CICS Transaction Server for z/OS
Version 5 Release 5

Intercommunication Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
357.

This edition applies to the IBM® CICS® Transaction Server for z/0S® Version 5 Release 5 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2020.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADOUL This PDFc.ceuiiiieiiiieieiereeeetesescesesessesessssesessssessssssessssssessssesessssessssnsessssnsesssselX

Chapter 1. CICS intercommunication.....c.cccceiiuiiniieiieiieiieiieiiecieniececscsessassessessanees 1

IntercommuNiCatioN METNOUS.iiciiiiiiiiieieeie ettt ettt s be e saa e sbeesbeesabeesbaesasesnsaenes 1
CommUNICation DEIWEEN SYSTEIMS......iiiciieiciieicteeecte et ere e re e ree e e stte e e ate e s saee e sssaeeesaaeesseessseeennens 1
UL R AT =Y dTo ol o] o 1T =1 4 o 3 VUSSR 1
Using CICS iNterCOMMUNICALION....cccciieecieecctee et et etee e ette e ectee e ertee e e tee e ebee e s bae e ebaeesabaeeeasaeesnsaeennseas 2

IntercomMmUNICAtION fACILIIES..iicuiiriiiiieiie ettt st e e sba e st e e baesebessbaesasesnsaenns 4
T TordTo] ATy a1 0] 011 aY =S 6
ASYNCNIONOUS PrOCESSING. ..veiicureeieuieeeiieeeeieeeeteeeeteeseteesasteesasseesasteesastessastesssssessssssssssssssssessssssesssseeesnns 6
TrANSACTION FOULING...uviieiiieeeiie ettt e e e e e et e e st ae e e beeeeabeeessbeeeessaeeesaeeanseeessseeeanseeeanseeesnsens 6
Distributed program LMK (DPL).......ccuueieiiecieeecite ettt eceeeette e e te e e e steeessseessaeessaeessseessaeessseessssnens 7
Distributed transaction ProCesSING (DTP)....ccccieicciieeiieeciieeeieeeectreeesteeesctreeesveeessbaeessbaeeebaeesssaeessseeesnes 7

=R Toaa o] g IR =Tl 4] o = S 7
ASSOCIATION HALA...eiiutiiieiiiieitteree ettt et et st e s ste e st e st esae e sbeesbee s beesbeesaseenbeesaseensaesssesnseensaesnseene 8

ISC and IPIC intercommuniCations faCiliti®S.....ccecierierriiiniieiieiierie et aa e s e 14
Intercommunication using IP intercoNNECHIVItY......cccuiiiiiieeiieeecee e e 15
Intersystem commuNiCation OVEEN SNA.......oo i ittt e e e re e e e sre e e e ta e e e beeessaeeensaeesnsaeeas 17

IRl qTe gl eY o L= =N o VOO 22
Intercommunication facilities available USING MRO........ccuiieiiiiciiiieceecceeee e 22
Cross-system multiregion operation (XCF/MRO)......ccuviieiieiiiiieiiiieccieeecieeesveeeereeeereeeeseessseesensneens 22
Applications of MUltIregioN OPEIratiON.......ccccuiii e ere e e s bae e e rae e e aaeeeaes 26
Conversion from a single-region SYSTEML......c.uiiiciii it ee e svre e s ebee e eaee e eeraeeeaes 28

(03 (0N VT g Tor d o T T o110 o1 Lo V=SOSR 28
Overview of fUNCLION SHIPPING.....vi it e b e e e e e s rrae e e nte e e naeeenes 28
Design considerations for FUNCLiION ShIPPING......ccocuiiieiiieicieccee et 29
The mirror transaction and transformer Program.......ccccceeccieeeciee e ee e 32
FUNCLION ShIPPING EXAMPLES....iiiiiiieciiectee ettt et e e te e et e e et e e s ste e s abee e ssae s ssaesssaesnnsneans 35

ASYNCNIONOUS PrOCESSING. . eeeeteeieteeeeitieeeiteeeeitreeeitteeeseeesssaeeesseassseaasesassssssasasesssssessssesssssssssseessssesssssennn 38
Overview of aSYNChIONOUS PrOCESSING.....cccciiiicieeccieeecteeecte e eree e eete e s eree e e tee e e baeeebaeesbaeesbeeesaseeenases 38
Asynchronous processing METNOUS.uiiiciiiieie e e et re e e te e e s be e e e te e e aaeeeneeas 39
Asynchronous processing using START and RETRIEVE commands........ccceeecueeeeciieeecieeeccieeeceeeeennenn 40
System programming CONSIAEIAtIONS.......cicciiiieiie ettt et s e e e s e e e be e e ae e e nreeenes 45
ASYNChronNoUS ProCeSSING EXAMPLES....cccuviiiciieeciiee et et et e e rtee e etee e e stee e ebeeeebaeesbaeesbasessaeessaeenaes 46

(03 (OIS)T g - Ta a1 (ol o TV 4 = S 48
Tl o 1NN] a =3 g o Te [T 3SR 50
LTl o ULl a =3 o] e ={r=Ta - OO 52

CICS tranSACHION FOULING....iiicciieecitieecieeeeiee et eetee et e e e te e e e teeeetaeeetaeeebaeeestaeesasaeesnsaeesnsaeesnsaeesnseseeseeanns 53
Overview of tranSaCtioN FOULING......ccciii ittt e e e e ste e e ebe e e setae e s sbaeesbaeessaeessaeennns 53
Terminal-initiated tranSaction FOULING.......cccvii i e vae e e ba e e 54
Traditional routing of transactions started By ATL.......cociiiieiiieeiie e ettt e e eeee e 57
Routing transactions invoked by START COMMANAS.....cccviieiiiiieiiieeeiee et eeee e eeteeeeteeeereeeeaae e 64
Allocation of remote APPC CONNECTIONS....cccuiiviiiiiiiiiiiiesieenee et et e stessteeseesreesieesbeesbeesasessbeesanesnnes 71
THE FELAY PrOZIAM i ciiiecciiee ettt e ettt e eiteeectteeertte e e etteeebeeeeaseeessaeessaessseeessaeeasaeeansaesssaeessasesseaesnsaeennes 73
Basic Mapping SUPPOI (BMS)....uiie ittt ettt stte e ette e e vte e seteeesbaeesbaeesbaeesbaeesssesssaeessenenans 74
Using the routing transSaction, CRTE.......c.ueicciiiiiiieeciieccreeceieeeesteeeetee e eteeeeteeesbaeesnvaeessasesnsaeeesaeennes 74
System programming for transaction FOULING........eccvuieiecieeecie ettt e e ere e e eree e e ree e eraeens 75

CICS distributed program LiNK........cueeecieiecieccee et eee e rtee e bee e s bee e e tee s e bee e snbeeesnraeenaseas 76
OVEIVIEW OF DPL.uutiiiiiiiieiieeiteeie et st e st st st e s sbe e saaesbeesbaesbeesbeesaseesbaesaseenbeessseensaesssesnseesssesnsane 76
Statically roUtING DPL rEQUESTS.....uviiiiieeeiee ettt ee e tee e e tee e e te e e e e e e ebeeesbeeessbaeeensaeesnsesesnsaeesnsneans 77

Dynamically roUting DPL rEQUESTS...civciiiriieeriiteeitteeite e sttt e sttt e sstteestteessbeeesssaeesssaeesssseesseeessssesssseens 79

Daisy-ChaiNing Of DPL FEQUESTS....c.utiiiiieiiiteieiteseite st e st e st ste e s ae e s s e e s s beessbaeesseesssbaeesaseessaseess 81
Limitations Of DPL SEIVEr PrOSIamS. . .cccueeieieeieieeriieeseeeesseeessseeessseesssseesssseesssseessssessssseesssseesssseessssens 82
INtErSYSTEM QUEUING. ...eiiiiiiieeiieiete ettt stt e et e st e e st e e sttt e s bt e e s abe e e s bt e esasaeesssaeesasaeesssaeessseeesnseeessseenn 82
=T] 0 (=TS0) B 1 SR 83
Distributed tranSaction PrOCESSING.......ciiciiieriiiriieiriieeeiteserte e st e e et e e s baeessteeessseeessseesssaeesseeessssesssseesas 84
OVEIVIEW OF DT Pttt ettt sttt ettt st st e e s bt e s s bt e e s be e e s bt e s sabee e sabeeesabeessaseessasaessnseesnnnes 84
Advantages over function shipping and transaction roUtiNG........ccccvevueeriiieeriieenreenee s 85
Why distributed transaction PrOCESSING?....cccciiiiciiiiriieieiteeeiteeereeesrrteessraeessrresssraeesssaeessaeessseeessseeens 85
DTP’s place in the CICS intercommunication faCilitieS.........cccvuieeiiiieciiieeceeecee e 86
LT R D I o USROS 86
BTy 1o UL (=T [o o Tt YT SR 89
MaintainiNg data INTEEIITY . cecvieiiiieeiie ettt sttt e e e s be e s s be e e s be e s sabeessabeeesaseeenaseesnases 90
Designing diSTriDULEA PrOCESSES. ...uiiiiiiiriiiiriie ittt et e s sre e s ste e s sbe e s ssbeesssteesssteessnsaessssaesnns 91
What is a conversation and what makes it NECESSANY?.......uuiiiiecciiieeccceee et e e veee e 96
(O o T o O (o o B B I = PSPPSR 100
JAN o O 1 0 F=Y 0T 01 Te oY il oY= =] Lo SRR 100
EXEC CICS Or CPI COMMUNICATIONS?...uiiiiiieiiiiieriieeeitieesiieessreessireessseessaseesssseessssessssseesssseesssseesssees 101
Introduction 0 IP INTEICONNECTIVITY...uuiiiieciiieee ettt e ree e e e etre e e s e e are e e e e enbe e e e s e areeaeas 102
TPIC MO OUICES. . ueteee ettt e ettt et ettt e e e ettt e e s et e e e s et e e e s e usbteeeesnsteeeeenseeeeeeanseeeeseannsaeeesanseaeeanannen 102
B S1[r LI =Yod =] o - [TSRS 102
PrereqUISITES FOr IPIC... .o ettt ee e e e e e e e e e bt e e e s e aate e e e senateeessenntaneesenseneesennnsens 103

Chapter 2. Configuring CICS interconnectivity......c.ccocceirirecrecnecreninciecinciacaeceecse. 105

Configuring support for communicating over @ TCP/IP NETWOIK......coociiiriiiiiiiiiiiiiiiieiee e ceiee e 105
Configuring sUPPOIt FOr ISC OVEI SNA.....ci ittt ettt ettt e s see e s ste e sseeessateessabeesssaeessseeessseaesnns 106
Steps after CONFIGUINNG MRO......iii ittt e s te e ssabeessateesssbeessssaesssaesanseasas 106
Configuring z/OS Communications SErver SENEIIC FESOUICES......uiiiirterrrrernreeesreessreessiaeesssseesssseessssees 107
Prerequisites for z/OS Communications Server gENEriC rESOUNCES.cuvvierrreerrireerrieeessreeesseesssnees 107
Planning your CICSplex to use z/OS Communications Server generiC reSOUrCES.ocvueeervveeriunens 107
Defining connections in a generic reSoOUrCe ENVIrONMENT....cccciiieieirriieeriieerreeesseeesseeesreeessreeesnes 108
Generating z/OS Communications Server generic reSoOUrCe SUPPOIt....cccveeerueerrireerrieeerireeesireeesnens 110
Migrating @ TOR t0 @ ZENEIIC FESOUICE....uiiiriieiriieietieeerteesitteesirteessteessssteesssaessssaeesssseessseeessseeessseeens 110
Removing a TOR frOmM @ SENEIIC FESOUITE...ciiuitirrierrieersitteesreeesreeessseeessseeessseesssseeessseessssessssseessssees 112
Moving a TOR t0 @ different SeNEriC FESOUITE....cccuitiiiieeeiieeeie ettt e s ee e s saae e s saeeessaeas 112
Setting up inter-sysplex communications between generic reSOUrCES.......occvvvrvveerrieeerriieeenieeeennne 113
g [T Y= 0N 1 ATl AT RSP 117
USING ATL With SENEIIC FESOUICES.....iiiiiieieiieieieeete ettt ettt e ssre e e sbe e e s be e s sbaessbaeesssaesssaesnnne 121
Using the ISSUE PASS COMMANTG......uuiiiiiiiiiiieiiiieriieessteessiee st e ssieeessseeessseeesssseesssseesssseesssseessnseens 123
RULES CRECKLIST ... ettt st st s s b e re e sr e e b e e s e e e reeenes 124
Dealing With SPECIAL CASES...uiiiiiiiicitiiiie ettt ettt e st e s s be e s s be e s s beessbaessaseessasaesnanas 124
Defining iNtercOMMUNICAtION FESOUITES. ...cvtiiiiteietiee ettt eeite e ettt e ereeessteeesteeesteeesseeesssaessseeessseesssseeenns 126
How to define connections t0 remMOte SYSTEMIS.......uiiiccciiieiceciee et e e e e e e s raee e e 127
TCP/IP management @nd CONTIOL . ..ot iiieriieeriieecie ettt st e st e st e s e e s sabe e e sabeessabeeesaseessaneas 166
Managing APPC CONNECTIONS. ...uiiiiieiieieeiciee st esrte e sste e ssee e seiee e ssaeeeseaeeesbeeesbeeesabeeessseessseessseessnsens 169
DEfiNING FEMOLE MESOUICES. ...iiiitieiiiteieiteieteeesteeestteesteeesbeeesteessbeessseessseeessaesssaessseesssaesssseesnnes 175
DefiNING LOCAL FESOUICES. ... uviiiiee ittt ettt te e ste e ee e s ee e s sbee s sebee e s bee e sbeeesbeeesaseessaseessnses 193
Where is data CONVEITEA?. ... ittt sttt esne e sreesneesmeean 199
AVOIdING AATA CONVEISION....uiiiitiiiiiteiiieeeritteeste e e st e s steessteessteesssteesssteesssteessseeessseeesssseesnsseessseeesnnees 200
B Y L3 1] £ VLT 3 o PSSR 200
Resource definition to enable data CONVErSION.......cocieiiiiiieiie e 201
Defining the CONVEISION tabLlE.... .ttt s s e e s bae e sbae e sneee s 202

Chapter 3. The user-replaceable conversion program.........cccceereinecnecnecnecresnecness 219
User-named CONVEISION PrOSIraMS. .uu . ueirreerrireersireerssseesssseesssseesssseessseesssseessssesssssessssesssssesssssesssseessssens 219
L] o 10N o TN 0 1Y PP 219

Parameter list (DFHUVNDS).....ooutiiteieeteeeterte ettt st et sat e sb st s b st sae et st e sbeeeesbeesesaean 219

Conversion and KeY TEMPLALES.uui ittt e e tree e e e e e e e s e nbee e e e e abraeeeeesraneaaeas 222
Field CONVEISION FECOIMAS. .. ciiiiiiieiieieiieeeiie ettt sttt e st e e st e e s sbee e s bee e sbteesbeeesseaesnssaesnsseesnsseesnnsans 223
Supplied user-replaceable CONVErSiON PrOSram.......ccciicieiiiieiiiieeeitesseee e sieeessreeesree e s sree e sbeessreeesneas 225

Chapter 4. Administering for intercommunication........ccccceeeciiiiircrcrnnecnennnnnnnnn 227

MRO and IPIC connections to CICS TS for z/OS SYStEMS.......ciiiicciieeeecciieee e ccieee e eevree e e erree e e e enneeee e 227
APPC parallel-session connections to CICS TS for z/OS SYSteMS.......ueeeeecieeeeieciiiee e e 227
APPC connections to and from z/OS Communications Server generiC reSOUICES.....c.ccvverrveersrveersiveenas 227

Managing conNNECtiON AEfINITIONS.c.uiiiiiiiiiiee ettt sre e s see e s aae e s sbeesssbeessseaesas 228
Intercommunication and z/OS Communications Server persistent SESSIONS.......ccceecvveeeeeccrieeeeeecvneenn. 228

Interconnected CICS environment, recovery and reStart.....ccccccceeeeeccieeeececiieeeeecreee e eeeveee e e 228
Administering CICS in @ multiregion ENVIFONMENT.....cciiiiiiiiiiieieteeeiee e seree s ere e seee s sree e sreesseeesnaes 229

Chapter 5. Developing in an intersystem environment........ccccociieiincncnecnecnennens 231

Application ProgramMiNgG OVEIVIEW.....ccueiecueeerriieeriieeeritteesiteeeesseeessseeessseesssseesssseesssseessssessssseessssasssssesssns 231
=18 00V aTo] o} =3 2SR 231
Problem determination.. ...t ee e s e e e e e s re e e s reeesanees 232

Application programming for CICS function ShippiNg.....ccceeecuieiriiieriiiieinieerieeeree et ssiee e see e 232
Introduction to programming for fuNCtion ShIPPING......ccovviiiiiiiiiiieieee e 232
TN olo] 31 { o] FO RSP SP PR 233
) P PRSPPI 233
T OMIPOFANY STOIAEZE. . etteiieettee ettt ettt e ettt e e et e e e sttt e s s et ee e s e useeeeseeneteeeaesseeeesesnneeeeesanneeeennn 233
I Ta IS =T 0N e == O PSSP 233
Function shipping eXception CONAITIONS.ccuiiiriiiiriieiriteeree et e s e e e ree s beeessaeens 233

Application programming fOr CICS DPLccocuiiiiiiiiiiiieriieeisieessitessieessieessreessbeessbeessbeessabeessneessanens 234
Introduction tO DPL ProgrammMiNg......ccceeeceeerceeeriieesieeesiieesssreeessseesssseesssseesssseessssessssseesssseesssseessssees 235
THE CLIENT PrOZIaM . ieiiiieieiiee ettt sttt et e st e s sate e s stteessste e s steessseeesasseessseessseesssaessseesnnseenn 235
T O SOV PrOSIAM.ciiicuieiieiieieieeseteeseteeseteesetteesesteesaseeesaseeesaseessaseessaseessaseessseessnseesssseesssseesssseessnsees 235
D] S I CY o =T o] A Te] aToTo] oL LA To] o TSR 236

Application programming for asyNnChronOUS PrOCESSING....ccccvueirrieiriieirieeeerieeesreeesseeeeseeeeseeessseesnseens 237
Starting a transaction 0N @ reMOLE SYSTEM...iiiiciii ittt e et e s sbe e e sbae s saeeeeas 238
Exception conditions for the START COMMAN.....cccccuiiiiiieiiiee et e e e e ve e e e enees 238
Retrieving data associated with a remotely-issued start reqUEST.......ccccvveviiiriieiriieerieceeceene 238

Application programming for CICS transaction FOULING........cuevveeirvieeiriieeinieeerieeseieessieeseeeesseeessaeeesns 238
Application programming reSTIICIONS. .. ciiiiiiiriieeiriee it rrree st e e seeeeseeeesseeessseeessaeeessseeessnseesnes 238
Values returned by the ASSIGN command in the ADR ...t 239

(O3 OIS T (o T 117 STE=T T o] L Tot=1 o o [T S 240
Designing CICS-t0-IMS ISC appliCatioNS....cccccuiiiiieiiiieeiiieesrieessteessteesieeesiee e sree e sreeesseessreeesaneas 241
CICS-to-IMS applications: asynChronoUS ProCESSING......cccciiieriiiiriiieiniiieeseeesieeesreeesreeesreesssseeens 242
(030353 (o T 1\ N TE=Y o] o] L Tox=N o] a TSl I I oS 247

Chapter 6. Improving intersystem performance......cccccceerecreciniinincnecnecsecresneseess 259

Intersystem session qUEUE MaN@EEMENT.....cciiiiieririiee ettt erteeerteeeseeesseeessaeeessseeessreeessreeessseessnseesssens 259
Overview of SESSION QUEUE MANAZEMENT...ciiiiiiiiiiee et riteesiteesrteesstteessrteessbeeesbeessseessseessseessasens 259
ManNagiNg AllOCAtE QUEBUES.....coicviiieiieecteecte ettt ettt e e stee e st e e s be e e sbae e sbaessbaeessaeessaeenane 259

Efficient deletion of shipped terminal definitioNS......cccviiii e e e 261
Overview of how shipped terminals are deleted.........cciviiiiiiccciieeeccce e e 261
Implementing tiMeOUT dELEte......ii it ee e s te e s te e s ssbeessneeesans 262
Tuning the performance of tiMeout delete.. ... 263

Chapter 7. Troubleshooting intersystem problems.......c.cccccciviiniriincrecinciecincnen.. 265

Messages that report CICS reCOVEIY aCtiONS.....uiiiiieiriieieiiieeeiteeeriteesieeeeieeesreeessseesssseeesssaessssaesssseessnns 265
Problem determination EXamIPLES.ot e e eecere e e e rree e s e e are e e e e e nbeeeeseanbeaeeseesseaeeaans 268
RESOUICE AETINITION. c..tiiiiiii ittt e st e e st e e st e e e sabeeessbaeesabaeesssaeessseeennseeean 268
Resolving a resynchronization faIlUrE........uei e s 268
APPC cONNECLION QUIESCE PrOCESSING..c.uuviiierieriiieriiieriieessieesaeeessseessseesssseesssseesssseesssseessssessssseesssseesns 272
SYNCPOINT EXCNANEES. .ci i etieiciieeiciee ettt sttt ettt e sttt e s sate e s saeeesasbeesasteesasteesasseesassaessseesasseesssseesanseenns 272

I3V Ted o ToT 12} 1 (o 1T £ 273

Recovery fuNCtioNS and INTEITACES.......uuiiii et e et e e e e e e s e b e e e e s e asaeeeeeennrens 274
RECOVETY TUNCEHIONS. . iiiie et e ettt e e e e te e e s ee e e e e s eeataee e s e e steeeesenseeeesenseeaeesansssnessssnssnnessanns 275
=Tl o)Y VAT a (=T - VLY USSR 275

Connections that do not fully SUPPOrt ShUNTING.....cccuiiiiiiiii e 278
IO Lot Aol o g T=Tox AT o T3 PSPPSR 278
APPC connections to NON-CICS TS fOr Z/OS SYStEMS....uiiiiiiiiieeeeeciiteeeeciee e e eecvere e eesvree e s e e areeeeeeanes 279
APPC SiNgle-SeSSION CONNECTIONS. ...cciccieiieieeiiieeiceeeseteeseteessteeesereeessaeeessbeeesbeesssseessseessseessseessnsees 279

| TIAE 1= Lo e [olo] Lo IR - U £ PP 279
Deciding when a cold Start iS POSSIDLE......uiiiciiiiieecte et 280
The eXChange lOZNaAMES PrOCESS.....uiiiciiiiciieiciee sttt setee sttt e setteesereeeseseeesesteesaseeesaseeesaseessassessaseessans 281

Appendix A. CICS-supported CONVErSioNS.......ccccceieiieceieneecentesscessecasecsocassecess 283

FAY =Y o 1 (o3OS SRRSO 284
BalTiC RiIMiiiiiiiiiiiiiteeeee ettt e et e e e e e bbbt e e e e eeeeeeee s assrbaearaeseeeessesaasssssssaasaeeeeeseesenassssrrsnnereeeens 285
L0 TSRS 286
DL Yo T T=F- U T PSPPSR 288
=Y 5] PO RUSOUP TR 289
(G T TSSO 290
[1] 0] £ Y USSR 292
- o1 L =T TSRS 293
(0T £=T-Y o 1RSSO 295
= Yo T 297
Latin=T @NA LAtiN=9....uueeeeiiiiiiiiiieiciititeie e et e e e e e e e e eeesaasbabaeeeeeeeeeeeseasssssssaasearaeeeeseeseassssrarseeens 298
(= 1 USRS UUUU N 300
(=Y 1 LT TSRS UU RN 302
Y aaT o] 13 LT IO T T TR 304
B 1 11 LTSRS O SRS PUTTTRN 305
R = (e Lo T F=1 N 61 a1 [T T UR R OO 307
67 [TSROSO PPN 308
VTSI A o F= T g LT YT OTTTT 310
(U1 [Tedo]e (Yo F- | - VTSSO OU PP 311

(070] 2] 0] g =1 a1 £= SRR 313
o Yot PUPPRRRN 313
Standard and NONStaNdard CONVEISION......ccuiiiei ettt e e eecree e e e e eree e e e s sre e e e eesteeeessnseeeesennssenas 314
(03035 TT oY YAV o0 T V7= 5 L] o TR 314
(WY 7108 [0 R oT0 Y2 1Y/ 51 (o] R 314
USEr=0NLY CONMVEISION. . ciiiiiciiieeieciiteeeeeettee e e e ttreeeeesteeeeeeansteeeesansteeeesassaseesaasstsessesnssenesssansenesssnnsenees 314
SEQUENCE Of CONVEISION PrOCESSING. .ciiiuviiriiieriiieriieerateerateesateesseeesssseessseeessseessseesssseesssseesssseesssseesas 315

Appendix C. Intercommunication rules and restrictions checklist...........c.cccceuee. 317
TrANSACTION FOUTING. .. vtiiiiiiiiiieeeitee ettt et e et e e sttt e s bt e e s stee e s seeesaseeesbaeesseeessseessseessseesssaesnssaesnnsaenn 318

Appendix D. CICS mapping to the APPC architecture......c.cccccecveireirncrncrenrecrennnn. 321

Y01] 0o] n £=Te I] o) 4ToT AT =Y =TSRSS 321
CICS implementation of CONtrol OPerator VEIDS.......c.uiiii ittt e e e ree e e e eae e e 322
(07e] 2} (o] M) o 1= 2=\ o T BV =T o o LTSS 323
Return codes for CONTrol OPErator VEIDS........uuiii ittt cree e et e e et e e e e naeeee s 330
CICS deviations from APPC arChitECIU....ciciiiiiiiiiieeeeete et e s e s aee e sreas 331
APPC transaction routing deviations from APPC archit@Cture......ccccoveveiiciieeicieencieenciee e sciee e 331
CICS MappPing t0 the APPC VEIDS......ciiiiiiiiee ittt et e st e s ste e s ste e ssaee e ssaeeessataesssaeessneeesnseaesnns 331
Command mapping for APPC basiC CONVEISAtiONS.....cc.ciirviiiiriieiriieenieeesieessieessieesseeesseeessseeesnnee 331
Command mapping for APPC mapped CONVErSatiONS.......ccivcieiiiieeiiieeiiieessieeeseeeseesssveeessveessnees 338

CICS deviations from the APPC arChit@CUIE.....uuuueeeeeeeeeeeeee e 345

Appendix E. Migration of LUTYPEG6.1 applications to APPC links.......cccceceucencrannans 347

Tt NaTe] a1 o o L= T OSSPSR 347
State transitions in LUTYPE6.1 migration-mode CONVErSationS.......cccvvveeiriieeiniieeenieeenieesseeeesveessneens 349
State tables for LUTYPE6.1 migration-mode CONVErSatioNS......cccverueerrieernieesniieeesreessireessneessnees 349
Appendix F. Differences between APPC mapped and MRO conversations............ 353
Different treatment of COMMANA SEQUENCES........uiii ittt e e e e e e e e s s erre e e e e e enraeeaean 353
USING The LAST OPTION ittt sttt ettt et s et e sttt e s saee e s bt e e sbteesseeesssaessteesssaesssaesnsseenns 354
The LAST option and syncpoint flows 0n APPC SESSIONS......ccccciieeeeecciieeeeccieee e e ecreee e eeveeee s e enaneeas 354

The LAST option and syncpoint flows on MRO SESSIONS......ccuuieiieeiiiieieccrieeeeecreee e eecvree e e e e creeee e 354
Appendix G. Below the SNA interface......cccceiieieiiieiieiicieniieciecieieniececcessecessensens 355
SNA INAICATOrS AN FECOIUS...eiiiuiiiiiiieiiiee ittt sttt sete e sere e sttt e seteeeseateesebaeeseseeesaseeesaseeesaseeesaseeesaseassans 355
RequUESt MOAE ANd rESPONSES.uuiieiecciiieeeeeiiieeeeeiteeeeeereeeeeeetteeeeessteeeseesteeessesssaseessassseeasssnsseneenan 355

When SNA indicators are tranSmitted.......cucuiiieiiiiiieeniiesee e e s be e s beessaraeeas 356

N 0 4o = N 357
11T = Y 363

vii

About this PDF

This PDF describes how to connect CICS systems using multiregion operation (MRO), intersystem
communication over SNA (ISC over SNA), or IP interconnectivity (IPIC). It is aimed at system
programmers who are responsible for planning and implementing these types of connection. Other PDFs,
listed below, contain details for other types of CICS connectivity.

This PDF covers:

« Multiregion operation (MRO): communication between CICS regions in the same operating system, or in
the same MVS™ sysplex, without the use of IBM Systems Network Architecture (SNA) networking
facilities.

« Intersystem communication over SNA (ISC over SNA): communication between an IBM CICS
Transaction Server for z/OS region and other (CICS or non-CICS) systems or terminals that support the
logical unit type 6.2 or logical unit type 6.1 protocols of SNA. Logical unit type 6.2 protocols are also
known as Advanced Program-to-Program Communication (APPC). The remote systems may or may not
be in the same MVS sysplex as CICS.

« IP interconnectivity (IPIC): communication between an IBM CICS Transaction Server for z/OS region
and other (CICS or non-CICS) systems or terminals that support the Transport Control Protocol/Internet
Protocol (TCP/IP). The remote systems may or may not be in the same MVS sysplex as CICS.

Information about accessing CICS programs and transactions for specific areas of CICS is in the following
PDFs:

- From the internet is in the Internet Guide .

« From other non-CICS environments is in the External Interfaces Guide and Using EXCI with CICS.
- With BTS is in Business Transaction Services

With FEPI is in the Front End Programming Interface User's Guide.

DTP is in the Distributed Transaction Programming Guide.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF
This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2020 ix

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html

X CICS TS for z/OS: Intercommunication Guide

Chapter 1. CICS intercommunication

CICS is often used as a single system with associated data resources and a network of terminals.
However, CICS can also be used in a multiple-system environment, in which it can communicate with
other systems that have similar communication facilities. This sort of communication is called CICS
intercommunication.

CICS intercommunication is communication between a local CICS system and a remote system, which
might or might not be another CICS system.

For information about accessing CICS programs and transactions from the Internet, see Internet, TCP/IP,
and HTTP concepts. For information about accessing CICS programs and transactions from other non-
CICS environments, see Overview of CICS external interfaces.

This section contains the following topics:

« “Intercommunication methods” on page 1

« “Intercommunication facilities” on page 4

« “Using CICS intercommunication” on page 2.

Intercommunication methods

CICS can communicate with other systems that are in the same operating system or sysplex using
multiregion operation (MRO). To communicate with other CICS or non-CICS systems that are not in the
same z/0S image or sysplex, CICS connects using either a TCP/IP (IPIC) or SNA (ISC over SNA) protocol.

Communication between systems

For communication between CICS and non-CICS systems, or between CICS systems that are not in the
same operating system or z/OS sysplex, you usually require a network access method to provide the
necessary communication protocols.

CICS TS for z/0S, Version 5.5 supports two such intercommunication facilities:

1. Transmission Control Protocol/Internet Protocol (TCP/IP)
2. ACF/SNA, which implements the IBM Systems Network Architecture (SNA)
Communication between systems over TCP/IP is known as IP interconnectivity (IPIC). The generic name

for communication between systems over SNA is intersystem communication (ISC) or intersystem
communication (ISC) over SNA.

IPIC and ISC are used to connect CICS and non-CICS systems or CICS systems that are not in the same
z/0OS image or sysplex. These intercommunication facilities can also be used between CICS regions in the
same z/0S image or sysplex. For example, you might create an ISC connection between two CICS regions
in the same sysplex if you require two connections between them and there was already an MRO
connection.

Multiregion operation

For CICS-to-CICS communication, CICS provides an interregion communication facility that does not
require the use of a network access method such as ACF/SNA or TCP/IP.

This form of communication is called multiregion operation (MRO). MRO can be used between CICS
regions that reside:

 In the same z/0OS image
« In the same z/0S systems complex (sysplex).

Note: The external CICS interface (EXCI) uses a specialized form of MRO link to support communication
between MVS batch programs and CICS.

© Copyright IBM Corp. 1974, 2020 1

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/interfaces/dfhtm50.html

Using CICS intercommunication

The CICS intercommunication facilities allow you to implement many different types of distributed
transaction processing. Some examples of typical applications are explained.

Multiregion operation allows two CICS regions to share selected system resources, and to present a
“single-system” view to terminal operators. At the same time, each region can run independently of the
other, and can be protected against errors in other regions. Various possible applications of MRO are
described in “Multiregion operation” on page 22.

ISC over SNA, using the ACF/SNA access method and ACF/NCP/VS network control, allows resources to
be distributed among and shared by different systems, which can be in the same or different physical
locations.

IPIC connections allow you to use a TCP/IP network for intercommunication between systems. IPIC
provides similar capabilities and qualities of service to those provided by ISC over SNA.

Figure 1 on page 3 shows some typical possibilities.

2 CICS TS for z/OS: Intercommunication Guide

Connecting regional centers

* Databass paritionsd
/_‘_r—-—‘_'_'_’—#!—'_ byarsa

Marth
—_— + Sameapplications un
ineachoceniar
* Allterminal userscan
acoessapplicatonsor

datainallsystems

* Terminaloperatorand
Ceantral ap plications unavwars o
—_— loz ationofdata

* Qut-ofd4own mquests
* roubed o the

ap propriate systam

COCOCO

Connectingdivisions: distributed applimtionsand data

* Databass partitionad
by function
Financial Headquarsrs
and —_— * Applications partitionac
Flanning by function

Irmve o ry

Allterminal users and
applicationscan access
data inall syste ms

* Requestsfornonkcal
data routed to the

Warsho use Plant app o priats system

[JI

Figure 1. Examples of distributed resources (Part 1)

Chapter 1. CICS intercommunication 3

Hierarchica divisionof databass

i

I—''_F .
M e + Summaries and
i Head Office — central data at
Sy — = | H2, detail data
Flanning it
| | location
_j Crderand
B Schedules

* * Orderprocessing
- atHQ:arders

Froduction andschedules
Status Report transmittedto
plants

Farts T
Cross-

Flants, FlantB Referenoe FlantC _ + FPlantssend
Watk summaries of
Crder production
‘x.h____ T statusto HQ

(for example,
P overnight)
,,—'—'—'_'_'_'_ _,_,—'—'—'_'_'_'_'_'_'_’
——

> 1
. e * Accesstodata
‘ ‘ fromHQ ar

Flantpossible
ifrequired

Connedingdivision: hierarchica digtributionof dataandapplications

fﬂ_—_ * Improved
Iy responsethrough
‘-\-\-__ _ . .
High-priority —— distributed
applications Processing
\ anddata —_——
i
Loww-priority r:q___
orbadiup
applications
and data
)/ §
"'\-\.____'_,.o-"'
'
iy .
e
High priority ——
applications —
and data

Figure 2. Examples of distributed resources (Part 2)

Intercommunication facilities

In a multiple-system environment, each participating system can have its own local terminals and
databases, and can run its local application programs independently of other systems in the network.

A participating system can also establish links to other systems, and gain access to remote resources.
This mechanism allows resources to be distributed among and shared by the participating systems.

CICS provides the following types of facilities for communicating with other CICS, IMS, or other systems:

4 CICS TS for z/OS: Intercommunication Guide

« Asynchronous processing

Function shipping

- Transaction routing

Distributed program link (DPL)
Distributed transaction processing (DTP)

For more information about the intercommunication facilities that support access to CICS programs and
transactions from non-CICS environments, see Interfaces to CICS transactions and programs and

Internet, TCP/IP, and HTTP concepts .

These communication facilities are not all available for all forms of intercommunication. The
circumstances under which they can be used are shown in Table 1 on page 5.

Table 1. Support for CICS basic intercommunication facilities, when communicating with other CICS, IMS, APPC,

or TCP/IP systems
IRC . e
. Intersystem Intersystem communication
Interregion s e
communicatio communication over SNA
n over TCP/IP (using ACF/ z/0S Communications Server)
MRO IPIC LUTYPEG.2 (APPC) LUTYPEG6.1
non-CICS non-CICS
Facility CICS CICS | (for example, CICS | (for example, CICS IMS
CICS TG) CICS TG)
Function ves
Shipping Yes (See No Yes No Yes No
note)
A h Yes
Synchronous Yes No Yes No Yes Yes
Processing (See
note)
Transaction ves
Routing Yes (See Yes Yes No No No
note)
N Yes
D|str|bute.d Yes Yes Yes No No No
program link (See
note)
Distributed
transaction Yes No No Yes Yes Yes Yes
processing
Notes:

 IPIC supports function shipping of all file control, transient data, and temporary storage requests
between CICS TS 4.2 or later regions.

« IPIC supports asynchronous processing of EXEC CICS START, START CHANNEL, and CANCEL
commands, between CICS TS 4.1, or later regions.

Chapter 1. CICS intercommunication 5

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/interfaces/dfhtmba.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/web/dfhtl_conintro.html

 IPIC supports transaction routing of 3270 terminals between CICS TS 4.1 or later regions, where the
terminal-owning region (TOR) is uniquely identified by an APPLID. Enhanced routing of transactions
invoked by terminal-oriented START commands is supported between CICS TS 4.2 or later regions.

« IPIC supports the following DPL calls:

— Distributed program link (DPL) calls between CICS TS 3.2 or later regions.
— Distributed program link (DPL) calls between CICS TS and TXSeries® Version 7.1 or later.

Function shipping

Function shipping in CICS provides an application program with access to a resource owned by, or
accessible to, another CICS system. Both read and write access are permitted, and facilities for exclusive
control and recovery and restart are provided.

The following remote resources can be accessed using function shipping:
- Afile

A DL/I database

A transient-data queue

« Atemporary-storage queue

Application programs that access remote resources can be designed and coded as if the resources were
owned by the system in which the transaction is to run. During execution, CICS ships the request to the
appropriate system.

Function shipping is supported between CICS systems connected by IPIC, ISC over SNA, or MRO links.
IPIC only supports function shipping of file control, transient data, and temporary storage requests
between CICS TS 4.2 or later regions.

Asynchronous processing

Asynchronous processing allows a CICS transaction to initiate a transaction in a remote system and to
pass data to it. The remote transaction can then initiate a transaction in the local system to receive the

reply.

The reply is not necessarily returned to the task that initiated the remote transaction, and no direct tie-in
between requests and replies is possible (other than that provided by user-defined fields in the data). The
processing is therefore called asynchronous.

Asynchronous processing is supported between CICS systems connected by MRO, or ISC over SNA links.
IPIC supports asynchronous processing of EXEC CICS START, START CHANNEL, and CANCEL
commands, between CICS TS 4.1 or later regions..

Transaction routing

Transaction routing allows a transaction and an associated terminal to be owned by different CICS
systems.

Transaction routing can take the following forms:

« Aterminal that is owned by one CICS system can run a transaction owned by another CICS system.

« Atransaction that is started by automatic transaction initiation (ATI) can acquire a terminal owned by
another CICS system.

« Atransaction that is running in one CICS system can allocate a session to an APPC device owned by
another CICS system.

Transaction routing is supported between CICS systems connected by IPIC, MRO, or ISC over SNA links.
IPIC supports transaction routing of 3270 terminals between CICS TS 4.1 or later regions, where the
terminal-owning region (TOR) is uniquely identified by an APPLID.

6 CICS TS for z/OS: Intercommunication Guide

Distributed program link (DPL)

CICS distributed program link enables a CICS program (the client program) to call another CICS program
(the server program) in a remote CICS region.

CICS distributed program link enables a CICS program (the client program) to call another CICS program
(the server program) in a remote CICS region. Here are some of the reasons you might want to design
your application to use DPL:

« To separate the end-user interface (for example, BMS screen handling) from the application business
logic, such as accessing and processing data, to enable parts of the applications to be ported from host
to workstation more readily.

- To obtain performance benefits from running programs closer to the resources they access, and thus
reduce the need for repeated function shipping requests.

« In many cases, DPL offers a simple alternative to writing distributed transaction processing (DTP)
applications.

DPL is supported between CICS systems connected by MRO, or ISC over SNA links. IPIC supports the
following DPL calls:

« Distributed program link (DPL) calls between CICS TS 3.2 or later regions.

« Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1 or later.

Distributed transaction processing (DTP)

The technique of distributing the functions of a transaction over several transaction programs within a
network is called distributed transaction processing (DTP). DTP allows a CICS transaction to
communicate with a transaction running in another system. The transactions are designed and coded
specifically to communicate with each other, and thereby to use the intersystem link with maximum
efficiency.

The communication in DTP is, from the CICS point of view, synchronous, which means that it occurs
during a single invocation of the CICS transaction and that requests and replies between two transactions
can be directly associated. This contrasts with the asynchronous processing described previously.

DTP is supported between CICS systems connected by MRO, or ISC over SNA links.

Transaction tracking

Transaction tracking provides the capability to identify the relationships between tasks in an application
as they flow across regions in a CICSplex. Transaction tracking can help you in auditing and problem
determination. Functions are provided to locate specific tasks based on information in the point of origin,
to find interrelated hung tasks, and to identify work initiated by non-CICS adapters (such as IBM MQ).

Transaction tracking provides a standard framework for the tracking and resolution of interrelated CICS
transactions. You can use transaction tracking to improve productivity, simplify system operation tasks,
and perform problem determination. Transaction tracking provides tighter integration between other
products, such as IBM MQ, and an extension of the scope of transaction tracking to other interfaces,
including WebSphere® Optimized Local Adapter and CICS sockets. The IBM MQ task-related user exit
(TRUE) provides support for transaction tracking.

Transaction tracking provides the following features:

End-to-end transaction tracking
End-to-end transaction tracking is a method of propagating the context of an application across the
interrelated tasks within and between CICS systems.

Point of origin
Transaction tracking provides a mechanism to track the point of origin of a transaction by associating
an initial user task with other tasks that have been created from it. Transaction tracking also describes

Chapter 1. CICS intercommunication 7

the way in which a task was started. The created tasks carry information about the initial user task as
origin data. For more information about the association data components, see Association data.

Such tracking data is propagated across IPIC and MRO to provide a complete story across the
CICSPlex® for all user tasks including CICS supplied transactions started by a user (for example,
CEMT) or running on behalf of a user-initiated transaction (for example, CSMI). For tasks created by
non-CICS transports (for example, adapters connecting to other software applications such as IBM
MQ) there is the ability for these tasks to participate in transaction tracking by injecting their own
unique task metadata, describing their origin, into the propagated context of each transaction they
initiate.

Transaction group
A transaction group is an association of transactions that all contain the same unique identifier of the
originating transaction in the TRNGRPID.

Adapter tracking
Adapter tracking tracks tasks created by non-CICS transports (for example, adapters connecting to
other software applications such as IBM MQ), which can participate in transaction tracking. The
adapters can add unique task metadata, describing the origin, into the propagated context of each
transaction they initiate. This adapter data is carried in the origin data section of the association data
and can be used to track the transactions started by the adapter.

Association data

Association data is a set of information that describes the environment in which user tasks run and the
way that user tasks are attached in a region. User tasks are tasks that are associated with user-defined
transactions or with transactions supplied by CICS. CEMT is an example of a user-initiated task typically
started by an operator, and CSMI is an example of a task started by the system on behalf of a user-
initiated transaction.

Association data is built during task attach processing and represents context information specific to the
task itself; for example, the task ID, the user ID relating to the task, and the principal facility of the task.
Association data can also include details about the origin of the task and the way it was started.

You can use the CICS Explorer®, WUI, INQUIRE ASSOCIATION, and INQUIRE ASSOCIATION LIST
commands to view association data. The INQUIRE ASSOCIATION LIST command returns a list of
tasks, in the local region, that have matching correlation information in their association data. You can use
the CICS Performance Analyzer (CICS PA) and the sample monitoring data print program, DFH$MOLS, to
report on association data. You can also use association data to correlate TCP/IP connections with the
CICS regions and transactions using them.

The following data components support transaction tracking:

Adapter data
Adapter data is a part of the origin data section of association data and can be defined and provided
by an adapter from other software that introduces work into CICS. This data can include, for example,
data to identify which adapter started the task. The adapter data can then be used to track the
transactions started by the adapter. For further information about using adapter data for tracking
transactions, see Adapter tracking sample task-related user exit program (DFH$APDT).

ApplData
Association data uses socket application data (ApplData) for the socket that received the request to
start the task. You can use the ApplData to correlate TCP/IP connections with the CICS regions and
transactions that are using them. In TCP/IP, the ApplData information is available on the Netstat ALL/-
A, ALLConn/-a, and COnn/-c reports, and can be searched with the APPLD/-G filter. See z/0S
Communications Server: IP System Administrator's Commands for additional information about using
ApplData with Netstat. The ApplData information is available in the SMF 119 TCP Connection
Termination record. See z/OS Communications Server: IP Configuration Reference for additional
information. The ApplData information is also available through the Network Management Interface.
See z/0OS Communications Server: IP Programmer's Guide and Reference for more information.

8 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1_associationdata_origindata.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha3_DFHAPDT.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halu101/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halu101/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halx001/toc.htm

Application context data
Application context data is provided for CICS applications that are deployed on a platform.
Application context data identifies the application, operation, application version, and the platform in
which the application is running. To generate application context data, the application must have a
declared set of application entry points, which define how other applications and users enter the
application. CICS then adds application context data to each task at the point the application is
entered. For further information about using application context data, see Application context.

Origin data
Origin data is a section of association data that describes where the task was started (the point of
origin). Origin data is created by a user task that is started when an external request arrives at a
CICSplex. For further information about origin data, see Origin data characteristics.

Previous hop data
Previous hop data is a section of association data that describes the remote sender of the request so
that the request can be tracked back into the previous system. For further information about previous
hop data, see Previous hop data characteristics.

Previous transaction data
Previous transaction data is a section of association data that describes the local or parent task of a
request to attach a task by an EXEC CICS RUN TRANSID or EXEC CICS START
TRANSIDcommand (when a new point of origin is not created). For further information about previous
hop data, see “Previous transaction data characteristics” on page 14.

Task context data
Task context data is a section of association data that provides information about the specific context
of the user task that is being referenced.

User correlation data
User correlation data is a part of the origin data section of association data and is added by the
XAPADMGR global user exit program. You can use the XAPADMGR exit to add user information at the
point of origin of the interrelated transactions. For further information about using user information for
tracking transactions, see Application association data exit in the AP domain (XAPADMGR).

Origin data characteristics

The origin descriptor record (ODR) is part of the association data that holds origin data information. Origin
data is stored in a separate section of the association data and describes where the task was started (the
point of origin).

You can use origin data to track and audit complex systems. A transaction group ID, TRNGRPID, is the
unique key that represents the origin data. You use the TRNGRPID to track where transactions are
created when they do not share the unit of work (for example, when you use a START command) to
indicate which parts of the transaction have a common source. CICS determines the source of
information, rather than the target location of the information. Also, with origin data you append your own
identifying token to the work request.

Origin data is created when a new request first arrives at a CICS region. This request might be initiated
from a web browser, a 3270 terminal, an SNA LU, or another external device. The user task that CICS first
attaches is at a new point of origin, and CICS populates the fields in the ODR of this task with information
specific to the point of origin. If this task subsequently causes another task to be attached, eitherin the
same region, or in a different region over an IPIC or MRO connection, the origin data is inherited by the
new task, unless the new task is at a new point of origin.

A new point of origin is created in the following circumstances:

« Ataskis attached by a START command that specifies the TERMID option
- Ataskis attached by a START ATTACH command

« Ataskis attached by a DTP or CPIC request

« Atask is attached over an APPC connection

A task is attached using the transaction start EP adapter

A task is attached in a Liberty JVM server to run a Java™ web application

Chapter 1. CICS intercommunication 9

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/cloud/cloud_app_context.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3_xapadmgr_exit.html

parent thread that is not running under a CICS task

cases

« A web service pipeline handler transaction is routed over an MRO connection

« An outbound HTTP request is made to CICS using CICS Web support

For a Liberty JVM server, when the CICS ExecutorService.runAsCICS () method is used from a

For an OSGi JVM server, when the CICS ExecutorService.runAsCICS () method is used, in all

If you are using CICS Transaction Gateway, the point of origin can be outside CICS (in CICS TG) and the
point of origin information is populated to the ODR when the task is started at the boundary of the
CICSPlex SM. For example, CICS TG records context information about the point of origin for the JCA
resource adapter, and this information is passed to CICS as part of the origin data.

The origin data fields in the association data all have names that begin with "OD". All fields are populated
by CICS, except the user correlator data field, USERCORRDATA, which is a 64-byte area that can be
populated by the XAPADMGR global user exit. The exit can be called only from a task that is running at a
point of origin in a CICSplex. With origin data, you can track interrelated transactions between regions
that use IPIC and MRO connections to share work between them. You can use the CICS Explorer or WUI
to search for all the tasks that are active in a CICSplex that share a common set of origin data, or you can

search on a subset of the fields.

Origin data is written in monitoring records and stored in CICSPlex SM history records for offline analysis.
Origin data is unrecoverable information, which means that the data is not available to any tasks that are
attached because of a transaction restart, or with any tasks that are rebuilt from the system log when a

region is restarted.

Flow of association data and origin data between CICS tasks and components

o

New task

Optional
user exit

New task

o

@

*
Monitoring | _
recond J
r a
(BMF +
Real time | _0 _______ CPSM History
CP3M WL record

Q@

Monitoring
record

[

« When a new task is attached, association data is created. If the task was created in response to a
message received across an Internet Protocol network, additional information that CICS obtained from

the Internet Protocol stack i} is also stored.

10 CICS TS for z/OS: Intercommunication Guide

- The origin data for the new task is stored in a separate section of the association data g and describes
where the task was started (the point of origin).

- If a global user exit is called by the task g, the exit can obtain information from other sources by using
the XPI] to return to the task [, where it is included in the origin data.

- If the task issues a DPL request to a remote region, the origin data is added to the DPL request that is
sent over TCP/IP to the remote CICS region. When the DPL request arrives at the remote region, another
new task is started to process the request. CICS creates unique association data for this task, however
CICS detects origin data, and passes the origin data to the mirror task when it is attached to service the
DPL request .

- During task attach processing, the origin data is stored as part of the association data of the new task,
B and the global user exit is not called.

« If monitoring is enabled, origin data is written to the monitoring record for the task §§ and if CICSPlex
SMis configured, the data is stored in history records El.

 You can use the CICSPlex SM WUI to retrieve information stored in the association data of running tasks
I4]; for example, you can create a search to find the tasks in a CICSplex that have matching origin data.

 You can also use CICSPlex SM to perform offline analysis of origin data information that is stored in
history records [ill; for example, to understand how interrelated transactions have used a Internet
Protocol network.

Examples of origin data creation
An SNA LU example and a web example help you to understand how origin data is stored and passed to
other tasks.

SNA LU example

A task is started in a region when a transaction identifier is entered at an SNA LU. The origin data is stored
at the point of origin and is passed to any other tasks that are started in the same region as a
consequence of the initial task:

1. The task is at the boundary of the CICSplex and at a point of origin. CICS populates the origin data
(SNA LU information) from other fields in its association data when the task is attached.

2. If the task issues a DPL request that is serviced in another region using an IPIC connection, the origin
data is passed with the DPL request.

3. The remote region that receives the message extracts the origin data and passes the data to the mirror
transaction, which is attached to service the DPL request.

In this example, the mirror transaction contains the following information in its association data:

« The values that describe the mirror transaction itself; for example, task ID and principal facility of the
IPIC connection

- The same origin data that the LU task that scheduled the DPL created and stored in its own association
data

In this example, the associated data exit, XAPADMGR, can run when the LU task is attached, but the exit
is not called when the mirror task is initialized.

Web example

Figure 3 on page 12 shows an HTTP request that has been passed through a TCP/IP network and arrives
for CICS processing. The origin data is stored at the point of origin and is passed to any other tasks that
are started in the same region as a consequence of the initial task. In this example, the origin data is
populated from two different tasks:

1. The HTTP request is passed by a CSOL system task to CICS.

2. The request is processed by a CWXN task. CWXN is at a point of origin and CICS populates the origin
data (HTTP request information) from other fields in its association data when the CWXN task is
attached. The XAPADMGR exit can be used to provide origin data in the CWXN task. The exit runs

Chapter 1. CICS intercommunication 11

before the HTTP request has been received by CICS so the exit cannot make use of

the EXEC CICS WEB

READ HTTPHEADER, WEB READ FORMFIELD or WEB RECEIVE commands. This method uses the

indirect attach task process. An alternative option is to use the direct attach task pr

ocess, as the

socket listener task CSOL is optimized to directly attach user transactions for fast arriving HTTP
requests. This means the web attach task is bypassed, therefore reducing the CPU time that is

cessed by directly

required to process each request. For more information, see HTTP requests are pro
attached user transactions.

