
CICS Transaction Server for z/OS
Version 5 Release 5

Performance Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
223.

This edition applies to the IBM® CICS® Transaction Server for z/OS® Version 5 Release 5 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this PDF...vii

Chapter 1. Measuring, tuning, and monitoring: the basics....................................... 1
24-bit, 31-bit, and 64-bit addressing..1
CICS transaction flow.. 2
CICS functions for monitoring and gathering performance data..3
CICS tools for monitoring and gathering performance data...3
Other tools for obtaining performance data..4

Resource measurement facility (RMF)...4
Tivoli OMEGAMON XE for CICS on z/OS...5
IBM Z Decision Support..6

Performance monitoring and review... 6
Establishing monitoring activities and techniques..7
Planning your monitoring schedule... 8
Typical performance review questions..10
CICS performance analysis techniques...12

Performance measurement tools..21
Tuning your system.. 22
CICS tools to obtain performance data... 24
Other tools for obtaining performance data..32

Identifying CICS performance constraints... 45
Hardware contentions..46
Design considerations..47
Observing response time... 48
Reducing storage stress...50
Reducing DASD paging activity.. 51
Reducing resource contention...52
Resolving resource problems.. 53
Reducing storage violations...55

Performance management and capacity planning... 55
Relating CICS transactions to hardware resources.. 56

Chapter 2. Improving the performance of a CICS system...................................... 59
CICS Transaction Manager: performance and tuning...61

Setting the maximum task specification (MXT)...61
Using transaction classes (MAXACTIVE) to control transactions...63
Specifying a transaction class purge threshold (PURGETHRESH)..63
Prioritizing tasks... 64

CICS dispatcher: performance and tuning..65
Open TCB management... 66
Interval control value parameters: ICV, ICVR, and ICVTSD..68
MROBTCH... 69
FORCEQR.. 69
PRTYAGE.. 70
SUBTSKS...70
TCB statistics..70

Virtual and real storage: performance and tuning.. 72
CICS virtual storage..73
Splitting online systems: virtual storage... 120
Using modules in the link pack area (LPA/ELPA).. 121

 iii

Selecting aligned or unaligned maps...121
Defining programs as resident, nonresident, or transient.. 122
Putting application programs above 16 MB.. 123
Allocation of real storage when using transaction isolation...123
Limiting the expansion of subpool 229 using SNA pacing..124

CICS storage protection facilities: Performance and tuning.. 124
Tuning with Language Environment..125

Minimizing GETMAIN and FREEMAIN activity...125
Language Environment run time options for AMODE (24) programs... 126
Using DLLs in C++...127
Minimizing the time Language Environment spends writing dump output to transient data

queue CESE... 127
Java applications: performance and tuning..127
MVS and DASD: performance and tuning... 128
Networking and the z/OS Communications Server: performance and tuning.......................................129

Setting the size of the terminal input and output area... 129
Setting the size of the receive-any input areas... 131
Setting the size of the receive-any pool.. 132
Using the MVS high performance option with SNA... 133
Adjusting the number of transmissions in SNA transaction flows... 134
Using SNA chaining to segment large messages.. 135
Limiting the number of concurrent logon and logoff requests... 136
Adjusting the terminal scan delay... 137
Compressing output terminal data streams..138
Tuning automatic installation of terminals..139

CICS MRO, ISC, and IPIC: performance and tuning... 141
Managing queues for intersystems sessions.. 144
Using transaction classes DFHTCLSX and DFHTCLQ2 to control storage use.................................146
Controlling the length of the terminal input/output area (SESSIONS IOAREALEN) for MRO

sessions...146
Batching requests (MROBTCH)..147
Extending the life of mirror transactions (MROLRM and MROFSE).. 148
Controlling the deletion of shipped terminal definitions (DSHIPINT and DSHIPIDL)..................... 148

CICS VSAM and file control: Performance and tuning..150
VSAM tuning: General objectives...150
Using VSAM subtasking..160
Using data tables..162
Using coupling facility data tables...163
Using VSAM record-level sharing.. 172
Threadsafe file control applications.. 175
File control API costs... 176

Database management for performance..178
Setting DBCTL parameters...178
Tuning the CICS Db2 attachment facility.. 178
Selecting authorization IDs for performance and maintenance...179
Logging... 180
Sync pointing..181

CICS logging and journaling: Performance and tuning...181
The CICS log manager..182
Log stream storage...182
Journal records.. 184
Monitoring the logger environment... 185
Writing data to the coupling facility: Performance considerations.. 186
Defining the number of log streams: Performance considerations..187
LOWOFFLOAD and HIGHOFFLOAD parameters... 188
Tuning the size of staging data sets.. 190
The activity keypoint frequency (AKPFREQ)... 191
The log defer interval (LGDFINT)...192

iv

DASD-only logging... 192
CICS temporary storage: Performance and tuning...193

CICS temporary storage: overview..194
Automatic deletion of temporary storage queues.. 195
Main temporary storage: monitoring and tuning...196
Auxiliary temporary storage: monitoring and tuning.. 198
Recoverable and nonrecoverable TS queues..199

CICS transient data (TD) facility: Performance and tuning.. 199
Recovery options..200
Intrapartition transient data considerations...201
Extrapartition transient data considerations.. 203

Global CICS enqueue and dequeue: Performance and tuning...204
CICS monitoring facility: Performance and tuning... 205
CICS trace: performance and tuning...206
CICS security: Performance and tuning..207

Tuning for VERIFY TOKEN and SIGNON TOKEN... 208
CICS startup and shutdown time: Performance and tuning...208

Improving startup procedure...208
Autoinstall performance.. 210
MVS automatic restart management...211

CICS business transaction services: Performance and tuning...211
Managing workloads..212

The z/OS Workload Manager... 212
CICSPlex SM workload management.. 216

Chapter 3. Improving event processing performance.. 219

Notices..223

Index.. 229

 v

vi

About this PDF

This PDF describes how to identify performance constraints, and make adjustments to the operational
CICS system and its application programs. Other PDFs, listed below, describe how to address problems
with certain areas of CICS and you might need to refer to those as well as this PDF. (In IBM Knowledge
Center, all this information is under one section called "Improving performance".) You might also need
two companion reference PDFs: Monitoring Data Reference and Statistics Reference. Before CICS TS V5.4,
these two reference PDFs were included in the Performance Guide .

Performance information for areas of CICS is in the following PDFs:

• ONC/RPC interface is in the External Interfaces Guide .
• Java™ and Liberty are in Java Applications in CICS.
• Front End Programming Interface is in the Front End Programming Interface User's Guide.
• DBCTL is in the IMS DB Control Guide.
• Shared data tables are in the Shared Data Tables Guide.
• Intersystem performance is in Intercommunication Guide.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2020 vii

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html

viii CICS TS for z/OS: Performance Guide

Chapter 1. Measuring, tuning, and monitoring: the
basics

Good performance is the achievement of maximizing the use of your system resources, which helps
towards reaching service level agreements efficiently.

About this task
You must consider the performance of a CICS system at the following times:

• When you plan to install a new system
• When you review an existing system
• When you plan major changes to a system

The following procedure shows the principal steps to tune a system.

Procedure

1. Agree what good performance is.
2. Set up performance objectives and decide how you measure them.
3. Measure the performance of the production system.
4. Adjust the system as necessary.
5. Continue to monitor the performance of the system and anticipate future constraints.

24-bit, 31-bit, and 64-bit addressing
How does bittage affect performance?

The zOS architecture uses virtual storage and address spaces. A program running in an address space can
reference all of the storage associated with that address space. The original MVS™ (pre zOS) architecture
defined storage addresses as 24 bits in length, which allowed an allocation to each user an address space
of 16 MB. Later, the addressability of the architecture was extended to 31 bits, which increased the
addressability of virtual storage, and the size of the address space, from 16 MB to 2 GB. The new
architecture did not require customers to change existing application programs, but provided
compatibility for existing programs originally designed to run with 24-bit addressing. Subsequently, with
the release of IBM eServer™ zSeries mainframes in 2000, IBM further extended the addressability of the
architecture to 64 bits. With 64-bit addressing, each address space, called a 64-bit address space, is
potentially 16 EB in size (an exabyte is slightly more than one billion gigabytes).

Note: Although the size of an address space is potentially 16 EB, z/OS, by default, continues to create
address spaces with a size of 2 GB. The address space exceeds this limit only if a program running in it
allocates virtual storage above the 2 GB address. If so, z/OS increases the storage available to the user
from 2 GB to 16 EB. Programs cannot execute in 64-bit (above-the-bar) storage; it is limited to storing
user data for programs that are loaded into the address space below 2 GB.

A program running on z/OS and the zSeries mainframe can run with 24-, 31-, or 64-bit addressing (and
can switch among these if needed). To address the high virtual storage available with the 64-bit
architecture, the program uses 64-bit-specific instructions, and must be running in 64-bit addressing
mode (AMODE(64)). Although the architecture introduces the unique 64-bit instructions, the program can
use both 31-bit and 64-bit instructions as needed. In zOS terminology:

• 24-bit storage (up to 16M) is known as below-the-line storage.
• 31-bit storage (16M to 2 GB) is know as above-the-line storage.
• 64-bit storage (2 GB to 16 EB) is know as above-the-bar storage.

© Copyright IBM Corp. 1974, 2020 1

CICS transaction flow
This section outlines how CICS processes transactions.

To begin an online session with CICS, you usually begin by “signing on,” which is the process that
identifies you to CICS. Signing on to CICS gives you the authority to invoke certain transactions. When
signed on, you invoke the particular transaction that you intend to use. A CICS transaction is usually
identified by a one to four-character transaction identifier or TRANSID, which is defined in a table that
names the initial program to be used for processing the transaction.

Application programs are stored in a library on a direct access storage device (DASD) that is attached to
the processor. They can be loaded when the system is started or simply loaded as required. If a program
is in storage and is not being used, CICS can release the space for other purposes. When the program is
next needed, CICS loads a fresh copy of it from the library.

In the time it takes to process one transaction, the system might receive messages from several
terminals. For each message, CICS loads the application program (if it is not already loaded) and starts a
task to execute it. Thus, multiple CICS tasks can run concurrently.

CICS maintains a separate thread of control for each task. When, for example, one task is waiting to read
a disk file, or to get a response from a terminal, CICS can give control to another task. Tasks are managed
by the CICS task control program.

CICS manages both multitasking and requests from the tasks themselves for services (of the operating
system or of CICS itself). This process allows CICS processing to continue while a task is waiting for the
operating system to complete a request on its behalf. Each transaction that is being managed by CICS is
given control of the processor when that transaction has the highest priority of those that are ready to run.

While it runs, your application program requests various CICS facilities to handle message transmissions
between it and the terminal and to handle any necessary file or database accesses. When the application
is complete, CICS returns the terminal to a standby state.

Program Control

A transaction (task) can execute several programs in the course of completing its work.

The program definition contains one entry for every program used by any application in the CICS system.
Each entry holds, among other things, the language in which the program is written. The transaction
definition has an entry for every transaction identifier in the system, and the important information kept
about each transaction is the identifier and the name of the first program to be executed on behalf of the
transaction.

These two sets of definitions, transaction, and program work in concert:

1. The user types in a transaction identifier at the terminal (or the previous transaction determined it).
2. CICS looks up this identifier in the list of installed transaction definitions, which tells CICS which

program to invoke first.
3. CICS looks up this program in the list of installed transaction definitions, finds out where it is, and

loads it (if it is not already in the main storage).
4. CICS builds the control blocks necessary for this particular combination of transaction and terminal

using information from both sets of definitions. For programs in command-level COBOL, this includes
making a private copy of working storage for this particular execution of the program.

5. CICS passes control to the program, which begins running using the control blocks for this terminal.
This program can pass control to any other program in the list of installed program definitions, if
necessary, in the course of completing the transaction.

There are two CICS commands for passing control from one program to another. One is the LINK
command, which is similar to a CALL statement in COBOL. The other is the XCTL (transfer control)
command, which has no COBOL counterpart. When one program links another, the first program stays in
main storage. When the second (linked-to) program finishes and gives up control, the first program

2 CICS TS for z/OS: Performance Guide

resumes at the point after the LINK. The linked-to program is considered to be operating at one logical
level lower than the program that does the linking.

In contrast, when one program transfers control to another, the first program is considered terminated
and the second operates at the same level as the first. When the second program finishes, control is
returned not to the first program, but to whatever program last issued a LINK command.

Some people like to think of CICS itself as the highest program level in this process, with the first program
in the transaction as the next level down, and so on.

A sound principle of CICS application design is to separate the presentation logic from the business logic.
Communication between the programs is achieved by using the LINK command, and data is passed
between such programs in the COMMAREA. Such a modular design provides not only a separation of
functions, but also much greater flexibility for the web enablement of existing applications using new
presentation methods.

CICS functions for monitoring and gathering performance data
You can use CICS statistics, monitoring, and trace facilities to gather and monitor performance data to
help you tune your CICS system optimally.

CICS statistics

CICS statistics are the simplest and the most important tool to monitor a CICS system permanently. They
collect information about the CICS system as a whole, without regard to tasks.

For more information, see Introduction to CICS statistics.

CICS monitoring

CICS monitoring collects data about the performance of all user and CICS transactions during online
processing for later offline analysis.

For more information, see Introduction to CICS monitoring.

CICS trace

For the more complex problems that involve system interactions, you can use the CICS trace to record the
progress of CICS transactions through the CICS management modules.

CICS trace provides a history of events leading up to a specific situation.

The CICS trace facilities can also be useful for analyzing performance problems such as excessive waiting
on events in the system, or constraints resulting from inefficient system setup or application program
design.

For more information, see CICS trace.

CICS tools for monitoring and gathering performance data
You can use CICS tools to gather and monitor performance data to help you tune your CICS systems.

CICS Performance Analyzer for z/OS (CICS PA)

CICS Performance Analyzer is a performance reporting and analysis tool that provides information on the
performance of your CICS systems and applications, and helps you tune, manage, and plan your CICS
systems effectively. CICS PA provides historical performance and statistical information about CICS
systems and applications using data collected from CICS and any connected sub-systems including Db2®,
IMS, and MQ.

Chapter 1. Measuring, tuning, and monitoring: the basics 3

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_stats_intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_mon_oview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs13p.html

CICS PA can be used to produce comprehensive performance reporting and analysis help to evaluate
CICS system efficiency, eliminate system bottlenecks and proactively tune system performance including
threadsafe analysis. It provides over 250 pre-defined, customizable reports, along with the facilities to
create your own reports and extracts.

The CICS PA plug-in for CICS Explorer integrates performance data into CICS Explorer and allows you to,
for example, right-click CICS resource in the CICS Explorer and display historical performance
information about it.

For more information about CICS PA, see CICS Performance Analyzer for z/OS.

CICS Interdependency Analyzer for z/OS (CICS IA)

CICS Interdependency Analyzer is a productivity tool used to discover and analyze CICS resources and
identify relationships between them.

CICS IA dynamically discovers runtime relationships among key resources within your CICS system. It
does this by monitoring applications for API and SPI commands along with optional Db2, IMS, MQ and
COBOL calls to give you a complete picture of your application and the interactions and resources that are
referenced along with their inter-relationship. CICS IA can help you analyze applications for Threadsafe
considerations to improve the overall execution efficiency.

CICS IA stores its data in a Db2 database and this can be accessed offline for querying and reporting by
the CICS IA reporter component. CICS IA also provides a CICS Explorer plug-in, which allows you to, for
example, right-click a CICS resource in the CICS Explorer and display all the resources related to it.

The CICS IA Command Flow feature gives you the ability to capture and view all EXEC CICS, SQL, MQ, and
IMS calls in chronological order. This feature can be helpful in diagnosing the flow of your application as it
executes along with the ability to identify TCB mode switches to help with tuning and Threadsafe analysis.

For more information about CICS IA, see CICS Interdependency Analyzer for z/OS

Other tools for obtaining performance data
You can use a number of tools that are not provided by CICS to provide performance-related information
to help you optimally tune your CICS system.

The IBM Redbooks® publication ABCs of z/OS System Programming contains information about capacity
planning, performance management, RMF, and SMF.

Resource measurement facility (RMF)
The resource measurement facility (RMF) collects system-wide data that describes the processor activity
(WAIT time), I/O activity (channel and device usage), main storage activity (demand and swap paging
statistics), and system resources manager (SRM) activity (workload).

RMF is a centralized measurement tool that monitors system activity to collect performance and capacity
planning data. The analysis of RMF reports provides the basis for tuning the system to user requirements.
They can also be used to track resource usage.

RMF measures the following activities:

• Processor usage
• Address space usage
• Channel activity:

– Request rate and service time per physical channel
– Logical-to-physical channel relationships
– Logical channel queue depths and reasons for queuing.

• Device activity and contention for the following devices:

– Unit record

4 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSPPU4/welcome.html
https://www.ibm.com/support/knowledgecenter/SSPPUS/welcome.html
http://www.redbooks.ibm.com/abstracts/sg246327.html

– Graphics
– Direct-access storage
– Communication equipment
– Magnetic tapes
– Character readers.

• Detailed system paging
• Detailed system workload
• Page and swap data set
• Enqueue
• CF activity
• XCF activity.

RMF allows the z/OS user to:

• Evaluate system responsiveness:

– Identify bottlenecks. The detailed paging report associated with the page and swap data set activity
can give a good picture of the behavior of a virtual storage environment.

• Check the effects of tuning:

– Results can be observed dynamically on a screen or by postprocessing facilities.
• Perform capacity planning evaluation:

– The workload activity reports include the interval service broken down by key elements such as
processor, input/output, and main storage service.

– Analysis of the resource monitor output (for example, system contention indicators, swap-out broken
down by category, average ready users per domain) helps in understanding user environments and
forecasting trends.

– The post-processing capabilities make the analysis of peak load periods and trend analysis easier.
• Manage the larger workloads and increased resources that MVS can support
• Identify and measure the usage of online channel paths

For more information about RMF, see the IBM Redbooks publication ABCs of z/OS System Programming
and z/OS Resource Measurement Facility (RMF) User's Guide.

Tivoli OMEGAMON XE for CICS on z/OS
Tivoli® OMEGAMON® XE for CICS on z/OS helps you to proactively manage performance and availability of
complex CICS systems.

Tivoli OMEGAMON XE for CICS on z/OS (OMEGAMON XE for CICS on z/OS) is a remote monitoring agent
that runs on z/OS managed systems. It assists you in anticipating performance problems and warns you
when critical events take place in your CICS environments. You can set threshold levels and flags to alert
you when events within your CICS regions reach critical points.

When running under the Tivoli Enterprise Portal, IBM Tivoli OMEGAMON XE for CICS on z/OS offers a
central point of management for CICS Transaction Server and provides a comprehensive means for
gathering the information you need to detect and prevent problems within your CICS regions. You view
data that Tivoli Enterprise Portal gathers in tables and charts that show you the status of your managed
CICS regions.

With this data you can perform a number of tasks:

• Collect and analyze reliable, up-to-the-second data that allows you to make faster, better informed,
operating decisions

• Manage all CICS regions from a single point to identify problems at any time
• Balance workloads across various regions

Chapter 1. Measuring, tuning, and monitoring: the basics 5

http://www.redbooks.ibm.com/abstracts/sg246327.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm

• Track performance against goals

With OMEGAMON XE for CICS on z/OS, systems administrators can set threshold levels and flags to alert
them when system conditions reach these thresholds. These are the advanced monitoring facilities:

• User-defined and predefined situations based on thresholds to raise different types of alerts
• At-a-glance status of all CICS regions
• The capability to monitor multiple CICS regions simultaneously from one or more centralized

workstations

Used in conjunction with other OMEGAMON XE monitoring products, the data, analyses, and alerts
presented by OMEGAMON XE for CICS on z/OS can help you develop an overall view of the health of your
entire computing enterprise from a single console.

For more information about OMEGAMON XE for CICS on z/OS, see IBM Tivoli OMEGAMON XE for CICS on
z/OS

IBM Z Decision Support
IBM Z® Decision Support (previously called Tivoli Decision Support for z/OS) is an IBM product that
collects and analyzes data from CICS and other IBM systems and products.

The reports generated by IBM Z Decision Support are useful for the following purposes:

• Getting an overview of the system
• Ensuring that service levels are maintained
• Ensuring availability
• Performance tuning
• Capacity planning
• Managing change and problems
• Accounting

A large number of ready-made reports are available. You can also generate your own reports to meet
specific needs.

In the reports, IBM Z Decision Support uses data from CICS monitoring and statistics. IBM Z Decision
Support also collects data from the MVS system and from products such as RMF, TSO, IMS and NetView®.
This means that data from CICS and other systems can be shown together, or can be presented in
separate reports.

Reports can be presented as plots, bar charts, pie charts, tower charts, histograms, surface charts, and
other graphic formats. IBM Z Decision Support passes the data and formatting details to Graphic Data
Display Manager (GDDM) which does the rest. IBM Z Decision Support can also produce line graphs and
histograms using character graphics where GDDM is not available, or the output device does not support
graphics. For some reports, where you need the exact figures, numeric reports such as tables and
matrices are more suitable.

To use IBM Z Decision Support to report on CICS performance, you use the IBM Z Decision Support CICS
performance feature. For more information, see IBM Z Decision Support for Capacity Planning.

Performance monitoring and review
CICS performance can be monitored, measured, and analyzed by implementing a strategy that best suits
your needs.

You can use a number of monitoring techniques to set your performance objectives, and analyze CICS
performance.

6 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLSDR/kc_omxecics_welcome.htm
https://www.ibm.com/support/knowledgecenter/SSLSDR/kc_omxecics_welcome.htm
https://www.ibm.com/support/knowledgecenter/SSH53X

Establishing monitoring activities and techniques
Establishing an ongoing strategy involving monitoring activities and monitoring techniques provides an
understanding of your CICS production system that helps to ensure optimum performance and avoid
unexpected problems.

Monitoring is used to describe regular checking of the performance of a CICS production system, against
objectives, by the collection and interpretation of data. Analysis describes the techniques used to
investigate the reasons for performance deterioration. Tuning can be used for any actions that result from
this analysis.

Monitoring is an ongoing activity for a number of reasons:

• It can establish transaction profiles (that is, workload and volumes) and statistical data for predicting
system capacities

• It can give early warning through comparative data to avoid performance problems
• It can measure and validate any tuning you might have done in response to an earlier performance

problem.

A performance history database (see “IBM Z Decision Support” on page 34 for an example) is a valuable
source from which to answer questions on system performance, and to plan further tuning.

Monitoring can be described in terms of strategies, procedures, and tasks.

Strategies include these elements:

• Continuous or periodic summaries of the workload. You can track all transactions or selected
representatives.

• Snapshots at normal or peak loads. Monitor peak loads for these reasons:

– Constraints and slow responses are more pronounced at peak volumes.
– The current peak load is a good indicator of the future average load.

Procedures, such as good documentation practices, provide a management link between monitoring
strategies and tasks.

Tasks (not to be confused with the task component of a CICS transaction) include:

• Running one or more of the tools; see “Performance measurement tools” on page 21
• Collating the output
• Examining it for trends

Allocate responsibility for these tasks between operations personnel, programming personnel, and
analysts. Identify the resources that are to be regarded as critical, and set up a procedure to highlight any
trends in the use of these resources.

Because the tools require resources, they can disturb the performance of a production system.

Give emphasis to peak periods of activity, for both the new application and the system as a whole. Run
the tools more frequently at first if required to confirm that the expected peaks correspond with the
actual ones.

It is often not practical to keep all the detailed output. File summarized reports with the corresponding
CICS statistics, and hold output from the tools for an agreed period, with customary safeguards for its
protection.

Do not base conclusions on one or two snapshots of system performance, but rather on data collected at
different times over a prolonged period. Emphasise peak loading. Because different tools use different
measurement criteria, early measurements might give apparently discrepant results.

Plan your monitoring procedures ahead of time. In your procedures, explain the tools to be used, the
analysis techniques to be used, the operational extent of those activities, and how often they are to be
performed.

Chapter 1. Measuring, tuning, and monitoring: the basics 7

Developing monitoring activities and techniques

To collect and analyze data that is consistent with your strategy, you must have the correct tools and
processes in place. When you are developing a master plan for monitoring and performance analysis,
consider these points:

• Establish a master schedule of monitoring activity. Coordinate monitoring with operations procedures
to allow for feedback of online events and instructions for daily or periodic data gathering.

• Consider your business in relation to system performance, for example, what will be the growth of
transaction rates and changes in the use of applications and future trends. Consider the effects of
nonperformance system problems such as application abends, frequent problems, and excessive
attempts.

• Decide on the tools to be used for monitoring. The tools used for data gathering must provide for
dynamic monitoring, daily collection of statistics, and more detailed monitoring. See “Planning your
monitoring schedule” on page 8 for more information.

• Consider the kinds of analysis to be performed. Take into account any controls you have already
established for managing the installation. Document what data is to be extracted from the monitoring
output, identifying the source and usage of the data. Although the formatted reports provided by the
monitoring tools help to organize the volume of data, design worksheets to assist in data extraction and
reduction.

• Compose a list of the personnel who are to be included in any review of the findings. The results and
conclusions from analyzing monitor data should be shared with the user liaison group and system
performance specialists.

• Create a strategy for implementing changes to the CICS system design resulting from tuning
recommendations. Incorporate the recommendations into installation management procedures, and
include items such as standards for testing and the permitted frequency of changes to the production
environment.

Planning the performance review process

A plan of the performance review process includes a checklist of the tools and analysis that are required
to implement monitoring procedures. Establish a simple schedule for monitoring procedures. To create a
performance review process, perform the following tasks:

• List the CICS requests made by each type of task. This helps you decide which requests or which
resources (the high-frequency or high-cost ones) need to be looked at in statistics and CICS monitoring
facility reports.

• Create a checklist of review questions.
• Estimate resource usage and system loading for new applications. This is to enable you to set an initial

basis from which to start comparisons.

Planning your monitoring schedule
A comprehensive monitoring plan includes the scheduling of various system activities at different time
intervals. This approach provides a broad collection of data to measure and analyze the performance your
CICS system. Plan for both dynamic monitoring and scheduled monitoring.

Dynamic monitoring

Dynamic monitoring is "on-the-spot" monitoring that you can carry out at all times. This type of
monitoring includes the following activities:

• Observing the operation of the system continuously to discover any serious short-term deviation from
performance objectives. End-user feedback is essential for this activity. You can also use the Resource
Measurement Facility (RMF) to collect information about processor, channel, coupling facility, and I/O
device usage.

• Obtaining status information. You can get status information about system processing during online
execution. This information might include the queue levels, active regions, active terminals, and the

8 CICS TS for z/OS: Performance Guide

number and type of conversational transactions. You can get this information with the aid of an
automated program started by the master terminal operator. At prearranged times in the production
cycle (such as before scheduling a message, at shutdown of part of the network, or at peak loading), the
program can capture the transaction processing status and measurements of system resource levels.

• Using CICSPlex® SM monitoring data. CICSPlex SM can accumulate information produced by the CICS
monitoring facility to assist in dynamic monitoring activities. The data can then be immediately viewed
online, giving instant feedback on the performance of the transactions. CICS monitoring must be active
for CICSPlex SM to collect CICS monitoring information.

Daily monitoring

Measure and record key system parameters by monitoring data daily. The daily monitoring of data usually
consists of counts of events and gross level timings. In some cases, the timings are averaged for the
entire CICS system. To monitor data daily, perform a series of tasks. For example:

• Record both the daily average and the peak period (usually one hour) average of items such as
messages, tasks, processor usage, I/O events, and storage used. Compare these events against your
major performance objectives and look for adverse trends.

• List the CICS-provided statistics at the end of every CICS run. Date-stamp and time-stamp the data that
is provided, and file it for later review. For example, in an installation that has settled down, you might
review daily data at the end of the week; generally, you can carry out reviews less frequently than
collection, for any one type of monitoring data. If you know there is a problem, you might increase the
frequency; for example, reviewing daily data as soon as it becomes available.

• Be familiar with all the facilities in CICS for providing statistics at times other than at shutdown. The
main facilities are invocation from a terminal (with or without reset of the counters) and automatic time-
initiated requests.

• File an informal note of any incidents reported during the run, including, for example, a shutdown of
CICS that causes a gap in the statistics, a complaint from your users of poor response times, a terminal
going out of service, or any other significant item. These notes are useful when reconciling disparities in
detailed performance figures that might be discovered later.

• Print the system console log for the period when CICS was active, and file a copy of the console log in
case it becomes necessary to review the CICS system performance in the light of the concurrent batch
activity.

• Run one of the performance analysis tools described in “Performance measurement tools” on page 21
for at least part of the day if there is any variation in load. File the summaries of the reports produced by
the tools you use.

• Transcribe onto a graph any items identified as being consistently heavily used in the post-development
review phase.

• Collect CICS statistics, monitoring data, and RMF data into the IBM Z Decision Support database.

Weekly monitoring

Periodically collect detailed statistics on the operation of your system for comparison with your system-
oriented objectives and workload profiles. To monitor data weekly, perform these steps:

• Run the CICS monitoring facility with performance class active, and process it. You might not need to
run the facility every day, but it is important to do it regularly and to keep the sorted summary output
and the detailed reports. Whether you run the facility on the same day of the week depends on the
nature of the system load. For example, if one day of the week has a heavier system load than others,
monitor on this day. Bear in mind, however, that the use of the monitoring facility causes additional
load, particularly with performance class active.

• If the load is apparently the same each day, run the CICS monitoring facility daily for a period sufficient
to confirm the load. If there really is little difference from day to day in the CICS load, check the
concurrent batch loads in the same way from the logs. Checking the batch loads helps you identify any
obscure problems because of peak volumes or unusual transaction mixes on specific days of the week.
The first few weeks of output from the CICS statistics also provide useful information.You might not

Chapter 1. Measuring, tuning, and monitoring: the basics 9

need to review the detailed monitor report output every time, but always keep this output in case the
summary data is insufficient to answer questions raised by the statistics or by user comments. Label
the CICS monitoring facility output and keep it for an agreed period in case further investigations are
required.

• Run RMF, because this shows I/O use, channel use, and other uses. File the summary reports and
archive the output information for some agreed period.

• Review the CICS statistics, and any incident reports.
• Review the graph of critical parameters. If any of the items is approaching a critical level, check the

performance analysis and RMF output for more detail.
• Tabulate or produce a graph of values as a summary for future reference.
• Produce weekly IBM Z Decision Support or CICS Performance Analyzer reports.

Monthly monitoring

Monitor and assess trends that are better reflected when tracked regularly over a longer period of time.
The following list includes some tasks for monitoring data on a monthly basis:

• Run RMF.
• Review the RMF and performance analysis listings. If there is any indication of excessive resource

usage, follow any previously agreed procedures (for example, notify your management), and do further
monitoring.

• Date-stamp and time-stamp the RMF output and keep it for use in case performance problems start to
arise. You can also use the output in making estimates, when detailed knowledge of component usage
might be important. The RMF output provides detailed data on the usage of resources within the
system, including processor usage, use of DASD, and paging rates.

• Produce monthly IBM Z Decision Support reports showing long-term trends.

Monitoring for the future

When performance is acceptable, establish procedures to monitor system performance measurements
and anticipate performance constraints before they become response-time problems. Exception-
reporting procedures are a key to an effective monitoring approach. In a complex production system
there is often too much performance data for it to be comprehensively reviewed every day. Key
components of performance degradation can be identified with experience, and those components are
the ones to monitor most closely. Identify trends of usage and other factors (such as batch schedules) to
aid in this process.

Typical performance review questions
Use the following questions as a basis for your own checklist when carrying out a review of performance
data. Many of these questions can be answered by performance reporting packages such as CICS
Performance Analyzer or IBM Z Decision Support for z/OS.

Some of the questions are not strictly to do with performance. For instance, if the transaction statistics
show a high frequency of transaction abends with usage of the abnormal condition program, there might
be sign-on errors and, therefore, a lack of terminal operator training. This situation is not a performance
problem, but is an example of the additional information that can be provided by monitoring.

1. What are the characteristics of your transaction workload?

a. Has the frequency of use of each transaction identifier altered?
b. Does the mix vary from one time of the day to another?
c. Should statistics be requested more frequently during the day to verify this?

A different approach must be taken:

• In systems where all messages are channeled through the same initial task and program (for user
security routines, initial editing or formatting, statistical analysis, and so on)

10 CICS TS for z/OS: Performance Guide

• For conversational transactions, where a long series of message pairs is reflected by a single
transaction

• In transactions where the amount of work done relies heavily on the input data.

In these cases, you must identify the function by program or data set usage, with appropriate
reference to the CICS program statistics, file statistics, or other statistics. In addition, you might be
able to put user tags into the monitoring data (for example, a user character field in the case of the
CICS monitoring facility), which can be used as a basis for analysis by products such as CICS
Performance Analyzer for z/OS, or IBM Z Decision Support.

2. What is the usage of the telecommunication lines?

a. Do the CICS terminal statistics indicate any increase in the number of messages on the terminals
on each of the lines?

b. Does the average message length on the CICS performance class monitor reports vary for any
transaction type? This can easily happen with an application where the number of lines or fields
output depends on the input data.

c. Is the number of terminal errors acceptable? If you are using a terminal error program or node error
program, are there any line problems?

3. What is the DASD usage?

a. Is the number of requests to file control increasing? Remember that CICS records the number of
logical requests made. The number of physical I/O operations depends on the configuration of
indexes, and on the data records per control interval and the buffer allocations.

b. Is intrapartition transient data usage increasing? Transient data involves a number of I/O
operations depending on the queue mix. Review the number of requests made to see how it
compares with previous runs.

c. Is auxiliary temporary storage usage increasing? Temporary storage uses control interval access,
but writes the control interval out only at sync point or when the buffer is full.

4. What is the virtual storage usage?

a. How large are the dynamic storage areas?
b. Is the number of GETMAIN requests consistent with the number and types of tasks?
c. Is the short-on-storage (SOS) condition being reached often?
d. Have any incidents been reported of tasks being purged after deadlock timeout interval (DTIMOUT)

expiry?
e. How much program loading activity is there?
f. From the monitor report data, is the use of dynamic storage by task type as expected?
g. Is storage usage similar at each execution of CICS?
h. Are there any incident reports showing that the first invocation of a function takes a lot longer than

subsequent ones? This situation can occur if programs are loaded that then need to open data sets,
particularly in IMS, for example. Can a change in application design rectify the problem?

5. What is the processor usage?

a. Is the processor usage as measured by the monitor report consistent with previous observations?
b. Are batch jobs that are planned to run, able to run successfully?
c. Is there any increase in usage of functions running at a higher priority than CICS? Include MVS

readers and writers, MVS JES, and z/OS Communications Server if running above CICS, and overall
I/O, because of the lower-priority regions.

6. What is the coupling facility usage?

a. What is the average storage usage?
b. What is the link utilization?

7. Do any figures indicate design, coding, or operational errors?

Chapter 1. Measuring, tuning, and monitoring: the basics 11

a. Are any of the resources heavily used? If so, was this situation expected at design time? If not, can
the heavy usage be explained in terms of heavier usage of transactions?

b. Is the heavy usage associated with a particular application? If so, is there evidence of planned
growth or peak periods?

c. Are browse transactions issuing more than the expected number of requests? In other words, is the
count of browse requests issued by a transaction greater than what you expected users to cause?

d. Is the CICS CSAC transaction (provided by the DFHACP abnormal condition program) being used
frequently? If so, is this occurring because invalid transaction identifiers are being entered? For
example, errors are signaled if transaction identifiers are entered in lowercase on IBM 3270
terminals but automatic translation of input to uppercase has not been specified.

A high use of the DFHACP program without a corresponding count of CSAC could indicate that
transactions are being entered without correct operator signon. This situation might indicate that
some terminal operators need more training in using the system.

In addition, review regularly certain items in the CICS statistics, such as:

• Times the MAXTASK limit is reached (transaction manager statistics)
• Peak tasks (transaction class statistics)
• Times cushion is released (storage manager statistics)
• Storage violations (storage manager statistics)
• Maximum number of RPLs posted (z/OS Communications Server statistics)
• Short-on-storage count (storage manager statistics)
• Wait on string total (file control statistics)
• Use of DFHSHUNT log streams
• Times auxiliary storage is exhausted (temporary storage statistics)
• Buffer waits (temporary storage statistics)
• Times string wait occurred (temporary storage statistics)
• Times NOSPACE occurred (transient data global statistics)
• Intrapartition buffer waits (transient data global statistics)
• Intrapartition string waits (transient data global statistics)
• Times the MAXSOCKETS limit is reached (TCP/IP statistics)
• Pool thread waits (Db2 connection statistics)

Review the effects of and reasons for system outages and their duration. If there is a series of outages,
there might be a common cause.

CICS performance analysis techniques
A number of techniques are available for analyzing CICS performance.

There are four main uses for performance analysis:

• You currently have no performance problems, but you want to adjust the system to give better
performance.

• You want to characterize and calibrate individual stand-alone transactions as part of the documentation
of those transactions, and for comparison with some future time when, perhaps, they start behaving
differently.

• A system is departing from previously identified objectives, and you want to find out precisely where
and why. Although an online system might operate efficiently when it is installed, the characteristics of
the system usage can change and the system might not run so efficiently. This inefficiency can usually
be corrected by adjusting various controls. Some adjustments usually need to be made to any new
system when it goes live.

12 CICS TS for z/OS: Performance Guide

• A system might or might not have performance objectives, but it appears to be suffering severe
performance problems.

If the current performance does not meet your needs, consider tuning the system. To tune your system,
you must perform the following tasks:

1. Identify the major constraints in the system.
2. Understand what changes could reduce the constraints, possibly at the expense of other resources.

Tuning is usually a trade-off of one resource for another.
3. Decide which resources could be used more heavily.
4. Adjust the parameters to relieve the constrained resources.
5. Review the performance of the resulting system in the light of these criteria:

• Your existing performance objectives
• Progress so far
• Tuning effort so far

6. Stop at this point if performance is acceptable; otherwise do one of the following actions:

• Continue tuning
• Add suitable hardware capacity
• Reduce your system performance objectives.

The tuning tasks can be expressed in flowchart form as follows:

Chapter 1. Measuring, tuning, and monitoring: the basics 13

Figure 1. Flowchart to show rules for tuning performance

What to investigate when analyzing performance
Always start by looking at the overall system before you decide that you have a specific CICS problem.
Check total processor usage, DASD activity, and paging.

Performance degradation is often due to application growth that has not been matched by corresponding
increases in hardware resources. If so, solve the hardware resource problem first. You might still need to
follow on with a plan for multiple regions.

Information from at least three levels is required:

14 CICS TS for z/OS: Performance Guide

1. CICS: Examine the CICS interval or end-of-day statistics for exceptions, queues, and other symptoms
that suggest overloads on specific resources. A shorter reporting period can isolate a problem.
Consider software and hardware resources; for example, utilization of VSAM strings or database
threads, files, and TP lines. Check runtime messages that are sent to the console and to transient data
destinations, such as CSMT and CSTL, for persistent application problems and network errors.

Use tools such as the CICS Explorer® and RMF, to monitor the online system and identify activity that
correlates to periods of bad performance. Collect CICS monitoring facility history and analyze it, using
tools such as CICS Performance Analyzer or IBM Z Decision Support to identify performance and
resource usage exceptions and trends. For example, note processor-intensive transactions that
perform little or no I/O. These transactions can monopolize the processor, causing erratic response in
other transactions with more normally balanced activity profiles. These transactions might be
candidates for isolation in another CICS region.

2. MVS: Use SMF data to discover any relationships between periods of bad CICS performance and other
concurrent activity in the MVS system. Use RMF data to identify overloaded devices and paths. Monitor
CICS region paging rates to make sure that there is sufficient real storage to support the configuration.

3. Network: The proportion of response time spent in the system is small compared with transmission
delays and queuing in the network. Use tools such as Tivoli NetView for z/OS to identify problems and
overloads in the network. Without automatic tools, you are dependent on the subjective opinions of a
user that performance has deteriorated.

In CICS, the performance problem is either a poor response time or an unexpected and unexplained high
use of resources. In general, you must look at the system in some detail to see why tasks are progressing
slowly through the system, or why a given resource is being used heavily. The best way of looking at
detailed CICS behavior is by using CICS auxiliary trace. But note that switching on auxiliary trace, though
the best approach, can worsen existing poor performance while it is in use.

The approach is to get a picture of task activity first, listing only the task traces, and then to focus on
particular activities: specific tasks, or a specific time interval. For example, for a response time problem,
you might want to look at the detailed traces of one task that is observed to be slow. There might be a
number of possible reasons; for example, the tasks might be trying to do too much work for the system,
or the system is real-storage constrained, or many of the CICS tasks are waiting because there is
contention for a particular function.

Information sources to help analyze performance

Potentially, any performance measurement tool, including statistics and the CICS monitoring facility, can
help in diagnosing problems. Consider each performance tool as usable in some degree for each purpose:
monitoring, single-transaction measurement, and problem determination. CICS statistics can reveal
heavy use of a particular resource. For example, you might find a large allocation of temporary storage in
main storage, a high number of storage control requests per task (perhaps 50 or 100), or high program
use counts that imply heavy use of program control LINK.

Both statistics and CICS monitoring might show exceptional conditions arising in the CICS run. Statistics
can show waits on strings, waits for VSAM shared resources, waits for storage in GETMAIN requests, and
other waits. These waits also generate CICS monitoring facility exception class records.

While these conditions are also evident in CICS auxiliary trace, they might not be obvious, and the other
information sources are useful in directing the investigation of the trace data.

In addition, you can gain useful data from the investigation of CICS outages. If there is a series of outages,
investigate common links between the outages.

Establishing a measurement and evaluation plan
For some installations, a measurement and evaluation plan might be suitable. A measurement and
evaluation plan is a structured way to measure, evaluate, and monitor the performance of the system.

To set up a measurement and evaluation plan, perform the following steps:

1. Devise the plan.
2. Review the plan.

Chapter 1. Measuring, tuning, and monitoring: the basics 15

3. Implement the plan.
4. Revise and upgrade the plan as necessary.

To use the plan, perform the following major activities:

• Collect information periodically to determine:

– Whether objectives have been met
– Transaction activity
– Resource utilization

• Summarize and analyze the information. For this activity:

– Plot volumes and averages on a chart at a specified frequency
– Plot resource utilization on a chart at a specified frequency
– Log unusual conditions on a daily log
– Review the logs and charts weekly

• Make or recommend changes if objectives have not been met.
• Relate past, current, and projected transaction activity and resource utilization to determine if

objectives continue to be met, and whether resources are being used beyond an efficient capacity.
• Keep interested parties informed with informal reports, written reports, and monthly meetings.

A typical measurement and evaluation plan might include the following items as objectives, with
statements of recording frequency and the measurement tool to be used:

• Volume and response time for each department
• Network activity:

– Total transactions
– Tasks per second
– Total by transaction type
– Hourly transaction volume (total, and by transaction)

• Resource utilization examples:

– DSA utilization
– Processor utilization with CICS
– Paging rate for CICS and for the system
– Channel utilization
– Device utilization
– Data set utilization
– Line utilization

• Unusual conditions:

– Network problems
– Application problems
– Operator problems
– Transaction count for entry to transaction classes
– SOS occurrences
– Storage violations
– Device problems (not associated with the communications network)
– System outage
– CICS outage time

16 CICS TS for z/OS: Performance Guide

Assessing the performance of your system
The following performance measurements can be helpful in determining the performance of a system:
processor usage, I/O rates, terminal message or data set record block sizes, paging rates, and error rates.
Processor usage

This item reflects how active the processor is. Although the central processor is of primary concern,
37X5 communications controllers and terminal control units can also increase response time if they
are heavily used.

I/O rates
These rates measure the amount of access to a disk device or data set over a given period. Again,
acceptable rates vary depending on the speed of the hardware and response time requirements.

Terminal message or data set record block sizes
These factors, when combined with I/O rates, provide information about the current load on the
network or DASD subsystem.

Indications of internal virtual storage limits
These indications vary by software component, including storage or buffer expansion counts, system
messages, and program abends because of system stalls. In CICS, program fetches on nonresident
programs and system short-on-storage or stress messages reflect this condition.

Paging rates
CICS can be sensitive to a real storage shortage, and paging rates reflect this shortage. Acceptable
paging to DASD rates vary with the speed of the DASD and response time criteria.

Error rates
Errors can occur at any point in an online system. If the errors are recoverable, they can go unnoticed,
but they put an additional load on the resource on which they are occurring.

Investigate both system conditions and application conditions.

System conditions

A knowledge of the following conditions can help you evaluate the performance of the system as a whole:

• System transaction rate (average and peak)
• Internal response time and terminal response time, preferably compared with transaction rate
• Working set, at average and peak transaction rates
• Average number of disk accesses per unit time (total, per channel, and per device)
• Processor usage, compared with transaction rate
• Number of page faults per second, compared with transaction rate and real storage
• Communication line usage (net and actual)
• Average number of active CICS tasks
• Number and duration of outages

Application conditions

Application conditions, measured both for individual transaction types and for the total system, give you
an estimate of the behavior of individual application programs. Gather data for each main transaction, and
average values for the total system. This includes the following data:

• Program calls per transaction
• CICS storage GETMAIN and FREEMAIN requests (number and amount)
• Application program and transaction usage
• File control (data set, type of request)
• Terminal control (terminal, number of inputs and outputs)
• Transaction routing (source, target)
• Function shipping (source, target)

Chapter 1. Measuring, tuning, and monitoring: the basics 17

• Other CICS requests

Methods of performance analysis
You can use two methods for performance analysis: measuring a system under full production load (full-
load measurement), to get all information that is measurable only under high system-loading, and
measuring single-application transactions (single-transaction measurement), during which the system
must not carry out any other activities.

Because a system can have various problems, it is not possible to recommend which option to use to
investigate the behavior of a system. When in doubt about the extent of a problem, always use both
methods.

Rapid performance degradation often occurs after a threshold is exceeded and the system approaches its
ultimate load. You can see various indications only when the system is fully loaded (for example, paging,
short-on-storage condition in CICS, and so on), and you should usually plan for a full-load measurement.

The IBM Redbooks publication ABC's of z/OS System Programming, Volume 11 contains further
information about performance analysis methods.

Performance analysis: Full-load measurement
A full-load measurement highlights latent problems in the system. It is important that you take the
measurement when, from production experience, the peak load is reached.

Many installations have a peak load for about one hour in the morning and again in the afternoon. CICS
statistics and various performance tools can provide valuable information for full-load measurement. In
addition to the overall results of these tools, it might be useful to have the CICS auxiliary trace or RMF
active for about 1 minute.

CICS auxiliary trace

CICS auxiliary trace can be used to find situations that occur under full load. For example, all ENQUEUE
operations that cannot immediately be honored in application programs result in a suspension of the
issuing task. If this situation happens frequently, attempts to control the system by using the master
transaction are not effective.

Trace is a heavy overhead. Use trace selectivity options to minimize this overhead.

RMF

It is advisable to do the RMF measurement without any batch activity.

For full-load measurement, the system activity report and the DASD activity report are important.

The most important values for full-load measurement are as follows:

• Processor usage
• Channel and disk usage
• Disk unit usage
• Overlapping of processor with channel and disk activity
• Paging
• Count of start I/O operations and average start I/O time
• Response times
• Transaction rates.

Expect stagnant throughput and sharply climbing response times as the processor load approaches
100%.

It is difficult to forecast the system paging rate that can be achieved without serious detriment to
performance, because too many factors interact. Observe the reported paging rates; note that short-
duration severe paging leads to a rapid increase in response times.

18 CICS TS for z/OS: Performance Guide

http://www.redbooks.ibm.com/redbooks/pdfs/sg246327.pdf

In addition to taking note of the count of start I/O operations and their average length, find out whether
the system is waiting on one device only. With disks, for example, it can happen that several frequently
accessed data sets are on one disk and the accesses interfere with each other. In each case, investigate
whether a system wait on a particular unit could not be minimized by reorganizing the data sets.

The RMF DASD activity report includes the following information:

• A summary of all disk information
• Per disk, a breakdown by system number and region
• Per disk, the distribution of the seek arm movements
• Per disk, the distribution of accesses with and without arm movement.

Use the IOQ(DASD) option in RMF monitor 1 to show DASD control unit contention.

After checking the relationship of accesses with and without arm movement, for example, you might want
to move to separate disks those data sets that are periodically frequently accessed.

Comparison charts
Consider using a comparison chart to measure key aspects of your system performance before and after
tuning changes have been made. A suggested chart is as follows:

Table 1. Comparison chart

Observations to make Run A Run B Run C Run D

DL/I transactions Number

DL/I transactions Response

VSAM transactions Number

VSAM transactions Response

Response times DL/I

Response times VSAM

Most heavily used
transaction

Number

Most heavily used
transaction

Response

Average-use transaction Number

Average-use transaction Response

Paging rate System

Paging rate CICS

DSA virtual storage Maximum

DSA virtual storage Average

Tasks Peak

Tasks At MXT

Most heavily used DASD Response

Most heavily used DASD Utilization

Average-use DASD Response

Average-use DASD Utilization

CPU utilization

Chapter 1. Measuring, tuning, and monitoring: the basics 19

This type of comparison chart requires the use of TPNS, RMF, and CICS interval statistics running together
for about 20 minutes, at a peak time for your system. It also requires you to identify the following items:

• A representative selection of terminal-oriented DL/I transactions accessing DL/I databases
• A representative selection of terminal-oriented transactions processing VSAM files
• The most heavily used transaction
• Two average-use nonterminal-oriented transactions writing data to intrapartition transient data

destinations
• The most heavily used volume in your system
• A representative average-use volume in your system

To complete the comparison chart for each CICS run before and after a tuning change, you can obtain the
figures from the following sources:

• DL/I transactions: Identify a selection of terminal-oriented DL/I transactions accessing DL/I databases.
• VSAM transactions: Identify a selection of terminal-oriented transactions processing VSAM files.
• Response times: External response times are available from the TPNS terminal response time analysis

report; internal response times are available from RMF. The “DL/I” subheading is the average response
time calculated at the 99th percentile for the terminal-oriented DL/I transactions you have previously
selected. The “VSAM” subheading is the average response time calculated at the 99th percentile for the
terminal-oriented VSAM transactions you have previously selected.

• Paging rate (system): The RMF paging activity report shows a figure for total system non-VIO non-swap
page-ins added to the figure shown for the total system non-VIO non-swap page-outs. This figure is the
total paging rate per second for the entire system.

• Tasks: Transaction manager statistics (part of the CICS interval, end-of-day, and requested statistics).
The “Peak” subheading is the figure shown for “Peak Number of Tasks” in the statistics. The “At MXT”
subheading is the figure shown for “Number of Times at Max. Task” in the statistics.

• Most heavily used DASD: The RMF direct access device activity report, which relates to the most heavily
used volume in your system. The “Response” subheading is the figure shown in the “Avg. Resp. Time”
column for the volume you have selected. The “Utilization” subheading is the figure shown in the “%
Dev. Util.” column for that volume.

• Average-use DASD: The RMF direct access device activity report, which relates to a representative
average-use volume in your system. The “Response” subheading is the figure shown in the “Avg. Resp.
Time” column for the volume you have selected. The “Utilization” subheading is the figure shown in the
“% Dev. Util.” column for that volume.

• Processor utilization: The RMF processor activity report.

This chart is most useful when comparing before-and-after changes in performance while you are tuning
your CICS system.

Performance analysis: Single-transaction measurement
You can use full-load measurement to evaluate the average loading of the system per transaction.
However, this type of measurement cannot provide you with information about the behavior of a single
transaction and its possible excessive loading of the system. If, for example, nine different transaction
types issue five start I/Os (SIOs) each, but the 10th issues 55 SIOs, this results in an average of 10 SIOs
per transaction type. This situation should not cause concern if the transactions start at the same time;
however, an increase of the transaction rate of the 10th transaction type might lead to poor performance
overall. To investigate this type of problem, you can perform a single-transaction measurement.

Sometimes, response times are good with existing terminals, but adding a few more terminals leads to
unacceptable degradation of performance. In this case, the performance problem might be present with
the existing terminals, and has been highlighted by the additional load.

To investigate this type of problem, do a full-load measurement and a single-transaction measurement.
The single-transaction measurement must be done when no batch region is running, and there must be
no activity in CICS apart from the test screen. Halt the polling of remote terminals.

20 CICS TS for z/OS: Performance Guide

Measure each existing transaction that is used in a production system or in a final test system. Test each
transaction two or three times with different data values, to exclude an especially unfavorable
combination of data. Document the sequence of transactions and the values entered for each test as a
prerequisite for subsequent analysis or interpretation.

Between the tests of each single transaction, insert a pause of several seconds, to make the trace easier
to read. Use a copy of the production database or data set for the test, because a test data set containing
100 records can often result in different behavior when compared with a production data set containing
100,000 records.

The condition of data sets can cause performance degradation, especially when many segments or
records have been added to a database or data set. Do not measure directly after a reorganization,
because the database or data set is only in this condition for a short time. If the measurement reveals an
unusually large number of disk accesses, reorganize the data and perform a further measurement to
evaluate the effect of the data reorganization.

Single-transaction measurement with only one terminal might not be an efficient tool for revealing a
performance degradation that might occur when, perhaps, 40 or 50 terminals are in use. Practical
experience has shown, however, that single-transaction measurement is usually the only means for
revealing and rectifying, with justifiable expense, performance degradation under full load.

Ideally, carry out single-transaction measurement during the final test phase of the transactions, for
these reasons:

• Any errors in the behavior of transactions can be revealed and rectified before production starts,
without loading the production system.

• The application is documented during the measurement phase, helping to identify the effects of later
changes.

CICS auxiliary trace

Auxiliary trace is a standard feature of CICS, and gives an overview of transaction flows so that you can
quickly and effectively analyze them. From this trace, you can find out whether a specified application is
running as expected.

If you have many transactions to analyze, you can select, in a first pass, the transactions whose behavior
does not comply with what is expected.

If all transactions last much longer than expected, there might be a system-wide error in application
programming or in system implementation. The analysis of a few transactions is then sufficient to
determine the error.

If, only a few transactions remain, analyze these transactions next, because it is highly probable that
these transactions are creating most of the performance problems.

Performance measurement tools
There are a number of tools that you can use to measure performance and to understand where
constraints in the system might develop.

Performance of a production system depends on the utilization of resources such as CPU, real storage,
ISC links, coupling facility, and the network. A variety of programs could be written to monitor all these
resources. Many of these programs are currently supplied as part of IBM products such as CICS or IMS, or
are supplied as separate products. These topics describe some of the products that can give performance
information on different components of a production system.

The list of products in these topics is far from being an exhaustive summary of performance monitoring
tools, although the data provided from these sources comprises a large amount of information. To
monitor all this data is an extensive task. Furthermore, only a small subset of the information provided is
important for identifying constraints and determining necessary tuning actions, and you have to identify
this specific subset for your particular CICS system.

Chapter 1. Measuring, tuning, and monitoring: the basics 21

Consider that there are two different types of tools:

1. Tools that directly measure whether you are meeting your objectives
2. Additional tools to look into internal reasons why you might not be meeting objectives.

None of the tools can directly measure whether you are meeting end-user response time objectives. The
lifetime of a task within CICS is comparable, that is, usually related to, response time, and bad response
time is usually correlated with long lifetime within CICS, but this correlation is not exact because of other
contributors to response time.

Obviously, you want tools that help you to measure your objectives. In some cases, you might choose a
tool that looks at some internal function that contributes towards your performance objectives, such as
task lifetime, rather than directly measuring the actual objective, because of the difficulty of measuring it.

When you have gained experience of the system, you should have a good idea of the particular things that
are most significant in that particular system and, therefore, what things might be used as the basis for
exception reporting. Then, one way of monitoring the important data might be to set up exception-
reporting procedures that filter out the data that is not essential to the tuning process. This involves
setting standards for performance criteria that identify constraints, so that the exceptions can be
distinguished and reported while normal performance data is filtered out. These standards vary according
to individual system requirements and service level agreements.

Often, you need to gather a considerable amount of data before you can fully understand the behavior of
your own system and determine where a tuning effort can provide the best overall performance
improvement. Familiarity with the analysis tools and the data they provide is basic to any successful
tuning effort.

Remember, however, that all monitoring tools cost processing effort to use. Typical costs are 5%
additional processor cycles for the CICS monitoring facility (performance class), and up to 1% for the
exception class. The CICS trace facility overhead is highly dependent on the workload used. The overhead
can be in excess of 25%.

In general, then, we recommend that you use the following tools in the sequence of priorities shown:

1. CICS statistics
2. CICS monitoring data
3. CICS internal and auxiliary trace.

Tuning your system
When you have identified specific constraints, you will have identified the system resources that need to
be tuned. The three major steps in tuning a system are determining acceptable tuning trade-offs, making
tuning changes to your system and reviewing the results of tuning.

Determining acceptable tuning trade-offs

The art of tuning can be summarized as finding and removing constraints. In most systems, the
performance is limited by a single constraint. However, removing that constraint, while improving
performance, inevitably reveals a different constraint, and you might often have to remove a series of
constraints. Because tuning generally involves decreasing the load on one resource at the expense of
increasing the load on a different resource, relieving one constraint always creates another.

A system is always constrained. You do not remove a constraint; you can only choose the most
satisfactory constraint. Consider which resources can accept an additional load in the system without
themselves becoming worse constraints and causing a performance degradation.

Making tuning changes to your system

The next step in the tuning process is to make the actual system modifications that are intended to
improve performance. You should consider several points when adjusting the system:

22 CICS TS for z/OS: Performance Guide

• Tuning is the technique of making small changes to the system's resource allocation and availability to
achieve relatively large improvements in response time.

• Tuning is not always effective. If the system response is too long and all the system resources are
lightly used, you see very little change in the CICS response times. (This is also true if the wrong
resources are tuned.) In addition, if the constraint resource, for example, line capacity, is being fully
used, the only solution is to provide more capacity or redesign the application (to transmit less data, in
the case of line capacity).

• Do not tune just for the sake of tuning. Tune to relieve identified constraints. If you tune resources that
are not the primary cause of performance problems, this has little or no effect on response time until
you have relieved the major constraints, and it may make subsequent tuning work more difficult. If
there is any significant improvement potential, it lies in improving the performance of the resources that
are major factors in the response time.

• In general, tune major constraints first, particularly those that have a significant effect on response
time. Arrange the tuning actions so that items having the greatest effect are done first. In many cases,
one tuning change can solve the performance problem if it addresses the cause of the degradation.
Other actions may then be unnecessary. Further, improving performance in a major way can alleviate
many user complaints and allow you to work in a more thorough way. The 80/20 rule applies here; a
small number of system changes normally improves response time by most of the amount by which it
can be improved, assuming that those changes address the main causes of performance problems.

• Make one tuning change at a time. If two changes are made at the same time, their effects may work in
opposite directions and it may be difficult to tell which of them had a significant effect.

• Change allocations or definitions gradually. For example, when reducing the number of resident
programs in a system, do not change all programs in a system from RES=YES to RES=NO at once. This
could cause an unexpected lengthening of response times by increasing storage usage because of
fragmentation, and increasing processor usage because of higher program loading activity. If you
change a few programs at a time, starting with the lesser-used programs, this can give you a better idea
of the overall results.

The same rule holds true for buffer and string settings and other data set operands, transaction and
program operands, and all resources where the operand can be specified individually for each resource.
For the same reason, do not make large increases or decreases in the values assigned to task limits
such as MXT.

• Continue to monitor constraints during the tuning process. Because each adjustment changes the
constraints in a system, these constraints vary over time. If the constraint changes, tuning must be
done on the new constraint because the old one is no longer the restricting influence on performance.
In addition, constraints may vary at different times during the day.

• Put fallback procedures in place before starting the tuning process. As noted earlier, some tuning can
cause unexpected performance results. If this leads to poorer performance, it should be reversed and
something else tried. If previous definitions or path designs were not saved, they have to be redefined
to put the system back the way it was, and the system continues to perform at a poorer level until these
restorations are made. If the former setup is saved in such a way that it can be recalled, back out of the
incorrect change becomes much simpler.

Reviewing the results of tuning

After each adjustment has been done, review the performance measurements that have been identified
as the performance problem to verify that the intended performance changes have occurred and to
quantify that change. If performance has improved to the point that service level agreements are being
met, no more tuning is required. If performance is better, but not yet acceptable, investigation is required
to determine the next action to be taken, and to verify that the resource that was tuned is still a
constraint. If it is not still a constraint, new constraints need to be identified and tuned. This is a return to
the first step of the tuning process, and you should repeat the next steps in that process until an
acceptable performance level is reached.

Chapter 1. Measuring, tuning, and monitoring: the basics 23

CICS tools to obtain performance data
You can use CICS statistics, monitoring, and trace facilities to gather and monitor performance data to
help you tune your CICS system optimally. Additional sources of information are also listed.
CICS statistics

CICS statistics are the simplest and the most important tool to monitor a CICS system permanently.
They collect information about the CICS system as a whole, without regard to tasks.

For more information, see Introduction to CICS statistics.

CICS monitoring
CICS monitoring collects data about the performance of all user and CICS transactions during online
processing for later offline analysis.

For more information, see Collecting and processing data for CICS monitoring.

CICS trace
For the more complex problems that involve system interactions, you can use the CICS trace to record
the progress of CICS transactions through the CICS management modules.

CICS trace provides a history of events leading up to a specific situation.

The CICS trace facilities can also be useful for analyzing performance problems such as excessive
waiting on events in the system, or constraints resulting from inefficient system setup or application
program design.

For more information, see CICS trace.

Other sources of information

The measurement tools just described do not provide all the data necessary for a complete evaluation of
current system performance. They do not provide information about how, and under what conditions,
each resource is being used, or the system configuration that exists when the data is collected. Therefore,
it is important to use as many techniques as possible to get information about the system. Additional
sources of information include the following:

• Hardware configuration
• VTOC listings
• LISTCAT (VSAM)
• Installed resource definitions
• Link pack area (LPA) map
• Load module cross-reference of the CICS nucleus
• SYS1.PARMLIB listing
• z/OS Workload Manager (WLM) service definition
• MVS System Logger configuration - LOGR couple data set listing
• Dump of the CICS address space
• TCP/IP Profile data set.

System management facility (SMF)
The z/OS system collects statistical data for each task when certain events occur in the life of the task.
The System Management Facility (SMF) formats the information that it gathers into system-related (or
job-related) records.

System-related SMF records include information about the configuration, paging activity, and workload.
Job-related records include information about the processor time, SYSOUT activity, and data set activity
of each job step, job, APPC/MVS transaction program, and TSO/E session.

The information gathered by SMF is useful when completing the following tasks:

• Billing users

24 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_stats_intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_mon_oview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs13p.html

• Reporting reliability
• Analyzing the configuration
• Scheduling jobs
• Summarizing direct-access volume activity
• Evaluating data set activity
• Profiling system resource use
• Maintaining system security.

For more information, see z/OS MVS System Management Facilities (SMF).

Generalized trace facility (GTF)
GTF is part of the MVS system that you can use to record CICS trace entries.

You can use GTF to record CICS trace entries and use the interactive problem control system (IPCS) to
produce reports. More generally, GTF is an integral part of the MVS system, and traces the following
system events: DASD seek addresses on start I/O instructions, system resources manager (SRM) activity,
page faults, I/O activity, and supervisor services. Execution options specify the system events to be
traced.

GTF is generally used to monitor short periods of system activity and you should run it accordingly.

The amount of processing time that GTF uses can vary considerably, depending on the number of events
to be traced. You should request the time-stamping of GTF records with the TIME=YES operand on the
EXEC statement for all GTF tracing.

Run GTF at a dispatching priority (DPRTY) of 255 so that records are not lost. If the DPRTY is specified at
255 and GTF records are lost, specify the BUF operand on the execute statement as greater than 10
buffers.

You can use the following options to get the data that is generally needed for CICS performance studies:

TRACE=SYS,RNIO,USR (VTAM)
TRACE=SYS (Non-VTAM)

Note: VTAM® is now known as z/OS Communications Server.

If you need data on the units of work dispatched by the system and on the length of time it takes to
execute events such as SVCs and LOADs, the options are as follows:

TRACE=SYS,SRM,DSP,TRC,PCI,USR,RNIO

The TRC option produces the GTF trace records that indicate GTF interrupts of other tasks that it is
tracing. This set of options uses a higher percentage of processor resources, so use it only when you need
a detailed analysis or timing of events.

No data-reduction programs are provided with GTF. To extract and summarize the data into a meaningful
and manageable form, you can either write a data-reduction program or use one of the program offerings
that are available.

For further details, see z/OS MVS Diagnosis Tools and Service Aids.

Generalized trace facility (GTF) reports
You can produce reports from GTF data with the interactive problem control system (IPCS). The reports
generated by IPCS are useful in evaluating both system and individual job performance.

IPCS produces job and system summary reports, and also an abbreviated detail trace report. The
summary reports include information about MVS dispatches, SVC usage, contents supervision, I/O counts
and timing, seek analysis, page faults, and other events traced by GTF. The detail trace reports can be
used to follow a transaction chronologically through the system.

Other reports are available that map other data:

• seek addresses for a specific volume

Chapter 1. Measuring, tuning, and monitoring: the basics 25

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieag200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieav100/toc.htm

• arm movement for a specific volume
• references to data sets and members within partitioned data sets
• page faults and module reference in the link pack area (LPA).

Before GTF is run, you should plan the events to be traced. If specific events such as start I/Os (SIOs) are
not traced, and the SIO-I/O timings are required, the trace must be re-created to get the data needed for
the reports.

If there are any alternative paths to a control unit in the system being monitored, you should include the
PATHIO input statement in the report execution statement. Without the PATHIO operand, there are
multiple I/O lines on the report for the device with an alternative path: one line for the primary device
address and one for the secondary device address. If this operand is not included, the I/Os for the
primary and alternate device addresses must be combined manually to get the totals for that device.

Seek histogram report

The seek histogram report (SKHST) can help you find out if there is any arm contention on that volume,
that is, if there are any long seeks on the volume being mapped. It produces two reports: the first shows
the number of seeks to a particular address, and the second shows the distance the arm moves between
seeks. These reports can be used to determine if you should request a volume map report to investigate
further the need to reorganize a specific volume.

Volume map report

The volume map report (VOLMAP) shows information about data sets on the volume being mapped and
about seek activity to each data set on that volume. It also maps the members of a partitioned data set
and the count of seeks issued to each member. This report can be useful in reorganizing the data sets on
a volume and in reorganizing the members within a partitioned data set to reduce the arm movement on
that specific volume.

Reference map report

The reference map report (REFMAP) shows the page fault activity in the link pack area (LPA) of MVS™. This
reference is by module name and separates the data faults from the instruction faults. The report also
shows the count of references to the specific module. This reference is selected from the address in the
stored PSW of the I/O and EXT interrupt trace events from GTF. This report can be useful if you want to
change the current MVS pack list in order to reduce real storage or to reduce the number of page faults
that are being encountered in the pageable link pack area of MVS.

CICS Performance Analyzer for z/OS (CICS PA)
CICS Performance Analyzer (CICS PA) is a reporting tool that provides information on the performance of
your CICS systems and applications, and helps you tune, manage, and plan your CICS systems effectively.

CICS PA can help:

• System Programmers to track overall CICS system performance and evaluate the results of their system
tuning efforts

• Application Programmers to analyze the performance of their applications and the resources they use
• Database Administrators to analyze the usage and performance of database systems such as IMS and

Db2
• IBM MQ Administrators to analyze the usage and performance of their IBM MQ messaging systems
• Managers to ensure transactions are meeting their required Service Levels and measure trends to help

plan future requirements and strategies

CICS PA provides an ISPF menu-driven dialog to help you request and submit your reports and extracts.
The available reports and extracts are grouped by category:

• Performance reports

– List

26 CICS TS for z/OS: Performance Guide

– List extended
– Summary
– Totals
– Wait analysis
– Transaction profiling
– Cross-system work
– Transaction group
– BTS
– Workload activity
– Transaction tracking list
– Transaction tracking summary

• Exception reports

– List
– Summary

• Transaction resource usage reports

– File usage summary
– Temporary storage usage summary
– DPL usage summary
– Transaction resource usage list

• Statistics reports

– List
– Alert
– CICS Transaction Gateway

• Subsystem reports

– Db2
– IBM MQ
– OMEGAMON

• System reports

– System logger
• Extracts

– Cross-system work
– Performance
– Record selection
– HDB load
– System logger
– Statistics

CICS PA also provides a Historical Database (HDB) facility to help you manage the performance and
statistics data for your CICS transactions. SMF data is saved in HDB container data sets that are managed
from the CICS PA dialog. The following types of HDB are available:

• Performance List HDB

A List HDB is built from CMF performance class data. In a List HDB data set, one record represents one
transaction. Typically, List HDBs are used to analyze recent transaction events.

• Performance Summary HDB

Chapter 1. Measuring, tuning, and monitoring: the basics 27

A Summary HDB is built from CMF performance class data. In a Summary HDB data set, one record
represents a summary of transaction activity over a user-specified time interval. Typically, Summary
HDBs are used for long-term trend analysis and capacity planning.

• Statistics HDB

A Statistics HDB contains collections of CICS statistics and server statistics and CICS Transaction
Gateway statistics over a specified time interval.

For more information about CICS Performance Analyzer for z/OS, see the CICS Performance Analyzer
documentation.

The CICS PA dialog
You use the CICS PA dialog to create, maintain, and submit your report requests. You can also use it to
specify your input data and tailor requests specific to your requirements without needing to understand
the CMF data.

The dialog requires no special customization or setup. Reporting can commence immediately.

The following steps explain how to use the dialog for reporting.

1. Define your CICS (and other related) systems and their SMF files and log streams. After your systems
are defined, you can start reporting against them. You can fast-track this process by using the take-up
facility. CICS PA extracts information about your CICS systems from your SMF files and makes it
available in the dialog. If you define your own CMF user fields, specify your MCT definition. The user
fields can then be incorporated into your CICS PA reports. The following example panel shows some
CICS systems, a Db2 subsystem, a IBM MQ subsystem, and an MVS System Logger defined to CICS
PA.

 System Definitions Row 1 from 8

Command ===> __ Scroll ===> CSR

Select a System to edit its definition, SMF Files and Groups.
 SMF Files
/ System Type Image Description System
_ MVS1 Image Production MVS system MVS1
_ CICSP1 CICS MVS1 CICS Production System 1 MVS1
_ CICSPTOR CICS MVS1 CICS Production TOR MVS1
_ CICSPAOR CICS MVS2 CICS Production AOR CICSPAOR
_ CICSPFOR CICS MVS2 CICS Production FOR CICSPFOR
_ DB2P DB2 MVS3 DB2 Production Subsystem DB2P
_ MQSP MQ MVS4 MQ Production Subsystem MQSP
_ MVS1LOGR Logger MVS1 System Logger for MVS1 MVS1

Figure 2. CICS PA: System Definitions

Related CICS systems, such as those systems that connect through IRC/MRO or ISC/APPC, can be
grouped together for reporting purposes. For example, if you assign the CICS MRO systems
(CICSPTOR, CICSPAOR, CICSPFOR, CICSPDOR) to a group, you can report on these systems as a
single entity. CICS PA reports can then show a complete end-to-end picture of your MRO transaction
activity, incorporating detailed Db2 statistics derived from the Db2 accounting data of subsystem
DB2P.

2. To build, submit and save your report requests, you can define Report Sets. A Report Set contains the
set of reports that you want to run in a single job. Simply select the required reports and submit a
report request.

Figure 3 on page 29 shows a Report Set. The available reports are displayed in a tree structure
(folder style) and grouped by category. Report categories can be expanded or collapsed as required.
The Active status controls which reports in the Report Set are run when you submit a report request.

28 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSPPU4/welcome.html

 EDIT Report Set – DAILY Row 1 of 45
 Command ===> __Scroll ===> CSR

 Description Daily Reports for our production MRO system

 Enter "/" to select action.

 ___ ** Reports ** Active
 - ___ Options Yes
 ___ Global Yes
 - ___ Selection Criteria Yes
 ___ Performance Yes
 ___ Exception No
 - ___ Performance Reports Yes
 ___ List Yes
 ___ List Extended Yes
 ___ Summary Yes
 ___ Totals Yes
 ___ Wait Analysis No
 ___ Transaction Profiling No
 ___ Cross-System Work No
 ___ Transaction Group Yes
 ___ BTS No
 ___ Workload Activity No
 ___ Transaction Tracking List No
 ___ Transaction Tracking Summary No
 - ___ Exception Reports No
 ___ List No
 ___ Summary No
 - ___ Transaction Resource Usage Reports No
 ___ File Usage Summary No
 ___ Temporary Storage Usage Summary No
 ___ DPL Usage Summary No
 ___ Transaction Resource Usage List No
 - ___ Statistics Reports No
 ___ Alert No
 ___ CICS Transaction Gateway No
 - ___ Subsystem Reports No
 ___ DB2 No
 ___ WebSphere MQ No
 ___ OMEGAMON No
 - ___ Performance Graphs No
 ___ Transaction Rate No
 ___ Transaction Response Time No
 - ___ Extracts Yes
 ___ Cross-System Work Yes
 ___ Performance No
 ___ Record Selection No
 ___ HDB Load No
 ___ System Logger No
 ___ Statistics No
 ** End of Reports **

Figure 3. CICS PA: Report Set

Report Sets can contain selection criteria, which are used to filter CMF records. This enables you to
tailor your reporting to include only the information that you are interested in. For example, you can
specify selection criteria to restrict reporting to:

• A particular date/time range
• A group of related transaction IDs
• Transaction response times that exceed your thresholds

3. To tailor the format and content of your reports, you can define Report Forms. You can use an editor to
design your own report by selecting the required CMF fields. You can select most CMF fields for
reporting, and detailed explanations of each CMF field is available from the dialog. Report Forms can
contain selection criteria. When a report specifies a Report Form and both have selection criteria
specified, records must match both sets of selection criteria to be included in the report.

Figure 4 on page 30 shows a Report Form tailored to show File Control statistics.

Chapter 1. Measuring, tuning, and monitoring: the basics 29

 EDIT LIST Report Form - FCLIST Row 1 of 16 More: >
Command ===> __ Scroll ===> CSR

Description File Control List Form Version (VRM): 720

Selection Criteria:
 _ Performance * Page width . . 132

 Field
/ Name + Type Description
__ TRAN Transaction identifier
__ USERID User ID
__ STOP TIMET Task stop time
__ RESPONSE Transaction response time
__ DISPATCH TIME Dispatch time
__ CPU TIME CPU time
__ FCWAIT TIME File I/O wait time
__ FCAMCT File access-method requests
__ FCADD File ADD requests
__ FCBROWSE File Browse requests
__ FCDELETE File DELETE requests
__ FCGET File GET requests
__ FCPUT File PUT requests
__ FCTOTAL File Control requests
__ EOR ---------------- End of Report ----------------
__ EOX ---------------- End of Extract ---------------

Figure 4. CICS PA: Report Form
4. Define and maintain Historical Databases (HDBs) as repositories of performance data. Generate

reports against your HDBs or export HDB data to Db2 tables for further analysis.

Using CICS PA to analyze CICS performance
CICS PA provides reports and extracts to help you analyze and tune the performance of your CICS
systems and applications.

• The Performance List, List Extended, and Summary reports provide a detailed analysis of transaction
activity.

• The Performance Totals report provides comprehensive resource usage analysis of your entire CICS
system, or individual transactions.

• The Wait Analysis report summarizes transaction activity by wait time. For each transaction ID, the
resources that cause this transaction to be suspended are shown in the order of most to least
expensive. This report highlights the system resource bottlenecks that might be causing bad response
time. More detailed analysis can then be performed, focusing on the problem resources identified.

• The Transaction Profiling report compares two sets of CMF performance class data. For example, you
can compare the performance data for a specific CICS application in two different time periods, or the
performance data for all applications on two systems.

• The Cross-System Work report combines CMF records from your connected systems (such as MRO and
APPC) to produce a consolidated unit-of-work report.

• The Cross-System Work extract consolidates CMF records for the same unit-of-work into a single record
in CMF format. CICS PA can then process the extracted data set to produce any of the reports. For
example, "Summarize all multi-system UOWs whose originating transaction ID is TR01".

