeannsaeennsens 203
The CICS JSON @SSISTANT ..iccveirieeiiirterieerte et st e st sste e st e sbeestaesbeesbeesateebaesasessbeesssesnsasnsaesssesnseennes 203
Creating a JSON service provider appliCatioN........cccueecciieeiieeccee e earee s 239
JSON WED SEIVICE rESTICHIONS. ..iiitiiiiiiiiirie ettt ettt sr e sbe e sbe e sbe e baesateesbeesaseennas 252
Mapping and transforming application data and XML........cocoueeeiiieeiiiiciiee e e e 253
The CICS XML @SSISTANT ..eicviiriiiiiiiriieiieentesie et e ste st estestessaeesbesssaesaeesbaesasessbaesssessseesssessseensassssenn 254
Generating mappings from langUage StrUCTUIES.....cccviiiiiieeceeecee ettt et ree e 362

Generating mappings from an XML SChEM@......ouiiiiiiiiiiieeiteete et 364

Transforming application data to XML......uei ittt s vee e s 365
Transforming XML t0 @appliCation data......ccceeveieiiiieiiiieeiiee ettt ee s s e s s bee e e 366
Mapping and transforming application data and JSON........coccciiiriiiiiiiieiniieeeee e eee e 367
The CICS JSON @SSISTANT ..eeiiiiiiiiciee ittt ettt sttt e e st e e st e e sbee s s be e e sbeessbeessbaessaseessasaesnnses 368
Generating mappings from language StrUCTUM......ccuiiiiiieriiieriee ettt be e s be e s sae e 440
Generating mappings from a JSON SCHEM@.....ciivciiiiiiiiiciee e s ae e e s 441
Transforming application data to JSON by linking t0 DFHISON........ccivviieriiierriiienrieenrieesiee e 443
Transforming application data to JSON by using the TRANSFORM DATATOJSON API command . 444
Transforming JSON to application data by linking t0 DFHISON........ccuiviiiiiiiieiiiiienrieesrieesiee s 444
Transforming JSON to application data by using the TRANSFORM JSONTODATA API command . 445
Creating a JSON web service client appliCation........covcveeicieiiiieeniieerciee e seeeseee e 446
Creating @ SOAP WED SEIVICE....ciiiiiiiiiie ittt ettt sate e s eee e s sree e ssaee e ssbee e sbeeesbeassseeesseessnseessnsens 447
The CICS WeD SErvICES aSSISTANT ..iivciiiiciieiiterite ettt sttt e s ste e ssabeessabaesssbeessasaesn 448
Creating a web service provider using the assiStant.......ccueceeiriieiriieriieree st 533
Creating a service provider application from a web service description.......ccecceevrveernieennieesnneenn. 533
Creating a service provider application from a data STtruCtUreccoecceevvcieircieinceeecee e 535
Creating a channel description dOCUMENT......c.iiiiiiiiiie ettt e s 538
Customizing generated web service description dOCUMENTS.......iiiviieiriiieiiiieireeeree e 539
SENAING @ SOAP TAULL.cceiii ittt st e e saee e s bee e sateesebaeessteesaseeesneeesaseeesane 541
Creating a web service requester using the assiStant.......ccccvcieiicieiiciieiiciere e 542
Creating @ Web ServiCe USING t0OLING.....ciiiviiiiiiiiiiie ittt sttt ste e s see e s s te e s saee e s saeeesseeessaeaesnneas 544
Creating your own XML-aware web service appliCationS.......cucuiiiriieiniieiniieiriieseieeesiee e 545
Creating an XML-aware service provider appliCation......coccievcieeicieeiiieeiciee e sseeesseeessneeeseneeesane 545
Creating an XML-aware service requester appliCation.......ccoeceeirreeirieeinieeineecree e seee e 546
USING Java WIth WED SEIVICES ...iiiiiiiiieieiee ettt see s s saee e s saee e s bee e saee e sseeesseeesanens 548
Deploying a Java provider-mode web service in an AXiS2 JVM SEIVET.....ccccuveriveeriieeriieerineesneeens 548
Creating a web service that generates and parses XML.....coccivviieiriienniienniee e e e siee s 550
Creating a web service that has @ COBOL iNterfaCe......coucueiriieiiiieiiiieieieceteseeee st 550
Deploying a requester-mode JAX-WS WED SEIVICE......cccuviriuiiiriiiiniieieieeete e eesereesiee e seeeessene s 551
Deploying a Java provider-mode web service in a Liberty JVM SErvercccvcveevvceernieernceennneen. 551
Validating SOAP MESSAEES. ..iccuttirciieiririeiritieeeiteesittesssrteesttessttessssteessstesssaessseeesseesssseesssseesssseessseesssns 552
Handling invalid and uninitialized application-supplied data........cccocceeirviiiniieinieeee e 553
Example 1: toleration of deCimal fleldS. ... e e e 554

