
REXX for CICS Transaction Server
Version 1 Release 1

User Guide and Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
483.

This edition applies to the REXX Development System for CICS®, Version 1 Release 1, program number 5655-086 and to
the REXX Runtime Facility for CICS, Version 1 Release 1, program number 5655-087 and to all subsequent releases and
modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this PDF..xiii

Part 1. Developing REXX applications.. 1

Chapter 1. Features and components of REXX... 3

Chapter 2. Writing and running a REXX application..5
Syntax of REXX instructions... 5

Format of REXX instructions...6
Letter case of REXX instructions.. 6
Types of REXX clauses..8

Programs using double-byte character set names... 10
Typing in a program..11

Running a program..11
Interpreting error messages.. 12
Preventing translation to uppercase..13
Passing information to a program..14

Getting information from the program stack or terminal input device... 14
Specifying values when calling a program... 15
Preventing translation of input to uppercase...16
Exercises: using the ARG instruction... 16

Passing arguments... 17

Chapter 3. Processing variable data by using variables and expressions..19
Variables... 19
Expressions.. 21

Arithmetic operators...21
Comparison operators.. 24
Logical (Boolean) operators... 27
Concatenation operators.. 28
Priority of operators..29

Chapter 4. Controlling the flow within a program...33
Conditional instructions... 33

IF…THEN…ELSE instructions..33
Nested IF…THEN…ELSE instructions...35
SELECT WHEN…OTHERWISE…END instructions.. 38

Looping instructions...41
Repetitive loops.. 41
Conditional loops.. 44
Compound loops...48

Interrupt instructions...50
EXIT instructions.. 50
CALL and RETURN instructions.. 51
SIGNAL instructions... 54

Chapter 5. Functions..57
Built-In functions... 58
Subroutines and functions... 62

Writing subroutines and functions... 64

 iii

Choosing to use internal or external subroutines or functions... 71
Passing information.. 71
Receiving information from a subroutine or function.. 78

Chapter 6. Manipulating Data..81
Using Compound Variables and Stems..81

What Is a Compound Variable?.. 81
Using stems...82
Exercises - Using Compound Variables and Stems... 82

Parsing data..83
Parsing Instructions..83
More about parsing into words...85
Parsing with patterns..86
Parsing multiple strings as arguments...88

Chapter 7. Using commands from a program... 91
Using quotation marks in commands.. 91
Using variables in commands.. 91
Calling another REXX program as a command..92
Issuing commands from a program...92

How is a command passed to the host environment?...93
Changing the host command environment.. 93

Chapter 8. Diagnosing problems in a program... 95
Tracing expressions with the TRACE instruction.. 95
Tracing commands with the TRACE instruction.. 97
Using REXX special variables RC and SIGL... 97
Tracing with the interactive debug facility.. 98
Saving Interactive TRACE Output.. 99

Chapter 9. Using the REXX/CICS help utility.. 101

Chapter 10. Programming Style and Techniques... 103
Test yourself...104
Happy Hour.. 104
Designing a program.. 106

Methods for designing loops.. 106
The conclusion..106
What do we have so far?...106
Step-wise refinement: an example..107
Reconsider the Data... 108

Correcting your program..108
Modifying Your Program... 108
Tracing your program... 108

Coding style..109

Part 2. Configuring REXX... 113

Chapter 11. Configuring REXX support... 115
Create the RFS filepools...115
Create resource definitions..115
Review LSRPOOL definitions... 116
Update the CICSTART member... 116
Modify the CICS initialization JCL..117
Format the RFS filepools..118
Verify the installation... 119
Creating the help files.. 120

iv

Configure the REXX Db2 interface...120

Chapter 12. REXX/CICS system definition and administration..123
Authorized REXX/CICS commands and authorized command options... 123
System profile exec..123
Authorized MVS PDS REXX libraries.. 123
Defining authorized users.. 124
Setting system options.. 124
Defining a REXX file system (RFS) file pool... 124
Creating a PLT entry for CICSTART..124
Security exits..124

CICSECX1..124
CICSECX2..125

Chapter 13. Performance considerations...127

Chapter 14. Security..129
REXX/CICS supports multiple transaction identifiers...129
REXX/CICS file security..129
REXX/CICS command level security..129
REXX/CICS authorized command support.. 130
Security definitions.. 130

Part 3. REXX for CICS Transaction Server: Reference..133

Chapter 15. Overview of product features..135

Chapter 16. How to read the syntax diagrams... 139

Chapter 17. REXX General Concepts.. 141
Structure and General Syntax..141

Characters...142
Comments...142
Tokens...143
Implied Semicolons..146
Continuations..147

Expressions and Operators..147
Expressions...147
Operators.. 147
Parentheses and Operator Precedence...150

Clauses and instructions..152
Assignments and Symbols...153

Constant Symbols...154
Simple Symbols.. 154
Compound symbols..154
Stems.. 155

Commands to External Environments...156
Basic structure of REXX running under CICS.. 157
Support of Standard REXX Features..160
REXX command environment support.. 160
Support for standard CICS features.. 160
Interfaces to other programming languages...161

Chapter 18. Keyword instructions.. 163
ADDRESS.. 163
ARG...164
CALL..165

 v

DO... 168
DROP.. 172
EXIT.. 172
IF...173
INTERPRET...174
ITERATE... 175
LEAVE... 175
NOP...176
NUMERIC..176
OPTIONS.. 177
PARSE... 179
PROCEDURE... 181
PULL..182
PUSH...183
QUEUE.. 184
RETURN.. 184
SAY... 184
SELECT... 185
SIGNAL... 186
TRACE...187
UPPER...191

Chapter 19. Functions... 193
Syntax... 193
Functions and subroutines.. 193
Built-in Functions... 196

ABBREV (Abbreviation).. 196
ABS (Absolute Value)..197
ADDRESS...197
ARG (Argument)..197
BITAND (Bit by Bit AND)...198
BITOR (Bit by Bit OR)..198
BITXOR (Bit by Bit Exclusive OR)... 199
B2X (Binary to Hexadecimal)... 199
CENTER/CENTRE.. 200
COMPARE..200
CONDITION.. 200
COPIES..201
C2D (Character to Decimal)..201
C2X (Character to Hexadecimal)..202
DATATYPE...202
DATE..203
DBCS (Double-Byte Character Set Functions)...204
DELSTR (Delete String)...205
DELWORD (Delete Word)..205
DIGITS.. 205
D2C (Decimal to Character)..206
D2X (Decimal to Hexadecimal).. 206
ERRORTEXT.. 207
EXTERNALS...207
FIND.. 207
FORM...207
FORMAT.. 208
FUZZ..209
INDEX..209
INSERT..209
JUSTIFY.. 210
LASTPOS (Last Position)...210

vi

LEFT.. 210
LENGTH...211
LINESIZE...211
MAX (Maximum)... 211
MIN (Minimum)...211
OVERLAY...212
POS (Position)... 212
QUEUED.. 213
RANDOM... 213
REVERSE... 213
RIGHT..214
SIGN..214
SOURCELINE...214
SPACE..215
STORAGE.. 215
STRIP.. 215
SUBSTR (Substring)..216
SUBWORD...216
SYMBOL.. 216
TIME..217
TRACE... 218
TRANSLATE...219
TRUNC (Truncate)...219
USERID..220
VALUE..220
VERIFY.. 221
WORD..221
WORDINDEX... 221
WORDLENGTH.. 222
WORDPOS (Word Position)...222
WORDS..222
XRANGE (Hexadecimal Range).. 223
X2B (Hexadecimal to Binary)... 223
X2C (Hexadecimal to Character)..223
X2D (Hexadecimal to Decimal).. 224

External Functions Provided in REXX/CICS...224
STORAGE.. 224
SYSSBA... 225

Chapter 20. Parsing... 227
Simple templates for parsing into words.. 227
Templates that contain string patterns...229
Templates that contain positional (numeric) patterns... 229
Parsing with variable patterns... 233
Using UPPER...233
Parsing instructions summary... 234
Parsing instructions examples...234
Advanced parsing information...235

Parsing multiple strings..236
Combining string and positional patterns: a special case...236
Parsing with DBCS characters..237
Details of steps in parsing.. 237

Chapter 21. Numbers and arithmetic operations...241
Introduction: numbers...241
Definition of arithmetic facilities..242

Numbers... 242
Precision... 242

 vii

Arithmetic Operators..243
Arithmetic operation rules: basic operators.. 243
Arithmetic operation rules: additional operators.. 244
Numeric Comparisons.. 246
Exponential notation.. 246
Numeric information...248
Whole numbers...248
Numbers used directly by REXX...248
Errors...248

Chapter 22. Conditions and condition traps... 251
Action when a condition is not trapped...252
Action when a condition is trapped... 252
Condition information.. 254
Special variables.. 254

Chapter 23. REXX/CICS text editor...257
Command Line Commands..260

ARBCHAR..260
ARGS... 260
BACKWARD...261
BOTTOM..261
CANCEL... 262
CASE..262
CHANGE.. 263
CMDLINE...264
CTLCHAR...264
CURLINE... 265
DISPLAY..265
DOWN..266
EDIT.. 266
EXEC..267
FILE... 268
FIND.. 269
FORWARD... 270
GET..270
GETPDS... 271
INPUT..271
JOIN.. 272
LEFT.. 272
LINEADD... 273
LPREFIX.. 273
MACRO.. 273
MSGLINE...274
NULLS..275
NUMBERS... 275
PFKEY..276
PFKLINE..276
QQUIT... 277
QUERY...278
QUIT.. 279
RESERVED...279
RESET..280
RIGHT..280
SAVE..281
SORT... 281
SPLIT...282
STRIP.. 282

viii

SYNONYM... 283
TOP..283
TRUNC...283
UP..284

Chapter 24. REXX/CICS File System...285
File pools, directories, and files...285
Current directory and path...286
Security...287
RFS commands.. 287

AUTH... 287
CKDIR..288
CKFILE.. 288
COPY... 289
DELETE..289
DISKR..290
DISKW...290
GETDIR..291
MKDIR... 291
RDIR.. 291
RENAME.. 292