• The Transaction Group report provides a detailed list of incoming work requests. Transactions that CICS
executes under the same incoming work request (for example, the CWXN and CWBA transactions for
CICS web support requests) are grouped together in the report.

• The BTS report provides a detailed list of CICS Business Transaction Services activity. Transactions with
the same CICS BTS process identifier (root activity identifier) are grouped together in the report.

• The Workload Activity report provides a transaction response time analysis by z/OS Workload Manager
(WLM) service and report class. You can use this information to understand, from a CICS perspective,
how well your CICS transactions are meeting their response time goals. The Workload Activity List
report is a cross-system report that correlates CMF performance class data from single or multiple CICS
systems for each network unit-of-work. Importantly, this report ties MRO and function shipping tasks to
their originating task so that their impact on response time can be assessed.

30 CICS TS for z/OS: Performance Guide

• The Transaction Tracking List report provides performance data for groups of related transactions. This
allows monitoring and measurement of transaction performance from the perspective of transaction
flow. The report shows how a process flowed from one transaction or system to the next and back
again. The report combines CMF records for each originating transaction and its subordinate (group)
transactions.

• The Transaction Tracking Summary report combines CMF records for each originating transaction and
its subordinate (group) transactions. The summarized data is presented on a single line for each
grouped originating transaction.

• The Exception List and Summary reports provide a detailed analysis of the exception events recorded
by CMF.

• The Transaction Resource Usage reports process CMF performance data and CMF resource class data
to provide a detailed analysis of file, temporary storage, and distributed program link (DPL) usage.

• Statistics Alerts enable you to define conditions, in terms of CICS Transaction Server or CICS
Transaction Gateway statistics field values, that interest you. You can then use those conditions to
report on CICS statistics stored in SMF files or historical databases.

• The CICS Transaction Gateway reports provide reporting of CICS Transaction Gateway Statistics SMF
111 records. The following reports are available:

– Activity
– Usage and Capacity
– Configuration
– Client Workload
– CICS Workload

• The Db2 report processes CICS CMF records and Db2 accounting records to produce a consolidated
and detailed view of Db2 usage by your CICS systems. With this report you can view CICS and Db2
resource usage statistics together in a single report. The Db2 List report shows detailed information of
Db2 activity for each transaction. The Db2 Summary reports summarize Db2 activity by transaction and
program within APPLID.

• The IBM MQ report processes IBM MQ accounting (SMF 116) records to produce a detailed view of IBM
MQ usage by your CICS systems. The IBM MQ List report provides a trace of IBM MQ accounting
records. The IBM MQ Summary report provides two summarized views of your IBM MQ transactions: by
CICS transaction ID showing the IBM MQ system and queue resources used, and by IBM MQ queue
name showing the transactions they service and resources used.

• The OMEGAMON report processes OMEGAMON XE for CICS (SMF 112) records to produce a detailed
view of how CICS transactions use Adabas, CA-Datacom, CA-IDMS, and Supra. For each type of DBMS,
you can request the following reports:

– A List report for database usage for each transaction
– A Transaction Summary report for database usage summarized by transaction ID
– A Database Summary report for database usage summarized by database

• The System Logger report processes System Logger records to provide information on the System
Logger log streams and coupling facility structures that are used by CICS Transaction Server for logging,
recovery and backout operations. The report can assist with measuring the effects of tuning changes
and identifying log stream or structure performance problems.

• The Performance Graph reports provide a graphical representation of transaction rates and response
times.

• The Extract data sets are produced from SMF data and are suitable for further manipulation and
analysis. You can use the following extracts to import data into external programs such as Db2, or PC
tools such as Lotus® 1-2-3:

– A Performance Data Extract for CMF performance class data
– A System Logger Extract for System Logger data
– A Statistics Extract for CICS statistics

Chapter 1. Measuring, tuning, and monitoring: the basics 31

The Cross-System Work extract is described earlier in this topic. You can use the Record Selection
Extract to reduce the volume of data processed by CICS PA, for more efficient reporting. You can use
HDB Load to load SMF data into a Historical Database (HDB).

You can use Report Forms to tailor the format of reports and extracts, for example, to specify which fields,
the order of columns, and the sort sequence.

You can use Selection Criteria to filter your reporting, for example to include data for only a specific
transaction ID, and only for a specific period of time.

For more information about CICS Performance Analyzer for z/OS, see the CICS Performance Analyzer
documentation.

Other tools for obtaining performance data
You can use a number of tools that are not provided by CICS to provide performance-related information
to help you optimally tune your CICS system.

The z/OS Resource Measurement Facility collects data and produces reports for activity in a sysplex. For
more information, see z/OS Resource Measurement Facility (RMF) User's Guide.

The IBM Redbooks publication ABCs of z/OS System Programming contains information about capacity
planning, performance management, RMF, and SMF.

Resource measurement facility (RMF)
The resource measurement facility (RMF) collects system-wide data that describes the processor activity
(WAIT time), I/O activity (channel and device usage), main storage activity (demand and swap paging
statistics), and system resources manager (SRM) activity (workload).

RMF is a centralized measurement tool that monitors system activity to collect performance and capacity
planning data. The analysis of RMF reports provides the basis for tuning the system to user requirements.
They can also be used to track resource usage.

RMF measures the following activities:

• Processor usage
• Address space usage
• Channel activity:

– Request rate and service time per physical channel
– Logical-to-physical channel relationships
– Logical channel queue depths and reasons for queuing.

• Device activity and contention for the following devices:

– Unit record
– Graphics
– Direct-access storage
– Communication equipment
– Magnetic tapes
– Character readers.

• Detailed system paging
• Detailed system workload
• Page and swap data set
• Enqueue
• CF activity
• XCF activity.

RMF allows the z/OS user to:

32 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSPPU4/welcome.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
http://www.redbooks.ibm.com/abstracts/sg246327.html

• Evaluate system responsiveness:

– Identify bottlenecks. The detailed paging report associated with the page and swap data set activity
can give a good picture of the behavior of a virtual storage environment.

• Check the effects of tuning:

– Results can be observed dynamically on a screen or by postprocessing facilities.
• Perform capacity planning evaluation:

– The workload activity reports include the interval service broken down by key elements such as
processor, input/output, and main storage service.

– Analysis of the resource monitor output (for example, system contention indicators, swap-out broken
down by category, average ready users per domain) helps in understanding user environments and
forecasting trends.

– The post-processing capabilities make the analysis of peak load periods and trend analysis easier.
• Manage the larger workloads and increased resources that MVS can support
• Identify and measure the usage of online channel paths

For more information about RMF, see the IBM Redbooks publication ABCs of z/OS System Programming
and z/OS Resource Measurement Facility (RMF) User's Guide.

Tools provided by IMS to obtain performance data
You can use IMS Performance Analyzer (IMS PA) and the IMS program isolation (PI) trace to monitor
information on various access methods and other programs used with CICS and the operating system.

IMS Performance Analyzer (IMS PA)

IMS Performance Analyzer is a performance analysis and tuning aid for database and transaction
manager systems for IMS. It processes IMS log and monitor data, including fast path data, to provide
comprehensive performance, usage, and availability reports that help you to analyze and tune your IMS
systems.

IMS PA:

• Uses log and monitor data to produce comprehensive DBCTL reports showing application and internal
resource utilization, processor usage, and full function and fast path database activity

• Uses IMS log data to produce comprehensive information about transit times (actual system
performance time), and IMS resource usage and availability

• Creates extracts of transit time by time interval data, which can be graphed, exported for processing by
external programs, or downloaded to a PC

• Creates extracts of total transaction traffic and exception transactions (MSGQ or fast path), for direct
import by external programs

• Processes logs from a single IMS system, or from multiple IMS subsystems running in a sysplex and
using shared queues

• Uses monitor data to produce summary and analysis reports for regions, resources, programs,
transactions, databases, and the total system, organized by level of detail and area of analysis

For further information, see IMS Performance Analyzer for z/OS.

IMS program isolation (PI) trace

The program isolation (PI) trace can point out database contention problems arising from the nature of
task's access to a particular database.

Because only one task can have access to a record at one time, and any other task waits till the record is
freed, high contention can mean high response time. This trace is part of IMS. For information about the
format of the PI trace report, see System administration in IMS product documentation.

Chapter 1. Measuring, tuning, and monitoring: the basics 33

http://www.redbooks.ibm.com/abstracts/sg246327.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSAVHQ/welcome
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/sagintro/sag.htm

TCP/IP monitoring
TCP/IP is a communication protocol used between physically separated computer systems. TCP/IP can
be implemented on a wide variety of physical networks. TCP/IP is a large family of protocols that is
named after its two most important members, Transmission Control Protocol and Internet Protocol.

Internet Protocol (IP) is a network-layer protocol. It provides a connectionless data transmission service,
and supports both TCP and User Datagram Protocol (UDP). Data is transmitted link by link; an end-to-end
connection is never set up during the call. The unit of data transmission is the datagram.

Transmission Control Protocol (TCP) is a transport-layer protocol. It provides a connection-oriented data
transmission service between applications, that is, a connection is established before data transmission
begins. TCP has more error checking that UDP.

UDP is a transport-layer protocol and is an alternative to TCP. It provides a connectionless data
transmission service between applications. UDP has less error checking than TCP. If UDP users want to be
able to respond to errors, the communicating programs must establish their own protocol for error
handling. With high-quality transmission networks, UDP errors are of little concern.

For more information about TCP/IP, see Internet, TCP/IP, and HTTP concepts.

You can use TCP/IP management and control to save the data collected by CICS so that it can be
examined offline, at some point after the tasks and resources to which it relates are no longer available.
You can also use TCP/IP management and control to obtain a CICSplex-wide view of the TCP/IP network
and examine items in real time:

• The TCP/IP network resources that a particular CICS region is using.
• The work passing in and out of a particular CICS region over the TCP/IP network.
• The CICS resources and tasks associated with a distributed transaction that flows across the CICSplex

over the TCP/IP network.
• The CICS region in which a distributed transaction originated.

You can use TCP/IP management and control to diagnose problems such as connectivity problems and
transaction delays, to track work across the CICSplex, to monitor the CICSplex, and to capture system
data over time for use in capacity planning.

IBM Z Decision Support
IBM Z Decision Support (previously called Tivoli Decision Support for z/OS) is an IBM product that collects
and analyzes data from CICS and other IBM systems and products.

The reports generated by IBM Z Decision Support are useful for the following purposes:

• Getting an overview of the system
• Ensuring that service levels are maintained
• Ensuring availability
• Performance tuning
• Capacity planning
• Managing change and problems
• Accounting

A large number of ready-made reports are available. You can also generate your own reports to meet
specific needs.

In the reports, IBM Z Decision Support uses data from CICS monitoring and statistics. IBM Z Decision
Support also collects data from the MVS system and from products such as RMF, TSO, IMS and NetView.
This means that data from CICS and other systems can be shown together, or can be presented in
separate reports.

Reports can be presented as plots, bar charts, pie charts, tower charts, histograms, surface charts, and
other graphic formats. IBM Z Decision Support passes the data and formatting details to Graphic Data
Display Manager (GDDM) which does the rest. IBM Z Decision Support can also produce line graphs and
histograms using character graphics where GDDM is not available, or the output device does not support

34 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/web/dfhtl_conintro.html

graphics. For some reports, where you need the exact figures, numeric reports such as tables and
matrices are more suitable.

Using IBM Z Decision Support to report on CICS performance

To understand performance data, you must first understand the work CICS performs at your installation.
Analyze the work by its basic building blocks: transactions. Group the transactions into categories of
similar resource or user requirements and describe each category's characteristics. Understand the work
that CICS performs for each transaction and the volume of transactions expected during any given period.
IBM Z Decision Support can show you various types of data for the transactions processed by CICS.

A service-level agreement for a CICS user group defines commitments in several areas of quantifiable
CICS-related resources and services. CICS service commitments can belong to one of these areas:

• Response times
• Transaction counts
• Exceptions and incidents
• Availability.

The following topics describe certain issues and concerns associated with systems management and how
you can use the IBM Z Decision Support CICS performance feature.

Performance measuring with IBM Z Decision Support
IBM Z Decision Support (previously called Tivoli Decision Support for z/OS) is a reporting system which
uses Db2. You can use it to process utilization and throughput statistics written to log data sets by
computer systems. You can use it to analyze and store the data into Db2, and present it in a variety of
forms.

IBM Z Decision Support consists of a base product with several optional features that are used in systems
management:

• IBM Z Decision Support and optional features:
• CICS Performance Feature
• IMS Performance Feature
• Network Performance Feature
• System Performance Feature
• Workstation Performance Feature
• iSeries Performance Feature
• Accounting Feature

The IBM Z Decision Support base includes:

• Reporting and administration dialogs that use the Interactive System Productivity Facility (ISPF)
• A collector function to read log data, with its own language
• Record mapping (definitions) for all data records used by the features

Each feature provides:

• Instructions (in the collector language) to transfer log data to Db2 tables
• Db2 table definitions
• Reports.

The IBM Z Decision Support database can contain data from many sources. For example, data from
System Management Facilities (SMF), Resource Measurement Facility (RMF), CICS, and Information
Management System (IMS) can be consolidated into a single report. In fact, you can define any
nonstandard log data to IBM Z Decision Support and report on that data together with data coming from
the standard sources.

Chapter 1. Measuring, tuning, and monitoring: the basics 35

The IBM Z Decision Support CICS performance feature provides reports for your use when analyzing the
performance of CICS Transaction Server, based on data from the CICS monitoring facility (CMF) and CICS
statistics. These are some of the areas that IBM Z Decision Support can report on:

• Response times
• Resource usage
• Processor usage
• Storage usage
• Volumes and throughput
• CICS and Db2 activity
• Exceptions and incidents
• Data from connected regions, using the unit of work as key
• CICS availability
• CICS resource availability

The IBM Z Decision Support CICS performance feature collects only the data required to meet CICS
users' requirements. You can combine that data with more data (called environment data), and present it
in a variety of reports. IBM Z Decision Support provides an administration dialog for maintaining
environment data. Figure 5 on page 36 illustrates how data is organized for presentation in IBM Z
Decision Support reports.

Figure 5. Organizing and presenting system performance data

The IBM Z Decision Support for z/OS CICS performance feature processes these records:
CMF

• CICS Transaction Server performance
• CICS Transaction Server exceptions
• CICS Transaction Server accounting, performance, and exceptions

Statistics

• CICS Transaction Server statistics

36 CICS TS for z/OS: Performance Guide

Monitoring response time
The response time is the total time from the start to the finish of the transaction's activity, subdivided into
suspend time and dispatch time. The dispatch time includes service time. You can use the IBM Z Decision
Support CICS response-time reports to see the CICS application internal response times.

The elements of the response time report are shown in Figure 6 on page 37.

Figure 6. CICS internal response-time elements

As described in IBM Z Decision Support product documentation, the Network Performance feature
generates reports that show the total, end-to-end average response time (operator transit time) for SNA
applications (for example, a CICS region) by logical unit. The operator transit time consists of the host
transit time and the network transit time, which are also shown in the Network Performance feature
reports. Using these reports, you can isolate a response-time problem either to the network or to CICS
and act on it accordingly. Should the problem be in CICS, you can use the IBM Z Decision Support CICS
performance feature reports to identify the application causing the response-time degradation.

Monitoring processor and storage use
Poor response time usually indicates inefficient use of either the processor or storage (or both). IBM Z
Decision Support-supplied reports can help you isolate a resource as the cause of a CICS performance
problem.

If both the IBM Z Decision Support CICS performance feature's statistics component and the IBM Z
Decision Support System Performance feature's MVS component are installed and active, these reports
are available for analyzing transaction rates and processor use by CICS region:

• The CICS Transaction Processor Utilization, Monthly report shows monthly averages for the dates you
specify.

• The CICS Transaction Processor Utilization, Daily report shows daily averages for the dates you specify.

IBM Z Decision Support produces several reports that can help analyze storage usage. For example, the
CICS Dynamic Storage (DSA) Usage report, shows pagepool usage, under the headings Pagepool name,
DSA (bytes), Cushion (bytes), Free storage (bytes), Free storage (pct), Largest free area, Getmains,
and Freemains.

 CICS Dynamic Storage (DSA) Usage
 MVS ID ='MV28' CICS ID ='IYCSCTSK'
 Date: '2001-01-17' to '2001-01-18'

 Free Free Largest
 Pagepool DSA Cushion storage storage free
 name (bytes) (bytes) (bytes) (pct) area Getmains Freemains
 -------- --------- -------- --------- ------- --------- -------- ---------
 CDSA 524288 65536 299008 57 245760 2668 2470
 ECDSA 5242880 131072 1122304 21 868352 1084154 1067000
 ERDSA 11534336 262144 1130496 9 966656 710 16
 ESDSA 0 0 0 0 0 0 0
 EUDSA 2097152 0 2097152 100 1048576 73620 73620
 RDSA 524288 65536 204800 39 122880 40 0
 SDSA 262114 65536 249856 95 249856 12 6
 UDSA 524288 65536 524288 100 262114 301922 301922

 Tivoli Decision Support Report: CICS809

Figure 7. CICS Dynamic storage (DSA) usage report

Chapter 1. Measuring, tuning, and monitoring: the basics 37

https://www.ibm.com/support/knowledgecenter/SSH53X

Monitoring volumes and throughput
If you suspect that a performance problem is related to excessive paging, you can use IBM Z Decision
Support to report on page-ins, using RMF data.

Because CICS Transaction Server for z/OS, Version 5 Release 5 uses an MVS subtask to page and because
an MVS page-in causes an MVS task to halt execution, the number of page-ins is a performance concern.
Page-outs are not a concern because page-outs are scheduled to occur during lulls in CICS processing.

The best indicator of a transaction's performance is its response. For each transaction ID, the CICS
transaction performance detail report (in Figure 8 on page 38) shows the total transaction count and the
average response time. The headings are Tran ID, Tran count, Average resp time (sec), Average CPU time
(sec), Prog load reqs (avg), FC calls (avg), Exceptions, Program storage bytes (max), Getmains < 16 MB
(avg), and Getmains > 16 MB (avg). Use this report to start verifying that you are meeting service-level
objectives. First, verify that the values for average response time are acceptable. Then check that the
transaction counts do not exceed agreed-to limits. If a transaction is not receiving the appropriate level of
service, you must determine the cause of the delay.

 CICS Transaction Performance, Detail
 MVS ID ='MV28' CICS ID ='IYCSCTSK'
 Date: '2001-01-17' to '2001-01-18'

 Avg Avg Prog Program
 resp CPU load Prog FC storage Getmains Getmains
 Tran Tran time time reqs loads calls Excep- bytes < 16 MB > 16 MB
 ID count (sec) (sec) (avg) (avg) (avg) tions (max) (avg) (avg)
 ------------ -------- ------- ---- ----- ----- ------ --------- -------- --------
 QUIT 7916 0.085 0.017 0 0 18 0 74344 22 0
 CRTE 1760 4.847 0.004 0 0 0 0 210176 1 0
 AP00 1750 0.184 0.036 0 0 8 0 309800 66 0
 PM94 1369 0.086 0.012 0 0 6 0 130096 24 0
 VCS1 737 0.073 0.008 2 0 7 0 81200 14 0
 PM80 666 1.053 0.155 1 0 62 0 104568 583 0
 CESN 618 8.800 0.001 0 0 0 0 41608 0 0
 SU01 487 0.441 0.062 4 0 126 0 177536 38 0
 ...
 GC11 1 0.341 0.014 1 0 2 0 37048 10 0
 DM08 1 0.028 0.002 0 0 0 0 5040 3 0
 ======== =========
 20359 309800

 Tivoli Decision Support Report: CICS101

Figure 8. CICS transaction performance, detail report

Combining CICS and Db2 performance data
You can create reports that show the Db2 activity caused by a CICS transaction by combining CICS and
Db2 performance data.

For each CICS task, CICS generates an LU6.2 unit-of-work ID. Db2 also creates an LU6.2 unit-of-work ID.
Figure 9 on page 39 shows how Db2 data can be correlated with CICS performance data using the Db2
token (QWHCTOKN) to identify the task.

38 CICS TS for z/OS: Performance Guide

Figure 9. Correlating a CICS performance-monitoring record with a Db2 accounting record

Matching the NETUOWPX and NETUOWSX fields in a CICS record to the Db2 token, you can create reports
that show the Db2 activity caused by a CICS transaction.

Monitoring exception and incident data
An exception is an event that you should monitor. An exception appears in a report only if it has occurred;
reports do not show null counts. A single exception need not be a cause for alarm. An incident is defined
as an exception with severity 1, 2, or 3.

The IBM Z Decision Support CICS performance feature creates exception records for these incidents and
exceptions:

• Wait for storage
• Wait for main temporary storage
• Wait for a file string
• Wait for a file buffer
• Wait for an auxiliary temporary storage string
• Wait for an auxiliary temporary storage buffer
• Transaction ABEND
• System ABEND
• Storage violations
• Short-of-storage conditions
• z/OS Communications Server request rejections
• I/O errors on auxiliary temporary storage
• I/O errors on the intrapartition transient data set
• Autoinstall errors
• MXT reached
• Link errors for IRC and ISC
• Log stream buffer-full conditions
• CREAD and CWRITE fails (data space problems)

Chapter 1. Measuring, tuning, and monitoring: the basics 39

• Local shared resource (LSR) pool (string waits)
• Waits for a buffer in the LSR pool
• Errors writing to SMF
• No space on transient-data data set
• Waits for a transient-data string
• Waits for a transient-data buffer
• Transaction restarts
• Maximum number of tasks in a transaction class reached (CMXT)
• Transmission errors

Figure 10 on page 40 shows an example of an incidents report, giving information on Severity, Date,
Time, Terminal operator ID, User ID, Exception ID, and Exception description.

 CICS Incidents
 DATE: '2001-01-17' to '2001-01-18'

 Terminal
 operator User Exception Exception
Sev Date Time ID ID ID description
--- ---------- -------- -------- -------- ------------------ ---------------------------
03 2001-01-17 15.42.03 SYSTEM TRANSACTION_ABEND CICS TRANSACTION ABEND AZTS
03 2001-01-18 00.00.00 SYSTEM TRANSACTION_ABEND CICS TRANSACTION ABEND APCT
03 2001-01-18 17.37.28 SYSTEM SHORT_OF_STORAGE CICS SOS IN PAGEPOOL
03 2001-01-18 17.45.03 SYSTEM SHORT_OF_STORAGE CICS SOS IN PAGEPOOL

 Tivoli Decision Support report: CICS002

Figure 10. Example of an IBM Z Decision Support CICS incidents report

IBM Z Decision Support can pass the exceptions to an Information/Management system.

Unit-of-work reporting
In a CICS multiple region operation (MRO) or intersystem communication (ISC) environment, you can
trace a transaction from one region (or processor complex) to another and back. Using the data from the
trace, you can determine the total resource requirements of the combined transaction as a unit of work,
without separately analyzing the component transactions in each region.

The ability to combine the component transactions of an MRO or ISC series makes possible precise
resource accounting and chargeback, and capacity and performance analysis.

The CICS UOW Response Times report in Figure 11 on page 41 shows an example of how IBM Z
Decision Support presents CICS unit- of-work response times. The headings are Adjusted UOW start time,
Tran ID, CICS ID, Program name, UOW tran count, and Response time (sec).

40 CICS TS for z/OS: Performance Guide

 CICS UOW Response Times
 Time: '09.59.00' to '10.00.00'
 Date: 2001-01-18

 Adjusted
 UOW UOW Response
 start Tran CICS Program tran time
 time ID ID name count (sec)
 -------- ---- -------- -------- ----- --------
 09.59.25 OP22 CICSPROD DFHAPRT 2 0.436
 OP22 CICSPRDC OEPCPI22

 09.59.26 AP63 CICSPRDE APPM00 2 0.045
 AP63 CICSPROD DFHAPRT

 09.59.26 ARUS CICSPROD DFHAPRT 3 0.158
 CSM5 CICSPRDB DFHMIRS
 ARUS CICSPRDC AR49000

 09.59.27 CSM5 CICSPRDB DFHMIRS 4 0.639
 CSM5 CICSPRDB DFHMIRS
 MQ01 CICSPROD DFHAPRT
 MQ01 CICSPRDD CMQ001

 ...

 Tivoli Decision Support report: CICS902

Figure 11. IBM Z Decision Support CICS UOW response times report

Monitoring availability
In some cases, an application depends on the availability of many resources of the same and of different
types, so reporting on availability requires a complex analysis of data from different sources.

Users of CICS applications depend on the availability of several types of resources:

• Central site hardware and the operating system environment in which the CICS region runs
• Network hardware, such as communication controllers, telecommunication lines, and terminals through

which users access the CICS region
• CICS region
• Application programs and data. Application programs can be distributed among several CICS regions.

IBM Z Decision Support can help you, because all the data is in one database.

CICS workload activity reporting
CICS records the transaction ID, the associated terminal ID, and the elapsed time at the end of each
transaction. When more detailed reports are needed, Use the MVS Performance Management (MVSPM)
component of System Performance feature of IBM Z Decision Support.

Transaction data is useful when you require only transaction statistics, rather than the detailed
information that CMF produces. In many cases, it is sufficient to process only this data, since RMF records
it as part of its SMF type-72 record. Analysis (and even recording) of SMF records from CMF can then be
reserved for those circumstances when the detailed data is needed. Use the MVSPM component of the
System Performance feature of IBM Z Decision Support to report on this data.

When running under goal mode in MVS 5.1.0 and later, CICS performance can be reported in workload
groups, service classes, and periods. These are a few examples of IBM Z Decision Support reports for
CICS in this environment. Figure 12 on page 42 shows how service classes were served by other service
classes. This report is available only when the MVS system is running in goal mode. The headings are
Workload group, Service class, Served class, No of times served, No of transactions, and No of times
served per transaction.

Chapter 1. Measuring, tuning, and monitoring: the basics 41

 MVSPM Served Service Classes, Overview
 Sysplex: 'SYSPLEX1' System: IP02
 Date: '2001-01-18' Period: 'PRIME'

 Workload Service Served No of times No of No of times
 group class class served tx's served per tx
 -------- -------- -------- ------------ ------------ --------------
 CICS CICSREGS CICS-1 15227 664 22.9
 CICS-2 6405 215 29.8
 CICS-3 24992 1251 20.0
 CICS-4 87155 1501 58.1
 CICSTRX 67769 9314 7.3

 Tivoli Decision Support report: MVSPM79

Figure 12. Example of an MVS Performance Management served service classes overview report

Figure 13 on page 43 shows the average transaction response time trend and how the various
transaction states contribute to it. (The times shown for the various transaction states are calculated
based on transaction state samples, and so are not necessarily a precise record of the time spent in each
state.) Adding the time spent in each of the transaction states (the shaded areas on the graph) gives the
average execution time, which is shorter than the average response time (the line on the graph). The
difference between the response time and the execution time is mainly made up of switch time — for
example, the time the transactions spend being routed to another region for processing.

This report is available when the MVS system is running in goal mode and when the subsystem is CICS or
IMS.

42 CICS TS for z/OS: Performance Guide

Time of Day

0.00

8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00

0.50

1.00

1.50

2.00

2.50

Re
sp

on
se

 T
im

e
(s

ec
)

Key

Idle

Ready

Misc Wait

I/O Waits

Response times (s)

Figure 13. Example of an MVS Performance Management response time breakdown, hourly trend report

Chapter 1. Measuring, tuning, and monitoring: the basics 43

Figure 14 on page 44 shows how much the various transaction states contribute to the average
response time. This report is available when the MVS system is running in goal mode and when the
subsystem is CICS or IMS. The report gives information on Workload group, Service class/Period, Ph, MVS
sys ID, and Total state, followed by the percentage of response time spent in each of the states listed in
Figure 13 on page 43.

 MVSPM Response Time Breakdown, Overview
 Sysplex: 'SYSPLEX1' Subsystem: IP02
 Date: '2001-01-18' Period: 'PRIME'

 Service MVS Total Activ Ready Idle Lock I/O Conv Distr Local Netw Syspl Timer
Other Misc
 Workload class sys state state state state wait wait wait wait wait wait wait wait
wait wait
 group /Period Ph ID (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
(%) (%)
 -------- ---------- --- ---- ----- ----- ----- ----- ----- ----- -- --- ----- ----- ----- -----
----- ----- -----
 CICS CICS-1 /1 BTE CA0 6.6 0.0 0.0 0.0 0.0 0.0 6.5 0.0 0.0 0.0 0.0 0.0
0.0 0.0
 C80 29.4 0.0 0.0 0.0 0.0 0.0 14.7 0.0 0.0 0.0 0.0 0.0
14.6 0.0
 C90 3.8 0.4 1.3 1.5 0.0 0.2 0.5 0.0 0.0 0.0 0.0 0.0
0.0 0.0
 ----- ----- ----- ----- ----- ----- ----- --- ----- ----- ----- -----
----- ----- -----
 * 13.3 0.1 0.5 0.5 0.0 0.1 7.2 0.0 0.0 0.0 0.0 0.0
4.9 0.0

 /1 EXE CA0 16.0 0.1 0.2 0.1 0.0 15.5 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0
 C80 14.9 0.1 0.1 0.1 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0
11.0 0.0
 C90 14.0 1.6 4.5 4.8 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0
 ----- ----- ----- ----- ----- ----- --- ----- ----- ----- ----- -----
----- -----
 * 14.9 0.6 1.6 1.7 0.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0
3.7 0.0

 IMS IMS-1 /1 EXE CA0 20.7 0.4 0.7 0.0 0.0 0.0 19.6 0.0 0.0 0.0 0.0 0.0
0.0 0.0
 C80 1.1 0.2 0.1 0.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0
 C90 22.2 5.3 11.9 1.2 0.0 0.2 3.6 0.0 0.0 0.0 0.0 0.0
0.0 0.0
 ----- ----- ----- ----- ----- ----- ---- ----- ----- ----- ----- -----
----- -----
 * 14.7 2.0 4.2 0.6 0.0 0.1 7.8 0.0 0.0 0.0 0.0 0.0
0.0 0.0

 Tivoli Decision Support report: MVSPM73

Figure 14. Example of an MVS Performance Management response time breakdown overview report

Tivoli OMEGAMON XE for CICS on z/OS
Tivoli OMEGAMON XE for CICS on z/OS helps you to proactively manage performance and availability of
complex CICS systems.

Tivoli OMEGAMON XE for CICS on z/OS (OMEGAMON XE for CICS on z/OS) is a remote monitoring agent
that runs on z/OS managed systems. It assists you in anticipating performance problems and warns you
when critical events take place in your CICS environments. You can set threshold levels and flags to alert
you when events within your CICS regions reach critical points.

When running under the Tivoli Enterprise Portal, IBM Tivoli OMEGAMON XE for CICS on z/OS offers a
central point of management for CICS Transaction Server and provides a comprehensive means for
gathering the information you need to detect and prevent problems within your CICS regions. You view
data that Tivoli Enterprise Portal gathers in tables and charts that show you the status of your managed
CICS regions.

With this data you can perform a number of tasks:

44 CICS TS for z/OS: Performance Guide

• Collect and analyze reliable, up-to-the-second data that allows you to make faster, better informed,
operating decisions

• Manage all CICS regions from a single point to identify problems at any time
• Balance workloads across various regions
• Track performance against goals

With OMEGAMON XE for CICS on z/OS, systems administrators can set threshold levels and flags to alert
them when system conditions reach these thresholds. These are the advanced monitoring facilities:

• User-defined and predefined situations based on thresholds to raise different types of alerts
• At-a-glance status of all CICS regions
• The capability to monitor multiple CICS regions simultaneously from one or more centralized

workstations

Used in conjunction with other OMEGAMON XE monitoring products, the data, analyses, and alerts
presented by OMEGAMON XE for CICS on z/OS help you develop a holistic view of your entire computing
enterprise from a single console.

OMEGAMON XE for Db2
Tivoli OMEGAMON XE for Db2 Performance Expert on z/OS is a single, comprehensive assessment tool,
Tivoli OMEGAMON XE for Db2 Performance Monitor on z/OS helps you resolve critical performance
issues.

Performance Expert

OMEGAMON XE for Db2 Performance Expert (PE) is a performance analysis, monitoring, and tuning tool
for Db2 on z/OS environments. This product is part of the integrated and complete cross z Systems®

monitoring solution of the IBM Tivoli OMEGAMON XE family that monitors all Db2 subsystems on z/OS
and other resources, such as IMS, MVS, or CICS. OMEGAMON XE for Db2 PE simplifies and supports
system and application performance monitoring, reporting, trend analysis, charge back usage, and buffer
pool analysis. If problems are encountered you are notified and advised how to continue.

Performance Monitor

Tivoli OMEGAMON XE for Db2 Performance Monitor on z/OS permits you to monitor, analyze and optimize
the performance of Db2 on z/OS applications in two key modes: online, in real time with immediate alerts
when problems occur, and batch, in reports.

Tivoli OMEGAMON XE for Db2 Performance Monitor on z/OS helps you resolve critical performance
issues. Use it to monitor:

• Individual data-sharing members or entire data-sharing groups.
• Applications running in a parallel query environment, even in the parallel tasks are executed on

different processors.
• Near-term performance history to see problems that otherwise go unnoticed and prevent them in the

future.
• Object analysis of database disks, tables, table spaces, and other elements to tune performance.

Identifying CICS performance constraints
Major constraints on a CICS system are often identified by external symptoms such as stress conditions
and longer response times. CICS can resolve some constraint problems; others must be resolved
manually.

Many indications of poor performance can occur in a system that is congested. For example, if there is a
slowdown in direct access storage device (DASD) activity, the following symptoms might occur:

• Transactions that perform data set activity accumulate

Chapter 1. Measuring, tuning, and monitoring: the basics 45

• Waits on strings occur
• More transactions are waiting in the system
• Demands on virtual storage increase
• Demands on real storage increase
• Increased paging occurs
• The task dispatcher uses more processor power scanning task chains
• Task constraints occur
• The MXT or transaction class limit is exceeded; the processor is required to do additional work because

more retries are required

As a result the system shows heavy use of all resources, resulting in typical system stress. This situation
does not indicate problems with all resources; it shows that a constraint has yet to be found. To identify
the constraint, you must find out what is affecting task life.

If performance is unacceptable, the performance constraints (the causes of the symptoms) must be
identified so that they can be tuned.

When dealing with limit conditions, you might find it helpful to check the various hardware and software
locations in the system where performance constraints are occurring.

Hardware contentions
Contentions can occur on processor cycles, real storage, database associated hardware I/O operations,
and network-associated hardware operations.

• Processor cycles. It is not uncommon for transactions to execute more than one million instructions. To
execute these instructions, transactions must contend with other tasks and jobs in the system.
Sometimes these tasks and jobs must wait for activities such as file I/O. Transactions give up their use
of the processor at these points and must contend for use of the processor again when the activity has
completed. Dispatching priorities determine which transactions or jobs get use of the processor, and
batch or other online systems affect response time by receiving preferential access to the processor.
Batch programs that access online databases also tie up those databases for longer periods of time if
their dispatching priority is low. At higher usages, the wait time for access to the processor can be
significant.

• Real storage (working set). Just as transactions must contend for the processor, they also must be given
a certain amount of real storage. A real storage shortage can be particularly significant in CICS
performance because a normal page fault that occurs when acquiring real storage results in
synchronous I/O. The basic design of CICS is asynchronous, which means that CICS processes requests
from multiple tasks concurrently to make maximum use of the processor. Most paging I/O is
synchronous and causes the MVS task that CICS is using to wait, and that part of CICS cannot do any
further processing until the page operation completes. Most, but not all, of CICS processing uses a
single MVS task (called "QUASI" in the dispatcher statistics).

• Database-associated hardware (I/O) operations. When data is being accessed to provide information
that is required in a transaction, an I/O operation passes through the processor, the processor channel,
a disk control unit, the head of string on a string of disks, and the actual disk device where the data
resides. If any of these devices are overused, the time taken to access the data can increase
significantly. This overuse can be the result of activity on one data set, or on a combination of active
data sets. Error rates also affect the usage and performance of the device. In shared DASD
environments, contention between processors also affects performance. This, in turn, increases the
time that the transaction ties up real and virtual storage and other resources.

Large amounts of central and expanded storage, very large data buffers, and keeping programs in
storage, can significantly reduce DB I/O contention and somewhat reduce processor utilization while
delivering significant internal response time benefits.

• Network-associated hardware operations. The input and output messages of a transaction must pass
from the terminal to a control unit, a communications link, a network controller, a processor channel,
and finally the processor. Just as overuse of devices to access data can affect response time, so

46 CICS TS for z/OS: Performance Guide

excessive use of network resources can cause performance degradation. Error rates also affect
performance. In some cases, the delivery of the output message is a prerequisite to freeing the
processor resources that are accessed, and contention can cause these resources to be tied up for
longer periods.

Design considerations
The length of time between data set reorganizations can affect performance. The efficiency of access
decreases as the data set becomes increasingly fragmented. Fragmentation can be kept to the minimum
by reducing the length of time between data set reorganizations.

The following factors can limit performance:

• Database design. A data set or database needs to be designed to meet the needs of the application it is
supporting. Such factors as the pattern of access to the data set (especially whether it is random or
sequential), access methods chosen, and the frequency of access determine the best database design.
Such data set characteristics as physical record size, blocking factors, the use of alternate or secondary
indexes, the hierarchical or relational structure of database segments, database organization (HDAM,
HIDAM, and so on), and pointer arrangements are all factors in database performance.

• Network design. This item can often be a major factor in response time because the network links are
much slower than most components of an online system. Processor operations are measured in
nanoseconds, line speeds in seconds. Screen design can also have a significant effect on overall
response time. A 1200-byte message takes one second to be transmitted on a relatively high-speed
9600 bits-per-second link. If 600 bytes of the message are not needed, half a second of response time
is wasted. Besides screen design and size, such factors as how many terminals are on a line, the
protocols used (SNA, bisynchronous), and full-duplex or half-duplex capabilities can affect
performance.

• Use of specific software interfaces or serial functions. The operating system, terminal access method,
database manager, data set access method, and CICS must all communicate in the processing of a
transaction. Only a given level of concurrent processing can occur at any one time, and this can also
cause a performance constraint. Examples of concurrent processes include the SNA receive any pool
(RAPOOL), VSAM data set access (strings), CICS temporary storage, CICS transient data, and CICS
intercommunication sessions. Each of these can have a single or multiserver queueing effect on a
transaction's response time, and can tie up other resources by slowing task throughput.

One useful technique for isolating a performance constraint in a CICS system with SNA is to use the
IBMTEST command issued from a user's terminal. This terminal must not be in session with CICS, but
must be connected to the z/OS Communications Server for SNA.

At an SNA LU enter the following:

 IBMTEST (n)(,data)

where n is the number of times you want the data echoed, and data consists of any character string. If
you enter no data, the alphabet and the numbers zero through nine are returned to the terminal. This
command is responded to by SNA LU.

IBMTEST is an echo test designed to give the user a rough idea of the z/OS Communications Server
component of terminal response time. If the response time is fast in a slow-response system, the
constraint is not likely to be any component from the z/OS Communications Server onward. If the
response time is slow, the z/OS Communications Server or the SNA network may be the reason. This sort
of deductive process in general can be useful in isolating constraints.

To avoid going into session with CICS, you may have to remove APPLID= from the LU statement or
CONNECT=AUTO from the TERMINAL definition.

Chapter 1. Measuring, tuning, and monitoring: the basics 47

Observing response time
The basic criterion of performance in a production system is response time. Good performance depends
on a variety of factors including user requirements, available capacity, system reliability, and application
design. Good performance for one system can be poor performance for another.

In straightforward data-entry systems, good response time implies sub-millisecond response time. In
normal production systems, good response time is measured in the five to ten millisecond range. In
scientific, compute-bound systems or in print systems, good response time can be one or two minutes.

When checking whether the performance of a CICS system is in line with the system's expected or
required capability, you should base this investigation on the hardware, software, and applications that
are present in the installation.

If, for example, an application requires 100 accesses to a database, a response time of three to six
milliseconds may be considered to be quite good. If an application requires only one access, however, a
response time of three to six milliseconds for disk accesses would need to be investigated. Response
times, however, depend on the speed of the processor, and on the nature of the application being run on
the production system.

You should also observe how consistent the response times are. Sharp variations indicate erratic system
behavior.

Typically, the response time in the system varies with an increasing transaction rate, is gradual at first,
then quickly deteriorates. The typical curve shows a sharp change when, suddenly, the response time
increases dramatically for a relatively small increase in the transaction rate.

Figure 15. Graph to show the effect of response time against increasing load

For stable performance, it is necessary to keep the system operating below this point where the response
time dramatically increases. In these circumstances, the user community is less likely to be seriously
affected by the tuning activities being undertaken by the DP department, and these changes can be done
in an unhurried and controlled manner.

Response time can be considered as being made up of queue time and service time. Service time is
generally independent of usage, but queue time is not. For example, 50% usage implies a queue time
approximately equal to service time, and 80% usage implies a queue time approximately four times the

48 CICS TS for z/OS: Performance Guide

service time. If service time for a particular system is only a small component of the system response, for
example if it is part of the processor, 80% usage might be acceptable. If it is a greater portion of the
system response time, for example, in a communication line, 50% usage may be considered high.

If you are trying to find the response time from a terminal to a terminal, you should be aware that the
most common “response time” obtainable from any aid or tool that runs in the host is the “internal
response time.” Trace can identify only when the software in the host, that is, CICS and its attendant
software, first “sees” the message on the inbound side, and when it last “sees” the message on the
outbound side.

Internal response time gives no indication of how long a message took to get from the terminal, through
its control unit, across a line of whatever speed, through the communication controller (whatever it is),
through the communication access method (whatever it is), and any delays before the channel program
that initiated the read is finally posted to CICS. Nor does it account for the time it might take for CICS to
start processing this input message. There may have been lots of work for CICS to do before terminal
control regained control and before terminal control even found this posted event.

The same is true on the outbound side. CICS auxiliary trace knows when the application issued its
request, but that has little to do with when terminal control found the request, when the access method
ships it out, when the controllers can get to the device, and so on.

While the outward symptom of poor performance is overall bad response, there are progressive sets of
early warning conditions which, if correctly interpreted, can ease the problem of locating the constraint
and removing it.

The information in this topic has been based on the assumption that CICS is the only major program
running in the system. If batch programs or other online programs are running simultaneously with CICS,
you must ensure that CICS receives its fair share of the system resources and that interference from other
regions does not seriously degrade CICS performance.

Poor response time: Causes and solutions
This table shows four levels of response time, in decreasing order of severity. The major causes are
shown for each level, together with a range of suggested solutions.

The first step is to check the causes by following the advice given in “Assessing the performance of your
system” on page 17. When you have identified the precise causes, you can find information in Chapter 2,
“Improving the performance of a CICS system,” on page 59 on how to implement an appropriate
solution.

Table 2. CICS response time checklist

Major cause Solution

Level 1: Poor response at all loads for all transactions

High level of paging Reduce working set, or allocate more real storage

Very high usage of major resources Reconsider system resource requirements and
redesign system, and check for application errors
and resource contention

Level 2: Poor response at medium and high loads

High level of paging Reduce working set, or allocate more real storage

High processor usage Reduce pathlength, or increase processor power

High DB or data set usage Reorganize data sets, or reduce data transfer, or
increase capacity

High communication network usage Reduce data transfer, or increase capacity

TP or I/O access-method constraint Increase buffer availability

Chapter 1. Measuring, tuning, and monitoring: the basics 49

Table 2. CICS response time checklist (continued)

Major cause Solution

CICS limit values exceeded Change operands, or provide more resources, or
check if errors in application

Level 3: Poor response for certain transactions only

Identify common characteristics listed under Level
2

The solutions are as for Level 2

Lines or terminal usage Increase capacity, or reduce data transfer, or
change transaction logic

Data set usage Change data set placement buffer allocations or
change enqueue logic or data set design

High storage usage Redesign or tune applications

Same subprograms used by transactions Redesign or tune application subprograms

Same access method or CICS features used by
transactions

Reallocate resource or change application, and
reevaluate use of feature in question

Limit conditions Reallocate resource or change application

Level 4: Poor response for certain terminals

Check network loading as appropriate Increase capacity of that part of network

Check operator techniques Revise terminal procedures

Check terminal definitions Redefine terminal definitions

Reducing storage stress
Storage stress occurs when there is a shortage of free space in one of the dynamic storage areas.

Storage stress can be a symptom of the following situations:

• Other resource constraints that cause CICS tasks to occupy storage for longer than usual
• A sudden large number of tasks that overwhelm available free storage
• Badly designed applications that require unreasonably large amounts of storage

CICS handles storage stress as follows:

• With decreasing free storage availability, nonresident, not-in-use programs might be deleted
progressively, as CICS determines appropriate, on a least-recently-used basis. Dispatch of new tasks is
also progressively slowed as free storage approaches a critically small amount. This self-tuned activity
tends to spread the cost of managing storage. There might be more program loading overall, but the
heavy overhead of a full program compression is not incurred at the critical time.

• The loading or reloading of programs is handled by CICS with an MVS subtask. In this way, other user
tasks can proceed if a processor of the MVS image is available and even if a page-in is required as part
of the program load.

• User runtime control of storage usage is achieved through appropriate use of maximum task
specification (MXT) and transaction class limits. This is necessary to avoid the short-on-storage
condition that can result from unconstrained demand for storage.

Short-on-storage condition

CICS reserves a minimum number of free storage pages for use only when there is not enough free
storage to satisfy an unconditional GETMAIN request even after all not-in-use nonresident programs have
been deleted.

50 CICS TS for z/OS: Performance Guide

Whenever a request for storage results in the number of contiguous free pages in one of the dynamic
storage areas falling below its respective cushion size, or failing to be satisfied even with the storage
cushion, a cushion stress condition exists. Details are given in the storage manager statistics ("Times
request suspended", "Times cushion released"). CICS attempts to alleviate the storage stress situation by
taking a number of actions. If these actions fail to alleviate the situation, or if the stress condition is
caused by a task that is suspended for SOS, a short-on-storage condition is signaled. This is accompanied
by message DFHSM0131, DFHSM0133 or DFHSMSM0606.

Removing unwanted data set name blocks
The extended CICS dynamic storage area (ECDSA) is also used for data set name (DSN) blocks. One
DSN block is created for every data set that CICS file control opens, and they are recovered at a warm
or emergency restart. If an application creates a large number of temporary data sets, all with a
unique name, the number of DSN blocks can increase to such an extent that they can cause a short-
on-storage condition.

If application programs use temporary data sets, with a different name for every data set created, it is
important that these programs remove the temporary data sets after use. See SET DSNAME for
information about how you can use this command to remove unwanted temporary data sets from your
CICS regions.

Language Environment® runtime options for AMODE(24) programs
Two of the default Language Environment runtime options for CICS are ALL31(ON) and STACK(ANY).
This means all programs that require Language Environment must be capable of addressing 31-bit
storage, that is, must be AMODE(31) when Language Environment is enabled. For AMODE(24)
programs to run in a Language Environment environment, you can specify ALL31(OFF) and
STACK(BELOW). However, if you change these options globally so that all programs can use them, a
lot of storage will be put below the 16 MB line, which might cause a short-on-storage condition.

For more information, see “Short-on-storage conditions in dynamic storage areas” on page 89.

Purging tasks

If a CICS task is suspended for longer than its DTIMOUT value, it might be purged if SPURGE=YES is
specified on the RDO transaction definition. That is, the task is abended and its resources freed, thus
allowing other tasks to use those resources. In this way, CICS attempts to resolve what is effectively a
deadlock on storage.

If purging tasks is not possible or does not solve the problem, CICS stops processing. You must then
cancel and restart the CICS region.

Reducing DASD paging activity
A large amount of DASD paging activity can slow down the rate at which transactions pass through the
system.

About paging

The virtual storage of a processor might far exceed the size of the central storage available in the
configuration. Any excess must be maintained in auxiliary storage (DASD). This virtual storage occurs in
blocks of addresses called pages. Only the most recently referenced pages of virtual storage are assigned
to occupy blocks of physical central storage. When reference is made to a page of virtual storage that
does not appear in central storage, the page is brought in from DASD to replace a page in central storage
that is not in use and least recently used.

The newly referenced page is said to have been paged in. The displaced page may need to be paged out if
it has been changed.

It is the page-in rate that is of primary concern, because page-in activity occurs synchronously (that is, an
MVS task stops until the page fault is resolved). Page-out activity is overlapped with CICS processing, so it
does not appreciably affect CICS throughput.

A page-in from DASD incurs a time cost for the physical I/O and a more significant increase in processor
usage.

Chapter 1. Measuring, tuning, and monitoring: the basics 51

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_setdsname.html

Thus, extra DASD page-in activity slows down the rate at which transactions flow through the CICS
system; that is, transactions take longer to get through CICS, you get more overlap of transactions in
CICS, and so you need more virtual and real storage.

If you suspect that a performance problem is related to excessive paging, you can use RMF to obtain the
paging rates.

Consider controlling CICS throughput by using MXT and transaction class limits in CICS on the basis that a
smaller number of concurrent transactions requires less real storage, causes less paging, and may be
processed faster than a larger number of transactions.

When a CICS system is running with transaction isolation active, storage is allocated to user transactions
in multiples of 1MB. This means that the virtual storage requirement for a CICS system with transaction
isolation enabled is very large. This does not directly affect paging that only affects those 4K byte pages
that have been touched. More real storage is required in ELSQA, however. For more information about
transaction isolation and real storage, see “Allocation of real storage when using transaction isolation” on
page 123.

What is an ideal CICS paging rate from DASD? Less than one page-in per second is best to maximize the
throughput capacity of the CICS region. Anything less than five page-ins per second is probably
acceptable; up to ten may be tolerable. Ten per second is marginal, more is probably a major problem.
Because CICS performance can be affected by the waits associated with paging, you should not allow
paging to exceed more than five to ten pages per second.

Note: The degree of sensitivity of CICS systems to paging from DASD depends on the transaction rate, the
processor loading, and the average internal lifetime of the CICS tasks. An ongoing, hour-on-hour rate of
even five page faults per second may be excessive for some systems, particularly when you realize that
peak paging rates over periods of ten seconds or so could easily be four times that figure.

What paging rates are excessive on various processors and are these rates operating-system dependent?
Excessive paging rates should be defined as those that cause excessive delays to applications. The
contribution caused by the high-priority paging supervisor executing instructions and causing applications
to wait for the processor is probably a minor consideration as far as overall delays to applications are
concerned. Waiting on a DASD device is the dominant part of the overall delays. This means that the
penalty of high paging rates has almost nothing to do with the processor type.

CICS systems are usually able to deliver much better response times with somewhat better processor
utilization when the potential of large amounts of central storage is exploited by keeping more data and
programs in memory.

Program loading and paging

CICS employs MVS load under an MVS subtask to load programs. This allows the use of the library
lookaside function of MVS to eliminate most DASD I/Os by keeping copies of programs in an MVS
controlled dataspace.

A page-in operation causes the MVS task that requires it, to stop until the page has been retrieved. If the
page is to be retrieved from DASD, this has a significant effect. When the page can be retrieved, the
impact is only a relatively small increase in processor usage.

The loading of a program into CICS storage can be a major cause of page-ins. Because this is carried out
under a subtask separate from CICS main activity, such page-ins do not halt most other CICS activities.

Reducing resource contention
Stress conditions are an indication that certain limit conditions have been reached and additional
processing is required. The transactions involved must wait until resources are released.

The main limit conditions or constraints that can occur in a CICS system include those listed in
“Identifying CICS performance constraints” on page 45.

To summarize, limit conditions can be indicated by the following:

52 CICS TS for z/OS: Performance Guide

• Virtual storage conditions (short-on-storage or SOS). This item in the CICS storage manager statistics
shows a deficiency in the allocation of virtual storage space to the CICS region.

In most circumstances, allocation of more virtual storage does not in itself cause a degradation of
performance. You should determine the reason for the condition in case it is caused by some form of
error. This could include failure of applications to free storage (including temporary storage), unwanted
multiple copies of programs or maps, storage violations, and high activity of nonresident exception
routines caused by program or hardware errors.

All new applications should be written to run above the 16MB line. The dynamic storage areas above
the 16MB line can be expanded up to the 2GB limit of 31-bit addressing. The dynamic storage areas
below the 16MB line are limited to less than the region size, which is less than 16MB.

• Number of simultaneous tasks (MXT and transaction class limit) reached (shown in the transaction
manager statistics).

• Maximum number of z/OS Communications Server receive-any RPLs in use (shown in the z/OS
Communications Server statistics).

• Wait-on-string and associated conditions for VSAM data sets (shown in the file control statistics).

Check how frequently the limit conditions occur. In general:

• If no limit conditions occur, this implies that too many resources have been allocated. This is quite
acceptable if the resource is inexpensive, but not if the resource is both overallocated and of more use
elsewhere.

• Infrequent occurrence of a limit condition is an indication of good usage of the particular resource. This
usually implies a healthy system.

• Frequent occurrence (greater than 5% of transactions) usually reveals a problem, either directly or
indirectly, that needs action to prevent more obvious signs of poor performance. If the frequency is
greater than about 10%, you may have to take some action quickly because the actions taken by CICS
itself (dynamic program storage compression, release of storage cushion, and so on) can have a
perceptible effect on performance.

Your own actions should include:

– Checking for errors
– Raising the limit, provided that it does not have a degrading effect on other areas
– Allocating more resources to remove contention
– Checking recovery usage for contention.

Resolving resource problems
This table provides information about the symptoms that indicate resource problems, their causes, and
their solutions.

Follow this general procedure for resolving resource problems:

1. Confirm that your diagnosis of the type of constraint is correct, by means of detailed performance
analysis. “Methods of performance analysis” on page 18 describes various techniques.

2. Read “Tuning your system” on page 22 for general advice on performance tuning.
3. See the relevant sections in Chapter 2, “Improving the performance of a CICS system,” on page 59

for detailed information on applying the various solutions.
4. Improve virtual storage exploitation by ensuring the following:

• Large data buffers above the 16 MB line or in Hiperspace
• Programs that run above the 16 MB line
• Large amounts of real storage to support the virtual storage exploitation

Such a system can deliver better internal response times, while minimizing DASD I/O constraint and
reducing processor utilization.

Chapter 1. Measuring, tuning, and monitoring: the basics 53

Typical resource problems, their symptoms, and their solutions:

Problem Symptom Solution

Excessive DASD I/O operations:
the amount of I/O operations
needed to locate and fetch
modules from DASD storage is
excessive.

• Slow response times (the
length of the response time
depends on the number of I/O
operations, with a longer
response time when batch
mode is active)

• High DSA utilization
• High paging rates
• MXT limit frequently reached
• SOS condition often occurs

• Reduce the number of I/O
operations.

• Tune the remaining I/O
operations.

• Balance the I/O operations
load.

Slow transaction response on
network: the average transaction
response time for the network is
unacceptably slow.

• Slow response times
• Good response when few

terminals are active on a line,
but poor response when many
terminals are active on that line

• Big difference between internal
response time and terminal
response time

• Reduce the line utilization.
• Reduce delays in data

transmission.
• Alter the network.

Slow response from remote
system: the response time from a
connected remote system is
excessive.

• SOS condition or MXT occurs
when there is a problem with a
connected region

• CICS takes time to recover
when the problem is fixed

• Control the amount of queuing
which takes place for the use of
the connections to the remote
systems.

• Improve the response time of
the remote system.

Excessive use of virtual storage:
excessive use of common storage
is occurring, or storage is not
being freed at the end of a job or
address space.

• Slow response times
• Multiple loads of the same

program
• Increased I/O operations

against program libraries
• High paging rates
• Frequent SOS condition

• Tune the MVS system to obtain
more virtual storage for CICS
(increase the region size).

• Make more efficient use of the
dynamic storage area.

Insufficient real storage: a
program issued a request for real
(processor) storage that specified
a variable length with a maximum
value that was too high.

• High paging rates
• Slow response times
• MXT limit frequently reached
• SOS condition often occurs

• Reduce the demands on real
storage

• Tune the MVS system to obtain
more real storage for CICS

54 CICS TS for z/OS: Performance Guide

Problem Symptom Solution

Excessive processor cycling:
storage buffering or cycle
stealing with integrated channels
is occurring, or the amount of the
queue searching is excessive.

• Slow response times
• Low priority transactions

respond very slowly
• Low priority work very slow to

complete

• Increase the dispatching
priority of CICS.

• Reevaluate the relative
priorities of operating system
jobs.

• Reduce the number of MVS
regions (batch).

• Reduce the processor
utilization for productive work.

• Use only the CICS facilities that
you really require.

• Turn off any trace that is not
being used.

• Minimize the data being traced
by reducing the scope of the
trace, or by tracing less
frequently.

• Use a faster processor.

For more information about resolving performance problems see the z/OS Resource Measurement Facility
(RMF) User's Guide.

Reducing storage violations
Storage violations can be reduced if CICS has storage protection and transaction isolation enabled.

CICS can detect storage violations when the duplicate storage accounting area (SAA) or the initial SAA of
a TIOA storage element has become corrupted, or when the leading storage check zone or the trailing
storage check zone of a user task storage has become corrupted.

A storage violation can occur in the following situations:

• When CICS detects an error during its normal processing of a FREEMAIN request for a TIOA storage
element, and finds that the two storage check zones of the duplicate SAA and the initial SAA are not
identical.

• CICS also detects user violations involving user task storage by checking the storage check zones of an
element of user task storage following a FREEMAIN command.

When a storage violation is detected, an exception trace entry is made in the internal trace table. A
message (DFHSM0102) is issued and a CICS system dump follows if the dump option is switched on.

For more information about storage violations, see Dealing with storage violations .

Performance management and capacity planning
Performance management means monitoring and allocating existing data processing resources to
applications according to a Service Level Agreement (SLA) or informal service objectives. Capacity
planning is the process of planning for sufficient computer capacity in a cost-effective manner to meet the
future service needs for all users.

Performance management

The goal of performance management is to make the best use of your current resources to meet your
current objectives, without excessive tuning effort. To formalize your objectives, you can set up a Service

Chapter 1. Measuring, tuning, and monitoring: the basics 55

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs142.html

Level Agreement (SLA). An SLA is a contract that objectively describes measurable performance factors,
for example:

• Average transaction response time for network, I/O, processor, or total
• Transaction volumes
• System availability

A fundamental part of performance management is to measure transaction response time and break it
down into components. This process shows you where tuning can be carried out for individual
transactions. For effective performance management, you need to go on to measure resource
requirements at the workload level. Analyzing your workload helps you to understand the behavior of your
system and how workloads interact with each other.

The following IBM product documentation about performance tuning and management is available:

• z/OS Resource Measurement Facility (RMF) User's Guide
• z/OS MVS Initialization and Tuning Guide
• z/OS MVS Planning Workload Management

Capacity planning

Capacity planning involves asking the following questions:

• How much of your computer resources (processor, storage, I/O, network) are being used?
• Which workloads are consuming the resources (workload distribution)?
• What are the expected growth rates?
• When will the demands on current resources affect service levels?

The data that you gather, and the predictions that you make, help you to plan a schedule for upgrading
your z Systems hardware, or for making additional enhancements such as adding zIIP and zAAP specialty
processors to your system.

For more information about capacity planning, see the IBM Redbooks publication ABCs of z/OS System
Programming, SG24-6327-01.

Relating CICS transactions to hardware resources
Use information provided by CICS monitoring and statistics to see what hardware resources in your
system are being used by CICS transactions. You can use this data for capacity planning, and also for
accounting and billing purposes.

About this task

The SMF monitoring records for each CICS transaction identify the CEC machine type and CEC model
number for the physical hardware environment where the CICS region is running. CEC (central electronics
complex) is a commonly used synonym for CPC (central processing complex), which refers to a collection
of physical hardware including main storage, one or more central processors, timers, and channels. You
can use further monitoring fields to calculate the processor time that the transaction spends on a zIIP or
zAAP specialty processor, and to see the processor time that the transaction could have spent on a
specialty processor.

Procedure

• To link your CICS workload to a specific CPC in your system, use the information in the CECMCHTP and
CECMDLID fields in the DFHTASK performance class group.
CECMCHTP shows the CEC machine type for the physical hardware environment, and CECMDLID
shows the CEC model number.
This information is also in the monitoring domain global statistics for the CICS region, reported by the
DFHSTUP statistics reporting utility and the DFH0STAT sample statistics program.

56 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw100/toc.htm
http://www.redbooks.ibm.com/redbooks/pdfs/sg246327.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246327.pdf

Tip: You can use this information with the IBM Large Systems Performance Reference (LSPR) ratios to
make an accurate assessment of CICS performance and relative processor capacity, particularly when
considering upgrades to your z/OS hardware. For more information about the LSPR ratios, see Large
Systems Performance Reference for IBM z Systems®.

• To calculate the actual and potential use of zIIP or zAAP specialty processors by CICS transactions,
use the information in the CPUTONCP and OFFLCPUT fields in the DFHTASK performance class group:

– Field 436, CPUTONCP, shows the total task processor time spent on a standard processor. To
calculate the task processor time spent on a specialty processor, subtract the time recorded in this
field from the time recorded in field 008, USRCPUT.

– Field 437, OFFLCPUT, shows the total task processor time that was eligible for offload to a specialty
processor, but actually ran on a standard processor. To calculate the total task processor time that
was not eligible for offload, subtract the time recorded in this field from the time recorded in field
436, CPUTONCP.

– To calculate the total task processor time that was either actually spent on a specialty processor, or
eligible to be spent on a specialty processor, use the following equation:

 (OFFLCPUT + (USRCPUT - CPUTONCP))

• On sub-capacity hardware the general CPs (GCPs) run at a reduced speed for the processor model, but
zIIP or zAAP specialty processors run at full speed. When running on sub-capacity hardware, the CPU
time consumed on specialty engines must therefore be normalized to represent the equivalent time
that the same transaction running on a GCP would have consumed.

The CPU time returned by CICS in the USRCPUT field includes the total CPU time consumed on general
CPs, plus the normalized CPU time spent on specialty engines. The CPUTONCP and OFFLCPUT fields
both represent time spent executing exclusively on a general CP and therefore are not subject to
normalization.

The normalization factor for an LPAR is fixed at IPL time. Use the following fields in SMF records to
determine the normalization factor for a given processor type.

– Resource Measurement Facility (RMF) - use R723NFFI for zAAP and R791NFFS for zIIP
– Common Address Space Work - use SMF30ZNF for zAAP and SMF30SNF for zIIP

Note: It is possible for the normalization process to produce data that shows that the task response
time is less than the time reported in the USRCPUT field.

Chapter 1. Measuring, tuning, and monitoring: the basics 57

https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex
https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex

58 CICS TS for z/OS: Performance Guide

Chapter 2. Improving the performance of a CICS
system

Tuning is a key factor in improving the performance of a CICS system. You must always tune DASD, the
network, and the overall MVS system before tuning any individual CICS subsystem through CICS
parameters. Before you tune a system, you must understand why your CICS system is not performing as
expected.

If you have concerns about the performance of your CICS system, use the performance flow diagram as a
guide to understand why your CICS system is not performing as expected, and as a guide to solve the
system problems.

For example, if you determine that response times in your system are too slow, view your CICS
Performance Analyzer (CICS PA) reports and the performance summary. Use the performance summary
and the performance analyzer report to determine whether it is the dispatch time or the suspend time of
tasks that is greater. If the suspend time is greater, determine whether the dispatch wait time is low or
high. If the dispatch wait time is low, use information in reports to help you improve the performance.

© Copyright IBM Corp. 1974, 2020 59

CICS Performance
Analyzer (PA) alerts

Dispatch
time

Suspend
time

View CICS PA
plug-in for Explorer

Slow response
times Error messages

High Low

ABEND

LOGGERSOSView CICS
PA reports

View Performance
summary

CPU time

Low
CPU : dispatch ratio

View storage
manager
statistics

View CICS
Messages
and Codes

View transaction
manager
statistics

View
RMF reports

View
example reports

View CICS PA
wait analysis

report

Contact IBM

View statistic
reports

What is the problem?

Which is greater?

or

or

Is the dispatch
wait time

CICS dispatcher

Transaction System

To help you improve performance, you can view tuning guidelines for different aspects of CICS:

• “Using data tables” on page 162

60 CICS TS for z/OS: Performance Guide

• “CICS dispatcher: performance and tuning” on page 65
• “Virtual and real storage: performance and tuning” on page 72
• “CICS storage protection facilities: Performance and tuning” on page 124
• “Tuning with Language Environment” on page 125
• “Java applications: performance and tuning” on page 127
• “MVS and DASD: performance and tuning” on page 128
• “Networking and the z/OS Communications Server: performance and tuning” on page 129
• “CICS MRO, ISC, and IPIC: performance and tuning” on page 141
• “CICS VSAM and file control: Performance and tuning” on page 150
• “Database management for performance” on page 178
• “CICS logging and journaling: Performance and tuning” on page 181
• “CICS temporary storage: Performance and tuning” on page 193
• “CICS transient data (TD) facility: Performance and tuning” on page 199
• “Global CICS enqueue and dequeue: Performance and tuning” on page 204
• “CICS monitoring facility: Performance and tuning” on page 205
• “CICS trace: performance and tuning” on page 206
• “CICS security: Performance and tuning” on page 207
• “CICS startup and shutdown time: Performance and tuning” on page 208
• “CICS business transaction services: Performance and tuning” on page 211
• “Managing workloads” on page 212
• Using RMF to monitor CICS

CICS Transaction Manager: performance and tuning
The CICS Transaction Manager domain provides transaction-related services.

The services provided by the domain are used to:

• Create tasks
• Terminate tasks
• Purge tasks
• Inquire on tasks
• Manage transaction definitions
• Manage tranclass definitions

The transaction manager domain also provides a transaction environment to enable other CICS
components to implement transaction-related services.

For more information about transactions, see Transaction statistics.

Setting the maximum task specification (MXT)
The MXT system initialization parameter limits the total number of concurrent user tasks in the CICS
system.

The MXT parameter controls unconstrained resource demand, particularly virtual storage usage in order
to avoid short-on-storage (SOS) conditions. This parameter also affects the amount of storage allocated
to the kernel stack segment and controls contention for resources, the length of queues (which can avoid
excessive processor usage), and real storage usage.

The value of MXT affects the storage use in the CICS address space. You must ensure that enough storage
is available for other users in the dynamic storage areas (DSAs).

Chapter 2. Improving the performance of a CICS system 61

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht32k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_tran.html

The MXT parameter controls the number of user tasks that are eligible for dispatch. MXT can be set at
startup, or by using the SET SYSTEM command. When MXT is set, the kernel and dispatcher attempt to
preallocate sufficient control blocks to guarantee that the number of user tasks specified by the MXT
value can be created concurrently. Most of the storage for this preallocation is obtained from the CDSA or
ECDSA, although a small amount of MVS storage is required for each task (approximately 256 bytes in 31-
bit storage, above the 16 MB line, and 32 bytes in 24-bit storage, below the 16 MB line, for each user
task). The MXT value is interrelated with the z/OS REGION size, and the DSA size limits that you set (the
DSALIM and EDSALIM parameters). See “Setting the limits for CICS storage” on page 79.

The MXT system initialization parameter has a default value of 250, a minimum setting of 10, and a
maximum setting of 2000. Initially, set MXT to the total number of concurrent user tasks that you require
in your system.

If you set the MXT value too high, throughput and response time can suffer when system resources
(processor, real storage, and virtual storage) are constrained or resource contention occurs, for example
file strings or buffers, Db2 threads, ENQs and so on. Also, if you set the MXT value too high at startup,
CICS forces a smaller maximum number of tasks consistent with the available virtual storage.

Conversely, if you set the MXT value too low, throughput and response time can also suffer due to
excessive queuing delays even though system resources (processor, real storage, and virtual storage) are
not constrained.

Monitor the performance of the CICS region to ensure that the response time and other time components
(such as dispatch time and suspend time) for your transactions are acceptable. In some systems, setting
MXT too high might increase resource contention to a level that causes additional delays for transactions.
You can use the transaction manager global statistics from the DFH0STAT and DFHSTUP utility programs
to monitor the MXT value.

If performance tuning for HTTP connections is enabled, when the region is at capacity, instead of queuing
HTTP requests on MXT in CICS (which involves internal processing and storage requirements), requests
are queued outside of CICS in the TCP/IP backlog. MXT is no longer exceeded by a surge of HTTP
requests (externalized as the XMGPQT field in the transaction manager global statistics), but the number
of times MXT is reached (externalized as the XMGTAMXT field in the transaction manager global
statistics) might increase. It can occur if the region remains under stress when CICS processes each
request from the backlog queue; as the task to process the request is attached CICS goes back to MXT.
Once the levels on MXT are decreased CICS will accept the next request, and its transaction might cause
CICS to go back to MXT. It does not indicate that MXT needs to be increased, it shows that its current
value is correctly protecting CICS from unconstrained resource demand.

In addition, the following performance data fields in the DFHTASK group are useful to assess the
relationship between the task load during the life of a transaction, and the performance of the
transaction:

• CURTASKS records the current number of active user transactions in the system at the time the user
task was attached.

• MAXTASKS records the current setting for the maximum number of tasks for the CICS region at the time
the user task was attached.

• MXTDELAY records the elapsed time waiting for the first dispatch when the delay is because the MXT
value is reached.

To alter the MXT value while CICS is running, you can use the SET SYSTEM MAXTASKS command. If you
set the MXT value too high while CICS is running, the error message: "CEILING REACHED" is displayed.
The CICS transaction manager statistics show the number of times the MXT ceiling has been reached.

Note: If the MAXOPENTCBS or MAXXPTCBS system initialization parameters have not been specified,
then the MXT parameter also sets the MAXOPENTCBS and MAXXPTCBS parameters.

Important: Before you change the MXT value, review the information in Open TCB pools.

62 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3_sitparms_open_tcbs.html

Using transaction classes (MAXACTIVE) to control transactions
Transaction classes give you a mechanism to limit the number of CICS tasks in your system. By spreading
your tasks across a number of transaction classes and controlling the maximum number of tasks that can
be dispatched within each transaction class, you can control resource contention between tasks and limit
the number of tasks that CICS considers eligible for dispatching at task attach.

Use the MAXACTIVE attribute of the transaction class definition (TRANCLASS) to control a specific set of
tasks that are heavy resource users, tasks of lesser importance (for example, “Good morning” broadcast
messages), and so on, allowing processor time or storage for other tasks. Together with the MXT system
initialization parameter, transaction classes control the transaction mix, that is, ensuring that one type of
transaction does not monopolize CICS. In particular, you can restrict the number of heavyweight tasks,
the load on particular data sets or disk volumes, and the printer load on lines. For example, you can use
transaction classes to isolate tasks, or put all user tasks into separate classes. Suggested classes are
simple inquiries, complex inquiries or short browses, long browses, short updates, long updates.
Separate nonconversational tasks from conversational tasks. If you need to single-thread non-reentrant
code, use ENQ for preference.

Using transaction classes can be useful for tasks that consume particularly large amounts of resource, but
that do not exceed the MAXACTIVE ceiling frequently. Do not use transaction classes for normal tasks or
for design reasons such as serializing a function within a particular task. Application design should be
reviewed as an alternative in these cases.

CICS transaction class statistics show the number of times that the number of active transactions in the
transaction class reached the MAXACTIVE value (Times MaxAct). CICS defines two transaction classes for
its own use, DFHTCLSX and DFHTCLQ2. For information about the effects these have, see “Using
transaction classes DFHTCLSX and DFHTCLQ2 to control storage use” on page 146.

Specifying a transaction class purge threshold (PURGETHRESH)
The PURGETHRESH attribute of the transaction class definition limits the number of tasks that are newly
created, but cannot be started because the MAXACTIVE limit has been reached for the associated
transaction class. These tasks are queued by the transaction manager domain in priority order until they
obtain class membership.

The tasks occupy small amounts of storage, but if the queue becomes very long, CICS can become short-
on-storage and take a considerable time to recover. Systems where a heavy transaction load is controlled
by the TRANCLASS mechanism are most prone to being overwhelmed by the queue. The tasks on the
queue are not counted by the MXT mechanism. The MXT system initialization parameter limits the total
number of tasks that have already been admitted to the system within TRANCLASS constraints.

The length of the queue of tasks waiting to be started in a transaction class is limited by the
PURGETHRESH attribute of that class. Any new transaction which would cause the limit to be reached is
ended with the abend code AKCC. Tasks that were queued before the limit was reached are allowed to
continue waiting until they can be executed.

The PURGETHRESH attribute should be specified only where the transaction load in a transaction class is
heavy. This is the case in a system which uses a terminal-owning region (TOR) and multiple application-
owning regions (AORs) and where the transaction classes are associated with the AORs and are used to
control the numbers of transactions attempting to use the respective AORs. In this configuration, an AOR
can slow down or stop and the associated transaction class fills (up to the value defined by MAXACTIVE)
with tasks that are unable to complete their work in the AOR. New transactions are then queued and the
queue can grow to occupy all the available storage in the CICS DSA within a few minutes, depending on
the transaction volume.

The size of each entry in the queue is the size of a transaction (256 bytes), plus the size of an interval
control element (ICE) secure storage extension (2108 bytes), plus the size of the TIOA holding any
terminal input to the transaction. There can be any number of queues, one for each TRANCLASS that is
installed in the TOR. You can estimate a reasonable size purge threshold for the queue by multiplying the
maximum length of time you are prepared for users to wait before a transaction is started by the
maximum arrival rate of transactions in the TRANCLASS. Make sure that the queues cannot occupy
excessive amounts of storage at their maximum lengths.

Chapter 2. Improving the performance of a CICS system 63

The PURGETHRESH queuing limit should not be set so low that CICS abends transactions unnecessarily,
for example when an AOR slows down due to a variation in the load on the CPU. The PURGETHRESH
attribute of a TRANCLASS is used to set the limit of the queue for that transaction class. The default
action is not to limit the length of the queue.

To monitor the lengths of the queues for each transaction class you should use CICS transaction class
statistics. Many statistics are kept for each transaction class. These are the most useful statistics for
monitoring queue lengths:
XMCPI

Number of transactions abended AKCC because the size of the queue reached the PURGETHRESH
limit.

XMCPQT
The peak number of transactions in the queue.

XMCTAPT
The number of times the size of the queue reached the PURGETHRESH limit.

You can monitor the number of AKCC abends in the CSMT log. The AKCC abends indicate the periods
when the queue limit was reached. You must correlate the transaction codes in the abend messages with
the transaction classes to determine which limit was being reached.

Prioritizing tasks
Prioritization is a method of giving specific tasks preference in being dispatched. Priority is specified in the
TERMINAL definition (TERMPRIORITY), a transaction in a TRANSACTION definition (PRIORITY), and in
the priority field of the user segment of the external security manager (ESM), (OPPRTY).

Overall priority is determined by summing the priorities in all three definitions for any given task, with the
maximum priority being 255:

TERMPRIORITY+PRIORITY+OPPRTY <= 255

The value of the PRTYAGE system initialization parameter also influences the dispatching order; for
example, the default value PRTYAGE=1000 causes the task's priority to increase by 1 every 1000ms it
spends on the ready queue. The dispatching priority of a task is reassessed each time it becomes ready
for dispatch, based on clock time as well as defined priority. A task of priority n+1 that has just become
ready for dispatch is usually dispatched ahead of a task of priority n, but only if PRTYAGE milliseconds
have not elapsed since the latter last became ready for dispatch. Therefore, a low priority task might be
overtaken by many higher priority tasks in a busy system, but eventually arrives at the top of the ready
queue for a single dispatch. The lower the value of PRTYAGE, the sooner the task is dispatched. PRTYAGE
should usually remain at its default value, unless certain transactions get stuck behind higher priority
transactions during very busy periods.

Note: Non-terminal transactions are attached with a priority value based on the transaction priority from
the TXD, and the operator priority, while terminal control based tasks are attached with only the
transaction priority. When a terminal control based task first gets dispatched, the operator priority and
terminal priority are added in. For this reason, terminal and non-terminal based tasks must not be
managed through the same transaction class, because a steady stream of non-terminal based
transactions could take precedence over other terminal control based transactions on a sufficiently busy
system.