Chapter 4. Support for securing web services.......cccccecireirnireiincreniniinccnccaecneceecnes. 357

Prerequisites for Web ServiCeSs SECUNTY ... e ree e e e e e e e e nre e e s e enraeee s 557
Planning t0 SECUIe SOAP WED SEIVICES.....ciicuiiieiiiieiieeeiteesite et eesiteessite e s streesssaeesbaeesseeessseeessseeesseeens 558
Options fOr SECUNNG SOAP MESSAEES. ...uutiiiiiiiiiieriiteriieessteessrtessteessteessseesssseesssseesssseesssseesssseesssseesns 559
Authentication using a SECUrity TOKEN SEIVICE.....ciiiviiiiiieieieeete ettt e s sre e s be e s sbee s eeas 560
The Trust ClIENT INTEITACE. ...ttt et re e s ee e s ae e s saee e s aaaesnaeas 562
SIZNING OF SOAP MESSAZES...eiicuteiieuieeiiiieeritee ittt setesseteesastessastessasaessastessaseesssseeessseesssseesssseesssseesssseessnses 562
SIBNATUNE AlEOITNMIS. c.eiiiiiieitee et s st e s s bt e s s e e e s e e e s beeesbeeessbeeesaseeesnnes 562
Example of 2 Signed SOAP MESSAEE.....ciiiviiiiiiiiiiiie ittt ettt ssteessteesseeessieeessaeeessreeessseeessseessseesssses 563
CICS support for encrypted SOAP MESSAEES.utiriitiriiieiriieiriiteesiteessrteessreeesssteesssseessseeessssesssseessssaeens 564
ENCryption al8OrTNMS. ..uiiiiieeiee ettt st te e st e e st e e s rte e s nte e seateesenraesnee 564
Example of an encrypted SOAP MESSAZE. ..cccutiiiiiiiriieiiitersiieessieessiteesreesssieessbeeesseesssseessseessssens 564
Configuring RACF for Web ServiCeSs SECUNTY....iiiiiiiriieiiiieieiieeeieesste ettt siae e s siae e s see e s seeessaeeesaeas 565
Configuring provider mode web services for identity propagation......ccccceeeceerrieeeniieennieeenceeesseee e 567
Configuring the pipeline for Web ServiCes SECUNTY......uiivviiiriiiirieiete ettt sae e s see e s 569
Writing @ cUSTOM SECUITY NANALET...ciiuiiiiiieiciee ettt s e s ee e s abe e e saeas 572
Invoking the Trust client from a message handler........oocueivieiiiiiieie e 573
SECUIItY TOI Z/OS CONNECT coeiiiiiie ettt ettt e e etee e e e s erte e e s e ate e e e sentaeeeeesnsaeeeeeenbeneeeenseeaeeennssenens 574
Configuring permissions for SErvices and APIS........coocuiiiriiiiniieinieeeriee et e e e sseeesseeessseeesans 574

Chapter 5. Troubleshooting web services........cccceeruireiiniincinccncicrecresieciesiecsaccaees 377
Troubleshooting SOAP WED SEIVICES....cciuiiiiiieiiiteiite sttt sre e s s bee s s bee e s bee s sbeeesbeessseessasens 577

Diagnosing depPlOYMENT EITOIS....uiiiiiiieiieieie ettt ste e ertte e srree e srtte e sbee e sbee s ssbeeessaeessaeessaeessseessaseessnn 577

Diagnosing service Provider FUNTIME EITOIS. ... iiiiiierrieersieeesireessreessreessreesssteessseessssaesssseesssees 579
Diagnosing service reqUESTEr FUNTIME EITOIS. ... iiiiiierrieereieeeseieessreessteessseessseessseessseessseessseesas 580
DiagnoSiNg MTOM/XOP ©ITOIS...uuiiiecieeieieeieieeiaieeesieessteesseeesseesssssesssssesssssesssssesssssesssssesssssesssssessnne 582
Diagnosing data CONVEISION EITOTS....uiiiiiieriieernieersieessreessteessteessseessseesssseesssseesssseesssseesssseesssseees 583
Troubleshooting JISON WED SEIVICES.....uuiiiiiiiiiieeitecee ettt s e s e e s e e s be e s sabeessbaeeas 585
101\ e [T o] o) a =T a) fl o] o] o] (=T 3 o LSS 585
JSON aSSISTANT PrODLEMIS .. e it e e e ere e e e e s b e e e e s snbeeeessnseaeeseensseneanenses 586
Troubleshooting problems with JISON reqQUESTS......cocciiiicieiiiieirie e s 587
JSON error responses returned 10 the CLENT........cui e e 588
JSON aSSISTANT FELUIMN COUES...ciuiiiiriiiieiieeeiteeett ettt etr e st e e sba e e s baeesbaeessbaeesssaeesaseaean 589

