
CICS Transaction Server for z/OS
Version 5 Release 5

User Exit Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
245.

This edition applies to the IBM® CICS® Transaction Server for z/OS® Version 5 Release 5 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this PDF...vii

Chapter 1. Global user exit points (by function).. 1
Global user exit points (in alphabetical order)..1
Activity keypoint program exit (XAKUSER)... 10
Application association data exit in the AP domain (XAPADMGR)...11
Basic mapping support exits (XBMIN, XBMOUT)... 12

Exit XBMIN..12
Exit XBMOUT.. 13
The field element table structure.. 13
Programming the XBMIN exit.. 15
Programming the XBMOUT exit... 15

Bridge facility exit XFAINTU.. 16
Data tables management exits XDTRD, XDTAD, and XDTLC..17

Exit XDTRD..18
Exit XDTAD..19
Exit XDTLC.. 20

DBCTL interface control program exit (XXDFA).. 21
DBCTL tracking program exits (XXDFB, XXDTO)...22

Exit XXDFB..22
Exit XXDTO..23

Dispatcher domain exits XDSBWT and XDSAWT.. 23
Exit XDSBWT...23
Exit XDSAWT...24

DL/I interface program exits XDLIPRE and XDLIPOST...24
Exit XDLIPRE.. 25
Exit XDLIPOST.. 27
Example use of global user exit XDLIPRE... 28

Dump domain exits XDUREQ, XDUREQC, XDUCLSE, and XDUOUT... 34
Exit XDUREQ...34
Exit XDUREQC...36
Exit XDUCLSE..38
Exit XDUOUT...39

Enqueue EXEC interface program exits XNQEREQ and XNQEREQC..40
Exit XNQEREQ...41
Exit XNQEREQC.. 42
The command-level parameter structure... 43

Event capture exit XEPCAP..46
EXEC interface program exits XEIIN, XEIOUT, XEISPIN, and XEISPOUT..46

The command parameter list...47
Bypassing commands.. 48
Exit XEIIN... 48
Exit XEISPIN... 49
Exit XEIOUT.. 49
Exit XEISPOUT..50

Front End Programming Interface exits XSZARQ and XSZBRQ... 51
XSZBRQ.. 51
XSZARQ.. 52
The UEPSZACT and UEPSZACN exit-specific parameters.. 53
Using XMEOUT to control message output... 54

 iii

File control domain exits, XFCFRIN and XFCFROUT.. 54
Exit XFCFRIN.. 55
Exit XFCFROUT... 61

File control EXEC interface API exits XFCREQ and XFCREQC.. 66
The command-level parameter structure... 67
Modifying fields in the command-level parameter structure... 71
Modifying the EID... 72
Use of the parameter UEPFSHIP... 74
EIB (EXEC interface block)...74
Example of how XFCREQ and XFCREQC can be used... 74
Exit XFCREQ..75
Exit XFCREQC... 76

File control EXEC interface SPI exits XFCAREQ and XFCAREQC..77
Exit XFCAREQ... 78
Exit XFCAREQC... 79
The command-level parameter structure... 80
Modifying fields in the command-level parameter structure... 87
Modifying the EID... 91
Modifying user arguments..91

File control file state program exits XFCSREQ and XFCSREQC..92
Exit XFCSREQ... 93
Exit XFCSREQC... 96

File control open/close program exit XFCNREC... 99
XFCNREC exit with a backout recovery setting mismatch..100
Using XFCNREC with a BWO mismatch... 101

File control quiesce receive exit, XFCVSDS.. 101
Exit XFCVSDS..102

File control quiesce send exit XFCQUIS... 103
File control recovery program exits XFCBFAIL, XFCBOUT, XFCBOVER, and XFCLDEL......................... 104

Order of invocation...104
Enabling the exit programs.. 105
Exit XFCBFAIL, file control backout failure exit.. 105
Exit XFCBOUT, file control backout exit.. 108
Exit XFCBOVER, file control backout override exit..109
Exit XFCLDEL, file control logical delete exit...110

File control RLS coexistence program exit XFCRLSCO...111
Good morning message program exit (XGMTEXT)... 113
HTTP client open and send exits: XWBAUTH, XWBOPEN and XWBSNDO.. 113

HTTP client send exit XWBAUTH...114
Typical use of the LDAP XPI functions by XWBAUTH... 116
HTTP client open exit XWBOPEN...116
HTTP client send exit XWBSNDO...118

Intersystem communication program exits, XISCONA, XISLCLQ, and XISQLCL.................................. 119
The XISCONA exit.. 119
The XISLCLQ exit..122
The XISQLCL exit..123

Interval control program exits XICREQ, XICEXP, and XICTENF...124
Exit XICREQ..124
Exit XICEXP.. 125
Exit XICTENF.. 126

Interval control EXEC interface program exits (XICEREQ, XICERES, and XICEREQC)..........................126
Parameters passed to each of the exits.. 127
Exit XICEREQ..127
Exit XICERES.. 128
Exit XICEREQC... 129
The command-level parameter structure... 132

Loader domain exits XLDLOAD and XLDELETE...143
Exit XLDLOAD... 144

iv

Exit XLDELETE.. 145
Log manager domain exit XLGSTRM... 146

Exit XLGSTRM...147
Example of how to use the XLGSTRM exit...148

Message domain exit XMEOUT... 148
Exit XMEOUT.. 150

Monitoring domain exit (XMNOUT)... 152
Exit XMNOUT.. 152

Pipeline domain exits.. 153
Exit XWSPRRWI..155
Exit XWSPRROI.. 156
Exit XWSPRROO... 157
Exit XWSPRRWO...158
Exit XWSRQRWO.. 159
Exit XWSRQROO...160
Exit XWSRQROI.. 160
Exit XWSRQRWI... 161
Exit XWSSRRWO...162
Exit XWSSRROO... 163
Exit XWSSRROI.. 164
Exit XWSSRRWI..164

Program control program exits (XPCREQ, XPCERES, XPCREQC, XPCFTCH, XPCHAIR, XPCTA, and
XPCABND)...165
Program control exits XPCREQ, XPCERES, XPCREQC...165
Exit XPCFTCH... 175
Exit XPCHAIR... 176
Exit XPCTA..178
Exit XPCABND.. 180

Resource manager interface program exits (XRMIIN, XRMIOUT)...180
Exit XRMIIN..181
Exit XRMIOUT...181

Resource management installation and discard exit XRSINDI..182
Exit XRSINDI.. 183

Signon and signoff exits XSNON, XSNOFF, and XSNEX..188
Exit XSNON...189
Exit XSNOFF... 190
Exit XSNEX..190

Statistics domain exit XSTOUT..191
Exit XSTOUT... 191

System recovery program exit XSRAB.. 192
System termination program exit XSTERM...195
Temporary storage domain exits (XTSQRIN, XTSQROUT, XTSPTIN, XTSPTOUT)................................ 196

Exit XTSQRIN..196
Exit XTSQROUT.. 197
Exit XTSPTIN.. 198
Exit XTSPTOUT... 200

Temporary storage EXEC interface program exits XTSEREQ and XTSEREQC.......................................201
Exit XTSEREQ... 201
Exit XTSEREQC... 202
The command-level parameter structure... 203

Terminal allocation program exit XALCAID.. 209
Terminal control program exits (XTCIN, XTCOUT, XTCATT).. 210

Exit XTCIN.. 210
Exit XTCOUT... 211
Exit XTCATT..211

‘Terminal not known’ condition exits XALTENF and XICTENF...212
The exits... 212
Exit XALTENF..213

 v

Exit XICTENF.. 215
Transaction manager domain exit XXMATT..217
Transient data program exits (XTDREQ, XTDIN, XTDOUT).. 218

Exit XTDREQ... 218
Exit XTDIN.. 219
Exit XTDOUT... 220

Transient data EXEC interface program exits XTDEREQ and XTDEREQC..220
Exit XTDEREQ... 221
Exit XTDEREQC...222
The command-level parameter structure... 223

User log record recovery program exits XRCINIT and XRCINPT... 227
Coding the exit programs...228
Enabling the exit programs.. 229
Exit XRCINIT.. 229
Exit XRCINPT..229

SNA LU management program exit (XZCATT).. 230
SNA working-set module exits (XZCIN, XZCOUT, XZCOUT1, and XZIQUE).. 231

Exit XZCIN.. 231
Exit XZCOUT... 231
Exit XZCOUT1... 232
XZIQUE exit for managing MRO and APPC intersystem queues.. 232
Designing an XZIQUE global user exit program.. 237

XISQUE exit for managing IPIC intersystem queues... 238
Exit XISQUE.. 238
Using an XISQUE global user exit program... 240
Statistics fields in DFHISRDS...241
Designing an XISQUE global user exit program.. 241

XRF request-processing program exit XXRSTAT..242
Exit XXRSTAT... 243

Notices..245

Index.. 251

vi

About this PDF

This PDF is a reference of the global user exit points that are provided to allow CICS to transfer control to
a global user exit program that you have written. To find out how to use these global user exit points in
programs, see the PDF called Developing CICS System Programs. Before CICS TS V5.4, the information in
this PDF was in the Customization Guide.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2020 vii

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html

viii CICS TS for z/OS: User Exit Reference

Chapter 1. Global user exit points (by function)
The exit points are grouped according to their functional relationships.

Grouping is generally based on the CICS module or domain in which the exit points occur. However,
where exit points in different modules serve a similar function, the exits are grouped under a generic
name. The groups of exits are presented in alphabetical order of module or generic name.

The following information is provided for each global user exit point:

• Exit identifier
• Exit location
• DFHUEPAR parameters, if any, that are unique to the exit
• Valid return codes
• XPI calls that can be invoked.

Global user exit points (in alphabetical order)
For each exit, this table shows the exit name, the module or domain, where or when the exit is invoked,
and includes a link to additional information.

Table 1. Alphabetical list of global user exit points

Exit name Module or domain Where or when invoked Topic

XAKUSER Activity keypoint
program

Immediately before the 'end of keypoint' record is
written.

“Activity
keypoint
program exit
(XAKUSER)” on
page 10

XALCAID Terminal allocation
program

Whenever an AID with data is canceled. “Terminal
allocation
program exit
XALCAID” on
page 209

XALTENF Terminal allocation
program

When an ATI request from transient data or
interval control requires a terminal that is
unknown in this system.

“Exit XALTENF”
on page 213

XAPADMGR Application domain When a non-system task that has no inherited
Associated Data Origin Descriptor data is
attached.

“Application
association data
exit in the AP
domain
(XAPADMGR)”
on page 11

XBMIN Basic Mapping
Support

When an input mapping operation completes
successfully.

“Exit XBMIN” on
page 12

XBMOUT Basic Mapping
Support

When a page of output has been built
successfully.

“Exit XBMOUT”
on page 13

XDLIPOST DL/I interface
program

On exit from the DL/I interface program. “Exit XDLIPOST”
on page 27

© Copyright IBM Corp. 1974, 2020 1

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XDLIPRE DL/I interface
program

On entry to the DL/I interface program. “Exit XDLIPRE”
on page 25

XDSAWT Dispatcher domain After an operating system wait. “Exit XDSAWT”
on page 24

XDSBWT Dispatcher domain Before an operating system wait. “Exit XDSBWT”
on page 23

XDTAD Data tables
management

When a write request is issued to a data table. “Exit XDTAD” on
page 19

XDTLC Data tables
management

At the completion of loading of a data table. “Exit XDTLC” on
page 20

XDTRD Data tables
management

During the loading of a data table, whenever a
record is retrieved from the source data set.

“Exit XDTRD” on
page 18

XDUCLSE Dump domain After the domain closes a transaction dump data
set.

“Exit XDUCLSE”
on page 38

XDUOUT Dump domain Before the domain writes a record to the
transaction dump data set.

“Exit XDUOUT”
on page 39

XDUREQ Dump domain Before the domain takes a system or transaction
dump.

“Exit XDUREQ”
on page 34

XDUREQC Dump domain After a system or transaction dump has been
taken (or failed or been suppressed).

“Exit XDUREQC”
on page 36

XEIIN EXEC interface
program

Before any EXEC CICS API or SPI command runs. “Exit XEIIN” on
page 48

XEIOUT EXEC interface
program

After any EXEC CICS API or SPI command runs. “Exit XEIOUT”
on page 49

XEISPIN EXEC interface
program

Before any EXEC CICS SPI command except EXEC
CICS ENABLE, EXEC CICS DISABLE, EXEC CICS
EXTRACT EXIT, EXEC CICS PERFORM DUMP, or
EXEC CICS RESYNC ENTRYNAM runs.

“Exit XEISPIN”
on page 49

XEISPOUT EXEC interface
program

After any EXEC CICS SPI command except EXEC
CICS ENABLE, EXEC CICS DISABLE, EXEC
CICS EXTRACT EXIT, EXEC CICS PERFORM
DUMP, or EXEC CICS RESYNC ENTRYNAME runs.

“Exit XEISPOUT”
on page 50

XEPCAP Event capture Before an event is captured by CICS event
processing.

“Event capture
exit XEPCAP” on
page 46

XFAINTU 3270 bridge facility
management
program

When a bridge facility is created or deleted. “Bridge facility
exit XFAINTU”
on page 16

XFCAREQ File control EXEC
interface program

Before CICS processes a file control SPI request. “File control
EXEC interface
SPI exits
XFCAREQ and
XFCAREQC” on
page 77

2 CICS TS for z/OS: User Exit Reference

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XFCAREQC File control EXEC
interface program

After a file control SPI request has completed. “File control
EXEC interface
SPI exits
XFCAREQ and
XFCAREQC” on
page 77

XFCBFAIL File control recovery
control program

When an error occurs during the backout of a
UOW.

“Exit XFCBFAIL,
file control
backout failure
exit” on page
105

XFCBOUT File control recovery
control program

When CICS is about to back out a file update. “Exit XFCBOUT,
file control
backout exit” on
page 108

XFCBOVER File control recovery
control program

When CICS is about to skip backout of a UOW
because a batch program has overridden RLS
retained lock protection and opened a data set for
batch processing.

“Exit XFCBOVER,
file control
backout override
exit” on page
109

XFCFRIN File control domain Before a file control request runs. “Exit XFCFRIN”
on page 55

XFCFROUT File control domain After a file control request runs. “Exit
XFCFROUT” on
page 61

XFCLDEL File control recovery
control program

When backing out writes to a VSAM ESDS or a
BDAM data set.

“Exit XFCLDEL,
file control
logical delete
exit” on page
110

XFCNREC File control open/
close program

When a mismatch is detected between the
backout recovery setting for a file and its
associated data set during file open processing.

“File control
open/close
program exit
XFCNREC” on
page 99

XFCQUIS File control quiesce
send program

On completion, successful or failed, of a SET
DSNAME QUIESCESTATE command.

“File control
quiesce send
exit XFCQUIS”
on page 103

XFCREQ File control EXEC
interface program

Before CICS processes a file control API request. “Exit XFCREQ”
on page 75

XFCREQC File control EXEC
interface program

After a file control API request has completed. “Exit XFCREQC”
on page 76

Chapter 1. Global user exit points (by function) 3

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XFCRLSCO File control RLS
coexistence program

When the opening of a VSAM RLS file or non-RLS
read-only file otherwise fails with an RLS
coexistence failure.

“File control RLS
coexistence
program exit
XFCRLSCO” on
page 111

XFCSREQ File control file state
program

Before a file OPEN, CLOSE, ENABLE, or DISABLE
command is attempted.

“File control file
state program
exits XFCSREQ
and XFCSREQC”
on page 92

XFCSREQC File control file state
program

After a file OPEN, CLOSE, CANCEL CLOSE,
ENABLE, or DISABLE command has been
completed.

“File control file
state program
exits XFCSREQ
and XFCSREQC”
on page 92

XFCVSDS File control quiesce
receive program

After RLS has informed CICS that processing is
required as a result of a data set-related action
occurring in the sysplex.

“File control
quiesce receive
exit, XFCVSDS”
on page 101

XGMTEXT "Good morning"
message program

Before the "good morning" message is sent. “Good morning
message
program exit
(XGMTEXT)” on
page 113

XICEREQ Interval control EXEC
interface program

Before CICS processes an interval control API
request.

“Exit XICEREQ”
on page 127

XICEREQC Interval control EXEC
interface program

After an interval control API request has
completed.

“Exit XICEREQC”
on page 129

XICERES Interval control EXEC
interface program

Before CICS processes a non-terminal-related
EXEC CICS START request that has been
dynamically routed to this region, where the
routing region supports the "resource
unavailable" (RESUNAVAIL) condition.

“Exit XICERES”
on page 128

XICEXP Interval control
program

After expiry of an interval control time interval. “Exit XICEXP” on
page 125

XICREQ Interval control
program

At the start of the interval control program, before
request analysis.

“Exit XICREQ”
on page 124

XICTENF Interval control
program

When an EXEC CICS START command requires a
terminal that is unknown in this system.

“Exit XICTENF”
on page 215

XISCONA Intersystem
communication
program

When a function shipping or DPL request is about
to be queued because no sessions to the remote
region are immediately available.

“Intersystem
communication
program exits,
XISCONA,
XISLCLQ, and
XISQLCL” on
page 119

4 CICS TS for z/OS: User Exit Reference

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XISLCLQ Intersystem
communication
program

After an attempt to allocate a session for a
function shipped START NOCHECK request fails
because the remote system is not in service, a
connection to the remote system cannot be
established, or no sessions are immediately
available and your XISCONA exit program has
specified that the request is not to be queued in
the issuing region.

“The XISLCLQ
exit” on page
122

XISQLCL Intersystem
communication
program

After an attempt to allocate a session for a START
NOCHECK request, that is scheduled for an IPIC
connection, fails because the IPIC connection is
out of service, the IPIC connection is not
acquired, or a session is not available and CICS
does not queue the request for a new session.

“The XISQLCL
exit” on page
123

XISQUE To control the
number of queued
requests for sessions
on IPCONNs

When:

1. An allocate request for a session on an
IPCONN is about to be queued

2. An IP allocate request succeeds following
previous suppression of queuing

“XISQUE exit for
managing IPIC
intersystem
queues” on page
238

XLDELETE Loader domain After an instance of a program is released by
CICS and just before the program is freed from
storage.

“Exit XLDELETE”
on page 145

XLDLOAD Loader domain After an instance of a program is brought into
storage, and before the program is made
available for use.

“Exit XLDLOAD”
on page 144

XLGSTRM Log manager domain After the CICS log manager detects that a log
stream does not exist, and before calling the
MVS™ system logger to define the log stream.

“Log manager
domain exit
XLGSTRM” on
page 146

XMEOUT Message domain Before a message is sent from the message
domain to its destination.

“Exit XMEOUT”
on page 150

XMNOUT Monitoring domain Before a record is either written to SMF or
buffered before a write to SMF.

“Exit XMNOUT”
on page 152

XNQEREQ Enqueue EXEC
interface program

Before CICS processes an enqueue API request. “Exit XNQEREQ”
on page 41

XNQEREQC Enqueue EXEC
interface program

After an enqueue API request has completed. “Exit
XNQEREQC” on
page 42

XPCABND Program control
program

After a transaction abend and before a dump call
is made.

“Exit XPCABND”
on page 180

XPCERES Program control
program

Before CICS processes a program link or
Link3270 bridge request that has been
dynamically routed to this region, where the
routing region supports the "resource
unavailable" (RESUNAVAIL) condition.

“Exit XPCERES”
on page 168

Chapter 1. Global user exit points (by function) 5

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XPCFTCH Program control
program

Before an application program is given control. “Exit XPCFTCH”
on page 175

XPCHAIR Program control
program

Before a HANDLE ABEND routine is given control. “Exit XPCHAIR”
on page 176

XPCREQ Program control
program

Before a LINK request is processed. “Exit XPCREQ”
on page 167

XPCREQC Program control
program

After a LINK request has been completed. “Exit XPCREQC”
on page 169

XPCTA Program control
program

After an abend occurs and before the
environment is modified.

“Exit XPCTA” on
page 178

XRCINIT User log record
recovery program

During warm and emergency restart, if user
recovery log records are detected in the CICS
system log.

“Exit XRCINIT”
on page 229

XRCINPT User log record
recovery program

During warm and emergency restart, for each
user recovery log record found in the CICS system
log.

“Exit XRCINPT”
on page 229

XRMIIN Resource manager
interface program

Before an EXEC DLI, EXEC SQL, or RMI command
runs.

“Exit XRMIIN”
on page 181

XRMIOUT Resource manager
interface program

After an EXEC DLI, EXEC SQL, or RMI command
runs.

“Exit XRMIIN”
on page 181

XRSINDI Resource
management
modules

Immediately after successfully installing or
discarding a resource.

“Resource
management
installation and
discard exit
XRSINDI” on
page 182

XSNEX Security manager
domain

Restore old CICS sign-on and sign-off behavior
(pre-CICS TS 2.1)

“Exit XSNEX” on
page 190

XSNOFF Security manager
domain

After a terminal user signs off. “Exit XSNOFF”
on page 190

XSNON Security manager
domain

After a terminal user signs on. “Exit XSNON” on
page 189

XSRAB System recovery
program

When the system recovery program finds a match
for an MVS abend code in the SRT.

“System
recovery
program exit
XSRAB” on page
192

XSTERM System termination
program

During a normal system shutdown, immediately
before TD buffers are cleared.

“System
termination
program exit
XSTERM” on
page 195

XSTOUT Statistics domain Before a statistics record is written to SMF. “Exit XSTOUT”
on page 191

6 CICS TS for z/OS: User Exit Reference

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XSZARQ Front End
Programming
Interface

After a FEPI request has completed. “Front End
Programming
Interface exits
XSZARQ and
XSZBRQ” on
page 51

XSZBRQ Front End
Programming
Interface

Before a FEPI request is actioned. “Front End
Programming
Interface exits
XSZARQ and
XSZBRQ” on
page 51

XTCATT Terminal control
program

Before task attach. “Exit XTCATT”
on page 211

XTCIN Terminal control
program

After an input event. “Exit XTCIN” on
page 210

XTCOUT Terminal control
program

Before an output event. “Exit XTCOUT”
on page 211

XTDEREQ Transient data EXEC
interface program

Before CICS processes a transient data API
request.

“Exit XTDEREQ”
on page 221

XTDEREQC Transient data EXEC
interface program

After a transient data API request has completed. “Exit
XTDEREQC” on
page 222

XTDIN Transient data
program

After receiving data from QSAM (extrapartition) or
VSAM (intrapartition).

“Exit XTDIN” on
page 219

XTDOUT Transient data
program

Before passing data to a QSAM (extrapartition) or
VSAM (intrapartition) user-defined transient data
queue.

“Exit XTDOUT”
on page 220

XTDREQ Transient data
program

Before request analysis. “Exit XTDREQ”
on page 218

XTSEREQ Temporary storage
EXEC interface
program

Before CICS processes a temporary storage API
request.

“Exit XTSEREQ”
on page 201

XTSEREQC Temporary storage
EXEC interface
program

After a temporary storage API request has
completed.

“Exit
XTSEREQC” on
page 202

XTSPTIN Temporary storage
domain

Before invocation of a TSPT function. “Exit XTSPTIN”
on page 198

XTSPTOUT Temporary storage
domain

After invocation of a TSPT function. “Exit
XTSPTOUT” on
page 200

XTSQRIN Temporary storage
domain

Before invocation of a TSQR function. “Exit XTSQRIN”
on page 196

Chapter 1. Global user exit points (by function) 7

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XTSQROUT Temporary storage
domain

After invocation of a TSQR function. “Exit
XTSQROUT” on
page 197

XWBAUTH web domain During processing of an EXEC CICS WEB SEND
or EXEC CICS WEB CONVERSE command.

“HTTP client
open and send
exits: XWBAUTH,
XWBOPEN and
XWBSNDO” on
page 113

XWBOPEN web domain During processing of an EXEC CICS WEB OPEN
or EXEC CICS INVOKE SERVICE command.

“HTTP client
open and send
exits: XWBAUTH,
XWBOPEN and
XWBSNDO” on
page 113

XWBSNDO web domain During processing of an EXEC CICS WEB SEND
or EXEC CICS WEB CONVERSE command.

“HTTP client
open and send
exits: XWBAUTH,
XWBOPEN and
XWBSNDO” on
page 113

XWSPRROI Pipeline domain After any instance of the XWSPRRWI exit is
invoked and before the web services provider
business application.

“Exit
XWSPRROI” on
page 156

XWSPRROO Pipeline domain After the web service provider application returns
and before CICS creates the body of the response
message.

“Exit
XWSPRROO” on
page 157

XWSPRRWI Pipeline domain After CICS has converted the web services
request body into a language structure and before
any instance of the XWSPRROI exit is invoked.

“Exit
XWSPRRWI” on
page 155

XWSPRRWO Pipeline domain After any instance of the XWSPRROO exit and
before CICS creates the body of the response
message.

“Exit
XWSPRRWO” on
page 158

XWSRQROI Pipeline domain After CICS has processed the outbound web
service response and before any instance of the
XWSRQRWI exit.

“Exit
XWSRQROI” on
page 160

XWSRQROO Pipeline domain After any instance of the XWSRQRWO exit has
been processed and before the data flows
outbound on the web services transport.

“Exit
XWSRQROO” on
page 160

XWSRQRWI Pipeline domain After CICS has processed the outbound web
service response and after any instance of the
XWSRQROI exit.

“Exit
XWSRQRWI” on
page 161

XWSRQRWO Pipeline domain After CICS has converted the application's
language structure into a Web services request
body and before CICS processes the optional
XWSRQROO exit point.

“Exit
XWSRQRWO” on
page 159

8 CICS TS for z/OS: User Exit Reference

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XWSSRROI Pipeline domain After CICS has processed the outbound web
service response and before any instance of the
XWSSRRWI exit.

“Exit
XWSSRROI” on
page 164

XWSSRROO Pipeline domain After any instance of the XWSSRRWO exit has
been processed and before the encryption of data
flowing outbound on the web services transport.

“Exit
XWSSRROO” on
page 163

XWSSRRWI Pipeline domain After CICS has processed the outbound web
service response and after any instance of the
XWSSRROI exit.

“Exit
XWSSRRWI” on
page 164

XWSSRRWO Pipeline domain After CICS has converted the application's
language structure into a Web services request
body and before CICS processes the optional
XWSSRRWO exit point, and before being
encrypted by the pipeline's security handler.

“Exit
XWSSRRWO” on
page 162

XXDFA DBCTL interface
control program

In the active CICS when CICS-DBCTL connection
fails.

“DBCTL
interface control
program exit
(XXDFA)” on
page 21

XXDFB DBCTL tracking
program

In the alternate CICS when DBCTL fails. “Exit XXDFB” on
page 22

XXDTO DBCTL tracking
program

In the alternate CICS when active DBCTL fails. “Exit XXDTO” on
page 23

XXMATT Transaction manager
domain

When a user transaction is attached. “Transaction
manager domain
exit XXMATT” on
page 217

XXRSTAT XRF request
processing program

After a z/OS Communications Server failure or a
predatory takeover.

“Exit XXRSTAT”
on page 243

XZCATT z/OS
Communications
Server terminal
management
program

Before task attach. “SNA LU
management
program exit
(XZCATT)” on
page 230

XZCIN z/OS
Communications
Server working set
module

After an input event. “Exit XZCIN” on
page 231

XZCOUT z/OS
Communications
Server working set
module

Before an output event. “Exit XZCOUT”
on page 231

XZCOUT1 z/OS
Communications
Server working set
module

Before a message is broken into RUs. “Exit XZCOUT1”
on page 232

Chapter 1. Global user exit points (by function) 9

Table 1. Alphabetical list of global user exit points (continued)

Exit name Module or domain Where or when invoked Topic

XZIQUE z/OS
Communications
Server working set
module

1. When an allocate request for a session is
about to be queued.

2. When an allocate request succeeds following
previous suppression of queuing.

“XZIQUE exit for
managing MRO
and APPC
intersystem
queues” on page
232

Activity keypoint program exit (XAKUSER)
The XAKUSER exit is invoked during the activity keypointing process. You can use this exit to record, on
the system log, user data that must be restored following an emergency restart.

For best performance, journal control requests should not specify WAIT. CICS will force the records by
writing a synchronous end of keypoint record upon return from the exit program.

Your exit program should be translated with the NOEDF option. Any program it links to should also be
translated with this option. It is not possible to link to programs written in PL/I.

To ensure that it is called during every keypoint, your exit program should be enabled by means of a first
phase PLTPI program - see Writing initialization programs. However, if it enabled at this stage, your
program should not attempt to link to any program coded in COBOL or C, as it might be invoked before
these are initialized.

Note: Your exit program forms part of a critical CICS system activity. If it fails, CICS terminates. Only the
listed EXEC CICS commands are allowed in the XAKUSER exit. The exit should link only to other programs
with the same restrictions.

Exit XAKUSER
When invoked

During the activity keypointing process.
Exit-specific parameters

UEPAKTYP
Address of a 1-byte field indicating the type of keypoint for which the exit is invoked. The possible
values are:
UEPAKPER

Activity keypoint
UEPAKWSD

Warm shutdown keypoint.
Return codes

UERCNORM
Continue processing.

XPI calls
XPI must not be used.

API and SPI calls
The following commands are supported:

• ADDRESS CWA
• ADDRESS EIB
• LINK (but only to local programs; distributed program links may not be used).
• RETURN

10 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35i.html

• WRITE JOURNALNAME.

Application association data exit in the AP domain (XAPADMGR)
Use the XAPADMGR exit for distributed transactions. XAPADMGR allows you to add user information to
the association data of a task, at the point of origin of the distributed transaction. This information could
be used later, for example, as a search key for processing carried out through CICSPlex SM.

The exit program is called, if enabled, at the attach of nonsystem tasks for which no input Origin
Descriptor Record is provided.

On input, the exit program is passed the association data of the task. The exit might find other relevant
information, for inclusion in the association data, from other sources, using CICS commands.

Note: Distributed transactions that use DPL over IPIC connections pass their transaction group ID and
origin data, including the user correlator, to be inherited by the mirror task in the target region.

The exit program could perform other activities, such as logging of information found in the association
data, for purposes such as auditing or accounting of workloads. For more information on association data
and origin data, see Association data.

Exit XAPADMGR
When called

At the attach of a nonsystem task that has no inherited association data passed to it.
Exit-specific parameters

UEPADCB
Address of the selectable association data control block. This is mapped by the DFHMNADS
DSECT.

UEPADCBL
Length, in bytes, of the association data control block.

UEPUCD
Address of a 64-byte output area in which the exit program can place the user correlation data.

This area will be cleared to zeros by CICS before invoking the first exit program that is active in the
XAPADMGR user exit point, but will not be reset by CICS between programs if multiple exit
programs are active. The same storage area will be passed to subsequent exit programs that are
active in the same exit point.

Return codes
UERCNORM

Continue processing.
XPI calls

All can be used.
API and SPI calls

All can be used, except for:

• EXEC CICS ABEND
• EXEC CICS PERFORM SHUTDOWN

Sample exit program

DFH$APAD

Chapter 1. Global user exit points (by function) 11

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1_associationdata_origindata.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3_xapadmgr_sample.html

Basic mapping support exits (XBMIN, XBMOUT)
Two basic mapping support exits are provided: XBMIN and XBMOUT. The XBMIN exit allows you to
intercept a RECEIVE MAP request after BMS has successfully processed the request. The XBMOUT exit
allows you to intercept a SEND MAP request after BMS has successfully processed the request; or, if
cumulative mapping is in progress, on completion of each page of output.

The XBMIN exit is called, if enabled, when all the following are true:

• A RECEIVE MAP command has been successfully processed.
• The map referenced in the command contains at least one field specified as VALIDN=USEREXIT.
• At least one USEREXIT field has been returned in the inbound datastream and has been mapped into

the application data structure.

Using XBMIN, you can:

• Analyze each field defined as VALIDN=USEREXIT mapped to the application on this request
• Use the mapset name, map name, and field length defined in the map, and the actual length of field

data returned in the inbound datastream
• Modify the data in each field.

The XBMOUT exit is called, if enabled, when all the following are true:

• A SEND MAP command has been successfully processed.
• The map referenced in the command contains at least one field specified as VALIDN=USEREXIT.
• At least one USEREXIT field has been generated in the outbound datastream.

Using XBMOUT, you can:

• Analyze each field defined as VALIDN=USEREXIT which has been generated in the outbound
datastream

• Use the mapset name, map name, and field length defined in the map, and the actual length of field
data placed in the outbound datastream

• Modify the data in each field
• Modify the attributes sent with each field.

Both exits are passed four exit-specific parameters:

1. The address of the TCTTE associated with the mapping request
2. The address of the system EIB associated with the task issuing the mapping request
3. The address of a halfword binary count of the number of elements in the field element table
4. The address of the field element table.

Sample program, DFH$BMXT

CICS supplies a sample program, DFH$BMXT, that shows how mapped input and output data can be
modified with reference to the information provided in the “field element” table. A copybook, DFHXBMDS,
is also supplied. This copybook is a DSECT which defines the structure of the field element.

Exit XBMIN
This exit is invoked after basic mapping support (BMS) has successfully processed an input mapping
operation.

When invoked
After BMS has successfully processed an input mapping operation.

12 CICS TS for z/OS: User Exit Reference

Exit-specific parameters
UEPBMTCT

Address of the TCTTE associated with the mapping request.
UEPEXECB

Address of the system EIB associated with the task.
UEPBMCNT

Address of the halfword binary number of “field elements” in the field element table.
UEPBMTAB

Address of the field element table.
Return codes

UERCNORM
Continue processing.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Exit XBMOUT
This exit is invoked after basic mapping support (BMS) has successfully completed a page of output
during an output mapping operation.

When invoked
After BMS has successfully completed a page of output during an output mapping operation.

Exit-specific parameters
UEPBMTCT

Address of the TCTTE associated with the mapping request.
UEPEXECB

Address of the system EIB associated with the task.
UEPBMCNT

Address of the halfword binary number of “field elements” in the field element table.
UEPBMTAB

Address of the field element table.
Return codes

UERCNORM
Continue processing.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

The field element table structure
The field element table contains one or more elements which provide information about each “field of
interest” passed to the exit.

A “field of interest” is a field which has been defined as VALIDN=USEREXIT in the map source file used to
create the mapset referenced in the mapping operation.

Each field element has the following structure:

Chapter 1. Global user exit points (by function) 13

BMXMAPST
is an 8-byte area which contains the name of the mapset associated with this field. If terminal or
alternate suffixes are used with mapset names in your CICS installation, the mapset name may have a
suffix appended to the name specified in the mapping request.

BMXMAP
is a 7-byte area which contains the name of the map associated with this field.

BMXFDFB
is a one-byte field copied from the field specification in the map load module. It contains indicators as
follows:
X'80'

CASE=MIXED
X'40'

Group field entry
X'20'

Group field descriptor
X'10'

ATTRB=DET
X'08'

JUSTIFY=ZERO
X'04'

JUSTIFY=RIGHT
X'02'

INITIAL,XINIT, or GINIT specified
X'01'

Named field (DSECT entry exists)
BMXMAPLN

is a halfword binary value which contains the field length defined in the LENGTH option of the
DFHMDF macro.

BMXACTLN
is a halfword binary value which contains the actual length of the data received or transmitted in this
field.

BMXDATA
is the address of the field data.

In the XBMIN exit, BMXDATA points into a work area which BMS has obtained for input mapping
purposes. When the exit returns control, this work area is copied to the application data structure
associated with this map.

In the XBMOUT exit, BMXDATA points into a terminal input/output area (TIOA) in which BMS has
generated an output datastream. When the exit returns control, the TIOA is disposed of in accordance
with the disposition of the TERMINAL (the default), SET, or PAGING option specified on the SEND MAP
request.

BMXATTR
is only relevant in the XBMOUT exit. It is the address of the attributes (if any) which BMS has placed in
the output datastream preceding this field.

BMXMAPOF
is the offset of the field in the map. For example, if a map is defined as

MYMAP DFHMDI SIZE=(12,40)

and a field in this map is defined as

FLDA DFHMDF POS=(5,1)

14 CICS TS for z/OS: User Exit Reference

the offset of this field (relative to zero) is 160 in decimal notation. In this example, BMXMAPOF would
contain the value X'00A0'.

BMXBUF
is the offset of the field in the device buffer. Usually—that is, when the map dimensions are the same
as the current screensize in use by the device—this value will be the same as that of BMXMAPOF.
However, using the example given in the BMXMAPOF description, if MYMAP is sent to a device
currently using a 24 by 80 screensize, the offset of the field in the device buffer (again relative to zero)
is 320 in decimal notation. In this example, BMXBUF would contain the value X'0140'.

Programming the XBMIN exit
When programming the XBMIN exit it is important to consider data length.

The actual data length (in BMXACTLN) might be less than the length defined in the map (in BMXMAPLN).
This could happen, for example, if a terminal operator does not completely fill a data entry field. In this
case, BMS will have right- or left-justified the data in the field and padded the field with blank or zero
characters. This justification and padding occurs before the exit is invoked. Your exit program can, by
checking the bit settings in the BMXFDFB field, determine how BMS performed justification and padding
for the field.

The actual data length (in BMXACTLN) might be greater than the length defined in the map (in
BMXMAPLN). This could happen, for example, if a map contains an unprotected field which is not
immediately followed by another field. This allows the terminal operator to enter data past the end of the
field. When this occurs, the data field is truncated by BMS according to the length defined for the field in
the map. However, BMXACTLN contains the length of data found in the inbound datastream.

When modifying data in the XBMIN exit, the safest method is to use the length provided in BMXMAPLN,
but to ensure that any pad characters added by BMS are preserved.

BMXATTR must be ignored in the XBMIN exit; it always contains binary zeroes.

Programming the XBMOUT exit
When programming the XBMOUT exit it is important to consider the actual data length.

The actual data length (in BMXACTLN) may be less than the length defined in the map (in BMXMAPLN).
This occurs due to the compression of trailing nulls performed by BMS for each output field.

The actual length of data cannot be changed in the exit program. The exit is invoked after the output
datastream has been generated; consequently, an attempt to alter the data length could result in an
invalid datastream. Therefore, if an XBMOUT exit program modifies data, it must do so with reference to
the length value in BMXACTLN.

BMXDATA may contain a null value. This can be caused by a SEND MAP request with the MAPONLY option
when the map has fields without default data; this causes BMS to send an attribute sequence for the field
but no data.

BMXATTR may contain a null value. This can be caused by a SEND MAP request with the DATAONLY
option, when the application is updating the data in a field and not the attributes.

Cumulative mapping operations
When an application is performing cumulative mapping—that is, issuing a sequence of SEND MAP
commands with the ACCUM option—BMS builds composite display in which a single page of output might
be constructed from multiple SEND MAP requests.

When cumulative mapping occurs, the XBMOUT exit is called when a page has been built, not as each
SEND MAP request is processed.

Message routing
When an application builds a routing message—for example, it issues a ROUTE command followed by one
or more SEND MAP commands with the SET or PAGING option specified—the XBMOUT exit is invoked in
the same way as for a non-routed mapping request.

Chapter 1. Global user exit points (by function) 15

However, the UEPBMTCT parameter is passed as a null value for a routed message. This is because a
routed message may be destined for multiple devices, and BMS has optimized the features supported by
the devices targeted by the routed message. When processing a routed message in the XBMOUT exit,
referencing the TCTTE for any of these devices would probably not be relevant.

Bridge facility exit XFAINTU
The bridge facility exit is called just after a new bridge facility has been built and just before the bridge
facility is deleted.

The bridge facility might be deleted at the end of a task, when zero keep time is specified, or when a keep
time expires before the facility is reused.

Exit XFAINTU
When invoked

Just after a bridge facility is created and just before it is deleted.
Exit-specific parameters

UEPFAREQ
Address of a 1-byte field that indicates why the exit has been called. Possible values are:
UEPFAIN

Initialization.
UEPFATU

Tidy-up.
UEPFATUT

Address of a 1-byte field that indicates the type of tidy-up required. Possible values are:
UEPFANTU

Normal tidy-up.
UEPFAETU

Expired tidy-up.
UEPFANAM

Address of the bridge facility name.
UEPFATYP

Address of a 1-byte field that indicates the facility type. The value is always:
UEPFABR

3270 bridge facility.
UEPFAUAA

Address of the bridge facility user area (TCTUA).
UEPFAUAL

Address of a one-byte field containing the length of the bridge facility user area.
UEPFATK

Address of the 8–byte facilitytoken.
UEPFAMCH

Address of a 1-byte field that indicates the mechanism used to start the bridged transaction using
this bridge facility. Possible values are:
UEPFASTA

Started using START BREXIT.
UEPFALNK

Started using a link to DFHL3270.

16 CICS TS for z/OS: User Exit Reference

UEPFAREG
Address of a 1-byte field that indicates whether the region owns the bridge facility, or whether it is
remote. A bridge facility is owned by the AOR, where it is local, and is remote to the router region.
Note that XFAINTU can be called twice in the same region if the AOR and the router are the same
region. Possible values are:
UEPFAROU

This region is the router for this bridge facility.
UEPFAAOR

This region is the AOR for this bridge facility.
Return codes

UERCNORM
Continue processing.

XPI calls
All can be used, except those that use recoverable resources.

API calls
All can be used except those that invoke task-related user exits or use recoverable resources.

Data tables management exits XDTRD, XDTAD, and XDTLC
Data tables management exits apply to both CICS shared data tables and CICS coupling facility data
tables.

XDTRD and XDTAD allow you to control the selection of records for inclusion in a data table, XDTRD being
used to make such selections during loading, and XDTAD being invoked when records are subsequently
added to a loaded data table (or to a CFDT that did not require loading). XDTRD also allows the contents
of records that are included in a user-maintained table, or a coupling facility data table, to be modified
before they are added.

For CICS shared data tables, XDTLC enables you to take action based on the fact that a data table has
completed loading, which might be to end some restrictions that you have decided to place on access to
the data table during loading, or to cater for an unsuccessful completion of the loading.

For a coupling facility data table, XDTLC allows your global user exit program to decide whether to accept
an unsuccessfully loaded coupling facility data table. If the user exit program decides to accept the table,
it remains open and available for access, but CICS does not mark it as loading completed. This is also the
default action if no XDTLC exit is enabled. This means that application programs continue to receive the
LOADING condition for any records that are beyond the key range of records successfully loaded into the
table. This ensures that application programs are aware that not all the expected data is available. It also
allows you to retry the load, when the cause of the failure has been corrected, by closing the file that
initiated the load and reopening it. Alternatively, you could open another load-capable file that refers to
the same data table. If your exit program decides to reject the table, it is closed and the records already
loaded remain in the table. If the cause of the failure is corrected, a subsequent open for the data table
allows the load to complete. XDTLC is not invoked for a coupling facility data table that is not loaded from
a source data set.

Note that a program invoked from any of these exit points must declare a DSECT defining the data tables
user exit parameter list pointed to by field UEPDTPL. (Although UEPDTPL is defined by a DFHUEXIT call,
the parameter list that it addresses is not.) To do this, your program can include the copybook
DFHXDTDS, which defines the DT_UE_PLIST DSECT.

If any tables specify OPENTIME=STARTUP or are opened implicitly, you should provide a program list
table post-initialization (PLTPI) program to activate the user exits. Otherwise, the data table might start
loading before the exits can be enabled. For more details about PLTPI programs, see Writing initialization
and shutdown programs .

Note: For additional information about using these exits with CICS shared data table support, see Shared
data tables overview.

Chapter 1. Global user exit points (by function) 17

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35h.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35h.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfhf10w.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfhf10w.html

Exit XDTRD
The XDTRD user exit is invoked just before CICS attempts to add to the data table a record that has been
retrieved from the source data set.

This normally occurs when the loading process retrieves a record during the sequential copying of the
source data set. However, it can also occur when an application retrieves a record that is not in the data
table and:

• For a user-maintained data table, loading is still in progress, or
• For a CICS-maintained data table, loading terminated before the end of the source data set was

reached (because, for example, the data table was full).

Note: For a coupling facility data table the XDTRD exit is invoked only for a table that is loaded from a
source data set.

The record retrieved from the source data set is passed as a parameter to the user exit program—see
fields UEPDTRA and UEPDTRL. Your exit program can choose (depending, for example, on the key value—
see fields UEPDTKA and UEPDTKL) whether to include the record in the data table or not.

Alternatively, the exit program can request that all subsequent records up to a specified key are skipped—
see field UEPDTSKA; these records are not passed to the exit program. This facility is available only during
loading. You can specify the key as a complete key, or you can specify just the leading characters by
padding the skip-key area with binary zeros.

For a user-maintained data table, the program can also modify the data in the record to reduce the
storage needed for the data table. Application programs that use the data table must be aware of any
changes made to the record format by the exit program. If the record length is changed, the exit program
must set the new length in the parameter list—see field UEPDTRL. The new length must not exceed the
data buffer length—see field UEPDTRBL.
When invoked

Just before CICS tries to add to the data table a record that has been retrieved from the source data
set.

Exit-specific parameters
UEPDTPL

Address of the data table user exit parameter list, which is mapped by DSECT DT_UE_PLIST in
copybook DFHXDTDS. The data table user exit parameter list contains:
UEPDTNAM

The 8-character data table name.
UEPDTFLG

A 1-byte flag field. The possible bit settings are:
UEPDTSDT (X'80')

The exit has been invoked by CICS shared data table support.
UEPDTCMT (X'40')

This is a CICS-maintained table. Only meaningful if UEPDTSDT is on.
UEPDTOPT (X'20')

The exit has been invoked for table loading. This means that optimization by skipping can
be requested.

UEPDTCFT(X'10')
The exit has been invoked by coupling facility data table support.

UEPDTUMT (X'08')
This is a user-maintained table. Only meaningful if UEPDTSDT is on.

UEPDTRA
The address of the data record.

UEPDTRBL
The fullword length of the data table buffer.

18 CICS TS for z/OS: User Exit Reference

UEPDTRL
The fullword length of the data record.

For user-maintained tables, the exit program can set a new length in this field, if it amends the
record.

UEPDTKA
The address of the data table key.

UEPDTKL
The fullword length of the data table key.

UEPDTDSL
The fullword length of the name of the source data set. Only meaningful if either UEPDTSDT or
UEPDTCFT is on.

UEPDTDSN
A 44-character field containing the name of the source data set. Only meaningful if either
UEPDTSDT or UEPDTCFT is on.

UEPDTSKA
The address of a skip-key area. When invoked for table loading, your exit program can return a
key of length UEPDTKL in this area, and request load optimization by setting a return code of
UERCDTOP. Only meaningful if either UEPDTSDT or UEPDTCFT is on.

Return codes
UERCDTAC

Add the record to the data table.
UERCDTRJ

Reject the record: that is, do not add it to the table.
UERCDTOP

Skip this and the following records until a key is found that is equal to or greater than the key
specified in the skip-key area. Only meaningful if either UEPDTSDT or UEPDTCFT is on.

XPI calls
All can be used.

Exit XDTAD
Exit XDTAD is invoked when a write request is issued to a data table.

For a user-maintained data table and coupling facility data table, the user exit is invoked once - before the
record is added to the data table. For a CICS-maintained data table, the user exit is invoked twice - before
the record is added to the source data set and then again before the record is added to the data table.

Note: For coupling facility data tables, the exit can be invoked on an open TCB; therefore, ensure that the
exit is threadsafe and enabled to CICS as threadsafe to avoid excessive TCB switching.

The record written by the application is passed as a parameter to the user exit program - see fields
UEPDTRA and UEPDTRL. Your exit program can choose (depending on the key value, for example see
fields UEPDTKA and UEPDTKL) whether to include the record in the data table or not. This decision is
indicated by setting the return code.

The XDTAD exit must not modify the data in the record. If you used XDTRD to truncate the data records
when the data table was loaded, you must code your application so that it only tries to write records of
the correct format for the data table.

A sample XDTAD exit program is listed in Shared data tables overview.
When invoked

One or more times during the processing of a write request to a data table.

Chapter 1. Global user exit points (by function) 19

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfhf10w.html

Exit-specific parameters
UEPDTPL

Address of the data table user exit parameter list, which is mapped by DSECT DT_UE_PLIST in
copybook DFHXDTDS. The data table user exit parameter list contains:
UEPDTNAM

The 8-character data table name.
UEPDTFLG

A 1-byte flag field. The possible bit settings are:
UEPDTSDT (X'80')

The exit has been invoked by CICS shared data table support.
UEPDTCMT (X'40')

This is a CICS-maintained table. Only meaningful if UEPDTSDT is on.
UEPDTCFT(X'10')

The exit has been invoked by coupling facility data table support.
UEPDTUMT (X'08')

This is a user-maintained table. Only meaningful if UEPDTSDT is on.
UEPDTRA

The address of the data record.
UEPDTRBL

The fullword length of the data table buffer.
UEPDTRL

The fullword length of the data record.
UEPDTKA

The address of the data table key.
UEPDTKL

The fullword length of the data table key.
UEPDTDSL

The fullword length of the name of the source data set. Only meaningful if either UEPDTSDT or
UEPDTCFT is on.

UEPDTDSN
A 44-character field containing the name of the source data set. Only meaningful if either
UEPDTSDT or UEPDTCFT is on.

Return codes
UERCDTAC

Add the record to the data table.
UERCDTRJ

Reject the record: that is, do not add it to the table.
XPI calls

All can be used.

Exit XDTLC
The XDTLC user exit is invoked at the completion of data table loading—whether successful or not. The
user exit is not invoked if the data table is closed for any reason before loading is complete. The XDTLC
exit is invoked for a coupling facility data table only if the table is loaded from a source data set.

The exit program is informed if the loading did not complete successfully—see field UEPDTORC. This
could occur, for example, if the maximum number of records was reached or there was insufficient virtual
storage. In this case, the exit program can request that the file is closed immediately, by setting the
return code.

20 CICS TS for z/OS: User Exit Reference

When invoked
At the completion of table loading. It is not invoked if the loading process was terminated because the
data table had been closed.

Exit-specific parameters
UEPDTPL

Address of the data table user exit parameter list, which is mapped by DSECT DT_UE_PLIST in
copybook DFHXDTDS. The data table user exit parameter list contains:
UEPDTNAM

The 8-character data table name.
UEPDTFLG

A 1-byte flag field. The possible bit settings are:
UEPDTSDT (X'80')

The exit has been invoked by CICS shared data table support.
UEPDTCMT (X'40')

This is a CICS-maintained table. Only meaningful if UEPDTSDT is on.
UEPDTCFT(X'10')

The exit has been invoked by coupling facility data table support.
UEPDTUMT (X'08')

This is a user-maintained table. Only meaningful if UEPDTSDT is on.
UEPDTORC

Data table open result code. The possible values are:
UEPDTLCS

Load successful
UEPDTLFL

Load unsuccessful.
UEPDTDSL

The fullword length of the name of the source data set. Only meaningful if either UEPDTSDT or
UEPDTCFT is on.

UEPDTDSN
A 44-character field containing the name of the source data set. Only meaningful if either
UEPDTSDT or UEPDTCFT is on.

Return codes
UERCDTOK

Accept the data table in its present state
UERCDTCL

Close the data table.
XPI calls

All can be used.

DBCTL interface control program exit (XXDFA)
This exit is invoked by an active CICS if its connection to DBCTL fails.
When invoked

By an active CICS when its connection to DBCTL fails. Your exit program is invoked after the active
CICS has informed the alternate CICS of the failure.

Exit-specific parameters
UEPDBXR

Address of CICS XRF information for use with DBCTL. The CICS XRF information can be mapped
using the DSECT DFHDXUEP.

Chapter 1. Global user exit points (by function) 21

Return codes
UERCNOAC

Take no action.
UERCSWCH

Switch to the alternate DBCTL.
UERCABNO

Abend CICS without a dump.
UERCABDU

Abend CICS with a dump.
XPI calls

TRANSACTION_DUMP must not be used.

DBCTL tracking program exits (XXDFB, XXDTO)
These exits are invoked if the connection to DBCTL fails, or if CICS performs takeover.

Exit XXDFB
The XXDFB exit is invoked when a message is received from the active CICS indicating that the
connection to DBCTL failed.

When invoked
By the alternate CICS when it receives a message from the active CICS indicating that connection to
DBCTL has failed. The alternate and active CICS systems are running in different MVS images, perhaps
in different central processing complexes (CPCs). More information about these exits, see Overview of
Database Control (DBCTL).

Exit-specific parameters
UEPDBXR

Address of CICS XRF information for use with DBCTL. The CICS XRF information can be mapped
using the DSECT DFHDXUEP.

Return codes
UERCNOAC

Take no action.
UERCSWCH

Switch to the alternate DBCTL.
UERCABNO

Abend CICS without a dump.
UERCABDU

Abend CICS with a dump.
The return code ‘UERCNORM' is not available for use at this exit point.

XPI calls
The following must not be used:

• INQUIRE_MONITORING_DATA
• MONITOR
• TRANSACTION_DUMP
• WRITE_JOURNAL_DATA.

22 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfht41f.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfht41f.html

Exit XXDTO
Exit XXDTO is invoked by an alternate CICS when it performs takeover.

When invoked
By an alternate CICS when it performs takeover under the following conditions:

• The active and alternate CICS systems are in different MVS images, perhaps in different processors.
• The active CICS was connected to, or trying to connect to, a DBCTL subsystem. (This does not

include disconnecting from one DBCTL and reconnecting to another.)
• The takeover was not initiated by the XXDFB exit, or the takeover was initiated by XXDFB but the

active system reestablished a DBCTL connection before takeover occurred and XXDTO was driven
for a new DBCTL takeover decision.

Exit-specific parameters
UEPDBXR

Address of CICS XRF information for use with DBCTL. The CICS XRF information can be mapped
using the DSECT DFHDXUEP.

Return codes
UERCNOAC

Take no action.
UERCSWCH

Switch to the alternate DBCTL.
UERCABNO

Abend CICS without a dump.
UERCABDU

Abend CICS with a dump.

The return code UERCNORM is not available for use at this exit point.

XPI calls
The following must not be used:

• INQUIRE_MONITORING_DATA
• MONITOR
• TRANSACTION_DUMP
• WRITE_JOURNAL_DATA.

Dispatcher domain exits XDSBWT and XDSAWT
The XDSBWT and XDSAWT exit points are located before and after the operating system wait. You cannot
use CICS services in an exit program that is invoked from these exit points.

The XDSBWT and XDSAWT exits can be used to control the swapping state of the CICS address space.
However, if the default state of the address space is non-swappable, you cannot use these exits to
override this state.

CICS uses a counter that is incremented for every SYSEVENT DONTSWAP request and decremented for
every SYSEVENT OKSWAP request down to a minimum of 0. A SYSEVENT DONTSWAP request is issued
when this counter goes up from 0 to 1. A SYSEVENT OKSWAP request is issued when this counter goes
down from 1 to 0. In all other circumstances, the SYSEVENT is not issued.

Exit XDSBWT
This exit is invoked before an operating system wait issued by the quasi-reentrant CICS TCB.

When invoked
Before an operating system wait issued by the quasi-reentrant CICS TCB.

Chapter 1. Global user exit points (by function) 23

Exit-specific parameters
None.

Return codes
UERCNORM

Continue processing.
UERCSWAP

Issue SYSEVENT to allow address space swapping.
XPI calls

Must not be used.

Exit XDSAWT
This exit is invoked after an operating system wait issued by the quasi-reentrant CICS TCB.

When invoked
After an operating system wait issued by the quasi-reentrant CICS TCB.

Exit-specific parameters
UEPSYSRC

Address of the 4-byte return code from the SYSEVENT request made before the operating system
wait. This return code will be in one of two different forms:

1. The SYSEVENT OKSWAP return code, or
2. If the SYSEVENT request was rejected by CICS, a special CICS return code which will take one

of the following decimal values:
17

The SYSEVENT OKSWAP was not issued. The outstanding count of SYSEVENT OKSWAP
requests exceeds the count of SYSEVENT DONTSWAP requests. Before a SYSEVENT
OKSWAP can be issued, a SYSEVENT DONTSWAP must be requested.

19
The SYSEVENT OKSWAP was not issued. The outstanding count of SYSEVENT DONTSWAP
requests still exceeds the count of SYSEVENT OKSWAPs. Further SYSEVENT OKSWAPs
must be requested before a SYSEVENT OKSWAP is issued by CICS.

Return codes
UERCNORM

Continue processing.
UERCNOSW

Issue SYSEVENT to suppress address-space swapping.
XPI calls

Must not be used.

DL/I interface program exits XDLIPRE and XDLIPOST
The XDLIPRE and XDLIPOST exit points are invoked following the issue of an EXEC DLI command or DL/I
call. Exit XDLIPRE is invoked before the request is processed and XDLIPOST is invoked after the request
is processed.

When the request is function shipped, the exits are invoked from both the application-owning region and
the database-owning region. However, there are restrictions when they are invoked in a database-owning
region:

1. The descriptions of the exits show the general format of the parameter list of the application. For
detailed information about the format of the CALL-level DL/I parameter list, refer to DL/I calls
reference in IMS product documentation.

24 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_container_dlicallsreference.htm

2. For all EXEC DLI calls, the parameter list of the application is in assembler language format; that is, the
value of the program language byte pointed to by UEPLANG is always UEPASM, and the parameter list
pointed to by UEPAPLIST is always in assembler language format. This format is used because all
EXEC DLI calls are converted into assembler-language CALL-level requests.

An EXEC DLI online request is converted by DFHEDP into a CALL-level request for DFHDLI. IMS does
not deal directly with EXEC-level parameter lists. The first parameter in the CALL parameter list
contains the address of the parameter count. The second parameter in the CALL parameter list
contains the address of the function. All other parameters are dependent on the function.

3. In an XDLIPRE exit program, you can change the PSB name and the SYSID name. Changing the name
helps availability if the originally specified SYSID fails.

You can change the SYSID in the following ways:

• A remote value to another remote value
• The local value to a remote value
• A remote value to the local value.

Changing the SYSID has an effect only if the associated PSB has a PDIR entry. The SYSID can be the
local CICS (that is, the SYSIDNT specified on the CICS region) or a remote connection name. For the
new SYSID to be used, the PSB name must have a PDIR entry; if it does not have a PDIR entry, the
assumption is made that the local CICS is connected to DBCTL, and an attempt is made to run the IMS
request there. An IMS schedule failure is handled in the same way as a failure to route to a connection
that does not exist. If the SYSID is changed to either the same value as the SYSIDNT of the local CICS,
or blanks (hex '40404040'), CICS attempts to run the IMS request on the local system.

Exit XDLIPRE
Exit XDLIPRE is invoked on entry to the DL/I interface program.

Programs running in this exit must be coded to threadsafe standards and defined to CICS as threadsafe.

Exit-specific parameters
UEPCTYPE

Address of type-of-request byte. Values are:
UEPCEXEC

The original request was an EXEC DLI request.
UEPCCALL

The original request was a CALL-level request.
UEPCSHIP

The request has been function shipped from another region. When this value is set,
restrictions apply to the setting and use of the rest of the exit parameters, as described.

UEPAPLIST
Address of application's parameter list. The general format for COBOL and assembler language is:

plist address --> parm1 address --> parm1
 parm2 address --> parm2
 parm3 address --> parm3

 up to a maximum of 18 parameters
 excluding the optional parmcount.

 The general format for PL/I is:

plist address --> parm1 address --> parm1 (parmcount)
 parm2 address --> locator descriptor --> parm2
 parm3 address --> locator descriptor --> parm3

 up to a maximum of 18 parameters

Chapter 1. Global user exit points (by function) 25

When UEPCTYPE is not UEPCSHIP, your exit program can change any of the parameters in the
application parameter list. For UEPCSHIP requests, your exit program cannot change any of the
parameters. Furthermore, for UEPCSHIP requests, UEPAPLIST points to a copy of the parameter
list in the above format, but which contains only the first two parameters, parm1 and parm2.

Note: For PL/I applications, parm1 may or may not contain a parameter-count. Your exit program
should check this field before using it.

UEPLANG
Address of program language byte. Values are:
UEPPLI

PL/I
UEPCBL

COBOL
UEPASM

Assembler language.

For UEPCSHIP requests, the language is always assembler.

UEPIOAX
Address of I/O area existence flag byte:
UEPIOA1

I/O area exists.

For UEPCSHIP requests, the I/O area existence flag is always off.

UEPIOA
Address of I/O area. This is the application's IOAREA, or DFHEDP's IOAREA in the case of EXEC
DLI. The contents of the IOAREA can be overwritten in the exit: the new contents are used when
the DL/I request is processed. However, it should be noted that IOAREAs can be in a program's
static storage and, in this case, should not be overwritten.

For UEPCSHIP requests, UEPIOA is always zero.

UEPPSBNX
Address of PSB existence flag byte:
UEPPSB1

A PSB exists.
UEPPSBNM

Address of an area containing the 8-character PSB name. The contents of the area can be
overwritten by the exit, for all types of request including UEPCSHIP; the new contents are used
when the DL/I request is processed.

UEPSYSDX
Address of the SYSID existence flag byte:
UEPSYS1

A SYSID exists.
UEPSYSID

Address of an area containing the 4-character SYSID name. The contents of the area can be
overwritten by the exit, for all types of request including UEPCSHIP; the new contents are used
when the DL/I request is processed.

Return codes
UERCNORM

Continue processing
UERCBYP

Bypass DL/I request and return
UERCPURG

Task purged during XPI call.

26 CICS TS for z/OS: User Exit Reference

XPI calls
All can be used.

Exit XDLIPOST
Exit XDLIPOST is invoked on exit from the DL/I interface program.

Programs running in this exit must be coded to threadsafe standards and defined to CICS as threadsafe.

Exit-specific parameters
UEPCTYPE

Address of type-of-request byte. Values are:
UEPCEXEC

An EXEC DLI request.
UEPCCALL

A CALL-level request.
UEPCSHIP

The request has been function shipped from another region. When this value is set,
restrictions apply to the setting and use of the rest of the exit parameters, as described.