. A new CWBA task is attached and CWBA inherits the ODR from CWXN. CWBA and C
under different user IDs, but the user ID (userid2) used by the CWBA task is more u

WXN might run
seful for audit

purposes. As a result, the user ID used by the CWBA task is stored in the origin data of CWBA.

. An application program that is running under the control of the CWBA task issues a

DPL request that is

serviced over an IPIC connection. The origin data is passed unchanged with the DPL message to the

CISR system task.

a mirror transaction (CSMI) and the mirror transaction is attached to service the DP

. The program running under the mirror transaction issues a START command. The o
inherited by the task (USER) that is attached to service the START request.

. The remote region that receives the DPL message extracts the origin data and passes the origin data to

L request.
rigin data is

Figure 3 on page 12 shows how origin data is created when CICS processes an HTTP request and how

the origin data is inherited by other tasks that are attached to fulfill the request.

System task
GSDL no QDR
r-—======= |
1 i
i1 r-=-~-~-~-~==-=- L ___—+ Optional user exit |
umcr;wxu ' INITUSERID=userid1 | o R R
| USERID=usarid1 —
L J
= R i R T ;
useridz) inherited and
CWBA | INITUSERID=userid2 | modified System task
 USERID=userid2 | - cISR no ODR
L o e D 2 h‘:%ﬁ}‘;—‘b_‘
o
DPL/IPCONN
"‘- - [.)
userid3 herited
N csmi || INITUSERID=userid2 | """
¥ | USERID=userid3 |
I RN RS I Y o
START |USERID
useridd Fr-mmmmmmm- ap :
USER || NITUSERID=userid2 Inherited
, USERID=userid4 |
Lo oo _

Figure 3. Creation and movement of origin data when an HTTP request is processed

42 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/web/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/web/csol_bypass_cwxn.html

Previous hop data characteristics

Previous hop data identifies the remote sender of a request to attach a task, and creates a trail to be
followed back into the previous system, which enables data gathering and monitoring to continue in the
region that sent the request.

Previous hop data is created if a request to attach a task is transmitted by using an IPIC or MRO
connection between CICS TS 4.2 or later regions. The task that is attached as a result of this request has
previous hop data created.

As part of an interrelated transaction, if a task issues requests to attach tasks in other CICS TS 4.2
regions, such as when a daisy chain is used, previous hop data is created for the tasks that are attached in
the other CICS regions.

Previous hop data is not created for a task that is the point of origin. For information about association
data and the point of origin, see “Association data” on page 8.

region 1 region 2 region 3
Origin Origin Origin
WTAM data data data
terminal [tazk A) (tazk A} {task A}
ingut
Association Association Aszsociation
L data data data
::__ [task &) {task B} (task C)
fask A F task B Prev h task C Preei h
| A revious-hop revious-hop
Provios hop data data
- [region 1) [region 2)
<empty> (task A) {task B)
= IPIC - » IPIC .
t“'-q |,.:"' {':«r L:')
. MRO MRO
< I_I_r“*:- c*“_[_r,““::

Figure 4. Previous hop data and an interrelated transaction

The value of previous hop data for a task that is started by use of the START command depends on the
TERMID option. Previous hop data is not created for a started task that is at a new point of origin.

If the TERMID option is specified, the started task is treated as starting at a point of origin and no previous
hop data is created. This is the case whether the TERMID option specifies a local terminal definition or a
remote terminal definition.

When the TERMID option specifies a remote terminal definition, the process to schedule the START
command might involve a transfer of the command across a number of CICS systems to reach the target
CICS system where the terminal specified in the TERMID option is a local terminal definition.

If the TERMID option is not specified, only the previous hop count is created for the started task and the
remaining previous hop data is not set. In this case, the started task inherits the value of the previous hop
count from the task in the same CICS region that initiated it.

For example, if a START command without the TERMID option is started by a task that is at a point of
origin and the started task runs in the same CICS region, the started task inherits a previous hop count of
zero. If the START command without the TERMID option is function shipped to another CICS region, the
started task inherits a previous hop count from the mirror task.

Previous hop data programming considerations
Previous hop data includes data items that identify the following information:

« Another CICS TS 4.2 or later region that requested the current task to be attached.

Chapter 1. CICS intercommunication 13

« The task in another CICS TS 4.2 or later region that requested the current task to be attached.

« The number of CICS system hops that are taken for all CICS TS 4.2 or later regions to reach the current
CICS system. A value of zero is the point-of-origin CICS system.

Previous hop data is not supported when interrelated transactions of a sequence of tasks are run on a
number of CICS systems and a previous hop CICS system is a release earlier than CICS TS 4.2. In this
case, not all of the previous hop data is set. The previous hop count field is set to one, and no other values
in the previous hop data are set.

Previous transaction data characteristics

Previous transaction data identifies the local or parent task of a request to attach a task, for example by
an EXEC CICS RUN TRANSID or EXEC CICS START command, when a new point of origin is not
created, and creates a trail that can be followed to the transaction that initiated the request, which
enables data gathering and monitoring to continue in the region that initiated the request.

Previous transaction data is created if a request to attach a task is made by an EXEC CICS RUN
TRANSID command, or some START commands, such as when the START command is not a new point of
origin. The task that is attached as a result of this request has previous transaction data created.

Previous transaction data is not created for a task that is the point of origin. For information about
association data, see “Association data” on page 8 and for more information about the point of origin, see
“Origin data characteristics” on page 9.

The value of previous transaction data for a task that is started by use of the START command depends on
the TERMID option. Previous transaction data is not created for a started task that is at a new point of
origin.

For a START command, the previous transaction data follows the same conventions as for previous hop
data. For more information, see “Previous hop data characteristics” on page 13.

Previous transaction data programming considerations
Previous transaction data includes data items that identify the following information:

« The task in the same local region that requested the current task to be attached.

« The current task depth from one task to another in the same CICS system with which this task is
associated. A value of zero is the point of origin CICS system, or the first transaction that has been the
result of a request from one CICS system to another to initiate a task.

Previous transaction data, when combined with previous hop data, identifies both the local and remote
sender of a request to attach a task, and creates a trail that can be followed to the previous task or
previous system, which enables data gathering to ocntinue in the region that sent the request.

ISC and IPIC intercommunications facilities

CICS provides intercommunications facilities for intersystem communication over SNA (ISC over SNA)
and IP interconnectivity (IPIC), so that you can communicate with external systems.

This chapter contains the following topics:

« “Intersystem communication over SNA” on page 17

« “Intercommunication using IP interconnectivity” on page 15

14 CICS TS for z/OS: Intercommunication Guide

Intercommunication using IP interconnectivity

CICS provides intersystem communication over a Transmission Control Protocol/Internet Protocol
(TCP/IP) network. This form of communication is called IP interconnectivity or IPIC.

IPIC connection requirements

You must activate TCP/IP services in each CICS region that you are connecting before you create your
IPIC connection.

The IPIC connection consists of two complementary resources, an IPCONN definition, and a
TCPIPSERVICE definition, which you must install in each CICS region that you are connecting. The
IPCONN definition is the CICS resource that represents the outbound TCP/IP communication link, and the
term IPCONN is commonly used to refer to an IPIC connection. The inbound attributes of the connection
are specified by the TCPIPSERVICE definition. The TCPIPSERVICE resource is named in the
TCPIPSERVICE option of the IPCONN definition.

Figure 5 on page 15 shows the relationship between IPCONN and TCPIPSERVICE definitions.

[hosta.example.com [hostbh.example.com
CICSA CICSB |
IPCONN(CICB) TCPIPSERVICE(TSB)
APPLID{CICSE) »| PORT PORTI(B)
HOST{hostb.example.com) PORT(B) B PROTOCOL{IPIC)
SENDCOUNT
TCPIPSERVICE(TSA)
RECEIVECOUNT IPCONMN(CICA)

APPLID{CICSA)
HOST(hosta.example.com) PORT{A}

TCPIPSERVICE(TSA)

PORT SENDCOUNT
PORT(A) el TCPIPSERVICE(TSE)
PROTOCOL(IPIC) RECEIVECOUNT

Figure 5. Related IPCONN and TCPIPSERVICE definitions

Synchronization levels

IPIC connections support synchronization level 2; that is, they support full CICS sync pointing, including
rollback.

Socket capacity

For CICS TS 4.1 systems and later, up to two sockets are available for IPIC communications. For
connections to CICS TS 3.2 systems, only one socket is available for IPIC communications. If you lose
one or more of the sockets that are in use by an IPCONN, for example because of a network error, all the
sockets are lost and the IPCONN is released.

CICS IPIC heartbeat function

The CICS IPIC heartbeat function discovers and reports network connectivity problems with idle
connections by sending a heartbeat message over a connection during periods when no other messages
are being transmitted. Before the introduction of the CICS IPIC heartbeat, connectivity problems with an
idle connection remained unnoticed until an attempt was made to send a new message over the
connection.

The CICS IPIC heartbeat also maintains a connection that might pass through one or more firewalls. If the
CICS IPIC heartbeat is not used, the connection can time out because of lack of usage.

Chapter 1. CICS intercommunication 15

The CISP task checks IPCONN resources at intervals of approximately 60 seconds. An IPCONN resource
is selected for the CICS IPIC heartbeat function if the connected CICS region is in a different sysplex. A
CIS1 task is attached to resources that are acquired, and are then connected to a CICS region that can
accept a heartbeat message, and have received no message traffic since the end of the previous interval.

If the heartbeat message is sent and a response is not received within 10 seconds, a second message is
sent. If a response to the heartbeat message is not received within a further 10 seconds, the connection
is put into a released state. If a heartbeat message cannot be sent because the connection is no longer
usable, an error message is issued and the connection is released automatically.

CICS IPIC heartbeat messages are only sent by CICS TS V5.1 regions or higher; however, they can be
received by older releases of CICS TS at V4.1 or higher. The heartbeat messages cannot be sent to any
version of CICS Transaction Gateway or TXSeries.

IPIC high availability feature
The IPIC high availability capability provides a single point of access to a cluster of CICS TS regions via a
TCP/IP network

Overview

The IPIC high availability capability provides a single point of access to a cluster of CICS TS regions via a
TCP/IP network. This ensures resilience of access to the cluster as a whole, for both planned and
unplanned outages of individual regions within the cluster. It also supports the ability for client regions
that have lost contact with a specific region within a cluster to reconnect back to the specific HA cluster
region so that any unit of work affinities can be resolved. The single end point of the cluster is managed on
z/0S by a connection balancing mechanism that spreads connectivity across the set of regions within a
cluster. z/OS Communications Server offers two methods to achieve this: TCP/IP port sharing and Sysplex
Distributor. However IPIC HA is not limited to the use of either of these. See Connection balancing for
more information about port sharing and Sysplex Distributor.

How it works

HA cluster regions listen on two end points, defined via TCPIPSERVICE resources. The generic end point
that is shared by all regions in the cluster and a specific end point that is used exclusively by a specific
region. The cluster regions can have a set of IPCONN resources for the client regions that may attempt to
connect to the generic end point, or can make use of the IPCONN autoinstall mechanism.

A client region connects to the HA cluster using the generic end point information defined in an HA
IPCONN resource. The connection request to the generic end point will be intercepted by the connection
balancing mechanism being used, and routed to a generic TCPIPSERVICE belonging to one of the HA
cluster regions. The cluster region then returns the IP address and port of its specific end point to the
client region, and the connection is established using the specific end point. See Defining IP
interconnectivity (IPIC) high availability (HA) connections.

IPIC HA is only available using CICS TS for z/0OS, Version 5.2 or later regions, both within the cluster and
those connecting to it. If a back level region connects to an HA cluster region's generic TCPIPSERVICE,
the request will be rejected. If a back level region connects to the specific TCPIPSERVICE of an HA cluster
region the request will be treated as a non-HA IPIC connection.

Recovery in an IPIC HA environment
A connection into a cluster may fail, leaving units of work (UOWS) that need to be resynchronised at a
later point.

When a client region, with outstanding units of work, tries to reconnect to an HA cluster then an attempt
is made to restore the connection to the specific region in the cluster that these UOWs relate to. If
successful then resynchronisation processing takes place to complete these UOWSs. A client region can
suffer multiple connection failures, leaving more than one set of UOWSs that require resynchronising. If the
client region is unable to connect to a cluster region associated with one set of outstanding UOWSs, then it
will look to see if there is another set of UOWSs that need processing and attempt to connect to their
associated cluster region. This sequence of events continues until a connection is established with a

16 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/web/dfhtlm2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht1_defining_ipicha_connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht1_defining_ipicha_connections.html

specific server region, or until there are no more sets of UOWSs found, at which point the client region will
then attempt to connect to the HA cluster's generic end point.

The client region's IPCONN XLNACTION attribute will be used to decide how any outstanding UOWSs are
dealt with once a connection becomes acquired. This attribute defaults to KEEP, meaning that any UOWs
that could not be resynchronised are retained. If XLNACTION is set to FORCE then those UOWs that could
not be resynchronised at that time are forced to complete heuristically, according to the decision
indicated by the ACTION attribute of their associated TRANSACTION resource definition.

A client region that has no outstanding UOWSs will always connect to the HA cluster's generic end point.

Intercommunication facilities available using IPIC
IP interconnectivity (IPIC) supports communication between CICS systems using a TCP/IP network.

IPIC supports the following types of intercommunication functions for their respective product releases:

« Distributed program link (DPL) calls between CICS TS 3.2 or later regions.
« Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1 or later.

« Asynchronous processing of EXEC CICS START, START CHANNEL, and CANCEL commands, between
CICS TS 4.1 or later regions.

« Transaction routing of 3270 terminals, where the terminal-owning region (TOR) is uniquely identified by
an APPLID between CICS TS 4.1 or later regions.

- Enhanced method of routing transactions that are invoked by EXEC CICS START commands between
CICS TS 4.2 or later regions.

« ECI requests from CICS Transaction Gateway Version 7.1 or later.

- Function shipping of all file control, transient data, and temporary storage requests between CICS TS
4.2 or later regions. Function shipping of file control and temporary storage requests using IPIC
connectivity is threadsafe between CICS TS 4.2 or later regions. Function shipping of transient data
requests using IPIC connectivity is threadsafe between CICS TS 5.1 or later regions.

« Threadsafe processing for the mirror program and the LINK command in CICS TS 4.2 or later regions to
improve performance for threadsafe applications.

Intersystem communication over SNA

CICS provides intercommunications facilities for intersystem communication over SNA (ISC over SNA).
ISC over SNA implements the IBM Systems Network Architecture (SNA), which defines data formats and
communication protocols for communication between systems in a multiple-system environment. You
can use SNA between CICS and any other system that supports APPC or LUTYPE6.1 communications.
SNA supports all the base CICS intercommunication functions.

Before reading these topics, you must be familiar with the general concepts and terminology of SNA.
This chapter contains the following topics:

« “Connections between subsystems” on page 18

« “Intersystem sessions” on page 19

« “Establishing intersystem sessions” on page 21.

Intercommunication facilities available using ISC

Intersystem communication over SNA (ISC over SNA) allows communication between CICS and non-CICS
systems or CICS systems that are not in the same z/0OS image or sysplex. These intercommunication
facilities can also be used between CICS regions in the same z/0OS image or sysplex.

These facilities are available for intercommunication using ISC:

« Function shipping

« Asynchronous processing
- Transaction routing

« Distributed program link

Chapter 1. CICS intercommunication 17

- Distributed transaction processing

ISC can be used between CICS and any other system that supports the z/OS Communications Server
Advanced Program-to-Program Communication (APPC) or SNA Logical Unit Type 6.1 (LUTYPE6.1)
communications. For example, ISC over SNA connections can exist between CICS regions running in
different z/OS sysplexes or on different operating system platforms, between CICS and any APPC device,
and between CICS and IMS.

CICS Transaction Server for z/OS can use ISC over SNA to communicate with these systems:

« Other CICS Transaction Server for z/OS systems

CICS Transaction Server for VSE

CICS Transaction Server for iSeries

- IMS Version 9.1 or later

« Any system that supports Advanced Program-to-Program Communication (APPC) protocols (LU6.2)

Connections between subsystems
Subsystems can be connected for intersystem communication in three basic forms.

« ISCin a single host operating system
 ISC between physically adjacent operating systems
« ISC between physically remote operating systems.

A possible configuration is shown in Figure 6 on page 18.

Any APPC ACF/NCP ACF/NCP
(LUB.2) L
system 3725 3725
ACF/VTAM ACF/VTAM ACF/VTAM
(VTAM1) (VTANMZ) (VTAM3)
CICS TS z/0S CICS T5 CICS TS
o 05/390 VSE/ESA
(CICSA) (CICSC) (CICSD)
CICS TS z/0S IMS CICS/VSE
(CICSB) (IMSA) (CICSE)
z/05 05/390 VSE

Figure 6. A possible configuration for intercommunicating systems

Single operating system

ISC in a single operating system (intrahost ISC) is possible through the application-to-application
facilities of ACF/SNA. In Figure 6 on page 18, these facilities can be used to communicate between CICSA
and CICSB, between CICSC and IMSA, and between CICSD and CICSE.

18 CICS TS for z/OS: Intercommunication Guide

In an MVS system, you can use intrahost ISC for communication between two or more CICS systems
(although MRO is a more efficient alternative) or between, for example, a CICS system and an IMS
system.

From the CICS point of view, intrahost ISC is the same as ISC between systems in different SNA domains.

Physically adjacent operating systems

You can configure an IBM 3725 with a multichannel adapter that permits you to connect two SNA
domains (for example, VTAM1 and VTAM2 in Figure 6 on page 18) through a single ACF/NCP/VS. This
configuration might be useful for communication between these systems:

« A production system and a local but separate test system
- Two production systems with differing characteristics or requirements

Direct channel-to-channel communication is available between systems that have ACF/SNA installed.

Remote operating systems

The most typical configuration for intersystem communication is between remote operating systems. For
example, in Figure 6 on page 18, CICSD and CICSE can be connected to CICSA, CICSB, and CICSC in this
way. Each participating system is appropriately configured for its particular location, using MVS or Virtual
Storage Extended (VSE) CICS or IMS, and one of the ACF access methods such as ACF/SNA.

For a list of the CICS and non-CICS systems to which CICS Transaction Server for z/OS can connect to
using ISC, see “Communication between systems” on page 1.

Intersystem sessions

CICS uses ACF/SNA to establish, or bind, logical-unit-to-logical-unit (LU-LU) sessions with remote
systems. Being a logical connection, an LU-LU session is independent of the physical route between the
two systems. A single logical connection can carry multiple independent sessions. Such sessions are
called parallel sessions.

CICS supports two types of sessions, both of which are defined by IBM Systems Network Architecture
(SNA):

« LUTYPEG6.1 sessions

« LUTYPE®6.2 generally called APPC sessions.

The characteristics of LUTYPE®6 sessions are described in the Systems Network Architecture book
Sessions Between Logical Units.

You must not have more than one APPC connection installed at the same time between an LU-LU pair.
You must not have an APPC and an LUTYPE6.1 connection installed at the same time between an LU-LU
pair.

LUTYPEG6.1
LUTYPE®6.1 is the forerunner of LUTYPE6.2 (APPC).

LUTYPE®6.1 sessions are supported by both CICS and IMS, so can be used for CICS-to-IMS
communication. (For CICS-to-CICS communication, LUTYPE®6.2 is the preferred protocol.)

LUTYPEG6.2 (APPC)

The general term used for the LUTYPE®6.2 protocol is Advanced Program-to-Program Communication
(APPC). In addition to enabling data communication between transaction-processing systems, the APPC
architecture defines subsets that enable device-level products (APPC terminals) to communicate with
host-level products and also with each other.

You can use APPC sessions for CICS-to-CICS communication and for communication between CICS and
other APPC systems or terminals.

Here is an overview of some of the principal characteristics of the APPC architecture.

Chapter 1. CICS intercommunication 19

Protocol boundary

The APPC protocol boundary is a generic interface between transactions and the SNA network. It is
defined by formatted functions, called verbs, and protocols for using the verbs. Details of this SNA
protocol boundary are in z/OS Communications Server: SNA Programmer's LU 6.2 Guide.

CICS provides a command-level language that maps to the protocol boundary and enables you to write
application programs that hold APPC conversations. Alternatively, you can use the Common Programming
Interface Communications (CPI Communications) of the Systems Application Architecture® (SAA)
environment.

Two types of APPC conversation are defined:

Mapped
In mapped conversations, the data passed to and received from the APPC application program
interface is user data. The user is not concerned with the internal data formats demanded by the
architecture.

Basic
In basic conversations, the data passed to and received from the APPC application program interface
is prefixed with a header, called a GDS header. The user is responsible for building and interpreting
this header. Basic conversations are used principally for communication with device-level products
that do not support mapped conversations, and which possibly do not have an application
programming interface open to the user.

Synchronization levels

The APPC architecture provides three levels of synchronization. In CICS, these levels are known as Levels
0,1, and 2. In SNA terms, these correspond to NONE, CONFIRM, and SYNCPOINT, as follows:

Level 0 (NONE)
This level is for use when communicating with systems or devices that do not support synchronization
points, or when no synchronization is required.

Level 1 (CONFIRM)
This level allows conversing transactions to exchange private synchronization requests. CICS built-in
synchronization does not occur at this level.

Level 2 (SYNCPOINT)
This level is the equivalent of full CICS syncpointing, including rollback. Level 1 synchronization
requests can also be used.

EXEC CICS commands and CPI Communications support all three levels.

Program initialization parameter data

When a transaction initiates a remote transaction connected by an APPC session, it can send data to be
received by the attached transaction. This data, called program initialization parameters (PIP), is
formatted into one or more variable-length subfields according to the SNA architected rules. CPI
Communications does not support PIP.

LU services manager

Multisession APPC connections use the LU services manager, the software component responsible for
negotiating session binds, session activation and deactivation, resynchronization, and error handling. It
requires two special sessions with the remote LU; these are called the SNASVCMG sessions. When these
sessions are bound, the two sides of the LU-LU connection can communicate with each other, even if the
connection is 'not available for allocation' for users.

A single-session APPC connection has no SNASVCMG sessions. For this reason, its function is limited. It
cannot, for example, support level-2 synchronization.

20 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istp620/toc.htm

Class of service
The CICS implementation of APPC includes support for “class of service” selection.

Class of service (COS) is an ACF/SNA facility that allows sessions between a pair of logical units to have
different characteristics.

« Alternate routing: virtual routes for a given COS can be assigned to different physical paths (explicit
routes).

« Mixed traffic: different kinds of traffic can be assigned to the same virtual route and, by selecting
appropriate transmission priorities, undue session interference can be prevented.

« Trunking: explicit routes can use parallel links between specific nodes.

In particular, sessions can take different virtual routes, and thus use different physical links; or, the
sessions can be of high or low priority to suit the traffic carried on them.

In CICS, APPC sessions are specified in groups called modesets, each of which is assigned a modename.
The modename must be the name of a z/0S Communications Server SNA LOGMODE entry (also called a
modegroup), which can specify the class of service required for the session group. For more information,
see ACF/Communications Server LOGMODE table entries for CICS.

Limited resources

For efficient use of some network resources (for example, switched lines), SNA allows for such resources
to be defined in the network as limited resources. When a session is bound, SNA indicates to CICS
whether the bind is over a limited resource. When a task using a session across a limited resource frees
the session, CICS unbinds that session if no other task requires it.

Both single- and multi-session connections can use limited resources. For a multi-session connection,
CICS does not unbind LU service-manager sessions until all modegroups in the connection have
performed initial "change number of sessions" (CNOS) exchange. When CICS unbinds a session, CICS
tries to balance the contention winners and losers. This balancing might result in CICS resetting an
unbound session to be neither a winner or a loser.

Establishing intersystem sessions
Before traffic can flow on an intersystem session, the session must be established, or bound.

CICS can be either the primary (BIND sender) or secondary (BIND receiver) in an intersystem session, and
can be either the contention winner or the contention loser. The contention winner in an LU-LU session is
the LU that is permitted to begin a conversation at any time. The contention loser is the LU that must use
an SNA BID command (LUTYPE6.1) or LUSTATUS command (APPC) to request permission to begin a
conversation.

You can specify the number of contention-winning and contention-losing sessions required on a link to a
particular remote system.

For LUTYPE®G.1 sessions, CICS always binds as a contention loser.

For APPC links, the number of contention-winning sessions is specified when the link is defined. See
Defining APPC links. The contention-winning sessions are normally bound by CICS, but CICS also accepts
bind requests from the remote system for these sessions.

Normally, the contention-losing sessions are bound by the remote system. However, CICS can also bind
contention-losing sessions if the remote system is cannot send bind requests.

A single session to an APPC terminal is normally defined as the contention winner, and is bound by CICS,
but CICS can accept a negotiated bind in which the contention winner is changed to the loser.

Session initiation occurs in one of the following ways:

« By CICS during CICS initialization for sessions for which AUTOCONNECT(YES) or AUTOCONNECT(ALL)
has been specified. See Defining connections to remote systems.

« By arequest from the CICS master terminal operator.
« By the remote system with which CICS is to communicate.

Chapter 1. CICS intercommunication 21

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1_acfvtamlogmode.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht12f.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht12b.html

« By CICS when an application explicitly or implicitly requests the use of an intersystem session and the
request can be satisfied only by binding a previously unbound session.

Multiregion operation

By using CICS multiregion operation (MRO), CICS systems that are running in the same MVS image, or in
the same MVS sysplex, can communicate with each other.

This chapter contains the following topics:

 “Intercommunication facilities available using MRO” on page 22

« “Cross-system multiregion operation (XCF/MRO)” on page 22

- “Applications of multiregion operation” on page 26

« “Conversion from a single-region system” on page 28.

Intercommunication facilities available using MRO

Multiregion operation (MRO) allows CICS systems that are running in the same MVS image or in the same
MVS sysplex to communicate with each other. MRO does not support communication between a CICS
system and a non-CICS system, such as IMS.

MRO provides these intercommunication facilities:

 Function shipping

- Asynchronous processing

« Transaction routing

- Distributed program link

- Distributed transaction processing

MRO has some restrictions for distributed transaction processing. The external CICS interface (EXCI) uses
a special form of MRO link to support these types of communication between MVS batch programs and
CICs.

MRO does not need networking facilities. CICS support for region-to-region communication is called
interregion communication (IRC). You can implement IRC in three ways:

« Through support in CICS terminal control management modules and by use of a CICS-supplied
interregion program (DFHIRP) loaded in the link pack area (LPA) of MVS. DFHIRP is started by a type 3
supervisor call (SVC). For convenience, this implementation of multiregion operation is called
MRO(IRC), because you select it by specifying ACCESSMETHOD(IRC) on the CONNECTION definition.

« By MVS cross-memory (XM) services, which you can select as an alternative to the CICS type 3 SVC
mechanism. Here, DFHIRP is used only to open and close the interregion links.

« By the cross-system coupling facility (XCF) of IBM MVS/ESA. XCF is required for MRO links between
CICS regions in different MVS images of an MVS sysplex. It is selected dynamically by CICS for such
links, if available.

CICS regions linked by MRO can be at different release levels. If an MVS image contains different releases
of CICS, all using MRO to communicate with each other or XCF/MRO to communicate with regions in other
images in the sysplex, the DFHIRP module in the MVS LPA must be from the most current CICS release in
the image, or higher.

Cross-system multiregion operation (XCF/MRO)

The cross-system coupling facility (XCF) is part of the MVS base control program, providing high-
performance communication links between MVS images that are linked in a sysplex (systems complex) by
channel-to-channel links, channels, or coupling facility links.

IRC provides an XCF access method that makes it unnecessary to use z/OS Communications Server to
communicate between MVS images within the same MVS sysplex.

22 CICS TS for z/OS: Intercommunication Guide

Each CICS region is assigned to an XCF group when it logs on to IRC, even if it is not currently connected
to any regions in other MVS images. You specify the name of the XCF group on the XCFGROUP system
initialization parameter. If you do not specify XCFGROUP, the region becomes a member of the default
CICS XCF group, DFHIR0OO.

When members of a CICS XCF group that are in different MVS images communicate, CICS selects the XCF
access method dynamically, overriding the access method specified on the connection resource
definition. By means of MVS cross-system coupling facility, MRO can function between MVS images in a
sysplex environment, supporting all the usual MRO operations.

XCF/MRO does not support accessing shared data tables across MVS images. Shared access to a data
table, across two or more CICS regions, requires the regions to be in the same MVS image. To access a
data table in a different MVS image, you can use function shipping.

Each CICS region can be a member of only one XCF group, which it joins when it logs on to IRC. The
maximum size of an XCF group is limited by the MVS MAXMEMBER parameter, with an absolute limit of
2047 members. If this limit is a problem because, for example, it limits the number of CICS regions you
can have in your sysplex, you can create multiple XCF groups, each containing a different set of regions.
You might, for example, have one XCF group for production regions and another for development and test
regions. If you do need to have multiple XCF groups, follow these recommendations:

 You put your production regions in a different XCF group from your development and test regions.
« You do not create more XCF groups than you need; two, separated as described, may be sufficient.
 You try not to move regions between XCF groups.

 You try not to add or remove regions from existing XCF groups.

Note that CICS regions can use MRO or XCF/MRO to communicate only with regions in the same XCF
group. Members of different XCF groups cannot communicate using MRO or XCF/MRO, even if they are in
the same MVS image.

CICS regions linked by XCF/MRO can be at different release levels; see “Multiregion operation” on page 1.
Depending on the versions of CICS installed in the MVS images participating in XCF/MRO, the versions of
DFHIRP installed in the link pack areas of the MVS images can be different. If a single MVS image contains
different releases of CICS, all using XCF/MRO to communicate with regions in other images in the sysplex,
the DFHIRP module in the MVS LPA must be that from the most current CICS release in the image, or
higher. However, note that the CICS TS for z/0S, Version 4.1 version of DFHIRP (required for multiple XCF
group support) can be used only on z/OS Version 1.7 or later. For full details of software and hardware
requirements for XCF/MRO, see Installation requirements for XCF/MROQin the IBM Knowledge Center.

Figure 7 on page 24 is an example of the use of XCF/MRO in a sysplex environment. This example, has
only one CICS XCF group, DFHIR000. The members of DFHIR000 can communicate using XCF/MRO links
across the two MVS images.

The MRO links between CICS1 and CICS2 and between CICS3 and CICS4 use either the IRC or XM access
methods, as defined for the link. The MRO links between CICS regions on MVS1 and the CICS regions on
MVS2 use the XCF method, which is selected by CICS dynamically.

In each MVS, the DFHIRP module in the LPA must be at the level of the highest CICS TS for z/OS release
in the image.

Chapter 1. CICS intercommunication 23

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1er.html

SYSPLEAT

< >
SYSPLEATIMER
MVS1 z/0S {! g MVS2 z/0S
L DEHIRP \ | | \ DFHIRF L
—>=X X CF signaling paths Al—— F
A / C{i C A
F< F
CICS1 CICS2 | X X | CICS3 ClCs4
ACFaroup: E I:E ACFgroup:
DFHI|RDDD T DFI—lHFEEIDEI
DECTL/IMS DECTL/IMS
regions X A regions
C C
F F
Group: SYSGRS Group: SYSGRS
Member: SYS Member: SYS2
Group: SYSMYS L Group: SYSMVS
Member: SYS S - Member: SYS2

Figure 7. A sysplex (SYSPLEX1) containing a single CICS XCF group

XCF
COUPLE
DATA
SET(S)

Figure 8 on page 25 is a slightly more complex example. This example has two CICS XCF groups,
DFHIR000 and DFHIR001. The members of each XCF group can communicate across the MVS images by

means of XCF/MRO links.

To support multiple CICS XCF groups, both MVS images must be z/OS Version 1.7 or later and must use
the CICS TS for z/OS, Version 3.2 or later version of DFHIRP. Although z/0S has supported multiple XCF
groups since Version 1.6, CICS TS for z/OS, Version 3.2, which is required to join an XCF group other than
DFHIROO0O requires z/OS Version 1.7 or later.

24 CICS TS for z/OS: Intercommunication Guide

SYSPLEAT

< o
SYSPLEATIMER
MYS1 /05 {! g MVS2 z/0OS
L DFHIRP DFHIEF L
F —>=X X CF signaling paths A—— F
A / A C{i C A
F F
CICS 1 CICs2 X W CICSHE CICSE
PP,
X CF group: |[XCF group: C |:C X CFgroup: | XCF group:
DFHIROOO |DFHIROO1 | T ~=F | DFHIROOD | DFHIROOY
Cicsz | CICS4 DBCTL/IMS
XCFgroup: | XCFgroup: | x X regions
DFHIR000 |DFHIROOD | ~ C
F F
Group: SYSGRS Group: SYSGRS
IMember: =SS Member: =SYs2
Group: SYSMYS L Group: SYSMVS
IMember: =SS S - Member: =SYs2

XCF
COUPLE
DATA
SET(S)

Figure 8. A sysplex (SYSPLEX1) containing two CICS XCF groups

Note:

« The members of the DFHIR000 XCF group in MVS1 (CICS 1, CICS 3, and CICS 4) use XCF/MRO, which is
selected by CICS dynamically, to communicate with the member of the DFHIRO00 XCF group in MVS2
(CICS 5). Similarly, CICS 2 in MVS1 uses XCF/MRO to communicate with CICS 6 in MVS 2; they are both

members of the DFHIR001 group.

« CICS 1, CICS 3, and CICS 4 cannot use XCF/MRO to communicate with CICS 6, because CICS 6isin a
different XCF group. Similarly, CICS 2 cannot use XCF/MRO to communicate with CICS 5.

- Because they are in the same MVS image and the same XCF group, CICS 1, CICS 3, and CICS 4 can
communicate with each other using either the MRO(IRC) or MRO(XM) access method, as defined for the

links.

Chapter 1. CICS intercommunication 25

« CICS 5 cannot use any form of MRO to communicate with CICS 6, even though they are in the same MVS
image, because they are in different XCF groups. Similarly, CICS 2 cannot use any form of MRO to
communicate with CICS 1, CICS 3, or CICS 4.

Benefits of XCF/MRO
Cross-system MRO using XCF links offers a number of benefits.

« A low communication overhead between MVS images, providing much better performance than using
ISC links to communicate between MVS systems. XCF/MRO thus improves the efficiency of transaction
routing, function shipping, asynchronous processing, and distributed program link across a sysplex. You
can also use XCF/MRO for distributed transaction processing if the LUTYPE®6.1 protocol is adequate for
your purpose.

« Easier connection resource definition than for ISC links, with no SNA (z/OS Communications Server)
tables to update.

« Good availability, by having alternative processors and systems ready to continue the workload of a
failed MVS or a failed CICS.

« Easier transfer of CICS systems between MVS images. The more straightforward connection resource
definition of MRO, with no SNA tables to update, makes it easier to move CICS regions from one MVS to
another. You no longer need to change the connection definitions from CICS MRO to CICS ISC (which
can be done only if the CICS startup on the new MVS is a warm or cold start).

- Improved price and performance, by coupling low-cost, rack-mounted, air-cooled processors in an
HPCS environment.

« Growth in small increments.

« Organizational benefits. Because regions in different XCF groups cannot communicate over MRO or
XCF/MRO, each group of regions is effectively isolated from the others. This isolation can be useful if, for
example, you want to prevent, possibly, access accidentally to production regions from development or
test regions.

Applications of multiregion operation
Multiregion operation provides an environment for a number of typical applications.

Program development

You can isolate the testing of newly written programs from production work by running a separate CICS
region for testing. This isolation permits the reliability and availability of the production system to be
maintained during the development of new applications, because the production system continues even if
the test system terminates abnormally.

You can start and stop the test system as required, without interrupting production work. During the
cutover of the new programs into production, terminal operators can run transactions in the test system
from their regular production terminals, and the new programs can access the full resources of the
production system.

Time-sharing

If one CICS system performs compute-bound work, such as APL or ICCF, as well as regular DB/DC work,

the response time for the DB/DC user can be unduly long. You can improve the response time by running
the compute-bound applications in a lower-priority address space and the DB/DC applications in another
address space.

Transaction routing allows any terminal to access either CICS system without the operator being aware of
the two different systems.

Reliable database access
You can use CICS storage protection and transaction isolation to guard against unreliable applications
that might otherwise stop the system or disable other applications.

However, you might use MRO to extend the level of protection.

26 CICS TS for z/OS: Intercommunication Guide

For example, you might define two CICS regions, one that owns applications that you have identified as
unreliable, and the other that owns the reliable applications and the database. If you run a smaller
number of applications in the database-owning region, you have a more reliable region. However, the
cross-region traffic is greater, so performance can be degraded. You must balance performance against
reliability.

You can take this application of MRO to its limit by having no user applications at all in the database-
owning region. The online performance degradation might be a worthwhile trade-off against the elapsed
time necessary to restart a CICS region that owns a very large database.

Departmental separation
MRO enables you to create a CICSplex in which the various departments of an organization have their own
CICS systems.

Each can start and end its own system as it requires. At the same time, each can have access to other
departments' data, with access controlled by the system programmer. A department can run a
transaction on another department's system, again subject to the control of the system programmer.
Terminals need not be allocated to departments, because, with transaction routing, any terminal can run
a transaction on any system.

Multiprocessor performance
Using MRO, you can take advantage of a multiprocessor by linking several CICS systems into a CICSplex,
and allowing any terminal to access the transactions and data resources of any of the systems.

The system programmer can assign transactions and data resources to any of the connected systems to
get optimum performance. Transaction routing presents the terminal user with a single system image; the
user is not aware that more than one CICS system is present.

Transaction routing is described in “CICS transaction routing” on page 53.

Workload balancing in a sysplex
In a sysplex, you can use MRO and XCF/MRO links to create a CICSplex consisting of sets of functionally
equivalent terminal-owning regions (TORs) and application-owning regions (AORs).

You can use these products and functions to perform workload balancing:

The z/OS Communications Server generic resource function

Dynamic transaction routing

Dynamic routing of DPL requests
CICSPlex System Manager (CICSPlex SM)
« The z/OS Workload Manager (WLM)

A z/0S Communications Server application program such as CICS can be known to z/OS Communications
Server by a generic resource name, as well as by the specific network name defined on its z/OS
Communications Server APPL definition statement. A number of CICS regions can use the same generic
resource name.

A terminal user who wants to start a session with a CICSplex that has several terminal-owning regions
uses the generic resource name in the logon request. Using the generic resource name, z/0S
Communications Server can select one of the CICS TORs to be the target for that session. For this
mechanism to operate, the TORs must all register to z/0OS Communications Server under the same
generic resource name. z/OS Communications Server can perform workload balancing of the terminal
sessions across the available terminal-owning regions.

The terminal-owning regions can in turn perform workload balancing using dynamic transaction routing.
Application-owning regions can route DPL requests dynamically. The CICSPlex SM product can help you
to manage dynamic routing across a CICSplex.

« “Dynamically routing DPL requests” on page 79

- “Dynamic transaction routing” on page 54

Chapter 1. CICS intercommunication 27

Virtual storage constraint relief
In some large CICS systems, the amount of virtual storage available can become a limiting factor.

In such cases, you might be able to relieve the virtual storage problem by splitting the system into two or
more separate systems with shared resources. You can use all the facilities of MRO to help maintain a
single-system image for users.

If you are using DL/I databases and want to split your system to avoid virtual storage constraints,
consider using DBCTL, rather than CICS function shipping, to share the databases between your CICS
address spaces.

Conversion from a single-region system

Usually, you can convert existing single-region CICS systems to multiregion CICS systems with little or no
reprogramming.

CICS function shipping allows operators of terminals owned by an existing command-level application to
continue accessing existing data resources after either the application or the resource has been
transferred to another CICS region. Applications that use function shipping must follow the rules given in
Application programming for CICS function shipping. To conform to these rules, you might have to modify
programs written for single-region CICS systems.

CICS transaction routing allows operators of terminals owned by one CICS region to run transactions in a
connected CICS region. One use of this facility is to allow applications to continue to use function that has
been discontinued in the current release of CICS. Such coexistence considerations are described in
Upgrading MRO. In addition, the restrictions that apply are given in Application programming for CICS
transaction routing.

You must define an MRO link between the two regions and to provide local and remote definitions of the
shared resources.

CICS function shipping

You can use CICS function shipping to write CICS application programs without regard to the location of
the requested resources. They use file control commands, temporary-storage commands, and other
functions in the same way.

This chapter contains the following topics:

« “Overview of function shipping” on page 28

 “Design considerations for Function Shipping” on page 29

« “The mirror transaction and transformer program” on page 32

« “Function shipping examples” on page 35.

Overview of function shipping
You can use CICS function shipping to enable CICS application programs to perform the following tasks.

Access CICS files owned by other CICS systems by shipping file control requests.

Access DL/I databases managed by or accessible to other CICS systems by shipping requests for DL/I
functions.

Transfer data to or from transient data and temporary storage queues in other CICS systems by
shipping requests for transient data and temporary storage functions.

Initiate transactions in other CICS systems, or other non-CICS systems that implement SNA LU Type 6
protocols, such as IMS, by shipping interval control START requests. This form of communication is
described in “Asynchronous processing” on page 38.

You can write applications without regard to the location of the requested resources. They use file control
commands, temporary-storage commands, and other functions in the same way. Entries in the CICS

28 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfht124.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/upgrading/process/upgrade_mro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfht129.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfht129.html

resource definition tables allow the system programmer to specify that the named resource is not on the
local (or requesting) system but on a remote (or owning) system.

An illustration of a shipped file control request is given in Figure 9 on page 29. In this figure, a
transaction running in CICA issues a file control READ command against a file called NAMES. The
resource definition for the file indicates that this file is owned by a remote CICS system called CICB. CICS
changes the READ request into a suitable transmission format and then ships it to CICB for execution.

In CICB, the request is passed to a special transaction known as the mirror transaction. The mirror
transaction re-creates the original request, issues it on CICB, and returns the acquired data to CICA.

CICS recovery and restart enables resources in remote systems to be updated, and ensures that, when
the requesting application program reaches a synchronization point, any mirror transactions that are
updating protected resources also take a synchronization point, so that changes to protected resources in
remote and local systems are consistent. The CICS master terminal operator is notified of any failures in
this process, so that suitable corrective action can be taken. This action can be taken manually or by user-
written code.

ClCa CICB

DEFINE DEFINE
FILE(NAMES) FILE(NAMES)
REMOTESYSTEM(CICE)

EXEC CICS READ IPIC, ISC, or CICS mirror
FILE{MAMES) MRO session transaction
TERMIMAL INTORCO0) + * (issues READ
. command and
passas data
back)

Figure 9. Function shipping

Design considerations for Function Shipping

User application programs can run in a CICS intercommunication environment and use the
intercommunication facilities without being aware of the location of the file or other resource that is being
accessed. The location of the resource is specified in the resource definition.

Guidance on identifying and defining remote resources is given in Defining remote resources.

The resource definition can also specify the name of the resource as it is known on the remote system, if
it is different from the name by which it is known locally. When the resource is requested by its local
name, CICS substitutes the remote name before it sends the request. Substituting the remote name is
useful when a particular resource exists with the same name on more than one system but contains data
specific to the system on which it is located.

This technique might limit program independence. Application programs can also name remote systems
explicitly on commands that can be function-shipped, by using the SYSID option. If you specify this
option, the request is routed directly to the named system, and the resource definition tables on the local
system are not used. You can specify the local system in the SYSID option so that the decision whether to
access a local resource or a remote one can be taken at execution time.

For design considerations that relate to initiating transactions in other CICS systems, or other systems
that are not CICS but implement SNA LU Type 6 protocols, by shipping interval control START requests,
see “Asynchronous processing” on page 38.

File control
Function shipping allows access to VSAM or BDAM files located on a remote CICS system.

Note the following points:-

Chapter 1. CICS intercommunication 29

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11o.html

« INQUIRE FILE, INQUIRE DSNAME, SET FILE, and SET DSNAME are not supported.

« Both read-only and update requests are allowed, and the files can be defined as protected on their own
system.

« Updates to remote protected files are not committed until the application program issues a sync point
request or terminates successfully.

« Linked updates of local and remote files can be performed in the same unit of work, even if the remote
files are located on more than one connected CICS system.

Important:

Take care when designing systems in which remote file requests using physical record identifier values
are employed, such as VSAM RBA, BDAM, or files with keys not embedded in the record. You must ensure
that all application programs in remote systems have access to the correct values following addition of
records or reorganization of these types of file.

DL/I

Function shipping allows a CICS transaction to access IMS Database Manager (IMS DM) databases
associated with a remote CICS system, or DL/I databases associated with a remote CICS Transaction
Server for VSE system.

See Chapter 1, “CICS intercommunication,” on page 1 for a list of systems with which CICS Transaction
Server for z/OS, Version 5 Release 5 can communicate.

The IMS database associated with a remote CICS Transaction Server for z/OS system can be a local
database owned by the remote system or a database accessed using IMS database control (DBCTL). To
the CICS system that is doing the function shipping, this database is remote.

As with file control, updates to remote DL/I databases are not committed until the application reaches a
sync point. With IMS DM, it is not possible to schedule more than one program specification block (PSB)
for each unit of work, even when the PSBs are defined to be on different remote systems. Therefore
linked DL/I updates on different systems cannot be made in a single unit of work.

The PSB directory list (PDIR) is used to define a PSB as being on a remote system. The remote system
owns the database and the associated program communication block (PCB) definitions.

Temporary storage
Function shipping enables application programs to send data and retrieve data from temporary storage
gueues located on remote systems.

You can define a remote temporary storage queue by specifying remote attributes in a TSMODEL resource
definition. If the queue is to be protected, you must define it as recoverable.

Transient data
An application program can access intrapartition or extrapartition transient-data queues on remote
systems.

The definition of the queue in the requesting system defines it as being on the remote system. The
definition of the queue in the remote system specifies its recoverability attributes, and whether it has a
trigger level and associated terminal. You can define extrapartition queues in the owning system as
having records of fixed or variable length.

Many current uses of transient-data and temporary-storage queues can be extended to an interconnected
processor system environment. For example, you can create a queue of records in a system for
processing overnight. Queues also provide another means of handling requests from other systems while
freeing the terminal for other requests. The reply can be returned to the terminal when it is ready, and
delivered to the operator when there is a lull in entering transactions.

If a transient-data queue has an associated trigger level transaction, you must define the named
transaction to execute in the system owning the queue; it cannot be defined as remote. If a terminal is
associated with the transaction, it can be connected to another CICS system and used through the
transaction routing facility of CICS.

30 CICS TS for z/OS: Intercommunication Guide

By means of the remote naming capability, a program can send data to the CICS service destinations,
such as CSMT, in both local and remote systems.

Intersystem queuing
Performance problems can occur when function shipping requests that are waiting for free sessions are
gueued in the issuing region.

Requests that are to be function shipped to a resource-owning region might be queued if all bound
contention winner sessions are busy, so that no sessions are immediately available. If the resource-
owning region is unresponsive, the queue can become so long that the performance of the issuing region
is severely impaired. Further, if the issuing region is an application-owning region, its impaired
performance can spread back to the terminal-owning region.

Note: Contention winner is the terminology used for APPC connections. On MRO and LUTYPE6.1
connections, the SEND sessions (defined in the session definitions) are used for ALLOCATE requests;
when all SEND sessions are in use, queuing starts.

On IPIC connections, queuing starts when there are no available send sessions. The number of send
sessions are specified using the SENDCOUNT attribute on the IPCONN resource definition on the local
server. The number of receive sessions are specified using the RECEIVECOUNT attribute defined in the
IPCONN resource definition on the remote system. The number of send sessions that are used is the
lower of the following two values:

« SENDCOUNT on the local definition
« RECEIVECOUNT on the remote definition

The symptoms of this impaired performance are as follows:

« The system reaches its maximum transactions (MXT) limit, because many tasks have requests queued.
« The system becomes short on storage.

In either case, CICS cannot start any new work.
CICS provides two methods to prevent these problems:

e The QUEUELIMIT and MAXQTIME options on both the IPCONN and CONNECTION definitions. You can
use these options to limit the number of requests that can be queued against particular remote regions,
and the time that requests must wait for sessions on unresponsive connections.

« The global user exits XZIQUE, XISCONA, and XISQUE. The XZIQUE or XISCONA exit program is invoked
if no contention winner session is immediately available. The exit program can instruct CICS to queue
the request, or to return SYSIDERR to the application program. Its decision can be based on statistics
accessible from the user exit parameter list. For programming information about writing XZIQUE and
XISCONA exit programs, refer to Intersystem communication program exits, XISCONA, XISLCLQ, and
XISQLCL. For information about the statistics records that are passed to your exit program, refer to
Introduction to CICS statistics. The global user exit XISQUE is used to manage IPIC intersystem
queues. See XISQUE exit for managing IPIC intersystem queues.

Note: For non-IPIC connections, it is best practice to use the XZIQUE exit, rather than XISCONA.
XZIQUE provides better function, and is of more general use than XISCONA. It is driven for function
shipping, DPL, transaction routing, and distributed transaction processing requests, whereas XISCONA
is driven only for function shipping and DPL. If you enable both exits, XZIQUE and XISCONA can both be
driven for function shipping and DPL requests, which is not recommended.

If you already have an XISCONA exit program, you might be able to modify it for use at the XZIQUE exit
point.

For further information about controlling intersystem queues, see Intersystem session queue
management.

Chapter 1. CICS intercommunication 31

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3a0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3a0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/monitoring/dfht3_stats_intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3_xisque_exit.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html

The mirror transaction and transformer program
CICS supplies a number of mirror transactions, some of which correspond to "architected processes".

Details of the supplied mirror transactions are given in Defining local resources. Here, they are referred to
generally as the mirror transaction and have the transaction identifier CSMx.

The mirror transaction runs as a normal CICS transaction and is threadsafe when an IPIC connection is

used.
CICA CICB
DEFIME FILE(FA) DEFINE FILE(FA) ...
REMOTESYSTEM(CICB) ...
Transaction
ARAA: o Mirror
EXEC CICS READ fransacton
+— FILE(FA)... CSM
. _
i1
(3 (4}
—H (5
' EXEC
(8) interface program "
DFHEIP
2 |_ —+—
{7 -
— [——= Transformer Transformer ——
program program '

Figure 10. The transformer program and the mirror in function shipping

The sequence of events in Figure 10 on page 32 are as follows:

In the requesting system (CICA in Figure 10 on page 32), the command-level EXEC interface program
(for all except DL/I requests) determines that the requested resource is on another system (CICB in the
example). It therefore calls the function-shipping transformer program to transform the request into a
form suitable for transmission (in the example, line 2 indicates this call). The EXEC interface program
then calls on the intercommunication component to send the transformed request to the appropriate
connected system (line 3). For DL/I requests, part of this function is handled by CICS DL/I interface
modules. For guidance about DL/I request processing, see Overview of Database Control (DBCTL).

The first request to a specific remote system on behalf of a transaction causes the communication
component in the local system to precede the formatted request with the appropriate mirror
transaction identifier, in order to attach this transaction in the remote system. Thereafter, it keeps track
of whether the mirror transaction stops, and reinvokes it as required.

The mirror transaction uses the function-shipping transformer program to decode the formatted
request (line 4 in Figure 10 on page 32). The mirror then runs the corresponding command. On
completion of the command, the mirror transaction uses the transformer program to construct a
formatted reply (line 5). The mirror transaction returns this formatted reply to the requesting system,
CICA (line 6). On CICA, the reply is decoded, again using the transformer program (line 7), and used to
complete the original request made by the application program (line 8).

If the mirror transaction is not required to update any protected resources, and no previous request
updated a protected resource in its system, the mirror transaction stops after sending its reply.
However, if the request causes the mirror transaction to change or update a protected resource, or if
the request is for any DL/I program specification block (PSB), it does not stop until the requesting
application program issues a synchronization point (sync point) request or ends successfully. If a
browse is in progress, the mirror transaction does not end until the browse is complete.