Prioritization is useful for browsing tasks, and tasks that use a lot of processor time. Input/Output bound
tasks can take the required amount of CPU, and move on to the next read/write wait. CPU-intensive tasks
take higher priority over the less intensive tasks. Prioritization can be implemented in all CICS systems. It
is more important in a high-activity system than in a low-activity system. With careful priority selection,
you can improve overall throughput and response time. Prioritization can minimize resource usage of
certain resource-bound transactions. Prioritization increases the response time for lower-priority tasks,
and can distort the regulating effects of MXT and the MAXACTIVE attribute of the transaction class
definition.

64 CICS TS for z/OS: Performance Guide

Priorities do not affect the order of servicing terminal input messages and, therefore, the time they wait to
be attached to the transaction manager. Because prioritization is determined in three sets of definitions
(terminal, transaction, and operator), it can be a time-consuming process for you to track many
transactions in a system. CICS prioritization is not interrupt-driven as is the case with operating system
prioritization, but determines the position on a ready queue. This means that, after a task is given control
of the processor, the task does not relinquish that control until it issues a CICS command that calls the
CICS dispatcher. After the dispatch of a processor-bound task, CICS can be tied up for long periods if
CICS requests are infrequent. For that reason, prioritization should be implemented only if MXT and the
MAXACTIVE attribute of the transaction class definition adjustments have proved to be insufficient.

You should use prioritization sparingly, if at all, and only after you have already adjusted task levels using
MXT and the MAXACTIVE attribute of the transaction class definition. It is probably best to set all tasks to
the same priority, and then prioritize some transactions either higher or lower on an exception basis, and
according to the specific constraints in a system. Do not prioritize against slow tasks unless you can
accept the longer task life and greater dispatch overhead; these tasks are slow, in any case, and give up
control each time they have to wait for I/O. Use small priority values and differences and concentrate on
transaction priority. Give priority to control operator tasks rather than the person, or at least to the control
operator's signon ID rather than to a specific physical terminal (the control operator may move around).

Consider for high priority a task that uses large resources. However, the effects of this on the overall
system need careful monitoring to ensure that loading a large transaction of this type does not lock out
other transactions. Also consider for high priority those transactions that cause enqueues to system
resources, thus locking out other transactions. As a result, these can process quickly and then release
resources. Here are some examples:

• Using intrapartition transient data with logical recovery
• Updating frequently used records
• Automatic logging
• Tasks needing fast application response time, for example, data entry.

Lower priority should be considered for tasks that:

• Have long browsing activity
• Are process-intensive with minimal I/O activity
• Do not require terminal interaction, for example:

– Auto-initiate tasks (except when you use transient data intrapartition queues that have a destination
of terminal defined and a trigger level that is greater than zero).

– Batch update controlling tasks.

There is no direct measurement of transaction priority. Indirect measurement can be made from:

• Task priorities
• Observed transaction responses
• Overall processor, storage, and data set I/O usage.

CICS dispatcher: performance and tuning
You can tune the performance of the CICS dispatcher by specifying dispatch intervals. You specify
dispatch intervals by setting system initialization parameters for interval control values and other
parameters such as FORCEQR, MROBTCH, PRTYAGE, and SUBTSKS.

For more information about dispatcher statistics, see Dispatcher TCB Modes report.

Chapter 2. Improving the performance of a CICS system 65

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_disp_tcbmode_0stat.html

Open TCB management
The open transaction environment (OTE) is an environment where CICS application code can use non-
CICS services (facilities outside the scope of the CICS API) inside the CICS address space, without
causing wait issues on the quasi-reentrant task control block (QR TCB).

Applications that exploit the open transaction environment run on their own open TCB, rather than on the
QR TCB. CICS does not perform subdispatching on an open TCB, whereas it does on the QR TCB. If the
application that is running on an open TCB calls a non-CICS service that blocks the TCB, the TCB blocking
does not affect other CICS tasks. For more information about writing applications to exploit the open
transaction environment, see Multithreading: Reentrant, quasi-reentrant, and threadsafe programs .

TCB modes

Each open TCB mode has a 2-character identifier to indicate its specific purpose, and is handled by CICS
in a different way.
L8 mode TCBs and L9 mode TCBs

These TCBs are used as follows:

• L8 TCBs are used for CICS-key application programs that are defined as API(OPENAPI) by their
PROGRAM resource definition.

• L8 TCBs are used for CICS-key application programs that are defined as
CONCURRENCY(REQUIRED), API(CICSAPI) by their PROGRAM resource definition.

• L8 TCBs are used when programs need access to a resource manager through a task-related user
exit (TRUE) that was enabled using the OPENAPI option on the ENABLE PROGRAM command. Task-
related user exits always run in CICS key.

• L8 TCBs are used by CICS when accessing document templates and HTTP static responses that are
stored in z/OS UNIX System Services files.

• L8 TCBs are used for web service requests and parsing XML CICS programs that run in CICS key and
are defined as OPENAPI.

• L9 TCBs are used for application programs that run in user key and are defined as OPENAPI.

CICS operates with an OPENAPI task-related user exit, and therefore uses L8 TCBs, when it is
connected to the following products:

• IBM MQ, using the CICS-MQ adapter
• Db2, using the CICS Db2 Attachment Facility. For more information on the CICS Db2 attachment

facility thread TCBs in the open transaction environment, see Overview: How threads work.
• IMS Version 12 or later, using the CICS DBCTL Database Adapter Transformer (DFHDBAT). See

Enabling CICS IMS applications to use the open transaction environment (OTE) through threadsafe
programming.

Other IBM products, for example, IP CICS Sockets and the z/OS Integrated Cryptographic Service
Facility (ICSF), can also use an OPENAPI enabled task-related user exit. For more information about
managing IP CICS sockets, see z/OS Communications Server: IP CICS Sockets Guide. For more
information about the CICS-ICSF Attachment Facility, see z/OS Cryptographic Services ICSF System
Programmer's Guide.

SP mode TCB and S8 mode TCBs
These TCBs are used by CICS to manage SSL connections and requests to LDAP using the DFHDDAPX
XPI interface. The S8 TCBs run in a single enclave, which is owned by the SP TCB, and also contains
the SSL cache.

The S8 TCBs are contained in an SSL pool, which is managed by the CICS dispatcher. Each SSL
connection uses an S8 TCB from the SSL pool. All CICS processing for an SSL connection occurs on
the S8 TCB (there is no switching between the S8 and SO TCBs). The web server HTTP attach task
(CWXN by default) will stay on the S8 TCB until all the data have been sent or received.

66 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp3_concepts_multithreading.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfhtk6h.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/database/enable_IMS.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/database/enable_IMS.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halc001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.csfb200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.csfb200/toc.htm

An S8 TCB is allocated to a task from the SSL pool, but is locked only for the period of time that it
takes to perform functions such as an SSL handshake or an LDAP request. After this function is
complete, the TCB is released back into the SSL pool to be reused.

Note: If the messages being sent or received are very large, the task could hit the runaway limit and
be terminated. To avoid the task being abended, you might need to increase the transaction
RUNAWAY value for the web server HTTP attach transaction (CWXN by default), the web server alias
transactions, and any transactions that issue the web client API commands SEND, RECEIVE, and
CONVERSE.

In UNIX System Services (USS), the MAXTHREADS and MAXTHREADTASKS parameters can be used to
restrict the number of pthreads that a USS process can own. Each SSL TCB requires a pthread and an
MVS task. You must therefore ensure that the values of these USS parameters exceed the value of the
MAXSSLTCBS system initialization parameter. If you do not set a large enough value for MAXTHREADS
or MAXTHREADTASKS and CICS reaches one of these limits while attempting to attach an SSL TCB,
CICS issues error message DFHDS0002 severe error code X'0137' from DFHDSIT.

TP mode TCB and T8 mode TCBs
These TCBs are used by a JVM server to process requests for Java programs. The JVM server is a
runtime environment that can handle multiple concurrent requests for Java applications in a single
JVM. The TP mode TCB owns the Language Environment enclave and the pool of T8 TCBs. Each JVM
server that is running in the CICS region has one TP TCB and at least one, but not more than 256, T8
TCBs. A T8 TCB is allocated to a task from the THRD pool of the appropriate JVM server, but is locked
only for the period of time that it takes to perform the system processing. T8 TCBs are not shared
between JVM servers.
Each T8 TCB requires a pthread and an MVS task. The maximum number of T8 TCBs that is allowed
for the CICS region is 2000. In z/OS UNIX, you can use the MAXTHREADS and MAXTHREADTASKS
parameters to restrict the number of pthreads that a z/OS UNIX process can own. You must therefore
ensure that the values of these parameters exceed the maximum number of T8 TCBs. If you do not
set a large enough value for MAXTHREADS or MAXTHREADTASKS and CICS reaches one of these limits
while attempting to attach a T8 TCB, CICS issues error message DFHDS0002 severe error code
X'0137' from DFHDSIT. For more information about the thread limits of JVM servers, see Managing
the thread limit of JVM servers.

X8 mode TCBs and X9 mode TCBs
Both these TCBs are used to run C and C++ programs compiled with the XPLINK option. X8 TCBs are
used for programs in CICS key, and X9 TCBs are used for programs in user key. Each instance of an
XPLink program uses one X8 or X9 TCB. For more information about using XPLink, see XPLink and C
and C++ programming .

Open TCB pools

CICS manages open TCBs in pools. A pool contains open TCBs that are used for the same purposes. A
pool can consist of some TCBs that are allocated to tasks, and others that have been freed by applications
and are available for reuse.

CICS can create or attach open TCBs in each pool up to the limit set for the pool. The maximum number of
TCBs allowed in each pool is set as follows

• The MAXOPENTCBS system initialization parameter, if specified, sets the value for the open TCB pool. If
the MAXOPENTCBS system initialization is not specified, CICS sets the limit for the L8 and L9 mode
open TCB pool automatically based on the maximum number of tasks specified for the CICS region (the
MXT value), using the following formula: (2 * MXT Value) + 32. For information about explicitly
setting the MAXOPENTCBS parameter yourself, see MAXOPENTCBS.

• The MAXSSLTCBS system initialization parameter specifies the value for the SSL TCB pool.
• MAXTHRDTCBS specifies the value for the JVM server THRD TCB pool. The number of threads reserved

for each JVM serverTHREADLIMIT value on the JVMSERVER resource is automatically calculated by
adding 1 to the number of threads, up to a limit of 2000.

• The MAXXPTCBS system initialization parameter, if specified, sets the value for the XP TCB pool. If the
MAXXPTCBS system initialization is not specified, CICS sets the limit for the X8 and X9 mode XP TCB

Chapter 2. Improving the performance of a CICS system 67

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/java/threadlimit_jvmserver.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/java/threadlimit_jvmserver.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhp3_c_xplink_intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhp3_c_xplink_intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_maxopentcbs.html

pool automatically to a value equal to the maximum number of tasks specified for the CICS region (the
MXT value). For information about explicitly setting the MAXXPTCBS parameter yourself, see
MAXXPTCBS .

When an application makes a request that requires an open TCB, CICS first tries to find a suitable TCB
that is available for reuse in the appropriate pool. CICS can match a request with an available TCB of the
correct mode only if the TCB is for the correct subspace. CICS attaches a new TCB when it cannot find a
suitable match with a free TCB for the correct subspace, provided that the limit for the pool has not been
reached.

A CICS task is allowed as many X8 and X9 TCBs as it requires, and these TCBs are kept only until the
program finishes. However, each CICS task is allowed at most one L8 and one L9 TCB, and it keeps an L8
and an L9 TCB from the time it is allocated to the end of the task, reusing it for further requests as
needed. The TCBs then become free, and CICS can allocate them to another task or destroy them.

Sometimes CICS cannot find a suitable match for an application’s request, and the limit for the pool has
been reached. In this situation, CICS might fulfill the request by destroying a free TCB in the pool that has
the wrong subspace or mode, and replacing it with a TCB with the right mode and subspace. This
technique is called stealing. Stealing can be costly on performance, depending on the type of open TCB,
so CICS avoids it where it makes sense to do so. CICS maintains statistics of excess TCB management
and TCB stealing activities in the CICS dispatcher TCB mode and TCB pool statistics.

If the number of TCBs is at the limit for the pool and there is no free TCB to steal, the task is suspended
with an OPENPOOL wait until a TCB becomes free, or the limit for the pool is increased.

To minimize the impact on storage, CICS attempts to balance the number of open TCBs in each pool
against current needs. If CICS finds free TCBs in a pool, it gradually reduces the excess number by
detaching them, freeing the resources used by the excess TCBs.

MAXSSLTCBS
You can use the dispatcher TCB statistics from the DFH0STAT and DFHSTUP utility programs to monitor
the S8 TCBs in the SSL pool. The maximum number of TCBs is set by the MAXSSLTCBS system
initialization parameter.

If you want to improve the performance of SSL, you can use the dispatcher reports to find out if there are
many tasks waiting for an S8 TCB. Also look at the number of tasks that have queued. If both fields report
a large number, increase the maximum number of S8 TCBs. If you have few tasks queued, but many
waits, you can decide whether you want to increase the number of S8 TCBs. Increasing the number by
one or two could make a difference to the number of waits and reduce the tasks queued, without causing
significant overheads in storage.

The maximum number of S8 TCBs that you can set is 1024. However, setting many S8 TCBs can also
affect performance because of the amount of storage used. If CICS runs out of storage, you get a TCB
attach failure. This failure is reported in the dispatcher reports for the S8 TCB mode statistics.

Interval control value parameters: ICV, ICVR, and ICVTSD
The interval control values (ICVs) are specified in the system initialization table (SIT) to set a new value or
by overrides. Setting the ICV parameters correctly can help to improve performance by reducing
processor usage for low utilization CICS regions.

CICS has three types of interval control value parameters:

Interval control value (ICV)
The ICV system initialization parameter specifies the maximum time in milliseconds that CICS
releases control to the operating system when there are no transactions ready to resume processing.
This time interval can be any integer in the range 100 through 3600000 milliseconds (specifying an
interval up to 60 minutes). A typical range of operation might be 100 through 2000 milliseconds.

Interval control value for runway tasks (ICVR)
The ICVR system initialization parameter specifies the default runaway task time interval in
milliseconds as a decimal number. You can specify zero, or a number in the range 250 through

68 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_maxxptcbs.html

2700000, in multiples of 250. CICS rounds down values that are not multiples of 250. This is the
RUNAWAY interval that is used by transactions defined with RUNAWAY=SYSTEM.

Interval control value for terminal scan delay (ICVTSD)
The ICVTSD system initialization parameter was used in earlier releases to limit how quickly CICS
dealt with some types of terminal output requests made by applications, in order to spread the
overhead for dealing with the requests. The range is 0 through 5000 milliseconds. Specifying a
nonzero value was sometimes appropriate where the CICS system used non-SNA networks. However,
with SNA and IPIC networks, setting ICVTSD to 0, which is the default, is appropriate to provide a
better response time and best virtual storage usage.

MROBTCH
The MROBTCH system initialization parameter specifies how many events in a region can be accumulated
in a batch before posting.

The region is started so that it can process the requests. The batching of multiregion operation (MRO)
requests includes some non-MRO events:

• VSAM physical I/O completion events
• Subtasked request completion (mostly VSAM)
• DL/I request completion implemented through DBCTL

The value of the MROBTCH parameter can be in the range of 1 through 255, and the default is 1. Using this
batching mechanism, you can spread the dispatch resource usage in CICS over several tasks. If the value
is greater than 1 and CICS is in a system wait, CICS is not posted for dispatch until the specified number
of events has occurred. Events include MRO requests from connected systems or DASD I/O and
CHANGE_MODE processing. For these events, CICS is dispatched after:

• The current batch fills up (the number of events equals MROBTCH)
• An ICV interval expires

The time interval that you specify in the ICV parameter should be low enough to prevent undue delay to
the system.

During periods of low utilization, a value of MROBTCH greater than 1 can result in increased transaction
response times. Transactions that issue I/O requests might be delayed because of an increased
FCIOWAIT value. For more information about the effect of MROBTCH on performance, see “Batching
requests (MROBTCH)” on page 147.

FORCEQR
The FORCEQR system initialization parameter specifies whether you want CICS to force all CICS API user
application programs that are specified as threadsafe to run under the CICS quasi-reentrant (QR) task
control block (TCB), as if they were specified as quasi-reentrant programs.

If your programs are defined as quasi-reentrant, CICS always calls them under the CICS QR TCB. The
requirements for a quasi-reentrant program in a multithreading context are less stringent than if the
program were to execute concurrently on multiple TCBs. CICS requires that an application program is
reentrant so that it guarantees consistent conditions. In practice, an application program may not be truly
reentrant; CICS expects "quasi-reentrancy". This means that the application program should be in a
consistent state when control is passed to it, both on entry, and before and after each EXEC CICS
command. Such quasi-reentrancy guarantees that each invocation of an application program is
unaffected by previous runs, or by concurrent multi-threading through the program by multiple CICS
tasks.

CICS quasi-reentrant user programs (application programs, user-replaceable modules, global user exits,
and task-related user exits) are given control by the CICS dispatcher under the QR TCB. When running
under this TCB, a program can be sure that no other quasi-reentrant program can run until it relinquishes
control during a CICS request, at which point the user task is suspended, leaving the program still "in
use". The same program can then be reinvoked for another task, which means the application program

Chapter 2. Improving the performance of a CICS system 69

can be in use concurrently by more than one task, although only one task at a time can actually be
executing.

Running application with programs defined as threadsafe to use OTE, such as CICS Db2 applications,
could cause problems if one or more programs is not threadsafe. Using the FORCEQR system initialization
parameter, you can force all your applications onto the QR TCB.

Forcing applications on the QR TCB is useful in production regions where you cannot afford to have
applications out of service while you investigate the problem.

The default for this parameter is FORCEQR=NO, which means that CICS honors the CONCURRENCY
attribute on your program resource definitions. As a temporary measure, while you investigate and
resolve problems connected with threadsafe-defined programs, you can set FORCEQR=YES. When all
problems have been resolved, resetting FORCEQR=NO makes all programs resume use of open TCBs
under the OTE.

The FORCEQR parameter applies to all application programs that are restricted to the current CICS
programming interfaces (programs that specify API(CICSAPI)). The parameter does not apply to any of
the following programs:

• Java programs that are run in JVM
• C or C++ programs using XPLINK
• OPENAPI programs
• Programs defined with CONCURRENCY(REQUIRED)

The FORCEQR parameter applies to all programs defined as threadsafe that are not used as task-related
user exits, global user exits, or user-replaceable modules.

PRTYAGE
The system initialization parameter, PRTYAGE, can be set to a value that determines the rate at which
tasks in the system have their priorities aged.

The priority of a task within CICS determines the order it is dispatched. Tasks can have priority values of 1
through 255. If a task's first dispatch is too slow, changing the priority to a higher value shortens the
dispatch time. You have no control over the priorities of CICS system tasks. Adjusting the value of
PRTYAGE does not control the priorities of tasks, only how CICS sets the priorities of tasks. Altering the
value of PRTYAGE affects the rate at which tasks are dispatched.

SUBTSKS
The SUBTSKS system initialization parameter specifies the number of task control blocks (TCBs) that
CICS uses to run tasks in concurrent mode.

The value of the SUBTSKS parameter is either 1 or 0. The value of 1 turns subtasking on and the value of 0
turns subtasking off.

Using the value of 0, which is the default value for SUBTSKS, CICS runs under the quasi-reentrant (QR)
TCB and runs all applications under the QR TCB. At this value, CICS also runs tasks that open and close
files under the resource-owning mode TCB.

If the parameter value is set to 1, CICS runs under the resource-owning TCB and the QR TCB, and uses an
additional TCB, a concurrent mode TCB, to perform system subtasking.

TCB statistics
The task control block (TCB) dispatcher statistics report the amount of CPU time consumed by each CICS
TCB since the last time statistics were reset.

To calculate the approximate time since CICS statistics were last reset, add the values of "Accum time in
MVS wait" and "Accum time dispatched". To calculate the percentage usage of each CICS TCB, divide the
value of "Accum CPU time/TCB" by the time since CICS statistics were last reset (as calculated earlier).

70 CICS TS for z/OS: Performance Guide

The "Accum CPU time/TCB" value does not include uncaptured time. Therefore, when you use this
calculation, even a very busy CICS TCB is noticeably less than 100% busy. If the calculation indicates that
a CICS region is more than 70% busy, you are approaching the capacity of the region. However, the 70%
calculation can be only approximate. The capacity of the region depends on such factors as the workload
in operation, the mix of activity in the workload, and which release of CICS you are currently using. You
can use Resource Measurement Facility (RMF) to obtain a definitive measurement to use in your
calculation, or you can use RMF with your monitoring system. For more information, see the z/OS
Resource Measurement Facility (RMF) Report Analysis.

Note: "Accum time dispatched" is not a measurement of CPU time. MVS can run higher priority work, for
example all I/O activity and higher priority regions, without CICS being aware.

TCB modes are as follows:
QR

There is always one quasi-reentrant mode TCB. It is used to run quasi-reentrant CICS code and non-
threadsafe application code.

FO
There is always one file-owning TCB. It is used for opening and closing user data sets.

RO
There is always one resource-owning TCB. The RO TCB is used for loading programs, unless the
command to load the program (EXEC CICS LOAD, XCTL, or LINK) is issued by an application that is
currently running on an open TCB. In that situation, the open TCB is used to load the program instead
of the RO TCB. The RO TCB is also used for opening and closing CICS data sets, issuing RACF calls,
and similar tasks.

The CICS loader domain global statistics record the number of program load operations that took
place on the RO TCB, and the time taken for them. You can compare these values to the overall
statistics for the number and time of program load operations, to see the proportion of program load
operations that took place on open TCBs instead of the RO TCB.

CO
The optional concurrent mode TCB is used for processes that can safely run in parallel with other
CICS activity such as VSAM requests. Define the system initialization parameter SUBTSKS using the
value 0 or 1 to specify whether there is a CO TCB.

D2
The D2 mode TCB is used to stop Db2 protected threads. Protected threads are stopped in the normal
purge cycle, or when a user issues the DSNC DISCONNECT plan-name command, which stops the
protected threads for a plan immediately.

SZ
The single optional SZ mode TCB is used by the FEPI interface.

RP
The single optional RP mode TCB is used to make ONC/RPC calls.

EP
The EP mode TCBs are used to run event processing in a CICS region. The TCBs either dispatch events
to an appropriate EP adapter or defer filtering of system events.

L8
A task has an L8 mode TCB for its sole use when it calls a program that is enabled with the OPENAPI
option and is defined with EXECKEY=CICS, or when it calls a task-related user exit program that is
enabled with the OPENAPI option. An L8 TCB is used when CICS uses the CICS-MQ adapter to
connect to WebSphere® MQ Version 6 or later and when CICS connects to DB2® Version 8 or earlier.

L9
A task has an L9 mode TCB for its sole use when it calls a program that is enabled with the OPENAPI
option and is defined with EXECKEY=USER.

SO
The SO mode TCB is used to make calls to the socket interface of TCP/IP.

Chapter 2. Improving the performance of a CICS system 71

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb500/toc.htm

SL
The SL mode TCB is used to wait for activity on a set of listening sockets.

S8
A task uses an S8 TCB if it needs to use the system Secure Sockets Layer (SSL). A task also uses an S8
TCB if it needs to use LDAP over the DFHDDAPX XPI interface. The TCB is used only for the duration of
the SSL negotiation or the LDAP request. On completion, the TCB is released back into the SSL pool to
be reused.

SP
The SP mode TCB is used for socket pthread owning tasks. It manages the SSL pool of S8 TCBs and
owns the Language Environment enclave that contains the SSL cache.

T8
A Java application running in a JVMSERVER uses a T8 TCB. The T8 will also be used for Db2 requests
from Java applications when CICS is connected to DB2 Version 9 or later.

TP
The TP mode TCB owns and manages the Language Environment enclave, the JVM, the THRD TCB
pool, and T8 TCBs of a JVM server.

X8
A task has an X8 mode TCB for its sole use when it calls a C or C++ program that is compiled with the
XPLINK compiler option and defined with EXECKEY=CICS. The CICS-Db2 task-related user exit may
use a X8 TCB if it is run with CONCURRENCY(REQUIRED) and API(CICSAPI).

X9
A task has an X9 mode TCB for its sole use when it calls a C or C++ program that is compiled with the
XPLINK compiler option and defined with EXECKEY=USER.

Virtual and real storage: performance and tuning
Learn about virtual and real storage use in a z/OS system and in CICS regions, and start to monitor
performance and tune your use of storage.

Procedure

1. Understand how virtual and real storage is arranged and managed in a z/OS address space.
For information about address spaces in z/OS, read the following z/OS documentation:

• For information about 24-bit and 31-bit storage (below the bar) in an address space, see Virtual
storage overview in the z/OS MVS Initialization and Tuning Guide.

• For information about 64-bit (above-the-bar) storage in an address space, see Using the 64-bit
Address Space in the z/OS MVS Programming: Extended Addressability Guide.

2. Understand how virtual storage is arranged and managed when a z/OS address space is used by a
CICS region.
For information about how CICS uses a z/OS address space, see “CICS virtual storage” on page 73.

3. Monitor and measure the use of virtual storage across your z/OS system using z/OS performance and
monitoring tools, such as the z/OS Resource Measurement Facility (RMF).
For an overview of RMF, see “Resource measurement facility (RMF)” on page 32.
For further information, see the z/OS Resource Measurement Facility (RMF) User's Guide.

4. Monitor and measure the use of virtual storage and the size of the dynamic storage areas (DSAs) in
each of your CICS regions, using the following facilities:

• The CICS storage manager statistics
• The reports produced by the sample statistics program DFH0STAT
• CICS formatted dumps for the loader domain and storage domain

5. Tune the use of storage across your z/OS system.

72 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/vsover.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/vsover.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/u64bit.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/u64bit.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm

If you are using RMF, for explanations of the RMF reports relating to CICS and to storage, and
strategies for tuning, see z/OS Resource Measurement Facility (RMF) Report Analysis.

6. Tune the use of storage in each of your CICS regions, using the methods and suggestions in this
section of the information.
Concentrate on the areas of storage that seem to be the most different from your expectations.

7. If you use Java applications in your CICS region refer to, see Calculating storage requirements for JVM
servers .

CICS virtual storage
Each CICS region operates in its own z/OS address space. The storage available in a z/OS address space
is divided into several different areas.

Figure 16 on page 73 shows an outline of the storage available in a z/OS address space. Although the
theoretical upper limit for this virtual storage is extremely high, there are practical limits to real storage.
For this reason, in z/OS, each address space is subject to REGION and MEMLIMIT parameters that limit
the amount of storage the address space can use.

Figure 16. z/OS Address Space

CICS uses and manages virtual storage in three areas of its z/OS address space:
Storage below the line (0 MB to 16 MB)

The storage in this area is 24-bit storage.

Addresses below the 16 MB address are accessed by 24-bit addressing, and programs can use this
storage when they run in AMODE 24 or higher. The 16 MB address is known as the line, so 24-bit
storage is also called storage below the line.

Storage above the line (16 MB to 2 GB)
The storage in this area is 31-bit storage.

Addresses above the 16 MB address but below the 2 GB address are accessed by 31-bit addressing,
and programs can use this storage when they run in AMODE 31 or higher. The 16 MB address is
known as the line, so 31-bit storage is also called storage above the line.

The area that separates the virtual storage area below the 2 GB address from the user private area is
known as the bar. 24-bit and 31-bit storage are in storage below 2 GB and can together be referred to
as storage below the bar.

Chapter 2. Improving the performance of a CICS system 73

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/java/jvmserver_storage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/java/jvmserver_storage.html

Storage above the bar (4 GB to a theoretical 16 exabytes)
The storage in this area is 64-bit storage.

The area that separates the virtual storage area below the 2 GB address from the user private area is
known as the bar, and 64-bit storage is also known as storage above the bar.

The storage above the bar comprises a user private area between 4 GB and 2 terabytes, a shared area
between 2 terabytes and 512 terabytes, and a user private area between the end of the shared area
and 16 exabytes.

Addresses above the bar are accessed by 64-bit addressing, and programs can use this storage when
they run in AMODE 64.

In each private area of storage, virtual storage is used for the following purposes:
CICS dynamic storage areas

The dynamic storage areas are used to supply the storage requirements of CICS, access methods, and
applications running in CICS. See “CICS dynamic storage areas” on page 75.

MVS storage
MVS storage is available to the operating system to perform region-related services. See “64-bit MVS
storage” on page 114 and “MVS storage below 2 GB” on page 114.

Note: This information and the following topics refer to other products installed with CICS, and is valid at
the time of writing. For other products installed with CICS, always check the information for the versions
of those products that you are using.

CICS region size
The amount of virtual storage for the address space in which CICS runs is specified by the z/OS REGION
and MEMLIMIT parameters.

• The z/OS REGION parameter specifies your request for an amount of 24-bit and 31-bit storage, that is,
storage below the bar. Up to 2047 MB of storage can be requested, but you must leave enough storage
for the region-related services that require MVS storage below 2 GB.

• The z/OS MEMLIMIT parameter specifies the limit of 64-bit (above-the-bar) storage for the CICS region.
A CICS region needs a MEMLIMIT value of at least 10 GB. The default value in z/OS for MEMLIMIT is 2
GB.

Reassess your settings for the REGION and MEMLIMIT parameters when you upgrade to a new release of
CICS. Also reassess your settings when you install a new release of z/OS or a non-CICS subsystem.
Changes in CICS can alter the requirements for 24-bit, 31-bit, and 64-bit storage for the CICS DSAs.
Changes to other products can alter the requirements for MVS storage outside the CICS DSAs; for
example, the requirements for 24-bit storage might reduce.

You cannot alter the REGION or MEMLIMIT values for the CICS region while CICS is running. You can
specify new values on the next start of the CICS region. For instructions, see Setting address space
storage limits for a CICS region.

You can specify the REGION parameter in different ways to request a specific amount of storage, or to
request all the available 24-bit or 31-bit private storage. The resulting region size below the bar can be
unpredictable. The z/OS message IEF374I reports the total amount of storage below the bar that z/OS
assigns to a CICS region. The VIRT=nnnK portion of the message shows the 24-bit storage, and the
EXT=nnnK portion shows the 31-bit storage. The CICS sample statistics program, DFH0STAT, produces a
report that contains this information. You can also use RMF to monitor your use of storage in more detail.

If you plan to increase in the REGION value, remember the following points:

• Be aware of storage requirements in the high private area in 24-bit and 31-bit storage. Some of this
storage is used by the z/OS Communications Server and other programs. An increase in the 24-bit or
31-bit storage allocated to CICS decreases the storage available for the items in the high private area.
These items are the local system queue area (LSQA), scheduler work area (SWA), and subpools 229 and
230. A shortage in these subpools can cause S80A, S40D, and S822 abends. For more information
about the high private area and LSQAs, see “High private area” on page 118.

74 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_storage_requirements.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_storage_requirements.html

• If you increase the REGION value, remember to increase your values for the CICS system initialization
parameters DSALIM and EDSALIM as appropriate, otherwise CICS cannot use the additional storage.

For more information about the REGION and MEMLIMIT parameters and how they apply to z/OS address
spaces, see the following z/OS information:

• For information about 24-bit and 31-bit storage (storage below the bar) in an address space, see Virtual
storage overview in the z/OS MVS Initialization and Tuning Guide.

• For information about 64-bit (above-the-bar) storage in an address space, see Using the 64-bit Address
Space in the z/OS MVS Programming: Extended Addressability Guide.

• REGION Parameter in the z/OS MVS JCL Reference.
• MEMLIMIT Parameter in z/OS MVS JCL Reference.

If the total amount of virtual storage required for your CICS regions increases, you might need to review
the amount of space allocated for supervisor call (SVC) dumps that are requested by CICS, and the
amount of auxiliary storage available. For information about SVC dump data set management, see z/OS
MVS Diagnosis Tools and Service Aids. For information about auxiliary storage management, see the z/OS
MVS Initialization and Tuning Guide.

CICS dynamic storage areas
The dynamic storage areas (DSAs) supply CICS tasks with storage to run transactions and are essential
for CICS operation. The DSAs in 24-bit storage are the CDSA, UDSA, SDSA, and RDSA. The DSAs in 31-bit
storage are the ECDSA, EUDSA, ESDSA, ERDSA, and ETDSA. The DSAs in 64-bit storage are the GCDSA,
GUDSA, and GSDSA.

The dynamic storage areas are made from virtual storage pages taken from MVS storage subpools. In the
dynamic storage areas, CICS arranges the storage in CICS subpools. The subpools are dynamically
acquired as needed, a page at a time, from within the dynamic storage area. The storage that individual
subpools use is shown in the domain subpool statistics in the CICS storage manager statistics.

CICS manages DSA storage in extents. An individual DSA consists of one or more extents.

• 24-bit storage extents are usually allocated in multiples of 256 KB. However, when transaction isolation
is in operation, the UDSA is allocated in 1 MB extents.

• 31-bit storage extents are allocated in multiples of 1 MB.
• 64-bit storage extents are allocated in multiples of 1 GB.

Only the owning DSA can use an allocated extent, and a given extent cannot be shared between more
than one DSA simultaneously.

The storage for the DSAs can be allocated from CICS-key storage, user-key storage, or read-only key-0
protected storage. The type of storage that is allocated for each DSA can depend on the settings for the
STGPROT and RENTPGM system initialization parameters for the CICS region.

• The storage for the CDSA, ECDSA, ETDSA and GCDSA is always allocated from CICS-key storage.
• The STGPROT system initialization parameter specifies whether you want storage protection to operate

in the CICS region.

When you specify STGPROT=YES, or allow the system initialization parameter to default, the storage for
the CICS dynamic storage areas for user applications is allocated from user-key storage. These DSAs
are the UDSA, SDSA, EUDSA, ESDSA, GUDSA, and GSDSA. If you specify STGPROT=NO, the storage for
these DSAs is allocated from CICS-key storage.

• The RENTPGM parameter specifies whether CICS allocates the read-only DSAs from read-only key-0
protected storage.

When you specify RENTPGM=PROTECT, the read-only DSAs are allocated from read-only key-0
protected storage. These DSAs are the RDSA and the ERDSA. If you specify RENTPGM=NOPROTECT, the
storage for these DSAs is allocated from CICS-key storage.

Chapter 2. Improving the performance of a CICS system 75

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/vsover.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/vsover.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/u64bit.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/u64bit.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieab600/xjbreg.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieab600/xexmeml.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieav100/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieav100/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/toc.htm

A dynamic storage area that is too small results in increased program compression or, more seriously,
short-on-storage (SOS) conditions. You can examine the pressure on virtual storage by using the CICS
storage manager statistics, which report the number of times that CICS went short on storage.

DSAs in 24-bit storage: CDSA, UDSA, SDSA, and RDSA
The CICS dynamic storage areas (DSAs) below the line (below 16 MB) are in 24-bit storage. These storage
areas do not have a collective name. The CICS system initialization parameter DSALIM specifies the limit
on the total size of these dynamic storage areas.

The amount of storage specified by the DSALIM value is allocated as guaranteed storage at system
initialization. Within this storage, CICS manages the following dynamic storage areas automatically, and
you do not need to specify their individual sizes:

CDSA (CICS DSA)
The storage area for all non-reentrant CICS-key RMODE(24) programs, all CICS-key task-lifetime
storage in 24-bit storage, and for CICS control blocks that reside in 24-bit storage. The CDSA is
always allocated from CICS-key storage.

UDSA (User DSA)
The storage area for all user-key task-lifetime storage in 24-bit storage. If you specify the system
initialization parameter STGPROT=YES for the CICS region, which is the default, the UDSA is allocated
from user-key storage. If you specify STGPROT=NO, the UDSA is allocated from CICS-key storage.

SDSA (Shared DSA)
The storage area for any non-reentrant user-key RMODE(24) programs, and also for any storage
obtained by programs issuing CICS GETMAIN commands for 24-bit storage with the SHARED option.
If you specify the system initialization parameter STGPROT=YES for the CICS region, which is the
default, the SDSA is allocated from user-key storage. If you specify STGPROT=NO, the SDSA is
allocated from CICS-key storage.

RDSA (Read-only DSA)
The storage area for all reentrant programs and tables in 24-bit storage. If you specify the system
initialization parameter RENTPGM=PROTECT for the CICS region, which is the default, the RDSA is
allocated from read-only key-0 protected storage. If you specify RENTPGM=NOPROTECT, the RDSA is
allocated from CICS-key storage.

DSAs in 31-bit storage: ECDSA, EUDSA, ESDSA, ERDSA, and ETDSA
The group of CICS dynamic storage areas above the line (above 16 MB but below 2 GB) are collectively
called the extended dynamic storage area (EDSA). This storage is 31-bit storage. The CICS system
initialization parameter EDSALIM specifies the limit on the total size of these dynamic storage areas.

The amount of storage specified by the EDSALIM value is allocated as guaranteed storage at system
initialization. Within this storage, CICS manages the following dynamic storage areas automatically, and
you do not need to specify their individual sizes:

ECDSA (Extended CICS DSA)
The storage area for all non-reentrant CICS-key RMODE(ANY) programs, all CICS-key task-lifetime
storage in 31-bit storage, and CICS control blocks that reside in 31-bit storage. The ECDSA is always
allocated from CICS-key storage.

EUDSA (Extended user DSA)
The storage area for all user-key task-lifetime storage in 31-bit storage (above the line). If you specify
the system initialization parameter STGPROT=YES for the CICS region, which is the default, the
EUDSA is allocated from user-key storage. If you specify STGPROT=NO, the EUDSA is allocated from
CICS-key storage.

ESDSA (Extended shared DSA)
The storage area for any non-reentrant user-key RMODE(ANY) programs, and also for any storage
obtained by programs issuing CICS GETMAIN commands for 31-bit storage with the SHARED option.
If you specify the system initialization parameter STGPROT=YES for the CICS region, which is the
default, the ESDSA is allocated from user-key storage. If you specify STGPROT=NO, the ESDSA is
allocated from CICS-key storage.

76 CICS TS for z/OS: Performance Guide

ERDSA (Extended read-only DSA)
The storage area for all reentrant programs and tables in 31-bit storage. If you specify the system
initialization parameter RENTPGM=PROTECT for the CICS region, which is the default, the ERDSA is
allocated from read-only key-0 protected storage. If you specify RENTPGM=NOPROTECT, the ERDSA is
allocated from CICS-key storage.

ETDSA (Extended trusted DSA)
The storage area for any security-related CICS control blocks that reside in 31-bit storage. The ETDSA
is always allocated from CICS-key storage.

DSAs in 64-bit storage: GCDSA, GUDSA, and GSDSA
CICS dynamic storage areas above the bar are collectively called the above-the-bar dynamic storage area
(GDSA). This storage is 64-bit storage. The z/OS MEMLIMIT parameter limits the 64-bit storage in the
CICS region, including the GDSA.

The MEMLIMIT value that the z/OS operating system assigns to the CICS address space controls the
upper limit for 64-bit storage in the CICS region. This 64-bit storage includes both the GDSA, and MVS
storage in the CICS region outside the GDSA.

In contrast, the 24-bit storage specified by the DSALIM value and the 31-bit storage specified by the
EDSALIM value relate only to the CICS DSAs.

The GDSA does not preallocate an amount of guaranteed storage. The GDSA contains the following
dynamic storage areas:
GCDSA (above-the-bar CICS DSA)

The storage area for all CICS-key task-lifetime storage in 64-bit (above-the-bar) storage, and for CICS
facilities that use 64-bit storage. See “CICS facilities that use 64-bit storage” on page 85. The
GCDSA is always allocated from CICS-key storage.

GUDSA (above-the-bar user DSA)
The storage area for all user-key task-lifetime storage in 64-bit (above-the-bar) storage. If you specify
the system initialization parameter STGPROT=YES for the CICS region, which is the default, the
GUDSA is allocated from user-key storage. If you specify STGPROT=NO, the GUDSA is allocated from
CICS-key storage.

GSDSA (above-the-bar shared DSA)
The storage area for any storage that programs obtain by issuing a EXEC CICS GETMAIN64
command to obtain 64-bit storage with the SHARED option. If you specify the system initialization
parameter STGPROT=YES for the CICS region, which is the default, the GSDSA is allocated from user-
key storage. If you specify STGPROT=NO, the GSDSA is allocated from CICS-key storage.

Storage protection
CICS uses the storage protection facilities that are available in the operating system to prevent CICS code
and control blocks from being overwritten accidentally by your user application programs. To do this,
separate dynamic storage areas (DSAs), with separate storage keys, are allocated for your user
application programs, and for CICS code and control blocks. Access to a storage area is not permitted
unless the access key matches the key for that storage area.

The storage allocated for most CICS code and control blocks is known as CICS-key storage, and the
storage allocated for your user application programs is known as user-key storage.

In addition to CICS-key and user-key storage, CICS also uses key-0 storage for separate dynamic storage
areas called the read-only DSAs (RDSA and ERDSA). The ERDSA is used for eligible re-entrant CICS and
user application programs that are link-edited with the RENT and RMODE(ANY) attributes. The RDSA is
used for eligible reentrant CICS and user application programs that are link-edited with the RENT and
RMODE(24) attributes. The allocation of key-0 storage for the read-only DSAs is from the same storage
limit as the other DSAs, as specified by the DSALIM and EDSALIM system initialization parameters.

Use of the storage protection facilities is optional. You can enable the facilities by using options on the
system initialization parameters that are related to storage protection. Between them, you can use these
parameters to define or control the following items:

• The storage key for the common work area (CWAKEY)

Chapter 2. Improving the performance of a CICS system 77

• The storage key for the terminal control table user areas (TCTUAKEY)
• A storage protection global option (STGPROT)
• A read-only program storage key option (RENTPGM)
• A transaction isolation option (TRANISO)

Storage protection, transaction isolation, and command protection protect storage from user application
code. They add no benefit to a region where no user code is executed; that is, a pure terminal-owning
region (TOR) or a pure file-owning region (FOR) (where no distributed program link (DPL) requests are
function-shipped).

The common work area (CWA)
The common work area (CWA) is an area of storage in your CICS region that any user application can
access. You determine the size of this work area by using the WRKAREA system initialization parameter;
you can specify sizes up to 3584 bytes.

If you omit the WRKAREA parameter, CICS allocates a 512-byte CWA by default. You specify the storage
key for the CWA on the CWAKEY parameter.

This work area is available to all transactions in a CICS region, so you must ensure that the storage key is
appropriate to the use of the CWA by all transactions. If any of the transactions run in user key and
require write access, you must specify user-key storage for the CWA, otherwise such transactions fail
with a storage protection exception (an ASRA abend). CICS obtains user-key storage for the CWA by
default, and you must review the use of this storage by all programs before you decide to change it to
CICS-key storage.

It is possible that you might want to protect the CWA from being overwritten by applications that should
not have write access. In this case, provided all the applications that legitimately require write access to
the CWA run in CICS key, you can specify CICS-key storage for the CWA.

The terminal control table user areas
A terminal control table user area (TCTUA) is an optional storage area associated with a terminal control
table terminal entry (TCTTE). TCTUAs are available for application program use. You specify the storage
key for TCTUAs globally for a CICS region by using the TCTUAKEY system initialization parameter.

By default, CICS obtains user-key storage for all TCTUAs. Review the use of TCTUAs in your CICS regions,
and only specify CICS key for TCTUAs when you are sure that this is justified. If you specify CICS-key
storage for TCTUAs, no user-key applications can write to any TCT user areas.

For SNA LUs, you specify that you want a TCTUA by means of the USERAREALEN attribute on the
TYPETERM resource definition. The USERAREALEN attribute determines the TCTUA sizes for all terminals
that reference the TYPETERM resource definition.

For sequential terminals, definitions are added to the terminal control table (TCT), and sizes are defined
by means of the TCTUAL parameter on the DFHTCT TYPE=TERMINAL and TYPE=LINE entries. For
information about the TCTUAL parameter, see Terminal control table (TCT).

The storage protection global option
You can control whether your CICS region uses storage protection by specifying the STGPROT system
initialization parameter. By default, CICS uses storage protection.

When you specify STGPROT=YES, or allow the system initialization parameter to default, the storage for
the CICS dynamic storage areas for user applications is allocated from user-key storage. These DSAs are
the UDSA, SDSA, EUDSA, ESDSA, GUDSA, and GSDSA. If you specify STGPROT=NO, the storage for these
DSAs is allocated from CICS-key storage.

Running a CICS region without storage protection (STGPROT=NO) is suitable for pure terminal-owning
regions (TORs) that do not execute user transactions.

78 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/macros/tct/overview.html

The transaction isolation global option
CICS transaction isolation builds on CICS storage protection, enabling user transactions to be protected
from one another. You can specify transaction isolation globally for a CICS region using the TRANISO
system initialization parameter.

In addition to being able to specify the storage and execution key individually for each user transaction,
you can specify that CICS is to isolate the user-key task-lifetime storage of a transaction to provide
transaction-to-transaction protection. You do this by using the ISOLATE option of the TRANSACTION
resource definition.

Transaction isolation does not apply to 64-bit storage.

The read-only storage override option
CICS obtains storage for the read-only DSAs (RDSA and ERDSA) from MVS read-only storage. You can
override the selection of read-only storage for the RDSA and ERDSA by specifying NOPROTECT on the
RENTPGM system initialization parameter.

The CICS loader automatically loads eligible modules into the RDSA and ERDSA; that is, if they are link-
edited with the RENT attribute, and for the ERDSA with RMODE(ANY). You can specify
RENTPGM=NOPROTECT if you do not want such modules to be loaded into read-only storage, perhaps
because you are using a development aid package that sets break points in your application programs.
When you specify RENTPGM=NOPROTECT, CICS still allocates separate read-only DSAs, but obtains CICS-
key storage for the RDSA and ERDSA instead of read-only storage.

The RENTPGM=NOPROTECT override is only appropriate for development regions. In production CICS
regions, RENTPGM=PROTECT provides the right level of protection for modules in the RDSA and ERDSA.

Setting the limits for CICS storage
Use the z/OS REGION and MEMLIMIT parameters to set limits for the storage for the CICS region. Use the
CICS DSALIM and EDSALIM system initialization parameters to limit the total storage for the CICS
dynamic storage areas (DSAs) in 24-bit and 31-bit storage.

About this task

The z/OS REGION and MEMLIMIT parameters specify the amount of virtual storage for the address space
in which the CICS region runs.

• Use the z/OS REGION parameter to specify the amounts of 24-bit (below-the-line) and 31-bit (above-
the-line) storage that are requested for the CICS region.

• Use the z/OS MEMLIMIT parameter to set the limit for the amount of 64-bit (above-the-bar) storage for
the CICS region.

The 64-bit storage specified by the MEMLIMIT value includes the CICS dynamic storage areas above the
bar (the GDSA) and MVS storage in the CICS region outside the GDSA.

For more information about these parameters, see “CICS region size” on page 74.

The storage specified by the REGION value includes the storage specified by the CICS system initialization
parameters DSALIM and EDSALIM. These parameters determine the overall limits within which CICS can
allocate storage for the CICS DSAs.

• Use the DSALIM parameter to set overall limits for the CICS DSAs in 24-bit (below-the-line) storage.
• Use the EDSALIM parameter to set overall limits for the extended dynamic storage area (EDSA), that is,

the CICS DSAs in 31-bit (above-the-line) storage.

CICS allocates individual dynamic storage areas automatically, and you do not need to specify their sizes.
CICS varies the size of the individual dynamic storage areas as the need arises.

• CICS allocates DSAs in 24-bit storage within the limits set by DSALIM.
• CICS allocates DSAs in 31-bit storage within the limits set by EDSALIM.
• CICS allocates DSAs in 64-bit storage within the limits set by MEMLIMIT.

Chapter 2. Improving the performance of a CICS system 79

Procedure

• To estimate and change the setting of the z/OS parameter REGION, see “Estimating and setting
REGION” on page 80.

• To estimate and change the setting of the z/OS parameter MEMLIMIT, and to check its value in a
running CICS system, see “Estimating, checking, and setting MEMLIMIT” on page 84.

• To estimate and change the setting of the CICS system initialization parameter DSALIM, see
“Estimating, checking, and setting DSALIM” on page 81.

• To estimate and change the setting of the CICS system initialization parameter EDSALIM, see
“Estimating, checking, and setting EDSALIM” on page 82.

Estimating and setting REGION
The z/OS REGION parameter limits the amount of 24-bit and 31-bit storage (storage below the bar) that
the CICS address space can use. This value includes all the storage below the bar in the private area,
except for a 16 KB system region in 24-bit storage, and the items in the high private area such as the
LSQA.

About this task

For an explanation of the storage areas in the z/OS address space below 2 GB, see The virtual storage
address space in the z/OS MVS Initialization and Tuning Guide.

You can request up to 2047 MB of storage below the bar for the CICS region, but you must ensure that
you leave enough storage below the bar for MVS to use in the high private area. The items in the high
private area are the local shared queue area (LSQA), scheduler work area (SWA), and subpools 229 and
230. These items exist in both 24-bit (below-the-line) storage and 31-bit (above-the-line) storage. The
LSQA in 31-bit storage is called the extended LSQA. Some of this storage is used for control blocks, and
some is used by z/OS Communications Server and other programs.

Within the value that you specify for REGION, the following types of storage are included:

• The CICS DSAs in 24-bit storage. The storage for these DSAs is limited by the DSALIM system
initialization parameter.

• The CICS DSAs in 31-bit storage. The storage for these DSAs is limited by the EDSALIM system
initialization parameter.

• Storage used by the CICS kernel.
• MVS storage obtained by MVS GETMAIN requests.
• CICS dispatcher
• CICS storage manager
• CICS lock manager

You cannot alter the REGION value for the CICS region while CICS is running. You can specify a new value
on the next start of the CICS region.

Procedure

1. To determine the maximum value for the REGION parameter:
a) Use RMF or another storage monitor to determine the size of your private area.
b) Apply the following formula:

Maximum possible REGION =
 Size of private area
 - Size of system region (16K)
 - (LSQA + SWA + subpools 229 and 230)

For more information about the high private area and LSQAs, and estimates for the sizes of the
items in the high private area, see “High private area” on page 118.

c) For safety, do not use more than 80% or 90% of this maximum value for the REGION parameter.

80 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/vaddr.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae100/vaddr.htm

It is useful to maintain some free storage between the top of the CICS region and the bottom of the
high private area.
If the system is static or does not change much, use up to 90% of this number. If the system is
dynamic, or changes frequently, 80% would be better.

2. To estimate the value that you require for the REGION parameter to meet your storage needs, add up
your estimates for the following areas of storage:

• The area of 24-bit storage for CICS DSAs below the line, specified by the DSALIM system
initialization parameter. See “Estimating, checking, and setting DSALIM” on page 81.

• The area of 31-bit storage for CICS DSAs above the line (the EDSA), specified by the EDSALIM
system initialization parameter. See “Estimating, checking, and setting EDSALIM” on page 82.

• The small amount of storage used by the CICS kernel outside the CICS DSAs. See “CICS kernel
storage” on page 113.

• MVS storage obtained by MVS GETMAIN requests outside the CICS DSAs. See “MVS storage below 2
GB” on page 114.

3. For instructions to specify the REGION parameter, and information about the amount of storage that
z/OS allocates in response to your request, see REGION Parameter in the z/OS MVS JCL Reference.
You cannot alter the REGION value for a running CICS region.
You can set REGION in the following ways:

• You can specify the REGION parameter in the JOB statement in the CICS JCL. In this situation, each
step of the job runs in the requested amount of space.

• You can specify the REGION parameter in the EXEC statement (program execution line) for CICS. In
this situation, each step runs in its own amount of space. Use the EXEC statement instead of the JOB
statement if different steps need greatly different amounts of space. For example, you could use the
EXEC statement if you are using extra job steps to print auxiliary trace data sets after CICS has shut
down (as in the DFHIVPOL installation verification procedure).

• The z/OS installation exit IEFUSI can limit the REGION value that you specify. For information about
IEFUSI, see IEFUSI - Step Initiation Exit in z/OS MVS Installation Exits.

Estimating, checking, and setting DSALIM
The DSALIM system initialization parameter specifies the upper limit of the total amount of storage within
which CICS can allocate the individual dynamic storage areas (DSAs) that reside in 24-bit storage (below
16 MB, also known as below the line). If your installation is constrained for 24-bit storage, set a value for
the DSALIM parameter equivalent to the sum of the CDSA and UDSA. If you have sufficient virtual storage
to allow a greater value for DSALIM, you can use the formulas given here.

About this task

Accurate sizing of the DSALIM value is not critical. It is better to specify a DSALIM value that is slightly
greater than your expected requirements rather than slightly smaller. You can tune the DSALIM
parameter to a smaller value after you obtain data from your running system.

Make sure that you understand the requirements for MVS storage in 24-bit storage outside the CICS
DSAs, to avoid other subsystem problems. For more information about the operating system components
that use MVS storage, see “MVS storage below 2 GB” on page 114.

The minimum DSALIM value is 2 MB and the default value is 5 MB. The maximum DSALIM value is 16 MB.
The extent size for the CDSA, RDSA, and SDSA is in 256 KB increments. If transaction isolation is active,
the extent size for the UDSA is 1 MB and each UDSA extent must be aligned on a megabyte boundary. If
transaction isolation is not active, the allocation is in 256 KB extents.

CICS allocates 24-bit kernel stack storage when it is required. Tasks obtain 4 KB extension stack
segments whenever they require 24-bit stack storage. CICS preallocates a reserve pool of 24-bit
extension stack segments that tasks can use if no other 24-bit stack storage is available. For more
information about kernel storage, see “CICS kernel storage” on page 113.

Chapter 2. Improving the performance of a CICS system 81

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieab600/xjbreg.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae400/usi.htm

Procedure

• To check the DSALIM value that currently applies to a running CICS region, use one of the following
methods:

– CICS Explorer: Global Dynamic Storage Areas view
– CICSPlex SM: Dynamic storage areas - CICSDSA view
– CEMT: CEMT INQUIRE DSAS or CEMT INQUIRE SYSTEM
– CICS SPI: INQUIRE SYSTEM

• To estimate a suitable DSALIM value, use the following steps:
a) If you have sufficient virtual storage to specify a generous DSALIM value, use the following formula

to estimate a value:

CDSA + UDSA + SDSA + RDSA

Round up the value of each component in your calculation to a 256 KB boundary.
b) If your current installation DSALIM value is larger than necessary, use the following formula to

estimate a DSALIM value:

Peak CDSA Used + Peak UDSA Used + Peak SDSA Used + Peak RDSA Used

Round up the value of each component in your calculation to a 256 KB boundary.
• To change the DSALIM value for the CICS region, use one of the following methods while CICS is

running:

– CICS Explorer: Global Dynamic Storage Areas view
– CICSPlex SM: Dynamic storage areas - CICSDSA view
– CEMT: CEMT SET DSAS or CEMT SET SYSTEM
– CICS SPI: SET SYSTEM

Results

If there are no extents free in the CICS DSAs in 24-bit storage, CICS cannot implement a reduction of
DSALIM. The storage manager applies MVS FREEMAIN requests to extents as they become available until
the new DSALIM value is reached.

A short-on-storage condition can occur when you reduce DSALIM.

Estimating, checking, and setting EDSALIM
The EDSALIM system initialization parameter specifies the upper limit of the total amount of storage
within which CICS can allocate the individual extended dynamic storage areas (EDSAs) that reside in 31-
bit (above-the-line) storage. Set the value for the EDSALIM parameter as large as you can after
consideration of other areas, especially MVS storage.

About this task

The maximum value that you can specify for EDSALIM is limited by the following factors:

• The size that you specified for the CICS region on the z/OS REGION parameter in the CICS job or
procedure. The value of EDSALIM must be less that the value of REGION.

• The amount of MVS storage, outside the CICS DSAs, that you require to satisfy MVS GETMAIN requests
for 31-bit storage. For more information about the operating system components that use MVS storage,
see “MVS storage below 2 GB” on page 114.

Accurate sizing of the EDSALIM value is not critical. A good approach is as follows:

• Initially specify an EDSALIM value that is slightly greater than your expected requirements. The default
setting, 800 MB, enables the CICS region to run a reasonable workload.

• Monitor the use of each CICS DSA in the EDSA while your system is running near peak loads.

82 CICS TS for z/OS: Performance Guide

• Tune your EDSALIM value in the running CICS system.

Try not to specify the largest possible EDSALIM value (for example, the maximum allowable region size).
If you use the maximum possible limit, you might not receive any warnings about a shortage of virtual
storage until the problem becomes difficult to resolve.

You can obtain information about your current EDSA use by looking at the CICS storage manager
statistics. See the information about DSA sizes in the storage manager statistics, dynamic storage areas,
and task subpools. Automatic DSA sizing removes the need for accurate storage estimates for individual
DSAs, with CICS dynamically changing the size of DSAs as demand requires.

The minimum EDSALIM value is 48 MB, which is the minimum required to start a CICS region. The default
EDSALIM value is 800 MB. The maximum EDSALIM size is 2047 MB, which is 2 GB minus 1 MB. The
extent size for the ECDSA, EUDSA, ESDSA, ERDSA, and ETDSA is 1 MB.

Kernel stack storage is also allocated from the EDSA. For more information about kernel storage see
“CICS kernel storage” on page 113.

Remember that for CICS regions that run with transaction isolation active (set by using the TRANISO
system initialization parameter), the transaction isolation facility increases the allocation of some virtual
storage above 16 MB.

If transaction isolation is active, CICS allocates user-key task-lifetime storage above 16 MB in multiples
of 1 MB (the minimum unit of storage allocation for the EUDSA when transaction isolation is active is 1
MB). However, MVS paging activity affects only the storage that is used (referenced), and unused parts of
the 1 MB allocation are not paged.

For a CICS region that runs without transaction isolation, CICS allocates user-key task-lifetime storage
above 16 MB in multiples of 64 KB.

The subspace group facility uses more real storage, because MVS creates a page and segment table from
real storage for each subspace. The CICS requirement for real storage varies according to the transaction
load at any one time. As a guideline, each task in the system requires 9 KB of real storage, and this should
be multiplied by the number of concurrent tasks that can be in the system at any one time (governed by
the MXT system initialization parameter).

Procedure

• To check the EDSALIM value that currently applies to a running CICS region, use one of the following
methods:

– CICS Explorer: Global Dynamic Storage Areas view
– CICSPlex SM: Dynamic storage areas - CICSDSA view
– CEMT: CEMT INQUIRE DSAS or CEMT INQUIRE SYSTEM
– CICS SPI: INQUIRE SYSTEM

• To estimate a suitable EDSALIM value, use the following steps:
a) Check the MXT value for your CICS region.

The MXT system initialization parameter does not include CICS system tasks, and it might also be
set to a value larger than necessary. The safest estimate for calculating an EDSALIM value is to
assume MXT as the number of concurrent active tasks.

b) Check the setting of the TRANISO system initialization parameter for your CICS region.
For the EUDSA, if the TRANISO parameter is set to NO for the CICS region, allow 64 KB per
concurrent active task. If the TRANISO parameter is set to YES, allow 1 MB per concurrent active
task.
If your applications use more than 64 KB per task with the TRANISO parameter set to NO, or more
than 1 MB per task with the TRANISO parameter set to YES, adjust the formulas accordingly. If you
adjust the formulas, use multiples of 64 KB or 1 MB.

c) If you have sufficient virtual storage to specify a generous EDSALIM value, use one of the following
formulas to estimate a value.

Chapter 2. Improving the performance of a CICS system 83

Round up the value of each component in your calculation to a 1 MB boundary, the size of an
extent, to allow for fragmentation and partially used extents.
For TRANISO=NO:

ECDSA + EUDSA + ESDSA + ERDSA + ETDSA + (64 K x MXT)
For TRANISO=YES:

ECDSA + EUDSA + ESDSA + ERDSA + ETDSA + (1 MB x MXT)
d) If your current installation EDSALIM and MXT values are larger than necessary, use one of the

following formulas to estimate an EDSALIM value.
Round up the value of each component in your calculation to a 1 MB boundary, the size of an
extent, to allow for fragmentation and partially used extents.
For TRANISO=NO:

Peak ECDSA Used + Peak EUDSA Used + Peak ESDSA Used + Peak ERDSA Used + Peak ETDSA
Used - EUDSA Peak Page Storage in Task Subpools + (64 K x Peak number of tasks)

For TRANISO=YES:
Peak ECDSA Used + Peak EUDSA Used + Peak ESDSA Used + Peak ERDSA Used + Peak ETDSA
Used - EUDSA Peak Page Storage in Task Subpools + (1 MB x Peak number of tasks)

• To change the EDSALIM value for the CICS region, use one of the following methods while CICS is
running:

– CICS Explorer: Global Dynamic Storage Areas view
– CICSPlex SM: Dynamic storage areas - CICSDSA view
– CEMT: CEMT SET DSAS or CEMT SET SYSTEM
– CICS SPI: SET SYSTEM

Results

If you under-specify EDSALIM, your system can go short on storage and you might not be able to issue
CICS commands to increase the limit. In this situation, use the CICS Explorer or CICSPlex SM to increase
the EDSALIM value.

If there are no extents free in the CICS DSAs, CICS cannot implement a reduction of EDSALIM. The
storage manager applies MVS FREEMAIN requests to extents as they become available until the new
EDSALIM value is reached.

Estimating, checking, and setting MEMLIMIT
The z/OS MEMLIMIT parameter limits the amount of 64-bit (above-the-bar) storage that the CICS address
space can use. This storage includes the CICS dynamic storage areas above the bar (collectively called
the GDSA) and MVS storage in the CICS region outside the GDSA.

About this task

CICS requires a MEMLIMIT value of 10 GB; any additional use by applications or JVMs should be allowed
for with a larger value of MEMLIMIT. If you attempt to start a CICS region with a MEMLIMIT value that is
less than 10 GB, message DFHSM0602 is issued, a system dump with the dump code KERNDUMP is
produced, and CICS terminates.

You cannot alter the MEMLIMIT value for the CICS region while CICS is running. You can specify a new
MEMLIMIT value on the next start of the CICS region.

CICS uses a different calculation to z/OS when checking MEMLIMIT to see whether a new GDSA extent
can be allocated. CICS calculates the current usage as the amount that is allocated to the 64-bit Memory
Objects, which includes both Usable and Hidden storage.

Procedure

• When you are setting MEMLIMIT, you should aim to avoid CICS SOS Above the Bar. MEMLIMIT can be
reduced after the actual peak usage is clear.

84 CICS TS for z/OS: Performance Guide

• To check the MEMLIMIT value that currently applies to a running CICS region, use one of the following
methods:

– CICS Explorer: Regions view or Global Dynamic Storage Areas view
– CICSPlex SM: Dynamic storage areas - CICSDSA view or CICS regions - CICSRGN view
– CEMT: CEMT INQUIRE DSAS or CEMT INQUIRE SYSTEM
– CICS SPI: INQUIRE SYSTEM
– The Storage Above 2 GB report produced by DFH0STAT provides information about 64-bit

usage from various CICS Statistics fields. SMSMEMLIMIT - (SMSLVABYTES/1048576) rounded
down to units of GB shows by how much the GDSA can be expanded. This is reported as
"MEMLIMIT minus allocated to Private Memory Objects".

• To estimate a suitable MEMLIMIT value for a CICS region, add up the storage requirements for those
facilities that use 64-bit storage that you use in your CICS region.

For a list of CICS facilities that use 64-bit storage in the CICS region and the relevant storage subpools,
see CICS facilities that can use 64-bit storage in Improving performance.

CICS must allocate a GDSA extent that is a multiple of 1 GB before it can suballocate storage for CICS
64-bit subpools within it. The CICS Internal Trace Table is always allocated with a size of 1 GB.

The CICS storage manager statistics show the storage used in each CICS subpool in the GDSA in a
running CICS region. For information about the subpools in the GDSA, see CICS subpools in the GCDSA
and CICS subpools in the GSDSA.

• To change a MEMLIMIT value in z/OS, or determine the value that applies to a CICS region that you are
setting up, see Limiting the use of memory objects in the z/OS MVS Programming: Extended
Addressability Guide.
MEMLIMIT can be set in one of the following ways:

– A MEMLIMIT value can be specified in the JOB statement in the CICS JCL, or in the EXEC statement
(program execution line) for CICS.

– If there is no MEMLIMIT value specific to the CICS region, the MEMLIMIT value that is set in the z/OS
SMFPRMxx PARMLIB member, or the system default, applies.

– The z/OS installation exit IEFUSI can override any other MEMLIMIT values.

The following example shows a MEMLIMIT value set in the program execution line:

//CICS EXEC PGM=DFHSIP,PARM='SI',REGION=0M,MEMLIMIT=10G

CICS facilities that use 64-bit storage
The CICS facilities that use 64-bit storage and the amount of storage that each facility requires are listed.
You can use this information when you estimate a suitable MEMLIMIT value for your CICS region.

The following table lists CICS facilities that use 64-bit storage and the relevant CICS storage subpools,
and indicates the amount of storage that each facility requires. You can identify the facilities that you use
in your CICS region that require 64-bit storage. You can then examine the storage requirement for those
facilities and use this information to estimate a suitable value for the z/OS MEMLIMIT parameter.

Table 3. CICS facilities that use 64-bit storage

CICS facility Storage use
CICS subpool for
storage Notes®

Application context
data control blocks

220 bytes for each
program that is defined as
an application entry point.

PGPPTE64

Association data
control blocks

Approximately 1 KB for
each active task.

MN_ADCS

Chapter 2. Improving the performance of a CICS system 85

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3_64bit_conditions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3c00525.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3c00526.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/limo.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/limo.htm

Table 3. CICS facilities that use 64-bit storage (continued)

CICS facility Storage use
CICS subpool for
storage Notes®

CICS management
client interface
(CMCI)

For the details to estimate
storage requirements, see
Estimating storage
requirements for CMCI.

WU_64 The storage is used for retained
results and metadata.

CICSPlex SM API
result sets

The size of the result set
depends on the
application.

CPSM_64 For information about result
sets, see Working with result
sets.

Console queue
processing

1 MB per subpool CQCQ_TR
 CQCQ_XT

Containers and
channels

Limited to 5% of the
MEMLIMIT value per
transaction.

PGCSDB The storage remains in use
until the channel goes out of
scope, or an application
deletes the container or the
channel.

Event processing EP_64 The storage is used for control
blocks for items in event
capture queues.

Internal trace table Minimum 16 KB
Maximum 1 GB
Default 12288 KB (12 MB)

Controlled by the TRTABSZ
system initialization
parameter.

MVS storage outside the
CICS DSAs

CICS allocates a Memory
Object of the maximum size
but defines the unused area as
Hidden storage.

JVM servers Apart from the values in -
Xmx and -Xcmsx, the
amount of storage is
variable.

MVS storage outside the
CICS DSAs

Loader control blocks Variable LD_APES
LD_CPES
LD_CSECT

The storage that is used
depends on the number of
program load operations in the
CICS region.

Loader control blocks
for installed
application elements
(IAE)

368 bytes for each IAE LD_IAES Each installed application
element represents a particular
version of an application that is
deployed on a platform.

86 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cmci/clientapi_storage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cmci/clientapi_storage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cpsm/eyup1a1.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cpsm/eyup1a1.html

Table 3. CICS facilities that use 64-bit storage (continued)

CICS facility Storage use
CICS subpool for
storage Notes®

Main temporary
storage

Minimum 1 MB
Maximum 32 GB
Default 64 MB

Controlled by the
TSMAINLIMIT system
initialization parameter.

TSDTN
TSMAIN
TSMN0064
TSMN0128
TSMN0192
TSMN0256
TSMN0320
TSMN0384
TSMN0448
TSMN0512
TSMN0576
TSMN0640
TSMN0704
TSMN0768
TSMN0832
TSMN0896
TSMN0960
TSMN1024

TSQUEUE
TSTSI

TSMAINLIMIT specifies the
maximum storage that can be
used, and is limited to 25% of
the MEMLIMIT value. The CICS
statistics show actual use.

Managed Platform 1072 bytes for each user
task

DFHMPMDR
DFHMPPMB
DFHMPTAS

Storage in the DFHMPMDR and
DFHMPPMB subpools is used
for control blocks for installed
policies. It remains in use until
the bundle that defines the
policy is disabled.

Storage in the DFHMPTAS
subpool contains the policy
counters for a task. It is
allocated for every user task if
any polices are installed in the
CICS region. The storage is
freed at task end.

Message tables Minimum 3 MB for the
message modules in
English.

Add 1 MB if the user
message table is loaded.

Add 3 MB for each
additional language that is
loaded.

MVS storage outside the
CICS DSAs

Message modules in English
are always loaded.

Node.js applications Variable MVS storage outside the
CICS DSAs

Chapter 2. Improving the performance of a CICS system 87

Table 3. CICS facilities that use 64-bit storage (continued)

CICS facility Storage use
CICS subpool for
storage Notes®

Sockets domain Stores the copy of the
HTTPS data being sent. The
size of the storage depends
on the size of the HTTPS
message being sent.

SOGNRL64 This storage subpool is used if
the sockets domain needs to
copy the HTTPS message
before it is sent.

Static data item
control blocks

Variable MPSTAT Used if a policy rule with an
event action defines static data
capture items.

Storage allocation
control blocks

Variable MVS storage outside the
CICS DSAs

Storage used depends on the
amount of storage allocation
activity in your system; for
example, more storage is
required for subpools that keep
an element chain and that have
many small records.

Transaction dump
trace table

Minimum 16 KB
Maximum 1 GB
Default 1024 KB

Controlled by the
TRTRANSZ system
initialization parameter.

MVS storage outside the
CICS DSAs

CICS obtains this storage only
when a transaction dump is
produced.

Web domain Stores the HTTP body. The
size of the storage used
depends on the size of the
HTTP body being
processed.

WB64GNRL Where possible, the web
domain holds the HTTP body in
64-bit storage by using this
subpool.

Web domain Internal buffer storage for
HTTP outbound messages.
The size of the storage
depends on the size of the
HTTP message being sent.

WBOUTB64 Used by the web domain to
obtain buffers and control
blocks from 64-bit storage.

z/OS XML System
Services (XMLSS)
parser I/O buffers

ML64GNRL A number of facilities, including
CICS web services, use the
parser for XML parsing.

DSA size limits
It is not advisable to set the size of individual dynamic storage areas (DSAs), and usually it is not
necessary. However, it is possible to set the size of some DSAs by using the CDSASZE, UDSASZE,
RDSASZE, ECDSASZE, EUDSASZE, ESDSASZE, and ERDSASZE system initialization parameters.

For example, CDSASZE sets the size of the CICS dynamic storage area (CDSA), and ECDSASZE specifies
the size of the extended CICS dynamic storage area (ECDSA). The default value for these parameters is 0,
indicating that the size of the DSA can change dynamically. If you specify a nonzero value, the DSA size is
fixed.

If you specify DSA size values that in combination do not allow sufficient space for the remaining DSAs,
CICS fails to initialize.

88 CICS TS for z/OS: Performance Guide

• The limit on the storage available for the DSAs in 24-bit storage (below 16 MB) is specified by the
DSALIM system initialization parameter. You must allow at least 256K for each DSA in 24-bit storage for
which you have not set a size.

• The limit on the storage available for the DSAs in 31-bit storage (above 16 MB but below 2 GB) is
specified by the EDSALIM system initialization parameter. You must allow at least 1 MB for each DSA in
31-bit storage for which you have not set a size.

You cannot set the size of individual DSAs in 64-bit storage; that is, in the above-the-bar DSA (GDSA).

Coding conventions for DSA limits
You can specify the size of the DSA limits as a number of bytes, a number of kilobytes, or a number of
megabytes.

Use the letter K as a suffix to indicate that the value represents a whole number of kilobytes. Use the
letter M as a suffix to indicate that the value represents a whole number of megabytes. For example, 2 MB
can be coded as either 2048K or 2M. (1 KB = 1024 bytes; 1 MB = 1024 KB = 1048576 bytes.)

If the value you specify is not a multiple of 256 KB for DSALIM, or 1 MB for EDSALIM, CICS rounds up the
value to the next multiple.

You cannot specify fractions of megabytes; you must code sizes in bytes or kilobytes. Some examples are
shown in Table 4 on page 89.

Table 4. Examples of DSA limit values in bytes, kilobytes, and megabytes

 Coded as:

 bytes 2097152 3145788 3670016 4194304 4718592

 kilobytes 2048K 3072K 3584K 4096K 4608K

 megabytes 2M 3M - 4M -

Short-on-storage conditions in dynamic storage areas
If the limit for a dynamic storage area (DSA) is too small, the CICS region periodically enters a short-on-
storage condition. Where possible, CICS curtails system activity until it can recover enough storage to
resume normal operations. Use CICS messages and statistics to monitor when a short-on-storage (SOS)
condition is entered, and when it is relieved.

CICS attempts to resolve pressures on storage before entering a short-on-storage condition. When CICS
starts to become short on space in a DSA, the situation is known as a storage stress condition. Where
possible, CICS takes actions such as deleting programs that are not being used (program compression),
deleting cached copies of any document templates, and searching for free extents in other DSAs. If these
actions fail to resolve the storage stress condition, CICS declares an SOS condition for the DSA.

During an SOS condition, CICS takes steps to limit work, so that there is enough storage to process work
that is already in progress. CICS prevents acquisition of new input message areas, and defers all ATTACH
requests from CICS system modules. Limiting work degrades the performance of the CICS region. In
extreme circumstances, an SOS condition might also lead to storage deadlock abends.

When an SOS condition is entered, one of the following messages is issued:

• DFHSM0131 for 24-bit storage
• DFHSM0133 for 31-bit storage
• DFHSM0606 for 64-bit storage

SOS conditions are also recorded in the CICS statistics for the dynamic storage area ("Times went short
on storage"). You can use the CICS commands CEMT INQUIRE SYSTEM, EXEC CICS INQUIRE
SYSTEM, and CEMT INQUIRE DSAS to inquire about SOS conditions.

When you observe an SOS condition, first determine whether the affected storage is 24-bit, 31-bit, or 64-
bit.

Chapter 2. Improving the performance of a CICS system 89

• For 24-bit storage, check whether the limit for the DSAs in 24-bit storage is as high as possible. If
required, you can change the DSALIM parameter while CICS is running.

• For 31-bit storage, check whether the limit for the extended dynamic storage area (EDSA) is as high as
possible. If required, you can change the EDSALIM parameter while CICS is running.

• For 64-bit storage, check whether there is sufficient 64-bit storage for the CICS region. If required, you
can change the z/OS MEMLIMIT value, but only on the next start of the CICS region.

For instructions to change these limits, see “Setting the limits for CICS storage” on page 79.

CICS reserves areas of contiguous virtual storage, called storage cushions, in each DSA. A storage cushion
is used only when there is not enough free storage in the DSA to satisfy an unconditional GETMAIN
request. In a storage stress condition, the storage cushion might avert a storage deadlock. The CICS
storage manager statistics for the dynamic storage areas show the number of times that CICS needed to
use storage from the cushion. A request might be larger than all the remaining storage in the DSA, so that
even the storage in the cushion is insufficient. When a request is suspended for this reason, the
suspension is also shown in the CICS storage manager statistics for the dynamic storage areas.

Short-on-storage conditions for 24-bit and 31-bit storage

When an individual DSA in 24-bit or 31-bit storage, for example the CDSA, requires additional storage, the
CICS storage manager allocates another extent to that DSA. Additional extents can be acquired as
necessary until the DSALIM or EDSALIM limit is reached, as appropriate. When all the possible extents
are allocated, CICS searches for a free extent in another DSA, to relocate it to the DSA in need. For CICS
to remove an extent from one DSA so that it can be allocated to another, all pages in the extent must be
free. That is, no pages must be allocated to any subpool.

Program compression might be triggered when the DSALIM or EDSALIM limit is approached and there are
few free or empty extents available. The DSAs that contain programs are evaluated individually to
determine whether program compression is required. In systems with a moderate proportion of loadable
programs, program compression is an indicator of pressure on virtual storage.

CICS considers a short-on-storage condition for a DSA in 24-bit or 31-bit storage if all the following
circumstances apply:

• No further extents can be allocated or relocated from other DSAs.
• Program compression has been attempted.
• All nonresident programs that are suitable for deletion, and that are not in use, have been deleted.
• All cached copies of document templates that are suitable for deletion. See Caching and refreshing of

document templates.
• Storage from the storage cushion is in use (that is, the number of free pages is less than the number of

pages in the cushion), or at least one request is suspended because there is no contiguous area of
storage large enough for it, or both of these conditions apply.