Appendix A. JSON transformer linkable interface containers........cc.ccccceveiennnnee.. 591

DFHISON-JSON CONTAINET.c..iiiiiieeeiciritrtieeeee et eeeeeeeirbrtreeeeeeeeeeesesssssssassresseseesseesassssssssssssesesesessessssssssnnes 591
DFHISON-DATA CONTAINE uttttiieieeiiiiieeiiirtteeeeeeeeeeeeeeeeissrrereeeeeseeesesessssssssssssesseseessesssssssssssssssseeeesssennnnnes 591
DFHISON-TRANSFRM CONTAINET ... cccitrtiiiiieiee ettt e e e e eeeeesesbrrreereeeeeeeesessassssseseeeseeeeessesssssssssnnns 591
DFHISON-JVMSERVR CONtAINET.....ciiiieiciititeiiiieeee e e eeecciateeeeeeee e e e e s eeesssbssaeereeeesesesesssssssssseeseeseessenaes 592
DFHISON-ERROR CONTAINETuuutiiiiiiiiieieiiieeciiiitteeeeee e e e e eeeeessatseeeeeeeeeeesesesssssssssseeeesesssesesssssssseseesseseesss 592
DFHISON-ERRORMSG CONTAINEI . uutttiieieeeiiiieeeiiiirrteeeeeeeeeeeeeeisisrseeeeeeeeeeeseessssssssaeseeeeeesessesssssssssssesseseens 593

Appendix B. Web services SAmPples.....ccceeceiieieiienieceniecicesiecentessecessessscessecssscseces 395

The CICS catalog manager example appliCatioN.......cccvvcieiiieeieiieirieeeree ettt e e sae e s see e s 595
Rl a1l oL L= I=T o7] L ToF=1 o o VSRRt 595
Installing and setting up the base appliCatioN.......ccuiiiiiiiiiieireee e s 597
Running the example application with the BMS interface.......cccccvvvueiriviiiiiieiniieiiieeciee e 603
Web service support for the example appliCationcccuieeiiceciieee e e 604
Configuring the WED CLIENT ..ot e e s e e s sbe e s s beeesaseas 613
Running the web service enabled appliCation ..o 614
Deploying the example appliCatiON. ...ttt e s re e s be e s e e ssseeeas 614
Components of the base apPPliCATION......ciiccciiiei e e e e e e e e e s eere e e e s e raaeeeeas 619
File structures and defiNiTiONS.....c..iii ittt be e s e e s e e s s be e e s abeessaneas 626

10V R=T= T a1 o] LRSS 628
Example HTTP GET request USING @ QUETY STMHNG....ciiiieiiiieiiiieerrteesseesssieeesieessieessseessseesssveessnnees 628
Example HTTP request With @ JISON DOAY...ccccuuiiiiiiciieeccccteee ettt e e e e e e 628

[\ 0] { o =Y - TR . . |

1 L =) Y .). 3/ A

About this PDF

This PDF describes how to use web services in CICS. It is aimed at system programmers who are
responsible for configuring CICS to support web services, and application developers who are responsible
for applications that will be deployed in a web services environment. Before CICS TS V5.4, this PDF was
called the "Web Services Guide".

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF
This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2020 vii

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html

viii CICS TS for z/0OS: Using Web Services with CICS

Chapter 1. CICS and web services

CICS provides support for web services.

What is a web service?

A web service has an interface, which hides the implementation details so that it can be used
independently of the hardware or software platform on which it is implemented, and independently of the
programming language in which it is written. This independence encourages web service based
applications to be loosely coupled, component-oriented, cross-technology implementations. Web
services can be used alone or with other web services to carry out a complex aggregation or a business
transaction.

Web services supported by CICS

CICS supports two distinct web service protocols, the SOAP and the JavaScript Object Notation (JSON)
protocols. These two protocols have distinct characteristics and advantages.

External standards supported by CICS

CICS support for web services conforms to a number of industry standards and specifications. The
supported industry standards and specifications are listed in Supported standards.