When the application program issues a sync point request, or ends successfully, the
intercommunication component sends a message to the mirror transaction that causes it also to issue a
sync point request and stop. The successful sync point by the mirror transaction is indicated in a

32 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11u.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/database/dfht41f.html

response sent back to the requesting system, which then completes its sync point processing, thereby
committing changes to any protected resources. If DL/I requests have been received from another
system, CICS issues a DL/I TERM request as a part of the processing resulting from a sync point request
made by the application program and carried out by the mirror transaction.

« The application program can access protected or unprotected resources in any order, and is not
affected by the location of protected resources. They might all be in remote systems, for example.
When the application program accesses resources in more than one remote system, the
intercommunication component invokes a mirror transaction in each system to run requests for the
application program. Each mirror transaction follows the rules described previously for ending, and
when the application program reaches a sync point, the intercommunication component exchanges
sync point messages with any mirror transactions that have not yet ended. This situation is called the
multiple-mirror.

« The mirror transaction uses the CICS command-level interface to run CICS requests, and the DL/I CALL
or the EXEC DLI interface to run DL/I requests. The request is thus processed as for any other
transaction and the requested resource is located in the appropriate resource table. If its entry defines
the resource as remote, the mirror transaction's request is formatted for transmission and sent to
another mirror transaction in the specified system. This situation is called a chained-mirror. To guard
against possible threats to data integrity caused by session failures, you are recommended to avoid
defining a connected system in which chained mirror requests occur, except when the requests
involved do not access protected resources, or are inquiry-only requests.

Long-running mirror tasks for MRO

Normally, MRO mirror tasks are stopped as soon as possible, in the same way as described for ISC
mirrors, to keep the number of active tasks to a minimum, and to avoid holding on to the session for long
periods.

However, for some applications, it is more efficient to retain both the mirror task and the session until the
next sync point, though this retention is not required for data integrity. For example, a transaction that
issues many READ FILE requests to a remote system might be better served by a single mirror task,
rather than by a separate mirror task for each request. In this way, you can reduce the overheads of
allocating sessions on the sending side and attaching mirror tasks on the receiving side.

Mirror tasks that wait for the next sync point, even though they logically do not need to do so, are called
long-running mirrors. They are applicable to MRO and IPIC links only. For MRO links, long-running mirror
tasks are specified, on the system on which the mirror runs, by coding MROLRM=YES in the system
initialization parameters. A long-running mirror is stopped by the next sync point (or RETURN) on the
sending side.

For some applications, the performance benefits of using long-running mirrors can be significant.

Figure 12 on page 36 and Figure 13 on page 36 in “Function shipping examples” on page 35 show
how the mirror acts for MROLRM=NO and MROLRM=YES, respectively.

An additional system initialization parameter, MROFSE=YES, specified on the front-end region, extends
the retention of the mirror task and the session from the next sync point to the end of the task. To achieve
maximum benefit, use MROFSE=YES with MROLRM=YES on the back-end region. However, MROFSE=YES
still applies if the back-end region has MROLRM=NO, if requests are of the type that cause the mirror
transaction to keep its inbound session.

Conceptually, you specify MROLRM on the back-end region and MROFSE is specified on the front-end
region. However, if the distinction between "back end" and "front end" is not clear, it is safe to code both
parameters on each region if necessary.

MROFSE=YES gives a performance improvement only if most applications initiated from the front-end
region have multiple sync points, and function shipping requests are issued between each sync point.

Do not specify MROFSE=YES in the front-end region when long-running tasks might be used to function-
ship requests, because a SEND session is unavailable for allocation to other tasks when unused. If you
specify MROFSE=YES, you might prevent the connection from being released, when contact has been lost
with the back-end region, until the task ends or issues a function-shipped request.

Chapter 1. CICS intercommunication 33

Long-running mirror tasks are also available over IPIC links. The lifetime of the mirror is specified using
the MIRRORLIFE attribute on the IPCONN resource definition. See Long-running mirror tasks for IPIC.

The short-path transformer for MRO
CICS uses a special transformer program (DFHXFX) for function shipping over MRO links.

This short-path transformer optimizes the path length involved in the construction of the terminal input/
output areas (TIOA) that are sent on an MRO session for function shipping. It optimizes the path length by
using a private CICS format for the transformed request, rather than the architected format defined by
SNA.

CICS uses DFHXFX for shipping file control, transient data, temporary storage, and interval control
(asynchronous processing) requests. It is not used for DL/I requests. The shipped request always
specifies the CICS mirror transaction, CSMI. Architected process names are not used.

Long-running mirror tasks for IPIC

Normally, IPIC mirror tasks are stopped as soon as possible, in the same way as described for ISC
mirrors, to keep the number of active tasks to a minimum and to avoid holding on to the session for long
periods.

However, for some applications, it is more efficient to retain both the mirror task and the session until the
next sync point, though this rentention is not required for data integrity. For example, a transaction that
issues many READ FILE requests to a remote system might be better served by a single mirror task,
rather than by a separate mirror task for each request. In this way, you can reduce the overheads of
allocating sessions on the sending side and attaching mirror tasks on the receiving side.

Mirror tasks that wait for the next sync point, or beyond the next sync point, even though they logically do
not need to do so, are called long-running mirrors. They are applicable to MRO and IPIC links only. For
IPIC links, the lifetime of the mirror is specified on the system on which the mirror runs by using the
MIRRORLIFE attribute of the IPCONN on which the request is received. A long-running mirror for an
IPCONN specified with MIRRORLIFE(UOW) is stopped by the next sync point (or RETURN) on the sending
side. A long-running mirror for an IPCONN specified with MIRRORLIFE(TASK) is stopped by the end of the
task on the sending side.

For some applications, the performance benefits of using long-running mirrors can be significant.
MIRRORLIFE(TASK) improves performance only if most applications that are initiated from the front-end
region have multiple sync points and function shipping requests are issued between each sync point.

Specify MIRRORLIFE(TASK) or MIRRORLIFE(UOW) with caution, especially if distributed program link
(DPL) requests with SYNCONRETURN or TRANSID are used.

Do not specify MIRRORLIFE(TASK) when long-running tasks might be used to function ship requests. The
long-running tasks will retain the use of a SEND session for its entire duration and the SEND session will
not be available for allocation to other tasks when it is no longer used. The MIRRORLIFE setting is not
reflected in the lifetime of the mirror task until a file control, transient data queue (TDQ) or temporary
storage queue (TSQ) request is function shipped.

Error handling and failure of the mirror transaction

If the mirror task in the remote region encounters an error or abend, and the mirror program can handle
the error or abend, the error, or abend is returned to the application program that issued the function-
shipped request.

The remote mirror (server) task, and the task running the program that issued the request (client task),
share a common transaction scope unless the request was one of the following requests:

« A function-shipped EXEC CICS START NOCHECK command
« Adistributed program link (DPL) request with SYNCONRETURN
« A non update request; for example, a file control read only

If the server task performs recoverable work as part of such a common transaction scope, that work is
committed or backed out under the control of the sync point processing of the client task even though an
error or abend was encountered. The default action is for the error or abend to cause abnormal

34 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht10b.html

termination of the client task and to back out all recoverable updates made by both the client and server
programs.

However, in common with local execution (that is, when not using function shipping or distributed
program link), the application program that issued the request that was function-shipped might attempt
to handle the error or abend. The handle logic then issues an EXEC CICS SYNCPOINT, SYNCPOINT
ROLLBACK, RETURN, or ABEND command. Attempting a SYNCPOINT or RETURN, (rather than a
SYNCPOINT ROLLBACK or ABEND) despite being informed of the error or abend, results in an attempt to
commit the client program's local resource updates and those performed by the server transaction before
the error or abend was encountered.

If the mirror program cannot handle the error or abend encountered by the mirror transaction and this
causes the termination and backout of the mirror transaction without sending a response to the client
application, CICS forces the client program's transaction to back out. Any explicit sync point attempt fails
and the local updates are backed out. This response also occurs if a problem is encountered with the
communications link between the client and server tasks.

If the client and server tasks do not share a common transaction scope, as described previously, errors or
abends that result in the stopping of the server task, and problems with the communications link, do not
force the client's transaction to back out.

Function shipping examples

These examples illustrate the lifetime of the mirror transaction and the information that flows between
the application and its mirror.

The examples contrast the action of the mirror transaction when accessing protected and unprotected
resources on behalf of the application program, over MRO, ISC, or IPIC links, with and without MRO long-
running mirror tasks.

System A Transmitted Information ~ System B

Application Transaction

EXEC CICS READ Attach CSM*,
FILE{'RFILE"} READ' request
* Attach mirror
transaction.
Perform READ reguest.
'READ" reply,last
Free sassion. Reply is + Frea session.
passed back to the Terminate mirror.
application, which
continues processing.

Figure 11. ISC function shipping: simple inquiry

Chapter 1. CICS intercommunication 35

System A

Application Transaction

EXEC CICS READ
FILE{'RFILE")

Free session. Reply is
passad back to the
application, which
continues processing.

Transmitted Information

Attach CGSM*,
‘READ' request

'READ" reply last

System B

[DFHSIT MROLRM{NO)}

Aftach mirror
transaction.
Perform READ requast.

Free session.
Terminate mirror.

Figure 12. MRO or IPIC function shipping: simple inquiry

Systemn A

Application Transaction

EXEC CICS READ
FILE{'RFILE")

Hold session. Reply is
passed back to the
application, which
continues processing.

Transmitted Information

System B

Attach CSM*,
‘HEAD' request

'READ' reply

[DFHSIT MROLAM{YES)}

Aftach mirror
transaction.
Perform READ request.

Hold session. Mirror
waits for next request.

Figure 13. MRO or IPIC function shipping: simple inquiry

36 CICS TS for z/OS: Intercommunication Guide

System A

Application Transaction

EXEC G-IIZE}E READ UFPDATE
FILE{'RFILE"}

Reply passed to application

EXEC CICS REWRITE
FILE{'RFILE"}

Reply passed to application

EXEC CICS SYMCPOINT

Sync peint completed.
Application continues.

Transmitted Information

Attach CSM*, 'READ
UPDATE' request

'READ UPDATE' reply

'‘REWRITE' request

'REWRITE" raply

'BYMNCPOINT request, last

positive response

Figure 14. ISC, MRO, or IPIC function shipping: update

System A

Application Transaction

EXEC GIE‘,E READ UPDATE
FILE{'HFILE"}

Reply passed to application

EXEC CICS REWRITE
FILE{'RFILE"}

Reply passed to application
EXEC CICS SYNCPOINT

Application iz abendead and
backs out. Message routed
to CEMT.

Transmitted Information

Attach CSM*, 'READ
UPDATE" request

_'READ UPDATE' reply

'‘REWRITE' request

'REWRITE" regly

'SYNCPOINT request, Ias}

negative response

Abend message

System B

Attach mirror transaction.

Perform READ UPDATE.

Mirror waits.

Mirror performs BREWRITE.

Mirror waits, still holding
the engueus on the updated
record.

Mirror takes sync point, releasas
the enqueus, frees the session,
and terminates

System B

Attach mirror transaction.

Perform READ UPDATE.

Mirror waits.

Mirror performs REWRITE.

Mirror waits.

Mirror attemnpts sync point but
abends (for example. logging
arror). Mirmor backs out and
terminates.

Session freed.

Figure 15. ISC, MRO, or IPIC function shipping: update with ABEND.

Chapter 1. CICS intercommunication 37

Figure 15 on page 37 is like Figure 14 on page 37, except that an abend occurs during sync point

processing.
System A Transmitted Information System B
For MBRO: MROFSE=YES For IPIC: IPCONN resource

attribute MIRRORBLIFE({TASK)

Application Transaction

EXEC GIEE}S READ UFDATE Attach CSM®, 'READ

FILE{'RFILE"} UPDATE' request . _
* Attach mirror transaction.
) 'READ UPDATE' repl
Reply passed to application - rery Perform READ UPDATE.
- Mirror waits.
EXEC CICS REWRITE »)
REWRITE t
FILE(RFILE'} UeS. . | Miror performs REWRITE.

. 'REWRITE" repl
Reply passed to application + oy

Mirror waits, still holding
the engueue on the updated

EXEC CICS S¥YMCPOINT 'SYNCPOINT request record.
i asitive response Mirror takes sync point, releases
s - post pe the enqueus and then waits for

Application continuas.
e the next requast.

Figure 16. MRO or IPIC function shipping: update using MROFSE or IPCONN MIRRORLIFE(TASK) to extend
the life of the mirror transactions

Asynchronous processing

Asynchronous processing distributes the processing required by an application between
intercommunicating systems. The processing is independent of the sessions on which requests are sent
and replies are received.

This chapter contains the following topics:

« “Overview of asynchronous processing” on page 38

« “Asynchronous processing methods” on page 39

« “Asynchronous processing using START and RETRIEVE commands” on page 40

« “System programming considerations” on page 45

« “Asynchronous processing examples” on page 46.

Overview of asynchronous processing

Asynchronous processing provides a means of distributing the processing that is required by an
application between systems in an intercommunication environment. Unlike distributed transaction
processing, however, the processing is asynchronous.

In distributed transaction processing, a session is held by two transactions for the period of a
“conversation” between them, and requests and replies can be directly correlated.

In asynchronous processing, the processing is independent of the sessions on which requests are sent
and replies are received. No direct correlation can be made between a request and a reply, and no

38 CICS TS for z/OS: Intercommunication Guide

assumptions can be made about the timing of the reply. These differences are illustrated in Figure 17 on
page 39.

System A System B

Synchronous Processing (DTP)

TRAN1 —-4—p—1 TRANZ TRANLI and TRANZ hold synchronous
conversation on session.

Asynchronous Processing
TRAN3 > TRAN4

TRAN3 initiates TRAN4 and sends
request.

Later TEAN4 initiates TRANS
TRANS < and sends reply.

No direct correlation exists
between executions of TRAN3 and
TRANS.

Figure 17. Synchronous and asynchronous processing compared

A typical application area for asynchronous processing is online inquiry on remote databases; for
example, an application to check a credit rating. A terminal operator can use a local transaction to enter a
succession of inquiries without waiting for a reply to each individual inquiry. For each inquiry, the local
transaction initiates a remote transaction to process the request, so that many copies of the remote
transaction can be executing concurrently. The remote transactions send their replies by initiating a local
transaction (possibly the same transaction) to deliver the output to the operator terminal (the one that
initiated the transaction). The replies may not arrive in the same order as that in which the inquiries were
issued; correlation between the inquiries and the replies must be made by means of fields in the user
data.

In general, asynchronous processing is applicable to any situation in which it is not necessary or desirable
to tie up local resources while a remote request is being processed.

Asynchronous processing is not suitable for applications that involve synchronized changes to local and
remote resources; for example, it cannot be used to process simultaneous linked updates to data split
between two systems.

Asynchronous processing methods

In CICS, asynchronous processing can be done in one of two ways: by using the interval control
commands START and RETRIEVE, or by using distributed transaction processing (DTP).

1. Asynchronous processing using the interval control commands START and RETRIEVE.

You can use the START command to schedule a transaction in a remote system in much the same way
as you would in a single CICS system. This type of asynchronous processing is in effect a form of CICS
function shipping, and as such, it is transparent to the application. The system programmer
determines whether the attached transaction is local or remote.

If you use the START command for asynchronous processing, you can communicate only with systems
that support the special protocol needed for function shipping; that is, CICS itself and IMS.

A CICS transaction that is initiated by a remotely issued start request can use the RETRIEVE command
to retrieve any data associated with the request. Data transfer is restricted to a single record passing
from the initiating transaction to the transaction initiated.

2. Asynchronous processing using distributed transaction processing (DTP).

Chapter 1. CICS intercommunication 39

This is a cross-system method and has no single-system equivalent. You can use it to initiate a
transaction in a remote system that supports one of the DTP protocols.

When you use DTP to attach a remote transaction, you also allocate a session and start a conversation.
This permits you to send data directly and, if you want, to receive data from the remote transaction.
Your transaction design determines the format and volume of the data you exchange. For example,
you can use repeated SEND commands to pass multirecord files.

When you have exchanged data, you terminate the conversation and quit the local transaction, leaving
the remote transaction to run on independently.

The procedure to be followed by the two transactions while they are working together is determined
by the application programming interface (API) for the protocol you are using. APPC is the preferred
one, although you must use LUTYPE®6.1 if you want to communicate with IMS. You might want to take
advantage of the flexible data exchange facilities by employing this method across MRO links too.

Whatever protocol you decide to use, you must observe the rules it imposes. However short the
conversation, during the time it is in progress, the processing is synchronous. In terms of command
sequencing, error recovery, and syncpointing, it is full DTP.

In both forms of asynchronous processing (and also in synchronous processing), a CICS transaction can
use the EXEC CICS ASSIGN STARTCODE command to determine how it was initiated.

CICS-to-IMS communication includes a special case of the DTP method described previously. Because it
restricts data communication to one SEND LAST command answered by a single RECEIVE, this book
refers to it elsewhere as the SEND/RECEIVE interface. The circumstances under which it is used are
described in CICS-to-IMS applications.

Distributed transaction processing is described in “Distributed transaction processing” on page 84.

Asynchronous processing using START and RETRIEVE commands
The following interval control commands can be used for asynchronous processing.
« START
« CANCEL
- RETRIEVE.

For programming information about CICSinterval control, see Interval control. .

Starting and canceling remote transactions

The START and CANCEL commands are function shipped to the remote CICS or IMS system. If the remote
system is CICS, the mirror transaction is started in the remote system to issue the START command on
that system.

About this task

For asynchronous processing of threadsafe programs in a remote CICS system, performance is affected
by the intercommunication method that you use for CICS-to-CICS communication. If you use IP
interconnectivity (IPIC) over TCP/IP to connect the CICS systems, CICS uses an L8 open TCB whenever
possible to run the mirror program used by the mirror transaction, so some TCB switching can be avoided.
If you use MRO or ISC over SNA to connect the CICS systems, the mirror program does not run on an
open TCB. The START and CANCEL commands are not threadsafe for any intercommunication method.

Procedure

« Use theinterval control START command to schedule transactions asynchronously in remote CICS and
IMS systems.

« For CICS-to-CICS communication, include time-control information on the shipped START command
using the INTERVAL or TIME options.

— ATIME specification is converted by CICS to a time interval, relative to the local clock, before the
command is shipped. Because the ends of an intersystem link might be in different time zones, it is

40 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfht12v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp37p.html

typically better to think in terms of time intervals, rather than absolute times, for intersystem
communication.

— Note particularly that the time interval specified on a START command specifies the time at which
the remote transaction is to be initiated, not the time at which the request is to be shipped to the
remote system.

« You cannot specify time control for START commands sent to IMS systems. INTERVAL(0) must be
specified or allowed to take the default value.

« You can cancel a START command shipped to a remote CICS system at any time up to its expiration
time by shipping a CANCEL command to the same system.
The particular START command has a unique identifier (REQID), which you can specify on the START
command and on the associated CANCEL command. Any task that knows the identifier can issue the
CANCEL command.

For information about canceling dynamically-routed START commands, see “Canceling interval control
requests” on page 70.

« Start requests for IMS transactions cannot be canceled after they have been issued, because you
cannot specify time control for START commands sent to IMS systems.

Passing information with the START command

The START command has a number of options that enable information to be made available to the remote
transaction when it is started. If the remote transaction is in a CICS system, it obtains the information by
issuing a RETRIEVE command.

About this task
The information that can be specified is summarized in the following list:
« User data—specified in the FROM option.
This is the principal way in which data can be passed to the remote transaction.

For CICS-to-CICS communication, additional data can be made available in a transient data or
temporary storage queue named in the QUEUE option. The queue can be on any CICS system that is
accessible to the system on which the remote transaction is executed.

The QUEUE option cannot be used for CICS-to-IMS communication.

« The transaction and terminal names to be used for replies—specified in the RTRANSID and RTERMID
options.

These options, whose values are set by the local transaction, provide the means for the remote
transaction to pass a reply to the local system. (That is, the TRANSID and TERMID specified by the
remote transaction on its reply are the RTRANID and RTERMID specified by the local system on the
initial request.)

« A terminal name—specified in the TERMID option.

For CICS-to-CICS communication, this is the name of a terminal that is to be associated with the remote
transaction when it is initiated. It may be that the terminal is defined on the region that owns the
remote transaction but is not owned by that region. If so, it is obtained by the automatic transaction
initiation (ATI) facility of transaction routing. See “Traditional routing of transactions started by ATI” on
page 57.

The global user exits XICTENF and XALTENF can be coded to cover the case of the terminal that is
shippable but not defined in the application-owning region. See “Shipping terminals for automatic
transaction initiation” on page 58.

For CICS-to-IMS communication, it is a transaction code or an LTERM name.

Chapter 1. CICS intercommunication 41

Passing a sysid or applid with the START command

If you have a transaction that can be started from several different systems, and which is required to
issue a START command to the system that initiated it, you can arrange for all of the invoking transactions
to send their local system sysid or applid as part of the user data in the START command.

About this task

An initiating transaction can obtain its local sysid by using an ASSIGN SYSID command, or its applid by
using an ASSIGN APPLID command.

If the name of the connection to the remote system matches the SYSIDNT system initialization parameter
of the remote system (typical of MRO), then the started transaction can reply using a START command
specifying the passed sysid.

If the name of an APPC or LUTYPEG.1 connection to the remote system does not match the SYSIDNT
system initialization parameter of the remote, then the started transaction can still determine the sysid to
be responded to. It can do this by issuing an EXTRACT TCT command on which the NETNAME option
specifies the passed applid.

Improving performance of intersystem START requests

In many inquiry-only applications, sophisticated error-checking and recovery procedures are not justified.
Where the transactions make inquiries only, the terminal operator can retry an operation if no reply is
received within a specific time. In such a situation, the number of messages to and from the remote
system can be substantially reduced by using the NOCHECK option of the START command.

About this task

Where the connection between the two systems is via the z/0OS Communications Server, this can result in
considerably improved performance. The price paid for better performance is the inability of CICS to
detect some types of error in the START command.

A typical use for the START NOCHECK command is in the remote inquiry application described at the
beginning of this chapter.

The transaction attached as a result of the terminal operator's inquiry issues an appropriate START
command with the NOCHECK option, which causes a single message to be sent to the appropriate remote
system to start, asynchronously, a transaction that makes the inquiry. The command should specify the
operator's terminal identifier. The transaction attached to the operator's terminal can now terminate,
leaving the terminal available for either receiving the answer or initiating another request.

The remote system performs the requested inquiry on its local database, then issues a start request for
the originating system. This command passes back the requested data, together with the operator's
terminal identifier. Again, only one message passes between the two systems. The transaction that is
then started in the originating system must format the data and display it at the operator's terminal.

If a system or session fails, the terminal operator must reenter the inquiry, and be prepared to receive
duplicate replies. To aid the operator, either a correlation field must be shipped with each request, or all
replies must be self-describing.

An example of intercommunication using the NOCHECK option is given in Figure 19 on page 47.

The NOCHECK option is always required when shipping of the START command is queued pending the
establishment of links with the remote system (see “Local queuing of START commands” on page 44),
or if the request is being shipped to IMS.

42 CICS TS for z/OS: Intercommunication Guide

Including start request delivery in a unit of work
The delivery of a start request to a remote system can be made part of a unit of work by specifying the
PROTECT option on the START command.

About this task

The PROTECT option indicates that the remote transaction must not be scheduled until the local one
successfully completes a synchronization point (syncpoint). (It can take the syncpoint either by issuing a
SYNCPOINT command or by terminating normally.)

Successful completion of the syncpoint guarantees that the start request has been delivered to the
remote system. It does not guarantee that the remote transaction has completed, or even that it will be
initiated.

If the remote system is IMS, no message must cross the link between the START command and the
syncpoint. Both PROTECT and NOCHECK must be specified for all IMS recoverable transactions.

Note: The PROTECT option of the START command behaves differently, depending on whether you route
over MRO or APPC. If you route over MRO, the start happens immediately but when you route over APPC,
the start is deferred until an explicit or implicit syncpoint is taken.

Deferred transmission of START requests with NOCHECK option for ISC links

For START commands with the NOCHECK option, whether you specify PROTECT, CICS can defer
transmission of the request to the remote system for ISC links. For MRO links and IP interconnectivity
(IPIC), START requests with NOCHECK are not deferred.

For ISC links, START requests with NOCHECK are deferred until one of the following events occurs:

- The transaction issues a further START command or any function shipping request for the same system.
« The transaction issues a SYNCPOINT command.
 The transaction stops with an implicit sync point.

The first, or only, start request transmitted from a transaction to a remote system carries the begin-
bracket indicator; the last, or only, request carries the end-bracket indicator. Also, if any of the start
requests issued by the transaction specifies PROTECT, the last request in the unit of work (UOW) carries
the sync point request indicator. Deferred sending allows the indicators to be added to the deferred data,
and thus reduces the number of transmissions required.

Start requests are processed differently, if there are limitations because of protocol, connection, or
receiving system:

« For both the APPC and LUTYPEG.1 protocols, if the first START with NOCHECK is followed by a second
START with NOCHECK command, CICS transmits the first command and defers the second.

« For LUTYPE6.1 and 6.2 protocols, the sequence of requests is transmitted in a single SNA bracket and,
if the remote system is CICS, all the requests are handled by the same mirror task.

« For MRO and IPIC connections, if the first START with NOCHECK is followed by a second START with
NOCHECK command, CICS transmits both commands.

 For IMS, no message can cross the link between a START request and the following sync point.
Therefore, you cannot send multiple START NOCHECK PROTECT requests to IMS. Each request must be
followed by a SYNCPOINT command or by termination of the transaction. IP interconnectivity (IPIC)
does not support requests to IMS.

Intersystem queuing
If the link to a remote region is established, but there are no free sessions available, function shipped
EXEC CICS START requests used to schedule remote transactions may be queued in the issuing region.

Performance problems can occur if the queue becomes excessively long. This problem is described on
page “Intersystem queuing” on page 31.

Chapter 1. CICS intercommunication 43

For guidance information about controlling intersystem queues, see Intersystem session queue

management.

Local queuing of START commands

If a remote system is unavailable, either because it is not active or because a connection cannot be
established, an attempt to function ship a START request to the remote system usually results in the
SYSIDERR condition being returned to the application.

Provided that the remote system is directly connected to this CICS system, and that you specify the
NOCHECK option on the START command, you can arrange for the request to be queued locally, and
forwarded when the required link is in service.

You cannot cancel a START request while it remains on the local queue. The request can be canceled only
when the required link is back in service, the request has been sent to the target region, and before the
request is run.

A SYSIDERR condition is also returned when there is a connection to the remote system, but there are no
sessions available and you have chosen not to queue the request in the issuing region. You can specify
local queuing in two ways:

1. Specify LOCALQ(YES) on the local definition of the remote transaction. The LOCALQ option specifies
that local queuing is used, where necessary, for all requests from the local system for a particular
remote transaction.

For information about the LOCALQ option, see TRANSACTION attributes.
2. Use an XISLCLQ or XISQLCL global user exit program.

XISLCLQ is invoked only for function-shipped EXEC CICS START NOCHECK commands, which are
scheduled for a non-IPIC connection, when these conditions apply:

« The remote system is unavailable, or

« A connection exists to the remote system but there no sessions are available, and either the number
of requests currently queued in the issuing region has reached the maximum specified on the
QUEUELIMIT option of the CONNECTION definition or your XZIQUE or XISCONA global user exit
program has specified that the request is not to be queued in the issuing region.

XISQLCL is invoked for EXEC CICS START NOCHECK commands, which are scheduled for an IPIC
connection, when these conditions apply:

« The IPIC connection is not acquired.
« A session is not available and CICS does not queue the request for a new session.

If the connection resource is discarded, any requests that you have added to the local queue are lost.
Your user exit program can decide, on a request-by-request basis, whether to queue locally.

For programming information about the XISCONA, XISLCLQ, and XISQLCL global user exits, see
Intersystem communication program exits, XISCONA, XISLCLQ, and XISQLCL.

Data retrieval by a started transaction
A CICS transaction that is started by a start request can get the user data and other information
associated with the request by using the RETRIEVE command.

In accordance with the normal rules for CICS interval control, a start request for a particular transaction
that carries both user data and a terminal identifier is queued if the transaction is already active and
associated with the same terminal. During the waiting period, the data associated with the queued
request can be accessed by the active transaction by using a further RETRIEVE command. This has the
effect of canceling the queued start request.

Thus, it is possible to design transactions that can handle the data associated with multiple start
requests. Typically, a long-running local transaction could be designed to accept multiple inquiries from a
terminal and ship start requests to a remote system. From time to time, the transaction would issue
RETRIEVE commands to receive the replies, the absence of further replies being indicated by the
ENDDATA condition.

44 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/transaction/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3a0.html

The WAIT option of the RETRIEVE command can be used to put the transaction into a wait state pending
the arrival of the next start request from the remote system. If this option is used in a task attached to an
APPC device, CICS does not suspend the task, but instead raises the ENDDATA condition if no data is
currently available. However, for tasks attached to non-APPC devices, you must make sure that your
transaction does not get into a permanent wait state in the absence of further start requests.

Important:

If a started transaction issues multiple RETRIEVE commands, or uses the WAIT option of the RETRIEVE
command, allow the ROUTABLE option of the transaction definition, in the region in which the START
command is issued, to default to ROUTABLE(NO). If the transaction is defined as ROUTABLE(YES),
multiple RETRIEVE or RETRIEVE WAIT commands may not work as you expect.

For information about the ROUTABLE option of the START command, see “Routing transactions invoked
by START commands” on page 64.

Terminal acquisition by a remotely-initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal (TERMID), CICS makes the
terminal available to the transaction as its principal facility.

It makes no difference whether the start request was issued by a user transaction in the local CICS
system or was received from a remote system and issued by the mirror transaction.

Starting transactions with ISC or MRO sessions
You can name a system, rather than a terminal, in the TERMID option of the START command.

About this task

If CICS finds that the “terminal” named in a locally- or remotely-issued start request is a system, it
selects a session available to that system and makes it the principal facility of the started transaction (see
Terminology). If no session is available, the request is queued until there is one.

If the link to the system is an APPC link, CICS uses the modename associated with the transaction
definition to select a class-of-service for the session.

System programming considerations
This section discusses the CICS resources that must be defined for asynchronous processing.
« Alink to a remote system must be defined.

« Remote transactions that are to be initiated by start requests must be defined as remote resources to
the local CICS system. This is not necessary, however, for transactions that are initiated only by START
commands that name the remote system explicitly in the SYSID option.

- If the QUEUE option is used, the named queue must be defined on the system to which the start
request is shipped. The queue can be either a local or a remote resource on that system.

« If a START request names a “reply” transaction, that transaction must be defined on the system to
which the start request is shipped.

Chapter 1. CICS intercommunication 45

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0//applications/developing/connections/dfht123.html

System A
MROLERM=YES

Transaction TRX
initiated by terminal T1

EXEC CICS START
TRAMSID] THY")
RTRAMNSID{ TRZ')
RTERMID{ T1")
FROM(area)
LENGTHI(length)

Free session. Pass return code
to application program.
Continue processing.

Attach mirror transaction.

Perform START reguest with
TRANSID value of TRZ' and
TERMID value of 'T1".

Mirror waits for SYNCPOINT.

Frea session.
Terminate mirror.

Transaction TRZ is dispatched
on termial T1 and starts
processing.

EXEC CICS RETRIEVE
INTO{area)
LENGTHI(length)
QUEUE{Q)

Q) has value "ROQUE'

TRZ now uses function
shipping to read and then
delete the remote queue.

Asynchronous processing examples
These examples show you how remote transactions are initiated over MRO, ISC, and IPIC connections.

Transmitted Information

System B

Attach CSM*
'SCHEDULE' request for
transaction

) 'SCHEDULE' reply, last

Seszion available for
remota requests from
other transactions in
system A orB

Attach CSM®
'SCHEDULE' request for
_ tranzaction

'SCHEDULE' reply

'SYMCPOINT request, last

positive response

46 CICS TS for z/OS: Intercommunication Guide

Attach mirror transaction.
Perform START request for
transaction TRY.

Free session. Terminate mirror.
Transaction TRY is dispatched
and starts processing.

EXEC CICS RETRIEVE
INTO { area)
LENGTHI(length)
RTRANSID{TR}
RTERMID{T)
(TR has value 'TRZ', T has
value 'T1')
Procesing based on data
aquired. Results put into TS
gueue named RQLUE.

EXEC CICS START
TRANSIDITR)
TERMIDIT)

QUEUE('ROUE")

(TR has value 'TRZ, T has

value 'T1"),

RETURM
{implicit syncpoint)

Figure 18. Asynchronous processing—remote transaction initiation

System A Transmitted Information System B
Transaction TRX
initiated by terminal T1
EXEC CICS START
TRANSID] TRY')
RTRAMNSID] TRZ')
RTERMID{ T1")
FROM(area)
LENGTH{length)
MNOCHECK Attach CSM*
Terminate, and free terminal T1. 'SCHEDULE' request for
T1 could now initiate another trans, last (no reply) Attach mirror
transaction, but TRZ could not :
start until T1 became free again. session available P&rfnrm_STAPIT requas for
transaction TRY. Free session.
Termninate mirror.
Transaction TRY iz dispatched
and starts.
EXEC CICS BETRIEVE
INTO { area)
LENGTH{length)
RTRAMNSID(TR)
RTERMID{T)
(TR has value 'TRZ, T has
value 'T1')
Data determines processing.
Reply putin data area REP.
EXEC CICS START
TRANESID{ TR)
FROM{REF)
LENGTH({length)
TERMID(T)
MOCHECK
(TR hag value 'TRZ, T has
value 'T1')
Aftach CSM®
'SCHEDULE' request for TRY terminates.
trans, last (no reply)
Attach mirror transaction. *
Perform START reguest with
TRANSID value of TRZ' and
TERMID value of 'T1'.
Frea session sassion available
Terminate mirror.
Transaction TRZ is dispatched
on termial T1 and starts
processing.

Figure 19. Asynchronous processing—remote transaction initiation using NOCHECK

Chapter 1. CICS intercommunication 47

System A Transmitted Information System B

Transaction TRX
initiated by terminal T1

EXEC CICS START

TRANSID(TRY') Attach CSM2

RTRANSID('TRZ') 'SCHEQU LE' request for

RTERMID{ T1") Transaction Attach mirror transaction.
FROMarea) Perform START reguest for

LENGTHI(langti) transaction THY.

B "SCHEDULE' reply, last

Free session. Pass return code Free session. Terminate mirror.
to application program. Seszion available for Transaction TRY is dispatched
Continue processing. remote requests fram and starts processing.
other transactions in
system A or B EXEC CICS RETRIEVE
INTO { area)
LENGTHI(length)
RTRANSID{TR}
RTERMID{T)
(TR has value 'TRZ', T has
value 'T1')

Procesing based on data
aquired. Results put into TS
gueus named ROUE.

EXEC CICS START

TRANSID(TR)
TERMIDIT)
Attach CSM2 QUEUE({ 'RAQUE")
'SCHEDULE' request for | (TR has value TRZ, T has

:) transaction value 'T1',
Attach mirror transaction. +

Perform START reguest with
TRANSID value of TRZ' and
TERMID wvalue of 'T1". 'SCHEDULE' reply, last

TRY terminates.

Free session.
Terminate mirror.

Transaction TRZ is dispatched
on termial T1 and starts
processing.

EXEC CICS RETRIEVE
INTO{area)
LENGTHI(length)
QUEUE{Q)

0 has value "ROUE'

TRZ now uses function
shipping to read and then
delete the remote guauea.

Figure 20. Asynchronous processing—remote transaction initiation

CICS dynamic routing

This section is an overview of the CICS dynamic routing interface.

The information it contains is relevant to both “CICS transaction routing” on page 53 and “CICS
distributed program link” on page 76.

48 CICS TS for z/OS: Intercommunication Guide

What is dynamic routing?

In a CICSplex, resources (for example, transactions or programs) required by one region can be owned by
another region (the resource-owning region). For example, you might have a terminal-owning region that
requires access to transactions owned by an application-owning region.

Static routing
Static routing means that the location of the remote resource is specified at design time. Requests for
a particular resource are always routed to the same region. Typically, when static routing is used, the
location of the resource is specified in the installed resource definition.

Dynamic routing
Dynamic routing means that the location of the remote resource is decided at run time. The decision
is taken by a supplied user-replaceable routing program. The routing program can, at different times,
route requests for a particular resource to different regions; for example, that if you have several
cloned application-owning regions, your routing program could balance the workload across the
regions dynamically.

What requests can be dynamically routed?
All the following requests can be dynamically routed:

« Transactions started from terminals.
« Transactions invoked by a subset of EXEC CICS START commands.
« CICS-to-CICS distributed program link (DPL) requests.

» Program-link requests received from outside CICS; for example, External Call Interface (ECI) calls
received from CICS Clients.

« CICS business transaction services (BTS) processes and activities.
- Bridge 3270 transactions.

What is required for dynamic routing?
Some further definitions are required:

Requesting region
The region in which a transaction or other request is issued. Here are some examples a requesting
region:

« For transactions started from terminals, it is the terminal-owning region (TOR).

- For transactions started by EXEC CICS START commands, it is the region in which the START
command is issued.

 For “traditional” CICS-to-CICS DPL calls, it is the region in which the EXEC CICS LINK PROGRAM
command is issued.

« For program-link calls received from outside CICS, it is the CICS region which receives the call.

« For BTS processes and activities, it is the region in which the EXEC CICS RUN ACTIVITY
ASYNCHRONOUS command is issued.

Routing region
The region in which the routing program is invoked for route selection. With one exception, the
requesting region and the routing region are always the same region. The exception is terminal-
related START commands. A terminal-related START command is always executed in the terminal-
owning region, the requesting region and the routing region may or may not be the same. (This is fully
explained in “Routing transactions invoked by START commands” on page 64.) The routing region is
always the TOR.

Target region
The region in which the routed transaction or request executes.

Chapter 1. CICS intercommunication 49

Two routing models
There are two possible dynamic routing models.

The hub model

The hub is the model that has traditionally been used with CICS dynamic transaction routing.

A routing program running in a TOR routes transactions between several AORs. Usually, the AORs (unless
they are AOR/TORs) do no dynamic routing. Figure 21 on page 50 shows a hub routing model.

Possible Possible Possible
Target region Target region Target region

Target region

Requesting region

Dynamic
Routing region TOR

routing
program

Figure 21. Dynamic routing using a hub routing model

The hub model applies to the routing of:

« Transactions started from terminals.

Transactions started by terminal-related START commands.
Program-link requests received from outside CICS. (The receiving region acts as a hub or TOR because

it routes the requests among a set of back-end server regions.)

Bridge 3270 requests.

The hub model is a hierarchical system; routing is controlled by one region (the TOR). Normally a routing

program runs only in the TOR.

Advantage of the hub model

Itis arelatively simple model to implement. For example, compared to the distributed model, there are

few inter-region connections to maintain.

Disadvantages of the hub model

- If you use only one “hub” to route transactions and program-link requests across your AORs, the “hub”

TOR is a single point-of-failure.

50 CICS TS for z/OS: Intercommunication Guide

« If you use more than one “hub” to route transactions and program-link requests across the same set of
AORs, you may have problems with distributed data. For example, if the routing program keeps a count
of routed transactions for load-balancing purposes, each “hub”-TOR will need access to this data.

The distributed model
In the distributed model, each region may be both a routing region and a target region.

A routing program runs in each region. Figure 22 on page 51 shows a distributed routing model.

Requesting region
Routing region
Target region

Distributed
routing

program

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Distributed
routing

program

Distributed
routing
program

Distributed
routing
program

Requesting region
Routing region
Target region

Figure 22. Dynamic routing using a distributed routing model

The distributed model applies to the routing of:

« CICS business transaction services processes and activities
« Non-terminal-related START requests

Chapter 1. CICS intercommunication 51

e CICS-to-CICS DPL requests
« CICS web service requests

The distributed model is a peer-to-peer systemi™each participating CICS region can be both a routing
region and a target region. A routing program runs in each region.

Advantage of the distributed model

There is no single point-of-failure.

Disadvantages of the distributed model

« Compared to the hub model, there are a great many inter-region connections to maintain.

« You may have problems with distributed data. For example, any data used to make routing decisions
must be available to all the regions. (CICSPlex SM solves this problem by using dataspaces.)

Two routing programs

CICS provides two user-replaceable programs for dynamic routing: the dynamic routing program and the
distributed routing program. If you are using CICSPlex SM to manage your CICS environment, you can use
the EYU9XLOP routing program instead.

You can use the dynamic routing program, DFHDYP, to route the following requests:

Transactions started from terminals

« Transactions started by terminal-related START commands
CICS-to-CICS DPL requests

Program-link requests received from outside CICS

Bridge 3270 requests

You can use the distributed routing program, DFHDSRP, to route the following requests:

« CICS business transaction services processes and activities
« Non-terminal-related START requests.

The two routing programs are specified on different system initialization parameters. You specify the
name of the dynamic routing program on the DTRPGM system initialization parameter. You specify the
name of the distributed routing program on the DSRTPGM system initialization parameter. The distributed
routing program must be specified in the routing and target CICS regions.

The programs are passed the same communications area. However, certain fields that are meaningful to
one program are not meaningful to the other. The programs are also called at similar points; for example,
for route selection, route selection error, and optionally at termination of the routed transaction or
program-link request.

You have flexibility to use these programs in any of the following ways:

- Use different user-written programs for dynamic routing and distributed routing.
« Use the same user-written program for both dynamic routing and distributed routing.

« Use a user-written program for dynamic routing and the CICSPlex SM routing program for distributed
routing, or vice versa.

The dynamic and distributed routing programs are different in two important ways:

« The dynamic routing program and the distributed routing program are called if the resource (the
transaction or program) is defined as DYNAMIC(YES). The dynamic routing program is only ever called if
the resource is defined as DYNAMIC(YES). However, in the case of BTS activities that are run
asynchronously, the distributed routing program is called even if the associated transaction is defined
as DYNAMIC(NO). In this situation, the distributed routing program cannot route the request, but it can
monitor the effect of the request on workloads, or perform other activities. This difference means that

52 CICS TS for z/OS: Intercommunication Guide

you can use the distributed routing program to monitor the effect of statically-routed requests on the
relative workloads of the target regions.

« The dynamic routing program uses the hierarchical hub routing model, where one routing program
controls access to resources on several target regions. The routing program that is called at termination
of a routed request is the same program that was invoked for route selection.

The distributed routing program uses the distributed model, which is a peer-to-peer system; the routing
program itself is distributed. The routing program that is invoked at initiation or termination of a routed
transaction is not the same program that was invoked for route selection. It is the routing program on
the target region. You must ensure that a distributed routing program is specified in all the target
regions in addition to the routing region.

CICS transaction routing

CICS transaction routing allows terminals connected to one CICS system to run transactions in another
CICS system.

This chapter contains the following topics:

« “Overview of transaction routing” on page 53

- “Terminal-initiated transaction routing” on page 54

 “Traditional routing of transactions started by ATI” on page 57

« “Routing transactions invoked by START commands” on page 64

« “Allocation of remote APPC connections” on page 71

« “The relay program” on page 73

 “Basic mapping support (BMS)” on page 74

« “Using the routing transaction, CRTE” on page 74

“System programming for transaction routing” on page 75.

Overview of transaction routing

CICS transaction routing allows terminals connected to one CICS system to run with transactions in
another connected CICS system. You can distribute terminals and transactions around your CICS systems
and still have the ability to run any transaction with any terminal.

Figure 23 on page 53 shows a terminal connected to one CICS system running with a user transaction in
another CICS system. Communication between the terminal and the user transaction is handled by a
CICS-supplied transaction called the relay transaction.

CICS A CICSB
Terminal-Owning Application-Owning
Region {TOR) Region (AOR)
IPIC, MRO, or AFPC
Terminal = * CICS Relay - . Usar
Transaction Transaction

Figure 23. The elements of transaction routing

The CICS system that owns the terminal is called the terminal-owning region or TOR, and the CICS system
that owns the transaction is called the application-owning region or AOR. These terms are not meant to
imply that one system owns all the terminals and the other system all the transactions, although this is a
possible configuration.

The terminal-owning region and the application-owning region must be connected by IPIC, MRO, or APPC
links. Transaction routing over LUTYPE®6.1 links is not supported.

Chapter 1. CICS intercommunication 53

In transaction routing, the term terminal is used in a general sense to mean such things as an IBM 3270,
or a single-session APPC device, an APPC session to another CICS system, and so on. All terminal and
session types supported by CICS are eligible for transaction routing, except those given in the following
list:

« LUTYPE®G.1 connections and sessions

« MRO connections and sessions

« EXCI connections and sessions

« IBM 7770 or 2260 terminals

Pooled 3600 or 3650 pipeline logical units

MVS system consoles

The user transaction can use the terminal control, BMS, or batch data interchange facilities of CICS to
communicate with the terminal, as appropriate for the terminal or session type. Mapping and data
interchange functions are performed in the application-owning region. BMS paging operations are
performed in the terminal-owning region.

Pseudo-conversational transactions are supported, except when the “terminal” is an APPC session, and
the various transactions that make up a pseudo-conversational transaction can be in different systems.

Initiating transaction routing
Transaction routing can be initiated in three ways.

1. Arequest to start a transaction can arrive from a terminal connected to the TOR. On the basis of an
installed resource definition for the transaction, and possibly on decisions made in a user-written
dynamic routing program, the request is routed to an appropriate AOR, and the transaction runs as if
the terminal were attached to the same region.

2. A transaction can be started by automatic transaction initiation (ATI) and can acquire a terminal that is
owned by another CICS system. The two methods of routing transactions started by ATI are described
in:

« “Traditional routing of transactions started by ATI” on page 57

« “Routing transactions invoked by START commands” on page 64.

3. Atransaction can issue an ALLOCATE command to obtain a session to an APPC terminal or connection
that is owned by another system.

In addition to these methods, CICS provides a special transaction (CRTE) that can be used for the
occasional invocation of transactions in other systems. See “Using the routing transaction, CRTE” on page
74.

Terminal-initiated transaction routing
When a request to start a transaction arrives at a CICS TOR, the TOR must find out on which system the
transaction is to run.

It does this by examining the installed transaction definition; in particular, the values of the DYNAMIC and
REMOTESYSTEM options. See Defining transactions for transaction routing.

Transaction routing can be either static or dynamic, depending upon the value of the DYNAMIC option.

Static transaction routing
Static transaction routing occurs when DYNAMIC(NO) is specified in the transaction definition.

In this case, the request is routed to the system named in the REMOTESYSTEM option. (If
REMOTESYSTEM is unspecified, or if it names the local CICS system, the transaction is a local transaction,
and transaction routing is not involved.)

Dynamic transaction routing

Dynamic routing models:

54 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11s.html

Dynamic routing of terminal-initiated transactions uses the hub routing model described in “The hub
model” on page 50.

Specifying DYNAMIC(YES) means that you want the chance to route the terminal data to an alternative
transaction at the time the defined transaction is invoked. CICS manages this by allowing a user-
replaceable program, called the dynamic routing program, to intercept the terminal input data and
specify that it be redirected to any transaction and system. The default dynamic routing program,
supplied with CICS, is named DFHDYP. You can modify the supplied program, or replace it with one that
you write yourself. You can also use the DTRPGM system initialization parameter to specify the name of
the program that is invoked for dynamic routing, if you want to name your program something other than
DFHDYP. For programming information about user-replaceable programs in general, and about DFHDYP
in particular, see Writing a dynamic routing program. For information about system initialization
parameters, see CICS system initialization.

When your routing program is invoked
CICS invokes the dynamic routing program in the following situations.

« When a transaction defined as DYNAMIC(YES) is initiated.
Note:

1. If a transaction definition is not found, CICS uses the common transaction definition specified on the
DTRTRAN system initialization parameter. See Using a single transaction definition in the TOR.

2. If the transaction is defined as DYNAMIC(YES) in the target region, as well as in the routing region
(TOR), the dynamic routing program is invoked, for routing, in the target region, as well as in the TOR.
Thus, it is possible to “daisy-chain” routed requests from one region to another. Take care that this
does not occur unintentionally.

If the transaction was initiated from a terminal, the dynamic routing program can route the request —
see “Overview of transaction routing” on page 53.

If the transaction was initiated by an EXEC CICS START command, the routing program may or may not
be able to route the request—see “Routing transactions invoked by START commands” on page 64.

« If an error occurs in route selection.
« At the end of a routed transaction, if the initial invocation requests re-invocation at termination.
« If arouted transaction abends, if the initial invocation requests re-invocation at termination.

« For routing of DPL requests, at all the points described in “Dynamically routing DPL requests” on page
79.

« If the return code from the dynamic routing program is not zero, CICS attempts to execute the
transaction in the routing region.

Information passed to your routing program
Parameters are passed in a communications area between CICS and the dynamic routing program.

The program might change some of these parameters to influence subsequent CICS action. The
parameters include:

« The reason for the current invocation.
« Error information.

« The sysid of the target system. Initially, the sysid specified on the REMOTESYSTEM option of the
installed transaction definition. If no sysid was specified, the sysid passed is that of the local system.

Use a single, common definition for all remote transactions that are to be dynamically routed. See Using
a single transaction definition in the TOR.

« The name of the target transaction. Initially, the name specified on the REMOTENAME option for the
installed transaction definition. If no name was specified, the name passed is the local name.

« The address of a buffer containing a copy of the data in the terminal input/output area (TIOA).

- The netname of the target system. Initially, the netname corresponds to the sysid specified on the
REMOTESYSTEM option of the installed transaction definition.

Chapter 1. CICS intercommunication 55

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35y.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/dfha2_specify_cics_sysinitparms.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht16q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht16q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht16q.html

- The address of the target transaction's communications area. If you are using channels and containers
and you have defined a DFHROUTE container, DFHROUTE is used for the address.

« A user area.

Using your dynamic routing program

You can use dynamic transaction routing to make transaction routing decisions based on the input to the
transaction, available CICS systems, relative loading of the available systems, and similar factors.
However, a routing program can perform other functions, besides redirecting transaction requests.

Your dynamic routing program could be used for these purposes:

 Perform workload balancing. For example, in a CICSplex, your program could make intelligent choices
between equivalent transactions on parallel AORs.

« Specify whether a request is to be queued if no sessions to a remote system are available. For
information about controlling the length of intersystem queues, see Intersystem session queue

management.
« For MRO and IPIC links, set the priority of the transaction attached in the AOR.

 Cause a user-defined program to run if the transaction cannot be routed or if the routed-to transaction
abends. For example, if all remote CICS regions are unavailable and the transaction cannot be routed,
you might want to run a program in the local terminal-owning region to send an appropriate message to
the user.

« Monitor the number of requests routed to particular systems.

A dynamic routing program can issue EXEC CICS commands, but the EXEC CICS RECEIVE command
prevents the routed-to transaction from obtaining the initial terminal data.

For programming information about writing a dynamic transaction routing program, see Writing a dynamic
routing program .

The CICS Interdependency Analyzer
CICS transactions use many techniques to pass information between one another, and to synchronize
activity between themselves.

Some of these techniques require the transactions exchanging data to execute in the same CICS region,
and therefore impose restrictions on the dynamic routing of the transactions. If you are using dynamic
transaction routing for workload balancing purposes (where equivalent transactions reside on multiple
systems), your routing program must be aware of transactions that are dependent on each other (that is,
that contain affinities) so that it can route them consistently.

If you are planning to create a dynamic transaction routing environment, consisting perhaps of a mixture
of CICS Transaction Server for z/OS, Version 5 Release 5 and earlier systems, you may find the CICS
Interdependency Analyzer useful. It can be used to identify the causes of inter-transaction affinities in
CICS Transaction Server for z/OS regions.

For more information about this utility, see CICS Interdependency Analyzer for z/OS Overview.

For further information about transaction affinities, see Affinity.

Using CICSPlex SM
CICSPlex SM provides a dynamic routing program that supports both workload routing and workload
separation.

Unless you have CICSPlex System Manager (CICSPlex SM) installed, to take advantage of dynamic
transaction routing, you must either customize and implement the CICS supplied dynamic transaction
routing program DFHDYP or DFHDSRP, or write your own. However, if you use CICSPlex SM to manage
your CICSplex, you need not do so. CICSPlex SM provides a dynamic routing program that supports both
workload routing and workload separation. All that you need do is to tell CICSPlex SM, through its user
interface, which TORs and AORs in the CICSplex can participate in dynamic transaction routing, and
define any affinities that govern the AORs to which particular transactions must be routed. The output
from the CICS Interdependency Analyzer can be used directly by CICSPlex SM.