UEPAPLIST
Address of application's parameter list. The general format for COBOL and assembler language is:

plist address --> parm1 address --> parm1
 parm2 address --> parm2
 parm3 address --> parm3

 up to a maximum of 18 parameters
 excluding the optional parmcount.

 The general format for PL/I is:

plist address --> parm1 address --> parm1 (parmcount)
 parm2 address --> locator descriptor --> parm2
 parm3 address --> locator descriptor --> parm3

 up to a maximum of 18 parameters.

When UEPCTYPE is not UEPCSHIP, your exit program can change any of the parameters in the
application parameter list. For UEPCSHIP requests, your exit program cannot change any of the
parameters. Furthermore, for UEPCSHIP requests, UEPAPLIST points to a copy of the parameter
list in the previous format, but which contains only the first two parameters parm1 and parm2.
See also “DL/I interface program exits XDLIPRE and XDLIPOST” on page 24.

Note: For PL/I applications, parm1 might or might not contain a parameter-count. Your exit
program should check this field before using it.

UEPLANG
Address of program language byte. Its values are:
UEPPLI

PL/I
UEPCBL

COBOL
UEPASM

assembler language.

For UEPCSHIP requests, the language is always assembler.

UEPIOAX
Address of I/O area existence flag byte:
UEPIOA1

I/O area exists.

Chapter 1. Global user exit points (by function) 27

For UEPCSHIP requests, the I/O area existence flag is always off.

UEPIOA
Address of I/O area. This is the application's IOAREA, or DFHEDP's IOAREA in the case of EXEC
DLI. The contents of the IOAREA can be overwritten in the exit and are returned to the application
program in the new form. However, it should be noted that the application's IOAREA could be in
the program's static storage and, in this case, should not be overwritten.

For UEPCSHIP requests, UEPIOA is always zero.

UEPUIBX
Address of UIB existence flag byte:
UEPUIB1

a UIB exists.
UEPUIB

Address of the UIB, which is mapped by DFHUIB in module DFHDBCOP. The contents of the UIB
can be overwritten in the exit for all types of request, including UEPCSHIP. The new contents are
returned to the application or to the region that function shipped the request.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Example use of global user exit XDLIPRE
You can use the global user exit XDLIPRE to change the PSB name that the application program has
scheduled at execution time. You can also use the XDLIPRE exit to change the identity of the SYSID,
enabling work to be rerouted from a SYSID that becomes unavailable to one that is available.

This section contains Product-sensitive Programming Interface information.

The following figures show an example of XDLIPRE that you can copy and modify. This example is
provided for guidance only. For programming information about global user exits, see DFHZNEPI
TYPE=INITIAL—specifying the default routine.

28 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35p.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35p.html

**
* This is an example for global user exit XDLIPRE *
* *
* It is invoked before any DLI call being passed to *
* the remote or DBCTL processors. *
* *
* A check is made for the presence of a PSB. *
* If not, a normal return is made *
* *
* If the PSB is in a predefined table, it is changed to a *
* different value, and a normal return is made. *
* *
* If not, set PSB name to blanks and normal return. *
* *
* In all cases,a trace entry is written describing the action *
* taken, using TRACE-POINT 384 (hex '0180') *
* *
**
* *
* The first few instructions set up the global user exit *
* environment, identify the user exit point, prepare for the use of*
* the exit programming interface, and copy in the definitions that *
* are to be used by the XPI function. *
* *
**
*
 DFHUEXIT TYPE=EP,ID=XDLIPRE PROVIDE DFHUEPAR PARAMETER
* LIST AND LIST OF EXITID
* EQUATES
*
 DFHUEXIT TYPE=XPIENV SET UP ENVIRONMENT FOR
* EXIT PROGRAMMING INTERFACE
* MUST BE ISSUED BEFORE ANY
* XPI MACROS ARE ISSUED

Figure 1. Example of XDLIPRE user exit to change PSB names 1/6

Chapter 1. Global user exit points (by function) 29

*
 COPY DFHTRPTY DEFINE PARAMETER LIST FOR
* USE BY DFHTRPTX MACRO
*
 COPY DFHSMMCY DEFINE PARAMETER LIST FOR
* USE BY DFHSMMCX MACRO
*
**
*The following DSECT maps a storage area to be used as work area *
*for the information in the TRACE entry. *
**
*
DSA DSECT DSECT FOR GETMAINED STORAGE
 USING DSA,R7
*
RETCODE DS F store return code
MESSAGEA DS F message address for trace
MESSAGEL DS F message length for trace
MESSAGE DS 0CL37
OLDPSB DS CL8
MESS1 DS CL21
NEWPSB DS CL8

*The next instructions form the normal start of a global user *
exit program, setting the program addressing mode to 31-bit, saving
the calling program's registers, establishing base addressing
*and establishing the addressing of the user exit parameter list. *

*
DLIPR CSECT
DLIPR AMODE 31
*
 SAVE (14,12) SAVE CALLING PROGRAM'S RGSTRS
*
 LR R11,R15 SET UP USER EXIT PROGRAM'S
 USING DLIPR,R11 BASE REGISTER
*
 LR R2,R1 SET UP ADDRESSING FOR USER
 USING DFHUEPAR,R2 EXIT PARAMETER LIST -- USE
* REGISTER 2 AS XPI CALLS USE
* REGISTER 1
*
**
*Before issuing an XPI function call, set up addressing to XPI *
*parameter list. *
**
*
 L R5,UEPXSTOR SET UP ADDRESSING FOR XPI
* PARAMETER LIST

Figure 2. Example of XDLIPRE user exit to change PSB names 2/6

30 CICS TS for z/OS: User Exit Reference

**
* Before issuing an XPI function call, you must ensure that register*
* 13 addresses the kernel stack. *
**
*
 L R13,UEPSTACK ADDRESS KERNEL STACK
*
**
* Issue a GETMAIN to get storage for work area *
**
*
 USING DFHSMMC_ARG,R5 MAP PARAMETER LIST
*
 DFHSMMCX CALL, X
 CLEAR, X
 IN, X
 FUNCTION(GETMAIN), X
 GET_LENGTH(100), X
 STORAGE_CLASS(USER), X
 SUSPEND(NO), X
 OUT, X
 ADDRESS((R7)), X
 RESPONSE(*), X
 REASON(*)
*
**
* SET UP THE NORMAL RETURN CODE *
**
*
 LA R6,UERCNORM
 ST R6,RETCODE
*
**
* See if a PSB exists *
**
*
 L R6,UEPPSBNX PSB EXISTENCE FLAG
 TM 0(R6),UEPPSB1 PSB EXISTS?
 BO PSBCALL YES
 MVC MESSAGE,MESS3T NO-MOVE MESSAGE TO DSA
 B TRACE
*
**
* See if we want to change a PSB name *
**
*
PSBCALL EQU *
 L R6,UEPPSBNM ADDRESS OF PASSED PSB NAME
 LA R8,PSBS ADDRESS OF table of PSB pairs
 CLC 0(8,R6),0(R8) SAME?

Figure 3. Example of XDLIPRE user exit to change PSB names 3/6

Chapter 1. Global user exit points (by function) 31

 BE FOUND YES
 LA R8,16(R8) BUMP TO NEXT PAIR
 CLC 0(8,R6),0(R8)
 BE FOUND
 LA R8,16(R8) BUMP TO NEXT PAIR
 CLC 0(8,R6),0(R8)
 BE FOUND
 B NOTFOUND NO MATCH - END
*
**
* Move new PSB name in *
**
*
FOUND EQU *
 MVC 0(8,R6),8(R8)
*
**
* SET UP MESSAGE BLOCK FOR TRACE ENTRY FOR CHANGED NAME *
**
*
 MVC MESS1,MESS1T SET UP MESSAGE
 MVC NEWPSB,8(R8) NEW PSB NAME
 MVC OLDPSB,0(R8) OLD PSB NAME
 B TRACE GO PUT TRACE ENTRY
*
**
* SET UP MESSAGE BLOCK FOR TRACE ENTRY FOR PSB NOT FOUND *
* SETUP THE NORMAL RETURN CODE *
**
*
NOTFOUND EQU *
 MVC 0(8,R6),DUMMYPSB
 MVC MESS1,MESS2T SET UP MESSAGE
 MVC OLDPSB,0(R6) SUPPLIED PSB NAME
 MVC NEWPSB,=CL8'' CLEAR FIELD
 LA R1,UERCNORM SET UP NORMAL RETURN CODE
 B TRACE GO PUT TRACE ENTRY
*
**
* Issue trace put macro *
**
*
TRACE EQU *
 LA R6,MESSAGE STORE ADDRESS...
 ST R6,MESSAGEA ...INTO BLOCK DESCRIPTOR
 LA R6,L'MESSAGE STORE LENGTH...
 ST R6,MESSAGEL ...INTO BLOCK DESCRIPTOR
 LA R8,384 SET UP TRACE-ID
*

Figure 4. Example of XDLIPRE user exit to change PSB names 4/6

32 CICS TS for z/OS: User Exit Reference

 DROP R5 REUSE R5 TO MAP DFHTRPT
 USING DFHTRPT_ARG,R5 XPI PARAMETER LIST
*
 DFHTRPTX CALL, X
 CLEAR, X
 IN, X
 FUNCTION(TRACE_PUT), X
 POINT_ID((R8)), X
 DATA1(MESSAGEA,MESSAGEL), X
 OUT, X
 RESPONSE(*)
*
**
*When the rest of the exit program is complete, free the storage *
*and return. *
**
*
 DROP R5 REUSE REGISTER 5 TO MAP DFHSMMC
 USING DFHSMMC_ARG,R5 XPI PARAMETER LIST
*
**
* Issue the DFHSMMCX macro call *
* Store the return code in register 6 *
**
*
 L R6,RETCODE PICK UP SAVED RETURN CODE
*
 DFHSMMCX CALL, X
 CLEAR, X
 IN, X
 FUNCTION(FREEMAIN), X
 ADDRESS((R7)), X
 STORAGE_CLASS(USER), X
 OUT, X
 RESPONSE(*), X
 REASON(*)
*

Restore registers, set return code, and return to user exit handler

*
 L R13,UEPEPSA
 ST R6,16(13) STORE INTO R15 SLOT OF SA
 RETURN (14,12)
*

*old and new PSB names, in pairs *

*

Figure 5. Example of XDLIPRE user exit to change PSB names 5/6

PSBS EQU *
 DC CL8'PC3CONEW' VALID
 DC CL8'PC3CONE2' VALID
 DC CL8'PC3FRED' INVALID
 DC CL8'PC3CONEW' VALID
 DC CL8'PC3JOE' INVALID
 DC CL8'PC3JOEX' INVALID
*
MESS1T DC CL21' HAS BEEN CHANGED TO '
MESS2T DC CL21' WAS NOT FOUND'
MESS3T DC CL37'THIS WAS NOT A DLI SCHEDULE CALL'
DUMMYPSB DC CL8' '
 LTORG
 END DLIPR

Figure 6. Example of XDLIPRE user exit to change PSB names 6/6

Chapter 1. Global user exit points (by function) 33

Dump domain exits XDUREQ, XDUREQC, XDUCLSE, and XDUOUT
You can use dump domain exits to capture information before and after a transaction dump or system
dump.

Exit XDUREQ
Exit XDUREQ is invoked immediately before a system or transaction dump is taken.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name, or nulls if there is no current application.
UEPDUMPC

Address of copy of the 8-byte dump code.
UEPABCDE

Address of a copy of the 8-byte Kernel error code in the format xxx/yyyy. xxx denotes the 3-digit
hexadecimal MVS completion code (for example 0C1 or D37). If an MVS completion code is not
applicable, xxx is three hyphens. The 4-digit code yyyy is a user abend code produced either by
CICS or by another product on your system. UEPABCDE is completed only for abend codes
corresponding to the following dump codes:

• AP0001
• SR0001
• ASRA
• ASRB
• ASRD

Otherwise this field contains null characters.

UEPDUMPT
Address of the 1-byte dump-type identifier, which contains one of the following values:
UEPDTRAN

A transaction dump was requested.
UEPDSYST

A system dump was requested.

Note: The dump-type identifier indicates the type of dump request that was passed to the dump
domain. It does not reflect any modification that may have been made to the original request by a
user entry in the dump table.

UEPXDSCP
Address of a 1-byte field indicating the current dump table DUMPSCOPE setting. It contains one of
the following values:
UEPXDLOC

A system dump will be taken on the local MVS image only.
UEPXDREL

System dumps will be taken on both the local MVS image, and on related MVS images within
the sysplex.

This field may be modified by the exit to update the dump table DUMPSCOPE setting.

34 CICS TS for z/OS: User Exit Reference

UEPXDTXN
Address of a 1-byte field indicating the current dump table TRANDUMP setting. It contains one of
the following values:
UEPXDYES

A transaction dump will be taken.
UEPXDNO

A transaction dump will not be taken.

This field may be modified by the exit to update the dump table TRANDUMP setting.

Note: This field is only valid if UEPDUMPT contains the value UEPDTRAN.

UEPXDSYS
Address of a 1-byte field indicating the current dump table SYSDUMP setting. It contains one of
the following values:
UEPXDYES

A system dump will be taken.
UEPXDNO

A system dump will not be taken.

This field may be modified by the exit to update the dump table SYSDUMP setting.

UEPXDTRM
Address of a 1-byte field indicating the current dump table SHUTDOWN setting. It contains one of
the following values:
UEPXDYES

The CICS system is to shutdown.
UEPXDNO

The CICS system is not to shutdown.

This field may be modified by the exit to update the dump table SHUTDOWN setting.

UEPXDMAX
Address of a 4-byte field which contains the current dump table MAXIMUM setting. This field may
be modified by the exit to change the current dump table MAXIMUM setting. A change to the
MAXIMUM setting will not suppress this dump request. A return code of UERCBYP may be used to
suppress the current dump request.

UEPDXDCNT
Address of a 4-byte field which contains the current dump table CURRENT setting.

UEPXDTST
Address of a 16-byte field which contains the current dump table statistics for this dump code.
The addressed field consists of four 4-byte fields containing binary integers:

• Number of transaction dumps taken
• Number of transaction dumps suppressed
• Number of system dumps taken
• Number of system dumps suppressed

Note: Statistics for transaction dumps are valid only if UEPDUMPT contains the value UEPDTRAN.

UEPXDDAE
Address of a 1-byte field which represents the current dump table DAEOPTION setting. It
contains one of the following values:
UEPXDYES

The dump is eligible for DAE suppression.
UEPXDNO

The dump will not be suppressed by DAE.

Chapter 1. Global user exit points (by function) 35

This field may be modified by the exit to update the dump table DAEOPTION setting.

UEPDMPID
Address of a 9-character field in the format xxxx/xxxx, containing the dump identifier. The dump
ID is the same as that output by the corresponding dump message.

UEPFMOD
Address of an 8-byte area containing, if the dump code is AP0001, the name of the failing module;
otherwise null characters.

Note that field UEPPROG always addresses the name of the current application, regardless of
where the failure occurred. UEPFMOD addresses the name of the module where the failure
occurred, if known.

If the dump code is AP0001, there are three possibilities:

1. The field addressed by UEPFMOD contains the same name as the field addressed by UEPPROG
—the failure occured in application code.

2. The field addressed by UEPFMOD contains a different name from the field addressed by
UEPPROG—the failure occurred in non-application code.

3. The field addressed by UEPFMOD contains '????????'—the failure was not in application code,
but CICS was unable to determine the name of the failing module.

UEPDLISI
Address of the 4-byte DSPLIST.

UEPJLISI
Address of the 4-byte JOBLIST.

Return codes
UERCNORM

Continue processing.
UERCBYP

Suppress dump.
UERCPURG

Task purged during XPI call.
XPI calls

WAIT_MVS can be used only when a UEPDUMPT indicates that a transaction dump is being taken. Do
not use any other calls.

Exit XDUREQC
Exit XDUREQC is invoked immediately after a system or transaction dump has been taken, or has failed or
been suppressed.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name.
UEPDUMPC

Address of copy of the 8-byte dump code.
UEPABCDE

Address of a copy of the 8-byte Kernel error code in the format xxx/yyyy. xxx denotes the 3-digit
hexadecimal MVS completion code (for example X'0C1' or X'D37'). If an MVS completion code is

36 CICS TS for z/OS: User Exit Reference

not applicable, xxx is three hyphens. The 4-digit code yyyy is a user abend code produced either
by CICS or by another product on your system. UEPABCDE is completed only for abend codes
corresponding to the following dump codes:

• AP0001
• SR0001
• ASRA
• ASRB
• ASRD

Otherwise this field contains null characters.

UEPDUMPT
Address of the 1-byte dump-type identifier, which contains one of the following values:
UEPDTRAN

A transaction dump was requested.
UEPDSYST

A system dump was requested.

Note: The dump-type identifier indicates the type of dump request that was passed to the dump
domain. It does not reflect any modification that may have been made to the original request by a
user entry in the dump table.

UEPXDSCP
Address of a 1-byte field indicating the current dump table DUMPSCOPE setting. It contains one of
the following values:
UEPXDLOC

A system dump will be taken on the local MVS image only.
UEPXDREL

System dumps will be taken on both the local MVS image, and on related MVS images within
the sysplex.

This field may be modified by the exit to update the dump table DUMPSCOPE setting.

UEPXDTXN
Address of a 1-byte field indicating the current dump table TRANDUMP setting. It contains one of
the following values:
UEPXDYES

A transaction dump will be taken.
UEPXDNO

A transaction dump will not be taken.

This field may be modified by the exit to update the dump table TRANDUMP setting.

Note: This field is only valid if UEPDUMPT contains the value UEPDTRAN.

UEPXDSYS
Address of a 1-byte field indicating the current dump table SYSDUMP setting. It contains one of
the following values:
UEPXDYES

A system dump will be taken.
UEPXDNO

A system dump will not be taken.

This field may be modified by the exit to update the dump table SYSDUMP setting.

UEPXDTRM
Address of a 1-byte field indicating the current dump table SHUTDOWN setting. It contains one of
the following values:

Chapter 1. Global user exit points (by function) 37

UEPXDYES
The CICS system is to shutdown.

UEPXDNO
The CICS system is not to shutdown.

This field may be modified by the exit to update the dump table SHUTDOWN setting.

UEPXDMAX
Address of a 4-byte field which contains the current dump table MAXIMUM setting. This field may
be modified by the exit to change the current dump table MAXIMUM setting.

UEPDXDCNT
Address of a 4-byte field which contains the current dump table CURRENT setting.

UEPXDTST
Address of a 16-byte field which contains the current dump table statistics for this dumpcode.
The addressed field consists of four 4-byte fields containing binary integers:

• Number of transaction dumps taken
• Number of transaction dumps suppressed
• Number of system dumps taken
• Number of system dumps suppressed.

Note: Statistics for transactions dumps are valid only if UEPDUMPT contains the value UEPDTRAN.

UEPXDDAE
Address of a 1-byte field which represents the current dump table DAEOPTION setting. It
contains one of the following values:
UEPXDYES

The dump was suppressed by DAE.
UEPXDNO

The dump was not suppressed by DAE.

This field may be modified by the exit to update the dump table DAEOPTION setting.

UEPDMPID
Address of a 9-character field in the format xxxx/xxxx, containing the dump identifier. The dump
ID is the same as that output by the corresponding dump message.

UEPDRESP
Address of the 2-byte dump response code.

UEPDREAS
Address of the 2-byte dump reason code.

UEPDLISO
Address of the 4-byte DSPLIST.

UEPJLISO
Address of the 4-byte JOBLIST.

Return codes
UERCNORM

Continue processing.
XPI calls

WAIT_MVS can be used only when a UEPDUMPT indicates that a transaction dump is being taken. Do
not use any other calls.

Exit XDUCLSE
This exit is invoked immediately after a transaction dump data set has been closed.

When invoked
Immediately after a transaction dump data set has been closed.

38 CICS TS for z/OS: User Exit Reference

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name.
UEPDMPDD

Address of the 8-byte dump data set ddname.
UEPDMPDSN

Address of the 44-byte dump data set dsname.
Return codes

UERCNORM
Continue processing.

UERCSWCH
The autoswitch flag is set on.

XPI calls
WAIT_MVS can be used. Do not use any other calls.

Exit XDUOUT
This exit is invoked before a record is written to the transaction dump data set.

When invoked
Before a record is written to the transaction dump data set.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name.
UEPDMPFC

Address of the 1-byte function code. The equated values are:
UEPDMPWR

Buffer is about to be written.
UEPDMPRE

Dump is about to restart after autoswitch.
UEPDMPAB

Abnormal termination of dump.
UEPDMPDY

Buffer is about to be written, and the CICS dump data set is a dummy file or is closed.
UEPDMPBF

Address of the dump buffer, whose length is addressed by the parameter UEPDMPLEN.
UEPDMPLEN

Address of the 2-byte dump-buffer length.

Chapter 1. Global user exit points (by function) 39

Return codes
UERCNORM

Continue processing.
UERCBYP

Suppress dump record output.
XPI calls

WAIT_MVS can be used. Do not use any other calls.

Enqueue EXEC interface program exits XNQEREQ and XNQEREQC
You can use the XNQEREQ exit to intercept enqueue API requests before any action has been taken on
the request. You can use the XNQEREQC exit to intercept the response after an enqueue API request has
completed.

The API requests affected are:

• EXEC CICS ENQ
• EXEC CICS DEQ

XNQEREQ
Using XNQEREQ, you can:

• Analyze the API parameter list (function, keywords, argument values, and responses).
• Modify any input parameter value before execution of a request.
• Prevent execution of a request. This enables you to replace the CICS function with your own

processing.

Notes for using XNQEREQ to alter the ENQ or DEQ scope:

1. XNQEREQ enables you to allow existing applications to be converted to use sysplex enqueues
without changing the application.

Note: Use of either the ENQMODEL resource definition or the user exit allows this in most cases,
but those applications where the resource name is determined dynamically and not known in
advance can only be so converted by use of this exit.

2. Sysplex and region scope enqueues use separate namespaces. A region scope enqueue will never
wait on a sysplex enqueue, nor will a sysplex scope enqueue wait on a region enqueue.

Note: This situation can only arise when you use the exit. Use of the ENQMODEL resource
definitions as your only method of defining the SCOPE of an ENQ or DEQ avoids this potential risk.

3. Both region and sysplex scope are supported for string ENQs, but sysplex scope is not supported
for address ENQ.

XNQEREQC
Using XNQEREQC, you can:

• Analyze the API parameter list.
• Pass data between your XNQEREQ and XNQEREQC exit programs when they are invoked for the

same request
• Pass data between your enqueue exit programs when they are invoked within the same task.

CICS supplies a sample exit program, DFH$XNQE, for the enqueue EXEC interface. For more information,
see Enqueue EXEC interface sample exit program: DFH$XNQE.

40 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0021.html

Exit XNQEREQ
This exit is invoked before CICS processes an EXEC CICS ENQ or DEQ request, or attempts to match it to
an installed ENQMODEL resource definition.

When invoked
Before CICS processes an EXEC CICS ENQ or DEQ request, or attempts to match it to an installed
ENQMODEL resource definition.

Exit-specific parameters
UEPCLPS

Address of a copy of the command parameter list. See “The command-level parameter structure”
on page 43.

UEPNQTOK
Address of a 4-byte area which can be used to pass information between XNQEREQ and
XNQEREQC for a single enqueue request.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code EIBRCODE. For details of EIB return
codes, see EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code EIBRESP.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code EIBRESP2.

UEPTSTOK
Address of a 4-byte token which can be used to pass information between successive enqueue
requests within the same task (for example, between successive invocations of the XNQEREQ
exit).

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPSCOPE
Address of the 4-byte ENQSCOPE name to be used.

Return codes
UERCBYP

Bypass this request.
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
UERCSCPE

An ENQSCOPE name has been supplied.
XPI calls

All can be used.
API and SPI commands

All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note: Take care when issuing recursive commands. For example, you must avoid entering a loop when
issuing an enqueue request from the XNQEREQ exit. Use of the recursion counter UEPRECUR is
recommended.

Chapter 1. Global user exit points (by function) 41

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html

Exit XNQEREQC
Exit XNQEREQC is invoked after an enqueue API request has completed, before return from the enqueue
EXEC interface program.

Exit-specific parameters
UEPCLPS

Address of a copy of the command parameter list. See “The command-level parameter structure”
on page 43.

UEPNQTOK
Address of a 4-byte area which can be used to pass information between XNQEREQ and
XNQEREQC for a single enqueue request.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code EIBRCODE. For details of EIB return
codes, see EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code EIBRESP.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code EIBRESP2.

UEPTSTOK
Address of a 4-byte token which can be used to pass information between successive enqueue
requests within the same task (for example, between successive invocations of the XNQEREQC
exit).

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPSCOPE
Address of the 4-byte ENQSCOPE name used.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI commands

All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

You can update the copies of EIBRCODE, EIBRESP, and EIBRESP2 that you are given in the parameter list.
If you update the values, CICS copies the new values into the application program's EIB after the
completion of XNQEREQC or if you specify a return code of UERCBYP in XNQEREQ.

You must set valid enqueue responses. You must set all three of EIBRCODE, EIBRESP, and EIBRESP2 to a
consistent set of values, such as would be set by the enqueue domain to describe a valid completion.
CICS does not check the consistency of EIBRCODE, EIBRESP, and EIBRESP2. If EIBRCODE is set to a
non-zero value and EIBRESP is set to zero, CICS will override EIBRESP with a non-zero value. To help you
set values for EIBRCODE, EIBRESP, and EIBRESP2, the values used by the enqueue domain are specified
in DSECT DFHNQUED.

Note: Take care when issuing recursive commands not to cause a loop. For example, it is your
responsibility to avoid entering a loop when issuing an enqueue request from the XNQEREQC exit. Use of
the recursion counter UEPRECUR is recommended.

42 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html

The command-level parameter structure
The command-level parameter structure consists of a series of addresses. The first address points to the
EXEC interface descriptor (EID), which consists of a bit string that describes the type of request and
identifies each keyword specified with the request. The remaining addresses point to pieces of data
associated with the request.

End of parameter list indicator

You can examine the EID to determine the type of request and the keywords specified. You can examine
the other parameters in the list to determine the values of the keywords. You can also modify values of
keywords specified on the request.

The high-order bit is set on in the last address set in the parameter list to indicate that it is the last one in
the list. On return from your user exit program, CICS scans the parameter list for the high-order bit to find
the last parameter. Therefore, if you modify the length of the parameter list, you must also reset the high-
order bit to indicate which is the new last address.

The UEPCLPS exit-specific parameter
The UEPCLPS exit-specific parameter is included in both exit XNQEREQ and exit XNQEREQC, and contains
the address of the command-level parameter structure.

The command-level parameter structure contains four addresses, NQ_ADDR0 through NQ_ADDR3. It is
defined in the DSECT NQ_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHNQUED.

The command-level parameter list is made up as follows.
NQ_ADDR0

is the address of a 9-byte area called the EID, which is made up as follows:

• NQ_GROUP
• NQ_FUNCT
• NQ_BITS1
• NQ_BITS2
• NQ_EIDOPT5
• NQ_EIDOPT6
• NQ_EIDOPT7
• NQ_EIDOPT8

NQ_GROUP
Always X'12', indicating that this is a task control request.

NQ_FUNCT
One byte that defines the type of request:
X'04'

ENQ
X'06'

DEQ
NQ_BITS1

Existence bits that define which arguments were specified. To obtain the argument associated
with a keyword, you need to use the appropriate address from the command-level parameter
structure. Before using this address, you must check the associated existence bit. If the existence
bit is set off, the argument was not specified in the request and the address should not be used.
X'80'

Set if the request contains an argument for the RESOURCE keyword. If set, NQ_ADDR1 is
meaningful.

Chapter 1. Global user exit points (by function) 43

X'40'
Set if the request contains an argument for the LENGTH keyword. If set, NQ_ADDR2 is
meaningful.

X'20'
Set if the request contains an argument for the MAXLIFETIME keyword. If set, NQ_ADDR3 is
meaningful.

NQ_BITS2
Two bytes not used by the enqueue domain.

NQ_EIDOPT5
One byte not used by the enqueue domain.

NQ_EIDOPT6
One byte not used by the enqueue domain.

NQ_EIDOPT7
One byte not used by the enqueue domain.

NQ_EIDOPT8
Indicates whether certain keywords were specified on the request.
X'04'

NOSUSPEND was specified.
X'02'

DEQ was specified.
X'01'

ENQ was specified.
NQ_ADDR1

is the address of an area containing the value from RESOURCE.
NQ_ADDR2

is the address of the halfword value of LENGTH.
NQ_ADDR3

is the address of the fullword value of MAXLIFETIME.

The relationship between arguments, keywords, data types, and input/output types is summarized for the
enqueue commands in Table 2 on page 45.

Modifying fields in the command-level parameter structure
The fields that are passed to the enqueue domain are used as input to the request. The correct method of
modifying an input field is to create a new copy of it, and to change the address in the command-level
parameter list to point to your new data.

Important:

1. Do not modify an input field by altering the data that is pointed to by the command-level parameter
list. To do so would corrupt storage belonging to the application program and would cause a failure
when the program attempted to reuse the field.

2. There are no output fields on EXEC CICS ENQ and DEQ requests.

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not possible, for example, to
change an ENQ request to a DEQ request. However, you can make minor changes to requests, such as to
turn on the existence bit for LENGTH.

The list that follows shows the bits in the EID that can be modified. Any attempt to modify any other part
of the EID is ignored.

NQ_BITS1
X'40'

The existence bit for LENGTH

44 CICS TS for z/OS: User Exit Reference

X'20'
The existence bit for MAXLIFETIME.

NQ_EIDOPT7
A user exit program at XNQEREQ can set the following on or off for ENQ commands:
X'04'

The existence bit for NOSUSPEND.

The EID is reset to its original value before return to the application program. That is, changes made to
the EID are retained for the duration of the enqueue request only.

Note: Your user exit program is prevented from making major changes to the EID. However, you must
take great care when making the minor modifications that are permitted.

Use of the task token UEPTSTOK
The task token, UEPTSTOK, provides the address of a 4-byte area that you can use to pass information
between successive enqueue requests in the same task. For example, you can use the task token if you
need to pass information between successive invocations of the XNQEREQ exit.

By contrast, UEPNQTOK is usable only for the duration of a single enqueue request, because its contents
can be destroyed at the end of the request.

Note:

1. The lifetime of the area pointed to by UEPTSTOK is the lifetime of the task.
2. The value of UEPTSTOK is shared by all the exits to which it is passed during the lifetime of the task.

Table 2. User arguments and associated keywords, data types, and input/output types

Argument Keyword Data type Input/output type

Arg1 RESOURCE DATA-AREA input

Arg2 LENGTH BIN(15) input

Arg3 MAXLIFETIME CVDA input

Modifying user arguments
User exit programs can modify user input arguments either by obtaining/setting storage, or by setting a
pointer.

User exit programs can modify user input arguments by:

1. Obtaining sufficient storage to hold the modified argument
2. Setting the storage to the required value
3. Setting the associated pointer in the parameter list to the address of the newly-acquired area.

Note:

1. CICS does not check changes to argument values, so any changes must be verified by the user exit
program making the changes.

2. It is not advisable for XNQEREQC to modify input arguments.

Adding user arguments
Global user exit programs can add arguments associated with the LENGTH and MAXLIFETIME keywords.
You must ensure that the arguments you specify or modify in your exit programs are valid.

The valid values for MAXLIFETIME are DFHVALUE(TASK) and DFHVALUE(UOW), which are 233 and 246
respectively.

Assuming that the argument to be added does not already exist, the user exit program must:

1. Obtain storage for the argument to be added
2. Initialize the storage to the required value

Chapter 1. Global user exit points (by function) 45

3. Select and set up the appropriate pointer from the parameter list
4. Select and set up the appropriate argument existence bit in the EID
5. Modify the parameter list to reflect the new end of list indicator.

Removing user arguments
User exit programs can remove arguments (for which the program is totally responsible) associated with
the LENGTH and MAXLIFETIME keywords.

Assuming that the argument to be removed exists, the user exit program must:

1. Switch the corresponding argument existence bit to '0'b in the EID
2. Modify the parameter list to reflect the new end of list indicator.

Event capture exit XEPCAP
The XEPCAP exit is invoked just before an event is captured by CICS event processing. Use the XEPCAP
exit to detect when events are captured.

Exit-specific parameters
UEPEPCX

Address of the EPCX (event context data structure). This parameter contains information about
the event being captured. For more information about EPCX, see EPCX Event Processing Context
Container.

UEPEPTASK
Address of a 4-byte (packed decimal) field containing the task number.

UEPLOAD
Address of the capturing transaction program load point.

UEPRSA
Address of the capturing transaction register save area, which contains the contents of the
registers at the point when the program issued the EXEC CICS command. If the event is captured
from program initialization rather than an API call then this parameter is set to 0.

Return codes
UERCNORM

Continue processing.
XPI calls

You can use all XPI calls.
API and SPI commands

No EXEC CICS commands can be used.

EXEC interface program exits XEIIN, XEIOUT, XEISPIN, and XEISPOUT
There are four global user exit points in the EXEC interface program that you can use before or after an
API or SPI call.

XEIIN
Invoked before the execution of any EXEC CICS application programming interface (API) or system
programming interface (SPI) command.

XEISPIN
Invoked before the execution of any EXEC CICS SPI command except:

• EXEC CICS ENABLE
• EXEC CICS DISABLE
• EXEC CICS EXTRACT EXIT

46 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHEPCXK.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHEPCXK.html

• EXEC CICS PERFORM DUMP
• EXEC CICS RESYNC ENTRYNAME

The sequence is:

TRACE – XEIIN – XEISPIN – EDF – command

XEIOUT
Invoked after the execution of any EXEC CICS API or SPI command.

XEISPOUT
Invoked after the execution of any EXEC CICS SPI command except those listed for XEISPIN.

The sequence is:

command – EDF – XEISPOUT – XEIOUT – TRACE

Note: Asynchronous processing of these exits might occur if the transaction is suspended; for example,
during file I/O wait. This situation might also occur under CEDF because CEDF issues its own EXEC CICS
commands between the application’s XEISPIN and XEISPOUT exits.

If, for example, the same GWA is shared between the XEIIN and XEIOUT exits, you must allow for the
possibility of asynchronous processing, in order to ensure integrity of the data and to prevent
unpredictable results.

On entry to the exits, the exit-specific parameter UEPARG contains the address of the command
parameter list.

The command parameter list
The first parameter in the list points to a string of data known as argument 0. The other parameters point
to the values specified for the parameters passed on the command.

Argument 0 begins with a 2-byte function code that identifies the command. Function codes are
documented in EIB fields and in EXEC interface block (EIB) response and function codes. The function
code is followed by a 2-byte field that contain "existence bits", which indicate whether arguments are
passed on the command. For example, consider the command:

EXEC CICS LINK PROGRAM(‘MYPROG')

Here, argument 0 begins with the function code X'0E02' (LINK). Existence bit 1 is set, indicating that
there is an argument 1 (namely, ‘MYPROG').

The correspondence between command parameters (such as PROGRAM) and their positions and values
in the parameter list (in this case, argument 1, ‘MYPROG') can be deduced from the translated code for
the particular command.

Important:

Modifying CICS commands by changing argument 0 is not supported, and leads to unexpected errors or
results.

For example, if an application program is written in assembler or PL/I and you modify argument 0, you will
be writing to program storage (that is, storage occupied by the program itself), which could cause 0C4
abends. Furthermore, modifying argument 0 not only alters the CICS command for this execution of the
command in the application program, it changes the CICS command in the virtual storage copy of the
application program. This means that the next task to invoke the same copy of the program will also
execute the modified command.

This particular example of the danger of modifying argument 0 does not apply to COBOL or C application
programs, but nevertheless you should not modify CICS commands for application programs written in
any supported language.

Chapter 1. Global user exit points (by function) 47

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfha80q.html

Bypassing commands
An XEIIN or XEISPIN exit program can bypass execution of a command by setting the UERCBYP return
code. If it does this, EDF is not invoked, but XEISPOUT, XEIOUT, and exit trace are invoked if they are
active.

Bypassing an EXEC CICS command allows an exit program to replace the CICS function with its own
processing, for example.

Before setting UERCBYP, your program should check the value pointed to by UEPPGM, to ensure that it is
not bypassing an EXEC CICS command issued by CICS.

Exit XEIIN
Exit XEIIN is invoked before the execution of any EXEC CICS API or SPI command.

Exit-specific parameters
UEPARG

Address of the EXEC command parameter list.
UEPEXECB

Address of the system EIB.
UEPUSID

Address of the 8-character userid.
UEPPGM

Address of the 8-character application program name.
UEPLOAD

Address of the application program's load-point.
UEPRSA

Address of the application's register save area. This contains the contents of the registers at the
point when the program issued the EXEC CICS command.

UEP_EI_PBTOK
Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

Return codes
UERCNORM

Continue processing.
UERCBYP

Bypass the execution of this command.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

48 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

Exit XEISPIN
Exit XEISPIN is invoked before the execution of some SPI commands. The exit is not invoked for the
ENABLE, DISABLE, EXTRACT EXIT, PERFORM DUMP and RESYNC ENTRYNAME commands.

Exit-specific parameters
UEPARG

Address of the EXEC command parameter list.
UEPEXECB

Address of the system EIB.
UEPUSID

Address of the 8-character userid.
UEPPGM

Address of the 8-character application program name.
UEPLOAD

Address of the load-point of the application program.
UEPRSA

Address of the register save area of the application program. This area contains the contents of
the registers at the point when the program issued the EXEC CICS command.

UEP_EI_PBTOK
Address of a 4-byte field that contains the z/OS Workload Manager (WLM) Performance Block
Token. An exit program can use this token to access information in the WLM Performance Block,
for example, the service class token, SERVCLS. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

Return codes
UERCNORM

Continue processing.
UERCBYP

Bypass the execution of this command.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Exit XEIOUT
Exit XEIOUT is invoked after the execution of any EXEC CICS API or SPI command.

Exit-specific parameters
UEPARG

Address of the EXEC command parameter list.
UEPEXECB

Address of the system EIB.
UEPUSID

Address of the 8-character userid.
UEPPGM

Address of the 8-character application program name.
UEPLOAD

Address of the application program's load-point.

Chapter 1. Global user exit points (by function) 49

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

UEPRSA
Address of the application's register save area. This contains the contents of the registers at the
point when the program issued the EXEC CICS command.

UEP_EI_PBTOK
Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Exit XEISPOUT
Exit XEISPOUT is invoked after the execution of some SPI commands. The exit is not invoked for the
ENABLE, DISABLE, EXTRACT EXIT, PERFORM DUMP and RESYNC ENTRYNAME commands.

Exit-specific parameters
UEPARG

Address of the EXEC command parameter list.
UEPEXECB

Address of the system EIB.
UEPUSID

Address of the 8-character userid.
UEPPGM

Address of the 8-character application program name.
UEPLOAD

Address of the application program's load-point.
UEPRSA

Address of the application's register save area. This contains the contents of the registers at the
point when the program issued the EXEC CICS command.

UEP_EI_PBTOK
Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

Return codes
UERCNORM

Continue processing.

50 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Front End Programming Interface exits XSZARQ and XSZBRQ
If you have installed the Front End Programming Interface (FEPI), you can use global user exits XSZARQ
and XSZBRQ before and after FEPI commands.
XSZBRQ

Invoked before a FEPI command is executed (but after the syntax of the command has been
validated, and therefore after EDF processing).

XSZARQ
Invoked immediately after a FEPI command has completed (before EDF processing).

Note that both the FEPI application programming and system programming commands cause XSZBRQ
and XSZARQ to be invoked, but the latter do not provide the exit programs with any meaningful
information.

You cannot use exit programming interface (XPI) calls or EXEC CICS commands in programs invoked from
these exits. The exits allow you to monitor the FEPI commands and data being processed; you can inhibit
commands, and modify specific command options. You could use them for:

• Monitoring the issue of FEPI commands
• Workload routing
• External security on application programming commands.

XSZBRQ
XSZBRQ is invoked before a FEPI command is executed; the input parameters for the command are
passed to the exit program.

The majority of the information passed is read-only, but you can write a program to update specific
parameters. FEPI does not check the validity of the new values for the updated parameters. In addition,
your exit program can decide whether the request is to be processed or bypassed. You could use
XSZBRQ, for example, to log commands, to bypass commands that violate the conventions of your
installation, or to reroute commands by changing their specified targets or pools.

Together, UEPSZALP and UEPSZALT contain the information necessary to initiate a conversation.

When invoked
Invoked by FEPI before a FEPI command runs, but after syntax and semantic checking.

Exit-specific parameters
UEPSZACT

A 2-byte field that identifies the command. The values are given in Table 3 on page 53.
UEPSZCNV

An 8-character field containing the conversation ID (CONVID) for the command. Applicable on
FEPI ALLOCATE, SEND, RECEIVE, CONVERSE, EXTRACT, ISSUE, START, and FREE commands.

UEPSZALP
An 8-character field containing the name of the pool (POOL). Modifiable and applicable on FEPI
ALLOCATE and CONVERSE commands.

UEPSZALT
An 8-character field containing the name of the target (TARGET). Modifiable and applicable on
FEPI ALLOCATE and CONVERSE commands.

Chapter 1. Global user exit points (by function) 51

UEPSZTIM
Fullword binary field containing the timeout value (TIMEOUT). Modifiable and applicable on FEPI
ALLOCATE, RECEIVE, CONVERSE, and START commands.

UEPSZSND
Address of the ‘send’ data-area (FROM). Applicable on FEPI CONVERSE and SEND commands.

UEPSZSNL
Fullword binary field containing the length of the ‘send’ data (FROMFLENGTH, FLENGTH).
Applicable on FEPI CONVERSE and SEND commands.

UEPSZSTT
A 4-character field containing the transaction ID (TRANSID). Modifiable and applicable on FEPI
START commands.

UEPSZSTM
A 4-character field containing the terminal ID (TERMID). Modifiable and applicable on FEPI START
commands.

UEPSZSNK
A 1-bit flag field indicating whether data is in key stroke format (KEYSTROKE). Applicable on FEPI
CONVERSE FORMATTED and SEND FORMATTED commands. It can contain the following values:
UEPSZSNK_OFF

Not key stroke format.
UEPSZSNK_ON

Key stroke format.
UEPSZSNE

A 1-character field containing the key stroke escape character (ESCAPE). Applicable on FEPI
CONVERSE FORMATTED and SEND FORMATTED commands.

Return codes
UERCNORM

Continue processing.
UERCBYP

Do not process the request; return INVREQ to the application.

Note: Your exit program cannot bypass events (like CICS shutdown or end-of-task).

XPI calls
Do not use XPI calls.

XSZARQ
XSZARQ is invoked immediately after a FEPI command has been executed; the exit program is passed the
parameters that are output from the command. All of the information passed is read-only.

When invoked
Invoked by FEPI immediately after a FEPI command has been processed.

Exit-specific parameters
UEPSZACN

A 2-byte field that identifies the command. The values are given in Table 3 on page 53.
UEPSZCON

An 8-character field containing the conversation ID (CONVID) for the command. Applicable on
FEPI ALLOCATE, SEND, RECEIVE, CONVERSE, EXTRACT, ISSUE, START, and FREE commands.

UEPSZRP2
Fullword containing the response code for the command (RESP2).

UEPSZRVD
Address of the ‘receive’ data-area (INTO). Applicable on FEPI RECEIVE, CONVERSE, and EXTRACT
FIELD commands.

52 CICS TS for z/OS: User Exit Reference

UEPSZRVL
Fullword binary data field containing the length of the receive data (FLENGTH, TOFLENGTH).
Applicable on FEPI RECEIVE, CONVERSE, and EXTRACT FIELD commands.

Return code
UERCNORM

Continue processing.
XPI calls

Do not use any XPI calls.

The UEPSZACT and UEPSZACN exit-specific parameters
Both XSZBRQ and XSZARQ are passed a parameter (UEPSZACT for XSZBRQ, and UEPSZACN for
XSZARQ) indicating the command or event being processed.

Table 3 on page 53. relates the hexadecimal values passed in UEPSZACT and UEPSZACN to the FEPI
commands they represent.

Table 3. Settings of UEPSZACT for exit XSZBRQ and UEPSZACN for exit XSZARQ

Name Setting (hex) FEPI command or event

UEPSZNOA 820E AP NOOP

UEPSZOAL 8210 ALLOCATE

UEPSZOCF 8212 CONVERSE FORMATTED

UEPSZOCD 8214 CONVERSE DATASTREAM

UEPSZOXC 8216 EXTRACT CONV

UEPSZOXF 8218 EXTRACT FIELD

UEPSZOXS 821A EXTRACT STSN

UEPSZOFR 821C FREE

UEPSZOSU 821E ISSUE

UEPSZORF 8220 RECEIVE FORMATTED

UEPSZORD 8222 RECEIVE DATASTREAM

UEPSZOSF 8224 SEND FORMATTED

UEPSZOSD 8226 SEND DATASTREAM

UEPSZOST 8228 START

UEPSZSDN 8402 CICS normal shutdown 1

UEPSZSDI 8404 CICS immediate shutdown 1

UEPSZSDF 8406 CICS forced shutdown 1

UEPSZEOT 8408 CICS end-of-task 1

UEPSZNOS 840E SP NOOP

UEPSZOQY 8422 INQUIRE PROPERTYSET

UEPSZOIY 8428 INSTALL PROPERTYSET

UEPSZODY 8430 DISCARD PROPERTYSET

UEPSZOQN 8442 INQUIRE NODE

UEPSZOTN 8444 SET NODE

UEPSZOIN 8448 INSTALL NODELIST

Chapter 1. Global user exit points (by function) 53

Table 3. Settings of UEPSZACT for exit XSZBRQ and UEPSZACN for exit XSZARQ (continued)

Name Setting (hex) FEPI command or event

UEPSZOAD 844A ADD POOL

UEPSZODE 844C DELETE POOL

UEPSZODN 8450 DISCARD NODELIST

UEPSZOQP 8462 INQUIRE POOL

UEPSZOTP 8464 SET POOL

UEPSZOIP 8468 INSTALL POOL

UEPSZODP 8470 DISCARD POOL

UEPSZOQT 8482 INQUIRE TARGET

UEPSZOTT 8484 SET TARGET

UEPSZOIT 8488 INSTALL TARGETLIST

UEPSZODT 8490 DISCARD TARGETLIST

UEPSZOQC 84A2 INQUIRE CONNECTION

UEPSZOTC 84A4 SET CONNECTION

Note:

• 1 These events are generated internally by CICS; you cannot bypass them.

Using XMEOUT to control message output
You can use the XMEOUT global user exit, in the CICS message domain, to suppress or reroute FEPI
messages.

Note, however, that error conditions that generate a message also generate a transient data queue
record. It is more efficient to handle such events using a monitoring program, through the TD queue, than
by duplicating a message and then acting on it.

File control domain exits, XFCFRIN and XFCFROUT
The XFCFRIN exit is invoked on entry to the main file control request gate, FCFR, and the XFCFROUT exit
runs after the completion of a file control request. The XFCFRIN and XFCFROUT exits must be coded to
threadsafe standards and declared threadsafe to take advantage of threadsafe remote file support.
XFCFRIN

XFCFRIN allows you to write a program to perform one or more of the following tasks:

• Monitor file control requests and allow them to continue, to be processed by CICS file control
• Intercept file control requests and bypass CICS file control processing altogether
• Redirect the request to a remote region.

If the exit program passes the request to CICS file control (without choosing to redirect it to a remote
region), it is not allowed to make changes to any of the parameters. If the exit program intercepts the
request and bypasses file control:

• It must return all the responses and output parameters that would otherwise have been returned by
file control. These are marked output in the descriptions of the exit-specific parameters.

• It must indicate whether, if the request was function-shipped, the mirror transaction is permitted to
terminate. Certain file control requests require that another request has been executed previously
in the same transaction. (For example, READNEXT must be preceded by a matching STARTBR;
REWRITE must be preceded by a matching READ, READNEXT, or READPREV with the UPDATE

54 CICS TS for z/OS: User Exit Reference

option). If the mirror transaction terminates between two such requests, the second is likely to fail.
Conversely, a mirror transaction that is retained unnecessarily will hold on to CICS resources and
may contribute to storage and locking problems.

• CICS terminates file browses and outstanding updates as part of syncpoint processing. However,
the XFCFRIN exit is not invoked for syncpoint. If you want to emulate this aspect of CICS behavior
accurately, or you want to support recoverable resources, you must invoke a task-related user exit
program which schedules the syncpoint manager—see Coding a program to be started by the CICS
sync point manager.

To redirect the request to a remote region, the exit program must add or change the value of the
SYSID parameter. In this case, it may also need to supply the values of the key length and record
length. It is not permitted to make changes to any of the other parameters.

XFCFROUT
XFCFROUT allows you to monitor the results of completed file control requests. For example, if you
didn't choose to bypass CICS file control processing, you can analyze the (CICS-internal) file control
request to determine its type, the parameters passed to file control, and the values returned. It is
invoked in both the following cases:

• After CICS file control has completed its processing, either normally or with an error
• If your XFCFRIN exit program chooses to bypass CICS file control processing.

All parameters are input-only; your exit program cannot modify any of the values.

To use IPIC connections for function shipping file control requests, ensure that XFCFRIN and XFCFROUT
check that the UEPTERM parameter is a non-zero value before trying to use it as an address. The
UEPTERM parameter is a zero for file control requests that have been function shipped over an IPIC
connection.

Exit XFCFRIN
Exit XFCFRIN is invoked before the execution of a file control request.

The request can have originated from:

• The execution of an application request to process a user file
• The receipt of a function-shipped request
• An internal CICS request to process a system file.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Zero, or the address of the 4-byte terminal ID. If no address is returned, this could mean that this
request has been function shipped over an IPIC connection.

UEPPROG
Address of the 8-byte application program name.

UEP_FC_FUNCTION
Address of a byte containing the function. The FCFR functions are derived from those available
through the EXEC CICS interface, where certain request options (SET, INTO, UPDATE) have been
included in the function values. For example, UEP_FC_FUN_DELETE is derived from EXEC CICS
DELETE with the RIDFLD option specified; UEP_FC_FUN_REWRITE_DELETE is derived from EXEC
CICS DELETE without RIDFLD. The possible values are:

• UEP_FC_FUN_READ_INTO
• UEP_FC_FUN_READ_SET
• UEP_FC_FUN_READ_UPDATE_INTO

Chapter 1. Global user exit points (by function) 55

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha3rh.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha3rh.html

• UEP_FC_FUN_READ_UPDATE_SET
• UEP_FC_FUN_WRITE
• UEP_FC_FUN_REWRITE
• UEP_FC_FUN_REWRITE_DELETE
• UEP_FC_FUN_DELETE
• UEP_FC_FUN_UNLOCK
• UEP_FC_FUN_START_BROWSE
• UEP_FC_FUN_READ_NEXT_INTO
• UEP_FC_FUN_READ_NEXT_SET
• UEP_FC_FUN_READ_PREVIOUS_INTO
• UEP_FC_FUN_READ_PREVIOUS_SET
• UEP_FC_FUN_READ_NEXT_UPDATE_INTO
• UEP_FC_FUN_READ_NEXT_UPDATE_SET
• UEP_FC_FUN_READ_PREVIOUS_UPDATE_INTO
• UEP_FC_FUN_READ_PREVIOUS_UPDATE_SET
• UEP_FC_FUN_RESET_BROWSE
• UEP_FC_FUN_END_BROWSE

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEP_FC_FILE_NAME
Address of an 8-byte modifiable field containing the filename.

UEP_FC_BUFFER_P
Address of a fullword containing the address of the buffer provided by the originator of the
request, in which the (output) record is to be returned on completion of a READ, READ NEXT, or
READ PREV request with the INTO option.

UEP_FC_BUFFER_L
Address of a fullword containing (for READ, READ NEXT, and READ PREV requests) the value of
the LENGTH of the buffer into which the record is to be read.

UEP_FC_RECORD_P
Address of one of the following:

• If the request is a READ, READ NEXT, or READ PREV with the SET option, a fullword in which is
to be returned the address (output) of a buffer, into which the record will be placed. The buffer
itself is supplied either by CICS file control or, if the exit program bypasses file control, by the
exit program.

• If the request is WRITE or REWRITE, a fullword containing the address of the record to be
written.

UEP_FC_RECORD_L
Address of a fullword containing (for READ, WRITE, REWRITE, READ NEXT, and READ PREV
requests) the value of LENGTH.

For all READ, READ NEXT, or READ PREV requests, this is an output field, in which the actual
length of the record read is placed on return.

Warning: For requests that specify INTO, do not change the value of LENGTH to a value greater
than the value specified by the UEP_FC_BUFFER_L field. To do so could cause a storage overlay in
the application.

For a WRITE or REWRITE, this is an optional field which, if present, contains the length of the
record to be written. If the field is not specified, the fullword contains binary zeroes. In this case,
to modify the record length for a remote file use UEP_FC_M_RECORD_L instead.

56 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

See also the description of the UEP_FC_SYSID parameter.

UEP_FC_MAX_RECORD_L
Address of a fullword containing the (output) maximum record length of the file. (CICS function
shipping uses this value to update the file's entry in the remote file control table.)

UEP_FC_RECORD_ID_P
Address of a fullword containing the address of the RIDFLD (record identifier) value. For a
discussion of when the record identifier is an input or an output field, see Table 4 on page 71.

UEP_FC_RECORD_ID_L
Address of the halfword value of KEYLENGTH, which is the (possibly partial) length of the record
identifier.

KEYLENGTH is an optional input parameter on READ, WRITE, DELETE, START BR, READ NEXT,
READ PREV, and RESET BR requests. If the field is not specified, the halfword contains binary
zeroes. In this case, to modify the key length for a remote file use UEP_FC_M_RECORD_ID_L
instead.

See also the description of the UEP_FC_SYSID parameter.

UEP_FC_FULL_RECORD_ID_L
Address of the halfword value of the full length of the record identifier.

The full length of the record identifier is returned as a mandatory output field on READ NEXT and
READ PREV requests. The value is used by CICS function shipping.

UEP_FC_RECORD_ID_TYPE
Address of a byte containing (for READ, WRITE, DELETE, START BR, READ NEXT, READ PREV, and
RESET BR requests) the RIDFLD type. On input to the exit, this parameter will be set to one of:
UEP_FC_KEY

VSAM KSDS or AIX® PATH access
UEP_FC_RBA

VSAM ESDS or KSDS via RBA access
UEP_FC_RRN

VSAM RRDS access
UEP_FC_DEBKEY

BDAM deblocking by key (READ, DELETE, START BR, and RESET BR requests only)
UEP_FC_DEBREC

BDAM deblocking by relative record (READ, DELETE, START BR, and RESET BR requests only)
UEP_FC_XRBA

VSAM extended ESDS access
UEP_FC_REQID

Address (for START BR, READ NEXT, READ PREV, RESET BR, and END BR requests) of the
halfword value of REQID.

UEP_FC_NUMREC
Address of the fullword value of NUMREC (output), in which (if the request is DELETE with
RIDFLD) the number of records that have been deleted is returned.

UEP_FC_KEY_COMPARISON
Address of a byte containing (for READ, START BR, and RESET BR requests) the key comparison
setting. On input to the exit, this parameter will be set to one of:
UEP_FC_EQUAL

Key-equal-to comparison is to be used.
UEP_FC_GTEQ

Key-greater-than-or-equal-to comparison is to be used.
UEP_FC_GENERIC

Address of a byte containing (for READ, DELETE, START BR, and RESET BR requests) the generic
key setting. On input to the exit, this parameter will be set to one of:

Chapter 1. Global user exit points (by function) 57

UEP_FC_GENERIC_KEY
Generic key is to be used for key search.

UEP_FC_FULL_KEY
Full key is to be used for key search.

UEP_FC_MASS_INSERT
Address of a byte containing (for WRITE requests) the mass insert setting. On input to the exit,
this parameter will be set to one of:
UEP_FC_SEQUENTIAL_WRITE

Records are to be written in sequential mode.
UEP_FC_DIRECT_WRITE

Records are to be written in direct mode.
UEP_FC_READ_INTEGRITY

Address of a byte containing (for non-update READ, READ NEXT, and READ PREV requests) the
read integrity setting. (In current versions of CICS, this setting applies only to VSAM RLS.) On input
to the exit, this parameter will be set to one of:
UEP_FC_CR

Consistent read integrity is to be used.
UEP_FC_FCT_VALUE

Read integrity is according to the setting in the FILE definition.
UEP_FC_NRI

The record is to be read with no read integrity.
UEP_FC_RR

Repeatable read integrity is to be used.
UEP_FC_TOKEN

Address of a fullword containing the value of TOKEN.

If the request is READ, READ NEXT, or READ PREV with update, and the address is not null, the
area is an output field in which the token is to be returned.

If the request is REWRITE, DELETE without RIDFLD, or UNLOCK, the area is an input field.

UEP_FC_SYSID
Address of a 4-byte area that is to contain the SYSID identifying the remote region. On input to the
exit, the area contains either:

• The value of the SYSID option of the API call, or
• Blanks (if SYSID was not specified).

To redirect the request to a different region, the exit program must place the SYSID of the target
region in this output area.

If this parameter is set by the exit program, the request is function-shipped by file control without
any reference to the file's attributes. If the key length has not been included on the request, the
exit program must establish its value by setting the UEP_FC_RECORD_ID_L parameter.

Similarly, if the request is WRITE or REWRITE, and the record length has not been specified on the
request, the exit program must establish its value by setting the UEP_FC_RECORD_L parameter.

UEP_FC_LENGTH_ERROR_CODE
Address of a 1-byte output area containing the length error code to be returned after a request
has completed. The possible values are:

• UEP_FC_LENGTH_OK
• UEP_FC_BUFFER_LEN_TOO_SMALL
• UEP_FC_RECORD_LEN_TOO_LARGE
• UEP_FC_BUFFER_LEN_NOT_FILE_LEN
• UEP_FC_RECORD_LEN_NOT_FILE_LEN

58 CICS TS for z/OS: User Exit Reference

UEP_FC_DUPLICATE_KEY_CODE
Address of a 1-byte output area indicating whether the request found more than one record for
the supplied key. The possible values are:

• UEP_FC_DUPLICATE KEY
• UEP_FC_NOT_DUPLICATE KEY

UEP_FC_ACCMETH_RETURN_CODE
Address of a 4-byte output area in which access-method-dependent information is to be returned
when either of the responses UEP_FC_REASON_ACCMETH_REQUEST_ERROR or
UEP_FC_REASON_IO_ERROR is returned.

The returned value is placed in bytes 2–5 of the EIBRCODE.

UEP_FC_RESPONSE
Address of a 1-byte output area containing the response after a request has completed:
UEP_FC_RESPONSE_OK

Processing has completed without errors.
UEP_FC_RESPONSE_EXCEPTION

Processing has completed with an error condition. The reason is set in UEP_FC_REASON.
UEP_FC_RESPONSE_DISASTER

An error has occurred which prevents processing from completing. Typically, this is as a result
of a DISASTER response from an XPI function call, or corruption of data addressed from
UEPGAA or UEPTSTOK.

If you set this response, the caller of file control will assume that first-failure data capture has
been performed. If you are percolating a DISASTER response from an XPI request, first-failure
data capture will have been performed already; if not, you should attempt to capture sufficient
information to successfully diagnose the error. The DFHDUDUX SYSTEM_DUMP XPI function
may be suitable for this purpose.

UEP_FC_RESPONSE_INVALID
The exit program was invoked with an invalid parameter list, indicating a CICS internal logic
error. Note that an invalid parameter list that indicates an application error should give an
EXCEPTION response.

UEP_FC_RESPONSE_PURGED
An XPI function call has received a PURGED response. Setting this response is equivalent to
setting the UERCPURG return code, except that any changes to the parameter list are
honored.

UEP_FC_REASON
Address of a 1-byte output area containing, after a request has completed with an EXCEPTION
response, the reason. The possible reasons are:

• UEP_FC_REASON_ACCMETH_REQUEST_ERROR
• UEP_FC_REASON_DELETE_AFTER_READ_UPDATE
• UEP_FC_REASON_DELETE_BEFORE_READ_UPDATE
• UEP_FC_REASON_DUPLICATE_READ_UPDATE
• UEP_FC_REASON_DUPLICATE_RECORD
• UEP_FC_REASON_DUPLICATE_REQID
• UEP_FC_REASON_END_OF_FILE
• UEP_FC_REASON_FILE_DISABLED
• UEP_FC_REASON_FILE_NOT_OPEN
• UEP_FC_REASON_FILE_NOT_FOUND
• UEP_FC_REASON_FULL_KEY_WRONG_LENGTH
• UEP_FC_REASON_GENERIC_DELETE_NOT_KSDS

Chapter 1. Global user exit points (by function) 59

• UEP_FC_REASON_GENERIC_KEY_TOO_LONG
• UEP_FC_REASON_ILLEGAL_KEY_TYPE_CHANGE
• UEP_FC_REASON_INSUFFICIENT_SPACE
• UEP_FC_REASON_INVALID_UPDATE_TOKEN
• UEP_FC_REASON_IO_ERROR
• UEP_FC_REASON_KEY_LENGTH_NEGATIVE
• UEP_FC_REASON_KSDS_AND_XRBA
• UEP_FC_REASON_NO_VARIABLE_LENGTH
• UEP_FC_REASON_NOTAUTH
• UEP_FC_REASON_NOT_EXTENDED
• UEP_FC_REASON_READPREV_IN_GENERIC_BROWSE
• UEP_FC_REASON_RECORD_NOT_FOUND
• UEP_FC_REASON_REWRITE_BEFORE_READ_UPDATE
• UEP_FC_REASON_RIDFLD_KEY_NOT_RECORD_KEY
• UEP_FC_REASON_UNKNOWN_REQID_ENDBR
• UEP_FC_REASON_UNKNOWN_REQID_READNEXT
• UEP_FC_REASON_UNKNOWN_REQID_READPREV
• UEP_FC_REASON_UNKNOWN_REQID_RESETBR

UEP_FC_EXIT_TOKEN
Address of a 4-byte token to be passed to XFCFROUT. This allows you, for example, to pass a
work area to exit XFCFROUT.