Web services terminology

Extensible Markup Language (XML)
A standard for document markup, which uses a generic syntax to mark up data with simple, human-
readable tags. The standard is endorsed by the World Wide Web Consortium (W3C).

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a SOAP message path.

JavaScript Object Notation (JSON)
A lightweight data-interchange format that is based on the object-literal notation of JavaScript. JSON
is programming-language neutral but uses conventions from languages that include C, C++, C#,
Java™, JavaScript, Perl, Python.

JSON schema
A JavaScript Object Notation document that describes the structure and constrains the contents of
other JSON documents.

RESTful
Pertaining to applications and services that conform to Representational State Transfer (REST)
constraints.

Service provider
The collection of software that provides a web service.

Service provider application
An application that is used in a service provider. Typically, a service provider application provides the
business logic component of a service provider.

Service requester
The collection of software that is responsible for requesting a web service from a service provider.

Service requester application
An application that is used in a service requester. Typically, a service requester application provides
the business logic component of a service requester.

Simple Object Access Protocol
See SOAP.

© Copyright IBM Corp. 1974, 2020 1

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/standards/supportedStandards.html
http://www.w3.org

SOAP
Formerly an acronym for Simple Object Access Protocol. A lightweight protocol for exchange of
information in a decentralized, distributed environment. It is an XML-based protocol that consists of
three parts:

- An envelope that defines a framework for describing what is in a message and how to process it
« A set of encoding rules for expressing instances of application-defined data types

- A convention for representing remote procedure calls and responses

SOAP can be used with other protocols, such as HTTP.

The specification for SOAP 1.1 is published at Simple Object Access Protocol (SOAP) 1.1.

The specification for SOAP 1.2 is published here:

SOAP Version 1.2 Part O: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

SOAP intermediary
A SOAP node that is both a SOAP receiver and a SOAP sender and is targetable from within a SOAP
message. It processes the SOAP header blocks targeted at it and forwards a SOAP message toward
an ultimate SOAP receiver.

SOAP message path
The set of SOAP nodes through which a single SOAP message passes. These nodes include the initial
SOAP sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver.

SOAP node
Processing logic that operates on a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

SOAP sender
A SOAP node that transmits a SOAP message.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is responsible for processing the
contents of the SOAP body and any SOAP header blocks targeted at it.

UDDI
See Universal Description, Discovery and Integration.

Universal Description, Discovery and Integration
Universal Description, Discovery and Integration (UDDI) is a specification for distributed web-based
information registries of web services. UDDI is also a publicly accessible set of implementations of the
specification that allow businesses to register information about the web services that they offer, so
that other businesses can find them. The specification is published by OASIS.

Web service
A software system designed to support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-processable format (specifically, Web Service
Description Language, or WSDL).

Web Services Addressing
Web Services Addressing (WS-Addressing) provides a transport-neutral mechanism to address web
services and messages.

The specifications for WS-Addressing are published here:
« Web Services Addressing 1.0 - Core

« Web Services Addressing 1.0 - SOAP Binding

« Web Services Addressing 1.0 - Metadata

« Web Services Addressing- Submission

2 CICS TS for z/0OS: Using Web Services with CICS

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
https://www.oasis-open.org
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/Submission/ws-addressing/

Web Services Atomic Transaction
A specification that provides the definition of an atomic transaction coordination type used to
coordinate activities having an "all or nothing" property.

The specification is published by OASIS at Web Services Atomic Transaction.

Web service binding file
A file, associated with a WEBSERVICE resource, that contains information that CICS uses to map data
between input and output messages, and application data structures.

Web service description
An XML document by which a service provider communicates the specifications for invoking a web
service to a service requester. Web service descriptions are written in Web Service Description
Language (WSDL).

Web Service Description Language
An XML application for describing web services. It is designed to separate the descriptions of the
abstract functions offered by a service and the concrete details of a service, such as how and where
that function is offered.

The specification is published at Web Services Description Language (WSDL).

Web Services Security
A set of enhancements to SOAP messaging that provides message integrity and confidentiality. The
specification is published by OASIS at Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004).

WS-Atomic Transaction
See Web Services Atomic Transaction.

WS-I Basic Profile
A set of nonproprietary web services specifications, with clarifications and amendments to those
specifications, which, taken together, promote interoperability between different implementations of
web services. The profile is defined by the Web Services Interoperability Organization (WS-I) and
version 1.0 is available at Web Services Interoperability Organization (WS-I) Basic Profile 1.0.

WSDL
See Web Service Description Language.

WSS
See Web Services Security.

XML
Extensible Markup Language.