56 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35y.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35y.html
https://www.ibm.com/support/knowledgecenter/SSPPUS/welcome.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp3ak.html

Using CICSPlex SM, you could integrate workload routing for transactions and DPL requests.

Traditional routing of transactions started by ATI

You can use the traditional method of routing transactions that are started by automatic transaction
initiation (ATI) for transactions where you cannot use the enhanced method.

This method of routing is superseded by the enhanced method (see “Routing transactions invoked by
START commands” on page 64). Use the enhanced method wherever possible. However, for the
following transactions, you must use the traditional method:

- Transactions invoked by the trigger-level on a transient data queue
« Some transactions that are invoked by EXEC CICS START commands

Automatic transaction initiation is the process where an internal transaction request in a CICS system or
systems network leads to the scheduling of the transaction. ATI requests result from the following;:

EXEC CICS START commands
A START command causes CICS interval control to initiate a transaction after a specified period of
time (which might be zero) has elapsed.

Transient data queues
A transient data queue can be defined so that a transaction is automatically initiated when the
number of records on the queue reaches a specified level.

CICS transaction routing allows an ATI request for a transaction owned by a specific CICS system to name
a terminal that is owned by another, connected system. For example, in Figure 24 on page 58, an
application in AOR1 issues a START request for transaction TRAA to be attached to terminal PRT1.

Although the original ATI request occurs in the application-owning region (AOR), it is sent by CICS to the
TOR for execution. In the example, AOR1 sends the START request to TOR1 to be run. In the TOR, the ATI
request causes the relay program to be initiated, in conjunction with the specified terminal (PRT1 in the
example).

The user transaction in the AOR is then accessed in the manner described for terminal-initiated
transaction routing. Associated with the request is an automatic initiate descriptor (AID) that specifies the
names of the remote transaction (TRAA) and system (AOR1).

For static transaction routing, the terminal-owning region (TOR1) must find a transaction definition that
specifies REMOTESYSTEM(AOR1) and REMOTENAME(TRAA). If the TOR cannot find the correct definition,
the request fails.

For dynamic transaction routing using the traditional method, when DYNAMIC(YES) is coded on the
transaction definition, the dynamic routing program is invoked but cannot reroute the request, because
the remote system name is taken from the AID. To find out how to use the ROUTABLE option of the
transaction definition to specify enhanced routing, see “Routing transactions invoked by START
commands” on page 64.

Chapter 1. CICS intercommunication 57

TOR1 AOR1

DEFINE TRANSACTION(TRAA) DEFINE TRANSACTION(TRAA)
REMOTESYSTEM{AQRL)
VOTL K DEFINE TERMINALCPRTL)
DEFINE TERMINAL{PRT1) REMOTESYSTEM(TORI1)
CICS initiates Shipped EXEC CICS START
VDT2 transaction < TRANSID(TRAA)
routing TERMID(PRTL)
i’ Transaction
CICS relay routing
PRT1 transaction p [TRANSACTION TRAA
Link
established
between PRTI1
and TRAA

Figure 24. ATI-initiated transaction routing

ATI requests are queued in the AOR if the link to the terminal-owning region is not available, and
subsequently in the TOR if the terminal is not available.

The overall effect is to create a single-system view of ATI as far as the AOR is concerned; the fact that the
terminal is remote does not affect the way in which ATI appears to operate.

In the AOR, the normal rules for ATI apply. The transaction can be initiated from a transient data queue
when the trigger level is reached, or on expiry of an interval control start request. For transient data
initiation, the transient data queue must be in the same system as the transaction. Transaction routing
does not enable transient data queue entries to initiate remote transactions.

Shipping terminals for automatic transaction initiation

A CICS system, CICA, can cause an ATI request to be executed in another CICS system, CICB, in several
ways.

For example:

1. CICA can function-ship a START request to CICB.

2. CICA can function-ship WRITEQ requests for a transient data queue owned by CICB, which eventually
triggers.

3. CICA can instigate routing to a transaction in CICB, which then issues a START or writes to a transient
data queue.

If the ATI request has a terminal associated with it, CICB searches its resources for a definition for that

terminal. If it finds that the terminal is remote, it sends the ATI request to the system that is specified in
the REMOTESYSTEM option of the terminal definition. Remember that a terminal-related ATI request is

executed in the TOR.

Terminal-not-known condition
The terminal-not-known condition frequently occurs because a terminal-related START command is

issued in the terminal-owning region and function-shipped to the application-owning region, where the
terminal is not yet defined.

Important:

58 CICS TS for z/OS: Intercommunication Guide

If you can use the enhanced routing method described in “Routing transactions invoked by START
commands” on page 64, a START command issued in a TOR is not function-shipped to the AOR; thus the
terminal-not-known condition does not occur.

To ensure correct functioning of cross-region ATI, you could define your terminals to all the systems on
the network that need to use them. However, you cannot do this if you are using autoinstall. See
Autoinstall. Autoinstalled terminals are unknown to the system until they log on, and you rely on CICS to
ship terminal definitions to all the systems where they are needed. (See Shipping terminal and connection
definitions.) This works when routing from a terminal to a remote system, but there are cases where a
system cannot process an ATI request, because it has not been told the location of the associated
terminal.

The example shown in Figure 25 on page 59 should make this clear:

1. The operator at terminal T1 selects the menu transaction M1 on CICA.

2. The menu transaction M1 runs and the operator selects a function that is implemented by transaction
X1 in CICB.

3. Transaction M1 issues the following command, then exits:

EXEC CICS START
TRANSID(X1)
TERMID(T1)

4. Because X1 is defined as a remote transaction owned by CICB, CICA function-ships the START
command to CICB.

5. CICB now processes the START command and, in doing so, tries to discover which region owns T1,
because this is the region that has to execute the ATI request resulting from the START command.

6. CICB can determine where to send the ATI request only if a definition of T4, resulting from an earlier
routed transaction, is present. Assuming that no such definition exists, the interval control program
rejects the START request with TERMIDERR.

CICA CICB

DEFINE TRANSACTIONCML) DEFINE TRﬂHSACTIDH{IlJ‘

DEFINE TRANSACTIONCXL)
REMOTESYSTEM(CICE)

CEDA-installed or no terminals defined ‘
autoinstalled terminal
definition for T1

TRANSACTION Function-shipped CICS Interval
M1 Control Program
EXEC CICS START raises 'TERMIDERR'
TRANSIDCX1)
TERMID(TL1)

Figure 25. Failure of an ATI request in a system where the termid is unknown

Chapter 1. CICS intercommunication 59

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/resources/dfha4_autoinstall.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11q.html

The global user exits XICTENF and XALTENF

You, as user of the system, know how this routing problem could be solved, and CICS gives you a way of
communicating your solution to the system. The two global user exits XICTENF and XALTENF have been
provided.

XICTENF is driven when interval control processes a START command and discovers the associated
termid is not defined to the system. XALTENF is driven from the terminal allocation program also when
the termid is not defined.

The terminal allocation program schedules requests resulting both from the eventual execution of a
START command and from the transient data queue trigger mechanism. This means that a START
command could result in an invocation of both exits.

The program you provide to service one or both of these global user exits has access to a parameter list
containing this information:

« Whether the ATI request resulted from: a START command with data, a START command without data,
or a transient data queue trigger.

« Whether the START command was issued by a transaction that had been the subject of transaction
routing.

« Whether the START command was function-shipped from another region.
« The identifier of the transaction to be run.
« The identifier of the terminal with which the transaction should run.

« The identifier of the terminal associated with the transaction that issued the START command, if this
was a routed transaction, or the identifier of the session, if the command was function-shipped.
Otherwise, blanks are returned.

« The netname of the last system the START request was shipped from or, if the START was issued
locally, the netname of the system last transaction-routed from. Blanks are returned if no remote
system was involved.

 The sysid corresponding to the returned netname.

On exit from the program, you tell CICS whether the terminal exists and, if it does, you supply either the
netname or the sysid of the TOR. CICS sends the ATI request to the region you specify. As a result, the
terminal definition is shipped from the TOR to the AOR, and transaction routing proceeds normally.

There is therefore a solution to the problem shown in Figure 25 on page 59. It is necessary only to write a
small exit program that returns the CICS-supplied parameters unchanged and sets the return code for
‘netname returned'.

The events that follow are shown in Figure 26 on page 61:

1. The interval control program accepts the START command and signals acceptance to the issuing
system if this is required.

2. After the specified interval has expired, orimmediately if no interval was specified, the terminal
allocation program tries to schedule the ATI request. It finds no terminal defined and takes the exit
XALTENF, which again supplies the required netname.

3. The ATI request is shipped to CICA. CICA allocates a relay transaction, establishes a transaction
routing link to transaction X1 in CICB, and ships a copy of the terminal definition for T1 to CICB.

60 CICS TS for z/OS: Intercommunication Guide

CICA CICB

DEFINE TRANSACTION(ML) DEFINE TRANSACTIONCX1)

DEFINE TRANSACTIONCX1)
REMOTESYSTEM(CICE) no terminals defined

CEDA-installed or
autoinstalled terminal
definition for T1

CICS
| Interval Exit
Control program
| TRANSACTION Function-shipped Program —sreturns
Ml P |drives netname
| EXEC CICS START KICTENF — "CICA"
TRANSID(X1) exit
| TERMID(TL) l
| .
CICS ATI request CICS Exit
| initiates < Terminal |—Wprogram
transaction shipped to CICA Allocation— returns
| routing Program netname
drives "CICA™
| v XALTENF
exit
| Transaction
CICS relay routing
L. — —p{transaction | « » | TRANSACTION - -7
Tink established #1
between T1 and
X1 and terminal

definition for
T1 shipped over copy definition
for terminal T1

Figure 26. Resolving a 'terminal not known' condition on a START request

The example in Figure 26 on page 61 shows only one of many possible configurations. From this
elementary example, you can see how to approach a solution for the more complex situations that can
arise in multiregion networks.

Resource definition

You do not have to be using autoinstalled terminals to make use of the exits XICTENF and XALTENF. The
technique also works with terminals that you have defined explicitly, if they are defined with
SHIPPABLE(YES) specified.

It is important that, although there is no need to have all terminal definitions in place before you operate
your network, all links between systems must be fully defined, and remote transactions must be known to
the systems that want to use them.

Chapter 1. CICS intercommunication 61

Note: The 'terminal not known' condition can arise in CICS terminal-allocation modules during restart,
before any global user exit programs have been enabled. If you want to intervene here too, you must
enable your XALTENF exit program in a first-phase PLTPI program (for programming information about
PLTPI programs, see Writing initialization and shutdown programs .) This applies to both warm start and
emergency start.

Important:

The XICTENF and XALTENF exits can be used only if there is a direct link between the AOR and the TOR.
In other words, the sysid or netname that you pass back to CICS from the exit program must not be for an
indirectly connected system.

The exit program for the XICTENF and XALTENF exits
How your exit program identifies the TOR from the parameters supplied by CICS can only be decided by
reference to your system design.

In the simplest case, you would hand back to CICS the netname of the system that originated the START
request. In a more complex situation, you may decide to give each terminal a name that reflects the
system on which it resides.

For programming information about the exit program, see Terminal not known condition exits XALTENF
and XICTENF. A sample program is also available in the DFHXTENF member of library
CICSTS55.CICS.SDFHSAMP.

Shipping terminals for ATI from multiple TORs
Consider the following network setup.

1. You have an application-owning region that is connected to two or more terminal-owning regions
(TORs) that use the same, or a similar, set of terminal identifiers.

2. One or more of the TORs issues EXEC CICS START requests for transactions in the AOR.
3. The START requests are associated with terminals.
4. You are using shippable terminals, rather than statically defining remote terminals in the AOR.

Now consider the following scenario:

Terminal-owning region TORB issues an EXEC CICS START request for transaction TRANB, which is owned
by region AOR1. It is to be run against terminal T1. Meanwhile, terminal T1 on region TORA has been
transaction routing to AOR1; a definition of T1 has been shipped to AOR1 from TORA. When the START
request arrives at AOR1, it is shipped to TORA, rather than TORB, for transaction routing from terminal T1.

Figure 27 on page 63 illustrates what happens.

62 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35h.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha338.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha338.html

[ORA

T1

L]

Transaction routing
AOR1
—— © TRANA
START shipped to wrong .
:) Shipped
region for routing fromT1 —| T dEfiFr:l'lFi:;iDr'
— for T
TORE on TOHA
:% TRANB‘
EXECCICSSTART Function shipped
TRANSID(TRANE)
TERMID(TA)

Figure 27. Function-shipped START request started against an incorrect terminal

There are two ways to prevent this situation:

1.

This is the preferred method.

Use the enhanced routing method described in “Routing transactions invoked by START commands”
on page 64. A terminal-related START command issued in the terminal-owning region is not function-
shipped to the AOR; thus it cannot be shipped back to the wrong TOR. Instead, the START executes
directly in the TOR, and the transaction is routed as if it had been initiated from a terminal.

A definition of the terminal is shipped to the AOR, and the autoinstall user program is called. Your
autoinstall user program can then allocate an alias termid in the AOR, to avoid a conflict with the
previously installed remote definition. Terminal aliases are described in Terminal aliases. For
information about writing an autoinstall program to control the installation of shipped definitions, see
Writing a program to control autoinstall of shipped terminals.

. Use this method if you cannot use the enhanced routing method.

Code YES on the FSSTAFF system initialization parameter in the AOR. This ensures that, when a START
request is received from a terminal-owning region, and a shipped definition for the terminal named on
the request is already installed in the AOR, the request is always shipped back to a TOR, for routing,
across the link it was received on, irrespective of the TOR referenced in the remote terminal definition.
(The only exception to this is if the START request supplies a TOR_NETNAME and a remote terminal
with the correct TOR_NETNAME is located; in which case, the request is shipped to the appropriate
TOR.)

If the TOR to which the START request is returned is not the one referenced in the installed remote
terminal definition, a definition of the terminal is shipped to the AOR, and the autoinstall user program
is called. Your autoinstall user program can then allocate an alias termid in the AOR, to avoid a conflict
with the previously installed remote definition.

Chapter 1. CICS intercommunication 63

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht173.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha30j.html

For full details of the FSSTAFF system initialization parameter, see FSSTAFF system initialization
parameter.

ATI and generic resources

An AOR can issue an EXEC CICS START request against an LU that is owned by an SNA (z/0S
Communications Server) generic resource, without knowing the member of the generic resource group to
which the terminal is currently logged on.

For details of using ATI with generic resources, see Using ATI with generic resources.

Routing transactions invoked by START commands

To route transactions that are invoked by EXEC CICS START commands, define a transaction as
ROUTABLE(YES) in the requesting region (the region in which the START command is issued).

This method of routing is known as the enhanced method and supersedes the traditional method of
routing transactions (see “Traditional routing of transactions started by ATI” on page 57). However, for
the following transactions, you must use the traditional method:

- Transactions invoked by the trigger-level on a transient data queue
- Some transactions that are invoked by EXEC CICS START commands

Advantages of the enhanced method
There are several advantages in using the enhanced method, where possible, rather than the “traditional”
method:

Dynamic routing
Using the “traditional” method, you cannot route the started transaction dynamically. (For example, if
the transaction on a terminal-related START command is defined as DYNAMIC(YES) in the terminal-
owning region, your dynamic routing program is invoked for notification only—it cannot route the
transaction.)

Using the enhanced method, you can route the started transaction dynamically.

Efficiency
Using the “traditional” method, a terminal-related START command issued in a TOR is function-
shipped to the AOR that owns the transaction. The request is then shipped back again, for routing
from the TOR.

Using the enhanced method, the two hops to the AOR and back are missed out. A START command
issued in a TOR executes directly in the TOR, and the transaction is routed without delay.

Simplicity
Using the “traditional” method, when a terminal-related START command issued in a TOR is function-
shipped to the AOR that owns the transaction the “terminal-not-known” condition may occur if the
terminal is not defined in the AOR.

Using the enhanced method, because a START command issued in a TOR is not function-shipped to
the AOR, the “terminal-not-known” condition does not occur. The START command executes in the
TOR directly, and the transaction is routed just as if it had been initiated from a terminal. If the
terminal is not defined in the AOR, a definition is shipped from the TOR.

How to route transactions started by terminal-related START commands
You can set a number of options on a terminal-related START command that can affect the set of regions
to which the transaction can be routed.

For a transaction started by a terminal-related START command to be eligible for the enhanced routing
method, all of the following conditions must be met:

« The START command must be a member of the subset of eligible START commands; that is, it must
meet all the following conditions:

— The START command specifies the TERMID option, which names the terminal associated with the
current task.

64 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_fsstaff.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_fsstaff.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht174.html

— The principal facility of the task that issues the START command is a terminal. The principal facility is
not a terminal if, for example, the program that issues the START command has a DPL link; in this
case, the principal facility is the intersystem session.

— The principal facility of the task that issues the START command is not a surrogate client virtual
terminal.

— The SYSID option of the START command does not specify the name of a remote region; that is, the
remote region on which the transaction is to be started must not be specified explicitly.

The requesting region and the TOR can be the same region.

- The requesting region and the TOR, if they are different, must be connected by one of the following
links:

— An MRO link

— An APPC parallel-session link

— An IPIC link. For IPIC links, both regions must be at CICS TS for z/0S, Version 4.1 or later
- The TOR and the target region must be connected by one of the following links:

— An MRO link

— An IPIC link. For IPIC links, both regions must be at CICS TS for z/0S, Version 4.1 or later

— An APPC single- or parallel-session link. If an APPC link is used, at least one of the following must be
true:

1. Terminal-initiated transaction routing has previously taken place over the link.
2. CICSPlex SM is being used for routing.
« The transaction definition in the requesting region must specify ROUTABLE(YES).

- If the requesting region and the TOR are different, the transaction definition in the requesting region
must not specify the REMOTESYSTEM option. If the requesting region and the TOR are the same region,
you may use REMOTESYSTEM in the transaction definition for static routing.

« If the transaction is to be routed dynamically, the transaction definition in the TOR must specify
DYNAMIC(YES).

Important: When considering which START-initiated transactions are candidates for dynamic routing,
you must take particular care if the START command specifies any of the following options:

AT, AFTER, INTERVAL, or TIME; that is, there is a delay before the START is run.
QUEUE.

REQID.

RTERMID.

RTRANID.

START commands issued in an AOR
If a terminal-related START command is issued in an AOR, it is shipped to the TOR that owns the terminal
named in the TERMID option. The START executes in the TOR.

Static routing for commands issued in the AOR

Static routing takes place if the transaction definition in the application-owning region (AOR) specifies
ROUTABLE(YES) and the transaction definition in the terminal-owning region (TOR) specifies
DYNAMIC(NO). Therefore, the dynamic routing program is not called.

If the transaction is eligible for enhanced routing, it is routed to the AOR named in the REMOTESYSTEM
option of the transaction definition in the TOR. If REMOTESYSTEM is not specified, the transaction runs
locally, in the TOR.

If the transaction is not eligible for enhanced routing, it is handled in the usual way, as described in
“Traditional routing of transactions started by ATI” on page 57; that is, CICS tries to route it back to the

Chapter 1. CICS intercommunication 65

originating AOR for execution. If the REMOTESYSTEM option of the transaction definition in the TOR
names a region other than the originating AOR, the request fails.

Figure 28 on page 66 shows the requirements for using the enhanced method to statically route a
transaction that is initiated by a terminal-related START command issued in an AOR.

Requesting region
START issued

.-"--'_'_'_'_ ____-\-\'\-\._
,-"’f -
re \\\II Target region
! - - - —_—
f TRAN1 s N -
AOR1 | poymagLE(YES) | | \\ / N (-’ b
f,f AOR 2 J | AOR3 | | AOR4 |
~~ ,f‘:{; 4 l\\ / S\ J
— - '\\‘ qu__ﬂ_#/" ~-__?__ﬂ_,-f” —
A% % 7
N, | / /
\-\x IIIl |'|I .."r(/
|PICET~{u'IHD. or APPC single- or parallel-sessions
IPIC, MRO “ / /
or
APPC
parallel-sessions
TRAN1
DY MAMIC{MO)
TOR | REMOTE T
SYSTEM{ADRS)

Routing region .
START executed

Figure 28. Static routing of a terminal-related START command issued in an AOR, using the enhanced
method

The requesting region and the TOR are connected by an IPIC, MRO or APPC parallel-session link. The TOR
and the target region are connected by an IPIC, MRO or APPC (single- or parallel-session) link. The
transaction definition in the requesting region specifies ROUTABLE(YES). The transaction definition in the
TOR specifies DYNAMIC(NO). The REMOTESYSTEM option names the AOR to which the transaction is to
be routed.

Dynamic routing for commands issued in the AOR

Dynamic routing takes place if the transaction definition in the application-owning region (AOR) specifies
ROUTABLE(YES) and the transaction definition in the terminal-owning region (TOR) specifies
DYNAMIC(YES). Therefore, the dynamic routing program is invoked in the TOR.

Dynamic routing of transactions called by terminal-related START commands uses the hub routing model
described in “The hub model” on page 50.

If the transaction is eligible for enhanced routing, the routing program can reroute the transaction to an
alternative AOR; that is, to an AOR other than that in which the START was issued.

If the transaction is not eligible for enhanced routing, the dynamic routing program is called for
notification only; it cannot reroute the transaction. The transaction is handled in the usual way; that is, it
is routed back to the originating AOR for execution.

Figure 29 on page 67 shows the requirements for dynamically routing a transaction that is initiated by a
terminal-related START command issued in an AOR.

66 CICS TS for z/OS: Intercommunication Guide

Requesting region
START issued

e
AORA1 Target region
///f o
S \ AOR 2 \ AOR 3 ™\ “aoR 4>

ROUTABLE(YES)

) CICSTS 1.3
or later

CICS TS 1.3 or later A SN
~__ ! \||"/ ,"__/ /}'—
— \ / Iy
s, MRO, APPC or IPIC' single or parallel sessions

H‘\ | !) /
MRO, APPC ar IPIC' | / Vi

parallel sessions | / .

, [! s
Y, e [r
ToR 7

Routing region TRAN1 \
START executed DYNAMIC(YES} m
Dynamic routing
program runs
CICS TS 1.3 or later

-

1IPIC: CICS TS 4.1 or later

Figure 29. Dynamic routing of a terminal-related START command issued in an AOR

The requesting region and the TOR are connected by an MRO, APPC, or IPIC parallel-session link. The
TOR and the target region are connected by an MRO, APPC, or IPIC (single-session or parallel-session)
link. The transaction definition in the requesting region specifies ROUTABLE(YES). The transaction
definition in the TOR specifies DYNAMIC(YES).

Dynamic routing using IPIC is supported in CICS TS 4.1 or later.

START commands issued in a TOR
A terminal-related START command that is issued in a TOR can be statically or dynamically routed.

Static routing of terminal-related START commands
Transactions that are statically routed specify ROUTABLE(YES) and DYNAMIC(NO) in the transaction
definition in the terminal-owning region, so that the dynamic routing program is not called.

If the transaction is eligible for enhanced routing, the following steps take place:

1. The START command runs in the TOR.

2. The transaction is routed to the AOR named in the REMOTESYSTEM option of the transaction
definition. If REMOTESYSTEM is not specified, the transaction runs locally, in the TOR.

If the transaction is not eligible for enhanced routing, the START request is handled in the usual way,
described in “Traditional routing of transactions started by ATI” on page 57; that is, it is function-shipped
to the AOR named in the REMOTESYSTEM option of the transaction definition. If REMOTESYSTEM is not
specified, the START request runs locally in the TOR.

Chapter 1. CICS intercommunication 67

Figure 30 on page 68 shows the requirements for using the enhanced method to statically route a
transaction that is initiated by a terminal-related START command issued in a TOR.

Target region

P /,rﬂ— —h-\ /,.e-‘— —“-\\l. f/f— ‘“--.x\\

{ k \ .
ADR1 | AOR 2 \l AOR 3 I| [AOR 4)
) /] \)\
o,
\""'\-__—"’X "-\———f""'f/ \ﬂ-;_ _—— __-}H\"'-\—__;-"f’f
, '.ll | ;');
-\'\. \ .'ll £
IFIC, MRO, or APPC single- or parallel-sessions
\'\._x '|IIII II.' K
\ \ f /
‘_\ |II / i
™, \ | f‘i

Requesting region

START issued TRAN1
DY MAMIC (MO
TOR | ROUTABLE(YES) T
REMOTE L |
, , SYSTEM(AOR3)
Routing region

START executed _//

Figure 30. Static routing of a terminal-related START command issued in a TOR, using the enhanced
method

The TOR and the target region are connected by an IPIC, MRO or APPC (single or parallel session) link.
The transaction definition in the TOR specifies DYNAMIC(NO) and ROUTABLE(YES). The REMOTESYSTEM
option names the AOR to which the transaction is to be routed.

Dynamic routing of terminal-related START commands
Transactions that are dynamically routed specify ROUTABLE(YES) and DYNAMIC(YES) in the transaction
definition in the terminal-owning region, so that the dynamic routing program is called.

Dynamic routing of transactions started by terminal-related START commands use the hub routing model.
If the transaction is eligible for enhanced routing, the following steps take place:

1. The START command runs in the TOR.

2. The routing program can route the transaction.

If the transaction is not eligible for enhanced routing, the dynamic routing program is started for
notification only, because it cannot route the transaction. The START request is handled in the usual way;
that is, it is function-shipped to the AOR named in the REMOTESYSTEM option of the transaction
definition in the TOR. If REMOTESYSTEM is not specified, the START request runs locally in the TOR.

Figure 31 on page 69 shows the requirements for dynamically routing a transaction that is initiated by a
terminal-related START command issued in a TOR.

68 CICS TS for z/OS: Intercommunication Guide

Target region
PN TN T i

[aor1 | | AoR2 | | AoRs | (mm

fo\

%, /s \\ "\ y
\K‘H‘—‘”ﬁ(\H“'—T#/ = ‘f/ \h‘“-_-f’/
\"-.\ ! -|II f(';

IPIC, MRO, or APPC single- or parallel-sessions
\ \ | i

, \ / ;"f ’

™, Y

Requesting region m

START issued

TRAMN1
TOR DYMAMIC{YES) T1
ROUTABLE(YES)

Routing region
START executed
Dynarmic routing program runs

Figure 31. Dynamic routing of a terminal-related START command issued in a TOR

The TOR and the target region are connected by an IPIC, MRO, or APPC (single or parallel session) link.
The transaction definition in the TOR specifies both DYNAMIC(YES) and ROUTABLE(YES).

Non-terminal-related START commands

For a non-terminal-related START request to be eligible for enhanced routing, all of the following
conditions must be met.

« The requesting region and the target region are connected in one of the following ways:
— An MRO link.

— An APPC single- or parallel-session link. If an APPC link is used, and the distributed routing program
is called on the target region, CICSPlex SM must be used for routing.

— An IPIC link.
« The transaction definition in the requesting region specifies DYNAMIC(YES).

In addition, if the request is to be routed dynamically, the SYSID option of the START command must not
specify the name of a remote region. (That is, the remote region on which the transaction is to be started
must not be specified explicitly.)

Note: When considering which START-initiated requests are candidates for dynamic routing, you must
take particular care if the START specifies any of the following options:

« AT, AFTER, INTERVAL(non-zero), or TIME. That is, there is a delay before the START is performed.

If a delay occurs, the interval control element (ICE) created by the START request is kept in the
requesting region with a transaction ID of CDFS. The CDFS transaction retrieves any data specified by
the user and reissues the START request without an interval. The request is routed when the ICE
expires, based on the state of the transaction definition and the sysplex at that moment.

« QUEUE.
« REQID.
« RTERMID.
« RTRANID.

You must understand how these options are being used; whether, for example, they affect the set of
regions to which the request can be routed.

Chapter 1. CICS intercommunication 69

Static routing

The transaction definition in the requesting region specifies ROUTABLE(YES) and DYNAMIC(NO). If the
START request is eligible for enhanced routing, the distributed routing program (the program specified on
the DSRTPGM system initialization parameter) is invoked for notification of the statically-routed request.

Note:

1. The distributed routing program differs from the dynamic routing program, in that it is invoked—for
eligible non-terminal-related START requests where the transaction is defined as ROUTABLE(YES)—
even when the transaction is defined as DYNAMIC(NO). The dynamic routing program is never invoked
for transactions defined as DYNAMIC(NO). This difference in design means that you can use the
distributed routing program to assess the effect of statically-routed requests on the overall workload.

2. If the request is ineligible for enhanced routing, the distributed routing program is not invoked.
Dynamic routing

Dynamic routing of non-terminal-related START requests uses the distributed routing model.

This is described in “The distributed model” on page 51.

The transaction definition in the requesting region specifies ROUTABLE(YES) and DYNAMIC(YES). If the
request is eligible for enhanced routing, the distributed routing program is invoked for routing. The START
request is function-shipped to the target region returned by the routing program.

Note:

1. If the request is ineligible for enhanced routing, the distributed routing program is not invoked. Unless
the SYSID option specifies a remote region explicitly, the START request is function-shipped to the
AOR named in the REMOTESYSTEM option of the transaction definition in the requesting region; if
REMOTESYSTEM is not specified, the START executes locally, in the requesting region.

2. If the request is eligible for enhanced routing, but the SYSID option of the START command names a
remote region, the distributed routing program is invoked for notification only; it cannot route the
request. The START executes on the remote region named on the SYSID option.

3. If the return code from the distributed routing program is not zero, the request fails with the following
response code:

eibrcode=SYSIDERR, eibresp2=1
The dynamic routing program rejected the START request.

Canceling interval control requests
To cancel a previously-issued START, DELAY, or POST interval control request, you use the CANCEL
command.

About this task

The REQID option specifies the identifier of the request to be canceled. If the request is due to execute on
a remote region, you can use the SYSID option to specify that the CANCEL command is to be shipped to
that region.

START and DELAY requests can be canceled only before any interval specified on the request has expired.
If a START request is dynamically routed, it is kept in the local region until the interval expires, and can
therefore be canceled by a locally-issued CANCEL command on which the SYSID option is unnecessary.
However, in a distributed routing environment (in which each region can be both a requesting region and a
target region), there may be times when you have no way of knowing to which region to direct a CANCEL
command. For example, you might want to cancel a DELAY request which could have been issued on any
one of a set of possible regions. To resolve a situation like this:

1. Issue a CANCEL command on which the REQID option specifies the identifier of the request to be
canceled, and the SYSID option is not specified. The command executes locally.

2. Use an XICEREQ global user exit program based on the CICS-supplied sample program, DFH$ICCN.
Your exit program is invoked before the CANCEL command is executed. DFH$ICCN:

a. Checks:

70 CICS TS for z/OS: Intercommunication Guide

1) That it has been invoked for a CANCEL command.
2) That the SYSID option was not specified on the command.

3) That the identifier of the request to be canceled does not begin with 'DF'. ('DF' indicates a
request issued internally by CICS.)

4) That the name of the transaction that issued the CANCEL command does not begin with 'C'—that
is, that the transaction is not a CICS internal transaction, nor a CICS-supplied transaction such
as CECL.

If one or more of these conditions are not met—for example, if it was invoked for a RETRIEVE
command—DFHS$ICCN does nothing and returns.

b. Instructs CICSPlex SM to:

1) Search every CICS region that it knows about for an interval control request with the identifier
(REQID) specified on the CANCEL command.

2) On each region, cancel the first request (with the specified identifier) that it finds. Note that:

« Requests may be canceled on more than one region.

- If a particular region contains more than one request with the specified identifier, only the first
request found by CICSPlex SMis canceled.

» You must ensure that CICSPlex SM has UPDATE access to the transaction ID of the
transaction associated with the CANCEL request.
Note: For full details of DFH$ICCN's processing, see the comments in the sample program.

For details of the CANCEL command, see CANCEL. For general information about how to write an
XICEREQ global user exit program, see Interval control EXEC interface program exits (XICEREQ, XICERES,
and XICEREQC).

Allocation of remote APPC connections

A transaction running in the application-owning region can issue an ALLOCATE command, to obtain a
session to an APPC terminal or connection that is owned by another system.

A relay program is started in the terminal-owning region to convey requests between the transaction and
the remote APPC system or terminal.

Transaction routing with APPC devices

An APPC device presents a data interface to CICS that is an implementation of the APPC architecture. The
APPC session linking it to a transaction represents the principal facility of the transaction rather than the
device itself. The transaction converses across the link with a transaction program within the device,
which may be a hard-coded terminal device, a programmable system, or even another CICS system.

There is no essential difference between transaction routing with APPC devices and transaction routing
with any other terminals. However, remember these points:

« APPC devices have their own “intelligence”. They can interpret operator input data or the data received
from CICS in any way the designer chooses.

« There are no error messages from CICS. The APPC device receives indications from CICS, which it may
translate into text for a human operator.

« CICS does not directly support pseudoconversational operation for APPC devices, but the device itself
could possibly be programmed to produce the same effect.

« Basic mapping support (BMS) has no meaning for APPC devices.
« APPC devices can be linked by more than one session to the host system.

« TCTUAs will be shipped across the connection for APPC single-session terminals, but not when the
principal facility is an APPC parallel session.

You use the APPC application program interface to communicate with APPC devices. For relevant
introductory information, see “Distributed transaction processing” on page 84.

Chapter 1. CICS intercommunication 71

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_cancel.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3o6.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3o6.html

Allocating an alternate facility

One of the design criteria in transaction routing is that, if a transaction running in a single-CICS
environment is transferred to an alternative, linked system, there should be no loss of function if the
transaction now has to be routed to the original terminal.

Because an APPC device can have more than one session, it is possible, in the single-CICS case, for a
transaction to acquire further sessions to the same device (but to different tasks) by using the ALLOCATE
command. Each session thus acquired becomes an alternate facility to the transaction. Sessions can
also be established to other terminals or systems.

Similarly, transaction routing allows any transaction to acquire an alternate facility to an APPC device by
using ALLOCATE, even though there are intermediate systems between the APPC device and the AOR. For
this, the AOR needs a remote version of the APPC link definition that is installed in the TOR. Perhaps you
can rely on this having been shipped to the AOR by a transaction routing operation. If not, you will have to
install it expressly. You cannot use the user exits XICTENF and XALTENF as an aid to routing the alternate
facility.

The system as a terminal
Because the resource definitions for APPC devices can take the CONNECTION and SESSIONS form, it is
easy to confuse them with the definitions for the intersystem links.

It is important to remember that definitions for the intersystem links are either direct or indirect, while
those for APPC devices are direct in the TOR and remote in the AOR and any intermediate systems. Note
also that remote CONNECTION definitions do not need corresponding SESSIONS definitions.

Figure 32 on page 72 shows a network of three CICS systems chained together, of which the first is
linked to an APPC terminal.

APPC terminal Terminal-owning Intermediate Application-owning
(system) region (TOR) system region (AOR)

i “B c “D

Direct Tink Direct Tink
defined to D defined to C

Direct Tink
defined to A

Direct Tink Direct Tink Indirect
defined to C defined to B link defined
to B via C

Indirect Remate link Remote link

link defined
to D via C

Transaction
defined as
owned by C

definition
for A

Transaction
defined as
owned by D

definition
for A

Transaction
defined on
system D

Figure 32. Transaction routing to an APPC terminal across daisy-chained systems

Note:

72 CICS TS for z/OS: Intercommunication Guide

1. The remote link definitions for A could either be defined by the user or be shipped from system B
during transaction routing.

2. The indirect links are not necessary to this example, but are included to complete all possible linkage
combinations. See Defining indirect links for transaction routing.

3. The links B-C and C-D may be either MRO or APPC.

System A (or any one of the four systems) can take on the role of a terminal. This is a technique that
allows a pair of transactions to converse across intermediate systems. Consider this sequence of events:

1. A transaction running in A allocates a session on the link to B and makes an attach request for a
particular transaction.

2. B sees that the transaction is on C, and initiates the relay program in conjunction with the principal
facility represented by the link definition to A.

3. The attach request arrives at C together with details of the terminal; that is, B's link to A. C builds a
remote definition of the terminal and goes to attach the transaction.

4. C also finds the transaction remote and defined as owned by D. C initiates the relay program, which
tries to attach the transaction in D.

5. D also builds a remote definition of B's link to A, and attaches the local transaction.

6. The transaction in A that originated the attach request can now communicate with the target
transaction through the transaction routing mechanism.

Note these points:

« APPC terminals are always shippable. There is no need to define them as such.
« Attach requests on other sessions of the A-B link could be routed to other systems.

 Neither partner to a conversation made possible by transaction routing knows where the other resides,
although the routed-to transaction can find out the TERMINAL/CONNECTION name by using the EXEC
CICS ASSIGN PRINSYSID command. This name can be used to allocate one or more additional sessions
back to A.

« The transaction in D could start with an EXEC CICS (GDS) EXTRACT PROCESS command, but it is more
usual for the transaction to start with an EXEC CICS (GDS) RECEIVE command.

The relay program

When a terminal operator enters a transaction code for a transaction that is in a remote system, a
transaction is attached in the TOR that executes a CICS-supplied program known as the relay program.
This program provides the communication mechanism between the terminal and the remote transaction.

Although CICS determines the program to be associated with the transaction, the user's definition for the
remote transaction determines the attributes. These are usually those of the “real” transaction in the
remote system.

Because it executes the relay program, the transaction is called the relay transaction.

When the relay transaction is attached, it acquires an interregion or intersystem session and sends a
request to the remote system to cause the “real” user transaction to be started. In the application-
owning region, the terminal is represented by a control block known as the surrogate TCTTE. This TCTTE
becomes the transaction's principal facility, and is indistinguishable by the transaction from a “real”
terminal entry. However, if the transaction issues a request to its principal facility, the request is
intercepted by the CICS terminal control program and shipped back to the relay transaction over the
interregion or intersystem session. The relay transaction then issues the request or output to the
terminal. In a similar way, terminal status and input are shipped through the relay transaction to the user
transaction.

Automatic transaction initiation (ATI) is handled in a similar way. If a transaction that is initiated by ATI
requires a terminal that is connected to another system, a request to start the relay transaction is sent to
the terminal-owning region. When the terminal is free, the relay transaction is connected to it.

Chapter 1. CICS intercommunication 73

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11l.html

The relay transaction remains in existence for the life of the user transaction and has exclusive use of the
session to the remote system during this period. When the user's transaction terminates, an indication is
sent to the relay transaction, which then also terminates and frees the terminal.

Basic mapping support (BMS)
The mapping operations of BMS are performed in the system on which the user's transaction is running;
that is, in the application-owning region (AOR). The mapped information is routed between the terminal
and this transaction through the relay transaction, as for terminal control operations.

For BMS page building and routing requests, the pages are built and stored in the AOR. When the logical
message is complete, the pages are shipped to the terminal-owning region (or regions, if they were
generated by a routing request), and deleted from the AOR. Page retrieval requests are processed by a
BMS program running in the system to which the terminal is connected.

BMS message routing to remote terminals and operators
You can use the BMS ROUTE command to route messages to remote terminals.

For programming information about the BMS ROUTE command, see ROUTE. You cannot, however, route a
message to a selected remote operator or operator class unless you also specify the terminal at which the
message is to be delivered.

In all cases, the remote terminal must be defined in the system that issues the ROUTE command (or a
shipped terminal definition must already be available; see Shipping terminal and connection definitions).
Note that the facility described in “Shipping terminals for automatic transaction initiation” on page 58
does not apply to terminals addressed by the ROUTE command.

Table 2. BMS message routing to remote terminals and operators

LIST entry OPCLASS Result

None specified Not specified The message is routed to all the remote
terminals defined in the originating
system.

Entries specifying a terminal but notan | Not specified The message is routed to the specified

operator remote terminal.

Entries specifying a terminal but not an [Specified The message is delivered to the

operator specified remote terminal when an
operator with the specified OPCLASS is
signed on.

None specified Specified The message is not delivered to any
remote operator.

Entries specifying an operator but nota | (Ignored) The message is not delivered to the

terminal remote operator.

Entries specifying both a terminal and an | (Ignored) The message is delivered to the

operator specified remote terminal when the
specified operator is signed on.

Using the routing transaction, CRTE

The routing transaction, CRTE, is a CICS-supplied transaction used by a terminal operator to call
transactions that are owned by a connected CICS system. CRTE facility is particularly useful for testing
remote transactions before final installation.

CRTE can be used from any 3270 display device.

74 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_route.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11q.html

To use CRTE, the terminal operator enters:
CRTE SYSID=xxxx [TRPROF={DFHCICSS|profile_namet]

where:

« xxxx is the name of the CONNECTION or the first four characters of the IPCONN resource that defines
the connection to the remote system

« profile_name is the name of the profile to be used for the session with the remote system

See Defining communication profiles for more information about defining profiles. The transaction then
indicates that a routing session has been established, and the user enters input of the form:

Yyyyzzz223. . .

where yyyy is the name by which the required remote transaction is known on the remote system, and
zzzzzz... is the initial input to that transaction. Subsequently, the remote transaction can be used as if it
had been defined locally and called in the ordinary way. All further input is directed to the remote system
until the operator terminates the routing session by entering CANCEL.

In secure systems, operators are typically required to sign on before they can start transactions. The first
transaction that is called in a routing session is therefore usually the sign-on transaction CESN; that is, the
operator signs on to the remote system.

Although the routing transaction is implemented as a pseudoconversational transaction, the terminal
from which it is called is held by CICS until the routing session ends. Any ATI requests that name the
terminal are therefore queued until the CANCEL command is issued.

System programming for transaction routing
You have to perform the following operations to implement transaction routing in your installation.

About this task

Procedure

1. Install MRO or ISC support, or both.

2. Define MRO or ISC links between the systems that are to be connected, as described in Defining
connections to remote systems.

3. Define the terminals and transactions that will participate in transaction routing, as described in
Defining remote resources.

4. Ensure that the local communication profiles, transactions, and programs required for transaction
routing are defined and installed on the local system, as described in Defining remote resources.

5. If you want to use dynamic transaction routing, customize the supplied dynamic routing program,
DFHDYP, or write your own version.

For programming information about how to do this, see Writing a dynamic routing program.

6. If you want to route to shippable terminals from regions where those terminals might be 'not known',
code and enable the global user exits XICTENF and XALTENF.

For programming information about coding these exits, see Terminal not known condition exits
XALTENF and XICTENF .

Intersystem queuing

If the link to a remote region is established, but there are no free sessions available, transaction routing
requests may be queued in the issuing region. Performance problems can occur if the queue becomes
excessively long.

For guidance information about controlling intersystem queues, see Intersystem session queue
management.

Chapter 1. CICS intercommunication 75

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht12b.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht12b.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11o.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht11o.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35y.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha338.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha338.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html

CICS distributed program link

This chapter describes CICS distributed program link (DPL).
It contains:

« “Overview of DPL” on page 76

- “Statically routing DPL requests” on page 77

« “Dynamically routing DPL requests” on page 79

 “Limitations of DPL server programs” on page 82

« “Intersystem queuing” on page 82

« “Examples of DPL” on page 83.

Overview of DPL

CICS distributed program link enables CICS application programs to run programs that are in other CICS
regions by shipping program-control LINK requests.

An advantage of DPL is that you can write an application without knowledge of the location of the
requested programs. The application uses program-control LINK commands in the usual way. The CICS
program resource definitions usually specify that the named program is not in the local region (client
region), but in a remote region (server region).

An illustration of a DPL request is shown in Figure 33 on page 76. In this diagram, a program (the client
program) running in CICA issues a program-control LINK command for a program called PGA (the server
program). From the installed program definitions, CICS discovers that the PGA program is owned by a
remote CICS system called CICB. CICS changes the LINK request into a suitable transmission format and
then ships it to CICB to run.

In CICB, the mirror transaction (described in “The mirror transaction and transformer program” on page
32) is attached. The mirror program DFHMIRS, which is used by all mirror transactions, re-creates the
original request and issues the request on CICB. When the server program has run to completion, the
mirror program returns any communication-area data to CICA.

CICA CICE
DEFINE DEFIME
PROGHRAM ['PGA") PROGRAM ['PGA')

REMOTESYSTEM { CICB §

: CICS mirrar
EXEC CICS LIMNK : transaction
PROGRAM ['PGA') IPIC, ISC or MRO {issues LINK
COMMAREA [...) Y J——— i command and
. passas back
commaraa)

Figure 33. Distributed program link

The CICS recovery and restart facilities enable resources in remote regions to be updated and ensure
that, when the client program reaches a sync point, any mirror transactions that are updating protected
resources also take a sync point. So changes to protected resources in remote and local systems are
consistent. The CSMT transient data queue is notified of any failures in this process, so that suitable
corrective action can be taken, whether manually or by user-written code.

A client program can run in a CICS intercommunication environment and use DPL without any knowledge
of the location of the server program. The location of the server program is communicated to CICS in one
of two ways. DPL requests can be routed to the server region either statically or dynamically.

76 CICS TS for z/OS: Intercommunication Guide

Provided that both the client and the server regions are CICS TS for z/OS, Version 3.2 or later, DPL is
supported over IPIC connections, as well as over MRO and ISC over SNA connections. Support for DPL
functions using IPIC over TCP/IP is equivalent to that for DPL over MRO and DPL over SNA; for example,
both two-phase commit and containers are supported. For regions from CICS TS for z/OS, Version 4.2,
when you use an IPIC connection and a long-running mirror, CICS runs the mirror program DFHMIRS on
an L8 open TCB whenever possible, which can improve performance for threadsafe programs in the
server region. The LINK command also is threadsafe when it is used to link to a program in a remote CICS
region over an IPIC connection only. For MRO and ISC over SNA connections, the mirror program does not
run on an open TCB and the LINK command is not threadsafe.

If both an IPIC connection and an ISC over SNA connection exist between two CICS regions, and both
have the same name, the IPIC connection takes precedence. That is, if remote region CICB is defined by
both an IPCONN definition and a CONNECTION definition, CICS uses the IPCONN definition. However, if
the IPCONN is not acquired but is in service, the ISC over SNA connection is used.

Statically routing DPL requests

Static routing means that the location of the server program is specified at design time, rather than at run
time. DPL requests for a particular remote program are always routed to the same server region.
Typically, when static routing is used, the location of the server program is specified in the PROGRAM
resource.

The program resource definition can also specify the name of the server program as it is known on the
resource system, if it is different from the name by which it is known locally. When the server program is
requested by its local name, CICS substitutes the remote name before sending the request. This facility is
useful when a server program exists with the same name on more than one system, but performs
different functions depending on the system on which it is located.

Consider, for example, a local system CICA and two remote systems CICB and CICC. A program named
PG1 resides in both CICB and CICC. These two programs are defined in CICA, but, because they have the
same name, a local alias and a REMOTENAME must be defined for at least one of the programs. For
example:

- Definition of program PG1 in system CICB:

PROGRAM(PG1)
REMOTESYSTEM(CICB)

« Definition of program PG1 in system CICC, that uses a local alias of PG99 and the REMOTENAME
attribute:

PROGRAM(PG99)
REMOTENAME(PG1)
REMOTESYSTEM(CICC)

Note: Although doing so can limit the independence of the client program, the client program can name
the remote system explicitly by using the SYSID option on the LINK command. If this option names a
remote system, CICS routes the request to that system unconditionally. If the value of the SYSID option is
“hard-coded”, that is, it is not deduced from a range of possibilities at run time, this method is another
form of static routing.

The local system can also be specified on the SYSID option. This means that the decision whether to link
to a remote server program or a local one can be taken at run time. This approach is a simple form of
dynamic routing.

In the client region (CICA in Figure 34 on page 78), the command-level EXEC interface program
determines that the requested server program is on another system (CICB in the example). It therefore
calls the transformer program to transform the request into a form suitable for transmission (in the
example, line (2) indicates this). As indicated by line (3) in the example, the EXEC interface program then
calls on the intercommunication component to send the transformed request to the appropriate
connected system.

Chapter 1. CICS intercommunication 77

Using the mirror transaction

The intercommunication component uses CICS terminal-control facilities to send the request to the
mirror transaction. The request to a specific server region causes the communication component in the
client region to precede the formatted request with the identifier of the appropriate mirror transaction to
be attached in the server system.

If you use a user-specified name for the mirror transaction initiated by any given DPL request, the
following actions become easier:

« Controlling access to resources
« Accounting for system usage
 Performance tuning

- Establishing an audit trail

This transaction name must be defined in the server region as a transaction that invokes the mirror
program DFHMIRS. If you define user transactions to invoke the mirror program, you can then specify
appropriate values for all the other options on the transaction resource definition. To initiate any user-
defined mirror transaction, the client program specifies the transaction name on the LINK request.
Alternatively, the transaction name can be specified on the TRANSID option of the program resource

definition.
CICA CICB
DEFINE PROGRAM{PGA) DEFINE PROGRAMICPGA)Y ...
REMOTESYSTEM(CICE)
Transaction Mirror
LAAA- transaction
4. ‘7

EXEC CICS LINK

PROGRAM{ 'PGA ") — 4+
—» ... €+ ||
(1) ' |
| (3) (5)](4)
——|— Programs Program PGA: <&—!(6)
——|—» DFHEIP, (8) (7)
(10) DFHEFPC, —p- -
DFHISP +—
—p EXEC CICS
1.’2} 4— RETURN ... —p-
(9
‘]
—————r Transformer Transformer 4+
program DFHXFP program DFHXFP TF________

Figure 34. The transformer program and the mirror in DPL

As line (4) in Figure 34 on page 78 shows, a mirror transaction uses the transformer program DFHXFP to
decode the formatted link request. The mirror then executes the corresponding command, thereby linking
to the server program PGA (5). When the server program issues the RETURN command (6), the mirror
transaction uses the transformer program to construct a formatted reply (7). The mirror transaction
returns this formatted reply to the client region (8). In that region (CICA in the example), the reply is
decoded, again using the transformer program (9), and used to complete the original request made by the
client program (10).

The mirror transaction, which is always long-running for DPL, suspends after sending its communications
area. The mirror transaction does not terminate until the client program issues a syncpoint request or
terminates successfully.

78 CICS TS for z/OS: Intercommunication Guide

When the client program issues a syncpoint request, or terminates successfully, the intercommunication
component sends a message to the mirror transaction that causes it also to issue a syncpoint request and
terminate. The successful syncpoint by the mirror transaction is indicated in a response sent back to the
client region, which then completes its syncpoint processing, so committing changes to any protected
resources.

The client program can link to server programs in any order, without being affected by the location of
server programs (they could all be in different server regions, for example). When the client program links
to server programs in more than one server region, the intercommunication component invokes a mirror
transaction in each server region to execute link requests for the client program. Each mirror transaction
follows the rules just described for termination, and when the application program reaches a syncpoint,
the intercommunication component exchanges syncpoint messages with any mirror transactions that
have not yet terminated.

Using global user exits to redirect DPL requests
Two global user exits can be invoked during DPL processing.

About this task

- Ifitis enabled, XPCREQ is invoked on entry to the CICS program control program, before a link request
is processed. For DPL requests, it is invoked on both sides of the link; that is, in both the client and
server regions.

« Ifitis enabled, XPCREQC is invoked after a link request has completed. For DPL requests, it is invoked
in the client region only.

XPCREQ and XPCREQC can be used for a variety of purposes. You could, for example, use them to route
DPL requests to different CICS regions, thereby providing a simple load balancing mechanism. However, a
better way of doing this is to use the CICS dynamic routing program—see “Dynamically routing DPL
requests” on page 79.

For programming information about writing XPCREQ and XPCREQC global user exit programs, see
Program control program exits (XPCREQ, XPCERES, XPCREQC, XPCFTCH, XPCHAIR, XPCTA, and
XPCABND).

Dynamically routing DPL requests

Dynamic routing means that the location of the server program is decided at run-time, rather than at
design time. DPL requests for a particular remote program may be routed to different server regions. For
example, if you have several cloned application-owning regions, you may want to use dynamic routing to
balance the workload across the regions.

Dynamic routing models:

Dynamic routing of DPL requests received from outside CICS uses the “hub” routing model described in
“The hub model” on page 50.

Dynamic routing of CICS-to-CICS DPL requests uses the distributed routing model described in “The
distributed model” on page 51. Note, however, that it is the dynamic routing program, not the distributed
routing program, that is invoked for routing CICS-to-CICS DPL requests.

For eligible DPL requests, a user-replaceable program called the dynamic routing program is invoked.
(This is the same dynamic routing program that is invoked for transactions defined as DYNAMIC—see
“Dynamic transaction routing” on page 54.) The routing program selects the server region to which the
program-link request is shipped.