REXX/CICS File List Utility... 292
Invocation... 292
Macros under the REXX/CICS File List Utility.. 293
FLST Commands...293
FLST return codes...300
Running execs and transactions from FLST...300

Chapter 25. REXX/CICS List System...301
Directories and lists... 301
Current directory and path...302
Security...302
RLS commands...302

CKDIR..302
DELETE..303
LPULL.. 303
LPUSH... 304
LQUEUE...304
MKDIR... 305
READ... 305
VARDROP.. 306
VARGET... 306
VARPUT... 306
WRITE... 307

Chapter 26. REXX/CICS Command Definition.. 309
Background.. 309
Defining commands... 310
Command arguments passed to REXX programs... 310
Command arguments passed to assembler programs...310
CICPARMS control block..311
Non-REXX language interfaces..312
CICGETV: call to get, set, or drop a REXX variable..312

Chapter 27. REXX/CICS Db2 interface..315
Programming considerations...315
Embedding SQL statements.. 315

Receiving the results.. 317

 ix

Using the SQL communications area... 318
Example using SQL statements..318

Embedding Db2 commands...319
Receiving the results.. 320
Example using Db2 commands..321

Chapter 28. REXX/CICS high-level client/server support.. 323
High-level, natural, transparent REXX client interface... 323
Support for REXX-based application clients and servers... 323
Value of REXX in client/server computing...324
REXX/CICS client exec example..324
REXX/CICS server exec example...324

Chapter 29. REXX/CICS Panel Facility.. 327
Defining panels...328
Defining the field control characters with the .DEFINE verb.. 328
.DEFINE.. 329
Defining the actual PANEL layout with the .PANEL verb... 332
.PANEL.. 333
Panel generation and panel input/output... 334
PANEL RUNTIME.. 335

PANEL Variables... 339
Panel facility return code information..340
State codes and input codes.. 342
Location codes..345

Examples of sample panels... 346
Example of a REXX panel program.. 347

Chapter 30. REXX/CICS commands..353
ALLOC... 354
AUTHUSER... 354
CD... 355
CEDA...356
CEMT...357
CLD..371
CONVTMAP...372
COPYR2S.. 373
COPYS2R.. 375
C2S... 377
DEFCMD..378
DEFSCMD..380
DEFTRNID.. 382
DIR..383
EDIT..384
EXEC... 385
EXECDROP..386
EXECIO... 387
EXECLOAD.. 388
EXECMAP..389
EXPORT.. 390
FILEPOOL... 392
FLST.. 393
FREE... 394
GETVERS.. 394
HELP... 395
IMPORT.. 395
LISTCMD...397
LISTPOOL... 398

x

LISTTRNID..398
PATH... 399
PSEUDO.. 400
RFS..401
RLS..404
SCRNINFO.. 406
SET..407
SETSYS... 409
S2C... 411
TERMID...411
WAITREAD..412
WAITREQ..413

Chapter 31. Error numbers and messages... 415
CICREXnnn error messages...416

Chapter 32. Return Codes... 427
Panel facility return codes... 427
SQL return codes..427
Db2 return codes..427
RFS and FLST..428
EDITOR and EDIT...429
DIR..430
SET..430
CD... 430
PATH... 431
RLS..431
LISTCMD...432
CLD..432
DEFCMD..433
DEFSCMD..433
DEFTRNID.. 433
EXECDROP..434
EXECLOAD.. 434
EXECMAP..435
ALLOC and FREE...435
EXPORT and IMPORT...435
FILEPOOL... 436
GETVERS.. 437
COPYR2S.. 437
COPYS2R.. 438
LISTPOOL... 438
LISTTRNID..438
C2S... 438
PSEUDO.. 439
AUTHUSER... 439
SETSYS... 439
S2C... 440
TERMID...440
WAITREAD..440
WAITREQ..440
Non command-specific return codes.. 440
EXEC... 441
CEDA and CEMT... 441
EXECIO... 454
CONVTMAP...455
SCRNINFO.. 455
CICS.. 455

 xi

Chapter 33. Double-Byte Character Set (DBCS) Support...457
DBCS: general description... 457

Enabling DBCS data operations and symbol use...458
Symbols and strings... 458
Instructions and DBCS... 460

DBCS function handling... 461
Built-in Function Examples.. 462

DBCS Processing Functions... 466
DBADJUST.. 466
DBBRACKET..466
DBCENTER.. 467
DBCJUSTIFY... 467
DBLEFT..468
DBRIGHT...468
DBRLEFT... 468
DBRRIGHT.. 469
DBTODBCS..469
DBTOSBCS.. 469
DBUNBRACKET...470
DBVALIDATE... 470
DBWIDTH..470

Chapter 34. Reserved keywords and special variables..473
Reserved keywords..473
Special variables.. 473

Chapter 35. Debug aids... 475
Interactive debugging of programs... 475
Interrupting execution and controlling tracing... 476

Chapter 36. Basic mapping support example.. 477

Chapter 37. Bibliography...481

Notices..483

Index.. 487

xii

About this PDF

This PDF describes REXX/CICS or REXX for CICS Transaction Server. This IBM® program product provides
a native REXX-based application development, customization, prototyping, and procedures language
environment for REXX/CICS, along with associated runtime facilities.

REXX for CICS Transaction Server (REXX for CICS) is the new name for REXX for CICS/ESA:

• REXX Development System for CICS, Version 1 Release 1 is the new name for REXX Development
System for CICS/ESA, Version 1 Release 1.

• REXX Runtime Facility for CICS, Version 1 Release 1 is the new name for REXX Runtime Facility for
CICS/ESA, Version 1 Release 1.

The version, release, and product numbers are unchanged. All references in this documentation to REXX
for CICS include any earlier versions of this product that are supported for use with CICS and are still
called REXX for CICS/ESA.

Who this PDF is for

This PDF is for users who need to refer to REXX for CICS Transaction Server instructions and functions,
and for those who need to learn more details about REXX language items such as parsing. It is also
intended for anyone who wants to learn how to write REXX programs. The type of users include:
application programmers, system programmers, end users, administrators, developers, testers, and
support personnel.

Understanding this PDF

This PDF contains both user guide and reference material. The developing REXX applications and
configuring REXX support sections will help you become familiar with REXX for CICS Transaction Server.
The reference section contains the REXX instructions, functions, and commands. The instructions,
functions, and commands are listed alphabetically in their own sections. Also included are details about
general concepts you need to know in order to program in REXX.

The programming language described by this book is called the REstructured eXtended eXecutor
language (commonly referred to as REXX). This book also describes how the CICS Transaction Server
REXX language processor (shortened, hereafter, to the language processor) processes or interprets the
REstructured eXtended eXecutor language.

Date of this PDF

This PDF was created on February 28th 2019.

© Copyright IBM Corp. 1974, 2020 xiii

xiv REXX for CICS Transaction Server: User Guide and Reference

Part 1. Developing REXX applications
This section introduces REXX programs and their syntax, describes the steps involved in writing and
running REXX programs, and explains concepts you need to understand to avoid common problems.

A REXX program consists of REXX language instructions that the REXX interpreter interprets directly. A
program can also contain commands that the host environment executes, such as CICS commands (see
Chapter 7, “Using commands from a program,” on page 91).

© Copyright IBM Corp. 1974, 2020 1

2 REXX for CICS Transaction Server: User Guide and Reference

Chapter 1. Features and components of REXX
REXX is a versatile programming language. It can be mixed with commands to host environments, it
provides powerful functions, and it has extensive mathematical capabilities.

REXX programs can do many tasks under CICS. These include issuing EXEC CICS commands, SQL
statements, as well as commands to the CEDA (Resource Definition Online Transaction) and CEMT
(Master Terminal Transaction) utilities.

Features of REXX

Some of the features of REXX are as follows:

Ease of use

The REXX language is easy to read and write because many instructions are meaningful English
words. REXX instructions are common words, such as SAY, PULL, IF…THEN…ELSE…, DO…END, and
EXIT.

Free format

There are only a few rules about REXX format. You do not need to start an instruction in a particular
column. You can skip spaces in a line, or skip entire lines. You can have an instruction span of many
lines, or have multiple instructions on one line. You do not need to predefine variables. You can type
instructions in upper, lower, or mixed case. See Syntax of REXX instructions.

Built-in functions

REXX supplies built-in functions that perform various processing, searching, and comparison
operations for both text and numbers. Other built-in functions provide formatting capabilities and
arithmetic calculations.

Debugging capabilities

When a REXX program running in REXX/CICS encounters an error, REXX writes messages describing
the error. You can also use the REXX TRACE instruction and the interactive debug facility to locate
program errors.

Interpreted language

The REXX/CICS product includes the REXX/CICS interpreter. When a REXX program runs, the
interpreter processes each line directly. You do not need to compile or link-edit the program before
you can run it.

Extensive parsing capabilities

REXX includes extensive parsing capabilities for character manipulation, so you can set up a pattern
to separate characters, numbers, and mixed input.

Components of REXX
REXX is made up of the following components, which make it a powerful tool for programmers:
Clauses

Clauses can be instructions, null clauses, or labels. Instructions can be:

• Keyword instructions
• Assignments
• Commands (REXX/CICS and CICS commands and SQL).

The language processor processes keyword instructions and assignments.
Built-in functions

These functions are built into the language processor and provide convenient processing options.

© Copyright IBM Corp. 1974, 2020 3

External functions
REXX/CICS provides these functions that interact with the system to do specific tasks for REXX.

Data stack functions
A data stack can store data for I/O and other types of processing

Prerequisites

REXX/CICS runs under all supported releases of CICS Transaction Server. There are no other
prerequisites, other than those required by CICS TS.

Runtime facility

The REXX/CICS MVS™ Runtime Facility provides a runtime environment for REXX/CICS MVS execs, so that
you can run REXX/CICS execs on a CICS region that does not have the REXX/CICS MVS development
system installed.

This is especially useful if a company has multiple CICS regions, where only certain regions are available
for REXX-based development, but wants the ability to run those execs. You can also use the Runtime
Facility to run products that have a REXX prerequisite on other regions, without purchasing a license for
the full REXX/CICS MVS development system.