UEP_FC_M_RECORD_L
Address of a fullword containing the modified record length field. You can use this to change the
LENGTH, for remote files only, when the LENGTH field is not specified on the API call. If the
LENGTH field is specified on the API call, to change the LENGTH use UEP_FC_RECORD_L instead,
because changing the value at the address stored by UEP_FC_M_RECORD_L has no effect.

UEP_FC_M_RECORD_ID_L
Address of a halfword containing the modified key length field. You can use this to change the
KEYLENGTH, for remote files only, when the KEYLENGTH field is not specified on the API call. If
the KEYLENGTH field is specified, to change the KEYLENGTH use UEP_FC_RECORD_ID_L instead,
because changing the value at the address stored by UEP_FC_M_RECORD_ID_L has no effect.

Return codes
UERCNORM

Continue processing.
UERCBYP

Bypass CICS processing of this request. If the exit program has been invoked for a function-
shipped request, the mirror transaction is permitted to terminate.

UERCBYPL
Bypass CICS processing of this request. If the exit program has been invoked for a function-
shipped request, the mirror transaction must not terminate.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

API and SPI calls
None can be used.

60 CICS TS for z/OS: User Exit Reference

Exit XFCFROUT
Exit XFCFROUT is invoked after the completion of a file control request.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Zero, or the address of the 4-byte terminal ID. If no address is returned, this could mean that this
request has been function shipped over an IPIC connection.

UEPPROG
Address of the 8-byte application program name.

UEP_FC_FUNCTION
Address of a byte containing the function. The possible values are:

• UEP_FC_FUN_READ_INTO
• UEP_FC_FUN_READ_SET
• UEP_FC_FUN_READ_UPDATE_INTO
• UEP_FC_FUN_READ_UPDATE_SET
• UEP_FC_FUN_WRITE
• UEP_FC_FUN_REWRITE
• UEP_FC_FUN_REWRITE_DELETE
• UEP_FC_FUN_DELETE
• UEP_FC_FUN_UNLOCK
• UEP_FC_FUN_START_BROWSE
• UEP_FC_FUN_READ_NEXT_INTO
• UEP_FC_FUN_READ_NEXT_SET
• UEP_FC_FUN_READ_PREVIOUS_INTO
• UEP_FC_FUN_READ_PREVIOUS_SET
• UEP_FC_FUN_READ_NEXT_UPDATE_INTO
• UEP_FC_FUN_READ_NEXT_UPDATE_SET
• UEP_FC_FUN_READ_PREVIOUS_UPDATE_INTO
• UEP_FC_FUN_READ_PREVIOUS_UPDATE_SET
• UEP_FC_FUN_RESET_BROWSE
• UEP_FC_FUN_END_BROWSE

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEP_FC_FILE_NAME
Address of an 8-byte field containing the filename.

UEP_FC_BUFFER_P
Address of a fullword containing the address of the buffer provided by the originator of the
request, in which the record is returned on completion of a READ, READ NEXT, or READ PREV
request with the INTO option.

UEP_FC_BUFFER_L
Address of a fullword containing (for READ, READ NEXT, and READ PREV requests) the value of
the LENGTH of the buffer into which the record was read.

Chapter 1. Global user exit points (by function) 61

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

UEP_FC_RECORD_P
Address of one of the following:

• If the request is a READ, READ NEXT, or READ PREV request with the SET option, a fullword in
which is returned the address of a buffer, into which the record was placed.

• If the request is WRITE or REWRITE, a fullword containing the address of the record that was
written.

UEP_FC_RECORD_L
Address of a fullword containing (for READ, WRITE, REWRITE, READ NEXT, and READ PREV
requests) the value of LENGTH.

For all READ, READ NEXT, or READ PREV requests, this is an output field, containing the actual
length of the record read. For these types of request, this record-length value is always present,
even if the LENGTH option was not specified on the EXEC CICS API call.

For a WRITE or REWRITE, this is an optional field which, if present, contains the length of the
record that was written.

UEP_FC_MAX_RECORD_L
Address of a fullword containing the maximum record length of the file.

UEP_FC_RECORD_ID_P
Address of a fullword containing the address of the value of RIDFLD (record identifier). For a
discussion of when the record identifier is an input or an output field, see Table 4 on page 71.

UEP_FC_RECORD_ID_L
Address of the halfword value of KEYLENGTH, which is the (possibly partial) length of the record
identifier.

The length of the record identifier is an optional input parameter on READ, WRITE, DELETE, START
BR, READ NEXT, READ PREV, and RESET BR requests.

UEP_FC_FULL_RECORD_ID_L
Address of the halfword value of the full length of the record identifier. (The full length of the
record identifier corresponds to the KEYLENGTH keyword of the EXEC CICS interface.)

The full length of the record identifier is returned as a mandatory output field on READ NEXT and
READ PREV requests.

UEP_FC_RECORD_ID_TYPE
Address of a byte containing (for READ, WRITE, DELETE, START BR, READ NEXT, READ PREV, and
RESET BR requests) the RIDFLD type.
UEP_FC_KEY

VSAM KSDS or AIX PATH access
UEP_FC_RBA

VSAM ESDS or KSDS via RBA access
UEP_FC_RRN

VSAM RRDS access
UEP_FC_DEBKEY

BDAM deblocking by key (READ, DELETE, START BR, and RESET BR requests only)
UEP_FC_DEBREC

BDAM deblocking by relative record (READ, DELETE, START BR, and RESET BR requests only)
UEP_FC_XRBA

VSAM extended ESDS access
UEP_FC_REQID

Address (for START BR, READ NEXT, READ PREV, RESET BR, and END BR requests) of the
halfword value of REQID.

62 CICS TS for z/OS: User Exit Reference

UEP_FC_NUMREC
Address of the fullword value of NUMREC, in which (if the request is DELETE with RIDFLD) the
number of records that have been deleted is returned.

UEP_FC_KEY_COMPARISON
Address of a byte containing (for READ, START BR, and RESET BR requests) the key comparison
setting.
UEP_FC_EQUAL

Key-equal-to comparison.
UEP_FC_GTEQ

Key-greater-than-or-equal-to comparison.
UEP_FC_GENERIC

Address of a byte containing (for READ, DELETE, START BR, and RESET BR requests) the generic
key setting.
UEP_FC_GENERIC_KEY

Generic key used for key search.
UEP_FC_FULL_KEY

Full key used for key search.
UEP_FC_MASS_INSERT

Address of a byte containing (for WRITE requests) the mass insert setting.
UEP_FC_SEQUENTIAL_WRITE

Sequential mode.
UEP_FC_DIRECT_WRITE

Direct mode.
UEP_FC_READ_INTEGRITY

Address of a byte containing (for non-update READ, READ NEXT, and READ PREV requests) the
read integrity setting. (In current versions of CICS, this setting applies only to VSAM RLS.)
UEP_FC_CR

Consistent read integrity.
UEP_FC_FCT_VALUE

Read integrity according to the setting in the FILE definition.
UEP_FC_NRI

No read integrity.
UEP_FC_RR

Repeatable read integrity.
UEP_FC_TOKEN

Address of a fullword containing the value of TOKEN.

If the request is READ, READ NEXT, or READ PREV with update, and the address is not null, the
area is an output field in which the token is returned.

If the request is REWRITE, DELETE without RIDFLD, or UNLOCK, the area is an input field.

UEP_FC_SYSID
Address of a 4-byte area that contains the SYSID identifying the remote region. On input to the
XFCFROUT exit, the area contains either:

• The value of the SYSID option of the API call, or
• Blanks (if SYSID was not specified), or
• The value of the SYSID value specified by the XFCFRIN exit.

UEP_FC_LENGTH_ERROR_CODE
Address of a 1-byte area containing the length error code returned after the request completed.
The possible values are:

Chapter 1. Global user exit points (by function) 63

• UEP_FC_LENGTH_OK
• UEP_FC_ BUFFER_LEN_TOO_SMALL
• UEP_FC_RECORD_LEN_TOO_LARGE
• UEP_FC_BUFFER_LEN_NOT_FILE_LEN
• UEP_FC_RECORD_LEN_NOT_FILE_LEN

UEP_FC_DUPLICATE_KEY_CODE
Address of a 1-byte area indicating whether the request found more than one record for the
supplied key. The possible values are:

• UEP_FC_DUPLICATE KEY
• UEP_FC_NOT_DUPLICATE KEY

UEP_FC_ACCMETH_RETURN_CODE
Address of a 4-byte area in which access-method-dependent information is returned when either
of the responses UEP_FC_REASON_ACCMETH_REQUEST_ERROR or
UEP_FC_REASON_IO_ERROR is returned.

UEP_FC_RESPONSE
Address of a 1-byte area containing the response after the request completed:

• UEP_FC_RESPONSE_OK
• UEP_FC_RESPONSE_EXCEPTION
• UEP_FC_RESPONSE_DISASTER
• UEP_FC_RESPONSE_INVALID
• UEP_FC_RESPONSE_PURGED

UEP_FC_REASON
Address of a 1-byte area containing, if the request completed with an EXCEPTION response, the
reason. The possible reasons are:

• UEP_FC_REASON_ABEND
• UEP_FC_REASON_ACCMETH_REQUEST_ERROR
• UEP_FC_REASON_BDAM_DELETE
• UEP_FC_REASON_BDAM_LENGTH_CHANGE
• UEP_FC_REASON_BDAM_KEY_CONVERSION
• UEP_FC_REASON_BDAM_READ_PREVIOUS
• UEP_FC_REASON_BDAM_WRITE_MASS_INSERT
• UEP_FC_REASON_BROWSE_UPD_NOT_RLS
• UEP_FC_REASON_CACHE_FAILURE
• UEP_FC_REASON_CFDT_CONNECT_ERROR
• UEP_FC_REASON_CFDT_DISCONNECT_ERROR
• UEP_FC_REASON_CFDT_INVALID_CONTINUATION
• UEP_FC_REASON_CFDT_POOL_FULL
• UEP_FC_REASON_CFDT_REOPEN_ERROR
• UEP_FC_REASON_CFDT_SERVER_NOT_AVAILABLE
• UEP_FC_REASON_CFDT_SERVER_NOT_FOUND
• UEP_FC_REASON_CFDT_SYSIDERR
• UEP_FC_REASON_CFDT_TABLE_GONE
• UEP_FC_REASON_CHANGED
• UEP_FC_REASON_CR_NOT_RLS
• UEP_FC_REASON_DATASET_BEING_COPIED

64 CICS TS for z/OS: User Exit Reference

• UEP_FC_REASON_DEADLOCK_DETECTED
• UEP_FC_REASON_DELETE_AFTER_READ_UPDATE
• UEP_FC_REASON_DELETE_BEFORE_READ_UPDATE
• UEP_FC_REASON_DISASTER_PERCOLATION
• UEP_FC_REASON_DUPLICATE_READ_UPDATE
• UEP_FC_REASON_DUPLICATE_RECORD
• UEP_FC_REASON_DUPLICATE_REQID
• UEP_FC_REASON_END_OF_FILE
• UEP_FC_REASON_ESDS_DELETE
• UEP_FC_REASON_FILE_DISABLED
• UEP_FC_REASON_FILE_NOT_OPEN
• UEP_FC_REASON_FILE_NOT_RECOVERABLE
• UEP_FC_REASON_FILE_NOT_FOUND
• UEP_FC_REASON_FULL_KEY_WRONG_LENGTH
• UEP_FC_REASON_GENERIC_DELETE_NOT_KSDS
• UEP_FC_REASON_GENERIC_KEY_TOO_LONG
• UEP_FC_REASON_ILLEGAL_KEY_TYPE_CHANGE
• UEP_FC_REASON_INSUFFICIENT_SPACE
• UEP_FC_REASON_INVALID_UPDATE_TOKEN
• UEP_FC_REASON_IO_ERROR
• UEP_FC_REASON_ISCINVREQ
• UEP_FC_REASON_ISC_NOT_SUPPORTED
• UEP_FC_REASON_KEY_LENGTH_NEGATIVE
• UEP_FC_REASON_KEY_STOLEN
• UEP_FC_REASON_KSDS_AND_XRBA
• UEP_FC_REASON_LOADING
• UEP_FC_REASON_LOCKED
• UEP_FC_REASON_LOST_LOCKS
• UEP_FC_REASON_LOCK_STRUCTURE_FULL
• UEP_FC_REASON_NOT_IN_SUBSET
• UEP_FC_REASON_NO_VARIABLE_LENGTH
• UEP_FC_REASON_NOSUSPEND_NOT_RLS
• UEP_FC_REASON_NOTAUTH
• UEP_FC_REASON_NOT_EXTENDED
• UEP_FC_REASON_PREVIOUS_RLS_FAILURE
• UEP_FC_REASON_RBA_ACCESS_TO_RLS_KSDS
• UEP_FC_REASON_READ_NOT_AUTHORISED
• UEP_FC_REASON_READPREV_IN_GENERIC_BROWSE
• UEP_FC_REASON_RECLEN_EXCEEDS_LOGGER_BFSZ
• UEP_FC_REASON_RECORD_BUSY
• UEP_FC_REASON_RECORD_NOT_FOUND
• UEP_FC_REASON_REMOTE_INVREQ
• UEP_FC_REASON_RESTART_FAILED

Chapter 1. Global user exit points (by function) 65

• UEP_FC_REASON_REWRITE_BEFORE_READ_UPDATE
• UEP_FC_REASON_RIDFLD_KEY_NOT_RECORD_KEY
• UEP_FC_REASON_RLS_DEADLOCK_DETECTED
• UEP_FC_REASON_RLS_DISABLED
• UEP_FC_REASON_RLS_FAILURE
• UEP_FC_REASON_RR_NOT_RLS
• UEP_FC_REASON_SECURITY_FAILURE
• UEP_FC_REASON_SELF_DEADLOCK_DETECTED
• UEP_FC_REASON_SERVREQ_VIOLATION
• UEP_FC_REASON_SHIP
• UEP_FC_REASON_SHIPPED_SECURITY_FAILURE
• UEP_FC_REASON_STORE_FAIL
• UEP_FC_REASON_SUPPRESSED
• UEP_FC_REASON_SYSIDERR
• UEP_FC_REASON_TABLE_FULL
• UEP_FC_REASON_TABLE_TOKEN_INVALID
• UEP_FC_REASON_TIMEOUT
• UEP_FC_REASON_TOO_MANY_CFDTS_IN_UOW
• UEP_FC_REASON_UNKNOWN_REQID_ENDBR
• UEP_FC_REASON_UNKNOWN_REQID_READNEXT
• UEP_FC_REASON_UNKNOWN_REQID_READPREV
• UEP_FC_REASON_UNKNOWN_REQID_RESETBR
• UEP_FC_REASON_UPDATE_NOT_AUTHORISED

UEP_FC_EXIT_TOKEN
Address of the 4-byte token passed from XFCFRIN.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI calls

None can be used.

File control EXEC interface API exits XFCREQ and XFCREQC
The XFCREQ exit allows you to intercept a file control application programming interface (API) request
before any action has been taken on it by file control. The XFCREQC exit allows you to intercept a file
control API request after file control has completed its processing.

Important

The XFCREQ and XFCREQC exits are not called, on the target region, for function-shipped requests. That
is, if a file control API request is function-shipped to a remote region, the exits are not called on the
remote region. To intercept a function-shipped file control API request on the target region, use the
XFCFRIN exit—see “File control domain exits, XFCFRIN and XFCFROUT” on page 54.

66 CICS TS for z/OS: User Exit Reference

The file control API commands intercepted are:

• READ
• WRITE
• REWRITE
• DELETE
• UNLOCK
• STARTBR
• READNEXT
• READPREV
• ENDBR
• RESETBR.

The XFCREQ and XFCREQC exits can be written only in assembler language.

Using XFCREQ, you can:

• Analyze the request, to determine its type, the keywords specified, and their values.
• Modify values specified by the request before the command is executed.
• Set return codes to specify that either:

– CICS should continue with the (possibly modified) request.
– CICS should bypass the request. (Note that if you set this return code, you must also set up return

codes for the EXEC interface block (EIB), as if you had processed the request yourself.)

Using XFCREQC, you can:

• Analyze the request, to determine its type, the keywords specified, and their values.
• Set return codes for the EIB.

Both exits are passed nine parameters as follows:

• The address of the command-level parameter structure
• The address of a token (UEPFCTOK) used to pass 4 bytes of data from XFCREQ to XFCREQC
• The addresses of copies of four pieces of return code and resource information from the EIB
• The address of a token (UEPTSTOK) that is valid throughout the life of a task
• The address of a recursion count field
• The address of a 16-byte area that is used if the request has been function shipped.

The command-level parameter structure
The command-level parameter structure consists of a series of addresses. The first address points to the
EXEC interface descriptor (EID), which consists of a bit string that describes the type of request and
identifies each keyword specified with the request. The remaining addresses point to pieces of data
associated with the request. For example, the second address always points to the file name.

Only the first 8 addresses and the last address can be referenced by the user exit. The ninth through
eleventh addresses are reserved for CICS internal use.

You can examine the EID to determine the type of request and the keywords specified. You can examine
the other parameters in the list to determine the values of the keywords. You can also modify values of
keywords specified on the request. (For example, you could change the name of the file involved in the
request.)

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to indicate that it is the last one in
the list. On return from your user exit program, CICS scans the parameter list for the high-order bit to find

Chapter 1. Global user exit points (by function) 67

the last parameter. Therefore, if you modify the length of the parameter list, you must also reset the high-
order bit to indicate which is the new last address.

The original parameter list, as it was before XFCREQ was invoked, is restored after the completion of
XFCREQC. It follows that the execution diagnostic facility (EDF) displays the original command before and
after execution.

Note: EDF does not display any changes made by the exit.

The UEPCLPS exit-specific parameter
The UEPCLPS exit-specific parameter is the address of the command-level parameter structure, and is
included in exits XFCREQ and XFCREQC.

The command-level parameter structure contains 12 addresses, FC_ADDR0 through FC_ADDRB. It is
defined in the DSECT FC_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHFCEDS.

The command-level parameter list is made up as follows:

FC_ADDR0
is the address of a 9-byte area called the EID, which is made up as follows:

• FC_GROUP
• FC_FUNCT
• FC_BITS1
• FC_BITS2
• FC_EIDOPT5
• FC_EIDOPT6
• FC_EIDOPT7
• FC_EIDOPT8

The name of the DSECT mapping the EID is FC_EID.
FC_GROUP

Always X'06', indicating that this is a file control request.
FC_FUNCT

One byte that defines the type of request:
X'02'

READ
X'04'

WRITE
X'06'

REWRITE
X'08'

DELETE
X'0A'

UNLOCK
X'0C'

STARTBR
X'0E'

READNEXT
X'10'

READPREV
X'12'

ENDBR

68 CICS TS for z/OS: User Exit Reference

X'14'
RESETBR

FC_BITS1
Existence bits that define which keywords that contain values were specified. To obtain the value
associated with a keyword, you need to use the appropriate address from the command-level
parameter structure. Before using this address, you must check the associated existence bit. If
the existence bit is set off, the keyword was not specified in the request and the address should
not be used.
X'80'

Set if the request contains the keyword FILE. If set, FC_ADDR1 is meaningful.
X'40'

Set if the request contains any of the keywords INTO, SET, or FROM. If set, FC_ADDR2 is
meaningful.

X'20'
Set if the request specifies LENGTH or NUMREC, or if a STARTBR, RESETBR, or ENDBR request
specifies REQID. If set, FC_ADDR3 is meaningful.

X'10'
Set if the request specifies RIDFLD. If set, FC_ADDR4 is meaningful.

X'08'
Set if the request specifies KEYLENGTH. If set, FC_ADDR5 is meaningful.

X'04'
Set if the request is READNEXT or READPREV and specifies REQID. If set, FC_ADDR6 is
meaningful.

X'02'
Set if the request specifies SYSID. If set, FC_ADDR7 is meaningful.

X'01'
Not used by file control.

FC_BITS2
Second set of existence bits.
X'20'

Set if the request specifies TOKEN. If set, FC_ADDRB is meaningful.
FC_EIDOPT5

Indicates whether certain keywords that do not take values were specified on the request.
X'04'

MASSINSERT specified.
X'02'

RRN specified.
X'01'

SET (and not INTO) was specified.

Note: Your program must test for keywords at the bit level, because there may be more than one
of these keywords present.

FC_EIDOPT6
Indicates whether certain keywords that do not take values were specified on the request.
X'80'

RBA specified.
X'40'

GENERIC specified.
X'20'

GTEQ specified.

Chapter 1. Global user exit points (by function) 69

X'10'
UNCOMMITTED specified.

X'08'
CONSISTENT specified.

X'04'
REPEATABLE specified.

X'01'
NOSUSPEND specified (on READ, READNEXT, READPREV, WRITE, DELETE, or REWRITE).

Note:

1. If the read integrity bits (for UNCOMMITTED, CONSISTENT, and REPEATABLE) are off (zero) on
the command, the read integrity options specified on the file resource definition are used. If
you need to know what these are, you can issue an EXEC CICS INQUIRE FILE command.

2. Your program must test for keywords at the bit level, because there may be more than one of
these keywords present.

FC_EIDOPT7
Indicates whether certain keywords that do not take values were specified on the request.
X'04'

UPDATE specified. This setting is meaningful only for READ requests. For other requests, X'04'
may or may not be set.

X'01'
Either DEBREC or DEBKEY specified (see FC_EIDOPT8). This setting is meaningful only for
READ requests. For other requests, X'01' may or may not be set.

Note: Your program must test for keywords at the bit level, because there may be more than one
of these keywords present.

FC_EIDOPT8
Indicates whether certain keywords that do not take values were specified on the request.
X'80'

DEBKEY specified.
X'40'

DEBREC specified.
X'20'

TOKEN specified.
X'08'

XRBA specified. If the XRBA bit is on, FC_RIDFLD (described in DSECT DFHFCEDS) points to
an 8-byte extended relative byte address (XRBA).

FC_ADDR1
is the address of an 8-byte area containing the name specified on the FILE keyword.

FC_ADDR2
is the address of one of the following:

• A 4-byte address returned for SET (if the request is READ, READNEXT, or READPREV, and if
FC_EIDOPT5 indicates that this is SET).

• Data returned for INTO (if the request is READ, READNEXT, or READPREV, and if FC_EIDOPT5
indicates that this is not SET).

• Data from FROM (if the request is WRITE or REWRITE).

FC_ADDR3
is the address of one of the following:

• The halfword value of LENGTH (if the request is READ, WRITE, REWRITE, READNEXT, or
READPREV).

70 CICS TS for z/OS: User Exit Reference

Warning: For requests that specify INTO, do not change the value of LENGTH to a value greater
than that specified by the application. To do so causes a storage overlay in the application.

• The returned halfword value of NUMREC (if the request is DELETE).
• The halfword value of REQID (if the request is STARTBR, RESETBR, or ENDBR).

FC_ADDR4
is the address of an area containing the value of the RIDFLD keyword.

FC_ADDR5
is the address of the halfword value of KEYLENGTH.

FC_ADDR6
is the address of the halfword value of REQID (if the request is READNEXT or READPREV).

FC_ADDR7
is the address of an area containing the value of SYSID.

FC_ADDR8
is the address of a value intended for CICS internal use only. It must not be used.

FC_ADDR9
is the address of a value intended for CICS internal use only. It must not be used.

FC_ADDRA
is the address of a value intended for CICS internal use only. It must not be used.

FC_ADDRB
is the address of the fullword value of TOKEN (if the request is READ, READNEXT, READPREV,
REWRITE, DELETE, or UNLOCK).

Modifying fields in the command-level parameter structure
Some fields that are passed to file control are used as input to the request, some are used as output
fields, and some are used for both input and output. The method your user exit program uses to modify a
field depends on the usage of the field.

A list of input and output fields

The following are always input fields:

• FILE
• FROM
• KEYLENGTH
• REQID
• SYSID

The following are always output fields:

• INTO
• NUMREC
• SET

Whether LENGTH and RIDFLD are input or output fields depends on the request, as shown in Table 4 on
page 71. A dash (—) means that the keyword cannot be specified on the request.

Table 4. LENGTH and RIDFLD as input and output fields

Request LENGTH RIDFLD

READ Output See Note “1” on page 72.

WRITE Input See Note “2” on page 72.

REWRITE Input —

Chapter 1. Global user exit points (by function) 71

Table 4. LENGTH and RIDFLD as input and output fields (continued)

Request LENGTH RIDFLD

DELETE — See Note “3” on page 72.

UNLOCK — —

STARTBR — Input

READNEXT Output Output

READPREV Output Output

ENDBR — —

RESETBR — Input

Note:

1. Normally, this is an input field. However, if UPDATE is specified and the file is a BDAM file using
extended key search, RIDFLD is used for both input and output.

2. The use of RIDFLD on a WRITE request depends on the file type. For a VSAM KSDS or RRDS, or a fixed-
format BDAM file, RIDFLD is an input field. For all other file types, it is used either for output only, or
for both input and output, and should be treated like an output field.

3. RIDFLD is an input field on DELETE requests that are not preceded by a READ UPDATE. It is not
specified on requests that are preceded by a READ UPDATE.

Modifying input fields
The correct method of modifying an input field is to create a new copy of it, and to change the address in
the command-level parameter list to point to your new data.

Note: You must never modify an input field by altering the data that is pointed to by the command-level
parameter list. To do so would corrupt storage belonging to the application program and would cause a
failure when the program attempted to reuse the field.

Modifying output fields

The technique described in “Modifying input fields” on page 72 is not suitable for modifying output fields.
(The results would be returned to the new area instead of the application’s area, and would be invisible to
the application.)

An output field is modified by altering the data that is pointed to by the command-level parameter list. In
the case of an output field, you can modify the application’s data in place, because the application is
expecting the field to be modified anyway.

Modifying fields used for both input and output
An example of a field that is used for both input and output is LENGTH on a READ request that specifies
INTO. You can treat such fields in the same way as output fields, and they are considered to be the same.

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not possible, for example, to
change a WRITE request to a READ request. However, you can make minor changes to requests, such as
to turn on the existence bit for SYSID so that the request can be changed into one that is shipped to a
remote system.

The list that follows shows the bits in the EID that can be modified. Any attempt to modify any other part
of the EID is ignored.

72 CICS TS for z/OS: User Exit Reference

FC_BITS1
X'20'

The existence bit for LENGTH, NUMREC, or (if the request is STARTBR, RESETBR, or ENDBR)
REQID.

X'08'
The existence bit for KEYLENGTH.

X'04'
The existence bit for REQID if the request is READNEXT or READPREV.

X'02'
The existence bit for SYSID.

FC_BITS2
X'20'

Token specified.
FC_EIDOPT5

X'04'
MASSINSERT specified.

FC_EIDOPT6
X'40'

GENERIC specified.
X'20'

GTEQ specified.
X'10'

UNCOMMITTED specified.
X'08'

CONSISTENT specified.
X'04'

REPEATABLE specified.
X'02'

UPDATE specified on READNEXT or READPREV.
X'01'

NOSUSPEND specified (on READ, READNEXT, READPREV, WRITE, DELETE, or REWRITE).

Bits in the EID should be modified in place. You should not modify the pointer to the EID: any attempt to
do so is ignored by CICS.

The EID is reset to its original value before return to the application program. That is, changes made to
the EID are retained for the duration of the file control request only.

If more than one of UNCOMMITTED, CONSISTENT, or REPEATABLE is specified, CONSISTENT takes
precedence over UNCOMMITTED, and REPEATABLE takes precedence over CONSISTENT and
UNCOMMITTED.

Example of modifying read integrity bits
You might want all RLS read requests from all programs against a specific file to specify CONSISTENT
read. You could code a user exit program that turns on the bit for CONSISTENT and turns off the other two
read integrity bits in all requests to the file. You could partially achieve this effect by specifying
CONSISTENT on the FILE definition. However, that would only override requests that did not explicitly
specify a level of read integrity. Using a global user exit program for this purpose also overrides programs
that explicitly specify UNCOMMITTED or REPEATABLE.

Warnings:

1. If a global user exit program changes a file request to request a higher level of read integrity (for
example, it changes the request from UNCOMMITTED to REPEATABLE), this could cause CICS either

Chapter 1. Global user exit points (by function) 73

to acquire extra read locks, or to keep its read locks for a longer period of time. This may degrade
system throughput, by causing other transactions to wait, or introduce deadlocks.

2. If a global user exit program changes the request to one that requests a lower level of read integrity
(for example, it changes the request from REPEATABLE to UNCOMMITTED), this could cause
application logic errors to occur in the program that originated the request. The errors could occur
because the application program may be relying on the record to remain unchanged while it reads a
series of other, related, records. This can be guaranteed with REPEATABLE, but not if the option is
changed to UNCOMMITTED.

3. Your user exit program is prevented from making major changes to the EID. However, you must take
great care when making the minor modifications that are permitted. For instance, it is possible to
change a DELETE into a GENERIC DELETE, but to make such a change may be dangerous.

Use of the parameter UEPFSHIP
UEPFSHIP contains the address of a 16-byte area. This area consists of 4 characters, followed by 3
fullwords.

If the first byte contains 'Y', this request has been function shipped to this region. In this case, if your exit
program wants to bypass file control (by setting a return code of UERCBYP), it must set the 3 fullwords as
follows:
Fullword 1

The length of the buffer area
Fullword 2

The length of the record
Fullword 3

The length of the modified RIDFLD.

Doing this ensures that the data and RIDFLD are correctly shipped back.

EIB (EXEC interface block)
Copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit so you can modify/set
the completion and resource information in XFCREQ and XFCREQC, and examine completion and
resource information in XFCREQC.

You can update the copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 that you are given in the
parameter list. File Control copies your values into the real EIB after the completion of XFCREQC; or if you
specify a return code of ‘bypass' in XFCREQ.

You must set valid file control responses. You must set all three of EIBRCODE, EIBRESP, and EIBRESP2 to
a consistent set of values, such as would be set by File Control to describe a valid completion. File
Control does not police the consistency of EIBRCODE, EIBRESP, and EIBRESP2. To aid you in setting
the values of EIBRCODE, EIBRESP, and EIBRESP2, the values used by File Control are specified in
DFHFCEDS.

Example of how XFCREQ and XFCREQC can be used
In this example, XFCREQ and XFCREQC are used to obtain a record containing compressed data, to
decompress the data, and to return it to the area specified by the user program as INTO. The example
shows only the capabilities of the exits; it is not intended to indicate an ideal way of achieving the
function.

In XFCREQ:

1. Issue an EXEC CICS GETMAIN to obtain an area large enough to hold the decompressed data.
2. Change the INTO pointer to point to this new area, so that File Control uses it when it processes

the request. (The decompressed data is copied to the user's INTO area, and the INTO pointer
reset, before return to the application program—see stages “4” on page 75 and “7” on page 75
of the processing to be done by XFCREQC.)

3. Set UEPFCTOK to be the address of the new area so that XFCREQC can also use this area.

74 CICS TS for z/OS: User Exit Reference

4. Return to CICS.

In XFCREQC:

1. Check ‘UEPRCODE' to make sure that the file control request completed without error.
2. Use UEPFCTOK to find the address of the area. This area now holds the compressed data.
3. Decompress the data in place.
4. Copy the data from the new area to the user's INTO area. Use the user-specified LENGTH (from the

command-level parameter list) to ensure that the data fits and that the copy does not cause a
storage violation.

5. Set ‘LENGERR' in UEPRESP, UEPRESP2, and UEPRCODE if the data does not fit.
6. Use EXEC CICS FREEMAIN to free the work area pointed to by UEPFCTOK.
7. At this point the command-level parameter list points to the now free area as the address for

INTO. This is not a problem, because after completion of XFCREQC File Control restores this
pointer to point to the area supplied by the user program.

8. Return to CICS.

Exit XFCREQ
Exit XFCREQ is invoked before CICS processes a file control API request. The exit is not invoked, on the
target region, for function-shipped requests.

Exit-specific parameters
UEPCLPS

Address of the command-level parameter structure. See “The UEPCLPS exit-specific parameter”
on page 68.

UEPFCTOK
Address of the 4-byte token to be passed to XFCREQC. This allows you, for example, to pass a
work area to exit XFCREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code ‘EIBRCODE'. For details of EIB
return codes, refer to EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP'.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP2'.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPFSHIP
Address of a 16 byte area. See “Use of the parameter UEPFSHIP” on page 74.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

Return codes
UERCNORM

Continue processing.
UERCBYP

The file control EXEC interface program should ignore this request.
UERCPURG

Task purged during XPI call.

Chapter 1. Global user exit points (by function) 75

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

XPI calls
All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, we recommend that you use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI calls
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note:

1. Take care when issuing recursive commands not to cause a loop. For example, it is your responsibility
to avoid entering a loop when a file control request is issued from the XFCREQ exit. Use of the
recursion counter UEPRECUR is recommended.

2. Exit programs that issue EXEC CICS commands must first address the EIB. See Using CICS services.
3. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT macro, should use the

DFHEIRET macro to set a return code and return to CICS. See Global user exit XPI examples, showing
the use of storage.

Exit XFCREQC
Exit XFCREQC is invoked after a file control API request has completed, and before return from the file
control EXEC interface program. The exit is not invoked, on the target region, for function-shipped
requests.

Exit-specific parameters
UEPCLPS

Address of the command-level parameter structure. See “The UEPCLPS exit-specific parameter”
on page 68.

UEPFCTOK
Address of the 4 byte token passed from XFCREQ.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code EIBRCODE. For details of EIB return
codes, refer to EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code EIBRESP.

Note: If the file that has just been accessed is remote, the addressed field contains zeros (even if
UEPRCODE is non-zero).

UEPRESP2
Address of a 4-byte binary copy of the EIB response code EIBRESP2.

Note: If the file that has just been accessed is remote, the addressed field contains zeros (even if
UEPRCODE is non-zero).

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

76 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, we recommend that you use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI calls
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note:

1. Take care when issuing recursive commands not to cause a loop. For example, it is your responsibility
to avoid entering a loop when a file control request is issued from the XFCREQC exit. Use of the
recursion counter UEPRECUR is recommended.

2. Exit programs that issue EXEC CICS commands must first address the EIB. See Using CICS services.
3. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT macro, should use the

DFHEIRET macro to set a return code and return to CICS. See Global user exit XPI examples, showing
the use of storage.

Example program

CICS supplies, in CICSTS55.CICS.SDFHSAMP, an example program, DFH$XTSE, that shows how to modify
fields in the command-level parameter structure passed to EXEC interface exits.

File control EXEC interface SPI exits XFCAREQ and XFCAREQC
The XFCAREQ exit allows you to intercept a file control system programming interface (SPI) request
before any action has been taken on it by file control. The XFCAREQC exit allows you to intercept the
response after a file control SPI request has completed.

The file control SPI requests intercepted are:

• EXEC CICS INQUIRE FILE
• EXEC CICS SET FILE.

Using XFCAREQ, you can:

• Analyze the SPI parameter list (function, keywords, argument values, and responses)
• Modify any input parameter before execution of the request
• Prevent execution of a request and set appropriate responses.

Using XFCAREQC, you can:

• Analyze the SPI parameter list
• Modify any output parameter value and set responses after execution.

You can also:

• Pass data between your XFCAREQ and XFCAREQC exit programs when they are invoked for the same
request.

Chapter 1. Global user exit points (by function) 77

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html

• Pass data between your file control exit programs when they are invoked within the same task. You can
pass data between successive invocations of XFCAREQ and XFCAREQC and also between invocations of
other EXEC-enabled user exits.

If you make changes to file states (that is, if you open, close, enable, or disable a file) it is possible that
exits in the file state change program (XFCSREQ and XFCSREQC) could modify situations set up by
XFCAREQ. Therefore you must consider the order in which the exits are invoked. If all four exits are
enabled, the order of invocation is as follows:

• For the SET FILE command:

1. XFCAREQ
2. XFCSREQ
3. XFCSREQC
4. XFCAREQC

• For the INQUIRE FILE command:

1. XFCAREQ
2. XFCAREQC

Exit XFCAREQ
This exit is invoked before CICS processes a file control SPI request.

When invoked
Before CICS processes a file control SPI request.

Exit-specific parameters
UEPCLPS

Address of a copy of the SPI command parameter list. See “The command-level parameter
structure” on page 80.

UEPFATOK
Address of a 4-byte area that can be used to pass information between XFCAREQ and XFCAREQC
on a single file control SPI request.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code EIBRCODE. For details of EIB return
codes, see EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code EIBRESP.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code EIBRESP2.

UEPTSTOK
Address of a 4-byte token which can be used to pass information between successive file control
requests within the same task (for example, between successive invocations of the XFCAREQC
exit). See Using the task token UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to zero when the exit is first invoked
and is incremented for each recursive call.

Return codes
UERCBYP

Bypass this request.
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.

78 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

XPI commands
All can be used.

API and SPI commands
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note: Take care when using recursive commands. For example, you must avoid entering a loop when
issuing a file control SPI request from the XFCAREQ exit. Use of the recursion counter UEPRECUR is
recommended.

Exit XFCAREQC
Exit XFCAREQC is invoked after a file control SPI request has completed, before return from the file
control SPI EXEC interface program.

Exit specific parameters:
UEPCLPS

Address of a copy of the API command parameter list. See “The command-level parameter
structure” on page 80.

UEPFATOK
Address of a 4-byte area that can be used to pass information between XFCAREQ and XFCAREQC
on a single file control SPI request.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code EIBRCODE. For details of EIB return
codes, see EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code EIBRESP.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code EIBRESP2.

UEPTSTOK
Address of a 4-byte token which can be used to pass information between successive file control
requests within the same task (for example, between successive invocations of the XFCAREQC
exit). See Using the task token UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to zero when the exit is first invoked
and is incremented for each recursive call.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI commands

All can be used.
API and SPI commands

All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

You can update the copies of EIBRCODE, EIBRESP, and EIBRESP2 that you are given in the parameter list.
If you update the values, file control copies the new values into the application program's EXEC interface
block (EIB) after the completion of XFCAREQC or if you specify a return code of UERCBYP in XFCAREQ.

Chapter 1. Global user exit points (by function) 79

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

You must set valid file control responses. You must set all three of EIBRCODE, EIBRESP, and EIBRESP2 to
a consistent set of values, such as would be set by file control to describe a valid completion. CICS does
not check the consistency of the values you set. If EIBRCODE is set to a non-zero value and EIBRESP is
set to zero, CICS overrides EIBRESP with a non-zero value. To help you set values for EIBRCODE,
EIBRESP, and EIBRESP2, the values used by file control for SPI requests are specified in DSECT
DFHFAUED.

Note: Take care when using recursive commands. For example, you must avoid entering a loop when
issuing a file control SPI request from the XFCAREQ exit. Use of the recursion counter UEPRECUR is
recommended.

The command-level parameter structure
The command-level parameter structure consists of a series of addresses. The first address points to the
EXEC interface descriptor (EID), which consists of a bit string that describes the type of request and
identifies each keyword specified with the request. The remaining addresses point to pieces of data
associated with the request.

You can examine the EID to determine the type of request and the keywords specified. You can examine
the other parameters in the list to determine the values of the keywords. You can also modify values of
keywords specified on the request.

Note: The relationship between arguments, keywords, data types, and input/output types on the file
control SPI commands is summarized in the following tables:

• For INQUIRE FILE, see Table 5 on page 87.
• For SET FILE, see Table 6 on page 89.

The UEPCLPS exit-specific parameter
The UEPCLPS exit-specific parameter is passed to both XFCAREQ and XFCAREQC and contains the
address of the command-level parameter structure.

The command-level parameter list contains 64 addresses, FCIS_ADDR0 through FCIS_ADDR63. These
are described in DSECT DFHFAUED, which you should copy into your program by including the statement
COPY DFHFAUED.

The command-level parameter list is made up as follows:
FCIS_ADDR0

is the address of an 13-byte area called the EID which is made up as follows:

• FCIS_GROUP
• FCIS_FUNCT
• FCIS_EIDOPT2
• FCIS_EIDOPT3
• FCIS_EIDOPT4
• FCIS_BITS1
• FCIS_BITS2
• FCIS_BITS3
• FCIS_BITS4
• FCIS_BITS5
• FCIS_BITS6
• FCIS_BITS7
• FCIS_BITS8

FCIS_GROUP
Always X'4C', indicating that this is a file control SPI request.

80 CICS TS for z/OS: User Exit Reference

FCIS_FUNCT
One byte that defines the type of request:
X'02'

INQUIRE FILE
X'04'

SET FILE.
FCIS_EIDOPT2

Not used by file control.
FCIS_EIDOPT3

Not used by file control.
FCIS_EIDOPT4

Not used by file control.
FCIS_BITS1

Existence bits which specify which arguments were specified. To obtain the argument associated
with a keyword, you need to obtain the appropriate address from the command-level parameter
structure. Before using this address you must check the associated existence bit. If the existence
bit is set off, the argument was not specified in the request and the address should not be used.
X'80'

Set if the request contains an argument for the FILE keyword. If set, FCIS_ADDR1 is
meaningful.

X'40'
Set if the request contains an argument for the DSNAME keyword. If set, FCIS_ADDR2 is
meaningful.

X'20'
Set if the request contains an argument for the FWDRECSTATUS keyword. If set, FCIS_ADDR3
is meaningful.

X'10'
Set if the request contains an argument for the STRINGS keyword. If set, FCIS_ADDR4 is
meaningful.

X'08'
Set if the request contains an argument for the BASEDSNAME keyword. If set, FCIS_ADDR5 is
meaningful.

X'04'
Set if the request contains an argument for the LSRPOOLID keyword. If set, FCIS_ADDR6 is
meaningful.

X'02'
Set if the request contains an argument for the READ keyword. If set, FCIS_ADDR7 is
meaningful.

X'01'
Set if the request contains an argument for the UPDATE keyword. If set, FCIS_ADDR8 is
meaningful.

FCIS_BITS2
Existence bits which specify which arguments were specified. The comments for FCIS_BITS1 also
apply to FCIS_BITS2.
X'80'

Set if the request contains an argument for the BROWSE keyword. If set, FCIS_ADDR9 is
meaningful.

X'40'
Set if the request contains an argument for the ADD keyword. If set, FCIS_ADDR10 is
meaningful.

Chapter 1. Global user exit points (by function) 81

X'20'
Set if the request contains an argument for the DELETE keyword. If set, FCIS_ADDR11 is
meaningful.

X'10'
Set if the request contains an argument for the DISPOSITION keyword. If set, FCIS_ADDR12
is meaningful.

X'08'
Set if the request contains an argument for the EMPTYSTATUS keyword. If set, FCIS_ADDR13
is meaningful.

X'04'
Set if the request contains an argument for the OPENSTATUS keyword. If set, FCIS_ADDR14 is
meaningful.

X'02'
Set if the request contains an argument for the ENABLESTATUS keyword. If set,
FCIS_ADDR15 is meaningful.

X'01'
Set if the request contains an argument for the RECOVSTATUS keyword. If set, FCIS_ADDR16
is meaningful.

FCIS_BITS3
Existence bits which specify which arguments were specified. The comments for FCIS_BITS1 also
apply to FCIS_BITS3.
X'80'

Set if the request contains an argument for the ACCESSMETHOD keyword. If set,
FCIS_ADDR17 is meaningful.

X'40'
Set if the request contains an argument for the TYPE keyword. If set, FCIS_ADDR18 is
meaningful.

X'20'
Set if the request contains an argument for the OBJECT keyword. If set, FCIS_ADDR19 is
meaningful.

X'10'
Set if the request contains an argument for the REMOTESYSTEM keyword. If set,
FCIS_ADDR20 is meaningful.

X'08'
Set if the request contains an argument for the REMOTENAME keyword. If set, FCIS_ADDR21
is meaningful.

X'04'
Set if the request contains an argument for the RECORDFORMAT keyword. If set,
FCIS_ADDR22 is meaningful.

X'02'
Set if the request contains an argument for the BLOCKFORMAT keyword. If set, FCIS_ADDR23
is meaningful.

X'01'
Set if the request contains an argument for the KEYLENGTH keyword. If set, FCIS_ADDR24 is
meaningful.

FCIS_BITS4
Existence bits which specify which arguments were specified. The comments for FCIS_BITS1 also
apply to FCIS_BITS4.
X'80'

Set if the request contains an argument for the KEYPOSITION keyword. If set, FCIS_ADDR25
is meaningful.

82 CICS TS for z/OS: User Exit Reference

X'40'
Set if the request contains an argument for the RECORDSIZE keyword. If set, FCIS_ADDR26 is
meaningful.

X'20'
Set if the request contains an argument for the RELTYPE keyword. If set, FCIS_ADDR27 is
meaningful.

X'10'
Set if the request contains an argument for the EXCLUSIVE keyword. If set, FCIS_ADDR28 is
meaningful.

X'08'
Set if the request contains an argument for the BLOCKKEYLEN keyword. If set, FCIS_ADDR29
is meaningful.

X'04'
Set if the request contains an argument for the BLOCKSIZE keyword. If set, FCIS_ADDR30 is
meaningful.

X'02'
Not used by file control.

X'01'
Not used by file control.

FCIS_BITS5
Existence bits which specify which arguments were specified. The comments for FCIS_BITS1 also
apply to FCIS_BITS5.
X'80'

Set if the request contains an argument for the TABLE keyword. If set, FCIS_ADDR33 is
meaningful.

X'40'
Set if the request contains an argument for the MAXNUMRECS keyword. If set, FCIS_ADDR34
is meaningful.

X'20'
Set if the request contains an argument for the READINTEG keyword. If set, FCIS_ADDR35 is
meaningful.

X'10'
Set if the request contains an argument for the RLSACCESS keyword. If set, FCIS_ADDR36 is
meaningful.

X'08'
Set if the request contains an argument for the DEFINESOURCE keyword. If set,
FCIS_ADDR37 is meaningful.

X'04'
Set if the request contains an argument for the INSTALLAGT keyword. If set, FCIS_ADDR38 is
meaningful.

X'02'
Set if the request contains an argument for the INSTALLUSR keyword. If set, FCIS_ADDR39 is
meaningful.

X'01'
Set if the request contains an argument for the CHANGEAGENT keyword. If set, FCIS_ADDR40
is meaningful.

FCIS_BITS6
Specifies whether certain keywords were specified on the File control SPI command.
X'80'

Set if the request contains the START keyword.

Chapter 1. Global user exit points (by function) 83

X'40'
Set if the request contains the NEXT keyword.

X'20'
Set if the request contains the END keyword.

X'10'
Set if the request contains the WAIT keyword.

X'08'
Set if the request contains the NOWAIT keyword.

X'04'
Set if the request contains the FORCE keyword.

X'02'
Set if the request contains the ENABLED keyword.

X'01'
Set if the request contains the DISABLED keyword.

FCIS_BITS7
Specifies whether certain keywords were specified on the File control SPI command. Also
contains the existence bit for JOURNALNUM.
X'80'

Set if the request contains the OPEN keyword.
X'40'

Set if the request contains the CLOSED keyword.
X'20'

Set if the request contains the EMPTY keyword.
X'10'

Set if the request contains an argument for the JOURNALNUM keyword. If set, FCIS_ADDR52
is meaningful.

X'08'
Set if the request contains the LOADTYPE keyword.

X'04'
Set if the request contains the POOL keyword.

X'02'
Set if the request contains the TABLENAME keyword.

X'01'
Set if the request contains the UPDATEMODEL keyword.

FCIS_BITS8
X'80'

Set if the request contains the REMOTETABLE keyword.
X'40'

Not used by file control.
X'20'

Set if the request contains an argument for the CHANGEUSRID keyword. If set, FCIS_ADDR59
is meaningful.

X'10'
Set if the request contains an argument for the CHANGEAGREL keyword. If set, FCIS_ADDR60
is meaningful.

X'08'
Set if the request contains an argument for the DEFINETIME keyword. If set, FCIS_ADDR61 is
meaningful.

84 CICS TS for z/OS: User Exit Reference

X'04'
Set if the request contains an argument for the CHANGETIME keyword. If set, FCIS_ADDR62
is meaningful.

X'02'
Set if the request contains an argument for the INSTALLTIME keyword. If set, FCIS_ADDR63
is meaningful.

X'01'
Not used by file control.

FCIS_ADDR1
is the address of an 8-byte area containing the name from FILE.

FCIS_ADDR2
is the address of a 44-byte area containing the name from DSNAME.

FCIS_ADDR3
is the address of a 4-byte area containing the CVDA from FWDRECOVSTATUS.

FCIS_ADDR4
is the address of a 4-byte area containing the data from STRINGS.

FCIS_ADDR5
is the address of a 44-byte area containing the name from BASEDSNAME.

FCIS_ADDR6
is the address of a 4-byte area containing the data from LSRPOOLID.

FCIS_ADDR7
is the address of a 4-byte area containing the CVDA from READ.

FCIS_ADDR8
is the address of a 4-byte area containing the CVDA from UPDATE.

FCIS_ADDR9
is the address of a 4-byte area containing the CVDA from BROWSE.

FCIS_ADDR10
is the address of a 4-byte area containing the CVDA from ADD.

FCIS_ADDR11
is the address of a 4-byte area containing the CVDA from DELETE.

FCIS_ADDR12
is the address of a 4-byte area containing the CVDA from DISPOSITION.

FCIS_ADDR13
is the address of a 4-byte area containing the CVDA from EMPTYSTATUS.

FCIS_ADDR14
is the address of a 4-byte area containing the CVDA from OPENSTATUS.

FCIS_ADDR15
is the address of a 4-byte area containing the CVDA from ENABLESTATUS.

FCIS_ADDR16
is the address of a 4-byte area containing the CVDA from RECOVSTATUS.

FCIS_ADDR17
is the address of a 4-byte area containing the CVDA from ACCESSMETHOD.

FCIS_ADDR18
is the address of a 4-byte area containing the CVDA from TYPE.

FCIS_ADDR19
is the address of a 4-byte area containing the CVDA from OBJECT.

FCIS_ADDR20
is the address of a 4-byte area containing the name from REMOTESYSTEM.

FCIS_ADDR21
is the address of an 8-byte area containing the name from REMOTENAME.

Chapter 1. Global user exit points (by function) 85

FCIS_ADDR22
is the address of a 4-byte area containing the CVDA from RECORDFORMAT.

FCIS_ADDR23
is the address of a 4-byte area containing the CVDA from BLOCKFORMAT.

FCIS_ADDR24
is the address of a 4-byte area containing the CVDA from KEYLENGTH.

FCIS_ADDR25
is the address of a 4-byte area containing the data from KEYPOSITION.

FCIS_ADDR26
is the address of a 4-byte area containing the data from RECORDSIZE.

FCIS_ADDR27
is the address of a 4-byte area containing the CVDA from RELTYPE.

FCIS_ADDR28
is the address of a 4-byte area containing the CVDA from EXCLUSIVE.

FCIS_ADDR29
is the address of a 4-byte area containing the data from BLOCKKEYLEN.

FCIS_ADDR30
is the address of a 4-byte area containing the data from BLOCKSIZE.

FCIS_ADDR31
is not used by file control.

FCIS_ADDR32
is the address of a 4-byte area containing the data from BUSY.

FCIS_ADDR33
is the address of a 4-byte area containing the CVDA from TABLE.

FCIS_ADDR34
is the address of a 4-byte area containing the data from MAXNUMRECS.

FCIS_ADDR35
is the address of a 4-byte area containing the CVDA from READINTEG.

FCIS_ADDR36
is the address of a 4-byte area containing the CVDA from RLSACCESS.

FCIS_ADDR37
is the address of a 8-byte area containing the data from DEFINESOURCE.

FCIS_ADDR38
is the address of a 4-byte area containing the CVDA from INSTALLAGENT.

FCIS_ADDR39
is the address of a 8-byte area containing the data from INSTALLUSRID.

FCIS_ADDR40
is the address of a 4-byte area containing the CVDA from CHANGEAGENT.

FCIS_ADDR41 to FCIS_ADDR51
are not used by file control.

FCIS_ADDR52
is the address of a 4-byte area containing the data from JOURNALNUM.

FCIS_ADDR53
is the address of a 4-byte area containing the data from LOADTYPE.

FCIS_ADDR54
is the address of a 4-byte area containing the data from CFDTPOOL.

FCIS_ADDR55
is the address of a 4-byte area containing the data from TABLENAME.

FCIS_ADDR56
is the address of a 4-byte area containing the data from UPDATEMODEL.

86 CICS TS for z/OS: User Exit Reference

FCIS_ADDR57
is the address of a 4-byte area containing the data from REMOTETABLE.

FCIS_ADDR58
is the address of a 4-byte area containing the CVDA from RBATYPE.

FCIS_ADDR59
is the address of a 8-byte area containing the data from CHANGEUSRID.

FCIS_ADDR60
is the address of a 4-byte area containing the data from CHANGEAGREL.

FCIS_ADDR61
is the address of a 8-byte area containing the data from DEFINETIME.

FCIS_ADDR62
is the address of a 8-byte area containing the data from CHANGETIME.

FCIS_ADDR63
is the address of a 8-byte area containing the data from INSTALLTIME.

Modifying fields in the command-level parameter structure
Some fields that are passed to a file control SPI request are used as input to the request, and some are
used as output to the request. The method that your user exit program uses to modify a field depends on
the usage of the field.

As a general rule:

• On INQUIRE FILE requests, all fields except FILE are output fields.
• On SET FILE requests, all fields are input fields.

For a full description of the parameters to INQUIRE FILE, see Table 5 on page 87. For a full description
of the parameters to SET FILE, see Table 6 on page 89.

Table 5. INQUIRE FILE requests. The relationship between arguments, keywords, data types, and input/
output types.

Argument Keyword Data Type Input/Output

Arg1 FILE CHAR(8) See note.

Arg2 DSNAME CHAR(44) Output

Arg3 FWDRECSTATUS BIN(31) Output

Arg4 STRINGS BIN(31) Output

Arg5 BASEDSNAME CHAR(44) Output

Arg6 LSRPOOLNUM BIN(31) Output

Arg7 READ BIN(31) Output

Arg8 UPDATE BIN(31) Output

Arg9 BROWSE BIN(31) Output

Arg10 ADD BIN(31) Output

Arg11 DELETE BIN(31) Output

Arg12 DISPOSITION BIN(31) Output

Arg13 EMPTYSTATUS BIN(31) Output

Arg14 OPENSTATUS BIN(31) Output

Arg15 ENABLESTATUS BIN(31) Output

Chapter 1. Global user exit points (by function) 87

Table 5. INQUIRE FILE requests. The relationship between arguments, keywords, data types, and input/
output types. (continued)

Argument Keyword Data Type Input/Output

Arg16 RECOVSTATUS BIN(31) Output

Arg17 ACCESSMETHOD BIN(31) Output

Arg18 TYPE BIN(31) Output

Arg19 OBJECT BIN(31) Output

Arg20 REMOTESYSTEM CHAR(4) Output

Arg21 REMOTENAME CHAR(8) Output

Arg22 RECORDFORMAT BIN(31) Output

Arg23 BLOCKFORMAT BIN(31) Output

Arg24 KEYLENGTH BIN(31) Output

Arg25 KEYPOSITION BIN(31) Output

Arg26 RECORDSIZE BIN(31) Output

Arg27 RELTYPE BIN(31) Output

Arg28 EXCLUSIVE BIN(31) Output

Arg29 BLOCKKEYLEN BIN(31) Output

Arg30 BLOCKSIZE BIN(31) Output

Arg31 * * *

Arg32 BUSY BIN(31) Output

Arg33 TABLE BIN(31) Output

Arg34 MAXNUMRECS BIN(31) Output

Arg35 READINTEG BIN(31) Output

Arg36 RLSACCESS BIN(31) Output

Arg37 DEFINESOURCE CHAR(8) Output

Arg38 INSTALLAGENT BIN(31) Output

Arg39 INSTALLUSRID CHAR(8) Output

Arg40 CHANGEAGENT BIN(31) Output

Arg41 to Arg51 * * *

Arg52 JOURNALNUM BIN(15) Output

Arg53 LOADTYPE BIN(31) Output

Arg54 CEDTPOOL CHAR(8) Output

Arg55 TABLENAME CHAR(8) Output

Arg56 UPDATEMODEL BIN(31) Output

Arg57 REMOTETABLE BIN(31) Output

Arg58 RBATYPE BIN(31) Output

Arg59 CHANGEUSRID CHAR(8) Output

88 CICS TS for z/OS: User Exit Reference

Table 5. INQUIRE FILE requests. The relationship between arguments, keywords, data types, and input/
output types. (continued)

Argument Keyword Data Type Input/Output

Arg60 CHANGEAGREL BIN(31) Output

Arg61 DEFINETIME CHAR(8) Output

Arg62 CHANGETIME CHAR(8) Output

Arg63 INSTALLTIME CHAR(8) Output

Note: The file parameter on INQUIRE FILE commands is:

• An input field if the request does not specify START, NEXT, or END
• An output field if the request specifies NEXT
• Omitted if the request specifies START or END.

Table 6. SET FILE requests. The relationship between arguments, keywords, data types, and input/
output types.

Argument Keyword Data Type Input/Output

Arg1 FILE CHAR(8) Input

Arg2 DSNAME CHAR(44) Input

Arg3 FWDRECSTATUS BIN(31) Input

Arg4 STRINGS BIN(31) Input

Arg5 * * *

Arg6 LSRPOOLNUM BIN(31) Input

Arg7 READ BIN(31) Input

Arg8 UPDATE BIN(31) Input

Arg9 BROWSE BIN(31) Input

Arg10 ADD BIN(31) Input

Arg11 DELETE BIN(31) Input

Arg12 DISPOSITION BIN(31) Input

Arg13 EMPTYSTATUS BIN(31) Input

Arg14 OPENSTATUS BIN(31) Input

Arg15 ENABLESTATUS BIN(31) Input

Arg16 RECOVSTATUS BIN(31) Input

Arg17 * * *

Arg18 * * *

Arg19 * * *

Arg20 * * *

Arg21 * * *

Arg22 * * *

Arg23 * * *

Chapter 1. Global user exit points (by function) 89

Table 6. SET FILE requests. The relationship between arguments, keywords, data types, and input/
output types. (continued)

Argument Keyword Data Type Input/Output

Arg24 * * *

Arg25 * * *

Arg26 * * *

Arg27 * * *

Arg28 EXCLUSIVE BIN(31) Input

Arg29 * * *

Arg30 * * *

Arg31 * * *

Arg32 * * *

Arg33 TABLE BIN(31) Input

Arg34 MAXNUMRECS BIN(31) Input

Arg35 READINTEG BIN(31) Input

Arg36 RLSACCESS BIN(31) Input

Arg37 * * *

Arg38 * * *

Arg39 * * *

Arg40 * * *

Arg58 * * *

Arg59 * * *

Arg60 * * *

Arg61 * * *

Arg62 * * *

Arg63 * * *

Modifying input fields
The correct method of modifying an input field is to create a new copy of it, and to change the address in
the command-level parameter list to point to your new data.

Do not modify an input field by altering the data that is pointed to by the command-level parameter list.
To do so would corrupt storage belonging to the application program and would cause a failure when the
program attempted to reuse the field.

Modifying output fields

The technique described in “Modifying input fields” on page 90 is not suitable for modifying output fields.
(The results would be returned to the new area instead of the application’s area, and would be invisible to
the application.)

An output field is modified by altering the data that is pointed to by the command-level parameter list. In
the case of an output field, you can modify the application’s data in place, because the application is
expecting the field to be modified anyway.

90 CICS TS for z/OS: User Exit Reference

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not possible, for example, to
change an INQUIRE FILE request to a SET FILE request. However, you can make minor changes to
requests, such as to turn on the existence bit for a variable that had not been specified on the current
request.

The following paragraph lists the bits in the EID that can be modified. Any attempt to modify any other
part of the EID is ignored.

Your exit program can modify any bit in FCIS_BITS1, FCIS_BITS2, FCIS_BITS3, FCIS_BITS4,
FCIS_BITS5, FCIS_BITS6 and FCIS_BITS7, except for:

• The existence bit for the FILE keyword.
• The bits for the START, NEXT, END, DEFINESOURCE, INSTALLAGENT, INSTALLUSRID and

CHANGEAGENT keywords.
• Any bits described as “not used by file control”.
• Any bit corresponding to a keyword that is not applicable to the command being executed. For example,

the bit for the CLOSED keyword can be modified on a SET FILE request but not on an INQUIRE FILE
request, because CLOSED has meaning only for a SET FILE request. See the descriptions in Table 5 on
page 87 and Table 6 on page 89.

Your program can provide its own command-level parameter structure and EID, in which case you should
modify UEPCLPS and TS_ADDR0 respectively to point to the new structures.

The EID is reset to its original value before return to the application program. That is, changes to the EID
are retained for the duration of the file control SPI request only.

Note: If you modify the EID, you must be careful not to create inconsistent parameters. For example, if
the original request specified SET FILE OPEN and your exit turned on the EID bit for CLOSED, the resulting
SET FILE request would specify both OPEN and CLOSED. In this case, the results of the command would
be unpredictable.

Modifying user arguments
The way in which a user exit program can modify a user argument depends on whether the argument is an
input or an output.

• For input arguments, your exit program should obtain sufficient storage to hold the modified argument,
set up the required value, and set the associated pointer in the parameter list to the address of the
newly acquired area.