Short-on-storage conditions for 64-bit storage

For 64-bit storage, CICS tracks the total amount of 64-bit storage in use for the CICS address space. This
storage includes both the above-the-bar dynamic storage area (GDSA), and MVS storage in the CICS
region outside the GDSA.

CICS considers an SOS condition when storage from the storage cushion is in use, or at least one request
is suspended because there is no contiguous area of storage large enough for it, or both of these
conditions apply. No further extents can be allocated for a DSA in 64-bit storage if the sum of all allocated
above-the-bar storage and the size of a new extent would exceed the MEMLIMIT value.

The CICS storage manager statistics show 64-bit storage usage. The CICS storage manager dynamic
storage areas statistics show storage usage for the DSAs in the GDSA. Statistics of interest include the
following:

• Current GDSA active
• Peak GDSA active

90 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp3_doc_caching.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp3_doc_caching.html

• Number of IARV64 CONVERT(FROMGUARD) failures
• Current GDSA allocated
• Peak GDSA allocated
• Times cushion released
• Times went short on storage

An IARV64 CONVERT(FROMGUARD) failure indicates that a request for 64-bit storage has failed. A
request might fail because there is not enough auxiliary storage in the system to back the request. Also, a
request might fail because a component that the CICS storage manager does not control, for example, a
JVM server, has allocated so much storage that the storage manager is affected. CICS cannot resolve
pressures on storage caused by components outside the GDSA allocating storage, so you must use the
CICS statistics to identify such problems.

Avoiding short-on-storage conditions
To optimize your use of the CICS dynamic storage areas and their storage cushions, and help to avoid
short-on-storage conditions, follow these principles.

Procedure

• The lower the number of concurrent transactions in the system, the lower the usage of virtual storage.
If you can improve the internal response time for transactions, for example by minimizing physical I/O,
you can decrease the usage of virtual storage.

• Avoid making large GETMAIN requests in your application programs.
The storage cushion might not be large enough to satisfy a request for a large contiguous block of
storage.

• Define programs as resident only where necessary.
CICS cannot delete resident programs to reclaim space in a DSA, even if the programs are not in use.

• Use the CICS storage manager statistics to monitor storage cushion releases and storage request
suspensions. If these incidents occur frequently, investigate the cause.
If necessary, reduce the maximum number of user tasks (using the MXT system initialization
parameter) to reduce the number of tasks that use main storage.

• Try to define a reasonable number of transactions as SPURGE(YES) and with a DTIMOUT value.
Only transactions defined in this way can be purged during an SOS condition, if they have been waiting
for storage for longer than the DTIMOUT value. If there are too few purgeable transactions, storage
might become deadlocked in the CICS system.

Related tasks
Analyzing short-on-storage conditions
Analysis of short-on-storage (SOS) problems begins by obtaining a dump when the system is in an SOS
condition.
Fixing short-on-storage conditions caused by subpool storage fragmentation
You might experience short-on-storage conditions in 24-bit storage or 31-bit storage despite increasing
the DSALIM or EDSALIM limits, respectively. In this situation, you might need to enable the CICS self-
tuning mechanism. It is also possible to fix the size of each individual DSA by using the corresponding SIT
override.

Analyzing short-on-storage conditions
Analysis of short-on-storage (SOS) problems begins by obtaining a dump when the system is in an SOS
condition.

About this task

Short-on-storage conditions might occur for the following reasons. Perform this task to analyze short-on-
storage conditions.

Chapter 2. Improving the performance of a CICS system 91

1. Other resource constraints that cause CICS tasks to occupy storage for longer than is normally
necessary

2. A flood of tasks that overwhelms available free storage
3. Badly designed applications that require unreasonably large amounts of storage

Procedure

1. Set an entry in the dump table to produce a dump when message DFHSM0131, DFHSM0133, or
DFHSM0606 is issued.
For example, to produce a dump the first time message DFHSM0131 is issued, use the following
command:

CEMT SET SYDUMPCODE(SM0131) SYSDUMP MAXIMUM(1) ADD

2. When you obtain the dump, enter the following IPCS commands:
a) Use the IPCS command VERBX CICS720 'SM=3' to format the SM control blocks.
b) Use the IPCS command VERBX CICS720 'LD=3' to format the LD control blocks.

3. Run DFH0STAT just before the statistics interval completes.
For example, if the statistics interval is 1 hour, run DFH0STAT at 59 minutes. DFH0STAT provides
useful information in the storage summary without a breakdown by subpool. See The sample statistics
program, DFH0STAT for more information.

4. In the information that you have collected, examine the DSA summaries, noting which DSAs are short
on storage and the amount of free space in the other DSAs.
The amount of free space is given for each extent for each DSA. Frequently, either the UDSA or the
CDSA is short on storage but there is a large amount of free storage in the SDSA.
Also, look for evidence of large amounts of redundant program storage (RPS), which can cause a short-
on-storage condition. Redundant program storage can be identified in the domain subpool summary
and the loader domain summary.

Example

The dump extracts in this example are from a situation where the UDSA is short on storage.

Storage extents in 24-bit storage (below the line) are always allocated in multiples of 256 KB, except for
the UDSA. If transaction isolation is active, the extent size for the UDSA is 1 MB, and each UDSA extent
must be aligned on a megabyte boundary. If translation isolation is not active, the allocation is in 256 KB
extents. You must allow for some fragmentation between the 256 KB extents of the CDSA, RDSA, and
SDSA, compared with the 1 MB extents of the UDSA.

Storage extents in 31-bit storage (above the line) are allocated in multiples of 1 MB.

Storage extents in 64-bit storage (above the bar) are allocated in multiples of 2 GB.

Each extent has an associated page pool extent (PPX) and page allocation map (PAM).

Examination of the SDSA extents shows several extents with large amounts of free space. For example,
the extent beginning at 00700000 running through 0073FFFF has only 4 KB allocated and 252 KB free.

Extent list: Start End Size Free
 00700000 0073FFFF 256K 252K

The DSA extent summary shows that the PPX for the extent at 00700000 is found at 09F0A100, and the
associated PAM is found at 09F0A150. Examination of the PAM shows that only one page is allocated, and
it belongs to the subpool with an ID of X'7A'.

 Start End Size PPX_addr Acc DSA
 00700000 0073FFFF 256K 09F0A100 C SDSA

 PPX.SDSA 09F0A100 Pagepool Extent Control Area

 0000 00506EC4 C6C8E2D4 D7D7E740 40404040 *.&>DFHSMPPX *

92 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_stats_0stat_intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_stats_0stat_intro.html

 0010 E2C4E2C1 40404040 09A1BA68 071B3EA0 *SDSA *
 0020 00040000 00700000 0073FFFF 071B5EE0 *................*
 0030 00000000 09F0A150 00000040 0710A268 *.....0.&;.. ..s.*
 0040 0003F000 00000000 00000000 00000000 *..0.............*

 PAM.SDSA 09F0A150 Page Allocation Map

 0000 00000000 00000000 00000000 00000000 *................*
 0010 - 002F LINES SAME AS PREVIOUS
 0030 00000000 0000007A 00000000 00000000 *................*

The domain subpool summary determines, for the SDSA, which subpool is associated with the ID of X'7A'.
In this dump, 7A is the ID for subpool ZCTCTUA. Do not rely on the IDs being the same for multiple runs of
CICS, because the IDs are assigned in the order in which the ADD_SUBPOOL is issued.

 ==SM: UDSA Summary (first part only)

 Size: 512K
 Cushion size: 64K
 Current free space: 56K (10%)
 * Lwm free space: 12K (2%)
 * Hwm free space: 276K (53%)
 Largest free area: 56K
 * Times nostg returned: 0
 * Times request suspended: 0
 Current suspended: 0
 * Hwm suspended: 0
 * Times cushion released: 1
 Currently SOS: YES

 ==SM: SDSA Summary (first part only)

 Size: 4352K
 Cushion size: 64K
 Current free space: 2396K (55%)
 * Lwm free space: 760K (17%)
 * Hwm free space: 2396K (55%)
 Largest free area: 252K
 * Times nostg returned: 0
 * Times request suspended: 0
 Current suspended: 0
 * Hwm suspended: 0
 * Times cushion released: 0
 Currently SOS: NO

What to do next

1. Review the storage limits for your CICS system. See “Setting the limits for CICS storage” on page 79.
2. For an SOS condition in 24-bit storage, determine whether the DSALIM parameter is set as large as

possible. See “Estimating, checking, and setting DSALIM” on page 81.
3. For an SOS condition in 31-bit storage, determine whether the EDSALIM parameter is set as large as

possible. See “Estimating, checking, and setting EDSALIM” on page 82.
4. For an SOS condition in 64-bit storage, determine whether the z/OS MEMLIMIT parameter is set to an

appropriate value. See “Estimating, checking, and setting MEMLIMIT” on page 84.
5. Review the use of options such as the maximum task specification (MXT parameter) and defining

programs as resident, to keep down the overall storage requirement. Changing these settings might
limit task throughput. You can also reduce a storage constraint below 16 MB by using programs that
run above 16 MB. In addition, using the LPA reduces the amount of storage used in LDNUCRO by
approximately 100 KB.

6. Consider the tuning possibilities of z/OS and other tuning possibilities outside CICS. Also consider
ways of dividing your CICS region.

7. Consider enabling the CICS self-tuning mechanism, or fixing the size of one or more individual DSAs by
using the appropriate SIT overrides. For instructions, see “Fixing short-on-storage conditions caused
by subpool storage fragmentation” on page 94.

Related tasks
Avoiding short-on-storage conditions

Chapter 2. Improving the performance of a CICS system 93

To optimize your use of the CICS dynamic storage areas and their storage cushions, and help to avoid
short-on-storage conditions, follow these principles.
Fixing short-on-storage conditions caused by subpool storage fragmentation
You might experience short-on-storage conditions in 24-bit storage or 31-bit storage despite increasing
the DSALIM or EDSALIM limits, respectively. In this situation, you might need to enable the CICS self-
tuning mechanism. It is also possible to fix the size of each individual DSA by using the corresponding SIT
override.

Fixing short-on-storage conditions caused by subpool storage fragmentation
You might experience short-on-storage conditions in 24-bit storage or 31-bit storage despite increasing
the DSALIM or EDSALIM limits, respectively. In this situation, you might need to enable the CICS self-
tuning mechanism. It is also possible to fix the size of each individual DSA by using the corresponding SIT
override.

About this task

Use the self-tuning mechanism and the SIT overrides only if increasing the DSALIM or EDSALIM limit does
not completely resolve the short-on-storage problems.

Allocating into managed extents can result in a block of storage in an extent that is insufficient to satisfy a
GETMAIN request. With the dynamic nature of the subpools and DSAs, this situation will probably resolve
as the extent storage is reused. If you specify the initial DSA size using the SIT override for the affected
DSA, CICS reserves contiguous extents up to the amount specified, and eliminates the blocks of storage.

Tip: Define MAPS as MAPS. If you defining MAPS as programs, they are loaded into LDRES rather than
into LDNUC. LDRES is part of the SDSA and is more sensitive to fragmentation.

Procedure

1. You can add records to the local catalog to enable the CICS self-tuning mechanism for storage
manager domain subpools.
For details of how to manipulate subpool records using the CICS-supplied utility program, DFHSMUTL,
see Local catalog storage program (DFHSMUTL) .

2. You can fix the size of one or more individual DSAs by using the corresponding SIT overrides
(CDSASZE, UDSASZE, SDSASZE, RDSASZE, ECDSASZE, EUDSASZE, ESDSASZE, and ERDSASZE).
For more information about these overrides, see System initialization parameter descriptions and
summary .
To determine the values to use, follow this process:
a) Collect DFH0STAT output for information showing storage use by each DSA during the intervals.
b) Review the CICS statistics for several days.

The statistics provide information that you can use to define the amount of storage used at a
subpool and a DSA level. Extent usage is shown with the number of extents added and released.
In addition to the DSA information provided in DFH0STAT, the results about each subpool are
provided, including the DSA where it was allocated. If statistics are being gathered, end-of-day
statistics only provide data since the last statistics collection.

Related tasks
Avoiding short-on-storage conditions
To optimize your use of the CICS dynamic storage areas and their storage cushions, and help to avoid
short-on-storage conditions, follow these principles.
Analyzing short-on-storage conditions

94 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/utilities/dfha6bp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_sitparm_descriptions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_sitparm_descriptions.html

Analysis of short-on-storage (SOS) problems begins by obtaining a dump when the system is in an SOS
condition.

CICS subpools
In each dynamic storage area, storage is arranged in subpools. The CICS subpools are dynamically
acquired as needed, a page at a time, from within the applicable dynamic storage area.

Most CICS subpools are in 31-bit (above-the-line) or 64-bit (above-the-bar) storage. The subpools in 24-
bit (below-the-line) storage must be monitored more carefully because of the limited space available.

Individual subpools can be static or dynamic. Some subpools contain static CICS storage, which cannot
be tuned. All the subpools are rounded up to a multiple of 4 KB in storage size. Include this rounding
factor in any subpool sizing, or evaluation of storage size changes after tuning or other changes.

The CICS domain subpools statistics contain useful information about the size and use of the dynamic
storage area subpools. The following topics list the subpools in each dynamic storage area and their use.
You can use this information to identify the possible causes of excessive usage in individual subpools.

CICS subpools in the CDSA
The subpools in the CICS dynamic storage area (CDSA) are listed, together with the use of each one.

Table 5. CICS subpools in the CDSA

Subpool name Description

AP_TCA24 Storage for the TCA when the task data location option is set to BELOW.

DFHAPD24 A general subpool for 24-bit application domain storage.

DFHTDSDS Storage for real transient data SDSCIs, each of which contains a DCB that resides in 24-
bit storage (below 16 MB).

DHPDPOOL Storage for DCBs for partitioned data sets used by document handler domain.

FC_DCB Storage for the DCBs for BDAM files. Each file that is defined requires 104 bytes.

FCCBELOW Storage for real VSWA and data buffers for pre-reads. Each VSWA requires 120 bytes of
storage. The maximum number of data buffers for pre-reads is given by:

(number of strings) x (maximum record length) x (number of files).

KESTK24 A single 2 KB 24-bit (below 16 MB) stack segment. This is a dummy stack segment that
is shared by all tasks. Tasks that need to use 24-bit stack storage obtain an extension
stack segment from the subpool KESTK24E.

KESTK24E 4 KB 24-bit (below 16 MB) extension stack segments obtained by tasks that need to
use 24-bit stack storage. CICS preallocates a reserve pool of 24-bit extension stack
segments that tasks can use if no other storage is available in the subpool.

LD_JFCB Storage for the job file control blocks for the loader domain.

LDNRS Storage for the CICS nucleus and macro tables that are RESIDENT. The CICS nucleus is
approximately 192 KB and the size of the tables can be calculated. Programs are
defined as EXECKEY (CICS) and link edited with RMODE(24) without the reentrant
open.

LDNUC Storage for the CICS nucleus and macro tables that are not RESIDENT. The CICS
nucleus is approximately 192 KB and the size of the tables can be calculated. Programs
are defined as EXECKEY (CICS) and link edited with RMODE(24) without the reentrant
open.

SMCONTRL Satisfies GETMAIN requests for control class storage.

SMSHARED 24-bit shared storage, for example RMI global work areas, EDF blocks for the life of the
transaction being monitored, and other control blocks.

Chapter 2. Improving the performance of a CICS system 95

Table 5. CICS subpools in the CDSA (continued)

Subpool name Description

SMSHRC24 Used for many control blocks of SHARED_CICS24 class storage.

SMTP24 Storage for line and terminal I/O areas that cannot be located above 16 MB. The
storage requirements depend on the amount of terminal and line traffic in the system.
The subpool can be tuned by reducing the RAPOOL, RAMAX, TIOAL size, and number of
MRO sessions.

SZSPFCAC FEPI z/OS Communications Server ACB work areas.

TRUBELOW Task-related user exit pool below 16 MB.

XMGEN24 General storage used by transaction manager.

ZCSETB24 Application control buffers below 16 MB.

ZCTCTUA Storage for the TCTTE user area. It can be located in one of the following DSAs: SDSA,
ECDSA, CDSA, or ESDSA. Its location is controlled by the system initialization
parameter, TCTUALOC=ANY|BELOW and the system initialization parameter,
TCTUAKEY=CICS|USER. The maximum size can be specified in USERAREALEN operand
of the terminal definition. For more information about the terminal definition, see
TERMINAL resources.

CICS subpools in the SDSA
The subpools in the shared dynamic storage area (SDSA) are listed, together with the use of each one.

Table 6. CICS subpools in the SDSA

Subpool name Description

APECA Storage for the event control areas.

DFHAPU24 A general subpool for application domain storage below 16 MB.

LDPGM Storage for dynamically loaded application programs (RMODE (24)). The expected size
of this subpool can be predicted from previous releases, and by taking LDPGMRO into
account. The subpool size can be reduced by using 31-bit programs. Not reentrant.

LDRES Storage for resident application programs (RMODE (24). The expected size of this
subpool can be predicted from previous releases, and by taking LDRESRO into account.
The subpool size can be reduced by using 31-bit programs. Not reentrant.

OSCOBOL Used for the allocation of the COBOL merged load list (MLL) control block and its
extents. This subpool should never occupy more than its initial allocation of one page
of storage.

SMSHRU24 Used for many control blocks of SHARED_USER24 class storage.

ZCTCTUA Storage for the TCTTE user area. It can be located in one of the following DSAs: SDSA,
ECDSA, CDSA, or ESDSA. Its location is controlled by the system initialization
parameter, TCTUALOC=ANY|BELOW and the system initialization parameter,
TCTUAKEY=CICS|USER. The maximum size can be specified in USERAREALEN operand
of the terminal definition. For more information about the terminal definition, see
TERMINAL resources.

96 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/terminal/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/terminal/dfha4_summary.html

CICS subpools in the RDSA
The subpools in the read-only dynamic storage area (RDSA) are listed, together with the use of each one.

Table 7. CICS subpools in the RDSA

Subpool name Description

LDNRSRO Storage for programs that are defined EXECKEY(CICS) that are RESIDENT, that were
link edited REENTRANT and RMODE(24).

LDNUCRO Storage for programs that are defined EXECKEY(CICS) that are not RESIDENT, that
were link edited REENTRANT and RMODE(24).

LDPGMRO Storage for programs that are defined EXECKEY(USER) that are not RESIDENT, that
were link edited RMODE(24) and REENTRANT.

LDRESRO Storage for programs that are defined EXECKEY(USER) and RESIDENT and were link
edited REENTRANT and RMODE(24).

CICS subpools in the ECDSA
The subpools in the extended CICS dynamic storage area (ECDSA) are listed, together with the use of
each one.

Table 8. CICS subpools in the ECDSA

Subpool name Description

>LGJMC Storage for the journal model resource entries for the log manager domain.

AITM_TAB The autoinstall terminal model (AITM) table entry subpool (DFHAITDS).

AP_TCA31 Storage for the TCA when the task data location option is set to ANY.

AP_TXDEX Storage for the application part of the TXD table.

APAID31 Storage for AIDs above the line.

APBMS Storage used by BMS.

APCOMM31 Storage for COMMAREAs. The storage requirement depends on the size of COMMAREA
specified and the number of concurrent users of the application.

APDWE Storage for non-task deferred work elements.

APICE31 Storage for ICEs above the line.

APURD Subpool containing unit of recovery descriptors (URDs) and nontask deferred work
elements (DWEs).

ASYNCBUF Buffers used by asynchronous operations in the sockets domain.

BAGENRAL A general-purpose subpool for the business application manager domain.

BAOFBUSG Buffer storage used by the business application manager domain.

BAOFT_ST Storage used by activities in the business application manager domain.

BR_BFBE Storage for the bridge facility block extension.

BR_BFNB Storage for the bridge facility name block.

BR_BMB Storage for the bridge message block.

BR_BSB Storage for bridge start blocks.

BRGENRAL General-purpose subpool used by the bridge.

BRNSBLK Storage used for the bridge numberspace.

Chapter 2. Improving the performance of a CICS system 97

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

BRNSFBLK Storage used for bridge files.

BRPC Storage used for bridge primary clients.

BRVS Storage used for bridge virtual terminals.

BRVSCA Storage used for bridge virtual screen character attributes.

BRVSXA Storage used for bridge virtual screen extended attributes.

CCNV_BCE Storage for character conversion buffer chain elements.

CCNV_CCE Storage for character conversion chain elements.

CCNV_TRT Storage for character conversion translation tables. These tables are addressed by the
conversion chain elements.

CCNVG_AN Storage for character conversion anchor blocks.

COLARAY Storage for web control block array storage.

CQCQ_AN Storage for console queue management anchor blocks.

CQCQ_CB Storage for console queue management command input buffers.

DBCTL Subpool that contains the TIE blocks for RMI use, when called by the DBCTL task-
related user exit program, DFHDBAT. The TIE is 120 bytes long, and appended to the
TIE is the local task work area for this task-related user exit which is, for DFHDBAT,
668 bytes long. This subpool is present only when DBCTL is used. It can be tuned by
limiting DBCTL threads or using maximum tasks (MXT) or transaction classes.

DBDBG Storage for DBCTL global blocks.

DCTE_EXT Storage for all extrapartition queue definitions.

DCTE_IND Storage for all indirect queue definitions.

DCTE_INT Storage for all intrapartition queue definitions.

DCTE_REM Storage for all remote queue definitions.

DDAPSESS Storage for LDAP sessions state control blocks.

DDAPSRCH Buffers for LDAP search results.

DDBROWSE Storage for directory manager browse request tokens.

DDGENRAL Storage for directory manager control blocks general information.

DDS_BFBE Storage for directory manager directory elements for the BFBE table.

DDS_BFNB Storage for directory manager directory elements for the BFNB table.

DDS_DCTE Storage for directory manager directory elements for the DCTE table.

DDS_DHT1 Storage for directory manager directory elements for the DHT1 table.

DDS_DHT2 Storage for directory manager directory elements for the DHT2 table.

DDS_DSN Storage for directory manager directory elements for the DSN table.

DDS_D2AC Storage for directory manager directory elements for the D2AC table.

DDS_D2CS Storage for directory manager directory elements for the D2CS table.

DDS_D2EN Storage for directory manager directory elements for the D2EN table.

98 CICS TS for z/OS: Performance Guide

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

DDS_D2TN Storage for directory manager directory elements for the D2TN table.

DDS_D2TT Storage for directory manager directory elements for the D2TT table.

DDS_ECCS Storage for directory manager directory elements for the ECCS table.

DDS_ECEV Storage for directory manager directory elements for the ECEV table.

DDS_ECSC Storage for directory manager directory elements for the ECSC table.

DDS_EPAD Storage for directory manager directory elements for the EPAD table.

DDS_FCT Storage for directory manager directory elements for the FCT table.

DDS_ISIA Storage for directory manager directory elements for the ISIA table.

DDS_ISIN Storage for directory manager directory elements for the ISIN table.

DDS_JVMD Storage for directory manager directory elements for the JVMD table.

DDS_MLRL Storage for directory manager directory elements for the MLRL table.

DDS_MLXT Storage for directory manager directory elements for the MLXT table.

DDS_MQII Storage for directory manager directory elements for the MQII table.

DDS_MQIN Storage for directory manager directory elements for the MQIN table.

DDS_NQRN Storage for directory manager directory elements for the NQRN table.

DDS_PIPL Storage for directory manager directory elements for the PIPL table.

DDS_PPT Storage for directory manager directory elements for the PPT table.

DDS_PTPO Storage for directory manager directory elements for the PTPO table.

DDS_PTST Storage for directory manager directory elements for the PTST table.

DDS_PTT Storage for directory manager directory elements for the PTT table.

DDS_REFE Storage for directory manager directory elements for the REFE table.

DDS_RLBN Storage for directory manager directory elements for the RLBN table.

DDS_RTXD Storage for directory manager directory elements for the RTXD table.

DDS_SCAC Storage for directory manager directory elements for the SCAC table.

DDS_SERV Storage for directory manager directory elements for the SERV table.

DDS_SOCI Storage for directory manager directory elements for the SOCI table.

DDS_SOSI Storage for directory manager directory elements for the SOSI table.

DDS_TCL Storage for directory manager directory elements for the TCL table.

DDS_TPNM Storage for directory manager directory elements for the TPNM table.

DDS_TXD Storage for directory manager directory elements for the TXD table.

DDS_USD1 Storage for directory manager directory elements for the USD1 table.

DDS_USD2 Storage for directory manager directory elements for the USD2 table.

DDS_USD3 Storage for directory manager directory elements for the USD3 table.

DDS_USD4 Storage for directory manager directory elements for the USD4 table.

Chapter 2. Improving the performance of a CICS system 99

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

DDS_WBST Storage for directory manager directory elements for the WBST table.

DDS_WBUR Storage for directory manager directory elements for the WBUR table.

DDS_WSRD Storage for directory manager directory elements for the WSRD table.

DDS_WURS Storage for directory manager directory elements for the WURS table.

DDS_W2AT Storage for directory manager directory elements for the W2AT table.

DDS_W2RL Storage for directory manager directory elements for the W2RL table.

DFHAPDAN A general subpool for application domain storage above 16 MB but below 2 GB.

DFHD2CSB Storage for control blocks representing Db2 threads created by the CICS/Db2 adapter.

DFHD2ENT Storage for control blocks representing DB2ENTRY definitions.

DFHD2PKG Storage for control blocks representing Db2 PACKAGESET definitions.

DFHD2TRN Storage for control blocks representing DB2TRAN definitions.

DFHECCD Storage for event capture data.

DFHECCS Storage for event capture specification blocks.

DFHECDQE Storage for event capture deferred filter queue elements.

DFHECEVB Storage for event capture event binding blocks.

DFHECFP Storage for event capture event filter predicate blocks.

DFHECSC Storage for event capture system event calls.

DFHECSF Storage for event capture system filter predicates.

DFHEPAC Storage for event capture event adapter configuration data.

DFHMPGEN Used for allocations of Managed Platform anchor block (MPA) and failed adapter
(MPPFA) control blocks.

DFHMPMOD Used for allocations of Managed Platform model (MPMOD) control blocks.

DFHMPPPB Used for allocations of Managed Platform policy (MPPPB) control blocks.

DFHTDG31 Transient data general storage and control blocks. The storage requirement depends
on the number of buffers and strings, and on the control interval size specified.

DFHTDIOB Intrapartition transient data input/output buffers. The storage requirement is given by
the control interval size of the intrapartition transient data set multiplied by the number
of buffers.

DFHTDWCB Storage for the transient data wait elements.

DHCACHE Storage for cached copies of document templates.

DHDBB Storage for document bookmark blocks.

DHDCR Storage for document control records.

DHDDB Storage for document data.

DHDOA Storage for document anchor blocks.

DHFSPATH Storage for HFS path template extensions.

DHGENRAL The general purpose subpool for the document manager domain.

100 CICS TS for z/OS: Performance Guide

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

DHSTB Storage for document symbol tables.

DHTLPOOL Storage for document handler template descriptors.

DLI Subpool that contains the TIE blocks for RMI use, when called by the EXEC DL/I task-
related user exit program, DFHEDP. The TIE is 120 bytes long, and appended to the TIE
is the local task work area for this task-related user exit, which is, for DFHEDP, 4 bytes
long. This subpool is present only when EXEC DL/I is used. It can be tuned by limiting
DBCTL threads or using maximum tasks (MXT) or transaction classes.

DMSUBPOL The domain manager subpool for general usage.

DP_GENRL Storage for the control blocks for the DP domain.

DPLA Storage for the anchor blocks for instore linked lists of debugging profiles.

DPLE Storage for the elements in the instore linked lists of debugging profiles.

DPLP Storage for the elements in the debug profile that is used for pattern matching.

DPTA Storage for transaction instance state data that is required by the DP domain.

DS_STIMR Storage for dispatcher domain STIMER tokens.

DS_TCB Storage for dispatcher domain TCBs.

DS_VAR The dispatcher domain variable length subpool.

DSBROWSE Storage for dispatcher browse request tokens.

EC_GENRL Storage for the control blocks for the EC domain.

EJMI The enterprise bean method information.

EJOSGENS The enterprise bean general subpool.

EJOSTSKS The enterprise bean task subpool.

EJSPBFBC Storage for web browser control blocks for enterprise beans.

EJSPBVIC Storage for enterprise bean control blocks.

EJSPCFBC Storage for web browser control blocks for CorbaServers.

EJSPCFIC Storage for control blocks for CorbaServers.

EJSPCOMM Storage for anchor blocks for enterprise beans.

EJSPDFBC Storage for web browser control blocks for deployed JAR files.

EJSPDFIC Storage for control blocks for deployed JAR files.

EJSPGVNC Storage for persistent storage for enterprise beans.

EJSPTVNC Storage for transaction-related storage for enterprise beans.

EJSTGENS Storage for control blocks for enterprise bean statistics.

EMBRB Storage for event manager browse blocks.

EMEVA Storage for the event manager event pool anchor.

EMEVB Storage for event manager event blocks.

EMGENRAL General-purpose subpool for event manager domain.

EP_GENRL Storage for the control blocks for the EP domain.

Chapter 2. Improving the performance of a CICS system 101

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

EPADA Storage for event processing adapter management.

EPADI Storage for EP adapter name in EP adapter set.

EPADT Storage for event processing adapter set management.

FC_ABOVE Storage for real VSWA and data buffers for prereads. Each VSWA requires 120 bytes of
storage. The maximum number of data buffers for prereads is given by:

(number of strings) x (maximum record length) x (number of files)

FC_ACB Storage for ACBs for VSAM files. Each VSAM file has one ACB, of 80 bytes.

FC_BDAM Storage for BDAM file control blocks. Each BDAM file requires 96 bytes of storage.

FC_DSNAM Storage for data set name blocks. Each file requires a data set name block, which uses
120 bytes of storage.

FC_FCPE Storage for file control pool elements.

FC_FCPW Storage for file control CFDT pool wait elements.

FC_FCUP Storage for the file control CFDT unit of work pool block.

FC_FLAB Storage for file control lasting access blocks.

FC_FLLB Storage for file control lock locator blocks.

FC_FRAB Storage for file request anchor blocks (FRABs). Each transaction that has issued a file
control request has one FRAB. The FRAB is retained until the end of the task. There is a
free chain of FRABs not currently in use.

FC_FRTE Storage for file request thread elements (FRTE). There is one FRTE for each active file
control request per task. A file control request has a FRTE if it meets these conditions:

• It has not yet stopped its VSAM thread. For example, a browse that has not yet issued
an ENDBR.

• It has updated a recoverable file and a sync point has not yet occurred.
• It is holding READ-SET storage that must be freed in future.

There is a free chain of FRTEs not currently in use.

FC_RPL Storage for file control request parameter lists.

FC_SHRCT Storage for file control SHRCTL blocks. There are eight of these blocks and each
describes a VSAM LSR pool.

FC_VSAM Storage for the file control table (FCT) entries for VSAM files.

FCB_256 File control buffers of length 256 bytes. These buffers are used by file control requests
that are made against files with a maximum record length less than or equal to 256
bytes.

FCB_512 File control buffers of length 512 bytes. These buffers are used by file control requests
that are made against files with a maximum record length between 256 + 1 bytes and
512 bytes.

FCB_1K File control buffers of length 1 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 512 + 1 bytes and 1 KB.

FCB_2K File control buffers of length 2 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 1 KB + 1 byte and 2 KB.

102 CICS TS for z/OS: Performance Guide

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

FCB_4K File control buffers of length 4 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 2 KB + 1 byte and 4 KB.

FCB_8K File control buffers of length 8 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 4 KB + 1 byte and 8 KB.

FCB_16K File control buffers of length 16 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 8KB + 1 byte and 16 KB.

FCB_32K File control buffers of length 32 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 16 KB + 1 byte and 32
KB.

FCB_64K File control buffers of length 64 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 32 KB + 1 byte and 64
KB.

FCB_128K File control buffers of length 128 KB. These buffers are used by file control requests
that are made against files with a maximum record length between 64 KB + 1 byte and
128 KB.

FCB_256K File control buffers of length 256 KB. These buffers are used by file control requests
that are made against files with a maximum record length between 128 KB + 1 byte
and 256 KB.

FCB_512K File control buffers of length 512 KB. These buffers are used by file control requests
that are made against files with a maximum record length between 256 KB + 1 byte
and 512 KB.

FCB_1M File control buffers of length 1MB. These buffers are used by file control requests that
are made against files with a maximum record length between 512 KB + 1 byte and 1
MB.

FCB_2M File control buffers of length 2 MB. These buffers are used by file control requests that
are made against files with a maximum record length between 1 MB + 1 byte and 2 MB.

FCB_4M File control buffers of length 4 MB. These buffers are used by file control requests that
are made against files with a maximum record length between 2 MB + 1 byte and 4 MB.

FCB_8M File control buffers of length 8 MB. These buffers are used by file control requests that
are made against files with a maximum record length between 4 MB + 1 byte and 8 MB.

FCB_16M File control buffers of length 16 KB. These buffers are used by file control requests that
are made against files with a maximum record length between 8 MB + 1 byte and 16
MB.

FCSTATIC File control static storage.

ICUS Storage for internal control element (ICE) secure extensions.

IE_GENRL Storage for the control blocks for the IE domain.

IECCB Storage for the conversation control blocks in the IE domain.

IECSB Storage for the client state blocks in the IE domain.

IFGLUWID The VSAM IFGLUWID area.

IIGENRAL The IIOP domain general subpool.

IIMBR The IIOP domain request model browse block.

IIMDB The IIOP domain request model block.

Chapter 2. Improving the performance of a CICS system 103

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

IS_GENRL Storage for the control blocks for the IS domain.

ISAQ Storage for IS allocate queue elements.

ISCB Storage for IS control blocks, used to record installed instances of IPCONNs.

ISQA Storage for IS queue attach control blocks.

ISRD Storage for IS remote delete requests.

ISSB Storage for the IS session blocks, each of which is associated with an ISCB subpool.

ISSS Storage for IS session sets.

KEANCHOR Storage Manager domain anchors.

KESTK31 28 KB 31-bit (above the line) stack segments. There is one per MXT plus one for every
dynamic system task that is running.

KESTK31E 8 KB 31-bit (above the line) extension stack segments. There is at least one for every
ten tasks specified in the MXT limit.

KETASK Storage for kernel task entries.

LD_CDE Storage for loader domain dummy CDEs.

LD_CNTRL Storage for loader domain general control information.

LD_LDBE Storage for LDBE (loader browse element) control blocks for the loader domain.

LD_LDWE Storage for LDWE (loader suspend work element) control blocks for the loader domain.

LD_PLIBE Storage for program library element storage for the loader domain.

LDENRS Storage for the extended CICS nucleus, and 31-bit macro tables that are RESIDENT.
The extended CICS nucleus is approximately 50 KB. Programs are defined with
EXECKEY(CICS) and link edited RMODE(ANY) without the REENTRANT option.

LDENUC Storage for the extended CICS nucleus and 31-bit macro tables that are not RESIDENT.
The extended CICS nucleus is approximately 50 KB. Programs are defined with
EXECKEY(CICS) and link edited RMODE(ANY) without the REENTRANT option.

LGBD Storage for log stream name, journal name, and journal model browse tokens for the
log manager domain.

LGGD Storage for explicitly opened general logs for the log manager domain.

LGGENRAL The general-purpose subpool for the log manager domain.

LGJI Storage for journal name entries for the log manager domain.

LGSD Storage for log stream data entries for the log manager domain.

LGUOW Storage for unit-of-work data entries for the log manager domain.

LI_PLB Storage for the language interface program language block. One is allocated for each
program when control is first passed to it.

L2GENRAL The log manager domain general subpool.

L2OFL2BL Storage for logger block entries for the log manager domain.

L2OFL2BS Storage for browseable stream objects for the log manager domain logger.

L2OFL2CH Storage for chain objects for the log manager domain logger.

104 CICS TS for z/OS: Performance Guide

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

L2OFL2SR Storage for stream objects for the log manager domain logger.

MDTTABLE The MDT field attribute table for BMS maps sent through the CICS web interface.

ML_GENRL General storage for the ML domain.

MN_CNTRL Storage for monitoring control blocks general information.

MN_TIMAS Storage for monitoring control blocks identity monitoring area.

MN_TMAS Storage for monitoring control blocks transaction monitoring area.

MN_TRMAS Storage for monitoring control blocks resource monitoring area.

MQM WebSphere MQ communication storage.

MRO_QUEU Used by the MRO work queue manager.

MROWORKE Used by the MRO work queue manager elements.

NQEAS Storage for NQ domain queue element areas.

NQGENRAL A general subpool used by NQ domain.

NQPOOL Storage for NQ domain enqueue pools.

NQRNAMES Storage for NQRN directory entries.

OTGENRAL The general subpool used by the OT domain.

OTISINST Storage for inflight state of OTS transactions.

OVERLAPD Storage for overlap field merging.

PGCHCB Storage for channel control blocks. This storage contains header information that
describes a channel.

PGCPCB Storage for the channel container pool control block. This storage contains header
information that describes sets of containers.

PGCPCBCH Storage for the chained container pool control block.

PGCRBB Storage for browses of channel containers.

PGCRCB Storage for channel container control blocks. This storage contains the header
information for each container.

PGCSCB Storage for channel container segments.

PGGENRAL Storage for general purpose program manager domain subpools.

PGHMRSA Storage for program handle manager cobol register save areas.

PGHTB Storage for the program manager handle table block.

PGJVMCL Storage for JVM class names.

PGLLE Storage for program manager load list elements.

PGPGWE Storage for program manager wait elements.

PGPPTE Storage for program manager program definitions.

PGPTA Storage for program manager transaction-related information.

PI_GENRL General storage for the pipeline manager (PI) domain.

Chapter 2. Improving the performance of a CICS system 105

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

PI_POLCY Currently not used.

PI_PRSER Currently not used.

PINODEBL Storage for pipeline objects.

PIPEINST Storage for pipeline objects.

PITKDAT Storage for pipeline token data for context token.

PITKPOOL Storage for pipeline tokens.

PITXMAST Storage for Web Services Atomic Transaction (WS-AT) master control block or PI
domain transaction control block.

PR_TABLE Storage for PTEs from the PRT.

PTTWSB General storage for pool tokens.

RCLELEM Storage for the web row-column element list storage.

RCTABLE Web table storage.

RLGENRAL The resource lifecycle general subpool.

RMGENRAL The recovery manager general subpool.

RMOFRMLK Storage for recovery manager link objects.

RMOFRMUW Storage for recovery manager unit-of-work objects.

ROWARAY Web row array storage.

RS_FILEL Region status (RS) domain file list storage.

RS_GENRL Storage for the control blocks for the RS domain.

RUNTRAN A transaction manager subpool for run transaction.

RUTKPOOL A subpool for reusable token class.

RXGENRAL A general subpool for RX domain.

RZGENRAL A general subpool for request streams domain.

RZOFRSNR Storage for request streams notification requests.

RZOFRSRG Storage for request streams registration objects.

RZOFRZRS Storage for request streams objects.

RZOFRZTR Storage for request stream transports.

SHGENRAL The general subpool for scheduler services domain.

SHOFSHRE Storage for scheduler services request objects.

SJGENRAL The general subpool for SJVM domain.

SJJ8TCB Storage for TCBs in the SJVM domain.

SMSHRC31 Storage for many control blocks of the SHARED_CICS31 class.

SMTP Line and terminal I/O areas. The storage requirements depend on the amount of
terminal and line traffic in the system. The subpool can be tuned by reducing the
RAPOOL, RAMAX, TIOAL size, and number of MRO sessions.

106 CICS TS for z/OS: Performance Guide

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

SOCKET Storage for socket objects.

SOCKPOOL Socket pool storage.

SOCKSSL Storage for the SSL data related to a socket.

SOGENRAL The sockets domain general subpool.

SOLTE Storage for socket domain listener terminal entries.

SOSTE Storage for socket domain socket terminal entries.

SOTBR Storage for socket domain TCPIPSERVICE browse blocks.

SOTDB Storage for socket domain TCPIPSERVICE blocks.

SOTKPOOL Storage for socket domain socket tokens.

STSUBPOL A statistics domain manager subpool.

SZSPFCCD The FEPI connection control subpool.

SZSPFCCM The FEPI common area subpool.

SZSPFCCV The FEPI conversation control subpool.

SZSPFCDS The FEPI device support subpool.

SZSPFCNB The FEPI node initialization block subpool.

SZSPFCND The FEPI node definition subpool.

SZSPFCPD The FEPI pool descriptor subpool.

SZSPFCPS The FEPI property descriptor subpool.

SZSPFCRP The FEPI request parameter list subpool.

SZSPFCRQ The FEPI requests subpool.

SZSPFCSR The FEPI surrogate subpool.

SZSPFCTD The FEPI target descriptor subpool.

SZSPFCWE The FEPI work element subpool.

SZSPVUDA The FEPI data areas subpool.

TA_GENRL Currently not used.

TASKASOC Storage for sockets domain task association objects.

TD_TDCUB Storage for all the transient data CI update control blocks.

TD_TDQUB Storage for all the transient data queue update control blocks.

TD_TDUA Storage for all the transient data UOW anchor control blocks.

TFUS Storage for TCTTE secure extensions.

TGODR Storage for the transaction group origin data record.

TIA_POOL The timer domain anchor subpool.

TIQCPOOL The timer domain quick cell subpool.

TSBRB Storage for temporary storage (TS) browse blocks.

Chapter 2. Improving the performance of a CICS system 107

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

TSBUFFRS Temporary storage I/O buffers. The storage requirement is given by:

(TS control interval size) x (number of TS buffers). The use of temporary storage by
application programs affects the size of a number of subpools associated with
temporary storage control blocks.

TSGENRAL The amount of storage used by the TSGENRAL subpool. The amount depends on the
number of buffers and strings and the control interval size defined for the temporary
storage data set.

TSICDATA Storage for TS interval control elements.

TSMBR Storage for temporary storage browse blocks.

TSMDB Storage for temporary storage model blocks.

TSQAB Storage for TS queue anchor blocks.

TSQOB Storage for TS queue ownership blocks.

TSQUB Storage for TS queue update blocks.

TSTSS Storage for TS section descriptors.

TSTSX Storage for TS auxiliary item descriptors.

TSW Storage for TS wait queue elements.

UE_EPBPL The subpool for the user exit program block (EPB).

USIDTBL Storage for the attach security userid table entries (LUITs). See ISC/IRC attach time
entry statistics for more information.

WBGENRAL The general subpool for CICS web support.

WBOUTBND Storage for outbound HTTP buffers.

WBPATHN1 Storage for path node elements used for URI map storage for short path names.

WBPATHN2 Storage for path node elements used for URI map storage for long path names.

WBPATHUR Storage used for URI map storage for URI path names.

WBRQB Storage for web request objects.

WBS Storage for inbound web session blocks used for the IPIC protocol.

WBURIMAP Storage for URI mapping elements.

WBURIXT1 Storage for URI mapping element extensions (short).

WBURIXT2 Storage for URI mapping element extensions (long).

WBWRBR Storage for web request browse blocks.

WBVHOST Storage for URI virtual host elements.

WEB_STA Web state-related storage.

WEBELEM Storage for web output element lists.

WEBHTML Storage for web HTML buffers.

WEBINB Storage for web domain storage for incoming data.

WEB327B Web domain 3270 buffer storage.

108 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_iscirc_attach.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_iscirc_attach.html

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

W2ATOMSE Storage for Web 2.0 atom service elements.

W2ATOMX1 Storage for Web 2.0 atom service extensions.

W2ATOMX2 Storage for Web 2.0 atom service extensions.

W2GENRAL The general-purpose subpool for the Web 2.0 domain.

XMGENRAL The general-purpose subpool for the transaction manager.

XMTCLASS Storage for the transaction manager tranclass definition.

XMTRANSN Storage for transaction manager transactions; one for every transaction in the system.

XMTXDINS The transaction manager transaction definition.

XMTXDSTA The transaction manager transaction definition.

XMTXDTPN The transaction manager transaction definition TPNAME storage.

ZC2RPL Storage for the duplicate RPLs for active tasks. Each active task associated with a z/OS
Communications Server terminal requires 304 bytes.

ZCBIMG Storage for BIND images.

ZCBMSEXT Storage for the BMS extensions for terminals. Subpool storage requirements are 48
bytes for each terminal, surrogate, ISC session, and console.

ZCBUF Storage for the non-LU 6.2 buffer list.

ZCCCE Storage for the console control elements. Each console requires 48 bytes.

ZCGENERL The general-purpose subpool for terminal control.

ZCLUCBUF Storage for the LU 6.2 SEND and RECEIVE buffer list.

ZCLUCEXT Storage for the LU 6.2 extensions. The storage requirement is 224 bytes for each LU 6.2
session.

ZCNIBD Storage for the NIB descriptors. Each terminal, surrogate, ISC session, and system
definition requires 96 bytes of storage.

ZCNIBISC Storage for the expanded NIB and response during OPNDST and CLSDST for ISC. Each
concurrent logon and logoff requires 448 bytes of storage. The maximum number of
concurrent requests is limited by the number of sessions. The storage can be tuned by
reducing the number of sessions.

ZCNIBTRM Storage for the expanded NIB during OPNDST and CLSDST for terminals. Each
concurrent logon and logoff requires 192 bytes of storage. The maximum number of
concurrent requests is limited by the number of terminals. The storage can be tuned by
reducing the number of terminals.

ZCRAIA Storage for the RECEIVE ANY I/O areas.

ZCRPL Storage for the RPLs for active tasks. Each active task associated with a z/OS
Communications Server terminal requires 152 bytes.

ZCSETB Storage for application control buffers above 16 MB but below 2 GB.

ZCSKEL Storage for the remote terminal entries. Each remote terminal definition requires 32
bytes of storage.

ZCSNEX Storage for the TCTTE sign-on extensions. The storage requirement is 48 bytes for each
terminal, surrogate, session, and console.

Chapter 2. Improving the performance of a CICS system 109

Table 8. CICS subpools in the ECDSA (continued)

Subpool name Description

ZCTCME Storage for the mode entries. Each mode entry requires 128 bytes of storage.

ZCTCSE Storage for the system entries. Each system entry requires 192 bytes of storage.

ZCTCTTEL Storage for the large terminal entries. 504 bytes of storage are required for every
terminal, surrogate model, and ISC session defined.

ZCTCTTEM Storage for the medium terminal entries. 400 bytes of storage are required for every
IRC batch terminal.

ZCTCTTES Storage for the small terminal entries. 368 bytes of storage are required for every MRO
session and console.

ZCTPEXT The TPE extension.

ZCTREST The terminal control transaction restart subpool.

ZCTCTUA Storage for the TCTTE user area. It can be located in one of the following DSAs: SDSA,
ECDSA, CDSA, or ESDSA. Its location is controlled by the system initialization
parameter, TCTUALOC=ANY|BELOW and the system initialization parameter,
TCTUAKEY=CICS|USER. The maximum size can be specified in USERAREALEN operand
of the terminal definition. For more information about the terminal definition, see
TERMINAL resources.

CICS subpools in the ESDSA
The subpools in the extended shared dynamic storage area (ESDSA) are listed, together with the use of
each one.

Table 9. CICS subpools in the ESDSA

Subpool name Description

DFHAPUAN A general subpool for application domain storage above 16 MB but below 2 GB.

IE_BUFF The IE domain buffers that are used when processing inbound and outbound
messages.

IIBUFFER The IIOP domain buffer subpool.

IS_BUFF Storage for the IS buffers that are used to hold the message data for an IS session
block.

LDEPGM Storage for extended (31-bit) dynamically-loaded application programs and programs
defined EXECKEY(USER).

LDERES Storage for extended (31-bit) resident application programs.

SJSCCHS Storage for the Java Virtual Machine domain (SJ domain) class cache.

SJSJPTE Storage for the SJ domain profile table entries.

SJSJTCB Storage for the SJ domain TCB usage.

SJUSERKY SJ domain user key storage.

SMSHRU31 Used for many control blocks of SHARED_USER31 class storage, RMI global work
areas, EDF blocks for the life of the transaction being monitored, and other control
blocks.

WEBINB Inbound Web 3270 buffer storage.

110 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/terminal/dfha4_summary.html

Table 9. CICS subpools in the ESDSA (continued)

Subpool name Description

ZCTCTUA Storage for the TCTTE user area. It can be located in one of the following DSAs: SDSA,
ECDSA, CDSA, or ESDSA. Its location is controlled by the system initialization
parameter, TCTUALOC=ANY|BELOW and the system initialization parameter,
TCTUAKEY=CICS|USER. The maximum size can be specified in USERAREALEN operand
of the terminal definition. For more information about the terminal definition, see
TERMINAL resources.

CICS subpools in the ERDSA
The subpools in the extended read-only dynamic storage area (ERDSA) are listed, together with the use of
each one.

Table 10. CICS subpools in the ERDSA

Subpool name Description

LDENRSRO Storage for the extended CICS nucleus and 31-bit macro tables that are RESIDENT.
The extended CICS nucleus is approximately 1850 KB. The contents of this subpool
must be linked reentrant.

LDENUCRO Storage for the extended CICS nucleus and 31-bit macro tables that are not RESIDENT.
The extended CICS nucleus is approximately 1850 KB. The contents of this subpool
must be linked reentrant.

LDEPGMRO Storage for extended (31-bit) dynamically loaded application programs. The contents
of this subpool must be linked reentrant.

LDERESRO Storage for extended (31-bit) resident application programs. The contents of this
subpool must be linked reentrant.

CICS subpools in the ETDSA
The subpools in the extended trusted dynamic storage area (ETDSA) are listed, together with the use of
each one.

Table 11. CICS subpools in the ETDSA

Subpool name Description

USGENRAL The general purpose subpool for the user domain.

USRTMQUE Storage for queue elements for users waiting for USRDELAY. Each queue element is 16
bytes.

USUDB Storage for user data blocks. The storage requirement is 128 bytes for each unique
user.

USXDPOOL Storage for user domain transaction-related data. Each running transaction requires 32
bytes.

XSGENRAL The general purpose subpool for the security domain.

XSXMPOOL Storage for security domain transaction-related data. Each running transaction requires
56 bytes.

Chapter 2. Improving the performance of a CICS system 111

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/terminal/dfha4_summary.html

CICS subpools in the GCDSA
The subpools in the above-the-bar CICS dynamic storage area (GCDSA) are listed, together with the use
of each one.

Table 12. CICS subpools in the GCDSA

Subpool name Description

CPSM_64 Storage for CICSPlex SM API result sets in a System Management Single Server (SMSS)
environment.

CQCQ_TR Storage for the console queue processing trace table.

CQCQ_XT Storage for the console queue transaction entry table.

DFHAPD64 A general subpool for 64-bit application domain storage.

DFHMPMDR Used for allocations of Managed Platform model rules (MPMODR) control blocks.

DFHMPPMB Used for allocations of Managed Platform policy modifier (MPPMB) control blocks.

DFHMPPRB Used for allocations of Managed Platform policy rule (MPPRB) control blocks.

DFHMPTAS Used for allocations of Managed Platform task lifetime storage (MPTAS) control blocks.

EP_64 Storage for control blocks for items in event capture queues, used in CICS event
processing.

LD_APES Active Program Element (APE) control blocks for the loader domain.

LD_CPES Current Program Element (CPE) control blocks for the loader domain.

LD_CSECT CSECT list storage for the loader domain.

ML64GNRL Buffers for input and output for the z/OS XML System Services (XMLSS) parser.

MN_ADCS Storage for association data control blocks.

MPSTAT Storage for control blocks for any static data capture items defined for a policy rule
with an event action.

PGCSDB Storage for channel container segments, including segment headers.

PGPPTE64 Storage for application context data control blocks.

SMSHRC64 Used for many control blocks of SHARED_CICS64 class storage.

SOGNRL6 Storage for HTTPS data for the sockets domain.

TSDTN Temporary storage (TS) digital tree nodes.

TSMAIN Storage for main temporary storage.

TSMN0064 Fixed length elements for main temporary storage items that have lengths, including
the header, less than or equal to 64 bytes. The header length is 8 bytes.

TSMN0128 128-byte fixed length elements for main temporary storage items.

TSMN0192 192-byte fixed length elements for main temporary storage items.

TSMN0256 256-byte fixed length elements for main temporary storage items.

TSMN0320 320-byte fixed length elements for main temporary storage items.

TSMN0384 384-byte fixed length elements for main temporary storage items.

TSMN0448 448-byte fixed length elements for main temporary storage items.

TSMN0512 512-byte fixed length elements for main temporary storage items.

112 CICS TS for z/OS: Performance Guide

Table 12. CICS subpools in the GCDSA (continued)

Subpool name Description

TSMN0576 576-byte fixed length elements for main temporary storage items.

TSMN0640 640-byte fixed length elements for main temporary storage items.

TSMN0704 704-byte fixed length elements for main temporary storage items.

TSMN0768 768-byte fixed length elements for main temporary storage items.

TSMN0832 832-byte fixed length elements for main temporary storage items.

TSMN0896 896-byte fixed length elements for main temporary storage items.

TSMN0960 960-byte fixed length elements for main temporary storage items.

TSMN1024 1024-byte fixed length elements for main temporary storage items.

TSQUEUE TS queue descriptors.

TSTSI TS item descriptors.

WB64GNRL Storage for HTTP data for the Web domain (WB).

WBOUTB64 A general subpool for Web domain (WB) outbound use.

WU_64 Storage for CMCI retained results and metadata.

XMGEN64 A general subpool for 64-bit storage.

CICS subpools in the GSDSA
The subpools in the above-the-bar shared dynamic storage area (GSDSA) are listed, together with the use
of each one.

Table 13. CICS subpools in the GSDSA

Subpool name Description

DFHAPU64 A general subpool for application domain storage above the bar.

SMSHRU64 Used for many control blocks of SHARED_USER64 class storage.

CICS kernel storage
CICS kernel storage consists of control blocks and data areas that CICS requires to manage system and
user tasks throughout CICS execution. Most of this storage is allocated from the CICS DSAs. A small
amount of this storage is allocated from MVS storage.

The kernel recognizes two types of task: static tasks and dynamic tasks. The kernel storage for static
tasks is preallocated and is used for tasks controlled by the MXT mechanism. The storage for dynamic
tasks is not preallocated and is used for tasks, such as system tasks, which are not controlled by the MXT
value. Because the storage for dynamic tasks is not preallocated, the kernel might need to use a
GETMAIN command to obtain the storage required to attach a dynamic task when the task is attached.

The number of static tasks depends on the current MXT value. There are MXT+1 static tasks. The storage
for static tasks is always obtained by GETMAIN from the CICS DSAs. If MXT is lowered, the storage for an
excess number of static tasks is freed again.

During early CICS initialization, the kernel allocates storage for eight dynamic tasks. This storage is
obtained by GETMAIN from MVS and is always available for use by internal CICS tasks. All other storage
for dynamic tasks is then allocated, as needed, from the CICS DSAs. Typically, when a dynamic task ends,
its associated storage is freed.

The storage that CICS allocates during task initialization for a single task is the same for a static or
dynamic task, as follows:

Chapter 2. Improving the performance of a CICS system 113

• A 1576-byte kernel task entry
• A 28K 31-bit stack

The allocated storage is all above the 16 MB line. CICS no longer allocates a 24-bit stack (below the line)
for each task during task initialization.

In addition to the storage allocated at task initialization, the kernel also allocates pools of extension stack
segments both above and below the 16 MB line.

• The size of each 31-bit extension stack segment (above the line) is 8 KB. Any task can use these
extension stack segments if it overflows the 31-bit stack storage allocated to it. CICS preallocates a
pool containing a number of 31-bit extension stack segments that is determined by dividing the current
MXT value by 10.

• The size of each 24-bit extension stack segment (below the line) is 4 KB. Tasks obtain these extension
stack segments whenever they require 24-bit stack storage. CICS preallocates a reserve pool of 24-bit
extension stack segments that tasks can use if no other 24-bit stack storage is available.

When the kernel obtains storage using GETMAIN from the CICS DSAs, the following subpools are used:
KESTK24E in the CDSA

4 KB extension stack segments, 24-bit
KESTK31 in the ECDSA

28 KB stack segments, 31-bit
KESTK31E in the ECDSA

8 KB extension stack segments, 31-bit
KETASK in the ECDSA

1576-byte kernel task entries

64-bit MVS storage
64-bit MVS storage is available to the operating system to perform region-related services.

For information about 64-bit (above-the-bar) storage in an address space, see Using the 64-bit Address
Space in the z/OS MVS Programming: Extended Addressability Guide.

If you run Java programs in a region, CICS uses the 64-bit JVM on z/OS. 64-bit MVS storage is allocated to
each JVM that runs under the control of CICS.

For other CICS facilities that use 64-bit MVS storage, see “CICS facilities that use 64-bit storage” on page
85.

MVS storage below 2 GB
MVS storage below 2 GB is available to the operating system to perform region-related services in
response to an operating system macro or SVC issued by the region.

For example, languages and components such as Java, Node.js, VSAM, DL/I, or Db2 issue MVS GETMAIN
requests to obtain storage in which to build control blocks. These requests are met from MVS storage
below 2 GB.

MVS storage is the amount of storage that remains after the dynamic storage areas and other CICS
storage requirements are met. The size of MVS storage below 2 GB depends on MVS GETMAIN
requirements during the execution of CICS. Opening files is the major contributor to usage of this area.

MVS storage below 2 GB is used to contain the following items:

• Control blocks and data areas that are required to open data sets, or for other operating system
functions

• Program modules for the access method routines that are not already resident in the link pack area
(LPA)

• Shared routines for the COBOL and PL/I programs

There are four major elements of virtual storage in MVS storage below 2 GB. Each storage area below 16
MB is duplicated above 16 MB.

114 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/u64bit.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/u64bit.htm

• The common area below 16 MB
• The private area below 16 MB
• The extended common area above 16 MB
• The extended private area above 16 MB

Storage when CICS uses other products

The VSAM buffers and most of the VSAM file control blocks reside above 16 MB. The VSAM buffers might
be for CICS data sets defined as using local shared resources (LSR) or nonshared resources (NSR). The
VSAM LSR pool is built dynamically above 16 MB when the first file specified as using it is opened, and
deleted when the last file using it is closed. Every opened data set requires some amount of storage in
this area for such items as input/output blocks (IOBs) and channel programs.

Files that are defined as data tables use storage above 16 MB for records that are included in the table,
and for the structures that allow them to be accessed.

Queued sequential access method (QSAM) files require some storage in this area. Transient data uses a
separate buffer pool above 16 MB for each type of transient data queue. Storage is obtained from the
buffer pool for transient data queue resources as they are installed. Transient data also uses a buffer pool
above 16 MB where sections of extrapartition transient data queue definitions are copied for use by
QSAM, when an extrapartition queue is being opened or closed.

CICS DBCTL uses DBCTL threads. DBCTL threads are specified in the CICS address space but they have
storage requirements in the high private area of the CICS address space. If CICS uses Db2, MVS storage is
allocated for each Db2 thread.

MVS storage limits

The physical placement of the MVS storage below 2 GB can be anywhere in the region, and might
sometimes be above the CICS region. The region might expand into this MVS storage area, above the
region, up to the IEALIMIT set by the installation or up to the default value. For more information about
IEALIMIT, see z/OS MVS Installation Exits. This expansion occurs when operating system GETMAIN
requests are issued, the MVS storage in the region is exhausted, and the requests are met from the MVS
storage area above the region.

When both the MVS storage areas below 2 GB are exhausted, the GETMAIN request fails, causing abends
or a bad return code if it is a conditional request.

The amount of MVS storage below 2 GB must be enough to satisfy the requests for storage during the
entire execution of the CICS region. You must use caution; you never want to run out of MVS storage, but
you also do not want to allocate too much.

The size of MVS storage below 2 GB is the storage that remains in the region after allowing for the storage
required for the dynamic storage areas, the kernel storage areas, and the IMS/VS and DBRC module
storage. It is important to specify the correct DSA sizes so that the required amount of MVS storage is
available in the region.

Because of the dynamic nature of a CICS system, the demands on MVS storage varies through the day,
that is, as the number of tasks increases or data sets are opened and closed. Also, because of this
dynamic use of MVS storage, fragmentation occurs, and you must allocate additional storage to
compensate for this. For more information, see Calculating storage requirements for JVM servers .

The MVS common area
The MVS common area contains a number of nucleus, queue, link pack, common service, and storage
areas.

The following areas comprise the MVS common area:

• Nucleus and extended nucleus
• System queue area (SQA and ESQA)
• Link pack areas (PLPA, MLPA, and CLPA)

Chapter 2. Improving the performance of a CICS system 115

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae400/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/java/jvmserver_storage.html

• Common service areas (CSA and ECSA)
• Prefixed storage area (PSA).

All these elements of the common area, except the PSA, are duplicated above 16 MB.

Figure 17. Virtual storage map

MVS nucleus and MVS extended nucleus
The MVS nucleus and MVS extended nucleus is a static area that contains the nucleus load module and
extension to the nucleus. Although its size is variable depending on the configuration of an installation, it
cannot change without a re-IPL of MVS.

The nucleus area below 16 MB does not include page frame table entries, and the size of the nucleus area
is rounded up to a 4 KB boundary. In addition, the nucleus area is positioned at the top of the 16 MB map
while the extended nucleus is positioned just above 16 MB.

System queue area (SQA) and extended system queue area (ESQA)
This area contains tables and queues relating to the entire system. Its contents are highly dependent on
configuration and job requirements at an installation.

The total amount of virtual storage, number of private virtual storage address spaces, and size of the
installation performance specification table are some of the factors that affect the system's use of SQA.
The size of the initial allocation of SQA is rounded up to a 64 KB boundary, though SQA may expand into
the common system area (CSA) in increments of 4 KB.

If the SQA is overallocated, the virtual storage is permanently wasted. If it is underallocated, it expands
into CSA, if required. In a storage constrained system, it is better to be slightly underallocated. This can
be determined by looking at the amount of free storage. If the extended SQA is underallocated, it expands
into the extended CSA. When both the extended SQA and extended CSA are used up, the system
allocates storage from SQA and CSA below the 16 MB line. The allocation of this storage could eventually
lead to a system failure, so it is better to overallocate extended SQA and extended CSA.

Link pack area (LPA) and extended link pack area (ELPA)
The link pack area (LPA) contains all the common reentrant modules that are shared by the system.

The link pack area (LPA) can provide the following:

116 CICS TS for z/OS: Performance Guide

• Economy of real storage by sharing one copy of the modules
• Protection: LPA code cannot be overwritten, even by key 0 programs
• Reduced path length, because modules can be branched to.

It has been established that a 2 MB LPA is sufficient for MVS when using CICS with MRO or ISC, that is,
the size of an unmodified LPA as shipped by IBM. If it is larger, there are load modules in the LPA that
might be of no benefit to CICS. There might be SORT, COBOL, ISPF, and other modules that are benefiting
batch and TSO users. You must evaluate whether the benefits you obtain are worth the virtual storage
that they use. If modules are removed, check whether you need to increase the size of the regions they
run in to accommodate them.

The pageable link pack area (PLPA) contains supervisor call routines (SVCs), access methods, and other
read-only system programs, along with read-only re-enterable user programs selected by an installation
to be shared among users of the system. Optional functions or devices selected by an installation during
system generation add additional modules to the PLPA.

The modified link pack area (MLPA) contains modules that are an extension to the PLPA. The MLPA can be
changed at IPL without requiring the create link pack area (CLPA) option at IPL to change modules in the
PLPA.

Common service area (CSA) and extended common service area (ECSA)
The CSA and ECSA contain pageable system data areas that are addressable by all active virtual storage
address spaces.

These service areas contain, for example, buffers or executable modules for IMS, ACF/SNA, and JES3.
CSA and ECSA also contain control blocks that are used to define subsystems and provide working
storage for areas such as TSO input/output control (TIOC), event notification facility (ENF), and message
processing facility (MPF). When system configuration and activity increases, the storage requirements
also increase.

CICS uses the ECSA for multiregion operation (MRO) to store control blocks only and not for data transfer.
If cross-memory facilities are used, the ECSA usage is limited to the following amounts:

• 40 bytes per session if IRC (interregion communication) is open, irrespective of whether the resource is
acquired and inservice, or released

• 4 KB per address space participating in MRO

In addition, the amount of storage used by CICS MRO for interregion buffers is detailed in the DFHIR3794
message issued to the CSMT destination at termination.

CICS also uses ECSA for IMS and shared data tables.

For static systems, the amount of unallocated CSA should be around 10% of the total allocated CSA; for
dynamic systems, a value of 20% is optimal. Unlike the SQA, if CSA is depleted there is no scope for
expansion and a re-IPL might be required.

Prefixed storage area (PSA)
The PSA contains processor-dependent status information such as program status words (PSWs). There
is one PSA per processor; however, all of them map to virtual storage locations 0 KB to 4 KB as seen by
that particular processor.

MVS treats this as a separate area; there is no PSA in the extended common area.

Private area and extended private area
The portion of the user private area in each virtual address space that is available to the user's application
program is referred to as its region. Except for the 16 KB system region area, each storage area in the
private area has a counterpart in the extended private area.

The private area contains the following areas:

• A local system queue area (LSQA)
• A scheduler work area (SWA)

Chapter 2. Improving the performance of a CICS system 117

• Subpools 229 and 230 (the requestor protect key area)
• A 16 KB system region area (used by the initiator)
• A private user region for running programs and storing data.

See the virtual storage map for MVS in Figure 17 on page 116.

The private area user region can be any size up to the size of the entire private area (from the top end of
the prefixed storage area (PSA) to the beginning, or bottom end, of the common service area (CSA))
minus the size of LSQA, SWA, subpools 229 and 230, and the system region: for example, 220 KB. It is
recommended that the region is 420 KB less to allow for recovery termination management (RTM)
processing.

The segment sizes are one megabyte, therefore CSA is rounded up to the nearest megabyte. The private
area is in increments of one megabyte.

High private area
The area at the high end of the address space is not specifically used by CICS, but contains information
and control blocks that the operating system needs to support the region and its requirements.

The high private area consists of four areas:

• LSQA
• SWA
• Subpool 229
• Subpool 230

The usual size of the high private area varies with the number of job control statements, messages to the
system log, number of opened data sets, and use of the USS shared library region.

The total space used in this area is reported in the IEF374I message in the field labeled SYS=nnnnK at
job-step termination. A second SYS=nnnnK is issued, which refers to the high private area above 16 MB.
This information is also reported in the sample statistics program, DFH0STAT.

You cannot reduce the size of this area, except usage of the shared library region in the LSQA and subpool
229. For details on optimizing the use of the shared library, see Tuning the z/OS shared library region.

Subpool 229 is where the z/OS Communications Server stores inbound messages when CICS does not
have an open receive issued to the z/OS Communications Server. To determine whether this is happening,
use CICS statistics obtained following CICS shutdown. Compare the maximum number of RPLs that are
posted in the shutdown statistics with the RAPOOL value in the SIT. If these values are equal, subpool
229 is probably being used to stage messages, and the RAPOOL value should be increased.

In some situations, the way in which the storage in the high private area is used might cause an S80A
abend. There are at least two considerations:

• The use of MVS subpools 229 and 230 by access methods such as SNA.

SNA and VSAM might find insufficient storage for a request for subpools 229 and 230. Their requests
are conditional and so should not cause an S80A abend of the job step (for example, CICS).

• The MVS operating system itself, relative to use of LSQA and SWA storage during job-step initiation.

The MVS initiator's use of LSQA and SWA storage can vary, depending on whether CICS was started
using an MVS START command, or started as a job step as part of already existing initiator and address
space. Starting CICS with an MVS START command is better to minimize fragmentation in the space
above the region boundary. If CICS is a job step initiated in a previously started initiator's address
space, the way in which LSQA and SWA storage is allocated might reduce the apparently available
virtual storage because of increased fragmentation.

Storage above the region boundary must be available for use by the MVS initiator (LSQA and SWA) and the
access method (subpools 229 and 230).

Consider initiating CICS using an MVS START command, to minimize fragmentation of the space above
your specified region size. The more effective use of the available storage might avoid S80A abends.

118 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/java/dfht3gl.html

Your choice of sizes for the MVS nucleus, MVS common system area, and CICS region influences the
amount of storage available for LSQA, SWA, and subpools 229 and 230. It is unlikely that the sizes and
boundaries for the MVS nucleus and common system area can be changed easily. To create more space
for the LSQA, SWA, and subpools 229 and 230, you might need to decrease the region size.

For more information about subpools and managing private storage allocation, see Virtual storage
management in z/OS MVS Programming: Authorized Assembler Services Guide.

Local system queue area (LSQA)
This area generally contains the control blocks for storage and contents supervision. Depending on the
release level of the operating system, it can contain subpools 233, 234, 235, 253, 254, and 255.

The total size of LSQA is difficult to calculate because it depends on the number of loaded programs,
tasks, and the number and size of the other subpools in the address space. As a guideline, the LSQA area
usually runs between 40 KB and 170 KB, depending on the complexity of the rest of the CICS address
space.

The storage control blocks define the storage subpools in the private area, describing the free and
allocated areas within those subpools. They can consist of such things as subpool queue elements
(SPQEs), descriptor queue elements (DQEs), and free queue elements (FQEs).

The contents management control blocks define the tasks and programs in the address space, such as
task control blocks (TCBs), the various forms of request blocks (RBs), contents directory elements (CDEs),
and many more.

CICS DBCTL requires LSQA storage for DBCTL threads. Allow 9 KB for every DBCTL thread, up to the
MAXTHRED value.

Scheduler work area (SWA)
The scheduler work area (SWA) is made up of subpools 236 and 237, which contain information about the
job and step itself. Almost anything that appears in the job stream for the step creates some kind of
control block here.

Generally, this area can be considered to increase with an increase in the number of DD statements. The
distribution of storage in subpools 236 and 237 varies with the operating system release and whether
dynamic allocation is used. The total amount of storage in these subpools starts at 100 to 150 KB, and
increases by about 1 to 1.5 KB per allocated data set.

A subset of SWA control blocks can, optionally, reside above 16 MB. JES2 and JES3 have parameters that
control this. If this needs to be done on an individual job basis, the SMF exit, IEFUJV, can be used.

Subpool 229
This subpool is used primarily for the staging of messages. JES uses this area for messages to be printed
on the system log and JCL messages as well as SYSIN/SYSOUT buffers.

Generally, a value of 40 KB to 100 KB is acceptable, depending on the number of SYSIN and SYSOUT data
sets and the number of messages in the system log.

Subpool 230
This subpool is used by the z/OS Communications Server for inbound message assembly for segmented
messages. Data management keeps data extent blocks (DEBs) here for any opened data set.

Generally, the size of subpool 230 increases as the number of opened data sets increases. Starting with
an initial value of 40 KB to 50 KB, allow 300 to 400 bytes per opened data set.

CICS DBCTL requires subpool 230 storage for DBCTL threads. Allow 3 KB for every DBCTL thread, up to
the MAXTHRED value.

Chapter 2. Improving the performance of a CICS system 119

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/vsmchap.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/vsmchap.htm

MVS storage above region
MVS storage above region is the storage that is left between the top of the region and the bottom of the
high private area. Usually 200 KB to 300 KB of free storage is maintained to allow for use by the
termination routines if these is an abend.

If this free storage is not enough for recovery termination management (RTM) processing, the address
space might be terminated with a S40D abend that does not produce a dump.

This area can be very dynamic. As the high private area grows, it extends down into this area, and the
CICS region can extend up into this area up to the value specified in IEALIMIT.

Splitting online systems: virtual storage
To increase the virtual storage available to a CICS system, you can split the system into two or more
separate address spaces. Splitting a system can also provide higher availability, and you can use
multiprocessor complexes to the best advantage because a system can then operate on each processor
concurrently. Most CICS systems can be split.

To tune CICS to get more virtual storage, you must first tune MVS and then CICS. If, after you have tuned
MVS common virtual storage, you still cannot run CICS in a single address space, you must then consider
splitting the CICS workload into multiple address spaces. The new address spaces require more real
storage, but the potential savings in virtual storage from splitting CICS regions are significant. You can
split a CICS system by application function, by CICS function (such as a file owning or terminal owning
region), or by a combination of the two functions.

Many installations find it convenient to split their CICS workloads into multiple independent address
spaces, where the workload is easily definable and no resource sharing is required. If you can readily
isolate application subsystems and their associated terminals, programs, and data sets, it is reasonable
to split a single CICS address space into two or more independent address spaces. They become
autonomous regions with no interactions.

If you can split a CICS system completely, with no communication required between the two parts, you
reduce overheads and planning. If the new systems must share data, programs, or terminals, you can use
CICS intercommunication. You can use IPIC (IP interconnectivity) connections, ISC over SNA
(intersystem communication over SNA) connections, or MRO (multiregion operation) to connect CICS
regions to each other. For descriptions of the CICS intercommunication methods and the facilities that are
available with each method, such as transaction routing and function shipping, see Introduction to CICS
intercommunication.

You can also consider creating additional copies of a CICS region, and using CICS intercommunication to
provide transaction routing between them. If additional virtual storage is needed, it is reasonable, for
example, to split the AOR into two or more additional CICS copies. When you split the system either
partially or completely, you can reduce the amount of virtual storage needed for each region by removing
any unused resident programs. Removing unused programs reduces the size of the relevant DSA.

CICS intercommunication uses additional processor cycles, and it can affect response time as well as
processor time. The cost of intercommunication varies depending on the connection type (IPIC, MRO, or
ISC over SNA), and on the intercommunication facilities that you use over that connection. For
information about the performance considerations for different intercommunication methods and
facilities, see “CICS MRO, ISC, and IPIC: performance and tuning” on page 141.

You might have to adjust certain parameters, such as MXT, when CICS systems are split. In an MRO
system with function shipping, tasks of longer duration might also require further adjustment of MXT and
other parameters (for example, file string numbers, virtual storage allocation).

If you plan to use MRO, consider sharing CICS code or application code using the MVS link pack area
(LPA). Note that the LPA saves real storage, not virtual storage, and other non-CICS address spaces. Use
of LPA for the eligible modules in CICS is controlled by the system initialization parameter LPA=YES,
which tells CICS to search for the modules in the LPA. For further information about the use of the LPA,
see “Using modules in the link pack area (LPA/ELPA)” on page 121.

120 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht11f.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht11f.html

Using modules in the link pack area (LPA/ELPA)
Some CICS management and user modules can be moved into the link pack area (LPA) or the extended
link pack area (ELPA). For systems running multiple copies of CICS, this can allow those multiple copies to
share the same set of CICS management code.

There are a number of benefits of placing code in the LPA or ELPA:

• The code is protected from possible corruption by user applications. Because the LPA or ELPA is in
protected storage, it is virtually impossible to modify the contents of these programs.

• Performance can be improved and the demand for real storage reduced if you use the LPA or ELPA for
program modules. If more than one copy of the same release of CICS is running in multiple address
spaces of the same processor, each address space requires access to the CICS nucleus modules. These
modules may either be loaded into each of the address spaces or shared in the LPA or ELPA. If they are
shared in the LPA or ELPA, this can reduce the working set and therefore, the demand for real storage
(paging).

• You can decrease the storage requirement in the private area by judicious allocation of the unused
storage in the LPA or ELPA created by rounding to the next segment.

Putting modules in the LPA or ELPA requires an IPL of the operating system. Maintenance requirements
should also be considered. If test and production systems are sharing LPA or ELPA modules, you might
want to run the test system without the LPA or ELPA modules when new maintenance is being tested.

The disadvantage of placing too many modules in the LPA (but not the ELPA) is that it can become
excessively large. Because the boundary between the CSA and the private area is on a segment boundary,
this means that the boundary may move down one megabyte. The size of the ELPA is not usually a
problem.

Use the SMP/E USERMOD called LPAUMOD to select those modules that you want to use for the LPA. This
indicates the modules that are eligible for LPA or ELPA. You can use this USERMOD to move the modules
into your LPA library. All users with multiple CICS address spaces should put all eligible modules in the
ELPA.

LPA=YES must be specified in the system initialization table (SIT). Specifying LPA=NO allows you to test a
system with new versions of CICS programs (for example, a new release) before moving the code to the
production system. The production system can then continue to use modules from the LPA while you are
testing the new versions.

An additional control, the PRVMOD system initialization parameter, enables you to exclude particular
modules explicitly from use in the LPA.