4 REXX for CICS Transaction Server: User Guide and Reference

Chapter 2. Writing and running a REXX application
One advantage of the REXX language is its similarity to ordinary English. This similarity makes it easy to
read and write a REXX program, as shown in the following examples.

Example of a simple program

To write a line of output, you use the REXX instruction SAY followed by the text you want written.

/* Sample REXX Program */
SAY 'Hello world!'

Figure 1. Example: Hello World program

This program starts with a comment line to identify it as a REXX program. A comment begins with /* and
ends with */.

When you run the program, the SAY instruction sends the following output to the terminal device:

Hello world!

Example of a longer program

Even in a longer program, the instructions are similar to ordinary English and are easy to understand. In
this example, you call the program ADDTWO, which adds two numbers.

1. From a CICS terminal, clear the screen and enter the following command:

REXX addtwo

2. Enter two numbers.

Here is the ADDTWO program. The comment in the program code assumes that the first number entered
is 42 and the second number is 21.

/**************************** REXX *********************************/
/* This program adds two numbers and produces their sum. */
/***/
say 'Enter first number.'
PULL number1 /* Assigns: number1=42 */
say 'Enter second number.'
PULL number2 /* Assigns: number2=21 */
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

Figure 2. Example: ADDTWO program

When you run the example program, the first PULL instruction assigns the variable number1 the value 42.
The second PULL instruction assigns the variable number2 the value 21. The next line contains an
assignment. The language processor adds the values in number1 and number2 and assigns the result, 63,
to sum . Finally, the SAY instruction displays the output line:

The sum of the two numbers is 63.

Syntax of REXX instructions
Some programming languages have rigid rules about how and where you enter characters on each line.
For example, assembler statements must begin in a certain column. REXX, on the other hand, has simple

© Copyright IBM Corp. 1974, 2020 5

syntax rules. You can use upper, or lower, or mixed case. REXX has no restrictions about the columns in
which you can type.

An instruction can begin in any column on any line. The following are all valid instructions.

SAY 'You can type in any column'
 SAY 'You can type in any column'
 SAY 'You can type in any column'

These instructions are sent to the terminal output device:

You can type in any column
You can type in any column
You can type in any column

Format of REXX instructions
The REXX language has free format. This means you can insert extra spaces between words.

For example, the following all mean the same:

total=num1+num2
total =num1+num2
total = num1+num2
total = num1 + num2

You can also insert blank lines throughout a program without causing an error.

Letter case of REXX instructions
You can enter a REXX instruction in lowercase, uppercase, or mixed case. The language processor
translates alphabetic characters to uppercase, unless you enclose them in single or double quotation
marks.

For example, SAY , Say , and say all have the same meaning.

Using quotation marks in an instruction

A series of characters within matching quotation marks is a literal string . The following examples contain
literal strings.

SAY 'This is a REXX literal string.' /* Using single quotation marks */

SAY "This is a REXX literal string." /* Using double quotation marks */

Do not enclose a literal string with one each of the two different types of quotation marks. For example,
the following is incorrect :

SAY 'This is a REXX literal string." /* Using mismatched quotation marks */

If you omit the quotation marks around a literal string in a SAY instruction, the language processor usually
translates the statement to uppercase. For example,

SAY This is a REXX string.

results in:

THIS IS A REXX STRING.

(This assumes none of the words is the name of a variable that you have already assigned a value. In
REXX, the default value of a variable is its own name in uppercase.)

If a string contains an apostrophe, you can enclose the literal string in double quotation marks.

SAY "This isn't difficult!"

6 REXX for CICS Transaction Server: User Guide and Reference

You can also use two single quotation marks in place of the apostrophe, because a pair of single quotation
marks is processed as one.

SAY 'This isn''t difficult!'

Either way, the outcome is the same.

This isn't difficult!

Ending an instruction

A line usually contains one instruction, except when it contains a semicolon (;) or ends with a comma (,).

The end of the line or a semicolon indicates the end of an instruction. If you put one instruction on a line,
the end of the line delineates the end of the instruction. If you put multiple instructions on one line, you
must separate adjacent instructions with a semicolon.

SAY 'Hi!'; say 'Hi again!'; say 'Hi for the last time!'

This example would result in three lines.

Hi!
Hi again!
Hi for the last time!

Continuing an instruction

A comma is the continuation character. It indicates that the instruction continues to the next line. The
comma, when used in this manner, also adds a space when the lines are concatenated. Here is how the
comma continuation character works when a literal string is being continued on the next line.

SAY 'This is an extended',
'REXX literal string.'

The comma at the end of the first line adds a space (between extended and REXX) when the two lines
are concatenated for output. A single line results:

This is an extended REXX literal string.

The following two instructions are identical and yield the same result:

SAY 'This is',
'a string.'

SAY 'This is' 'a string.'

The space between the two separate strings is preserved:

This is a string.

Continuing a literal string without adding a space

If you need to continue an instruction to a second or more lines, but do not want REXX to add spaces in
the line, use the concatenation operand (two single OR bars, ||).

SAY 'This is an extended literal string that is bro'||,
'ken in an awkward place.'

This example results in one line and no space in the word "broken":

This is an extended literal string that is broken in an
awkward place.

Chapter 2. Writing and running a REXX application 7

Also note that the following two instructions are identical and yield the same result:

SAY 'This is' ||,
'a string.'

SAY 'This is' || 'a string.'

These examples result in:

This isa string.

In both examples, the concatenation operator deletes spaces between the two strings.

The following example demonstrates the free format of REXX.

/************************* REXX *****************************/
SAY 'This is a REXX literal string.'
SAY 'This is a REXX literal string.'
 SAY 'This is a REXX literal string.'
SAY,
'This',
'is',
'a',
'REXX',
'literal',
'string.'

SAY'This is a REXX literal string.';SAY'This is a REXX literal string.'
SAY ' This is a REXX literal string.'

Figure 3. Example of free format

Running this example results in six lines of identical output, followed by one indented line.

This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
 This is a REXX literal string.

You can begin an instruction anywhere on a line, you can insert blank lines, and you can insert extra
spaces between words in an instruction. The language processor ignores blank lines, and it ignores
spaces that are greater than one. This flexibility of format lets you insert blank lines and spaces to make
programs easier to read.

Blanks and spaces are only significant during parsing. See “Parsing data” on page 83.

Types of REXX clauses
REXX clauses can be instructions, null clauses, and labels. Instructions can be keyword instructions,
assignments, or commands.

The following example shows a program with these types of clauses. A description of each type of clause
follows the example.

/* QUOTA REXX program. Two car dealerships are competing to */
/* sell the most cars in 30 days. Who will win? */

store_a=0; store_b=0
DO 30
 CALL sub
END
IF store_a>store_b THEN SAY "Store_a wins!"
 ELSE IF store_b>store_a THEN SAY "Store_b wins!"
 ELSE SAY "It's a tie!"
EXIT

sub:
store_a=store_a+RANDOM(0,20) /* RANDOM returns a random number in */

8 REXX for CICS Transaction Server: User Guide and Reference

store_b=store_b+RANDOM(0,20) /* in specified range, here 0 to 20 */
RETURN

Keyword instructions

A keyword instruction tells the language processor to do something. It begins with a REXX keyword that
identifies what the language processor is to do. For example, DO can group instructions and execute them
repetitively, and IF tests whether a condition is met. SAY writes to the current terminal output device.

IF, THEN and ELSE are three keywords that work together in one instruction. Each keyword forms a
clause, which is a subset of an instruction. If the expression that follows the IF keyword is true, the
instruction that follows the THEN keyword is processed. Otherwise, the instruction that follows the ELSE
keyword is processed. (Note that a semicolon is needed before the ELSE if you are putting an ELSE clause
on the same line with a THEN.) If you want to put more than one instruction after a THEN or ELSE, use a
DO before the group of instructions and an END after them. More information about the IF instruction
appears in “Conditional instructions” on page 33.

The EXIT keyword tells the language processor to end the program. Using EXIT in the preceding example
is necessary because, otherwise, the language processor would execute the code in the subroutine after
the label sub: . EXIT is not necessary in some programs (such as those without subroutines), but it is
good programming practice to include it. More about EXIT appears in “EXIT instructions” on page 50.

Assignment

An assignment gives a value to a variable or changes the current value of a variable. A simple assignment
instruction is:

number = 4

In the preceding program, a simple assignment instruction is: store_a=0. The left side of the assignment
(before the equal sign) contains the name of the variable to receive a value from the right side (after the
equal sign). The right side can be an actual value (such as 4) or an expression. An expression is
something that needs to be evaluated, such as an arithmetic expression. The expression can contain
numbers, variables, or both.

number = 4 + 4

number = number + 4

In the first example, the value of number is 8. If the second example directly followed the first in a
program, the value of number would become 12. More about expressions is in “Expressions” on page
21.

Label

A label, such as sub:, is a symbolic name followed by a colon. A label can contain either single- or
double-byte characters or a combination of single- and double-byte characters. (Double-byte characters
are valid only if OPTIONS ETMODE is the first instruction in your program.) A label identifies a portion of
the program and is commonly used in subroutines and functions, and with the SIGNAL instruction. (Note
that you need to include a RETURN instruction at the end of a subroutine to transfer control back to the
main program.) More about the use of labels appears in “Subroutines and functions” on page 62 and
“SIGNAL instructions” on page 54.

Null clause

A null clause consists of only blanks, or comments, or both. The language processor ignores null clauses,
but they make a program easier to read.
Comments

A comment begins with /* and ends with */ . Comments can be on one or more lines, or on part of a
line. You can put information in a comment that might not be obvious to a person reading the REXX
instructions. Comments at the beginning of a program can describe the overall purpose of the

Chapter 2. Writing and running a REXX application 9

program and, perhaps, list special considerations. A comment next to an individual instruction can
clarify its purpose.

Note: REXX/CICS does not require that a REXX program begins with a comment. However, for
portability reasons, you may want to start each REXX program with a comment that includes the word
REXX. Not every language processor requires this program identifier. However, to run the same exec
on MVS TSO and CICS, you should include the /* REXX */ program identifier to satisfy TSO
requirements.

Blank lines
Blank lines separate groups of instructions and aid readability. The more readable a program is, the
easier it is to understand and maintain.