• For output and input/output arguments, your exit program can update the argument in place, because
the area of storage is represented in the application by a variable that is expected to receive a value
from CICS.

Adding user arguments
Your exit program can add user arguments, provided that it is allowed to modify the corresponding
existence bit in the EID.

Assuming that the argument to be added does not already exist, your exit program must:

1. Obtain storage for the argument to be added
2. Initialize the storage to the required value
3. Select and set up the appropriate pointer from the parameter list
4. Select and set up the appropriate existence bit in Arg0
5. If necessary, modify the parameter list to reflect the new end-of-list indicator.

Chapter 1. Global user exit points (by function) 91

Removing user arguments
Your exit program can remove user arguments, provided that it is allowed to modify the corresponding
existence bit in the EID.

Assuming that the argument to be removed exists, your exit program must:

1. Switch the corresponding argument existence bit in Arg0 to zero
2. Modify the parameter list to reflect the new end-of-list indicator.

File control file state program exits XFCSREQ and XFCSREQC
Two user exits are provided in the file control state program that you can call before and after a file
request.
XFCSREQ

This exit is called before a file ENABLE, DISABLE, OPEN, CLOSE, or CANCEL CLOSE request is acted
on. You can use XFCSREQ to gather information about the state of the file; for example, which file
requests (SERVREQs) are valid and which journaling options are set. Based on this information, you
can suppress the request, if appropriate. See return code UERCBYP for details.

XFCSREQC
This exit is called after the file request has been acted on. You can use XFCSREQC to gather
information about the data set associated with the file; for example, which recovery options are set.
XFCSREQC is invoked even if you have used XFCSREQ to suppress the file request.

For ENABLE, DISABLE, OPEN, and CANCEL CLOSE requests, each exit is invoked only once. However, for
CLOSE requests, because a file can be quiesced before actual closure, the exits might be invoked more
than once. There are two occasions when the user exits XFCSREQ and XFCSREQC are not invoked during
a close request:

1. On a controlled, non-immediate shutdown of CICS, when CICS closes all files.
2. After loading a user maintained data table. When the data table load has completed the source data

set is no longer required. CICS subsequently closes and de-allocates the file, leaving the data table
open.

A single CLOSE request

For a single CLOSE request, XFCSREQ and XFCSREQC are invoked more than once if closure is attempted
while the file is being accessed by other tasks. For example, the result of a CLOSE NOWAIT command in
these circumstances is that XFCSREQ is invoked before the closure is attempted. Because there are still
users of the file, the closure is delayed. However, because it specified NOWAIT, the CLOSE request
completes, and invokes XFCSREQC with UEPFSRSP set to ‘UEFSPEND’, meaning closure is pending. When
all activity against the file is complete, the file is closed, and XFCSREQ and XFCSREQC are invoked under
the task that closed it.

A CLOSE WAIT request

For a CLOSE WAIT request, the exits are invoked as follows. XFCSREQ is invoked, the task requests a
closure of the file and waits for the closure to happen. When all activity against the file is complete, the
file is closed, and XFCSREQ and XFCSREQC are invoked under the task that closed it. Finally, because the
closure has now been completed, the task that issued the CLOSE WAIT is resumed, completes its CLOSE
request, and invokes XFCSREQC.

A CANCEL CLOSE request

A CANCEL CLOSE request is issued by CICS in response to an UNQUIESCE command that cancels a
pending QUIESCE command. A QUIESCE data set command immediately sets all files opened against the
specified data set as unenabled, to prevent new tasks being allowed access to the data set. The close part
of the operation, however, waits until the last user task finishes before a file is closed. (This is the same as
any close operation against a file.) An UNQUIESCE issued while the close is still waiting causes a CANCEL

92 CICS TS for z/OS: User Exit Reference

CLOSE request and the invocation of the XFCSREQ and XFCSREQC exits. Note that a CANCEL CLOSE is
issued only for close requests that were initiated by a QUIESCE command, not for any other close
requests.

Exit XFCSREQ
This exit is invoked before a file ENABLE, DISABLE, OPEN, CLOSE, or CANCEL CLOSE is attempted.

When invoked
Before a file ENABLE, DISABLE, OPEN, CLOSE, or CANCEL CLOSE is attempted.

Note: For function shipped requests, the exit is invoked on the system where the file is local.

Exit-specific parameters
UEPFSREQ

Address of a 2-byte field that indicates the type of file request. The first byte contains one of the
following values:
UEPFSOPN

Open request
UEPFSCLS

Close request
UEPFSENB

Enable request
UEPFSDIS

Disable request
UEPFSCAN

Cancel close file request.

If the first byte indicates an open request (UEPFSOPN), the second byte shows the type of open:
UEPFSNOP

Normal open
UEPFSOFB

Open for backout.

If the first byte indicates a close request (UEPFSCLS), the second byte shows the type of close:
UEPFSNC

Normal close
UEPFSCP

Close pending
UEPFSELM

End of load mode close
UEPFSIMM

Immediate close
UEPFSICP

Immediate close pending
UEPFSQU

RLS quiesce close.

UEPFILE
Address of the 8-byte file name.

UEPFINFO
Address of a storage area containing information about the file. The area can be mapped using the
DSECT DFHUEFDS, which contains the following fields:
UEFLNAME

The 8-character file name.

Chapter 1. Global user exit points (by function) 93

UEDSNAME
The 44-character dsname of the data set associated with the file, if this has been set before
the file request was issued.

UEFSERV
One byte indicating the SERVREQ settings for this file. The possible values are:
UEFRDIM

Read valid
UEFUPDIM

Update valid
UEFADDIM

Add valid
UEFDELIM

Delete valid
UEFBRZIM

Browse valid.
UEFDSJL

One byte indicating the automatic journaling options set for this file. The possible values are:
UEFJRO

Journal read-only
UEFJRU

Journal read for update
UEFJWU

Journal write update
UEFJWA

Journal write add
UEFJDSN

Dsname has been journaled
UEFJSYN

Journal read synchronously
UEFJASY

Journal write asynchronously.
UEFDSVJL

One byte indicating a further automatic journaling option which applies to VSAM files only. The
value is:
UEFJWAC

Write add complete.
UEFDSJID

One byte containing the number of the journal to be used for automatic journaling, if any.
UEFDSACC

One byte indicating the access method of the file. The possible values are:
UEFVSAM

VSAM file
UEFBDAM

BDAM file
UEFCFDT

Coupling facility data table
UEFBCRV

Set to nulls for this exit.

94 CICS TS for z/OS: User Exit Reference

UEFFRLOG
Set to nulls for this exit.

UEFFRCLG
Set to blanks for this exit.

UEFCDATE
Set to nulls for this exit.

UEFCTIME
Set to nulls for this exit.

UEFBCAS
Set to nulls for this exit.

UEFACBCP
This field is set to nulls in this exit.

Note: Only the first seven fields of UEPFINFO are set for this exit. Of the remaining fields,
URFFRCLG is set to blanks, and the others are set to nulls.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

Return codes
UERCNORM

Continue processing.
UERCBYP

Suppress the file request. You cannot use UERCBYP:

• To suppress a CLOSE request if the second byte of UEPFSREQ indicates it is one of the following
types of close:

– End of load-mode close (UEPFSELM)
– Immediate close (UEPFSIMM)
– Immediate close pending (UEPFSICP)

• To suppress an OPEN request if a file is being opened to carry out backout processing, because
this would cause a backout failure. The second byte of UEPFSREQ is set to UEPFSOFB if the file
is being opened for backout.

In the case of a valid suppression, CICS issues message DFHFC0996:

 Open/Close/Enable/Disable/Cancel of close of file
 filename suppressed due to intervention of user exit

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

API and SPI calls
All except EXEC CICS SHUTDOWN and EXEC CICS XCTL can be used.

Note:

1. Take care when issuing recursive commands not to cause a loop. For example, it is your responsibility
to avoid entering a loop when a file control request is issued from the XFCSREQ exit. Use of the
recursion counter UEPRECUR is recommended.

2. Exit programs that issue EXEC CICS commands must first address the EIB. See Using CICS services.
3. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT macro, should use the

DFHEIRET macro to set a return code and return to CICS. See Global user exit XPI examples, showing
the use of storage.

Chapter 1. Global user exit points (by function) 95

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html

4. Exit programs can invoke EXEC CICS SET commands against the file whose state change has led to the
exit being invoked. However, dependent upon other concurrent activity within the CICS system, there
is the potential for a deadlock to occur between tasks that are manipulating the state of the file by
means of such SPI commands.

Exit XFCSREQC
This exit is called after a file ENABLE, DISABLE, OPEN, CLOSE, or CANCEL CLOSE command completes.

When called
After a file ENABLE, DISABLE, OPEN, CLOSE, or CANCEL CLOSE command completes.

Note: For function-shipped requests, the exit is called on the system where the file is local.

Exit-specific parameters
UEPFSREQ

Address of a 2-byte field that indicates the type of file request. The first byte contains one of the
following values:
UEPFSOPN

Open request
UEPFSCLS

Close request
UEPFSENB

Enable request
UEPFSDIS

Disable request
UEPFSCAN

Cancel file close request.

If the first byte indicates an open request (UEPFSOPN), the second byte shows the type of open:
UEPFSNOP

Normal open
UEPFSOFB

Open for backout.

If the first byte indicates a close request (UEPFSCLS), the second byte shows the type of close:
UEPFSNC

Normal close
UEPFSCP

Close pending
UEPFSELM

End of load mode close
UEPFSIMM

Immediate close
UEPFSICP

Immediate close pending
UEPFSQU

RLS quiesce close.

UEPFILE
Address of the 8-byte file name.

UEPFINFO
Address of a storage area containing information about the file. The area can be mapped using the
DSECT DFHUEFDS, which contains the following fields:

96 CICS TS for z/OS: User Exit Reference

UEFLNAME
The 8-character file name.

UEDSNAME
The 44-character dsname of the data set associated with the file.

UEFSERV
One byte indicating the SERVREQ settings for this file. The possible values are:
UEFRDIM

Read valid
UEFUPDIM

Update valid
UEFADDIM

Add valid
UEFDELIM

Delete valid
UEFBRZIM

Browse valid.
UEFDSJL

One byte indicating the automatic journaling options set for this file. The possible values are:
UEFJRO

Journal read-only
UEFJRU

Journal read for update
UEFJWU

Journal write update
UEFJWA

Journal write add
UEFJDSN

Dsname has been journaled
UEFJSYN

Journal read synchronously
UEFJASY

Journal write asynchronously.
UEFDSVJL

One byte indicating a further automatic journaling option which applies to VSAM files only. The
value is:
UEFJWAC

Write add complete.
UEFDSJID

One byte containing the number of the journal to be used for automatic journaling, if any.
UEFDSACC

One byte indicating the access method of the file. The possible values are:
UEFVSAM

VSAM file
UEFBDAM

BDAM file
UEFCFDT

Coupling facility data table

Chapter 1. Global user exit points (by function) 97

UEFBCRV
One byte indicating the recovery attributes of the data set associated with this file. The
possible values are:
UEFBCFR

Forward recovery specified
UEFBCLOG

Logging specified
UEFBCVAL

Flag indicating that recovery attributes are valid.
UEFFRLOG

A 1-byte field containing the forward recovery log identifier in the range 1—99, taken from the
recovery attributes in the CICS file resource definition. This number corresponds to a CICS
internal journal name of the form DFHJnn, where nn is the forward recovery log number. CICS
maps this journal name to a forward recovery log stream.

The field is set to zero if forward recovery logging is not specified for the file, or if the forward
recovery log stream name has been obtained from the ICF catalog.

UEFFRCLG
A 26-byte field containing the name of the forward recovery log stream taken from the ICF
catalog, to be used for forward recovery. Set to blanks if not specified in the ICF catalog or if
forward recovery is not being used for the file.

UEFCDATE
A date (YYYYDDD+) in packed decimal format. This field is set only when the file is the last file
to close against the VSAM sphere with which it is associated. It contains the date when activity
against the VSAM sphere was brought to an end (quiesced).

UEFCTIME
A time (HHMMSST+) in packed decimal format. This field is set only when the file is the last
file to close against the VSAM sphere with which it is associated. It contains the time when
activity against the VSAM sphere was brought to an end.

UEFBCAS
A flag-byte indicating the availability of this data set. If set, the value is:
UEPFBCAS

Data set marked unavailable.
UEFACBCP

Address of a read-only copy of the ACB for a VSAM file, or the DCB for a BDAM file. Set only
after completion of a successful open.

UEPFSRSP
Address of a byte containing the return codes for the request. This has one of the following values:
UEFSNORM

Normal response.
UEFSWARN

Warning response.
UEFSFAIL

Failure response.
UEFSPEND

Pending response. The ‘Pending' response can be returned only after a CLOSE request. It
indicates that, as a result of the CLOSE request, a closure is pending on the file, the file is
being quiesced. When all activity against the file has completed, it is closed. Note that, if
enabled, the XFCSREQ and XFCSREQC exits are driven again, when the actual closure takes
place.

98 CICS TS for z/OS: User Exit Reference

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first called, and is
incremented for each recursive call.

Note:

1. The first seven fields of UEPFINFO (UEFLNAME through UEFDSACC) are set for all requests; that is,
following an OPEN, CLOSE, ENABLE, or DISABLE request.

2. The next three fields (UEFBCRV, UEFFRLOG, and UEFFRCLG) are valid only after a successful OPEN
request.

3. The fields UEFCDATE through UEFCBCAS are set only after a successful CLOSE request. After all
other requests, if the file is already closed, if the closure fails, or if the closure is pending, these
fields are set to nulls.

4. Exit programs can call EXEC CICS SET commands against the file whose state change leads to the
exit being called. However, dependent upon other concurrent activity within the CICS system,
there is the potential for a deadlock to occur between tasks that are manipulating the state of the
file with such SPI commands.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI calls

All except EXEC CICS SHUTDOWN and EXEC CICS XCTL can be used.

Note:

1. Take care when issuing recursive commands not to cause a loop. For example, it is your responsibility
to avoid entering a loop when a file control request is issued from the XFCSREQC exit. Use of the
recursion counter UEPRECUR is recommended.

2. Exit programs that issue EXEC CICS commands must first address the EIB. See Using CICS services.
3. Exit programs that issue EXEC CICS commands, and that use the DFHEIENT macro, should use the

DFHEIRET macro to set a return code and return to CICS. See Global user exit XPI examples, showing
the use of storage.

Sample global user exit program for XFCSREQC

DFH$REQC provides sample processing for the file control state program global user exit, XFCSREQC. For
more information, see File control state sample exit program: DFH$REQC.

File control open/close program exit XFCNREC
You can use XFCNREC to suppress the open failure on a non-RLS data set.

For RLS data sets, recovery is a property of the data set. Therefore it is not possible for files and their base
data set to have unmatched recovery attributes. For more information about writing an XFCNREC exit
program, see Configuring for recovery of CICS-managed resources.

Exit XFCNREC

When invoked
Before file open, when a mismatch is detected:

1. Between the backout recovery setting for the file and its associated non-RLS data set.

Chapter 1. Global user exit points (by function) 99

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0022.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/recovery/dfht22f.html

2. Because BWO is required but the recovery attributes indicate that no associated forward recovery
file has been specified.

Exit-specific parameters
UEFILE

Address of the 8-byte file name. If the file name is less than 8 characters in length, it will be
padded with blanks.

UEDSETN
Address of the 44-byte base data set name. If the data set name is less than 44 characters in
length, it will be padded with blanks.

UEPFRCV
Address of a 1-byte field containing the backout recovery setting for the file, as specified in the
FILE definition. The possible value is:
UEPFLOG

Backout logging specified.

If RECOV(NONE) is specified in the FILE definition, the addressed field contains hexadecimal
zeros.

This field has no meaning if the exit is driven because of a BWO mismatch.

UEPFAIL
Address of a 1-byte field containing the reason for the mismatch. The possible values are:
UEPBWOF

A BWO mismatch
UEPATTF

A mismatch in the backout recovery settings
UEPOPEN

Address of a 1-byte field. Its default value is N. To bypass an open failure caused by a BWO
mismatch, set the addressed field to Y.

Return codes
UERCNORM

Fail open as normal.
UERCBYP

Bypass open failure—accept mismatch.
XPI calls

Must not be used.
SPI calls

Must not be used.
API and SPI calls

Must not be used.

XFCNREC exit with a backout recovery setting mismatch
Use the XFCNREC global user exit if you want to continue with open processing, even though the backout
recovery settings for different files associated with the same base data set are not consistent.

After an open failure has been suppressed, CICS can no longer guarantee integrity for the data set and
marks it accordingly. If you use the EXEC CICS INQUIRE DSNAME or CEMT INQUIRE DSNAME
RECOVSTATUS commands after an open failure has been suppressed, a response of NOTRECOVABLE is
returned. Logging continues for the data set for requests. Logging uses only files that have BACKOUT
defined.

The mismatched state of the data set continues until an EXEC CICS or CEMT SET DSNAME REMOVE
command is issued, or until an initial or cold start of CICS, if the associated data set is not in a backout
failed state.

100 CICS TS for z/OS: User Exit Reference

At the point when the mismatch is accepted, CICS issues a message to warn that integrity can no longer
be guaranteed. The order in which files are opened for the same base data set determines the content of
the message that is received.

If the base cluster block is set as unrecoverable and a mismatch has occurred, access is granted to the
data set with an unrecoverable file, before the data set is fully recovered.

Three parameters are passed to the XFCNREC exit to provide a means of selecting which mismatches to
accept and which to reject. These parameters are the address of the file name, the address of the base
data set name, and the address of a byte containing the file backout indicator. Because the exit is driven
only if there is a mismatch, the data set backout indicator can be derived from the setting for the file.

Note: If XFCNREC is used to suppress an open failure due to a mismatch, the global user exit XFCSREQC
passes the base data set backout setting as the exit parameter UEFBCRV, and not the file backout setting,
which might be different.

Using XFCNREC with a BWO mismatch
Exit XFCNREC can allow the file to be opened and CICS will continue to run normally. However, forward
recovery will not be available for the opened data set.

File control quiesce receive exit, XFCVSDS
The XFCVSDS exit is invoked when VSAM RLS notifies CICS that processing is required as a result of some
data set-related events occurring in the sysplex.

XFCVSDS is invoked before CICS processing takes place, and only if a data set name block (DSNB) exists
for the data set. The actions that cause XFCVSDS to be invoked are:

• A data set is being quiesced throughout the sysplex.

CICS is informed about this action only if it has files open in RLS mode against the data set.

If CICS is notified about a quiesce action, the XFCVSDS global user exit program can cancel the data set
quiesce, in which case it cancels the quiesce throughout the sysplex, and the data set remains in the
unquiesced state.

• A data set is being unquiesced throughout the sysplex.

All CICS regions in the sysplex that are registered with a VSAM RLS control ACB are informed about
unquiesce actions.

• DFSMSdss wants to start a non-BWO backup of a data set.

CICS is notified about a non-BWO backup start action only if it has files open in RLS mode against the
data set.

If CICS is notified about a non-BWO backup start action, XFCVSDS can be used to cancel the backup.
• DFSMS has completed a non-BWO backup of a data set.

All CICS regions in the sysplex that are registered with a VSAM RLS control ACB are informed about
non-BWO backup complete actions.

• DFSMS wants to start a BWO backup of a data set.

CICS is notified about a BWO backup start action only if it has files open in RLS mode against the data
set.

If CICS is notified about a BWO backup start action, XFCVSDS can be used to cancel the backup.
• DFSMS has completed a BWO backup of a data set.

All CICS regions in the sysplex that are registered with a VSAM RLS control ACB are informed about
BWO backup complete actions.

Chapter 1. Global user exit points (by function) 101

Exit XFCVSDS
Exit XFCVSDS is invoked after VSAM RLS has informed CICS that processing is required as a result of a
data set-related action occurring in the sysplex.

When invoked
Invoked after VSAM RLS has informed CICS that processing is required as a result of a data set-
related action occurring in the sysplex.

Exit-specific parameters
UEPDSNAM

Address of a 44-byte field containing the name of the data set to which the action applies
UEPVSACT

Address of a 1-byte field indicating the RLS action of which CICS has been informed. Possible
values are:
UEQUIES

Quiesce
UEUNQUIS

Unquiesce
UENBWST

Non-BWO backup start
UENBWCMP

Non-BWO backup complete
UEBWOST

BWO backup start
UEBWOCMP

BWO backup complete.
UEPQUCLS

Address of a 1-byte field indicating, for UEQUIES only, how files open in RLS mode are to be
closed. Possible values are:
UEORDCLO

Wait until all in-flight UOWs that are accessing the data set have completed syncpoint before
closing.

UEIMMCLO
Abend all in-flight UOWs that are accessing the data set before closing.

UEPCPTEC
Address of a 1-byte field indicating, for UENBWST and UEBWOST only, whether the backup is to
use the concurrent copy technique. Possible values are:
UEORDCOP

Concurrent copy is not being used.
UECONCOP

Concurrent copy is being used.
Return codes

UERCNORM
Continue processing—complete the actions required to support the VSAM RLS operation.

UERCBYP
This applies only to actions UEQUIES, UENBWST and UEBWOST. CICS is not to carry out the
processing required for the VSAM RLS action, and is to cancel the action throughout the sysplex.

A return code of UERCPURG is not allowed.

XPI calls
All can be used.

102 CICS TS for z/OS: User Exit Reference

API and SPI calls
You can use CICS API and SPI commands at this exit. In general all can be used, with the following
restrictions:

• You should avoid the use of commands that cause the issuing task to suspend.
• You must not use EXEC CICS SHUTDOWN or EXEC CICS XCTL.
• You must not use the QUIESCESTATE option of EXEC CICS SET DSNAME for data set UEPDSNAM.
• You must not use the OPENSTATUS option of EXEC CICS SET FILE, or issue file control requests, for
files that reference data set UEPDSNAM.

File control quiesce send exit XFCQUIS
The XFCQUIS global user exit is invoked on completion of a VSAM RLS quiesce or unquiesce of a data set
that was requested either by a CEMT or EXEC CICS SET DSNAME QUIESCESTATE command.

The exit is invoked regardless of whether the QUIESCESTATE action has completed successfully or
unsuccessfully. This enables you to perform, or schedule, any processing that cannot take place until
quiesce or unquiesce processing has finished.
When invoked

On completion, successful or failed, of a SET DSNAME QUIESCESTATE command.
Exit-specific parameters

UEPQDSNM
Address of a 44-byte field containing the name of the data set that was being quiesced or
unquiesced.

UEPQSTAT
Address of a 1-byte field indicating whether the data set was being quiesced or unquiesced.
Possible values are:
UEQSD

Data set was being quiesced by QUIESCESTATE(QUIESCED). In-flight UOWs accessing the
data set completed syncpoint before files open in RLS mode were closed.

UEIMQSD
Data set was being quiesced by QUIESCESTATE(IMMQUIESCED). In-flight UOWs accessing
the data set were abended before files open in RLS mode were closed.

UEUNQSD
Data set was being unquiesced by QUIESCESTATE(UNQUIESCED).

UEPQRCDE
Address of a 1-byte field indicating the result of the quiesce or unquiesce. Possible values are:
UEQOK

Successful.
UEQREJEC

Rejected—see UEPQCONF for the reason code.
UEQUNKNO

Failed because data set not known to DFSMS as a VSAM data set.
UEQIOERR

Failed because of RLS error or SMSVSAM server not available.
UEQCANCL

Failed because quiesce was canceled by user (UEQSD and UEIMQSD only).
UEQTIMED

Failed because quiesce was canceled due to timeout (UEQSD and UEIMQSD only).
UEQMIGRT

Failed because the data set has been migrated.

Chapter 1. Global user exit points (by function) 103

UEPQCONF
Address of a 1-byte field indicating the reason why the quiesce or unquiesce was rejected (for
UEQREJEC only). Possible values are:
UEQUIINP

Quiesce is in progress (UEQSD and UEIMQSD status only).
UEUNQINP

Unquiesce is in progress.
UENBWINP

Non-BWO copy is in progress.
UEBWOINP

BWO copy is in progress.
UEUNKINP

Unknown event is in progress.
Return codes

UERCNORM
Continue processing.

A return code of UERCPURG is not allowed.

XPI calls
All can be used.

API and SPI calls
You can use CICS API and SPI commands at this exit. In general, all except EXEC CICS SHUTDOWN
and EXEC CICS XCTL can be used, but you must not use the QUIESCESTATE keyword of EXEC CICS
SET DSNAME.

File control recovery program exits XFCBFAIL, XFCBOUT, XFCBOVER, and
XFCLDEL

CICS provides four global user exits that you can use in connection with file control recovery operations.
XFCBFAIL

Invoked when an error occurs during backout.
XFCBOUT

Invoked when CICS is about to back out a file update.
XFCBOVER

Invoked when CICS is about to skip unit-of-work (UOW) backout because a batch program has
overridden RLS retained lock protection and opened a data set for batch processing.

XFCLDEL
Invoked when backing out a write to a BDAM or a VSAM ESDS data set.

File control recovery sample exit programs

CICS includes three sample file control global user exit programs: DFH$FCBF, DFH$FCBV, and DFH$FCLD.

Order of invocation
Each of the exits in the file control recovery program might be invoked during an attempt to backout a file
update. If the backout fails, each exit might be re-invoked when the backout is retried. If an exit program
needs to determine whether it is being invoked during the original backout attempt, or during a retry, it
can check the value of the RE_ATTACHED_TRANSACTION field returned by an XPI
INQUIRE_TRANSACTION call.

The way in which the exits interact, and the order in which they are invoked, is shown in the following list.
Assuming that all the exits are enabled, for each backout attempt or retried backout attempt:

104 CICS TS for z/OS: User Exit Reference

1. If an open during backout fails, XFCBFAIL is invoked. None of the other exits is invoked.
2. If the SHCDS PERMITNONRLSUPDATE command has been issued for the data set being backed out,

XFCBOVER is invoked. If it returns UERCNORM (do not perform the backout), no further exits are
invoked.

3. Unless item “1” on page 105 applies, or XFCBOVER has been invoked and returned UERCNORM,
XFCBOUT is invoked.

4. Backout issues a read update request for the record being backed out.

If the read update fails, XFCBFAIL is invoked, followed by no further exits.
5. If the update to be backed out was a write to a data set which does not support physical deletes (that

is, a BDAM data set or a VSAM ESDS), XFCLDEL is invoked.
6. If a failure occurs after this point, XFCBFAIL is invoked.

Enabling the exit programs
To enable an exit program you must complete one of two possible actions.

To enable these exits, you must do one of the following:

• Specify the system initialization parameter TBEXITS=(name1,name2,name3,name4,name5,name6),
where name1 through name6 are the names of your user exit programs for XRCINIT, XRCINPT,
XFCBFAIL, XFCLDEL, XFCBOVER, and XFCBOUT.

• Enable the exits during the first stage of initialization using a PLTPI program.

If you use the TBEXITS parameter to enable the exits, a global work area of 4 bytes is provided. If you use
a PLTPI program, you can select the size of the global work area. You can also enable more than one exit
program for use at each exit point; the TBEXITS parameter allows only one exit program at each exit
point. PLTPI processing is described in Writing initialization and shutdown programs .

Exit XFCBFAIL, file control backout failure exit
Exit XFCBFAIL is invoked whenever there is a failure during backout of an update made to a file record.

If, within a given UOW, there are backout failures for more than one record in the same file, or for records
in multiple files, the exit is invoked:

• For the first record in each data set for which backout fails.

If more than one file is associated with a single data set, only the first record in the first of the files to
fail backout within UOW causes CICS to invoke the exit. All subsequent records are failed with the same
error, but the exit is not invoked again.

• For the first record for each data set that fails during any retry of the backout for this UOW.

It is not invoked for backout failures to other (non-file-control) resources within the UOW.

For VSAM data sets, backout failure processing saves information that allows the backout to be retried
later.

For BDAM data sets, the backout cannot be retried. If backout fails against a BDAM data set, you can use
the XFCBFAIL exit to preserve data integrity by terminating CICS immediately. If the XFCBFAIL exit is not
enabled, or does not terminate CICS, the BDAM data is committed and the locks are released. If the exit
is enabled, you can use the XFCBFAIL global user exit program to save information that you can use to
manually correct the data. However, you need to be careful that in doing this you do not back out other
changes made between the time of the backout failure and the time of your own manual recovery action.
When invoked

If an error occurs during backout of a change made to a file (on the first failure in the UOW for the data
set associated with the file).

Chapter 1. Global user exit points (by function) 105

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35h.html

Exit-specific parameters
UEPBLOGR

Address of the file control portion of the log record that represents the update that was being
backed out when the file control failure occurred. The log record can be mapped using the DSECT
DFHFCLGD.

UEPTRANS
Address of a 4-byte field containing the transaction id under which the update that is being
backed out was made.

UEPTRMNL
Address of the 4-byte terminal id for the terminal or principal facility from which the update that is
being backed out was made.

UEPTASK
Address of the 4-byte (packed decimal) field containing the task number for the task under which
the update that is being backed out was made.

UEPFCRSP
Address of the file control response byte. This can have one of the following values:
UEAIXFUL

No space in non-unique alternate index.
UECACHE

RLS cache failure or cache connectivity failure.
UENBWBAK

Non-BWO backup in progress.
UEDLOCK

Deadlock detected.
UEDUPREC

Duplicate key on unique alternate index.
UEIOEROR

I/O error.
UELCKFUL

RLS lock structure full.
UENOLDEL

Logical delete not carried out (XFCLDEL exit point is either not enabled or the XFCLDEL global
user exit program chose not to perform the logical delete).

UENOSPAC
Data set out of storage.

UEOPENER
Error opening the file.

UERLSERR
SMSVSAM RLS server failure.

UERLSDIS
RLS access is currently disabled.

UERLSCON
Attempt to continue a thread with a new instance of the SMSVSAM RLS server.

UEUNEXP
Unexpected error.

UEPERR
Address of a one-byte field containing the error type. The values of the error-byte and their
meanings are described in “Values of the error-type byte referenced by UEPERR” on page 107.

106 CICS TS for z/OS: User Exit Reference

Return codes
UERCNORM

Continue processing and invoke CICS backout failure control.

This causes a backout failure error message to be issued (DFHFC4701 for a VSAM data set, and
DFHFC4702 for a BDAM data set). For a VSAM data set CICS converts the record lock into a
retained lock, and the log record is saved for a later retry of the backout.

UERCBYP
Ignore the error (do not invoke CICS backout failure control) and continue. Setting this return code
could be damaging to the integrity of your data.

A return code of UERCPURG is not allowed. There is no need to set a UERCPURG return code, because
the conditions under which this exit is invoked mean that a purged condition cannot be returned by
any XPI or API calls.

XPI calls
All can be used, but subject to the same caution as for API and SPI calls.

API and SPI calls
Although this exit is allowed to issue API and SPI calls, you should be very careful about which
commands you use because the exit is invoked during file backout, which is part of syncpoint phase 2.

It is recommended that you restrict EXEC CICS commands to inquiries, and avoid commands that
update CICS resources, because the resources may themselves be in a state of recovery. In
particular, the following restrictions apply:

1. Do not issue any recoverable operations.
2. Do not use operations that access systems or resource owners external to this CICS, even if the

target resource is non-recoverable.
3. Do not disable or close files, because this could cause further error conditions.
4. It is possible for this exit to be invoked under a different transaction environment from that under

which the updates that are being backed out were originally made. If your exit program wants to
perform any actions (such as writing a message to the terminal) that require it to be running under
the original transaction environment, it must first check the value returned in the
RE_ATTACHED_TRANSACTION parameter of a transaction manager INQUIRE_TRANSACTION XPI
call.

Sample global user exit program for XFCBFAIL

DFH$FCBF provides sample processing for the file control backout failure global user exit XFCBFAIL. For
more information, see File control recovery sample exit program: DFH$FCBF.

Values of the error-type byte referenced by UEPERR
The UEPERR field in the XFCBFAIL parameter list points to an error-type byte, which contains one of
several possible values.

Possible values are:
XBFERU

An error response has been returned from the file control file-request-handler program while
processing a READ UPDATE request. This request is issued by file control backout to retrieve the
existing copy of the record before backing it out.

Use UEPFCRSP in combination with the type of record, shown in the file control portion of the log
record addressed by parameter UEPBLOGR, to determine the specific problem. The storage area
addressed by UEPBLOGR contains either the before-image of a "read-update" record or the new copy
of a "write-add" to be deleted. The type-of-record field, FLJB_RECORD_TYPE, is defined in DSECT
DFHFCLGD.

XBFERE
An error response has been returned from the file control file-request-handler program while
processing a REWRITE request. This request is issued by file control backout to replace the existing

Chapter 1. Global user exit points (by function) 107

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3dh.html

copy of the record on the data set with the "before-image" held in the log record addressed by
UEPBLOGR. Use parameter UEPFCRSP to determine which error occurred.

XBFEWR
An error response has been returned from the file control file-request-handler program while
processing a WRITE request. This request is issued by file control backout to add the "before-image"
of a deleted record. Use parameter UEPFCRSP to determine which error occurred.

XBFEDL
An error response has been returned from the file control file-request-handler program while
processing a REWRITE DELETE request. This request is issued by file control backout to delete a new
record added to a VSAM data set. Use parameter UEPFCRSP to determine which error occurred.

XBFENO
The failure that occurred during file control backout was not as a result of an error response from the
file control file-request-handler program. Use parameter UEPFCRSP to determine which error
occurred.

Exit XFCBOUT, file control backout exit
XFCBOUT is invoked when a file control update is about to be backed out. The log record containing the
before-image of the record being backed out is passed to the exit program.

XFCBOUT does not provide a return code to allow your exit program to bypass the backout of the update,
because this would result in data corruption. However, the file name is in the log record, so your exit
program can use an EXEC CICS INQUIRE FILE command to get information about the file.

When invoked
Invoked when an update (represented by a before-image log record) is being backed out by File
Control.

Exit-specific parameters
UEPFLOGR

The address of the file control portion of the log record that is being presented for backout. This is
mapped by the DSECT DFHFCLGD.

Return codes
UERCNORM

Continue processing.

A return code of UERCPURG is not allowed. There is no need to set a UERCPURG return code, because
this exit is invoked during syncpoint phase 2, and therefore cannot get a purged response from any
calls it makes.

XPI calls
All can be used, but subject to the same caution as for API and SPI calls.

API and SPI calls
Although this exit is allowed to issue API and SPI calls, you should be very careful about which
commands you use because the exit is invoked during file backout, which is part of syncpoint phase 2.

It is recommended that you restrict EXEC CICS commands to inquiries, and avoid commands that
update CICS resources, because the resources may themselves be in a state of recovery. In
particular, the following restrictions apply:

1. Do not issue any recoverable operations.
2. Do not use operations that access systems or resource owners external to this CICS, even if the

target resource is unrecoverable.
3. Do not disable or close files, because this could cause further error conditions.
4. It is possible for this exit to be invoked under a different transaction environment from that under

which the updates that are being backed out were originally made. If your exit program wants to
perform any actions (such as writing a message to the terminal) that require it to be running under
the original transaction environment, it must first check the value returned in the

108 CICS TS for z/OS: User Exit Reference

RE_ATTACHED_TRANSACTION parameter of a transaction manager INQUIRE_TRANSACTION XPI
call.

Because it is anticipated that XFCBOUT will be used for specific applications, no general-purpose sample
exit program is provided. You could use any of the samples for the other file control recovery exits, DFH
$FCBF, DFH$FCBV, or DFH$FCLD, as the basis for an XFCBOUT exit program.

Exit XFCBOVER, file control backout override exit
Exit XFCBOVER is part of the support CICS file control provides for batch windows in a VSAM RLS
environment.

VSAM RLS locks individual records within a data set, and these locks are converted to retained locks for
those UOWs that are not completed because of backout or indoubt failures, thus preserving data integrity.
To avoid corruption of a data set by a non-RLS batch job, which is not aware of the retained record locks,
a data set cannot normally be opened for update in non-RLS mode if it has any locked records.

Sample global user exit program for XFCBOVER

DFH$FCBV provides sample processing for the file control backout override global user exit XFCBOVER.
For more information, see File control recovery sample exit program: DFH$FCBV.

Retained lock override for batch
There may be circumstances in which you want to override these locks and force the open of a data set
for batch processing.

For example, when:

• There is insufficient time available, before running the batch job, in which to resolve the situation that
caused the records to be locked, or

• It is known that the batch job cannot harm data integrity (because it does not update existing records in
the data set, or it does not update any records that CICS may have updated).

To override the open restriction, VSAM RLS provides the SHCDS PERMITNONRLSUPDATE command, to
allow a non-RLS batch job to open a sphere for update even when there are retained locks.

Effect of retained lock override on CICS
VSAM records the use of the option to override retained locks, so that it can notify a CICS region when the
region next opens the data set. Because data could have been altered by the non-RLS batch job, the
results of CICS performing any recovery (on UOWs that were in a backout-failed or indoubt-failed state at
the time of the batch job) are unpredictable. In this situation, therefore, the default CICS action is not to
back out any updates that were outstanding at the time that locks were overridden, and to write
diagnostic information about each backout ignored to the CSFL transient data queue.

The XFCBOVER global user exit is provided to enable you, for each UOW log record for which backout is
being ignored, to:

• Write application-related diagnostics to supplement those provided by CICS
• To perform application-related recovery actions
• To reverse the default by requesting that the backout should be carried out after all. This option is

required for the case where the batch job is known not to corrupt data integrity (for example, because it
only inserts records).

When invoked
Whenever CICS is about to ignore a UOW log record that is due to be backed out, because the lock
that protected the updated record could have been overridden by a non-RLS batch program.

Chapter 1. Global user exit points (by function) 109

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3di.html

Exit-specific parameters
UEPOLOGR

Address of the file control portion of a shunted log record that represents an update to a data set
for which retained locks may have been overridden. The file control portion of the log record can
be mapped using the DSECT DFHFCLGD.

UEPODSN
Address of a 44-byte area of storage containing the name of the data set whose locks were
overridden.

Return codes
UERCNORM

Do not perform the backout of this log record. Any updates performed by the batch run should
take precedence.

UERCBCKO
Perform the backout. It is known that the actions of the batch job could not have affected this
update.

A return code of UERCPURG is not allowed. There is no need to set a UERCPURG return code, because
this global user exit is invoked during syncpoint phase 2, and therefore cannot get a purged response
from any calls that it makes.

XPI calls
All can be used, but subject to the same caution as for API and SPI calls.

API and SPI calls
Although this exit is allowed to issue API and SPI calls, you should be very careful about which
commands you use because the exit is invoked during file backout, which is part of syncpoint phase 2.

It is recommended that you restrict EXEC CICS commands to inquiries, and avoid commands that
update CICS resources, because the resources may themselves be in a state of recovery. In
particular, the following restrictions apply:

1. Do not issue any recoverable operations.
2. Do not use operations that access systems or resource owners external to this CICS, even if the

target resource is non-recoverable.
3. Do not disable or close files, because this could cause further error conditions.
4. It is possible for this exit to be invoked under a different transaction environment from that under

which the updates that are being backed out were originally made. If your exit program wants to
perform any actions (such as writing a message to the terminal) that require it to be running under
the original transaction environment, it must first check the value returned in the
RE_ATTACHED_TRANSACTION parameter of a transaction manager INQUIRE_TRANSACTION XPI
call.

Exit XFCLDEL, file control logical delete exit
Exit XFCLDEL is invoked whenever a WRITE to a VSAM ESDS, or to a BDAM data set, is being backed out.
Because these types of data set do not support deletion, you can use XFCLDEL to perform a logical delete
by amending the record in some way that flags it as deleted.
Exit-specific parameters

UEPBLOGR
Address of the file control portion of the log record representing the update that is to be backed
out by logical deletion. The log record can be mapped using the DSECT DFHFCLGD.

UEPTRANS
Address of the 4-byte transaction id under which the update that is being backed out was made.

UEPTRMNL
Address of the 4-byte terminal id for the terminal or principal facility from which the update that is
being backed out was made.

110 CICS TS for z/OS: User Exit Reference

UEPTASK
Address of the 4-byte (packed decimal) task number for the task under which the update that is
being backed out was made.

UEPFDATA
Address of a variable-length field containing the data in the file control request. The exit program
can amend the record data addressed by this field, marking it in some way that applications can
recognize as representing a logically deleted record.

UEPFLEN
Address of a fullword containing the length of the data in the file control request.

Return codes
UERCFAIL

Do not perform the logical delete, and treat this as a backout failure. This is the default action
taken if the exit is not enabled.

UERCLDEL
Perform the logical delete by reapplying the updated record.

A return code of UERCPURG is not allowed. There is no need to set a UERCPURG return code, because
the conditions under which this exit is invoked should mean that “purged” cannot be returned by any
XPI or API calls.

XPI calls
All can be used, but subject to the same caution as for API and SPI calls.

API and SPI calls
Although this exit is allowed to issue API and SPI calls, you should be very careful about which
commands you use because the exit is invoked during file backout, which is part of syncpoint phase 2.

It is recommended that you restrict EXEC CICS commands to inquiries, and avoid commands that
update CICS resources, because the resources may themselves be in a state of recovery. In
particular, the following restrictions apply:

1. Do not issue any recoverable operations.
2. Do not use operations that access systems or resource owners external to this CICS, even if the

target resource is non-recoverable.
3. Do not disable or close files, because this could cause further error conditions.
4. It is possible for this exit to be invoked under a different transaction environment from that under

which the updates that are being backed out were originally made. If your exit program wants to
perform any actions (such as writing a message to the terminal) that require it to be running under
the original transaction environment, it must first check the value returned in the
RE_ATTACHED_TRANSACTION parameter of a transaction manager INQUIRE_TRANSACTION XPI
call.

The CICS file definition does not have to specify UPDATE=YES in order for CICS to update the record with
the logical delete flag set by an XFCLDEL user exit like DFH$FCLD. When a backout is being done,
checking the SERVREQS like UPDATE is bypassed.

Sample global user exit program for XFCLDEL

DFH$FCLD provides sample processing for the file control logical delete global user exit XFCLDEL. For
more information, see File control recovery sample exit program: DFH$FCLD.

File control RLS coexistence program exit XFCRLSCO
The XFCRLSCO exit can be called during a request to open a file. Use this exit to allow an application to
switch the mode between RLS and read-only non-RLS to access a particular data set.

CICS does not allow an open request to take place for a non-RLS file if an RLS file is already open against
the same data set, or if the data set has outstanding RLS work in the system. Also, CICS does not allow an

Chapter 1. Global user exit points (by function) 111

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/file/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3dk.html

open request to take place for an RLS file if an existing non-RLS file is already open against the base data
set. In these situations, if an open request occurs and the non-RLS file is open for read-only access, the
XFCRLSCO exit is driven. You can use this exit to decide whether to allow the open request to proceed or
to fail in the usual manner with message DFHFC0511 or DFHFC0512.

To switch the access mode, the application can open the data set using a new file with a different access
mode. Do not keep the same data set open using both access methods simultaneously over an extended
period of time, because CICS does not receive a consistent view of the data set when accessing it
concurrently using both RLS and non-RLS files. In particular, CICS cannot get a consistent view if the data
set is being updated by the RLS file at the same time as it is being read by the non-RLS file.

If VSAM upgrade set processing occurs while the data set is open using both RLS and non-RLS files, there
is an increased risk that read errors might occur because the upgrade processing has not completed on
either the base cluster or the associated alternate indexes.

Note:

1. The exit is not driven if the non-RLS file has any updatable SERVREQS set (that is, it allows updates,
adds, or deletes).

2. The data set being opened must specify share options SHAREOPTION(2) on the VSAM base cluster. If
lower share options are specified, VSAM fails the second open.

3. If static allocation is being used then be sure to specify DISP=SHR, otherwise VSAM fails the open.

When invoked
During a file OPEN request, before the open request is issued to VSAM.

Exit-specific parameters
UEPFILEN

Address of an 8-byte field containing the file name. If the file name is less than 8 characters in
length, it is padded with blanks.

UEPDSNAME
Address of a 44-byte field containing the base data set name. If the data set name is less than 44
characters in length, it is padded with blanks.

UEPFSERV
Address of a 1-byte field containing the file SERVREQ indicator. Possible values are:
UEPFRDIM

Read valid indicator.
UEPFUPDIM

Update valid indicator.
UEPFADDIM

Add valid indicator.
UEPFDELIM

Delete valid indicator.
UEPFBRZIM

Browse valid indicator.
UEPFDSACC

Address of a 1-byte field containing the file access method flag. Possible values are:
UEPFVSAM

VSAM file indicator.
UEPFDTBL

Data table file indicator.
UEPFDTUM

User data table file indicator.
UEPFRLS

RLS file indicator.

112 CICS TS for z/OS: User Exit Reference

UEPFCFDT
CFDT file indicator.

UEPRECUR
Address of the halfword recursion level.

Return codes
UERCNORM

Continue processing as normal. The open request fails.
UERCBYP

Allow the open to take place, and bypass the coexistence failure.
XPI calls

You can use XPI commands, but the commands must not result in any state changes to any files.
API and SPI calls

You can use EXEC CICS API and SPI commands, but the commands must not make any state changes
to any files. For example, you can use EXEC CICS INQUIRE FILE, but not EXEC CICS SET FILE,
or EXEC CICS API commands against file control which result in state changes to any files.

Good morning message program exit (XGMTEXT)
This exit is invoked before a "good morning" message is sent.
When invoked

Before the good morning message is transmitted.
Exit-specific parameters

UEPTCTTE
Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). The TIOA can be mapped using the DSECT
DFHTIOA. However, fields TIOASAL and TIOASCA are not programming interfaces.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

HTTP client open and send exits: XWBAUTH, XWBOPEN and XWBSNDO
Exits XWBAUTH, XWBOPEN and XWBSNDO are invoked during processing of EXEC CICS WEB
CONVERSE, EXEC CICS WEB OPEN, EXEC CICS INVOKE SERVICE, and EXEC CICS WEB SEND

Chapter 1. Global user exit points (by function) 113

commands. They are used in making HTTP client requests from CICS as an HTTP client, which is a facility
provided by CICS Web support.

HTTP client send exit XWBAUTH
With XWBAUTH, you can specify basic authentication credentials (user name and password) for a target
server or service provider. XWBAUTH passes them to CICS on request, to create an Authorization header,
which is forwarded using HTTP.

When you specify AUTHENTICATE(BASICAUTH) in the EXEC CICS WEB SEND (Client) or WEB CONVERSE
command, the application can provide a user name and password. If they are not supplied, XWBAUTH is
called, providing an alternative way of specifying these credentials. XWBAUTH is called when you specify
AUTHENTICATE(BASIC) in a URIMAP resource definition for USAGE(CLIENT), unless the application
provides a user name and password in the EXEC CICS WEB SEND (Client) or WEB CONVERSE command.
XWBAUTH is also called with EC INVOKE SERVICE() URIMAP() when urimap specifies
AUTHENTICATE(BASIC).

The user name and password are typically specific to the remote server environment, and might be longer
than the standard eight characters used by RACF® systems. The user name and password fields can be up
to 256 characters in length. The syntax of these fields is not validated.

The host is passed to the user exit program as the UEPHOST parameter, and the path is passed as the
UEPPATH parameter. The realm is passed optionally as the UEPREALM parameter. In response, the user
exit program returns the user name and password as the UEPUSNM and UEPPSWD parameters. When
encoding the supplied userid and password CICS uses the EBCDIC code pages.

The following sample exit programs are shipped in the CICS sample library, SDFHSAMP:

• DFH$WBPI
• DFH$WBEX
• DFH$WBX1
• DFH$WBX2
• DFH$WBGA, a copybook to map the global work area used by the DFH$WBPI, DFH$WBX1, DFH$WBX2,

and DFH$WBEX samples.

For more information about the client sample exit programs, see HTTP client sample exit programs (DFH
$WB*). For more information about setting up your LDAP profile, see Configuring LDAP for CICS use

Exit XWBAUTH
When invoked

When the EXEC CICS WEB SEND or WEB CONVERSE command specifies
AUTHENTICATE(BASICAUTH), but the USERNAME and PASSWORD are not specified.

Exit-specific parameters
UEPHOST (Input supplied by CICS)

The address of a field containing the address of the host name, IPv4, or IPv6 address specified in
the HOST option of the WEB OPEN command for the connection. The host name is converted into
lowercase characters when it is saved in this field. Your user exit program must take this
conversion into account when matching the host name.

UEPHOSTL (Input supplied by CICS)
The address of a field containing the halfword length of the host name.

UEPPATH (Input supplied by CICS)
The address of a field containing the address of the path specified in the PATH option of the WEB
SEND or WEB CONVERSE command. The path is mixed case, as it was specified.

UEPPATHL (Input supplied by CICS)
The address of a field containing the halfword length of the path.

114 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0031.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0031.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/tcpip/dfht5boe.html

UEPREALM (Input supplied by CICS)
The address of a field containing the address of the realm name associated with the target
destination, if a realm name was returned in a previous HTTP 401 response from the server.

UEPREALML (Input supplied by CICS)
The address of a field containing the halfword length of the realm name.

UEPAUTHT (Input supplied by CICS)
The address of a 1-byte code that indicates the authentication type. This code is a binary 01,
indicating Basic Authentication.

UEPUSNM (Output supplied by user exit)
The address of a fullword field, containing the address of the user name required to access the
HTTP server. A predefined address and 64-byte area are created by CICS to store the user name.
You can place your user name in this 64-byte area, leaving the address in UEPUSNM unchanged.
Alternatively, you can place your user name in your own area and replace the address in
UEPUSNM with your user name address. If you create your own user name area, the field can be
up to 256 bytes in length.

UEPUSNML (Input supplied by CICS and output supplied by user exit)
The address of a halfword field, which initially contains the length of the buffer address supplied
in UEPUSNM. Your user exit program must set the length of this buffer to the user name length, as
supplied in UEPUSNM.

UEPPSWD (Output supplied by user exit)
The address of a fullword field, containing the address of the password required to access the
HTTP server. A predefined address and 100-byte area are created by CICS to store the password
or password phrase. You can place your password in this 100-byte area, leaving the address in
UEPPSWD unchanged. Alternatively, you can place your password in your own area and replace
the address in UEPPSWD with the address of your password. If you create your own password
area, the field can be up to 256 bytes in length.

UEPPSWDL (Input supplied by CICS and output supplied by user exit)
The address of a halfword field, which initially contains the length of the buffer address supplied
in UEPPSWD. Your user exit program must set the length of this buffer to the actual password
length, as supplied in UEPPSWD.

UEPHOSTT (Input supplied by CICS)
The address of a 1-byte code that indicates the host type contained in the UEPHOST parameter.

Binary 01 indicates host name, binary 02 indicates an IPv4 address, and binary 03 indicates an
IPv6 address.

Return codes
UERCNORM

The exit has successfully returned a user name and password.
UERCBYP

The exit cannot identify a user name and password. An Authorization header is not sent.
UERCERR

The exit cannot identify a user name and password. The WEB SEND (Client) or WEB CONVERSE
command must be stopped.

XPI calls
All XPI calls can be used.

API and SPI commands
All API and SPI commands can be used, except for EXEC CICS SHUTDOWN and EXEC CICS XCTL.

Chapter 1. Global user exit points (by function) 115

Typical use of the LDAP XPI functions by XWBAUTH
The expected use of the DFHDDAPX functions (in association with the XWBAUTH global user exit) include
opening and closing an LDAP session, browsing results for credentials, scanning and locating results,
closing the browse, returning the correct value and closing the search.
BIND_LDAP

Establishes a session with an LDAP server. Used once on the first call to the global user exit
XWBAUTH. The LDAP session token is stored in XWBAUTH's global work area (if one is provided) for
use by subsequent calls to LDAP_SEARCH.

UNBIND_LDAP
Releases the connection with the LDAP server. This function is only required during CICS shutdown
processing. This function can be used during the XSTERM (system termination) global user exit.

SEARCH_LDAP
Searches for credentials, specifying an LDAP distinguished name, that identifies the URL and realm of
the required user information. Distinguished name is specified in the following format:

racfcid=uuuuuuuu, ibm-httprealm=rrrrrrrr, labeledURI=xxxxxxxx, cn=BasicAuth

where:

• uuuuuuuu is the current userid, obtained from the XWBAUTH parameter, UEPUSER.
• rrrrrrrr is the HTTP 401 realm, obtained from the XWBAUTH parameter, UEPREALM (if this

exists).
• xxxxxxxx is the target URL, obtained by concatenating http:// with the hostname from the

XWBAUTH parameter, UEPHOST, and the path from the XWBAUTH parameter, UEPPATH.
• cn=BasicAuth is an arbitrary suffix that is configured into the LDAP server for storing Basic

Authentication credentials.

START_BROWSE_RESULTS
Starts scanning the results returned by SEARCH_LDAP.

GET_NEXT_ENTRY
Locates the next result entry in a series of entries returned by SEARCH_LDAP. Typically, the URL
specified in SEARCH_LDAP will locate a unique entry and the GET_NEXT_ENTRY function is not used.

GET_NEXT_ATTRIBUTE
Locates the next attribute in the current result entry. Typically, specific attributes will be selected and
the GET_NEXT_ATTRIBUTE function is not used.

END_BROWSE_RESULTS
Ends the browse session started by SEARCH_LDAP.

GET_ATTRIBUTE_VALUE
Returns the values for various attributes of the target distinguished name. For XWBAUTH, these
attributes values are the username and password, stored in the attributes uid and userpassword.
XWBAUTH returns these attribute values as credentials.

FREE_SEARCH_RESULTS
Closes the search initiated by SEARCH_LDAP and releases associated storage.

HTTP client open exit XWBOPEN
With XWBOPEN, you can specify proxy servers that are used for HTTP requests by CICS as an HTTP client.
You can also apply a security policy to the host name specified for those requests.

XWBOPEN is called during processing of an EXEC CICS WEB OPEN command, which is used by an
application program to open a connection with a server. XWBOPEN is also called during processing of an
EXEC CICS INVOKE SERVICE command.

CICS does not have any requirements concerning the use (or otherwise) of proxy servers for HTTP
requests by CICS as an HTTP client, and CICS does not apply any security policy for those requests. You
have to set up these facilities if they are required by your system or organization.

116 CICS TS for z/OS: User Exit Reference

The EXEC CICS WEB OPEN command instructs the CICS web domain to open a connection with a server.
XWBOPEN is called before the connection is opened. The host name for the connection (for example,
www.example.com), which is specified by the HOST option on the EXEC CICS WEB OPEN command, is
passed as the UEPHOST parameter to the user exit program for checking. At this point, you can use the
user exit program for two purposes:

• To determine whether the HTTP request needs to use a proxy server, and to return the name of any
proxy server that is required. If a proxy server is needed, return code UERCPROX is used, and the name
of the proxy server is returned to the CICS web domain, in the buffer identified by UEPPROXY, and used
to make the connection to the server. If no proxy server is needed, return code UERCNORM is used.

• To apply a security policy to the host name. Return code UERCBARR indicates that access to the host is
not permitted and a NOTAUTH response is returned to the WEB OPEN command. The application
programmer must stop trying to open that connection. If you want to apply a security policy for
individual resources, as well as (or instead of) for the host, use the XWBSNDO user exit on the EXEC
CICS WEB SEND and EXEC CICS WEB CONVERSE commands to apply a security policy to the path
component of the URL.

The XWBOPEN user exit does not support the use of EXEC CICS commands.

The sample programs DFH$WBPI and DFH$WBEX, with the associated copybook DFH$WBGA, show you
how to set up proxy server information or a security policy in a global work area. For example, if all the
requests from your CICS system must use a single proxy server, you can specify the proxy server name as
an initialization parameter. If you use a number of proxy servers or want to apply a security policy to
different host names, you can load or build a table that matches host names to appropriate proxy servers
or marks them as barred, which can then be used as a lookup table during processing of the EXEC CICS
WEB OPEN command. The sample programs can be run during program list table post initialization
(PLTPI) processing or at any point before you expect the EXEC CICS WEB OPEN command to be used.

Exit XWBOPEN
When invoked

During processing of an EXEC CICS WEB OPEN or EXEC CICS INVOKE SERVICE command.
Exit-specific parameters

UEPHOST (Input supplied by CICS)
The address of a field containing the host name, IPv4, or IPv6 address specified in the HOST
option of the WEB OPEN command.

Note: The host name is converted into lowercase when it is saved in this field. Your user exit
program must take into account this conversion when matching the host name.

UEPHOSTL (Input supplied by CICS)
The address of a field containing the halfword length of the host name.

UEPPROXY (Output supplied by user exit)
The address of a field containing the address that points to the proxy server name. The proxy
server name must be in URL format. On input to the user exit program, the parameter is set to the
address of a field containing the address of a 2046-byte area. You can place the proxy server
name in this area and leave the address in UEPPROXY unchanged. Alternatively, you can place the
proxy server name in your own area and replace the address in UEPPROXY with the address of a
field containing the address of your own area.

UEPPROXYL (Output supplied by user exit)
The address of a field containing the halfword length of the proxy server name.

UEPHOSTT (Input supplied by CICS)
The address of a 1-byte code that indicates the host type contained in the UEPHOST parameter.

Note: Binary 01 indicates host name, binary 02 indicates an IPv4 address, and binary 03 indicates
an IPv6 address.

Chapter 1. Global user exit points (by function) 117

Return codes
UERCNORM

A proxy server is not needed for this HTTP request, and the host name is not barred.
UERCPROX

A proxy server is needed for this HTTP request. UEPPROXY has been set to the name of the
required proxy server, and UEPPROXYL has been set to the length of the proxy server name.

UERCBARR
The host name of the server is barred.

UERCERR
An error occurred in exit processing.

XPI calls
All XPI calls can be used.

API and SPI commands
No EXEC CICS commands can be used.

HTTP client send exit XWBSNDO
With XWBSNDO, you can specify a security policy for HTTP requests by CICS as an HTTP client.
XWBSNDO is called during processing of an EXEC CICS WEB SEND or EXEC CICS WEB CONVERSE
command. The host name and path information are passed to the exit, and a security policy can be
applied to either or both of these components.

CICS does not apply any security policy for HTTP requests by CICS as an HTTP client; you must set up this
facility if it is required by your system or organization.

You can use the XWBOPEN exit on the WEB OPEN command to bar access to a whole host. You use the
XWBSNDO exit to do the same or to bar access to specific paths in a host. To bar access to a whole host,
using the XWBOPEN exit saves time, because the application program cannot open the connection and so
does not waste time creating the request that must be sent. The host name is provided to the XWBSNDO
exit so that you can differentiate between identical paths used by different hosts.

If chunked transfer-coding is being used for the HTTP request, XWBSNDO is called only on the first WEB
SEND command for the chunked message.

The XWBSNDO user exit does not support the use of EXEC CICS commands.

The host is passed to the user exit program as the UEPHOST parameter, and the path is passed as the
UEPPATH parameter. Return code UERCNORM indicates that the path is permitted, and return code
UERCBARR indicates that the path is not permitted. If the path is not permitted, a NOTAUTH response is
returned to the WEB SEND or WEB CONVERSE command, and the application programmer handles this
response by closing the connection with a WEB CLOSE command.

Exit XWBSNDO
When invoked

During processing of an EXEC CICS WEB SEND or EXEC CICS WEB CONVERSE command for an
HTTP request by CICS as an HTTP client. A client request is indicated by the use of the SESSTOKEN
parameter on the WEB SEND command.

Exit-specific parameters
UEPHOST

The address of a field containing the host name, IPv4, or IPv6 address specified in the HOST
option of the WEB OPEN command for the connection.

Note: The host name is converted into lowercase when it is saved in this field. Your user exit
program must take this conversion into account when matching the host name.

UEPHOSTL
The address of a field containing the halfword length of the host name.

118 CICS TS for z/OS: User Exit Reference

UEPPATH
The address of a field containing the path specified in the PATH option of the WEB SEND
command. The path is in mixed case, as it was specified.

UEPPATHL
The address of a field containing the halfword length of the path.

UEPHOSTT
The address of a 1-byte code that indicates the host type contained in the UEPHOST parameter.

Note: Binary 01 indicates host name, binary 02 indicates an IPv4 address, and binary 03 indicates
an IPv6 address.

Return codes
UERCNORM

The path is permitted.
UERCBARR

The path is not permitted.
XPI calls

All XPI calls can be used.
API and SPI commands

No EXEC CICS commands can be used.

Intersystem communication program exits, XISCONA, XISLCLQ, and
XISQLCL

The three exits in the intersystem communication program allow you to control the length of intersystem
queues.

You can use several methods to control the length of intersystem queues. For a description of the
available methods, see Intersystem session queue management.

The XISCONA exit
The purpose of XISCONA is to help you prevent the performance problems that can occur when function
shipping or DPL requests awaiting free sessions for a non-IPIC connection are queued in the issuing
region. The exit permits you to control the number of outstanding ALLOCATE requests by allowing you to
reject any function shipping or DPL request that would otherwise be queued.

Important: Use the XZIQUE exit in the z/OS Communications Server working-set module to control the
length of intersystem queues, rather than XISCONA. XZIQUE provides more functions, and is of more
general use than XISCONA (it is driven for function shipping, DPL, transaction routing, and distributed
transaction processing requests, whereas XISCONA is driven only for function shipping and DPL). If you
enable both exits, XZIQUE and XISCONA could both be driven for function shipping and DPL requests,
which is not recommended.

If you already have an XISCONA exit program, you may be able to modify it for use at the XZIQUE exit
point.

“Contention winner” is the terminology used for LU6.2 connections. The XISCONA exit applies also to
MRO and LU6.1 connections: in these, the SEND sessions (defined in the session definitions) are used first
for ALLOCATE requests; when all SEND sessions are in use, queuing starts.