The default dynamic routing program, supplied with CICS, is named DFHDYP. You can modify the supplied
program, or replace it with one that you write yourself. You can also use the DTRPGM system initialization
parameter to specify the name of the program that is invoked for dynamic routing, if you want to name
your program something other than DFHDYP. For programming information about user-replaceable
programs in general, and about the dynamic routing program in particular, see Writing a dynamic routing
program.

Chapter 1. CICS intercommunication 79

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3e6.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3e6.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35y.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha35y.html

If you are using a threadsafe program that makes DPL requests that are transmitted to another region
using IPIC communication, you might benefit from improved performance by changing your dynamic
routing program to be coded to threadsafe standards.

You can review the value of the CONCURRENCY attribute in the PROGRAM resource definition for your
dynamic routing program. If the program is not defined as threadsafe, each use of the program causes a
switch back to the QR TCB, incurring an additional cost. If the program is defined as threadsafe but uses
non-threadsafe CICS commands (which is permitted), each non-threadsafe command causes a switch
back to the QR TCB and incurs the additional cost. For more information about threadsafe programs, see
Threadsafe programs.

In the server region to which the program-link request is shipped, the mirror transaction is invoked in the
way described for static routing.

Which requests can be dynamically routed?
For a program-link request to be eligible for dynamic routing, the remote program must either be defined
to the local system as DYNAMIC(YES), or not be defined to the local system.

Note: If the program specified on an EXEC CICS LINK command is not currently defined, what happens
next depends on whether program autoinstall is active:

- If program autoinstall is inactive, the dynamic routing program is invoked.

- If program autoinstall is active, the autoinstall user program is invoked. The dynamic routing program is
then invoked only if the autoinstall user program:

— Installs a program definition that specifies DYNAMIC(YES), or
— Does not install a program definition.

For further information about autoinstalling programs invoked by EXEC CICS LINK commands, see
When definitions of remote server programs aren't required.

As well as "traditional" CICS-to-CICS DPL calls instigated by EXEC CICS LINK PROGRAM commands,
program-link requests received from outside CICS can also be dynamically routed. For example, all of the
following types of program-link request can be dynamically routed:

- Calls received from:
— The CICS Web Interface
— The CICS Gateway for Java
« Calls from external CICS interface (EXCI) client programs
« External Call Interface (ECI) calls from any of the CICS Client workstation products
« ONC/RPC calls.
A program-link request received from outside CICS can be dynamically routed by:
« Defining the program to CICS Transaction Server for z/OS as DYNAMIC(YES)
« Coding your dynamic routing program to route the request.
When the dynamic routing program is invoked

Program-link requests are both “traditional” CICS-to-CICS DPL calls and requests received from outside
CICS. For eligible program-link requests the dynamic routing program is invoked at the following points.

- Before the linked-to program is executed, to either:
— Obtain the SYSID of the region to which the link should be routed.

Note: The address of the caller's communication area (COMMAREA) is passed to the routing program,
which can therefore route requests by COMMAREA contents if this is appropriate.

— Notify the routing program of a statically-routed request. This occurs if the program is defined as
DYNAMIC(YES)—or is not defined—but the caller specifies the name of a remote region on the SYSID
option on the LINK command.

80 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/designing/dfhp3_concepts_threadsafe.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht1ma.html

In this case, specifying the target region explicitly takes precedence over any SYSID returned by the
dynamic routing program.

« If an error occurs in route selection—for example, if the SYSID returned by the dynamic routing program
is unavailable or unknown, or the link fails on the specified target region—to provide an alternate SYSID.
This process iterates until either the program-link is successful or the return code from the dynamic
routing program is not equal to zero. If the return code is not zero, CICS attempts to execute the
program in the routing region.

- After the link request has completed, if reinvocation was requested by the routing program.

« If an abend is detected after the link request has been shipped to the specified remote system, if
reinvocation was requested by the routing program.

Using CICSPlex SM to route requests

If you use CICSPlex SM to manage your CICSplex, you might not need to write your own dynamic routing
program. CICSPlex SM provides a dynamic routing program that supports both workload routing and
workload separation. All you have to do is to tell CICSPlex SM which regions in the CICSplex can
participate in dynamic routing.

Using CICSPlex SM, you could integrate workload routing for program-link requests with that for terminal-
initiated transactions.

How CICS obtains the transaction ID

A transaction identifier is always associated with each dynamic program-link request. CICS obtains the
transaction ID using the following sequence:

1. From the TRANSID option on the LINK command.
2. From the TRANSID option on the program definition.

3. CSMLI, the generic mirror transaction. This is the default if neither of the TRANSID options are
specified.

If you write your own dynamic routing program, perhaps based on DFHDYP, the transaction ID associated
with the request might not be significant; you could, for example, code your program to route requests
based on program name and available AORs (application owning regions).

However, if you use CICSPlex SM to route your program-link requests, the transaction ID becomes much
more significant, because the CICSPlex SM routing logic is transaction-based. CICSPlex SM routes each
DPL request according to the rules for its associated transaction as specified in the Transaction Group
(TRANGRP), Workload Management Definition (WLMDEF) and Workload Management Specification
(WLMSPEC) resource tables.

Note: The CICSPlex SM system programmer can use the EYU9WRAM user-replaceable module to change
the transaction ID associated with a DPL request.

Daisy-chaining of DPL requests
Statically-routed DPL requests can be daisy-chained from region to region.

For example, imagine that you have three CICS regions—A, B, and C. In region A, a program P is defined
with the attribute REMOTESYSTEM(B). In region B, P is defined with the attribute REMOTESYSTEM(C). An
EXEC CICS LINK PROGRAM(P) command issued in region A is shipped to region B for execution, from
where it is shipped to region C.

Dynamically-routed DPL requests cannot be daisy-chained from region to region. Imagine two CICS
regions, A and B. A program P is defined as DYNAMIC(YES), or is not defined , in both regions. An EXEC
CICS LINK PROGRAM(P) command is issued in region A. The dynamic routing program is invoked in region
A and routes the request to region B. In region B, the dynamic routing program is not invoked, even
though program P is defined as DYNAMIC(YES); P runs locally, in region B.

CICS does not support the daisy-chaining of dynamic DPL requests which includes combining dynamic
routing with static routing. When a DPL request has been dynamically routed CICS expects the program to

Chapter 1. CICS intercommunication 81

execute in the target region. If a dynamically routed DPL request is statically daisy-chained to a different
target region via intermediate regions, it must execute in that target region.

Limitations of DPL server programs
A DPL server program cannot issue the following types of commands.
« Terminal-control commands referring to its principal facility
« Commands that set or inquire on terminal attributes
« BMS commands
- Signon and signoff commands
 Batch data interchange commands
« Commands addressing the TCTUA

« Syncpoint commands (except when the client program specifies the SYNCONRETURN option on the
LINK request).

If the client specifies SYNCONRETURN:

« The server program can issue syncpoint requests.
- The mirror transaction requests a syncpoint when the server program completes processing.
Attention: Both these kinds of syncpoint commit only the work done by the server program. In

applications where both the client program and the server program update recoverable resources,
they could cause data-integrity problems if the client program fails after issuing the LINK request.

For further information about application programming for DPL, see Application programming for CICS
DPL.

Intersystem queuing

If the link to a remote region is established, but there are no free sessions available, distributed program
link requests may be queued in the issuing region. Performance problems can occur if the queue becomes
excessively long.

For guidance information about controlling intersystem queues, see Intersystem session queue
management.

82 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfht126.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfht126.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html

Examples of DPL

This section gives some examples to illustrate the lifetime of the mirror transaction and the information
flowing between the client program and its mirror transaction.

Transmitted
System A Jnformation System B
Application Transaction
EXEC CICS LINK Attach mirror,
PROGRAMC'PGA ") "LINK" request
COMMAREAC...) ... p | Attach
. mirror transaction.
Mirror performs LINK
to PGA.
PGA runs, issues RETURN.
Reply passed to Commarea data Mirror ships the
client program. < commarea back to
. system A.
. "SYNCPOINT'
EXEC CICS SYNCPOINT request, last
p | Mirror takes syncpoint,
frees the session,
Positive response and terminates.
Syncpoint completed. <
Client program
continues.

Figure 35. DPL with the client transaction issuing a syncpoint

Figure 35 on page 83 shows a DPL request on which the client transaction issues a syncpoint. Because
the mirror is always long-running, it does not terminate before SYNCPOINT is received.

Chapter 1. CICS intercommunication 83

Transmitted

System A Information | Sysiem B
Application Transaction
EXEC CICS LINK
PROGRAM{ "PGA ") Attach mirror,
COMMAREAC. ..} ... "LINK" request
. p» | Attach
mirror transaction.
Abend condition Program PGA runs,
Client program abends. < abends.
. Mirror waits for
syncpoint or abend
Abend message from client region.
Message routed to CEMT. «
session freed.

Figure 36. DPL with the server program abending

Figure 36 on page 84 shows a DPL request on which the server program abends.

Distributed transaction processing

The technique of distributing the functions of a transaction over several transaction programs within a
network is called distributed transaction processing (DTP).

This chapter contains the following topics:

« “Overview of DTP” on page 84

- “Advantages over function shipping and transaction routing” on page 85

« “Why distributed transaction processing?” on page 85

« “What is a conversation and what makes it necessary?” on page 96
« “MRO or APPC for DTP?” on page 100

« “APPC mapped or basic?” on page 100

« “EXEC CICS or CPI Communications?” on page 101.

Overview of DTP

When CICS arranges function shipping, distributed program link (DPL), asynchronous transaction
processing, or transaction routing for you, it establishes a logical data link with a remote system.

A data exchange between the two systems then follows. This data exchange is controlled by CICS-
supplied programs, using APPC, LUTYPE®6.1, or MRO protocols. The CICS-supplied programs issue
commands to allocate conversations, and send and receive data between the systems. Equivalent
commands are available to application programs, to allow applications to converse. The technique of
distributing the functions of a transaction over several transaction programs within a network is called
distributed transaction processing (DTP).

Of the five intercommunication facilities, DTP is the most flexible and the most powerful, but it is also the
most complex. This chapter introduces you to the basic concepts.

84 CICS TS for z/OS: Intercommunication Guide

Advantages over function shipping and transaction routing
Distributed transaction processing has advantages over function shipping and transaction routing.

Function shipping gives access to remote resources, and transaction routing lets a terminal communicate
with remote transactions. These two facilities might appear sufficient for all your intercommunication
needs, especially from a functional perspective. However, you must consider other design criteria, for
example, machine loading, response time, continuity of service, and economic use of resources.

Consider the example of a supermarket chain. It has many branches that each stock a different range of
goods, which are served by several distribution centers. Local stock records at the branches are updated
online from point-of-sale terminals. Sales information must be sorted for the separate distribution
centers, and transmitted to them to enable reordering and distribution.

An analyst might consider using function shipping to write each reorder record to a remote file as it arises.
This method has simplicity, but must be rejected for several reasons:

« Data is transmitted to the remote systems irregularly in small packets. This means inefficient use of the
links.

- The transactions associated with the point-of-sale devices are competing for sessions with the remote
systems. This could mean unacceptable delays at point-of-sale.

« Failure of a link results in a catastrophic suspension of operations at a branch.

« Intensive intercommunication activity (for example, at peak periods) causes reduction in performance
at the terminals.

Now consider the solution where each sales transaction writes its reorder records to a transient data
gueue. The data is quickly disposed of, leaving the transaction to carry on its conversation with the
terminal.

Restocking requests are seldom urgent, so it might be possible to delay the sorting and sending of the
data until an off-peak period. Alternatively, the transient data queue could be set to trigger the sender
transaction when a predefined data level is reached. Either way, the sender transaction has the same job
to do.

Again, it is tempting to use function shipping to transmit the reorder records. After the sort process, each
record could be written to a remote file in the relevant remote system. However, this method is still not
ideal. The sender transaction would have to wait after writing each record to make sure that it got the
correct response. Apart from using the link inefficiently, waiting between records would make the whole
process impossibly slow. You can use distributed transaction processing to solve this problem, and
others.

The flexibility of DTP can, in some circumstances, be used to achieve improved performance over function
shipping. Consider browsing a remote file to select a record that satisfies some criteria. If you use
function shipping, CICS ships the GETNEXT request across the link, and lets the mirror perform the
operation and ship the record back to the requester. This is a lot of activity (two flows on the network) and
the data flow can be significant. If the browse is on a large file, the overhead can be unacceptably high.

One alternative is to write a DTP conversation that ships the selection criteria, and returns only the keys
and relevant fields from the selected records. This reduces both the number of flows and the amount of
data sent over the link, thus reducing the overhead incurred in the function-shipping case.

Why distributed transaction processing?

In a multisystem environment, data transfers between systems are necessary because users need access
to remote resources.

In managing these resources, network resources are used. But performance suffers if the network is used
excessively. There is therefore a performance gain if application design is oriented toward doing the
processing associated with a resource in the resource-owning region.

DTP lets you process data at the point where it arises, instead of overworking network resources by
assembling it at a central processing point.

There are, of course, other reasons for using DTP. DTP does the following:

Chapter 1. CICS intercommunication 85

Allows some measure of parallel processing to shorten response times

Provides a common interface to a transaction that is to be attached by several different transactions
« Enables communication with applications running on other systems, particularly on non-CICS systems

Provides a buffer between a security-sensitive file or database and an application, so that no application
need know the format of the file records

Enables batching of less urgent data destined for a remote system.

DTP’s place in the CICS intercommunication facilities

Today, an increasing number of organizations are connecting their information systems together and
distributing resources among them. To support this kind of processing, applications need to be designed
and developed to access resources across multiple systems.

So CICS provides the following basic intercommunication facilities:

 Function shipping, which enables your application program to access resources in another CICS system.

- Distributed program link, which enables a program in one CICS system to issue a link command that
invokes a program in another CICS system, waiting for a RETURN.

= Asynchronous processing, which enables a CICS transaction to initiate a transaction in another CICS
system and pass data to it.

 Transaction routing, which enables a terminal connected to one CICS system to run a transaction in
another CICS system.

- Distributed transaction processing, which enables a CICS transaction to communicate with a transaction
running in another system. The transactions are designed and coded specifically to communicate with
each other, and in doing so to use the intersystem link with maximum efficiency.

In addition, CICS provides the following methods of accessing CICS programs and transactions from non-
CICS environments:

« The CICS bridge
The external CICS interface (EXCI)
« Transactional EXCI

« Support for ONC Remote Procedure Calls
« The web interface.

This information discusses only distributed transaction processing. The other basic intercommunication
facilities are described in Intercommunication methods.

What is DTP?

DTP is one of the ways in which CICS allows processing to be split between intercommunicating systems.
Only DTP allows two or more communicating application programs to run simultaneously in different
systems and to pass data back and forth between themselves—that is, to carry on a conversation.

Of the intercommunication facilities offered by CICS, DTP is the most flexible and powerful, but also the
most complex. This section introduces you to the basic concepts involved in creating DTP applications.
For a broad discussion of intercommunication concepts, see Getting started with intercommunication.

DTP allows two or more partner programs in different systems to interact with each other for some
purpose. DTP enables a CICS transaction to communicate with one or more transactions running in
different systems. A group of such connected transactions is called a distributed process.

The process can best be shown by discussing the operation of DTP between two CICS systems, CICSA
and CICSB. The configuration is shown in Figure 37 on page 87.

86 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1k0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht1k0.html

CICSA CICSB

——— Transaction TRAAM— Transaction TREB

Program

T}

Terminal Program X

W

Figure 37. DTP between two CICS transactions

1. A transaction (TRAA) is initiated on CICSA, for example, by a terminal operator keying in a transaction
ID and initial data.

2. To fulfill the request, the processing program X begins to execute on CICSA, probably reading initial
data from files, perhaps updating other files and writing to print queues.

3. Without ending, program X asks CICSA to establish a communication session with another CICS
system, CICSB. CICSA responds to the request.

4. Also without ending, program X sends a message across the communication session, asking CICSB to
start a new transaction, TRBB. CICSB initiates transaction TRBB by invoking program Y.

5. Program X now sends and receives messages, including data, to and from program Y. Between
sending and receiving messages, both program X and program Y continue normal processing
completely independently. When the two programs communicate, their messages can consist of:

- Agreements on how to proceed with communication or how to end it. For example, program X can
tell program Y when it may transmit messages across the session. At any time, both programs must
know the state of their communication, and thus, what actions are allowed. At any time, either
system may have actual control of the communication.

- Agreements to make permanent all changes made up to that point. This allows the two programs to
synchronize changes. For example, a dispatch billing program on CICSA might want to commit
delivery and charging for a stock item, but only when a warehouse program in CICSB confirms that it
has successfully allocated the stock item and adjusted the inventory file accordingly.

- Agreements between CICSA and CICSB to cancel, rather than make permanent, changes to data
made since a given point. Such a cancelation (or rollback) might occur when customers change their
minds, for example. Alternatively, it might occur because of uncertainty caused by failure of the
application, the system, the communication path, or the data source.

Although the two programs X and Y exist as independent units, it is clear that they are designed to work
as one. Of course, DTP is not limited to pairs of programs. You can chain many programs together to
distribute processing more widely. This is discussed later in the book.

In the overview of the process, the location of program Y has not been specified. Program X is a CICS
program, but program Y need not be, because CICS can establish sessions with non-CICS, LUTYPE6.1,
MRO, or APPC partners. This is discussed in “Designing distributed processes” on page 91.

Conversations

Although several programs can be involved in a single distributed process, information transfer within the
process is always between self-contained communication pairs. The exchange of information between a
pair of programs is called a conversation.

During a conversation, both programs are active; they send data to and receive data from each other. The
conversation is two-sided but at any moment, each partner in the conversation has more or less control
than the other. According to its level of control (known as its conversation state), a program has more or
less choice in the commands that it can issue.

Chapter 1. CICS intercommunication 87

Conversation states
Thirteen conversation states have been defined for CICS DTP. The set of states possible for a particular
conversation depends on the protocol and synchronization level used.

The concepts of protocol and synchronization level are explained in “Selecting the protocol” on page 94
and “Maintaining data integrity” on page 90 respectively. Table 3 on page 88 shows which
conversation states are defined for which protocols and synchronization levels.

Table 3. The conversation states defined for different protocols. Yes and no indicate whether the state is

defined.

State State name APPC APPC APPC MRO LUTYPEG6.1 LUTYPEG6.1

number sync sync sync normal mode | migration
levelO |levell |[level2 mode

1 Allocated Yes Yes Yes Yes Yes Yes

2 Send Yes Yes Yes Yes Yes Yes

3 Pendreceive Yes Yes Yes No Yes Yes

4 Pendfree Yes Yes Yes Yes Yes Yes

5 Receive Yes Yes Yes Yes Yes Yes

6 Confreceive No Yes Yes No No Yes

7 Confsend No Yes Yes No No Yes

8 Conffree No Yes Yes No No Yes

9 Syncreceive No No Yes Yes Yes Yes

10 Syncsend No No Yes No Yes Yes

11 Syncfree No No Yes Yes Yes Yes

12 Free Yes Yes Yes Yes Yes Yes

13 Rollback No No Yes Yes No Yes

By using a special CICS command (EXTRACT ATTRIBUTES STATE), or the STATE option on a conversation
command, a program can obtain a value that indicates its own conversation state. CICS places such a
value in a variable named by the program; the variable is sometimes referred to as a state variable.
Knowing the current conversation state, the program then knows which commands are allowed. If, for
example, a conversation is in send state, the transaction can send data to the partner. (The transaction
can take other actions instead, as indicated in the relevant state table.)

When a transaction issues a DTP command, this can cause the conversation state to change. For example,
a transaction can deliberately switch the conversation from send state to receive state by issuing a
command that invites the partner to send data. When a conversation changes from one state to another, it
is said to undergo a state transition.

Not only does the conversation state determine what commands are allowed, but the state on one side of
the conversation reflects the state on the other side. For example, if one side is in send state, the other
side is in either receive state, confreceive state, or syncreceive state.

Sessions

A conversation takes place across a CICS resource called a session. One transaction (known as the front-
end transaction) asks CICS to allocate a session, and then uses this session to request that the remote
transaction (known as the back-end transaction) be initiated. Then the two transactions, which can be
thought of as partners in the conversation, can “talk to” each other.

A session is a logical data path between two logical units. It is a shared resource and is allocated to a
transaction in response to a request from the transaction. Resource definition determines the number of

88 CICS TS for z/OS: Intercommunication Guide

sessions available for allocation. While a conversation is active, it has sole use of the session allocated to
it.

A transaction starts a conversation by requesting the use of a session to a remote system. When it obtains
the session, the transaction can issue commands that cause an attach request to be sent to the other

system to activate the transaction that is to be the conversation partner. A transaction can issue an attach
request to more than one other transaction.

Distributed processes

A transaction can initiate other transactions, and hence, conversations. In a complex process, a distinct
hierarchy emerges, usually with the terminal-initiated transaction at the top.

Figure 38 on page 89 shows a possible configuration. In this example, transaction TRAA, in system
CICSA, is initiated from a terminal. Transaction TRAA attaches transaction TRBB to run in system CICSB.
Transaction TRBB in turn attaches transaction TRCC in system CICSC and transaction TRDD in system
CICSD. Both transactions TRCC and TRDD attach the same transaction SUBR in system CICSE, thus giving
rise to two copies of SUBR.

CICSA

i Transaction TRAA

Terminal H
CICSB
Transaction TREBB
CICSC CICSD
Transaction TRCC Transaction TRDD
CICSE
Transaction SUBR Transaction SUBER

Figure 38. DTP in a distributed process

Notice that, for every transaction, there is only one inbound attach request, but that there can be a
number of outbound attach requests. The session that activates a transaction is called its principal
facility. A session that is allocated by a transaction to activate another transaction is called its alternate
facility. Therefore, a transaction can have only one principal facility, but several alternate facilities.

Chapter 1. CICS intercommunication 89

When a transaction initiates a conversation, it is the front-end transaction on that conversation. Its
conversation partner is the back-end transaction on the same conversation. It is normally the front-end
transaction that dominates, and determines the way the conversation goes. This style of processing is
sometimes referred to as the client/server model. (In some books, it is called master/slave.)

Alternatively, the front-end transaction and back-end transaction may switch control between
themselves. This style of processing is called peer-to-peer. As the name implies, this model describes
communication between equals. You are free to select whichever model you need when designing your
application; CICS supports both.

Maintaining data integrity
Design your application to cope with the things that can go wrong while a transaction is running, for
example, a session failing. The conversation protocol helps you recover from errors and ensures that the
two sides remain in step with each other. This use of the protocol is called synchronization.

Synchronization allows you to protect recoverable resources such as transient data queues and files,
whether they are local or remote. Whatever goes wrong during the running of a transaction should not
leave the associated resources in an inconsistent state.

An application program can cancel all changes made to recoverable resources since the last known
consistent state. This process is called rollback. The physical process of recovering resources is called
backout. The condition that exists as long as there is no loss of consistency between distributed
resources is called data integrity.

Sometimes you might need to backout changes to resources, even though no error conditions have
arisen. Consider an order entry system. While entering an order for a customer, an operator is told by the
system that the customer’s credit limit would be exceeded if the order went through. Because there is no
use continuing until the customer is consulted, the operator presses a function key to abandon the order.
The transaction is programmed to respond by returning the data resources to the state they were in at the
start of the order transaction.

The point in a process where resources are declared to be in a known consistent state is called a
synchronization point, often shortened to sync point. Sync points are implied at the beginning and end of a
transaction. A transaction can define other sync points by program command. All processing between two
sync points belongs to a unit of work (UOW). In a distributed process, this is also known as a distributed
unit of work.

When a transaction issues a sync point command, CICS commits all changes to recoverable resources
associated with that transaction. After the sync point, the transaction can no longer back out changes
made since the previous sync point. They have become irreversible.

Although CICS can commit and backout changes to local and remote resources for you, this service must
be paid for in performance. If the recovery of resources throughout a distributed process is not a problem
(for example, in an inquiry-only application), you can use simpler methods of synchronization.

Synchronization levels
Systems Network Architecture (SNA) defines three levels of synchronization for conversation using the
APPC protocol.

The levels are:

« Level 0 — None
« Level 1 - Confirm
« Level 2 — Syncpoint

Note: Sync level 2 is not supported on single-session connections.

At sync level 0, there is no CICS support for synchronization of remote resources on connected systems.
But it is still possible, under the control of the application to achieve some degree of synchronization by
interchanging data, using the SEND and RECEIVE commands.

90 CICS TS for z/OS: Intercommunication Guide

At sync level 1, you can use special commands for communication between the two conversation
partners. One transaction can confirm the continued presence and readiness of the other. Both
transactions are responsible for preserving the data integrity of recoverable resources by issuing
syncpoint requests at the appropriate times.

At sync level 2, all syncpoint requests are automatically propagated across multiple systems. CICS
implies a syncpoint when it starts a transaction; that is, it initiates logging of changes to recoverable
resources, but no control flows take place. CICS takes a syncpoint when one of the transactions
terminates normally. One abending transaction causes all to rollback. The transactions themselves can
initiate syncpoint or rollback requests. However, a syncpoint or rollback request is propagated to another
transaction only when the originating transaction is in conversation with the other transaction, and sync
level 2 has been selected.

Bear in mind that syncpoint and rollback are not limited to any one conversation within a transaction.
They are propagated on every conversation currently active at sync level 2.

Designing distributed processes
These topics discuss the issues you must consider when designing distributed processes to run under
APPC or MRO. These issues include structuring distributed processes and designing conversations.

It is assumed that you are already familiar with the issues involved in designing applications in single
CICS systems, as described in What is a CICS application?.

Structuring distributed transactions

As with many design problems, designing a DTP application involves dealing with several conflicting
objectives that must be carefully balanced against each other. These include performance, ease of
maintenance, reliability, security, connectivity to existing functions, and recovery.

Avoiding performance problems

If performance is the highest priority, you must design your application so that data is processed as close
to its source as possible. This avoids unnecessary transmission of data across the network. Alternatively,
if processing can be deferred, you might want to consider batching data locally before transmitting.

To maintain performance across the intersystem connection, the conversation must be freed as soon as
possible — so that the session can be used by other transactions. In particular, avoid holding a
conversation across a terminal wait.

In terminal-attached transactions, pseudo-conversational design improves performance by reducing the
amount of time a transaction holds CICS resources. A terminal user is likely to take seconds or even
minutes to respond to any request for keyboard input. In contrast, the communication delay associated
with a conversation between partner transactions is likely to be only a few milliseconds. It is therefore not
necessary to terminate a front-end transaction pending a response from a back-end transaction.

However, a front-end transaction can be terminal-initiated, in which case a pseudo-conversational design
might be appropriate. When input from the terminal user is required, terminate the the front-end
transaction and its conversations. After the terminal user has responded, the successor front-end
transaction can initiate a successor back-end transaction. If the first back-end transaction has to pass
information to its successor, the information must either be passed to the front-end transaction or stored
locally (for example, in temporary storage).

Stored information must be retrievable by identifiers that are not associated with the particular session
used by the conversation. The back-end transaction cannot use a COMMAREA, a RETURN TRANSID, nor a
TCTUA for this purpose. Instead, it can construct the identifier of a temporary storage queue by using
information obtained from the front-end transaction. You can use the sysid of the principal facility and the
identifier of the terminal to which the front-end transaction is attached.

Making maintenance easier

To correct errors or to adapt to the evolving needs of an organization, distributed processes inevitably
have o be modified. Whether these changes are made by the original developers or by others, this task is

Chapter 1. CICS intercommunication 91

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/applications/dfhp3_intro_app_oview.html

likely to be easier if the distributed processes are relatively simple. So consider minimizing the number of
transactions involved in a distributed process.

Going for reliability

If you are particularly concerned with reliability, consider minimizing the number of transactions in the
distributed process.

Protecting sensitive data

If the distributed process is to handle security-sensitive data, you could place this data on a single
system. Using a single system means that only one of the transactions needs knowledge of how or where
the sensitive data is stored. For guidance on implementing security in CICS systems, see Security
facilities in CICS.

Maintaining connectivity

If you require connectivity to transactions running in a back-level CICS system, check that the functions
required are compatible in both systems.

The following aspects of distributed process design differ from single-system considerations:

Data conversion
For non-EBCDIC APPC logical units, some data conversion might be required on either receipt or
sending of data.

Using multiple conversations
When using multiple, serial conversations, CICS might provide different conversation identifiers to the
transaction. It is therefore not advisable to use the conversation identifier for naming resources; for
example, temporary storage queues.

Safeguarding data integrity

If it is important for you to be able to recover your data when things go wrong, design conversations for
sync level 2, and keep the units of work as small as possible. However, this is not always possible,
because the size of a UOW is determined largely by the function being performed. Remember that CICS
syncpoint processing has no information about the structure and purpose of your application. As an
application designer, you must ensure that syncpoints are taken at the right time and place, and to good
purpose. If you do, error conditions are unlikely to lead to inconsistencies in recoverable data resources.

Here is an example of a distributed application that transfers the contents of a temporary storage queue
from system A to system B, using a pair of transactions (TRAA in system A, and TRBB in system B), and a
conversation at synclevel 2:

1. Transaction TRAA in system A reads a record from the temporary storage queue.

2. Transaction TRAA sends the record to system B, and waits for the response.

3. Transaction TRBB in system B receives the record from system A.

4. Transaction TRBB processes the record, and sends a response to system A.

5. Transaction TRAA receives the response, and deletes the record from the temporary storage queue.
These steps are repeated as long as there are records remaining in the queue. When the queue is empty:
1. Transaction TRAA sends a 'last record' indicator to system B.

2. Transaction TRBB sends a response to system A.

There are several points at which you can consider taking a syncpoint. Here are the relative merits of
taking a syncpoint at each of these points:

At the start of processing
Because a UOW starts at this point, a syncpoint has no effect. In fact, if TRBB tries to take a syncpoint
without having first issued a command to receive data, it will be abended.

92 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/dfht52d.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/dfht52d.html

After transaction TRAA receives a response
A syncpoint at this point causes CICS to commit a record in system B before it has been deleted from
system A. If either system (or the connection between them) fails before the distributed process is
completed, data may be duplicated.

Immediately after the record is deleted from the temporary storage queue
Because minimum processing is needed before resources are committed, this may be a safe place to
take a syncpoint if the queue is long or the records are large. However, performance may be poor
because a syncpoint is taken for each record transmitted.

After transaction TRAA receives the response to the last-record indicator
If you take a syncpoint only when all records have been transmitted, an earlier failure will mean that
all data will have to be retransmitted. A distributed process that syncpoints only at this stage will
complete more quickly than one that syncpoints after each record is processed, provided no failure
occurs. However, it will take longer to recover. If more than two systems are involved in the process,
this problem is made worse.

Remember that too many conversations within one distributed transaction complicates error recovery. A
complex structure may sometimes be unavoidable, but usually it means that the design could be
improved if some thought is given to simplifying the structure of the distributed transaction.

A UOW must be recoverable for the whole process of which it forms a part. All changes made by both
partners in every conversation must be backed out if the UOW does not complete successfully.
Syncpoints are not arbitrary divisions, but must reflect the functions of the application. Units of work must
be designed to preserve consistent resources so that when a transaction fails, all resources are restored
to their correct state.

Before terminating a sync level-2 conversation, make sure that the partner transaction is able to
communicate any errors that it may have found. Not doing so might jeopardize data integrity.

Designing conversations

Once the overall structure of the distributed process has been decided, you can then start to design
individual conversations. Designing a conversation involves deciding what functions to put into the front-
end transaction and into the back-end transaction, and deciding what should be in a distributed unit of
work. So you have to make decisions about how to subdivide the work to be done for your application.

Because a conversation involves transferring data between two transactions, to function correctly, each
transaction must know what the other intends. For instance, there is little point in the front-end
transaction sending data if all the back-end transaction is designed to do is print the weekly sales report.
You must therefore consider each front-end and back-end transaction pair as one software unit.

The sequences of commands you can issue on a conversation are governed by a protocol designed to
ensure that commands are not issued in inappropriate circumstances. The protocol is based on the
concept of a number of conversation states. A conversation state applies only to one side of a single
conversation and not to a transaction as a whole. In each state, there are a number of commands that
might reasonably be issued. The command itself, together with its outcome, may cause the conversation
to change from one state to another.

To determine the conversation state, you can use either the STATE option on a command or the EXTRACT
ATTRIBUTES STATE command. Note, however, that the STATE option is valid only for MRO and APPC
sessions, not for LUTYPEG.1 sessions. For programming information about the state values returned by
different commands, see CICS API commands.

When a conversation changes state, it is said to have undergone a state transition, which generally
makes a different set of commands available. The available commands and state transitions are shown in
a series of state tables. Which state table you use depends on the protocol, sync level, application
programming interface (API), and conversation type that you choose. (Only the APPC protocol gives you a
choice of APIs and conversation types.)

“Maintaining data integrity” on page 90 contains guidance on selecting the sync level for a conversation.
Syncpointing a distributed process discusses the synchronization commands and their effects.

Chapter 1. CICS intercommunication 93

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_commandsummary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfhp62m.html

Selecting the protocol
CICS provides three different protocols that support distributed transaction processing. These protocols
define the rules under which two transactions can communicate with each other.

The protocols are:

« APPC (advanced program-to-program communication, sometimes referred to as LUTYPE6.2)

« MRO (multiregion operation)

« LUTYPEG.1 (logical unit type 6.1).

Both APPC and LUTYPE®6.1 are protocols defined by SNA. They are therefore more widely available for
communicating with non-CICS systems. LUTYPE6.1 is the predecessor of APPC; so you should, if

possible, avoid using LUTYPE6.1 for new applications. However, some new applications may still need to
use LUTYPE6.1 to communicate with existing LUTYPE6.1 applications.

To help you migrate applications from LUTYPE6.1 to APPC, CICS provides a migration path. For more
information on this, see Migration of LUTYPE6.1 applications to APPC links.

Choosing between MRO and APPC can be quite simple. The options depend on the configuration of your
CICS complex and on the nature of the conversation partner. MRO does not support communication with
a partner in a non-CICS system. Further, it supports communication between transactions running in CICS
systems in different MVS images only if the MVS images are in the same MVS sysplex, and are joined by
cross-system coupling facility (XCF) links; the MVS images must be at IBM MVS/ESA release level 5.1, or
later. (For full details of the hardware and software requirements for XCF/MRO, see Installation
requirements for XCF/MRO.)

For communication with a partner in another CICS system, where the CICS systems are either in the same
MVS image, or in the same MVS/ESA 5.1 (or later) sysplex, you can use either the MRO or the APPC
protocol. There are good performance reasons for using MRO. But if there is any possibility that the
distributed transactions will need to communicate with partners in other operating systems, it is better to
use APPC so that the transaction remains unchanged.

APPC application programs will not run under MRO. Even if both partners are in the same MVS image,
CICS will not use MRO facilities but will send conversation data through the communications controller.
That involves some z/OS Communications Server overhead. So you must decide whether your application
programs are to converse using APPC or MRO and code them accordingly.

Table 4 on page 94 points out the main differences between the MRO and APPC protocols.

Table 4. MRO protocol compared with APPC protocol

MRO APPC

Function is realized without using a Depends on z/OS Communications Server or
telecommunication access method. similar.

Non-standard architecture. SNA architecture.

CICS-to-CICS links only. Links to non-CICS systems possible.

Communicates within single MVS image, or (using | Communicates across multiple MVS images or
XCF/MRO) between MVS images in same sysplex. |other operating systems.

Sync level 2 forced for the conversation. Sync level 0, 1, or 2 can be selected.

Program initialization parameter (PIP) data not PIP data supported.

supported.

Data transmission not deferred. Deferred data transmission.

Partner transaction may be identified in data. Partner transaction defined by program command.

Performance overhead over a single application. Everl1 greater performance overhead over a single
application.

94 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/connections/dfhp63l.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1er.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1er.html

Table 4. MRO protocol compared with APPC protocol (continued)

MRO

APPC

RECEIVE can be issued only in receive state.

RECEIVE causes conversation turnaround when
issued in send state on mapped conversations.

No ISSUE SIGNAL command.

ISSUE SIGNAL command available.

WAIT command has no function.

WAIT command causes transmission of deferred
data.

APPC protocol

If you choose to use APPC, you must decide which application programming interface (API) to use; and
then which conversation type (basic or mapped) to use.

Selecting the APPC conversation type

APPC conversations can be either mapped or basic. For CICS-to-CICS applications, you can use mapped
conversations. Basic, or unmapped, conversations are useful to communicate with systems that do not
support mapped conversations. These systems include some APPC devices.

The two protocols are similar. The main difference is the way that user data is formatted for transmission.
In mapped conversations, the application sends the data that you want the partner to receive. In basic
conversations, the application must include additional control bytes to convert the data to an SNA-
defined format called a generalized data stream (GDS). Also, in EXEC CICS commands for basic

conversations, you must include the keyword GDS.

The following table summarizes the differences between mapped and basic conversations that apply to

the CICS API.

Table 5. APPC conversations — mapped or basic?

Mapped

Basic

The conversation partners exchange data that is
relevant only to the application.

Both partners must package the user data before
sending, and unpackage it on receipt.

All conversations for a transaction share the same
EXEC Interface Block for status reporting.

Each conversation has its own area for state
information.

The transaction can handle exception conditions or
let them default.

The transaction must test for exception conditions
in a data area set aside for the purpose.

A RECEIVE command issued in send state causes
conversation turnaround.

A RECEIVE command is illegal in send state.

Transactions can be written in any of the supported
languages.

Transactions can be written in assembler language
or C only.

You can cause a conversation to time out if the
partner does not respond. To do this, you specify
the RTIMOUT option of the PROFILE definition.

You cannot cause a conversation to time out if the
partner does not respond.

Effect of z/0S Communications Server persistent sessions support for DTP conversations on APPC

sessions

If you enable z/OS Communications Server persistent sessions support in the local CICS, after a CICS
failure APPC sessions are held in recovery pending state until CICS restarts, or until the timeout value set
on the PSDINT system initialization parameter expires. DTP applications that use APPC sessions defined
as persistent are affected by persistent sessions recovery.

Remote partner programs can cause excessive queuing delays in the partner system if they continue to
issue commands on persistent APPC sessions after this CICS has failed. There is no way for the partner to

Chapter 1. CICS intercommunication 95

know that persistent sessions recovery is in progress. However, there are various actions you can take to
reduce the risk of new work building up for a connection to a persisting CICS system.

Actions on the partner system:

- In DTP applications, requests for sessions are instigated by EXEC CICS ALLOCATE commands. Control
the overall number of queued session requests by using:

— The QUEUELIMIT and MAXQTIME options on the CONNECTION definition
— An XZIQUE global user exit program.

These methods are described in Managing allocate queues.

« Control individual session requests by coding the NOQUEUE|NOSUSPEND option on EXEC CICS
ALLOCATE commands.

« Force mapped APPC RECEIVE or CONVERSE commands to time out if there is any delay in receiving
expected data, by coding the RTIMOUT option on PROFILE definitions.

Action on this system:
« Code a PSDINT value that takes into account the number of your APPC sessions to partner systems.

After a restart, LU6.2 session names, in the range -AAA to -999, are allocated on a "first free" basis
(rather than on a "next in the sequence" followed by "last free" basis). This may affect applications that
use LU6.2 CONVIDs as external qualifiers.

For further information about z/OS Communications Server persistent sessions support, see Recovery
with z/OS Communications Server persistent sessions.

What is a conversation and what makes it necessary?

In DTP, transactions pass data to each other directly. While one sends, the other receives. The exchange
of data between two transactions is called a conversation.

Although several transactions can be involved in a single distributed process, communication between
them breaks down into a number of self-contained conversations between pairs. Each such conversation
uses a CICS resource known as a session.

Conversation initiation and transaction hierarchy

A transaction starts a conversation by requesting the use of a session to a remote system. Having
obtained the session, it causes an attach request to be sent to the other system to activate the
transaction that is to be the conversation partner.

A transaction can initiate any number of other transactions, and hence, conversations. In a complex
process, a distinct hierarchy emerges, with the terminal-initiated transaction at the very top. Figure 39 on
page 97 shows a possible configuration. Transaction TRAA is attached over the terminal session.
Transaction TRAA attaches transaction TRBB, which, in turn, attaches transactions TRCC and TRDD. Both
these transactions attach the same transaction, SUBR, in system CICSE. This gives rise to two different
tasks of SUBR.

96 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht139.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/recovery/dfht20t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/recovery/dfht20t.html

CICSA

Transaction TRAA

Terminal H
CICSB
Transaction TREB
CICSC CICSD
Transaction TRCC Transaction TROD
CICSE
Transaction SUBR Transaction SUBR

Figure 39. DTP in a multisystem configuration

The structure of a distributed process is determined dynamically by program; it cannot be predefined.
Notice that, for every transaction, there is only one inbound attach request, but there can be any number
of outbound attach requests. The session that activates a transaction is called its principal facility. A
session that is allocated by a transaction to activate another transaction is called its alternate facility.
Therefore, a transaction can have only one principal facility, but any number of alternate facilities.

When a transaction initiates a conversation, it is the front end on that conversation. Its conversation
partner is the back end on the same conversation. (Some books refer to the front end as the initiator and
the back end as the recipient.) It is normally the front end that dominates, and determines the way the
conversation goes. You can arrange for the back end to take over if you want, but, in a complex process,
this can cause unnecessary complication. This is further explained in the discussion on synchronization
later in this chapter.

Dialog between two transactions
A conversation transfers data from one transaction to another.

For this to function properly, each transaction must know what the other intends. It would be nonsensical
for the front end to send data if all the back end wants to do is print out the weekly sales report. It is
therefore necessary to design, code, and test front end and back end as one software unit. The same
applies when there are several conversations and several transaction programs. Each new conversation
adds to the complexity of the overall design.

In the example in “Advantages over function shipping and transaction routing” on page 85, the DTP
solution is to transmit the contents of the transient data queue from the front end to the back end. The

Chapter 1. CICS intercommunication 97

front end issues a SEND command for each record that it takes off the queue. The back end issues
RECEIVE commands until it receives an indication that the transmission has ended.

In practice, most conversations transfer a file of data from one transaction to another. The next stage of
complexity is to cause the back end to return data to the front end, perhaps the result of some
processing. Here the front end is programmed to request conversation turnaround at the appropriate
point.

Control flows and brackets
During a conversation, data passes over the link in both directions.

A single transmission is called a flow. Issuing a SEND command does not always cause a flow. This is
because the transmission of user data can be deferred; that is, held in a buffer until some event takes
place. The APPC architecture defines data formats and packaging. CICS handles these things for you, and
they concern you only if you need to trace flows for debugging.

The APPC architecture defines a data header for each transmission, which holds information about the
purpose and structure of the data following. The header also contains bit indicators to convey control
information to the other side. For example, if one side wants to tell the other that it can start sending,
CICS sets a bit in the header that signals a change of direction in the conversation.

To keep flows to a minimum, non-urgent control indicators are accumulated until it is necessary to send
user data, at which time they are added to the header.

For the formats of the headers and control indicators used by APPC, see Systems Network Architecture
Formats (GA27-3136).

In complex procedures, such as establishing syncpoints, it is often necessary to send control indicators
when there is no user data available to send. This is called a control flow.

begin_bracket marks the start of a conversation; that is, when a transaction is attached.
conditional_end_bracket ends a conversation. End bracket is conditional because the conversation can
be reopened under some circumstances. A conversation is in bracket when it is still active.

MRO is not unlike APPC in its internal organization. It is based on LUTYPE®6.1, which is also an SNA-
defined architecture.

Conversation state and error detection
As a conversation progresses, it moves from one state to another within both conversing transactions.

The conversation state determines the commands that may be issued. For example, it is no use trying to
send or receive data if there is no session linking the front end to the back end. Similarly, if the back end
signals end of conversation, the front end cannot receive any more data on the conversation.

Either end of the conversation can cause a change of state, usually by issuing a particular command from
a particular state. CICS tracks these changes, and stops transactions from issuing the wrong command in
the wrong state.

Synchronization

There are many things that can go wrong during the running of a transaction. The conversation protocol
helps you to recover from errors and ensures that the two sides remain in step with each other. This use
of the protocol is called synchronization.

Synchronization allows you to protect resources such as transient data queues and files. If anything goes
wrong during the running of a transaction, the associated resources should not be left in an inconsistent
state.

Examples of use

Suppose, for example, that a transaction is transmitting a queue of data to another system to be written
to a DASD file. Suppose also that for some reason, not necessarily connected with the
intercommunication activity, the receiving transaction is abended.

Even if a further abend can be prevented, there is the problem of how to continue the process without
loss of data. It is uncertain how many queue items have been received and how many have been correctly

98 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=GA27-3136-20
https://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=GA27-3136-20

written to the DASD file. The only safe way of continuing is to go back to a point where you know that the
contents of the queue are consistent with the contents of the file. However, you then have two problems.
On one side, you need to restore the queue entries that you have sent; on the other side, you need to
delete the corresponding entries in the DASD file.

The cancelation by an application program of all changes to recoverable resources since the last known
consistent state is called rollback. The physical process of recovering resources is called backout. The
condition that exists as long as there is no loss of consistency between distributed resources is called
data integrity.

There are cases in which you may want to recover resources, even though there are no error conditions.
Consider an order entry system. While entering an order for a customer, an operator is told by the system
that the customer's credit limit would be exceeded if the order went through. Because there is no use
continuing until the customer is consulted, the operator presses a function key to abandon the order. The
transaction is programmed to respond by restoring the data resources to the state they were in at the
start of the order.

Taking syncpoints
If you were to log your own data movements, you could arrange backout of your files and queues.

However, it would involve some very complex programming, which you would have to repeat for every
similar application. To save you this overhead, CICS arranges resource recovery for you. LU management
works with resource management in ensuring that resources can be restored.

The points in the process where resources are declared to be in a known consistent state are called
synchronization points, often shortened to syncpoints. Syncpoints are implied at the beginning and end
of a transaction. A transaction can define other syncpoints by program command. All processing between
two consecutive syncpoints belongs to a unit of work (UOW).

Taking a syncpoint commits all recoverable resources. This means that all systems involved in a
distributed process erase all the information they have been keeping about data movements on
recoverable resources. Now backout is no longer possible, and all changes to the resources since the last
syncpoint are made irreversible.

Although CICS commits and backs out changes to resources for you, the service must be paid for in
performance. You might have transactions that do not need such complexity, and it would be wasteful to
employ it. If the recovery of resources is not a problem, you can use simpler methods of synchronization.

The three sync levels
The APPC architecture defines three levels of synchronization (called sync levels).

« Level 0 — none
« Level 1 - confirm
« Level 2 - syncpoint

At sync level O, there is no system support for synchronization. It is nevertheless possible to achieve
some degree of synchronization through the interchange of data, using the SEND and RECEIVE
commands.

If you select sync level 1, you can use special commands for communication between the two
conversation partners. One transaction can confirm the continued presence and readiness of the other.
The user is responsible for preserving the data integrity of recoverable resources.

The level of synchronization described earlier in this section corresponds to sync level 2. Here, system
support is available for maintaining the data integrity of recoverable resources.

CICS implies a syncpoint when it starts a transaction; that is, it initiates logging of changes to recoverable
resources, but no control flows take place. CICS takes a full syncpoint when a transaction is normally
terminated. Transaction abend causes rollback. The transactions themselves can initiate syncpoint or
rollback requests. However, a syncpoint or rollback request is propagated to another transaction only

Chapter 1. CICS intercommunication 99

when the originating transaction is in conversation with the other transaction, and if sync level 2 has been

selected for the conversation between them.

Remember that syncpoint and rollback are not peculiar to any one conversation within a transaction. They
are propagated on every sync level 2 conversation that is currently in bracket.

MRO or APPC for DTP?

You can program DTP applications for both MRO and APPC links. The two conversation protocols are not
identical. Although you seldom have the choice for a particular application, an awareness of the
differences and similarities will help you to make decisions about compatibility.

Choosing between MRO and APPC can be quite simple. The options depend on the configuration of your
CICS complex and on the nature of the conversation partner. You cannot use MRO to communicate with a
partner in a non-CICS system. Further, it supports communication between transactions running in CICS
systems in different MVS images only if the MVS images are in the same MVS sysplex, and are joined by
cross-system coupling facility (XCF) links. For full details of the hardware and software requirements for
XCF/MRO, see Installation requirements for XCF/MRO.

For communication with a partner in another CICS system, where the CICS systems are either in the same
MVS image, or in the same sysplex, you can use either the MRO or the APPC protocol. There are good
performance reasons for using MRO. But if there is any possibility that the distributed transactions will
need to communicate with partners in other operating systems, it is better to use APPC so that the

transaction remains unchanged.

Table 6 on page 100 summarizes the main differences between the two protocols.

Table 6. MRO compared with APPC

MRO

APPC

Function is realized within CICS

Depends on the z/OS Communications Server or
similar

Nonstandard architecture

SNA architecture

CICS-to-CICS links only

Links to non-CICS systems possible

Communicates within single MVS image, or (using
XCF/MRO) between MVS images in same sysplex

Communicates across multiple MVS images and
other operating systems

PIP data not supported

PIP data supported

Data transmission not deferred

Deferred data transmission

Partner transaction identified in data

Partner transaction defined by program command

RECEIVE can only be issued in receive state

RECEIVE causes conversation turnaround when
issued in send state on mapped conversations

No expedited flow possible

ISSUE SIGNAL command flows expedited

WAIT command has no function

WAIT command causes transmission of deferred
data

APPC mapped or basic?

APPC conversations can be either mapped or basic. For CICS-to-CICS applications, you can use mapped
conversations. Basic, or unmapped, conversations are useful to communicate with systems that do not
support mapped conversations. These systems include some APPC devices.

The two protocols are similar. The main difference is the way that user data is formatted for transmission.
In mapped conversations, the application sends the data that you want the partner to receive. In basic
conversations, the application must include additional control bytes to convert the data to an SNA-
defined format called a generalized data stream (GDS). Also, in EXEC CICS commands for basic

conversations, you must include the keyword GDS.

100 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1er.html

Table 7 on page 101 summarizes the differences between mapped and basic conversations that apply to

the CICS API.

CPI Communications has different rules (see “EXEC CICS or CPI Communications?” on page 101.

Table 7. APPC conversations — mapped or basic?

Mapped

Basic

The conversation partners exchange data that is
relevant only to the application.

Both partners must package the user data before
sending, and unpackage it on receipt.

All conversations for a transaction share the same
EXEC Interface Block for status reporting.

Each conversation has its own area for state
information.

The transaction can handle exception conditions or
let them default.

The transaction must test for exception conditions
in a data area set aside for the purpose.

A RECEIVE command issued in send state causes
conversation turnaround.

A RECEIVE command is illegal in send state.

Transactions can be written in any of the supported
languages.

Transactions can be written in assembler language
or C only.

You can cause a conversation to time out if the
partner does not respond. To do this, you specify
the RTIMOUT option of the PROFILE definition.

You cannot cause a conversation to time out if the
partner does not respond.

EXEC CICS or CPI Communications?

CICS gives you a choice of two application programming interfaces (APIs) for coding your DTP

conversations on APPC sessions.

The first, the CICS API, is the programming interface of the CICS implementation of the APPC
architecture. It consists of EXEC CICS commands and can be used with all CICS-supported languages.
The second, Common Programming Interface Communications (CPI Communications) is the
communication interface defined for the SAA environment. It consists of a set of defined verbs, in the
form of program calls, which are adapted for the language being used.

Table 8 on page 101 compares the two methods to help you to decide which API to use for a particular

application.

Table 8. CICS API compared with CPI Communications

CICS API

CPI Communications

Portability between different members of the CICS
family.

Portability between systems that support SAA
facilities.

Basic conversations can be programmed only in
assembler language or C.

Basic conversations can be programmed in any of
the available languages.

Sync levels 0, 1, and 2 supported.

Sync levels 0, 1, and 2 supported, except for
transaction routing, for which only sync levels 0 and
1 are supported.

PIP data supported.

PIP data not supported.

Only a few conversation characteristics are
programmable. The rest are defined by resource
definition.

Most conversation characteristics can be changed
dynamically by the transaction program.

Can be used on the principal facility to a
transaction started by ATI.

Cannot be used on the principal facility to a
transaction started by ATI.

Limited compatibility with MRO.