The specifications for XML are published here:

SOAP Version 1.2 Part 0: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

XML namespace
A collection of names, identified by a URI reference, that are used in XML documents as element
types and attribute names.

XML schema
An XML document that describes the structure and constrains the contents of other XML documents.

XML schema definition language
An XML syntax for writing XML schemas, recommended by the World Wide Web Consortium (W3C).

CICS and SOAP web services

CICS supports two different approaches to the deployment of your CICS applications in a web services
environment. One approach enables rapid deployment, with the least amount of programming effort; the
other approach gives you complete flexibility and control over your web service applications, using code

Chapter 1. CICS and web services 3

https://www.oasis-open.org
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://www.w3.org/TR/wsdl
https://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.w3.org

that you write to suit your particular needs. Both approaches are underpinned by an infrastructure
consisting of one or more pipelines and message handler programs that operate on web service requests
and responses.

When you deploy your CICS applications in a web services environment you can choose from the
following options:

« Use the CICS web services assistant to help you deploy an application with the least amount of
programming effort.

For example, if you want to expose an existing application as a web service, you can start with a high-
level language data structure and generate the web services description. Alternatively, if you want to
communicate with an existing web service, you can start with its web service description and generate a
high-level language structure that you can use in your program.

The CICS web services assistant also generates the CICS resources that you need to deploy your
application. And when your application runs, CICS transforms your application data into a SOAP
message on output and transforms the SOAP message back to application data on input.

« Take complete control over the processing of your data by writing your own code to map between your
application data and the message that flows between the service requester and provider.

For example, if you want to use non-SOAP messages within the web service infrastructure, you can
write your own code to transform between the message format and the format used by your
application.

Whichever approach you follow, you can use your own message handlers to perform additional
processing on your request and response messages, or use CICS-supplied message handlers that are
designed especially to help you process SOAP messages.

Message handlers and pipelines

A message handler is a program in which you can perform your own processing of web service requests
and responses. A pipeline is a set of message handlers that are executed in sequence.

Phases in the operation of a pipeline
There are two distinct phases in the operation of a pipeline:

Request phase
During the request phase, CICS invokes each handler in the pipeline in turn. Each message handler
can process the request before returning control to CICS.

Response phase
Following the request phase is the response phase, during which CICS again invokes each handler in
turn, but with the sequence reversed. That is, the message handler that is invoked first in the request
phase, is invoked last in the response phase. Each message handler can process the response during
this phase.

Not every request is succeeded by a response; some applications use a one-way message flow from
service requester to provider. In this case, although there is no message to be processed, each
handler is invoked in turn during the response phase.

Figure 1 on page 5 shows a pipeline of three message handlers:

4 CICS TS for z/OS: Using Web Services with CICS

provider

pipeling
cics_mtom_
| handler
I
dihmtom_
configuration
—{ transport
default_ default_http_ | | default_meq_ named_
transport_ transport_ tranzport_ transpart_
handler_list handler_list handler_list antry
transport_
handlar handler handler narme handler_
list
Ll cervice handler
[|
sarvice_ terminal_
handler_ handler
list
| | |
cics cics
- — WSs8
handler spap 1.1_ soap_1.2_ handler
handler handler
—t apphandler]
cics cics_ cics_ cics_
handiar soap_1.1_ soap 1.2 soap 1.1 soap_ 1.2
service_ harndlar handler handler_java handler_java
parametar_
list

Figure 1. Example: A generic CICS pipeline

In this example, the handlers are executed in the following sequence:
In the request phase

1. Handler 1
2. Handler 2
3. Handler 3

Chapter 1. CICS and web services 5

In the response phase

1. Handler 3
2. Handler 2
3. Handler 1

Transition between the phases

In a service provider, the transition between the phases normally occurs in the last handler in the pipeline
(known as the terminal handler) which absorbs the request, and generates a response; in a service
requester, the transition occurs when the request is processed in the service provider. However, a
message handler in the request phase can force an immediate transition to the response phase, and an
immediate transition can also occur if CICS detects an error.

A message handler can modify the message, or can leave it unchanged. For example:

« A message handler that performs encryption and decryption will receive an encrypted message on
input, and pass the decrypted message to the next handler. On output, it will do the opposite: receive a
plain text message, and pass an encrypted version to the following handler.

- A message handler that performs logging will examine a message, and copy the relevant information
from that message to the log. The message that is passed to the next handler is unchanged.

Important: If you are familiar with the SOAP feature for CICS TS, you should be aware that the structure
of the pipeline in this release of CICS is not the same as that used in the feature.