Commands

A command is a clause consisting of only an expression. Commands are sent to a previously defined
environment for processing. (You should enclose in quotation marks any part of the expression not to be
evaluated.) The previous example program did not include any commands. The following example
includes a command in an ADDRESS instruction:

/* REXX program including a command */
ADDRESS REXXCICS 'DIR'

ADDRESS is a keyword instruction. When you specify an environment and a command on an ADDRESS
instruction, a single command is sent to the environment you specify. In this case, the environment is
REXXCICS. The command is the expression that follows the environment:

'DIR'

The DIR command lists the files in your current file system directory. For more details about changing the
host command environment, see “Changing the host command environment” on page 93. For more
information about issuing commands, see Chapter 7, “Using commands from a program,” on page 91.

Programs using double-byte character set names
You can use double-byte character set (DBCS) names in your REXX programs for literal strings, symbols,
and comments. Such character strings can be single-byte, double-byte, or a combination of both. To use
DBCS names, OPTIONS ETMODE must be the first instruction in the program. This specifies that the
language processor should check strings containing DBCS characters for validity.

You must enclose DBCS characters within shift-out (SO) and shift-in (SI) delimiters. (The SO character is
X'0E', and the SI character is X'0F'). The SO and SI characters are non-printable. In the following
example, the less than (<) and greater than (>) symbols represent shift-out (SO) and shift-in (SI),
respectively. For example, <.S.Y.M.D> and <.D.B.C.S.R.T.N> represent DBCS symbols in the following
example.

Example

The following is an example of a program using a DBCS variable name and a DBCS subroutine label.

/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */
<.S.Y.M.D> = 10 /* Variable with DBCS characters between */
 /* shift-out (<) and shift-in (>) */
y.<.S.Y.M.D> = JUNK
CALL <.D.B.C.S.R.T.N> /* Call subroutine with DBCS name */
EXIT
<.D.B.C.S.R.T.N>: /* Subroutine with DBCS name */
DO i = 1 TO 10
 IF y.i = JUNK THEN /* Does y.i match the DBCS variable's value? */
 SAY 'Value of the DBCS variable is : ' <.S.Y.M.D>
END
RETURN

10 REXX for CICS Transaction Server: User Guide and Reference

Typing in a program

About this task

When you type in the following program, use the REXX/CICS editor for files that reside in the REXX File
System (RFS). You can also use any editor that lets you save files in MVS partitioned data sets (PDS
member). This information assumes that you use the REXX/CICS editor.

The name of the program is HELLO EXEC (for now, assume that the file type is exec).

1. Sign on to a REXX for CICS terminal by entering CESN and supplying your user ID and password when
it is requested.

2. Clear the screen.
3. Type:

edit hello.exec

4. Type in the program, exactly as it is shown in Figure 4 on page 11, beginning with /* REXX HELLO
EXEC */. Then file it using the EDIT command:

====> file

Now your program is ready to run.

/* REXX HELLO EXEC */

/* A conversation */
say "Hello! What is your name?"
pull who
if who = "" then say "Hello stranger!"
else say "Hello" who

Figure 4. HELLO EXEC

Running a program

About this task

Clear the screen before running an exec. If you want to run a program that has a file type of EXEC, you
type in REXX followed by its file name. In this case, type rexx hello on the command line and press
Enter. Try it!

Suppose your name is Sam. Type sam and press Enter. Hello SAM is displayed.

rexx hello
Hello! What is your name?
sam
Hello SAM

Here is what happens:

1. The SAY instruction displays Hello! What is your name?
2. The PULL instruction pauses the program, waiting for a reply.
3. You type sam on the command line and then press Enter.
4. The PULL instruction puts the word SAM into the variable (the place in the computer's storage) called
who.

5. The IF instruction asks, Is who equal to nothing?

who = ""

Chapter 2. Writing and running a REXX application 11

This means, " is the value stored in who equal to nothing? " To find out, REXX substitutes that stored
value for the variable name. So the question now is: Is SAM equal to nothing?

"SAM" = ""

6. Not true. The instruction after then is not processed. Instead, REXX processes the instruction after
else.

7. The SAY instruction displays "Hello" who , which is evaluated as

Hello SAM

Now, here is what happens if you press Enter without typing a response first.

hello
Hello! What is your name?

Hello stranger!

Then again, maybe you did not understand that you had to type in your name. (Perhaps the program
should make your part clearer.) Anyhow, if you just press Enter instead of typing a name:

1. The PULL instruction puts "" (nothing) into the place in the computer's storage called who.
2. Again, the IF instruction tests the variable

who = ""

meaning: Is the value of who equal to nothing? When the value of who is substituted, this scans as:

"" = ""

And this time, it is true.
3. So the instruction after then is processed, and the instruction after else is not.

Interpreting error messages
When you run a program that contains an error, an error message often includes the line on which the
error occurred and gives an explanation of the error. Error messages can result from syntax errors and
from computational errors.

Example

The following program has a syntax error.

/************************** REXX **********************************/
/* This REXX program contains a deliberate error of not closing */
/* a comment. Without the error, it would pull input to produce */
/* a greeting. */
/**/

PULL who /* Get the person's name.
IF who = '' THEN
 SAY 'Hello, stranger'
ELSE
 SAY 'Hello,' who

Figure 5. Example of a program with a syntax error

When the program runs, the language processor sends the following lines of output.

 7 +++ PULL who /* Get the person's name.IF who =
'' THEN SAY 'Hello, stranger'ELSE SAY 'Hello,' who
CICREX453E Error 6 running HELLO EXEC, line 7: Unmatched "/*" or quote

12 REXX for CICS Transaction Server: User Guide and Reference

The program runs until the language processor detects the error, the missing */ at the end of the
comment. The PULL instruction does not use the data from the data stack or terminal because this line
contains the syntax error. The program ends, and the language processor sends the error messages.

The first error message begins with the line number of the statement where the language processor
detected the error. Three pluses (+++) and the contents of the statement follow this.

 7 +++ PULL who /* Get the person's name.IF who =
'' THEN SAY 'Hello, stranger'ELSE SAY 'Hello,' who

The second error message begins with the message number. A message containing the program name,
the line where the language processor found the error, and an explanation of the error follow this.

CICREX453E Error 6 running HELLO EXEC, line 7: Unmatched
"/*" or quote

To fix the syntax error in this program , add */ to the end of the comment on line 7.

PULL who /* Get the person's name. */

Preventing translation to uppercase
The language processor generally translates alphabetic characters to uppercase before processing them.
You can prevent the translation to uppercase.

Characters in a program

To prevent translation of alphabetic characters in a program to uppercase, simply enclose the characters
in single or double quotation marks. The language processor does not change numbers and special
characters, regardless of whether they are in quotation marks. If you use a SAY instruction with a phrase
containing a mixture of alphabetic characters, numbers, and special characters, the language processor
changes only the alphabetic characters.

SAY The bill for lunch comes to $123.51!

results in:

THE BILL FOR LUNCH COMES TO $123.51!

This example assumes none of the words are the names of variables that have been assigned other
values.

Quotation marks ensure that information in a program is processed exactly as typed. This is important in
the following situations:

• For output that must be lowercase or a mixture of uppercase and lowercase.
• To ensure that commands are processed correctly. For example, if a variable name in a program is the

same as a command name, the program can end in error when the command is issued. It is a good
programming practice to avoid using variable names that are the same as commands and to enclose all
commands in quotation marks.

Characters input to a program

When reading input or passing input from another program, the language processor also changes
alphabetic characters to uppercase before processing them. To prevent translation to uppercase, use the
PARSE instruction.

Chapter 2. Writing and running a REXX application 13

For example, the following program reads input from the terminal and sends this information to the
terminal output device.

/************************** REXX ***********************************/
/* This REXX program gets the name of an animal from the input */
/* stream and sends it to the terminal. */
/***/

PULL animal /* Get the animal name.*/
SAY animal

If the input is tyrannosaurus, the language processor produces the output:

TYRANNOSAURUS

To cause the language processor to read input exactly as it is presented, use the PARSE PULL instruction
instead of the PULL instruction.

PARSE PULL animal

Now if the input is TyRannOsauRus, the output is:

TyRannOsauRus

Exercises - running and modifying the example programs

You can write and run the preceding example. Now change the PULL instruction to a PARSE PULL
instruction and note the difference.

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Passing information to a program
When a program runs, you can pass information to it in several ways.

About this task

• You can use PULL to get information from the program stack or terminal input device and pass it to a
program.

• You can specify input when calling the program.

Getting information from the program stack or terminal input device
The PULL instruction is one way for a program to receive input.

About this task

The PULL instruction can extract more than one value at a time from the terminal by separating a line of
input.

Example

The following ADDTWO program uses PULL to receive two input numbers:

14 REXX for CICS Transaction Server: User Guide and Reference

/**************************** REXX ******************************/
/* This program adds two numbers and produces their sum. */
/**/
PULL number1
PULL number2
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

Figure 6. Example of a program that uses PULL

The following variation of the example shows how to use the PULL instruction, by separating a line of
input, to extract more than one value at a time from the terminal.

/**************************** REXX ******************************/
/* This program adds two numbers and says their sum */
/**/
PULL number1 number2
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

Figure 7. Variation of an example that uses PULL

To call the program, issue the following command from the CICS terminal:

REXX addtwo 42 21

The PULL instruction extracts the numbers 42 and 21 from the terminal.

Specifying values when calling a program
Another way for a program to receive input is through values you specify when you call the program.

For example, to pass the two numbers 42 and 21 to a program named ADD, you could use the CICS
command:

REXX add 42 21

The ADD program uses the ARG instruction to assign the input to variables as shown in the following
example.

/**************************** REXX ******************************/
/* This program receives two numbers as input, adds them, and */
/* produces their sum. */
/**/
ARG number1 number2
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

Figure 8. Example of a program that uses the ARG instruction

ARG assigns the first number, 42, to number1, and the second number, 21, to number2.

If the number of values is fewer or more than the number of variable names after ARG or PULL, errors can
occur, as the following sections describe.