Function shipping and DPL requests for a resource-owning region are queued by default if all bound
contention winner sessions are busy, so that no sessions are immediately available. If the resource-
owning region is unresponsive (for example, if it is a file-owning region, it may be waiting for a system
journal to be archived), the queue can become so long that the performance of the issuing region is
severely impaired. Further, if the issuing region is an application-owning region, its impaired performance
can spread back to the terminal-owning region.

Chapter 1. Global user exit points (by function) 119

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html

To control the queuing of function shipping and DPL requests, use the XISCONA exit to tell CICS,
whenever a session cannot be allocated immediately, whether to queue the request, or to return
‘SYSIDERR' to the application. The exit works like this:

1. If the XISCONA exit program is not active, CICS queues the request when necessary.
2. If the exit program is active, it is invoked only if all bound contention winner sessions are in use. For

other failures (for example, ‘Mode name not found' or ‘Out of service'), CICS bypasses the exit and
returns to the application.

3. If it is invoked, your exit program must decide whether or not to queue the request by analyzing the
statistics provided through the user exit parameter list. Your exit program could:

• Stipulate that queuing is never to be used. This is the simplest way to code the exit, and avoids
complexities of tuning. It should be effective if you define enough contention winner sessions to
handle the peak transaction load for the connection. If you suppress all queuing, you must specify
AUTOCONNECT(YES) on the SESSIONS definition, because the queuing mechanism no longer binds
sessions for you.

With this approach, a danger arises if you base your estimate of required sessions on average
conditions and the transaction load subsequently varies widely; when CICS cannot use queuing to
cope with the variation, users may suffer transaction abends when there is no significant problem in
the resource-owning region.

• Examine the number of requests currently in the queue. The program could, for example, stop
queuing when the number exceeds 120% of the maximum number of sessions. You could use this
approach to cope with intermittent stoppages in the resource-owning region.

You could use a table of thresholds for the connections in your system, with values determined from
previous experience of queuing problems. Alternatively, you could use the EXEC CICS interface in a
separate program to inquire about the state of the connection, and pass the information in a work
area to the XISCONA exit program.

• Examine the type of request and the resource being accessed (which can be discovered by
examining the request parameter list). The program could, for example, reject file read requests but
queue file updates.

Note: Because a failure of the exit program could affect system availability, it is recommended that
you make the logic of your program as simple as possible, thus reducing the possibility of errors.

There are some problems that XISCONA cannot solve. For example, if you have specified both a large
number of sessions and a large value for MXT, CICS may develop the short-on-storage (SOS) condition
before XISCONA is invoked because there are no further sessions available.

Sample global user exit program for XISCONA

DFHXIS is sample exit program that shows one way of limiting the queue of ALLOCATE requests, based
on the information passed to the program. For more information, see Function-shipping/DPL queue
control sample exit program: DFHXIS.

Exit
Exit XISCONA is invoked when a function shipping or DPL request is about to be queued because all
bound contention winner sessions to the remote region are in use.

When invoked
When a function shipping or DPL request is about to be queued because all bound contention winner
sessions to the remote region are in use.

Note: For DPL requests that are routed dynamically, the dynamic routing program is invoked before
XISCONA. If there are no free sessions the routing program may choose not to queue a DPL request;
in these circumstances, XISCONA is not invoked. For information about the dynamic routing of DPL
requests, see Dynamically routing DPL requests.

120 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0024.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0024.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1m4.html

Exit-specific parameters
UEPISPCA

Address of a parameter list containing the following fields. You can map the parameter list using
the DSECT DFHXISDS.
UEPCONST

Address of the Connection statistics record.

Connection statistics records are of type STICONSR (STID value 52). Your exit program can
map the record using the DSECT DFHA14DS. See notes.

UEPMODST
Address of the Mode Entry statistics record, or zero. A Mode Entry statistics record is built only
if:

• The connection-type is LU6.2 (see field UEPCONTY).
• The profile DFHCICSF (which is always used for function shipping) defines a specific

MODENAME to be used in the allocation of LU6.2 sessions.

Mode Entry statistics records are of type STICONMR (STID value 76). Your exit program can
map the record (if present) using the DSECT DFHA20DS.

UEPEIPPL
Address of the request parameter list.

UEPCONTY
A 1-byte field indicating the connection-type. Possible values are:
UEPMRO (X'80')

Request for an MRO connection
UEPLU6 (X'40')

Request for an LU6.1 connection
UEPLUC (X'20')

Request for an LU6.2 connection.
UEPNETNM

An 8-character field containing the NETNAME for the connection; that is, the identifier (applid)
of the remote CICS region or system.

Note:

1. The general format of statistics records is described in CICS statistics record format.
2. For a list of statistics record-types and their associated copy books, see CICS statistics data

section.
3. For a description of the fields in Connection and Mode Entry statistics records, see CICS statistics

in DSECTS and DFHSTUP report.

Return codes
UERCAQUE

Queue the request. This is the default.
UERCAPUR

Do not queue the request, unless local queuing is possible.
XPI calls

All can be used.

Important

There is no UERCNORM return code at this exit point, because the exit is invoked after a failure. The
choice is whether or not to take the system default action of queuing the request.

Chapter 1. Global user exit points (by function) 121

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha37q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha37r.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha37r.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_stats_list.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_stats_list.html

The XISLCLQ exit
XISLCLQ is used for EXEC CICS START NOCHECK requests that are scheduled for a non-IPIC connection.

XISLCLQ is invoked, if enabled, under any of the following circumstances:

• The remote system is not in service.
• A connection to the remote system cannot be established.
• No sessions are immediately available, and your XISCONA exit program has specified that the request is

not to be queued in the issuing region.

Note that this exit is invoked only if the request to be shipped is of type EXEC CICS START NOCHECK. For
EXEC CICS requests other than those with the NOCHECK option (which is only available on START
commands) the SYSIDERR condition is raised in the application program.

You can use the exit to specify whether the failed request is to be locally queued, to be run when the
connection is reestablished.

Local queues are recovered when you perform a system restart.

Exit XISLCLQ
Exit XISLCLQ is invoked after a function shipping request of type EXEC CICS START NOCHECK has failed
because the remote system is not in service, a connection to the remote system cannot be established, or
no sessions are immediately available, and your XISCONA exit program has specified that the request is
not to be queued in the issuing region.

When invoked
After a function shipping request of type EXEC CICS START NOCHECK has failed because the remote
system is not in service, a connection to the remote system cannot be established, or no sessions are
immediately available, and your XISCONA exit program has specified that the request is not to be
queued in the issuing region.

Exit-specific parameters
UEPISPP

Address of a parameter list that contains:
UEPTCTSE

Address of the relevant terminal control table system entry. The TCT system entry can be
mapped using the DSECT DFHTCTTE.

UEPXXTE
Address of the local transaction name, or 0 if SYSID was specified in the command.

Note: Your program can use the transaction manager XPI call INQUIRE_TRANDEF to obtain
details of the local transaction (see The INQUIRE_TRANDEF call).

UEPPLIST
Address of the parameter list for the command.

Note: No DSECT is provided for this parameter list. You have to code your own DSECT to access the
named fields.

Return codes
UERCSYS

Take the system action. This is determined by the value of the LOCALQ attribute in the local
TRANSACTION definition for the remote transaction:
LOCALQ(YES)

The request is queued locally.
LOCALQ(NO)

‘SYSIDERR' is returned to the application program.
UERCQUE

Queue the request locally (overriding the LOCALQ(NO) attribute, if specified).

122 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/xpi/dfha3eq.html

UERCIGN
Override the LOCALQ(YES) attribute, if specified, and return with ‘SYSIDERR'.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Important

There is no ‘UERCNORM' return code at this exit point, because the exit is invoked after a failure. The
choice is whether to take the system default action or to handle the error in some other way.

The XISQLCL exit
You can use the XISQLCL exit for EXEC CICS START NOCHECK commands that are scheduled for an IPIC
connection.

It is invoked, if enabled, under any of the following circumstances:

• The IPIC connection is not acquired.
• A session is not available and CICS does not queue the request for a new session.

XISQLCL allows you to decide whether to add the request to a local queue or to return with an error
response.

Local queues are recovered when you perform a system restart.

Sample XISQLCL exit program

DFH£XISL is a sample XISQLCL exit program for controlling the queueing of START NOCHECK requests
that are scheduled for an IPIC connection. For more information about DFH£XISL, see IPIC queue control
sample exit program: DFH£XISL.

Exit XISQLCL
Exit XISQLCL is invoked after a function shipping request of a START NOCHECK or START NOCHECK
PROTECT command over IPIC fails because the remote system is not in service, a connection to the
remote system cannot be established, or no sessions are immediately available, and your XISQUE exit
program specifies that the request is not queued in the issuing region.

Exit-specific parameters
The DSECT, DFHXILDS, is provided for this parameter list.
UEPISQPL

Address of a parameter list that contains the following fields:
UEPPLIST

The address of the parameter list for the command.
UEPQLEN

A halfword binary field containing the number of items currently on the queue.
UEPIPCNM

The eight-byte name of the IPCONN.
UEPTRID

The four-byte identifier of the local transaction name, or blanks if SYSID is specified in the
command. Your program can use the transaction manager XPI call, INQUIRE_TRANDEF, to
obtain details of the local transaction. See The INQUIRE_TRANDEF call.

Return codes
UERCSYS

Take the system action. This action is determined by the value of the LOCALQ attribute in the local
TRANSACTION definition for the remote transaction:

Chapter 1. Global user exit points (by function) 123

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/samples/dfha3_xisqlcl_sample_function.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/samples/dfha3_xisqlcl_sample_function.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/xpi/dfha3eq.html

LOCALQ(YES)
The request is queued locally.

LOCALQ(NO)
A SYSIDERR error message is returned to the application program.

UERCQUE
Queue the request locally, overriding the LOCALQ(NO) attribute, if specified.

UERCIGN
Override the LOCALQ(YES) attribute, if specified, and return with a SYSIDERR response.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Important

There is no UERCNORM return code at this exit point, because the exit is invoked after a failure. You must
choose whether to take the system default action or to handle the error in some other way.

The sample XISQLCL global user exit program, DFH$XISL, is provided.

Interval control program exits XICREQ, XICEXP, and XICTENF
You can use some XPI calls in exit programs invoked from the interval control program. However, when
any of these exits are invoked for expiry analysis, any actions that delay the execution of the interval
control program can have adverse effects on other transactions that are waiting for intervals to expire.

You can determine whether the exits have been invoked for expiry analysis by examining the type-of-
request field, TCAICTR, a copy of which is pointed to by the UEPICRQ1 exit-specific parameter.

The XICREQ exit is invoked by internal requests made by CICS code, as well as by requests made by
applications. DFHXRSP issues an interval control WAIT every 2 seconds; this means that any interval
control exit programs are also invoked every 2 seconds.

Exit XICREQ
This exit is invoked at the beginning of the interval control program, before request analysis.

When invoked
At the beginning of the interval control program, before request analysis.

Exit-specific parameters
UEPICQID

Address of an 8-byte field containing the request ID parameter on request. See notes 1 and 2.
UEPICTID

Address of a 4-byte field containing the terminal ID, if any, specified on an EXEC CICS START
command. See notes 1 and 2.

UEPICTI
Address of 4 bytes containing the transaction ID specified on an EXEC CICS START command. See
notes 1 and 2.

UEPICRQ1
Address of a 1-byte field containing a copy of TCAICTR, the first request code field for requests to
the interval control program.

UEPICRQ2
Address of a 1-byte field containing a copy of TCAICTR2, the second request code field for
requests to the interval control program.

124 CICS TS for z/OS: User Exit Reference

UEPICRT
Address of a 4-byte field containing the expiry time or interval, in packed decimal format. The
value is in the form 0HHMMSSF, where H=hours, M=minutes, S=seconds, and F is a positive sign.

Note:

1. The contents of the fields addressed by UEPICQID and UEPICTID are unpredictable if the
associated data items were not specified on the request. You must test the copy of TCAICTR to
determine whether they contain meaningful values.

2. Your exit program can change the values of the fields addressed by UEPICQID, UEPICTID UEPICTI,
and UEPICRT. Changing the values of the fields addressed by UEPICRQ1 or UEPICRQ2 has no
effect.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

The following must not be used:

• ADD_SUSPEND
• DELETE_SUSPEND
• DEQUEUE
• ENQUEUE
• RESUME
• SUSPEND
• WAIT_MVS.

Exit XICEXP
This exit is invoked after an interval control time interval has expired.

When invoked
After an interval control time interval has expired.

Exit-specific parameters
UEPICE

Address of the interval control element (ICE) that has just expired. The ICE can be mapped using
the DSECT DFHICEDS.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

The following must not be used:

• ADD_SUSPEND
• DELETE_SUSPEND
• DEQUEUE
• ENQUEUE
• RESUME
• SUSPEND

Chapter 1. Global user exit points (by function) 125

• WAIT_MVS.

Exit XICTENF
This exit is invoked from the interval control program.

When invoked
This exit relates to the ‘terminal not known' condition. For more information see “‘Terminal not
known’ condition exits XALTENF and XICTENF” on page 212.

Interval control EXEC interface program exits (XICEREQ, XICERES, and
XICEREQC)

These exits are invoked when interactions with interval control programs occur.
XICEREQ

XICEREQ is invoked on entry to the interval control program before CICS processes an interval control
request. Using XICEREQ, you can:

• Analyze the request to determine its type, the keywords specified, and their values.
• Modify any value specified by the request before the command is executed.
• Set return codes to specify that either:

– CICS should continue with the request, modified or unmodified.
– CICS should bypass the request. (Note that if you set this return code, you must also set up return

codes for the EXEC interface block (EIB), as if you had processed the request yourself.)

Note: The XICEREQ exit is invoked by internal requests made by CICS code, as well as by requests
made by applications.

XICERES
XICERES is invoked by the interval control program, before CICS processes a non-terminal-related
EXEC CICS START request that has been dynamically routed to this region.

Note that XICERES is invoked:

• After exit XICEREQ and before XICEREQC (if these exits are enabled). This means that:

– If an XICEREQ exit program chooses to bypass the request, XICERES is not invoked, even if it is
enabled.

– If an XICEREQ exit program modifies the request, XICERES must deal with the modified request.
• On the target region—that is, the region to which the START request has been routed.
• Only if the routing region—the region on which the routing program runs—supports the “resource

unavailable” condition (RESUNAVAIL). To support the “resource unavailable” condition, the routing
region must be a supported release of CICS TS.

• Only if it is enabled. It is strongly recommended that you enable this exit only in application-owning
regions to which non-terminal-related EXEC CICS START requests may be dynamically routed.

• By internal requests made by CICS code, as well as by requests made by applications.

The XICERES exit is not invoked:

• For statically-routed requests.
• For terminal-related EXEC CICS START requests. (These always execute in the terminal-owning

region and cannot be routed.)
• For dynamically-routed transactions - only dynamically-routed (non-terminal-related) START

requests cause the exit to be invoked. Thus, a dynamically-routed transaction that was initiated by a
terminal-related EXEC CICS START command does not cause the exit to be invoked.

• If it is disabled.

126 CICS TS for z/OS: User Exit Reference

• If an XICEREQ exit program chooses to bypass the request.

You can use XICERES to check that all resources required by the transaction to be started are
available on the target region. If, for example, the transaction is disabled, or a required file is missing,
your exit program can give the distributed routing program the opportunity to route the request to a
different region. To do this, set a return code of UERCRESU. This causes CICS to:

1. Set the DYRERROR field of the distributed routing program's communications area to 'F'—resource
unavailable.

2. Reinvoke the routing program, on the routing region, for route selection failure.
3. Return a RESUNAVAIL condition on the EXEC CICS START command executed by the mirror on

the target region. (This condition is not returned to the application program.)

CICS ignores any changes made by the exit program to the values of any of the exit parameters. Your
exit program can set a return code, but not change any parameters.

For guidance information about dynamically routing non-terminal-related EXEC CICS START
requests, see Non-terminal-related START commands. For information about writing a distributed
routing program to route non-terminal-related EXEC CICS START requests, see Routing non-
terminal-related START requests.

XICEREQC
XICEREQC is invoked after an interval control program request has completed. Using XICEREQC, you
can:

• Analyze the request, to determine its type, the keywords specified, and their values.
• Set return codes for the EIB. When examining return codes, refer to the EIBRCODE value.

Note: The XICEREQC exit is invoked by internal requests made by CICS code, as well as by requests
made by applications.

Parameters passed to each of the exits
CICS passes ten types of address parameter to the exits.

• Address of the command-level parameter structure (UEPCLPS)
• Address of a token (UEPICTOK) used to pass 4 bytes of data from XICEREQ to XICEREQC
• Addresses of copies of six return code segments, resource, date, and time information from the EIB
• Address of a token (UEPTSTOK) that is valid throughout the life of a task
• Address of an exit recursion count (UEPRECUR).

Exit XICEREQ
Using XICEREQ, you can analyze the request to determine its type, the keywords specified, and their
values; modify any value specified by the request before the command is executed; and set return codes
to specify whether CICS should continue with or bypass the request.

When the exit is invoked
On entry to the interval control program, before CICS processes an interval control API request.

Exit-specific parameters
UEPCLPS

Address of the command-level parameter structure. See “The UEPCLPS exit-specific parameter”
on page 133.

UEPICTOK
Address of a 4-byte token to be passed to XICEREQC. This allows you, for example, to pass a work
area to exit XICEREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code ‘EIBRCODE'. For details of EIB
return codes, refer to EIB fields.

Chapter 1. Global user exit points (by function) 127

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1mh.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha3mf.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha3mf.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html

UEPRESP
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP'.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP2'.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEPDATE
Address of a fullword copy of the EIB date value, EIBDATE.

UEPTIME
Address of a fullword copy of the EIB time value, EIBTIME.

Return codes
UERCNORM

Continue processing.
UERCBYP

The interval control EXEC interface program should ignore this request.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used. You can also use EXEC CICS API commands at this user exit.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, you are recommended to use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI commands
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note: Take care when issuing recursive commands not to cause a loop. For example, it is your
responsibility to avoid entering a loop when an interval control request is issued from the XICEREQ exit.
Use of the recursion counter UEPRECUR is recommended.

Exit XICERES
Exit XICERES is invoked by the interval control program. You can use XICERES to check that all resources
required by the transaction to be started are available on the target region.

When the exit is invoked
Before processing of a non-terminal-related EXEC CICS START request that has been dynamically
routed to this region where the routing region supports the “resource unavailable” condition
(RESUNAVAIL).

Exit-specific parameters

Note: CICS ignores any changes made by the exit program to the values of any of the exit parameters.
Your exit program can set a return code, but not change any parameters.

UEPCLPS
Address of the command-level parameter structure. See “The UEPCLPS exit-specific parameter”
on page 133.

128 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

UEPICTOK
Address of a 4-byte token to be passed to XICEREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code ‘EIBRCODE'. For details of EIB
return codes, see EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP'.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP2'.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. Because the XICERES exit can never be called
recursively in the same transaction, the value of this field is always 0.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEPDATE
Address of a fullword copy of the EIB date value, EIBDATE.

UEPTIME
Address of a fullword copy of the EIB time value, EIBTIME.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
UERCRESU

A required resource is unavailable. Setting this value causes CICS to reject the routed request,
and to return a value of 'F' (resource unavailable) in the DYRERROR field of the routing program's
communications area.

XPI calls
All can be used. You can also use EXEC CICS API commands at this user exit.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, you are recommended to use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI commands
All except EXEC CICS SHUTDOWN and EXEC CICS XCTL can be used.

Exit XICEREQC
Using XICEREQC, you can analyze the request to determine its type, the keywords specified, and their
values. You can also set return codes for the EIB.

When examining return codes, refer to the EIBRCODE value. For more information, see “EXEC interface
block (EIB)” on page 142.

When the exit is invoked
After an interval control API request has completed, and before return from the interval control EXEC
interface program.

Exit-specific parameters
UEPCLPS

Address of the command-level parameter structure. See “The UEPCLPS exit-specific parameter”
on page 133.

Chapter 1. Global user exit points (by function) 129

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

UEPICTOK
Address of a 4-byte token passed from XICEREQ. This allows XICEREQ to, for example, pass a
work area to XICEREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code ‘EIBRCODE'. For details of EIB
return codes, see EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP'.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP2'.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked and
increments for each recursive call.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEPDATE
Address of a fullword copy of the EIB date value, EIBDATE.

UEPTIME
Address of a fullword copy of the EIB time value, EIBTIME.

UEP_IC_REMOTE_SYSTEM
If the request is to be sent to a remote region, is the address of an area containing the 4-byte
name of the remote region. (The remote region may have been specified by, for example, the
SYSID option of the START command, workload management, or the REMOTESYSTEM option of
the TRANSACTION definition.)

If the request is to be executed on the local region, this parameter is the address of a 4-byte area
containing blanks.

UEP_IC_REMOTE_NAME
If the transaction is to be executed in a remote system, is the address of an area containing the
name of the transaction, as it is known in the remote system.

The remote system may be another CICS region, or an IMS system. If UEP_IC_REMOTE_SYSTEM
names a CICS region, the name is 1 through 4 characters long. If UEP_IC_REMOTE_SYSTEM
names an IMS system, the name is 1 through 8 characters long. IMS uses 8-character names: if
UEP_IC_REMOTE_NAME has fewer than 8 characters, IMS translates it into a usable format.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, you are recommended to use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI commands
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

130 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

Note: Take care when issuing recursive commands. For example, you must avoid entering a loop when
issuing an interval control request from the XICEREQC exit. Use of the recursion counter UEPRECUR is
recommended.

Chapter 1. Global user exit points (by function) 131

The command-level parameter structure

Figure 7. The command-level parameter structure for interval control132 CICS TS for z/OS: User Exit Reference

The command-level parameter structure consists of a series of addresses. The first address points to the
EXEC interface descriptor (EID), which consists of a 9-byte area that describes the type of request and
identifies each keyword specified with the request. The remaining addresses point to pieces of data
associated with the request. For example, the second address points to the interval for START requests.

You can examine the EID to determine the type of request and the keywords specified. You can examine
the other parameters in the list to determine the values of the keywords. You can also modify values of
keywords specified on the request. For example, you could change the SYSID specified in the request.

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to indicate that it is the last one in
the list. On return from your user exit program, CICS scans the parameter list for the high-order bit to find
the last parameter. Therefore, if you modify the length of the parameter list, you must also reset the high-
order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first four addresses (IC_ADDR0, the address of the
EID, to IC_ADDR3, the address of the name of the transaction named in a START request), the high-order
bit is set on in IPC_ADDR3. If you extend the parameter list by setting the address of a SYSID in
IC_ADDR7, you must unset the high-order bit in IC_ADDR3 and set it on in IC_ADDR7 instead.

The maximum size of parameter list is supplied to the exit, thus allowing your exit program to add any
parameters not already specified without needing to first obtain more storage.

The original parameter list, as it was before XICEREQ was invoked, is restored after the completion of
XICEREQC. It follows that the execution diagnostic facility (EDF) displays the original command before
and after execution: EDF does not display any changes made by the exit.

The UEPCLPS exit-specific parameter
The UEPCLPS exit-specific parameter is included in both exit XICEREQ and exit XICEREQC. It is the
address of the command-level parameter structure.

The command-level parameter structure contains 26 addresses, IC_ADDR0 through IC_ADDR1F. It is
defined in the DSECT IC_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHICUED.

The command-level parameter list is made up as follows:

IC_ADDR0
is the address of a 9-byte area called the EXEC interface descriptor (EID), which is made up as
follows:

• IC_GROUP
• IC_FUNCT
• IC_BITS1
• IC_BITS2
• IC_BITS3
• IC_EIDOPT5
• IC_EIDOPT6
• IC_EIDOPT7
• IC_EIDOPT8

IC_GROUP
X'10'

This is an interval control request.
X'4A'

This is an ASKTIME or FORMATTIME command.

Chapter 1. Global user exit points (by function) 133

IC_FUNCT
One byte that defines the type of request.

If IC_GROUP = X'10':
X'02'

ASKTIME
X'04'

DELAY
X'06'

POST
X'08'

START
X'0A'

RETRIEVE
X'0C'

CANCEL

If IC_GROUP = X'4A':
X'02'

ASKTIME
X'04'

FORMATTIME

IC_BITS1
Existence bits that define which arguments were specified. To obtain the argument associated
with a keyword, you need to use the appropriate address from the command-level parameter
structure. Before using this address, you must check the associated existence bit. If the existence
bit is set off, the argument was not specified in the request and the address should not be used.
X'80'

Set if the request contains INTERVAL or TIME arguments, or if a CANCEL request specifies
REQID, or if a RETRIEVE request specifies SET or INTO. If set, IC_ADDR1 is meaningful.

X'40'
Set if the request other than CANCEL specifies REQID or if a RETRIEVE request specifies
LENGTH. If set, IC_ADDR2 is meaningful.

X'20'
Set if the request specifies TRANSID or if a request other than RETRIEVE specifies SET or
INTO. If set, IC_ADDR3 is meaningful.

X'10'
Set if the request specifies FROM. If set, IC_ADDR4 is meaningful.

X'08'
Set if a request other than RETRIEVE specifies LENGTH. If set, IC_ADDR5 is meaningful.

X'04'
Set if the request specifies TERMID. If set, IC_ADDR6 is meaningful.

X'02'
Set if the request specifies SYSID. If set, IC_ADDR7 is meaningful.

X'01'
Set if the request specifies RTRANSID. If set, IC_ADDR8 is meaningful.

IC_BITS2
Further argument existence bits.
X'80'

Set if the request specifies RTERMID, or if a FORMATTIME request specifies DATESEP. If set,
IC_ADDR9 is meaningful.

134 CICS TS for z/OS: User Exit Reference

X'40'
Set if the request specifies QUEUE. If set, IC_ADDRA is meaningful.

X'20'
Set if the request specifies HOURS. If set, IC_ADDRB is meaningful.

X'10'
Set if the request specifies MINUTES. If set, IC_ADDRC is meaningful.

X'08'
Set if the request specifies SECONDS. If set, IC_ADDRD is meaningful.

X'04'
Set if the request specifies USERID. If set, IC_ADDRE is meaningful.

X'02'
Set if the request specifies SYSNET. If set, IC_ADDRF is meaningful.

X'01'
Set if a FORMATTIME request specifies TIMESEP. If set, IC_ADDR10 is meaningful.

IC_BITS3
One byte not used by interval control.

IC_EIDOPT5
Indicates whether certain keywords were specified on the request.
X'80'

ABSTIME was specified on a FORMATTIME or ASKTIME command.
X'40'

YYDDD was specified on a FORMATTIME command.
X'20'

YYMMDD was specified on a FORMATTIME command.
X'10'

YYDDMM was specified on a FORMATTIME command.
X'08'

DDMMYY was specified on a FORMATTIME command.
X'04'

MMDDYY was specified on a FORMATTIME command.
X'02'

DATE was specified on a FORMATTIME command.
X'01'

On a RETRIEVE command, SET (and not INTO) was specified. On a START command, ATTACH
was specified. On a FORMATTIME command, DATEFORM was specified. You cannot modify
this field in your user exit.

IC_EIDOPT6
Existence bits that indicate whether certain keywords were specified on the request.
X'80'

DATESEP was specified on a FORMATTIME command.
X'40'

DAYCOUNT was specified on a FORMATTIME command.
X'20'

DAYOFWEEK was specified on a FORMATTIME command, or HOURS was specified.
X'10'

DAYOFMONTH was specified on a FORMATTIME command, or FMH was specified.
X'08'

MONTHOFYEAR was specified on a FORMATTIME command, or SECONDS was specified.
X'04'

YEAR was specified on a FORMATTIME command, or MINUTES was specified.

Chapter 1. Global user exit points (by function) 135

X'02'
TIME was specified on a FORMATTIME command, or PROTECT was specified.

X'01'
TIMESEP was specified on a FORMATTIME command, or NOCHECK was specified.

IC_EIDOPT7
Indicates whether certain functions or keywords were specified on the request.
X'F0'

CANCEL specified.
X'82'

RETRIEVE specified.
X'80'

YYYYDD specified on a FORMATTIME command.
X'40'

YYYYMMDD specified on a FORMATTIME command, or START specified.
X'30'

POST specified.
X'20'

YYYYDDMM specified on a FORMATTIME command, or DELAY, RTRANSID, RTERMID, or
QUEUE specified, and/or FMH.

X'13'
ASKTIME specified.

X'10'
DDMMYYYY specified on a FORMATTIME command, or FROM, RTRANSID, or RTERMID
specified, and/or QUEUE.

X'08'
MMDDYYYY specified on a FORMATTIME command, or TIME or WAIT specified.

X'04'
FULLDATE specified on a FORMATTIME command, or REQID specified.

X'01'
TERMID specified.

IC_EIDOPT8
Indicates whether certain keywords were specified on the request.
X'80'

FOR or AFTER specified.
X'40'

AT or UNTIL specified.
X'10'

BREXIT specified.
X'08'

BRDATA specified.
X'04'

BRDATALENGTH specified.
X'02'

CHANNEL specified on a START command.
IC_ADDR1

is the address of one of the following:

• An 8-byte area containing the value of the INTERVAL keyword (or TIME keyword if IC_EIDOPT7
indicates that TIME is specified).

• An 8-byte area containing the value of REQID (if the request is CANCEL).

136 CICS TS for z/OS: User Exit Reference

• An 8-byte area containing the value of the ABSTIME keyword.
• Data returned for INTO (if the request is RETRIEVE, and if IC_EIDOPT5 indicates that this is not

SET).
• A 4-byte address returned for SET (if the request is RETRIEVE and IC_EIDOPT5 indicates that this

is SET).

IC_ADDR2
is the address of one of the following:

• An 8-byte area containing the value of REQID (if the request is DELAY, POST or START).
• A halfword containing the value of LENGTH (if the request is RETRIEVE).

Warning: For requests that specify INTO, do not change the value of LENGTH to a value greater
than that specified by the application. To do so causes a storage overlay in the application.

• An area containing the value of YYDD.

IC_ADDR3
is the address of one of the following:

• An area containing the value of TRANSID (if the request is CANCEL or START).
• A 4-byte address returned for SET (if the request is START or POST and IC_EIDOPT5 indicates that

this is SET).
• An area containing the value of YYMMDD.

IC_ADDR4
is the address of one of the following:

• An area containing the data from FROM.
• An area containing the value of YYDDMM.

IC_ADDR5
is the address of one of the following:

• An area containing the halfword value of LENGTH.

Warning: For requests that specify INTO, do not change the value of LENGTH to a value greater
than that specified by the application. To do so causes a storage overlay in the application.

• An area containing the value of DDMMYY.

IC_ADDR6
is the address of one of the following:

• An area containing the value of TERMID.
• An area containing the value of MMDDYY.

IC_ADDR7
is the address of one of the following:

• An area containing the value of SYSID.
• An area containing the value of DATE.

IC_ADDR8
is the address of one of the following:

• An area containing the value of RTRANSID.
• An area containing the value of DATEFORM.

IC_ADDR9
is the address of one of the following:

• An area containing the value of RTERMID.
• An area containing the value of DATESEP.

Chapter 1. Global user exit points (by function) 137

IC_ADDRA
is the address of one of the following:

• An area containing the value of QUEUE.
• A fullword containing the value of DAYCOUNT.

IC_ADDRB
is the address of one of the following:

• An area containing the value of HOURS.
• A fullword containing the value of DAYOFWEEK.

IC_ADDRC
is the address of one of the following:

• An area containing the value of MINUTES.
• A fullword containing the value of DAYOFMONTH.

IC_ADDRD
is the address of one of the following:

• An area containing the value of SECONDS.
• A fullword containing the value of MONTHOFYEAR.

IC_ADDRE
is the address of one of the following:

• An area containing the value of USERID.
• A fullword containing the value of YEAR.

IC_ADDRF
is the address of one of the following:

• An 8–byte area containing the value of SYSNET.
• An area containing the value of TIME.

IC_ADDR10
is the address of a 1–byte area containing the value of TIMESEP.

IC_ADDR11
is the address of an area containing the value of YYYYDDD.

IC_ADDR12
is the address of an area containing the value of YYYYMMDD.

IC_ADDR13
is the address of an area containing the value of YYYYDDMM.

IC_ADDR14
is the address of an area containing the value of DDMMYYYY.

IC_ADDR15
is the address of an area containing the value of MMDDYYYY.

IC_ADDR16
is the address of an area containing the value of FULLDATE.

IC_ADDR1D
is the address of an area containing the value of BRDATA.

IC_ADDR1E
is the address of a fullword containing the value of BRDATALENGTH.

IC_ADDR1F
is the address of a 16-byte area containing the value of CHANNEL.

138 CICS TS for z/OS: User Exit Reference

Modifying fields in the command-level parameter structure
Some fields that are passed to interval control are used as input to the request, some are used as output
fields, and some are used for both input and output. The method your user exit program uses to modify a
field depends on the usage of the field.

The following are always input fields:

• INTERVAL
• TIME
• REQID
• FROM
• TERMID
• SYSID
• HOURS
• MINUTES
• SECONDS
• USERID
• CHANNEL

The following are always output fields:

• DATE
• DATEFORM
• DAYCOUNT
• DAYOFMONTH
• DAYOFWEEK
• DDMMYY
• DDMMYYYY
• FULLDATE
• INTO
• MMDDYY
• MMDDYYYY
• MONTHOFYEAR
• SET
• TIME
• YEAR
• YYDDD
• YYDDMM
• YYMMDD
• YYYYDDD
• YYYYDDMM
• YYYYMMDD

The following are input fields on a START request and output fields on a RETRIEVE request:

• RTRANSID
• RTERMID
• QUEUE

Chapter 1. Global user exit points (by function) 139

LENGTH is an input field on a START request, an output field on a RETRIEVE with SET specified, and an
input/output field on a RETRIEVE with INTO specified.

ABSTIME is an input field on a FORMATTIME request, and an output field on an ASKTIME request.
DATESEP and TIMESEP can be input fields on a FORMATTIME request.

Modifying input fields
The correct method of modifying an input field is to create a new copy of it, and to change the address in
the command-level parameter list to point to your new data.

Note: You must never modify an input field by altering the data that is pointed to by the command-level
parameter list. To do so would corrupt storage belonging to the application program and would cause a
failure when the program attempted to reuse the field.

Modifying output fields
You modify an output field by altering the data to which the command-level parameter list points.

The technique described in “Modifying input fields” on page 140 is not suitable for modifying output fields
because the results would be returned to the new area instead of the application's area, and would be
invisible to the application.

In the case of an output field, you can modify the application's data in place because the application is
expecting the field to be modified anyway.

Modifying the EID
It is not possible to modify the EID to make major changes to requests, such as changing a DELAY request
to a START request. However, you can make minor changes to requests, such as turning on the existence
bit for SYSID so that the request can be changed into one that is shipped to a remote system.

Some interval control commands use 2 bits in the EID to indicate a single keyword; the EXEC CICS START
command, for example, uses 2 bits to indicate TERMID. The first bit, in IC_BITS1, indicates that ADDR6 in
the command parameter list is valid (ADDR6 points to TERMID) and the second, in IC_EIDOPT7, is the
keyword existence bit to show that the TERMID keyword was specified on the command.

Where this occurs you must ensure that both bit settings are changed (consistently) if you want to modify
these commands from within a user exit program, or the results will be unpredictable.

The list that follows shows the bits in the EID that can be modified. Any attempt to modify any other part
of the EID is ignored.

IC_BITS1
X'80'

The existence bit for REQID (if the request is CANCEL)
X'40'

The existence bit for LENGTH (if the request is RETRIEVE) or REQID
X'10'

The existence bit for FROM
X'08'

The existence bit for LENGTH
X'04'

The existence bit for TERMID
X'02'

The existence bit for SYSID
X'01'

The existence bit for RTRANSID.
IC_BITS2

X'80'
The existence bit for RTERMID

140 CICS TS for z/OS: User Exit Reference

X'40'
The existence bit for QUEUE

X'20'
The existence bit for HOURS

X'10'
The existence bit for MINUTES

X'08'
The existence bit for SECONDS.

IC_EIDOPT6
X'20'

The secondary existence bit for HOURS
X'10'

The existence bit for FMH
X'08'

The secondary existence bit for SECONDS
X'04'

The secondary existence bit for MINUTES
X'02'

The existence bit for PROTECT
X'01'

The existence bit for NOCHECK.
IC_EIDOPT7

Bits in IC_EIDOPT7 should only be modified within the same functional group; that is, only those
existence bits defined as valid for a START request should be set on a START request.
ASKTIME requests
X'13'

ASKTIME request. This value is fixed for all ASKTIME requests, and should not be modified.

DELAY requests
X'20'

DELAY request
X'08'

TIME specified
X'04'

REQID specified.

POST requests
X'30'

POST request
X'08'

TIME specified
X'04'

REQID specified.

START requests
X'40'

START request (without DATA)
X'50'

START with DATA request
X'70'

START with one or more of RTRANSID, RTERMID, QUEUE, or FMH specified.

Chapter 1. Global user exit points (by function) 141

X'08'
TIME specified

X'04'
REQID specified

X'01'
TERMID specified.

RETRIEVE requests
X'82'

RETRIEVE request.

CANCEL requests
X'F0'

CANCEL request
X'04'

REQID specified.

IC_EIDOPT8
X'20'

Unused by CICS.

The EID is reset to its original value before return to the application program. That is, changes made to
the EID are retained for the duration of the interval control request only.

Note: Your user exit program is prevented from making major changes to the EID. However, you must
take great care when making the minor modifications that are permitted.

Using the interval control request token UEPICTOK
UEPICTOK provides the address of a 4-byte area that you can use to pass information between the
XICEREQ and XICEREQC user exits for the same interval control request.

For example, the address of a piece of storage that is obtained by the XICEREQ user exit, which is to be
freed by the XICEREQC exit, can be passed in the UEPICTOK field.

UEPICTOK is usable only for the duration of a single interval control request, because its contents might
be destroyed at the end of the request. If you need to pass information between successive invocations of
a global user exit, you can use task token UEPTSTOK to do so. For more information about UEPTSTOK,
see Using the task token UEPTSTOK.

EXEC interface block (EIB)
Copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit so you can modify/set
completion and resource information in XICEREQ and XICEREQC, or examine completion and resource
information in XICEREQC.

You can update the copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 that you are given in the
parameter list. Interval control copies your values into the real EIB after the completion of XICEREQC; or
if you specify a return code of ‘bypass' in XICEREQ.

You must set valid interval control responses. You must set all three of EIBRCODE, EIBRESP, and
EIBRESP2 to a consistent set of values, such as would be set by CICS interval control to describe a valid
completion. CICS does not police the consistency of EIBRCODE, EIBRESP, and EIBRESP2. However, if
EIBRCODE is set to a non-zero value and EIBRESP is set to zero, CICS overrides EIBRESP with a non-zero
value. To aid you in setting the values of EIBRCODE, EIBRESP, and EIBRESP2, the values used by interval
control are specified in DFHICUED.

If you want to examine the return codes by using the XICEREQC exit, refer to the EIBRCODE value.

142 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

Example of how XICEREQ and XICEREQC can be used
In this example, XICEREQ and XICEREQC are used to route START requests to a number of different CICS
regions to provide a simple load balancing mechanism. The example shows only the capabilities of the
exits; it is not intended to indicate an ideal way of achieving the function.

In XICEREQ:

1. Scan the global work area (GWA) to locate a suitable CICS region (for example, the region currently
processing the least number of START requests).

2. Having decided which system to route the request to, increment the use count for this system.
3. Obtain a 4-byte area in which to store the SYSID for this request. This can be allocated from the

GWA to avoid issuing a GETMAIN. If the area is obtained by issuing a GETMAIN, set UEPICTOK to
the address of the storage obtained.

4. Set IC_ADDR7 to be the address of the 4-byte area so that XICEREQC can also use this area.
5. If setting IC_ADDR7 now makes it the last address, set the high-order bit in the address, and reset

the high-order bit in what was previously the last address.
6. Set the X'02' existence bit on in IC_BITS1 to indicate that a SYSID is specified.
7. Return to CICS.

In XICEREQC:

1. Scan the global work area (GWA) and locate the entry for the CICS region specified in the SYSID
parameter.

2. Decrement the use count for this system.
3. If a GETMAIN was issued in XICEREQ to obtain an area to hold the SYSID, issue a FREEMAIN for

the address held in UEPICTOK.
4. Return to CICS.

Example and sample programs

CICS supplies two programs for use at the XICEREQ exit:

• DFH$XTSE, supplied as a softcopy listing only (not as a source code file), is an example program that
shows how to modify fields in the command-level parameter structure passed to all the EXEC interface
exits.

• DFH$ICCN is a sample program for use in a distributed routing environment, where you want to cancel
a previously-issued interval control request but have no way of knowing to which region to direct the
CANCEL. For examples of situations which DFH$ICCN is designed to cope with, see Canceling interval
control requests.

Loader domain exits XLDLOAD and XLDELETE
There are two global user exits in the loader domain. XLDLOAD is invoked when a new instance of a
program is loaded into storage, before the program is made available for use.

XLDELETE is invoked after an instance of a program is released by CICS and before the program is freed
from storage.

For LPA-resident programs, the exits are still invoked when a program is acquired or released, even
though the program is not physically loaded or freed.

These are both information-only exits. Any changes made to the exit parameters by the exit program are
ignored by CICS, as is any return code which it sets.

Chapter 1. Global user exit points (by function) 143

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1mj.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1mj.html

Exit XLDLOAD
This exit is invoked for a program instance brought into storage, before the program becomes available.

When invoked
After an instance of a program is brought into storage, and before the program is made available for
use.

Exit-specific parameters
UEPPROGN

Address of an 8-character field containing the name of the program that is being loaded.
UEPPROGL

Address of a 4-byte field containing the length, in bytes, of the program that is being loaded.
UEPLDPT

Address of a 4-byte field containing the address at which the program has been loaded.
UEPENTRY

Address of a 4-byte field containing the address of the program's entry point.
UEPTRANID

Zero, or the address of a 4-byte field containing the transaction ID which applied when the exit
was invoked.

UEPUSER
Zero, or the address of an 8-byte field containing the userid in control at the time the exit was
invoked.

UEPTERM
Zero, or the address of a 4-byte field containing the terminal name associated with the transaction
under which the exit was invoked.

UEPPROG
Zero, or the address of an 8-character field containing the name of the program that was in control
at the time the exit was invoked.

UEPLDCTXT
Zero, or the address of a 140-byte field containing the application context when a private program
belonging to an application is loaded. The field contains:

1. The platform name, padded with spaces to 64 characters.
2. The application name, padded with spaces to 64 characters.
3. The major version number for the application, which is a fullword binary value.
4. The minor version number for the application, which is a fullword binary value.
5. The micro version number for the application, which is a fullword binary value.

CICS supplies a DSECT named DFHUEACD which maps this information. For more information
about DFHUEACD, see UEACD - User exit application context in Data Areas.

Return codes
UERCNORM

Continue processing.
XPI calls

Must not be used.
API and SPI calls

Must not be used.

144 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHUEAKS.html

Exit XLDELETE
This exit is invoked when a program instance is released by CICS, before the program is freed from
storage.

When invoked
After an instance of a program is released by CICS, and before the program is freed from storage.

Exit-specific parameters
UEPPROGN

Address of an 8-character field containing the name of the program that is being freed.
UEPPROGL

Address of a 4-byte field containing the length, in bytes, of the program that is being freed.
UEPLDPT

Address of a 4-byte field containing the address at which the program resides in storage.
UEPENTRY

Address of a 4-byte field containing the address of the program's entry point.
UEPTRANID

Zero, or the address of a 4-byte field containing the transaction ID which applied when the exit
was invoked.

UEPUSER
Zero, or the address of an 8-byte field containing the userid in control at the time the exit was
invoked.

UEPTERM
Zero, or the address of a 4-byte field containing the terminal name associated with the transaction
under which the exit was invoked.

UEPPROG
Zero, or the address of an 8-character field containing the name of the program that was in control
at the time the exit was invoked.

UEPLDCTXT
Zero, or the address of a 140-byte field containing the application context when a private program
belonging to an application is deleted. The field contains:

1. The platform name, padded with spaces to 64 characters.
2. The application name, padded with spaces to 64 characters.
3. The major version number for the application, which is a fullword binary value.
4. The minor version number for the application, which is a fullword binary value.
5. The micro version number for the application, which is a fullword binary value.

CICS supplies a DSECT named DFHUEACD which maps this information. For more information
about DFHUEACD, see UEACD - User exit application context in Data Areas.

Return codes
UERCNORM

Continue processing.
XPI calls

Must not be used.
API and SPI calls

Must not be used.

Chapter 1. Global user exit points (by function) 145

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHUEAKS.html

Log manager domain exit XLGSTRM
There is one exit point, XLGSTRM, in the log manager domain. You can use XLGSTRM to modify a request
to MVS to create a new log stream. You can change the model log stream name and other parameters
before they are passed to the MVS system logger.

If a log stream connection request from CICS to the MVS system logger fails because the log stream is not
defined to MVS, CICS issues a request to the MVS system logger to create the log stream dynamically,
using a model log stream definition.

The model log stream name that CICS passes to MVS depends on whether the journal name refers to the
system log or a CICS general log, as follows:
CICS system logs

&sysname.LSN_last_qualifier.MODEL

&sysname is the MVS symbol that resolves to the system name of the MVS image. LSN_last_qualifier is
the last qualifier of the log stream name as specified on the JOURNALMODEL resource definition.

If you do not provide a JOURNALMODEL resource definition for DFHLOG and DFHSHUNT, or if you use
the CICS definitions supplied in group DFHLGMOD, the model log stream names default to
&sysname.DFHLOG.MODEL and &sysname.DFHSHUNT.MODEL.

For example, if a CICS region issues a request to create a log stream for its primary system log, and
CICS is running in an MVS image with a sysid of MV10 and using the default JOURNALMODEL
definition, the MVS system logger expects to find a model log stream named MV10.DFHLOG.MODEL.

If the system name of the MVS image starts with a numeric character and is less than 8 characters
long, CICS prefixes it with a “C”, so that the model log stream name becomes
C&sysname.LSN_last_qualifier. This is because the MVS system logger rejects log stream names that
begin with a numeric. If the system name of the MVS image starts with a numeric but is already 8
characters long (the maximum), CICS does not add the “C” prefix, which means that the MVS system
logger will reject the default model log stream name. However, your global user exit program can
change the model log stream name.

CICS general logs
LSN_qualifier_1.LSN_qualifier2.MODEL. The defaults for these two qualifiers are the CICS region
userid and the CICS region APPLID, but they can be user-defined values specified in a
JOURNALMODEL resource definition.

For example, if the CICS region userid is CICSHT## and the APPLID is CICSHTA1, the default model
name is CICSHT##.CICSHTA1.MODEL.

The following information is passed to an XLGSTRM global user exit program:

• The name of the log stream to be defined
• The default model log stream name
• A system log flag
• The MVS system logger IXGINVNT parameter list.

Your exit program can amend the model stream name by updating the field pointed to by the UEPMLSN
exit-specific parameter. Here is an example of how your exit program can change the model stream
name:

 L R3,UEPMLSN R3 = address of stream name
 MVC 0(26,R3),=CL26'NEW.MODEL.NAME'

By updating the field pointed to by the UEPIXG parameter, your exit program can amend the IXGINVNT
macro parameter list used by the MVS system logger to define the log stream. Use the IXGINVNT MF=M

146 CICS TS for z/OS: User Exit Reference

form of the macro, which allows the exit to specify the log stream attributes to be used. Here is an
example of how your exit program can change the structure name:

 L R9,UEPIXG
 IXGINVNT REQUEST=DEFINE,
 TYPE=LOGSTREAM,
 STRUCTNAME=NEW_STRUCTURE,
 MF=(M,(R9),NOCHECK)
 ...
 NEW_STRUCTURE DC CL16'LOG_SYSTEST_009'

You do not need to code the list and execute forms of the IXGINVNT macro, or include the IXGCON or
IXGANSAA macros in your exit—these are provided by the CICS code which issues the DEFINE request.

For information about the IXGINVNT service, see the z/OS MVS Programming: Assembler Services Guide.

An XLGSTRM global user exit program can set explicit attributes for the log stream definition, and can also
set a return code that causes the log stream definition to be bypassed.

Note: If you want XLGSTRM to intercept the connection of the CICS system logs, you must enable your
exit program in a first-phase PLT program.

Sample global user exit program for XLGSTRM

DFH$LGLS is a sample global user exit program for the XLGSTRM exit point. It shows you how to access
and change some of the parameters that are passed to an XLGSTRM exit program. For more information,
see Log manager domain sample exit program: DFH$LGLS.

Exit XLGSTRM
Exit XLGSTRM is invoked after the CICS log manager detects that a log stream does not exist and before it
calls the MVS system logger to define the log stream dynamically.

Exit-specific parameters
UEPTRANID

The address of the 4-byte transaction id.
UEPUSER

The address of the 8-byte userid associated with the transaction if the current task is a user task.
UEPTERM

The address of the 4-byte terminal id associated with the transaction, if any.
UEPPROG

The address of the 8-byte application program name for this transaction, if any.
UEPLSN

Address of a 26-character field containing the name of the log stream to be defined.

Your exit program should not modify the name of the logstream. On return from the exit, CICS
ignores any changes to the contents of the field addressed by UEPLSN. JOURNALMODEL
definitions are provided to cater for log stream name selection.

UEPMLSN
Address of a 26-character field specifying the name of the model log stream to be used to provide
the attributes for the new log stream. This field is modifiable to allow the global user exit program
to specify a different model log stream name from the one generated by CICS.

UEPIXG
Address of the IXGINVNT macro parameter list for use by the MVS system logger to define the log
stream. Using the MF=M form of the IXGINVNT macro, the global user exit program can specify
the log stream attributes to be used.

For details of the IXGINVNT macro, see the z/OS MVS Programming: Authorized Assembler
Services Guide .

Chapter 1. Global user exit points (by function) 147

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa600/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0027.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/toc.htm

UEPLGTYP
Address of a 1-byte field indicating whether the log stream being created is for a system log or a
general log. Valid values are:
UEPSYSLG

The log stream is for a CICS system log.
UEPGENLG

The log stream is for a general log (a forward recovery log, a user journal, or auto-journal).
Return codes

UERCNORM
CICS continues and attempts to define the log stream.

UERCBYP
CICS does not attempt to define the log stream. The process that was attempting to use the log
stream may fail (for example, a data set open).

XPI calls
All can be used.

API and SPI commands
Must not be used.

Example of how to use the XLGSTRM exit
The XLGSTRM exit is used for selecting alternative model log streams.

Suppose that 200 CICS regions are running on 20 MVS images; To avoid having to define explicitly each
log stream used by each CICS region, you decide to use model definitions. Log streams will be defined to
MVS dynamically on their first usage, with an XLGSTRM exit program being used to select from alternative
model log streams. This is how it might work:

1. On an initial start of a CICS region, the INITPARM system initialization parameter specifies:

INITPARM=(Exit_enabler_pgmname=nnn)

where:

• Exit_enabler_pgmname is the name of the program that enables the XLGSTRM user exit program.
• nnn is a number that identifies a group of CICS regions that share the same set of log stream

models.
2. The program that enables the XLGSTRM user exit program issues an EXEC CICS ASSIGN INITPARM

command to retrieve the value nnn, and places it in the exit program's global work area.
3. When the region tries to connect to its system log, because the log stream is not defined the XLGSTRM

exit program is invoked. The exit program selects model CICS.DFHLOG.MODELnnn.

Message domain exit XMEOUT
You can use the XMEOUT exit to suppress or reroute CICS and CICSPlex SM messages that use the CICS
message domain.

Your exit program has the following restrictions:

• It can suppress or reroute only messages sent to the system console or to transient data queues. It
cannot suppress or reroute messages sent to terminal operators. XMEOUT is not invoked for messages
sent to terminal operators.

• It can suppress or reroute only messages that use the message domain. You can determine which CICS
messages this applies to from CICS messages. The description of each message that can invoke
XMEOUT contains a list titled "XMEOUT parameters/Message inserts"; if no XMEOUT parameters are
listed for a message, the message cannot invoke the exit. For example, message DFHDX8320 can
invoke XMEOUT, but message DFHDU0205 does not.

148 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/messages/cics-messages/DFHmessages.html

For CICSPlex SM, XMEOUT is invoked only for messages that have a destination of EYULOG, because
these are the messages that use the message domain. You can determine which messages this applies
to from CICSPlex SM messages.

Note: CICSPlex SM messages that invoke the XMEOUT exit can be rerouted or suppressed only from the
joblog or console, not from the EYULOG.

• It cannot reroute or suppress CICSPlex SM Web User interface messages.
• It cannot change the text of a message, or change the message inserts. If it attempts to do so, CICS

ignores the changes.
• It cannot suppress or reroute messages issued during the early stages of CICS initialization (because

the exit cannot be enabled then).
• It cannot reroute a message to transient data (TD) queues during CICS shutdown, unless the original

message destination included one or more transient data queues. If it attempts to do so, the message is
routed to its original destination, and message DFHME0120I is issued to the console. The user exit
program cannot reroute message DFHME0120I, but it can suppress this message.

This restriction is necessary because the message domain must handle messages during CICS
shutdown even after the transient data queue function has ended.

To discover whether CICS shutdown has started, your exit program can check for the first instance of
message DFHME0120. It can stop rerouting messages to TD queues after DFHME0120 has been
issued.

Note: If a message is being rerouted to a transient data queue and the transient data request fails, the
message is lost. The MEME exception trace point ID X'0328' is written. The interpretation string of this
trace entry explains why the transient data request failed.

Important

Because of the danger of recursion, your XMEOUT exit program must not try to reroute the following
messages:

• Any DFHTDxxxx messages, which are produced by the transient data program.
• User domain messages in the range DFHUS0002 toDFHUS0006, plus message DFHUS0150.
• Transaction manager messages DFHXM0212, DFHXM0213, DFHXM0304, and DFHXM0308.
• Application messages DFHAP0001, DFHAP0002, DFHAP0004, DFHAP0601, DFHAP0602, and

DFHAP0603.
• Any user domain (DFHUSxxxx) messages to an intrapartition queue defined with a TRIGLEV value of

anything other than zero, if the messages are produced while the user domain is performing error
recovery processing.

The message definition template contains an indicator called noreroute. This indicator is set on if the
message that is being issued cannot be rerouted to a transient data queue by the XMEOUT exit program.
The address of the indicator is passed to XMEOUT in the UEPNRTE exit-specific parameter. Your exit
program can check the value of the indicator before deciding whether to reroute a particular message.

Note: If the exit program tries to reroute an ineligible message, the message domain inhibits the rerouting
and issues the message to the console instead, along with message DFHME0137.

Each message that is affected by this restriction is identified by a note in CICS messages.

It is possible to pass APPLID (the application identifier) as an optional parameter in a message. However,
the APPLID that is inserted in a message might not be the APPLID of the current CICS system. For
example, when a CICSPlex SM MAS message is routed to a CMAS, the APPLID of the MAS system might
be passed, so the message contains the APPLID of the MAS system and not the current system (the
CMAS).

Your exit program can suppress or reroute messages by altering the values held in the addresses pointed
to by the following fields of the parameter list. Your program cannot change any other sets of values.

• UEPMROU (route codes)

Chapter 1. Global user exit points (by function) 149

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/messages/cpsm-messages/eyua101.dita
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/messages/cics-messages/DFHmessages.html

• UEPMNRC (number of route codes)
• UEPMTDQ (transient data queue names)
• UEPMNTD (number of TDQs)

Using XMEOUT to monitor DFHAP1900 message

Message DFHAP1900 is issued when a change is made to the CICS system configuration by certain
system programming interface commands. These commands are SET, PERFORM, ENABLE, DISABLE, or
RESYNC. The commands are written to the transient data queue CADS. The DFHAP1900 messages can
provide auditing of dynamic configuration changes and also aid problem determination. For more
information, see SPI commands that can be audited .

Note: Do not issue SPI commands in the exit which result in a DFHAP1900 message, because a recursion
in the exit can occur.

Exit XMEOUT
This exit is invoked before a message domain sends a CICS message.

When invoked
Before the message domain sends a CICS message to its destination.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Address of the 4-byte ID of the terminal under which the current transaction is running. If the
current transaction is not associated with a terminal, the addressed field contains hexadecimal
zeroes.

UEPPROG
Address of the 8-byte application program name, or nulls if there is no current application.

UEPMNUM
Address of a 4-byte field containing the message number. For CICSPlex SM messages, this field
contains binary zeros.

UEPMDOM
Address of a 2-byte field containing the domain identifier of the CICS message. For CICSPlex SM
messages, this field contains binary zeros.

UEPMROU
Address of an array of up to 28 route codes. Route codes must be numbers in the range 1 through
28.

UEPMNRC
Address of a halfword containing the number of route codes in the route code array.

UEPMTDQ
Address of an array of up to 25 transient data queue names to which the message is to be sent. TD
queue names must consist of 4 alphanumeric characters.

UEPMNTD
Address of a halfword containing the number of TDQs in the queues array.

UEPINSN
Address of a 2-byte field containing the number of message inserts.

UEPINSA
Address of an array, each element of which contains information about a single message insert.
The size of the array depends on the number of inserts. Each array element has the following
structure:

150 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/intro/dfha8_spi_audit.html

INSERT_FORMAT_P DS A Address of the 1-byte insert
 type-code, which has one of
 the following hexadecimal values:
 0 Not present
 1 Character
 2 Hexadecimal
 3 Decimal
 4 The insert is a number representing one item in a list of options.
 (See the example below.)
 7 Integer (no reformatting of numbers > 999)
 INSERT_P DS A Address of the message insert
 INSERT_LENGTH_P DS A Address of a fullword containing the length of the insert
 INSERT_TYPE_P DS A Reserved.

You can find the order of the inserts in the array from the entry for the specific message in the
CICS messages. For example:

DFHFC0531 date time applid Automatic journal journal journalname, opened
for file filename is not of type MVS Module module

The XMEOUT inserts are date, time, applid, journal, journalname, filename, and module. The fourth
insert (journal) is the number specified for JOURNAL on the file definition.

UEPNRTE
Address of 1-character flag indicating whether or not the message can be rerouted by XMEOUT.
The possible values are:
C'0:'

The message can be routed.
C'1:'

The message cannot be routed.
UEPCPID

Address of a 3-byte product ID. The possible values are:
DFH

CICS messages.
EYU

CICSPlex SM messages.
UEPCPDOM

Address of a 2-byte field containing the domain identifier of the message.
UEPCPNUM

Address of a 4-byte field containing the message number.
UEPCPSEV

Address of the message severity code.
Return codes

UERCNORM
Continue processing.

UERCBYP
Suppress the message for all destinations.

CICSPlex SM messages cannot be suppressed. For these messages, a response of UERCBYP is
treated as UERCNORM.

Specifying a return code of UERCBYP does not suppress the emission of any MESSAGE system
events defined for the message.

XPI calls
WAIT_MVS can be used. Do not use any other calls.

Chapter 1. Global user exit points (by function) 151

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/messages/cics-messages/DFHmessages.html

Monitoring domain exit (XMNOUT)
This exit is invoked before monitoring records are written to SMF or to the record buffers.

XMNOUT is invoked at the following event points:

• Before an exception class monitoring record is passed to SMF
• Before a performance class monitoring record is written to the performance record buffer
• Before a transaction resource monitoring record is written to the transaction resource record buffer

Note: If performance class and transaction resource monitoring are both active in your CICS region,
XMNOUT can be invoked twice for the same event. For example, if the event is end-of-task and CICS has
both performance class data and transaction resource data to move to the appropriate buffer, XMNOUT is
invoked once for each monitoring record type.

You can use this exit to examine the record, to suppress its output to SMF, or to change the data it
contains. You must ensure that any changes you make do not conflict with the dictionary description of
the data.

You can also add data to performance class data records. To do this you must define dummy user event-
monitoring points (EMPs) in the monitoring control table (MCT) to reserve data fields of the required size
and type.

Exit XMNOUT
This exit is invoked before monitoring records are written to SMF or buffered for subsequent writing to
SMF.

When invoked
XMNOUT is invoked in these circumstances:

• Before an exception class monitoring record is written to SMF
• Before a performance class monitoring record is buffered for a later write to SMF
• Before a transaction resource monitoring record is buffered for a later write to SMF
• Before an identity class monitoring record is buffered for a later write to SMF

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. This field is not available at task termination.
UEPUSER

Address of the 8-byte user ID. This field is not available at task termination.
UEPTERM

Address of the 4-byte terminal ID. This field is not available at task termination.
UEPPROG

Address of the 8-byte application program name. This field is not available at task termination.
UEPDICT

Address of the dictionary. The sequence of dictionary entries is mapped by the DSECT generated
from the macro DFHMCTDR. This field has meaning only for performance class records. If the
monitoring record type is exception class (type 4), transaction resource (type 5), or identity class
(type 6), this field is set to 0. See parameter UEPMRTYP.

UEPDICTE
Address of the fullword number of dictionary entries. This field has meaning only for performance
class records. If the monitoring record type is exception class (type 4), transaction resource (type
5), or identity class (type 6), this field is set to 0. See parameter UEPMRTYP.

UEPFCL
Address of the field connector list, containing a series of halfword connector values. This field has
meaning only for performance class records. If the monitoring record type is exception class (type

152 CICS TS for z/OS: User Exit Reference

4), transaction resource (type 5), or identity class (type 6), this field is set to 0. See parameter
UEPMRTYP.

UEPFCLNO
Address of the fullword number of field connectors. This field has meaning only for performance
class records. If the monitoring record type is exception class (type 4), transaction resource (type
5), or identity class (type 6), this field is set to 0. See parameter UEPMRTYP.