Interrupting the flow

During processing of a request, a message handler can decide not to pass a message to the next handler,
but can, instead, generate a response. Normal processing of the message is interrupted, and some
handlers in the pipeline are not invoked.

Figure 2 on page 6 shows an example pipeline that contains three handlers, handler 1, handler 2 and
handler 3. Suppose that handler 2 is responsible for performing security checks.

Request
" Handler Handler Handler
1

—
Responsa

Figure 2. Example: Interrupting the pipeline flow

If the request does not bear the correct security credentials, then, instead of passing the request to
handler 3, handler 2 suppresses the request and constructs a suitable response. The pipeline is now in
the response phase, and when handler 2 returns control to CICS, the next handler invoked is handler 1,
and handler 3 is bypassed altogether.

A handler that interrupts the normal message flow in this way must only do so if the originator of the
message expects a response; for example, a handler should not generate a response when an application
uses a one-way message flow from service requester to provider.

Transport-related handlers

CICS supports the use of two transport mechanisms between the web service requester and the provider.
In some cases, you might require different message handlers to be invoked, depending upon which
transport mechanism is in use.

For example, you might want to include message handlers that perform encryption of parts of your
messages when you are using the HTTP transport to communicate on an external network. But encryption
might not be required when you are using the MQ transport on a secure internal network.

6 CICS TS for z/OS: Using Web Services with CICS

To support this, you can configure your pipeline to specify handlers that are invoked only when a
particular transport (HTTP or MQ) is in use. For a service provider, you can be even more specific, and
specify handlers that are invoked only when a particular named resource (a TCPIPSERVICE for the HTTP
transport, a QUEUE for the MQ transport) is in use. This is illustrated in Figure 3 on page 7.

Request
—* Handler [~
WebSphere MQ 1 R
- | “H"\-\. "‘*-\-__H
I N - .
Fesponse . _w Handlar '| Handler
] 4 I 5
Request -~ A ‘
— - -
HTTP Handlar Handler -~
- 2 7 3 ..r"x
Response

Figure 3. Example: A pipeline with transport-related handlers

In this example, which applies to a service provider:

- Handler 1 is invoked for messages that use the MQ transport.

- Handlers 2 and 3 are invoked for messages that use the HTTP transport.
- Handlers 4 and 5 are invoked for all messages.

- Handler 5 is the terminal handler.

A service provider pipeline

In a service provider pipeline, CICS receives a request, which is passed through a pipeline to the target
application program. The response from the application is returned to the service requester through the
same pipeline.

When CICS is in the role of service provider, it performs the following operations:

1. Receive the request from the service requester.

2. Examine the request, and extract the contents that are relevant to the target application program.
3. Invoke the application program, passing data extracted from the request.

4. When the application program returns control, construct a response, using data returned by the
application program.

5. Send a response to the service requester.

Figure 4 on page 8 illustrates a pipeline of three message handlers in a service provider setting:

Chapter 1. CICS and web services 7

Service
requester

CICS Transaction Server

CICS Web services

Request R R
> > > . CICS
Harlldler Han2dler Han3dler P > @ Application
« < «] program
Response
non-terminal terminal
handlers handler

Figure 4. A service provider pipeline

8 CICS TS for z/OS: Using Web Services with CICS

1. CICS receives a request from the service requester. It passes the request to message handler 1.

2. Message handler 1 performs some processing, and passes the request to handler 2 (To be precise, it
returns control to CICS, which manages the pipeline. CICS then passes control to the next message
handler).

3. Message handler 2 receives the request from handler 1, performs some processing, and passes the
request to handler 3.

4. Message handler 3 is the terminal handler of the pipeline. It uses the information in the request to
invoke the application program. It then uses the output from the application program to generate a
response, which it passes back to handler 2.

5. Message handler 2 receives the response from handler 3, performs some processing, and passes it to
handler 1.

6. Message handler 1 receives the response from handler 2, performs some processing, and returns the
response to the service requester.

A service requester pipeline

In a service requester pipeline, an application program creates a request, which is passed through a
pipeline to the service provider. The response from the service provider is returned to the application
program through the same pipeline.

When CICS is in the role of service requester, it performs the following operations:

1. Use data provided by the application program to construct a request.

2. Send the request to the service provider.

3. Receive a response from the service provider.

4. Examine the response, and extract the contents that are relevant to the original application program.
5. Return control to the application program.