Specifying too few values

If you specify fewer values than the number of variables after PULL or ARG, the extra variables are set to
the null string. Here is an example in which you pass only one number to the program:

REXX add 42

The language processor assigns the value 42 to number1, the first variable following ARG. It assigns the
null string to number2, the second variable. In this situation, the program ends with an error when it tries
to add the two variables. In other situations, the program might not end in error.

Chapter 2. Writing and running a REXX application 15

Specifying too many values

When you specify more values than the number of variables following PULL or ARG, the last variable gets
the remaining values. For example, you pass three numbers to the program ADD:

REXX add 42 21 10

The language processor assigns the value 42 to number1, the first variable following ARG. It assigns the
value 21 10 to number2, the second variable. In this situation, the program ends with an error when it
tries to add the two variables. In other situations, the program might not end in error.

To prevent the last variable from getting the remaining values, use a period (.) at the end of the PULL or
ARG instruction.

ARG number1 number2 .

The period acts as a dummy variable to collect unwanted extra information. In this case, number1
receives 42, number2 receives 21, and the period ensures the 10 is discarded. If there is no extra
information, the period is ignored. You can also use a period as a placeholder within the PULL or ARG
instruction, as follows:

ARG . number1 number2

In this case, the first value, 42, is discarded and number1 and number2 get the next two values, 21 and
10.

Preventing translation of input to uppercase
Like the PULL instruction, the ARG instruction changes alphabetic characters to uppercase. To prevent
translation to uppercase, use PARSE ARG.

Example

This example shows how to use PARSE ARG to prevent translation to uppercase.

/**************************** REXX ********************************/
/* This program receives the last name, first name, and score of */
/* a student and reports the name and score. */
/**/
PARSE ARG lastname firstname score
SAY firstname lastname 'received a score of' score'.'

Figure 9. Example of a program that uses PARSE ARG

Exercises: using the ARG instruction

About this task

The left column shows the input values sent to a program. The right column is the ARG instruction within
the program that receives the input. What value does each variable receive?

Input Variables Receiving Input

1 115 -23 66 5.8 ARG first second third

2 .2 0 569 2E6 ARG first second third fourth

3 13 13 13 13 ARG first second third fourth fifth

4 Weber Joe 91 ARG lastname firstname score

5 Baker Amanda Marie 95 PARSE ARG lastname firstname score

6 Callahan Eunice 88 62 PARSE ARG lastname firstname score .

16 REXX for CICS Transaction Server: User Guide and Reference

ANSWERS

1. first = 115, second = -23, third = 66 5.8
2. first = .2, second = 0, third = 569, fourth = 2E6
3. first = 13, second = 13, third = 13, fourth = 13, fifth = null
4. lastname = WEBER, firstname = JOE, score = 91
5. lastname = Baker, firstname = Amanda, score = Marie 95
6. lastname = Callahan, firstname = Eunice, score = 88

Passing arguments
Values passed to a program are usually called arguments. An argument can consist of one word, or a
string of words. Blanks separate words within an argument from each other. The number of arguments
passed depends on how the program is called.

About this task

When you call a REXX program using either the CALL instruction or a REXX function call, you can pass up
to 20 arguments to the program. Separate each argument from the next with a comma.

For more information about functions and subroutines, see “Subroutines and functions” on page 62. For
more information about arguments, see “Parsing multiple strings as arguments” on page 88.

Chapter 2. Writing and running a REXX application 17

18 REXX for CICS Transaction Server: User Guide and Reference

Chapter 3. Processing variable data by using
variables and expressions

One of the most powerful aspects of computer programming is the ability to process variable data to
achieve a result.

About this task

Regardless of the complexity of a process, when data is unknown or varies, you substitute a symbol for
the data. The symbol, when its value can vary, is called a variable. A group of symbols or numbers that
must be calculated to be resolved is called an expression.

Variables
A variable is a character or group of characters representing a value. A variable can contain single- or
double-byte characters, or both.

Double-byte characters are valid only if OPTIONS ETMODE is the first instruction of your program. The
following variable big represents the value one million or 1,000,000.

big = 1000000

Variables can refer to different values at different times. If you assign a different value to big, it gets the
value of the new assignment, until it is changed again.

big = 999999999

Variables can also represent a value that is unknown when the program is written. In the following
example, the user's name is unknown, so it is represented by the variable who.

 /* Gets name from current input stream */
PARSE PULL who /* and puts it in variable "who" */

Variable names

A variable name, the part that represents the value, is always on the left of the assignment statement and
the value itself is on the right.

In the following example, the variable name is variable1.

variable1 = 5
SAY variable1

As a result of the earlier assignment statement, the language processor assigns variable1 the value 5 ,
and the SAY produces:

5

Variable names can consist of: the following characters:
A - Z

uppercase alphabetic
a - z

lowercase alphabetic
0 - 9

numbers

© Copyright IBM Corp. 1974, 2020 19

? ! . _
special characters

X'41' - X'FE'
double-byte character set (DBCS) characters

Note: Double-byte characters are valid only if OPTIONS ETMODE is the first instruction of your
program.

The following restrictions apply to variable names:

• The first character cannot be 0 through 9 or a period (.)
• The variable name cannot exceed 250 bytes. For names containing DBCS characters, count each DBCS

character as 2 bytes, and count the shift-out (SO) and shift-in (SI) as 1 byte each.
• SO (X'0E') and SI (X'0F') must delimit DBCS characters within a DBCS name. Also:

– SO and SI cannot be contiguous.
– Nesting of SO / SI is not permitted.
– A DBCS name cannot contain a DBCS blank (X'4040').

• The variable name should not be RC, SIGL, or RESULT, which are REXX special variables. See Special
variables.

The following names are examples of acceptable variable names:

ANSWER ?98B A Word3 number the_ultimate_value

Also, if OPTIONS ETMODE is the first instruction in your program, the following are valid DBCS variable
names, where < represents shift-out, > represents shift-in, X, Y , and Z represent DBCS characters, and
lowercase letters and numbers represent themselves.

<.X.Y.Z> number_<.X.Y.Z> <.X.Y>1234<.Z>

Variable values

The value of the variable, which is the value the variable name represents, might be categorized as
follows:

• A constant , which is a number that is expressed as:

An integer (12)
A decimal (12.5)
A floating point number (1.25E2)
A signed number (-12)
A string constant (' 12')

• A string , which is one or more words that may or may not be within quotation marks, such as:

This value can be a string.
'This value is a literal string.'

• The value from another variable , such as:

variable1 = variable2

In the preceding example, variable1 changes to the value of variable2 , but variable2 remains the same.

• An expression , which is something that needs to be calculated, such as:

variable2 = 12 + 12 - .6 /* variable2 becomes 23.4 */

20 REXX for CICS Transaction Server: User Guide and Reference

Before a variable is assigned a value, its value is the value of its own name translated to uppercase. For
example, if the variable new has not been assigned a value, then

SAY new

produces

NEW

Exercises: identifying valid variable names

Which of the following are valid REXX variable names?

1. 8eight
2. $25.00
3. MixedCase
4. nine_to_five
5. result

ANSWERS

1. Incorrect, because the first character is a number.
2. Incorrect, because the first character is a currency symbol ($).
3. Valid
4. Valid
5. Valid, but it is a special variable name that you should use only to receive results from a subroutine.

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Expressions
An expression is something that needs to be evaluated and consists of numbers, variables, or strings, and
zero or more operators. The operators determine the kind of evaluation to do on the numbers, variables,
and strings. There are four types of operators: arithmetic, comparison, logical, and concatenation.

Arithmetic operators
Arithmetic operators work on valid numeric constants or on variables that represent valid numeric
constants.

Types of numeric constants
12

A whole number has no decimal point or commas. Results of arithmetic operations with whole
numbers can contain a maximum of nine digits unless you override this default by using the NUMERIC
DIGITS instruction. For information about the NUMERIC DIGITS instruction, see NUMERIC. Examples
of whole numbers are:

123456789 0 91221 999

12.5
A decimal number includes a decimal point. Results of arithmetic operations with decimal numbers
are limited to a total maximum of nine digits (NUMERIC DIGITS default) before and after the decimal.
Examples of decimal numbers are:

123456.789 0.888888888

Chapter 3. Processing variable data by using variables and expressions 21

1.25E2
A floating point number in exponential notation, is said to be in scientific notation. The number after
the E represents the number of places the decimal point moves. Thus 1.25E2 (also written as 1.25E
+2) moves the decimal point to the right two places and results in 125. When an E is followed by a
minus (-), the decimal point moves to the left. For example, 1.25E-2 is .0125.

You can use floating point numbers to represent very large or very small numbers. For more
information about scientific notation (floating point numbers), see Exponential notation.

-12
A signed number with a minus (-) next to the number represents a negative value. A signed number
with a plus (+) next to the number represents a positive value. When a number has no sign, it is
processed as if it has a positive value.

Arithmetic operators
Operator

Meaning
+

Add
-

Subtract
*

Multiply
/

Divide
%

Divide and return a whole number without a remainder
//

Divide and return the remainder only
**

Raise a number to a whole number power
- number

(Prefix -) Same as the subtraction 0 - number
+number

(Prefix +) Same as the addition 0 + number

Using numeric constants and arithmetic operators, you can write arithmetic expressions such as:

7 + 2 /* result is 9 */
7 - 2 /* result is 5 */
7 * 2 /* result is 14 */
7 ** 2 /* result is 49 */
7 ** 2.5 /* result is an error */

Division

Notice that three operators represent division. Each operator computes the result of a division expression
in a different way.
/

Divide and express the answer possibly as a decimal number. For example:

7 / 2 /* result is 3.5 */
6 / 2 /* result is 3 */

%
Divide and express the answer as a whole number. The remainder is ignored. For example:

22 REXX for CICS Transaction Server: User Guide and Reference

7 % 2 /* result is 3 */

//
Divide and express the answer as the remainder only. For example:

7 // 2 /* result is 1 */

Order of evaluation

When you have more than one operator in an arithmetic expression, the order of numbers and operators
can be critical. For example, in the following expression, which operation does the language processor
perform first?

7 + 2 * (9 / 3) - 1

Proceeding from left to right, the language processor evaluates the expression as follows:

• First it evaluates expressions within parentheses.
• Then it evaluates expressions with operators of higher priority before expressions with operators of

lower priority.