No compatibility with MRO.

Chapter 1. CICS intercommunication 101

You can mix CPI Communications calls and EXEC CICS commands in the same transaction, but not on the
same side of the same conversation. You can implement a distributed transaction where one partner to a
conversation uses CPI Communications calls and the other uses the CICS API. In such a case, it would be
up to you to ensure that the APIs on both sides map consistently to the APPC architecture.

Introduction to IP interconnectivity

IP interconnectivity (IPIC) is a type of intercommunication link that enables you to integrate CICS-to-
CICS communications into an IP infrastructure and use the secure sockets layer (SSL) to provide security.

IPIC uses the same flow of data and control from the local program to the remote program as ISC. IPIC
also supports two-phase commit, as well as channels and containers.

IPIC supports both IPv4 and IPv6 TCP/IP protocols. For more information about configuring IPv4 or IPv6
addressing, see Configuring IP interconnectivity.

IPIC supports the following types of intercommunication functions for their respective product releases:

« Distributed program link (DPL) calls between CICS TS 3.2 or later regions.
« Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1 or later.

« Asynchronous processing of EXEC CICS START, START CHANNEL, and CANCEL commands, between
CICS TS 4.1 or later regions.

 Transaction routing of 3270 terminals, where the terminal-owning region (TOR) is uniquely identified by
an APPLID between CICS TS 4.1 or later regions.

- Enhanced method of routing transactions that are invoked by EXEC CICS START commands between
CICS TS 4.2 or later regions.
« ECIrequests from CICS Transaction Gateway Version 7.1 or later.

« Function shipping of all file control, transient data, and temporary storage requests between CICS TS
4.2 or later regions. Function shipping of file control and temporary storage requests using IPIC
connectivity is threadsafe between CICS TS 4.2 or later regions. Function shipping of transient data
requests using IPIC connectivity is threadsafe between CICS TS 5.1 or later regions.

« Threadsafe processing for the mirror program and the LINK command in CICS TS 4.2 or later regions to
improve performance for threadsafe applications.

IPIC resources
An IPIC connection requires two related CICS resources in each pair of CICS regions: an IPCONN
resource and a TCPIPSERVICE resource.
« The IPCONN resource defines the type of intercommunication connection.
« The TCPIPSERVICE resource defines which protocol will be used for this TCP/IP service (IPIC) and the
port that is used to listen on.

The TCPIPSERVICE accepts messages arriving on its port which conform to IPIC protocol standards. Any
messages arriving at the port that do not conform to this format are rejected.

You can either create or autoinstall new IPIC connections or you can migrate your existing APPC and MRO
connections.

Typical scenario
The following simple scenario shows how you can configure two CICS regions to create IPIC connections
between them.

In the scenario, the two CICS regions are on separate MVS images. The CICS region called CICSA runs on
the hosta.example.com image. It uses TCP/IP to connect to the other CICS region, CICSB, whichis on a
different MVS image.

This figure shows the connections between the CICS regions in the scenario and the resource definitions
that are required in each region to establish the IPIC connection.

102 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht1_configure_ipv4_ipv6.html

I hosta.example.com [hostb.example.com |

CICSA CICSB I

IPCONM(CICB) TCPIPSERVICE(TSB)
APPLID{CICSB) | PORT PORTI(B)
HOST(hostb.example.com) PORT(B) B PROTOCOL{IPIC)
SENDCOUNT

TCPIPSERVICE(TSA)

e R IPCONM(CICA)

APPLID|{CICSA)
HOST(hosta.example.com) PORT{A}

TCPIPSERVICE(TSA) - Pty eyt
PORT(A) el TCPIPSERVICE(TSB)
PROTOCOL{IPIC) RECEIVECOUNT

Prerequisites for IPIC

To install and use IPIC for your CICS applications, you must have CICS regions of the correct release
level, and you must have access to a TCP/IP network.

The system requirements are as follows:

« At least two CICS regions that are at CICS TS for z/OS, Version 3.2 or higher. IPIC is not available in
earlier releases of CICS.

- TCP/IP services must be active in the CICS regions. You can activate these services by setting the
TCPIP and ISC system initialization parameters to YES.

« Each CICS region must have access to a TCP/IP stack running on the same MVS image.

« The TCP/IP network must extend between these images when each CICS region exists on a different
MVS image.

« Review your MAXSOCKETS system initialization parameter settings. Ensure that you allocate enough
sockets to support IPIC connections and other traffic that requires IP sockets.

Chapter 1. CICS intercommunication 103

104 CICS TS for z/OS: Intercommunication Guide

Chapter 2. Configuring CICS interconnectivity

Configuration requirements are different, depending on whether you want to use intersystem
communication to connect regions using SNA or use multiregion operation (MRO). You can configure CICS
to communicate over TCP/IP or over SNA in an intersystem communication environment.

“Configuring support for communicating over a TCP/IP network” on page 105 describes how to set up set
up TCP/IP services to use a number of CICS-supported protocols, including HTTP and IPIC.

“Configuring support for ISC over SNA” on page 106 provides guidance on ACF/Communications Server
and IMS.

“Steps after configuring MRO” on page 106 describes how to set up CICS for multiregion operation.

“Configuring z/OS Communications Server generic resources” on page 107 describes how to register your
terminal-owning regions as members of a VTAM® generic resource group, and things you need to consider
when doing so.

Configuring support for communicating over a TCP/IP network

CICS operating in a dual-mode environment uses both IPv4 and IPv6 networks and always attempts to
communicate using IPvé6 before using the IPv4 network. A single-mode environment operates in an IPv4
network only. You can set up TCP/IP services to use a number of CICS-supported protocols, including
HTTP and IPIC.

Before you begin

You need a minimum level of CICS TS 4.1 to communicate using IPv6. The CICS region must be running in
a dual-mode (IPv4 and IPv6) environment and the client or server with which CICS is communicating
must also be running in a dual-mode environment. If a region is running in a single-mode (IPv4)
environment or a region is operating at a pre-CICS TS 4.1 release, you can communicate using IPv4 only.

About this task
Follow these steps to configure your connection to use either IPv4 or IPv6 addressing, or a combination
of the two formats:

Procedure

1. Activate TCP/IP services by specifying TCPIP=YES as a system initialization parameter.

2. Define resources to support the protocol you are using to communicate over in the TCP/IP network.
Here are examples of two different protocols which can be defined using resources:

a) If you are using IPIC, define and install a TCPIPSERVICE resource and an IPCONN resource in both
partner regions.
See “Defining IP interconnectivity (IPIC) connections” on page 130 for examples and instructions
to help you define and install your resource definitions.

b) If you are using HTTP with CICS as an HTTP client, define and install a URIMAP resource in the
issuing region and a TCPIPSERVICE resource in the listening region. Define the host name, IPv4 or
IPv6 address that you want to use in the HOST attribute of the URIMAP(CLIENT) resource
definition.
See Creating a URIMAP resource for CICS as a HTTP client for information about URIMAP resources
for HTTP requests.
3. Optional: Advise your network administrator to define an IPv4 primary interface address to ensure that

you do not have problems when communicating outside of a CICSplex. The primary interface address
is the address that is specified in the PRIMARYINTERFACE statement for the TCPIP.PROFILE.

© Copyright IBM Corp. 1974, 2020 105

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/tcpipservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ipconn/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/web/dfhtl_urioutbound.html

If you issue a GETHOSTID call, GETHOSTID returns the IPv4 primary interface address, or the
loopback address if GETHOSTID cannot find a host address. The IPRESOLVED option stores the
address returned by GETHOSTID, so IPRESOLVED might contain either the primary interface address,
or the loopback address. If you are communicating outside of the CICSplex, results can be
unpredictable if a loopback address is returned. To define a primary interface address, see the
information about the TCP/IP address space, PROFILE.TCPIP, in the z/OS Communications Server: IP
Configuration Guide.

Results
The TCP/IP connection is correctly configured and is available for use over an IPv4 connection.

Your connection will also be available over IPv6 if you have the correct level of CICS and your
environments have dual-mode capability.

What to do next
If you are having problems with your connection, see Dealing with TCP/IP connectivity problems.

Configuring support for ISC over SNA

The information on ACF/Communications Server and IMS given in this section is for guidance only. Always
consult the current ACF/Communications Server or IMS publications for the latest information. ISC over
SNA uses the ACF/Communications Server access method, so when you install ACF/Communications
Server, you must include intersystem communication programs and operands in your system to allow
intersystem communication over SNA (ISC over SNA).

1. Include the intersystem communication programs in your system by specifying YES on the z/0S
Communications Server and ISC system initialization parameters.

2. When you define your CICS system to ACF/Communications Server, include intersystem
communication operands in the z/OS Communications Server APPL statement.

3. If your CICS installation is to use CICS-to-IMS intersystem communication, ensure that the CICS and
the IMS installations are fully compatible. For more information about defining compatible CICS and
IMS nodes, see “How to define connections to remote systems” on page 127. For full details of IMS
installation, see Installation in IMS product documentation.

a. Include intersystem communication operands in the z/OS Communications Server APPL statement.
b. Define IMS ISC-related macros and parameters. See “Defining compatible CICS and IMS nodes” on

page 157.

Steps after configuring MRO

When you have configured MRO support, you must define the MRO connection and resources.

Procedure
1. Define MRO connection to the remote systems. For more information, see “Defining links for
multiregion operation” on page 145.

2. Define resources on both the local CICS region and remote systems. For more information, see
“Defining local resources” on page 193 and “Defining remote resources” on page 175.

106 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz002/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz002/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/cics/dfhs1_ipic.html
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ins/ins.htm

Configuring z/0S Communications Server generic resources

In a CICSplex containing a set of functionally-equivalent CICS terminal-owning regions (TORs), you can
use the z/OS Communications Server generic resource function to balance terminal sessions across the
available TORs.

This topic assumes some knowledge of tasks, such as defining connections to remote systems. For
information on defining links to remote systems, see “How to define connections to remote systems” on

page 127.
For an overview of Communications Server generic resources, see Workload balancing in a sysplex.

This section contains the following topics:

« “Prerequisites for z/OS Communications Server generic resources” on page 107

« “Planning your CICSplex to use z/OS Communications Server generic resources” on page 107

- “Defining connections in a generic resource environment” on page 108

« “Generating z/OS Communications Server generic resource support” on page 110

« “Migrating a TOR to a generic resource” on page 110

« “Removing a TOR from a generic resource” on page 112

« “Moving a TOR to a different generic resource” on page 112

« “Setting up inter-sysplex communications between generic resources” on page 113
- “Ending affinities” on page 117

« “Using ATI with generic resources” on page 121
« “Using the ISSUE PASS command” on page 123
« “Rules checklist” on page 124

 “Dealing with special cases” on page 124.

Prerequisites for z/0S Communications Server generic resources

To use z/OS Communications Server generic resources, you need ACF/Communications Server Version 4
Release 2 or a later, upward-compatible, release.

« z/OS Communications Server must be running under an MVS environment that is part of a sysplex.

- z/OS Communications Server must be connected to the sysplex coupling facility. For information about
the sysplex coupling facility, see z/OS MVS Setting Up a Sysplex.

« At least one z/OS Communications Server in the sysplex must be an advanced peer-to-peer networking
(APPN) network node, with the other z/OS Communications Servers being APPN end nodes.

Planning your CICSplex to use z/0S Communications Server generic resources

You can use the z/OS Communications Server generic resource function to balance terminal session
workload across a number of CICS regions.

You do this by grouping the CICS regions into a single generic resource. Each region is a member of the
generic resource. When a terminal user logs on using the name of the generic resource (the generic
resource name), z/OS Communications Server establishes a session between the terminal and one of the
members, depending upon the session workload at the time. The terminal user is unaware of which
member he or she is connected to. It is also possible for a terminal user to log on using the name of a
generic resource member (a member name), in which case the terminal is connected to the named
member.

APPC and LUTYPEG6.1 connections do not log on in the same way as terminals. But they too can establish
a connection to a generic resource by using either the generic resource name (in which case z/0S
Communications Server chooses the member to which the connection is made) or the member name (in
which case the connection is made to the named member).

Chapter 2. Configuring CICS interconnectivity 107

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht13b.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/toc.htm

When you plan your CICSplex to use z/OS Communications Server generic resources, you need to
consider the following:

« Which CICS regions should be generic resource members?
Note that:

— Only CICS regions that provide equivalent functions for terminal users should be members of the
same generic resource.

— In a CICSplex that contains both terminal-owning regions and application-owning regions (AORs),
TORs and AORs should not be members of the same generic resource group.

« Should there be one or many generic resources in the CICSplex?

If you have several groups of users who use different applications, you may want to set up several
generic resources, one for each group of users. Bear in mind that a single CICS region cannot be a
member of more than one generic resource at a time.

« Will there be APPC or LUTYPE6.1 connections. You are recommended to use APPC in preference to
LUTYPE®6.1 for CICS-to-CICS connections:

— Between members of a generic resource? You cannot use LUTYPE6.1 connections between members
of a generic resource.

— Between members of one generic resource and members of another generic resource?
— Between members of a generic resource and systems which are not members of generic resources?

In all these cases you will need to understand when you can use:

— Connection definitions that specify the generic resource name of the partner system
— Connection definitions that specify the member name of the partner system
— Autoinstall to provide definitions of the partner system.

Naming the CICS regions
Every CICS region has a network name, defined on a z/OS Communications Server APPL statement, that
uniquely identifies it to z/OS Communications Server.

You specify this name, or applid, on the APPLID system initialization parameter. If a region is a member of
a generic resource, its applid and member name are one and the same.

A generic resource—a collection of CICS regions—has a generic resource name. Each CICS region that is
to be a member of a generic resource specifies the generic resource name on its GRNAME system
initialization parameter. Unlike network names, generic resource names do not have to be defined to z/0OS
Communications Server. However, they must be distinct from network names, and must be unique within
a network.

When you start to use generic resources, you must decide how the generic resource name and the
member names are to relate to the applids by which the member regions were known previously:

« If you have several TORs, you could continue to use the same applids for the TORs, and choose a new
name for the generic resource. Terminal logon procedures will need to be changed to use the generic
resource name, and so will connection definitions that are to use the generic resource name.

- If you have a single TOR, you could use its applid as the generic resource name, and give it a new
applid. Changes to terminal logon procedures (and connection definitions) are minimized, but you need
to change z/OS Communications Server definitions, CONNECTION definitions in AORs connected using
MRO, and RACF® profiles that specify the old applid.

Defining connections in a generic resource environment

The z/OS Communications Server generic resource function can be used to balance session workload for
APPC and LUTYPEG6.1 connections.

Connections differ from terminal sessions in the following ways:

108 CICS TS for z/OS: Intercommunication Guide

« A connection can have multiple sessions. z/OS Communications Server's generic resource support
creates dependencies, or affinities, to ensure that—once the first session is established—subsequent
sessions to a generic resource are with the same member as the first session.

« Either end of a connection can (in principle) establish the first session. Which end does (in practice)
initiate the first session affects how connections should be defined in the generic resource environment.

« Connections that fail, and require resynchronization, must be reestablished between the same
members. z/OS Communications Server uses affinities to ensure that reconnections are made correctly.

Defining connections
When you define a connection to a generic resource, you have two possibilities for the NETNAME attribute
of the CONNECTION resource.

About this task

1. Use the name (applid) of the generic resource member. This type of connection is known as a member
name connection.

2. Use the name of the generic resource. This type of connection is known as a generic resource name
connection.

It is important that you make the correct choice when you define connections to a generic resource:

« When CICS initiates a connection using a member name definition, z/OS Communications Server
establishes a session with the named member.

« When CICS initiates a connection using a generic resource name connection, z/OS Communications
Server establishes a connection to one of the members of the generic resource. Which member it
chooses depends upon whether any affinities exist, and upon z/OS Communications Server's session-
balancing algorithms.

When a CICS Transaction Server for z/OS generic resource member sends a BIND request on a
connection, the request contains the generic resource name and the member name of the sender. If the
partner is also a CICS TS for z/OS generic resource, it can distinguish both names. Other CICS systems
take the generic resource name from the bind, and attempt to match it with a connection definition.

It follows that the only time an LUtype 6 which is not itself a member of a CICS TS for z/OS generic
resource can successfully use a member name to connect to a generic resource is when the generic
resource member will never initiate any sessions. This is an unusual situation, and therefore a connection
from a system that is not a CICS TS for z/OS generic resource member to a generic resource should use
the generic resource name.

Defining connections between GR members and non-GR members

When a generic resource member initiates a connection (that is, sends the first BIND) to another LUtype
6, it identifies itself to its partner with its generic resource name. Sessions initiated by the partner must
then also use the generic resource name of the LU that initiates the connection.

Defining connections between members within a generic resource

You may want to define connections between members of a generic resource. You should always specify,
on the NETNAME option of these CONNECTION definitions, the partner's member name and not the
generic resource name.

Defining connections between CICS TS for z/0S generic resources
If you have two CICS TS for z/OS generic resources, you do not need to define and install member name
connections for every possible connection between them.

Instead, you can define and install a single generic resource nhame connection in each member that may
initiate a connection with the partner generic resource. CICS then autoinstalls member name connections
as they are required.

The only connection definition required in a CICS region that does not initiate connections is one that can
be used as an autoinstall template. If there is a generic resource name connection installed, it is used as
the template, so we suggest that you define generic resource name connections for this purpose.

Chapter 2. Configuring CICS interconnectivity 109

Generating z/0S Communications Server generic resource support

To generate z/OS Communications Server generic resource support for your CICS TORs, you must
perform these steps.

About this task
If your CICSplex comprises separate terminal-owning regions and application-owning regions, do not
include TORs and AORs in the same generic resource group.

Procedure

1. Use the GRNAME system initialization parameter to define the generic resource name under which
CICS is to register to z/OS Communications Server. To comply with the CICS naming conventions, pad
the name to the permitted 8 characters with one of the characters #, @, or $.

For example:

GRNAME=CICSHiHHF

If you specify a valid generic resource name on GRNAME, specify only namel on the APPLID system
initialization parameter. If you do specify both namel and name2 on the APPLID parameter, CICS
ignores namel and uses name2 as the z/OS Communications Server APPLID.

2. Use an APPL statement to define the attributes of each participating TOR to z/OS Communications
Server.

The attributes defined on each individual APPL statement should be identical. The name on each APPL
statement must be unique. It identifies the TOR individually, within the generic resource group.

3. Shut down each terminal-owning region normally before registering it as a member of the generic
resource.

An immediate shutdown is not sufficient; nor is a CICS failure followed by a cold start. Do not specify a
shutdown assist transaction, to avoid the possibility of the transaction force closing z/0OS
Communications Server or performing an immediate shutdown. The default shutdown assist
transaction, DFHCESD, is described in Shutdown assist program (DFHCESD).

If CICS has not been shut down cleanly before you try to register it as a member of a generic resource,
z/0S Communications Server might (due to the existence of persistent sessions) fail to register it, and
issue a return code-feedback (RTNCD-FDB2) of X'14', X'86'. To correct this, you must restart CICS
(with the same APPLID), and then shut it down cleanly. Alternatively, if you have written a batch
program to end affinities (see “Writing a batch program to end affinities” on page 119), you might be
able to use it to achieve the same effect. As part of its processing, the batch program opens the
original z/OS Communications Server ACB with the original APPLID, unbinds any persisting sessions,
and closes the ACB.

Migrating a TOR to a generic resource
This section describes how to manage existing terminals and connections when migrating a TOR to
membership of a CICS Transaction Server for z/OS generic resource.

How to establish connections between two CICS TS for z/OS generic resources is described separately in
“Setting up inter-sysplex communications between generic resources” on page 113.

Note: For the purposes of this discussion, a “terminal-owning region” is any CICS region that owns
terminals and is a candidate to be a member of the generic resource.

Recommended methods
For simplicity, first create a generic resource consisting of only one member. Do not add further members
until the single-member generic resource is functioning satisfactorily.

Because all members of a generic resource should be functionally equivalent, you create additional
members by cloning the first member. (A situation in which you might choose to ignore this advice is
described in this document.)

410 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_grname.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/utilities/dfha609.html

There are two recommended methods for migrating a TOR to a generic resource. Which you use depends
on whether there are existing LU6 connections.

No LU6 connections

If there are no LU6 (that is, APPC or LU6.1) connections to your terminal-owning region, we recommend
that you choose a new name for the generic resource and retain your old applid. Non-LU6 terminals can
log on by either applid or generic resource name, hence they are not affected by the introduction of the

generic resource name.

About this task

You can then gradually migrate the terminals to using the generic resource name. Later, you can expand
the generic resource by cloning the first member-TOR.

Note: If you have several existing TORs that are functionally similar, rather than cloning the first member
you might choose to expand the generic resource by adding these existing regions, using their applids as
member-names.

LU6 connections

If there are LU6 (APPC or LU6.1) connections to your terminal-owning region, not counting connections to
other members of the generic resource, we recommend that they log on using the generic resource name.
However, you will probably want to migrate to generic resource without requiring all your LU6 network
partners to change their logon procedures.

About this task

One option is to use the applid of your existing terminal-owning region as the new generic resource name.
Because this requires you to choose a new applid, it is also necessary to change the CONNECTION
definitions of MRO-connected application-owning regions and RACF profiles that specify the old applid.
Note, however, that you do not need to change the APPL profile to which the users are authorized—CICS
passes the GRNAME to RACF as the APPL name during signon validation, and the old applid is now the
GRNAME. The recommended migration steps are:

1. Configure your CICSplex with a single terminal-owning region.

2. Set the generic resource name to be the current applid of that terminal-owning region.
3. Change the current applid to a new value.
4

. Change CONNECTION definitions in MRO partners to use the new applid for the terminal-owning
region.

. Change RACF profiles that specify the old applid.
6. Restart the CICSplex.

At this point:

o1

« Non-LU6 terminals can log on using the old name (without being aware that they are now using a
z/0S Communications Server generic resource). They will, of course, be connected to the same TOR
as before because there is only one in the generic resource set.

« LU6 connections log on using the old name (thereby conforming to the recommendation that they
should connect by generic resource name).

7. Install new cloned terminal-owning regions with the same generic resource name and the same
connectivity to the set of AORs.

At this point:
- Autoinstalled non-LU6 terminals start to exploit session balancing.
« Autoinstalled APPC sync level 1 connections start to exploit session balancing.

- Because of affinities, existing LU6.1 and APPC sync level 2 connections continue to be connected to
the original terminal-owning region (by generic resource name).

Chapter 2. Configuring CICS interconnectivity 111

« Special considerations apply to non-autoinstalled terminals and connections, and to LU6
connections used for outbound requests. These are described in “Dealing with special cases” on

page 124.

Removing a TOR from a generic resource
There are several ways to remove a region from a generic resource.

About this task

» Close the z/OS Communications Server ACB.

« Shut down CICS. If you want to remove the region permanently, you must remove the generic resource
name from the GRNAME system initialization parameter before restarting CICS.

 Issue a SET VTAM DEREGISTERED command to remove the region dynamically—that is, without closing
the z/OS Communications Server ACB or shutting down CICS. This may be useful if, for example, you
need to apply minor maintenance to a TOR.

When a TOR is dynamically removed from a generic resource, any terminals which are logged on are
gradually redirected to the remaining generic resource members, as they log off and back on again.

To re-register CICS with the generic resource, you must close and reopen the z/OS Communications
Server ACB.

Important:
If you remove a region from a generic resource:

« You should end any affinities that it owns. If you do not, z/OS Communications Server will not allow the
affected APPC and LU6.1 partners to connect to other members of the generic resource. See “Ending
affinities” on page 117.

« The region that has been removed should not try to acquire a connection to a partner that knows it by
its generic resource name, unless the partner has ended its affinity to the removed region.

Moving a TOR to a different generic resource
To move a region from one generic resource to another, you must perform the following steps.

About this task
1. End any affinities that it owns. See “Ending affinities” on page 117.

2. Shut it down cleanly. See “Generating z/OS Communications Server generic resource support” on page
110.

If CICS is not shut down cleanly before you try to register it as a member of the new generic resource,
z/OS Communications Server may fail to register it, and issue a RTNCD-FDB2 of X'14', X'86'. To correct
this, you must restart CICS with the original GRNAME and APPLID, then shut it down normally. Do not
specify a shutdown assist transaction, to avoid the possibility of the transaction force closing z/0OS
Communications Server or performing an immediate shutdown.

Alternatively, if you have written a batch program to end affinities, you might be able to use it to
achieve the same effect. As part of its processing, the skeleton program described in “Writing a batch
program to end affinities” on page 119 opens the original z/0S Communications Server ACB with the
original GRNAME, unbinds any persisting sessions, and closes the ACB.

3. Specify the name of the alternative generic resource on the GRNAME system initialization parameter,
and restart CICS.

112 CICS TS for z/OS: Intercommunication Guide

Setting up inter-sysplex communications between generic resources

This section describes communications between CICS Transaction Server for z/OS generic resources in
partner sysplexes. You must use APPC parallel-session connections for links between CICS TS for z/0S
generic resources.

Establishing connections between CICS TS for z/0S generic resources
Assume that you have two sysplexes, SYSPLEXL and SYSPLEXR, and that these contain the CICS TS for
z/0S generic resource groups CICSL and CICSR, respectively.

About this task

This is illustrated by Figure 40 on page 114. The steps involved in establishing connections between
CICSL and CICSR are as follows:

1. On each member of CICSL that is to initiate a connection to CICSR, statically define and install an
APPC parallel-session connection in which the NETNAME is the generic resource name of CICSR—that
is, define a generic resource name connection. Similarly, on each member of CICSR that is to initiate a
connection to CICSL, statically define and install an APPC parallel-session connection in which the
NETNAME is the generic resource name of CICSL.

Note: You should not install any predefined connections other than generic resource name
connections.

The first attempt by any member of CICSL to acquire a connection to CICSR (or vice versa) uses a
generic resource name connection.

2. The CICSR member to which z/OS Communications Server sends the bind request searches for the
generic resource name connection definition for CICSL. (If none exists, it autoinstalls one, subject to
the normal rules for autoinstalling connections.)

3. Subsequent connections that z/OS Communications Server happens to route to the same member of
CICSR from different members of CICSL are autoinstalled on the CICSR member, using the CICSL
member name as the NETNAME; that is, CICS autoinstalls member name connections. Similarly,
subsequent connections to the same member of CICSL from different members of CICSR are
autoinstalled on the CICSL member, using the CICSR member name as the NETNAME. The example in
“Example” on page 113 makes this clearer.

The template used for autoinstalling these further connections can be any installed connection. CICS
uses the generic resource name connection as the default template.

If you decide to use a template other than the default for member name connections, remember that
use of the sessions for these connections is initiated by the partner, so consider defining the
MAXIMUM attribute of the SESSIONS resource with no contention winners. This attribute is described
in “Defining groups of APPC sessions” on page 151. This is useful because the member name is not
known to the applications in the system in which the member name connection is autoinstalled. They
use the GR name for outbound requests. Therefore the member name connection is not used for
outbound requests and so does not need to have any sessions defined as winners. By allowing the
partner system to have all the sessions as winners, the overhead of bidding for loser sessions is
avoided.

A template is a normal installed connection defined with CONNECTION and SESSIONS resources that
can be used solely as a template, or as a real connection. It is used as a model from which to
autoinstall further connections.

Example
An example of establishing connections between CICS TS for z/OS generic resources.

In Figure 40 on page 114 through Figure 43 on page 117, each generic resource uses the partner
sysplex's generic resource name when initiating a connection. All generic resource members are able to
initiate connections; that is, they all have a generic resource name connection (a predefined connection
entry in which the NETNAME is the generic resource name of the partner sysplex). The connections are
APPC parallel-session synclevel 2 links.

Chapter 2. Configuring CICS interconnectivity 113

SYSPFLEXL SYSPLEXR

g e e e e e e ¢ e e e e

GRNAME=CICSL GHRNAME=CICSH

i i i

i ! i

i ! i

i ! i

i ! i

i ! i

| CICSLA i | CICSH1
| | i

i ! i

i Pre- : i Pre-

: defined — 1 — | | defined
i CICSR | i CICSL
| : |

i ! i

f ! i

i ! i

i ! i

i ! i

i ! i

i ! i

i ! i

i | i

| CICSL2 i | CICSR2
| | |

i ! i

! Pre- : ! Pre-

: defined i : defined
E CICSRH | l CICSL
i i i

i ! i

i ! i

i i i

i ! i

i ! i

i ! i

i ! i

f ! i

i ! i

i ; i

. L

Figure 40. The figure shows two sysplexes, SYSPLEXL and SYSPLEXR

In Figure 40 on page 114, the first bind that flows from CICSL1 to CICSR is routed to whichever member
of CICSR z/OS Communications Server decides is the most lightly loaded. In this example it goes to
CICSR1. The predefined connections for the generic resource names CICSR and CICSL in CICSL1 and
CICSR1 are used.

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL1 with CICSR1. When you need to
end these affinities, you may or may not need to do so explicitly—see “Ending affinities” on page 117 and
APPC connection quiesce processing. Until the affinities are ended, whenever CICSL1 tries to reconnect
to CICSR, z/OS Communications Server routes the request to CICSR1; and whenever CICSR1 tries to
reconnect to CICSL, z/OS Communications Server routes the request to CICSL1.

114 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/connections/dfht1mi.html

GRNAME=CICSL GHNAME=CICSH

CICSL CICSA

CICSR 1 » ClCSL
Al

2 ™ clcsLe

CICSL2 CICSR2

CICSR CICSL

Figure 41. Second flow, CICSL2-CICSR

Figure 41 on page 115 shows a bind flow from CICSL2 to CICSR. In this example z/OS Communications
Server has, once again, chosen to route it to CICSR1, but it could have gone to one of the other members
of CICSR.

The predefined connection for CICSR in CICSL2 is used. CICSR1 looks for the connection entry for CICSL.
It is already in use, so a new connection is autoinstalled using the member name CICSL2.

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL2 with CICSR1. If you need to end
these affinities, you may or may not need to do so explicitly.

Chapter 2. Configuring CICS interconnectivity 115

GRNAME=CICSL GHNAME=CICSH

CICSL 1 CICSA1

1 >
CICSR CICSL

- 3
Al

e ® cicsLe
CICSL2 CICSR2
CICSR CICSL

Figure 42. Third flow, CICSR1-CICSL

Figure 42 on page 116 shows a third flow, this time from CICSR1 to CICSL. The existing affinity forces it to
CICSL1.

116 CICS TS for z/OS: Intercommunication Guide

GHNAME=CICSL GHNAME=CICSH

CICSL1 CICSR1

1 >
CICSR ClCSL

< 3
Al

e ™ closLe
CICSL? CICSR2
CICSR —| clcsL

Al

clcspe ™ 4

Figure 43. Fourth flow, CICSR2-CICSL

Figure 43 on page 117 shows a fourth flow, this time from CICSR2 to CICSL. It can go to any member of
CICSL, but in this example z/OS Communications Server routes it to CICSL2.

The predefined connection entry for CICSL in CICSR2 is not in use and so it is used now. CICSL2 looks for
the predefined connection entry for CICSR. It is in use, and so an entry for CICSR2 is autoinstalled.

Affinities are created at SYSPLEXL and SYSPLEXR, associating CICSL2 with CICSR2. If you need to end
these affinities, you may or may not need to do so explicitly.

Ending affinities
When a session is established with a member of a generic resource, z/OS Communications Server creates

an association called an affinity between the generic resource member and the partner LU, so that it
knows where to route subsequent flows.

In most cases, z/OS Communications Server ends the affinity when all activity on the session has ceased.
However, for some types of session, z/0OS Communications Server assumes that resynchronization data
might be present, and therefore relies on CICS to end the affinity. The following sessions are affected:

« APPC synclevel 2 sessions
« APPC sessions using limited resource support

Chapter 2. Configuring CICS interconnectivity 117

« LU6.1 sessions.

In z/OS Communications Server terms, the CICS generic resource member "owns" the affinity and is
responsible for ending it. The affinity persists even after a connection is deleted or CICS has performed an
initial or cold start. For a connection between two generic resources, both partners own an affinity, and
each must be ended. For APPC connections between regions, the APPC connection quiesce protocol does
this automatically; see APPC connection quiesce processing. For other connections, the affinities must be
ended explicitly.

CICS provides commands that can be used to end affinities explicitly:

* Youcan use SET CONNECTION ENDAFFINITY when thereis an installed connection definition.

« You can use PERFORM ENDAFFINITY after an autoinstalled connection has been deleted, as well as
when it is still present. You must supply the NETNAME (and, if the connection has been deleted, the
NETID) of the remote system. The NETNAME is the name by which the remote system is known to z/OS
Communications Server. (Note that, if the remote system is also a generic resource, the NETNAME is
always the member name, even if the connection was defined using the generic resource name.)

These commands are valid only for LU6.1 and APPC connections. The connection, if present, must be out
of service and its recovery status (as shown by the RECOVSTATUS option of the INQUIRE CONNECTION
command) must be NORECOVDATA. Note that only those affinities that are owned by CICS can be ended
by CICS.

CICS has no certain knowledge that an affinity exists for a given connection. To help you, whenever it is
possible that an affinity has been created that you might have to end explicitly, message DFHZC0177 is
issued. This message gives the NETNAME and NETID to be used on the PERFORM ENDAFFINITY
command.

Having received message DFHZC0177, to check whether an affinity that must be ended explicitly does
exist, you can use the SNAD NET,GRAFFIN command. This command produces messages IST1706 and
IST1707, which should contain the information you need. Alternatively, produce a dump of the z/OS
Communications Server ISTGENERIC data area. This dump contains SPTE records that show which
affinities exist. For more information, see z/OS MVS IPCS Commands. For example, use the following
command to start the dump:

DUMP COMM=(title)
Reply with the following command:

r xx ,STRLIST=(STRNAME=ISTGENERIC,
ACC=NOLIMIT, (LNUM=ALL,ADJ=CAP,EDATA=SER))

Use the following command to look at the dump:

STRDATA DETAIL ALLSTRS ALLDATA

If z/0OS Communications Server rejects a request to end an affinity because no such affinity exists,
message DFHZC0181 is issued. This can mean either that you supplied an incorrect NETNAME or NETID,
or that the possible affinity does not actually exist.

When should you end affinities?
You need to end affinities if you reconfigure your sysplex.

For example, you must end any relevant affinities before you do any of the following:

Change the name of a generic resource.

Change a generic resource name connection to a member-name connection.
- Change a parallel-session connection to a single-session connection.

« Remove systems from a generic resource. If you remove a system from a generic resource and do not
end its affinities, z/OS Communications Server treats it as though it were still a member of the generic
resource.

118 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/connections/dfht1mi.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieac500/toc.htm

Note: For connections between generic resources, you must end the affinities owned by both generic
resources.

Writing a batch program to end affinities
If a generic resource member that owns affinities fails and cannot be recovered, the affinities must be
ended.

Important: Use this technique only if it is impossible to restart the failed CICS system.

In this situation, you cannot use the SET CONNECTION ENDAFFINITY or PERFORM ENDAFFINITY
commands. Instead, you can use a batch program to clear the affinities owned by the failed member. The
batch program must be written in assembler language. You can use the dump technique described in
z/0OS MVS IPCS Commands to find out which affinities the failed generic resource member owns.

Program input
You need to specify the following input parameters to the program.

« Member name (in the generic resource group) of the failed system
« Generic resource name of the failed system

APPLID of the partner system

NETID of the partner system.

Program output
The program uses the z/OS Communications Server CHANGE OPTCD=ENDAFFIN macro to end the
affinities.

You probably need to produce a report on the success or failure of this and the other Communications
Server macro calls that the program uses. See z/OS Communications Server: SNA Programming for the
meaning of RTNCD/FDB2 values.

Processing
The processing that the program needs to perform is listed.

About this task
Be aware of the following programming notes:

« The z/OS Communications Server commands should be synchronous, to avoid the use of exits
(OPTCD=SYN).

« Take care not to run the program for an APPLID of a running CICS. If you do, and you are using z/0S
Communications Server persistent sessions, a predatory takeover will occur; that is, your program will
assume control of the sessions belonging to the APPLID.

VTAM is the previous name for z/OS Communications Server
Programming notes:

1. The z/OS Communications Server commands should be synchronous, to avoid the use of exits
(OPTCD=SYN).

2. Take care not to run the program for an APPLID of a running CICS. If you do, and you are using z/OS
Communications Server persistent sessions, a predatory takeover will occur; that is, your program will
assume control of the sessions belonging to the APPLID.

Procedure

1. Reserve storage for the following:

- The ACB of the failed sysplex member. The following example assumes that you are using persistent
sessions:

acb-name ACB AM=VTAM,
PARMS=(PERSIST=YES)

Chapter 2. Configuring CICS interconnectivity 119

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieac500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istprg0/toc.htm

« The RPL, which is required by the z/OS Communications Server macros:
rpl-name RPL AM=VTAM,OPTCD=(SYN)
« The NIB, which is required by the CHANGE OPTCD=ENDAFFIN macro:
nib-name NIB
2. Issue a VTAM OPEN command for the ACB of the member that owns the affinity, passing the input

APPLID for this member.

3. If any sessions persist, use the VTAM SENDCMD macro to terminate them. If you are not using
persistent sessions, this is not necessary.

a. Move the following command to an area in storage. In this example, applid1 is the member name of
the failed member and applid2 is the APPLID of the partner system.

'"VARY NET,TERM, LUl=applidl, LU2=applid2, TYPE=FORCE,SCOPE=ALL'

b. Issue the SENDCMD macro, as in the following example. In this example:

« rpl-name is the name of an RPL.
« acb-name is the ACB of the failed sysplex member.
« output-area is the name an area in storage where the VARY command is held.

- command-length is the length of the command.
SENDCMD RPL=rpl-name,
ACB=acb-name,
AREA=output-area,

RECLEN=command-length,
OPTCD=(SYN)

4. Use the VTAM RCVCMD macro to receive messages from z/OS Communications Server.
RCVCMD must be issued three times after the SENDCMD to be sure that the VARY command worked
correctly. In the following example:
« rpl-name and acb-name are as described previously.
- input-area is the area of storage into which the message is to be received.
- receive_length is the length of data to be received.
RCVCMD RPL=rpl-name,
ACB=acb-name,
AREA=input-area,

AREALEN=receive-length,
OPTCD=(SYN, TRUNC)

5. Issue this command twice more to make sure of receiving all the output from z/OS Communications
Server.

6. Issue the VTAM CHANGE OPTCD=ENDAFFIN macro to end the affinity.
Before issuing the macro, the following fields must be initialized in the NIB:
« NIBSYM is set to the APPLID of the partner system.
- NIBGENN is set to the generic resource name of the failed system.
« NIBNET is set to the NETID of the partner system.

CHANGE RPL=rpl-name,
ACB=acb-name,
NIB=nib-name,
OPTCD=(SYN, ENDAFFIN)

7. Issue the VTAM CLOSE command for the ACB.

120 CICS TS for z/OS: Intercommunication Guide

JCL for submitting the ENDAFFINITY program
This is an example of JCL for submitting the ENDAFFINITY program.

//JOBNAME JOB 1,userid,

// NOTIFY=userid,CLASS=n,MSGLEVEL=(n,n),MSGCLASS=n,REGION=1024K

//*

//JOBLIB DD DSN=loadlib-name,DISP=SHR

VA
//***
//* PARM='FAILED_APPLID,FAILED_GENERIC,PARTNER_NETID,PARTNER_APPLID'

//RUN EXEC PGM=ENDAFFIN,PARM='parml,parm2,parm3, parms'
//*

//REPORT DD SYSOUT=x

//SYSPRINT DD SYSOUT=%

//

Figure 44. Example JCL for submitting the ENDAFFINITY program

Using ATI with generic resources

Automatic transaction initiation (ATI) is the process whereby a transaction is started by a request made
internally within the CICS system, rather than by a terminal end-user entering a transaction name.

This can happen when, for example, an application program issues an EXEC CICS START command, or the
trigger level on a transient data queue is reached. Often the started transaction is associated with a
terminal, which may or may not be owned by the region in which the transaction runs.

Traditional routing of transactions started by ATI describes how CICS invokes the “terminal not known”
global user exits, XICTENF and XALTENF, to deal with the situation where the terminal is not defined to
the AOR.

When an automatic transaction initiation (ATI) request is issued in an application-owning region (AOR) for
a terminal that is logged on to a TOR, CICS uses the terminal definition in the AOR to determine the TOR
to which the request should be shipped. If there is no definition of the terminal in the AOR, you may be
able to use the “terminal-not-known” global user exits (XICTENF and XALTENF) to supply the name of the
TOR.

However, if a user logs on to a generic resource (using a generic resource name), z/OS Communications
Server may connect his or her terminal to any of the regions in the generic resource. If the user then logs
off and on again, z/OS Communications Server may connect his terminal to the same region, or to a
different one. In this situation, the terminal definition in the AOR may not reflect the correct location of
the terminal; and your terminal-not-known exit program has no way of knowing the correct destination for
the ATI request.

CICS solves this problem by using z/OS Communications Server's knowledge of where the terminal is
logged on, to ship the ATI request to the correct TOR:

1. First, the ATI request is shipped to the TOR specified in the remote terminal definition (or specified by
the terminal-not-known exit)—we shall call this the “first-choice TOR”. If the terminal is logged on to
the first-choice TOR, the ATI request completes as normal.

2. If the terminal cannot be located on the first-choice TOR, the TOR asks z/OS Communications Server
for the applid of the generic resource member where the terminal is logged on. If the terminal is not
logged on to any applid within the generic resource group, the ATI request fails.

If the terminal is located on the first-choice TOR but not logged on, the TOR asks z/0S
Communications Server for the applid of the generic resource member where the terminal is logged
on. If the terminal is not logged on to any applid within the generic resource group, the ATI request is
scheduled on the first-choice TOR. If the terminal is logged on to a different applid within the generic
resource group, this information is passed to the AOR, and the ATI request is shipped to the correct
TOR.

3. If the first-choice TOR is not available (and such an inquiry is possible) the AOR asks z/0S
Communications Server for the location of the terminal. The inquiry is possible when all of the
following are true:

Chapter 2. Configuring CICS interconnectivity 121

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/fundamentals/connections/dfht111.html

« The z/OS Communications Server in the AOR is version 4.2 or later (that is, it supports generic
resources).

« The AOR was started with the z/OS Communications Server system initialization parameter set to
'YES'.

« The z/OS Communications Server generic resource name where the terminal may be logged on is
known to the AOR. Such information is obtained from the skeleton TCTTE representing the remote
terminal. If the first choice TOR name has been supplied by the user terminal-not-known exit, such
an inquiry is not possible. Note that the inquiry will fail if the terminal is not logged on to the z/OS
Communications Server generic resource name found in the skeleton TCTTE.

If the AOR is in one network and the TORs in another, the inquiry fails.
If the inquiry is successful, the ATI request is shipped to the TOR where the terminal is logged on.

z/0S Communications Server knows the terminal by its netname, not by its CICS terminal identifier
(TERMID). If there is a terminal definition in the AOR at the time the START is issued, CICS obtains the
netname from that definition. If there is not, your terminal-not-known exit program should return:

« A netname that z/OS Communications Server can use to locate the terminal
- The name of a connection to any member of the generic resource that is likely to be active.

Note:

1. If CICS has no netname for the terminal, the ATI request is shipped to the first-choice TOR, and the
termid is used to locate the terminal. If the terminal cannot be found on the first-choice TOR, the ATI
request fails.

2. Because CICS uses the terminal's netname to find its location in the generic resource group, the ATI
request will still work if, on the second or subsequent logon, the termid changes (for instance, if the
autoinstall user program does not implement a consistent mapping between netname and termid).

3. The ATI support described in this section applies only to terminals that use the generic name to log on
to a generic resource. If a user logs on to a TOR using the member name, CICS does not attempt to
discover from z/OS Communications Server to which TOR the terminal is connected.

4. The ATI support described in this section does not apply to ATI to an APPC connection.
5. The TORs can use autoinstall or explicitly-defined terminal definitions.

The AORs must not use explicitly-defined remote terminal definitions. If explicitly-defined terminals

are used, the ATI request will always be shipped to the first-choice TOR and will not be re-routed to a
different TOR within the same z/OS Communications Server generic resource group, even though the
terminal may be logged on to another TOR.

Example 1:

1. A user logs on using the generic resource name CICS, which is the name of a set of TORs (TOR1
through TOR®6). The user is connected to TOR1, because it is the most lightly loaded.

2. The user runs a transaction, which is routed to an AOR, AORL1. The terminal definition is shipped to
AOR1.

3. The transaction issues an EXEC CICS START request, to start another transaction, after an interval,
against the same terminal. The second transaction, like the first, is located on AOR1.

4. After the first transaction has completed, the user logs off; and logs on again later to collect the output
from the second transaction. When logging on the second time, again using the generic resource name
CICS, the user is connected to TOR2 because that is now the most lightly loaded.

5. The interval specified on the START request expires. However, the terminal is no longer defined to
TOR1. The shipped terminal definition has not yet been deleted from AOR1 by the timeout delete
mechanism.

« Result:

Because the shipped definition of the user's terminal still exists on AOR1, AOR1 ships the ATI request
to TOR1 (the TOR referenced in the definition). Because the terminal is not logged on to TOR1, TOR1

122 CICS TS for z/OS: Intercommunication Guide

queries z/OS Communications Server and returns the result to AOR1. AOR1 then ships the request to
the correct TOR (TOR2).

Example 2:

1. A user logs on using the generic resource name CICS, which is the name of a set of TORs (TOR1
through TOR®6). The user is connected to TOR1, because it is the most lightly loaded.

2. The user runs a transaction, which is routed to an AOR, AOR1. The terminal definition is shipped to
AOR1.

3. The transaction does some asynchronous processing—that is, it starts a second transaction, which
happens to be on another AOR, AOR2. After it has finished processing, the second transaction is to
reinvoke the original transaction to send a message to the user-terminal at TOR1.

4. The user logs off while the application is in process, and logs on again later to collect the message.
When logging on the second time, again using the generic resource name CICS, the user is connected
to TOR2 because that is now the most lightly loaded.

5. The second transaction completes its processing, and issues an EXEC CICS START command to
reinvoke the original transaction, in conjunction with the original terminal. The START request is
shipped to AOR1. However, the terminal is no longer defined to TOR1, and the shipped terminal
definition has been deleted from AOR1 by the timeout delete mechanism.

« Result:

Because the shipped terminal definition has been deleted from AORZ, CICS invokes the XICTENF and
XALTENF exits. Your exit program should return:

— The netname of the user's terminal
— The name of a connection to any member of the generic resource that is likely to be currently active.

CICS is then able to query z/OS Communications Server, as described in Example 1, and ship the
request to the correct TOR (TOR2).

Using the ISSUE PASS command

The EXEC CICS ISSUE PASS command can be used to disconnect a terminal from CICS and transfer it
to the z/OS Communications Server application specified on the LUNAME option.

For example, to transfer a terminal from this CICS to another terminal-owning region, you could issue the
command:

EXEC CICS ISSUE PASS
LUNAME (applid)

where applid is the applid of the TOR to which the terminal is to be transferred.

When your TORs are members of a generic resource group, you can transfer a terminal to any member of
the group by specifying LUNAME as the generic resource name. For example:

EXEC CICS ISSUE PASS LUNAME(grname)

where grname is the generic resource name. z/OS Communications Server transfers the terminal to the
most lightly-loaded member of the generic resource. (If the system that issues the ISSUE PASS command
is itself the most lightly-loaded member, z/OS Communications Server transfers the terminal to the next
most lightly-loaded member.)

Note that, if the system that issues an ISSUE PASS LUNAME(grname) command is the only CICS currently
registered under the generic resource name (for example, the others have all been shut down), the ISSUE
PASS command does not fail with an INVREQ. Instead, the terminal is logged off and message
DFHZC3490 is written to the CSNE log. You can code your node error program to deal with this situation.
For advice on coding a node error program, see Writing a node error program.

If you need to transfer a terminal to a specific TOR within the CICS generic resource group, you must
specify LUNAME as the member name—that is, the CICS APPLID, as in the first example command.

Chapter 2. Configuring CICS interconnectivity 123

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/cics/dfha356.html

Rules checklist

Here is a checklist of the rules that govern CICS use of the z/OS Communications Server generic
resources function.

- Generic resource names must be unique in the network.

- A CICS region that is a member of a generic resource can have only one generic resource name and only
one applid.

« A generic resource name cannot be the same as a z/OS Communications Server applid in the network.

Within a generic resource, member names only must be used. There must be no definitions in any of the
members of the generic resource for the generic resource name.

Non-LU6 devices that require sequence number resynchronization cannot log on using the generic
resource name. They must use the applid and therefore cannot take advantage of session balancing.

« APPC connections to a generic resource that are initiated by the partner (that is, on which the non-
generic resource sends the first bind) can log on using a member name.

« For LU6.1 connections initiated by a generic resource member, the partner must know the member by
its generic resource name.

Therefore, you are strongly recommended not to try to access the same LU6.1 partner from more than
one member of a generic resource.

« For APPC connections initiated by a generic resource member, where the partner is not itself a member
of a CICS Transaction Server for z/OS generic resource, the partner must know the member TOR by its
generic resource name.

Therefore, you are strongly recommended not to try to access such partners from more than one
member of a generic resource.

- A system cannot statically define both an APPC generic resource nhame connection and an APPC
member name connection to the same generic resource. (Generic resource hame connections and
member name connections are described in “Establishing connections between CICS TS for z/0S
generic resources” on page 113.)

Furthermore, all members of a generic resource must choose the same method. That is (for statically-
defined APPC connections to a partner generic resource), they must all use member name connections
or all use generic resource name connections.

Dealing with special cases

This section describes some special cases that you may need to consider.

Note that much of the information applies only to links to back-level systems—where, for example,
you are initiating a connection to a non-CICS TS for z/0S system. For connections between CICS TS
for z/0S generic resources, much of the following information can be disregarded.

Non-autoinstalled terminals and connections
Because members of a generic resource should be functionally equivalent, it is not recommended that
you should predefine terminals to specific members of a generic resource.

Important:

Use autoinstall instead, and allow the z/OS Communications Server to balance the TORs' workload
dynamically. However, there may be times, for example, while you are migrating an existing TOR into a
generic resource, when it is necessary to use static definitions.

If an LU is predefined to a specific terminal-owning region, and the LU initiates the connection (that is, it
sends the first bind request) using the TOR's generic resource name, the generic resource function must
make the connection to the "correct" terminal-owning region; the one that has the definition. This
requirement means that you must install the Communications Server generic resource resolution exit
program, ISTEXCGR, to enforce selection of the correct applid (for the terminal-owning region).

This is not necessary if the connection is always initiated by the terminal-owning region (by means, for
example, of a START request).

124 CICS TS for z/OS: Intercommunication Guide

A sample ISTEXCGR exit program is supplied with the z/OS Communications Server 4.2. For details, see
z/OS Communications Server: SNA Programming.

Outbound LU6 connections
This section discusses outbound LU6 connections from TORs that are members of a generic resource
group. By “outbound” we mean connections to systems outside the CICSplex.

Using a “hub”

For LU6 connections initiated by a generic resource member, where the partner is not itself a CICS
Transaction Server for z/0S generic resource, the partner must know the member TOR by its generic
resource name.

The requirement therefore applies when a generic resource member initiates any of the following kinds of
connection:

« APPC connections to single systems
« APPC connections to members of a CICSplex that are not also generic resource members
 AlLLU6.1 connections.

Because (unless the partner is also a CICS TS for z/OS generic resource) an attempt by a generic resource
member to connect to an LU6 partner will succeed only if the partner knows the TOR by its generic
resource name, it follows that the partner can accept a connection to only one member of the generic
resource at a time. In a configuration in which more than one member of a generic resource must connect
to a remote system, you can choose a region within the CICSplex to act as a network hub. This means
that all generic resource members daisy-chain their requests for services from remote systems through
the hub.

The network hub can be a member of the generic resource, in which case it is necessary to install a z/OS
Communications Server generic resource resolution exit program to direct any incoming binds from LU6
partners that know us by our generic resource name to the network hub region.

An alternative solution is to have a network hub that is not a member of the generic resource. This avoids
the need for the z/OS Communications Server generic resource resolution exit program, but requires that
LU6 partners that may initiate connections to the CICSplex log on using the applid of the network hub
region.

Figure 45 on page 126 shows a network hub that is not a member of the generic resource.