UEPMRTYP
Address of the halfword monitoring record type. The monitoring record type value can be one of
the numbers shown in the following table:

Table 7. Monitoring record type values and their meanings

Record type value Meaning

3 Performance class monitoring record

4 Exception class monitoring record

5 Transaction resource monitoring record

6 Identity class monitoring record

UEPMRLEN
Address of the fullword monitoring record length.

UEPMREC
Address of the monitoring record. The length of UEPMREC is addressed by the parameter
UEPMRLEN.

UEPSRCTK
Address of the z/OS Workload Manager service reporting class token for the current transaction. If
CICS support for z/OS Workload Manager is not available, this token is null.

UEPMPREC
Address of the monitoring performance record. This field has meaning only for performance class
records. If the monitoring record type is exception class (type 4), transaction resource (type 5), or
identity class (type 6), this field is set to 0. See parameter UEPMRTYP. The performance record
addressed by this parameter must be mapped using the DFHMNTDS DSECT, and must not be
mapped using the UEPDICT and UEPDICTE dictionary parameters.

Return codes
UERCNORM

Continue processing.
UERCBYP

Suppress monitor record output.
UERCPURG

Task purged during XPI call.
XPI calls

WAIT_MVS can be used. Do not use any other calls.

Pipeline domain exits
Use the pipeline domain exits to customize the processing that occurs for inbound and outbound web
services in the pipeline. You can use the pipeline domain exits to access containers on a Web services

Chapter 1. Global user exit points (by function) 153

provider pipeline, a web services requester pipeline, or a web services requester pipeline that contains a
security message handler.

GLUE points in the provider pipeline

Global user exit (GLUE) points that you can use in a provider pipeline, or a secured provider pipeline, have
a prefix of XWSPR. This diagram shows the order in which the GLUE points can be used:

GLUE points in the requester pipeline

GLUE points that you can use in a requester pipeline have a prefix of XWSRQ. This diagram shows the
order in which the GLUE points can be used:

GLUE points that you can use in a secured requester pipeline have a prefix of XWSSR. There are eight
GLUE points that can be used in a pipeline containing a security handler; four of these can be used only in
a secure requester pipeline and four can be used in any requester pipeline. This diagram shows the order
in which the GLUE points can be used:

154 CICS TS for z/OS: User Exit Reference

Exit XWSPRRWI
Use the XWSPRRWI exit to access containers on the current channel that are to be processed by the web
services provider application, after CICS has converted the Web services request body into a language
structure and before any instance of the XWSPRROI exit is invoked.

You can use this exit to issue API and SPI commands to examine and update any information in the
containers and to issue a SOAP fault.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID. The value is null for a Web service provider.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.
UERCRPIP

Do not continue on the pipeline.

XPI calls

No XPI interfaces are available.

Chapter 1. Global user exit points (by function) 155

API and SPI commands
The following commands are supported:

• EXEC CICS DELETE CONTAINER
• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE
• EXEC CICS PUT CONTAINER
• EXEC CICS SOAPFAULT ADD
• EXEC CICS SOAPFAULT CREATE
• EXEC CICS SOAPFAULT DELETE

Exit XWSPRROI
Use the XWSPRROI exit to access containers on the current channel before the containers are processed
by a web services provider application, but after any instance of the XWSPRRWI exit is invoked.

You can use this exit to issue API and SPI commands to examine any information that is processed by the
web services business application. You cannot issue a SOAP fault or update any of the information. CICS
ignores any return code specified in register 15 after the global user exit program has finished.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID. The value is null for a Web service provider.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE

156 CICS TS for z/OS: User Exit Reference

Exit XWSPRROO
Use the XWSPRROO exit to access containers on the current channel after the web services provider
application issues the web service response message and before CICS creates the body of the response
message.

You can use this exit to issue API and SPI commands to examine the containers on the current channel.
You cannot issue a SOAP fault or update any of the containers. CICS ignores any return code specified in
register 15 after the global user exit program has finished.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID. The value is null for a Web service provider.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

UEPAPAB
A 1-byte field indicating whether the web service provider application completed its processing
successfully. Valid values are as follows:
UEPAPABY (X'80')

The web service provider application abended.
UEPAPABN (X'40')

The web service provider application completed its processing successfully.
UEPAPSF

A 1-byte field indicating whether the web service provider application set a SOAP fault. Valid values
are as follows:
UEPAPSFY (X'80')

The web service provider application is returning a SOAP fault.
UEPAPSFN (X'40')

The web service provider application is not returning a SOAP fault.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

API and SPI commands
The following commands are supported:

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE

Chapter 1. Global user exit points (by function) 157

Exit XWSPRRWO
Use the XWSPRRWO exit to access containers on the current channel that have been processed by a Web
services provider application after any instance of the XWSPRROO exit.

You can use this exit to issue API and SPI commands to examine and update any information in the
containers and to issue a SOAP fault. For example, you can add additional SOAP headers to an outbound
SOAP response. Any updates to the current channel container data are processed by CICS and returned
to the requester. CICS ignores any return code specified in register 15 after the global user exit program
has finished.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID. The value is null for a Web service provider.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

UEPAPAB
A 1-byte field indicating whether the web service provider application completed its processing
successfully. Valid values are as follows:
UEPAPABY (X'80')

The web service provider application abended.
UEPAPABN (X'40')

The web service provider application completed its processing successfully.
UEPAPSF

A 1-byte field indicating whether the web service provider application set a SOAP fault. Valid values
are as follows:
UEPAPSFY (X'80')

The web service provider application is returning a SOAP fault.
UEPAPSFN (X'40')

The web service provider application is not returning a SOAP fault.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS DELETE CONTAINER

158 CICS TS for z/OS: User Exit Reference

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE
• EXEC CICS PUT CONTAINER
• EXEC CICS SOAPFAULT ADD
• EXEC CICS SOAPFAULT CREATE
• EXEC CICS SOAPFAULT DELETE

Exit XWSRQRWO
Use the XWSRQRWO exit to access containers on the current channel before they are passed to the
transport to be processed. This exit runs after CICS has converted the application's language structure
into a web services request body and before CICS processes the optional XWSRQROO exit point.

You can use this exit to issue API and SPI commands to examine and update any information in the
containers on the current channel. This information is available to any instance of the XWSRQRWO exit
and also to the outbound web services provider. You cannot issue a SOAP fault. A return code can be put
in register 15 to indicate that CICS does not continue the pipeline after the global user exit program
finishes.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPPROG
Address of the 8-byte application program name. The application program name is that of the
program which issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.
UERCRPIP

Do not continue on the pipeline.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS DELETE CONTAINER

Chapter 1. Global user exit points (by function) 159

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE
• EXEC CICS PUT CONTAINER

Exit XWSRQROO
Use the XWSRQROO exit to access containers on the current channel before they are passed to the
transport to be processed. This exit runs after any instance of the XWSRQRWO exit is processed and
before the data flowing outbound on the Web services transport.

You can use this exit to issue API and SPI commands to examine any information in the containers. This
information is processed by the outbound web services provider. You cannot issue a SOAP fault. CICS
ignores any return code specified in register 15 after the global user exit program has finished.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.
UERCRPIP

Do not continue on the pipeline.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE

Exit XWSRQROI
Use the XWSRQROI exit to access containers on the current channel after they are processed by the
transport as a web services response. The XWSRQROI exit is invoked directly after CICS has processed
the outbound web service provider. It can also be invoked before any instance of the XWSRQRWI exit.

You can use this exit to issue API and SPI commands to examine any information in the containers. This
information is processed by the outbound web services provider. You cannot issue a SOAP fault. CICS
ignores any return code specified in register 15 after the global user exit program has finished.

160 CICS TS for z/OS: User Exit Reference

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE

Exit XWSRQRWI
Use the XWSRQRWI exit to access containers on the current channel after they have been processed by
the transport as a web services response. The XWSRQRWI exit is invoked directly after CICS has
processed the inbound web service response. It is also invoked after any instance of the XWSRQROI exit.

You can use this exit to issue API and SPI commands to examine and update any information in the
containers. This information is processed by the outbound web services provider and is received by the
associated web services requester application. You cannot issue a SOAP fault. CICS ignores any return
code specified in register 15 after the global user exit program has finished.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

Chapter 1. Global user exit points (by function) 161

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS DELETE CONTAINER
• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE
• EXEC CICS PUT CONTAINER

Exit XWSSRRWO
Use the XWSSRRWO exit to access containers on the current channel, with CICS acting as a secured web
services requester, before they are passed to the transport to be processed. This exit runs after CICS
converts the application's language structure into a web services request body and before CICS
processes the optional XWSSRROO exit point, and before being encrypted by the pipeline's security
handler.

You can use this exit to issue API and SPI commands to examine and update any information in the
containers. This information is available to any instance of the XWSSRRWO exit and also to the outbound
web services provider. You cannot issue a SOAP fault. A return code can be specified in register 15 to
indicate that CICS does not continue the pipeline after the global user exit program finishes.

If the pipeline does not contain a security handler, this exit is not driven. See the “Exit XWSRQRWO” on
page 159 topic for instances of the pipeline not containing a security handler.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

162 CICS TS for z/OS: User Exit Reference

Return codes
UERCNORM

Continue processing.
UERCRPIP

Do not continue on the pipeline.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS DELETE CONTAINER
• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE
• EXEC CICS PUT CONTAINER

Exit XWSSRROO
Use the XWSSRROO exit to access containers on the current channel, with CICS acting as a secured web
services requester, before they are passed to the transport to be processed. This exit runs after any
instance of the XWSSRRWO exit is processed and before the encryption of data flowing outbound on the
web services transport.

If the pipeline does not contain a security handler, this exit is not driven. See the “Exit XWSRQROO” on
page 160 topic for instances of the pipeline not containing a security handler

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

Chapter 1. Global user exit points (by function) 163

API and SPI commands
You can use the following commands:

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE

Exit XWSSRROI
Use the XWSRQROI exit to access containers on the current channel, with CICS acting as a secured web
services requester, after they are processed by the transport as a web services response. This exit runs
after CICS processes the web service response and before any instance of the XWSSRRWI exit.

You can use this exit to issue API and SPI commands to examine any information in the containers. This
information is processed by the outbound web services provider. You cannot issue a SOAP fault. CICS
ignores any return code specified in register 15 after the global user exit program has finished.

If the pipeline does not contain a security handler, this exit is not driven. See the “Exit XWSRQROI” on
page 160 topic for instances of the pipeline not containing a security handler.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE

Exit XWSSRRWI
Use the XWSSRRWI exit to access containers on the current channel, with CICS acting as a secured web
services requester, after they have been processed by the transport as a web services response. This exit
runs after CICS processes the web service response and after any instance of the XWSSRROI exit.

You can use this exit to issue API and SPI commands to examine and update any information in the
containers. This information is processed by the web services requester application. You cannot issue a

164 CICS TS for z/OS: User Exit Reference

SOAP fault. CICS ignores any return code specified in register 15 after the global user exit program has
finished.

If the pipeline does not contain a security handler, this exit is not driven. See the “Exit XWSRQRWI” on
page 161 topic for instances of the pipeline not containing a security handler.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID. The exit or task runs under this transaction ID.
UEPUSER

Address of the 8-byte user ID. The user ID is the one associated with the transaction ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name. The application program name is that of the
program that issued the INVOKE SERVICE or INVOKE WEBSERVICE command.

UEPCHANN
Address of a 16-byte field that contains the name of the current channel. You can identify the channel
explicitly using this parameter.

UEPCONTR
Address of a 16-byte field that contains the name of the data container on the channel named by
UEPCHANN. This container holds the application data structure.

Return codes
UERCNORM

Continue processing.

XPI calls

No XPI interfaces are available.

API and SPI commands
You can use the following commands:

• EXEC CICS DELETE CONTAINER
• EXEC CICS GET CONTAINER
• EXEC CICS INQUIRE WEBSERVICE
• EXEC CICS PUT CONTAINER

Program control program exits (XPCREQ, XPCERES, XPCREQC, XPCFTCH,
XPCHAIR, XPCTA, and XPCABND)

These exits are invoked before or after CICS program control operations, including program link requests,
a program receiving control, and a transaction abend.

Program control exits XPCREQ, XPCERES, XPCREQC
These exits are called by the EXEC interface program before a link request is processed, before CICS
processes dynamically routed link requests, or after a link request has completed.
XPCREQ

XPCREQ is called by the EXEC interface program before a link request is processed. If the request is a
distributed program link, the XPCREQ exit is driven on both sides of the link; that is, in both the client
and the server regions. The exit program is passed the address of the application's parameter list (in

Chapter 1. Global user exit points (by function) 165

UEPCLPS), and can modify this list as required. For example, you can use this exit to modify the SYSID
at the time of a distributed program link request. You can write an application program to manage a
list of SYSIDs in a global work area (GWA). The global user exit program can obtain access to the
GWA, and use the information stored there to redirect DPL requests.

Note:

1. The attributes of the local PROGRAM resource are not passed to the exit program. If the exit
program requires the value of an attribute, it can issue an EXEC CICS INQUIRE PROGRAM
command.

2. If you use XPCREQ to change the target SYSID, remember that:

a. If SYSID specifies a remote region, no reference is made to the local PROGRAM resource. In the
remote region the program runs under the TRANSID of the transaction in the client region, not
under the TRANSID specified on the PROGRAM resource in the client region.

b. If SYSID specifies the local region, CICS treats the link request as if SYSID was not specified.
The local PROGRAM resource is honored.

c. The XPCREQ exit is called by internal requests made by CICS code, in addition to requests
made by applications.

XPCERES
XPCERES is called by the EXEC interface program before CICS processes either of the following kinds
of dynamically routed link request:

• A distributed program link (DPL) call
• A Link3270 bridge request

XPCERES is called:

• After exit XPCREQ and before XPCREQC if these exits are enabled:

– If an XPCREQ exit program chooses to bypass the request, XPCERES is not called.
– If an XPCREQ exit program modifies the command parameter list, XPCERES must deal with the

modified request.
• On the target region to which the request has been routed.
• Only if it is enabled. Enable this exit only in application-owning regions when DPL and Link3270

bridge requests can be dynamically routed.
• By internal requests made by CICS code, in addition to requests made by applications.

The XPCERES exit is not called:

• For statically routed requests.
• If it is disabled.
• If an XPCREQ exit program chooses to bypass the request.

You can use XPCERES to check that all resources required by the linked-to program are available on
the target region. If the program is disabled or a required file is missing, your exit program can give
the dynamic routing program the opportunity to route the request to a different region. Set a return
code of UERCRESU. CICS performs the following processing:

1. In the COMMAREA of the routing program, CICS sets the DYRERROR field to 'F' - resource
unavailable.

2. CICS calls the routing program, on the routing region, for route selection failure.
3. CICS returns a RESUNAVAIL condition on the EXEC CICS LINK command that was run by the

mirror on the target region. This condition is not returned to the application program.

CICS ignores any changes made by the exit program to the values of any of the exit parameters. Your
exit program can set a return code, but not change any parameters.

For guidance information about dynamically routing DPL requests, see Dynamically routing DPL
requests. For guidance information about dynamically routing Link3270 bridge requests, see Using

166 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1m4.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1m4.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/dfhtmgq.html

Link3270 bridge load balancing. For programming information about writing a dynamic routing
program to route DPL requests, see Routing DPL requests dynamically. For programming information
about writing a dynamic routing program to route Link3270 bridge requests, see Routing bridge
requests dynamically.

XPCREQC
XPCREQC is called after a link request has completed. You can use this exit to pass back a response
to the application by using the EIBRESP or EIBRESP2 fields. Such responses might be used to keep
status information about a link request up-to-date. For example, if a link request fails because a
connection is unavailable, XPCREQC can set EIBRESP=500 (a response code not used by CICS) to
indicate the failure, enabling the application, with the other exit XPCREQ, to determine a suitable
course of action.

Note: The XPCREQC exit is called by internal requests made by CICS code, in addition to requests
made by applications.

Exit XPCREQ
Exit XPCREQ is invoked by the EXEC interface program before a link request is processed.

When invoked
By the EXEC interface program before a link request is processed.

Exit-specific parameters
UEPCLPS

Address of the command parameter list.
UEPPCTOK

Address of a 4-byte token to be passed to XPCREQC. This allows you, for example, to pass a work
area to exit XPCREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of EIBRCODE.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRESP
Address of a 4-byte copy of EIBRESP.

UEPRESP2
Address of a 4-byte copy of EIBRESP2.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEP_PC_PBTOK
Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

Return codes
UERCBYP

Program control is to ignore the request.

Chapter 1. Global user exit points (by function) 167

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/dfhtmgq.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfhf1kh.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha3r0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha3r0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

UERCNORM
Continue processing.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, we recommend that you use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI calls
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Exit XPCERES
Exit XPCERES is invoked by the EXEC interface program, before processing of a program link or Link3270
bridge request that has been dynamically routed to this region, where the routing region supports the
“resource unavailable” condition.

Exit-specific parameters

Note: CICS ignores any changes made by the exit program to the values of any of the exit parameters.
Your exit program can set a return code, but not change any parameters.

UEPCLPS
Address of the command parameter list.

UEPPCTOK
Address of a 4-byte token to be passed to XPCREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of EIBRCODE.

UEPRECUR
Address of a halfword recursion counter. Because the XPCERES exit can never be called
recursively in the same transaction, the value of this field is always 0.

UEPRESP
Address of a 4-byte copy of EIBRESP.

UEPRESP2
Address of a 4-byte copy of EIBRESP2.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEP_PC_PBTOK
Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

Return codes
UERCNORM

Continue processing.

168 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

UERCPURG
Task purged during XPI call.

UERCRESU
A required resource is unavailable. Setting this value causes CICS to reject the routed request,
and to return a value of 'F' (resource unavailable) in the DYRERROR field of the routing program's
communications area.

XPI calls
All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, we recommend that you use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI calls
All except EXEC CICS SHUTDOWN and EXEC CICS XCTL can be used.

Exit XPCREQC
Exit XPCREQC is invoked on completion of a program control link request.

When invoked
On completion of a program control link request.

Exit-specific parameters
UEPCLPS

Address of the command parameter list.
UEPPCTOK

Address of a 4-byte token passed from XPCREQ. This allows XPCREQ to, for example, pass a work
area to XPCREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of EIBRCODE.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRESP
Address of a 4-byte copy of EIBRESP.

UEPRESP2
Address of a 4-byte copy of EIBRESP2.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEP_PC_REMOTE_SYSTEM
If the request is to be sent to a remote region, is the address of an area containing the 4-byte
name of the remote region. (The remote region may have been specified by, for example, the
SYSID option of the EXEC CICS LINK command, function shipping, work-load management, or the
REMOTESYSTEM option of the PROGRAM definition.)

If the request is to be executed on the local region, this parameter is the address of a 4-byte area
containing blanks.

UEP_PC_REMOTE_NAME
If the program is to be executed in a remote system, is the address of an area containing the name
of the program, as it is known in the remote system.

UEP_PC_PBTOK
Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,

Chapter 1. Global user exit points (by function) 169

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, we recommend that you use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI calls
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note: Take care when issuing recursive commands not to cause a loop. For example, it is your
responsibility to avoid entering a loop when a program control request is issued from the XPCREQ or
XPCREQC exits.

Use of the recursion counter UEPRECUR is recommended.

The command parameter structure
The command parameter structure consists of a series of addresses. The first address points to the EXEC
interface descriptor (EID), which consists of a bit string that describes the type of request and identifies
each keyword specified with the request.

The remaining addresses point to pieces of data associated with the request; for instance, the second
address always points to the program name. You can examine the parameters in the list to determine the
values of the keywords. You can also modify values of parameters specified on the request. For example,
you could change the name of the program involved in the request, or add the SYSID to route the link
request to a remote system.

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to indicate that it is the last one in
the list. On return from your user exit program, CICS scans the parameter list for the high-order bit to find
the last parameter. Therefore, if you modify the length of the parameter list, you must also reset the high-
order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first two addresses (PC_ADDR0, the address of the
EID, and PC_ADDR1, the address of the name of the program named in the link request), the high-order
bit is set on in PC_ADDR1. If you extend the parameter list by setting the address of a SYSID in
PC_ADDR7, you must unset the high-order bit in PC_ADDR1 and set it on in PC_ADDR7 instead.

The original parameter list, as it was before XPCREQ was invoked, is restored after the completion of
XPCREQC. It follows that EDF will display the original command before and after execution: EDF will not
display any changes made by the exit.

170 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

The UEPCLPS exit-specific parameter
The UEPCLPS exit-specific parameter is the address of the command-level parameter structure, and is
included in exits XPCREQ and XPCREQC.

The command-level parameter structure contains 11 addresses, PC_ADDR0 through PC_ADDRA. It is
defined in the DSECT PC_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHPCEDS.

The command-level parameter list is made up as follows:

PC_ADDR0
is the address of a 7-byte area called the EXEC interface descriptor (EID), which is made up as
follows:

• PC_GROUP
• PC_FUNCT
• PC_BITS1
• PC_BITS2
• PC_EIDOPT4
• PC_EIDOPT5
• PC_EIDOPT6

PC_GROUP
Always X'0E', indicating that this is a program control request.

PC_FUNCT
One byte which defines the type of request, which for XPCREQ and XPCREQC is always X'02',
indicating a LINK request.

PC_BITS1
Existence bits that define which keywords that contain values were specified. To obtain the value
associated with a keyword, you need to use the appropriate address from the command-level
parameter list. Before using this address you must check the associated existence bit to ensure
that the address is valid. If the existence bit is set off, the keyword was not specified in the
request and the address should not be used. The symbolic and hexadecimal values of the
existence bits are as follows:
PC_EXIST1 (X'80 ')

Set if the request contains the keyword PROGRAM. If set, PC_ADDR1 is meaningful. (This bit
should always be set for a LINK request.)

PC_EXIST2 (X'40 ')
Set if the request specifies the COMMAREA parameter. If set, PC_ADDR2 is meaningful.

PC_EXIST3 (X'20 ')
Set if the request specifies the LENGTH parameter. If set, PC_ADDR3 is meaningful.

PC_EXIST4 (X'10 ')
Set if the request specifies the INPUTMSG parameter. If set, PC_ADDR4 is meaningful.

PC_EXIST5 (X'08 ')
Set if the request specifies the INPUTMSGLEN parameter. If set, PC_ADDR5 is meaningful.

PC_EXIST6 (X'04 ')
Set if the request specifies the DATALENGTH parameter. If set, PC_ADDR6 is meaningful.

PC_EXIST7 (X'02 ')
Set if the request specifies the SYSID parameter. If set, PC_ADDR7 is meaningful.

PC_EXIST8 (X'01 ')
Set if the request specifies the TRANSID parameter. If set, PC_ADDR8 is meaningful.

PC_BITS2
One byte containing one of the following values:

Chapter 1. Global user exit points (by function) 171

PC_EXIST9 (X'80')
Not used.

PC_EXISTA (X'40')
Set if the request specifies the CHANNEL parameter. If set, PC_ADDRA is meaningful.

PC_EIDOPT4
Not used by program control.

PC_EIDOPT5
Not used by program control.

PC_EIDOPT6
Indicates whether the request specifies the SYNCONRETURN option. If it does, X'80' is set.

PC_ADDR1
is the address of an 8-byte area containing the program name from the PROGRAM parameter.

PC_ADDR2
is the address of the COMMAREA data.

PC_ADDR3
is the address of a 2-byte area containing the length of the COMMAREA, as a half-word binary value.

PC_ADDR4
is the address of the INPUTMSG data.

PC_ADDR5
is the address of a 2-byte area containing the length of the INPUTMSG, as a half-word binary value.

PC_ADDR6
is the address of a 2-byte area containing the length specified on the DATALENGTH parameter,
defining how much data is to be sent from the COMMAREA. The length is held as a half-word binary
value.

PC_ADDR7
is the address of the 4-byte name of the remote system the LINK request is to be shipped to, as
specified on the SYSID parameter.

PC_ADDR8
is the address of the 4-byte name of the mirror transaction to be attached in the remote system, as
specified on the TRANSID parameter.

PC_ADDR9
is not used.

PC_ADDRA
is the address of the 16-byte channel name, as specified on the CHANNEL parameter.

Modifying fields in the command parameter structure
Some fields that are passed to program control are used as input to the request, some are used as output
fields, and some are used for both input and output. The method your user exit program uses to modify a
field depends on the usage of the field.

Modifying input fields
The correct method of modifying an input field is to create a new copy of it, and to change the address in
the command parameter list to point to your new data.

Note: You must never modify an input field by altering the data that is pointed to by the command
parameter list. To do so would corrupt storage belonging to the application program and could cause a
failure when the program attempted to reuse the field.

Modifying output fields

The technique described in “Modifying input fields” on page 172 is not suitable for modifying output
fields. (The results would be returned to the new area instead of the application’s area, and would be
invisible to the application.)

172 CICS TS for z/OS: User Exit Reference

An output field is modified by altering the data that is pointed to by the command-level parameter list. In
the case of an output field you can modify the application’s data in place, because the application is
expecting the field to be modified anyway.

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not possible, for example, to
change a LINK request to a different type of Program Control request. However, you can make minor
changes to requests, such as to turn on the existence bit for SYSID so that the request can be changed
into one that is shipped to a remote system.

The list that follows shows the bits in the EID that can be modified. Any attempt to modify any other part
of the EID is ignored.

PC_BITS1
X'40'

The existence bit for the COMMAREA
X'20'

The existence bit for LENGTH
X'10'

The existence bit for INPUTMSG
X'08'

The existence bit for INPUTMSGLEN
X'04'

The existence bit for DATALENGTH
X'02'

The existence bit for SYSID
X'01'

The existence bit for TRANSID.
PC_BITS2

X'40'
The existence bit for CHANNEL.

PC_EIDOPT5
Not used for a PC link request.

Bits in the EID should be modified in place. You should not modify the pointer to the EID. (Any attempt to
do so is ignored by CICS.)

The EID is reset to its original value before return to the application program. That is, changes made to
the EID are retained for the duration of the program control request only.

Your user exit program is prevented from making major changes to the EID.

Using the program control request token, UEPPCTOK
UEPPCTOK provides the address of a 4-byte area that you can use to pass information between the
XPCREQ and XPCREQC user exits for the same program control request.

For example, the address of a piece of storage that is obtained by the XPCREQ user exit, which has to be
freed by the XPCREQC user exit, can be passed in the UEPPCTOK field.

Do not use the area addressed by UEPPCTOK to store character data directly. The 4-byte area addressed
by UEPPCTOK must always contain the address of a storage area, which contains the data that you want
to pass and any eyecatcher to identify the storage. CICS IA uses UEPPCTOK to store the address of its
own storage area. When the CICS IA global user exit runs, it checks the address in UEPPCTOK to identify
any storage area that already exists for the exit.

UEPPCTOK is usable only for the duration of a single program control request, because its contents might
be destroyed at the end of the request. If you need to pass information between successive invocations of

Chapter 1. Global user exit points (by function) 173

a global user exit, you can use task token UEPTSTOK to do so. For more information about UEPTSTOK,
see Using the task token UEPTSTOK.

The EIB

Copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit, so that you can:

• Modify or set completion or resource information in XPCREQ and XPCREQC.
• Examine completion information in XPCREQC.

You can update the copies of EIBRSRCE, EIBRCODE, EIBRESP and EIBRESP2 that you are given in the
parameter list. Program Control copies your values into the real EIB after the completion of XPCREQC; or
if you specify a return code of ‘bypass’ in XPCREQ.

You must set valid program control responses. You must set all three of EIBRCODE, EIBRESP and
EIBRESP2 to a consistent set of values, such as would be set by Program Control to describe a valid
completion. Program Control does not police the consistency of EIBRCODE, EIBRESP, and EIBRESP2.
To aid you in setting the values of EIBRCODE, EIBRESP, and EIBRESP2, the values used by Program
Control are specified in DFHPCEDS.

Example of how XPCREQ and XPCREQC can be used
In this example, XPCREQ and XPCREQC are used to route LINK requests to a number of different CICS
regions to provide a simple load balancing mechanism.

The example shows only the capabilities of the exits; it is not intended to indicate an ideal way of
achieving the load balancing function. For the purpose of this example, it is assumed that a global work
area (GWA) already exists, and that it contains a list of available SYSIDs together with a count of the
number of LINK requests currently being processed by each SYSID.

In XPCREQ

1. Scan the global work area (GWA) to locate a suitable CICS region; for example, the region currently
processing the least number of LINK requests.

2. Having decided which system to route the request to, increment the use count for this system.
3. Obtain a 4-byte area in which to store the SYSID for this request (this can be allocated from the GWA

to avoid issuing a GETMAIN). If the area is obtained by issuing a GETMAIN, set UEPPCTOK to the
address of the storage obtained.

4. Set PC_ADDR7 to the address of the 4-byte area.
5. If setting PC_ADDR7 now makes it the last address, set the high-order bit in the address, and unset

the high-order bit in what was previously the last address.
6. Set the X'02' existence bit on in PC_BITS1 to indicate that a SYSID is specified.
7. Return to CICS.

In XPCREQC

1. Scan the global work area (GWA) and locate the entry for the CICS region specified in the SYSID
parameter.

2. Decrement the use count for this system.
3. If a GETMAIN was issued in XPCREQ to obtain an area to hold the SYSID, issue a FREEMAIN for the

address held in UEPPCTOK.
4. Return to CICS.

174 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

Exit XPCFTCH
XPCFTCH is invoked before a program defined to CICS (including internal CICS modules) receives control,
which could be because it is the first program in a transaction, or as a result of a LINK, XCTL, or HANDLE
ABEND PROGRAM request.

You can use this exit to modify the entry address used when linking to the program. If the exit sets a
return code of zero, or a modified address of zero, the entry address of the original application program is
used.

You use this exit to pass control to an AMODE(64), AMODE(31), or AMODE(24) assembler application
program or routine before the original program is invoked. After this assembler program finishes its
processing, it should pass control back to the entry point of the original program by using a branch
instruction. Do not use the exit to invoke any program other than the original program, because the
results are unpredictable.

When XPCFTCH is invoked for a C or C++ program that is compiled with the XPLINK option, a flag is set to
ignore any modification of the entry point address that the user exit might make.

If a modified entry address is supplied, the program that is invoked receives control in the execution key
that the original application program would have received control in; that is, as specified on the EXECKEY
option of the resource definition of the original program.

When invoked
Before an application program receives control.

Exit-specific parameters
UEPPCDS

Address of a storage area that contains program- and terminal-related information, and that can be
mapped using the DSECT DFHPCUE. When XPCFTCH is invoked, the following DFHPCUE fields are
significant:
PCUE_CONTROL_BITS

• 1-byte flag field. A setting of PCUECBTE indicates that the transaction is linked to a terminal.
• A setting of PCUENOTX (X'40') indicates that the program is not command level.
• A flag, PCUE_NO_MODIFY, in PCUE_CONTROL_BITS indicates that a modified entry address is

not supported. When set, any return code of UERCMEA from XPCFTCH is ignored. CICS sets this
flag before invoking XPCFTCH for C and C++ programs compiled with the XPLINK option.

• A setting of PCUE_REAL (X'20') indicates that a real entry point is set in PCUE_REAL_ENTRY.

PCUE_TASK_NUMBER
3-character packed decimal field that contains the task number.

PCUE_TRANSACTION_ID
4-character field that contains the ID of the original transaction. This ID might differ from the
current transaction ID.

PCUE_TERMINAL_ID
4-character field that contains the terminal ID (if any).

PCUE_PROGRAM_NAME
8-character field that contains the name of the program that is to receive control.

PCUE_PROGRAM_LANGUAGE
3-character field that contains the language of the program that is to receive control.

PCUE_LOAD_POINT
The load point of the program.

PCUE_ENTRY_POINT
The entry point of the program.

Chapter 1. Global user exit points (by function) 175

PCUE_AMOD
The addressing mode of the program is AMODE(31). This field is provided for compatibility with
existing exit programs.

PCUE_AMOD_31
The addressing mode of the program is AMODE(31). Use this field in preference to PCUE_AMOD.

PCUE_AMOD_64
The addressing mode of the program is AMODE(64).

PCUE_PROGRAM_SIZE
Fullword that contains the size of the program, in bytes.

PCUE_COMMAREA_ADDRESS
Address of the communication area of the program, if the program has one.

PCUE_COMMAREA_SIZE
Fullword that contains the length of the communication area of the program, if the program has
one.

PCUE_LOGICAL_LEVEL
Fullword that contains the program logical level.

PCUE_BRANCH_ADDRESS
Fullword. Use this field to supply an alternative entry address. Set the top bit to specify that the
alternative program is to run AMODE (31).

PCUE_REAL_ENTRY
From z/OS 1.7 onwards, this field provides the real entry point for Language Environment®

conforming programs. Previously, only PCUE_ENTRY_POINT was available to you, but for
Language Environment conforming programs, this field did not contain the entry point that you
needed to know about.

Note: With z/OS 1.7, this field provides a solution to the problem raised by APAR PQ43992.

PCUE_CHANNEL_NAME
Address of a 16-byte field that contains the name of the channel with which the application
program is to be invoked (that is, the current channel of the program). If there is no channel, this
field is set to blanks.

PCUE_INVOKING_PROGRAM_NAME
8-character field that contains the name of the program that invoked the current program.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
UERCMEA

Entry address has been modified.

XPI calls

All can be used.

Sample exit program

DFH$PCEX

Exit XPCHAIR
Exit XPCHAIR is invoked before a HANDLE ABEND LABEL routine is given control.

This situation occurs only when a program abend causes a branch to an internal abend routine. When the
HANDLE ABEND request specifies PROGRAM, exit XPCFTCH is invoked (see “Exit XPCFTCH” on page

176 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha330.html

175). You can use the XPCHAIR exit to supply an alternative handle abend address. If the exit sets a
return code of zero, or an alternative address of zero, CICS passes control to the specified internal routine
of the application program

This exit is never invoked for a C or C++ program that is compiled with the XPLINK option, or for an
AMODE(64) program.

If a modified entry address is supplied:

• The code that is invoked receives control in the execution key that the internal abend routine would
have received control in; that is, the key in force when the EXEC CICS HANDLE ABEND LABEL command
was issued.

• The resume address is placed in register 14 for a COBOL application or register 15 for an Assembler
application. If your application runs in a mixed environment, your exit program might need to set up its
own base register. For example, you could use the following code to set up addressability:

BASSM 15,0
USING *,15

When invoked
Before a HANDLE ABEND routine is given control.

Exit-specific parameters
UEPPCDS

Address of a storage area that contains program and terminal related information, and that can be
mapped using the DSECT DFHPCUE. When XPCHAIR is invoked, the following DFHPCUE fields are
significant:
PCUE_CONTROL_BITS

1-byte flag field. A setting of PCUECBTE indicates that the transaction is linked to a terminal.
PCUE_TASK_NUMBER

3-character packed decimal field that contains the task number.
PCUE_TRANSACTION_ID

4-character field that contains the transaction ID.
PCUE_TERMINAL_ID

4-character field that contains the terminal ID (if any).
PCUE_PROGRAM_NAME

8-character field that contains the name of the program that issued the HANDLE ABEND
LABEL command.

PCUE_LOGICAL_LEVEL
Fullword that contains the program logical level.

PCUE_BRANCH_ADDRESS
Fullword. Use this field to supply the address of an alternate abend routine. Set the top bit to
specify that the alternate abend routine is to run AMODE (31).

UEPTACB
Address of the transaction abend control block (TACB) for the abend. If the abend occurred
because of a program check, the information in the TACB includes:

• The program status word (PSW).
• The registers at the time of the abend.
• Details of the subspace, access registers, and vector registers current at the time of the abend.
• The Breaking Event Address Register (BEAR).
• The Translation Exception Address (TEA)

You can map the TACB using the DFHTACB TYPE=DSECT macro.

Chapter 1. Global user exit points (by function) 177

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
UERCMEA

The address of an alternate abend routine is supplied.
XPI calls

All can be used.

Exit XPCTA
Exit XPCTA is invoked immediately after a transaction abend, and before any processing that might
modify the existing environment so that the task could not be resumed.

You can use the XPCTA exit to do the following:

• Set a resume address, instead of letting CICS process the abend
• Specify the subspace that control is passed in

If a resume address is passed back, registers 0 through 13 and 15 are restored to their values at the time
of the abend. Register 14 is used to branch to the resume address. If the exit sets a return code of zero, or
a resume address of zero, CICS processes the abend.

If the transaction abend occurs as a result of a program check or an operating system abend, the XDUREQ
dump domain exit might be invoked before XPCTA (see “Exit XDUREQ” on page 34). Also, if a resume
address is passed back, registers 0 through 15 are restored to their value at the time of the abend. The
program status word (PSW) is used to branch to the resume address.

In some situations, CICS sets a flag to ignore the resume address that is usually obtained from the
UERCMEA return code.

• CICS sets the PCUE_NO_RESUME flag to ignore any resume address that the exit supplies in the
following situations:

– XPCTA is invoked for a C or C++ program that is compiled with the XPLINK option.
– The task control block (TCB) of the application is no longer available.
– The transaction abend is an AKxx abend (relating to a kill request) other than AKKD or AKKE.

• For an AMODE(64) program, CICS sets the PCUE_NO_RESUME_AMODE64 flag to ignore any resume
address that the exit supplies if the 64-bit registers are not available at the time of the abend.

When invoked
After an abend and before the environment is modified.

Exit-specific parameters
UEPPCDS

Address of a storage area that contains program- and terminal-related information, and that can
be mapped using the DSECT DFHPCUE. When XPCTA is invoked, the following DFHPCUE fields are
significant:
PCUE_CONTROL_BITS

1-byte flag field. A setting of PCUECBTE indicates that the transaction is linked to a terminal.

Flags PCUE_NO_RESUME and PCUE_NO_RESUME_AMODE64 in PCUE_CONTROL_BITS
indicate that a resume address is not supported. When set, any return code of UERCMEA from
XPCTA is ignored. CICS sets PCUE_NO_RESUME before invoking XPCTA for C and C++
programs compiled with the XPLINK option, when the TCB of the application is no longer
available, and for AKxx abends other than AKKD or AKKE. CICS sets
PCUE_NO_RESUME_AMODE64 for AMODE(64) programs when a resume address is not
supported.

178 CICS TS for z/OS: User Exit Reference

PCUE_TASK_NUMBER
3-character packed decimal field that contains the task number.

PCUE_TRANSACTION_ID
4-character field that contains the transaction ID.

PCUE_TERMINAL_ID
4-character field that contains the terminal ID (if any).

PCUE_PROGRAM_NAME
8-character field that contains the name of the failing program.

PCUE_LOGICAL_LEVEL
Fullword that contains the program logical level.

PCUE_BRANCH_ADDRESS
Fullword. You can use this field to supply a resume address. Set the top bit to specify that the
resumed task is to run AMODE(31). Set the bottom bit to specify that the resumed task is to
run AMODE(64).

PCUE_BRANCH_EXECKEY
If storage protection is active, you can use this 1-byte field to specify the execution key of the
resumed task. The possible values are:
PCUE_BRANCH_USER

User key
PCUE_BRANCH_CICS

CICS key.

If storage protection is active and you do not specify a value, the resumed task executes in
user key.

If storage protection is not active, the resumed task executes in CICS key.

UEPTACB
Address of the transaction abend control block (TACB) for the abend. If the abend occurred
because of a program check, the information in the TACB includes:

• The program status word (PSW).
• The registers at the time of the abend.
• Details of the subspace, access registers and vector registers current at the time of the abend.
• The Breaking Event Address Register (BEAR).
• The Translation Exception Address (TEA).

You can map the TACB using the DFHTACB TYPE=DSECT macro.
Return codes

UERCNORM
Continue processing.

UERCPURG
Task purged during XPI call.

UERCMEA
A resume address is supplied.

XPI calls
All can be used.

Sample XPCTA exit program

DFH$PCTA is a sample global user exit program for the XPCTA exit point. It tests whether the abend was
caused by a storage protection exception condition. For more information about DFH$PCTA, see
Transaction abend sample exit program: DFH$PCTA.

Chapter 1. Global user exit points (by function) 179

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0030.html

Exit XPCABND
Exit XPCABND is invoked after a transaction abend and before a transaction dump call. You can use this
exit to suppress the dump.

When invoked
After a transaction abend and before a transaction dump call is made.

Exit-specific parameters
UEPPCDS

Address of a storage area that contains program-related and terminal-related information. The
storage area is mapped by the DSECT DFHPCUE.

When XPCABND is invoked, the following DFHPCUE fields are significant:
PCUE_CONTROL_BITS

A 1-byte flag field. A setting of PCUECBTE indicates that the transaction is linked to a terminal.
PCUE_TASK_NUMBER

A 3-character packed decimal field that contains the task number.
PCUE_TRANSACTION_ID

A 4-character field that contains the transaction ID.
PCUE_TERMINAL_ID

A 4-character field that contains the terminal ID (if any).
PCUE_PROGRAM_NAME

An 8-character field that contains the name of the program that is abending.
PCUE_LOGICAL_LEVEL

Fullword that contains the program logical level.
UEPTACB

Address of the transaction abend control block (TACB) for the abend. If the abend occurred
because of a program check, the information in the TACB includes:

• The program status word (PSW).
• The registers at the time of the abend.
• Details of the subspace, access registers, and vector registers current at the time of the

abend.
• The Breaking Event Address Register (BEAR).
• The translation Exception Address (TEA)

You can map the TACB using the DFHTACB TYPE=DSECT macro.

Return codes
UERCNORM

Continue processing and make the dump call.
UERCBYP

Suppress the dump call.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Resource manager interface program exits (XRMIIN, XRMIOUT)
These exits are invoked when RMI API requests are processed.

180 CICS TS for z/OS: User Exit Reference

Exit XRMIIN
Exit XRMIIN is invoked before a task-related user exit program is invoked when an application program
issues an RMI API request.

Exit-specific parameters
UEPTRUEN

Address of the name of the task-related user exit program.
UEPTRUEP

Address of the parameter list to be passed to the task-related user exit program.
UEP_RM_PBTOK

Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

Note: The task-related user exit program's parameter list is mapped by a DFHUEPAR DSECT that
shares common field names with the global user exit program's DFHUEPAR parameter list. To include
both DSECT definitions in your exit program, you must code:

DFHUEXIT TYPE=EP,ID=XRMIIN
DFHUEXIT TYPE,TYPE=RM

The statements must be coded in this order.

The two DFHUEPAR parameter lists, the global user exit's and the task-related user exit's, occupy
separate areas of storage. The task-related user exit's parameter list is provided for information only;
you should not amend it in any way.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI commands

All except EXEC CICS SHUTDOWN and EXEC CICS XCTL can be used. However, CALLDLI, EXEC DLI, or
EXEC SQL commands must not be used.

Exit XRMIOUT
Exit XRMIOUT is invoked after a task-related user exit program has returned from handling an RMI API
request.

Exit-specific parameters
UEPTRUEN

Address of the name of the task-related user exit program.
UEPTRUEP

Address of the parameter list to be passed to the task-related user exit program.

Chapter 1. Global user exit points (by function) 181

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

The UEPHMSA parameter in this parameter list contains the register save area (RSA) of the caller.
For an EXEC CPSM call, register 1 in this RSA contains the address of the parameter list for the
CICSPlex SM command and can be used to identify the CICSPlex SM command and the specified
resource. For details, see CICSPlex SM API command argument list.

UEP_RM_PBTOK
Address of a 4-byte field containing the z/OS Workload Manager (WLM) Performance Block Token.
An exit program can use this token to access information (such as the service class token,
SERVCLS) in the WLM Performance Block. To do so, it must use the WLM EXTRACT macro,
IWMMEXTR, passing the Performance Block Token as the MONTKN input parameter. For more
information about the IWMMEXTR macro, see z/OS MVS Programming: Workload Management
Services.

An exit program must not attempt to modify the Performance Block: if it does so, the results are
unpredictable.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

Note: The task-related user exit program's parameter list is mapped by a DFHUEPAR DSECT that
shares common field names with the global user exit program's DFHUEPAR parameter list. To include
both DSECT definitions in your exit program, you must code:

DFHUEXIT TYPE=EP,ID=XRMIOUT
DFHUEXIT TYPE,TYPE=RM

The statements must be coded in this order.

The DFHUEPAR parameter list of the global user exit and the DFHUEPAR parameter list of the task-
related user exit each occupy separate areas of storage. The parameter list of the task-related user
exit is provided for information only; do not amend it in any way.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI commands

All except EXEC CICS SHUTDOWN and EXEC CICS XCTL can be used. However, CALLDLI, EXEC DLI, or
EXEC SQL commands must not be used.

Note: It is not advisable for your exit program to make calls to other external resource managers that use
the RMI, because this causes recursion, and might result in a loop. It is the responsibility of your exit
program to avoid entering a loop. You can use the recursion counter field UEPRECUR in the exit program
to guard against this possibility.

Resource management installation and discard exit XRSINDI
The XRSINDI global user exit is driven, if it is enabled, immediately after CICS successfully installs or
discards a resource definition.

The installation and discard activities that drive the exit are as follows:

• The installation function of the group list on an initial or cold start of CICS
• The CEDA INSTALL command
• The CICSPlex SM BAS INSTALL command

182 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-cpsm/eyup2_argument_list.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw200/toc.htm

• All autoinstall operations, as follows:

– The autoinstall of a terminal, connection, program, map set, partition set, or journal
– The automatic discard of an unused terminal, controlled by the AILDELAY system initialization

parameter and the SIGNOFF attribute on the TYPETERM resource definition.
• The connection to, and disconnection from, an MVS log stream
• A CEMT DISCARD and EXEC CICS DISCARD command
• An EXEC CICS CREATE command
• The front-end programming interface (FEPI) installation and discard operations: the EXEC CICS FEPI
INSTALL command and EXEC CICS FEPI DISCARD command.

The parameter list is designed to pass the names of more than one resource, installed or discarded, in
field UEPIDNAM. When designing your global user exit program, do not assume that the number of
resource names passed is always one. Analyze the resources in a loop based on the value referenced by
UEPIDNUM.

The names of modegroups are prefixed with the corresponding connection name. There is no separator
between the two names: the first 4 characters form the connection name, followed by 8 characters for the
modegroup. The parts of the concatenated name are fixed length—if connection names are defined with
less than 4 characters, they are padded with blanks in the concatenated names. Similarly, the connection
names for a front-end programming interface (FEPI) connection is a concatenation of a FEPI node name
and a FEPI target name, each of which is 8 characters long (fixed length) with no separator.

The exit is driven once for each individual resource in a group list installed during a CICS initial or cold
start. If you are concerned about the performance on an initial or cold start, do not enable the exit until
after the group list is installed. To obtain the information about resources installed before enabling the
exit, you can write a program to scan the tables of installed resources, by using the EXEC CICS
INQUIRE resource_name browse function.

Exit XRSINDI
The XRSINDI global user exit is called when CICS installs or discards a resource definition.

Exit XRSINDI parameters and return codes

Abends in a program that is enabled at the XRSINDI exit point might cause CICS to shut down, because
for some resources the exit is driven during sync point. If the exit returns code UERCPURG during the sync
point for these resources, abend code AUEP is produced and CICS shuts down.

The parameters, return codes, and XPI information are as follows:

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Address of the 4-byte terminal ID.
UEPPROG

Address of the 8-byte application program name.
UEPIDREQ

Address of the 1-byte install or discard identifier. The values are as follows:
UEIDINS

This request is for an install action, or, in the case of a log stream, it is a connection to a log
stream.

Chapter 1. Global user exit points (by function) 183

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_aildelay.html

UEIDDIS
This request is for a discard action, or, in the case of a log stream, it is a disconnection from a
log stream.

UEPIDTYP
Address of the 1-byte type of resource. The values are as follows:
UEIDATOM

An ATOMSERVICE resource.
UEIDAITM

An autoinstall terminal model.
UEIDBNDL

A BUNDLE resource.
UEIDCONN

A connection.
UEIDDB2C

A DB2CONN resource definition for the connection between CICS and Db2®.
UEIDDB2E

A DB2ENTRY resource definition.
UEIDDB2T

A DB2TRAN resource definition.
UEIDDOCT

A DOCTEMPLATE.
UEIDEARB

An EAR file that is part of a CICS bundle.
UEIDEBAB

An EBA file that is part of a CICS bundle.
UEIDEPAD

An EPADAPTER resource.
UEIDEPAS

An EPADAPTERSET resource.
UEIDEVCS

An event capture resource.
UEIDEVNT

An EVENTBINDING resource.
UEIDFECO

A FEPI connection.
UEIDFENO

A FEPI node.
UEIDFEPO

A FEPI pool.
UEIDFEPS

A FEPI property set.
UEIDFETA

A FEPI target.
UEIDFILE

A file.
UEIDIPCO

An IPCONN resource.
UEIDJNMD

A journal model.

184 CICS TS for z/OS: User Exit Reference

UEIDJNNM
A journal name.

UEIDJSRV
A JVM server resource.

UEIDLBRY
A LIBRARY resource.

UEIDMAP
A mapset.

UEIDMODE
A modegroup.

UEIDMPPP
A Policy resource.

UEIDMQCN
An MQCONN resource definition for the connection between CICS and IBM MQ.

UEIDMQIN
An MQINI resource.

UEIDMQMN
An MQMONITOR resource.

UEIDNAPP
A NODEJSAPP resource.

UEIDNQRN
An ENQMODEL.

UEIDOSGB
An OSGi bundle.

UEIDPART
A partner.

UEIDPIPE
A pipeline (PIPELINE).

UEIDPKST
A Db2 PACKAGESET resource.

UEIDPROF
A profile.

UEIDPROG
A program.

UEIDPRTY
A BTS process type.

UEIDPSET
A partition set.

UEIDSESS
A session.

UEIDSTRM
An MVS log stream.

UEIDTCLS
A transaction class.

UEIDTCPS
A TCP/IP service.

UEIDTDQU
A transient data queue.

UEIDTERM
A terminal.

Chapter 1. Global user exit points (by function) 185

UEIDTRAN
A transaction.

UEIDTSMD
A temporary storage queue model.

UEIDURIM
A URIMAP resource.

UEIDWARB
A WAR file that is part of a CICS bundle.

UEIDWEBS
A web service (WEBSERVICE).

UEIDXMLT
An XMLTRANSFORM resource.

UEPIDLEN
For public resources, this parameter is the address of the length of an individual resource name,
as a fullword binary value.
For OSGi bundles, this parameter is the address of the length of the information that uniquely
identifies an OSGi bundle in CICS in the UEPIDNAM parameter. The maximum length is 526 bytes.

UEPIDNUM
Address of the number of resources that are reported by this call, as a fullword binary value.

UEPIDNAM
Address of a variable-length list containing the names of the individual resources reported by this
call.
For OSGi bundles, this parameter contains the information that uniquely identifies an OSGi bundle
in CICS. The information is listed in the following order:

1. 8 bytes that contain the JVM server name.
2. A fullword containing the length of the OSGi bundle symbolic name.
3. A fullword containing the length of the OSGi bundle version.
4. A concatenation of the OSGi bundle symbolic name and version as a character string.

UEPIDREC
Address of a 1-byte identifier indicating whether resources are recovered at a warm or emergency
restart. The values are as follows:
UEIDKEEP

The resources are recoverable at a warm or emergency restart.
UEIDLOSE

The resources are not recoverable.

Note: The exit is not driven during a CICS restart.

UEPDEFTM
The address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the
definition time of the individual resource as an 8-character STCK value.

Note: The parameters UEPDEFTM, UEPCHUSR, UEPCHAGT, UEPCHREL, UEPCHTIM, UEPDEFSRC,
UEPINUSR, UEPINTIM, and UEPINAGT are valid for the following resources: ATOMSERVICE,
BUNDLE, CONNECTION, DB2CONN, DB2ENTRY, DB2TRAN, DOCTEMPLATE, ENQMODEL,
EPADAPTER, EPADAPTERSET, EVENTBINDING, FILE, IPCONN, JOURNALMODEL, JVMSERVER,
LIBRARY, MQCONN, MQINI, OSGIBUNDLE, PIPELINE, PROFILE, PROCESSTYPE, PROGRAM,
TCPIPSERVICE, TDQUEUE, TRANCLASS, TRANSACTION, TSMODEL, URIMAP, WEBSERVICE, and
XMLTRANSFORM. The parameter value is zero for all other resources.

UEPCHUSR
Address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the 8-
character user ID that ran the agent that last changed the individual resource.

186 CICS TS for z/OS: User Exit Reference

UEPCHAGT
Address of a variable-length list, which corresponds to the list in UEPIDNAM, of a 2-byte identifier
representing the agent that last changed the individual resource. The possible values are as
follows:
UEPUNKAGT

The resource was changed by an unknown agent.
UEPCSDAPI

The resource was changed using the CSD API or CEDA.
UEPCSDBAT

The resource was changed using the CSD batch program, DFHCSDUP.
UEPDRPAPI

The resource was changed using the CICSPlex SM BAS API.
UEPAUTOIN

The resource was changed using autoinstall.
UEPSYSTEM

The resource was changed by the running CICS region.
UEPDYNAMC

The resource was changed dynamically.
UEPTABLE

The resource was changed using a table.
UEPCHREL

Address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the 4-
character CICS release level that was running when the individual resource was last changed.

UEPCHTIM
Address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the CSD
record time stamp change for the individual resource as an 8-character STCK value.

UEPDEFSRC
Address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the 8-
character CSD group name or source corresponding to the individual resource.

UEPINUSR
Address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the 8-
character user ID that installed the individual resource.

UEPINTIM
Address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the time
that the domain was called for the installation of the individual resource as an 8-character STCK
value.

UEPINAGT
Address of a variable-length list, which corresponds to the list in UEPIDNAM, of a 2-byte identifier
representing the agent that installed the individual resource. The possible values are as follows:
UEPCSDAPI

The resource was installed using the CSD API or CEDA.
UEPCRESPI

The resource was installed using the EXEC CICS CREATE SPI commands.
UEPGRPLST

The resource was installed at startup using GRPLIST install.
UEPAUTOIN

The resource was autoinstalled.
UEPSYSTEM

The resource was installed by the running CICS system.

Chapter 1. Global user exit points (by function) 187

UEPDYNAMC
The resource was installed dynamically.

UEPBUNDLE
The resource was installed by a bundle deployment.

UEPTABLE
The resource was installed using a table.

UEPAPPTK
Address of a variable-length list, containing an 8-character token representing the application
instance to which this resource belongs. For public resources, this address is zero.

UEPAPCTXT
For private resources for applications that are deployed on platforms, this parameter contains the
address of a variable-length list, which corresponds to the list in UEPIDNAM, containing the
application context information for the resource. The information is listed in the following order:

1. The platform name, padded with spaces to 64 characters.
2. The application name, padded with spaces to 64 characters.
3. The major version number for the application, which is a fullword binary value.
4. The minor version number for the application, which is a fullword binary value.
5. The micro version number for the application, which is a fullword binary value.

CICS supplies a DSECT named DFHUEACD which maps this information. For more information
about DFHUEACD, see UEACD - User exit application context in Data Areas.

UEPPLATTK
Address of a variable-length list, containing an 8-character token representing the platform
instance to which this resource belongs. For public resources, this address is zero.

Return codes
UERCNORM

Continue processing. This code is the default.
UERCPURG

Task purged during XPI call.
XPI calls

You can use all XPI calls.

Signon and signoff exits XSNON, XSNOFF, and XSNEX
Exit XSNON is invoked after a terminal user signs on, and exit XSNOFF is invoked after a terminal user
signs off (whether the signon or sign-off is successful or not). XSNON and XSNOFF do not make any
security decisions; they are merely a means of tracking users logging on and off a CICS system.

The activities which drive the exits are:

• Invocation of an EXEC CICS SIGNON command for a terminal (when, for example, the terminal user
enters the CICS-supplied CESN, or an equivalent, user-written, signon transaction)

• Invocation of an EXEC CICS SIGNON command for a surrogate terminal (that is, a terminal attached by
the CRTE routing transaction, or by dynamic transaction routing)

• Invocation of an EXEC CICS SIGNOFF command for a terminal
• When a 'CANCEL' command is entered to terminate a CRTE routing session
• A timeout sign-off.

XSNEX is a special-purpose global user point, which is intended to be used only with the IBM-supplied
global user exit program, DFH$SNEX.

188 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHUEAKS.html

Exit XSNON
When invoked

When a user signs on.
Exit-specific parameters

UEPUSRID
Address of the terminal userid.

UEPUSRLN
Address of the terminal userid length.

UEPGRPID
Address of the group ID. If the signon was successful, the group ID is that which the user is
associated with in this signon session. If the signon was unsuccessful, it is that specified by the
user when he or she tried to sign on.

UEPGRPLN
Address of the group ID length.

UEPNETN
Address of the terminal’s netname.

UEPTRMID
Address of the terminal id.

UEPTCTUA
Address of the TCT user area.

UEPTCTUL
Address of the TCT user area length.

UEPTRMTY
Address of the terminal-type byte.

UEPSNFLG
Address of a 2-byte field containing flags:

Table 1. Flags set in the UEPSNFLG field of XSNON

Flag Equivalent Meaning

UEPSNOK 0 Signon was successful.

UEPSNFL 1 Signon failed.

UEPSNPSS 2 The persistent sessions signon succeeded.

UEPSNPSF 3 The persistent sessions signon failed.

UEPSGTYP
Address of signon type byte.

This parameter has two equates:

UEPSGUID SIGNON USERID
UEPSGKER SIGNON KERBEROS

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Chapter 1. Global user exit points (by function) 189

Exit XSNOFF
When invoked

When a user signs off.
Exit-specific parameters

UEPUSRID
Address of the terminal userid.

UEPUSRLN
Address of the terminal userid length.

UEPGRPID
Address of the group ID.

UEPGRPLN
Address of the group ID length.

UEPNETN
Address of the terminal’s netname.

UEPTRMID
Address of the terminal id.

UEPTCTUA
Address of the TCT user area.

UEPTCTUL
Address of the TCT user area length.

UEPTRMTY
Address of the terminal-type byte.

UEPSNFLG
Address of a 2-byte field containing flags:
UEPSNOK

Sign-off was successful
UEPSNFL

Sign-off failed
UEPSNNML

Normal sign-off
UEPSNTIM

Timeout sign-off.
Return codes

UERCNORM
Continue processing.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Exit XSNEX
The purpose of XSNEX, in conjunction with its supporting sample programs, is to provide a short-term aid
for upgrading. It is designed to give you time to modify those application programs that have a
dependency on the way CICS handles EXEC CICS SIGNON and SIGNOFF before CICS TS 2.1, to enable
them to work with the current behavior.

Note: XSNEX is for upgrade purposes only. Remove all application dependency on the old sign-on and
sign-off behavior.

There are no exit-specific parameters for this global user exit, which is invoked whenever an application
program issues an EXEC CICS SIGNON or an EXEC CICS SIGNOFF command. You are not intended to

190 CICS TS for z/OS: User Exit Reference

write your own global user exit program for this exit point. IBM provides DFH$SNEX, the sole purpose of
which is to make CICS handle EXEC CICS SIGNON and SIGNOFF commands in the same way as in CICS
TS 1.3 and earlier.

The supplied programs are:

DFH$SNEX
This user exit program is supplied in SDFHSAMP. The only function the program performs is to set
return code UERCPREV, which causes the security domain to restore CICS behavior as in CICS TS 1.3
and earlier. You can enable this user exit program using DFH$SNPI.

DFH$SNPI
This post-initialization program is supplied in SDFHSAMP. It issues an EXEC CICS ENABLE
PROGRAM('DFH$SNEX') EXIT('XSNEX') command to enable the IBM-supplied user exit program, DFH
$SNEX, in the final stages of CICS initialization.

To use this program, add an entry to the first section of your PLTPI table (that is, before the
DFHDELIM statement). For example:

DFHPLT TYPE=INITIAL,SUFFIX=SN
DFHPLT TYPE=ENTRY,PROGRAM=DFH$SNPI
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
DFHPLT TYPE=FINAL
END

Statistics domain exit XSTOUT
On invocation, XSTOUT is passed the address of a buffer containing one or more statistics records. The
buffer can contain records for various resource types; for example, connections and modenames. The
buffer can also contain both specific and global information; for example, loader statistics for individual
programs, and loader statistics for all programs.

Your exit program can identify the types of records in the buffer by their STID values. (STID values are
described in CICS statistics data section.)

You can use XSTOUT to prevent the contents of the statistics data buffer being written to SMF. Note that
you cannot use it to selectively suppress individual records within the buffer. Your exit program should
not modify the values of any of the exit-specific parameters.

Some statistics records might be produced during very early during CICS initialization which will not be
passed to XSTOUT. The earliest that a global user exit can be enabled is during PLT processing. Before
this no exits can be invoked.

Exit XSTOUT
When invoked

Before a statistics record is written to SMF.
Exit-specific parameters

Fields UEPPROG, UEPTERM, UEPTRANID, and UEPUSER have meaning only for requested statistics
(when using the CICS Explorer® Regions operations view, the CEMT PERFORM STATISTICS RECORD
command, or the EXEC CICS PERFORM STATISTICS RECORD command).
UEPPROG

Address of the 8-byte application program name.
UEPSCLD

Address of an 8-byte character field containing the collection date (MMDDYYYY).
UEPSDATE

Address of a 6-byte character field containing the collection date (MMDDYY).
UEPSIVAL

Address of a 6-byte character field containing the interval time (HHMMSS). This field has meaning
only for interval statistics.

Chapter 1. Global user exit points (by function) 191

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha37r.html

UEPSIVN
Address of the 4-byte interval number. This field has meaning only for interval statistics.

UEPSRLEN
Address of the 4-byte hexadecimal length of the statistics record.

UEPSTATS
Address of a buffer containing one or more statistics records. For unsolicited statistics, the buffer
always contains one record; for other types of statistics, it might contain several records. The
length of the buffer is addressed by the UEPSRLEN parameter.