Arithmetic operator priority is as follows, with the highest first:

Table 1. Arithmetic Operator Priority

Operator symbol Operator description

- + Prefix operators

** Power (exponential)

* / % // Multiplication and division

+ - Addition and subtraction

Thus, the preceding example would be evaluated in the following order:

1. Expression in parentheses

7 + 2 * (9 / 3) - 1
 ___/
 3

2. Multiplication

7 + 2 * 3 - 1
 ___/
 6

3. Addition and subtraction from left to right

 7 + 6 - 1 = 12

Using arithmetic expressions

You can use arithmetic expressions in a program many different ways. The following example uses
several arithmetic operators to round and remove extra decimal places from a dollar and cents value.

Chapter 3. Processing variable data by using variables and expressions 23

/****************************** REXX *********************************/
/* This program computes the total price of an item including sales */
/* tax, rounded to two decimal places. The cost and percent of the */
/* tax (expressed as a decimal number) are passed to the program */
/* when you run it. */
/***/

PARSE ARG cost percent_tax

total = cost + (cost * percent_tax) /* Add tax to cost. */
price = ((total * 100 + .5) % 1) / 100 /* Round and remove extra */
 /* decimal places. */
SAY 'Your total cost is $'price'.'

Figure 10. Example Using Arithmetic Expressions

Exercises: calculating arithmetic expressions
What line of output does the following program produce?

/****************************** REXX ******************************/
pa = 1
ma = 1
kids = 3
SAY "There are" pa + ma + kids "people in this family."

What is the value of:

1. 6 - 4 + 1
2. 6 - (4 + 1)
3. 6 * 4 + 2
4. 6 * (4 + 2)
5. 24 % 5 / 2

ANSWERS

1. There are 5 people in this family.
2. The values are as follows:

a. 3
b. 1
c. 26
d. 36
e. 2

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Comparison operators
Comparison operators can compare numbers or strings and perform evaluations. Expressions that use
comparison operators do not return a number value as do arithmetic expressions. Comparison
expressions return either 1, which represents true, or 0, which represents false.

These are typical comparisons:

Are the terms equal? (A = Z)
Is the first term greater than the second? (A > Z)
Is the first term less than the second? (A < Z)

For example, if A = 4 and Z = 3, then the results of the previous comparison questions are:

24 REXX for CICS Transaction Server: User Guide and Reference

• (A = Z) Does 4 = 3? 0 (False)
• (A > Z) Is 4 > 3? 1 (True)
• (A < Z) Is 4 < 3? 0 (False)

Commonly used comparison operators

Operator
Meaning

=
Equal

==
Strictly Equal

\ =
Not equal

\ ==
Not strictly equal

>
Greater than

<
Less than

> <
Greater than or less than (same as not equal)

> =
Greater than or equal to

\ <
Not less than

< =
Less than or equal to

\ >
Not greater than

Note: The NOT character (¬) is synonymous with the backslash (\). You can use the two characters
interchangeably according to availability and personal preference. This information uses the backslash
(\) character.

The strictly equal and equal operators

When two expressions are strictly equal, everything including the blanks and case (when the expressions
are characters) is exactly the same.

When two expressions are equal, they are resolved to be the same. The following expressions are all true.

'WORD' = word /* returns 1 */
'word ' \== word /* returns 1 */
'word' == 'word' /* returns 1 */
4e2 \== 400 /* returns 1 */
4e2 \= 100 /* returns 1 */

Using comparison expressions

You often use a comparison expression in an IF...THEN...ELSE instruction. The following example uses an
IF...THEN...ELSE instruction to compare two values. For more information about this instruction, see “IF…
THEN…ELSE instructions” on page 33.

Chapter 3. Processing variable data by using variables and expressions 25

/****************************** REXX *********************************/
/* This program compares what you paid for lunch for two */
/* days in a row and then comments on the comparison. */
/***/

PARSE PULL yesterday /* Gets yesterday's price from input stream */
PARSE PULL today /* Gets today's price */
IF today > yesterday THEN /* lunch cost increased */
 SAY "Today's lunch cost more than yesterday's."
ELSE /* lunch cost remained the same or decreased */
 SAY "Today's lunch cost the same or less than yesterday's."

Figure 11. Example Using a Comparison Expression

Exercises: using comparison expressions
Based on the preceding example of using a comparison expression, what result does the language
processor produce from the following lunch costs?

Yesterday's Lunch
Today's Lunch

4.42
3.75

3.50
3.50

3.75
4.42

What is the result (0 or 1) of the following expressions?

1. "Apples" = "Oranges"
2. "Apples" = "Apples"
3. " Apples" == "Apples"
4. 100 = 1E2
5. 100 \= 1E2
6. 100 \== 1E2

ANSWERS

1. The language processor produces the following sentences:

a. Today's lunch cost the same or less than yesterday's.
b. Today's lunch cost the same or less than yesterday's.
c. Today's lunch cost more than yesterday's.

2. The expressions result in the following. Remember 0 is false and 1 is true.

a. 0
b. 1
c. 0 (The first " Apples" has a space.)
d. 1
e. 0
f. 1

26 REXX for CICS Transaction Server: User Guide and Reference

Logical (Boolean) operators
Logical expressions, like comparison expressions, return 1 (true) or 0 (false) when processed. Logical
operators combine two comparisons and return 1 or 0 depending on the results of the comparisons.

Logical operators

Operator
Meaning

&
AND

Returns 1 if both comparisons are true. For example:

(4 > 2) & (a = a) /* true, so result is 1 */

(2 > 4) & (a = a) /* false, so result is 0 */

|
Inclusive OR

Returns 1 if at least one comparison is true. For example:

(4 > 2) | (5 = 3) /* at least one is true, so result is 1 */

(2 > 4) | (5 = 3) /* neither one is true, so result is 0 */

&&
Exclusive OR

Returns 1 if only one comparison (but not both) is true. For example:

(4 > 2) && (5 = 3) /* only one is true, so result is 1 */

(4 > 2) && (5 = 5) /* both are true, so result is 0 */

(2 > 4) && (5 = 3) /* neither one is true, so result is 0
*/

Prefix \,¬
Logical NOT

Negates—returning the opposite response. For example:

\ 0 /* opposite of 0, so result is 1 */

\ (4 > 2) /* opposite of true, so result is 0 */

Using logical expressions

You can use logical expressions in complex conditional instructions and as checkpoints to screen
unwanted conditions. When you have a series of logical expressions, for clarification, use one or more
sets of parentheses to enclose each expression.

IF ((A < B) | (J < D)) & ((M = Q) | (M = D)) THEN

The following example uses logical operators to make a decision.

Chapter 3. Processing variable data by using variables and expressions 27

/****************************** REXX ********************************/
/* This program receives arguments for a complex logical expression */
/* that determines whether a person should go skiing. The first */
/* argument is a season and the other two can be 'yes' or 'no'. */
/**/

PARSE ARG season snowing broken_leg

IF ((season = 'WINTER') | (snowing ='YES')) & (broken_leg ='NO')
 THEN SAY 'Go skiing.'
ELSE
 SAY 'Stay home.'

Figure 12. Example Using Logical Expressions

When arguments passed to this example are SPRING YES NO , the IF clause translates as follows:

IF ((season = 'WINTER') | (snowing ='YES')) & (broken_leg ='NO') THEN
 ______________/ ____________/ _____________/
 false true true
 ___________________/ /
 true /
 _____________________________/
 true

As a result, when you run the program, it produces the result:

Go skiing.

Exercises: using logical expressions

A student applying to colleges has decided to evaluate them according to the following specifications:

IF (inexpensive | scholarship) & (reputable | nearby) THEN
 SAY "I'll consider it."
ELSE
 SAY "Forget it!"

A college is inexpensive, did not offer a scholarship, is reputable, but is more than 1000 miles away.
Should the student apply?

ANSWER

Yes. The conditional instruction works out as follows:

IF (inexpensive | scholarship) & (reputable | nearby) THEN ...
 __________/ ___________/ _________/ ______/
 true false true false
 ___________/ _________/
 true true
 _________________________/
 true

Concatenation operators
Concatenation operators combine two terms into one. The terms can be strings, variables, expressions, or
constants. Concatenation can be significant in formatting output.

The operators that indicate how to join two terms are as follows:
Operator

Meaning
blank

Concatenates terms and places one blank between them. If more than one blank separates terms,
this becomes a single blank. For example:

28 REXX for CICS Transaction Server: User Guide and Reference

SAY true blue /* result is TRUE BLUE */

||
Concatenates terms with no blanks between them. For example:

(8 / 2)||(3 * 3) /* result is 49 */

abuttal
Concatenates terms with no blanks between them. For example:

per_cent'%' /* if per_cent = 50, result
is 50% */

You can use abuttal only with terms that are of different types, such as a literal string and a symbol, or
when only a comment separates two terms.

Using concatenation operators

One way to format output is to use variables and concatenation operators as in the following example.

/****************************** REXX *********************************/
/* This program formats data into columns for output. */
/***/
sport = 'base'
equipment = 'ball'
column = ' '
cost = 5

SAY sport||equipment column '$'
cost

Figure 13. Example Using Concatenation Operators

The result of this example is:

baseball $5

A more sophisticated way to format information is with parsing and templates. See “Parsing data” on
page 83.

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Priority of operators
When more than one type of operator appears in an expression, the language processor follows an overall
priority that includes all operators.

The priority of operators is as follows with the highest first.

Table 2. Overall operator priority

Operator symbol Operator description

\ or ¬ - + Prefix operators

** Power (exponential)

* / % // Multiply and divide

+ - Add and subtract

blank || abuttal Concatenation operators

== = >< and so on Comparison operators

& Logical AND

Chapter 3. Processing variable data by using variables and expressions 29

Table 2. Overall operator priority (continued)

Operator symbol Operator description

| && Inclusive OR and exclusive OR

Example

The following expression contains more than one type of operator:

IF (A > 7**B) & (B < 3)

Given the following values

A = 8
B = 2
C = 10

the language processor would evaluate this example as follows:

1. Evaluate what is inside the first set of parentheses.

a. Evaluate A to 8.
b. Evaluate B to 2.
c. Evaluate 7**2.
d. Evaluate 8 > 49 is false (0).