For information on installing modules in the LPA, see Installing CICS modules in the MVS link pack area.

Selecting aligned or unaligned maps
CICS maps that are used by basic mapping support (BMS) can be defined as aligned or unaligned. In
aligned maps, the length field associated with a BMS data field in the BMS DSECT is always aligned on a
halfword boundary. In unaligned maps, the length field follows on immediately from the preceding data
field in the map DSECT. An aligned map is compiled with the AMAP option, and an unaligned one is
compiled with the MAP option. A combination of aligned and unaligned maps can be used.

In unaligned maps, there is no guarantee that the length fields in the BMS DSECT are halfword-aligned.
Some COBOL and PL/I Compilers, in this case, generate extra code in the program, copying the contents
of any such length field to, or from, a halfword-aligned work area when its contents are referenced or
changed.

Specifying map alignment increases the size of the BMS DSECT, at worst by one padding byte per map
data field, and marginally increases the internal path length of BMS in processing the map. The best
approach, therefore, is to use unaligned maps, except where the compiler being used would generate
inefficient application program code.

In COBOL, an unaligned map generates an unsynchronized structure. In PL/I, an unaligned map
generates a map DSECT definition as an unaligned structure. Correspondingly, aligned maps produce
synchronized structures in COBOL and aligned structures in PL/I.

Chapter 2. Improving the performance of a CICS system 121

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha11d.html

In CICS, BMS maps are always generated in groups (map sets). An entire map set must be defined as
aligned or unaligned. Also, maps can be used by application programs written in various languages. In
these cases, it is important to select the option that best suits the combination of programs and, if there is
any requirement for both aligned and unaligned maps, select the ALIGNED option.

Avoid converting maps, for example, from aligned to unaligned, because changing the map DSECT also
requires reassembly or recompilation of all application programs that reference it.

Map alignment is defined when maps are assembled. Aligned maps use the SYSPARM(A) option. The
BMS=ALIGN/UNALIGN system initialization parameter defines which type of map is being used.

The map and map set alignment option can also be specified when maps and map sets are defined using
the screen definition facility (SDF II) licensed program.

The importance of map alignment is demonstrated by inspecting programs that handle screens with many
fields. Try recompiling the program when the BMS DSECT is generated first without, and then with, the
map alignment option. If the program size, as indicated in the linkage edit map, drops significantly in the
second case, use aligned maps where possible.

Defining programs as resident, nonresident, or transient
Programs, map sets, and partition sets can be defined as RESIDENT(NO|YES) and USAGE(NORMAL|
TRANSIENT). Programs can be defined as RELOAD(NO|YES).

Any program defined in the CSD is loaded into the CDSA, RDSA, SDSA, ECDSA, ERDSA, or ESDSA on first
usage. RELOAD(YES) programs cannot be shared or reused. A program with RELOAD(YES) defined is only
removed following an explicit EXEC CICS FREEMAIN. USAGE(TRANSIENT) programs can be shared, but
are deleted when the use count falls to zero. RESIDENT(NO) programs become eligible for deletion when
the use count falls to zero. The CICS loader domain progressively deletes these programs as DSA storage
becomes constrained, deleting first the programs that are used infrequently.

RESIDENT(YES) programs are not normally deleted. If NEWCOPY runs for any program, a new copy is
loaded and used on the next reference and the old copy becomes eligible for deletion when its use count
falls to zero.

On a CICS warm start, an initial free area for the various resident program subpools is allocated. The size
of this area is based on the total lengths of all currently loaded resident programs as recorded during the
preceding CICS shutdown. When a resident program is loaded, CICS attempts to fit it into the initial free
area. If it does not fit, it is loaded outside the initial free area, and the space inside the initial free area
remains deallocated until other (smaller) resident programs are loaded into it. This situation can occur if a
resident program has increased its size since it was last loaded (before the last CICS shutdown). If the
program in question is large, storage problems can occur because of the large amount of unused storage
in the initial free area allocated for resident programs.

Because programs that are not in use are deleted on a least-recently-used (LRU) basis, define these
programs as RESIDENT(NO) unless there are particular reasons to favor particular programs by keeping
them permanently resident. Variations in program usage over time are automatically taken account of by
the LRU algorithm.

Therefore, a much-used nonresident program is likely to remain resident anyway, while during periods of
light usage, a resident program might be wasting the virtual storage it permanently occupies.

For programs written to run above the 16 MB line, specify EDSALIM large enough such that virtual storage
is not a constraint.

If a program is large or frequently updated such that its size increases, consider defining it as non-
resident and issuing a LOAD with the HOLD option as part of PLTPI processing.

You might define a program as RESIDENT for one of the following reasons:

• To avoid storage fragmentation, because all such programs are in a single block of storage (but not new
copies of programs).

• For programs that deal with potential crises (for example, CEMT).

122 CICS TS for z/OS: Performance Guide

• Where there is heavy contention on the DFHRPL or dynamic program LIBRARYs. However, contention is
usually handled by data set placement or other DASD tuning, or with use of MVS library lookaside to
maintain program copies in an MVS dataspace.

Putting application programs above 16 MB
CICS keeps RMODE(ANY) application programs in the EDSA, which is in MVS extended virtual storage
above 16 MB but below 2 GB (above the line). Work areas associated with the programs can also reside
above the line.

It is possible to LINK or XCTL between 64-bit, 31-bit, and 24-bit addressing mode (AMODE) programs.
You can convert programs to 31-bit or 64-bit addressing mode programs and move them above 16 MB
but below 2 GB to the extended private area. Moving programs above 16 MB but below 2 GB frees that
amount of virtual storage below 16 MB for other use.

See “Using modules in the link pack area (LPA/ELPA)” on page 121 for information about using programs
from the LPA or extended link pack area (ELPA).

Using the ELPA is better than using the extended private area when multiple address spaces are
employed, because the program is already loaded when CICS needs it, and real-storage usage is
minimized.

When running a CICS system that has transaction isolation enabled, performance benefits can be gained
by moving transactions and application programs above the line. Program work areas are then obtained
from the EUDSA, which has a 1 MB page size, rather than the UDSA, which has a 4 KB page size. This
facility is useful where there is demand for virtual storage up to the 16 MB line and there is sufficient real
storage. Because the reason for using virtual storage above the line is to make the space below 16 MB
available for other purposes, there is an overall increase in the demand for real storage when programs
are moved above 16 MB but below 2 GB.

When a COMMAREA is passed between programs running in different addressing modes, the following
restrictions apply:

• A COMMAREA passed from an AMODE(31) program to an AMODE(24) program must be able to be
processed by the AMODE(24) program, therefore it must not contain 31-bit addresses.

• A COMMAREA passed from an AMODE(64) program to an AMODE(31) program must be able to be
processed by the AMODE(31) program, therefore it must not contain 64-bit addresses.

• A COMMAREA passed from an AMODE(64) program to an AMODE(24) program must be able to be
processed by the AMODE(24) program, therefore it must not contain 64-bit or 31-bit addresses.

Programs that are to reside above the 16 MB line must be link-edited with the AMODE(31),RMODE(ANY)
options on the MODE statement of the link-edit.

Allocation of real storage when using transaction isolation
When transaction isolation is active, there is a cost in terms of real storage. If insufficient real storage is
allocated, paging problems can result, which then affect performance. The cost depends on the number
of subspaces in use in the system, and the size of the EDSALIM parameter.

Because the page size of the EUDSA is 1 MB, the value of EDSALIM is likely to be very large for a CICS
system that has transaction isolation active. This virtual storage needs to be mapped with page and
segment tables using real storage, so an increase in the real storage usage can occur. In addition to the
real storage used to map the virtual storage for the EDSALIM value, subspaces also require real storage.
For example:

• Each subspace requires 2.5 pages, where a page means a 4 KB page of real storage.
• Assuming that each transaction in the system requires a unique subspace, (transaction definition

TASKDATAKEY(USER) and ISOLATE(YES)), real storage required is the MXT value x 2.5 pages.
• If each transaction in the system requires a page of storage in the EUDSA (1 MB page), a page table is

required to map the storage. Real storage is the MXT value x 1 page.
• A further three pages are required, so the total of real storage is the MXT value x (1 + 2.5 pages) + 3

pages.

Chapter 2. Improving the performance of a CICS system 123

• All of this real storage is allocated from the ELSQA.

The figures for the real storage usage is in addition to that required for a CICS system that does not have
transaction isolation active. The CICS requirement for real storage varies depending on the transaction
load at any one time. As a guideline, each task in the system requires 9 KB of real storage. Multiply this
number by the number of concurrent tasks that can be in the system at any one time (governed by the
MXT system initialization parameter).

Limiting the expansion of subpool 229 using SNA pacing
Subpool 229 can be expanded if batch type terminals send data faster than a CICS transaction can
process that data. The use of secondary to primary pacing, sometimes called inbound pacing, limits the
amount of data queued in subpool 229 for any given batch terminal. The PACING parameter controls the
flow of traffic from the network control program (NCP) to the terminal and does not affect the processor
activity as such. The VPACING parameter controls the flow of traffic between the host and the NCP.

The VPACING parameter of the CICS APPL statement determines how many messages can be sent in a
session to the z/OS Communications Server application program by another SNA logical unit without
requiring that an acknowledgment (a pacing response) is returned. The host sends data path information
units (PIUs) according to the definition of the VPACING parameter. The first PIU in a group carries a
pacing indicator in the RH. When this PIU is processed by the NCP, the NCP sends a response to the host
with the same pacing indicator set to request a new pacing group so that, for every x PIUs to a terminal
and every y PIUs to a printer, the pacing response traffic must flow from the NCP to the host which, based
on the volume of traffic, might cause a significant increase in host activity.

Normally, the VPACING parameter is implemented when a shortage of NCP buffers requires controlling
the volume of flow between the host and the NCP. You can lessen the effect on the processor by
increasing the VPACING parameter to a value that the NCP can tolerate.

The PACING parameter is required for most printers, to match the buffer capacity with the speed of
printing the received data. Terminals do not normally require pacing unless there is a requirement to limit
huge amounts of data to one LU, as is the case with some graphics applications. Use of pacing to
terminals causes response time degradation. The combination of the PACING and VPACING parameters
causes both response time degradation and increased processor activity, and increased network traffic.

Specify the PACING and VPACING parameters for all terminals to prevent a “runaway” transaction from
flooding the SNA network with messages and requiring large amounts of buffer storage. If a transaction
loops while issuing SEND commands to a terminal, IOBUF (CSA storage) and NCP buffers can fill up
causing slowdowns and CSA shortage conditions.

Specify the PACING and VPACING parameters high enough so that normal data traffic can flow without
being regulated, but excessive amounts of data are prevented from entering the network and impairing
the normal flow of data.

For secondary to primary pacing, you must code in the following way:

• SSNDPAC=nonzero value in the LOGMODE entry pointed to by the secondary application program
• VPACING=nonzero value on the APPL definition for the secondary application.

The value used is coded on the VPACING parameter. If either of these values are zero, no pacing occurs.

Specify VPACING on the APPL statement defining the CICS region, and any nonzero value for the
SSNDPAC parameter on the LU statement defining the batch device. Ensure that the device supports this
form of pacing as specified in the component description manual for that device.

CICS storage protection facilities: Performance and tuning
The facilities that are related to storage protection are storage protection, transaction isolation, and
command protection. These facilities protect storage from user application code.
Storage protection

Protects CICS code and control blocks from being overwritten accidentally by user applications.

124 CICS TS for z/OS: Performance Guide

Transaction isolation
Offers protection against transaction data being overwritten accidentally by other user transactions.

Command protection
Ensures that an application program does not pass storage to CICS using the EXEC CICS interface,
which requires updating by CICS, although the application itself cannot update the storage.

Storage protection, transaction isolation, and command protection protect storage from user application
code. They add no benefit to a region where no user code is executed; that is, a pure terminal-owning
region (TOR) or a pure file-owning region (FOR) (where no distributed program link (DPL) requests are
function-shipped).

Transaction isolation and applications

When using transaction isolation, it is necessary to activate pages of storage to the allocated subspace of
the task. Before the storage is activated to the subspace, it is fetch protected so that the task cannot
access the storage. After the storage is activated to the subspace allocated to the task, the task has read
and write access to the storage. CICS must activate user storage to a subspace every time that the user
task invokes a GETMAIN command to get a new page of user-key task-lifetime storage. Some
performance cost is involved when activating storage to a subspace, so the activity should be kept to a
minimum.

Storage below the 16 MB line is activated in multiples of 4 KB. Storage above the line is activated in
multiples of 1 MB. So a user task that runs completely above the line is more likely to require only one
activate operation.

Link edit your programs by using RMODE(ANY) and define them as DATALOCATION(ANY). All transactions
should be defined as TASKDATALOC(ANY), thus reducing the number of storage activations.

When you need to obtain storage below the line, you can improve performance by obtaining all the
storage in one GETMAIN request, rather than several smaller GETMAIN requests. This also minimizes the
number of storage activate operations.

For more information, see MVS subspaces.

Tuning with Language Environment
When you run with Language Environment on CICS, there are several tuning actions you can take to
optimize performance. If Language Environment is active in a CICS address space, the runtime libraries of
the native language, such as COBOL or PL/I, are not needed. This means that CICS has a single interface
to all the language run times.

For more information about Language Environment, see Programming languages and Language
Environment.

Minimizing GETMAIN and FREEMAIN activity
One way to improve performance when you run programs with Language Environment is to reduce the
number of GETMAIN and FREEMAIN requests required to manage the storage that Language
Environment uses.

You can use the following system initialization parameters to minimize the number of GETMAIN and
FREEMAIN requests that CICS performs on behalf of Language Environment:

• AUTODST
• RUWAPOOL

You can use these two options together in any combination.

To check the benefit of using these functions, run a CICS storage report to show the number of GETMAIN
and FREEMAIN request in a region when either or both of the functions are active, and compare the
results with previous runs.

Chapter 2. Improving the performance of a CICS system 125

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp34j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/le/dfhp3_langenv_oview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/le/dfhp3_langenv_oview.html

AUTODST: Language Environment automatic storage tuning
You can optionally activate Language Environment's automatic storage tuning feature for CICS by setting
the CICS system initialization parameter AUTODST to YES. When this function is active, Language
Environment monitors each main program execution, and notes if any additional storage had to be
allocated for the program while it was active.

At the end of each program execution, if any additional storage had to be allocated, Language
Environment retains this information. Next time the program is executed, Language Environment
increases the initial storage allocation to include this extra storage. This process helps to minimize the
number of GETMAIN and FREEMAIN requests that CICS has to perform.

Automatic storage tuning is particularly helpful for programs that issue many dynamic calls, as such
programs can easily exceed their initial storage allocations. It also removes the need to tune storage
manually for individual COBOL programs.

However, you should be aware that once Language Environment has increased the initial storage
allocation for a program, it is never decreased. If a program execution requires an unusually large amount
of storage, perhaps because the user has activated a seldom-used function of the program, this amount
of storage is allocated for all subsequent executions of the program. So in rare cases, you can find that
automatic storage tuning leads to an excessive allocation of storage for some programs.

You can alter the behavior of the automatic storage tuning mechanism using the Language Environment
storage tuning user exit CEECSTX. The user exit can enable or disable automatic storage tuning for a
particular program, and you might find this useful if you have an application whose storage needs vary
greatly between different executions. It can also provide the starting values for initial storage allocation,
and you can use it to limit the maximum amount of storage that Language Environment will allocate
during the automatic storage tuning process.

If the CEECSTX user exit was previously used as your Language Environment storage tuning method, you
might find that the automatic storage tuning mechanism provides the same function, without the user
exit. You need to decide which mechanism to use as your main storage tuning method, because when you
are running CICS with automatic storage tuning, the CEECSTX user exit has limited function. Automatic
storage tuning operates by monitoring storage allocations, whereas the storage tuning user exit CEECSTX
monitors the actual storage used by the user application program. Despite this, automatic storage tuning
incurs less overhead than the tuning method based on the CEECSTX exit. Also, automatic storage tuning
provides tuning for each initial program invoked by a transaction, while the CEECSTX exit provides tuning
for only those programs contained in the table that the exit uses as its input. This means that automatic
storage tuning can provide a greater benefit by tuning the storage used by more programs.

For more information about CEECSTX, see z/OS Language Environment Customization.

RUWAPOOL: Run-unit work area pools
The system pathlength increases when a CICS application invoked by Language Environment issues an
EXEC CICS LINK request. Repeated EXEC CICS LINK calls to the same program invoked by Language
Environment result in multiple GETMAIN and FREEMAIN requests for run-unit work areas (RUWAs).

Using the system initialization parameter RUWAPOOL(YES) results in the creation of a run-unit work area
pool during task initialization. This pool is used to allocate RUWAs required by programs invoked by
Language Environment. This reduces the number of GETMAIN and FREEMAIN requests in tasks that
perform many EXEC CICS LINKS to programs invoked by Language Environment.

For more information about the RUWAPOOL system initialization parameter, see RUWAPOOL.

Language Environment run time options for AMODE (24) programs
The default Language Environment runtime options for CICS are ALL31(ON) and STACK(ANY). This means
all programs that require Language Environment must be capable of addressing 31-bit storage, that is,
must be AMODE(31), when Language Environment is enabled.

For AMODE(24) programs to run in a Language Environment-enabled CICS region, you can specify
ALL31(OFF) and STACK(BELOW) for those programs that must run below the 16 MB line. However, if you
change these options globally so that all programs use them, large amounts of storage will be allocated
below 16 MB, which might cause a short-on-storage condition. When the ALL31(OFF) option is used,

126 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ceea500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_ruwapool.html

Language Environment acquires some control blocks, for example the RUWA, both above and below the
16 MB line, and so additional GETMAIN and FREEMAIN requests are needed to manage the duplicate
control blocks.

You do not need to specify ALL31(OFF) as long as the program in question is the initial program invoked
by a transaction, because Language Environment acquires storage for the enclave (program) in the
correct addressing mode automatically. The exception is an AMODE(31) program that dynamically calls
an AMODE(24) program. In that situation, the dynamically called AMODE(24) program needs to specify
ALL31(OFF).

Using DLLs in C++
When each dynamic link library (DLL) is first loaded, the cost of initialization can be determined by the
size of writable static area required by the DLL. Initialization costs can be reduced by removing
unnecessary items from the writable static area.

When using DLLs, you should consider the following:

• Specifying the #pragma variable (x,NORENT). This places some read-only variables such as tables in
the code area.

• Specifying #pragma strings(readonly). This works for C code whose default is that literal strings are
modifiable. C++ already has literal strings as read only by default.

• Examine the prelinker map to determine the large areas. If you find, for example, @STATICC, you have
unnamed writable static objects such as strings or static variables.

Minimizing the time Language Environment spends writing dump output to transient data
queue CESE

The Language Environment runtime option TERMTHDACT controls the type and amount of diagnostic
output produced by Language Environment for an unhandled error.

Using TERMTHDACT(DUMP), TERMTHDACT(TRACE), TERMTHDACT(UADUMP), or
TERMTHDACT(UATRACE) can create a significant overhead in a production environment. These settings
can cause large amounts of traceback and Language Environment dump data to be written to the CESE
transient data queue.

If a traceback or CEEDUMP is not needed by the application environment, use TERMTHDACT(MSG) to
eliminate the performance overhead of writing formatted CEEDUMPs to the CICS transient data queue
CESE. If the traceback or CEEDUMP is required by the application, specify the CICSDDS option of
TERMTHDACT to direct the Language Environment diagnostic output to the CICS dump data set, rather
than to the CESE transient data queue.

Java applications: performance and tuning
You can improve the performance of your Java applications and the JVMs in which they run by analyzing
and tuning your CICS regions.

For more information about improving the performance of your Java applications, see Improving Java
performance.

For more information about using CICS statistics to manage and tune the Java workloads running in your
CICS regions, see JVM server statistics.

Chapter 2. Improving the performance of a CICS system 127

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/java/dfht3rp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/java/dfht3rp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_jvm_genintro.html

MVS and DASD: performance and tuning
Tuning CICS for virtual storage under MVS depends on several elements: z/OS systems tuning, z/OS
Communications Server SNA tuning, CICS tuning, and VSAM tuning. Because tuning is a top-down activity,
ensure that you have already made a vigorous effort to tune z/OS before tuning CICS.

Your main effort to reduce virtual storage constraint and to get relief is concentrated on reducing the life
of the various individual transactions; in other words, shortening task life. Upgrading your z Systems
hardware can be a fast path to shortening task life:

• The installation of a faster processor can cause the current instructions to be executed faster and,
therefore, reduce task life (internal response time), because more transactions can be processed in the
same period.

• Additional real storage, if page-ins are frequently occurring (if there are more than 5 to 10 page-ins per
second, CICS performance is affected), can reduce waits for the paging subsystem.

• Installing faster DASD can reduce the time spent waiting for I/O completion, and this shorter wait time
for paging operations, data set index retrieval, or data set buffer retrieval can also reduce task life in the
processor.

Look for the following indicators in your z/OS system to see if you have a problem with I/O specifically:

• Service level objectives are missed.
• Users complain about response times.
• I/O indicators show signs of stress, or you see high DEV DLY or USG for an important workload directly

in Monitor III reports.

For more information, see the section about analyzing I/O activity in z/OS Resource Measurement Facility
(RMF) Report Analysis.

MVS provides storage isolation for an MVS performance group, which allows you to reserve a specific
range of real storage for the CICS address space and to control the page-rates for that address space
based on the task control block (TCB) time absorbed by the CICS address space during execution.

You can isolate CICS data on DASD drives, strings, and channels to minimize the I/O contention suffered
by CICS from other DASD activity in the system. Few CICS online systems generate enough I/O activity to
affect the performance of CICS seriously if DASD is isolated in this manner.

So far (except when describing storage isolation and DASD sharing), we have concentrated on CICS
systems that run a stand-alone single CICS address space. The sizes of all MVS address spaces are
defined by the common requirements of the largest subsystem. If you want to combine the workload
from two or more processors onto an MVS image, you must be aware of the virtual storage requirements
of each of the subsystems that are to execute on the single-image processor. (For an overall description
of virtual storage, see “CICS virtual storage” on page 73.) Review the virtual storage effects of combining
the following kinds of workload on a single-image MVS system:

1. CICS and a large number (100 or more) of TSO users
2. CICS and a large IMS system
3. CICS and 5000 - 7500 SNA LU.

By its nature, CICS requires a large private region that might not be available when the common
requirements of the large system on these other subsystems are satisfied. If, after tuning the operating
system, SNA, VSAM, and CICS, you find that your address space requirements still exceed that available,
you can split CICS using one of three options:

1. Multiregion option (MRO)
2. Intersystem communication (ISC)
3. Multiple independent address spaces.

Adding large new applications or making major increases in the size of your SNA network places large
demands on virtual storage, and you must analyze them before implementing them in a production

128 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb500/toc.htm

system. Careful analysis and system specification can avoid performance problems arising from the
addition of new applications in a virtual-storage-constrained environment. If you have not made the
necessary preparations, you typically become aware of problems associated with severe stress only after
you have attempted to implement the large application or major change in your production system. Some
of these symptoms are:

• Poor response times
• Short-on-storage
• Program compression
• Heavy paging activity
• Many well-tested applications suddenly abending with new symptoms
• S80A and S40D abends
• S822 abends
• Dramatic increase in I/O activity on the DFHRPL concatenation or dynamic LIBRARY concatenation.

The rest of this section describes techniques that you can use to improve the performance of CICS under
MVS.

Networking and the z/OS Communications Server: performance and tuning
The performance of your SNA network and logical units (LUs) can be tuned in a number of different ways.

This section includes the following topics:

• https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.performance.doc/topics/
dfht34d.html

• “Setting the size of the receive-any input areas” on page 131
• “Setting the size of the receive-any pool” on page 132
• “Using the MVS high performance option with SNA” on page 133
• “Adjusting the number of transmissions in SNA transaction flows” on page 134
• Using SNA chaining to segment large messages
• “Limiting the number of concurrent logon and logoff requests” on page 136
• “Adjusting the terminal scan delay” on page 137
• “Compressing output terminal data streams” on page 138
• Turning automatic installation of terminals

Setting the size of the terminal input and output area
The IOAREALEN attribute of a TYPETERM RDO resource definition specifies the size of the terminal input
and output area that is to be passed to a transaction. The size of the TIOA can also be specified by the
TIOAL parameter in the DFHTCT TYPE=REMOTE macro, if macro resource definition has been used.

The syntax for the IOAREALEN attribute in a TYPETERM RDO resource definition is ({0|value1},{0|value2}).
This setting is used only for the first input message for all transactions. One value defining the minimum
size is used for non-SNA devices, while two values specifying both the minimum and maximum size are
used for SNA devices.

If you specify ATI(YES), you must specify an IOAREALEN value of at least one byte.

Effects

When value1,0 is specified for IOAREALEN, value1 is the minimum size of the terminal input/output area
that is passed to an application program when a RECEIVE command is issued. If the size of the input
message exceeds value1, the area passed to the application program is the size of the input message.

Chapter 2. Improving the performance of a CICS system 129

https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.performance.doc/topics/dfht34d.html
https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.performance.doc/topics/dfht34d.html
https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.performance.doc/topics/dfht33j.html
https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.performance.doc/topics/dfht33o.html

When value1, value2 is specified, value1 is the minimum size of the terminal input/output area that is
passed to an application program when a RECEIVE command is issued. Whenever the size of the input
message exceeds value1, CICS uses value2. If the input message size exceeds value2, the node abnormal
condition program sends an exception response to the terminal.

Limitations

Real storage can be wasted if the IOAREALEN (value1) value, or the value for the TIOAL parameter in the
DFHTCT TYPE=REMOTE macro, is too large for most terminal inputs in the network. However, if
IOAREALEN (value1) or TIOAL is smaller than most initial terminal inputs, excessive GETMAIN requests
can occur, resulting in additional processor requirements, unless IOAREALEN (value1) or TIOAL is zero.

Suggestions

Set IOAREALEN (value1) or TIOAL to a value that is slightly larger than the average input message length
for the terminal. The maximum value that can be specified for IOAREALEN or TIOAL is 32767 bytes.

If a value of nonzero is required, specify the most commonly encountered input message size. A multiple
of 64 bytes minus 21 allows for SAA requirements and ensures good use of operating system pages.

For the z/OS Communications Server, you can specify two values if inbound chaining is used. The first
value is the length of the normal chain size for the terminal and the second value is the maximum size of
the chain. The length of the TIOA presented to the task depends on the message length and the size
specified for the TIOA. See the following example:

Where x is any number of bytes, the following applies.

Without chain assembly:

If the TIOA size is specified as 20x
and the message length is 15x
then the TIOA acquired is 20x

If the TIOA size is specified as 20x
and the message length is 25x
then the TIOA acquired is 25x

With chain assembly:

If Value1 size is 20x
and Value2 size is 25x, then
if the length of a message is 15x
the TIOA acquired is 20x
and if the message length is 22x
the TIOA acquired is 25x

Figure 18. Message length and terminal input and output area length

Avoid specifying a value1 that is too large, for example, by matching it to the size of the terminal display
screen. This area is used only as input. If READ with SET is specified, the same pointer is used by
applications for an output area.

Avoid specifying a value1 that is too small, because extra processing time is required for chain assembly,
or data is lost if inbound chaining is not used.

In general, a value of zero is best because it causes the optimum use of storage and eliminates the
second GETMAIN request. If automatic transaction initiation (ATI) is used for that terminal, a minimum
size of one byte is required.

The second value for SNA devices is used to prevent terminal streaming, and so make it slightly larger
than the largest possible terminal input in the network. If a message larger than this second value is
encountered, a negative response is returned to the terminal, and the terminal message is discarded.

130 CICS TS for z/OS: Performance Guide

Monitoring

RMF and NetView Performance Monitor (NPM) can be used to show storage usage and message size
characteristics in the network.

Setting the size of the receive-any input areas
The system initialization parameter, RAMAX, specifies the size in bytes of the I/O area that is to be
allocated for each SNA receive-any operation. You can use the RAMAX system initialization parameter in
any networks that use the z/OS Communications Server SNA access method for LUs.

These storage areas are called receive-any input areas (RAIAs) and are used to receive the first terminal
input for a transaction from the SNA. All input from SNA comes in request/response units (RUs).

Storage for the RAIAs, which is above the 16 MB line, is allocated by the CICS terminal control program
during CICS initialization. This storage remains allocated for the entire execution of the CICS job step. The
size of this storage is the product of the RAPOOL and RAMAX system initialization parameters.

Effects

SNA attempts to put any incoming RU into the initial receive-any input area, which has the size of RAMAX.
If this area is not large enough, SNA creates a message indicating the problem and stating how many
extra bytes are waiting that cannot be accommodated.

RAMAX is the largest size of any RU that CICS can take directly in the receive-any command. It is a limit
against which CICS compares the indication from SNA of the overall size of the RU. If there is more, it is
saved by SNA, and CICS gets the rest in a second request.

With a small RAMAX, you reduce the virtual storage taken up in RAIAs. However, you risk more processor
usage in SNA tries again to get any data that could not fit into the RAIA.

For many purposes, the default RAMAX value of 256 bytes is adequate. If you know that many incoming
RUs are larger than this value, you can always increase RAMAX to suit your system.

For individual terminals, there are separate parameters that determine how large an RU is going to be
from these devices. It makes sense for RAMAX to be at least as large as the largest SENDSIZE attribute for
frequently used terminals.

Limitations

Real storage can be wasted with a high RAMAX value. If the RAMAX value is set too low, extra processor
time is needed to acquire additional buffers to receive the remaining data.

Suggestions

Set RAMAX with the size in bytes of the I/O area allocated for each receive-any request issued by CICS.
The maximum value is 32767. Because most inputs are 256 bytes, this size is the default value specified.

Set RAMAX to be slightly larger than your CICS system input messages. If you know the message length
distribution for your system, set the value to accommodate most of your input messages.

In any case, the size required for RAMAX need only take into account the first (or only) RU of a message.
Thus, messages sent using SNA chaining do not require RAMAX to be set based on their overall chain
length, but only on the size of the constituent RUs.

Do not specify a RAMAX value that is less than the RUSIZE (from the CINIT) for a pipeline terminal
because pipelines cannot handle over-length data.

Receive-any input areas are taken from a fixed-length subpool of storage. A size of 2048 might appear to
be adequate for two such areas to fit on one 4 KB page, but only 4048 bytes are available in each page, so
only one area fits on one page. Defining a size of 2024 ensures that two areas, including page headers, fit
on one page.

Chapter 2. Improving the performance of a CICS system 131

Monitoring

The size of RUs or chains in a network can be identified with an SNA line or buffer trace.

Setting the size of the receive-any pool
The RAPOOL system initialization parameter specifies the number of concurrent receive-any requests that
CICS is to process from the z/OS Communications Server for SNA.

RAPOOL determines how many receive-any buffers there are at any time. Therefore, if the z/OS
Communications Server for SNA has a lot of input simultaneously, it enables the z/OS Communications
Server to put all the messages directly into CICS buffers rather than possibly having to store them
elsewhere. The first operand (value1) is for non-HPO systems, the second operand (value2) is for HPO
systems.

The HPO value for the non-HPO operand is derived according to the formula shown in RAPOOL. The
second operand (value2) for HPO systems is used with minimal adjustment by the formula.

Effects

Initially, task input from a terminal or session is received by the SNA access method and is passed to
CICS if CICS has a receive-any request outstanding.

For each receive-any request, an SNA request parameter list (RPL), a receive-any control element (RACE),
and a receive-any input area (RAIA) are set aside. The RAIA value is specified by RAMAX (see “Setting the
size of the receive-any input areas” on page 131 for RAIA considerations). The total area set aside for
SNA receive-any operations is:

(maximum RAIA size + RACE size + RPL size) * RAPOOL

If HPO=YES, both RACE and RPL are above the 16 MB line.

In general, input messages up to the value specified in RAPOOL are all processed in one dispatch of the
terminal control task. Because the processing of a receive-any request is a short operation, at times more
messages than are specified in the RAPOOL value can be processed in one dispatch of terminal control.
This situation happens when a receive-any request completes before the terminal control program has
finished processing and there are additional messages from SNA.

The specified pool is used only for SNA receive-any processing of the first terminal message in a
transaction or the first input to start a task. RAPOOL does not affect further inputs for conversational tasks
or output. Additional inputs are processed with SNA receive-specific requests.

SNA posts the event control block (ECB) associated with the receive-any input area. CICS then moves the
data to the terminal I/O area (TIOA) ready for task processing. The RAIA is then available for reuse.

The significance of RAPOOL depends on the environment of the CICS system. For example, if HPO is used
then RAPOOL is significant.

Limitations

If the RAPOOL value is set too low, terminal messages might not be processed in the earliest dispatch of
the terminal control program, causing transaction delays during high-activity periods. For example, if you
use the default value and five terminal entries need to startup tasks, three tasks might be delayed for at
least the time required to complete the SNA receive-any request and copy the data and RPL. In general,
set no more than 5 to 10% of all receive-any processing at the RAPOOL ceiling, with none at the RAPOOL
ceiling if there is sufficient storage.

If the RAPOOL value is set too high, excessive virtual storage might be used, but does not affect real
storage because the storage is not page-fixed and is therefore paged out.

Suggestions

In some cases, it might be more economical for SNA to store the occasional peak of messages in its own
areas rather than for CICS to have many RAIAs, which are unused most of the time.

132 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_rapool.html

Furthermore, there are situations where CICS reissues a receive-any request as soon as it finds one
satisfied. It uses the same element over and over again in order to bring in any extra messages that are in
SNA.

CICS maintains a z/OS Communications Server VTAM RECEIVE ANY for n of the RPLs, where n is either
the RAPOOL value, or the MXT value minus the number of currently active tasks, whichever is the smaller.

Code RAPOOL with the number of fixed request parameter lists (RPLs) that you require. When it is not at
the MXT value, CICS maintains a receive-any request for each of these RPLs. The number of RPLs that you
require depends on the expected activity of the system, the average transaction lifetime, and the MXT
specified.

The RAPOOL value you set depends on the number of sessions, the number of terminals, and the ICVTSD
value (see “Adjusting the terminal scan delay” on page 137) in the system initialization table (SIT).
Initially, for non-HPO systems, set RAPOOL to 1.5 times your peak local transaction rate per second plus
the autoinstall rate. This value can then be adjusted by analyzing the CICS SNA statistics and by resetting
the value to the maximum RPLs reached. The RAPOOL value does not include MRO sessions, so set this
value to a low number in application-owning or file-owning regions (AORs or FORs).

For HPO systems, a small value (<= 5) is typically sufficient if specified through value2 in the RAPOOL
system initialization parameter. For example, RAPOOL=20 is specified as either RAPOOL=(20) or
RAPOOL=(20,5) to achieve the same effect.

Monitoring

The CICS SNA statistics contain values for the maximum number of RPLs posted on any one dispatch of
the terminal control program, and the number of times the RPL maximum was reached. This maximum
value can be greater than the RAPOOL value if the terminal control program is able to reuse an RPL during
one dispatch. See Interpreting z/OS Communications Server statistics for more information.

Using the MVS high performance option with SNA
The MVS high performance option (HPO) can be used for processing SNA requests. The purpose of HPO is
to reduce the transaction path length through the z/OS Communications Server.

The use of HPO and supervisor calls (SVCs) are specified in the system initialization table (SIT). If the
default SVC numbers are acceptable, no tailoring of the system is required.

Effects

HPO bypasses some of the validating functions performed by MVS on I/O operations, and implements
service request block (SRB) scheduling. This bypass shortens the instruction path length and allows some
concurrent processing on MVS images for the z/OS Communications Server operations because of the
SRB scheduling. This effect makes HPO useful in a multiprocessor environment, but not in a single
processor environment.

Limitations

HPO requires CICS to be authorized. Some risks with MVS integrity are involved because a user-written
module could be made to replace one of the CICS system initialization routines and run in authorized
mode. This risk can be reduced by RACF protecting the CICS SDFHAUTH data set.

Use of HPO saves processor time, and does not increase real or virtual storage requirements or I/O
contention. An expense of HPO might be the potential security exposure that arises because of a
deficiency in validation.

Suggestions

All production systems with vetted applications can use HPO. It is application-transparent and introduces
no function restrictions while providing a reduced pathlength through the z/OS Communications Server.
For z/OS Communications Server, the reduced validation does not induce any integrity loss for the
messages.

Chapter 2. Improving the performance of a CICS system 133

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_rapool.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_mxt.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_vtam_about.html

Monitoring

There is no direct measurement of HPO. One method to check whether it is working is to take detailed
measurements of processor usage with HPO turned on (SIT option) and with it turned off. Depending on
the workload, you might not see much difference. Another way to check whether it is working is that you
might see a small increase in the SRB scheduling time with HPO turned on.

RMF can give general information about processor usage. An SVC trace can show how HPO was used.

Take care when using HPO in a system that is being used for early testing of a new application or CICS
code (a new release or PUT). Much of the pathlength reduction is achieved by bypassing control block
verification code in the z/OS Communications Server. Untested code might possibly corrupt the control
blocks that CICS passes to the z/OS Communications Server, and unvalidated applications can lead to
security exposure.

Adjusting the number of transmissions in SNA transaction flows
Within CICS, the MSGINTEG and ONEWTE options can be used to control the communication requests and
responses that are exchanged between the terminals in a network and the z/OS Communications Server
and NCP communication programs. These options can be used in all CICS systems that use the
Communications Server.

With resource definition online (RDO), protection can be specified in the PROFILE definition with the
MSGINTEG, and ONEWTE options. The MSGINTEG option is used with SNA logical units (LU) only. See
PROFILE resources for more information about defining a PROFILE resource.

Effects

One of the options in Systems Network Architecture (SNA) is whether the messages exchanged between
CICS and a terminal are to be in definite or exception response mode. Definite response mode requires
both the terminal and CICS to provide acknowledgment of message receipt from each other on a one-to-
one basis.

SNA also ensures message delivery through synchronous data link control (SDLC), so definite response is
not normally required. Specifying message integrity (MSGINTEG) causes the sessions for which it is
specified to operate in definite response mode.

In normal cases, the session between CICS and a terminal operates in exception response mode.

You therefore have the following options:

• Not specifying MSGINTEG
• Specifying MSGINTEG (which asks for definite response to be forced)

In SNA, transactions are defined within brackets. A begin bracket (BB) command defines the start of a
transaction, and an end bracket (EB) command defines the end of that transaction. Unless CICS knows
ahead of time that a message is the last of a transaction, it must send an EB separate from the last
message if a transaction terminates. The EB is an SNA command, and can be sent with the message,
eliminating one required transmission to the terminal.

Specifying the one write operation (ONEWTE) option for a transaction implies that only one output
message is to be sent to the terminal by that transaction, and allows CICS to send the EB along with that
message. Only one output message is allowed if ONEWTE is specified and, if a second message is sent, the
transaction is abended.

The second way to allow CICS to send the EB with a terminal message is to code the LAST option on the
last terminal control or basic mapping support SEND command in a program. Multiple SEND commands
can be used, but the LAST option must be coded for the final SEND in a program.

The third (and most common) way is to issue SEND without WAIT as the final terminal communication.
The message is then sent as part of task termination.

134 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/profile/dfha4_summary.html

Limitations

The MSGINTEG option causes additional transmissions to the terminal. Transactions remain in CICS for a
longer period, and tie up virtual storage and access to resources, primarily enqueues. MSGINTEG is
required if the transaction must know that the message was delivered.

When MSGINTEG is specified, the TIOA remains in storage until the response is received from the
terminal. This option might increase the virtual storage requirements for the CICS region because of the
longer duration of the storage needs.

Monitoring

You can monitor the use of the MSGINTEG and ONEWTE options from a Communications Server trace by
examining the exchanges between terminals and CICS and, in particular, by examining the contents of the
request/response header (RH).

Using SNA chaining to segment large messages
Systems Network Architecture (SNA) allows terminal messages to be chained, and lets large messages be
split into smaller parts while still logically treating the multiple message as a single message. Chaining
can be used in systems that use z/OS Communications Server SNA LUs of types that tolerate chaining.

Chaining characteristics are specified with the SENDSIZE, BUILDCHAIN, and RECEIVESIZE attributes.

The hardware requirements of each terminal normally dictate the input chain size and characteristics. The
BUILDCHAIN and RECEIVESIZE attributes have default values that depend on device attributes. The size
of an output chain is specified by the SENDSIZE attribute.

Effects

Because the network control program (NCP) also segments messages into 256 byte blocks for normal LU
Type 0, 1, 2, and 3 devices, a SENDSIZE value of zero eliminates the processing effects of output
chaining. A value of 0 or 1536 is required for local devices of this type.

If you specify the SENDSIZE attribute for intersystem communication (ISC) sessions, this attribute must
match the RECEIVESIZE attribute in the other system. The SENDSIZE attribute or TCT BUFFER operand
controls the size of the SNA element that is to be sent, and the RECEIVESIZE must match so that there is
a corresponding buffer of the same size able to receive the element.

If you specify BUILDCHAIN(YES), CICS assembles a complete chain of elements before passing them to
an application. If you do not specify BUILDCHAIN(YES), each individual RU is passed to an individual
receive-any in the application. With SNA/3270, BMS does not work correctly if you do not specify
BUILDCHAIN(YES).

If you are dealing with large inbound elements that exceed a maximum of 32 KB, you cannot use the
BUILDCHAIN attribute or CHNASSY operand. You must use multiple individual RUs, which extends the
transaction life in the system.

Limitations

If you specify a low SENDSIZE value, this setting causes additional processing. Real and virtual storage
are used to break the single logical message into multiple parts.

Chaining might be required for some terminal devices. Output chaining can cause flickering on display
screens, which users might find disruptive. Chaining also causes additional I/O processing effects
between the z/OS Communications Server and the NCP by requiring additional z/OS Communications
Server subtasks and STARTIO operations. These effects are eliminated with applicable ACF/SNA releases
by using the large message performance enhancement option (LMPEO).

Chapter 2. Improving the performance of a CICS system 135

Suggestions

The RECEIVESIZE value for IBM 3274-connected display terminals is 1024 and for IBM 3276-connected
display terminals it is 2048. These values give good line characteristics while keeping processor usage to
a minimum.

Monitoring

Use of chaining and chain size can be determined by examining a z/OS Communications Server trace. You
can also use the CICS internal and auxiliary trace facilities, where the VIO ZCP trace shows the chain
elements. Some network monitoring tools such as NetView Performance Monitor (NPM) give this data.

Limiting the number of concurrent logon and logoff requests
The OPNDLIM system initialization parameter defines the number of concurrent z/OS Communications
Server logon and logoff requests that are to be processed by CICS. This parameter can be used in CICS
systems that use the z/OS Communications Server as the terminal access method.

The OPNDLIM parameter can also be useful if there are times when all the user community tends to log on
or log off at the same time, for example, during lunch breaks.

This parameter limits the number of concurrent logon OPNDST and logoff CLSDST requests. The smaller
this value, the smaller the amount of storage that is required during the open and close process. For more
information about this parameter, see OPNDLIM system initialization parameter.

Each concurrent logon and logoff requires storage in the CICS dynamic storage areas for the duration of
that processing.

Effects

When logons occur automatically with either the CICS CONNECT=AUTO facility or the z/OS
Communications Server LOGAPPL facility, large numbers of logons can occur at CICS startup or restart
times.

The LOGAPPL facility offers two advantages if an automatic logon facility is required: it requires
approximately 3500 bytes less storage in the z/OS Communications Server than the CONNECT=AUTO
facility, and it logs terminals back on to CICS each time the device is activated to the z/OS
Communications Server, rather than only at CICS initialization.

Limitations

If the value specified for OPNDLIM is too low, real and virtual storage requirements are reduced within
CICS, and the z/OS Communications Server buffer requirements might be cut back, but session
initialization and terminations take longer.

Suggestions

Use the default value initially and adjust if statistics indicate that too much storage is required in your
environment or that the startup time is excessive.

Set OPNDLIM to a value not less than the number of logical units (LU) connected to any single z/OS
Communications Server line.

Monitoring

Logon and logoff activities are not reported directly by CICS or any measurement tools, but can be
analyzed using the information given in a z/OS Communications Server trace or z/OS Communications
Server display command.

136 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_opndlim.html

Adjusting the terminal scan delay
The terminal scan delay (ICVTSD) system initialization parameter determines the frequency with which
CICS attempts to process terminal output requests.

The ICVTSD system initialization parameter is defined in units of milliseconds. Use the commands CEMT
or EXEC CICS SET SYSTEM SCANDELAY (nnnn) to reset the value of ICVTSD.

In reasonably active systems, a nonzero ICVTSD virtually replaces ICV, because the time to the next
terminal control table (TCT) full scan (non-SNA) or sending of output requests (SNA) is the principal
influence on wait duration of the operating system.

The ICVTSD parameter can be used in all except very low-activity CICS systems.

In general, the ICVTSD value defines the time that the terminal control program must wait to process the
following requests:

• Non-SNA LU I/O requests with WAIT specified
• Non-SNA output deferred until task termination
• Automatic transaction initiation (ATI) requests
• SNA LU management, including output request handling, in busy CICS systems with significant

application task activity. This last case arises from the way that CICS scans active tasks.

On CICS non-SNA systems, the delay value specifies how long the terminal control program must wait
after an application terminal request, before it carries out a TCT scan. The value controls batching and
delay in the associated processing of terminal control requests. In a low-activity system, it controls the
dispatching of the terminal control program.

Effects in SNA networks

In SNA networks, a low ICVTSD value does not cause full TCT scans, because the input from or output to
SNA LU is processed from the activate queue chain, and only those terminal entries are scanned.

Request batching reduces processor time at the expense of longer response times. On CICS SNA
systems, it influences how quickly the terminal control program completes SNA request processing,
especially when the MVS high performance option (HPO) is being used.

With SNA LUs, CICS uses bracket protocol to indicate that the terminal is currently connected to a
transaction. The bracket is started when the transaction is initiated, and ended when the transaction is
terminated. Thus, there might be two outputs to the terminal per transaction: one for the data sent and
one when the transaction terminates containing the end bracket. In fact, only one output is sent (except
for WRITE/SEND with WAIT and definite response). CICS holds the output data until the next terminal
control request or termination. It saves processor cycles and line utilization by sending the message and
end bracket or change direction (if the next request was a READ/RECEIVE) together in the same output
message (PIU). When the system gets busy, terminal control is dispatched less frequently and becomes
more dependent upon the value specified in ICVTSD. Because CICS may not send the end bracket to SNA
for an extended period, the life of a transaction can be extended. Storage is kept allocated for that task for
longer periods, potentially increasing the amount of virtual storage required for the total CICS dynamic
storage areas. Setting ICVTSD to zero can overcome this effect

Effects in non-SNA networks

ICVTSD is the major control on the frequency of full TCT scanning of non-SNA LUs. In active systems, a
full scan is done approximately once every ICVTSD period. The average extra delay before sending an
output message is about half this period.

In non-SNA networks, partial scans occur for other reasons, such as an input arriving from a LU, and any
outputs for that line are processed at the same time. For that reason, a value of between 0.5 and one
second is normally a reasonable setting for non-SNA networks.

CICS scans application tasks first, unless there is a scan driven by ICVTSD. In a highly used system, input
and output messages might be unreasonably delayed if too large a ICVTSD value is specified.

Chapter 2. Improving the performance of a CICS system 137

Effects in all networks

The ICVTSD parameter can be changed in the system initialization table (SIT) or through JCL parameter
overrides. If you have virtual storage constraint problems, reduce the value specified in ICVTSD. A value
of zero causes the terminal control task to be dispatched most frequently. If you also have many non-SNA
LUs, this value might increase the amount of nonproductive processor cycles. A value of 100—300 ms
might be more appropriate for that situation. In a pure SNA environment, however, the processing effect
is not significant, unless the average transaction has a short pathlength. Set ICVTSD to zero for a better
response time and best virtual storage usage.

Limitations

In z/OS Communications Server (for SNA) systems, a low value adds the processing effect of scanning the
activate queue TCTTE chain, which is normally a minor consideration. A high value in high-volume
systems can increase task life and tie up resources owned by that task for a longer period, which can be a
significant consideration.

A low, nonzero value of ICVTSD can cause CICS to be dispatched more frequently, which increases the
processing effect of performance monitoring.

Suggestions

Set ICVTSD to a value less than the region exit time interval (ICV), which is also in the system initialization
table. Use the value of zero in an environment that contains only SNA LUs and consoles, unless your
workload consists of many short transactions.

Entering ICVTSD=0 in an SNA LU-only environment is not recommended for a CICS workload consisting
of low terminal activity but with high TASK activity. Periods of low terminal activity can lead to delays in
CSTP being dispatched. Setting ICVTSD=100-500 resolves this effect by causing CSTP to be dispatched
regularly. For non-SNA systems, specify the value of zero only for small networks (1 - 30 terminals).

For almost all systems that are not “pure” SNA, set the range somewhere in the region of 100 ms to 1000
ms. ICVTSD can be varied from 300 - 1000 ms without a significant effect on the response time, but
increasing the value decreases the processor activity effect. An ICVTSD larger than 1000 ms might not
give any further improvement in processor usage, at a cost of longer response times.

If ICVTSD is reduced, and if there is ample processor resource, a small reduction in response time can be
achieved. If you set the value below 250 ms, any improvement in response time is likely to seem
negligible to the user and would have an increased effect on processor usage.

The absolute minimum level, for systems that are not “pure” SNA, is approximately 250 ms, Or, in high-
performance, high-power systems that are “pure” SNA, the level is 100 ms.

Monitoring

Use RMF to monitor task duration and processor requirements. The dispatcher domain statistics reports
the value of ICVTSD.

Compressing output terminal data streams
For output messages, CICS provides user exits with access to the entire output data stream. User code
can be written to remove redundant characters from the data stream before the data stream is sent to the
terminal.

For z/OS Communications Server for SNA devices, the global user exit used to compress terminal
messages is XZCOUT1. For programming information, see SNA working-set module exits (XZCIN,
XZCOUT, XZCOUT1, and XZIQUE).

This compression technique can produce a dramatic improvement in response times if the proportion of
characters not needed is large, because telecommunication links are typically the slowest paths in the
network.

138 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3cv.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3cv.html

Limitations

Some additional processor cycles are required to process the exit code, and the coding of the exit logic
also requires some effort. Using a compression exit reduces the storage requirements of SNA and
reduces line transmission time.

Suggestions

The simplest operation is to replace redundant characters, especially blanks, with a repeat-to-address
sequence in the data stream for 3270-type devices.

Note: The repeat-to-address sequence is not handled quickly on some types of 3270 cluster controller.
In some cases, alternatives can give superior performance. For example, instead of sending a repeat-to-
address sequence for a series of blanks, consider sending an ERASE and then set-buffer-address
sequences to skip over the blank areas. This method is satisfactory if nulls are acceptable in the buffer as
an alternative to blanks.

Another technique for reducing the amount of data transmitted is to turn off any modified data tags on
protected fields in an output data stream. This method eliminates the need for those characters to be
transmitted back to the processor on the next input message, but review application dependencies on
those fields before you try this approach.

There might be other opportunities for data compression in individual systems, but you need to
investigate the design of those systems thoroughly before you can implement them.

Monitoring

The contents of output terminal data streams can be examined in an SNA trace.

Tuning automatic installation of terminals
During autoinstall processing, CICS obtains storage from the control subpool in the extended CICS
dynamic storage area (ECDSA), to handle each autoinstall request.

The amount of virtual storage obtained is determined by the length of the CINIT request unit, which varies
for different LU types. For a typical autoinstall request from an LU 6.2 terminal, the amount of dynamic
virtual storage obtained is 120 -250 bytes.

The principal consumer of CICS resource in autoinstall processing is the autoinstall task (CATA) itself. If,
for some reason, the autoinstall process is not proceeding at the rate expected during normal operations,
there is a risk that the system could be filled with CATA transaction storage.

Maximum concurrent autoinstalls

The AIQMAX system initialization parameter codes the maximum number of devices that can be queued
concurrently for autoinstall.

The AIQMAX value does not limit the total number of devices that can be autoinstalled.

The restart delay parameter

The AIRDELAY system initialization parameter specifies whether you want autoinstalled terminal
definitions to be retained by CICS across a restart.

The value of the restart delay is specified as hhmmss and the default is 000700, which is seven minutes.
This delay means that if a terminal does not log on to CICS within seven minutes after an emergency
restart, its terminal entry is scheduled for deletion.

Setting the restart delay to zero means that you do not want CICS to reinstall the autoinstalled terminal
entries from the global catalog during emergency restart. In this case, CICS does not write the terminal
entries to the catalog while the terminal is being autoinstalled. This setting can have positive performance
effects on the following processes:

Chapter 2. Improving the performance of a CICS system 139

Autoinstall
By eliminating the I/O activity, autoinstall has a shorter pathlength and becomes more processor-
intensive. So, in general, the time taken to autoinstall a terminal is reduced. However, the response
time of other tasks might increase slightly because CATA has a high priority and does not have to wait
for as much I/O activity.

Emergency and warm restart
When no autoinstalled terminal entries are cataloged, CICS has to restore fewer entries from the
global catalog data set during emergency restart. Thus, if you have many autoinstalled terminals, the
restart time can be improved when restart delay is set to zero.

Normal shutdown
CICS deletes AI terminal entries from the global catalog data set during normal shutdown unless they
were not cataloged (AIRDELAY=0) and the terminal has not been deleted. If the restart delay is set to
zero, CICS has not cataloged terminal entries when they were autoinstalled, so they are not deleted.
This setting can reduce normal shutdown time.

You must consider the risk of having some terminal users log on again because tracking has not
completed, against the benefits introduced by setting the restart delay to zero. Because catchup takes
only a few minutes, the chance of such a takeover occurring is typically small.

The delete delay parameter

The AILDELAY system initialization parameter lets you control how long an autoinstalled terminal entry
remains available after the terminal has logged off. The default value of zero means that the terminal
entry is scheduled for deletion as soon as the terminal is logged off. Otherwise, CICS schedules the
deletion of the TCTTE as a timer task.

In general, setting the delete delay to a nonzero value can improve the performance of CICS when many
autoinstalled terminals are logging on and off during the day. However, this setting does mean that
unused autoinstalled terminal entry storage is not freed for use by other tasks until the delete delay
interval has expired. This parameter provides an effective way of defining a terminal whose storage
lifetime is somewhere between the lifetime of an autoinstalled terminal and a statically defined terminal.

The effect of setting the delete delay to a nonzero value can have different effects depending on the value
of the restart delay:

Nonzero restart delay When the restart delay is nonzero, CICS catalogs autoinstalled terminal entries in
the global catalog.

If the delete delay is nonzero as well, CICS retains the terminal entry so that it is reused when the
terminal logs back on. This setting can eliminate the activities of:

• Deleting the terminal entry in virtual storage
• An I/O to the catalog and recovery log
• Rebuilding the terminal entry when the terminal logs on again.

Zero restart delay When the restart delay is zero, CICS does not catalog autoinstalled terminal entries in
the global catalog whatever value is specified for the delete delay.

If the delete delay is nonzero, CICS retains the terminal entry so that it is reused when the terminal logs
back on. This delay can save the processing effect of deleting the terminal entry in virtual storage and the
rebuilding of the terminal entry when the terminal logs on again.

Effects

You can control the use of resource by autoinstall processing in three ways:

1. By using the transaction class limit to restrict the number of autoinstall tasks that can exist
concurrently (see “Using transaction classes (MAXACTIVE) to control transactions” on page 63).

2. By using the CATA and CATD transactions to install and delete autoinstall terminals dynamically. If you
have many devices autoinstalled, shutdown can fail due to the MXT system initialization parameter
being reached or CICS becoming short on storage. To prevent this possible cause of shutdown failure,

140 CICS TS for z/OS: Performance Guide

consider putting the CATD transaction in a class of its own to limit the number of concurrent CATD
transactions.

3. By specifying AIQMAX to limit the number of devices that can be queued for autoinstall. This setting
protects against abnormal consumption of virtual storage by the autoinstall process, caused as a
result of some other abnormal event.

If this limit is reached, the AIQMAX system initialization parameter affects the LOGON and BIND
processing by CICS. CICS requests z/OS Communications Server to stop passing LOGON and BIND
requests to CICS. z/OS Communications Server holds such requests until CICS indicates that it can
accept further LOGONs and BINDs (occurs when CICS has processed a queued autoinstall request).

Suggestions

If the autoinstall process is noticeably slowed down by the AIQMAX limit, raise it. If the CICS system
shows signs of running out of storage, reduce the AIQMAX limit. If possible, set the AIQMAX system
initialization parameter to a value higher than the value reached during normal operations.

Settings of (restart delay=0) and (delete delay= hhmmss>0) are the most efficient for processor and DASD
utilization. However, this efficiency is gained at a cost of virtual storage, because the TCT entries are not
deleted until the delay period expires.

A value of zero for both restart delay and delete delay is the best overall setting for many systems from an
overall performance and virtual storage usage point of view.

If restart delay is greater than zero (cataloging active), the performance of autoinstall is affected by the
definition of the global catalog (DFHGCD). The default buffer specifications used by VSAM might not be
sufficient in a high activity system.

Because a considerable number of messages are sent to transient data during logon and logoff, consider
the performance of these output destinations.

Monitoring

Monitor the autoinstall rate during normal operations by inspecting the autoinstall statistics regularly.

CICS MRO, ISC, and IPIC: performance and tuning
Multiregion operation (MRO), intersystem communication over SNA (ISC over SNA), and IP
interconnectivity (IPIC) connections enable CICS systems to communicate and share resources with each
other. Performance is influenced by the intercommunication facilities that you use with the connection
and by your management of the connection.

These CICS intercommunication facilities are available using MRO, and ISC over SNA, and IPIC
connections:

• Function shipping
• Distributed transaction processing
• Asynchronous processing
• Transaction routing
• Distributed program link

For descriptions of the CICS intercommunication methods and facilities, see Introduction to CICS
intercommunication.

CICS ISC/IRC statistics show the frequency of use of intercommunication sessions and mirror
transactions. The z/OS Communications Server SNA trace, an SVC trace, and RMF give additional
information.

Chapter 2. Improving the performance of a CICS system 141

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht11f.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht11f.html

If each transaction makes a number of intercommunication requests, function shipping generally incurs
the most processor usage. The number of requests per transaction that constitutes the break-even point
depends on the nature of the requests.

Both distributed transaction processing (DTP) and asynchronous processing are, in many cases, the most
efficient facilities for intercommunication because a variety of requests can be batched in one exchange.
DTP, however, requires an application program specifically designed to use this facility.

Transaction routing, in most cases, involves one input and one output between systems, and the
additional processor usage is minimal.

MRO

Multiregion operation (MRO), in general, causes less processor usage than intersystem communication
(ISC) because the SVC pathlength is shorter than that through the multisystem networking facilities of
SNA. CICS MRO provides a long-running mirror transaction and fastpath transformer program to further
reduce processor usage.

Ensure that you have a sufficient number of MRO sessions defined between the CICS systems to take
your expected traffic load. The increased cost in real and virtual storage is minimal, and task life is
reduced, so the probable overall effect is to save storage. Examine the ISC/IRC statistics (see ISC/IRC
system and mode entry statistics) to ensure that no allocates have been queued; also ensure that all
sessions are being used. However, the definition of too many MRO sessions can unduly increase the
processor time used to test their associated ECBs.

If you want only transaction routing with MRO, the processor usage is relatively small. The figure is
release- and system-dependent (for example, it depends on whether you are using cross-memory
hardware), but you can assume a total cost somewhere in the range of 15 - 30 KB instructions per
message pair. This is a small proportion of most transactions, commonly 10% or less. The cost of MRO
function shipping can be very much greater, because typically each transaction has many more inter-CICS
flows. The cost depends greatly on the disposition of resources across the separate CICS systems.

MRO can affect response time as well as processor time. Delays occur in getting requests from one CICS
system to the next. These delays arise because CICS terminal control in either CICS system has to detect
any request sent from the other, and then has to process it. In addition, if you have a uniprocessor, MVS
has to arrange dispatching of two CICS systems and that must imply extra WAIT/DISPATCH processor
usage and delays.

Specify the system initialization parameter MROLRM=YES if you want to establish a long-running mirror
task. This saves re-establishing communications with the mirror transaction if the application makes
many function shipping requests in a unit of work.

When you use MRO, you can eliminate some processor usage for SVC processing with the use of MVS
cross-memory services. Cross-memory services use the MVS common system area (CSA) storage for
control blocks, not for data transfer, which can also be a benefit. Note, however, that MVS requires that an
address space using cross-memory services be nonswappable.

ISC

For situations where ISC is used across MVS images, consider using XCF/MRO. CICS uses the MVS cross-
system coupling facility (XCF) to support MRO links between MVS images for transaction routing, function
shipping, and distributed program link. You can also use XCF/MRO for distributed transaction processing,
if the LU6.1 protocol is adequate for your purpose. XCF/MRO consumes less processor resources than
ISC.

You can prioritize ISC mirror transactions. The CSMI transaction is for data set requests, CSM1 is for
communication with IMS systems, CSM2 is for interval control, CSM3 is for transient data and temporary
storage, and CSM5 is for IMS DB requests. If one of these functions is particularly important, you can
prioritize it over the rest. This prioritization is not effective with MRO because any attached mirror
transaction services any MRO request while it is attached.

If ISC facilities tend to flood a system, you can control them with the SNA VPACING facility. Specifying
multiple sessions (SNA parallel sessions) increases throughput by allowing multiple paths between the

142 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_iscirc.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_iscirc.html

systems. With CICS, you can specify an SNA class of service (COS) table with LU6.2 sessions, which can
prioritize ISC traffic in a network.

Interregion communication performance costs with MRO and ISC

Using the tables in these topics, you can compare the relative processing times of particular CICS API
calls, and examine some of the other factors that affect overall processing times. These tables can help
you make decisions concerning application design when you are considering performance. To calculate a
time for a transaction, find the entries appropriate to your installation and application, and add their
values together.

Before you work with these numbers, be aware of the following considerations:

• The cost per call is documented in 1 K or millisecond instruction counts taken from a tracing tool used
internally by IBM. Each execution of an instruction has a count of 1. No weighting factor is added for
instructions that use more machine cycles than others.

• Because the measurement consists of tracing a single transaction within the CICS region, any wait, for
example a wait for I/O, results in a full MVS WAIT. This cost has been included in the numbers reported
in this document. On a busy system the possibility of taking a full MVS WAIT is reduced because the
dispatcher has a higher chance of finding more work to do.

• When judging performance, the numbers in this information should not be compared with those
published previously, because a different methodology has been used.

Transaction routing performance costs

MRO XM MRO XCF (through CTC) MRO XCF (through CF) ISC LU6.2

37.0 43.0 66.0 110.0

Function shipping performance costs (MROLRM=YES)

Type MRO XM MRO XCF
(through CTC)

MRO XCF
(through CF)

Initiate®/terminate environment 13.2 13.2 13.2

Each function shipping request 9.0 23.4 48.4

Sync point flow 9.0 23.4 48.4

Notes:

• These costs relate to CICS systems with long-running mirrors.
• ISC LU6.2 does not support MROLRM=YES.
• The cost of session allocation, initiation of the mirror transaction, stopping the mirror transaction, and

session deallocation is included in the initiate/terminate environment.

For example, if you migrate from a local file access to MRO XM and request 6 function ships per
transaction, the additional cost is calculated as follows:

13.2(Initiate/End) + (6(requests)*9.0(Request cost)) + 9.0(Sync point) = 76.2

Function shipping performance costs (MROLRM=NO)
Without long-running mirrors, each function ship read request incurs the cost of session allocation and
mirror initialization and termination. However, the first change to a protected resource (for example, a
READ UPDATE or a WRITE) causes the session and mirror to be held until a sync point.

MRO XM MRO XCF (through CTC) MRO XCF (through CF) ISC LU6.2

21.4 35.0 59.9 115.0

Chapter 2. Improving the performance of a CICS system 143

IPIC

The CICS-supplied mirror program DFHMIRS is defined as a threadsafe program. For supported CICS
facilities, over IPIC connections only, the remote CICS region uses a threadsafe mirror transaction and
runs the request on an L8 open TCB whenever possible. For threadsafe applications that issue commands
for functions on remote CICS systems using IPIC connections, the reduction in TCB switching improves
application performance compared to other intercommunication methods. The use of open TCBs also
provides significant potential throughput improvements between CICS regions.

For some applications, the performance benefits of using long-running mirrors can also be significant.
IPIC supports the MIRRORLIFE attribute of the IPCONN, which can improve efficiency and provide
performance benefits by specifying the lifetime of mirror tasks and the amount of time a session is held.

IPIC supports threadsafe processing for the LINK command between CICS TS 4.2 or later regions. If you
are using a threadsafe program that makes DPL requests that are transmitted to another region using
IPIC connections, you might benefit from improved performance by changing your dynamic routing
program to be coded to threadsafe standards.

Function shipping file control, transient data, and temporary storage requests over an IPIC connection
provides CICS application programs with the ability to run without regard to the location of the requested
resources. Function shipping of file control and temporary storage requests using IPIC connections is
threadsafe between CICS TS 4.2 or later regions. Function shipping of transient data requests using IPIC
connections is threadsafe between CICS TS 5.1 or later regions. Any global user exit programs that are
called in the remote CICS region for file control, transient data, and temporary storage requests must be
enabled as threadsafe programs for the best performance.

For file control requests that are function shipped using IPIC connectivity, to gain the performance
benefits of the open transaction environment, you must specify the system initialization parameter
FCQRONLY=NO in the file-owning region.

Managing queues for intersystems sessions
When intersystems links are added to the system there is the possibility that they cannot respond
adequately to transaction requests because the remote system is performing badly.

The poor performance can be due either to a long-term condition, such as lack of resource or overloading,
or a temporary situation such as a memory dump being taken. In any case there is the danger that the
problem can cause a long queue to form in the requesting system.

Mechanisms are provided in CICS for:

• Protection of the requesting system from using too many resources while transactions queue for the
use of the intersystems sessions.

• Detection of problems in remote systems. CICS can issue messages to indicate a problem on an
intersystems connection and the parameters control the criteria that are used to determine when a
problem exists, or has gone away.

The two mechanisms are:

1. The QUEUELIMIT and MAXQTIME parameters on the connection resource definition.

The QUEUELIMIT parameter limits the number of transactions which can be queued in allocate
processing waiting for a session to become free. Any transactions which try to join a queue already at
its limit are rejected.

The MAXQTIME parameter is a control on the wait time of queued allocate requests that are waiting
for free sessions on a connection that appears to be unresponsive. If the rate of processing of the
queue indicates that a new allocate will take longer than the specified time to reach the head of the
queue, the whole queue is purged.

2. The XZIQUE user exit, which is given control when an allocate request is about to be queued, or the
first time it succeeds after a suspected problem. The XZIQUE exit can control the queue or you can use
it to add more sophisticated controls of your own.

144 CICS TS for z/OS: Performance Guide

Both mechanisms produce the same effect on the application program which issued the allocate; a
SYSIDERR condition is returned. Return codes are also provided to the dynamic routing program to
indicate the state of the queue of allocate requests.

XZIQUE exit for managing MRO and APPC intersystem queues gives programming information about the
XZIQUE exit and its relationship with the rest of CICS, including application programs and the dynamic
routing program.

Relevant statistics
You can use connection statistics to detect problems in a CICS intersystem environment.

For each connection CICS records the following:

• The number of allocates queued for the connection, and the peak value of this number. (Peak
outstanding allocates in the Connection statistics.)

You can use this statistic to see how much queuing normally takes place on connections in your system.
If there is occasionally a large queue you should consider controlling it. Are enough sessions defined?
has more advice on setting the correct number of sessions for your connections.

For each of the queue control mechanisms, CICS records the following statistics for each connection:

• The number of allocates which were rejected due to the queue becoming too large
• The number of times the queue was purged because the throughput was too slow
• The number of allocates purged due to slow throughput.

Interpreting ISC/IRC system and mode entry statistics also contains an explanation of these statistics,
and other connection statistics.

Ways of approaching the problem and recommendations
The queue limit mechanism can be used to control the number of tasks waiting for the use of an
intersystems link.

You should use the control to ensure that even at its maximum length the queue does not use too many of
the MXT slots in the system. You can also use the MAXACTIVE setting of a TRANCLASS definition if you
can segregate your transactions into classes that correspond to the remote regions they require.

To ensure free availability during normal running, provide a sufficient number of intersystems sessions.
Session definitions do not occupy excessive storage, and the occupancy of transaction storage probably
outweighs the extra storage for the session. The number of sessions should correspond to the peak
number of transactions in the system which are likely to use the connection—you can see the maximum
number of sessions being used from the terminal statistics for the connection. If all sessions are used, the
connections statistics show the number of times allocates were queued compared with the total number
of requests.

Even in a system that has no problems, there are significant variations in the numbers of transactions that
are active at any time, and the actual peak number might be larger than the average over a few minutes at
the peak time for your system. You should use the average rather than the actual peak; the queuing
mechanism is intended to cope with short-term variations, and the existence of a queue for a short time is
not a cause for concern.

The start of a queue is used by the queue limiting mechanism as a signal to start monitoring the response
rate of the connection. If queues never form until there is a large problem, the detection mechanism is
insensitive. If there are always queues in the system, you might experience false diagnosis.

You should set the queue limit to a number that is roughly the same size as the number of sessions—
within the limits imposed by MXT if there are many connections whose cumulative queue capacity would
reach MXT. In this latter case, design your own method—using ZXIQUE—of controlling queue lengths so
that the allocation of queue slots to connections is more dynamic.

The MAXQTIME parameter can be set to reflect the maximum wait time expected of users for responses
in case of potential problems. The MAXQTIME parameter should not be set at a low value in combination
with a queue limit that is low, because this leads to a sensitive detection criterion.

Chapter 2. Improving the performance of a CICS system 145

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3g7.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3ap.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_iscirc_system_about.html

Monitoring the settings
The number of allocates rejected by the queue control mechanism should be monitored. If there are too
many, it may indicate a lack of resources to satisfy the demands on the system—or poor tuning.

The number of times the queue is purged should indicate the number of times a serious problem occurred
on the remote system. If the purges do not happen when the remote system fails to respond, examine the
setting of the MAXQTIME parameter—it may be too high, and insensitive. If the indication of a problem is
too frequent and causes false alarms due to variations in response time of the remote system, the
parameter may be too low, or the QUEUELIMIT value too low.

Using transaction classes DFHTCLSX and DFHTCLQ2 to control storage use
Use DFHTCLSX and DFHTCLQ2 in RDO group DFHISCT to control the amount of storage used by CICS to
run the CLS1, CLS2, and CLQ2 transactions.

Effects

These tasks execute the activities needed to acquire an APPC conversation (CLS1/2), and to
resynchronize units of work for MRO and APPC connections (CLQ2). Typically there are not many tasks,
and they need no control. However, if your CICS system has many connection definitions, these
connections might be acquired simultaneously as a result of initializing the system at startup, or as a
result of a SET VTAM OPEN or SET IRC OPEN command.

Note: VTAM is now z/OS Communications Server.

How implemented

The system definitions are optional. Install resource group DFHISCT to activate them. As supplied, the
MAXACTIVE parameter in the DFHTCLSX and DFHTCLQ2 is 25. This value gives sufficient control to
prevent the system reaching a short-on-storage situation. Tasks CLS1 and CLS2 each require 12 KB of
dynamic storage, and CLQ2 tasks require up to 17 KB. Do not set the purge threshold to a non-zero
number and do not set the MAXACTIVE parameter to 0. Both values might prevent CICS from running
tasks necessary to intersystems functions.

Do not set the MAXACTIVE value too low, because network delays or errors might cause one of the tasks
in the TCLASS to wait and block the use of the TCLASS by succeeding transactions. Setting a low value
can also extend shutdown time in a system with many connections.

Controlling the length of the terminal input/output area (SESSIONS IOAREALEN) for MRO
sessions

For MRO function shipping, the SESSIONS definition attribute, IOAREALEN, is used. This attribute
regulates the length of the terminal input/output area (TIOA) to be used for processing messages
transmitted on the MRO link. These TIOAs are located above the 16 MB line.

The IOAREALEN value controls the length of the TIOA that is used to build a message transmitted to the
other CICS system (that is, an outgoing message). You can specify two values (value1 and value2). Value1
specifies the initial size of the TIOA to be used in each session that is defined for the MRO connection. If
the size of the message exceeds value1, CICS acquires a larger TIOA to accommodate the message. Only
one value is required. However, if value2 is specified, CICS uses value2 whenever the size of the message
exceeds value1.

A value of zero causes CICS to get a storage area exactly the size of the outgoing message, plus 600 bytes
for CICS requirements. If the IOAREALEN value is not specified, it defaults to 4 KB.

Where useful
The IOAREALEN attribute can be used in the definition of sessions for either MRO transaction routing or
function shipping. For MRO transaction routing, the value determines the initial size of the TIOA, whereas
in the MRO function shipping environment, the value presents some tuning opportunities.

146 CICS TS for z/OS: Performance Guide

Limitations
If the IOAREALEN value is too large for most messages transmitted on your MRO link, real and virtual
storage might be wasted. If IOAREALEN is smaller than most messages, or zero, excessive FREEMAIN
and GETMAIN requests might occur, resulting in additional processor requirements.

Recommendations

For optimum storage and processor utilization, make IOAREALEN slightly larger than the length of the
most commonly encountered formatted application data transmitted across the MRO link for which the
sessions are defined.

For efficient operating system paging, add 600 bytes for CICS requirements and round up the total to a
multiple of 64 bytes. A multiple of 64 bytes (or less) minus 600 bytes for CICS requirements ensures a
good use of operating system pages.

How implemented

The TIOA size can be specified in the IOAREALEN attribute of the SESSIONS definition.

Batching requests (MROBTCH)
Certain events in a region can be accumulated in a batch before posting, until the number specified in the
MROBTCH system initialization parameter is reached (or ICV times out).

Then, the region is started so that it can process the requests. The batching of MRO requests includes
some non-MRO events such as:

• VSAM physical I/O completion
• Request completion carried out as a subtask on the CO TCB (mostly VSAM, and if SUBTSKS=1 is
specified)

• DL/I request completion implemented through DBCTL

Strictly speaking, batching is applicable to a TCB rather than the region. MROBTCH is applied only to the
"quasi-reentrant" mode TCB.

Effects of changing the default value of MROBTCH

Compared to no batching (MROBTCH=1, that is, the default), setting MROBTCH=n has the following
effects:

• Up to [(n-1)*100/n]% saving in the processor usage for waiting and posting of that TCB. For example,
for n=2, 50% savings might be achieved, for n=3, 66% savings, or for n=6, 83% savings.

• An average cost of (n+1)/2 times the average arrival time for each request batched.
• Increased response time might cause an increase in overall virtual storage usage as the average

number of concurrent transactions increases.
• In heavily loaded systems at peak usage, some batching can happen as a natural consequence of

queuing for a busy resource. Using a low MROBTCH value greater than one might then decrease any
difference between peak and off-peak response times.

Setting MROBTCH higher than 6 is not recommended as the decreasing additional processor saving is
unlikely to be worth the further increased response time.

You require a relatively low value of MROBTCH for ICV to maintain reasonable response time during
periods of low utilization.

Setting a suitable batch value

Depending on the amount of response time degradation you can afford, you can set MROBTCH to
different values. Use the CICS-SM perspective of the CICS Explorer (Operations > Regions view > Region
attributes > MRO Batch requests) or use EXEC CICS SET SYSTEM MROBATCH to arrive at a suitable
batch value for a given workload.

Chapter 2. Improving the performance of a CICS system 147

For programming information about the EXEC CICS system programming commands, see System
commands.

During slow periods, the ICV unconditionally dispatches the region, even if the batch is not complete and
provides a minimum delay. In this case, set ICV to 500 milliseconds in each region.

Extending the life of mirror transactions (MROLRM and MROFSE)
The MROLRM system initialization parameter can have a significant effect on the performance of a
workload in an MRO function shipping environment.

Setting MROLRM=NO causes the mirror to be attached and detached for each function-shipped request
until the first request for a recoverable resource or a file control start browse is received. After such a
request is received, the mirror remains attached to the session until the calling transaction reaches
syncpoint.