UEPSTIME
Address of a 6-byte character field containing the collection time (HHMMSS).

UEPSTYPE
Address of the 3-byte character field statistics type. The values of the types are as follows:
INT

Interval statistics.
EOD

End-of-day statistics.
REQ

Requested statistics.
RRT

Requested reset statistics.
USS

Unsolicited statistics.
UEPTERM

Address of the 4-byte terminal ID.
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
Return codes

UERCBYP
Suppress output of statistics data buffer to SMF.

UERCNORM
Continue processing.

XPI calls
WAIT_MVS can be used. Note, however, that the wait cannot be purged by using CEMT or SPI
commands. Do not use any other calls.

System recovery program exit XSRAB
Exit XSRAB is invoked when the system recovery program (DFHSRP) finds a match in the system recovery
table (SRT) for an operating system abend code.
When invoked

Exit XSRAB is invoked when the system recovery program (DFHSRP) finds a match in the SRT for an
operating system abend code. For information about defining entries in the SRT, see System recovery
table (SRT).

The SRT table is processed and the exit is driven, only when an MVS abend occurs under a CICS
essential TCB; that is, one of QR, RO, CO, SZ, RP, or FO. For nonessential TCB types, such as L8, SL,
SO, or S8, the exit is not driven.

192 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/macros/srt/overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/macros/srt/overview.html

Exit-specific parameters
UEPERROR

Address of the error data structure, SRP_ERROR_DATA, which contains the following fields:
SRP_ERROR_TYPE

The 4-character error type, which is always ASRB.
SRP_SYS_ABCODE

2 bytes that contain the system abend code XXX in binary format (for example, D37).
SRP_USER_ABCODE

2 bytes that contain the user abend code NNNN in binary format (for example, 0999).
SRP_ERROR_TRANID

4-character field that contains the ID of the transaction that abended.
SRP_ERROR_STACK_NAME

8-character field that contains the name of the current kernel stack entry for the transaction at
the time of the abend.

SRP_ERROR_PPT_NAME
8-character field that contains the name of the current program for the transaction. This field
contains a value only if flag SRP_PPT_ENTRY is set.

SRP_ERROR_OFFSET
Fullword that contains the offset into the program that abended, as follows:

• If flag SRP_PPT_ENTRY is set, gives the offset in SRP_ERROR_PPT_NAME
• Otherwise, gives the offset in SRP_ERROR_STACK_NAME.

This field contains a value only if flag SRP_VALID_OFFSET is set.
SRP_ERROR_FLAGS

1 byte that contains flags:
SRP_CICS_CODE

The abend occurred while running CICS code.
SRP_USER_CODE

The abend occurred while running user application code.
SRP_PPT_ENTRY

The abend occurred while running SRP_ERROR_PPT_NAME. If this flag is not set, the
abend occurred while running SRP_ERROR_STACK_NAME.

SRP_VALID_OFFSET
A meaningful offset could be determined.

SRP_VALID_REASON
MVS has supplied a reason code for the abend.

SRP_NOT_CICS_RB
CICS RB was not in control at the time of the abend (that is, the abend occurred in a
system service invoked by CICS).

SRP_CICS_ERROR_REASON
4-character field that contains the MVS abend reason code. It contains a value only if flag
SRP_VALID_REASON is set.

SRP_CICS_ERROR_DATA
An area that describes the last thing that CICS did, before the abend. It contains the following:
SRP_CICS_EC_PSW

8-character field that contains the extended control (EC) mode program status word
(PSW)

SRP_CICS_PSW16
16-character field that contains the 128-bit PSW

Chapter 1. Global user exit points (by function) 193

SRP_CICS_EC_INT
8-character field that contains the interrupt code and ILC

SRP_CICS_REGST
64-character field that contains the contents of the general-purpose (GP) registers

SRP_CICS_EXEC_KEY
1 byte that contains the PSW key, in the form X'0n'.

SRP_SYSTEM_ERROR_DATA
An area that describes the last thing the system did, before the abend. It contains the
following:
SRP_SYSTEM_EC_PSW

8-character field that contains the EC mode PSW
SRP_SYSTEM_PSW16

16-character field that contains the 128-bit PSW
SRP_SYSTEM_EC_INT

8-character field that contains the interrupt code and ILC
SRP_SYSTEM_REGST

64-character field that contains the contents of the GP registers
SRP_SYSTEM_EXEC_KEY

1 byte that contains the PSW key, in the form X'0n'.
SRP_ERROR_FP_REGS

An area that describes the contents of the floating point registers at the time of the abend. It
contains:
SRP_FP_REG_0

FP register 0
SRP_FP_REG_2

FP register 2
SRP_FP_REG_4

FP register 4
SRP_FP_REG_6

FP register 6
SRP_ADDITIONAL_REG_INFO

An area that contains additional register information.
SRP_ADDITIONAL_REGS_FLAG

1 byte that contains flags:
SRP_CICS_GPR64_AVAIL

The 64-bit CICS GP registers are available.
SRP_SYSTEM_GPR64_AVAIL

The 64-bit system GP registers are available.
SRP_ADDITIONAL_FPR_AVAIL

Additional FP registers are available.
SRP_CICS_GP64_REGS

128-byte area that contains the CICS 64-bit GP registers at the time of the abend.
SRP_SYSTEM_GP64_REGS

128-byte area that contains the system 64-bit GP registers at the time of the abend.
SRP_ADDITIONAL_FPR_REGS

132-byte area that contains additional FP registers at the time of the abend.
SRP_FP_REGS

128-byte area that contains all the FP registers at the time of the abend.

194 CICS TS for z/OS: User Exit Reference

SRP_FPC_REG
4-byte field that contains the FPC register at the time of the abend.

SRP_VR_REGS
512-byte area that contains all the Vector registers at the time of the abend.

If flag SRP_NOT_CICS_RB is set, SRP_CICS_ERROR_DATA describes the last thing that CICS did
before the abend and SRP_SYSTEM_ERROR_DATA describes the last thing that the system service
(for example, z/OS Communications Server, VSAM, or MVS) did.

You can map the SRP_ERROR_DATA that is passed to the XSRAB exit by using the DFHSRED
TYPE=DSECT macro. The format of SRP_ERROR_DATA is shown in SRED - System recovery error data.

Return codes
UERCNOCA

Abnormally terminate the task with abend code ASRB. Do not cancel any program-level abend
exits that are associated with this task.

UERCCANC
Abnormally terminate the task with abend code ASRB. Cancel any program-level abend exits that
are associated with this task.

UERCCICS
Abnormally terminate CICS.

XPI calls
Because CICS invokes the exit XSRAB in an error environment, you can use only a subset of the XPI
calls.

Only TRACE_PUT is available for general use.

You can use WAIT_MVS, but only after the exit program determines (from the SRP_CICS_CODE and
SRP_USER_CODE fields) that the abend occurred in user application code, and not in CICS code.

Important:

• Take care when coding a program to run at the XSRAB exit point. If your exit program causes the
system recovery program to be reentered (for example, if a program check occurs), CICS terminates
abnormally with a DFHSR06xx message.

• The default return code is UERCNOCA, which ensures that the task abends if the exit is in error.
• There is no UERCNORM return code at this exit point, because the exit is invoked after a failure.
• The exit should not set the return code UERCPURG.

System termination program exit XSTERM
The XSTERM exit could be used to output final statistics to your statistics SMF data sets, and to close
them. Note that CICS VSAM and BDAM data sets have already been closed by CICS file control before the
exit is invoked.
When invoked

During the second quiesce stage of a normal system shutdown, immediately before the transient data
and temporary storage buffers are cleared. The exit is not invoked during an IMMEDIATE shutdown.

Exit-specific parameters
None.

Return codes
UERCNORM

Continue processing.

Chapter 1. Global user exit points (by function) 195

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHSREKS.html

XPI calls
All other XPI calls except WRITE_JOURNAL_DATA can be used. However, their use is not
recommended, because they could cause the task to lose control, thus allowing another task to write
more monitoring data.

Temporary storage domain exits (XTSQRIN, XTSQROUT, XTSPTIN,
XTSPTOUT)

These exits are invoked when temporary storage has to be controlled or monitored.

You can change the temporary storage domain exits XTSQRIN, XTSQROUT, XTSPTIN, and XTSPTOUT to
perform the following tasks:

• Specify, for a request that creates a queue, whether the queue is to be held in main or auxiliary storage,
and its recoverability

• Monitor the use of temporary storage
• Control security for temporary storage queues

The UEPTERM parameter is a zero value for temporary storage requests that have been function shipped
over an IPIC connection. To use IPIC connections for temporary storage requests, ensure that XTSQRIN,
XTSQROUT, XTSPTIN, and XTSPTOUT check that the UEPTERM parameter is a non-zero value before
trying to use it as an address.

XTSQRIN, XTSQROUT, XTSPTIN, and XTSPTOUT must be coded to threadsafe standards and declared
threadsafe to get the benefits of being threadsafe using an IPIC connection.

The temporary storage domain has two main gates, TSQR and TSPT, that support the following functions:
TSQR

Write, Rewrite, Read_into, Read_set, Read_next_into, Read_next_set, Delete
TSPT

Put, Put_replace, Get, Get_set, Get_release, Get_release_set, Release

The TSQR functions correspond to those available through the EXEC CICS interface (or through DFHTS
TYPE=PUTQ, GETQ, or PURGE). The TSPT functions are used by the interval control program in support of
START and RETRIEVE functions (or DFHTS TYPE=PUT, GET, or RELEASE).

Exit XTSQRIN
Exit XTSQRIN is invoked before execution of a user temporary storage interface request for a user TS
queue (for example, a WRITEQ TS, or READQ TS request).

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Zero, or the address of the 4-byte terminal ID. If no address is returned, this could mean that this
request has been function shipped over an IPIC connection.

UEPPROG
Address of the 8-byte application program name.

UEP_TS_FUNCTION
Address of a byte containing the function:

• UEP_TS_FUN_WRITE
• UEP_TS_FUN_REWRITE
• UEP_TS_FUN_READ_INTO

196 CICS TS for z/OS: User Exit Reference

• UEP_TS_FUN_READ_SET
• UEP_TS_FUN_READ_NEXT_INTO
• UEP_TS_FUN_READ_NEXT_SET
• UEP_TS_FUN_DELETE

UEP_TS_QUEUE_NAME
Address of a 16-byte field containing the queue name.

UEP_TS_DATA_P
Address of a fullword containing the address of the data. (Write and rewrite requests).

UEP_TS_DATA_L
Address of a fullword containing the length of the data. (Write and rewrite requests).

UEP_TS_ITEM_NUMBER
Address of a fullword containing the item number. (Rewrite, read_into and read_set requests).

UEP_TS_STORAGE_TYPE
Address of a byte containing the storage type. (Write requests).

On input to the exit, the parameter will be set to either UEP_TS_STORAGE_TYPE_MAIN or
UEP_TS_STORAGE_TYPE_AUX_TST. This parameter may be modified by the exit to any of the
following values.

Note that if CICS® has been initialized with TS main-only support, setting this parameter has no
effect. See the description of the TS system initialization parameter for more information.

UEP_TS_STORAGE_TYPE_MAIN
Main storage.

UEP_TS_STORAGE_TYPE_AUX_TST
Auxiliary storage (recoverability determined by the resource definition).

UEP_TS_STORAGE_TYPE_AUX_RECOV_YES
Auxiliary storage (recoverable).

UEP_TS_STORAGE_TYPE_AUX_RECOV_NO
Auxiliary storage (non-recoverable).

Return codes
UERCNORM

Normal.
UERCPURG

Purged.
XPI calls

All can be used.
API and SPI calls

None can be used.

Exit XTSQROUT
Exit XTSQROUT is invoked after execution of a user temporary storage interface request for a user TS
queue (for example, a WRITEQ TS, or READQ TS request).

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Zero, or the address of the 4-byte terminal ID. If no address is returned, this could mean that this
request has been function shipped over an IPIC connection.

Chapter 1. Global user exit points (by function) 197

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_ts.html

UEPPROG
Address of the 8-byte application program name.

UEP_TS_FUNCTION
Address of a byte containing the function:

• UEP_TS_FUN_WRITE
• UEP_TS_FUN_REWRITE
• UEP_TS_FUN_READ_INTO
• UEP_TS_FUN_READ_SET
• UEP_TS_FUN_READ_NEXT_INTO
• UEP_TS_FUN_READ_NEXT_SET
• UEP_TS_FUN_DELETE

UEP_TS_QUEUE_NAME
Address of a 16-byte field containing the queue name.

UEP_TS_DATA_P
Address of a fullword containing the address of the data. (All requests except delete).

UEP_TS_DATA_L
Address of a fullword containing the length of the data. (All requests except delete).

UEP_TS_ITEM_NUMBER
Address of a fullword containing the item number. (Rewrite, read_into and read_set requests).

UEP_TS_TOTAL_ITEMS
Address of a fullword containing the total number of items in the queue. (All requests except
delete).

UEP_TS_RESPONSE
Address of a byte containing the response after a request has been completed.

• UEP_TS_RESPONSE_OK
• UEP_TS_RESPONSE_PURGED
• UEP_TS_RESPONSE_EXCEPTION
• UEP_TS_RESPONSE_DISASTER
• UEP_TS_RESPONSE_INVALID

Return codes
UERCNORM

Normal response.
UERCPURG

A purged response was received from an XPI request.
XPI calls

All can be used.
API and SPI calls

None can be used.

Exit XTSPTIN
Exit XTSPTIN is invoked before execution of a temporary storage interface request for a CICS internal
queue (for example, for interval control or BMS queues).

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.

198 CICS TS for z/OS: User Exit Reference

UEPTERM
Zero, or the address of the 4-byte terminal ID. If no address is returned, this could mean that this
request has been function shipped over an IPIC connection.

UEPPROG
Address of the 8-byte application program name.

UEP_TS_FUNCTION
Address of a byte containing the function:

• UEP_TS_FUN_PUT
• UEP_TS_FUN_PUT_REPLACE
• UEP_TS_FUN_GET
• UEP_TS_FUN_GET_SET
• UEP_TS_FUN_GET_RELEASE
• UEP_TS_FUN_GET_RELEASE_SET
• UEP_TS_FUN_RELEASE

UEP_TS_QUEUE_NAME
Address of a 16-byte field containing the queue name.

UEP_TS_DATA_P
Address of a fullword containing the address of the data. (Put and put_replace).

UEP_TS_DATA_L
Address of a fullword containing the length of the data. (Put and put_replace).

UEP_TS_STORAGE_TYPE
Address of a byte containing the storage type. (Put requests).

On input to the exit, the parameter will be set to either UEP_TS_STORAGE_TYPE_MAIN or
UEP_TS_STORAGE_TYPE_AUX_TST. This parameter may be modified by the exit to any of the
following values.

Note that if CICS has been initialized with TS main-only support, setting this parameter has no
effect.
UEP_TS_STORAGE_TYPE_MAIN

Main storage.
UEP_TS_STORAGE_TYPE_AUX_TST

Auxiliary storage (recoverability determined by the resource definition).
UEP_TS_STORAGE_TYPE_AUX_RECOV_YES

Auxiliary storage (recoverable).
UEP_TS_STORAGE_TYPE_AUX_RECOV_NO

Auxiliary storage (non-recoverable).

Return codes
UERCNORM

Normal.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI calls

None can be used.

Chapter 1. Global user exit points (by function) 199

Exit XTSPTOUT
Exit XTSPTOUT is invoked after execution of a temporary storage interface request for a CICS internal
queue (for example, for interval control or BMS queues). After execution of a TSPT request. No
parameters may be modified.

Exit-specific parameters
UEPTRANID

Address of the 4-byte transaction ID.
UEPUSER

Address of the 8-byte user ID.
UEPTERM

Zero, or the address of the 4-byte terminal ID. If no address is returned, this could mean that this
request has been function shipped over an IPIC connection.

UEPPROG
Address of the 8-byte application program name.

UEP_TS_FUNCTION
Address of a byte containing the function:

• UEP_TS_FUNCTION_PUT
• UEP_TS_FUN_PUT_REPLACE
• UEP_TS_FUN_GET
• UEP_TS_FUN_GET_SET
• UEP_TS_FUN_GET_RELEASE
• UEP_TS_FUN_GET_RELEASE_SET
• UEP_TS_FUN_RELEASE

UEP_TS_QUEUE_NAME
Address of a 16-byte field containing the queue name.

UEP_TS_DATA_P
Address of a fullword containing the address of the data. (All requests except release).

UEP_TS_DATA_L
Address of a fullword containing the length of the data. (All requests except release).

UEP_TS_RESPONSE
Address of a byte containing the response after a request has been completed.

• UEP_TS_RESPONSE_OK
• UEP_TS_RESPONSE_PURGED
• UEP_TS_RESPONSE_EXCEPTION
• UEP_TS_RESPONSE_DISASTER
• UEP_TS_RESPONSE_INVALID

Return codes
UERCNORM

Normal response.
UERCPURG

A purged response was received from an XPI request.
XPI calls

All can be used.
API and SPI calls

None can be used.

200 CICS TS for z/OS: User Exit Reference

Temporary storage EXEC interface program exits XTSEREQ and XTSEREQC
The XTSEREQ exit allows you to intercept temporary storage API requests before any action has been
taken on the request. The XTSEREQC exit allows you to intercept the response after a temporary storage
API request has completed.

The API requests affected are:

• EXEC CICS WRITEQ TS
• EXEC CICS READQ TS
• EXEC CICS DELETEQ TS.

Using XTSEREQ, you can:

• Analyze the API parameter list (function, keywords, argument values, and responses)
• Modify any input parameter value before execution of a request
• Prevent execution of a request.

Using XTSEREQC, you can:

• Analyze the API parameter list
• Modify any output parameter value after request completion.

You can also:

• Pass data between your XTSEREQ and XTSEREQC exit programs when they are invoked for the same
request

• Pass data between your temporary storage exit programs when they are invoked within the same task.

It is possible that programs invoked from the exits in the temporary storage domain (XTSQRIN,
XTSQROUT, XTSPTIN, and XTSPTOUT) could modify situations set up by XTSEREQ; therefore you must
consider the order in which the exits are invoked.

If all the temporary storage exits are enabled, the order of invocation is as follows:

1. XTSEREQ
2. XTSQRIN
3. XTSQROUT
4. XTSEREQC

Exit XTSEREQ
The XTSEREQ exit allows you to intercept temporary storage API requests before any action has been
taken on the request.

When invoked
Before CICS processes a temporary storage API request.

Exit-specific parameters
UEPCLPS

Address of a copy of the command parameter list. See “The command-level parameter structure”
on page 203.

UEPTQTOK
Address of a 4-byte area which can be used to pass information between XTSEREQ and
XTSEREQC for a single temporary storage request.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code EIBRCODE. For details of EIB return
codes, see EIB fields.

Chapter 1. Global user exit points (by function) 201

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html

UEPRESP
Address of a 4-byte binary copy of the EIB response code EIBRESP.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code EIBRESP2.

UEPTSTOK
Address of a 4-byte token which can be used to pass information between successive temporary
storage requests within the same task (for example, between successive invocations of the
XTSEREQ exit).

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

Return codes
UERCBYP

Bypass this request.
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI commands

All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note: Take care when issuing recursive commands. For example, you must avoid entering a loop when
issuing a temporary storage request from the XTSEREQ exit. Use of the recursion counter UEPRECUR is
recommended.

Exit XTSEREQC
The XTSEREQC exit allows you to intercept the response after a temporary storage API request has
completed.

When invoked
After CICS processes a temporary storage API request, before return from the temporary storage
EXEC interface program.

Exit-specific parameters
UEPCLPS

Address of a copy of the command parameter list. See “The command-level parameter structure”
on page 203.

UEPTQTOK
Address of a 4-byte area which can be used to pass information between XTSEREQ and
XTSEREQC for a single temporary storage request.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code EIBRCODE. For details of EIB return
codes, see EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code EIBRESP.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code EIBRESP2.

202 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html

UEPTSTOK
Address of a 4-byte token which can be used to pass information between successive temporary
storage requests within the same task (for example, between successive invocations of the
XTSEREQC exit).

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEP_TS_REMOTE_SYSTEM
If the request is to be sent to a remote region, is the address of an area containing the 4-byte
name of the remote region. The remote region might have been specified by, for example, the
SYSID option of the command, function shipping, or workload management.

If the request is to be executed on the local region, this parameter is the address of a 4-byte area
containing blanks.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.
API and SPI commands

All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

You can update the copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 that you are given in the
parameter list. If you update the values, temporary storage copies the new values into the application
program's EIB after the completion of XTSEREQC or if you specify a return code of UERCBYP in XTSEREQ.

You must set valid temporary storage responses. You must set all three of EIBRCODE, EIBRESP, and
EIBRESP2 to a consistent set of values, such as would be set by temporary storage to describe a valid
completion. CICS does not check the consistency of EIBRCODE, EIBRESP, and EIBRESP2. If EIBRCODE is
set to a non-zero value and EIBRESP is set to zero, CICS will override EIBRESP with a non-zero value. To
help you set values for EIBRCODE, EIBRESP, and EIBRESP2, the values used by temporary storage are
specified in DSECT DFHTSUED.

Note: Take care when issuing recursive commands not to cause a loop. For example, it is your
responsibility to avoid entering a loop when issuing a temporary storage request from the XTSEREQC exit.
Use of the recursion counter UEPRECUR is recommended.

The command-level parameter structure
The command-level parameter structure consists of a series of addresses. The first address points to the
EXEC interface descriptor (EID), which consists of a bit string that describes the type of request and
identifies each keyword specified with the request. The remaining addresses point to pieces of data
associated with the request.

End of parameter list indicator

You can examine the EID to determine the type of request and the keywords specified. You can examine
the other parameters in the list to determine the values of the keywords. You can also modify values of
keywords specified on the request.

Chapter 1. Global user exit points (by function) 203

The high-order bit is set on in the last address set in the parameter list to indicate that it is the last one in
the list. On return from your user exit program, CICS scans the parameter list for the high-order bit to find
the last parameter. Therefore, if you modify the length of the parameter list, you must also reset the high-
order bit to indicate which is the new last address.

The UEPCLPS exit-specific parameter
The UEPCLPS exit-specific parameter is included in both exit XTSEREQ and exit XTSEREQC. It is the
address of the command-level parameter structure.

The command-level parameter structure contains 8 addresses, TS_ADDR0 through TS_ADDR7. It is
defined in the DSECT TS_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHTSUED.

The command-level parameter list is made up as follows.

Note: The relationship between arguments, keywords, data types, and input/output types is summarized
for the temporary storage commands in the following tables:

Table 8. The relationship between arguments, keywords, data types, and input/output types for the
temporary storage commands

Command See

WRITEQ TS Table 9 on page 207

READQ TS Table 10 on page 207

DELETEQ TS Table 11 on page 208

TS_ADDR0
is the address of a 9-byte area called the EID, which is made up as follows:

• TS_GROUP
• TS_FUNCT
• TS_BITS1
• TS_BITS2
• TS_EIDOPT5
• TS_EIDOPT6
• TS_EIDOPT7
• TS_EIDOPT8

TS_GROUP
Always X'0A', indicating that this is a temporary storage request.

TS_FUNCT
One byte that defines the type of request:
X'02'

WRITEQ
X'04'

READQ
X'06'

DELETEQ
TS_BITS1

Existence bits that define which arguments were specified. To obtain the argument associated
with a keyword, you need to use the appropriate address from the command-level parameter
structure. Before using this address, you must check the associated existence bit. If the existence
bit is set off, the argument was not specified in the request and the address should not be used.

204 CICS TS for z/OS: User Exit Reference

X'80'
Set if the request contains an argument for the QUEUE or QNAME keyword. If set, TS_ADDR1
is meaningful.

X'40'
Set if the request contains an argument for any of the FROM, INTO, or SET keywords. If set,
TS_ADDR2 is meaningful.

X'20'
Set if the request contains an argument for the LENGTH keyword. If set, TS_ADDR3 is
meaningful.

X'10'
Set if the request contains an argument for the NUMITEMS keyword. If set, TS_ADDR4 is
meaningful.

X'08'
Set if the request contains an argument for the NUMITEMS or ITEM keyword. If set,
TS_ADDR5 is meaningful.

X'02'
Set if the request contains an argument for the SYSID keyword. If set, TS_ADDR7 is
meaningful.

TS_BITS2
Two bytes not used by temporary storage.

TS_EIDOPT5
Indicates whether certain keywords were specified on the request.
X'80'

QNAME was specified (otherwise QUEUE). You can modify this bit in your user exit if you want.
TS_EIDOPT6

One byte not used by temporary storage.
TS_EIDOPT7

Indicates whether certain functions and/or keywords were specified on the request.
X'10'

WRITEQ NOSUSPEND specified.
X'80'

WRITEQ MAIN or READQ ITEM specified.
X'04'

WRITEQ REWRITE or READQ NUMITEMS specified.
TS_EIDOPT8

Indicates whether certain keywords were specified on the request.
X'80'

ITEM was specified (otherwise NUMITEMS).
TS_ADDR1

is the address of area containing 8-byte name from QUEUE. or 16-byte name from QNAME. To
determine which of these is applied, see the TS_BITS2 field.

TS_ADDR2
is the address of one of the following:

• A 4-byte address from SET (if the request is READQ and TS_EIDOPT5 indicates that this is SET).
• Data from INTO (if the request is READQ and TS_EIDOPT5 indicates that this is not SET).
• Data from FROM (if the request is WRITEQ).

TS_ADDR3
is the address of the halfword value of LENGTH (if the request is READQ or WRITEQ).

Chapter 1. Global user exit points (by function) 205

Warning: For requests that specify INTO, do not change the value of LENGTH to a value greater than
that specified by the application. To do so causes a storage overlay in the application.

TS_ADDR4
is the address of the halfword value of NUMITEMS (if the request is READQ).

TS_ADDR5
is the address of one of the following:

• The halfword value of NUMITEMS (if the request is WRITEQ)
• The halfword value of ITEM (if the request is READQ or WRITEQ).

TS_ADDR6
is the address of a value intended for CICS internal use only. It must not be used.

TS_ADDR7
is the address of an area containing the value of SYSID.

Modifying fields in the command-level parameter structure
Some fields that are passed to temporary storage are used as input to the request, some are used as
output fields, and some are used for both input and output. The method your user exit program uses to
modify a field depends on the usage of the field.

The following are always input fields:

• QUEUE|QNAME
• FROM
• SYSID

The following are always output fields:

• INTO
• NUMITEMS
• SET

LENGTH is an input field on a WRITEQ request, and an output field on a READQ request that specifies
SET. It is both an input and an output field on a READQ request that specifies INTO.

ITEM is an input field on a READQ request, and on a WRITEQ request that specifies REWRITE. It is both
an input and an output field on a WRITEQ request that does not specify REWRITE.

Modifying input fields
The correct method of modifying an input field is to create a new copy of it, and to change the address in
the command-level parameter list to point to your new data.

Do not modify an input field by altering the data that is pointed to by the command-level parameter list.
To do so would corrupt storage belonging to the application program and would cause a failure when the
program attempted to reuse the field.

Modifying output fields

The technique described in “Modifying input fields” on page 206 is not suitable for modifying output
fields. (The results would be returned to the new area instead of the application’s area, and would be
invisible to the application.)

An output field is modified by altering the data that is pointed to by the command-level parameter list. In
the case of an output field, you can modify the application’s data in place, because the application is
expecting the field to be modified anyway.

Modifying fields used for both input and output

An example of a field that is used for both input and output is LENGTH on a READQ request that specifies
INTO. You can treat such fields in the same way as output fields, and they are considered to be the same.

206 CICS TS for z/OS: User Exit Reference

Modifying the EID
It is not possible to modify the EID to make major changes to requests. It is not possible, for example, to
change a READQ request to a WRITEQ request. However, you can make minor changes to requests.

The list that follows shows the bits in the EID that can be modified. Any attempt to modify any other part
of the EID is ignored.

TS_BITS1
X'02'

The existence bit for SYSID.
TS_EIDOPT7

A user exit program at XTSEREQ can set the following on or off for all WRITEQ TS commands:
X'10'

The existence bit for NOSUSPEND.
X'08'

The existence bit for MAIN.

The EID is reset to its original value before return to the application program. That is, changes made to
the EID are retained for the duration of the temporary storage request only.

Note: Your user exit program is prevented from making major changes to the EID. However, you must
take great care when making the minor modifications that are permitted.

Use of the task token UEPTSTOK
The task token UEPTSTOK provides the address of a 4-byte area that you can use to pass information
between successive temporary storage requests in the same task.

For example, you can use UEPTSTOK to pass information between successive invocations of the
XTSEREQ exit. By contrast, UEPTQTOK is usable only for the duration of a single temporary storage
request, because its contents may be destroyed at the end of the request.

Table 9. WRITEQ TS: User arguments and associated keywords, data types, and input/output types

Argument Keyword Data type Input/output type

Arg1 QUEUE CHAR(8) input

Arg1 QNAME CHAR(16) input

Arg2 FROM DATA-AREA input

Arg3 LENGTH BIN(15) input

Arg4 * * *

Arg5 ITEM BIN(15) input/output

Arg5 NUMITEMS BIN(15) output

Arg6 * * *

Arg7 SYSID CHAR(4) input

Note: The different uses of Arg5 are shown, because Arg5 is used by the ITEM and NUMITEMS keywords
which are alternatives and the argument to the ITEM keyword is an input field when REWRITE is
specified.

Table 10. READQ TS: User arguments and associated keywords, data types, and input/output types

Argument Keyword Data type Input/output type

Arg1 QUEUE CHAR(8) input

Arg1 QNAME CHAR(16) input

Chapter 1. Global user exit points (by function) 207

Table 10. READQ TS: User arguments and associated keywords, data types, and input/output types
(continued)

Argument Keyword Data type Input/output type

Arg2 SET DATA-AREA, PTR output

Arg2 INTO DATA-AREA output

Arg3 LENGTH BIN(15) input/output

Arg4 NUMITEMS BIN(15) output

Arg5 ITEM BIN(15) input

Arg6 * *

Arg7 SYSID CHAR(4) input

Table 11. DELETEQ TS: User arguments and associated keywords, data types, and input/output types

Argument Keyword Data type Input/output type

Arg1 QUEUE CHAR(8) input

Arg1 QNAME CHAR(16) input

Arg2 * * *

Arg3 * * *

Arg4 * * *

Arg5 * * *

Arg6 * * *

Arg7 SYSID CHAR(4) input

Modifying user arguments

User exit programs can modify user arguments, as follows:

For input arguments, the user exit program should obtain sufficient storage to hold the modified
argument, set up that storage to the required value, and set the associated pointer in the parameter list to
the address of the newly acquired area.

For output arguments, and for input/output arguments, the user exit program can update the argument in
place, because the area of storage is represented by a variable in the application which is expected to
receive a value from CICS.

Note:

1. CICS does not check changes to argument values, so any changes must be verified by the user exit
program making the changes.

2. It is not advisable for XTSEREQ to modify output arguments or for XTSEREQC to modify input
arguments.

Adding user arguments
Global user exit programs can add arguments associated with the SYSID keyword. You must ensure that
the arguments you specify or modify in your exit programs are valid.

Assuming that the argument to be added does not already exist, the user exit program must:

1. Obtain storage for the argument to be added
2. Initialize the storage to the required value

208 CICS TS for z/OS: User Exit Reference

3. Select and set up the appropriate pointer from the parameter list
4. Select and set up the appropriate argument existence bit in the EID
5. Modify the parameter list to reflect the new end of list indicator.

Removing user arguments
User exit programs can remove arguments (for which the program is totally responsible) associated with
the SYSID keyword:

Assuming that the argument to be removed exists, the user exit program must:

1. Switch the corresponding argument existence bit to '0'b in the EID
2. Modify the parameter list to reflect the new end of list indicator.

Example program

CICS supplies—as a softcopy listing only (not as a source code file)—an example program, DFH$XTSE,
that shows how temporary storage requests can be modified. .

Terminal allocation program exit XALCAID
XALCAID is driven when an automatic initiation descriptor (AID) with data is canceled either by the CEMT
transaction, running a SET TERMINAL or SET CONNECTION command, or during the reinstallation of a
terminal or connection.

XALCAID is invoked only if there is data associated with the AID.

When invoked
Whenever an AID with data is canceled.

Note: It is not possible for the exit to prevent the request from being canceled.

Exit-specific parameters
UEPALTSD

Address of a 4-byte field containing the symbolic identifier of the transaction which was to be
started by this request.

UEPALTRM
Address of a 4-byte field containing the identifier of the terminal or connection to which this
request was directed.

UEPALDAT
Address of an area of storage containing the data specified in the FROM option; or hexadecimal
zeros, in either of the following cases:

• The AID was created by a START request without a FROM option.
• The AID is associated with a channel (in which case the field pointed to by UEPALCHN will be set

to a name other than blanks).

UEPALLEN
Address of a fullword binary field containing the length of the FROM data; or hexadecimal zeros, in
either of the following cases:

• The AID was created by a START request without a FROM option.
• The AID is associated with a channel (in which case the field pointed to by UEPALCHN will be set

to a name other than blanks).

UEPALRQD
Address of an 8-byte field containing the value of the REQID associated with the FROM data. The
data was stored in a temporary storage queue with this name. This value was either specified
explicitly using the REQID option on the START command, or created internally by CICS.

Chapter 1. Global user exit points (by function) 209

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0016.html

UEPALQUE
Address of an 8-byte field containing the value specified in the QUEUE option on the START
command; or hexadecimal zeros if QUEUE was not specified.

UEPALRTE
Address of a 4-byte field containing the value specified in the RTERMID option on the START
command, or hexadecimal zeros if RTERMID was not specified.

UEPALRTA
Address of a 4-byte field containing the value specified in the RTRANSID option on the START
command, or hexadecimal zeros if RTRANSID was not specified.

UEPALFMH
Address of a 1-byte field containing the value X'FF' if the data contains FMHs, as specified by the
FMH option on the associated START command; or hexadecimal zeros otherwise.

UEPALSTC
Address of a 2-byte field containing the start code. This is "SZ" for FEPI starts; otherwise it is
"SD".

UEPALCHN
Address of a 16-byte field containing the name of the channel associated with the AID. If there is
no channel associated with the AID, this field is set to blanks.

Return codes
UERCNORM

No other return codes are supplied. The value of the return code is not inspected.
XPI calls

You can use:

• INQ_APPLICATION_DATA
• INQUIRE_SYSTEM

No other XPI calls should be used.

API and SPI commands
No EXEC CICS commands can be used.

Note: The XALTENF exit, used to handle the “terminal not known” condition, is also invoked from the
terminal allocation program. XALTENF is described in “‘Terminal not known’ condition exits XALTENF and
XICTENF” on page 212.

Terminal control program exits (XTCIN, XTCOUT, XTCATT)
These exits are invoked before I/O events for sequential devices or before task attaches.

Exit XTCIN
When invoked

After an input event for a sequential device.
Exit-specific parameters

UEPTCTTE
Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). Your exit program should not change the
address. The TIOA can be mapped using the DSECT DFHTIOA. However, fields TIOASAL and
TIOASCA are not programming interfaces.

210 CICS TS for z/OS: User Exit Reference

UEPTCTLE
Address of the terminal control table line entry (TCTLE). The TCTLE can be mapped using the
DSECT DFHTCTLE.

Return codes
UERCNORM

Continue processing.
XPI calls

All can be used. However, note that you cannot use a GETMAIN call to obtain terminal-class storage
for use as a replacement TIOA.

Exit XTCOUT
When invoked

Before an output event for a sequential device.
Exit-specific parameters

UEPTCTTE
Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). Your exit program should not change the
address. The TIOA can be mapped using the DSECT DFHTIOA. However, fields TIOASAL and
TIOASCA are not programming interfaces.

UEPTCTLE
Address of the terminal control table line entry (TCTLE). The TCTLE can be mapped using the
DSECT DFHTCTLE.

Return codes
UERCNORM

Continue processing.
XPI calls

All can be used. However, note that you cannot use a GETMAIN call to obtain terminal-class storage
for use as a replacement TIOA.

Exit XTCATT
When invoked

Before task attach.
Exit-specific parameters

UEPTCTTE
Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). The TIOA can be mapped using the DSECT
DFHTIOA. However, fields TIOASAL and TIOASCA are not programming interfaces.

UEPTCTLE
Address of the terminal control table line entry (TCTLE). The TCTLE can be mapped using the
DSECT DFHTCTLE.

UEPTRAN
Address of the 4-byte transaction id.

Return codes
UERCNORM

Continue processing.

Chapter 1. Global user exit points (by function) 211

XPI calls
All can be used.

‘Terminal not known’ condition exits XALTENF and XICTENF
The ‘terminal not known’ condition can occur when intercommunicating CICS regions use both
SHIPPABLE terminal definitions and automatic transaction initiation (ATI). The condition is especially
likely to arise if autoinstall is used.
SHIPPABLE attribute

Terminals defined with the SHIPPABLE attribute in a terminal-owning region (TOR) do not need a
definition in a connected application-owning region (AOR). If necessary to support transaction
routing, CICS ships a copy of the definition from the TOR to the AOR. For further information, refer to
Shipping terminal and connection definitions.

Automatic transaction initiation (ATI)
ATI occurs when an internally generated request leads to the initiation of a transaction. For example,
when:

• An application issues an EXEC CICS START command, or
• The transient data trigger level is reached.

Two CICS modules handle ATI requests:

The interval control program processes a START command, checks that the terminal is known in the
local system, and (when any START time interval elapses) calls the terminal allocation program.

The terminal allocation program is called by the interval control program or by the transient data
triggering mechanism, and checks that the terminal is known in the local system. If the requested
terminal is remote, the terminal allocation program ships an ATI request to the remote system, which
initiates transaction routing back to the local system.

For guidance information about ATI, refer to Traditional routing of transactions started by ATI.

‘Terminal not known’ condition
The ‘terminal not known’ condition arises when an ATI request is made for a terminal not known in
the region. An ATI request can occur in the AOR for a SHIPPABLE terminal before any transaction
routing has taken place for the terminal, and so before the definition of the terminal can have been
shipped from the TOR to the AOR.

If the ‘terminal not known’ condition occurs, both the interval control program and the terminal
allocation program reject the transaction-initiation request as ‘TERMIDERR’.

The exits
To deal with the ‘terminal not known’ condition, CICS provides global user exits in the interval control and
terminal allocation programs:
XICTENF

In the interval control program
XALTENF

In the terminal allocation program.

CICS drives the XICTENF exit when the ‘terminal not known’ condition occurs after the interval control
program has been invoked by an EXEC CICS START command. CICS drives the XALTENF exit when the
‘terminal not known’ condition occurs after the terminal allocation program has been invoked by the
transient data trigger level or the interval control program. Note that an EXEC CICS START command
could result in both exits being invoked.

The exit program must indicate whether the terminal exists on another system and, if so, on which one.
CICS passes data to the exit program to help establish this information. You can use the same exit
program at both exit points. CICS supplies a sample exit program, DFHXTENF, that can be used at both
exits and that can deal unchanged with some typical situations.

212 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht111.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0029.html

The exits are designed to deal with ‘terminal not known’ conditions that occur in CICS regions other than
the TOR. For a TOR/AOR pair, enable the exit program in the AOR. The exits cannot deal with a ‘terminal
not known’ condition in the TOR and the exit program should not normally be enabled there. However, if
more than one TOR exists, you may need to enable the exit program in each TOR to deal with requests for
terminals owned by other TORs. In this case, the exit program must recognize terminals that should be
owned by this system and reject the requests (‘UERCTEUN’). Although the exit provides as much data as
possible, the logic of your program depends entirely on your system design. A simple solution to the most
complex case would be to make the name of each terminal reflect the netname or sysid of its owning
region.

Data returned by exit
The exit program must set a return code in register 15 as follows:

UERCTEUN
Terminal does not exist

UERCNETN
Netname of TOR returned

UERCSYSI
Sysid of TOR returned.

For return codes UERCNETN and UERCSYSI, the exit program must place the netname or sysid of the
terminal-owning region in fields UEPxxNTO or UEPxxSYO (where xx is AL or IC).

If the terminal-owning region is a member of a z/OS Communications Server generic resource, the exit
program should place the netname of the terminal in field UEPxxNNO. For information about using ATI
with z/OS Communications Server generic resources, see Using ATI with generic resources.

Exit XALTENF
Exit XALTENF is invoked by the terminal allocation program when the terminal that an ATI request from
transient data or interval control requires is unknown in this system. The exit program is expected to give
a return code indicating whether the terminal exists on another connected CICS system and, if so, on
which one.

Exit-specific parameters
UEPALEVT

Address of 2 bytes containing the type of request. The equated values of the types are:
UEPALESD

START command with data
UEPALES

START command without data
UEPALETD

Transient data trigger level reached.
UEPALTR

Address of 1 byte containing an indication of whether the task issuing the START command was
started by transaction routing. The equated values are:
UEPALTY

A START command was being processed and the task issuing the command was transaction
routed to.

UEPALTN
A START command was not being processed or a START command was being processed but
the task issuing the command was not transaction routed to.

UEPALFS
Address of 1 byte containing an indication of whether the START command was function shipped.
The equated values are:

Chapter 1. Global user exit points (by function) 213

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht174.html

UEPALFY
A START command was being processed and the START was function shipped.

UEPALFN
A START command was not being processed or a START was being processed but it was not
function shipped.

UEPALTRN
Address of 4 bytes containing the name of the transaction to be run.

UEPALRTR
Address of 4 bytes containing the name of the terminal on which the transaction should run. (If a
transient data trigger level was reached and the transient data queue definition specified a
system, then this would contain a system identifier.)

UEPALCTR
Address of 4 bytes containing, for START commands, the name of the current terminal if the
command was transaction routed, or the name of the session if the command was function
shipped.

For other START commands and for transient data trigger events, the field pointed to contains
blanks.

UEPALNTI
Address of 8 bytes containing, for function-shipped START commands, the netname of the last
system from which the request came.

For START commands issued in this system by transaction routing to a task, the netname of the
last system from which the task was routed.

For other START command situations and for transient data trigger level events, the field pointed
to contains blanks.

UEPALSYI
Address of 4 bytes containing, if UEPALNTI contains a netname, the corresponding sysid.

If UEPALNTI does not contain a netname, the field pointed to is blank.

UEPALNTO
Address of 8 bytes containing the contents of UEPALNTI.

If it sets a return code of ‘UERCNETN', your exit program must place in this field the netname
of the system to which the ATI request should be sent.

UEPALSYO
Address of 4 bytes containing the contents of UEPALSYI.

If it sets a return code of ‘UERCSYSI', your exit program must place in this field the sysid of
the system to which the ATI request should be sent.

UEPALNNI
Address of a 4-byte input field containing the netname of the terminal on which the transaction is
to run, if this is known to CICS. If CICS does not know the netname, the addressed field contains
blanks.

UEPALNNO
Address of a 4-byte input/output field containing, on invocation, the contents of UEPALNNI. Your
exit program can use this field to supply the netname of the terminal on which the transaction is to
run. It is important that your exit program supply a terminal netname if the TOR to which it directs
the ATI request is a member of a z/OS Communications Server generic resource.

Return codes
UERCTEUN

Terminal unknown, reject request.
UERCNETN

Terminal known, netname returned in UEPALNTO.

214 CICS TS for z/OS: User Exit Reference

UERCSYSI
Terminal known, sysid returned in UEPALSYO.

XPI calls
You can use:

• INQ_APPLICATION_DATA
• INQUIRE_SYSTEM.

No other XPI calls should be used.

Sample exit program

DFHXTENF is a sample program that can be used for the XALTENF and XICTENF exits. For more
information about DFHXTENF, see Terminal-not-known sample exit program: DFHXTENF.

Exit XICTENF
Exit XICTENF is invoked by the interval control program when the terminal that an EXEC CICS START
command requires is unknown in this system.

When invoked
By the interval control program when the terminal that an EXEC CICS START command requires is
unknown in this system. The exit program is expected to give a return code indicating whether the
terminal exists on another connected CICS system and, if so, on which one.

Exit-specific parameters
UEPICEVT

Address of 2 bytes containing the type of request. The equated values of the types are:
UEPICESD

START command with data
UEPICES

START command without data.
UEPICTR

Address of 1 byte containing an indication of whether the task issuing the START command was
started by transaction routing. The equated values are:
UEPICTY

A START command was being processed and the task issuing the command was transaction
routed to.

UEPICTN
A START command was not being processed or a START command was being processed but
the task issuing the command was not transaction routed to.

UEPICFS
Address of 1 byte containing an indication of whether the START command was function shipped.
The equated values are:
UEPICFY

A START command was being processed and the START was function shipped.
UEPICFN

A START command was not being processed or a START was being processed but it was not
function shipped.

UEPICTRN
Address of 4 bytes containing the name of the transaction to be run.

UEPICRTR
Address of 4 bytes containing the name of the terminal on which the transaction should run.

Chapter 1. Global user exit points (by function) 215

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0029.html

UEPICCTR
Address of 4 bytes containing, for START commands, the name of the current terminal if the
command was transaction routed, or the name of the session if the command was function
shipped.

For other START commands, the field pointed to contains blanks.

UEPICNTI
Address of 8 bytes containing, for function-shipped START commands, the netname of the last
system from which the request came.

For START commands issued in this system by transaction routing to a task, the netname of the
last system from which the task was routed.

For other START command situations, the field pointed to contains blanks.

UEPICSYI
Address of 4 bytes containing, if UEPICNTI contains a netname, the corresponding SYSID.

If UEPICNTI does not contain a netname, the field pointed to is blank.

UEPICNTO
Address of 8 bytes containing the contents of UEPICNTI.

If it sets a return code of ‘UERCNETN', your exit program must place in this field the netname
of the system to which the ATI request should be sent.

UEPICSYO
Address of 4 bytes containing the contents of UEPICSYI.

If it sets a return code of ‘UERCSYSI', your exit program must place in this field the sysid of
the system to which the ATI request should be sent.

UEPICNNI
Address of a 4-byte input field containing the netname of the terminal on which the transaction is
to run, if this is known to CICS. If CICS does not know the netname, the addressed field contains
blanks.

UEPICNNO
Address of a 4-byte input/output field containing, on invocation, the contents of UEPICNNI. Your
exit program can use this field to supply the netname of the terminal on which the transaction is to
run. It is important that your exit program supply a terminal netname if the TOR to which it directs
the ATI request is a member of a z/OS Communications Server generic resource.

Return codes
UERCTEUN

Terminal unknown, reject request.
UERCNETN

Terminal known, netname returned in UEPICNTO.
UERCSYSI

Terminal known, sysid returned in UEPICSYO.
UERCPURG

Task purged during XPI call.
XPI calls

The following must not be used:

• ADD_SUSPEND
• DELETE_SUSPEND
• DEQUEUE
• ENQUEUE
• RESUME

216 CICS TS for z/OS: User Exit Reference

• SUSPEND
• WAIT_MVS.

Sample exit program

DFHXTENF is a sample program that can be used for the XALTENF and XICTENF exits. For more
information about DFHXTENF, see Terminal-not-known sample exit program: DFHXTENF.

Transaction manager domain exit XXMATT
Exit XXMATT is invoked during transaction attach, and is able to change some of the attributes of the
transaction that is being attached.

The exit can change the attach transaction ID of the transaction by changing the field addressed by
UEPATPTI. You cannot use EXEC CICS commands from this exit.

Exit-specific parameters
UEPTRANID

The address of transaction ID (see Notes).
UEPUSER

The address of the user ID associated with the transaction if the current task is a user task (see
Notes).

UEPTERM
The address of the terminal ID associated with the transaction, if any (see Notes).

UEPPROG
The address of the application program name for this transaction, if any (see Notes).

UEPATPTI
The address of a 4 byte field containing the primary transaction ID. You can change the primary
transaction ID by modifying the addressed field.

UEPATOTI
The address of the 4 byte attach transaction ID. A transid of X'00000000' indicates that a transid
was not supplied on the attach.

UEPATTPL
The address of an area containing the length of the attach TPName. A length of zero indicates that
a TPName was not supplied on the attach.

UEPATTPA
The address of a fullword containing the address of the attach TPName. The attach TPName can
be 1 through 64 bytes long, as defined by UEPTTPL.

UEPATLOC
The address of a 1 byte field indicating whether the transaction was found. Note that if the
transaction was not found but system initialization parameters DTRTRAN and DTRPGM are
specified, the transaction specified on DTRTRAN is attached, and CICS considers that the
transaction has been found.

Equated values are:
UEATFND

The transaction was found.
UEATNFND

The transaction was not found.

UEPATTST
The address of a 1 byte transaction definition state. Equated values for the definition state are:
UEATENAB

The transaction is enabled.

Chapter 1. Global user exit points (by function) 217

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0029.html

UEATDISA
The transaction is disabled.

UEPATTTK
The address of a doubleword containing a transaction token. Note that some of the transaction
manager XPI calls require this token to identify the transaction that is being attached.

Return codes
UERCNORM

Continue attach processing.
XPI calls

The user exit can inquire on the transaction being attached, using the UEPATTTK transaction token as
input to the XMIQ INQUIRE_TRANSACTION XPI call.

The exit can also set the total priority and TCLASS, using the XMIQ SET_TRANSACTION XPI call.

Most of the XPI calls can be used, but with caution since typically this exit is invoked under the TCP
task. Thus it is advisable not to issue any XPI calls that might cause the TCP task to wait.

Note:

1. The following XPI calls can be useful for obtaining information that could be used to modify the attach
of a transaction:

• INQUIRE_TRANSACTION
• INQUIRE_MXT
• INQUIRE_TCLASS
• INQUIRE_TRANDEF
• INQUIRE_SYSTEM

2. The fields UEPTRANID, UEPUSER, UEPTERM, and UEPPROG are common to many of the domain
global user exit points, and normally return values associated with the current user task. In the case of
XXMATT, however, the user task that is being attached is not the current task when the exit is invoked.
Until task attach is complete, the current task is the CICS task that is performing the attach.

When the task being attached is for a task started by an immediate START command; that is, a START
without an interval, the current task is the task that issues the START command, and the fields contain
values associated with that task.

Transient data program exits (XTDREQ, XTDIN, XTDOUT)
The XTDREQ exit intercepts a transient data request before request analysis. The XTDOUT and XTDIN
exits are invoked before and after data is exchanged with QSAM or VSAM.

The CICS transient data facility is threadsafe, so CICS can process transient data requests on an open
TCB. Transient data requests are also threadsafe when you function ship them to a remote region over an
IPIC connection. To optimize TCB switching and gain the performance benefits of the open transaction
environment, programs running at XTDREQ, XTDIN, and XTDOUT must be coded to threadsafe standards
and defined to CICS as threadsafe.

Exit XTDREQ
Exit XTDREQ is invoked before request analysis.

Exit-specific parameters
UEPTDQUE

Address of 4-byte TD queue name.
UEPTDTYP

Address of 1-byte TD request type. Values are:

218 CICS TS for z/OS: User Exit Reference

UEPTDPUT
PUT request

UEPTDGET
GET request

UEPTDPUR
PURGE request.

Return codes
UERCNORM

Continue TD processing.
UERCTDOK

Quit TD processing – returning ‘NORMAL' to the caller.
UERCTDNA

Quit TD processing – returning ‘NOTAUTH' to the caller.
UERCPURG

Task purged during XPI call.
XPI calls

You can use:

• INQ_APPLICATION_DATA
• INQUIRE_SYSTEM
• WAIT_MVS

Do not use any other calls.

Exit XTDIN
Exit XTDIN is invoked after CICS receives data from QSAM (for extrapartition) or VSAM (for intrapartition).

Exit-specific parameters
UEPTDQUE

Address of the 4-byte TD queue name.
UEPTDAUD

Address of the unmodified TD data.
UEPTDLUD

Address of the fullword length of the unmodified TD data.
UEPTDAMD

Address of the TD data modified by the exit program.
UEPTDLMD

Address of the fullword length of the TD data modified by the exit program.
Return codes

UERCNORM
Continue TD processing.

UERCPURG
Task purged during XPI call.

XPI calls
You can use:

• INQ_APPLICATION_DATA
• INQUIRE_SYSTEM
• WAIT_MVS

Do not use any other calls.

Chapter 1. Global user exit points (by function) 219

Exit XTDOUT
Exit XTDOUT is invoked before CICS passes data to a QSAM (for extrapartition) or VSAM (for intrapartition)
user-defined transient data queue.

Exit-specific parameters
UEPTDQUE

Address of the 4-byte TD queue name.
UEPTDAUD

Address of the unmodified TD data.
UEPTDLUD

Address of the fullword length of the unmodified TD data.
UEPTDAMD

Address of the TD data modified by the exit program.
UEPTDLMD

Address of the fullword length of TD data modified by the exit program.
UEPTDNUM

Address of the fullword containing the number of items in the list.
UEPTDCUR

Address of the fullword containing the number of the current item.
Return codes

UERCNORM
Continue TD processing.

UERCTDOK
Quit TD processing – returning ‘NORMAL' to the caller.

Note: If you return UERCTDOK to suppress the first line of a multiline message, the rest of the
message is not presented to XTDOUT, but is also suppressed.

UERCPURG
Task purged during XPI call.

XPI calls
You can use:

• INQ_APPLICATION_DATA
• INQUIRE_SYSTEM
• WAIT_MVS

Do not use any other calls.

Transient data EXEC interface program exits XTDEREQ and XTDEREQC
The XTDEREQ exit intercepts a transient data request before any action has been taken on it by transient
data. The XTDEREQC exit intercepts a transient data request after transient data has completed its
processing.

You can change the XTDEREQ exit to perform the following tasks:

• Analyze the request to determine its type, the keywords specified, and their values.
• Modify any value specified by the request before the command is executed.
• Set return codes to specify either of the following instructions:

– CICS should continue with the request, with any modifications that you made.
– CICS should bypass the request. If you set this return code, you must also set up return codes for the

EXEC interface block (EIB), as if you had processed the request yourself.

220 CICS TS for z/OS: User Exit Reference

You can change the XTDEREQC exit to perform the following tasks:

• Analyze the request, to determine its type, the keywords specified, and their values.
• Set return codes for the EIB.

The CICS transient data facility is threadsafe, so CICS can process transient data requests on an open
TCB. Transient data requests are also threadsafe when you function ship them to a remote region over an
IPIC connection. To optimize TCB switching and gain the performance benefits of the open transaction
environment, programs that run at XTDEREQ and XTDEREQC must be coded to threadsafe standards and
defined to CICS as threadsafe.

Both exits are passed eight parameters as follows:

• The address of the command-level parameter structure.
• The address of a token (UEPTDTOK) used to pass 4 bytes of data from XTDEREQ to XTDEREQC.
• The addresses of copies of four pieces of return code and resource information from the EIB.
• The address of a token (UEPTSTOK) that is valid throughout the life of a task.
• The address of an exit recursion count (UEPRECUR).

Example program

CICS supplies, as a softcopy listing only and not as a source code file, an example program, DFH$XTSE,
that shows how to modify fields in the command-level parameter structure passed to EXEC interface
exits.

Exit XTDEREQ
Exit XTDEREQ is invoked before CICS processes a transient data API request.

Exit-specific parameters
UEPCLPS

Address of the command-level parameter structure. See “The UEPCLPS exit-specific parameter”
on page 224.

UEPTDTOK
Address of the 4-byte token to be passed to XTDEREQC. UEPTDTOK allows you, for example, to
pass a work area to exit XTDEREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code ‘EIBRCODE'. For details of EIB
return codes, refer to EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP'.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP2'.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

Return codes
UERCNORM

Continue processing.

Chapter 1. Global user exit points (by function) 221

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0016.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

UERCBYP
The transient data EXEC interface program ignores this request.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, we recommend that you use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI commands
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note: Take care when issuing recursive commands. For example, you must avoid entering a loop when
issuing a transient data request from the XTDEREQ exit. Use of the recursion counter UEPRECUR is
recommended.

Exit XTDEREQC
Exit XTDEREQC is invoked after a transient data API request has completed, and before return from the
transient data EXEC interface program.

Exit-specific parameters
UEPCLPS

Address of the command-level parameter structure. See “The UEPCLPS exit-specific parameter”
on page 224.

UEPTDTOK
Address of the 4 byte token to be passed to XTDEREQC. This allows you, for example, to pass a
work area to exit XTDEREQC.

UEPRCODE
Address of a 6-byte hexadecimal copy of the EIB return code ‘EIBRCODE'. For details of EIB
return codes, refer to EIB fields.

UEPRESP
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP'.

UEPRESP2
Address of a 4-byte binary copy of the EIB response code ‘EIBRESP2'.

UEPTSTOK
Address of a 4-byte token that is valid throughout the life of a task. See Using the task token
UEPTSTOK.

UEPRECUR
Address of a halfword recursion counter. The counter is set to 0 when the exit is first invoked, and
is incremented for each recursive call.

UEPRSRCE
Address of an 8-character copy of the EIB resource value, EIBRSRCE.

UEP_TD_REMOTE_SYSTEM
If the request is to be sent to a remote region, is the address of an area containing the 4-byte
name of the remote region. (The remote region may have been specified by, for example, the
SYSID option of the command, function shipping, or the REMOTESYSTEM option of the TDQUEUE
definition.)

If the request is to be executed on the local region, this parameter is the address of a 4-byte area
containing blanks.

222 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_eibfields.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/uttok.html

UEP_TD_REMOTE_NAME
If the request is to be sent to a remote region, is the address of an area containing the 4-character
name by which the queue is known in the remote region.

Return codes
UERCNORM

Continue processing.
UERCPURG

Task purged during XPI call.
XPI calls

All can be used.

Although the exit permits the use of XPI GETMAIN and FREEMAIN calls, we recommend that you use
the EXEC CICS GETMAIN and FREEMAIN commands instead.

API and SPI commands
All can be used, except for:

EXEC CICS SHUTDOWN
EXEC CICS XCTL

Note: Take care when issuing recursive commands. For example, you must avoid entering a loop when
issuing a transient data request from the XTDEREQC exit. Use of the recursion counter UEPRECUR is
recommended.

The command-level parameter structure

Figure 8. The command-level parameter structure for transient data

The command-level parameter structure consists of a series of addresses. The first address points to the
EXEC interface descriptor (EID), which consists of an 8-byte area that describes the type of request and
identifies each keyword specified with the request. The remaining addresses point to pieces of data
associated with the request. (For example, the second address points to the queue name.)

Chapter 1. Global user exit points (by function) 223

You can examine the EID to determine the type of request and the keywords specified. You can examine
the other parameters in the list to determine the values of the keywords. You can also modify values of
keywords specified on the request. (For example, you could change the sysid specified in the request.)

End of parameter list indicator

The high-order bit is set on in the last address set in the parameter list to indicate that it is the last one in
the list. On return from your user exit program, CICS scans the parameter list for the high-order bit to find
the last parameter. Therefore, if you modify the length of the parameter list, you must also reset the high-
order bit to indicate which is the new last address.

For example, if the parameter list specifies only the first two addresses (TD_ADDR0, the address of the
EID, and TD_ADDR1, the address of the name of the queue named in a DELETEQ request), the high-order
bit is set on in TD_ADDR1. If you extend the parameter list by setting the address of a SYSID in
TD_ADDR7, you must reset the high-order bit in TD_ADDR1 and set it on in TD_ADDR7 instead.

The maximum size of parameter list is supplied to the exit, thus allowing your exit program to add any
parameters not already specified without needing to first obtain more storage.

The original parameter list, as it was before XTDEREQ was invoked, is restored after the completion of
XTDEREQC. It follows that the execution diagnostic facility (EDF) displays the original command before
and after execution. EDF does not display any changes made by the exit.

The UEPCLPS exit-specific parameter
The UEPCLPS exit-specific parameter is included in both exit XTDEREQ and exit XTDEREQC. It contains
the address of the command-level parameter structure.

The command-level parameter structure contains 8 addresses, TD_ADDR0 through TD_ADDR7. It is
defined in the DSECT TD_ADDR_LIST, which you should copy into your exit program by including the
statement COPY DFHTDUED.

The command-level parameter list is made up as follows:

TD_ADDR0
is the address of an 8-byte area called the EID, which is made up as follows:

• TD_GROUP
• TD_FUNCT
• TD_BITS1
• TD_BITS2
• TD_EIDOPT5
• TD_EIDOPT6
• TD_EIDOPT7

TD_GROUP
Always X'08', indicating that this is a transient data request.

TD_FUNCT
One byte that defines the type of request:
X'02'

WRITEQ
X'04'

READQ
X'06'

DELETEQ.
TD_BITS1

Existence bits that define which arguments were specified. To obtain the argument associated
with a keyword, you need to use the appropriate address from the command-level parameter

224 CICS TS for z/OS: User Exit Reference

structure. Before using this address, you must check the associated existence bit. If the existence
bit is set off, the argument was not specified in the request and the address should not be used.
X'80'

Set if the request contains an argument for the QUEUE keyword. If set, TD_ADDR1 is
meaningful.

X'40'
Set if the request contains an argument for any of the INTO, SET, or FROM keywords. If set,
TD_ADDR2 is meaningful.

X'20'
Set if the request contains an argument for the LENGTH keyword. If set, TD_ADDR3 is
meaningful.

X'02'
Set if the request contains an argument for the SYSID keyword. If set, TD_ADDR7 is
meaningful.

TD_BITS2
Two bytes not used by transient data.