Figure 5 on page 10 illustrates a pipeline of three message handlers in a service requester setting:

Chapter 1. CICS and web services 9

CICS Transaction Server

CICs
Application

v

program

CICS Web services
Request
Handler Handler Handler
1 2 3
< <+ <

Response
non-terminal terminal
handlers handler

Figure 5. A service requester pipeline

10 CICS TS for z/OS: Using Web Services with CICS

Service
provider

1. An application program creates a request.

2. Message handler 1 receives the request from the application program, performs some processing, and
passes the request to handler 2 (To be precise, it returns control to CICS, which manages the pipeline.
CICS then passes control to the next message handler).

3. Message handler 2 receives the request from handler 1, performs some processing, and passes the
request to handler 3.

4. Message handler 3 receives the request from handler 2, performs some processing, and passes the
request to the service provider.

5. Message handler 3 receives the response from the service provider, performs some processing, and
passes it to handler 2.

6. Message handler 2 receives the response from handler 3, performs some processing, and passes it to
handler 1.

7. Message handler 1 receives the response from handler 2, performs some processing, and returns the
response to the application program.

CICS pipelines and SOAP

The pipeline which CICS uses to process web service requests and responses is generic, in that there are
few restrictions on what processing can be performed in each message handler. However, many web
service applications use SOAP messages, and any processing of those messages should comply with the
SOAP specification. Therefore, CICS provides special SOAP message handler programs that can help you
to configure your pipeline as a SOAP node.

« A pipeline can be configured for use in a service requester, or in a service provider:

— Asservice requester pipeline is the initial SOAP sender for the request, and the ultimate SOAP receiver
for the response

— A service provider pipeline is the ultimate SOAP receiver for the request, and the initial SOAP sender
for the response

You cannot configure a CICS pipeline to function as a SOAP intermediary.

A service requester pipeline can be configured to support SOAP 1.1 or SOAP 1.2, but not both. However,
a service provider pipeline can be configured to support both SOAP 1.1 and SOAP 1.2. Within your CICS
system, you can have many pipelines, some of which support SOAP 1.1 or SOAP 1.2 and some of which
support both.

« You can configure a CICS pipeline to have more than one SOAP message handler.

« The CICS-provided SOAP message handlers can be configured to invoke one or more user-written
header-handling routines.

« The CICS-provided SOAP message handlers can be configured to enforce some aspects of compliance
with the WS-I Basic Profile Version 1.1, and to enforce the presence of particular headers in the SOAP
message.

The SOAP message handlers, and their header handling routines are specified in the pipeline
configuration file.

The SOAP message path
The SOAP message path is the set of SOAP nodes through which a single SOAP message passes,
including the initial SOAP sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver

In the simplest case, a SOAP message is transmitted between two nodes; that is, from a SOAP sender to a
SOAP receiver. However, in more complex cases, messages can be processed by SOAP intermediary
nodes, which receive a SOAP message and then send it to the next node. Figure 6 on page 12 shows an
example of a SOAP message path, in which a SOAP message is transmitted from the initial SOAP sender
node to the ultimate SOAP receiver node, passing through two SOAP intermediary nodes on its route.

Chapter 1. CICS and web services 11

.--"'-_-"“\\. f'__.--"'"-_-\""‘x .
/ SOAP / Ultimate
||inlermediar1.r| | SOARP |

\ ' receiver /
./ N

- e
ey S ~

n,

A &
SOAP S04P S0OAP
massage massage message
I ™, -
— M e ___//'
Kf’ '{“x g H\\
I' Initial % I."'r SOAP
SOAP | | intermediary |
sender \ 1

S L el

Figure 6. An example of a SOAP message path

A SOAP intermediary is both a SOAP receiver and a SOAP sender. It can, and in some cases must, process
the header blocks in the SOAP message, and it forwards the SOAP message toward its ultimate receiver.

The ultimate SOAP receiver is the final destination of a SOAP message. As well as processing the header
blocks, it processes the SOAP body. In some circumstances, a SOAP message might not reach an ultimate
SOAP receiver; for example, because of a problem at a SOAP intermediary.

SOAP nodes
A SOAP node is the processing logic that operates on a SOAP message.

A SOAP node can perform these operations:

e Transmit a SOAP message
« Receive a SOAP message
« Process a SOAP message
- Relay a SOAP message

A SOAP node can be one of these types:

SOAP sender
A SOAP node that transmits a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a SOAP message path.

SOAP intermediary
A SOAP intermediary is both a SOAP receiver and a SOAP sender, targetable from within a SOAP
message. It processes the SOAP header blocks targeted at it and acts to forward a SOAP message
toward an ultimate SOAP receiver.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It processes the contents of the
SOAP body and any SOAP header blocks targeted at it. In some circumstances, a SOAP message

might not reach an ultimate SOAP receiver; for example, because of a problem at a SOAP
intermediary.