2. Evaluate what is inside the next set of parentheses.

a. Evaluate B to 2.
b. Evaluate 2 < 3 is true (1).

3. Evaluate 0 & 1 is 0

Exercises: priority of operators

1. What are the answers to the following examples?

a. 22 + (12 * 1)
b. -6 / -2 > (45 % 7 / 2) - 1
c. 10 * 2 - (5 + 1) // 5 * 2 + 15 - 1

2. In the example of the student and the college from the previous exercise in “Logical (Boolean)
operators” on page 27, if the parentheses were removed from the student's formula, what would be
the outcome for the college?

IF inexpensive | scholarship & reputable | nearby THEN
 SAY "I'll consider it."
ELSE
 SAY "Forget it!"

Remember the college is inexpensive, did not offer a scholarship, is reputable, but is 1000 miles away.

ANSWERS

1. The results are as follows:

a. 34 (22 + 12 = 34)
b. 1 (true) (3 > 3 - 1)
c. 32 (20 - 2 + 15 - 1)

2. I'll consider it.

30 REXX for CICS Transaction Server: User Guide and Reference

The & operator has priority, as follows, but the outcome is the same as the previous version with the
parentheses.

IF inexpensive | scholarship & reputable | nearby THEN
 _________/ _________/ _______/ ____/
 true false true false
 \ ___________/ /
 \ false /
 _________________/ /
 true /
 ____________________/
 true

Chapter 3. Processing variable data by using variables and expressions 31

32 REXX for CICS Transaction Server: User Guide and Reference

Chapter 4. Controlling the flow within a program
Generally, when a program runs, one instruction after another executes, starting with the first and ending
with the last. The language processor, unless told otherwise, executes instructions sequentially. You can
change the order of execution within a program by using REXX instructions that cause the language
processor to skip some instructions, repeat others, or transfer control to another part of the program.

About this task

The REXX instructions that alter the sequential execution of a REXX program can be classified as follows:

Conditional instructions
Conditional instructions set up at least one condition in the form of an expression. If the condition is
true, the language processor selects the path following that condition. Otherwise the language
processor selects another path. The REXX conditional instructions are:

IF expression THEN…ELSE
SELECT WHEN expression …OTHERWISE…END

Looping instructions
Looping instructions tell the language processor to repeat a set of instructions. A loop can repeat a
specified number of times or it can use a condition to control repeating. REXX looping instructions are:

DO repetitor …END
DO WHILE expression …END
DO UNTIL expression …END

Interrupt instructions
Interrupt instructions tell the language processor to leave the program entirely or leave one part of
the program and go to another part, either permanently or temporarily. The REXX interrupt
instructions are:

EXIT
SIGNAL label
CALL label …RETURN

Conditional instructions
There are two types of conditional instructions.

• IF…THEN…ELSE can direct the execution of a program to one of two options.
• SELECT WHEN…OTHERWISE…END can direct the execution to one of many options.

IF…THEN…ELSE instructions
Code examples help you learn how to specify IF…THEN…ELSE instructions.

The following flowchart illustrates IF…THEN…ELSE instructions.

© Copyright IBM Corp. 1974, 2020 33

THEN

instruction

expression
True

ELSE

instruction

False

As a REXX instruction, the code looks like:

34 REXX for CICS Transaction Server: User Guide and Reference

IF expression THEN instruction
 ELSE instruction

You can also arrange the clauses in one of the following ways to enhance readability:

IF expression THEN
 instruction
ELSE
 instruction

or

IF expression
 THEN
 instruction
 ELSE
 instruction

When you put the entire instruction on one line, you must use a semicolon before the ELSE to separate
the THEN clause from the ELSE clause.

IF expression THEN instruction; ELSE instruction

Generally, at least one instruction should follow the THEN and ELSE clauses. When either clause has no
instructions, it is good programming practice to include NOP (no operation) next to the clause.

IF expression THEN
 instruction
ELSE NOP

If you have more than one instruction for a condition, begin the set of instructions with a DO and end
them with an END.

IF weather = rainy THEN
 SAY 'Find a good book.'
ELSE
 DO
 PULL playgolf /* Gets data from input stream */
 If playgolf='YES' THEN SAY 'Fore!'
 END

Without the enclosing DO and END, the language processor assumes only one instruction for the ELSE
clause.

Nested IF…THEN…ELSE instructions
Code examples help you learn how to specify IF…THEN…ELSE instructions.

Sometimes it is necessary to have one or more IF…THEN…ELSE instructions within other IF…THEN…ELSE
instructions. Having one type of instruction within another is called nesting. With nested IF instructions, it
is important to match each IF with an ELSE and each DO with an END.

IF weather = fine THEN
 DO
 SAY 'What a lovely day!'
 IF tenniscourt = free THEN
 SAY 'Let''s play tennis!'
 ELSE NOP
 END
ELSE
 SAY 'We should take our raincoats!'

Not matching nested IFs to ELSEs and DOs to ENDs can have some surprising results. If you eliminate the
DOs and ENDs and the ELSE NOP, as in the following example, what is the outcome?

Chapter 4. Controlling the flow within a program 35

/******************************** REXX *******************************/
/* This program demonstrates what can happen when you do not include */
/* DOs, ENDs, and ELSEs in nested IF...THEN...ELSE instructions. */
/***/
weather = 'fine'
tenniscourt = 'occupied'

IF weather = 'fine' THEN
 SAY 'What a lovely day!'
 IF tenniscourt = 'free' THEN
 SAY 'Let''s play tennis!'
ELSE
 SAY 'We should take our raincoats!'

Figure 14. Example of Missing Instructions

Looking at the program, you might assume the ELSE belongs to the first IF. However, the language
processor associates an ELSE with the nearest unpaired IF. The outcome is as follows:

What a lovely day!
We should take our raincoats!

Exercise: using the IF…THEN…ELSE instruction

Write the REXX instructions for the following flowchart:

36 REXX for CICS Transaction Server: User Guide and Reference

Z=1

A=0 True

C=2 True

False

False

A=1A=3

C=3 TrueFalse

Z=2 TrueFalse

ANSWER

Chapter 4. Controlling the flow within a program 37

IF a = 0 THEN
 IF c = 2 THEN
 z = 1
 ELSE NOP
ELSE
 IF z = 2 THEN
 IF c = 3 THEN
 a = 1
 ELSE
 a = 3
 ELSE NOP

SELECT WHEN…OTHERWISE…END instructions
Code examples help you learn how to specify SELECT WHEN…OTHERWISE…END instructions.

To select one of any number of choices, use the SELECT WHEN…OTHERWISE…END instruction. In a
flowchart it appears as follows:

38 REXX for CICS Transaction Server: User Guide and Reference

SELECT

WHEN

THEN

THEN

THEN

instructionexpression
True

False

WHEN instructionexpression
True

False

WHEN instructionexpression
True

OTHERWISE

instruction(s)

END

As a REXX instruction, the flowchart example looks like:

Chapter 4. Controlling the flow within a program 39

SELECT
 WHEN expression THEN instruction
 WHEN expression THEN instruction
 WHEN expression THEN instruction
 :
 :
 OTHERWISE
 instruction(s)
END

The language processor scans the WHEN clauses starting at the beginning until it finds a true expression.
After it finds a true expression, it ignores all other possibilities, even though they might also be true. If no
WHEN expressions are true, it processes the instructions following the OTHERWISE clause.

As with IF…THEN…ELSE, when you have more than one instruction for a possible path, begin the set of
instructions with a DO and end them with an END. However, if more than one instruction follows the
OTHERWISE keyword, DO and END are not necessary.

/******************************** REXX *******************************/
/* This program receives input with a person's age and sex. In */
/* reply, it produces a person's status as follows: */
/* BABIES - under 5 */
/* GIRLS - female 5 to 12 */
/* BOYS - male 5 to 12 */
/* TEENAGERS - 13 through 19 */
/* WOMEN - female 20 and up */
/* MEN - male 20 and up */
/***/
PARSE ARG age sex .

SELECT
 WHEN age < 5 THEN /* person younger than 5 */
 status = 'BABY'
 WHEN age < 13 THEN /* person between 5 and 12 */
 DO
 IF sex = 'M' THEN /* boy between 5 and 12 */
 status = 'BOY'
 ELSE /* girl between 5 and 12 */
 status = 'GIRL'
 END
 WHEN age < 20 THEN /* person between 13 and 19 */
 status = 'TEENAGER'
 OTHERWISE
 IF sex = 'M' THEN /* man 20 or older */
 status = 'MAN'
 ELSE /* woman 20 or older */
 status = 'WOMAN'
END

SAY 'This person should be counted as a' status'.'

Figure 15. Example Using SELECT WHEN…OTHERWISE…END

Each SELECT must end with an END. Indenting each WHEN makes a program easier to read.

Exercises: using SELECT WHEN…OTHERWISE…END

"Thirty days hath September, April, June, and November; all the rest have thirty-one, save February
alone ..."

Write a program that uses the input of a number from 1 to 12, representing the month, and produces the
number of days in that month. Assume the user specifies the month number as an argument when calling
the program. (Include in the program an ARG instruction to assign the month number into the variable
month). Then have the program produce the number of days. For month 2 , this can be 28 or 29.

ANSWER

40 REXX for CICS Transaction Server: User Guide and Reference

/******************************** REXX *******************************/
/* This program uses the input of a whole number from 1 to 12 that */
/* represents a month. It produces the number of days in that */
/* month. */
/***/

ARG month

SELECT
 WHEN month = 9 THEN
 days = 30
 WHEN month = 4 THEN
 days = 30
 WHEN month = 6 THEN
 days = 30
 WHEN month = 11 THEN
 days = 30
 WHEN month = 2 THEN
 days = '28 or 29'
 OTHERWISE
 days = 31
END

SAY 'There are' days 'days in Month' month'.'

Figure 16. Possible Solution

Looping instructions
There are two types of looping instructions: repetitive loops and conditional loops. All loops, regardless of
the type, begin with the DO keyword and end with the END keyword.

Repetitive loops let you repeat instructions a certain number of times. Conditional loops use a condition
to control repeating. There are two types of conditional loops, DO WHILE and DO UNTIL.