TD_EIDOPT5
Indicates whether certain keywords were specified on the request.
X'01'

SET (and not INTO) was specified.
TD_EIDOPT6

One byte not used by transient data.
TD_EIDOPT7

Indicates whether certain functions, keywords or both were specified on the request:
X'40'

WRITEQ specified
X'80'

READQ specified
X'C0'

READQ(nosuspend) specified
X'04'

DELETEQ specified.
TD_ADDR1

is the address of a 4-byte area containing the name from QUEUE.
TD_ADDR2

is the address of one of the following:

• A 4-byte address from SET (if the request is READQ and TD_EIDOPT5 indicates that this is SET).
• Data from INTO (if the request is READQ and TD_EIDOPT5 indicates that this is not SET). You

cannot modify this bit in your user exit.
• Data from FROM (if the request is WRITEQ).

TD_ADDR3
is the address of one of the following:

• The halfword value of LENGTH (if the request is READQ or WRITEQ). Warning: For requests that
specify INTO, do not change the value of LENGTH to a value greater than that specified by the
application. To do so causes a storage overlay in the application.

TD_ADDR4
is the address of a value intended for CICS internal use only. It must not be used.

TD_ADDR5
is the address of a value intended for CICS internal use only. It must not be used.

Chapter 1. Global user exit points (by function) 225

TD_ADDR6
is the address of a value intended for CICS internal use only. It must not be used.

TD_ADDR7
is the address of an area containing the value of SYSID.

TD_ADDR8
is the address of a value intended for CICS internal use only. It must not be used.

Modifying fields in the command-level parameter structure
Some fields that are passed to transient data are used as input to the request, some are used as output
fields, and some are used for both input and output. The method your user exit program uses to modify a
field depends on the usage of the field.

The following are always input fields:

• QUEUE
• FROM
• SYSID

The following are always output fields:

• INTO
• SET

LENGTH is an input field on a WRITEQ request, and an output field on a READQ request that specifies
SET. It is both an input and an output field on a READQ request that specifies INTO.

Modifying input fields
The correct method of modifying an input field is to create a new copy of it, and to change the address in
the command-level parameter list to point to your new data.

Note: You must never modify an input field by altering the data that is pointed to by the command-level
parameter list. To do so would corrupt storage belonging to the application program and would cause a
failure when the program attempted to reuse the field.

Modifying output fields

The technique described in “Modifying input fields” on page 226 is not suitable for modifying output
fields. (The results would be returned to the new area instead of the application’s area, and would be
invisible to the application.)

An output field is modified by altering the data that is pointed to by the command-level parameter list. In
the case of an output field, you can modify the application’s data in place, because the application is
expecting the field to be modified.

Modifying fields used for both input and output
An example of a field that is used for both input and output is LENGTH on a READQ request that specifies
INTO. You can treat such fields in the same way as output fields, and they are considered to be the same.

Modifying the EID
It is not possible to modify the EID to make major changes to requests, such as changing a READQ
request to a WRITEQ request. However, you can make minor changes to requests, such as turning on the
existence bit for SYSID so that the request can be changed into one that is shipped to a remote system.

The list that follows shows the bits in the EID that can be modified. Any attempt to modify any other part
of the EID is ignored.

TD_BITS1
X'20'

The existence bit for LENGTH.
X'02'

The existence bit for SYSID.

226 CICS TS for z/OS: User Exit Reference

TD_EIDOPT5
X'01'

Existence bit for SET keyword. You cannot modify this bit from your user exit.
TD_EIDOPT7

Changes to TD_EIDOPT7 are limited to READQ requests. X'80'-READQ is interchangeable with X'C0'-
READQ(nosuspend). No other changes may be made to this byte.

The EID is reset to its original value before return to the application program. That is, changes made to
the EID are retained for the duration of the transient data request only.

Note: Your user exit program is prevented from making major changes to the EID. However, you must
take great care when making the minor modifications that are permitted.

The EIB

Copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 are passed to the exit, so that you can:

• Modify or set completion and resource information in XTDEREQ and XTDEREQC
• Examine completion and resource information in XTDEREQC.

You can update the copies of EIBRSRCE, EIBRCODE, EIBRESP, and EIBRESP2 that you are given in the
parameter list. Transient data copies your values into the real EIB after the completion of XTDEREQC; or if
you specify a return code of ‘ bypass’ in XTDEREQ.

You must set valid transient data responses. You must set all three of EIBRCODE, EIBRESP, and
EIBRESP2 to a consistent set of values, such as would be set by CICS transient data to describe a valid
completion. CICS does not police the consistency of EIBRCODE, EIBRESP, and EIBRESP2. However, if
EIBRCODE is set to a non-zero value and EIBRESP is set to zero then CICS will override EIBRESP with a
non-zero value. To aid you in setting the values of EIBRCODE, EIBRESP, and EIBRESP2, the values used
by transient data are specified in DFHTDUED.

User log record recovery program exits XRCINIT and XRCINPT
At warm and emergency restart, updates made to recoverable CICS resources that were not committed
when the system terminated must be backed out. XRCINIT and XRCINPT are invoked from the user log
record recovery program, which is used to back out, where necessary, user-written system log entries.

XRCINIT is invoked at warm and emergency restart:

• Before the first user recovery record is delivered to XRCINPT
• When all such records have been delivered to XRCINPT.

XRCINPT is invoked whenever a user log record is read from the system log.

You can use XRCINPT to change the default actions taken by CICS at emergency restart for particular
user-journaled records. Records passed to XRCINPT are those in UOWs that:

• Appeared in the last complete activity keypoint
• Were in flight when CICS terminated
• Committed, backed out, or went indoubt after the start of the last complete activity keypoint. (However,

this only applies to those records for which the leftmost bit of the JTYPEID specified in the WRITE
JOURNALNAME(DFHLOG) request was a one.)

Records written by the activity keypoint exit XAKUSER are passed only if they appear in the last complete
activity keypoint. They are passed after all other records. The order of presentation of records may
therefore be different from their order in the reverse log stream sequence.

The format of records passed to the exit is:
Offset

Field contents

Chapter 1. Global user exit points (by function) 227

0
JTYPEID

2
Reserved

4
Length of prefix data (L). (Zero if no prefix)

8
Prefix data (if any)

8 + L
Log data

The record is mapped by the DSECT CL_USER_HEADER in copybook DFHLGGFD.

When using XRCINIT and XRCINPT, you should bear in mind that the exits may be invoked before
recovery of temporary storage and transient data resources is complete.

Coding the exit programs
You can use CICS services in exit programs invoked from these exits using the XPI or EXEC CICS
commands.

You need to consider the following:

• There is a restriction on using the XPI early during initialization: do not invoke exit programs that use
the XPI functions TRANSACTION_DUMP, WRITE_JOURNAL_DATA, MONITOR and
INQUIRE_MONITOR_DATA until the second phase of the PLTPI.

• There are also restrictions on the use of EXEC CICS commands in these exits:

– You cannot use EXEC CICS commands to access terminal control services.
– You are strongly advised not to use temporary storage, transient data, file control, journal control, or

DL/I services, because the resources that you try to access may also be in a state of recovery and
therefore “not open for business”. Attempting to access resources in these circumstances causes, at
best, serialization of the recovery tasks and, at worst, a deadlock.

If you do issue file control requests in programs invoked from these exits, note that:

- If an exit program acquires an area as a result of a file control request, it is the responsibility of the
program to release that area.

- An exit program must not attempt to make any file control requests to a file referring to a VSAM
data set with a string number of 1, unless no action is specified for that file during the initialization
exit.

– Your exit program must not issue EXEC CICS commands if the recovery is as the result of an EXEC
CICS SYNCPOINT ROLLBACK request.

– Exit programs that issue EXEC CICS commands must first address the EIB. See Using CICS services.
– Exit programs that issue EXEC CICS commands, and that use the DFHEIENT macro, should use the

DFHEIRET macro to set a return code and return to CICS. See Global user exit XPI examples, showing
the use of storage.

– Exit programs invoked from these exits must be translated with the NOEDF option, if they issue EXEC
CICS commands. See EDF and global user exits.

• Task-chained storage acquired in an exit program is released at the completion of emergency restart
processing. However, the exit program should attempt to release the storage as soon as its contents are
no longer needed.

• No exit program should reset either the absent or no-action indicators set by the file control backout
program.

• Take care when issuing recursive commands not to cause a loop. For example, it is your responsibility to
avoid entering a loop when an RC request is issued from these exits.

228 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha33k.html

Enabling the exit programs
To enable these exits, you must do one of the following:

• Specify the system initialization parameter TBEXITS=(name1,name2,name3,name4,name5,name6),
where name1 through name6 are the names of your user exit programs for XRCINIT, XRCINPT,
XFCBFAIL, XFCLDEL, XFCBOVER, and XFCBOUT.

• Enable the exits during the first stage of initialization using a PLTPI program.

If you use the TBEXITS parameter to enable the exits, a global work area of 4 bytes is provided. If you use
a PLTPI program, you can select the size of the global work area. You can also enable more than one exit
program for use at each exit point; the TBEXITS parameter allows only one exit program at each exit
point. PLTPI processing is described in Writing initialization and shutdown programs .

Exit XRCINIT
When invoked

At warm and emergency restart:

• Before the first user recovery record is delivered to XRCINPT
• When all such records have been delivered to XRCINPT.

Exit-specific parameters
UEPTREQ

Address of a 1-byte flag indicating the reason for the call. When UEPTREQ has a value of
UEUSINIT, the exit has been invoked at the start of user recovery, and when UEPTREQ has a value
of UEUSTERM, the exit has been invoked at the end of user recovery.

UEPRSTRT
Address of a 1-byte flag that indicates how CICS was restarted:
UEPRWARM

Warm start
UEPREMER

Emergency start.
Return codes

UERCNORM
Continue processing. No other return codes are supported.

XPI calls
All can be used. See “User log record recovery program exits XRCINIT and XRCINPT” on page 227 for
restrictions.

Exit XRCINPT
When invoked

At warm and emergency restart, once for each user log record found in the system log.
Exit-specific parameters

UEPUOWST
Address of a 1-byte flag indicating the disposition of the unit of work. The possible values are:
UEPUOWAK

Activity keypoint record
UEPUOWCM

Unit of work committed
UEPUOWBO

Unit of work backed out

Chapter 1. Global user exit points (by function) 229

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35h.html

UEPUOWIF
Unit of work was in-flight

UEPUOWID
Unit of work was indoubt.

UEPLGREC
Address of the log record just read. The journal control record can be mapped using the
information supplied in CICS logging and journaling.

UEPLGLEN
Address of a fullword containing the length of the log record.

UEPTAID
Address of a 4-byte field containing the task identifier.

UEPTRID
Address of a 4-byte field containing the transaction identifier.

UEPTEID
Address of a 4-byte field containing the terminal identifier.

Note: The values of the fields addressed by UEPTAID, UEPTRID, and UEPTEID are meaningless for
activity keypoint records (that is, if the field addressed by UEPUOWST contains UEPUOWAK).

Return codes
UERCNORM

Continue processing.
UERCBYP

Bypass this record.
XPI calls

All can be used. See “User log record recovery program exits XRCINIT and XRCINPT” on page 227 for
restrictions.

SNA LU management program exit (XZCATT)
This exit is invoked before a task attach for a LU terminal task.
When invoked

Before task attach for terminal tasks.
Exit-specific parameters

UEPTCTTE
Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). The TIOA can be mapped using the DSECT
DFHTIOA. However, fields TIOASAL and TIOASCA are not programming interfaces.

UEPTPN
Address of the APPC transaction process name (TPN), or the LU6.1 process name (DPN), whose
length is addressed by the parameter UEPTPNL.

UEPTPNL
Address of a 1-byte field containing the length of the TPN or DPN.

UEPTRAN
Address of the 4-byte transaction ID.

Note: The exit program must not change the TRANSID of tasks started by automatic transaction
initiation (ATI). (This is because CICS needs to match the TRANSID in its program control table
with the TRANSID in the automatic initiate descriptor (AID) that was created in the AOR.)

230 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht34q.html

Return codes
UERCNORM

Continue processing.
XPI calls

All can be used.
Sample exit program

DFH$ZCAT

SNA working-set module exits (XZCIN, XZCOUT, XZCOUT1, and XZIQUE)
These exits are invoked after I/O events or before messages are disassembled into request units (RUs).

Exit XZCIN
This exit is invoked after an input event.

When invoked
After an input event.

Exit-specific parameters
UEPTCTTE

Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). Your exit program should not change the
address. The TIOA can be mapped using the DSECT DFHTIOA. However, fields TIOASAL and
TIOASCA are not programming interfaces.

Return codes
UERCNORM

Continue processing.
XPI calls

All can be used. However, do not use a GETMAIN call to obtain terminal-class storage for use as a
replacement TIOA. This is because there are several internal pointers to the TIOA, and if any one of
these is not updated the application might experience problems.

API and SPI commands
No EXEC CICS commands can be used.

Exit XZCOUT
This exit is invoked before an output event.

When invoked
Before an output event.

Exit-specific parameters
UEPTCTTE

Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). Your exit program should not change the
address. The TIOA can be mapped using the DSECT DFHTIOA. However, fields TIOASAL and
TIOASCA are not programming interfaces.

Note: In certain circumstances—for example, when XZCOUT is invoked before the send of a NULL
RU—UEPTIOA contains zeroes.

Chapter 1. Global user exit points (by function) 231

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha330.html

Return codes
UERCNORM

Continue processing.
XPI calls

All can be used. However, we do not recommend that you use a GETMAIN call to obtain terminal-
class storage for use as a replacement TIOA. This is because there are several internal pointers to the
TIOA, and if any one of these is not updated the application may experience problems.

Exit XZCOUT1
This exit is invoked before a message is deconstructed into RUs.

When invoked
Before a message is broken into RUs.

Exit-specific parameters
UEPTCTTE

Address of the terminal control table terminal entry (TCTTE). The TCTTE can be mapped using the
DSECT DFHTCTTE.

UEPTIOA
Address of the terminal input/output area (TIOA). Your exit program should not change the
address. The TIOA can be mapped using the DSECT DFHTIOA. However, fields TIOASAL and
TIOASCA are not programming interfaces.

Return codes
UERCNORM

Continue processing.
XPI calls

All can be used. However, we do not recommend that you use a GETMAIN call to obtain terminal-
class storage for use as a replacement TIOA. This is because there are several internal pointers to the
TIOA, and if any one of these is not updated the application may experience problems.

XZIQUE exit for managing MRO and APPC intersystem queues
You can use the XZIQUE exit to control the number of queued requests for sessions on MRO and APPC
connections.

Note:

• Queued requests for sessions are known as "allocate queues".
• The equivalent global user exit to control the number of queued requests for sessions on IP

interconnectivity (IPIC) connections is XISQUE: see “XISQUE exit for managing IPIC intersystem
queues” on page 238.

• There are several methods that you can use to control the length of intersystem queues. For a
description of the various methods, see Intersystem session queue management.

The XZIQUE exit enables you detect queuing problems (bottlenecks) early. It extends the function
provided by the XISCONA global user exit, that is described in “Intersystem communication program
exits, XISCONA, XISLCLQ, and XISQLCL” on page 119, which is invoked only for function shipping and
DPL requests. XZIQUE is invoked for transaction routing, asynchronous processing, and distributed
transaction processing requests, as well as for function shipping and DPL. Compared with XISCONA, it
receives more detailed information on which to base its decisions.

XZIQUE enables allocate requests to be queued or rejected, depending on the length of the queue. It also
allows a connection on which there is a bottleneck to be terminated and then re-established.

232 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html

Interaction with the XISCONA exit
There is no interaction between the XZIQUE and XISCONA global user exits. If you enable both exits,
XISCONA and XZIQUE could both be invoked for function shipping and DPL requests, although this is not
recommended.

Therefore, you should ensure that only one of these exits is enabled. Because of it provides more function
and greater flexibility, it is recommended that you use XZIQUE rather than XISCONA.

If you already have an XISCONA global user exit program, you could possibly modify it for use at the
XZIQUE exit point.

When the XZIQUE exit is invoked

The XZIQUE global user exit is invoked, if it is enabled, at the following times:

• Whenever CICS tries to acquire a session with a remote system and there is no free session available. It
is invoked whether or not you have specified the QUEUELIMIT option on the CONNECTION definition,
and whether or not the limit has been exceeded. It is not invoked if the allocate request specifies
NOQUEUE or NOSUSPEND.

Requests for sessions can arise in a number of ways, such as explicit EXEC CICS ALLOCATE commands
issued by DTP programs, or by transaction routing or function shipping requests.

• Whenever an allocate request succeeds in finding a free session, after the queue on the connection has
been purged by a previous invocation of the exit program. In this case, your exit program can indicate
that CICS is to continue processing normally, resuming queuing when necessary.

Using an XZIQUE global user exit program
When the exit is enabled, your XZIQUE global user exit program is able to check on the state of the
allocate queue for a particular connection in the local system.

Information is passed to the exit program in a parameter list, that is structured to provide data about non-
specific allocate requests, or requests for specific modegroups, depending on the session request. Non-
specific allocate requests are for MRO, LU6.1, and APPC sessions that do not specify a modegroup.

Using the information passed in the parameter list, your global user exit program can decide (based on
queue length, for example) whether CICS is to queue the allocate request. Your program communicates
its decision to CICS by means of one of the return codes CICS provides. These are:

UERCAQUE
This return code indicates that CICS is to queue the allocate request.

The total number of allocate requests queued against the connection is provided in field A14ESTAQ of
the system entry statistics (for all non-specific allocates) or A20ESTAQ of the mode entry statistics
(for specific modegroup allocates). See DSECTs DFHA14DS or DFHA20DS for details. CICS passes to
the exit program, in the exit specific parameter UEPQUELIM, the QUEUELIMIT parameter from the
connection definition.

If the limit has not been reached, you can return control to CICS with return code UERCAQUE.

UERCAPUR
This return code indicates that CICS is to reject the allocate request and return SYSIDERR to the
application program, but leave the existing queue unchanged.

If the number of queued allocate requests has reached the limit set on the QUEUELIMIT parameter
for the connection, you can request that CICS rejects the request. However, you should first check
whether the state of the link is satisfactory. This means checking that the rate of allocation of
sessions is acceptable. Use the time the queue was started, the current time, and the total number of
allocates processed since the queue began, to determine the rate at which CICS is processing
requests. The relevant fields are: UEPSAQTS and UEPSACNT for non-specific allocate requests; and
UEPMAQTS and UEPMACNT for specific modegroup requests.

To determine whether CICS is allocating requests for sessions on this connection at an acceptable
rate, you can compare the calculated time with either of the following:

Chapter 1. Global user exit points (by function) 233

1. The parameter from the connection definition, MAXQTIME, which is passed in the exit specific
parameter UEPEMXQT

2. Some other preset time value.

If the processing time using this kind of formula is acceptable, return control to CICS with return code
UERCAPUR to purge only this request.

UERCAKLL or UERCAKLM
These return codes indicate that you want CICS to deal with the request as follows:

• UERCAKLL—reject this request, purge all other queued allocate requests on this connection, and
send an information message to the operator console.

• UERCAKLM—reject this request, purge all other queued modegroup allocate requests on this
connection, and send an information message to the operator console.

If the queue limit has been reached but the performance of allocate processing against the queue is
below the acceptable limits defined in your user exit program, you can return control to CICS as
follows:

• For non-specific allocate requests, use return code UERCAKLL. UERCAKLL also returns SYSIDERR to
all application programs waiting on the purged allocate requests. CICS sets the UEPFLAG parameter
to UEPRC8 on subsequent calls to your XZIQUE exit program to indicate that UERCAKLL was
returned previously to purge the queue.

• For specific modegroup allocate requests, use return code UERCAKLM. UERCAKLM also returns
SYSIDERR to all application programs waiting on the purged allocate requests. CICS sets the
UEPFLAG parameter to UEPRC12 on subsequent calls to your XZIQUE exit program to indicate that
UERCAKLM was returned previously to purge the queue.

Purging a queue that is causing congestion in the flow of tasks frees task slots that are needed to
prevent the system becoming clogged. The more you allow a session queue to grow, the more likely
you are to reach the task ceiling set by the MAXT parameter, and then cause a queue of incoming
tasks in the local region that cannot be attached. Note that some internal CICS requests (such as
those for the LU services model transactions CLS1, CLS2, and CLS3) are not purged by return codes
UERCAKLL and UERCAKLM.

If a queue has been purged previously (with UERCAKLL or UERCAKLM) but there are no queued
requests currently, check the number of successful allocates since the queue was last purged. For
non-specific allocate requests, this number is in UEPSARC8, and for specific modegroup requests,
this number is in UEPMAR12. If no requests of this type have been allocated on this connection since
the queue was last purged, the problem that caused the purge previously has not been resolved, and
this request should be rejected with UERCAPUR.

If the UEPSARC8 or UEPMAR12 parameters show that allocates are being processed, you should use
UERCAQUE to resume queuing of requests. If you return with UERCAQUE in this case, CICS issues an
information message to the console to signal that queuing has been resumed.

Note: The address of the system entry statistics record, UEPCONST, is supplied for both non-specific and
specific modegroup allocate requests.

The address of the modegroup statistics record, UEPMODST, is set to zeros for non-specific allocate
requests. This address is supplied only if the request is for a specific modegroup.

If the exit is invoked after a successful allocate following the suppression of queuing, you can use the
following return code:

UERCNORM
This return code indicates that CICS is to resume normal processing on the link, including queuing of
requests.

234 CICS TS for z/OS: User Exit Reference

Statistics fields in DFHA14DS and DFHA20DS
There are some statistics fields that your XZIQUE global user exit program can use to control queues.

A14EALRJ
Each time an XZIQUE global user exit program returns with a request to reject a request, CICS increments
field A14EALRJ in the system entry connection statistics

Field A14EALRJ (allocate rejected) is in DSECT DFHA14DS and is provided to help you to tune the queue
limit. Normally, if the number of sessions and the queue limit defined for a link are correctly balanced,
and there has been no abnormal congestion on the link, the A14EALRJ should be zero. If the rejected
allocates field is non-zero it probably indicates that some action is needed.

A14EQPCT and A20EQPCT
Each time an XZIQUE global user exit program returns with a request to purge a queue, CICS increments
a new field in either the system entry connection statistics (field A14EQPCT) or mode entry connection
statistics (field A20EQPCT).

A14EQPCT
The count of the number of times the queue has been purged for the connection as a whole.

A20EQPCT
The count of the number of times the mode group queue has been purged.

For detailed information about statistics fields, what they contain and how they are updated, see ISC/IRC
system entry: Resource statistics.

Exit XZIQUE
Exit XZIQUE is invoked when an allocate request for a session is about to be queued, and when an
allocate request succeeds following previous suppression of queuing.

When invoked
Whenever:

1. An allocate request for a session is about to be queued
2. An allocate request succeeds following previous suppression of queuing.

Exit-specific parameters
UEPZDATA

Address of the 70-byte area containing the information listed. This area is mapped by the DSECT
in copybook DFHXZIDS.

Area addressed by UEPZDATA
UEPSYSID

The 4-byte SYSID of the connection.
UEPREQ

A 2-byte origin-of-request code, which can have the following values:
TR

Transaction routing
FS

Function shipping (includes distributed program link)
AL

Other kinds of intercommunication (for example, distributed transaction processing (DTP) or
CPI Communications).

UEPREQTR
The 4-byte identifier of the requesting transaction (applicable only when the origin-of-request
code is FS or AL).

UEPTRAN
The 4-byte identifier of the transaction being routed (applicable only when origin of request is TR).

Chapter 1. Global user exit points (by function) 235

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/statistics/dfht3_stats_iscirc_system_resource.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/statistics/dfht3_stats_iscirc_system_resource.html

UEPFLAG
A 1-byte flag indicating whether a return code 8 or return code 12 was issued last time the exit
was invoked.
UEPRC8

The exit program returned control to CICS on the previous invocation with return code 8.
UEPRC12

The exit program returned control to CICS on the previous invocation with return code 12.
UEPPAD

A 1-byte padding field.
UEPFSPL

Address of the 10-byte function shipping parameter list.
UEPCONST

Address of the 158-byte system entry statistics record (this can be mapped using DSECT
DFHA14DS).

UEPMODST
Address of the 84-byte modegroup statistics record for the modegroup specified in the relevant
CICS profile. This field applies only to APPC connections for a specific allocate. For LU61, IRC, or
non-specific APPC allocates, it contains zero.

The statistics record can be mapped using DSECT DFHA20DS. The modegroup name field
(A20MODE) may contain blanks. The record is followed by a fullword of X'FFFFFFFF'.

UEPSTEX
A 6-byte area containing additional current statistics for APPC that are not already in the
modegroup statistics record (DFHA20DS). For specific allocates, the numbers refer to the
specified modegroup only. For non-specific allocates, they refer to the whole connection—that is,
they are the totals of each modegroup.

The 6-byte area contains:
UEPEBND

A halfword binary field containing the number of bound sessions
UEPEWWT

A halfword binary field containing the number of contention winners with tasks
UEPELWT

A halfword binary field containing the number of contention losers with tasks.

UEPEMXQT
A halfword binary field containing the maximum queuing time specified for the connection
(MAXQTIME on the CONNECTION resource definition).

UEPMDGST
Address of a set of 84-byte modegroup statistics records—one for each user modegroup for the
connection. This field applies only to APPC connections for a non-specific allocate. For LU61, IRC,
and APPC specific allocates, it contains zero.

Each statistics record can be mapped using DSECT DFHA20DS. The modegroup name field
(A20MODE) may contain blanks. The end of the set of records is indicated by a fullword of
X'FFFFFFFF'.

Non-specific allocates data:The following three fields contain data relating to MRO, LU6.1, and non-
specific APPC allocates:
UEPSAQTS

A double-word binary field containing the time stamp from the TCT system entry indicating the
time the queue of non-specific requests was started.

UEPSACNT
A half-word binary field containing the number of all non-specific allocates processed since the
queue was started (see UEPSAQTS for the start time).

236 CICS TS for z/OS: User Exit Reference

UEPSARC8
A half-word binary field containing the number of sessions freed since the queue was last purged
as a result of a UEPCAKLL return code to CICS.

Specific allocates data:The following three fields contain data relating to specific modegroup
allocates. They are applicable only when UEPMODST is non-zero (that is, it contains the address of
the relevant modegroup statistics).
UEPMAQTS

A double-word binary field containing the time stamp from the TCT mode entry indicating the time
that the modegroup queue was started for this specific modegroup.

UEPMACNT
A half-word binary field containing the number of all specific allocates for this modegroup
processed since the queue was started (see UEPMAQTS for the start time).

UEPMAR12
A half-word binary field containing the number of modegroup sessions freed since the queue was
last purged as a result of a UEPCAKLL return code to CICS.

UEPQUELM
A half-word binary field containing the queue limit specified for this connection (QUEUELIMIT on
the CONNECTION definition).

Return codes
In the case of an allocate that is about to be queued, use one of the following:
UERCAQUE

Queue the allocate request.
UERCAPUR

Reject the allocate request with SYSIDERR.
UERCAKLL

Reject this allocate request with SYSIDERR. Purge all other queued allocate requests and send an
information message to the operator console. CICS also returns SYSIDERR to all application
programs waiting on the purged allocate requests.

UERCAKLM
Reject this allocate request for the modegroup and return SYSIDERR. Purge all other queued
allocate requests for the modegroup specified on this allocate request and send an information
message to the operator console. Retry the modegroup after an interval.

UERCPURG
Task purged during XPI call.

In the case of a successful allocate following the use of UERCAKLL or UERCAKLM, on a previous
invocation of the exit, use one of the following:
UERCNORM

Resume normal operation of the link or modegroup.
UERCAPUR

Reject the allocate request with SYSIDERR.

XPI calls
All can be used.

Designing an XZIQUE global user exit program
The functions of your XZIQUE exit should be designed:

1. To control of the number of tasks (and the amount of associated resource) that are waiting in a queue
for a free intersystem session. Waiting tasks can degrade the performance of the local system.

2. To detect poor response from the receiving (remote) system and to notify the operator (or automatic
operations program).

3. To cause CICS to issue a message when the link resumes normal operation.

Chapter 1. Global user exit points (by function) 237

The XZIQUE global user exit parameter list is designed to support these objectives.

Sample XZIQUE exit program

A sample XZIQUE exit program, DFH$XZIQ, is provided with CICS Transaction Server for z/OS, Version 5
Release 5 as a base for you to design your own global user exit program. The sample is supplied in the
CICSTS55.CICS.SDFHSAMP library. The DSECT object DFHXZIDS, which is used by the sample program
to map the area addressed by UEPZDATA is supplied in the CICSTS55.CICS.SDFHMAC library.

For more information about DFH$XZIQ, see MRO and APPC session queue management sample exit
program: DFH$XZIQ.

Design considerations

The information passed at XZIQUE is designed to enable your XZIQUE global user exit program to:

• Avoid false diagnosis of problems on the connection by distinguishing poor response times from a
complete bottleneck

• Ensure that a link resumes normal operation quickly and without operator intervention once any
problem in a remote system is resolved.

Some guidance on the use of IRC/ISC statistics
CICS adds an entry for unsatisfied allocate requests to the non-specific (generic) allocate queue, and the
specific modegroup allocate queue.
Non-specific (generic) allocate queue

All non-specific allocate requests are queued in this single queue. CICS makes the total number of
entries in this queue available in the system entry statistics field A14ESTAQ, to which your global user
exit program has access by means of the address of the system entry statistics, which is passed in
UEPCONST.

Specific modegroup allocate queues
Specific allocate requests are queued in the appropriate modegroup queue—one queue for each
specific modegroup name. CICS makes the total number of entries in all these queues available, as a
single total, in the mode entry statistics field A20ESTAQ, to which your global user exit program has
access by means of the address of the mode entry statistics, which is passed in UEPMODST.

XISQUE exit for managing IPIC intersystem queues
You can use the XISQUE exit to control queuing on IP interconnectivity (IPIC) connections.

The XISQUE exit controls these requests or commands that are queued on the IPIC connection:

• Distributed program link (DPL) requests for sessions
• Transaction routing requests
• Function shipping requests
• START or CANCEL commands.

Use the XISQUE exit to detect queuing problems (bottlenecks) early.

XISQUE enables allocate requests to be queued or rejected, depending on the length of the queue. It also
allows an IPCONN on which there is a bottleneck to be ended and then reestablished.

Exit XISQUE
The XISQUE global user exit is called, if it is enabled, when CICS attempts to acquire a session and no
free session is available, or when an allocate request finds a free session after queuing has previously
been suppressed. Exit-specific parameters, return codes, and XPI call information are explained.

When called
The XISQUE exit is called under these circumstances:

238 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0026.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3c0026.html

1. CICS tries to acquire a session on an IPIC connection to a remote system and no free session is
available. It is called whether or not you have specified the QUEUELIMIT option on the IPCONN
definition and whether or not the limit has been exceeded.

Requests for IPIC sessions occur when one of the following requests or commands is used across
an IPIC connection:

• A distributed program link (DPL) request
• A START or CANCEL command
• A transaction routing request
• A function shipping file control, transient data, or temporary storage request

2. An IPIC allocate request succeeds in finding a free session, after the queue on the IPIC connection
has been purged by a previous call of the exit program. In this case, your exit program can indicate
that CICS is to continue processing normally, resuming queuing when necessary.

Exit-specific parameters
UEPISDATA

Address of the 78-byte area. This area is mapped by the DSECT in copybook DFHXIQDS.

Area addressed by UEPISDATA:
UEPREQ

A 2-byte origin-of-request code, which can have the following value:
AL

Other kinds of intercommunication (for example, STARTs).
FS

Function shipping and distributed program link
TR

Transaction routing
UEPIPCNM

The 8-byte name of the IPCONN.
UEPREQTR

The 4-byte identifier of the requesting transaction.
UEPFLAG

A 1-byte flag indicating whether a return code 8 was issued the last time the exit was called.
UEPRC8

The exit program returned control to CICS on the previous call with return code 8.
UEPFSPL

Address of the 10-byte parameter list for the DPL request.
UEPCONST

Address of the 504-byte IPCONN statistics record. This record can be mapped using DSECT
DFHISRDS.

UEPEMXQT
A halfword binary field containing the maximum queuing time, MAXQTIME, specified in the
IPCONN resource definition.

UEPSAQTS
A double-word binary field containing the time stamp from the installed IPCONN resource
definition, indicating the time that the queue of allocate requests was started.

UEPSACNT
A half-word binary field containing the number of allocate requests processed since the queue
was started. See UEPSAQTS for the start time.

UEPSARC8
A half-word binary field containing the number of sessions freed since the queue was last
purged as the result of an UEPCAKLL return code.

Chapter 1. Global user exit points (by function) 239

UEPQUELM
A half-word binary field containing the queue limit, QUEUELIMIT, specified in the IPCONN
resource definition.

Return codes
In the case of an allocate that is about to be queued, use one of the following return codes:
UERCAQUE

Queue the allocate request.
UERCAKLL

Reject this allocate request with SYSIDERR. Purge all other queued allocate requests and send an
information message to the operator console. CICS also returns SYSIDERR to all application
programs waiting on the purged allocate requests.

UERCAPUR
Reject the allocate request with SYSIDERR.

UERCPURG
Task purged during XPI call.

In the case of a successful allocate following the use of UERCAKLL on a previous call of the exit, you
can use a normal return code (UERCNORM) or use the SYSIDERR return code (UERCAPUR):
UERCNORM

Resume normal operation of the IPCONN.
UERCAPUR

Reject the allocate request with SYSIDERR.

XPI calls
All can be used.

Using an XISQUE global user exit program
When the exit is enabled, your XISQUE global user exit program is able to check on the state of allocate
queues for IPCONNs in the local system. The parameter list passed to the exit program on invocation
provides data about a specific allocate request and IPCONN.

Using the information passed in the parameter list, your global user exit program can decide (based on
queue length, for example) whether CICS is to queue the allocate request. Your program communicates
its decision to CICS by setting one of the following return codes:

UERCAQUE
CICS is to queue the allocate request.

The total number of allocate requests currently queued against the connection is provided in field
ISR_CURRENT_QUEUED_ALLOCATES of the IPCONN statistics record, which is addressed by the
UEPCONST exit-specific parameter. See DSECT DFHISRDS for details.

CICS also passes to the exit program, in field UEPQUELM, the value of the QUEUELIMIT option of the
IPCONN resource definition. If the queue limit has not been reached, you can return control to CICS
with return code UERCAQUE.

UERCAPUR
CICS is to reject the allocate request, return SYSIDERR to the application program, and leave the
existing queue unchanged.

If the number of queued allocate requests has reached the limit set on the QUEUELIMIT option of the
IPCONN definition, you can request that CICS rejects the request. However, you should first check
whether the state of the link is satisfactory. This means checking that the rate of allocation of
sessions is acceptable. Use the time the queue was started, the current time, and the total number of
allocates processed since the queue began, to determine the rate at which CICS is processing
requests. The relevant fields are: UEPSAQTS and UEPSACNT.

To determine whether CICS is allocating requests for sessions on this IPCONN at an acceptable rate,
you can compare the calculated time with either of the following:

240 CICS TS for z/OS: User Exit Reference

1. The value of the MAXQTIME option of the IPCONN resource definition, which is passed in the
UEPEMXQT exit-specific parameter.

2. Some other preset time value.

If, using this kind of formula, you find the processing time to be acceptable, return control to CICS
with return code UERCAPUR, which purges only this request.

UERCAKLL
Reject this request, purge all other allocate requests queued on this IPCONN, and send an
information message to the operator console.

If the queue limit has been reached and the performance of allocate processing is below the
acceptable limits defined in your user exit program, you can purge all queued allocate requests by
specifying return code UERCAKLL.

UERCAKLL also causes CICS to:

• Return SYSIDERR to all application programs waiting on the purged allocate requests.
• On subsequent calls to your XISQUE exit program, set the UEPFLAG parameter to UEPRC8 to

indicate that UERCAKLL was returned previously to purge the queue.

Purging a queue that is causing congestion in the flow of tasks frees task slots that are needed to
prevent the system becoming clogged. The more you allow a session queue to grow, the more likely
you are to reach the task ceiling set by the MAXT parameter, and then cause a queue of incoming
tasks in the local region that cannot be attached.

If a queue has been purged previously (with UERCAKLL) but there are no queued requests currently,
check the number of sessions freed since the queue was last purged. This number is in UEPSARC8. If
no sessions have been freed on this IPCONNsince the queue was last purged, the problem that
caused the purge previously has not been resolved, and this request should be rejected with
UERCAPUR.

If the UEPSARC8 parameter shows that sessions are being freed, you should use UERCAQUE to
resume queuing of requests. If you return with UERCAQUE in this case, CICS issues an information
message to the console to signal that queuing has been resumed.

UERCNORM
CICS is to resume normal processing on the connection, including queuing of requests.

Use UERCNORM when the exit is invoked after a successful allocate following the suppression of
queuing.

Statistics fields in DFHISRDS
The following fields in IPCONN statistics can help your XISQUE global user exit program to control
allocate queues efficiently:
ISR_XISQUE_ALLOC_REJECTS

Each time an XISQUE global user exit program returns with a request to reject a request, CICS
increments this field, which is provided to help you tune the queue limit. Normally, if the number of
sessions and the queue limit specified on the IPCONN definition are correctly balanced, and there has
been no abnormal congestion on the link, ISR_XISQUE_ALLOC_REJECTS should be zero. If the
rejected allocates field is non-zero it indicates that action is probably needed.

ISR_XISQUE_ALLOC_QPURGES
Each time an XISQUE global user exit program returns with a request to purge a queue, CICS
increments this field.

For detailed information about the fields in IPCONN statistics, see IPCONN report. IPCONN statistics are
mapped by DSECT DFHISRDS.

Designing an XISQUE global user exit program
Your XISQUE exit program should be designed to:

Chapter 1. Global user exit points (by function) 241

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/statistics/dfht3_stats_ipconn_0stat.html

1. Control of the number of tasks (and the amount of associated resource) that are waiting in a queue for
a free IPIC session. Waiting tasks can degrade the performance of the local system.

2. Detect poor response from the remote system and notify the operator (or automatic operations
program).

3. Cause CICS to issue a message when the IPCONN resumes normal operation.

The XISQUE parameter list is designed to support these objectives. The information it contains enables
your exit program to:

• Avoid false diagnosis of connection problems by distinguishing poor response times from a complete
bottleneck

• Ensure that a link resumes normal operation quickly and without operator intervention after a problem
in a remote system is resolved

Using IPCONN statistics

In reaching its decisions about which requests to reject, which to queue, and which queues to purge, your
exit program will probably take into account the number of allocate requests currently queued against the
connection. All allocate requests for a particular IPCONN are queued in a single queue that is specific to
that IPCONN. CICS makes the total number of entries in this queue available in the IPCONN statistics
field ISR_CURRENT_QUEUED_ALLOCATES. Your exit program can access this field by means of the
address of the IPCONN statistics, which is passed in the UEPCONST exit-specific parameter.

Sample XISQUE exit program

CICS provides a sample XISQUE exit program, DFH$XISQ, that you can use as the basis for your own
program. It is supplied in the CICSTS55.CICS.SDFHSAMP library. The DSECT used by the sample program
to map the area addressed by UEPISDATA is called DFHXIQDS, and is supplied in the
CICSTS55.CICS.SDFHMAC library.

For more information about DFH$XISQ, see Session queue management sample exit program for IPIC
connections: DFH$XISQ.

XRF request-processing program exit XXRSTAT
This exit is invoked if a z/OS Communications Server failure or a z/OS Communications Server predatory
takeover occurs.

XXRSTAT enables you to decide whether to terminate CICS when either of the following occurs:

• CICS is notified of a z/OS Communications Server failure by the TPEND exit.
• A predatory takeover has occurred. Predatory takeover can occur if you are using Release 3.4.0 or later,

and a z/OS Communications Server application with the same APPLID as that of the executing CICS
system assumes control of all the sessions of the executing CICS system.

XXRSTAT gives you the choice of allowing the system which has suffered the takeover to continue or to
terminate.

To avoid potential integrity exposures, CICS default action after a predatory takeover is to terminate
without a dump. If you want CICS to terminate with a dump, your exit program should return
UERCABDU. CICS terminates with the abend code specified by your exit program.

If you want CICS to continue after a predatory takeover, your exit program must return UERCCOIG.
Message DFHZC0101 is issued and CICS continues processing without z/OS Communications Server
support. The predatory application assumes control of all z/OS Communications Server sessions.

Note: Allowing CICS to continue after a predatory takeover could cause integrity problems and is not
recommended. Use RACF to protect your CICS APPLIDs.

242 CICS TS for z/OS: User Exit Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3_xisque_sample.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3_xisque_sample.html

Exit XXRSTAT
This exit is invoked if a z/OS Communications Server failure or predatory takeover occurs.

When invoked
After either of the following:

• CICS is notified of a z/OS Communications Server failure by the TPEND exit.
• A predatory takeover.

Exit-specific parameters
UEPERRA

Address of parameter list containing:
UEPGAPLD

Address of the 8-byte generic applid
UEPSAPLD

Address of the 8-byte specific applid
UEPDOMID

Address of the 4-byte domain ID
UEPERRID

Address of the 4-byte error ID.

Note:

1. No DSECT is provided for this parameter list. You need to code your own DSECT to access the
named fields.

2. When z/OS Communications Server has failed, the domain ID is ‘ZC ' (uppercase Z, uppercase C,
and two blanks), and the error ID is the character string ‘3443'.

Return codes
UERCNORM

Take the system action. The system action depends on the reason why the exit was invoked:

• For XRF, in the event of a z/OS Communications Server failure: CICS continues processing as if
the exit program had not been invoked.

• For z/OS Communications Server persistent sessions, in the event of a predatory takeover: CICS
abends without a dump.

UERCCOIG
Ignore.

UERCABNO
Abend CICS without a dump.

UERCABDU
Abend CICS with a dump.

UERCPURG
Task purged during XPI call.

XPI calls
All can be used.

Chapter 1. Global user exit points (by function) 243

244 CICS TS for z/OS: User Exit Reference

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2020 245

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 5 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• CICS security
• Developing for external interfaces
• Reference: application developmenth
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 5 , but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
5 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

246 Notices

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/developing_sysprogs.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/interfaces/externalInterfaces.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-systemprogramming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java™ Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 5 , but that
might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Notices 247

https://www.ibm.com/legal/copytrade.shtml

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

248 Notices

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 249

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

250 CICS TS for z/OS: User Exit Reference

Index

A
AILDELAY, system initialization parameter 183
allocate queues

controlling the length of
using the XISCONA global user exit 119
using the XISQUE global user exit 238
using the XZIQUE global user exit 232

Alphabetical list of GLUEs 1
APPC connections

intersystem queues 232
XZIQUE global user exit

for controlling intersystem queues 232

B
Basic Mapping Support (BMS)

global user exit points 12

C
CICS web support

User exits XWBAUTH, XWBOPEN, XWBSNDO 114
User exits XWBOPEN, XWBSNDO 116, 118

coexistence of local DL/I and DBCTL
XDLIPRE to change PSB to be scheduled 28

D
data tables 17
DFH$ICCN, sample global user exit program 143
DFH$WBGA, sample global user exit program 114

E
Exit XTSPTOUT 200
Exit XTSQRIN 196

F
Functional list of GLUEs 1

G
global user exits

example programs
for modifying TS requests 209
for XFCREQ 74, 77
for XFCREQC 74, 77
for XICEREQ 143
for XICEREQC 143
for XPCREQ 174
for XPCREQC 174
for XTDEREQ 220
for XTDEREQC 220
for XTSEREQ 209

global user exits (continued)
example programs (continued)

for XTSEREQC 209
exit points

bridge facility creation 16
bridge facility deletion 16
for ‘terminal not known’ condition 212
in activity keypoint program 10
in application association data 11
in BMS 12
in CICS Web support 113
in data tables management 17
in data tables programs 17
in DBCTL interface control program 21
in DBCTL tracking program 22
in dispatcher domain 23
in DL/I interface program 24
in dump domain 34
in enqueue EXEC interface program 40
in EXEC interface program 46
in file control domain 54
in file control EXEC interface program 66, 77
in file control file state program 92
in file control open/close program 99
in file control quiesce receive program 101
in file control quiesce send program 103
in file control recovery program 104
in file control RLS coexistence 111
in Front End Programming Interface 51
in good-morning message program 113
in intersystem communication program 119
in interval control EXEC interface program 126
in interval control program 124
in loader domain 143
in log manager domain 146
in message domain 148
in monitoring domain 152
in pipeline domain 153
in program control program 165
in resource management modules 182
in resource manager interface program 180
in security manager domain 188
in SNA LU management program 230
in SNA working-set module 231
in statistics domain 191
in system recovery program 192
in system termination program 195
in temporary storage domain 196
in temporary storage EXEC interface program 201
in terminal allocation program 209
in terminal control program 210
in transaction manager domain 217
in transient data EXEC interface program 220
in transient data program 218
in user log record recovery program 227
in XRF request-processing program 242

sample programs

Index 251

global user exits (continued)
sample programs (continued)

DFH$ICCN 143
DFH$WBGA 114

XDLIPRE
example 28

XSZARQ
exit-specific parameters 52
overview 52
UEPSZACN parameter 53

XSZBRQ
overview 51
UEPSZACT parameter 53

GLUEs, alphabetical list 1
GLUEs, functional list 1

H
HTTP client open exit XWBOPEN 116

I
intersystem queues

controlling the length of
using the XISCONA global user exit 119
using the XZIQUE global user exit 232

IPCONNs
intersystem queues 238
XISQUE global user exit

for controlling intersystem queues 238
ISC over TCP/IP intersystem queues

controlling the length of
using the XISQUE global user exit 238

ISC over TCP/IPCONNs
intersystem queues 238
XISQUE global user exit

for controlling intersystem queues 238

M
MRO connections

intersystem queues 232
XZIQUE global user exit

for controlling intersystem queues 232

P
PSB (program specification block)

XDLIPRE to change PSB to be scheduled 28

Q
queues for intersystem sessions

controlling the length of
using the XISCONA global user exit 119
using the XISQUE global user exit 238
using the XZIQUE global user exit 232

S
sample programs

for global user exits

sample programs (continued)
for global user exits (continued)

DFH$WBGA, for the XWBOPEN exit 114
system initialization parameters

AILDELAY 183
TBEXITS 105, 229

T
TBEXITS, system initialization parameter 105, 229

U
UEPSZACN, exit-specific parameter for XSZARQ 53
UEPSZACT, exit-specific parameter for XSZBRQ 53

X
XALCAID, global user exit 209
XALTENF, global user exit 213
XAPADMGR, global user exit 11
XBMIN, global user exit 12
XBMOUT, global user exit 13
XDLIPOST, global user exit 27
XDLIPRE, global user exit

to change PSB to be scheduled 28
XDSAWT, global user exit 24
XDSBWT, global user exit 23
XDTAD, global user exit 19
XDTLC, global user exit 20
XDTRD, global user exit 18
XDUCLSE, global user exit 38
XDUOUT, global user exit 39
XDUREQ, global user exit 34
XDUREQC, global user exit 36
XEIIN, global user exit 48
XEIOUT, global user exit 49
XEISPIN, global user exit 49
XEISPOUT, global user exit 50
XEPCAP, global user exit 46
XFAINTU, global user exit 16
XFCAREQ, global user exit

description 77
parameter list and return codes 78

XFCAREQC, global user exit
description 77
parameter list and return codes 79

XFCBFAIL, global user exit 105
XFCBOUT, global user exit 108
XFCBOVER, global user exit 109
XFCFRIN, global user exit

parameter list and return codes 55
XFCFROUT, global user exit

parameter list and return codes 61
XFCLDEL, global user exit 110
XFCNREC, global user exit

description 99
parameter list and return codes 99

XFCQUIS, global user exit
description 103

XFCREQ, global user exit
command parameter structure 67
description 66

252 CICS TS for z/OS: User Exit Reference

XFCREQ, global user exit (continued)
example of use 74
parameter list and return codes 75
UEPCLPS parameter 68

XFCREQC, global user exit
command parameter structure 67
description 66
example of use 74
parameter list and return codes 76
UEPCLPS parameter 68

XFCRLSCO, global user exit
description 111

XFCSREQ, global user exit 93
XFCSREQC, global user exit 96
XFCVSDS, global user exit

description 101
XGMTEXT, global user exit 113
XICEREQ, global user exit

command parameter structure 133
example of use 143
parameter list and return codes 127
UEPCLPS parameter 133

XICEREQC, global user exit
command parameter structure 133
example of use 143
parameter list and return codes 129
UEPCLPS parameter 133

XICERES, global user exit
parameter list and return codes 128

XICEXP, global user exit 125
XICREQ, global user exit 124
XICTENF, global user exit 215
XISCONA, global user exit 119, 120
XISLCLQ, global user exit 119, 122
XISQLCL, global user exit 119, 123
XISQUE, global user exit

designing the exit program 241
how to use 240
overview 238

XLDELETE, global user exit 145
XLDLOAD, global user exit 144
XLGSTRM, global user exit 146
XMEOUT 148
XMEOUT, global user exit 150
XMNOUT, global user exit 152
XNQEREQ, global user exit

command parameter structure 43
UEPCLPS parameter 43

XNQEREQC, global user exit
command parameter structure 43
UEPCLPS parameter 43

XPCABND, global user exit 180
XPCERES, global user exit

description 166
parameter list and return codes 168

XPCFTCH, global user exit 175
XPCHAIR, global user exit 176
XPCREQ, global user exit

command parameter structure 170
description 165
example of use 174
parameter list and return codes 167
UEPCLPS parameter 171

XPCREQC, global user exit

XPCREQC, global user exit (continued)
command parameter structure 170
description 167
example of use 174
parameter list and return codes 169
UEPCLPS parameter 171

XPCTA, global user exit 178
XRCINIT, global user exit 229
XRCINPT, global user exit 229
XRMIOUT, global user exit 181
XRMMI, global user exit 181
XRSINDI 183
XRSINDI, global user exit 183
XSNEX, global user exit 190
XSNOFF, global user exit 190
XSNON, global user exit 189
XSRAB, global user exit 192
XSTERM, global user exit 195
XSTOUT, global user exit 191
XSZARQ, global user exit

overview 52
UEPSZACN parameter 53

XSZBRQ, global user exit
overview 51
UEPSZACT parameter 53

XTCATT, global user exit 211
XTCIN, global user exit 210
XTCOUT, global user exit 211
XTDEREQ 220
XTDEREQ, global user exit

command parameter structure 223
parameter list and return codes 221
UEPCLPS parameter 224

XTDEREQC 220
XTDEREQC, global user exit

command parameter structure 223
parameter list and return codes 222
UEPCLPS parameter 224

XTDIN 218
XTDIN, global user exit 219
XTDOUT 218
XTDOUT, global user exit 220
XTDREQ 218
XTDREQ, global user exit 218
XTSEREQ, global user exit

command parameter structure 203
example program 209
UEPCLPS parameter 204

XTSEREQC, global user exit
command parameter structure 203
example program 209
UEPCLPS parameter 204

XTSPTIN global user exit 198
XTSQROUT, global user exit 197
XWBAUTH user exit 114
XWBAUTH, global user exit 113
XWBOPEN user exit 116
XWBOPEN, global user exit 113
XWBSNDO user exit 118
XWBSNDO, global user exit 113
XWSPRROI, global user exit 156
XWSPRROO, global user exit 157
XWSPRRWI, global user exit 155
XWSPRRWO, global user exit 158

Index 253

XWSRQROI, global user exit 160
XWSRQROO, global user exit 160
XWSRQRWI, global user exit 161
XWSRQRWO, global user exit 159
XWSSRROI, global user exit 164
XWSSRROO, global user exit 163
XWSSRRWI, global user exit 164
XWSSRRWO, global user exit 162
XXDFA, global user exit 21
XXDFB, global user exit 22
XXDTO, global user exit 23
XXMATT, global user exit 217
XXRSTAT, global user exit 243
XZCATT, global user exit 230
XZCIN, global user exit 231
XZCOUT, global user exit 231
XZCOUT1, global user exit 232
XZIQUE, global user exit

designing your exit program 238
how to use 233
interaction with XISCONA 233
overview 232
using IRC/ISC statistics 238
when invoked 233

254 CICS TS for z/OS: User Exit Reference

IBM®

	Contents
	About this PDF
	Chapter 1. Global user exit points (by function)
	Global user exit points (in alphabetical order)
	Activity keypoint program exit (XAKUSER)
	Application association data exit in the AP domain (XAPADMGR)
	Basic mapping support exits (XBMIN, XBMOUT)
	Exit XBMIN
	Exit XBMOUT
	The field element table structure
	Programming the XBMIN exit
	Programming the XBMOUT exit
	Cumulative mapping operations
	Message routing

	Bridge facility exit XFAINTU
	Data tables management exits XDTRD, XDTAD, and XDTLC
	Exit XDTRD
	Exit XDTAD
	Exit XDTLC

	DBCTL interface control program exit (XXDFA)
	DBCTL tracking program exits (XXDFB, XXDTO)
	Exit XXDFB
	Exit XXDTO

	Dispatcher domain exits XDSBWT and XDSAWT
	Exit XDSBWT
	Exit XDSAWT

	DL/I interface program exits XDLIPRE and XDLIPOST
	Exit XDLIPRE
	Exit XDLIPOST
	Example use of global user exit XDLIPRE

	Dump domain exits XDUREQ, XDUREQC, XDUCLSE, and XDUOUT
	Exit XDUREQ
	Exit XDUREQC
	Exit XDUCLSE
	Exit XDUOUT

	Enqueue EXEC interface program exits XNQEREQ and XNQEREQC
	Exit XNQEREQ
	Exit XNQEREQC
	The command-level parameter structure
	The UEPCLPS exit-specific parameter
	Modifying fields in the command-level parameter structure
	Modifying the EID
	Use of the task token UEPTSTOK
	Modifying user arguments
	Adding user arguments
	Removing user arguments

	Event capture exit XEPCAP
	EXEC interface program exits XEIIN, XEIOUT, XEISPIN, and XEISPOUT
	The command parameter list
	Bypassing commands
	Exit XEIIN
	Exit XEISPIN
	Exit XEIOUT
	Exit XEISPOUT

	Front End Programming Interface exits XSZARQ and XSZBRQ
	XSZBRQ
	XSZARQ
	The UEPSZACT and UEPSZACN exit-specific parameters
	Using XMEOUT to control message output

	File control domain exits, XFCFRIN and XFCFROUT
	Exit XFCFRIN
	Exit XFCFROUT

	File control EXEC interface API exits XFCREQ and XFCREQC
	The command-level parameter structure
	The UEPCLPS exit-specific parameter

	Modifying fields in the command-level parameter structure
	A list of input and output fields
	Modifying input fields
	Modifying output fields
	Modifying fields used for both input and output

	Modifying the EID
	Example of modifying read integrity bits

	Use of the parameter UEPFSHIP
	EIB (EXEC interface block)
	Example of how XFCREQ and XFCREQC can be used
	Exit XFCREQ
	Exit XFCREQC

	File control EXEC interface SPI exits XFCAREQ and XFCAREQC
	Exit XFCAREQ
	Exit XFCAREQC
	The command-level parameter structure
	The UEPCLPS exit-specific parameter

	Modifying fields in the command-level parameter structure
	Modifying input fields
	Modifying output fields

	Modifying the EID
	Modifying user arguments
	Adding user arguments
	Removing user arguments

	File control file state program exits XFCSREQ and XFCSREQC
	Exit XFCSREQ
	Exit XFCSREQC

	File control open/close program exit XFCNREC
	XFCNREC exit with a backout recovery setting mismatch
	Using XFCNREC with a BWO mismatch

	File control quiesce receive exit, XFCVSDS
	Exit XFCVSDS

	File control quiesce send exit XFCQUIS
	File control recovery program exits XFCBFAIL, XFCBOUT, XFCBOVER, and XFCLDEL
	Order of invocation
	Enabling the exit programs
	Exit XFCBFAIL, file control backout failure exit
	Values of the error-type byte referenced by UEPERR

	Exit XFCBOUT, file control backout exit
	Exit XFCBOVER, file control backout override exit
	Retained lock override for batch
	Effect of retained lock override on CICS

	Exit XFCLDEL, file control logical delete exit

	File control RLS coexistence program exit XFCRLSCO
	Good morning message program exit (XGMTEXT)
	HTTP client open and send exits: XWBAUTH, XWBOPEN and XWBSNDO
	HTTP client send exit XWBAUTH
	Typical use of the LDAP XPI functions by XWBAUTH
	HTTP client open exit XWBOPEN
	HTTP client send exit XWBSNDO

	Intersystem communication program exits, XISCONA, XISLCLQ, and XISQLCL
	The XISCONA exit
	Exit

	The XISLCLQ exit
	Exit XISLCLQ

	The XISQLCL exit
	Exit XISQLCL

	Interval control program exits XICREQ, XICEXP, and XICTENF
	Exit XICREQ
	Exit XICEXP
	Exit XICTENF

	Interval control EXEC interface program exits (XICEREQ, XICERES, and XICEREQC)
	Parameters passed to each of the exits
	Exit XICEREQ
	Exit XICERES
	Exit XICEREQC
	The command-level parameter structure
	The UEPCLPS exit-specific parameter
	Modifying fields in the command-level parameter structure
	Modifying input fields
	Modifying output fields
	Modifying the EID
	Using the interval control request token UEPICTOK
	EXEC interface block (EIB)
	Example of how XICEREQ and XICEREQC can be used

	Loader domain exits XLDLOAD and XLDELETE
	Exit XLDLOAD
	Exit XLDELETE

	Log manager domain exit XLGSTRM
	Exit XLGSTRM
	Example of how to use the XLGSTRM exit

	Message domain exit XMEOUT
	Exit XMEOUT

	Monitoring domain exit (XMNOUT)
	Exit XMNOUT

	Pipeline domain exits
	Exit XWSPRRWI
	Exit XWSPRROI
	Exit XWSPRROO
	Exit XWSPRRWO
	Exit XWSRQRWO
	Exit XWSRQROO
	Exit XWSRQROI
	Exit XWSRQRWI
	Exit XWSSRRWO
	Exit XWSSRROO
	Exit XWSSRROI
	Exit XWSSRRWI

	Program control program exits (XPCREQ, XPCERES, XPCREQC, XPCFTCH, XPCHAIR, XPCTA, and XPCABND)
	Program control exits XPCREQ, XPCERES, XPCREQC
	Exit XPCREQ
	Exit XPCERES
	Exit XPCREQC
	The command parameter structure
	The UEPCLPS exit-specific parameter

	Modifying fields in the command parameter structure
	Modifying input fields
	Modifying output fields

	Modifying the EID
	Using the program control request token, UEPPCTOK
	The EIB
	Example of how XPCREQ and XPCREQC can be used
	In XPCREQ
	In XPCREQC

	Exit XPCFTCH
	Exit XPCHAIR
	Exit XPCTA
	Exit XPCABND

	Resource manager interface program exits (XRMIIN, XRMIOUT)
	Exit XRMIIN
	Exit XRMIOUT

	Resource management installation and discard exit XRSINDI
	Exit XRSINDI

	Signon and signoff exits XSNON, XSNOFF, and XSNEX
	Exit XSNON
	Exit XSNOFF
	Exit XSNEX

	Statistics domain exit XSTOUT
	Exit XSTOUT

	System recovery program exit XSRAB
	System termination program exit XSTERM
	Temporary storage domain exits (XTSQRIN, XTSQROUT, XTSPTIN, XTSPTOUT)
	Exit XTSQRIN
	Exit XTSQROUT
	Exit XTSPTIN
	Exit XTSPTOUT

	Temporary storage EXEC interface program exits XTSEREQ and XTSEREQC
	Exit XTSEREQ
	Exit XTSEREQC
	The command-level parameter structure
	The UEPCLPS exit-specific parameter
	Modifying fields in the command-level parameter structure
	Modifying input fields
	Modifying output fields
	Modifying fields used for both input and output
	Modifying the EID
	Use of the task token UEPTSTOK
	Modifying user arguments
	Adding user arguments
	Removing user arguments

	Terminal allocation program exit XALCAID
	Terminal control program exits (XTCIN, XTCOUT, XTCATT)
	Exit XTCIN
	Exit XTCOUT
	Exit XTCATT

	‘Terminal not known’ condition exits XALTENF and XICTENF
	The exits
	Data returned by exit

	Exit XALTENF
	Exit XICTENF

	Transaction manager domain exit XXMATT
	Transient data program exits (XTDREQ, XTDIN, XTDOUT)
	Exit XTDREQ
	Exit XTDIN
	Exit XTDOUT

	Transient data EXEC interface program exits XTDEREQ and XTDEREQC
	Exit XTDEREQ
	Exit XTDEREQC
	The command-level parameter structure
	The UEPCLPS exit-specific parameter
	Modifying fields in the command-level parameter structure
	Modifying input fields
	Modifying output fields
	Modifying fields used for both input and output
	Modifying the EID
	The EIB

	User log record recovery program exits XRCINIT and XRCINPT
	Coding the exit programs
	Enabling the exit programs
	Exit XRCINIT
	Exit XRCINPT

	SNA LU management program exit (XZCATT)
	SNA working-set module exits (XZCIN, XZCOUT, XZCOUT1, and XZIQUE)
	Exit XZCIN
	Exit XZCOUT
	Exit XZCOUT1
	XZIQUE exit for managing MRO and APPC intersystem queues
	Interaction with the XISCONA exit
	When the XZIQUE exit is invoked
	Using an XZIQUE global user exit program
	Statistics fields in DFHA14DS and DFHA20DS
	A14EALRJ
	A14EQPCT and A20EQPCT

	Exit XZIQUE

	Designing an XZIQUE global user exit program
	Design considerations
	Some guidance on the use of IRC/ISC statistics

	XISQUE exit for managing IPIC intersystem queues
	Exit XISQUE
	Using an XISQUE global user exit program
	Statistics fields in DFHISRDS
	Designing an XISQUE global user exit program

	XRF request-processing program exit XXRSTAT
	Exit XXRSTAT

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	P
	Q
	S
	T
	U
	X