Setting MROLRM=YES in a region receiving function shipping requests causes a mirror transaction to
remain attached to the MRO session from first request until the calling transaction reaches syncpoint.
This option causes system-dependent effects, as follows:

• Some systems show significant improvements in processor utilization per transaction. They are likely to
be systems with a significant percentage of inquiry transactions, each with multiple VSAM calls, or
transactions with many reads followed by a few updates.

• Some systems show no performance difference. Workloads using IMS, or transactions that make a lot
of use of VSAM-update or browse-activity, may fall into this category.

• Some systems could be degraded because there is an extra flow at syncpoint. An example of this would
be a system with a very simple inquiry transaction workload.

In general, setting MROLRM=YES is recommended.

Setting MROFSE=YES in the front-end region prevents the mirror task in the back-end region from being
terminated after syncpoint. The mirror task in the back-end region will only be terminated when the front-
end task terminates.

Use of MROFSE=YES in the front-end region is not recommended when long-running tasks may be used to
function-ship requests. This is because a SEND session will be unavailable for allocation to other tasks
when unused. It might also prevent the connection from being released when contact has been lost with
the back-end region, until the task terminates or issues a function-ship request.

Controlling the deletion of shipped terminal definitions (DSHIPINT and DSHIPIDL)
In a transaction routing environment, terminal definitions can be shipped from a terminal-owning region
(TOR) to an application-owning region (AOR).

A shipped terminal definition in an AOR becomes redundant when:

• The terminal user logs off.
• The terminal user stops using transactions which route to the AOR.
• The TOR on which the user is signed on is shut down.
• The TOR is restarted without recovering autoinstalled terminal definitions, and the autoinstall user

program DFHZATDX assigns a new set of terminal IDs to the same set of terminals.

Shipped terminal definitions which have become redundant can be deleted. Long-lasting shipped
terminal definitions do not generally cause storage problems because of the relatively small amounts of
storage which they occupy. However, there are other considerations, such as security, which might
require that redundant shipped terminal definitions are not permitted to persist in an AOR.

The CICS-supplied transaction CRMF periodically scans the shipped terminal definitions in the AOR and
flags shipped terminal definitions which it has determined to be redundant. If any redundant definitions
have been identified, the CICS-supplied transaction CRMD is invoked to delete them. This processing is
referred to as the CICS timeout delete mechanism.

148 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha81j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha81j.html

The system initialization parameters DSHIPINT and DSHIPIDL control the amount of time for which a
redundant shipped terminal definition is allowed to survive and the frequency at which shipped terminal
definitions are tested for redundancy.

Effects

The DSHIPIDL system initialization parameter determines the period of time for which a shipped terminal
definition is permitted to remain inactive before being flagged for deletion.

The DSHIPINT system initialization parameter determines the time interval between invocations of the
CRMF transaction. CRMF examines all shipped terminal definitions to determine which of them have been
idle for longer than the time interval specified by DSHIPIDL. If CRMF identifies any redundant terminal
definitions, it invokes CRMD to delete them.

Where useful

The CRMF/CRMD processing is most effective in a transaction routing environment in which there may be
shipped terminal definitions in an AOR which remain idle for considerable lengths of time.

Implementation

The maximum length of time for which a shipped terminal definition may remain idle before it can be
flagged for deletion is specified by the CICS system initialization parameter DSHIPIDL. The interval
between scans to test for idle definitions is specified by the CICS system initialization parameter
DSHIPINT.

Both these parameters can be adjusted. Note that the revised interval to the next invocation of the
timeout delete mechanism starts from the time the command is issued, not from the time it was last
invoked, nor from the time of CICS startup.

Monitoring

The CICS terminal autoinstall statistics provide information on the current setting of the DSHIPINT and
DSHIPIDL parameters, the number of shipped terminal definitions built and deleted, and the idle time of
the shipped terminal definitions.

Limitations
The DSHIPINT value is the dominant factor in determining how long an idle shipped terminal definition
survives before being deleted

After CRMF/CRMD processing has deleted a shipped terminal definition, the terminal definition must be
reshipped when the terminal user next routes a transaction from the TOR to the AOR. DSHIPIDL values
must not be set low enough to cause shipped terminal definitions to be frequently deleted between
transactions. Such processing could incur CPU processing costs, not just for the deletion of the shipped
terminal definition, but also for the subsequent reinstallation when the next transaction is routed.

Consider that a large value chosen for DSHIPINT influences the length of time that a shipped terminal
definition survives. The period of time for which a shipped terminal definition remains idle before deletion
is extended by an average of half of the DSHIPINT value. This occurs because a terminal, after it has
exceeded the limit for idle terminals set by the DSHIPIDL parameter, must wait (for half of the DSHIPINT
interval) before CRMF is scheduled to identify the terminal definition as idle and flag it for CRMD to delete.
When the DSHIPINT interval is significantly longer than the DSHIPIDL interval (which is the case if the
default values of 120000 for DSHIPINT and 020000 for DSHIPIDL are accepted), DSHIPINT becomes the
dominant factor in determining how long an idle shipped terminal definition survives before being
deleted.

Chapter 2. Improving the performance of a CICS system 149

Recommendations
Do not assign too low a value to DSHIPIDL. The storage occupied by the shipped terminal definitions is
not normally a concern, so the default value, which specifies a maximum idle time of 2 hours is
reasonable, unless other concerns (such as security) suggest that it should be shorter.

Decide whether you want to delete idle shipped terminal definitions incrementally or altogether. CRMF
processing in itself causes negligible CPU overhead, so a low value for DSHIPINT may therefore be
specified at little cost, if a sensible value for DSHIPIDL has been chosen. Specifying a low value for
DSHIPINT so that CRMF runs relatively frequently could mean that idle terminal definitions are identified
in smaller batches, so that CRMD processing required to delete them is spread out over time.

A higher value for DSHIPINT, especially if the default value of 12 hours is accepted, may mean that CRMF
identifies a considerable number of idle terminal definitions, so that a larger burst of CPU is required for
the CRMD processing. To ensure that this type of processing occurs during periods of low activity in the
CICS region, the INQUIRE/SET/PERFORM DELETSHIPPED commands are available to help you schedule
when the CRMF transaction will be invoked.

CICS VSAM and file control: Performance and tuning
This section describes performance tuning issues related to VSAM and file control.

VSAM tuning: General objectives
Tuning consists of providing a satisfactory level of service from a system at an acceptable cost. A
satisfactory service for VSAM is likely to be obtained by providing adequate buffers to minimize physical
I/O, and allowing several operations concurrently on the data sets.

The costs of assigning additional buffers and providing for concurrent operations on data sets are the
additional virtual and real storage that is required for the buffers and control blocks.

Several factors influence the performance of VSAM data sets, including whether to use local shared
resources or nonshared resources. If you compress CICS data sets to free storage and improve
performance, you must do the compression while CICS is not running. To avoid shutting down CICS, use
LIBRARY resources to easily take data sets offline for compression without affecting continuous
availability. For details, see Using dynamic program LIBRARY resources.

Another factor in tuning is locking. Using entry-sequenced data sets (ESDS) can have a negative effect on
the performance when you are adding records using multiple tasks. This is because adding a record
requires an exclusive add-to-end lock in order to perform the write.

A distinction is made between files and data sets:

• A file means a view of a data set as defined by an installed CICS file resource definition and a VSAM
ACB.

• A data set means a VSAM sphere, including the base cluster with any associated alternate index paths.

Local shared resources (LSR) or nonshared resources (NSR)
You must decide for each file whether to use local shared resources (LSR) or nonshared resources (NSR)
for its VSAM buffers and strings.

All files opened for access to a particular VSAM data set must typically use the same resource type.

Access to VSAM control intervals (CIs)

An important difference between LSR and NSR is in concurrent access to VSAM control intervals (CIs):

• In LSR, there is only one copy of a CI in storage; the second of the requests must queue until the first
operation completes. LSR permits several read operations to share access to the same buffer.

• NSR allows multiple copies of a CI in storage. You can have one (and only one) string updating a CI and
other strings reading different copies of the same CI.

150 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/deploying/dfhp3_using_librarys.html

However, updates require exclusive use of the buffer and must queue until a previous update or previous
reads have completed; reads must wait for any update to finish. It is possible, therefore, that transactions
with concurrent browse and update operations that run successfully with NSR might, with LSR, encounter
a deadlock as the second operation waits unsuccessfully for the first to complete.

The CICS monitoring facility provides performance data for the exclusive control wait time for each user
task. The performance data field 426, FCXCWTT, in the DFHFILE group, shows the elapsed time in which
the task waited for exclusive control of a VSAM control interval.

Size of control intervals (CIs)

The size of the data set CIs is not a parameter specified to CICS, and is defined through VSAM AMS.
However, it can have a significant performance effect on a CICS system that provides access to the
control interval.

In general, direct I/O runs slightly more quickly when the data CI is small, whereas sequential I/O is
quicker when the data CI is large. With NSR files, it is possible to get a good compromise by using a small
data CI but also assigning extra buffers, which leads to chained and overlapped sequential I/O. However,
all the extra data buffers get assigned to the first string doing sequential I/O.

VSAM functions most efficiently when its control areas are the maximum size. Set the data CI larger than
the index CI. Thus, typical CI sizes for data are 4 KB to 12 KB, and for index, 1 KB to 2 KB.

In general, specify the size of the data CI for a file, but allow VSAM to select the appropriate index CI to
match. An exception is if key compression turns out to be less efficient than VSAM expects it to be. In this
case, VSAM might select too small an index CI size. You might find an unusually high rate of control area
(CA) splits occurring with poor use of DASD space. If this problem is suspected, specify a larger index CI.

With LSR, there might be a benefit in standardizing the CI sizes, because this standardization allows more
sharing of buffers between files and allows a lower total number of buffers. Conversely, there might be a
benefit in giving a file unique CI sizes to prevent it from competing for buffers with other files that use the
same pool.

Try to keep CI sizes at 512-bytes, 1 KB, 2 KB, or any multiple of 4 KB. Avoid unusual CI sizes like 26 KB or
30 KB. A CI size of 26 KB does not mean that physical block size is 26 KB; the physical block size is most
likely to be 2 KB in this case because it is device-dependent.

Considerations for ESDS files

There are some special performance considerations when choosing a STRINGS value for an ESDS file.

If an ESDS is used as an add-only file (that is, it is used only in write mode to add records to the end of the
file), a string number of 1 is suggested. Any string number greater than 1 can significantly affect
performance, because of exclusive control conflicts that occur when more than one task attempts to write
to the ESDS at the same time.

If an ESDS is used for both writing and reading, with writing, say, being 80% of the activity, it is better to
define two file definitions, using one file for writing and the other for reading.

Number of buffers

Some important differences exist between LSR and NSR in the way that VSAM allocates and shares the
buffers.

The set of buffers of one size in an LSR pool is called a subpool. You use up to 255 separate LSR pools for
file control files. You also must decide how to distribute the data sets across the LSR pools. CICS provides
separate LSR buffer pools for data and index records. If only data buffers are specified, only one set of
buffers is built and used for both data and index records. The number of buffers for each subpool is
controlled by the DATA and INDEX parameters of the LSRPOOL definition. You can specify precise
numbers or have CICS calculate the numbers.

NSR files or data sets have their own set of buffers and control blocks. Enough buffers must be provided
for each file to support the concurrent accesses specified in the STRINGS parameter for the file. VSAM

Chapter 2. Improving the performance of a CICS system 151

enforces this requirement for NSR. NSR is not supported for transactions that use transaction isolation.
File control commands using NSR files are not threadsafe.

For more information, see “Number of buffers and strings for LSR and NSR” on page 153.

Number of strings

The next decision to make is the number of concurrent accesses to be supported for each file and for
each LSR pool.

You must specify VSAM strings. A string is a request to a VSAM data set requiring positioning within the
data set. Each string specified results in a number of VSAM control blocks (including a placeholder) being
built.

When deciding on the number of strings for a particular file, consider the maximum number of concurrent
tasks. Because CICS command level does not allow more than one request to be outstanding against a
particular data set from a particular task, there is no point in allowing strings for more concurrent
requests.

For more information, see “Number of buffers and strings for LSR and NSR” on page 153.

Effects

LSR has significant advantages, by providing the following effects:

• More efficient use of virtual storage because buffers and strings are shared.
• Better performance because of better buffer lookaside, which can reduce I/O operations.
• Better read integrity because there is only one copy of a CI in storage.
• Self-tuning because more buffers are allocated to busy files and frequently referenced index control

intervals are kept in buffers.
• Use of synchronous file requests and a UPAD exit. CA and CI splits for LSR files do not cause either the

subtask or main task to wait. VSAM takes the UPAD exit while waiting for physical I/O, and processing
continues for other CICS work during the CA/CI split.

File control requests for NSR files are done asynchronously, however, and still cause the CICS main task
or subtask to stop during a split.

• Support for transaction isolation.

NSR can provide the following effects:

• Specific tuning in favor of a particular data set
• Better performance for sequential operations.

Suggestions

Use LSR for all VSAM data sets except where you have one of the following situations:

• A file is active but there is no opportunity for lookaside because, for example, the file is large.
• High performance is required by the allocation of extra index buffers.
• Fast sequential browse or mass insert is required by the allocation of extra data buffers.
• Control area (CA) splits are expected for a file, and extra data buffers are to be allocated to speed up the

CA splits.

If you have only one LSR pool, a particular data set cannot be isolated from others using the same pool
when it is competing for strings. It can only be isolated when it is competing for buffers by specifying
unique CI sizes. In general, you get more self-tuning effects by running with one large pool. It is possible
to isolate busy files from the remainder or give additional buffers to a group of high performance files by
using several pools. It is also possible that a highly active file has more successful buffer lookaside and
less I/O if it is set up as the only file in an LSR subpool rather than using NSR. Also the use of multiple
pools eases the restriction of 255 strings for each pool.

152 CICS TS for z/OS: Performance Guide

Limitations

All files with the same base data set, except read-only files with DSNSHARING(MODIFYREQS) specified in
the file definition, must use either the same LSR pool, or all use NSR.

SERVREQ=REUSE files cannot use LSR.

Number of buffers and strings for LSR and NSR
The number of buffers and strings may affect your decision to use either LSR or NSR for each file.

Number of buffers for LSR and NSR

Some important differences exist between LSR and NSR in the way that VSAM allocates and shares the
buffers:
LSR

Allowing CICS to calculate the LSR parameters is easy but it incurs additional processing to build the
pool, when the first file that needs the LSR pool is opened. Consider the following factors if you allow
CICS to calculate an LSR pool:

• CICS must read the VSAM catalog for every file that is specified to use the pool.
• The processing is increased if the data sets involved are migrated at the time that CICS performs the

calculation. To enable CICS to read the VSAM catalog for each data set associated with the LSR
pool, each data set must be recalled.

• Not only can a single recall cause a significant delay for the task that caused the recall, but it is a
synchronous operation that delays other activities that CICS is running under the same TCB.

You can avoid these delays by designing your SMS storage classes and migration policies to avoid
CICS data sets being migrated. See z/OS DFSMShsm Storage Administration for information about
setting data set migration criteria.

CICS outputs an information message, DHFC0989, when a recall is necessary, advising you that the
consequent delay is not an error situation.

• An LSR pool calculated by CICS cannot be fine-tuned by specifying actual sizes for each buffer.
• In LSR, there is no preallocation of buffers to strings, or to particular files or data sets. When VSAM

must reuse a buffer, it picks the buffer that has been referenced least recently. Strings are always
shared across all data sets. Before issuing a read to disk when using LSR, VSAM first scans the
buffers to check if the control interval it requires is already in storage. If so, it might not have to
issue the read. This buffer lookaside can reduce I/O significantly.

• LSR files share a common pool of buffers and a common pool of strings, that is, control blocks
supporting the I/O operations. Other control blocks define the file and are unique to each file or data
set.

When changing the size of an LSR pool, refer to the CICS statistics before and after the change is
made. These statistics show whether the proportion of VSAM reads satisfied by buffer lookaside is
changed or not.

It is better for data and index buffers to be kept separate. If you define LSRPOOLs, you can define
separate data and index buffers with the LSRPOOL definition. If you allow CICS to build the
LSRPOOL, the data and index buffers will not be separate.

Take care to include buffers of the correct size. If no buffers of the required size are present, VSAM
uses the next larger buffer size.

NSR

• Enough buffers must be provided for each file to support the concurrent accesses specified in the
STRINGS parameter for the file. In fact, VSAM enforces this requirement for NSR.

• Specify the number of data and index buffers for NSR using the DATABUFFERS and INDEXBUFFERS
parameters of the file definition. It is important to specify sufficient index buffers. If a KSDS consists
of just one control area and, therefore, just one index CI, the minimum index buffers equal to
STRINGS is sufficient. But when a KSDS is larger than this value, at least one extra index buffer

Chapter 2. Improving the performance of a CICS system 153

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.arcf000/toc.htm

must be specified so that at least the top-level index buffer is shared by all strings. Further index
buffers reduce index I/O to some extent.

• Set DATABUFFERS to the minimum at STRINGS + 1, unless the aim is to enable overlapped and
chained I/O in sequential operations or it is necessary to provide the extra buffers to speed up CA
splits.

• When the file is an alternate index path to a base, the same INDEXBUFFERS (if the base is a KSDS)
and DATABUFFERS settings are used for alternate index and base buffers (see “CICS calculation of
LSR pool parameters” on page 156). In NSR, the minimum number of data buffers is STRNO + 1,
and the minimum index buffers (for KSDSs and alternate index paths) is STRNO. One data and one
index buffer are preallocated to each string, and one data buffer is kept in reserve for CA splits. If
there are extra data buffers, these buffers are assigned to the first sequential operation; they can
also be used to speed VSAM CA splits by permitting chained I/O operations. If there are extra index
buffers, they are shared between the strings and are used to hold high-level index records, thus
providing an opportunity for saving physical I/O.

Note: Always design and program transactions to avoid deadlocks. For further information, see
Transaction deadlocks.

Number of strings

VSAM requires one or more strings for each concurrent file operation. For nonupdate requests (for
example, a READ or BROWSE), an access using a base needs one string. An access using an alternate
index needs two strings (one to hold position on the alternate index and one to hold position on the base
data set). For update requests where no upgrade set is involved, a base still needs one string, and a path
two strings. For update requests where an upgrade set is involved, a base needs 1+n strings and a path
needs 2+n strings, where n is the number of members in the upgrade set. VSAM needs one string per
upgrade set member to hold position. For each concurrent request, VSAM can reuse the n strings required
for upgrade set processing because the upgrade set is updated serially.

A simple operation such as direct reading frees the string or strings immediately. However, a read for
update, mass insert, or browse request retains the string or strings until a corresponding update, unlock,
or end browse request is performed.

The interpretation of the STRNO parameter by CICS and by VSAM differs depending upon the context:

• The equivalent STRINGS parameter of the LSR pool definition (LSRPOOL) has the same meaning as the
STRNO parameter in the VSAM BLDVRP macro; that is, the absolute number of strings to be allocated to
the resource pool. Unless an LSR pool contains only base data sets, the number of concurrent requests
that can be handled is less than the STRINGS value specified.

• The equivalent STRINGS parameter of the file definition has the same meaning as the STRNO parameter
in the VSAM ACB for NSR files. That is, the actual number of concurrent outstanding VSAM requests that
can be handled. When alternate index paths or upgrade sets are used, the actual number of strings that
VSAM allocates to support these paths or upgrade sets can be greater than the STRINGS value
specified.

For LSR, it is possible to specify the precise numbers of strings, or to have CICS calculate the numbers.
The number specified in the LSR pool definition is the actual number of strings in the pool. If CICS
calculates the number of strings, it derives the pool STRINGS from the RDO file definition. It interprets
this pool, like with NSR, as the actual number of concurrent requests.

You must decide how many concurrent read, browse, update, mass insert requests, and so on, you must
support.

If access to a file is read only with no browsing, there is no need to have many strings; just one might be
sufficient. While a read operation only holds the VSAM string for the duration of the request, it might need
to wait for the completion of an update operation on the same CI.

In general, where some browsing or updates are used, set STRINGS to 2 or 3 initially and check CICS file
statistics regularly to see the proportion of wait-on strings encountered. Wait-on strings of up to 5% of file
accesses would typically be considered acceptable. Do not try, with NSR files, to keep wait-on strings
permanently zero.

154 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp37e.html

CICS manages string usage for both files and LSR pools. For each file, whether it uses LSR or NSR, CICS
limits the number of concurrent VSAM requests to the STRINGS= specified in the file definition. For each
LSR pool, CICS also prevents more requests being concurrently made to VSAM than can be handled by
the strings in the pool. If additional strings are required for upgrade-set processing at update time, CICS
anticipates this requirement by reserving the additional strings at read-for-update time. If there are not
enough file or LSR pool strings available, the requesting task waits until they are freed.

The CICS monitoring facility provides performance data for the VSAM string wait time for each user task.
The performance data field 427, FCVSWTT, in the DFHFILE group, shows the elapsed time in which the
task waited for a VSAM string. The CICS LSR pool statistics give information about the number of strings,
the number of requests that waited for strings, and the maximum number of strings that were active at
one time.

When deciding on the number of strings for a particular file, consider the maximum number of concurrent
tasks. Because CICS command level does not allow more than one request to be outstanding against a
particular data set from a particular task, there is no point in allowing strings for more concurrent
requests.

If you want to distribute your strings across tasks of different types, the transaction classes can also be
useful. You can use transaction class limits to control the transactions issuing the separate types of VSAM
request, and for limiting the number of task types that can use VSAM strings, leaving a subset of strings
available for other uses.

All placeholder control blocks must contain a field long enough for the largest key associated with any of
the data sets sharing the pool. Assigning one inactive file that has a large key (primary or alternate) into
an LSR pool with many strings might use excessive storage.

VSAM specifications for LSR
Define VSAM buffer allocations and string settings for LSR. Specify the resource percentile and the
maximum key length for LSR.

Defining VSAM buffer allocations for LSR

For files that use local shared resources (LSR), the number of buffers to be used is not specified explicitly
by file. The files share the buffers of appropriate sizes in the LSR pool. The number of buffers in the pool
can either be specified explicitly using the BUFFERS parameter in the file definition on the CICS system
definition data set (CSD), or you can leave it to CICS to calculate.

Use the BUFFERS parameter in CICS systems that use VSAM LSR files in CICS file control. It allows for
exact definition of specific buffers for the LSR pool. The number of buffers can have a significant effect on
performance. The use of many buffers can permit multiple concurrent operations, if there are the
corresponding number of VSAM strings. It can also increase the chance of successful buffer lookaside
with the resulting reduction in physical I/O operations.

The optimum buffer allocation involves a trade-off between increasing the I/O saving due to lookaside
and increasing the real storage requirement. This optimum is different for buffers used for indexes and
buffers used for data. The optimum buffer allocation for LSR is likely to be less than the buffer allocation
for the same files using NSR.

The effects of these parameters can be monitored through transaction response times and data set and
paging I/O rates. The settings influence both file and LSRPOOL statistics. The CICS file statistics show
data set activity of the VSAM data sets. The VSAM catalog and RMF can show data set activity, I/O
contention, space usage, and control interval (CI) size.

Note: From z/OS V2.2, VSAM provides a dynamic buffer addition capability that will allocate extra buffers
for an LSR pool when no buffer is available for a given VSAM request. For CICS, it is preferable to retry the
request rather than allow immediate expansion of an LSR pool, so dynamic buffer addition is not enabled
for CICS LSR pools.

CICS provides metrics in both statistics and monitoring that can be used to tune LSR buffer allocations.
Refer to the statistics for files for the number of times that tasks were queued as a result of buffer waits.
Refer to exception monitoring data to identify which transactions are forced to wait and for how long.

Chapter 2. Improving the performance of a CICS system 155

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHA09KS.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_mon_exception_intro.html

Defining VSAM string settings for LSR

The STRINGS parameter is used to determine the number of strings and the number of concurrent
operations possible against the LSR pool, assuming that there are buffers available. The STRINGS
parameter can be used in CICS systems with VSAM data sets.

The number of strings is defined by the STRNO parameter in the file definition on the CSD, which limits the
concurrent activity for that particular file.

The STRINGS parameter relating to files using LSR has the following effects:

• It specifies the number of concurrent requests that can be made against that specific file.
• It is used by CICS to calculate the number of strings and buffers for the LSR pool.
• It is used as the STRINGS value for the VSAM LSR pool.
• It is used by CICS to limit requests to the pools to prevent a VSAM short-on-strings condition (note that

CICS calculates the number of strings required per request).
• A number greater than 1 can adversely affect performance for ESDS files used exclusively in write

mode. With a string number greater than 1, the cost of resolving exclusive control conflicts is greater
than the cost of waiting for a string. Each time exclusive control is returned, a GETMAIN is issued for a
message area, followed by a second call to VSAM to obtain the owner of the control interval.

A maximum of 255 strings is allowed per pool. The effects of the STRINGS parameter can be seen in
changes to the response times for each file entry. The CICS LSR pool statistics give information about the
number of strings, the number of requests that waited for strings, and the maximum number of strings
that were active at one time. The CICS performance data field 427, FCVSWTT, in the DFHFILE group,
shows the elapsed time in which each user task waited for a VSAM string.

Examination of the string numbers in the CICS statistics shows that there is a two-level check on string
numbers available: one at the data set level (see File control statistics in DFHSTUP reports), and one at
the shared resource pool level (see LSR pool statistics in DFHSTUP reports).

Specifying the maximum key length for LSR

The KEYLENGTH parameter in the file definition in the CSD, or the MAXKEYLENGTH parameter in the LSR
pool definition, specifies the size of the largest key to be used in an LSR pool. The KEYLENGTH parameter
can be used in CICS systems with VSAM data sets. Specify the maximum key length explicitly using the
KEYLENGTH parameter in the file definition on the CSD. Or leave it to CICS to determine the maximum key
length from the VSAM catalog.

The KEYLENGTH parameter causes the placeholder control blocks to be built with space for the largest
key that can be used with the LSR pool. Too small a specified KEYLENGTH prevents requests for files that
have a longer key length. Set the key length so it is always as large as, or larger than, the largest key for
files using the LSR pool.

Specifying the resource percentile for LSR

The SHARELIMIT parameter in the LSR pool definition specifies the percentage of the buffers and strings
that CICS applies to the value that it calculates. The SHARELIMIT parameter can be used in CICS
systems with VSAM data sets. The SHARELIMIT parameter is specified in the LSR pool definition.

The SHARELIMIT parameter is ignored if both the BUFFERS and the STRINGS parameters are specified
for the pool. SHARELIMIT can be applied only to files that are allocated at initialization of the LSR pool,
when the first file in the pool is opened. Therefore, it is always wise to specify the decimal STRINGS and
BUFFERS for an LSR pool.

CICS calculation of LSR pool parameters
If you have not specified LSR parameters for a pool, CICS calculates the buffers and strings required for
you.

To do this calculation, CICS scans all the installed file resource definitions for files specified to use the
pool. For each file, it uses the following values:

156 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_file.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_lsrpool.html

• From the CICS file resource definitions:

– The number of strings, as specified on the STRINGS parameter
• From the VSAM catalog:

– The levels of index for each of these files
– The control interval (CI) sizes
– The keylengths for the base, the path (if it is accessed through an alternate index path), and upgrade

set alternate index.

If you have specified only buffers or only strings, CICS performs the calculation for the buffers and strings
you have not specified.

The following information helps you calculate the buffers required. A particular file might require more
than one buffer size. For each file, CICS determines the buffer sizes required for the following
components:

• The data component
• The index component, if it is a KSDS
• The data and index components for the alternate index, if it is an alternate index path
• The data and index components for each alternate index in the upgrade set, if any

The number of buffers for each file is calculated as follows:

• For data components for base and alternate index = (STRINGS= in the file resource definition entry) + 1
• For index components for base and alternate index = (STRINGS= in the file resource definition entry) +

(the number of levels in the index) – 1
• For data and index components for each alternate index in the upgrade set, one buffer each

When this calculation has been done for all the files that use the pool, the total number of buffers for each
size is further calculated as follows:

• The number is reduced to either 50% or the percentage specified in the SHARELIMIT in the LSRPOOL
definition. The SHARELIMIT parameter takes precedence.

• If necessary, the number is increased to a minimum of three buffers.
• The number is rounded up to the nearest 4 KB boundary.

To calculate the number of strings, CICS determines the number of strings required to handle concurrent
requests for each file as the sum of the following values:

• STRINGS parameter value for the base
• STRINGS parameter value for the alternate index (if it is an alternate index path)
• n strings if there is an upgrade set (where n is the number of members in the upgrade set).

Note: If the LSR pool is calculated by CICS and the data sets have been archived by hierarchical storage
manager (HSM), when the first file that needs the LSR pool is opened, the startup time of a CICS system
can be considerably lengthened because the data sets are needed one by one. CICS obtains the
necessary catalog information, but it does not open the database. Therefore the database is still
effectively archived. This problem recurs when the region is started again, and remains until the data set
has been opened.

When the strings have been accumulated for all files, the total number of buffers is further calculated as
follows:

• The total is reduced to either 50% or the percentage specified in the SHARELIMIT parameter in the
LSRPOOL definition. The SHARELIMIT parameter takes precedence.

• The total is reduced to 255 (the maximum number of strings allowed for a pool by VSAM).
• The total is increased to the largest specified STRINGS value for a particular file.

The parameters calculated by CICS are shown in the CICS statistics.

Chapter 2. Improving the performance of a CICS system 157

Note: From z/OS V2.2, VSAM provides a dynamic buffer addition capability that will allocate extra buffers
for an LSR pool when no buffer is available for a given VSAM request. For CICS, it is preferable to retry the
request rather than allow immediate expansion of an LSR pool, so dynamic buffer addition is not enabled
for CICS LSR pools.

CICS provides metrics in both statistics and monitoring that can be used to tune LSR buffer allocations.
Refer to the statistics for files for the number of times that tasks were queued as a result of buffer waits.
Refer to exception monitoring data to identify which transactions are forced to wait and for how long.

Switching data sets from RLS mode to LSR mode

There might be occasions when you must switch a data set from RLS mode to non-RLS mode (for
example, to read-only LSR mode during a batch update). This switch could lead to the LSR pools that are
not explicitly defined, and which CICS builds using default values, not having sufficient resources to
support files switched to LSR mode after the pool has been built.

To avoid files failing to open because of the lack of adequate resources, you can specify that CICS
includes files opened in RLS mode when it is calculating the size of an LSR pool using default values. To
specify the inclusion of files defined with RLSACCESS(YES) in an LSR pool that is being built using values
that CICS calculates, specify RLSTOLSR=YES for this system initialization parameter (RLSTOLSR=NO is
the default).

See RLSTOLSR system initialization parameter for more information about this parameter.

Data set name sharing

Data set name (DSN) sharing is the default for all VSAM data sets. It is specified as MACRF=DSN in the
VSAM ACB. It causes VSAM to create a single control block structure for the strings and buffers required
by all the files that relate to the same base data set cluster, whether as a path or direct to the base. VSAM
makes the connection at open time of the second and subsequent files. Only if DSN sharing is specified
does VSAM realize that it is processing the same data set.

This single structure offers the following benefits:

• It provides VSAM update integrity for multiple access control blocks (ACB) updating one VSAM data set.
• It allows the use of VSAM share options 1 or 2, while still permitting multiple update blocks within the

CICS region.
• It saves virtual storage.

DSN sharing is the default for files using both NSR and LSR. The only exception to this default is made
when opening a file that has been specified as read-only (READ=YES or BROWSE=YES) and with
DSNSHARING(MODIFYREQS) in the file resource definition. CICS provides this option so that a file
(represented by an installed file resource definition) can be isolated from other users of that same data
set in a different LSR pool or in NSR by suppressing DSN sharing. CICS ignores this parameter for files
with update, add, or delete options because VSAM would not then be able to provide update integrity if
two file control file entries were updating the same data set concurrently.

The NSRGROUP parameter is associated with DSN sharing. It is used to group file resource definitions that
are to refer to the same VSAM base data set. NSRGROUP=name does not affect data sets that use LSR.

When the first member of a group of DSN-sharing NSR files is opened, CICS must specify to VSAM the
total number of strings to be allocated for all file entries in the group, with the BSTRNO value in the ACB.
VSAM builds its control block structure at this time regardless of whether the first data set to be opened is
a path or a base. CICS calculates the value of BSTRNO used at the time of the open by adding the
STRINGS values in all the files that share the same NSRGROUP parameter.

If you do not provide the NSRGROUP parameter, the VSAM control block structure can be built with
insufficient strings for later processing. Avoid this structure for performance reasons. In such a case,
VSAM invokes the dynamic string addition feature to provide the extra control blocks for the strings as
they are required, and the extra storage is not released until the end of the CICS run.

158 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/data-areas/DFHA09KS.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_mon_exception_intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_rlstolsr.html

Alternate index considerations

For each alternate index defined with the UPGRADE attribute, VSAM upgrades the alternate index
automatically when the base cluster is updated.

For NSR, VSAM uses a special set of buffers associated with the base cluster. This set consists of two data
buffers and one index buffer, which are used serially for each alternate index associated with a base
cluster. It is not possible to tune this part of the VSAM operation.

For LSR, VSAM uses buffers from the appropriate subpool.

Take care when specifying to VSAM that an alternate index is in the upgrade set. Whenever a new record
is added, an existing record deleted, or a record updated with a changed attribute key, VSAM updates the
alternate index in the upgrade set. This update involves extra processing and extra I/O operations.

Situations that cause extra physical I/O

Some situations that can lead to many physical I/O operations, thus affecting both response times and
associated processor path lengths, are as follows:

• When a KSDS is defined with SHROPT of 4, all direct reads cause a refresh of both index and data
buffers (to ensure the latest copy).

• Any sequence leading to CICS issuing ENDREQ invalidates all data buffers associated with the
operation. This situation might occur when you end a get-update (without the following update), a
browse (even a start browse with a no-record-found response), a mass-insert, or any get-locate from a
program. If the operation is not explicitly ended by the program, CICS ends the operation at sync point
or end of task.

• If there are more data buffers than strings, a start browse causes at least half the buffers to participate
immediately in chained I/O. If the browse is short, the additional I/O is unnecessary.

Other VSAM definition parameters

Select free space parameters with care, because these parameters can help reduce the number of control
interval (CI) and control area (CA) splits. Where records are inserted all over a VSAM data set, it is
appropriate to include free space in each CI. Where the inserts are clumped, free space in each CA is
required. If all the inserts take place at just a few positions in the file, allow VSAM to split the CA, and it is
not necessary to specify any free space at all.

Adding records to the end of a VSAM data set does not cause CI or CA splits. Adding sequential records to
anywhere but the end causes splits. An empty file with a low-value dummy key tends to reduce splits; a
high-value key increases the number of splits.

VSAM specifications for NSR
Defining VSAM string settings for NSR and defining VSAM buffer allocations for NSR.

Defining VSAM buffer allocations for NSR

For files using nonshared resources (NSR), the INDEXBUFFERS and DATABUFFERS parameters define
VSAM index buffers and data buffers.

The INDEXBUFFERS and DATABUFFERS parameters are defined in the file definition on the CSD. They
correspond exactly to VSAM ACB parameters: INDEXBUFFERS is the number of index buffers,
DATABUFFERS is the number of data buffers.

• Effects

The number of buffers can have a significant effect on performance. The use of many buffers can permit
multiple concurrent operations (if there are the corresponding number of VSAM strings) and efficient
sequential operations and control area (CA) splits. Providing extra buffers for high-level index records
can reduce physical I/O operations.

Buffer allocations above the 16 MB line represent a significant part of the virtual storage requirement of
most CICS systems.

Chapter 2. Improving the performance of a CICS system 159

• Limitations

These parameters can be overridden by VSAM if they are insufficient for the strings specified for the
VSAM data set. The maximum specification is 255. A specification greater than this value is
automatically reduced to 255. Never override VSAM strings and buffers by specifying the AMP attribute
on the DD statement.

• Limitations

The effects of these parameters can be monitored through transaction response times and data set and
paging I/O rates. The CICS file statistics show data set activity to VSAM data sets. The VSAM catalog
and RMF can show data set activity, I/O contention, space usage, and control interval (CI) size.

Defining VSAM string settings for NSR

The STRINGS parameter is used to determine the number of concurrent operations possible against the
file, and against the VSAM base cluster to which the file relates.

Use the STRINGS parameter in CICS systems that use VSAM NSR files in CICS file control.

The number of strings is defined by the STRINGS parameter in the CICS file definition on the CSD. It
corresponds to the VSAM parameter in the ACB, except where a base file is opened as the first for a VSAM
data set. In this case, the CICS -accumulated BSTRNO value is used as the STRNO value for the ACB.

• Effects

The STRINGS parameter for files using NSR has the following effects:

– It specifies the number of concurrent asynchronous requests that can be made against that specific
file.

– It is used as the STRINGS value in the VSAM ACB.
– It is used, with the BASE parameter, to calculate the VSAM BSTRNO value.
– A number greater than 1 can adversely affect performance for ESDS files used exclusively in write

mode. With a string number greater than 1, the cost of invalidating the buffers for each of the strings
is greater than the cost of waiting for the string, and there can be a significant increase in the number
of VSAM EXCP requests.

Strings represent a significant part of the virtual storage requirement of most CICS systems. With CICS,
this storage is above the 16 MB line.

• Limitations

A maximum of 255 strings can be used as the STRNO or BSTRNO values in the ACB.
• Monitoring

The effects of the STRINGS parameter can be seen in changes to response times. The CICS
performance data field 427, FCVSWTT, in the DFHFILE group, shows the elapsed time in which each
user task waited for a VSAM string. The CICS LSR pool statistics give information about the number of
strings, the number of requests that waited for strings, and the maximum number of strings that were
active at one time. RMF can show I/O contention in the DASD subsystem.

Using VSAM subtasking
The optional concurrent (CO) mode TCB is used for processes that can safely run in parallel with other
CICS activity such as VSAM requests. The SIT keyword SUBTSKS has been defined to have numeric values
(0 and 1) to specify whether there is to be a CO TCB. The system initialization parameter, SUBTSKS=1,
defines that subtasking is to be used.

Subtasking is useful with CICS systems that use VSAM.

Only use subtasking in a multiprocessing system in a region that is limited by a single processor, but has
spare capacity on other processors in the MVS image. If used in other circumstances, it can cause
throughput degradation because of the dispatching of multiple tasks.

160 CICS TS for z/OS: Performance Guide

Effects

The objective of subtasks is to increase the maximum throughput of a single CICS system on
multiprocessors. However, the intertask communication increases total processor utilization.

When I/O is done on subtasks, any extended response time which would cause the CICS region to stop,
such as control interval (CI) or control area (CA) splitting in NSR pools, causes only the additional TCB to
stop. This effect might allow more throughput in a region that has many CA splits in its file, but has to be
assessed cautiously regarding the extra processing associated with using the subtask.

When the SUBTSKS=1 system initialization parameter has been specified, the following subtasks effects
are seen:

• All non-RLS VSAM file control WRITE requests to KSDS are subtasked.
• All other file control requests are never subtasked.
• Auxiliary temporary storage or intrapartition transient data requests are subtasked.
• Resource security checking requests are subtasked when the CICS main TCB (quasi-reentrant mode)

exceeds approximately 70% activity.

Limitations

Subtasking can improve throughput only in multiprocessor MVS images, because additional processor
cycles are required to run the extra subtask. For that reason, we do not recommend the use of this facility
on uniprocessors (UP). Use it only for a region that reaches the maximum capacity of one processor in a
complex system that has spare processor capacity, or has NSR files that undergo frequent CI or CA
splitting.

Regions that do not contain significant amounts of VSAM data set activity (particularly update activity) do
not gain from VSAM subtasking.

Application task elapsed time might increase or decrease because of conflict between subtasking
processing and better use of multiprocessors. Task-related DSA occupancy increases or decreases
proportionately.

Suggestions

Specify SUBTSKS=1 only when the CICS system is run on an MVS image with two or more processors, and
the peak processor utilization due to the CICS main TCB in a region exceeds about 70% of one processor,
and a significant amount of I/O activity within the CICS address space is eligible for subtasking.

In this environment, the capacity of a second processor can be used to perform the I/O scheduling
activity for VSAM data sets, auxiliary temporary storage, and intrapartition transient data.

The maximum system throughput of this CICS region can be increased by using the I/O subtask, but at
the expense of some additional processing for communication between the subtask and the MVS task
under which the transaction processing is performed. This additional processing is seldom justified unless
the CICS region has reached or is approaching its throughput limit.

A TOR that is largely or exclusively routing transactions to one or more AORs has little I/O that is eligible
for subtasking. It is not, therefore, a good candidate for subtasking.

An AOR is a good candidate only if a significant amount of VSAM I/O is performed within the AOR rather
than being function-shipped to an FOR.

Consider subtasking for a busy FOR that often has a significant amount of VSAM I/O (but remember that
DL/I processing of VSAM data sets is not subtasked).

VSAM subtasking for threadsafe applications using local VSAM LSR or RLS, with FCQRONLY=NO set in the
SIT, is not normally recommended. Performance benefits are greater for threadsafe file control
applications, by using multiple L8 or L9 TCBs.

Chapter 2. Improving the performance of a CICS system 161

Monitoring

CICS dispatcher domain statistics include information about the modes of TCB listed in Dispatcher TCB
Modes report.

CMF data and CICS trace are fully available.

Using data tables
Data tables enable you to build, maintain, and have rapid access to data records contained in tables held
in virtual storage above the 16 MB line. Therefore, they can provide a substantial performance benefit by
reducing DASD I/O and path length resources. The path length to retrieve a record from a data table is
shorter than the path length to retrieve a record that is already in a VSAM buffer.

You can define data tables using either the DEFINE FILE command of the CEDx transaction or the
DFHCSDUP utility program.

Effects

Using data tables has the following effects:

• After the initial data table load operation, DASD I/O can be eliminated for all user-maintained and for
read-only CICS-maintained data tables (CMTs).

• Reductions in DASD I/O for CMTs are dependent on the READ/WRITE ratio. This ratio is the number of
READ to WRITE calls that are experienced on the source data set, before the data table
implementation. These reductions also depend on the data table READ-hit ratio: the number of READ
calls that are satisfied by the table, compared with the number of requests that go against the source
data set.

• CICS file control processor consumption can be reduced by up to 70%. This reduction is dependent on
the file design and activity, and is given here as a general guideline only. Actual results vary from
installation to installation.

For CMTs, CICS ensures the synchronization of source data set and data table changes. When a file is
recoverable, the necessary synchronization is already implemented by the existing record locking. When
the file is unrecoverable, there is no CICS record locking and the note string position (NSP) mechanism is
used instead for all update requests. This action might have a small performance impact of additional
VSAM ENDREQ requests in some instances.

Suggestions

Data tables are defined by two RDO parameters of the file definition, TABLE and MAXNUMRECS . No other
changes are required.

Begin by selecting only one or two candidates. You might want to start with a CMT to simplify recovery
considerations.

Select a CMT with a high READ to WRITE ratio. This information can be found in the CICS LSRPOOL
statistics (see topicpage LSR pool statistics) by running a VSAM LISTCAT job.

Use READ INTO, because READ SET incurs slightly more internal processing.

Monitor your real storage consumption. If your system is already real-storage constrained, having large
data tables could increase your page-in rates, and in turn could adversely affect CICS system
performance. Use your normal performance tools such as RMF to look at real storage and paging rates.

Select files that have a high proportion of full keyed direct reads as CMT candidates.

Files that have a large proportion of update activity that does not require to be recovered across a restart
would be better suited for user-maintained data tables.

User-maintained data tables can use the global user exit XDTRD to both modify and select records. This
action could allow the user-maintained data table to contain only the information relevant to the
application.

162 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_disp_tcbmode_0stat.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_disp_tcbmode_0stat.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ceda/commands/dfha4_define.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_lsrpool.html

If storage isolation is specified, you must allow for the extra storage needed by the data tables to prevent
CICS incurring increased paging.

Try to avoid the situation where two open files, one defined as a CMT and the other as a VSAM file, refer to
the same underlying VSAM sphere (for example, both refer to the same data set name). In this situation,
the VSAM file is treated almost as if it were a CMT, meaning that it gets both the advantages and
disadvantages of a CMT. The advantage is much faster read and browse processing from the table created
for the other file.

The disadvantages for the performance of the VSAM file are as follows:

• Updates must update both the file and the table.
• If the VSAM file refers to a path rather than to the base (that is, it uses alternate keys) it loses the

advantage of fast reads.
• Requests for the VSAM file are always switched to the QR task control block (TCB) and are not

processed on an open TCB.

Monitoring

Performance statistics are gathered to assess the effectiveness of the data table. They are in addition to
the statistics available through the standard CICS file statistics.

The following information is recorded:

• The number of attempts to read from the table
• The number of unsuccessful read attempts
• The number of bytes allocated to the data table
• The number of records loaded into the data table
• The number of attempts to add to the table
• The number of records rejected by a user exit when they were being added to the table either during

loading or through the API
• The number of attempts to add a record that failed due to the table being full (already at its maximum

number of records)
• The number of attempts to update table records through rewrite requests.
• The number of attempts to delete records from the table
• The highest value that the number of records in the table has reached since it was last opened.

There are circumstances in which apparent discrepancies in the statistics might be seen, caused, for
example, by the existence of in-flight updates.

Using coupling facility data tables
The API used to store and retrieve the data from a coupling facility data table (CFDT) is based on the file
control API used for user-maintained data tables.

A CFDT is similar in many ways to a shared user-maintained data table. For information about shared data
tables, see Introduction to shared data tables.

A CFDT is defined to a CICS region using a FILE definition with the following parameters:

• TABLE(CF)
• MAXNUMRECS(NOLIMITnumber(1 through 99999999))
• CFDTPOOL(pool_name)
• TABLENAME(name)
• UPDATEMODEL(CONTENTION|LOCKING)
• LOAD(NO|YES)

MAXNUMRECS specifies the maximum number of records that CFDT can hold.

Chapter 2. Improving the performance of a CICS system 163

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfhf10w.html

The first CICS region to open the CFDT determines the attributes for the file. Once opened successfully,
these attributes remain associated with the CFDT through the data in the coupling facility list structure.
Unless this table or coupling facility list structure is deleted or altered by a CFDT server operator
command, the attributes persist even after CICS and CFDT server restarts. Other CICS regions attempting
to open the CFDT must have a consistent definition of the CFDT, for example using the same update
model.

The CFDT server controls the coupling facility list structure and the data tables held in this structure. The
parameters documented in Coupling facility data table server parameters describe how initial structure
size, structure element size, and entry-to-element ratio can be specified.

The data, unlike a UMT, is not kept in a dataspace in an MVS image and controlled by a CICS region, but
kept in a coupling facility list structure. Control is shared between CFDT server regions. A CICS region
requesting access to a CFDT communicates with a CFDT server region running in the same MVS image,
using the MVS authorized cross-memory (AXM) server environment. The same technique is used by CICS
temporary storage servers.

CFDTs are useful for informal shared data. Uses could include a sysplex-wide shared scratchpad, look-up
tables of telephone numbers, and creating a subset of customers from a customer list. Compared with
existing methods of sharing data of this kind, such as shared data tables, shared temporary storage or
RLS files, CFDTs offer some distinct advantages:

• If the data is frequently accessed for modification, CFDT provides superior performance compared with
function-shipped UMT requests, or using an RLS file

• CFDT-held data can be recoverable within a CICS transaction. Recovery of the structure is not
supported, but the CFDT record is recoverable in the event of a unit of work failure, a CICS region
failure, a CFDT server failure, or an MVS failure (that is, updates made by units of work that were in-
flight at the time of the failure are backed out). Such recoverability is not provided by shared temporary
storage.

Locking model and contention model

There are two models of coupling facility data table, a contention model or locking model.

Locking model. Records held in a coupling facility list structure are marked as locked by updating the
adjunct area associated with the coupling facility list structure element that holds the data. Locking a
record requires an additional coupling facility access to set the lock, having determined on the first access
that the data was not already locked.

If, however, there is an update conflict, a number of extra coupling facility accesses are needed, as
described in the following sequence of events:

1. The request that encounters lock contention is initially rejected.
2. The requester modifies the locked record adjunct area to express an interest in it. This area is a second

extra coupling facility access for the lock waiter.
3. The lock owner has the update rejected because the record adjunct area has been modified, requiring

the CICS region to read and try the update again. This results in two extra coupling facility accesses.
4. The lock owner sends a lock release notification message. If the lock was requested by a different

server, this results in a coupling facility access to write a notification message to the other server and a
coupling facility access to read it on the other side.

Contention model. The contention update model uses the entry version number to track changes. The
entry version number is changed each time the record is updated. This change allows an update request
to check that the record has not been altered since its copy of the record was acquired.

When an update conflict occurs, additional coupling facility accesses are needed:

• The request that detects that the record has changed is initially rejected and a CHANGED response is
sent.

• The application receiving the response has to decide whether to try the request again.

164 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_cfdt_serverparms.html

Using the contention model, an exception condition (CHANGED) notifies an application that a rewrite
following a read for update, or a delete following a read for update, needs to be tried again because the
copy of the record in the table has been updated by another task before the rewrite or delete could be
performed. The contention model does not lock a record, but uses the version number of the table entry
for the record to check that it has not been altered. If the version of this record on rewrite or delete is not
the same as when the original read for update was performed, the CHANGED condition is returned.

The locking model causes records to be locked following a read for update request so that multiple
updates cannot occur.

A contention model CFDT is unrecoverable. A locking model CFDT can be recoverable or unrecoverable.
For an unrecoverable locking model, CFDT locks are held until a read for update sequence is completed
by a rewrite, a delete or an unlock request, but not until the next syncpoint. Changes are not backed out if
a unit of work fails. In the recoverable case, locks are held until syncpoint, and the CFDT record is
recoverable in the event of a unit of work failure, CICS region failure, CFDT server failure, or MVS failure.

The relative cost of using update models and recovery is related to the amount of coupling facility
accesses needed to support a request. Contention requires the least number of accesses, but if the data
is changed, additional programming and coupling facility accesses would be needed to handle this
condition. Locking requires more coupling facility accesses, but does mean that a request does not need
to be tried again, whereas repeat tries can be required when using the contention model. Recovery also
requires further coupling facility accesses, because the recovery data is kept in the coupling facility list
structure.

The following table shows the amount of coupling facility accesses needed to support the CFDT request
types by update model.

Table 14. Coupling facility access by request type and update model

Request description Contention Locking Recoverable

Open, Close 3 3 6

Read, Point 1 1 1

Write new record 1 1 2

Read for Update 1 2 2

Unlock 0 1 1

Rewrite 1 1 3

Delete 1 1 2

Delete by key 1 2 3

Syncpoint 0 0 3

Lock WAIT 0 2 2

Lock POST 0 2 2

Cross-system POST 0 2 per waiting
server

2 per waiting
server

For a description of how to define a coupling facility data table (CFDT), and start a coupling facility data
table server, see Defining a coupling facility data table pool.

Effects

In a test that compared the use of a CFDT with a function-shipped UMT between 2 CICS regions running
on different MVS members of a sysplex, it was found that overall CPU utilization was reduced by over 40%
by using CFDTs. Some general observations that might be useful are as follows:

• Access to CFDT records of 4094 bytes or less (4096 K or 4 K including 2 bytes of prefix data) are
handled as synchronous coupling facility requests by the CFDT server. Requests for records of greater

Chapter 2. Improving the performance of a CICS system 165

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_def_cfdt_pool.html

than 4 K bytes are made asynchronously. These asynchronous accesses cost a little more in CPU usage
and response time. In a benchmark test comparing the same transaction rates (337 per second) but
different record sizes, the less than 4 K CFDT workload took 41.7% less CPU than the UMT equivalent.
The greater than 4 K CFDT workload took 41.1% less CPU with no measurable degradation of response
time.

• Using the contention model requires the least coupling facility accesses but because the CHANGED
condition needs to be handled and might need to be tried again, maximum benefit is derived when there
are few CHANGED conditions. These occurrences are reported in the CICS statistics which follow.

• If the CFDT records are 63 bytes or less in length, the record data is stored in the entry adjunct area of
the coupling facility list structure, which gives improved performance when using the contention update
mode.

• Using the locking model with recovery is the most costly mode of CFDT operation. Not only does this
require more coupling facility accesses, but the CFDT server is also acting as a resource manager,
coordinating the committal of updates with the requesting CICS region. In a benchmark test involving
the READ/UPDATE and REWRITE of CFDT records at a transaction rate of 168 per second, there was no
significant difference in CPU utilization between transactions using contention and locking CFDTs.
However, if the CFDT was defined as recoverable, the CPU utilization of the same transactions
increased by approximately 15%.

Suggestions

Choose an appropriate use of a CFDT. For example, for cross-system, recoverable scratchpad storage,
where shared TS does not give the required functionality, or VSAM RLS incurs too much processing.

A large file requires a large amount of coupling facility storage to contain it. Smaller files are better CFDT
candidates (unless your application is written to control the number of records held in a CFDT).

The additional cost of using a locking model compared with a contention model is not great. Considering
that using the contention model might need application changes if you are using an existing program,
locking is probably the best choice of update model for your CFDT. If coupling facility accesses are critical
to you, they are minimized by the contention model.

Recovery costs slightly more in CPU usage and in coupling facility utilization.

Allow for expansion when sizing the CFDT. The amount of coupling facility storage a structure occupies
can be increased dynamically up to the maximum defined in the associated coupling facility resource
management (CFRM) policy with a SETXCF ALTER command. The MAXTABLES value defined to the CFDT
server allows for expansion. Therefore, consider setting it to a value higher than your initial requirements.
If a CFDT does become full, its capacity can be increased using the CFDT operator command SET
TABLE=name,MAXRECS=n.

Monitor the utilization of the CFDT regularly both through CICS and CFDT statistics and RMF. Check that
the size of the structure is reasonable for the amount of data it contains. A maximum used of 80% is a
reasonable target. Define a maximum coupling facility list structure size in the CFRM policy definition
greater than the initial allocation size specified by the POOLSIZE parameter in the CFDT server startup
parameters. This setting enables you to enlarge the structure dynamically with a SETXCF ALTER
command if the structure does fill, in extraordinary circumstances.

Ensure that the AXMPGANY storage pool is large enough. This pool can be increased by increasing the
REGION size for the CFDT server. Insufficient AXMPGANY storage might lead to 80A abends in the CFDT
server.

Monitoring

Both CICS and the CFDT server produce statistics records. These records are described in Coupling
Facility Data Table Pools report in Reference.

The CICS file statistics report the various requests by type issued against each CFDT. They also report if
the CFDT becomes full, the highest number of records held and a Changed Response/Lock Wait count.
This last item can be used to determine for a contention CFDT how many times the CHANGED condition

166 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_cfdt_0stat.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_cfdt_0stat.html

was returned. For a locking CFDT, this count reports how many times requests were made to wait
because the requested record was already locked.

For more information, see Data Tables reports.

Coupling facility data table statistics
The coupling facility data table (CFDT) server reports comprehensive statistics on both the coupling
facility list structure it uses and the data tables it supports. It also reports on the storage that is used
within the CFDT region by its AXM routines (the AXMPGLOW and AXMPGANY areas). This data can be
written to SMF and can also be produced automatically at regular intervals, or by operator commands to
the job log of the CFDT server.

The CFDT statistics are calculated from information that is returned by recent coupling facility requests. If
the relevant information was not accessed recently by the current server, the statistics are not
necessarily accurate. The number of tables and the number of lists are updated each time that the server
opens or closes a table, but at other times they might not be updated. The element and entry counts are
updated on successful completion of most types of coupling facility access request.

The following code is an example of coupling facility statistics that are produced by a CFDT server:

DFHCF0432I Table pool statistics for coupling facility list structure DFH
CFLS_PERFCFT2:
 Structure: Size Max size Elem size Tables: Current Highest
 12288K 30208K 256 4 4
 Lists: Total In use Max used Control Data
 137 41 41 37 4
 100% 30% 30% 27% 3%
 Entries: Total In use Max used Free Min free Reserve
 3837 2010 2010 1827 1827 191
 100% 52% 52% 48% 48% 5%
 Elements: Total In use Max used Free Min free Reserve
 38691 12434 12434 26257 26257 1934
 100% 32% 32% 68% 68% 5%

This example shows the amount of space that is currently used in a coupling facility list structure (Size)
and the maximum size (Max size) defined for the structure. The structure size can be increased by using a
SETXCF ALTER command. The number of lists that are defined is determined by the MAXTABLES
parameter for the CFDT server. In this example, the structure can support up to 100 data tables (and 37
lists for control information).

Each list entry comprises a fixed-length section for entry controls and a variable number of data
elements. The size of these elements is fixed when the structure is first allocated in the coupling facility,
and is specified to the CFDT server by the ELEMSIZE parameter. The allocation of coupling facility space
between entry controls and elements is altered automatically and dynamically by the CFDT server to
improve space utilization if necessary.

The reserve space is used to ensure that rewrites and server internal operations can still function if a
structure fills with user data.

The amount of storage that is used with the CFDT region to support AXM requests is also reported. For
example:

AXMPG0004I Usage statistics for storage page pool AXMPGANY:
 Size In Use Max Used Free Min Free
 30852K 636K 672K 30216K 30180K
 100% 2% 2% 98% 98%
 Gets Frees Retries Fails
 3122 3098 0 0
AXMPG0004I Usage statistics for storage page pool AXMPGLOW:
 Size In Use Max Used Free Min Free
 440K 12K 12K 428K 428K
 100% 3% 3% 97% 97%
 Gets Frees Retries Fails
 3 0 0 0

The CFDT server uses storage in its own region for AXMPGANY and AXMPGLOW storage pools.
AXMPGANY accounts for most of the available storage above 16 MB in the CFDT region. The AXMPGLOW

Chapter 2. Improving the performance of a CICS system 167

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_file_datatable_0stat.html

refers to 24 bit addressed storage (below 16 MB) and accounts for only 5% of this storage in the CFDT
region. The CFDT server has a small requirement for such storage.

Local shared resources (LSR) or nonshared resources (NSR)
You must decide for each file whether to use local shared resources (LSR) or nonshared resources (NSR)
for its VSAM buffers and strings.

All files opened for access to a particular VSAM data set must typically use the same resource type.

Access to VSAM control intervals (CIs)

An important difference between LSR and NSR is in concurrent access to VSAM control intervals (CIs):

• In LSR, there is only one copy of a CI in storage; the second of the requests must queue until the first
operation completes. LSR permits several read operations to share access to the same buffer.

• NSR allows multiple copies of a CI in storage. You can have one (and only one) string updating a CI and
other strings reading different copies of the same CI.

However, updates require exclusive use of the buffer and must queue until a previous update or previous
reads have completed; reads must wait for any update to finish. It is possible, therefore, that transactions
with concurrent browse and update operations that run successfully with NSR might, with LSR, encounter
a deadlock as the second operation waits unsuccessfully for the first to complete.

Size of control intervals (CIs)

The size of the data set CIs is not a parameter specified to CICS, and is defined through VSAM AMS.
However, it can have a significant performance effect on a CICS system that provides access to the
control interval.

In general, direct I/O runs slightly more quickly when the data CI is small, whereas sequential I/O is
quicker when the data CI is large. With NSR files, it is possible to get a good compromise by using a small
data CI but also assigning extra buffers, which leads to chained and overlapped sequential I/O. However,
all the extra data buffers get assigned to the first string doing sequential I/O.

VSAM functions most efficiently when its control areas are the maximum size. Set the data CI larger than
the index CI. Thus, typical CI sizes for data are 4 KB to 12 KB, and for index, 1 KB to 2 KB.

In general, specify the size of the data CI for a file, but allow VSAM to select the appropriate index CI to
match. An exception is if key compression turns out to be less efficient than VSAM expects it to be. In this
case, VSAM might select too small an index CI size. You might find an unusually high rate of control area
(CA) splits occurring with poor use of DASD space. If this problem is suspected, specify a larger index CI.

With LSR, there might be a benefit in standardizing the CI sizes, because this standardization allows more
sharing of buffers between files and allows a smaller total number of buffers. Conversely, there might be
a benefit in giving a file unique CI sizes to prevent it from competing for buffers with other files that use
the same pool.

Try to keep CI sizes at 512 bytes, 1 KB, 2 KB, or any multiple of 4 KB. Avoid unusual CI sizes like 26 KB or
30 KB. A CI size of 26 KB does not mean that physical block size is 26 KB; the physical block size is most
likely to be 2 KB in this case because it is device-dependent.

Number of buffers for LSR and NSR

Some important differences exist between LSR and NSR in the way that VSAM allocates and shares the
buffers:
LSR

The set of buffers of one size in an LSR pool is called a subpool. You use up to 255 separate LSR pools
for file control files. You also must decide how to distribute the data sets across the LSR pools. CICS
provides separate LSR buffer pools for data and index records. If only data buffers are specified, only
one set of buffers is built and used for both data and index records. The number of buffers for each
subpool is controlled by the DATA and INDEX parameters of the LSRPOOL definition. You can specify
precise numbers or have CICS calculate the numbers.

168 CICS TS for z/OS: Performance Guide

Allowing CICS to calculate the LSR parameters is easy but it incurs additional processing to build the
pool, when the first file that needs the LSR pool is opened. Consider the following factors if you allow
CICS to calculate an LSR pool:

• CICS must read the VSAM catalog for every file that is specified to use the pool.
• The processing is increased if the data sets involved are migrated at the time that CICS performs the

calculation. To enable CICS to read the VSAM catalog for each data set associated with the LSR
pool, each data set must be recalled.

• Not only can a single recall cause a significant delay for the task that caused the recall, but it is a
synchronous operation that delays other activities that CICS is running under the same TCB.

You can avoid these delays by designing your SMS storage classes and migration policies to avoid
CICS data sets being migrated. See z/OS DFSMShsm Storage Administration for information about
setting data set migration criteria.

CICS outputs an information message, DHFC0989, when a recall is necessary, advising you that the
consequent delay is not an error situation.

• An LSR pool calculated by CICS cannot be fine-tuned by specifying actual sizes for each buffer.
• In LSR, there is no preallocation of buffers to strings, or to particular files or data sets. When VSAM

must reuse a buffer, it picks the buffer that has been referenced least recently. Strings are always
shared across all data sets. Before issuing a read to disk when using LSR, VSAM first scans the
buffers to check if the control interval it requires is already in storage. If so, it might not have to
issue the read. This buffer lookaside can reduce I/O significantly.

• LSR files share a common pool of buffers and a common pool of strings, that is, control blocks
supporting the I/O operations. Other control blocks define the file and are unique to each file or data
set.

When changing the size of an LSR pool, refer to the CICS statistics before and after the change is
made. These statistics show whether the proportion of VSAM reads satisfied by buffer lookaside is
changed or not.

In general, you would expect to benefit more by having extra index buffers for lookaside, and less by
having extra data buffers. This benefit is a further reason for standardizing LSR data and index CI
sizes, so that one subpool does not have a mix of index and data CIs in it.

Because data and index buffers are specified separately with the LSRPOOL definition, there is no
requirement to use CI size to differentiate between data and index values.

Take care to include buffers of the correct size. If no buffers of the required size are present, VSAM
uses the next larger buffer size.

NSR

• Enough buffers must be provided for each file to support the concurrent accesses specified in the
STRINGS parameter for the file. In fact, VSAM enforces this requirement for NSR.

• Specify the number of data and index buffers for NSR using the DATABUFFERS and INDEXBUFFERS
parameters of the file definition. It is important to specify sufficient index buffers. If a KSDS consists
of just one control area and, therefore, just one index CI, the minimum index buffers equal to
STRINGS is sufficient. But when a KSDS is larger than this value, at least one extra index buffer
must be specified so that at least the top-level index buffer is shared by all strings. Further index
buffers reduce index I/O to some extent.

• Set DATABUFFERS to the minimum at STRINGS + 1, unless the aim is to enable overlapped and
chained I/O in sequential operations or it is necessary to provide the extra buffers to speed up CA
splits.

• When the file is an alternate index path to a base, the same INDEXBUFFERS (if the base is a KSDS)
and DATABUFFERS settings are used for alternate index and base buffers (see “CICS calculation of
LSR pool parameters” on page 156). In NSR, the minimum number of data buffers is STRNO + 1,
and the minimum index buffers (for KSDSs and alternate index paths) is STRNO. One data and one
index buffer are preallocated to each string, and one data buffer is kept in reserve for CA splits. If

Chapter 2. Improving the performance of a CICS system 169

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.arcf000/toc.htm

there are extra data buffers, these buffers are assigned to the first sequential operation; they can
also be used to speed VSAM CA splits by permitting chained I/O operations. If there are extra index
buffers, they are shared between the strings and are used to hold high-level index records, thus
providing an opportunity for saving physical I/O.

• NSR files or data sets have their own set of buffers and control blocks.

Note: NSR is not supported for transactions that use transaction isolation. File control commands using
NSR files are not threadsafe.

Always design and program transactions to avoid deadlocks. For further information, see Transaction
deadlocks.

Number of strings

The next decision to make is the number of concurrent accesses to be supported for each file and for
each LSR pool.

You must specify VSAM strings. A string is a request to a VSAM data set requiring positioning within the
data set. Each string specified results in a number of VSAM control blocks (including a placeholder) being
built.

VSAM requires one or more strings for each concurrent file operation. For nonupdate requests (for
example, a READ or BROWSE), an access using a base needs one string. An access using an alternate
index needs two strings (one to hold position on the alternate index and one to hold position on the base
data set). For update requests where no upgrade set is involved, a base still needs one string, and a path
two strings. For update requests where an upgrade set is involved, a base needs 1+n strings and a path
needs 2+n strings, where n is the number of members in the upgrade set. VSAM needs one string per
upgrade set member to hold position. For each concurrent request, VSAM can reuse the n strings required
for upgrade set processing because the upgrade set is updated serially.

A simple operation such as direct reading frees the string or strings immediately. However, a read for
update, mass insert, or browse request retains the string or strings until a corresponding update, unlock,
or end browse request is performed.

The interpretation of the STRNO parameter by CICS and by VSAM differs depending upon the context:

• The equivalent STRINGS parameter of the LSR pool definition (LSRPOOL) has the same meaning as the
STRNO parameter in the VSAM BLDVRP macro; that is, the absolute number of strings to be allocated to
the resource pool. Unless an LSR pool contains only base data sets, the number of concurrent requests
that can be handled is less than the STRINGS value specified.

• The equivalent STRINGS parameter of the file definition has the same meaning as the STRNO parameter
in the VSAM ACB for NSR files. That is, the actual number of concurrent outstanding VSAM requests that
can be handled. When alternate index paths or upgrade sets are used, the actual number of strings that
VSAM allocates to support these paths or upgrade sets can be greater than the STRINGS value
specified.

For LSR, it is possible to specify the precise numbers of strings, or to have CICS calculate the numbers.
The number specified in the LSR pool definition is the actual number of strings in the pool. If CICS
calculates the number of strings, it derives the pool STRINGS from the RDO file definition. It interprets
this pool, like with NSR, as the actual number of concurrent requests.

You must decide how many concurrent read, browse, update, mass insert requests, and so on, you must
support.

If access to a file is read only with no browsing, there is no need to have many strings; just one might be
sufficient. While a read operation only holds the VSAM string for the duration of the request, it might need
to wait for the completion of an update operation on the same CI.

In general, where some browsing or updates are used, set STRINGS to 2 or 3 initially and check CICS file
statistics regularly to see the proportion of wait-on strings encountered. Wait-on strings of up to 5% of file
accesses would typically be considered acceptable. Do not try, with NSR files, to keep wait-on strings
permanently zero.

170 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp37e.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp37e.html

CICS manages string usage for both files and LSR pools. For each file, whether it uses LSR or NSR, CICS
limits the number of concurrent VSAM requests to the STRINGS= specified in the file definition. For each
LSR pool, CICS also prevents more requests being concurrently made to VSAM than can be handled by
the strings in the pool. If additional strings are required for upgrade-set processing at update time, CICS
anticipates this requirement by reserving the additional strings at read-for-update time. If there are not
enough file or LSR pool strings available, the requesting task waits until they are freed. The CICS statistics
give details of the string waits.

When deciding on the number of strings for a particular file, consider the maximum number of concurrent
tasks. Because CICS command level does not allow more than one request to be outstanding against a
particular data set from a particular task, there is no point in allowing strings for more concurrent
requests.

If you want to distribute your strings across tasks of different types, the transaction classes can also be
useful. You can use transaction class limits to control the transactions issuing the separate types of VSAM
request, and for limiting the number of task types that can use VSAM strings, leaving a subset of strings
available for other uses.

All placeholder control blocks must contain a field long enough for the largest key associated with any of
the data sets sharing the pool. Assigning one inactive file that has a large key (primary or alternate) into
an LSR pool with many strings might use excessive storage.

Considerations for ESDS files

There are some special performance considerations when choosing a STRINGS value for an ESDS file.

If an ESDS is used as an add-only file (that is, it is used only in write mode to add records to the end of the
file), a string number of 1 is suggested. Any string number greater than 1 can significantly affect
performance, because of exclusive control conflicts that occur when more than one task attempts to write
to the ESDS at the same time.

If an ESDS is used for both writing and reading, with writing, say, being 80% of the activity, it is better to
define two file definitions, using one file for writing and the other for reading.

Effects

LSR has significant advantages, by providing the following effects:

• More efficient use of virtual storage because buffers and strings are shared.
• Better performance because of better buffer lookaside, which can reduce I/O operations.
• Better read integrity because there is only one copy of a CI in storage.
• Self-tuning because more buffers are allocated to busy files and frequently referenced index control

intervals are kept in buffers.
• Use of synchronous file requests and a UPAD exit. CA and CI splits for LSR files do not cause either the

subtask or main task to wait. VSAM takes the UPAD exit while waiting for physical I/O, and processing
continues for other CICS work during the CA/CI split.

File control requests for NSR files are done asynchronously, however, and still cause the CICS main task
or subtask to stop during a split.

• Support for transaction isolation.

NSR can provide the following effects:

• Specific tuning in favor of a particular data set
• Better performance for sequential operations.

Suggestions

Use LSR for all VSAM data sets except where you have one of the following situations:

• A file is active but there is no opportunity for lookaside because, for example, the file is large.

Chapter 2. Improving the performance of a CICS system 171

• High performance is required by the allocation of extra index buffers.
• Fast sequential browse or mass insert is required by the allocation of extra data buffers.
• Control area (CA) splits are expected for a file, and extra data buffers are to be allocated to speed up the

CA splits.

If you have only one LSR pool, a particular data set cannot be isolated from others using the same pool
when it is competing for strings. It can only be isolated when it is competing for buffers by specifying
unique CI sizes. In general, you get more self-tuning effects by running with one large pool. It is possible
to isolate busy files from the remainder or give additional buffers to a group of high performance files by
using several pools. It is also possible that a highly active file has more successful buffer lookaside and
less I/O if it is set up as the only file in an LSR subpool rather than using NSR. Also the use of multiple
pools eases the restriction of 255 strings for each pool.

Limitations

All files with the same base data set, except read-only files with DSNSHARING(MODIFYREQS) specified in
the file definition, must use either the same LSR pool, or all use NSR.

SERVREQ=REUSE files cannot use LSR.

Coupling facility data tables
The CPU instruction data provided here was obtained using a 9672-R55 system.

Two tables are provided:

• The first for record lengths that result in synchronous coupling facility accesses (less than 4K)
• The second for record lengths that result in asynchronous coupling facility accesses (greater than 4K).

Note that asynchronous requests take more CPU time to process. The response times are also slightly
longer than for synchronous requests. CPU instructions per API call for record lengths less than 4 K are as
follows:

API CALL CONTENTION LOCKING RECOVERABLE

READ 11.8 11.8 11.8

READ/UPDATE 12.0 22.2 22.4

REWRITE 19.5 24.0 33.0

WRITE 8.0 8.0 13.0

DELETE 7.0 11.0 16.5

CPU instructions per API call for record lengths greater than 4 K are as follows:

API CALL CONTENTION LOCKING RECOVERABLE

READ 15.3 15.3 15.3

READ/UPDATE 15.0 25.7 25.9

REWRITE 23.0 27.5 36.5

WRITE 11.5 11.5 16.5

DELETE 10.5 14.5 20.0

Using VSAM record-level sharing
VSAM record-level sharing (RLS) is a VSAM data set access mode, introduced in DFSMS, and supported by
CICS. RLS enables VSAM data to be shared, with full update capability, between many applications

172 CICS TS for z/OS: Performance Guide

running in many CICS regions. With RLS, CICS regions that share VSAM data sets can reside in one or
more MVS images within an MVS sysplex.

RLS also provides some benefits when data sets are shared between CICS regions and batch jobs.

RLS involves the use of the following components:

A VSAM server, subsystem SMSVSAM
This subsystem runs in its own address space to provide the RLS support required by CICS application
owning regions (AORs) and batch jobs, within each MVS image in a Parallel Sysplex® environment.

The CICS interface with SMSVSAM is through an access control block (ACB), and CICS registers with
this ACB to open the connection. Unlike the Db2 and DBCTL database manager subsystems, which
require user action to open the connections, if you specify RLS=YES as a system initialization
parameter, CICS registers with the SMSVSAM control ACB automatically during CICS initialization.

A CICS region must open the control ACB to register with SMSVSAM before it can open any file ACB in
RLS mode. Each normal file ACB remains the interface for file access requests.

Sharing-control data sets
VSAM requires a number of these data sets for RLS control. The VSAM sharing control data sets are
logically partitioned, linear data sets. They can be defined with secondary extents, but all the extents
for each data set must be on the same volume.

Define at least three sharing-control data sets. VSAM requires two active data sets for use in
duplexing mode, and a third data set as a spare in case one of the active data sets fails.

For more information about sharing-control data sets, and for a JCL example to define them, see z/OS
DFSMSdfp Storage Administration.

Common buffer pools and control blocks
For data sets accessed in non-RLS mode, VSAM control blocks and buffers (local shared resources
(LSR) pools) are located in each CICS address space. They are thus not available to batch programs,
and not even to another CICS region.

With RLS, all the control blocks and buffers are allocated in an associated data space of the SMSVSAM
server. This structure provides one large buffer pool for each MVS image, which can be shared by all
CICS regions that are connected to the SMSVSAM server, and also by batch programs. Buffers in this
data space are created and freed automatically.

DFSMS provides the RLS_MAX_POOL_SIZE parameter that you can specify in the IGDSMSxx
SYS1.PARMLIB member. There are no other tuning parameters for RLS as there are with LSR pools.
Management of the RLS buffers is fully automatic.

Using RLS with entry-sequenced data sets (ESDS) can have a negative effect on the availability of the data
set when you are adding records using multiple tasks from multiple regions. This is because adding a
record requires an exclusive add-to-end lock in order to perform the write. If a CICS region fails while
writing to an ESDS, the data set might be locked until the CICS region is restarted.

To use RLS access mode with CICS files, do the following tasks:

1. Define the required sharing control data sets.
2. Specify the RLS_MAX_POOL_SIZE parameter in the IGDSMSxx SYS1.PARMLIB member.
3. Ensure that the SMSVSAM server is started in the MVS image for which you want RLS support.
4. Specify the system initialization parameter RLS=YES. This parameter enables CICS to register

automatically with the SMSVSAM server by opening the control ACB during CICS initialization. RLS
support cannot be enabled dynamically later if you start CICS with RLS=NO.

5. Ensure that the data sets you plan to use in RLS-access mode are defined, using Access Method
Services (AMS), with the required recovery attributes using the LOG and LOGSTREAMID parameters on
the IDCAMS DEFINE statements. If you use an existing data set that was defined without these
attributes, redefine the data set with these attributes specified.

6. Specify RLSACCESS(YES) on the file resource definition.

Chapter 2. Improving the performance of a CICS system 173

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.idas200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.idas200/toc.htm

CICS can use three different modes to access a VSAM file. These are non-shared resources (NSR) mode,
local shared resources (LSR) mode, and record-level sharing (RLS) mode. (CICS does not support VSAM
global shared resources (GSR) access mode.) The mode of access is not a property of the data set itself, it
is a property of the way that the data set is opened. This means that a given data set can be opened by a
user in NSR mode at one time, and RLS mode at another. The term non-RLS mode is used as a generic
term to refer to the NSR or LSR access modes supported by CICS. Mixed-mode operation means a data
set that is opened in RLS mode and a non-RLS mode concurrently, by different users.