Chapter 2. Configuring CICS interconnectivity 125

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istprg0/toc.htm

CICS Transaction Serverforz/0OS CICSplex C1CH

i
i
i
i
i
GRMAME=CICSG :
i
CICs506 :
iy ‘e i
ACR TOR 1 mro !
| | i
|
Al T1 :
i
i
i
i
i
I !
! CICSG HUEB !
I - MREO - . !
ADR TOR _ TOR
i links MRO - :
: 2 T2 H R | | H R
! !
: | Systemthatis
| i notamember
: ! ofaCICSTS z/0S
% clcse generic resource
A [
L AOR TR mro
I
I
i A3 T3
I
I
I
I
I
I
I
I
I

Figure 45. A network hub

In Figure 45 on page 126, the regions in CICSplex CIC1 are connected by MRO links. The terminal-owning
regions T1, T2, and T3 are members of the generic resource group, CICSG, but the hub TOR, H, is not. H
has an LU6.1 or APPC connection to the remote region, R. The TORs daisy-chain their requests to R
through H.

Defining intercommunication resources

In an intercommunication environment, you create resources that define the links to other systems, and
local definitions of remote resources.

Defining connections to remote systems tells you how to define links to remote systems. The links
described are:

MRO links to other CICS regions
MRO links for use by the external CICS interface

IP interconnectivity (IPIC) links for use with distributed program link
Multi-session APPC links to other APPC systems (CICS or non-CICS)
Single-session APPC links to APPC terminals

« LUTYPEG.1 links to IMS systems.

“Managing APPC connections” on page 169 tells you how to manage APPC links.

126 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/connections/dfht12b.html

“Defining remote resources” on page 175 tells you how to define remote resources to the local CICS
system. The resources can be:

- Remote files

« Remote DL/I PSBs

« Remote transient-data queues

« Remote temporary-storage queues
« Remote terminals

- Remote APPC connections

* Remote programs

- Remote transactions.

“Defining local resources” on page 193 tells you how to define local resources for ISC and MRO. In
general, these resources are those that are required for ISC and MRO and are obtained by including the
relevant functional groups in the appropriate tables. However, you have the opportunity to modify some
of the supplied definitions and to provide your own communication profiles.

How to define connections to remote systems

You can define and manage different types of connections between CICS regions or from CICS regions to
non-CICS systems.

The types of connection that you can create are as follows:

« Connections for multiregion operation (MRO)
« Connections for use by the external CICS interface (EXCI)
« IPIC connections to remote regions

ISC over SNA connections to remote systems, using logical unit type 6.2 (APPC) protocols

ISC over SNA connections to remote IMS systems, using logical unit type 6.1 protocols

Indirect connections for CICS transaction routing

Connections using the ACF/Communications Server application-to-application facilities are treated
exactly as though they are intersystem connections and can be defined as either LUTYPE6.1 or APPC
links.

This section contains the following topics:

« “Introduction to connection definition” on page 127

 “Identifying remote systems” on page 129

 “Defining links for multiregion operation” on page 145

- “Defining links for use by the external CICS interface” on page 147

« “Defining IP interconnectivity (IPIC) connections” on page 130
« “Defining APPC connections” on page 149

« “Defining logical unit type 6.1 links” on page 156
 “Defining CICS-to-IMS LUTYPE®6.1 links” on page 156
« “Defining indirect links for transaction routing” on page 161

Introduction to connection definition
You can define different types of connections in CICS. You can use MRO and ISC over SNA (APPC and
LUTYPE 6.1) connections or IP interconnectivity (IPIC) over TCP/IP connections.

MRO and ISC over SNA connections
The definition of an MRO or ISC over SNA connection to a remote system consists of two parts:

« The definition of the remote system itself

Chapter 2. Configuring CICS interconnectivity 127

« The definition of sessions with the remote system

The remote system is defined by a CONNECTION resource. Each session, or group of parallel sessions, is
defined by a SESSIONS command. The definitions of the remote system and the sessions are always
separate and are not associated with each other until they are installed.

For single-session APPC terminals, you can use an alternative method of definition by using the
TERMINAL and TYPETERM resources.

If the remote system is a CICS region or any other system that uses resource definition to define
intersystem sessions, for example, IMS, the connection definition must match a compatible definition in
the remote system. For remote systems with little or no flexibility in their session properties, for example,
APPC terminals, the connection definition must match the fixed attributes of the remote system
concerned.

IPIC connections
The definition of an IPIC connection between two CICS regions consists of two parts:

« The definition of the outbound attributes of the connection, including the target CICS region

« The definition of the inbound attributes of the connection, including the port number that CICS listens
for requests

The local CICS region name
A CICS Transaction Server for z/OS region can be known by more than one name.

« Application identifier (APPLID)
« System identifier (SYSID)
- z/OS Communications Server generic resource name

AllL CICS regions have an APPLID and a SYSID. A terminal-owning region that is a member of a z/OS
Communications Server generic resource group also has a z/OS Communications Server generic resource
name. z/OS Communications Server generic resource names are described in “Configuring z/OS
Communications Server generic resources” on page 107.

APPLID of the CICS region

The APPLID of a CICS system is the name by which it is known in the intercommunication network; that
is, its netname.

« For MRO, CICS uses the APPLID name to identify itself when it signs on to the CICS interregion SVC,
either during startup or in response to a SET IRC OPEN command.

« For ISC over SNA, the APPLID is used on a z/OS Communications Server APPL statement, to identify
CICS to z/OS Communications Server.

« For IPIC, the APPLID attribute of an IPCONN resource identifies the APPLID of the remote system.

You specify the CICS APPLID on the APPLID system initialization parameter. The default value is
DBDCCICS. This value can be overridden during CICS startup.

Within a z/OS sysplex, the APPLID of each CICS region must be unique. If your CICS regions are not part
of a sysplex, if your network consists of more than one sysplex, or if your CICS regions communicate with
systems outside the local sysplex, it is advisable to keep APPLIDs unique across the network if possible.
If your network does contain systems with identical APPLIDs, on IPIC connections you can specify the
NETWORKID option; this unique value enables you to connect to two or more remote regions that have
identical APPLIDs.

SYSID of the CICS region

The SYSID of a CICS region is a name (1-4 characters) known only to the CICS region itself. It is obtained
(in order of priority) from:

128 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/terminal/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/typeterm/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/sit/dfha2_applid.html

1. The startup override
2. The SYSIDNT operand of the DFHSIT macro
3. The default value CICS.

The SYSID of your CICS region might also have to be specified in the DFHTCT TYPE=INITIAL macro if you
are using macro-level resource definition. The only purpose of the SYSIDNT operand of DFHTCT
TYPE=INITIAL is to control the assembly of local and remote terminal definitions in the terminal control
table. The SYSID of a running CICS region is always the one specified by the system initialization
parameters.

The APPLID of the local CICS system
The APPLID of a CICS system is the name by which it is known in the intercommunication network; that
is, its netname.

For MRO, CICS uses the applid name to identify itself when it signs on to the CICS interregion SVC, either
during startup or in response to a SET IRC OPEN command.

For ISC over SNA, the APPLID is used on a z/OS Communications Server APPL statement, to identify CICS
to z/OS Communications Server.

For IPIC, the APPLID attribute of an IPCONN resource identifies the APPLID of the remote system.

You specify the CICS applid on the APPLID system initialization parameter. The default value is
DBDCCICS. This value can be overridden during CICS startup.

Within a z/OS sysplex, the APPLID of each CICS region must be unique. If your CICS regions are not part
of a sysplex, if your network consists of more than one sysplex, or if your CICS regions communicate with
systems outside the local sysplex, it is advisable to keep APPLIDs unique across the network, if this is
possible. If your network does contain systems with identical APPLIDs, on IPIC connections you can
specify the NETWORKID option; this unique value enables you to connect to two or more remote systems
that have identical APPLIDs.

The sysidnt of the local CICS system
The sysidnt of a CICS system is a name (1-4 characters) known only to the CICS system itself.

It is obtained (in order of priority) from:

1. The startup override
2. The SYSIDNT operand of the DFHSIT macro
3. The default value CICS.

Note: The sysidnt of your CICS system may also have to be specified in the DFHTCT TYPE=INITIAL macro
if you are using macro-level resource definition. The only purpose of the SYSIDNT operand of DFHTCT
TYPE=INITIAL is to control the assembly of local and remote terminal definitions in the terminal control
table. (Terminal definition is described in “Defining remote resources” on page 175.) The sysidnt of a
running CICS system is always the one specified by the system initialization parameters.

Identifying remote systems

In addition to having a SYSIDNT for itself, a CICS system requires a SYSIDNT for every other system with
which it can communicate. SYSIDNT names are used to relate session definitions to system definitions; to
identify the systems on which remote resources, such as files, reside; and to refer to specific systems in
application programs.

SYSIDNT names are private to the CICS system in which they are defined; they are not known by other
systems. In particular, the SYSIDNT defined for a remote CICS system is independent of the SYSIDNT by
which the remote system knows itself; you need not make them the same.

The mapping between the local (private) SYSIDNT assigned to a remote system and the APPLID by which
the remote system is known globally in the network (its netname), is made when you define the
intercommunication link. For example, for an MRO or ISC over SNA connection, on the CONNECTION
definition you specify the following attributes:

Chapter 2. Configuring CICS interconnectivity 129

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html

CONNECTION(sysidnt)
The local name for the remote system

NETNAME(applid)
The applid of the remote system
For an IPIC connection, on the IPCONN definition you specify the following attributes:
IPCONN(sysidnt)
The local name for the remote system
APPLID(applid)
The APPLID of the remote system

Each SYSIDNT name defined to a CICS system must be unique.

Defining IP interconnectivity (IPIC) connections

To define an IPIC connection, you create two resources, IPCONN and TCPIPSERVICE, on each CICS
region that you want to connect. You can either create new IPIC connections, or you can migrate your
existing APPC connections.

Before you begin

Restriction: IPIC supports specific intercommunication functions and releases. See the related links for
this topic for more information.

TCP/IP services must be active in the CICS regions. You can activate TCP/IP services by setting the TCPIP
system initialization parameter to YES.

Procedure

1. Define a TCPIPSERVICE resource to receive inbound requests on the local CICS region.

The name of the TCPIPSERVICE resource must match the value of the TCPIPSERVICE attribute for the
IPCONN resource.

a) Specify the IP address on which this CICS region will listen in the HOST attribute. The ANY option
specifies that CICS listens on any of the addresses known to TCP/IP for the host system.

The host name can be up to 116 characters in length, or can be an IPv4 or IPv6 address. If you use
an IPv6 address, ensure that you are operating in a dual-mode environment and that the client or
server that you are communicating with is also operating in a dual-mode environment.

b) Specify a port number on which the local CICS region listens for incoming client requests in the
PORT attribute.

c) Specify IPIC for the PROTOCOL attribute.
d) Specify NO for the SOCKETCLOSE attribute.

e) Specify the 4-character ID of the CICS transaction that runs the DFHISCOP program as the value of
the TRANSACTION attribute.

The default transaction for IPIC is CISS.
f) Leave the SPECIFTCPS attribute blank.

g) Optional: Specify the name of the IPCONN autoinstall user program as the value of the URM
attribute.

If you do not specify this attribute, CICS uses the CICS-supplied default IPCONN autoinstall user
program, DFHISAIP. Specify NO to disable autoinstall.

2. Create an IPCONN resource on the local CICS region.

a) Specify the IPCONN name. Specify a 4-character IPCONN name with four trailing spaces for CICS-
to-CICS communications.

b) Specify the host name in the HOST attribute, using the value that is specified in the TCPIPSERVICE
resource in the remote CICS region.
For example, hosth.example.com

430 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ipconn/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/tcpipservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ipconn/dfha4_summary.html

The host name can be up to 116 characters in length, or can be an IPv4 or IPv6 address. If you
specify an IPv6 address (or a host name that resolves to an IPvé6 address), ensure that you are
operating in a dual-mode (IPv4 and IPv6) environment and that the client or server that you are
communicating with is also operating in a dual-mode (IPv4 and IPv6) environment.

c¢) Specify in the PORT attribute the port number on which the remote CICS region will listen.
Specify NO if this IPCONN resource is not used for outbound requests and you are using the CICS
Transaction Gateway.

d) Specify the name of the TCPIPSERVICE resource on the local CICS region that specifies the
inbound attributes of the IPIC connection as the value for the TCPIPSERVICE attribute.

e) Specify values for the APPLID and NETWORKID attributes if you want to connect to a remote
system that is in a different network.
The combination of APPLID and NETWORKID attributes ensures that the remote CICS region is
referred to by a unique name.

f) Optional: Specify YES or NO for the INSERVICE attribute to set if you want the connection to be
available when the resource is created.

g) Specify values for the RECEIVECOUNT and SENDCOUNT attributes to set how many receive and
send sessions are allowed for the IPIC connection.

3. Create a TCPIPSERVICE resource in the remote CICS region.
4. Create an IPCONN resource in the remote CICS region.
Specify AUTOCONNECT(YES) to establish the connection between the two CICS regions.

Results
When the resources are enabled on the local and remote CICS regions, the connection is established

between the CICS regions.

What to do next
You can use the IBM CICS Explorer or Web User Interface to view and update your IPIC connections. If

you do not specify AUTOCONNECT(YES) for one of the IPCONN resources, you must acquire the
connection by updating the status of the resource.

Defining IPIC high availability connections

To define an IPIC connection between a client region and an IPIC HA cluster, you need to create different
sets of resources on the client regions to those on the cluster regions. Each client region requires a
TCPIPSERVICE and an IPCONN. Each server region in the HA cluster requires two TCPIPSERVICEs and

optionally one or more IPCONNSs.
Figure 46 on page 132 shows the relationship between IPCONN and TCPIPSERVICE definitions in an IPIC
HA environment.

Chapter 2. Configuring CICS interconnectivity 131

| hosta.example.com | hosth.example.com |
cicsA | CICSB
IPCONMN(CICE) TCPIPSERVICE GEN A TCPGEN1
APPLID(CICSE) »| PORT PORT(B)
HOST(hostbh.example.com) PORT(E]) B HOST(B)
TCPIPSERVICE(TSA) SPECIFTCP{TCPST)
HANES)
PORT(PORTB) TCPIPSERVICE TCPS1
TCPIPSERVICE(TSA) PORTIC)
PORT HOST(B)
PORT(A) A
PROTOCOL{PIC)] PCONNS1
HA[NDO)
APPLEID[CICSA)
HOST{HOSTA)
TCPIPSERVICE[TCPST)
PORT{PORTA}

I hostb.example.com I

CIL‘.'-SBI

TCPIPSERVICE GEN A TCPGEN2
PORT(B)

HOST(B)

SPECIFTCP(TCPS2)

TCPIPSERVICE TCPS2

PORTI(C)
HOST(B)

IPCONNS2

HA[NO)
APPLEID(CICSA)
HOST(HOSTA)
TCPIPSERVICE(TCPS2)
PORT(PORTA)

Figure 46. Related IPCONN and TCPIPSERVICE Definitions in an IPIC HA environment

For information on how to configure the network see Connection balancing.

Configuring an HA server region
Each server region in the HA cluster requires two TCPIPSERVICEs and optionally one or more IPCONNSs.

Before you begin

The specific TCPIPSERVICE resource must be brought into service before the generic TCPIPSERVICE, so
you must define them in the order set out in this procedure.

Restriction: IPIC HA makes use of function provided in CICS TS V5.2 or later. Both client and cluster
regions must be at this level. TCP/IP services must be active in the CICS regions. You can activate TCP/IP
services by setting the TCPIP system initialization parameter to YES. IPIC HA connections must only be

132 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/web/dfhtlm2.html

acquired by client regions. Attempts to acquire connections to an HA cluster can fail if there are other
acquired IPIC connections between the client region and any regions within the cluster.

Procedure

1. Define a specific TCPIPSERVICE resource to receive inbound requests on the local CICS region.
This resource must listen on an address and port that is exclusively reserved for this region.
a) Specify the IP address on which this CICS region will listen in the HOST attribute.
The host name can be up to 116 characters in length, or can be an IPv4 or IPv6 address.

b) Specify a port number on which the local CICS region listens for incoming client requests in the
PORT attribute.

¢) Specify IPIC for the PROTOCOL attribute.
d) Specify NO for the SOCKETCLOSE attribute.

e) Specify the 4-character ID of the CICS transaction that runs the DFHISCOP program as the value of
the TRANSACTION attribute.

The default transaction for IPIC is CISS.
f) Leave the SPECIFTCPS attribute blank.

g) Optional: Specify the name of the IPCONN autoinstall user program as the value of the URM
attribute.

If you do not specify this attribute, CICS uses the CICS-supplied default IPCONN autoinstall user
program, DFHISAIP. Specify NO to disable autoinstall.

2. Define a generic TCPIPSERVICE resource to receive inbound requests on the local CICS region. This
resource must listen on an address and port that is shared by all the regions within the cluster.

a) Specify the IP address on which this CICS region will listen in the HOST attribute.
The host name can be up to 116 characters in length, or can be an IPv4 or IPv6 address.

b) Specify a port number on which the local CICS region listens for incoming client requests in the
PORT attribute.

c) Specify IPIC for the PROTOCOL attribute.
d) Specify NO for the SOCKETCLOSE attribute.

e) Specify the 4-character ID of the CICS transaction that runs the DFHISCOP program as the value of
the TRANSACTION attribute.

The default transaction for IPIC is CISS.
f) In addition set the SPECIFTCPS value to the name of the specific TCPIPSERVICE.

g) If both resources are being installed from a single resource group, you are advised to choose a
name for the generic resource that alphabetically follows the name of the corresponding specific
TCPIPSERVICE.

This is because CICS installs resources of the same type in their alphabetical order when they are

stored in a common resource group. If, as a result of the alphabetical order of its name, the generic
resource is installed before the specific one that it references, then the generic resource is leftin an
closed state and you have to take action to resolve this every time that you install the group.

3. Optionally define one or more IPCONN resources for the client regions that may connect to the HA
cluster. If you do not define these then the specific TCPIPSERVICE must be configured to support
IPCONN autoinstall processing.

a) Specify the IPCONN name. Specify a 4-character IPCONN name with four trailing spaces for CICS-
to-CICS communications.

b) Specify the host name in the HOST attribute, using the value that is specified in the TCPIPSERVICE
resource in the remote CICS client region. For example, hostb.example.com The host name can be
up to 116 characters in length, or can be an IPv4 or IPv6 address.

¢) Specify in the PORT attribute the port number on which the remote CICS region will listen. This
should be the same as the port specified in the TCPIPSERVICE resource in the client region.

Chapter 2. Configuring CICS interconnectivity 133

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/tcpipservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/tcpipservice/dfha4_summary.html

d) Specify the name of the specific TCPIPSERVICE resource on the local CICS region defined in step 1.

e) Specify the application ID of the client region for the APPLID. If the client system is in a different
network you must also specify the NETWORKID attribute.

f) Specify NO for the HA attribute.

g) Specify YES for the INSERVICE attribute to set if you want the connection to be available when the
resource is created.

h) Specify NO for the AUTOCONNECT attribute, to prevent an attempt being made to acquire a
connection to the client region when this resource is installed: HA connections must only be
acquired from client regions.

i) Specify values for the RECEIVECOUNT and SENDCOUNT attributes to set how many receive and
send sessions are allowed for the IPIC connection.

Results
When the resources are enabled on the local CICS regions, then that region will become part of the HA
cluster and be able to process connection requests that client regions initiate.

Configuring an HA client region
Each client region requires a TCPIPSERVICE and an IPCONN.

Before you begin

Restriction: IPIC HA makes use of function provided in CICS TS V5.2 or later. Both client and cluster
regions must be at this level. TCP/IP services must be active in the CICS regions. You can activate TCP/IP
services by setting the TCPIP system initialization parameter to YES. When the client attempts to connect
to the cluster, there must not be any acquired IPIC connections between a client region and any region in
the HA cluster or failures can occur.

Procedure

1. Define a TCPIPSERVICE resource to receive inbound requests on the local CICS region.
This resource must listen on an address and port that is exclusively reserved for this region.

a) Specify the IP address on which this CICS region will listen in the HOST attribute. The ANY option
specifies that CICS listens on any of the addresses known to TCP/IP for the host system.

The host name can be up to 116 characters in length, or can be an IPv4 or IPv6 address.

b) Specify a port number on which the local CICS region listens for incoming client requests in the
PORT attribute.

¢) Specify IPIC for the PROTOCOL attribute.
d) Specify NO for the SOCKETCLOSE attribute.

e) Specify the 4-character ID of the CICS transaction that runs the DFHISCOP program as the value of
the TRANSACTION attribute.

The default transaction for IPIC is CISS.
f) Leave the SPECIFTCPS attribute blank.
2. Define an IPCONN resource for the client regions to connect to the HA cluster.

a) Specify the IPCONN name. Specify a 4-character IPCONN name with four trailing spaces if you are
using a 3270 interface, in other cases the four spaces will be added automatically.

b) Specify in the HOST attribute the host name of the HA cluster. This should resolve to the IP address
specified in the generic TCPIPSERVICE used by the HA cluster regions.
For example, hosth.example.com

The host name can be up to 116 characters in length, or can be an IPv4 or IPv6 address.

c¢) Specify in the PORT attribute the port number on which the HA cluster will listen. This should be
the same as the port specified in the generic TCPIPSERVICE used by the HA cluster regions.

d) Specify the name of the TCPIPSERVICE resource defined in step 1.

134 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/tcpipservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ipconn/dfha4_summary.html

e) Specify a unique value for the HA cluster as the APPLID. It must be unique from all other APPLIDs
that have been used in other IPCONN resources installed in this region.

f) Specify YES for the HA attribute, indicating that the APPLID refers to a cluster of regions.

g) Optional: Specify YES or NO for the INSERVICE attribute to set if you want the connection to be
available when the resource is created.

h) Specify values for the RECEIVECOUNT and SENDCOUNT attributes to set how many receive and
send sessions are allowed for the IPIC connection.

Results
When the resources are enabled on the local CICS regions, then that region will be able to attempt to
connect to the HA cluster.

What to do next

You can use the IBM CICS Explorer or Web User Interface to view and update your IPIC connections. If
you do not specify AUTOCONNECT(YES) for the IPCONN resource, you must acquire the connection by
updating the status of the resource.

Configuring an SSL connection for an IPIC high availability (HA) cluster
You need to configure the outbound SSL through the IPCONN that it uses to connect to the cluster.

The server must have the same set of SSL attributes in both the generic and specific TCPIPSERVICEs. If
the SSL attributes are not the same the generic TCPIPSERVICE will be prevented from opening.

The connection is not intended for work to be routed from the server regions to client regions and it is not
necessary to configure SSL for this purpose. The IPCONN resource in the server and the TCPIPSERVICE in
the client region do not need to have the SSL attributes set.

Configuring IPIC connections for identity propagation

You define an IPCONN resource in a receiving CICS region to enable processing of incoming distributed
identity information and you define an IPCONN resource in a sending region to specify whether a
distributed identity is transmitted outside a sysplex.

Before you begin

You must configure your RACF RACMAP settings before you configure your IPIC connections, even if you
have IDPROP(OPTIONAL) set in your IPCONN resource definition. Otherwise, you receive the RACF
ICH408I message for every unmapped request that is sent to RACF.

About this task

Identity propagation over an IPIC connection relies on trusted connections between CICS regions or
between CICS and CICS Transaction Gateway; for example, if CICS and CICS Transaction Gateway are not
in the same sysplex, the connection must be over an SSL connection. Identity propagation over an IPIC
connection needs a security manager that supports identity propagation. An ICRX identity token identifies
the distributed identity of a user, and can be sent to CICS as part of a message.

If CICS receives an ICRX in a message that is sent over an IPIC connection, USERAUTH(IDENTIFY) must
be defined for the IPCONN resource in the receiving CICS region to allow processing of the ICRX. If
USERAUTH(IDENTIFY) is defined, CICS attempts to map the ICRX to an external security manager (ESM)
user ID, for example, a RACF user ID. If the mapping is successful, the ESM user ID is used as the security
context for the task that is attached to process the incoming message. If the ICRX cannot be mapped to
an ESM user ID, because it is not defined to the external security manager, the message is processed as if
it did not contain an ICRX. Local and remote START commands over an IPIC connection do not support
identity propagation.

Procedure
1. Specify USERAUTH(IDENTIFY) in the IPCONN resource definition of the receiving CICS system.

Chapter 2. Configuring CICS interconnectivity 135

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ipconn/dfha4_attributes.html

The IDENTIFY attribute specifies that incoming requests must include a user identifier, which can be
provided in the form of an ICRX, but that client authentication is being managed by the security
manager that is sending the request. If you are using CICS Transaction Gateway, you must specify
USERAUTH(IDENTIFY) to allow CICS Transaction Gateway to pass the distributed identity to CICS. For
more information about the IPCONN resource, see IPCONN resources.For more information about
identity propagation with CICS Transaction Gateway, see the CICS Transaction Gateway information
center.

2. Specify IDPROP(REQUIRED) in the IPCONN resource definition of the sending CICS system.

The REQUIRED attribute specifies that a distributed identity is required for requests that use this
connection, instead of a user ID. The attribute has no meaning if the connection is contained in a single
sysplex or if either or both regions cannot support identity propagation. If the connection is between
systems in the same sysplex, the connection operates as if IDPROP(OPTIONAL) is specified and
ignores any other setting. The receiving CICS system must have USERAUTH(IDENTIFY) specified in the
IPCONN resource to be able to process the distributed identity information.

Results
The distributed identity of a user can now be received in requests from a trusted security manager, for
example, CICS Transaction Gateway, that are sent over an IPIC connection.

Migrating APPC and MRO connections to IPIC

You can migrate your existing MRO, APPC, and LUTYPE®6.1 connections to IPIC connections. Existing
connections continue to operate as before. The IPCONN definition takes precedence over the
CONNECTION definition; that is, if an IPCONN and a CONNECTION have the same name, CICS uses the
IPCONN definition.

Before you begin
If you want to migrate APPC or MRO connections to IPIC, you must have installed support for IPIC.
Activating IP interconnectivity (IPIC) connections describes how to do this.

About this task
The DFHOIPCC migration utility converts existing APPC and MRO connections to IPIC. To migrate your
existing connections to IPIC using the DFHOIPCC utility, complete the following steps.

Procedure
1. Create a TCPIPSERVICE resource definition in each of the interconnected regions.
a) Specify PROTOCOL(IPIC).
b) Specify TCPIPSERVICE(DFHIPIC) or TCPIPSERVICE(servicename).

If you specify a user-defined name, use this same name for all the TCPIPSERVICE definitions that
you create.

c¢) Specify other options, such as PORTNUMBER, according to the requirements of the region where
the TCPIPSERVICE definition is to be installed.

2. Put each TCPIPSERVICE definition in a resource definition group of its own.

3. Add one or more resource groups to each CICS system definition file (CSD) used by the
interconnected regions, the number depending on the number of CICS regions the CSD serves and
the number of unique TCPIPSERVICE definitions that they require.

4. Install one TCPIPSERVICE, named DFHIPIC, or user-defined service name, in each of the
interconnected regions.

5. Complete an APPLID table for the interconnected CICS regions, as shown in Example 1.
a) Create the table as a fixed-block, 80-byte record format.

b) Fill the table using any method: manually, for example, or by a utility, such as a spreadsheet or
script. You must preserve the fixed-length format.

« You can remove or omit any of the provided comments or header lines in the table.

136 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ipconn/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/ipconn/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1_isctcpip_install.html

10.
11.

« The table must contain the application identifiers (APPLIDs), network IDs, where applicable,
TCP/IP port numbers, and host names of all the interconnected CICS regions.

- If the previously defined TCPIPSERVICE definitions were named anything other than DFHIPIC,
the table must contain a .DEFAULT record with TCPIPSERVICE=servicename in the HOST
column.

. Copy your APPLID table to every system that contains a CSD used by the interconnected regions.
. Create JCL that can be used to invoke DFHOIPCC through DFHCSDUP, like that shown in Example 2.

Specify the lists and resource groups that you want DFHOIPCC to search for information about
CONNECTION and SESSIONS definitions.

The JCL issues a DFHCSDUP EXTRACT command, passing the utility program as the USERPROGRAM.

. On one of the CSD-owning systems, use your customized JCL file to invoke the DFHOIPCC utility

program.

The utility program collects information about CONNECTION and SESSIONS definitions, creates
IPCONN definitions, and writes a series of DEFINE statements, which form the SYSIN for your
resulting DFHCSDUP invocation JCL.

. Review the output produced by the utility program.

a) Check that the IPCONN definitions are correct for your installation.

You might want to modify the default SSL settings to add greater security controls for a particular
connection.

b) Modify the USER, PASSWORD, and library names in the generated JCL, to match those used by
your location.

Run the generated JCL to add the new IPCONN resources to your CSD file.
Repeat steps 8, 9, and 10 for each CSD file used by the interconnected CICS regions.

Example

This example of an APPLID table shows the format that you must use. The table following the example
has reference information for the table format.

Chapter 2. Configuring CICS interconnectivity 137

Description:
This Applid Table is for DFHOIPCC. This table must contain the
APPLIDs, NETWORKIDs (where applicable for foreign network connectivity),
PORT numbers, and TCP/IP HOST names for all CICS regions in the systems
for which IPCONN definitions are to be created.

File Format:
This file must be in FB80 format, and relies on a tabular layout as
follows. Any characters can be used as separators. Add comments using an
asterisk in the first column of the line. A HOST name that is too long
to fit into the table can be continued by placing an asterisk in column
80, and continuing on column 25 of the next row (the first column of the
space for HOST). The APPLID field of any continuation record(s) must be
left blank.

Notes:

The optional .DEFAULT record (shown as follows) can be used to provide

either one or both of the following parameters:

> A TCPIPSERVICE name, which must be provided immediately after
'TCPIPSERVICE="' in the HOST column. If a name is not provided, it
defaults to 'DFHIPIC'. In either case, this value is the name that must
be used when defining the TCPIPSERVICEs for the CICS systems referred
to in this table.

> A default NETWORKID, which must be provided in the NET-ID column.
Its omission results in the omission of the NETWORKID parameter in
the generated IPCONN definition statements for those APPLIDs that had
a blank NET-ID column.

Examples of various valid table entries are shown following the .DEFAULT
record. These are examples only. Ensure that all rows adhere to your
site's standards and conventions.

Important! When editing this file, ensure that the CAPS setting is OFF.
Otherwise, the case-sensitive HOST names might be destroyed.

%k ok ok % ok kR b % ok 3k Ok ok Xk ok %k F kX ok %k o 3k % ok % ok o Xk ok Xk ok * * o *

kkkkkkkkkkkhkkhkkhkkhkkkkkhkhkkhkhkhkhkhkhkkhhkhkhkhkhkhkkhkkkkkkx

APPLID. |NET-ID. |PORT.|HOST.

.DEFAULT | LOCALNET | | TCPIPSERVICE=TCPSERV1

APPL1A | |9876 |my.local.hostname

OTHERCIC|OTHERNET|12345|this.host.has.a.very.long.name.which.is.going.to.requir*
|e.a.continuation.record

* Comments such as this are entirely free-form other than the * in column 1

CICSXYZ | |9875 [10.2.156.221

Figure 47. Example 1: APPLID table

Table 9. Format of APPLID table

Table column Length Description

APPLID char 8 Unique identifier or .DEFAULT.

The APPLID must match the
NETNAME of the associated
CONNECTION definition. See
“Equivalent attributes on
IPCONN definitions” on page
141,

Use .DEFAULT to specify default
values for NETID or
TCPIPSERVICE. The leading dot
prevents the word DEFAULT
being used as a valid APPLID.
Only one .DEFAULT row is
allowed in the table.

138 CICS TS for z/OS: Intercommunication Guide

Table 9. Format of APPLID table (continued)

Table column Length Description
Separator charl Any alphanumeric character.
NETID char 8 Network identifier. When left

blank, the default NETID
specified by the .DEFAULT row is

used.
Separator charl Any alphanumeric character.
PORT char 5 Listening port number
Separator char 1 Any alphanumeric character
HOST char 55 TCP/IP host name
Continuation column charl Normally blank. Any nonblank

character in this field indicates
that the host name is longer than
55 characters and continues in
the HOST column in the following
row.

You can use this example JCL to invoke DFHOIPCC through DFHCSDUP.

//IPCJOB JOB user,CLASS=A,USER=user,PASSWORD=pass
/*ROUTE PRINT user

//CSDUPJOB EXEC PGM=DFHCSDUP,REGION=0M

//STEPLIB DD DSN=loadlibrary,DISP=SHR

// DD DSN=loadlibrary,DISP=SHR

//DFHCSD DD DSN=csdfilename, DISP=SHR

//SYSPRINT DD SYSOUT=A

//CSDCOPY DD UNIT=VIO

//APPLTABL DD DSN=applidtablename,

// DISP=SHR,UNIT=SYSDA,SPACE=(CYL, (2,1)),

// DCB=(RECFM=FB,BLKSIZE=15360, LRECL=80)

//LOGFILE DD DSN=logfilename,

// DISP=(MOD,CATLG,CATLG) ,UNIT=SYSDA,SPACE=(CYL, (2,1)),
// DCB=(RECFM=FB,BLKSIZE=15360, LRECL=80)

//OUTFILE DD DSN=outputfilename,

// DISP=(MOD,CATLG,DELETE) ,UNIT=SYSDA,SPACE=(CYL, (2,1)),
// DCB=(RECFM=FB,BLKSIZE=15360, LRECL=80)

//SYSUDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSIN DD *

EXTRACT GR(groupl) USERPROGRAM(DFHOIPCC) OBJECTS
EXTRACT GR(group2) USERPROGRAM(DFHOIPCC) OBJECTS
EXTRACT GR(listl) USERPROGRAM(DFHOIPCC) OBJECTS
EXTRACT GR(list2) USERPROGRAM(DFHOIPCC) OBJECTS
/*

//

Figure 48. Example 2: JCL to invoke DFHOIPCC through DFHCSDUP

The DFHOIPCC migration utility

The DFHOIPCC utility program that is provided with CICS converts existing APPC and MRO connections to
IPIC connections (IPCONNSs). DFHOIPCC is a sample program for use with the DFHCSDUP system
definition utility program. The utility generates a set of statements that form the input to DFHCSDUP.

The DFHOIPCC program takes input supplied in a table that you can edit, called an APPLID table. This
table is used to store the APPLIDs of all the regions in the relevant setup, with the corresponding HOST
name of the region and the listening PORT of the TCPIPSERVICE definition used to deal with inbound
TCP/IP connections.

The DFHOIPCC program examines lists and resource groups in the CSD for CICS regions, collecting
information about the CONNECTION and SESSIONS definitions it finds. For each APPC or MRO pair of

Chapter 2. Configuring CICS interconnectivity 139

CONNECTION and SESSIONS definitions, it creates an IPCONN definition. Where appropriate, the
attributes of the IPCONN definition are taken from the CONNECTION and SESSIONS definitions, with the
values of the remaining attributes taken from the APPLID table or allowed to take their default values.
When the utility program has completed an IPCONN definition, it writes a series of DEFINE statements,
which form the SYSIN for your resulting DFHCSDUP invocation JCL.

IPCONN attribute mapping
This table summarizes how the DFHOIPCC utility program maps the CONNECTION attributes to the

IPCONN definition.

Table 10. IPCONN attribute mapping

IPCONN definition | Migrated From or Created By Comments

attribute

APPLID CONNECTION (NETNAME) Direct migration

AUTOCONNECT CONNECTION (AUTOCONNECT) Direct migration. But, if ALL, set the new
value to YES.

CERTIFICATE N/A Blank

CIPHERS N/A Blank

DESCRIPTION N/A Blank. Not migrated. You can add this in
the DFHOIPCC output.

GROUP CONNECTION (GROUP) SESSIONS Not changed

(GROUP)

HOST APPLID table Must be specified in the APPLID table.

INSERVICE CONNECTION (INSERVICE) Direct migration

IPCONN CONNECTION (CONNECTION) Direct migration. See “IPCONN names”
on page 141.

MAXQTIME CONNECTION (MAXQTIME) Direct migration

NETWORKID APPLID table No equivalent. Leave blank if not
specified in the APPLID table or if using
the default.

PORT APPLID table Must be specified in the APPLID table.

QUEUELIMIT CONNECTION (QUEUELIMIT) Direct migration

RECEIVECOUNT Sum of SESSIONS (MAXIMUM) Direct migration from the MRO
SESSIONS equivalent setting, or derived
from the APPC SESSIONS MAXIMUM
setting.

SECURITYNAME CONNECTION (SECURITYNAME) Direct migration from CONNECTION
SECURITYNAME only.

SENDCOUNT Sum of SESSIONS (MAXIMUM) Direct migration from the MRO
SESSIONS equivalent setting, or derived
from the APPC SESSIONS MAXIMUM
setting.

SSL N/A Left blank. You can modify this in the
DFHOIPCC output.

140 CICS TS for z/OS: Intercommunication Guide

Table 10. IPCONN attribute mapping (continued)

IPCONN definition | Migrated From or Created By Comments

attribute

TCPIPSERVICE APPLID table Always “DFHIPIC” or as in the APPLID
table. See “TCPIPSERVICE names” on
page 141.

USERAUTH CONNECTION (ATTACHSEC) Direct migration from CONNECTION
ATTACHSEC values LOCAL, IDENTIFY or
VERIFY only.

XLNACTION CONNECTION (XLNACTION) Direct migration

IPCONN names

The IPCONN names are generated to avoid duplicates. The DFHOIPCC utility program uses the name of
the CONNECTION definition because there is a one-to-one relationship between a CONNECTION
definition and the IPCONN definition created from it. The coexistence of same-name CONNECTION and
IPCONN definitions is fully supported by CICS provided that the CONNECTION NETNAME and IPCONN
APPLID are the same. In this instance, CICS selects the IPCONN definition instead of the CONNECTION
definition for routing of supported function.

TCPIPSERVICE names

Because an IPCONN definition cannot determine the TCPIPSERVICE name of a partner region, the utility
cannot produce TCPIPSERVICE definitions; you must define them manually. The utility works in such a
way that all TCPIPSERVICE names in regions for which the utility produces IPCONN definitions must be
the same.

ALl IPCONN definitions created by the DFHOIPCC utility program have the default attribute,
TCPIPSERVICE (DFHIPIC), unless you supply a different name using the .DEFAULT row in the APPLID file.
If you specify another name, use that name for all TCPIPSERVICE definitions that you create.

Equivalent attributes on IPCONN definitions

If you want to migrate your APPC and MRO connections manually, instead of running the DFHOIPCC
migration utility, these tables show the attributes of CONNECTION and SESSION resource definitions for
MRO and APPC connections and the equivalent attributes on IPCONN definitions.

APPC connections

Table 11. Migrating APPC connections to IPIC. CONNECTION options and their IPCONN equivalents

CONNECTION options APPC possible values IPCONN equivalent value

ACCESSMETHOD SNA Not applicable

ATTACHSEC LOCAL | IDENTIFY | VERIFY | USERAUTH LOCAL | IDENTIFY |
PERSISTENT | MIXIDPE VERIFY | NO | CERTIFICATE

AUTOCONNECT NO | YES | ALL NO | YES

BINDSECURITY NO | YES SSLNO | YES

DATASTREAM USER Not applicable

INDSYS Not applicable (indirect Not applicable (indirect
connections only) connections only)

INSERVICE YES | NO As is

MAXQTIME NO | 0 -9999 Asis

Chapter 2. Configuring CICS interconnectivity 141

Table 11. Migrating APPC connections to IPIC. CONNECTION options and their IPCONN equivalents (continued)

CONNECTION options APPC possible values IPCONN equivalent value
NETNAME The SNA APPLID of the remote Combination of APPLID and
region. (For XRF, the generic NETWORKID
APPLID. For connections to an SNA
generic resource, either the APPLID
or generic resource name.)
PROTOCOL APPC Not applicable
PSRECOVERY SYSDEFAULT | NONE Not applicable
QUEUELIMIT NO|0-9999 Asis
RECORDFORMAT u Not applicable
REMOTENAME Name (sysid) by which the remote | Not applicable
system is known to itself
REMOTESYSNET APPLID of the remote system that | Not applicable
owns the remote resource, if the
link to the remote system is indirect
REMOTESYSTEM Name (sysid) of the remote system, | Not applicable
or sysid of the next system in the
path, if the link to the remote
system is indirect
SECURITYNAME RACF ID of the remote system Asis
SINGLESESS NO | YES Not applicable
USEDFLTUSER NO | YES Not applicable
XLNACTION KEEP | FORCE Asis

Table 12. Migrating APPC connection

s to IPIC. SESSIONS options and their

IPCONN equivalents

SESSIONS options

APPC possible values

IPCONN equivalent value

AUTOCONNECT NO | YES | ALL Not applicable
BUILDCHAIN YES Not applicable
CONNECTION Name of CONNECTION to which Not applicable

this SESSION definition applies to
DISCREQ Not applicable Not applicable
IOAREALEN Not applicable Not applicable
MAXIMUM 1-999,0-999 SENDCOUNT & RECEIVECOUNT
MODENAME Name of an SNA LOGMODE Not applicable
NEPCLASS Transaction class for the node error | Not applicable

program
NETNAMEQ Not applicable Not applicable
PROTOCOL APPC Not applicable
RECEIVECOUNT Not applicable Derived from MAXIMUM
RECEIVEPFX Not applicable Not applicable

142 CICS TS for z/OS: Intercommuni

cation Guide

Table 12. Migrating APPC connections to IPIC. SESSIONS options and their IPCONN equivalents (continued)

SESSIONS options

APPC possible values

IPCONN equivalent value

RECEIVESIZE RU size to receive: 1 - 30720 Not applicable
RECOVOPTION SYSDEFAULT | CLEARCONV | Not applicable
RELEASESESS | UNCONDREL |
NONE
RELREQ NO | YES Not applicable
SENDCOUNT Not applicable Derived from MAXIMUM
SENDPFX Not applicable Not applicable
SENDSIZE RU size to send: 1 - 30720 Not applicable
SESSNAME Not applicable Not applicable
SESSPRIORITY 0-255 Not applicable
USERAREALEN Length of TCTTE user area: 0 - 255 | Not applicable
USERID ID for sign on Not applicable

MRO connections

MRO connections are all CICS-to-CICS connections between regions in the same sysplex. For this type of
connection, MRO might be more useful than IPIC because it supports all the base CICS
intercommunication functions, whereas IPIC supports a subset.

Table 13. Migrating MRO connections to IPIC. CONNECTION options and their IPCONN equivalents

CONNECTION options

MRO possible values

IPCONN equivalent value

ACCESSMETHOD IRC | XM Not applicable
ATTACHSEC LOCAL | IDENTIFY USERAUTH LOCAL | IDENTIFY |
VERIFY | NO | CERTIFICATE

AUTOCONNECT Not applicable NO | YES

BINDSECURITY Not applicable SSLNO | YES

DATASTREAM USER Not applicable

INDSYS Not applicable (indirect Not applicable (indirect
connections only) connections only)

INSERVICE YES | NO Asis

MAXQTIME NO|0-9999 Asis

NETNAME The APPLID specified in the SIT of |host.domain.country[:port]
the remote region

PROTOCOL Blank Not applicable

PSRECOVERY Not applicable Not applicable

QUEUELIMIT NO | 0-9999 Asis

RECORDFORMAT u Not applicable

REMOTENAME Not applicable Not applicable

REMOTESYSNET Not applicable Not applicable

Chapter 2. Configuring CICS interconnectivity 143

Table 13. Migrating MRO connections to IPIC. CONNECTION options and their IPCONN equivalents (continued)

CONNECTION options

MRO possible values

IPCONN equivalent value

REMOTESYSTEM Not applicable Not applicable
SECURITYNAME Not applicable As is
SINGLESESS Not applicable Not applicable
USEDFLTUSER NO | YES Not applicable
XLNACTION KEEP | FORCE Asis

Table 14. Migrating MRO connections to IPIC. SESSIONS options and their IPCONN equivalents

SESSIONS options

MRO possible values

IPCONN equivalent value

AUTOCONNECT Not applicable Not applicable
BUILDCHAIN Not applicable Not applicable
CONNECTION Name of CONNECTION to which Not applicable
this SESSION definition applies
DISCREQ Not applicable Not applicable
IOAREALEN Default TIOA size: 0 - 32767, 0 - Not applicable
32767
MAXIMUM Not applicable Not applicable
MODENAME Not applicable Not applicable
NEPCLASS Transaction class for the node error | Not applicable
program
NETNAMEQ Not applicable Not applicable
PROTOCOL LU61 Not applicable
RECEIVECOUNT Number of receive sessions: 1 - Asis
999
RECEIVEPFX Termid prefix Not applicable
RECEIVESIZE Not applicable Not applicable
RECOVOPTION Not applicable Not applicable
RELREQ Not applicable Not applicable
SENDCOUNT Number of send sessions: 1 - 999 | Asis
SENDPFX Termid prefix Not applicable
SENDSIZE Not applicable Not applicable
SESSNAME Not applicable Not applicable
SESSPRIORITY 0-255 Not applicable
USERAREALEN Length of TCTTE user area: 0 - 255 | Not applicable
USERID ID to signin Not applicable

144 CICS TS for z/OS: Intercommunication Guide

Defining links for multiregion operation
This section describes how to define an interregion communication connection between the local CICS
system and another CICS region in the same operating system.

Note: The external CICS interface (EXCI) uses a specialized form of MRO link, that is described in
“Defining links for use by the external CICS interface” on page 147. This present section describes MRO
links between CICS systems. However, most of its contents apply also to EXCI links, except where noted
otherwise in “Defining links for use by the external CICS interface” on page 147.

From the point of view of the local CICS system, each session on the link is characterized as either a SEND
session or a RECEIVE session. SEND sessions are used to carry an initial request from the local to the
remote system and to carry any subsequent data flows associated with the initial request. Similarly,
RECEIVE sessions are used to receive initial requests from the remote system.

Defining an MRO link
To define an MRO link, create a CONNECTION resource and an associated SESSIONS resource.

Procedure

1. Create a CONNECTION resource.
Specify the following attributes:

CONNECTION(sysidnt)
sysidnt is the local name for the CICS system to which the link is being defined.

NETNAME(name)
The netname must be the name with which the remote system logs on to the interregion SVC; that
is, its applid. If you do not specify a netname, then sysidnt must satisfy these requirements. There
can be only one MRO link between any two CICS regions; that is, each CONNECTION must specify
a unigue netname.

ACCESSMETHOD(IRC|XM)
QUEUELIMIT(NO|0-9999)
The maximum number of requests permitted to queue for free sessions to the remote system.
MAXQTIME(NO|0-9999)
The the maximum time between a queue becoming full and it being purged because the remote
system is unresponsive. Further information is given in Intersystem session queue management.

INSERVICE(YES)
ATTACHSEC(LOCAL|IDENTIFY)
USEDFLTUSER(NO|YES)

For information about the ATTACHSEC and USEDFLTUSER security attributes see Specifying user
security in link definitions.

Do not specify a value for the PROTOCOL attribute - you specify the protocol in the SESSIONS
resource.

2. Create a SESSIONS resource.
If you are using RDO, the CONNECTION and SESSIONS must be in the same GROUP.

Specify the following attributes:

SESSIONS(csdname)

CONNECTION(sysidnt)
The CONNECTION attribute must match the sysidnt specified for the CONNECTION. Only one
SESSIONS definition can be related to an MRO CONNECTION.

PROTOCOL(LU61)
RECEIVEPFX(prefix1) and SENDPFX(prefix2)

Specify the prefixes which allow the sessions to be named. A prefix is a one-character or two-
character string that is used to generate session identifiers (TRMIDNTSs). If you do not specify

Chapter 2. Configuring CICS interconnectivity 145

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/connections/dfht55e.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/connections/dfht55e.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html

prefixes, they default to '>' (for SEND) and '<' (for RECEIVE). It is recommended that you allow the
prefixes to default, because:

- This guarantees that the session names generated by CICS are unique; prefixes must not cause a
conflict with an existing connection or terminal name.

- If you specify your own 2-character prefixes, the number of sessions you can define for each
connection is limited to 99. If you specify your own 1-character prefixes, the limit increases to
999—the same as for default prefixes—but you may find it harder to guarantee unique session
names.

For an explanation of how CICS generates names for MRO sessions, see SESSIONS definition
attributes

RECEIVECOUNT(number1)
SENDCOUNT(number2)

Specify the number of RECEIVE and SEND sessions that are required (at least one of each). Initial
requests can never be sent on a RECEIVE session. Bear this in mind when deciding how many
RECEIVE and SEND sessions you need.

SESSPRIORITY(number) and IOAREALEN(value)

Choosing the access method for MRO
You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for an MRO link. Cross-
memory services are used only if the other end of the link also specifies cross-memory.

When you specify ACCESSMETHOD(XM) in a connection definition, a region containing this definition uses
one of the 512 available MRO XM logons for the LPAR. A region can contain both ACCESSMETHOD(XM)
and ACCESSMETHOD(RC) connections, but if the region contains one or more XM connections then the
region uses an MRO XM logon.

To select the CICS Type 3 SVC for interregion communication, use ACCESSMETHOD(IRC).

The use of MVS cross-memory services reduces the number of instructions necessary to transmit
messages between regions. Also, less virtual storage is required in the MVS common service area.
However, cross-memory services can be less attractive from the security point of view (see Implementing
MRO security).

Cross-memory services also require CICS address spaces to be nonswappable. For low-activity systems
that would otherwise be eligible for address space swapping, you might prefer to accept the greater path
length of the CICS interregion SVC rather than the greater real storage requirements of nonswappable
address spaces.

Note: If you are using cross-system multiregion operation (XCF/MRO), CICS selects the XCF access
method dynamically—overriding the CONNECTION definition, which can specify either XM or IRC.

Example attributes for CONNECTION resource
CONNECTION(CICB)
The local name for remote system

NETNAME(CICSB)
The APPLID of remote system

ACCESSMETHOD(XM)
Use cross-memory services

QUEUELIMIT(NO)
If no sessions are free, queue all requests

INSERVICE(YES)

ATTACHSEC(LOCAL)
Use link security only

USEDFLTUSER(NO)

146 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/connections/dfht551.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/connections/dfht551.html

Example attributes for SESSIONS resource

SESSIONS(csdname)
Unique csd name

CONNECTION(CICB)
The name of the related CONNECTION resource

PROTOCOL(LU61)
RECEIVEPFX(<)

RECEIVECOUNT(5)
5 receive sessions

SENDPFX(>)

SENDCOUNT(3)
3 send sessions

SESSPRIORITY(100)

IOAREALEN(300)
Minimum TIOA size for sessions

Defining compatible MRO nodes

An MRO link must be defined in both of the systems that it connects. You must ensure that the two
definitions are compatible with each other. For example, if one definition specifies six sending sessions,
the other definition requires six receiving sessions.

About this task

The compatibility requirements are summarized in the following table. Related resources and attributes
are shown by identical numbers.

Note: VTAM is now z/OS Communications Server.

CICSA CIcsB
System initialization parameters
APPLID=CICSA APPLID=CICSB
CONNECTION resource CONNECTION(CICB) CONNECTION(CICA)
NETNAME (CICSB) NETNAME (CICSA)
ACCESSMETHOD (IRC) ACCESSMETHOD (IRC)
QUEUELIMIT(500) QUEUELIMIT(NO)
MAXQTIME (500)
INSERVICE (YES) INSERVICE (YES)
ATTACHSEC (LOCAL)
SESSIONS resource SESSIONS (csdname) SESSIONS (csdname)
CONNECTION(CICB) CONNECTION(CICA)
PROTOCOL (LU61) PROTOCOL (LU61)
RECEIVEPFX(<) RECEIVEPFX(<)
RECEIVECOUNT(8) [6] RECEIVECOUNT (10)
SENDPFX (>) SENDPFX(>)
SENDCOUNT (10) [6 | SENDCOUNT (8)

Note: VTAM is the previous name for z/OS Communications Server.

Defining links for use by the external CICS interface

This section describes how to define connections for use by non-CICS programs that use the external
CICS interface (EXCI) to link to CICS server programs. The definitions required are similar to those
needed for MRO links between CICS systems. Each connection requires a CONNECTION and a SESSIONS
definition.

Because EXCI connections are used for processing work from external sources, you must not define any
SEND sessions.