SOAP messages and the application data structure

In many cases, the CICS web services assistant can generate the code to transform the data between a
high-level data structure used in an application program, and the contents of the <Body> element of a

12 CICS TS for z/OS: Using Web Services with CICS

SOAP message. In these cases, when you write your application program, you do not need to parse or
construct the SOAP body; CICS will do this for you.

In order to transform the data, CICS needs information, at run time, about the application data structure,
and about the format of the SOAP messages. This information is held in two files:

« The web service binding file

This file is generated by the CICS web services assistant from an application language data structure,
using utility program DFHLS2WS, or from a web service description, using utility program DFHWS2LS.
CICS uses the binding file to generate the resources used by the web service application, and to
perform the mapping between the application's data structure and the SOAP messages.

« The web service description

This may be an existing web service description, or it may be generated from an application language
data structure, using utility program DFHLS2WS. CICS uses the web service description to perform full
validation of SOAP messages.

Figure 7 on page 13 shows where these files are used in a service provider.

S0AFP envelope HLL data structure interface
! i
! r .
""-,'I CICS Transaction Server ;“a
l"'.I\I I.."lll
H CICS Web services /
i
b |
'l
Service Hegues! w Pinaling irl " Data ru:'J o C!GS.
requaster | P —A mapper ,J' Application
Response “ ' W —< program
s -
Web Web
sarvice sarnvice
// description| | binding
4
A

SOAP body interface

Figure 7. Mapping the SOAP body to the application data structure in a service provider

A message handler in the pipeline (typically, a CICS-supplied SOAP message handler) removes the SOAP
envelope from an inbound request, and passes the SOAP body to the data mapper function. This uses the

web service binding file to map the contents of the SOAP body to the application's data structure. If full
validation of the SOAP message is active, then the SOAP body is validated against the web service
description. If there is an outbound response, the process is reversed.

Figure 8 on page 14 shows where these files are used in a service requester.

Chapter 1. CICS and web services 13

EXEC CICS INVOKE WEBSERVICE
with HLL data structure interface

/

CICS Transaction Server ;’I

;

.-'I-rl'
/

CICS
Application

-

-I’ Data
"1 T mappear [,
program] op 1

.--"f ‘K‘H

M L

f;" CICS Web services

Pipeline

Web Wab
service senvice
description| | binding N

SOAP envelope

/
Request

" Service
provider
I Responze

S0OAP body intarface

Figure 8. Mapping the SOAP body to the application data structure in a service requester

For an outbound request, the data mapper function constructs a SOAP body from the application's data
structure, using information from the web service binding file. A message handler in the pipeline
(typically, a CICS-supplied SOAP message handler) adds the SOAP envelope. If there is an inbound
response, the process is reversed. If full validation of the SOAP message is active, then the inbound SOAP
body is validated against the web service description.

In both cases, the execution environment that allows a particular CICS application program to operate in
a web services setting is defined by three objects. These are the pipeline, the web service binding file, and
the web service description. The three objects are defined to CICS as attributes of the WEBSERVICE
resource definition.

There are some situations in which, even though you are using SOAP messages, you cannot use the
transformation that the CICS web services assistant generates:

« When the same data cannot be represented in the SOAP message and in the high-level language.

All the high-level languages that CICS supports, and XML Schema, support a variety of different data
types. However, there is not a one-to-one correspondence between the data types used in the high-
level languages, and those used in XML Schema, and there are cases where data can be represented in
one, but not in the other. In this situations, you should consider one of the following;:

— Change your application data structure. This may not be feasible, as it might entail changes to the
application program itself.

— Construct a wrapper program, which transforms the application data into a form that CICS can then
transform into a SOAP message body. If you do this, you can leave your application program
unchanged. In this case CICS web service support interacts directly with the wrapper program, and
only indirectly with the application program.

- When your application program is in a language which is not supported by the CICS web services
assistant.

In this situation, you should consider one of the following:

— Construct a wrapper program that is written in one of the languages that the CICS web services
assistant does support (COBOL, PL/I, C or C++).

— Instead of using the CICS web services assistant, write your own program to perform the mapping
between the SOAP messages and the application program's data structure.

14 CICS TS for z/OS: Using Web Services with CICS

WSDL and the application data structure

A web service description contains abstract representations of the input and output messages used by
the service. CICS uses the web service description to construct the data structures used by application
programs. At run time, CICS performs the mapping between the application data structures and the
messages.

The description of a web service contains, among other things:
- One or more operations
 For each operation, an input message and an optional output message

« For each message, the message structure, defined in terms of XML data types. Complex dat