Although data sets can be open in different modes at different times, all the data sets within a VSAM
sphere must normally be opened in the same mode. A sphere is the collection of all the components—the
base, index, any alternate indexes, and alternate index paths—associated with a given VSAM base data
set. However, VSAM does permit mixed-mode operations on a sphere by different applications, subject to
some CICS restrictions.

Effects

The tests and measurements described were carried out using RLS with key-sequenced data sets (KSDS).
As described earlier in this topic, RLS is not suggested for use with entry-sequenced data sets (ESDS), as
it can cause problems with performance and availability when you are adding records.

There is an increase in CPU costs when using RLS compared with function-shipping to a file-owning region
(FOR) using MRO. When measuring CPU usage using the standard DSW workload, the following
comparisons were seen:

• Switching from local file access to function-shipping across MRO cross-memory (XM) connections
incurred an increase of 7.02 ms per transaction in a single CPC.

• Switching from MRO XM to RLS incurred an increase of 8.20 ms per transaction in a single CPC.
• Switching from XCF/MRO to RLS using two CPUs produced a reduction of 2.39 ms per transaction.
• Switching from RLS using one CPC to RLS using two CPUs there was no appreciable difference.

In terms of response times, the performance measurements showed that:

• Function-shipping with MRO XM is better than RLS, but this choice restricts function-shipping to within
one MVS image, and prevents full exploitation of a Parallel Sysplex with multiple MVS images or
multiple CPUs.

• RLS is better than function-shipping with XCF/MRO, when the FOR is running in a different MVS image
from the AOR.

However, performance measurements on their own do not tell the whole story, and do not take account
of other factors; for example:

• Because more applications need to share the same VSAM data, the load increases on the single FOR to
a point where the FOR can become a throughput bottleneck. The FOR is restricted, because of the CICS
internal architecture, to the use of a single TCB for user tasks, which means that a CICS region generally
does not use multiple CPUs

• Session management becomes more difficult as more AORs connect to the FOR.

These negative aspects of using an FOR are resolved by using RLS, which provides the scalability lacking
in a FOR.

Monitoring

Using RLS-access mode for VSAM files involves SMSVSAM as well as the CICS region issuing the file
control requests. This choice means monitoring the performance of both CICS and SMSVSAM to get the
full picture, using a combination of CICS performance monitoring data and SMF Type 42 records written
by SMSVSAM:
CICS monitoring

For RLS access, CICS writes performance class records to SMF containing:

• RLS CPU time on the SMSVSAM SRB

174 CICS TS for z/OS: Performance Guide

• RLS wait time

SMSVSAM SMF data
SMSVSAM writes Type 42 records, subtypes 15, 16, 17, 18, and 19, providing information about
coupling facility cache sets, structures, locking statistics, CPU usage, and so on. This information can
be analyzed using RMF III post processing reports.

The following code is an example of the JCL that you can use to obtain a report of SMSVSAM data:

//RMFCF JOB (accounting_information),MSGCLASS=A,MSGLEVEL=(1,1),CLASS=A
//STEP1 EXEC PGM=IFASMFDP
//DUMPIN DD DSN=SYS1.MV2A.MANA,DISP=SHR
//DUMPOUT DD DSN=&&SMF,UNIT=SYSDA,
// DISP=(NEW,PASS),SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INDD(DUMPIN,OPTIONS(DUMP))
 OUTDD(DUMPOUT,TYPE=000:255))
//POST EXEC PGM=ERBRMFPP,REGION=0M
//MFPINPUT DD DSN=&&SMF,DISP=(OLD,PASS)
//SYSUDUMP DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//MFPMSGDS DD SYSOUT=A
//SYSIN DD *
 NOSUMMARY
 SYSRPTS(CF)
 SYSOUT(A)
 REPORTS(XCF)
/*

CICS file control statistics contain the typical information about the numbers of file control requests
issued in the CICS region. They also identify which files are accessed in RLS mode, and provide counts of
RLS timeouts and EXCP counts for RLS files. They do not contain any information about the SMSVSAM
server, or its buffer usage, or its accesses to the coupling facility.

Threadsafe file control applications
By default, CICS forces file control commands issued by threadsafe applications to run on the QR TCB. If
you change the system initialization parameter FCQRONLY to specify NO, file control commands for local
VSAM LSR or RLS files can run on an L8 or L9 TCB.

Using threadsafe file control can result in significant throughput improvements in CICS regions that have
multiple processors available. Tasks currently running on an L8 or L9 TCB do not switch back to the QR
TCB when the file control command is issued, but continue to run on the L8 or L9 TCB. These tasks
benefit from greater concurrency and increased task throughput. Processor reduction and faster
throughput is noticeable for threadsafe applications that combine file control commands with Db2 or IBM
MQ requests.

To benefit from threadsafe file control, applications must meet the following requirements:

• The program resource must be defined with CONCURRENCY(THREADSAFE) or
CONCURRENCY(REQUIRED).

• The file control commands that are issued must be to a local VSAM LSR or RLS file.
• The system initialization parameter FCQRONLY=NO must be specified for the CICS region where the file

control commands run. FCQRONLY=YES is the default.

Threadsafe file control benefits CICS regions where the files are defined as local to the CICS region and
are either VSAM LSR or RLS. From a file control perspective, in CICS regions with a mix of file types,
consider specifying the system initialization parameter FCQRONLY=NO. Then define programs that access
local VSAM LSR or RLS files with CONCURRENCY(THREADSAFE) and programs that access other file types
with CONCURRENCY(QUASIRENT). If the files in a CICS region are not local VSAM LSR or RLS, use the
default system initialization parameter FCQRONLY=YES.

Chapter 2. Improving the performance of a CICS system 175

Function shipped requests to file-owning regions (FORs)

If you function ship file control requests from application-owning regions (AORs) to file-owning regions
(FORs), choose your setting for FCQRONLY as follows:

• For FORs at CICS TS 4.2 or later that use IP interconnectivity (IPIC) connections over TCP/IP, specify
FCQRONLY=NO to optimize performance for those connections.

• For FORs that use MRO links or ISC over SNA connections, specify FCQRONLY=YES to optimize
performance for those connections. Also use FCQRONLY=YES for all FORs earlier than CICS TS 4.2.

If an AOR function ships all its file control requests to FORs and has no local files, you can use the default
FCQRONLY=YES for the AOR, because the region does not benefit from threadsafe file control. For AORs
that have some local files, choose the setting for FCQRONLY depending on the file types in the region.

File control API costs
For read operations, the VSAM I/O cost is not included because the need to access DASD depends on the
workload. For the read operation to complete, both the index and data must be accessed. If the index or
data are not in a buffer, an I/O operation is required for each level of index and one for the data.

The relative number of instructions, in 1K instruction counts, for the I/O for each file type is as follows:

• 9.5 for a key-sequenced data set (KSDS)
• 9.5 for an entry-sequenced data set (ESDS)
• 8.2 for a relative record data set (RRDS)

READ

KSDS ESDS RRDS Data Table (CMT)

3.0 2.4 2.2 First: 1.5 Subsequent:
1.1

READ UPDATE

Recoverable and nonrecoverable files are included in the READ UPDATE cost:

Table 15. Nonrecoverable files

KSDS ESDS RRDS

3.1 2.3 2.2

A recoverable READ UPDATE puts the before image into the log buffer which, if not subsequently written
to primary storage, is written out before the REWRITE is completed.

KSDS ESDS RRDS

5.5 4.3 4.2

REWRITE

Recoverable and nonrecoverable files are included in the REWRITE cost. Every REWRITE has a data VSAM
I/O associated with it.

Table 16. Nonrecoverable files

KSDS ESDS RRDS

10.2 10.1 10.1

176 CICS TS for z/OS: Performance Guide

A REWRITE of a recoverable file requires that the log buffer that containing the before image is written
out. If the buffer has not already been written out since the READ UPDATE, the cost of writing the log
buffer is incurred. When the before image has been hardened, the VSAM I/O takes place. At the end of the
transaction, there are additional costs involved in sync pointing if recoverable resources were updated.
See “Sync pointing” on page 181.

KSDS ESDS RRDS

10.4 10.3 10.3

WRITE

The cost for WRITE includes nonrecoverable files and recoverable files. Every WRITE has a data VSAM I/O
associated with it. The index needs to be written only when a control area split occurs.

Table 17. Nonrecoverable files

KSDS ESDS RRDS

12.9 11.1 10.9

Every WRITE has a hidden READ associated with it to ensure that the record is not already present in the
file. This under-the-cover READ could incur the cost of I/Os if the index, the data, or both are not in the
buffer. Each WRITE to a recoverable file requires that the log buffer containing the data image has been
written out before the VSAM I/O takes place.

At the end of the transaction, there are additional costs involved in sync pointing if recoverable resources
were updated. See “Sync pointing” on page 181.

Table 18. Recoverable files

KSDS ESDS RRDS

14.9 13.1 12.9

DELETE

You cannot delete from an ESDS record file.

Table 19. Nonrecoverable files

KSDS RRDS

12.5 11.5

At the end of the transaction, additional costs are involved in sync pointing if recoverable resources were
updated. See “Sync pointing” on page 181.

Table 20. Recoverable files

KSDS RRDS

14.5 13.5

Browsing

STARTBR READNEXT READPREV RESETBR ENDBR

3.1 1.5 1.6 2.6 1.4

UNLOCK

The path length for EXEC CICS UNLOCK is 0.7.

Chapter 2. Improving the performance of a CICS system 177

Database management for performance
You can tune a number of aspects of database management in order to improve performance.

Setting DBCTL parameters
A number of parameters are required to assist with DBCTL performance. These include MINTHRD and
MAXTHRD, which are specified in the DRA startup table (DFSPZP) and DEDB parameters (CNBA, FPBUF,
and FPBOF), which are defined during DBCTL system generation or at DBCTL initialization.

For more information about the DBCTL parameters and tuning a CICS-DBCTL system, see Specifying
numbers of threads and DEDB performance and tuning considerations.

Tuning the CICS Db2 attachment facility
The CICS Db2 attachment facility provides a multithread connection to Db2. The DB2CONN, DB2ENTRY,
and DB2TRAN definitions of the CICS Db2 attachment facility define the authorization and access
attributes on a transaction and transaction group basis. You can optimize performance between CICS and
Db2 by adjusting the transaction class limits, MXT system parameters of CICS, and the THREADWAIT,
TCBLIMIT, THREADLIMIT, and PRIORITY attributes of DB2CONN and DB2ENTRY.

A number of topics provide more information about the CICS Db2 attachment and performance
considerations:

• Defining the CICS Db2 connection explains the recommendations for defining the CICS Db2 connection
for optimum performance.

• How threads are created, used, and terminated explains threads and the use of the THREADWAIT,
TCBLIMIT, and THREADLIMIT parameters with Db2.

• Application design and development considerations for CICS Db2 has recommendations for application
design.

• Tuning a CICS application that accesses Db2 has recommendations for tuning CICS Db2 applications.

In summary, the objectives in tuning the CICS attachment facility are to:

• Optimize the number of threads in the connection.

The total number of threads in the connection, and the number of threads for each dedicated entry and
the pool must be optimized. A larger number of threads than is needed requires additional processor
time to dispatch the TCBs and additional storage for plans, data, and control blocks. If an insufficient
number of threads is defined, response time increases.

• Optimize the assignment and reuse of threads.

Reusing threads avoids the thread creation and termination process, including plan allocation and
authorization checks. Thread creation and termination represent a significant part of the processing
time for a simple transaction. Thread reuse can be measured using CICS Db2 statistics.

Limit conversational transactions either through transaction classes or by using a dedicated DB2ENTRY
(THREADLIMIT greater than 0) with THREADWAIT=YES specified. Otherwise, they tie up the pool. Do
not allow conversational transactions to use the pool.

• For pool and entry threads, choose the priority assigned to the subtask thread TCBs, using the
PRIORITY parameter.

The PRIORITY parameter controls the priority of the CICS open L8 thread TCBs relative to the CICS
main TCB (QR TCB). There are three options: PRIORITY=HIGH, PRIORITY=LOW, and
PRIORITY=EQUAL.

When PRIORITY=HIGH is specified, transactions run at a higher priority than CICS, saving virtual
storage, releasing locks, and avoiding other transactions deadlocking or timing out. However, if all
threads are specified with PRIORITY=HIGH, CICS itself might be at too low a priority, so for example, a
complex SQL call could spend a long time in Db2, and the CICS TCB might not be dispatched.

178 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/database/dfht44s.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/database/dfht44s.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/database/dfht44t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/databases/dfhtk2h.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/database/dfhtk27.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/deploying/dfhtk98.html

Set PRIORITY=HIGH for your transactions with the highest weighted average number of SQL calls. The
highest weighted average is equal to the number of SQL calls per transaction multiplied by the
frequency of transaction. Set PRIORITY=LOW or EQUAL for other transactions. If the CPU usage per call
is high, you should not set PRIORITY=HIGH.

• Choose the best authorization strategy to avoid or minimize the process of signon by each thread.
• Minimize the number of DB2ENTRYs. Use wildcarding and dynamic plan selection where relevant to

combine appropriate transactions in an entry. Allow low use transactions to default to the pool.
However, it should be noted that defining transaction IDs using wildcard characters removes the ability
to collect CICS Db2 statistics on a per transaction basis as statistics are collected for each DB2ENTRY
which will now represent a group of transactions.

For information about tuning Db2 tables and the Db2 subsystem, and for general considerations when
tuning a Db2 application, see Managing Db2 performance in Db2 for z/OS product documentation.

Selecting authorization IDs for performance and maintenance
A process that connects to or signs on to Db2 must provide one or more Db2 short identifiers, called
authorization IDs, that can be used for security checking in the Db2 address space. Every process must
provide a primary authorization ID, and it can optionally provide one or more secondary authorization IDs.
CICS transactions that acquire a thread into Db2 are considered as processes, and must provide
authorization IDs.

The Db2 Guide manual tells you how to choose and set up the authorization IDs that a CICS transaction
passes to Db2 when the thread used by the transaction signs on to Db2. The authorization IDs for a
transaction are determined by attributes in the resource definition for the thread that the transaction
uses. For entry threads, this is the DB2ENTRY definition, and for pool threads or command threads, this is
the DB2CONN definition.

When choosing the type of authorization ID that a CICS transaction will use, you should take into account
performance and maintenance considerations.

Performance considerations for authorization IDs

From the point of view of performance, choosing one of the options USERID, OPID, TERM, TX or GROUP
on the AUTHTYPE attribute means that any CICS transaction using a Db2 thread is likely to have a
different authorization ID from the last transaction that used the thread. This causes sign-on processing
to occur. Choosing the SIGN option, or using the AUTHID attribute instead of the AUTHTYPE attribute,
means that CICS transactions will have the same authorization ID. If the transactions using a thread have
the same authorization ID, sign-on processing can be bypassed.

However, although the options USERID, OPID, TERM, TX or GROUP have disadvantages for performance,
they make Db2 security checking more granular. For example, if a transaction's thread is defined with
AUTHTYPE(USERID), Db2 security checking uses the CICS user ID of the individual that is using the
transaction. If a transaction's thread is defined with AUTHTYPE(SIGN), the Db2 security checking uses
the SIGNID that has been defined for the whole CICS region, so Db2 is only checking that the CICS region
is permitted to access Db2 resources. If you do use one of the options that gives the same authorization
ID for all transactions, you should use CICS transaction-attach security to restrict access to transactions
(see Controlling users' access to DB2-related CICS transactions in the Db2 Guide manual).

An alternative solution for plans is to use a GRANT command in Db2 to give EXECUTE authority on a plan
to PUBLIC, because this also causes sign-on processing to be bypassed. Db2 ignores the changed
authorization ID. This is not quite as efficient as using a constant authorization ID and transaction id,
because some processing still takes place in the CICS Db2 attachment facility. Security considerations for
your Db2 subsystem could prevent the use of this solution, as it allows no security checking for the plan
within Db2.

Maintenance considerations for authorization IDs

From the point of view of maintenance, when you use the options USERID, OPID, TERM, TX or GROUP for
authorization IDs, you need to grant permissions in Db2 to a greater number of authorization IDs. For

Chapter 2. Improving the performance of a CICS system 179

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/database/dfhtk40.html

example, if a CICS transaction executes a plan in Db2, and the transaction's thread is defined with
AUTHTYPE(USERID), you need to grant permission to use the plan in Db2 to all the CICS user IDs of
individuals who can use the transaction. If you use the SIGN option, or use the AUTHID attribute instead
of the AUTHTYPE attribute, you need to grant permissions to fewer authorization IDs.

However, as already mentioned, using a limited range of authorization IDs makes the Db2 own security
checking less granular. If your priority is security, but you are concerned about high levels of maintenance
in your Db2 system, a possible solution is to set up secondary authorization IDs for CICS users. Providing
secondary authorization IDs for CICS transactions in the Db2 Guide manual tells you how to do this. You
can create a RACF group, and connect your CICS users to this RACF group. Use the GROUP attribute of
the DB2ENTRY definition for the thread used by the transaction, so that the RACF group is one of the
secondary IDs that is passed to Db2. Then grant Db2 permissions to the RACF group. To remove a CICS
user's Db2 permissions, disconnect them from the RACF group. If you use this solution, Db2 security
checking can ensure that individual CICS users are authorized to access resources within Db2, but you do
not have to specifically grant permission to each CICS user ID.

Logging
Because logging costs contain some of the variable costs incurred by synchronous accesses to the
coupling facility, they are documented here in terms of milliseconds of CPU time.

When looking at the cost of accessing recoverable resources, the cost of writing the log buffer to primary
storage has been separated from the API cost. FORCE and NOFORCE are the two types of write
operations to the system log buffer.

• The FORCE operation requests that the log buffer is written out and is made non-volatile. The
transaction that made this request is suspended until the process completes. The log is not written out
immediately but is deferred using an internal algorithm. The first forced write to the log sets the clock
ticking for the deferred log flush. Subsequent transactions requesting log forces will put their data in the
buffer and suspend until the original deferred time has expired. This permits buffering of log requests
and it means that the cost of writing the log buffer is shared between many transactions.

• The NOFORCE operation puts the data into the log buffer, which is written to primary storage when a
FORCE operation is requested or the buffer becomes full.

The cost of writing a log buffer varies, depending on which of the following situations applies:

• The write is synchronous to the coupling facility
• The write is asynchronous to the coupling facility
• A staging data set is being used
• DASD-only logging is being used

Synchronous writes to the coupling facility
Writes of less than 4 K in size are generally synchronous. A synchronous write uses a special
instruction that accesses the coupling facility directly. The instruction lasts for as long as it takes to
access the coupling facility and return. This access time, known as the CF Service Time, depends on
both the speed of the coupling facility and the speed of the link to it. CF Service Times can be
monitored using RMF III, as shown in Figure 21 on page 187. For synchronous writes, the CPU cost of
the access changes as the CF Service Time changes; this is not true of asynchronous writes.

Asynchronous writes to the CF
Asynchronous writes do not use the same instruction used by synchronous writes. A CICS task that
does an asynchronous log write gives up control to another task, and the operation is completed by
the logger address space.

For more information about logging, see “CICS logging and journaling: Performance and tuning” on page
181.

180 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/database/dfhtk3v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/database/dfhtk3v.html

Sync pointing
The sync point cost needs to be factored into the overall transaction cost. The amount of work at sync
point varies according to the number of different types of resource managers involved during the unit of
work (UOW). Therefore, the cost can vary.

Typically, a sync point calls all the resource managers that have been involved during the UOW. These
might have to place data in the log buffer before it is written out. For example, recoverable transient data
(TD) defers putting data into the log buffer until a sync point. Recovery manager itself puts commit
records into the log buffer and requests a forced write. For these reasons it is difficult to give a precise
cost for a sync point, but the following information should be used as a guide:

A sync point can be split as follows:

Part Value

Basic cost 5.0

Put commit records in the log buffer 2.0

For each RM used in UOW 2.5

Write log buffer See “Logging” on page 180

This table shows sync point costs, in 1K instruction units, for local resources only. If distributed resources
are updated, communication costs must added.

If no recoverable resources have been updated, the only cost is the transaction termination cost:

Transaction cost Assembler COBOL

Termination 6.2 10.0

Note: The transaction initialization cost is calculated from the start of transaction attach to the start of the
CICS application code. If recoverable resources have been updated, the sync pointing cost must be added
to the termination cost.

CICS logging and journaling: Performance and tuning
Individual CICS log streams can use either coupling facility log structures or the CICS log-manager-
supported DASD-only option of the MVS system logger. You can tune the performance of the log manager
in a number of ways.

For more information about the types of storage used by CICS log streams, see Defining the logger
environment for CICS.

For information about how you can define each log stream (based on its usage) when you use coupling
facility log structures, see Coupling facility or DASD-only?. For information about the relative performance
of coupling facility and DASD-only log streams, see “Logging” on page 180.

If you use a coupling facility, you can use a standalone model. Alternatively, you can use the integrated
coupling migration facility (ICMF) to provide the services of a coupling facility in a logical partition (LPAR).
This means that the coupling facility and MVS are not failure-independent, thereby requiring the use of
staging data sets.

For additional advice and examples relating to performance and tuning for logging, see the following
documents and subtopics:

• The IBM Redbooks publication Systems Programmer's Guide to: z/OS System Logger, SG24-6898. This
document provides a thorough explanation of the z/OS System Logger, and explains how it should be
set up for optimum performance with CICS and other exploiters.

• The IBM Redpaper Performance Considerations and Measurements for CICS and System Logger,
REDP-3768. This document, which was written in support of the Redbook publications, supplies

Chapter 2. Improving the performance of a CICS system 181

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha14p.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha14p.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1ko.html
http://www.redbooks.ibm.com/abstracts/sg246898.html
http://www.redbooks.ibm.com/abstracts/redp3768.html

additional guidance on the interactions between CICS and z/OS System Logger, provides examples of
different CICS and System Logger configurations, and demonstrates the tuning process.

• The IBM support document Useful CICS Logger information. This document provides links to two
presentations dealing with performance evaluation and troubleshooting for CICS and z/OS System
Logger.

• Defining a couple data set for system logger in z/OS Management Facility Configuration Guide.
• Examples of using the IXCMIAPU utility in z/OS MVS Setting Up a Sysplex.

The CICS log manager
The CICS log manager provides facilities for the creation, control, and retrieval of journals when CICS is
running. Journals are intended to record, in chronological order, any information that you might later need
to reconstruct data or events. For example, you can create journals to act as audit trails; to record
database updates, additions, and deletions for backup purposes; or to track transaction activity in the
system.

The CICS log manager controls all logging and journaling using services provided by the MVS system
logger. The CICS log manager supports:

• The CICS system log
• Forward recovery logs
• Auto-journals for file control and terminal control operations
• User journals

The MVS system logger provides:

• Media management and archiving
• Log data availability through direct, and sequential, access to log records.

Log stream storage
A log stream is a sequence of data blocks, with each log stream identified by its own log stream identifier
—the log stream name (LSN). The CICS system log, forward recovery logs, and user journals map onto
specific MVS log streams. CICS forward recovery logs and user journals are referred to as general logs, to
distinguish them from system logs.

Each log stream is a sequence of blocks of data, which the CICS log manager internally partitions over
three different types of storage:

1. Primary storage, which holds the most recent records written to the log stream. Primary storage can
consist of either:

• A structure within a coupling facility. (The use of a coupling facility allows CICS regions in different
MVS images to share the same general log streams.) Log data written to the coupling facility is also
copied to either a data space or a staging data set.

• A data space in the same MVS image as the system logger. Log data written to the data space is also
copied to a staging data set.

2. Auxiliary storage—when the primary storage for a log stream becomes full, the older records
automatically spill into auxiliary storage, which consists of data sets managed by the storage
management subsystem (SMS). Each log stream, identified by its log stream name (LSN), is written to
its own log data sets.

3. Tertiary storage—a form of archive storage, used as specified in your hierarchical storage manager
(HSM) policy. Optionally, older records can be migrated to tertiary storage, which can be either DASD
data sets or tape volumes.

Figure 19 on page 183 and Figure 20 on page 184 show the types of storage used by the CICS system
logger.

182 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/docview.wss?uid=swg21113273
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.izua300/IZUHPINFO_DefineLoggerCDS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/ieaf100201.htm

Figure 19. The types of storage used by the MVS system logger

Chapter 2. Improving the performance of a CICS system 183

Figure 20. The types of storage used by the MVS system logger

Journal records
Journal records are written to a log stream either directly from a user application program or from a CICS
management program on behalf of a user application.

Journal records can be written from a user application using the WRITE JOURNALNAME API command.
You enable or disable a journal from an application program with the SET JOURNALNAME SPI command.

Access to journaled data in log streams is provided through an MVS subsystem interface (SSI), LOGR.
Your existing user programs can read the general log streams, providing you specify the SUBSYS
parameter and supporting options on the DD for log streams in your batch job JCL. If you specify the
LOGR subsystem name on the SUBSYS parameter, LOGR can intercept data set open and read requests at
the SSI and convert them into log stream accesses.

Depending on the options specified on the SUBSYS parameter, general log stream journal records are
presented in one of two ways:

184 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_writejournalname.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_setjournalname.html

• In the record format used at CICS/ESA 4.1 and earlier, for compatibility with older utilities (selected by
the COMPAT41 option)

• In the CICS Transaction Server for z/OS format for newer or upgraded utilities that needed to access log
record information.

CICS system log records are available only in the CICS Transaction Server for z/OS format, so you must
ensure that any utilities that handled system log records in releases before CICS Transaction Server for
z/OS are converted to handle this format.

Journal records can be read offline by user-written programs. You can generate the DSECTs that such
programs require by including certain statements in the program code:

• For records in the CICS Transaction Server for z/OS format on general logs, offline user-written
programs can map journal records by including an INCLUDE DFHLGGFD statement. This statement
generates the assembler version of the DSECT.

• For records formatted with the COMPAT41 option, offline user-written programs can map journal
records by issuing the DFHJCR CICSYST=YES statement, which results in the DFHJCRDS DSECT being
included in the program.

The generated DSECT is the same as the DSECT that is obtained for CICS programs by the COPY
DFHJCRDS statement. The only difference is that the fields are not preceded by a CICS storage
accounting area. The DSECT is intended to map journal records directly in the block, rather than in a
CICS storage area.

Monitoring the logger environment
CICS collects statistics on the data written to each journal and log stream; this data can be used to
analyze the activity of a single region. However, because general log streams can be shared across
multiple MVS images, it can be more useful to examine the statistics generated by MVS.

About this task

The MVS system logger writes SMF Type 88 records containing statistics for each connected log stream.
MVS supplies in SYS1.SAMPLIB a sample reporting program, IXGRPT1, that you can use as supplied, or
modify to meet your requirements. Alternatively, you can use some other SMF reporting program. For
information about the SMF Type 88 records and the sample reporting program, see z/OS MVS System
Management Facilities (SMF).

The main events to monitor routinely are as follows:

• For coupling facility log streams, the number of "structure full" events
• For DASD-only log streams, the number of "staging data set full" events.

If these events occur frequently, this indicates that the logger cannot write data to auxiliary storage
quickly enough to keep up with incoming data, which causes CICS to wait before it can write more data.

Procedure

1. Consider the following solutions to resolve problems that occur as a result of event-full conditions:
a) Increase the size of primary storage (that is, the size of the coupling facility structure or, for a

DASD-only log stream, the size of the staging data set), in order to smooth out spikes in logger load.
b) Reduce the data written to the log stream by not merging so many journals or forward recovery logs

on to the same stream.
c) Reduce the HIGHOFFLOAD threshold percentage, the point at which the system logger begins

offloading data from primary storage to offload data sets.
d) Review the size of the offload data sets. Offload data sets must be large enough to avoid too many

“DASD shifts”—that is, new data set allocations. Aim for no more than one DASD shift per hour. You
can monitor the number of DASD shifts using the SMF88EDS record.

Chapter 2. Improving the performance of a CICS system 185

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieag200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieag200/toc.htm

e) Examine device I/O statistics for possible contention on the I/O subsystem used for offload data
sets.

f) Use faster DASD devices.

The best CICS system logs performance is achieved when CICS can delete log tail data that is no
longer needed before it is written to auxiliary storage by the MVS system logger. To monitor that this is
being achieved, your reporting program can examine the values in the SMF88SIB and SMF88SAB SMF
Type 88 records, which provide helpful information relating to log data.
SMF88SIB

Data deleted from primary storage without first being written to DASD offload data sets. For a
system log stream, this value is normally high in relation to the value of SMF88SAB. For a general
log stream, this value is normally zero.

SMF88SAB
Data deleted from primary storage after being written to DASD offload data sets. For a system log
stream, this value is normally low in relation to the value of SMF88SIB. For a general log stream,
this value is normally high.

Note: In any SMF interval, the total number of bytes deleted from primary storage (SMF88SIB plus
SMF88SAB) might not match the total number of bytes written to auxiliary storage. Data is only written
to offload data sets and then deleted from primary storage when the HIGHOFFLOAD threshold limit is
reached.

2. If the SMF88SAB record frequently contains high values for a CICS system log:
a) Check that RETPD=dddd is not specified on the MVS definition of the log stream. For information

about the MVS RETPD parameter, see Managing auxiliary storage.
b) Check that no long-running transactions are making recoverable updates without syncpointing.
c) Consider increasing the size of primary storage.
d) Consider increasing the HIGHOFFLOAD threshold value.
e) Consider reducing the value of the AKPFREQ system initialization parameter.

Writing data to the coupling facility: Performance considerations
At the application design level you must consider that the average block size written to the coupling
facility affects the performance of the CICS log manager.

When the average block size of data being written to the coupling facility is less than 4 KB, the write
request is processed synchronously. The operation is synchronous to CICS, as is the instruction used to
access the coupling facility, in that it runs for as long as it takes to place the data in the structure. For this
reason, it is unwise to mix fast processors with slow coupling facilities. If the access time to a particular
coupling facility remains constant, then for synchronous accesses, the faster the processor the more
processor cycles are used by the request.

When the average block size of data being written to the coupling facility is greater than 4 KB, the write
request is processed asynchronously; the CICS task gives up control and the MVS system logger posts the
event control block (ECB) when the write request has been satisfied. This can result in an asynchronous
request taking longer to complete than a synchronous one.

Synchronous requests might be changed by the subsystem into asynchronous requests if necessary—for
example, if the subchannel is busy. Changed requests show on an RMF III report as CHNGD. Figure 21 on
page 187 shows an extract from an RMF report showing the numbers of synchronous and asynchronous
writes to a coupling facility structure. The report gives the system name, the total number of requests,
and the average number of requests per second. For each type of request, it gives the number of
requests, the percentage of all requests that this number represents, the average service time, and the
standard deviation.

186 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1km.html

STRUCTURE NAME = LOG_FV_001 TYPE = LIST
 # REQ -------------- REQUESTS -------------
SYSTEM TOTAL # % OF -SERV TIME(MIC)-
NAME AVG/SEC REQ ALL AVG STD_DEV

MV2A 15549 SYNC 15K 95.3% 476.1 339.6
 27.87 ASYNC 721 4.6% 3839.0 1307.3
 CHNGD 12 0.1% INCLUDED IN ASYNC

Figure 21. RMF report showing numbers of synchronous and asynchronous writes to a coupling facility

Note: This applies only to log streams that use coupling facility structures.

Defining the number of log streams: Performance considerations
Coupling facility space is divided into structures by the coupling facility resource management (CFRM)
policy; the maximum is 255 structures. Multiple log streams can use the same structure. Ensure that log
streams used by applications that write similar sized data records share the same structure. The reasons
for this relate to the values defined in the AVGBUFSIZE and MAXBUFSIZE parameters on the structure
definition.

Generally, the more log streams per structure, the more difficult it is to tune the various parameters that
affect the efficiency and performance of the CICS log manager.

When a coupling facility structure is defined, it is divided into two areas: one holds list entries, and the
other holds list elements.

List elements are units of logged data and are either 256-bytes or 512-bytes long. List entries are index
pointers to the list elements. There is one list entry per log record. There is at least one element per log
record.

If you define MAXBUFSIZE with a value greater than 65276, data is written in 512-byte elements. If you
define MAXBUFSIZE with a value less than, or equal to, 65276, data is written in 256-byte elements. The
maximum value for this parameter is 65532.

The proportion of the areas occupied by the list entries and the list elements is determined by a ratio
calculated as follows:

AVGBUFSIZE / element size

The resulting ratio represents the ratio, nn: 1, where nn represents element storage, and 1 represents
entry storage. This is subject to a minimum of 1:1.

This ratio has performance significance because it can be inappropriate for a combination of many
different applications with different logging requirements and behavior.

Element/entry ratio and the number of log streams per structure
AVGBUFSIZE is set at the structure level and dictates the ratio for the whole structure. If many
applications write significantly differing amounts of data to their log streams at significantly differing
intervals, some applications might experience unexpected DASD offloading, incurring increased
processor usage.

The DASD offloading is unexpected because the log stream might not yet have reached the HIGHOFFLOAD
threshold. Generally, the greater the number of log streams per structure, the greater the chance that the
element/entry ratio is inappropriate for certain applications that use the log streams.

Each log record places an entry in the list entry area of the structure, and the data is loaded as one or
more elements in the list element area. If the list entry area exceeds 90% of its capacity, all log streams
are offloaded to DASD. DASD offloading commences regardless of the current utilization of the log
stream, and continues until an amount of data equal to the difference between the HIGHOFFLOAD
threshold and the LOWOFFLOAD threshold has been offloaded.

For example, the list entry area might exceed 90% of its capacity while log stream A is only 50% used.
The HIGHOFFLOAD threshold is 80% and the LOWOFFLOAD threshold is 60%. Even though log stream A
has not reached its HIGHOFFLOAD threshold, or even the LOWOFFLOAD threshold, data is offloaded until

Chapter 2. Improving the performance of a CICS system 187

20% of the log stream has been offloaded. This is the difference between 80% and 60%. After the
offloading operation has completed, log stream A is at 30% utilization (50% minus 20%).

Thus, the log stream used by an application that issues few journal write requests might be offloaded to
DASD because of frequent journal write requests by other applications that are using other log streams in
the same structure.

However, if multiple log streams share the same structure, a situation where list entry storage reaches
90% utilization occurs only where all the log streams have a similar amount of logging activity.

Dynamic repartitioning and the frequency of DASD offloading
The space in a coupling facility structure is dynamically partitioned between all the log streams
connected to the structure. As more log streams connect, DASD offloading might occur more often.

Whenever a log stream connects to, or disconnects from, a coupling facility structure, the structure
undergoes dynamic repartitioning. This means that the space in the structure is partitioned between all
the log streams connected to the structure. As more log streams connect, less space is allocated to each
log stream. The result can be a higher frequency of DASD offloading, because reduced log stream space
means that the log stream HIGHOFFLOAD threshold percentages are reached more often.

A value of 64000 for MAXBUFSIZE is appropriate for most environments.

If MAXBUFSIZE is set to greater than 65276, the element size is 512 bytes. With a 512-byte element,
space might be unused and therefore wasted because of padding to the end of the last element for the
log record. This situation is less likely when records are larger and systems are busier.

AVGBUFSIZE and MAXBUFSIZE are parameters for use in the IXCMIAPU program, which you run to define
coupling facility structures. For more information, see Administrative data utility in z/OS MVS Setting Up a
Sysplex.

The following facilities are available to monitor the data traffic to log streams on structures, and from log
streams to DASD:

• The CICS log stream statistics. These provide a range of statistical information including a value for
average bytes written per write, which you can calculate by dividing the total bytes value by the total
writes value. This can help you to tune the value for AVGBUFSIZE.

• Statistics provided by RMF, including a value 'elements per entry', which you can calculate by dividing
the total number of elements value by the total number of entries value. You can check the activity in
element units on the log stream. RMF also informs you of the proportion of requests, per structure, that
have been processed synchronously and asynchronously. You can isolate structures that hold
synchronously processed log stream requests from those that hold asynchronously processed log
stream requests.

• SMF88 records. These provide a range of statistical information, including the number of bytes
offloaded.

LOWOFFLOAD and HIGHOFFLOAD parameters on log stream definition
Data from a log stream can be offloaded to DASD data sets when the log stream use (in the coupling
facility or the staging data set) reaches its HIGHOFFLOAD limit. The amount of data offloaded is
determined by using the LOWOFFLOAD limit.

The HIGHOFFLOAD limit is specified when the log stream is defined.

This information is relevant if you are using log streams that use coupling facility structures. However,
much of the guidance also applies to DASD-only log streams.

For more information about DASD-only log streams, see “DASD-only logging” on page 192.

For a system log, all records that have been marked for deletion are physically deleted; if, after this has
been done, the LOWOFFLOAD limit has not been reached, the oldest active records are offloaded to DASD
until LOWOFFLOAD is reached. For a general log, the oldest data is offloaded to DASD until the
LOWOFFLOAD limit is reached.

188 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/adu.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/adu.htm

There are also situations where offloading of data from the log stream data set occurs although the
HIGHOFFLOAD threshold (and LOWOFFLOAD threshold in some circumstances) of the log stream has not
been reached:

• When the HIGHOFFLOAD threshold is reached in the staging data set. If the size of the staging data set
is proportionally smaller than the log stream, the HIGHOFFLOAD threshold is reached on the staging
data set before it is reached on the log stream data set.

• When the list entry area of the log stream reaches 90% of its capacity.

In these situations, the amount of data offloaded from the log stream is determined as follows:

(Current utilization or HIGHOFFLOAD, whichever is the greater) - LOWOFFLOAD

This is the percentage of the log stream data set that is offloaded.

HIGHOFFLOAD and LOWOFFLOAD are parameters for use in the IXCMIAPU program that you run to define
log stream models and explicitly named individual log streams. For more information, see Administrative
data utility in z/OS MVS Setting Up a Sysplex.

SMF88 records and RMF provide a range of statistical information that helps you in the tuning of these
parameters.

The primary system log

When an activity keypoint happens, CICS deletes the tail of the primary system log, DFHLOG. This means
that data for completed units of work older than the previous activity keypoint is deleted. Data for each
incomplete unit of work older than the previous activity keypoint is moved onto the secondary system log,
DFHSHUNT, provided that the UOW has done no logging in the current activity keypoint interval.

To minimize the frequency of DASD offloading, try to ensure that system log data produced during the
current activity keypoint interval, plus data not deleted at the previous activity keypoint, is always in the
coupling facility structure. To avoid offloading this data to DASD, you can use these settings:

• Set HIGHOFFLOAD to 80.
• Minimize the amount of log data produced between activity keypoints by specifying a low value on the
AKPFREQ parameter, for example, a value of 4000.

• Ensure that the value of LOWOFFLOAD is greater than the space required for the sum of:

1. The system log data generated during one complete activity keypoint interval
2. The system log data generated (between sync points) by your longest-running transaction.

Use one of the following formulas to calculate a value for LOWOFFLOAD:

LOWOFFLOAD = ((trandur * 90) / (akpintvl + trandur)) + 10
[where RETPD=0 is specified]

or

LOWOFFLOAD = (trandur * 90) / (akpintvl + trandur)
[where RETPD=dddd is specified]

where:

– akpintvl is the interval between activity keypoints. It varies according to workload and its
calculation is based on peak workload activity, as follows:

 akpintvl = AKPFREQ / ((N1 * R1) + (N2 * R2*) + (Nn * Rn))

where:

- N1, N2 ... Nn is the transaction rate for each transaction (trans/sec)
- R1, R2 ... Rn is the number of log records written by each transaction

Chapter 2. Improving the performance of a CICS system 189

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/adu.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/adu.htm

– trandur is the execution time (between sync points) of the longest-running transaction that runs as
part of the normal workload.

If this duration is longer than the akpintvl value, you can either:

- Increase the value of AKPFREQ, thus increasing the value of akpintvl (providing this does not
result in an unacceptably large coupling facility structure size).

- Change the application logic to cause more frequent sync points.
- Calculate a structure size based on a shorter transaction duration, and accept that DASD offloading

occurs when the long-running transaction is used.

A good empirical range for the DFHLOG LOWOFFLOAD parameter value is between 40% and 60%. A
value that is too low can result in physical offloading of log data from primary to auxiliary storage
after the MVS Logger offload process has completed physical deletion of any unwanted log data
during offload processing. Conversely, too high a value might mean that subsequent offload
processing occurs more frequently, as less space is freed up from primary storage during an offload
operation.

If the results of the calculation from the formula do not lie within the range of 40% to 60%, it might
be that your workload has unusual values for trandur or akpintvl.

Review log stream definition values (such as LOWOFFLOAD) after analysis of information such as
statistics from MVS logger SMF 88 records.

General logs

The recommendations for forward recovery logs and user journals are different to those for the system
log. There is no requirement here to retain logged data in the coupling facility structure. Rather, due to the
typical use of such data, you might only need a small structure and offload the data rapidly to DASD. If so,
default HIGHOFFLOAD to 80 and LOWOFFLOAD to 0.

Tuning the size of staging data sets
MVS keeps a second copy of data written to the coupling facility in a data space, for use when rebuilding a
coupling facility in the event of an error. This is satisfactory as long as the coupling facility is failure-
independent (in a separate CPC and non-volatile) from MVS.

Where the coupling facility is in the same CPC, or uses volatile storage, the MVS system logger supports
staging data sets for copies of log stream data that would otherwise be vulnerable to failures that impact
both the coupling facility and the MVS images.

Elements (groups of log records) are written to staging data sets in blocks of 4 KB (not in 256-byte or
512-byte units as for log stream data sets).

Use the following formulas to help you tune the size of your staging data sets:

staging data set size= (NR * AVGBUFSIZE rounded up to next unit of 4096)

where NR is the number of records to fill the coupling facility structure. This can be calculated as follows:

NR = coupling facility structure size / (AVGBUFSIZE rounded up to next element)

Ensure that the coupling facility structure and staging data set can hold the same number of records.
Staging data sets are subject to the same offloading thresholds as log streams are. It is sensible,
therefore, to ensure as far as possible that offloading activity will be at the same frequency.

It is generally better to overestimate, rather than underestimate, staging data set size. To calculate
staging data set size to accommodate the maximum number of records (where there is one record per
element), use the following formulas:

Where element size is 512-bytes:

190 CICS TS for z/OS: Performance Guide

maximum staging data set size = 8 * coupling facility structure size

Where element size is 256-bytes:

maximum staging data set size = 16 * coupling facility structure size

Investigate using DASD FastWrite facilities with a view to storing data in the DASD cache, as opposed to
writing it directly to the staging data set. This also enables a faster retrieval of data should it be required.
Be aware, however, that if you fill the cache, data is also then written out to the staging data set whenever
data is written to the cache.

The activity keypoint frequency (AKPFREQ)
The activity keypoint frequency value, AKPFREQ, specifies the number of write requests to the CICS
system log stream output buffer required before CICS writes an activity keypoint. A keypoint is a snapshot
of inflight tasks in the system at that time.

During emergency restart, CICS needs to read back for records for only those tasks that are identified in a
keypoint. CICS reads the system log backward until the first activity keypoint is encountered (which is the
last activity keypoint taken).

Taking a keypoint imposes an overhead on the running system:

• If you set AKPFREQ too high, such that the keypoint frequency is too low, writing keypoints slows the
system for only a short time.

• If you set AKPFREQ too low, such that the keypoint frequency is too high, the emergency restart time
might be short, but you also incur increased processing, because more activity keypoints are processed.

It is advisable to set AKPFREQ to the default value of 4000. With an optimum setting of AKPFREQ, the
whole of the system log can remain in the coupling facility.

Increasing the AKPFREQ value increases the amount of primary storage required for the system log.
Decreasing the AKPFREQ value has the following effects:

• Restart time might be reduced.
• The amount of primary storage required for the system log decreases.
• Task wait time and processor cycles tend to increase.
• Paging might increase.

The last two effects can affect system performance, but not significantly.

If you set the AKPFREQ value to zero, emergency restart takes longer. In this situation, CICS cannot
perform log tail deletion until shutdown, by which time the system log spills to auxiliary storage. Because
there are no activity keypoints, CICS needs to read the whole of the system log, so it needs to retrieve the
spilled system log from DASD offload data sets.

Activity keypoint frequency is determined by the AKPFREQ system initialization parameter. You can alter
AKPFREQ while CICS is running by using the CEMT SET SYSTEM AKP(value) command.

The CICS log stream global statistics include information about the activity keypoint frequency. See
Logstream reports for more information.

A message, DFHRM0205, is written to the CSMT transient data destination each time that a keypoint is
taken.

AKPFREQ and MRO
In an MRO environment, the session allocation algorithm selects the lowest-numbered free session for
use by the next task to run. Consequently, if many sessions have been defined (perhaps to cope with peak
workload requirements), the higher-numbered sessions are less likely to be used frequently during
quieter periods.

In an MRO environment, CICS implements the "implicit forget" process, an optimization of the two-phase
commit. This means that when the mirror transaction at the remote end of an MRO connection completes

Chapter 2. Improving the performance of a CICS system 191

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_akpfreq.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_logs_0stat.html

any end-of-task processing, all information relating to the task is deleted when any new flow on that
session arrives. This flow is usually the first flow for the next task or transaction allocated to run on the
session as a result of the MRO session allocation algorithm.

Short-term variations in the arrival rate of transactions means that some mirror transactions waiting to
process an implicit forget can persist for some time. This is particularly the case where such mirror
transactions have been allocated to high-numbered sessions during a peak period, now passed, of
transaction arrival rate.

The keypoint program uses an appreciable amount of processor capacity in processing persisting units of
work such as those relating to mirror transactions waiting to process an implicit forget. This is
exacerbated when the AKPFREQ value is low.

An optimum setting of AKPFREQ allows many of these persistent units of work to complete during normal
transaction processing activity. This minimizes the processor processing used by the keypoint program.
For this reason, you must be cautious when reducing the value of AKPFREQ to less than the default value.

The log defer interval (LGDFINT)
The LGDFINT system initialization parameter specifies the log defer interval used by CICS log manager
when determining how long to delay a forced journal write request before starting the MVS system logger.

The value is specified in milliseconds. Performance evaluations of typical CICS transaction workloads
have shown that a value of 5 milliseconds gives the best balance between response time and central
processor cost.

CICS performance can be adversely affected by a change to the log defer interval value. Too high a value
delays CICS transaction throughput due to the additional wait before starting the MVS system logger.

An example of a scenario where a reduction in the log defer interval might be beneficial to CICS
transaction throughout would be where many forced log writes are being issued, and little concurrent
task activity is occurring. Such tasks will spend considerable amounts of their elapsed time waiting for the
log defer period to expire. In such a situation, there is limited advantage in delaying a call to the MVS
system logger to write out a log buffer, since few other log records are added to the buffer during the
delay period.

Although the range of possible values for the log defer interval is from 0 to 65535 milliseconds, the
default of 5 milliseconds is considered to be the correct interval when setting the parameter in most
cases.

A log defer interval value of less than 5 milliseconds reduces the delay in CICS log manager before
starting the IXGWRITE macro. This might improve the transaction response time, but increases processor
cost for the system because CICS has fewer journal requests into a given call to the MVS system logger,
and so must start the IXGWRITE macro more often.

Conversely, increasing the log defer interval value to greater than 5 milliseconds increases the transaction
response time, because CICS increases the delay period before starting the IXGWRITE macro. However,
more transactions can write their own log data in to the same log buffer before it is written to the MVS
system logger, and hence the total processor cost of driving IXGWRITE calls is reduced.

The log defer interval is determined by the LGDFINT system initialization parameter. LGDFINT can be
altered with the CEMT SET SYSTEM[LOGDEFER(value)] command while CICS is running.

The CICS log stream global statistics capture information about the log defer interval. See Logstream
reports for more information.

DASD-only logging
The primary storage used by a DASD-only log stream consists of a data space owned by the MVS logger
and staging data sets. You can tune for DASD-only logging to improve performance.

No data is written to coupling facility structures. In its use of staging data sets, a DASD-only log stream is
similar to a coupling facility log stream defined with DUPLEX(YES) COND(NO).

192 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_logs_0stat.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_logs_0stat.html

When the staging data set reaches its HIGHOFFLOAD limit, data is either deleted or offloaded until the
LOWOFFLOAD limit is reached.

The following principles apply to DASD-only log streams as much as to coupling facility log streams:

• Size system logs so that system log data produced during the current activity keypoint interval, plus
data not deleted at the previous activity keypoint, is retained in primary storage

• For the system log, avoid “staging data set full” conditions and offloading to auxiliary storage.

The basic principles of sizing the staging data set for a DASD-only log stream are the same as for sizing a
staging data set for a coupling facility log stream, as described in “Tuning the size of staging data sets” on
page 190. Take the values that you obtain as a starting point, and monitor your logger environment to
adjust the size of the staging data set.

Use the following formula to calculate a starting point for the size of the staging data set for the system
log. The formula calculates the value to be specified on the STG_SIZE parameter of the log stream
definition; that is, the size is expressed as a number of 4 KB blocks.

Staging
DS size [No. of 4K blocks] = (AKP duration) * No. of log writes per second
 for system log
where:
AKP duration = (CICS TS 390 AKPFREQ) / (No. of buffer puts per second)

The values for the number of log writes per second and buffer puts per second can be taken from your
CICS statistics. In CICS Transaction Server releases, the log stream statistics fields collect these statistics
as "write requests" (LGSWRITES) and "buffer appends" (LGSBUFAPP), and you can divide the totals by
the number of seconds in your statistics interval.

If you want to make a more accurate estimate for the size of the staging data set, consult the following
documents:

• The IBM Redpaper Performance Considerations and Measurements for CICS and System Logger,
REDP-3768. This document supplies guidance on the interactions between CICS and z/OS System
Logger, provides examples of different CICS and System Logger configurations, and demonstrates the
tuning process.

• The IBM Redbooks publication Systems Programmer's Guide to: z/OS System Logger, SG24-6898. This
document explains how to obtain and use an IXGRPT1 report to estimate the size of a staging data set
for a DASD-only log stream. (IXGRPT1 is a sample program provided with z/OS.)

CICS temporary storage: Performance and tuning
CICS temporary storage is intended for short-lived data. An application can write data to temporary
storage as a series of numbered items in a temporary storage queue. CICS also creates some temporary
storage queues for its own use. Temporary storage is heavily used in many CICS systems.

The ways in which you can tune the use of CICS temporary storage depend on the locations of the
temporary storage available to the CICS region. Temporary storage can be main storage in the CICS
region, auxiliary storage in a VSAM data set, or shared temporary storage pools in a z/OS coupling facility.
The temporary storage can be associated with the local CICS region or a remote queue-owning region
(QOR). For an overview of the locations for temporary storage, see “CICS temporary storage: overview” on
page 194.

For main temporary storage, you can monitor the use of storage and use the TSMAINLIMIT system
initialization parameter to set a suitable limit. For more information about tuning main temporary storage,
see “Main temporary storage: monitoring and tuning” on page 196.

For auxiliary temporary storage, you must balance several factors when you set up the VSAM data set and
when you are tuning the use of CICS temporary storage. The following factors affect the performance of
auxiliary temporary storage:

Chapter 2. Improving the performance of a CICS system 193

http://www.redbooks.ibm.com/abstracts/redp3768.html
http://www.redbooks.ibm.com/abstracts/sg246898.html

• The control interval size for the data set
• The number of VSAM buffers in the CICS region
• The number of VSAM strings for I/O to the data set

For more information about tuning auxiliary temporary storage, see “Auxiliary temporary storage:
monitoring and tuning” on page 198.

Consider setting up shared temporary storage pools to improve availability and support dynamic
transaction routing. Shared temporary storage pools require temporary storage servers (typically one
server in each z/OS image in the sysplex), but they have a number of advantages:

• No storage is used in the CICS region for the shared temporary storage pools.
• Shared temporary storage pools do not cause inter-transaction affinities. Local temporary storage

queues in main or auxiliary storage can cause inter-transaction affinities, where affected transactions
must run in the same region to access the queue. Inter-transaction affinities can affect performance by
limiting the scope for workload routing across AORs in a sysplex.

• Compared to remote queue-owning regions, access to temporary storage queues in shared temporary
storage pools in a coupling facility is quicker.

• If you use more than one temporary storage server for each pool, availability is better than it is for a
remote queue-owning region. If one temporary storage server or z/OS image fails, transactions can be
dynamically routed to another application-owning region on a different z/OS image.

CICS temporary storage: overview
You can set up temporary storage for a CICS region in three locations: main storage, auxiliary storage, or
shared temporary storage pools in a z/OS coupling facility.
Main storage

Main temporary storage is in 64-bit (above-the-bar) storage in the CICS region. You use the
TSMAINLIMIT system initialization parameter to specify the amount of storage that is available to
temporary storage queues.

You can use local main storage in the CICS region where the applications run, or you can function ship
temporary storage requests to a remote queue-owning region (QOR).

Auxiliary storage
Auxiliary temporary storage is in a nonindexed VSAM data set named DFHTEMP. You define the
available space and any additional extents when you set up this data set. Some 31-bit (above-the-
line) storage is used in the CICS region for VSAM buffers to make control intervals available from the
VSAM data set. You use the TS system initialization parameter to set the number of buffers. Like main
temporary storage, auxiliary temporary storage can be associated with the local CICS region or a
remote queue-owning region.

Shared temporary storage pools in a z/OS coupling facility
Shared temporary storage pools (TS pools) are in a z/OS coupling facility managed by a temporary
storage data sharing server (TS server). Each pool corresponds to a list structure in the coupling
facility. You specify the size of each temporary storage pool using the coupling facility resource
manager (CFRM) policy definition utility in z/OS. Shared temporary storage pools do not use any
storage in the CICS region, and applications access them directly from the local CICS region.

When applications use the WRITEQ TS and READQ TS commands to access temporary storage queues,
the requests are processed by the CICS temporary storage domain, which creates temporary storage
queues in the appropriate storage location and places the data in them. Any task can retrieve the data
using the symbolic name of the temporary storage queue. The CICS temporary storage domain can
process multiple requests concurrently, but it serializes requests made for the same temporary storage
queue, and the queue is locked for the duration of each request.

You use TSMODEL resource definitions to set up models that CICS uses to create temporary storage
queues. Each model specifies the following attributes for temporary storage queues with names that
match the model:

• The location of the temporary storage where the queue must be stored

194 CICS TS for z/OS: Performance Guide

• Whether the temporary storage is associated with the local CICS region or a remote CICS region, such
as a queue-owning region

• Whether the queue is deleted automatically by CICS, if it remains unused for a period of time and is not
deleted by an application

• Whether the queue is recoverable

Table 21 on page 195 summarizes the storage usage and the features that you can select for temporary
storage queues in each location.

Table 21. Features of temporary storage locations

Temporary storage
location Storage type

Automatic queue
deletion Recovery

Main storage 64-bit storage in CICS
region

Available Not available

Auxiliary storage VSAM data set, plus 31-
bit storage in CICS
region for buffers

Available for non-
recoverable queues

Available

Shared temporary
storage pool

z/OS coupling facility Not available CICS recovery is not
available, but the
queues are persistent
(they are not affected by
a CICS restart)

CICS also creates some temporary storage queues for its own use. These queues can be in main
temporary storage or auxiliary temporary storage. For example, CICS uses temporary storage for the
following purposes:

• Basic mapping support (BMS) paging and routing
• Caching of messages
• Interval control
• The CICS execution diagnostic facility (EDF)
• Local queueing for MRO, ISC, and IPIC while the target system is unavailable

When you view the temporary storage queues in your CICS system, queues with names that start with
these characters are CICS queues: **, $$, X'FA' through X'FF', CEBR, and DF.

Automatic deletion of temporary storage queues
CICS can automatically delete nonrecoverable temporary storage queues that have not been referenced
recently. To use this feature, you set suitable expiry intervals in the temporary storage models (TSMODEL
resource definitions).

Automatic deletion frees storage occupied by temporary storage queues that were not deleted by
applications and that are no longer required.

The expiry interval for a temporary storage model applies to the temporary storage queues that are
associated with that model. Temporary storage queues use the expiry interval that exists for the
TSMODEL resource definition at the time that the queue is created.

By default, the expiry interval is zero, that is, no expiry interval applies to the temporary storage queues.
Such queues are never eligible for automatic deletion.

You can set an expiry interval in minutes, up to a maximum of 900,000 minutes (that is 15,000 hours).
CICS uses the value rounded up to the nearest multiple of 10 minutes. The interval count begins after
each use of the temporary storage queue. If the queue is not used again before the expiry interval is
reached, the queue becomes eligible for CICS to delete it automatically. When at least one nonzero expiry
interval in at least one TSMODEL resource definition exists, CICS starts to scan the CICS region regularly

Chapter 2. Improving the performance of a CICS system 195

to find eligible queues. The CICS clean up task scans the temporary storage queues in the CICS region
and deletes the queues that are eligible for automatic deletion.

Expiry intervals apply to temporary storage queues in the following locations:

• Main temporary storage in the local CICS region.
• Nonrecoverable auxiliary temporary storage (DFHTEMP data set) associated with the local CICS region.
• Queues in shared temporary storage pools.

Expiry intervals do not apply to the following types of temporary storage queue, so CICS never deletes
them automatically:

• Queues in auxiliary temporary storage that are defined as recoverable.
• Queues in a remote CICS region. To make CICS delete remote temporary storage queues, specify an

expiry interval in a suitable TSMODEL resource definition in the region that owns the queues.
• Queues that CICS creates for its own use.
• Queues that do not match any temporary storage model.

If you change the expiry interval in a TSMODEL resource definition, existing temporary storage queues
that match the model are not affected. Those queues continue to use the expiry interval that applied
when they were created. If all the TSMODEL resource definitions with a nonzero expiry interval are
deleted from a CICS region, CICS stops scanning for expired temporary storage queues.

When the CICS clean up task performs a scan, it issues message DFHTS1605. This message shows the
number of temporary storage queues that were scanned and the number that were deleted. If the clean
up task ends abnormally, it issues message DFHTS0001, and does not run again until CICS is restarted.

The CICS clean up task cannot delete temporary storage queues if the system has reached TSMAINLIMIT
(see TSMAINLIMIT system initialization parameter) and there was an attempt to write to a TS queue such
that a TS request lock is held. In this situation, the DFHTS1605 message reports that 0 queues were
deleted.

Automatic deletion for TST users

If your CICS region still uses a temporary storage table (TST), which can be used in combination with
TSMODEL resource definitions, the TST might include a TSAGE parameter. TSAGE specifies an aging limit
in days, up to 512 days, for temporary storage queues. If the TST includes a nonzero TSAGE and there is
an emergency restart of CICS, CICS deletes temporary storage queues that were not referenced during
the specified interval. The TSAGE parameter does not cause automatic deletion of queues at any other
time.

Main temporary storage: monitoring and tuning
You can monitor and control the amount of storage in the CICS region that is used by temporary storage
queues.

About this task

From CICS TS for z/OS, Version 5.1, main temporary storage is located in 64-bit storage, so the available
space is greater than in earlier CICS releases. Main temporary storage does not require VSAM I/O activity
or communication with a temporary storage server. However, temporary storage queues in main
temporary storage are not recoverable.

The CICS temporary storage statistics show information about the use of main temporary storage. You
can also use CICSPlex SM or CICS commands to see the amount of main temporary storage in use, and
the current limit. When 75% or more of the maximum allowed storage is in use, CICS issues messages
about this situation.

You use the TSMAINLIMIT system initialization parameter to specify the amount of storage in the CICS
region that is available for temporary storage queues to use. You can specify an amount of storage in the
range 1 - 32768 MB (32 GB).

196 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_tsmainlimit.html

However, you must also check the setting for the z/OS parameter MEMLIMIT.

Procedure

1. Specify expiry intervals in your temporary storage models. When you specify an expiry interval, CICS
can automatically delete temporary storage queues that match the models if they are not deleted by
applications.
For more information about expiry intervals, see Automatic deletion of temporary storage queues.

2. Use CICSPlex SM, CICS commands, or CICS statistics to monitor the amount of main temporary
storage in use.

• The CICS temporary storage global and summary statistics show the number of times that main
temporary storage use reached the limit set by TSMAINLIMIT, and the peak amount of virtual
storage that was used for data in main temporary storage.

• The TEMPSTORAGE resource shows the storage in use compared to the maximum allowed limit.
3. Look out for messages from CICS about high usage of main temporary storage.

• CICS issues message DFHTS1601 when 75% or more of the maximum allowed storage is in use.
• CICS issues message DFHTS1602 if an application attempts to write an item of data that would

make the main temporary storage in use exceed the maximum allowed limit (the TSMAINLIMIT
value). In this situation, applications cannot write to temporary storage queues in main temporary
storage until space becomes available.

If either of these messages are issued, try to delete old temporary storage queues or increase the
TSMAINLIMIT setting, as described in the following steps. CICS issues message DFHTS1604 when
usage falls below 70% of the maximum allowed.

4. Before you change the TSMAINLIMIT setting, check your current setting for the z/OS parameter
MEMLIMIT.
The amount of storage that you make available for temporary storage queues must not be greater than
25% of the MEMLIMIT value. For information about the MEMLIMIT value for CICS and instructions to
check the value of MEMLIMIT that currently applies to the CICS region, see “Estimating, checking, and
setting MEMLIMIT” on page 84.

5. Optional: To change the amount of storage available for temporary storage queues, change the
TSMAINLIMIT setting.
You can change the TSMAINLIMIT setting in a running CICS system.

• If you increase the TSMAINLIMIT setting and the new value is greater than 25% of the value of
MEMLIMIT, TSMAINLIMIT remains unchanged and message DFHTS1607 is issued.

• If you decrease the TSMAINLIMIT setting, CICS attempts to maintain at least 25% free space in
allowed storage above current utilization, so that temporary storage write requests do not reach the
TSMAINLIMIT value too rapidly. The value is set as follows:

– If there is currently less than 25% free space, TSMAINLIMIT remains unchanged. Message
DFHTS1606 is issued.

– If at least 25% of the new limit will be free space, the setting is decreased to the value that you
choose.

– If less than 25% of the new limit would be free space, setting is decreased to the current
utilization plus 33% of that utilization.

If the value of TSMAINLIMIT is changed, CICS issues message DFHTS1603, which shows the new
setting.

Results

The following table shows the cost of main storage. In this example, n represents the number of items in
the queue before it is deleted.

Chapter 2. Improving the performance of a CICS system 197

Table 22. The cost of main storage

WRITEQ REWRITE READQ DELETEQ

1.0 0.8 0.8 0.71 + 0.23 x n

Auxiliary temporary storage: monitoring and tuning
The performance of auxiliary temporary storage is influenced by the characteristics of the VSAM data set
DFHTEMP that you set up for temporary storage. It is also affected by the number of VSAM buffers and
strings that you specify for the CICS region.

About this task

The CICS temporary storage statistics show information about the use of auxiliary temporary storage, the
use of buffers and strings, and I/O activity. For additional information about data set performance, use
RMF or the VSAM catalog.

The cost approximations for auxiliary TS queues do not include any VSAM I/O cost. A VSAM I/O costs
approximately 11.5K instructions and occurs in the following situations:

• When attempting to write an item that does not fit in any buffer
• When reading an item that is not in the buffer
• When reading a control interval from DASD with no available buffer space, if the least recently used

buffer must first be written out.

Therefore, under certain circumstances, a READQ could incur the cost of two VSAM I/Os.

Procedure

The following actions can influence the performance of auxiliary temporary storage:
• You specify a control interval (CI) size when you set up the VSAM data set DFHTEMP. When the use of

temporary storage by applications or by CICS changes in your CICS region, verify that the control
interval size is still suitable.
If you write items larger than the control interval size to a temporary storage queue in auxiliary
storage, CICS processes the items, but performance might degrade.
For information about the control interval size, see The control interval size.

• For more efficient use of DASD space, you can specify secondary extents when you set up the VSAM
data set DFHTEMP.
CICS uses secondary extents if there are no control intervals remaining in DFHTEMP with sufficient
space for new data. You can define a temporary storage data set with a primary extent large enough
for normal activity, and with secondary extents for exceptional circumstances.
For instructions to define additional extents, see Defining data sets with multiple extents and volumes.

• To help ensure that space is not wasted in auxiliary temporary storage, specify expiry intervals in your
temporary storage models for nonrecoverable queues.
Expiry intervals make CICS automatically delete any temporary storage queues that might not be
deleted by applications. When an unused queue is deleted from a DFHTEMP control interval, CICS can
move the remaining records to the start of the control interval, and use the space for new data.
Efficient deletion of old queues can reduce the time required to locate a control interval with free
space, and reduce the need to use secondary extents.
For more information about expiry intervals, see “Automatic deletion of temporary storage queues” on
page 195.

• If you specify the system initialization parameter SUBTSKS=1, CICS runs temporary storage VSAM
requests on the concurrent (CO) mode TCB, which could increase throughput.

• You use the TS system initialization parameter to specify the numbers of VSAM buffers and strings for
auxiliary temporary storage in the CICS region. If auxiliary temporary storage is heavily used in the
CICS region, you might want to experiment with adjusting these numbers.

198 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_control_interval.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_multiple_extents.html

Increasing the numbers of buffers and strings can reduce task waits and VSAM I/O requests, but it
also increases storage use in the CICS region.

Recoverable and nonrecoverable TS queues
The cost of temporary storage is different for the recoverable TS queue and the nonrecoverable TS queue.

The main difference between the cost of accessing recoverable and nonrecoverable TS queues is incurred
at sync point time. For recoverable queues, the following events occur at sync point time:

• The VSAM I/O cost is incurred if any control interval has been used during the unit of work, and has not
already reached DASD.

• The new DASD control interval addresses are put in the log buffer. The cost for recovery manager to do
this is about 2000 instructions.

• A forced log write is requested and the sync point completes when the log buffer has been written to
primary storage.

In each table, n represents the number of items in the queue before it is deleted.

Table 23. Recoverable TS queue

WRITEQ REWRITE READQ DELETEQ

1.4 1.9 1.0 0.87 + 0.18 * n

Table 24. Nonrecoverable TS queue

WRITEQ REWRITE READQ DELETEQ

1.3 1.8 1.0 0.75 + 0.18 * n

CICS transient data (TD) facility: Performance and tuning
Transient data (TD) is used in many circumstances within CICS, and various options can affect the
performance of this facility.

The circumstances in which transient data is used include:

• Servicing requests made by user tasks, for example, a request to build a queue of data for later
processing.

• Servicing requests from CICS, primarily to write messages to system queues for printing. Transient data
should, therefore, be set up at your installation to capture these CICS messages.

• Managing the DASD space holding the intrapartition data.
• Initiating tasks based on queue trigger level specification and on records written to an intrapartition

destination.
• Requesting logging for recovery as specified in your CICS transient data definitions.
• Passing extrapartition requests to the operating system access method for processing.

Limitations

Application requirements might dictate a lower trigger level, or physical or logical recovery, but these
facilities increase processor requirements. Real and virtual storage requirements might be increased,
particularly if several buffers are specified.

Implementation

Transient data performance is affected by the TRIGGERLEVEL and RECOVSTATUS operands in the
transient data resource definitions that have been installed.

Chapter 2. Improving the performance of a CICS system 199

Recommendations

The following suggestions might help to reduce waits during QSAM processing:

• Avoid specifying a physical printer.
• Use single extent data sets whenever possible to eliminate waits resulting from the end of extent

processing.
• Avoid placing data sets on volumes that are subject to frequent or long duration RESERVE activity.
• Avoid placing many heavily-used data sets on the same volume.
• Choose BUFNO and BLKSIZE such that the rate at which CICS writes or reads data is less than the rate

at which data can be transferred to or from the volume; for example, avoid BUFNO=1 for unblocked
records whenever possible.

• Choose an efficient BLKSIZE for the device employed such that at least three blocks can be
accommodated on each track.

Monitoring

The CICS statistics show transient data performance. CICS transient data statistics can be used to
determine the number of records written or read. Application knowledge is required to determine the way
in which the lengths of variable length records are distributed. CICS transient data statistics also show the
peak size of each intrapartition transient data queue during the statistics interval. RMF or the VSAM
catalog shows data set performance.

Recovery options
Recovery can affect the length of time for which a transient data record is enqueued.

You can specify one of three options:

• No recovery. If you specify no recovery, there is no logging, and no enqueuing for protecting resources.
• Physical recovery. Specify physical recovery when you need to restore the intrapartition queue to the

status that it had immediately before a system failure. The main performance consideration is that
there is no deferred transient data processing, which means that automatic task initiation might occur
instantaneously. Records that have been written can be read by another task immediately. Control
intervals (CIs) are released as soon as they have been exhausted. For every WRITEQ TD request, the CI
buffer is written to the VSAM data set.

Note: All other resources that offer recovery within CICS provide only logical recovery. Using backout in
an abend situation would exclude your physically recoverable and nonrecoverable transient data from
the backout.

• Logical recovery. Specify logical recovery when you want to restore the queues to the status that they
had before execution of the failing task (when the system failed or when the task ended abnormally).
Thus, logical recovery works in the same way as recovery defined for other recoverable resources such
as file control and temporary storage.

In summary, physical recovery ensures that records are restored in the case of a system failure, while
logical recovery also ensures integrity of records in the case of a task failure, and ties up the applicable
transient data records for the length of a task that enqueues on them.

Up to 32767 buffers and 255 strings can be specified for a transient data set, with serial processing only
through a destination.

Specifying a higher trigger level on a destination causes a smaller number of tasks to be initiated from
that destination. Transient data can participate in file subtasking if SUBTSKS=1 is specified in the SIT (see
“Using VSAM subtasking” on page 160).

200 CICS TS for z/OS: Performance Guide

Nonrecoverable TD queue
A nonrecoverable TD queue has costs associated with it.

WRITEQ READQ DELETEQ

1.5 1.3 1.3

Note:

The main difference between nonrecoverable and logically recoverable TD queues occurs at sync point
time. At sync point, the new TD queue addresses are put in the log buffer and a forced log write is
requested. The cost to put the data in the buffer is 2 K. The cost of writing the log buffer to the coupling
facility is described in “Using coupling facility data tables” on page 163.

Logically recoverable TD queue
A logically recoverable TD queue has costs associated with it.

WRITEQ READQ DELETEQ

First: 2.8 Subsequent:1.5 First: 2.4 Subsequent:1.4 1.1

Notes:

The main difference between nonrecoverable and logically recoverable TD queues occurs at sync point
time. At sync point, the new TD queue addresses are put in the log buffer and a forced log write is
requested. The cost to put the data in the buffer is 2 K. The cost of writing the log buffer to the coupling
facility is described in “Using coupling facility data tables” on page 163.

Physically recoverable TD queue
Physically recoverable WRITEQ requests involve forcing a VSAM I/O and forcing a log write to the coupling
facility (CF) for every request.

WRITEQ READQ DELETEQ

19.7 First: 9.3 Subsequent:8.8 8.7

Intrapartition transient data considerations
The approximations for nonrecoverable and logically recoverable intrapartition transient data queues do
not include any VSAM I/O cost.

A VSAM I/O operation costs approximately 11.5 K and occurs in the following situations:

• When attempting to write an item that will not fit in any buffer.
• When reading an item that is not in the buffer.
• When reading a control interval from DASD and there is no available buffer space. If this situation

occurs, the least recently used buffer must first be written out. Therefore, under certain circumstances,
a READQ could incur the cost of two VSAM I/O operations.

Multiple VSAM buffers
When you use multiple buffers and strings for intrapartition transient data (TD) support, this can remove
the possible constraint in transient data caused by the use of a single system-wide buffer (and string).
You can use statistics to tune the system with regard to transient data usage.

If requests have to be queued, they are queued serially by transient data destination. Typically, a request
has to be queued if the control interval it requires is in use, or if one or more previous requests for the
same queue or destination are already waiting. Under these conditions, the servicing of requests for other
queues or destinations can continue.

The use of multiple buffers also increases the likelihood that the control interval required by a particular
request is already available in a buffer. This can lead to a significant reduction in the number of real input/

Chapter 2. Improving the performance of a CICS system 201

output requests (VSAM requests) that have to be performed. However, VSAM requests are always
executed whenever their use is dictated by the requirements of physical and logical recovery.

The number of buffers that CICS allocates for transient data is specified by the TD system initialization
parameter. The default is three.

The provision of multiple buffers allows CICS to retain copies (or potential copies) of several VSAM
control intervals (CIs) in storage. Several transient data requests to different queues can then be serviced
concurrently using different buffers. Requests are serialized by queue name, not globally. Multiple buffers
also allow the number of VSAM requests to the TD data set to be reduced by increasing the likelihood that
the CI required is already in storage and making it less likely that a buffer must be flushed to
accommodate new data. VSAM requests are still issued when required by recovery considerations.

The benefits of multiple buffers depend on the pattern and extent of usage of intrapartition transient data
in an installation. For most installations, the default specification (three buffers) should be sufficient.
Where the usage of transient data is extensive, it is worthwhile to experiment with larger numbers of
buffers. The buffer statistics give sufficient information to help determine a suitable allocation. In general,
the aim of the tuning should be to minimize the number of times a task must wait because no buffers are
available to hold the required data.

In the tuning process, there is a trade-off between improving transient data performance and increased
storage requirements. Specifying a large number of buffers might decrease transient data I/O and
improve concurrency, but might also lead to inefficient usage of real storage. Also, if there is a large
number of buffers and a small number of queues, internal buffer searches per queue may take longer.

The buffers are obtained from the ECDSA during initialization.

Multiple VSAM strings
As far as concurrent input/output operations with CICS are concerned, the transient data (TD) programs
issue VSAM requests whenever real input/output is required between the buffers and the VSAM TD data
sets. The use of multiple VSAM strings enables multiple VSAM requests to be executed concurrently,
which in turn leads to faster servicing of the buffers.

VSAM requests are queued whenever the number of concurrent requests exceeds the number of available
strings. Constraints caused by this be relieved by increasing the number of available strings, up to a
maximum of 255. The limit of 255 on the number of strings should be taken into consideration when
choosing the number of buffers. If the number of buffers is more than the number of strings, the potential
for string waits increases.

The number of VSAM strings that CICS allocates for TD is specified by the TD system initialization
parameter. The CICS default is 3.

Logical recovery
Logging and enqueuing occur with logical recovery transactions (including dynamic backout of the failing
task's activity on the transient data queue). Logical recovery is generally used when a group of records
have to be processed together for any reason, or when other recoverable resources are to be processed in
the same task.

During processing of the transient data request, the destination queue entry is enqueued from the first
request, for either input or output, or both (if the queue is to be deleted), until the end of the UOW. This
means that none of the other tasks can access the queue for the same purpose during that period of time,
thus maintaining the integrity of the queue's status.

At the end of the UOW (sync point or task completion), sync point processing takes place and the queue
entry is logged. Any purge requests are processed (during the UOW, a purge only marks the queue ready
for purging). The empty control intervals are released for general transient data use. Any trigger levels
reached during the UOW cause automatic task initiation to take place for those queues that have a trigger
level greater than zero. The buffer is written out to the VSAM data set as necessary.

The DEQUEUE function on the queue entry occurs, releasing the queue for either input or output
processing by other tasks. Records written by a task can then be read by another task.

202 CICS TS for z/OS: Performance Guide

Logging activity
With physical recovery, the queue entry is logged after each READQ, WRITEQ, and DELETEQ command,
and at an activity keypoint time (including the warm keypoint).

With logical recovery, the queue entry is logged at sync point and at activity keypoint time (including the
warm keypoint).

Secondary extents for intrapartition transient data
During initialization of intrapartition transient data, CICS initializes a VSAM empty intrapartition data set
by formatting control intervals until the first extent of the data set is filled. Additional control intervals are
formatted as required if the data set has been defined with multiple extents.

The use of secondary extents allows more efficient use of DASD space. You can define an intrapartition
data set with primary extents large enough for normal activity, and with secondary extents for exceptional
circumstances, such as unexpected peaks in activity.

It follows that you can reduce or eliminate the channel and arm contention that is likely to occur because
of heavy use of intrapartition transient data.

Extrapartition transient data considerations
Extrapartition destinations are, in practice, sequential data sets where CICS uses the QSAM PUT LOCATE
or PUT MOVE commands.

The main performance factor to note is the possibility of operating system waits; that is, the complete
CICS region waits for the I/O completion. A lengthy wait can occur for one of the following reasons:

• No buffer space is available.
• Secondary space is allocation.
• Volume (extent) switching is available.
• The data set has been opened or closed dynamically.
• A forced end of the volume has been caused by the application.
• The data set is defined on a physical printer and the printer has run out of paper.
• A RESERVE command has been issued for another data set on the same volume.