Chapter 2. Configuring CICS interconnectivity 147

EXCI connections can be defined as “specific” or “generic”. A specific EXCI connection is an MRO link on
which all the RECEIVE sessions are dedicated to a single user (client program). A generic EXCI connection
is an MRO link on which the RECEIVE sessions are shared by multiple users. Only one generic EXCI
connection can be defined on each CICS region.

On definitions of both specific and generic connections, you must:

« Specify PROTOCOL(EXCI).

 Specify ACCESSMETHOD(IRC). The external CICS interface does not support the MRO cross-memory
access method (XM). The cross-system coupling facility (XCF) is supported.

« Let SENDCOUNT and SENDPFX default to blanks.

Example CONNECTION attributes for a specific EXCI connection

CONNECTION(EIP])
The local name for the connection

NETNAME(CLAP1)
The name of the user program specified on the EXCI INITIALIZE_USER command.

ACCESSMETHOD(IRC)
PROTOCOL(EXCI)

CONNTYPE(Specific)
Pipes are dedicated to a single user

INSERVICE(YES)
ATTACHSEC(LOCAL)

Example SESSIONS attributes for a specific EXCI connection

SESSIONS(csdname)
A unique csd name

CONNECTION(EIP])
The name of the associated CONNECTION resource

PROTOCOL(EXCI)
RECEIVEPFX(<)

RECEIVECOUNT(5)
5 receive sessions

SENDPFX
Do not specify

SENDCOUNT
Do not specify

Example CONNECTION attributes for a generic EXCI connection

CONNECTION(EIP2)
The local name for the connection

ACCESSMETHOD(IRC)

NETNAME()
Must be blank for generic connection

INSERVICE(YES)
PROTOCOL(EXCI)

CONNTYPE(Generic)
Pipes are shared by multiple users

ATTACHSEC(LOCAL)

148 CICS TS for z/OS: Intercommunication Guide

SESSIONS(csdname)
A unique csd name

CONNECTION(EIP2)
The name of the associated CONNECTION resource

PROTOCOL(EXCI)
RECEIVEPFX(<)

RECEIVECOUNT(5)
5 receive sessions

SENDPFX
Do not specify

SENDCOUNT
Do not specify

Figure 49. Example SESSIONS attributes for a generic EXCI connection

Installing MRO and EXCI link definitions
You can install new MRO and EXCI connections dynamically, while CICS is fully operational—there is no
need to close down interregion communication (IRC) to do so.

Note that CICS commits the installation of connection definitions at the group level—if the installation of
any connection or terminal fails, CICS backs out the installation of all connections in the group. Therefore,
when adding new connections to a CICS region with IRC open, ensure that the new connections are in a
group of their own.

You cannot modify existing MRO (or EXCI) links while IRC is open. You should therefore ensure, when
defining an MRO link, that you specify enough SEND and RECEIVE sessions to cater for the expected
workload.

For further information about installing MRO links, see CONNECTION attributes.

Defining APPC connections
An APPC connection consists of one or more sets of sessions. The sessions in each set have identical
characteristics, apart from being either contention winners or contention losers.

Each set of sessions can be assighed a modename that enables it to be mapped to a z/0OS
Communications Server logmode name and from there to a class of service (COS). A set of APPC sessions
is therefore referred to as a modeset.

An APPC terminal is often an APPC system that supports only a single session and which does not support
an LU services manager. There are several ways of defining such terminals; further details are given under
“Defining single-session APPC terminals” on page 153. This section describes the definition of one or
more modesets containing more than one session.

To define an APPC connection to a remote system, you must create the following resources:
1. ACONNECTION resource to define the remote system.
2. A SESSIONS resource to define each set of sessions to the remote system.

However, you must not have more than one APPC connection installed at the same time between an LU-
LU pair. Nor should you have an APPC and an LUTYPE6.1 connection installed at the same time between
an LU-LU pair.

For all APPC connections, except single-session connections to APPC terminals, CICS automatically
builds a set of special sessions for the exclusive use of the LU services manager, using the modename
SNASVCMG. This is a reserved name, and cannot be used for any of the sets that you define.

If you are defining a z/OS Communications Server logon mode table, remember to include an entry for the
SNASVCMG sessions. See ACF/SNA LOGMODE table entries for CICS

Chapter 2. Configuring CICS interconnectivity 149

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html

Defining the remote APPC system
A remote APPC system is defined with a CONNECTION resource.

To define a remote APPC system, create a CONNECTION resource with the following attributes:
NETNAME(name)
ACCESSMETHOD(VTAM)

Note: VTAM is now z/OS Communications Server.

PROTOCOL(APPC)
SINGLESESS(NO)
QUEUELIMIT(NO|0-9999)
MAXQTIME(NO|0-9999)
AUTOCONNEC(NO|YES|ALL)
SECURITYNAME(value)
ATTACHSEC(LOCAL|IDENTIFY|VERIFY|PERSISTENT|MIXIDPE)
BINDPASSWORD(password)
BINDSECURITY(YES|NO)
USEDFLTUSER(NO|YES)
PSRECOVERY(SYSDEFAULT|NONE)

You must specify ACCESSMETHOD(VTAM) and PROTOCOL(APPC) to define an APPC system. The
CONNECTION name (that is, the sysidnt) and the netname have the meanings explained in “Identifying
remote systems” on page 129 (but see the box that follows).

Important:

If you are defining an APPC link to a terminal-owning region that is a member of a z/0S Communications
Server generic resource group, NETNAME can specify either the TOR's generic resource name, or its
applid. For advice on coding NETNAME for connections to a generic resource, see “Configuring z/0OS
Communications Server generic resources” on page 107.

Because this connection will have multiple sessions, you must specify SINGLESESS(N), or allow it to
default. (The definition of single-session APPC terminals is described in “Defining single-session APPC
terminals” on page 153.)

The AUTOCONNECT attribute specifies which of the sessions associated with the connection are to be
bound when CICS is initialized. Further information is given in “The AUTOCONNECT attribute” on page
154,

The QUEUELIMIT attribute specifies the maximum number of requests permitted to queue for free
sessions to the remote system. The MAXQTIME attribute specifies the maximum time between a queue
becoming full and it being purged because the remote system is unresponsive. Further information is
given in Intersystem session queue management.

If you are using z/OS Communications Server persistent session support, the PSRECOVERY attribute
specifies whether sessions to the remote system are recovered, if the local CICS fails and restarts within
the persistent session delay interval. Further information is given in “Using z/OS Communications Server
persistent sessions on APPC links” on page 155.

For information about security options, see Implementing LU6.2 security.

Note: If the intersystem link is to be used by existing applications that were designed to run on
LUTYPE®G.1 links, you can use the DATASTREAM and RECORDFORMAT attributes to specify data stream
information for asynchronous processing. The information provided by these attributes is not used by
APPC application programs.

150 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/connections/dfht546.html

Defining groups of APPC sessions
Each group of sessions for an APPC system is defined by means of a SESSIONS resource.

Each individual group of sessions is referred to as a modeset.
Specify the following attributes:

SESSIONS(csdname)

CONNECTION(name)

The CONNECTION option specifies the name (1-4 characters) of the APPC system for which the group
is being defined; that is, the CONNECTION name in the associated DEFINE CONNECTION command.

MODENAME(name)

Specifies a name (1-8 characters) that identifies this group of related sessions. The name must be
unique among the modenames for any one APPC intersystem link, and you must not use the reserved
names SNASVCMG or CPSVCMG.

PROTOCOL(APPC)

MAXIMUM(m1,m2)
Specifies the maximum number of sessions that are to be supported for the group. The parameters of
this option have the following meanings:

« m1 specifies the maximum number of sessions in the group. The default value is 1.

« m2 specifies the maximum number of sessions to be supported as contention winners. The number
specified for m2 must not be greater than the number specified for m1. The default value for m2 is
zero.

SENDSIZE(size)
The maximum size of request unit (RU) to be sent, in the range 256 - 30 720.

RECEIVESIZE(size)
The maximum size of request unit (RU) to be received, in the range 256 - 30 720.

SESSPRIORITY(number)

AUTOCONNECT(NO|YES|ALL)
Specifies whether the sessions are to be bound when CICS is initialized. Further information is given in
“The AUTOCONNECT attribute” on page 154.

USERAREALEN(value)
RECOVOPTION(SYSDEFAULT|UNCONDREL|NONE)

If you are using z/OS Communications Server persistent session support, and CICS fails and restarts
within the persistent session delay interval, the RECOVOPTION option specifies how CICS recovers
the sessions. (The RECOVNOTIFY option does not apply to APPC sessions.) Further information is
given in “Using z/OS Communications Server persistent sessions on APPC links” on page 155.

Defining compatible CICS APPC nodes
When you define an APPC link between two CICS systems, you must ensure that the definitions of the link
in each of the systems are compatible.

The following table summarizes the compatibility requirements. Related options and operands are shown
by identical numbers.

CICSA cIicsB

System initialization

parameters APPLID=CICSA APPLID=CICSB

Chapter 2. Configuring CICS interconnectivity 151

CICSA CICSB
CONNECTION resource CONNECTION (CICB) CONNECTION (CICA)
NETNAME (CICSB) NETNAME (CICSA)
ACCESSMETHOD (VTAM) ACCESSMETHOD (VTAM)
PROTOCOL (APPC) PROTOCOL (APPC)
SINGLESESS(N) SINGLESESS(N)
QUEUELIMIT(500) QUEUELIMIT(NO)
MAXQTIME (500) ATTACHSEC (IDENTIFY)
BINDPASSWORD (pw) BINDPASSWORD (pw)
SESSIONS resource SESSIONS (csdname) SESSIONS (csdname)
CONNECTION (CICB) CONNECTION (CICA)
MODENAME (M1) (6] [6 | MODENAME (M1)
PROTOCOL (APPC) PROTOCOL (APPC)
MAXIMUM(ss,ww) MAXIMUM(ss, ww)
SENDSIZE (kkk) El SENDSIZE(337)
RECEIVESIZE (ji7) [9] [8] RECEIVESIZE (kkk)

Notes:

VTAM is the previous name for z/OS Communications Server.

The values specified for MAXIMUM on either side of the link do not need to match, because they are
negotiated by the LU services managers. However, a matching specification avoids unusable TCTTE
entries, and also avoids unexpected bidding because of the "contention winners" negotiation.

EL.El I the value specified for SENDSIZE on one side of the link does not match that specified for
RECEIVESIZE on the other, CICS negotiates the values at BIND time.

Automatic installation of APPC links
You can use the CICS autoinstall facility to allow APPC links to be defined dynamically on their first usage,
thereby saving on storage for installed definitions, and on time spent creating the definitions.

Note: The method described here applies only to APPC parallel-session and single-session links initiated
by BIND requests. The method to be used for APPC single-session links initiated by z/OS Communications
Server CINIT requests is described in “Defining single-session APPC terminals” on page 153. You cannot
autoinstall APPC parallel-session links initiated by CINIT requests.

If autoinstall is enabled, and an APPC BIND request is received for an APPC service manager
(SNASVCMG) session (or for the only session of a single-session connection), and there is no matching
CICS CONNECTION definition, a new connection is created and installed automatically.

Like autoinstall for terminals, autoinstall for APPC links requires model definitions. However, unlike the
model definitions used to autoinstall terminals, those used to autoinstall APPC links do not need to be
defined explicitly as models. Instead, CICS can use any previously-installed link definition as a
“template” for a new definition. In order for autoinstall to work, you must have a template for each kind of
link you want to be autoinstalled.

The purpose of a template is to provide CICS with a definition that can be used for all connections with
the same properties. You customize the supplied autoinstall user program, DFHZATDY, to select an
appropriate template for each new link, based on the information it receives from z/OS Communications
Server.

A template consists of a CONNECTION definition and its associated SESSIONS definitions. You should
have a definition installed for each different set of session properties you are going to need.

Any installed link definition can be used as a template but, for performance reasons, your template
should be an installed link definition that you do not use. The definition is locked while CICS is copying it,
and if you have a very large number of sessions autoinstalling, the delay may be noticeable.

Autoinstall support is likely to be beneficial if you have large numbers of APPC parallel session devices
with identical characteristics. For example, if you had 1000 Personal Computers (PCs), all with the same
characteristics, you would set up one template to autoinstall all of them. If 500 of your PCs had one set of
characteristics, and 500 had another set, you would set up two templates to autoinstall them.

152 CICS TS for z/OS: Intercommunication Guide

For further information about using autoinstall with APPC links, see Autoinstalling APPC connections. For
programming information about the autoinstall user program, see Writing a program to control autoinstall
of APPC connections.

Defining single-session APPC terminals

There are two methods available for defining a single-session APPC terminal: you can define a
CONNECTION-SESSIONS pair, with SINGLESESS(Y) specified for the connection; or you can define a
TERMINAL-TYPETERM pair.

Defining an APPC terminal — method 1
You can define a CONNECTION-SESSIONS pair to represent a single-session APPC terminal.

About this task

The CONNECTION and SESSIONS resources that are required are similar to those shown in “Defining the
remote APPC system” on page 150 and “Defining groups of APPC sessions” on page 151. The differences
are as follows:

« Inthe CONNECTION resource, you must specify SINGLESESS(Y)

« In the SESSIONS resource, you must specify MAXIMUM(1,0). The second value (0) has no meaning for a
single session definition because CICS always binds as a contention winner. However, CICS accepts a
negotiated bind, or a negotiated bind response, in which it is changed to the contention loser.

Defining an APPC terminal — method 2
You can define a single-session APPC terminal as a TERMINAL with an associated TYPETERM.

About this task

This method of definition has two principal advantages:

1. You can use a single TYPETERM for all your APPC terminals of the same type.
2. It makes the AUTOINSTALL facility available for APPC single-session terminals.

Autoinstall for APPC single sessions initiated by a z/OS Communications Server VTAM CINIT works in
the same way as autoinstall for other terminals, in that you must supply a TERMINAL—TYPETERM
model pair. For further information about using autoinstall with APPC single-session terminals, see
Autoinstalling APPC connections.

Because all APPC devices are seen as systems by CICS, the value that you define in the TERMINAL
attribute is effectively a system name. When you inquire about an APPC terminal, you actually inquire
about a CONNECTION.

A single, contention-winning session is implied when you create TERMINAL resource. However, for APPC
terminals, CICS accepts a negotiated bind in which it is changed to the contention loser.

If you plan to use automatic installation for your APPC terminals, you need the model terminal definition
(LU62) that is provided in the CICS-supplied CSD group DFHTERM. You also have to write an autoinstall
user program, and provide suitable z/OS Communications Server LOGMODE entries.

Procedure

1. Create a TERMINAL resource with the following attributes:.
TERMINAL(sysid)
MODENAME(modename)
TYPETERM(typeterm)

Specify any other appropriate attributes
2. Create a TYPETERM resource with the following attributes:

Chapter 2. Configuring CICS interconnectivity 153

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/resources/dfha42m.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-prorgamming/cics/dfha32h.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-prorgamming/cics/dfha32h.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/resources/dfha42m.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/terminal/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/typeterm/dfha4_summary.html

TYPETERM(typeterm)
DEVICE(APPC)

Specify any other appropriate attributes. The CICS-supplied group DFHTYPE contains a TYPETERM,
DFHLU62T, that is suitable for APPC terminals. You can either use this TYPETERM resource, or use it
as the basis for your own definition.

The AUTOCONNECT attribute

You can use the AUTOCONNECT attribute of the CONNECTION and SESSIONS resources (and of the
TYPETERM resource for APPC terminals) to control CICS attempts to establish communication with the
remote APPC system.

Except for single-session APPC terminals (see “Defining single-session APPC terminals” on page 153),
two events are necessary to establish sessions to a remote APPC system.

1. The connection to the remote system must be established. This means binding the LU services
manager sessions (SNASVCMG) and carrying out initial negotiations.

2. The sessions of the modeset in question must be bound.

These events are controlled in part by the AUTOCONNECT attribute of the CONNECTION resource, and in
part by the AUTOCONNECT attribute of the SESSIONS resource.

The AUTOCONNECT attribute of a CONNECTION resource
The AUTOCONNECT option specifies whether CICS is to try to bind the LU services manager sessions at
the earliest opportunity (when the z/OS Communications Server ACB is opened).

It can have the following values:

AUTOCONNECT(NO)
specifies that CICS is not to try to bind the LU services manager sessions.

AUTOCONNECT(YES)
specifies that CICS is to try to bind the LU services manager sessions.

AUTOCONNECT(ALL)
the same as YES.

The LU services manager sessions cannot, of course, be bound if the remote system is not available. If for
any reason they are not bound during CICS initialization, they can be bound when the connection is
placed into INSERVICE ACQUIRED state. They are also bound if the remote system itself initiates
communication. For a single-session APPC terminal, the AUTOCONNECT attribute has no effect. This is
because a single-session connection has no LU services manager.

The AUTOCONNECT attribute of the SESSIONS resource
The AUTOCONNECT attribute specifies which sessions are to be bound when the associated LU services
manager sessions have been bound. No user sessions can be bound before this time.

The option can have the following values:

AUTOCONNECT(NO)
specifies that no sessions are to be bound.

AUTOCONNECT(YES)
specifies that the contention-winning sessions are to be bound.

AUTOCONNECT(ALL)
specifies that the contention-winning and the contention-losing sessions are to be bound.

AUTOCONNECT(ALL) allows CICS to bind contention-losing sessions with remote systems that cannot
send bind requests. By specifying AUTOCONNECT(ALL), you can cause CICS to bind a number of
contention winners other than the number originally specified in the local system. The number of
contention winners that CICS binds depends on the reply that the partner system gives to the request to
initiate sessions (CNOS exchange). CICS tries to bind as contention winners all sessions that are not
designated as contention losers in the CNOS reply.

154 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html

For example, suppose that you specify MAXIMUM(10,4) in the local system and MAXIMUM(10,2) in the
remote system. If the sessions are acquired from the local system, and the contention-losing sessions
bind successfully, the result is 8 primary contention-winning sessions.

Important: Never specify AUTOCONNECT(ALL) for sessions to another CICS system, or to any system
that can send a bind request. This could lead to bind-race conditions that CICS cannot resolve.

If AUTOCONNECT(NO) is specified, the sessions can be bound and made available by setting the
modename into ACQUIRED AVAILABLE command. If this is not done, sessions are bound individually
according to the demands of your application program.

For a single-session APPC terminal, the value specified for the AUTOCONNECT attribute of the SESSIONS
or TYPETERM resources determines whether CICS tries to bind the single session or not.

Using z/0S Communications Server persistent sessions on APPC links

You can use z/OS Communications Server persistent sessions to improve the availability of APPC links.
z/0OS Communications Server persistent sessions support enables sessions to be recovered without the
need for network flows in the event of a CICS or z/OS Communications Server failure.

Recovery with z/OS Communications Server persistent sessions explains what happens when you use
persistent sessions support, and why you might want to run a CICS region without persistent sessions
support.

If APPC sessions are active at the time of the CICS, Communications Server or z/0OS failure, persistent
sessions recovery appears to APPC partners as CICS hanging. The Communications Server saves requests
issued by the APPC partner, and passes them to CICS when recovery is complete. When CICS
reestablishes a connection with the Communications Server, recovery of terminal sessions is determined
by the settings for the PSRECOVERY option of the CONNECTION resource definition and the
RECOVOPTION option of the SESSIONS resource definition. You must set the PSRECOVERY option of the
CONNECTION resource definition to the default value SYSDEFAULT for sessions to be recovered. The
alternative, NONE, means that no sessions are recovered. If you have selected the appropriate recovery
options and the APPC sessions are in the correct state, CICS performs an ISSUE ABEND to inform the
partner that the current conversation has been abnormally ended.

The PSRECOVERY attribute of the CONNECTION resource

In a CICS region running with persistent session support, use this attribute to specify whether the APPC
sessions used by this connection are recovered on system restart within the persistent session delay
interval. It can have the following values:

SYSDEFAULT
If a failed CICS system is restarted within the persistent session delay interval, the following actions
occur:

« User modegroups are recovered to the value specified in the RECOVOPTION attribute of the
SESSIONS resource.

« The SNASVCMG modegroup is recovered.

« The connection is returned in ACQUIRED state and the last negotiated CNOS state is returned.

NONE
All sessions are unbound as out-of-service with no CNOS recovery.

The RECOVOPTION attribute of SESSIONS and TYPETERM resources

In a CICS region running with persistent session support, the RECOVOPTION attribute of the SESSIONS
and TYPETERM resources specifies how APPC sessions are to be recovered, after a system restart within
the persistent session delay interval.

For a single-session APPC terminal, the RECOVOPTION attribute of a SESSIONS or TYPETERM resource
specifies how the terminal is to be returned to service after a system restart within the persistent session
delay interval.

Chapter 2. Configuring CICS interconnectivity 155

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/administering/recovery/dfht20t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/typeterm/dfha4_summary.html

If you want the sessions to be persistent, you should allow the value to default to SYSDEFAULT. This
specifies that CICS is to select the optimum procedure to recover a session on system restart within the
persistent delay interval.

Without persistent session support, if AUTOCONNECT(YES) is specified for a terminal, the end-user must
wait until the GMTRAN transaction has run before being able to continue working. If AUTOCONNECT(NO)
is specified, the user has no way of knowing (unless told by support staff) when CICS is operational again
unless he or she tries to log on. In either case, the user is disconnected from CICS and needs to
reestablish his session, to regain his working environment. With persistent session support, the session is
put into recovery pending state on a CICS failure. If CICS starts within the specified interval, and
RECOVOPTION is set to SYSDEFAULT, the user does not need to reestablish his session to regain his
working environment.

Defining logical unit type 6.1 links

LUTYPE®G.1 links are necessary for intersystem communication between CICS and any system, such as
IMS, that supports LUTYPE6.1 protocols but does not fully support APPC. You are advised to use MRO or
APPC links for CICS-to-CICS communication.

Restriction:

You must not have an LUTYPE6.1 and an APPC connection active at the same time between an LU-LU
pair.

A CONNECTION resource is always required to define the remote system on an LUTYPE®6.1 link. The
sessions, however, can be defined in either of the following ways:

1. By using a single SESSIONS resource to define a pool of sessions with identical characteristics.
2. By using a separate SESSIONS resource to define each individual session. This method must be used
to define sessions with systems, such as IMS, that require individual sessions to be explicitly named.

Defining CICS-to-IMS LUTYPE®G.1 links
A link to an IMS system requires a definition of the connection (or system) and a separate definition of
each of the sessions.

Create a CONNECTION resource with the following attributes:
CONNECTION(sysidnt)

NETNAME(name)

ACCESSMETHOD(VTAM)

Note: VTAM is the previous name for z/OS Communications Server.

PROTOCOL(LU61)
DATASTREAM(USER|3270|SCS|STRFIELD|LMS)
RECORDFORMAT(U|VB)
QUEUELIMIT(NO|0-9999)
MAXQTIME(NO|0-9999)

INSERVICE(YES)

SECURITYNAME(name)

ATTACHSEC(LOCAL)

For each session, create a SESSIONS resource with the following attributes:
SESSIONS(csdname)

CONNECTION(sysidnt)

SESSNAME(name)

NETNAMEQ(name)

PROTOCOL(LU61)

RECEIVECOUNT(1]0)

156 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/sessions/dfha4_summary.html

SENDCOUNT(0|1)
SENDSIZE(size)
RECEIVESIZE(size)
SESSPRIORITY(number)
AUTOCONNECT(NO|YES|ALL)
BUILDCHAIN(YES)
IOAREALEN(value)

Defining compatible CICS and IMS nodes
This section describes the writing of suitable CICS definitions that are compatible with the corresponding
IMS definitions.

An overview of IMS system definition is given in “Configuring support for ISC over SNA” on page 106. The
relationships between CICS and IMS definitions are summarized in “Other session parameters” on page
158.

System names
The network name of the CICS system (its applid) is specified on the APPLID CICS system initialization
parameter.

This name must be specified on the NAME operand of the IMS TERMINAL macro that defines the CICS
system. For CICS systems that use XRF, the name will be the CICS generic applid. For non-XRF CICS
systems, the name will be the single applid specified on the APPLID system initialization parameter.

The network name of the IMS system may be specified in various ways:

« For systems with XRF support, as the USERVAR that is defined in the DFSHSBxx member of
IMS.PROCLIB.

« For systems without XRF:

— on the APPLID operand of the IMS COMM macro
— as a label on the EXEC statement of the IMS startup job (if APPLID is coded as NONE)
— as a started task name (if APPLID is coded as NONE).

You must specify the network name of the IMS system in the NETNAME attribute of the CONNECTION
resource that defines the IMS system.

Number of sessions
In IMS, the number of parallel sessions that are required between the CICS and IMS system must be
specified in the SESSION operand of the IMS TERMINAL macro.

Each session is then represented by a SUBPOOL entry in the IMS VTAMPOOL. In CICS, each of these
sessions is represented by an individual session definition.

Session names
Each CICS-to-IMS session is uniquely identified by a session-qualifier pair, which is formed from the CICS
name for the session and the IMS name for the session.

The CICS name for the session is specified in the SESSNAME attribute of the SESSIONS resource. For
sessions that are to be initiated by IMS, this name must correspond to the ID parameter of the IMS
OPNDST command for the session. For sessions initiated by CICS, the name is supplied on the CICS
OPNDST command and is saved by IMS.

The IMS name for the session is specified in the NAME operand of the IMS SUBPOOL macro. You must
make the relationship between the session names explicit by coding this name in the NETNAMEQ
attribute of the corresponding SESSIONS resource.

The CICS and the IMS names for a session can be the same, and this approach is recommended for
operational convenience.

Chapter 2. Configuring CICS interconnectivity 157

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/connection/dfha4_summary.html

Other session parameters
This topic lists the remaining attributes of the CONNECTION and SESSIONS resources that are of
significance for CICS-to-IMS sessions.

ATTACHSEC
Must be specified as LOCAL.

BUILDCHAIN(YES)
Specifies that multiple RU chains are to be assembled before being passed to the application
program. A complete chain is passed to the application program in response to each RECEIVE
command, and the application performs any required deblocking.

BUILDCHAIN(YES) must be specified (or allowed to default) for LUTYPE6.1 sessions.

DATASTREAM(USER)
Must be specified with the value USER or allowed to default.

This option is used only when CICS is communicating with IMS by using the START command
(asynchronous processing). CICS messages generated by the START command always cause IMS to
interpret the data stream profile as input for component 1.

The data stream profile for distributed transaction processing can be specified by the application
program by means of the DATASTR option of the BUILD ATTACH command.

QUEUELIMIT(NO|0-9999)
Specifies the maximum number of requests permitted to queue for free sessions to the remote
system. Further information is given in Intersystem session queue management.

MAXQTIME(NO|0-9999)
Specifies the maximum time, in seconds, between the queue for sessions to the remote system
becoming full (that is, reaching the limit specified on QUEUELIMIT) and the queue being purged
because the remote system is unresponsive. Further information is given in Intersystem session
queue management.

RECORDFORMAT(U|VB)
Specifies the type of chaining that CICS is to use for transmissions on this session that are initiated by
START commands (asynchronous processing).

Two types of data-handling algorithms are supported between CICS and IMS:

Chained
Messages are sent as SNA chains. The user can use private blocking and deblocking algorithms.
This format corresponds to RECORDFORMAT(U).

Variable-length variable-blocked records (VLVB)
Messages are sent in variable-length variable-blocked format with a halfword length field before
each record. This format corresponds to RECORDFORMAT(VB).

The data stream format for distributed transaction processing can be specified by the application
program by means of the RECFM option of the BUILD ATTACH command.

Additional information on these data formats is given in CICS-to-IMS applications.

SENDCOUNT and RECEIVECOUNT
Used to specify whether the session is a SEND session or a RECEIVE session.

A SEND session is one in which the local CICS is the secondary and is the contention winner. Specify:

« SENDCOUNT (1)
« Allow RECEIVECOUNT to default. Do not specify RECEIVECOUNT (Q).

A RECEIVE session is one in which the local CICS is the primary and is the contention loser. Specify:

« RECEIVECOUNT (1)
« Allow SENDCOUNT to default. Do not specify SENDCOUNT (Q).

SEND sessions are recommended for all CICS-to-IMS sessions.

158 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/connections/dfht17k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/connections/dfht12v.html

You need not specify a SENDPFX or a RECEIVEPFX; the name of the session is taken from the
SESSNAME option.

Note: For SEND sessions, allow RECEIVECOUNT to default. For RECEIVE sessions, allow SENDCOUNT
to default.

SENDSIZE and RECEIVESIZE
Specify the maximum z/OS Communications Server request unit (RU) sizes for these sessions.

 If CICS is the primary half-session, ensure that:

1. The CICS SENDSIZE is less than or equal to the value specified on the RECANY parameter of the
IMS COMM macro.

2. The CICS RECEIVESIZE is greater than or equal to the IMS OUTBUF size.
« If IMS is the primary half-session, ensure that:

1. The CICS SENDSIZE is greater than or equal to the IMS OUTBUF size.

2. The CICS RECEIVESIZE is less than or equal to the IMS RECANY size.

The compatibility requirements are summarized in the following table. Related options and operands are
shown by identical numbers.

Note: VTAM is now z/OS Communications Server.

CICS IMS
System initialization parameters
COMM APPLID=SYSIMS
APPLID=SYSCICS RECANY=nnn+22
EDTNAME=ISCEDT
CONNECTION resource
El TYPE UNITYPE=LUTYPE6
CONNECTION (IMSR) TERMINAL NAME=SYSCICS
NETNAME (SYSIMS) SESSION=2
ACCESSMETHOD (VTAM) COMPT1
PROTOCOL (LU61) COMPT2
DATASTREAM (USER) | 6 | OUTBUF=mmm
ATTACHSEC (LOCAL)
SESSIONS resources VTAMPOOL
SUBPOOL NAME=CIC1
SESSIONS (csdnamel)
CONNECTION (IMSR) NAME CICLT1 COMPT=1
SESSNAME (IMS1)
NETNAMEQ(CIC1) NAME CICLT1A
PROTOCOL (LU61) | 4]
SENDCOUNT (1) IEl SUBPOOL NAME=CIC2
SENDSIZE (nnn)
RECEIVESIZE (mmm) NAME CICLT2 COMPT=2
TOAREALEN (nnn,16364)
DFSHSBxx USERVAR=SYSIMS
SESSIONS (csdnamel)
CONNECTION (IMSR)
SESSNAME (IMS2)
NETNAMEQ (CIC2) [8]
PROTOCOL (LU61) e
SENDCOUNT (1)
SENDSIZE (nnn)
RECEIVESIZE (mmm) [6 |
IOAREALEN (nnn,16364)

Note: For an example of a z/OS Communications Server logmode table entry for IMS, see ACF/SNA
LOGMODE table entries for IMS .

Chapter 2. Configuring CICS interconnectivity 159

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1_acfvtamlogmode_ims.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/installing/dfha1_acfvtamlogmode_ims.html

Defining multiple links to an IMS system
You can define more than one intersystem link between a CICS and an IMS system.

About this task

To defined multiple links to an IMS system, create two or more CONNECTION definitions (with their
associated SESSION definitions) with the same netname, but with different sysidnts. Although all the
system definitions resolve to the same netname, and therefore to the same IMS system, the use of a
sysidnt name in CICS causes CICS to allocate a session from the link with the specified sysidnt.

It is recommended that you define up to three links (that is, groups of sessions) between a CICS and an
IMS system, depending upon the application requirements of your installation:

1. For CICS-initiated distributed transaction processing (synchronous processing).

CICS applications that use the SEND/RECEIVE interface can use the sysidnt of this group to allocate a
session to the remote system. The session is held (busy) until the conversation is terminated.

2. For CICS-initiated asynchronous processing.

CICS applications that use the START command can name the sysidnt of this group. CICS uses the first
non-busy session to ship the start request.

IMS sends a positive response to CICS as soon as it has queued the start request, so that the session
is in use for a relatively short period. Consequently, the first session in the group shows the heaviest
usage, and the frequency of usage decreases towards the last session in the group.

3. For IMS-initiated asynchronous processing.

This group is also useful as part of the solution to a performance problem that can arise with CICS-
initiated asynchronous processing. An IMS transaction that is initiated as a result of a START
command shipped on a particular session uses the same session to ship its "reply" START command
to CICS. For the reasons given previously in (2), the CICS START command was probably shipped on
the busiest session and, because the session is busy and CICS is the contention winner, the replies
from IMS may be queuing for a chance to use the session.

However, facilities exist in IMS for a transaction to alter its default output session, and a switch to a
session in this third group can reduce this sort of queuing problem.

Table 15. Defining multiple links to an IMS node

CICS

System Initialization parameters:

SYSIDNT=CICL,
APPLID=SYSCICS

Resources for CICS-initiated distributed transaction processing

CONNECTION(IMSA)
NETNAME (SYSIMS)
ACCESSMETHOD (VTAM)

SESSIONS (csdname)
CONNECTION(IMSA)
SESSNAME (IMS1)
NETNAMEQ(DTP1)
PROTOCOL (LU61)

SESSIONS (csdname)

Resources for CICS-initiated asynchronous processing

160 CICS TS for z/OS: Intercommunication Guide

Table 15. Defining multiple links to an IMS node (continued)
CICS

CONNECTION(IMSB)
NETNAME (SYSIMS)
ACCESSMETHOD (VTAM)

SESSIONS (csdname)
CONNECTION(IMSB)
SESSNAME (IMS1)
NETNAMEQ (ASP1)
PROTOCOL (LU61)

SESSIONS (csdname)

Resources for IMS-initiated asynchronous processing

CONNECTION(IMSC)
NETNAME (SYSIMS)
ACCESSMETHOD (VTAM)

SESSIONS (csdname)
CONNECTION (IMSC)
SESSNAME (IMS1)
NETNAMEQ(IST1)
PROTOCOL (LU61)

SESSIONS (csdname)

Note: VTAM is the previous name for z/OS Communications Server.

Defining indirect links for transaction routing

In some older releases of CICS (no longer supported), indirect links between CICS regions were required
for transaction routing across intermediate regions. In a network consisting solely of currently-available
CICS systems, indirect links are only required if you are using non-z/OS Communications Server
terminals. Optionally, you can define them for use with z/OS Communications Server terminals. Indirect
links are never used for function shipping, distributed program link, asynchronous processing, or
distributed transaction processing.

The following figure shows the concept of an indirect link.

Chapter 2. Configuring CICS interconnectivity 161

Application-owning
region (AOR)

Terminal-owning
region (TOR)

Intermediate systems

A B C D

Transactian
defined as
owned by B

Transaction

Transaction

defined as
owned by C

defined as
owned by D

Transactiaon
defined on
system D

Direct link
defined to C

Direct link
defined to D

Direct link Direct link
defined to C defined to B

Indirect Indirect
Direct link Direct Tink Tink defined link defined
defined to B defined to A to A via B to A via C

Terminal ar
caonnection
defined on
system A

Terminal ar
connection
defined as
owned by A

Terminal or
connection
defined as
owned by A

Terminal or
connection
defined as
owned by A

Figure 50. Indirect links for transaction routing

This figure illustrates a chain of systems (A, B, C, D) linked by MRO or APPC links (you cannot do
transaction routing over LUTYPE®6.1 links).

It is assumed that you want to establish a transaction-routing path between a terminal-owning region A
and an application-owning region D. There is no direct link available between system A and system D, but
a path is available via the intermediate systems B and C.

To enable transaction-routing requests to pass along the path, resource definitions for both the terminal
(which may be an APPC connection) and the transaction must be available in all four systems. The
terminal is a local resource in the terminal-owning system A, and a remote resource in systems B, C, and
D. Similarly, the transaction is a local resource in the transaction-owning system D, and a remote resource
in the systems A, B, and C.

162 CICS TS for z/OS: Intercommunication Guide

Defining indirect links in CICS Transaction Server for z/0S

CICS systems reference remote terminals using a unique identifier that is formed from the applid
(netname) of the terminal-owning region (TOR) and the identifier by which the terminal is known on the
terminal-owning region.

For more information on remote resource definition, see “Defining remote resources” on page 175.

CICS must have access to the netname of the TOR to be able to form the fully-qualified terminal identifier.
In old releases of CICS (no longer supported), an indirect link definition had two purposes. Where there
was no direct link to the TOR, it:

1. Supplied the netname of the terminal-owning region.
2. Identified the direct link that was the start of the path to the terminal-owning region.

Thus, in Figure 50 on page 162, the indirect link definition in system D provides the netname of system A
and identifies system C as the next system in the path. Similarly, the indirect link definition in system C
provides the netname of system A and identifies system B as the next system in the path. System B has a
direct link to system A, and therefore does not require an indirect link.

In CICS Transaction Server for z/OS, unless you are using non-z/OS Communications Server terminals,
indirect links are optional. Different considerations apply, depending on whether you are using shippable
or hard-coded terminal definitions.

Shippable terminals
Indirect links are not necessary to allow terminal definitions to be shipped to an AOR across
intermediate systems. Each shipped definition contains a pointer to the previous system in the
transaction routing path (or to an indirect connection to the TOR, if one exists). This allows routed
transactions to be attached, by identifying the netname of the TOR and the path from the AOR to the
TOR.

If several paths are available, you can use indirect links to specify the preferred path to the TOR.
Note: Non-z/OS Communications Server terminals are not shippable.

Hard-coded terminals
If you are using z/OS Communications Server terminals exclusively, indirect links are not required.
You use the REMOTESYSNET attribute of the TERMINAL definition (or the CONNECTION definition, if
the “terminal” is an APPC device) to specify the netname of the TOR; and the REMOTESYSTEM
attribute to specify the next system in the path to the TOR. If several paths are available, use
REMOTESYSTEM to specify the next system in the preferred path.

If you are using non-z/0S Communications Server terminals, indirect links are required. This is
because must use the DFHTCT TYPE=REMOTE or TYPE=REGION macros to define non-z/0S
Communications Server terminals, and these do not include an equivalent of the REMOTESYSNET
attribute.

Therefore, in CICS Transaction Server for z/OS, you might decide to define indirect links:

« To specify the preferred path to the TOR, if more than one exists, and you are using shippable terminals.

- If you are using non-z/0OS Communications Server terminals for transaction routing across intermediate
systems.

- To enable you to use existing remote terminal definitions that do not specify the REMOTESYSNET
attribute. For example, you might have hundreds of remote z/OS Communications Server terminals
defined to a back-level system. If you introduce a new CICS Transaction Server for z/OS back-end
system into your network, you might want to copy the existing definitions to the CSD of the new system.
If the structure of your network means that there is no direct link to the TOR, it might be quicker to
define a single indirect link, rather than change all the copied definitions to include the REMOTESYSNET
attribute.

Chapter 2. Configuring CICS interconnectivity 163

Resource definition for transaction routing using indirect links
The resource definitions that are required to establish a transaction-routing path between a terminal-

owning region SYSO01 and an application-owning region SYS04 via two intermediate systems SYS02 and
SYS03, using indirect links, are shown.

The resource definitions required are shown in Figure 51 on page 165. For clarity, the figure shows hard-
coded remote terminal definitions that do not use the REMOTESYSNET option (if REMOTESYSNET is used,
indirect links are not required). Shippable terminals could also be used.

164 CICS TS for z/OS: Intercommunication Guide

SYsE1

OFHSIT
AFPLID=5Y301

sys@z

F DFHSIT

APPLID=5Y¥502

Link between SYSH1 and SYS@?

DEFINE
CONNECTIOMCNEXT)
HETNAME CSYS02)

DEFINE
SESEIONS(csdname !
CONNECTIOMCMNEXT)

DEFINE
COMMECTIONCPREY)
METMAMECSYSAL)

DEFIME
SESSIONS(csdname)
COMMECTIONCPREW)

SYS@3

|
OFHSIT
APPLID=SYS03

SYs@4

I
DFHEIT
APPLID=5Y¥5D4

Link between SYSB3 and SYSB4

DEFINE
CONMECTIONCNEXT)
METHAMECSYS04)
DEFINE
COMMECTIONCMNEXT)

SESSIONSCcsdname;

DEFTHE
CONMECTIONCPREWY)
HETHAMECSYSA3)

DEFTHE
SESSIONS(csdname)
CONMECTIONCPREY)

Link between SYSEZ and SYSH3

DEFIME
COMNECTIONCNEXT)
METMAME(SYS02)

DEFINE
SESSTONS(cedname)
CONMECTIOMOMEXT 3

DEFINE
COMNECTIONCPREW)
METMAME(SYS0Z)

DEFINE
SESSIONS(csdname)
CONMECTIONCPREYW)

This figure shows TERMINAL definitions
COMMECTION definitions are appropriate

when the "terminal"

The terminal

"

= an AFPPC device.

The terminal

"DEFINE
TERMINAL(T42A)
NETNAME (X000
TYPETERM(DFHLUZ)

L I

OEFIME
TERMINALCT424)
REMOTESYSTEMOPREY)
TYPETERMCDFHLLUZ)

The transaction

The transaction

I

DEFINE
TRANSACTIONCTRTN)
REMOTESY STEMCNEXT

OEFINE
TRANSACTIONCTRTN)
REMOTESYSTEMONEXT)

Figure 51. Defining indirect links for transaction routing

Indirect Tink from
SYS@3 to S5YSH1
routed via SYS@2

"DEFINE
CONNECTIONC REMT)
METMAME (5Y501)
ACCESSMETHOD
(CINOIRECT)
INDSVSCPREV)

The terminal

'DEFINE
TERMINAL(T42A)
REMOTESYSTEM(REMT)
TYPETERM(DFHLUZ)

The transaction

I

DEFINE
TRANSACTIONCTRTH
REMOTESYSTEMONEXT)

Indirect 1ink from
SYS@4 to SYSA]
routed via SYS@3

I
DEFINE
CONMECTION(REMT 3
METHMAME (SY¥S5013
ACCESSMETHOD

(IMOIRECT

THDSYSTPREVD

L

The terminal

"DEFINE
TERMINAL(T42A)
REMOTESY STEM{ REMT)
TYPETERM(DFHLUZ)

L I

The transaction

[

OEFINE
TRANSACTIONCTRTN)
PROGRAMCTRNE)

Chapter 2. Configuring CICS interconnectivity 165

Defining the direct links

The direct links between SYS01 and SYS02, SYS02 and SYS03, and SYS03 and SYS04 are MRO or APPC
links defined as described in “Defining links for multiregion operation” on page 145 and “Defining APPC
connections” on page 149.

Defining the indirect links

Indirect links to the terminal-owning region (TOR) can be defined to some systems in a transaction-
routing path and not to others, depending on the structure of your network and how you have coded your
remote terminal definitions.

For example, if an intermediate system uses hard-coded terminal definitions that do not specify
REMOTESYSNET and the system does not have a direct link to the TOR, an indirect link is required.
Indirect links are never required in the system to which the TOR has a direct link.

In the current example, indirect links are defined in SYS04 and SYS03. The following rules apply to the
definition of an indirect link:

ACCESSMETHOD must be INDIRECT.
NETNAME must be the applid of the terminal-owning region.

INDSYS (meaning indirect system) must name the CONNECTION name of an MRO or APPC link that is
the start of the path to the terminal-owning region.

No SESSIONS definition is required for the indirect connection; the sessions that are used are those of
the direct link named in the INDSYS option.

Defining the terminal
If shippable terminals are used, no remote terminal definitions are required.

For the recommended methods to define remote terminals and connections to a CICS Transaction Server
for z/OS system, see “Defining remote resources” on page 175.

Figure 51 on page 165 shows hard-coded remote terminal definitions that do not specify the
REMOTESYSNET option. If you use these terminal definitions, the following conditions apply:

« The REMOTESYSTEM (or SYSIDNT) option in the remote terminal or connection definition must always
name a link to the TOR (that is, a CONNECTION definition on which NETNAME specifies the applid of the
terminal-owning region).

- The named link must be the direct link to the terminal-owning region, if one exists. Otherwise, it must
be an indirect link.

Defining the transaction

For information about the definition of remote transactions, see “Defining remote resources” on page
175.

TCP/IP management and control

You can use TCP/IP management and control to monitor work that enters or leaves CICS over
Transmission Control Protocol/Internet Protocol (TCP/IP) connections.

TCP/IP management and control provides, for TCP/IP networks, a subset of the management functions
already provided for APPC networks and some additional functions that are not available for APPC or MRO
networks.

TCP/IP networks are systems that are interconnected by the following means:
« An IPIC connection (IPCONN).

IPIC supports the following types of intercommunication functions for their respective product
releases:

— Distributed program link (DPL) calls between CICS TS 3.2 or later regions.

166 CICS TS for z/OS: Intercommunication Guide

— Distributed program link (DPL) calls between CICS TS and TXSeries Version 7.1 or later.

— Asynchronous processing of EXEC CICS START, START CHANNEL, and CANCEL commands,
between CICS TS 4.1 or later regions.

— Transaction routing of 3270 terminals, where the terminal-owning region (TOR) is uniquely identified
by an APPLID between CICS TS 4.1 or later regions.

— Enhanced method of routing transactions that are invoked by EXEC CICS START commands
between CICS TS 4.2 or later regions.

— ECI requests from CICS Transaction Gateway Version 7.1 or later.

— Function shipping of all file control, transient data, and temporary storage requests between CICS TS
4.2 or later regions. Function shipping of file control and temporary storage requests using IPIC
connectivity is threadsafe between CICS TS 4.2 or later regions. Function shipping of transient data
requests using IPIC connectivity is threadsafe between CICS TS 5.1 or later regions.

— Threadsafe processing for the mirror program and the LINK command in CICS TS 4.2 or later regions
to improve performance for threadsafe applications.

« TCP/IP connections from clients that carry, for example, Web Interface, or SOAP over HTTP requests
inbound to CICS.

You can use TCP/IP management and control as follows:

To diagnose connectivity problems

To investigate other problems, such as transaction delays

« To track work across the CICSplex

 To capture system data over time, for use in capacity planning

« To monitor the CICSplex

For example, you can use CICSPlex SM, or an equivalent tool, as follows:

 You can obtain a CICSplex-wide view of the TCP/IP network.
» You can examine the following items in real time:

The TCP/IP network resources that a specific CICS region is using

The work passing in and out of a specific CICS region over the TCP/IP network

The CICS resources and tasks associated with a distributed transaction that flows across the
CICSplex over the TCP/IP network

The CICS region in which a distributed transaction originated

You can save the data collected by CICS so that it can be examined offline, at some point after the tasks
and resources to which it relates are no longer available.

Some useful SPI commands

You can use the following system programming interface (SPI) commands to retrieve information about
IPIC connections:

EXEC CICS EXTRACT STATISTICS
Specify a RESTYPE of IPCONN to retrieve resource statistics for IPIC. Global statistics are not
available.

EXEC CICS INQUIRE ASSOCIATION
In a TCP/IP network, this command returns information about a task; for example, how the task was
started, and the IP address of the TCP/IP client that requested it to start. The task is specified by a
task number, which typically has been returned, as one of a list of numbers, by the EXEC CICS
INQUIRE ASSOCIATION LIST command.

EXEC CICS INQUIRE ASSOCIATION LIST
This command returns a list of tasks, in the local region, that have matching user correlation data in
their associated data control blocks (ADCBs). Typically, the user correlation data has been added, at

Chapter 2. Configuring CICS interconnectivity 167

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_extractstatistics.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_inquireassociation.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_inquireassociationlist.html

the point of origin of a distributed transaction, by a CICS XAPADMGR global user exit program. See
“The XAPADMGR global user exit” on page 168.

EXEC CICS INQUIRE TASK
The IPALTFACILITIES option returns the address of a list of IDs, each of which identifies an IPCONN
session that the task has used to communicate with another system. The LISTSIZE option returns the
number of items in the list.

EXEC CICS PERFORM STATISTICS
Specify a statistics type of IPCONN to record resource statistics for IPIC connections. Global statistics
are not available.

Socket application data (ApplData)

CICS generates 40 bytes of socket application data (ApplData) for each of the TCP sockets that it owns.
CICS uses the SIOCSAPPLDATA IOCTL socket function to associate this information with the z/0OS
Communications Server TCP/IP socket. You can use this information to correlate TCP/IP connections with
the CICS regions and transactions using them.

In CICS, you can obtain the ApplData information using the CECI INQUIRE ASSOCIATION transaction,
CICSPlex SM displays, and SMF records. In TCP/IP, the ApplData information is available on the Netstat
ALL/-A, ALLConn/-a, and COnn/-c reports, and can be searched with the APPLD/-G filter. See z/0S
Communications Server: IP System Administrator's Commands for additional information about using
ApplData with Netstat. The ApplData information is available in the SMF 119 TCP Connection Termination
record. See z/OS Communications Server: IP Configuration Reference for additional information. The
ApplData information is also available through the Network Management Interface. See z/0OS
Communications Server: IP Programmer's Guide and Reference for more information.

The XAPADMGR global user exit

The exit program is called, if enabled, at the attach of nonsystem tasks for which no input Origin
Descriptor Record is provided.

For further information about the XAPADMGR exit, see Application association data exit in the AP domain
(XAPADMGR).

CICS provides a sample global user exit program, DFH$APAD, for use at the XAPADMGR exit point. For
more information about DFH$APAD, see Application associated data sample exit program: DFH$APAD.

Using CICSPlex SM to analyze TCP/IP traffic

As noted in “The XAPADMGR global user exit” on page 168, user correlation information added to the
associated data origin descriptor of a task, at the point of origin of the distributed transaction, can be used
as search keys for later processing carried out through CICSPlex SM.

A search key (or "filter string") can contain the following wildcard characters:
?
Matches exactly one arbitrary character

Matches zero or more arbitrary characters

A filter string with no wildcards must be an exact match to the entire correlator. Therefore, a filter string
that is a substring of the correlator must contain at least one wildcard character to match any user
correlator string. For example, to find a substring that might be anywhere in the data, add both a leading
and a trailing "*' to your filter string.

The CICSPlex SM TASKASSC resource table provides information about the tasks that make up a
distributed transaction. You can filter the records using a substring of the user correlation data added, by
a CICS XAPADMGR global user exit program, to the user data section of the associated data origin
descriptor of the task.

For more information, see Task association information - TASKASSC.

168 CICS TS for z/OS: Intercommunication Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_inquiretask.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-spi/dfha8_performstatistics.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halu101/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halu101/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halx001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halx001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3_xapadmgr_exit.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/user-exits/dfha3_xapadmgr_exit.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfha3_xapadmgr_sample.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/cpsm-ops-views/topics/eyua3_taskassc.html

Using CICS monitoring to analyze TCP/IP traffic

Fields 360 - 372 in the performance class monitoring records in group DFHCICS relate to TCP/IP. See
DFHCICS group.

Managing APPC connections

You can use the master terminal transaction, CEMT, to manage APPC connections. It shows how the
action of the CEMT commands is affected by the way the connections have been defined to CICS.

The commands are described under the headings:

« Acquiring the connection

« Controlling and monitoring sessions on the connection
« Releasing the connection.

The commands used to achieve these actions are:

« CEMT SET CONNECTION ACQUIRED|RELEASED

« CEMT SET MODENAME AVAILABLE|ACQUIRED|CLOSED

Tip: In CICS Explorer, the ISC/MRO Connections view provides a functional equivalent to the SET
CONNECTION command. See ISC/MRO Connections view in the CICS Explorer product documentation.

Detailed formats and options of CEMT commands are given in CEMT SET CONNECTION.

The information is mainly about parallel-sessions connections between CICS regions.

General information about managing APPC links
The operator commands controlling APPC connections cause CICS to execute many internal processes,
some of which involve communication with the partner systems.

The major features of these processes are described on the following pages but you should note that the
processes are sometimes independent of one another and can be asynchronous. This makes simple
descriptions of them imprecise in some respects. The execution can occasionally be further modified by
independent events occurring in the network, or simultaneous operator activity at both ends of an APPC
connection; these circumstances are more likely when a component of the network has failed and
recovery is in progress. The following sections explain the normal operation of the commands.

Note: The principles of operation described in these sections also apply to the EXEC CICS INQUIRE
CONNECTION, INQUIRE MODENAME, SET CONNECTION, and SET MODENAME commands.

Acquiring a connection
The SET CONNECTION ACQUIRED command causes CICS to establish a connection with a partner
system.

The major processes involved in this operation are:
« Establishing of the two LU services manager sessions in the modegroup SNASVCMG.
« Initiating of the change-number-of-sessions (CNOS) process by the partner initiating the connection.

CNOS negotiation is executed (using one of the LU services manager sessions) to determine the
numbers of contention-winner and contention-loser sessions defined in the connection. The results of
the negotiation are re