Therefore, try to eliminate or minimize the occurrences of CICS region waits by:

• Having sufficient buffering and blocking of the output data set
• Avoiding volume switching by initially allocating sufficient space
• Avoiding dynamic OPEN or CLOSE actions during peak periods.

An alternative method of implementing sequential data sets is to employ a CICS user journal. Table 25 on
page 203 summarizes the differences between these two methods.

Table 25. Extrapartition transient data versus user journal

Extrapartition TD User Journal

Region (CICS) may wait Task waits

Buffer location: In MVS storage Buffer location: In DSA

Number of buffers: 1 - 32767 2 buffers

Input or output Both input and output, but tasks may wait

Accessible by multiple tasks • Accessible for output by multiple tasks
• Accessible for input by single task under

exclusive control

Chapter 2. Improving the performance of a CICS system 203

The approximate calculations for performance costs in extrapartition TD queues do not include any I/O
cost. An I/O operation for a physically sequential file costs approximately 7 K and occurs in the following
situations:

• When attempting to write an item that does not fit in any buffer.
• When reading an item that is not in the buffer.
• When reading data from DASD and there is no available buffer space. If this situation occurs, the least

recently used buffer must first be written out.

Therefore, under certain circumstances, a READQ could incur the cost of two I/O operations.

Extrapartition TD queues are nonrecoverable.

WRITEQ READQ

1.2 1.0

Indirect destinations
To avoid specifying extrapartition data sets for the CICS-required entries (such as CSMT and CSSL) in CSD
definitions for TD queues, you are recommended to use indirect destinations for combining the output of
several destinations to a single destination. This saves storage space and internal management
overheads.

Long indirect chains can, however, cause significant paging to occur.

Global CICS enqueue and dequeue: Performance and tuning
Global CICS enqueue and dequeue extends the CICS application programming interface to provide an
enqueue mechanism that serializes access to a named resource across a specified set of CICS regions
contained within a sysplex.

Because global CICS enqueue and dequeue eliminates a significant cause of inter-transaction affinity, it
enables better exploitation of parallel sysplex, providing better performance, capacity, and availability. It
also reduces the need to provide inter-transaction affinity rules to dynamic routing mechanisms such as
CICSPlex SM, thus reducing the system management cost of exploiting parallel sysplex.

CICS uses z/OS global resource serialization to provide sysplex-wide protection for the resources that
participate in global CICS enqueue and dequeue. For more information on z/OS global resource
serialization, see z/OS MVS Planning: Global Resource Serialization.

Implementation

You use an ENQMODEL resource definition to define each named resource for which the EXEC CICS ENQ
and EXEC CICS DEQ commands have a sysplex-wide scope. The CICS regions that need to use sysplex-
wide enqueue or dequeue function must all have the required ENQMODEL resources defined and
installed. The recommended way to ensure this is for the CICS regions to share a CSD, and for the
initialization group lists to include the same ENQMODEL groups. For more information on creating
ENQMODEL resource definitions, see ENQMODEL resources.

For applications where the resource name is configured dynamically, so is not known in advance, you can
use the enqueue EXEC interface program exits XNQEREQ and XNQEREQC to supply characters at the start
of the resource name that match a suitable ENQMODEL resource definition. For more information on
these user exits, see Enqueue EXEC interface program exits XNQEREQ and XNQEREQC.

When the EXEC CICS ENQ and EXEC CICS DEQ commands are issued for a resource, CICS checks for a
matching installed ENQMODEL definition. If there is a matching ENQMODEL resource that specifies an
enqueue scope, CICS passes the information to z/OS global resource serialization to manage the
enqueue. z/OS global resource serialization provides sysplex-wide protection of the resource.

204 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieag400/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_enq.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_deq.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/enqmodel/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3l0.html

z/OS global resource serialization includes resource name lists (RNLs) that specify the scope of resources.
RNL processing can cause the scope of resources to change from the scope that was specified in the
ENQMODEL resource definition in CICS.

The default in z/OS is that global resource serialization searches the appropriate RNL for enqueue and
dequeue requests, and uses the RNL to determine the scope of the resource. However, the default in
CICS, as specified by the NQRNL system initialization parameter, is that all enqueue and dequeue
requests specify RNL=NO and so are excluded from RNL processing. This action means that global
resource serialization only uses the scope specified in the ENQMODEL resource definition in CICS, but it
also means that the enqueue request is ignored by alternative serialization products, which impacts
protection of the resource to systems outside the current global resource serialization environment that
are using alternative serialization products. If you want z/OS global resource serialization to use RNL
processing for enqueue and dequeue requests from CICS, specify the system initialization parameter
NQRNL=YES for the CICS regions where RNL processing should be performed.

For more information on RNL processing for global resource serialization, see z/OS MVS Planning: Global
Resource Serialization.

Recommendations

z/OS global resource serialization combines systems into a global resource serialization complex. One or
more systems are connected to each other in a ring configuration (GRS=RING) or connected to a coupling
facility lock structure in a star configuration (GRS=STAR). When global resource serialization is initialized
as a star configuration, all the information about resource serialization is held in the ISGLOCK coupling
facility structure. Global resource serialization accesses the coupling facility when a requestor issues an
enqueue or dequeue instruction on a global names resource.

Note: Use GRS=RING with caution as this configuration can result in serious performance constraints. For
performance reasons, in a sysplex of greater than two MVS images use a global resource serialization star
configuration.

The performance impact can be for many reasons, but primarily it is due to the delay in having the request
complete the ring. A large number of MVS images in the ring combined with a large value for RESMIL
causes delays in the request completing the ring. The enqueue request cannot be granted until the
request returns to the originating MVS image. Use a value of 0, or no greater than 1, for RESMIL in the
GRSCNF member of SYS1.PARMLIB.

CICS monitoring facility: Performance and tuning
The CICS monitoring facility collects data about the performance of all user-supplied and CICS-supplied
transactions during online processing for later offline analysis. Monitoring data is useful for performance,
tuning, and for charging your users for the resources they use. The records produced by CICS monitoring
are of the MVS System Management type 110 and they are written to an SMF data set.

Introduction to CICS monitoring has information about the different types of monitoring data.

In terms of performance, collecting performance class data can be a significant overhead. The overhead
is likely to be about 5% to 10%, but depends on the workload. MVS address space or RMF data can be
gathered whether or not the CICS monitoring facility is active, to give an indication of the performance
overhead incurred when using the CICS monitoring facility. CICS Monitoring Domain statistics show the
number of monitoring records produced of each type.

If you do not need accounting information because other billing processes exist, and you have other
means of gathering any performance data required, do not use the CICS monitoring facility to collect
performance class data. Do not collect exception class data if you do not require it.

Recording of monitoring data incurs an overhead, but, to tune a system, both performance and exception
information might be required. If tuning is not a daily process, the CICS monitoring facility might not need
to be run all the time. When tuning, run the CICS monitoring facility during peak volume times because at
those times performance problems typically occur.

Chapter 2. Improving the performance of a CICS system 205

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_nqrnl.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieag400/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieag400/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_mon_oview.html

To help reduce the overhead, data compression for monitoring records is set as the default. If overuse of
the SMF data set is a potential problem, consider excluding fields from monitoring records.

Controlling CICS monitoring explains how to set CICS monitoring facility options using system
initialization parameters and how to change these options while CICS is running.

CICS trace: performance and tuning
The CICS tracing, handled by the CICS trace domain, records all requests that application programs make
to CICS for various services. The storage and processing requirements depend on the number of trace
entries that are recorded. Using CICS trace increases processing requirements considerably. Not using
CICS trace, however, reduces the amount of problem determination information that is available for the
CICS region.

CICS does not provide a direct measurement of processor use caused by tracing. RMF can show the
processing and storage requirements. Auxiliary trace, where trace entries are written to auxiliary storage,
has an additional cost because of the I/O operations. Although two buffers are used for auxiliary trace,
even if the I/O can be overlapped, the I/O rate is quite large for a busy system.

You can control the amount of tracing that is done in a CICS region. You can limit the transactions or
components that are traced, and the levels of trace data that are captured for them. You can set these
options at CICS startup by using CICS system initialization parameters, or while CICS is running by using
CICS interfaces. For information about defining the tracing that is done in the CICS region, see CICS trace.

CICS always performs exception tracing when it detects an exception condition, so you always have first
failure data capture regardless of the limits that you set for CICS trace. In a production region, for
example, you might want to set tracing options so that exception traces are written to auxiliary storage,
but no other tracing is carried out. For instructions describing how to do this, see CICS exception tracing.

The trace data produced by CICS trace has a number of possible destinations. Any combination of any of
these destinations can be active at any time:

• The internal trace table
• The auxiliary trace data sets
• The MVS generalized trace facility (GTF) data sets
• The JVM server trace file in z/OS Unix System Services

Also, when a transaction dump is produced, CICS copies the internal trace table to produce the
transaction dump trace table. For information about selecting trace destinations, see Setting trace
destinations and tracing status.

Internal trace table: storage use

Every CICS region must always have an internal trace table. The internal trace table is used as a buffer for
the other trace destinations. If no trace destinations at all are currently started, CICS still writes
exception trace entries to the internal trace table to provide first failure data capture.

You use the TRTABSZ system initialization parameter to specify the size of the internal trace table at CICS
startup. The minimum size of the internal trace table is 16 KB, and the maximum size is 1 GB. The default
size is 12288 KB (12 MB). The trace table should be large enough to contain the entries needed for
debugging purposes.

CICS obtains MVS 64-bit (above-the-bar) storage (outside the CICS DSAs) for the internal trace table.

If you change the size of the internal trace table, check your current setting for the z/OS parameter
MEMLIMIT. MEMLIMIT limits the amount of 64-bit storage that the CICS address space can use. Your
setting for TRTABSZ must remain within MEMLIMIT, and you must also allow for other use of 64-bit
storage in the CICS region.

For information about the MEMLIMIT value for CICS, and instructions to check the value of MEMLIMIT that
currently applies to the CICS region, see Estimating, checking, and setting MEMLIMIT in Improving

206 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_mon_control.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs13p.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs14w.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs13x.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs13x.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3_dsa_memlimit.html

performance. For further information about MEMLIMIT in z/OS, see Limiting the use of private memory
objects in the z/OS MVS Programming: Extended Addressability Guide.

Transaction dump trace table: storage use

When a transaction dump is produced, CICS copies the current internal trace table to produce the
transaction dump trace table. CICS obtains MVS storage in 64-bit (above-the-bar) storage for the
transaction dump trace table when a transaction dump is taken.

You use the TRTRANSZ system initialization parameter to specify the size of the transaction dump trace
table. The minimum size is 16 KB, and the default size is 1024 KB.

Before CICS TS for z/OS, Version 4 Release 2, the transaction dump trace table was in 31-bit (above-the-
line) storage. If you specified a small size for the transaction dump trace table at that time because of
concerns about the availability of 31-bit storage, consider reviewing your TRTRANSZ value to provide a
larger transaction dump trace table now that 64-bit storage is used.

Because the transaction dump trace table is in 64-bit storage, check your current setting for the z/OS
parameter MEMLIMIT when you set the size of the trace table.

Auxiliary trace data sets: storage use

The auxiliary trace data sets are CICS-owned BSAM data sets on disk or tape. You must create the data
sets before you start CICS; you cannot define them while CICS is running. For instructions to set up the
auxiliary trace data sets, see Setting up auxiliary trace data sets.

When you start auxiliary trace, either at CICS startup or while CICS is running, two 4 KB buffers for the
CICS auxiliary trace data sets are allocated from MVS storage in the 31-bit (above-the-line) storage of the
CICS region. MVS storage is not included in the CICS DSAs. The buffers are freed if you stop auxiliary
trace, but they are not freed when you pause auxiliary trace or switch between the auxiliary trace data
sets.

GTF data sets: storage use

The GTF buffer is allocated in 64-bit storage.

JVM server trace: storage use

Setting the tracing level for the SJ component to 3, 4 or 5 results in increased processing requirements in
all JVM servers in the region. For more information see Activating and managing tracing for JVM servers in
Troubleshooting.

CICS security: Performance and tuning
CICS provides an interface for an external security manager (ESM), such as RACF, for three types of
security: transaction, resource, and command security.

Effects

Transaction security verifies the authorization of an operator to run a transaction. Resource security limits
access to data sets, transactions, transient data destinations, programs, temporary storage records, and
journals. Command security is used to limit access to specific commands and applies to special system
programming commands; for example, EXEC CICS INQUIRE, SET, PERFORM, DISCARD, and COLLECT.
Transactions that are defined with CMDSEC=YES must have an associated user.

Limitations

Protecting transactions, resources, or commands unnecessarily increases both processor cycles, and real
and virtual storage requirements.

Chapter 2. Improving the performance of a CICS system 207

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3_dsa_memlimit.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/limo.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/limo.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_def_auxtrace_datasets.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/java/dfhpj_trace_jvmserver.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/java/dfhpj_trace_jvmserver.html

Recommendations

Because transaction security is enforced by CICS, it is suggested that the use of both resource security
and command security should be kept to the minimum. The assumption is that, if operators have access
to a particular transaction, they therefore have access to the appropriate resources.

Implementation

Resource security is defined with the RESSEC(YES) attribute in the TRANSACTION definition. Command
security is defined with the CMDSEC(YES) attribute in the TRANSACTION definition.

Monitoring

No direct measurement of the overhead of CICS security is given. RMF shows overall processor usage.

For more information, see RACF facilities.

Tuning for VERIFY TOKEN and SIGNON TOKEN
For best performance, ensure a sufficient number of open TCBs and define programs as threadsafe.

VERIFY TOKEN and SIGNON TOKEN requests run on an open TCB if possible. If the VERIFY TOKEN or
SIGNON TOKEN is issued on an open TCB, it runs the request on this TCB. If the VERIFY TOKEN or
SIGNON TOKEN is not issued on an open TCB, it switches to an open TCB if one is available, otherwise it
switches to the Resource Owning (RO) TCB.

For best performance, set the MAXOPENTCBS system initialization parameter to a high enough value to
allow sufficient open TCBs for the workload, and define programs that use VERIFY TOKEN or SIGNON
TOKEN as threadsafe.

CICS startup and shutdown time: Performance and tuning
If you want to reduce the amount of time required for CICS startup and normal shutdown, the areas to
check include the startup procedures and autoinstall.

The IBM Redbooks publication, IBM z Systems Mean Time to Recovery Best Practices, SG24-7816,
contains information about how to customize CICS to minimize startup and shutdown time.

The following topics describe how to improve performance for CICS startup and shutdown.

Improving startup procedure
Because various configurations are possible with CICS, different aspects of the startup might require
attention.

About this task

You can define and tune aspects to improve startup performance. For more information about the CICS
startup procedures and CICS system initialization, see CICS startup.

Procedure

1. Define the following items:
a) The global and local catalogs
b) The CICS system definition (CSD) data set
c) The temporary storage data sets or transient data intrapartition data sets

For details on how to define each data set, see Defining data sets.
2. When defining your terminals, pay attention to the position of group names within the GRPLIST. If the

group containing the TYPETERMs is last, all the storage used for building the terminal definitions is
held until the TYPETERMs are known. This might cause your system to go short on storage.

208 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/cics/dfht51s.html
http://www.redbooks.ibm.com/abstracts/sg247816.html?Open
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_cics_startup.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_defining_datasets.html

Groups in the GRPLIST in the system initialization table (SIT) are processed sequentially. Place the
groups containing the model TERMINAL definitions followed by their TYPETERMs in the GRPLIST
before the user transactions and programs. This process minimizes the virtual storage that is tied up
while CICS is processing the installation of the terminals.

Note: All terminals are installed, even surrogate terminal control table (TCT) entries for MRO.

You must ensure that the DFHVTAM group precedes any TERMINAL or TYPETERM definition in your
GRPLIST. The DFHVTAM group is contained in the DFHLIST group list, so adding DFHLIST first to your
GRPLIST ensures that the condition is met. If you do not add DFHLIST, the programs used to build
the TCT are loaded for each terminal, thus slowing initial and cold starts.

Do not have more than 100 entries in any group defined in the CSD. If you have too many entries, this
might cause unnecessary overhead during processing, and make maintenance of the group more
difficult.

3. Enure that changing the START parameter does not change the default for any facilities that your
users do not want to have auto-started. Any facility that you might want to override can be coded in
the PARM on the EXEC statement, or all of them can be overridden by specifying by specifying the ALL
option for the START parameter.

4. If you do not intend to use CICS web support or the Secure Sockets Layer, ensure that TCPIP=NO is
specified in the SIT. If TCPIP=YES is specified, the Sockets domain task control block is activated.

5. Tune the VSAM parameters of the local and global catalogs to suit your installation:
a) Control interval (CI) sizes should be changed for optimum data and DASD sizes (see “Local shared

resources (LSR) or nonshared resources (NSR)” on page 150 for more information). In most cases
2KB index CI, and 8 KB or 16 KB data CI, are suitable sizes.

b) You can you specify the BUFNI and BUFND parameters in your JCL for the global catalog data set
with the AMP parameter, rather than using BUFSPACE.

c) Alter the number of index buffers by coding the number of strings plus the number of index set
records in the index. The number of records in the index set can be calculated from IDCAMS
LISTCAT information as follows:

• T = total number of index records (index REC-TOTAL)
• D = data control interval size (data CISIZE)
• C = data control intervals per control area (data CI/CA)
• H = data high-used relative byte address (data HURBA)

d) The number of index set records can then be computed. The calculation is really the number of
used control areas. The number of sequence set records must be the same as the number of used
CAs.

• The number of sequence set records: S = H / (D X C)
• The number of index set records: I = T - S

Do not spend time trying to tune free space as it has no effect.

You can obtain the number of index levels by using the IDCAMS LISTCAT command against a GCD
after CICS has been shut down. Because a cold start mainly uses sequential processing, it should not
require any extra buffers in addition to the buffers automatically allocated when CICS opens the file.

6. Consider whether to use the recovery manager utility program DFHRMUTL. On cold and initial starts,
CICS normally deletes all the resource definition records from the global catalog. You can save the
time taken to delete resource definition records by using the recovery manager utility program,
DFHRMUTL. For more information, see Recovery manager utility (DFHRMUTL).

• Before a cold start, run DFHRMUTL with SET_AUTO_START=AUTOCOLD,COLD_COPY as input
parameters. This creates a copy of the global catalog data set that contains only those records
needed for a cold start. If the return code from this job step is normal, you can replace the original
global catalog with the new copy (taking an archive of the original catalog if you want). An example
of the JCL is provided with the description of DFHRMUTL.

Chapter 2. Improving the performance of a CICS system 209

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/utilities/dfha64u.html

• Before an initial start, run DFHRMUTL with SET_AUTO_START=AUTOINIT,COLD_COPY as input
parameters, and follow the same procedure to use the resulting catalog.

7. Allocate your DATA and INDEX data sets on different units, if possible.
8. Consider the use of autoinstalled terminals as a way of improving cold start, even if you do not expect

any storage savings. On startup, fewer terminals are installed, reducing the startup time.
9. Set the RAPOOL system initialization parameter to a value that allows faster autoinstall rates. For

more information, see “Setting the size of the receive-any pool” on page 132.
10. Specify the buffer, string, and key length parameters in the LSR pool definition. Setting these

parameters reduces the time taken to build the LSR pool, and also reduces the open time for the first
file to use the pool.

If you have defined performance groups for the CICS system, ensure that all steps preceding the
CICS step are also in the same performance group or, at least, have a high enough dispatching
priority so as not to delay their execution.

The use of DISP=(...,PASS) on any non-VSAM data set used in steps preceding CICS reduces
allocation time the next time the data sets are needed. If you do not use PASS on the DD statement,
this causes the subsequent allocation of these data sets to go back through the catalog, which is a
time-consuming process.

If possible, have one VSAM user catalog with all of the CICS VSAM data sets and use a STEPCAT DD
statement to reduce the catalog search time.

Keep the number of libraries defined by DFHRPL to a minimum. One large library requires less time to
perform the LLACOPY than many smaller libraries. Similar consideration should be applied to any
dynamic LIBRARY resources installed at startup. You can use the shared modules in the link pack
area (LPA) to help reduce the time required to load the CICS nucleus modules. For advice on how to
install CICS modules in the LPA, see Installing CICS modules in the MVS link pack area in Installing.

CICS does not load programs at startup time for resident programs. The storage area is reserved, but
the program is loaded on the first access through program control for that program. This process
speeds up the startup. The correct way to find a particular program or table in storage is to use the
program-control LOAD facility to find the address of the program or table. If it is the first access,
using the LOAD facility physically loads the program into its predefined storage location .

The use of a program list table post initialization (PLTPI) task to load these programs is one possible
technique, but you must bear in mind that the CICS system is not operational until the PLTPI
processing is complete, so you should not load every program. Load only what is necessary, or the
startup time might increase.

Autoinstall performance
You might want to increase the number of buffers to improve autoinstall performance. Increasing the
number of buffers can stop the high-level index being read for each autoinstall.

If you have many terminals autoinstalled, shutdown can fail due to the value of the MXT system
initialization parameter being reached or CICS becoming short on storage. To prevent this possible cause
of shutdown failure, consider putting the CATD transaction in a class of its own to limit the number of
concurrent CATD transactions. Also, the AIQMAX parameter can be specified to limit the number of
devices that can be queued for autoinstall. This parameter protects against abnormal consumption of
virtual storage by the autoinstall or delete process, caused as a result of some other abnormal event.

If the CATD transaction limit is reached, the AIQMAX system initialization parameter affects the LOGON,
LOGOFF, and BIND processing by CICS. CICS requests the z/OS Communications Server to stop passing
such requests to CICS. The z/OS Communications Server holds the requests until CICS indicates that it
can accept further commands.

This occurs when CICS has processed a queued autoinstall request.

210 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha11d.html

MVS automatic restart management
You can use the MVS automatic restart manager (ARM) to implement a sysplex-wide integrated automatic
restart mechanism. A sysplex can use ARM and z/OS Communications Server persistent sessions spread
across many terminal-owning regions (TORs) in a generic resource set.

Automatic restart management (ARM) is a sysplex-wide integrated restart mechanism that performs the
following tasks:

• Restarts MVS subsystems in place if they abend (or if notified of a stall condition by a monitor program)
• Restarts all the elements of a workload (for example, CICS TORs, application-owning regions (AORs),
file-owning regions (FORs), and Db2) on another MVS image after an MVS failure

• Restarts a failed MVS image

ARM and z/OS Communications Server persistent sessions provide good recovery times in the event of a
TOR failure, and the TOR restart is reduced because only a fraction of the network must be rebuilt. You
can log on to the generic resource while the failed TOR restarts.

ARM provides faster restart by providing surveillance and automatic restart. The need for operator-
initiated restarts, or other automatic restart packages, are eliminated. For more information about MVS
automatic restart management, see Implementing MVS automatic restart management in Installing and
z/OS MVS Setting Up a Sysplex.

CICS business transaction services: Performance and tuning
Business transaction services (BTS) introduced a business transaction model to CICS.

Effects

You can use BTS to create a type of program that controls the flow of many separate CICS transactions so
that these individual transactions become a single business transaction.

Recommendations

A BTS transaction can comprise many separate CICS transactions and also can span a considerable
execution time, so there are no specific performance recommendations for BTS transactions. However,
some general observations can be useful.

Implementation

To support BTS functionality, CICS keeps data in new types of data sets: the local request queue
(DFHLRQ) and a BTS repository. The local request queue data set stores pending BTS requests. Each
CICS region has its own data set. The local request queue data set is a recoverable VSAM key-sequenced
data set (KSDS). Tune it for best performance like a VSAM KSDS.

You can have one or more BTS repositories. A BTS repository is normally a VSAM KSDS and holds state
data for processes, activities, containers, events, and timers. A BTS repository is associated with a
process through the PROCESSTYPE definition. If the activities of a BTS process are to be dispatched on
more than one CICS region, their BTS repositories must be shared between those regions. The repository
can be either of the following file types:

• A VSAM KSDS file that is owned by a file-owning region and defined as REMOTE in participating regions
• A VSAM RLS file that is shared between the participating regions

To support the execution of the BTS processes, CICS runs one or many transactions. A BTS process
consists of one or more activities. Each activity runs as a series of CICS transaction executions. If an
activity becomes dormant, for example, it is waiting for an event, the activity restarts after that event
occurs, and a new CICS transaction is started, even if this is a continuation of the business transaction.
You might see many executions of the transaction identifier specified in a process or activity definition in
the CICS statistics for a single BTS transaction. The application program that is run when an activity is

Chapter 2. Improving the performance of a CICS system 211

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha14e.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/toc.htm

executed is not necessarily the one that is defined in the transaction definition. In BTS, the Process or
Activity definition in application programs can specify a different program to run.

The number of transactions run and the number and type of file accesses to the BTS repository, depend
on how you choose to use BTS services. To see this information for your applications, examine the CICS
statistics reports. Be aware that containers are stored in the BTS repository. Ensure that the repository is
large enough to contain all the active BTS data. A good way to do this is to use scaling, based on a test
system.

You can use monitor data, DFHCBTS, to collect information on activities within processes.

Managing workloads
Workload management in a sysplex is provided by the z/OS Workload Manager (WLM) and by CICSPlex
SM workload management.

The z/OS Workload Manager
The z/OS Workload Manager provides automatic and dynamic balancing of system resources (central
processors and storage) across a sysplex.

The z/OS Workload Manager balances system resources by:

• Adopting a goal-oriented approach
• Gathering real time data from the subsystems that reflect performance at an individual task level
• Monitoring z/OS- and subsystem-level delays and waits that contribute to overall task execution times
• Dynamically managing the resources of the sysplex, using the performance goals, and the real time

performance and delay data, as inputs to system resource management algorithms.

This resource management is particularly significant in a sysplex environment, but is also of value to
subsystems running in a single z/OS image.

Note: If you use CICSPlex SM to control dynamic routing in a CICSplex, you can base its actions on the
CICS response time goals of the CICS transactions as defined to the z/OS Workload Manager. See
Dynamic routing with CICSPlex SM.

The z/OS Workload Manager provides the following benefits:

• Improved performance through z/OS resource management. Improvement can depend on many
factors, for example:

– System hardware configuration
– How the system is partitioned
– Whether CICS subsystems are single or multiregion
– The spread of types of applications or tasks performed, and the diversity of their profile of operation
– The extent to which the sysplex workload changes dynamically.

• Improved efficiency of typical z/OS sysplexes through improved overall capacity and increased work
throughput.

• Simplified z/OS tuning. Systems that have an operating signature that makes it difficult or time
consuming to attain or maintain optimal tuning by current means can benefit the most.

The main benefit is that you do not need to continually monitor and tune CICS to achieve optimum
performance. You can set your workload objectives in the service definition, then the workload
component of z/OS manages the resources and the workload to achieve your objectives.

The z/OS Workload Manager produces performance reports that you can use to establish reasonable
performance goals and for capacity planning.

The CICS function for z/OS workload management incurs negligible impact on CICS storage.

212 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cpsm/eyuaad9.html

CICS support for the z/OS Workload Manager is initialized automatically during CICS startup. All CICS
regions (and other z/OS subsystems) running on a z/OS image with z/OS workload management are
subject to the effects of the Workload Manager.

User-written resource managers and other non-CICS code that is attached to CICS through the RMI
should be modified to provide z/OS Workload Manager support, if workload management is to work
correctly for CICS-based tasks which cross the RMI into such areas.

The IBM Redbooks Publication System Programmer's Guide to: Workload Manager, SG24-6472-03, gives
a broad understanding of the Workload Manager component of the z/OS system. It covers basic aspects
of WLM together with the new functions available in the z/OS release up to z/OS 1.7. The book provides a
discussion on how to create WLM policies based on business goals and the types of transactions you run
in your systems.

Terms used in z/OS workload management
The following terms are used in the description of z/OS workload management.

classification rule
A rule used by the workload manager component of z/OS to assign a service class.

service class
A group of work that has the same service goals or performance objectives, resource requirements, or
availability requirements. For workload management, a service goal and, optionally, a resource group
is assigned to a service class.

service definition
An explicit definition of all the workloads and processing capacity in a sysplex. A service definition
includes service policies, workloads, service classes, resource groups, and classification rules.

service policy
A set of performance goals for all z/OS images using z/OS workload management in a sysplex. There
can be only one active service policy for a sysplex, and all subsystems in goal mode within that
sysplex process towards that policy. However, you can create several service policies, and switch
between them to cater for the different needs of different processing periods.

workload
A group of service classes.

Span of z/OS Workload Manager operation
The z/OS Workload Manager operates across a sysplex. There can be only one active service policy for all
z/OS images running in a sysplex.

All CICS regions (and other z/OS subsystems) running on a z/OS image with z/OS workload management
active are subject to the effects of workload management.

If the CICS workload involves non-CICS resource managers, such as Db2 and DBCTL, CICS passes
information through the resource manager interface (RMI) to enable the z/OS Workload Manager to relate
the part of the workload within the non-CICS resource managers to the part of the workload within CICS.

The CICS interface modules that handle the communication between a task-related user exit and the
resource manager are usually referred to as the resource manager interface (RMI) or the task-related
user exit (TRUE) interface.

Performance goals for CICS regions
You can define performance goals, such as response times, for CICS (and other z/OS subsystems that
comprise your workload).

You can define goals for:

• Individual CICS regions
• Groups of transactions running under CICS
• Individual transactions running under CICS
• Transactions associated with individual userids

Chapter 2. Improving the performance of a CICS system 213

http://www.redbooks.ibm.com/abstracts/sg246472.html?Open

• Transactions associated with individual LU names.

To define the performance goals for CICS regions, allocate each CICS job a service class and then specify
target response times for the service class. Typically, production regions and test regions are placed in
different service classes, because response times for production regions are more critical than for test
regions.

Workload management also collects performance and delay data, which can be used by reporting and
monitoring products, such as the Resource Measurement Facility (RMF), IBM Z Decision Support, or
vendor products.

The service level administrator defines your installation's performance goals, and monitoring data, based
on business needs and current performance. The complete definition of workloads and performance
goals is called a service definition. You may already have this kind of information in a service level
agreement (SLA).

Defining classification rules for your CICS workload
Classification rules determine how to associate incoming work with a service class. Optionally, the
classification rules can assign incoming work to a report class, for grouping report data.

There is one set of classification rules for each service definition. The classification rules apply to every
service policy in the service definition; so there is one set of rules for the sysplex.

You should use classification rules for every service class defined in your service definition. For more
information, see Defining classification rules in z/OS MVS Planning: Workload Management.

Classification rules categorize work into service classes and, optionally, report classes, based on work
qualifiers. You set up classification rules for each z/OS subsystem type that uses workload management.
The work qualifiers that CICS can use (and which identify CICS work requests to the z/OS Workload
Manager) are:
CT

Connection type
CTG

Connection type group
LU

LU name
LUG

LU name group
SI

Subsystem instance (generic applid)
SIG

Subsystem instance group
TC

Transaction class
TCG

Transaction class group
TN

Transaction identifier
TNG

Transaction identifier group
UI

Userid
UIG

Userid group.

Note:

214 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaw100/clsf.htm

1. Typically, work is classified in the region in which it arrives in CICS. For example, work originating from
a user terminal is typically classified in a terminal-owning region. Web requests are typically classified
in a listener region. Work originating in an application-owning region is classified in that region. Where
a work request is passed between CICS regions, the transaction is not reclassified in each region.
Instead, the original classification is passed with the transaction from region to region.

2. You can use group qualifiers to specify groups of transaction IDs or user IDs; for example, GRPACICS
could specify a group of CICS transaction IDs, which you could specify in classification rules by TNG
GRPACICS. Using group qualifiers is a much better method of specifying classification rules than
classifying each transaction separately.

3. The WLM service class token is not supported over a z/OS Communications Server LU62 link because
there is only one set of rules for the sysplex. LU62 links can be outside the z/OS SYSPLEX and WLM
could not access the information.

You can use classification groups to group disparate work under the same work qualifier—if, for example,
you want to assign it to the same service class.

You can set up a hierarchy of classification rules. When CICS receives a transaction, the z/OS Workload
Manager searches the classification rules for a matching qualifier and its service class or report class.
Because a piece of work can have more than one work qualifier associated with it, it may match more
than one classification rule. Therefore, the order in which you specify the classification rules determines
which service classes are assigned.

You are recommended to keep classification rules simple.

Defining service classes
Service classes are categories of work, within a workload, to which you can assign performance goals.

You can create service classes for groups of work with similar:

• Performance goals

You can assign the following performance goals to the service classes:
Response time

You can define an average response time (the amount of time required to complete the work) or a
response time with percentile (a percentage of work to be completed in the specified amount of
time).

Discretionary
You can specify that the goal is discretionary for any work for which you do not have specific goals.

Velocity
For work not related to transactions, such as batch jobs and started tasks. For CICS regions started
as started tasks, a velocity goal applies only during start-up.

Note:

1. For service classes for CICS transactions, you cannot define velocity performance goals,
discretionary goals, or multiple performance periods.

2. For service classes for CICS regions, you cannot define multiple performance periods.
• Business importance to the installation

You can assign an importance to a service class, so that one service class goal is recognized as more
important than other service class goals. There are five levels of importance, numbered, from highest to
lowest, 1 to 5.

You can also create service classes for started tasks and JES, and can assign resource groups to those
service classes. You can use such service classes to manage the workload associated with CICS as it
starts up, but before CICS transaction-related work begins. (Note that when you define CICS in this way,
the address space name is specified as TN, for the task or JES “transaction” name.)

There is a default service class, called SYSOTHER. It is used for CICS transactions for which z/OS
workload management cannot find a matching service class in the classification rules—for example, if the
couple data set becomes unavailable.

Chapter 2. Improving the performance of a CICS system 215

For RMF to provide meaningful Workload Activity Report data it is suggested that you use the following
guidelines when defining the service classes for CICS transactions. In the same service class:

1. Do not mix CICS-supplied transactions with user transactions
2. Do not mix routed with non-routed transactions
3. Do not mix conversational with pseudo-conversational transactions
4. Do not mix long-running and short-running transactions.

Matching CICS performance parameters to service policies
You must ensure that the CICS performance parameters are compatible with the Workload Manager
service policies used for the CICS workload.

In general, you should define CICS performance objectives to the z/OS Workload Manager first, and
observe the effect on CICS performance. Once the z/OS Workload Manager definitions are working
correctly, you can then consider tuning the CICS parameters to further enhance CICS performance.
However, you should use CICS performance parameters as little as possible.

Performance attributes that you might consider using are:

• Transaction priority, passed on dynamic transaction routing.

You should take care when choosing the priority to assign to each transaction. Although you can specify
transaction priorities from 1 to 255, you should avoid using a large number of closely spaced values.
You will get as much benefit if you use a small number of widely spaced values.

The priority assigned by the CICS dispatcher must be compatible with the performance parameters
defined to the z/OS Workload Manager.

• Maximum number of concurrent user tasks for the CICS region.
• Maximum number of concurrent tasks in each transaction class.
• Maximum number of sessions between CICS regions.

CICSPlex SM workload management
CICSPlex SM workload management directs work requests to a target region that is selected using one of
four routing algorithms.
The queue algorithm (QUEUE)

CICSPlex SM routes work requests initiated in the requesting region to the most suitable target region
in the designated set of target regions.

The link neutral queue algorithm (LNQUEUE)
The link neutral queue algorithm corresponds to the queue algorithm, except that the type of
connection between the routing and target region is not considered.

The goal algorithm (GOAL)
CICSPlex SM routes work requests to the target region that is best able to meet the goals that have
been predefined using the z/OS Workload Manager.

The link neutral goal algorithm (LNGOAL)
The link neutral goal algorithm corresponds to the goal algorithm, except that the type of connection
between the routing and target region is not considered.

For more information, see Workload routing.

The CICSPlex SM dynamic routing program EYU9XLOP is invoked to route work requests to the selected
target region. EYU9XLOP supports both workload routing and workload separation. You define to
CICSPlex SM which requesting, routing, and target regions in the CICSplex can participate in dynamic
routing, and any affinities that govern the target regions to which particular work requests must be
routed. The output from the CICS Interdependency Analyzer can be used directly by CICSPlex SM. For
information about the CICS Interdependency Analyzer, see the CICS Interdependency Analyzer for z/OS,
and the IBM Redbooks publication IBM CICS Interdependency Analyzer.

216 CICS TS for z/OS: Performance Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/cpsm/eyue32w.html
https://www.ibm.com/support/knowledgecenter/SSPPUS/welcome.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg246458.pdf

There are no special requirements for using CICSPlex SM workload management, which supports both
the distributed routing and dynamic routing models of CICS. Workload management of the following types
of requests is supported:

• Dynamic transaction routing
• Dynamic DPL
• Start requests
• BTS activities
• 3270 link requests

CICSPlex SM workload management offers the following benefits:

• A dynamic routing program to make more intelligent routing decisions; for example, based on workload
goals.

• Improved CICS support for z/OS goal-oriented workload management.
• Easier access to a global temporary storage owning region in the z/OS sysplex environment. This avoids

inter-transaction affinity that can occur with the use of local temporary storage queues.
• Intelligent routing (through CICSPlex SM) in a CICSPlex that has at least one requesting region linked to

multiple target regions.

For information about setting up and using CICSPlex SM workload management, see Managing workloads
through CICSPlex SM.

Chapter 2. Improving the performance of a CICS system 217

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/cpsm/eyue3d0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/cpsm/eyue3d0.html

218 CICS TS for z/OS: Performance Guide

Chapter 3. Improving event processing performance
CICS Event Processing (EP) consists of three main components: capturing an event, dispatching the EP
adapter, and emitting the event by running the EP adapter. For each component, different factors
influence performance.

Factors when capturing an event

For CICS performance associated with running EP, consider the following factors:

• Processor usage is negligible with EP started and no event binding file installed.
• Processor usage is negligible with EP started and event binding files installed, but when the capture

point is not defined in any <locationFilter> (the capture point and application command predicates)
element in any of the Event Capture Specifications.

• For primary predicate matching, use of the attribute filterOperator="EQ" ('Equals' specified in the
filtering predicate) can result in improved performance, compared to other filterOperator values.
An optimization is used when filterOperator="EQ" is specified.

Note: The CICS event binding editor uses an asterisk (*) to show the primary predicate for the capture
point selected.

• If you are using <dataCapture> elements (Emitted Business Information items mapped in the
Information Sources part of the capture specification) to capture specific parts of the data associated
with a capture point, keep the number of <dataCapture> elements reasonably low. Otherwise,
performance can be adversely affected, because a separate container is created for each data capture
component. For example, if bytes 0 - 5, 10 - 15, 20 - 25, 30 - 35 of a record associated with an EXEC
CICS WRITE command are to be captured, it is more efficient to define a single <dataCapture>
element to capture bytes 0 - 35 than to define four <dataCapture> elements for each of the separate
data areas.

• Where possible, do not include unnecessary filter predicates. For example, it is often not necessary to
filter on both the transaction ID and the current program name.

• Put the filter predicates that exclude the most unwanted events before the filter predicates that exclude
fewer unwanted events.

• Where possible, do not use filter predicates on zoned decimal or packed decimal data fields that might
contain unusable data.

CICS statistics in the EVENTBINDING GLOBAL STATISTICS category show the Total Event Filter
operations. For more information, see EVENTBINDING statistics.

Factors when dispatching the EP adapter

EP runs multiple dispatcher tasks, which run on L8 TCBs, to service the emitting of events. These
dispatcher tasks count toward the limit set by CICS for the number of L8 and L9 mode open TCBs. CICS
sets this limit automatically using the formula (2 * MXT value) + 32. So that EP does not monopolize
the L8 TCBs, the maximum number of L8 TCBs used for EP dispatchers is limited to one third of the open
TCB limit. CICS statistics in the EVENTPROCESS STATISTICS category show the peak event capture
queue and the peak dispatcher tasks so that you can monitor the use of L8 TCBs by EP. For more
information, see EVENTPROCESS statistics.

Adapters can be either attached or linked depending on the adapters configuration. Attaching a task for
each event increases processor usage; using the attach method means that the event dispatcher task
does not wait for the event to be emitted to continue processing the event queue.

When a transaction ID or user ID is specified in the CICS event binding editor adapter section, the adapter
is attached as a separate task. When a transaction ID or user ID is not specified, the adapter is linked to
from the dispatcher task. However, the HTTP EP adapter is always attached.

© Copyright IBM Corp. 1974, 2020 219

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_eventbinding.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_eventprocess.html

Factors when emitting events by running the EP adapters

The cost of running the EP adapters depends on the EP adapter that is being used:
TSQ

The TSQ EP adapter imposes the least cost in terms of CPU consumed.
WebSphere MQ

Each event has an MQPUT1 call for the WebSphere MQ EP adapter.

Assured event emission: You need the capability and reliability of assured event emissions to build
business-critical application extensions based on events. However, assuring event emission (using
synchronous emission mode) transfers the cost of event emission from an asynchronous event
processing task to the application thread. Therefore, assured event emission could have an adverse
affect on application response time, similar to adding an MQPUT for the event to the application itself.
Because of the effect on response time, consider carefully which events demand the added level of
reliability that is achieved through synchronous emission mode. Asynchronous emission mode is the
better choice when it is less important that an event is occasionally lost (between the time an event is
captured but not yet emitted); for example, for mail applications when an event is infrequently lost.
Specifying synchronous emission mode only where it is needed ensures that your business is making
the best use of assured event emission with the least impact on performance.

HTTP
Each event has a WEB OPEN, WEB CONVERSE, and a WEB CLOSE call for the HTTP EP adapter. By
default, CICS closes the client HTTP connection after the event is emitted, and a new connection is
opened for the next event. CICS can keep client HTTP connections open after events are emitted, so
that they can be reused for subsequent event emissions, and you can save the processor overhead for
reopening the connections. To keep connections open, specify the SOCKETCLOSE attribute in the
URIMAP resource that the HTTP EP adapter uses for the connection. Choose an appropriate expiry
time for the connections based on your emission rate.

A CEPH task is attached for each event emitted using the HTTP adapter. The CEPH transaction has a
DTIMEOUT value of 5 seconds so that the HTTP EP adapter tasks timeout if a connection cannot be
established with the event server within 5 seconds. The CEPH task then emits the event to an HTTP
1.1 compliant server. CICS provides a PROFILE for the CEPH transaction called DFHECEPH. This
profile has an RTIMOUT value of 5 seconds so that the HTTP EP adapter tasks timeout if the event
server does not respond within 5 seconds. You can copy this profile and the CEPH transaction if you
want to change them.

• If the emission rate is high compared to the HTTP 1.1 compliant server or network response time,
these CEPH tasks can flood the CICS system resulting in the MXT limit being reached. You must
copy the CEPH transaction and then assign your transaction to a transaction class to avoid the MXT
limit being reached. The transaction class must have a MAXACTIVE value low enough to avoid
reaching the MXT limit, and a PURGETHRESH value set to a non-zero value.

• Any CEPH tasks that are purged when the PURGETHRESH limit is reached do not emit their events.
Any tasks purged when the PURGETHRESH limit is reached result in the following message being
written to the CSMT transient data destination: DFHAC2036 Transaction CEPH has failed
with abend AKCC.

Note: When you use the copied profile or transaction, you must change your adapter configuration in
the Event binding editor to run the HTTP adapter using this new transaction.

Transaction start
The transaction start EP adapter starts a new CICS task. Therefore, processor usage increases overall
because of starting the transaction that is driven as a result of the CICS event. Also, each data capture
field is made available to a started transaction in a container. A large number of these CICS tasks can
impose a significant increase in processor usage on the adapter.

CICS statistics in the EVENTPROCESS STATISTICS category show the number of the following events:

• Events dispatched to the WebSphere MQ EP adapter
• Events dispatched to the HTTP EP adapter

220 CICS TS for z/OS: Performance Guide

• Events dispatched to the Transaction EP adapter
• Events dispatched to the TSQ EP adapter
• Events dispatched to the Custom EP adapter

For more information, see EVENTPROCESS statistics.

CICS region storage for event processing

Event processing uses 64-bit (above-the-bar) storage in the CICS region. Your use of event processing
therefore influences the value that you choose for the z/OS MEMLIMIT parameter that applies to the CICS
region.

If you use the temporary storage queue (TSQ) adapter and select main temporary storage, this data is
also in 64-bit storage.

For information about the MEMLIMIT value for CICS, and instructions to check the value of MEMLIMIT that
currently applies to the CICS region, see Estimating, checking, and setting MEMLIMIT in Improving
performance. For further information about MEMLIMIT in z/OS, see Limiting the use of private memory
objects in the z/OS MVS Programming: Extended Addressability Guide.

Chapter 3. Improving event processing performance 221

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/statistics/dfht3_stats_eventprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3_dsa_memlimit.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3_dsa_memlimit.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/limo.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa500/limo.htm

222 CICS TS for z/OS: Performance Guide

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2020 223

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 5 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• CICS security
• Developing for external interfaces
• Reference: application developmenth
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 5 , but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
5 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

224 Notices

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/developing_sysprogs.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/interfaces/externalInterfaces.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-systemprogramming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 5 , but that
might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Notices 225

https://www.ibm.com/legal/copytrade.shtml

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

226 Notices

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 227

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

228 CICS TS for z/OS: Performance Guide

Index

Numerics
229 subpool 136
24-bit storage 73
31-bit addressing 123
31-bit storage 73
64-bit storage 73, 79

A
abends

after major changes 129
application 8
backout recovery 200
insufficient subpool storage 74
insufficient virtual storage 17
ONEWTE option 134
task purging 50
transaction 10

abnormal condition program (DFHACP) 12
above the bar

16 MB line 73
virtual storage 73

above the bar dynamic storage area 79
above the line

virtual storage 73
ACF/Communications Server

pacing 124
processor usage 11
statistics 12

ACF/SNA
class of service (COS) 143
common system areas (CSA and ECSA) 117
datastream compression 138
high performance option (HPO) 133
IBMTEST 47
ICVTSD 137
LMPEO option 135
logon/logoff requests 136
multiregion operation (MRO) 142
receive-any pool (RAPOOL) 47, 132
statistics 53
storage management 138
subpool 229 74, 124
subpool 230 119
terminal I/O 129
traces 25, 138, 141
tuning 128

activity keypoint frequency (AKPFREQ) 191
address space 73
address spaces

map alignment 121
program storage 122, 123
shared nucleus code 121
splitting online systems 120

AILDELAY, system initialization parameter 140
AIQMAX, system initialization parameter 139

AIRDELAY, system initialization parameter 139
AKPFREQ

and MRO 191
AKPFREQ, system initialization parameter 191
aligned maps 121
alternate index considerations 156
AMODE(24) programs Language Environment run time
options 50
analyzing performance of system 12
APPC

CICS PA reports 28, 30
application programs

16 MB line 123
performance analysis 17
resident, nonresident, transient 122

Assembler H Version 2 123
asynchronous processing 142
autoinstall terminals 139
automatic installation of terminals 139
automatic logon 136
Automatic restart manager (ARM) 211
automatic transaction initiation (ATI) 130, 137
auxiliary temporary storage

control interval size 198
secondary extents 198

auxiliary trace 18, 20, 22
average block size 186

B
backout recovery 200
Batching requests 69
below the bar

virtual storage 73
below the line

virtual storage 73
block sizes 17
BMS (basic mapping support)

map alignment 121
BMS, system initialization parameter 122
BTS 211
BTS report, CICS PA 30
BUFFER operand 135
BUFFER parameter 155
BUILDCHAIN attribute 135

C
CA (control area) 152, 172
capacity planning 55
CATA transaction 140
CATD transaction 140
CDSA 76
CDSA subpool 95
CDSASZE 88
CECMCHTP 56
CECMDLID 56

Index 229

central electronics complex (CEC) 56
central processing complex (CPC) 56
CFDT advantages 164
CFDT sizing 166
CFDT using FILE definition 163
CFRM, coupling facility resource management

policy 166
chain assembly 135
CHANGED return condition 165
CI (control interval) 150, 153, 168
CICS business transaction services 211
CICS monitoring facility

CICS PA reports 26
CICS Performance Analyzer (CICS PA) 26
CICS region size 80
CICS trace facilities performance data 3, 24
CICS Transaction Manager

performance and tuning 61
Prioritizing tasks 61
Setting MXT 61
Transaction class purge thresholdTransaction manager

PURGETHRESH 61
Transaction classesControlling transactions

control transaction 61
MAXACTIVE 61

CICSPlex SM used to control dynamic routing 212
CICSPlex SM workload management 216
class of service (COS) in SNA 143
classification rules 214
CLPA (create link pack area) 116
COBOL

application programs 121
common service area (CSA) 117
compression, output data streams 138
concurrent actions

asynchronous file I/Os 159
input/output operations 202
logon/logoff requests 136
receive-any requests 132
VSAM requests 150, 153, 168

concurrent autoinstalls 139
Concurrent mode TCB 70
constraints

hardware 46
limit 52
software 47

contention model 164
control area (CA) 152, 172
control interval (CI) 150, 153, 168
control of storage stress 50
COS (class of service) in SNA 143
coupling facility data tables (CFDT) 163
coupling facility resource management (CFRM) 166
CPSM workload management 212
CPUTONCP 56
create link pack area (CLPA) 116
cross-memory server environment (AXM) 163
cross-memory services

reduction of CSA 142
CSA (common service area)

contents 117
CSA (common system area)

SVC processing 142
transaction looping 124

CSAC transaction 12

D
DASD (direct access storage device)

activity report in RMF 18
review of usage 11

data collected by RMF 4, 32
data set name (DSN) sharing 156
data sets

DSN (data set name sharing) 156
record block sizes 17

data tables
performance statistics 163
synchronization of changes 162

database resource adapter (DRA) 178
databases

design 47
hardware contention 46

DATABUFFERS parameter 159
DB2CONN, DB2ENTRY, DB2TRAN definitions 178
deadlock timeout 11
degradation of performance 14
deletion of shipped terminal definitions DSHIPINT and
DSHIPIDL 148
DFHACP, (abnormal condition program) 12
diagnosing problems 12
distributed program link (DPL) 142
distributed transaction processing (DTP) 141, 142
DL/I

databases 18
transactions 20

DLLs in C++ 127
DPL (distributed program link) 142
DRA (database resource adapter) 178
DSA (dynamic storage areas)

storage protection facilities 77
DSALIM

estimating size 81
DSALIM, system initialization parameter 79
DSALIMIT

system initialization parameter 81
DSAs

setting the size of 88
DSN (data set name) sharing 156
DTIMOUT (deadlock timeout interval) 11
DTP (distributed transaction processing) 141, 142
dynamic storage areas

above the bar 77
above the line 76
below the line 76

E
ECDSA 76
ECDSA subpool 95
ECDSASZE 88
ECSA (extended common service area) 117
EDSA (extended dynamic storage areas) 76
EDSALIM

default 82
estimating size 82

EDSALIM, system initialization parameter 79

230 CICS TS for z/OS: Performance Guide

EDSALIMIT
system initialization parameter 82

end-of-day statistics 3, 24
ERDSA 76
ERDSA subpool 95
ERDSASZE 88
error rates 17
ESDS files

number of strings 150, 153, 168
ESDSA 76
ESDSA subpool 95
ESDSASZE 88
ESQA (extended system queue area) 116
estimating DSALIM 81
estimating EDSALIM 82
estimating MEMLIMIT 84
estimating REGION 80
ETDSA 76
ETDSA subpool 95
EUDSA 76
EUDSA subpool 95
EUDSASZE 88
exception class monitoring 26
EXEC CICS WRITE JOURNALNAME command 184
extended facilities

common service area (ECSA) 117
link pack area (ELPA) 121
MVS nucleus 116
private area 117
system queue area (ESQA) 116

external actions
security interface 207

extrapartition transient data 203

F
facilities

storage protection facilities 77
faults

tracing 52
FEPI, system initialization parameter 160
file control

costs 176
LSR

maximum key length 155
resource percentile (SHARELIMIT) 155

VSAM 160
File Control 175
FORCEQR 69
free storage above region 120
full-load measurement 18
function shipping 141

G
GCDSA 77, 84
GCDSA subpool 95
GDSA 77, 84
GDSA (above the bar dynamic storage area)

GCDSA 79
global enqueue and dequeue 204
GOAL algorithm 216
GRS=STAR 204

GSDSA subpool 95

H
hardware constraints 46
high performance option (HPO) 132, 133, 137
HPO (high performance option) 137

I
I/O rates 17
IBM Z Decision Support

periodic reports 10
IBMTEST command 47
ICMF 181
ICV parameter 68
ICV, system initialization parameter 137
ICVTSD, system initialization parameter 132, 137
inbound chaining 130
INDEXBUFFERS parameter 159
indirect destinations 204
input/output

causes of extra physical 156
rates 17

integrated coupling migration facility (ICMF) 181
interactive problem control system (IPCS) 25
intercommunication

sessions 47
interface with operating system 128
internal actions

response time 49
traces 3, 22, 24

intersystem communication (ISC) 128
intersystem communication over SNA (ISC over SNA) 141
Interval Control Values 68
interval reports

statistics 3, 24
intrapartition transient data reports 65, 201
IOAREALEN operand 129, 146
IP interconnectivity (IPIC) 141
IPCS (interactive problem control system) 25
IPIC (IP interconnectivity) 141
ISC (intersystem communication)

2MB LPA 116
mirror transactions 142
sessions 135
splitting 128

ISC over SNA (intersystem communication over SNA) 141

J
journaling

AVGBUFSIZE 187
HIGHOFFLOAD threshold 188
integrated coupling migration facility (ICMF) 181
log streams per structure 187
LOWOFFLOAD threshold 188
MAXBUFSIZE 187
staging data sets 190

journals
buffers full 12
disabling 184
enabling 184

Index 231

journals (continued)
reading 184
user 203

K
kernel storage 113
KEYLENGTH parameter 155
keypoint frequency, AKPFREQ 191

L
language environment 125
Large Systems Performance Reference (LSPR) ratios 56
LGDFINT, system initialization parameter 192
limit conditions 52
link pack area (LPA)

CLPA (create link pack area) 116
ELPA (extended link pack area) 121
MLPA (modified link pack area) 116
PLPA (pageable link pack area) 116

LLA (library lookaside) 123
LNGOAL algorithm 216
LNQUEUE algorithm 216
local system queue area (LSQA) 119
locking model 164
log defer interval (LGDFINT) 192
log defer interval, LGDFINT 192
log manager

average block size 186
Logger environment

CICS system log 185
monitoring the logger environmentanalyze activity of a

CICS region
Journal and log stream 185

MVS generated statistics
cics statistics 185

logging
after recovery 203

logging and journaling
HIGHOFFLOAD threshold 188
integrated coupling migration facility (ICMF) 181
log streams per structure 187
LOWOFFLOAD threshold 188
monitoring 181
staging data sets 190

logical recovery 202
logon/logoff requests 136
LOWOFFLOAD threshold

HIGHOFFLOAD threshold 188
LPA (link pack area) 116
LSQA (local system queue area) 119
LSR (local shared resources)

buffer allocation 150, 153, 168
buffer allocations for 155
LSRPOOL parameter 156
maximum keylength for 155
resource percentile (SHARELIMIT) for 155
VSAM considerations 150, 153, 168
VSAM string settings for 155

M
main temporary storage 194
management and control of tcp ip 34
map alignment 121
MAXACTIVE, transaction class 63
maximum tasks

MXT, system initialization parameter
times limit reached 12

MAXKEYLENGTH parameter 155
MAXNUMRECS parameter 162
mean time to recovery 208
measurement

full-load 18
single-transaction 20

MEMLIMIT
allocating MEMLIMIT for GDSA 79
estimating size 84

MLPA (modified link pack area) 116
mode TCBs 70
modified link pack area (MLPA) 116
modules

management 121
shared 208

monitoring
generalized trace facility (GTF) 25
Resource Measurement Facility (RMF) 4, 32
techniques 7

MRO
and XCF 141
in MVS sysplex environment 141

MRO (multiregion operation)
2MB LPA 116
batching requests 147
CICS PA reports 28, 30
cross-memory services 117
function shipping 146, 148
sessions 132
splitting 128
transaction routing 142, 146

MROBTCH 69
MROBTCH batching request 69
MROBTCH, system initialization parameter 147
MROFSE, system initialization parameter 148
MROLRM, system initialization parameter 148
MSGINTEG operand 134
multiregion operation (MRO) 141
Multiregion operation batch requests 69
MVS

cross-memory services 142
data collection

SMF 14
extended common service area (ECSA) 117
HPO 137
Java programs 114
library lookaside 123
link pack area (LPA) 120
nucleus and extended nucleus 116
program loading subtask 50, 52
QUASI task 46
system tuning 59
tuning 128
virtual storage 114, 120

MVS storage 114

232 CICS TS for z/OS: Performance Guide

MVS Workload Manager
CICS PA report 30

MXT, system initialization parameter 61

N
name sharing, data set name (DSN) 156
NetView Performance Monitor (NPM) 14, 131, 135
networks

design 47
hardware contention 46

nonresident programs 122
nonshared resources (NSR) 150, 153, 168
NPM (NetView Performance Monitor) 14, 131, 135
NSR (nonshared resources)

buffer allocation 150, 153, 168
VSAM buffer allocations 159
VSAM considerations 150, 153, 168
VSAM string settings 159

O
OFFLCPUT 56
ONEWTE operand 134
online system splitting 120
operands

BUFFER 135
IOAREALEN 129, 146
MSGINTEG 134
ONEWTE 134
OPPRTY 64
PACING 124
PRIORITY 64
RECEIVESIZE 135
SENDSIZE 135
TERMPRIORITY 64
TIOAL 129
VPACING 124

operating system
CICS interface 128
keypoint frequency, AKPFREQ 191
log defer interval, LGDFINT 192
shared area 121

operator security 207
OPNDLIM, system initialization parameter 136
OPPRTY operand 64
output data stream compression 138

P
PACING operand 124
pageable link pack area (PLPA) 116
paging

definition 51
excessive 49, 52
problems 51
rates 17, 20

parameters
BUFFERS 155
DATABUFFERS 159
INDEXBUFFERS 159
key length 155
MAXNUMRECS 162

parameters (continued)
SHARELIMIT 155
STRNO 155, 159
TABLE 162
VSP 160

performance
analysis

definition 12
full-load measurement 18
overview 12
single-transaction measurement 20
symptoms and solutions 49
techniques 18

assessment 17
constraints

hardware 46
software 47
symptoms 45

degradation 14
goals 215
high performance option (HPO) 133, 137
improvement 59
monitoring 6
NetView Performance Monitor (NPM) 131
parameters, matching to service policies 216
symptoms of poor 45

Performance analyzer 28
performance and tuning

using CICS PA 26
performance class data, CICS monitoring 26
performance considerations 55
performance costs

coupling facility data tables 172
performance management 55
performance measurement 4, 32
physical I/Os, extra 156
PL/I

application programs 121
Release 5.1 123

PLPA (pageable link pack area) 116
prefixed storage area (PSA) 117
Priority aging 70
priority of tasks 70
PRIORITY operand 64
private area 117
problem diagnosis 12
procedures for monitoring 7
processor cycles 46
processor usage 17
programs

above 16 MB 123
COBOL 121
nonresident 122
PL/I 121
resident 122
storage layout 122
transient 122

PRTYAGE 70
PRTYAGE, system initialization parameter 64
PRVMOD, system initialization parameter 121
PSA (prefixed storage area) 117
PURGETHRESH, transaction class 63

Index 233

Q
QUEUE algorithm 216

R
RAIA (receive any, input area) 131
RAMAX, system initialization parameter 131
RAPOOL, system initialization parameter 132
RDSA 76
RDSA subpool 95
RDSASZE 88
real storage

working set 46
receive-any

control element (RACE) 132
input area (RAIA) 131, 132
pool (RAPOOL) 47, 131, 132

RECEIVESIZE attribute 135
record-level sharing (RLS) 172
recovery

logical 200, 202
options 200
physical 200

REGION
estimating size 80

regions
increasing size 74

reports
DASD activity in RMF 18
system activity in RMF 18

request/response unit (RU) 131
requested reset statistics 3, 24
requested statistics 3, 24
resident programs 122
resolve resource problems 53
resource measurement facility (RMF) 18
Resource Measurement Facility (RMF) 4, 32
resource security level checking 207
resources

local shared (LSR) 150, 153, 168
manager (SRM) 25
nonshared (NSR) 150, 153, 159, 168
shared (LSR) 155

response time
contributors 22
internal 49

RLS using FILE definition 173
RMF (Resource Measurement Facility)

periodic use 10
RU (request/response unit) 131
RUWAPOOL system initialization parameter 126

S
S40D abend 74, 120, 129
S80A abend 74, 129
S822 abend 74, 129
scheduler work area (SWA) 119
SDSA 76
SDSA subpool 95
SDSASZE 88
SENDSIZE attribute 135

serial functions 47
service classes 215
set, working 46
shared resources

modules 208
nucleus code 121

shared temporary storage 194
SHARELIMIT parameter 155
short-on-storage 91
short-on-storage condition

avoiding 91
shutdown

AIQMAX 210
CATA 210
CATD 210

single-transaction measurement
CICS auxiliary trace 20

SMF
SMSVSAM, Type 42 records 174

SMF88SAB 185
SMF88SIB 185
SMSVSAM

SMF Type 42 records 174
SNA (Systems Network Architecture)

message chaining 135
TIOA for devices 129
transaction flows 134

SNT (signon table)
OPPRTY 64

software constraints 47
SOS 91
SOS (short-on-storage)

caused by subpool storage fragmentation 94
CICS constraint 50
Language Environment run time options for AMODE(24)
programs 50, 126
limit conditions 53
review of occurrences 11
use of temporary data sets 50

SOS condition 89
specialty processors (zIIP and zAAP) 56
Specifying task control blocks 70
splitting resources

independent address spaces 120
online systems 120
using ISC 128
using MRO 128

SQA (system queue area) 116
SRM (system resources manager)

activities traced by GTF 25
staging data sets 190
startup time improvements 208
statistics

data tables 163
for monitoring 3, 24
from CICS 22
TCB 70

storage
limit conditions 53
MVS 114
stress 50
violation 55

storage cushion 89
Storage protection facilities

234 CICS TS for z/OS: Performance Guide

Storage protection facilities (continued)
storage protection 124

storage protection for CICS regions 77
storage stress 89
strategies for monitoring 7
stress, storage 50
STRINGS parameter 155, 159
strings, number of in VSAM 150, 153, 168
Sub tasks 70
subpool storage fragmentation 94
subpools

229 117, 119, 136
230 117, 119
CDSA 95
CICS 95
ECDSA 95, 97, 111
ERDSA 95, 111
ESDSA 95, 110
ETDSA 95
EUDSA 95
GCDSA 95, 112
GSDSA 95, 113
other 119
RDSA 95, 97
SDSA 95, 96
UDSA 95

subtasking
VSAM data set control (VSP) 160

subtasks 70
SUBTSKS 70
SUBTSKS, system initialization parameter 160
symptoms of poor performance 45, 49
syncpoint cost 181
system activity report in RMF 18
system conditions 17
system initialization parameters

AILDELAY 140
AIQMAX 139
AIRDELAY 139
AKPFREQ 191
BMS 122
CMXT 53
DSALIM 79, 81
DSHIPINT and DSHIPIDL 148
EDSALIM

default 82
FEPI 160
ICV 137
ICVTSD 132, 137
LGDFINT 192
MROBTCH 147
MROFSE 148
MROLRM 148
MXT 53, 61
OPNDLIM 136
PRTYAGE 64
RAMAX 131
RAPOOL 132
SUBTSKS 160
TD 202

System initialization parameters
PRVMOD 121

System management facility (SMF) 24
system queue area (SQA) 116

system task priority 70
Systems Network Architecture (SNA) 129

T
TABLE parameter 162
task priorities 70
tasks

maximum specification (MXT) 61
performance definition 7
prioritization 64
reducing life of 128

TCB statistics 70
TCP/IP 34
TCPIP= specifying Sockets domain 208
TD, system initialization parameter 202
temporary storage

concurrent input/output operations 202
data sharing 194
performance improvements

multiple VSAM buffers 201
multiple VSAM strings 202

temporary storage queue 193, 194
terminal input/output area (TIOA) 130
terminals

automatic installation 139
compression of output data streams 138
concurrent logon/logoff requests 136
HPO (high performance option) 133
HPO with z/OS Communications Server 133
input/output area (SESSIONS IOAREALEN) 146
input/output area (TIOA) 129, 134
input/output area (TYPETERM IOAREALEN) 129
message block sizes 17
minimizing SNA transaction flows 134
MVS

HPO 133
receive-any input areas (RAMAX) 131
receive-any pool (RAPOOL) 132
scan delay (ICVTSD) 137
use of SNA chaining 135

TERMPRIORITY operand 64
the FORCEQR system initialization parameter 69
threadsafe File Control 175
TIOA (terminal input/output area) 130
Tivoli Decision Support

and exceptions 14
periodic reports 10

Tivoli Decision Support for z/OS 6, 34, 35
tools for monitoring 21
trace

auxiliary 18, 20, 22
CICS facility 3, 24
GTF 25
internal 22

transaction
CATA 140
CATD 140
CSAC 12
looping 124
security 207

transaction classes
MAXACTIVE 63
PURGETHRESH 63

Index 235

transaction classes DFHTCLSX and DFHTCLQ2
effects of 146

Transaction Group report, CICS PA 30
transaction isolation 79
transaction isolation and real storage

transaction isolation 123
transient data

concurrent input/output operations 202
extrapartition 203
indirect destinations 204
intrapartition 201
performance improvements

multiple VSAM buffers 201
multiple VSAM strings 202

transient programs 122
TSMAINLIMIT 79
tuning

CICS under MVS 128
SIGNON TOKEN 208
using CICS PA 26
VERIFY TOKEN 208
VSAM 150, 208

U
UDSA 76
UDSA subpool 95
UDSASZE 88
unaligned maps 121
unsolicited items

statistics 3, 24
user options

journals 203
USERMOD 121

V
VERIFY TOKEN

tuning 208
violation of storage 55
virtual storage

internal limits 17
VPACING operand 124
VSAM

16 MB line 114
AIX considerations 156
buffer allocations for LSR 155
buffer allocations for NSR 159
calls 148
catalog 156, 199
data sets 18
definition parameters 156
DSN sharing 156
I/O 160
maximum key length for LSR 155
multiple buffers 201
multiple strings 202
number of buffers 150, 153, 168
resource percentile (SHARELIMIT) for LSR 155
restart data set 141
shared resources 15
string settings for LSR 155
string settings for NSR 159

VSAM (continued)
strings

for ESDS files 150, 153, 168
subtasking 160
transactions 20, 148
tuning 150, 208
wait-on-string 53

VSAM record-level sharing (RLS) 172

W
working set 46
workload management

in a sysplex 212
Workload Manager

z/OS
benefits 212
defining performance goals 213
span of operation 213
terms 213

X
XZCOUT1, global user exit (SNA) 138

Z
z/OS

data collection
IBM Z Decision Support 6, 34

z/OS global resource serialization 204
z/OS Workload Manager

classification rules 214
performance goals 215
terms 213
tuning CICS performance parameters 216
workloads 215

zAAP processors 56
zIIP processors 56

236 CICS TS for z/OS: Performance Guide

IBM®

	Contents
	About this PDF
	Chapter 1. Measuring, tuning, and monitoring: the basics
	24-bit, 31-bit, and 64-bit addressing
	CICS transaction flow
	CICS functions for monitoring and gathering performance data
	CICS tools for monitoring and gathering performance data
	Other tools for obtaining performance data
	Resource measurement facility (RMF)
	Tivoli OMEGAMON XE for CICS on z/OS
	IBM Z Decision Support

	Performance monitoring and review
	Establishing monitoring activities and techniques
	Planning your monitoring schedule
	Typical performance review questions
	CICS performance analysis techniques
	What to investigate when analyzing performance
	Establishing a measurement and evaluation plan
	Assessing the performance of your system
	Methods of performance analysis
	Performance analysis: Full-load measurement
	Comparison charts

	Performance analysis: Single-transaction measurement

	Performance measurement tools
	Tuning your system
	CICS tools to obtain performance data
	System management facility (SMF)
	Generalized trace facility (GTF)
	Generalized trace facility (GTF) reports

	CICS Performance Analyzer for z/OS (CICS PA)
	The CICS PA dialog
	Using CICS PA to analyze CICS performance

	Other tools for obtaining performance data
	Resource measurement facility (RMF)
	Tools provided by IMS to obtain performance data
	TCP/IP monitoring
	IBM Z Decision Support
	Performance measuring with IBM Z Decision Support
	Monitoring response time
	Monitoring processor and storage use
	Monitoring volumes and throughput
	Combining CICS and Db2 performance data
	Monitoring exception and incident data
	Unit-of-work reporting
	Monitoring availability
	CICS workload activity reporting

	Tivoli OMEGAMON XE for CICS on z/OS
	OMEGAMON XE for Db2

	Identifying CICS performance constraints
	Hardware contentions
	Design considerations
	Observing response time
	Poor response time: Causes and solutions

	Reducing storage stress
	Reducing DASD paging activity
	Reducing resource contention
	Resolving resource problems
	Reducing storage violations

	Performance management and capacity planning
	Relating CICS transactions to hardware resources

	Chapter 2. Improving the performance of a CICS system
	CICS Transaction Manager: performance and tuning
	Setting the maximum task specification (MXT)
	Using transaction classes (MAXACTIVE) to control transactions
	Specifying a transaction class purge threshold (PURGETHRESH)
	Prioritizing tasks

	CICS dispatcher: performance and tuning
	Open TCB management
	MAXSSLTCBS

	Interval control value parameters: ICV, ICVR, and ICVTSD
	MROBTCH
	FORCEQR
	PRTYAGE
	SUBTSKS
	TCB statistics

	Virtual and real storage: performance and tuning
	CICS virtual storage
	CICS region size
	CICS dynamic storage areas
	DSAs in 24-bit storage: CDSA, UDSA, SDSA, and RDSA
	DSAs in 31-bit storage: ECDSA, EUDSA, ESDSA, ERDSA, and ETDSA
	DSAs in 64-bit storage: GCDSA, GUDSA, and GSDSA
	Storage protection
	The common work area (CWA)
	The terminal control table user areas
	The storage protection global option
	The transaction isolation global option
	The read-only storage override option

	Setting the limits for CICS storage
	Estimating and setting REGION
	Estimating, checking, and setting DSALIM
	Estimating, checking, and setting EDSALIM
	Estimating, checking, and setting MEMLIMIT
	CICS facilities that use 64-bit storage

	DSA size limits
	Coding conventions for DSA limits

	Short-on-storage conditions in dynamic storage areas
	Avoiding short-on-storage conditions
	Analyzing short-on-storage conditions
	Fixing short-on-storage conditions caused by subpool storage fragmentation

	CICS subpools
	CICS subpools in the CDSA
	CICS subpools in the SDSA
	CICS subpools in the RDSA
	CICS subpools in the ECDSA
	CICS subpools in the ESDSA
	CICS subpools in the ERDSA
	CICS subpools in the ETDSA
	CICS subpools in the GCDSA
	CICS subpools in the GSDSA

	CICS kernel storage
	64-bit MVS storage
	MVS storage below 2 GB
	The MVS common area
	MVS nucleus and MVS extended nucleus
	System queue area (SQA) and extended system queue area (ESQA)
	Link pack area (LPA) and extended link pack area (ELPA)
	Common service area (CSA) and extended common service area (ECSA)
	Prefixed storage area (PSA)

	Private area and extended private area
	High private area
	Local system queue area (LSQA)
	Scheduler work area (SWA)
	Subpool 229
	Subpool 230

	MVS storage above region

	Splitting online systems: virtual storage
	Using modules in the link pack area (LPA/ELPA)
	Selecting aligned or unaligned maps
	Defining programs as resident, nonresident, or transient
	Putting application programs above 16 MB
	Allocation of real storage when using transaction isolation
	Limiting the expansion of subpool 229 using SNA pacing

	CICS storage protection facilities: Performance and tuning
	Tuning with Language Environment
	Minimizing GETMAIN and FREEMAIN activity
	AUTODST: Language Environment automatic storage tuning
	RUWAPOOL: Run-unit work area pools

	Language Environment run time options for AMODE (24) programs
	Using DLLs in C++
	Minimizing the time Language Environment spends writing dump output to transient data queue CESE

	Java applications: performance and tuning
	MVS and DASD: performance and tuning
	Networking and the z/OS Communications Server: performance and tuning
	Setting the size of the terminal input and output area
	Setting the size of the receive-any input areas
	Setting the size of the receive-any pool
	Using the MVS high performance option with SNA
	Adjusting the number of transmissions in SNA transaction flows
	Using SNA chaining to segment large messages
	Limiting the number of concurrent logon and logoff requests
	Adjusting the terminal scan delay
	Compressing output terminal data streams
	Tuning automatic installation of terminals

	CICS MRO, ISC, and IPIC: performance and tuning
	Managing queues for intersystems sessions
	Relevant statistics
	Ways of approaching the problem and recommendations
	Monitoring the settings

	Using transaction classes DFHTCLSX and DFHTCLQ2 to control storage use
	Controlling the length of the terminal input/output area (SESSIONS IOAREALEN) for MRO sessions
	Batching requests (MROBTCH)
	Extending the life of mirror transactions (MROLRM and MROFSE)
	Controlling the deletion of shipped terminal definitions (DSHIPINT and DSHIPIDL)
	Limitations
	Recommendations

	CICS VSAM and file control: Performance and tuning
	VSAM tuning: General objectives
	Local shared resources (LSR) or nonshared resources (NSR)
	Number of buffers and strings for LSR and NSR
	VSAM specifications for LSR
	CICS calculation of LSR pool parameters

	VSAM specifications for NSR

	Using VSAM subtasking
	Using data tables
	Using coupling facility data tables
	Coupling facility data table statistics
	Local shared resources (LSR) or nonshared resources (NSR)
	Coupling facility data tables

	Using VSAM record-level sharing
	Threadsafe file control applications
	File control API costs

	Database management for performance
	Setting DBCTL parameters
	Tuning the CICS Db2 attachment facility
	Selecting authorization IDs for performance and maintenance
	Logging
	Sync pointing

	CICS logging and journaling: Performance and tuning
	The CICS log manager
	Log stream storage
	Journal records
	Monitoring the logger environment
	Writing data to the coupling facility: Performance considerations
	Defining the number of log streams: Performance considerations
	Element/entry ratio and the number of log streams per structure
	Dynamic repartitioning and the frequency of DASD offloading

	LOWOFFLOAD and HIGHOFFLOAD parameters
	Tuning the size of staging data sets
	The activity keypoint frequency (AKPFREQ)
	AKPFREQ and MRO

	The log defer interval (LGDFINT)
	DASD-only logging

	CICS temporary storage: Performance and tuning
	CICS temporary storage: overview
	Automatic deletion of temporary storage queues
	Main temporary storage: monitoring and tuning
	Auxiliary temporary storage: monitoring and tuning
	Recoverable and nonrecoverable TS queues

	CICS transient data (TD) facility: Performance and tuning
	Recovery options
	Nonrecoverable TD queue
	Logically recoverable TD queue
	Physically recoverable TD queue

	Intrapartition transient data considerations
	Multiple VSAM buffers
	Multiple VSAM strings
	Logical recovery
	Logging activity
	Secondary extents for intrapartition transient data

	Extrapartition transient data considerations
	Indirect destinations

	Global CICS enqueue and dequeue: Performance and tuning
	CICS monitoring facility: Performance and tuning
	CICS trace: performance and tuning
	CICS security: Performance and tuning
	Tuning for VERIFY TOKEN and SIGNON TOKEN

	CICS startup and shutdown time: Performance and tuning
	Improving startup procedure
	Autoinstall performance
	MVS automatic restart management

	CICS business transaction services: Performance and tuning
	Managing workloads
	The z/OS Workload Manager
	Terms used in z/OS workload management
	Span of z/OS Workload Manager operation
	Performance goals for CICS regions
	Defining classification rules for your CICS workload
	Defining service classes
	Matching CICS performance parameters to service policies

	CICSPlex SM workload management

	Chapter 3. Improving event processing performance
	Notices
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