Repetitive loops
The simplest repetitive loop tells the language processor to repeat a group of instructions a specific
number of times. It uses a constant after the keyword DO.

When you run the following example, it produces five lines of Hello!:

DO 5
SAY 'Hello!'
END

Hello!
Hello!
Hello!
Hello!
Hello!

You can also use a variable in place of a constant, as in the following example, which gives you the same
results.

number = 5
DO number
 SAY 'Hello!'
END

A variable that controls the number of times a loop repeats is called a control variable. Unless you specify
otherwise, the control variable increases by 1 each time the loop repeats.

DO number = 1 TO 5
 SAY 'Loop' number
 SAY 'Hello!'
END
 SAY 'Dropped out of the loop when number reached' number

Chapter 4. Controlling the flow within a program 41

This example results in five lines of Hello! preceded by the number of the loop. The number increases at
the bottom of the loop and is tested at the top.

Loop 1
Hello!
Loop 2
Hello!
Loop 3
Hello!
Loop 4
Hello!
Loop 5
Hello!
Dropped out of the loop when number reached 6

You can change the increment of the control variable with the keyword BY as follows:

DO number = 1 TO 10 BY 2
 SAY 'Loop' number
 SAY 'Hello!'
END
 SAY 'Dropped out of the loop when number reached' number

This example has results similar to the previous example except the loops are numbered in increments of
two.

Loop 1
Hello!
Loop 3
Hello!
Loop 5
Hello!
Loop 7
Hello!
Loop 9
Hello!
Dropped out of the loop when number reached 11

Infinite loops

What happens when the control variable of a loop cannot attain the last number? For example, in the
following program segment, count does not increase beyond 1.

DO count = 1 to 10
 SAY 'Number' count
 count = count - 1
END

The result is called an infinite loop because count alternates between 1 and 0, producing an endless
number of lines saying Number 1.

If your program is in an infinite loop, contact the operator to cancel it. An authorized user can issue the
CEMT SET TASK PURGE command to halt an exec.

DO FOREVER loops

Sometimes you might want to write an infinite loop purposely; for instance, in a program that reads
records from a file until it reaches the end of the file. You can use the EXIT instruction to end an infinite
loop when a condition is met, as in the following example. For more about the EXIT instruction, see “EXIT
instructions” on page 50.

42 REXX for CICS Transaction Server: User Guide and Reference

/******************************* REXX ********************************/
/* This program processes strings until the value of a string is */
/* a null string. */
/***/
DO FOREVER
 PULL string /* Gets string from input stream */
 IF string = '' THEN
 PULL file_name
 IF file_name = '' THEN
 EXIT
 ELSE
 DO
 result = process(string) /* Calls a user-written function */
 /* to do processing on string. */
 IF result = 0 THEN SAY "Processing complete for string:" string
 ELSE SAY "Processing failed for string:" string
 END
END

Figure 17. Example Using a DO FOREVER Loop

This example sends strings to a user-written function for processing and then issues a message that the
processing completed successfully or failed. When the input string is a blank, the loop ends and so does
the program. You can also end the loop without ending the program by using the LEAVE instruction.

LEAVE instruction

The LEAVE instruction causes an immediate exit from a repetitive loop. Control goes to the instruction
following the END keyword of the loop. An example of using the LEAVE instruction follows:

/******************************** REXX *******************************/
/* This program uses the LEAVE instruction to exit from a DO */
/* FOREVER loop. */
/***/
 DO FOREVER
 PULL string /* Gets string from input stream */
 IF string = 'QUIT' then
 LEAVE
 ELSE
 DO
 result = process(string) /* Calls a user-written function */
 /* to do processing on string. */
 IF result = 0 THEN SAY "Processing complete for string:" string
 ELSE SAY "Processing failed for string:" string
 END
 END
 SAY 'Program run complete.'

Figure 18. Example Using the LEAVE Instruction

ITERATE instruction

The ITERATE instruction stops execution from within the loop and passes control to the DO instruction at
the top of the loop. Depending on the type of DO instruction, the language processor increases and tests a
control variable or tests a condition to determine whether to repeat the loop. Like LEAVE, ITERATE is used
within the loop.

DO count = 1 TO 10
 IF count = 8
 THEN
 ITERATE
 ELSE
 SAY 'Number' count
END

This example results in a list of numbers from 1 to 10 with the exception of number 8.

Number 1
Number 2
Number 3
Number 4

Chapter 4. Controlling the flow within a program 43

Number 5
Number 6
Number 7
Number 9
Number 10

Exercises: using loops
What are the results of the following loops?

DO digit = 1 TO 3
 SAY digit
END
SAY 'Digit is now' digit

DO count = 10 BY -2 TO 6
 SAY count
END
SAY 'Count is now' count

DO index = 10 TO 8
 SAY 'Hup! Hup! Hup!'
END
SAY 'Index is now' index

Sometimes an infinite loop can occur when input to end the loop does not match what is expected. For
instance, in the example of using the LEAVE instruction, what happens when the input is Quit and a
PARSE PULL instruction replaces the PULL instruction?

PARSE PULL file_name

ANSWERS

1. The results of the repetitive loops are as follows:

a. 1
2
3
Digit is now 4

b. 10
8
6
Count is now 4

c. Index is now 10

2. The program would be unable to leave the loop because Quit is not equal to QUIT. In this case,
omitting the PARSE keyword is preferred because regardless of whether the input is quit, QUIT, or
Quit, the language processor translates the input to uppercase before comparing it to QUIT.

Conditional loops
There are two types of conditional loops: DO WHILE and DO UNTIL. One or more expressions control both
types of loops. However, DO WHILE loops test the expression before the loop executes the first time and
repeat only when the expression is true. DO UNTIL loops test the expression after the loop executes at
least once and repeat only when the expression is false.

DO WHILE loops

DO WHILE loops in a flowchart appear as follows:

44 REXX for CICS Transaction Server: User Guide and Reference

DO WHILE

instruction(s)expression
True

False
END

As REXX instructions, the flowchart example looks like:

Chapter 4. Controlling the flow within a program 45

DO WHILE expression /* expression must be true */
 instruction(s)
END

Use a DO WHILE loop when you want to execute the loop while a condition is true. DO WHILE tests the
condition at the top of the loop. If the condition is initially false, the language processor never executes
the loop.

You can use a DO WHILE loop instead of the DO FOREVER loop in the example of using the LEAVE
instruction in “Repetitive loops” on page 41. However, you need to initialize the loop with a first case so
the condition can be tested before you get into the loop. Notice the first case initialization in the first PULL
of the following example.

/******************************** REXX *******************************/
/* This progra uses a DO WHILE loop to send a string to a */
/* user-written function for processing. */
/***/
PULL string /* Gets string from input stream */
DO WHILE string \= 'QUIT'
 result = process(string) /* Calls a user-written function */
 /* to do processing on string. */
 IF result = 0 THEN SAY "Processing complete for string:" string
 ELSE SAY "Processing failed for string:" string
 PULL string
END
SAY 'Program run complete.'

Figure 19. Example Using DO WHILE

Exercise: using a DO WHILE loop

Write a program with a DO WHILE loop that uses as input a list of responses about whether passengers on
a commuter airline want a window seat. The flight has 8 passengers and 4 window seats. Discontinue the
loop when all the window seats are taken. After the loop ends, produce the number of window seats
taken and the number of responses processed.

ANSWER

/******************************** REXX *******************************/
/* This program uses a DO WHILE loop to keep track of window seats */
/* in an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO WHILE (passenger < 8) & (window_seats \= 4)

/**/
/* Continue while the program has not yet read the responses of */
/* all 8 passengers and while all the window seats are not taken. */
/**/

PULL window /* Gets "Y" or "N" from input stream */
passenger = passenger + 1 /* Increase number of passengers by 1 */
IF window = 'Y' THEN
 window_seats = window_seats + 1 /* Increase window seats by 1 */
ELSE NOP
END

SAY window_seats 'window seats were assigned.'
SAY passenger 'passengers were questioned.'

Figure 20. Possible solution

DO UNTIL loops

DO UNTIL loops in a flowchart appear as follows:

46 REXX for CICS Transaction Server: User Guide and Reference

DO UNTIL

instruction(s)

expression

True

False

END

As REXX instructions, the flowchart example looks like:

Chapter 4. Controlling the flow within a program 47

DO UNTIL expression /* expression must be false */
 instruction(s)
END

Use DO UNTIL loops when a condition is not true and you want to execute the loop until the condition is
true. The DO UNTIL loop tests the condition at the end of the loop and repeats only when the condition is
false. Otherwise, the loop executes once and ends. For example:

/******************************** REXX ******************************/
/* This program uses a DO UNTIL loop to ask for a password. If the */
/* password is incorrect three times, the loop ends. */
/**/
password = 'abracadabra'
time = 0
DO UNTIL (answer = password) | (time = 3)
 PULL answer /* Gets ANSWER from input stream */
 time = time + 1
END

Figure 21. Example using DO UNTIL

Exercise: using a DO UNTIL loop

Change the program in the previous exercise from a DO WHILE to a DO UNTIL loop and achieve the same
results. Remember that DO WHILE loops check for true expressions and DO UNTIL loops check for false
expressions, which means their logical operators are often reversed.

ANSWER

/******************************** REXX *******************************/
/* This program uses a DO UNTIL loop to keep track of window seats */
/* in an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO UNTIL (passenger >= 8) | (window_seats = 4)

 /**/
 /* Continue while the program has not yet read the responses of */
 /* all 8 passengers and while all the window seats are not taken. */
 /**/

 PULL window /* Gets "Y" or "N" from input stream */
 passenger = passenger + 1 /* Increase number of passengers by 1 */
 IF window = 'Y' THEN
 window_seats = window_seats + 1 /* Increase window seats by 1 */
 ELSE NOP
END
SAY window_seats 'window seats were assigned.'
SAY passenger 'passengers were questioned.'

Figure 22. Possible solution

Compound loops
You can combine repetitive and conditional loops to create a compound loop.

The following loop is set to repeat 10 times while the quantity is less than 50, at which point it stops.

quantity = 20
DO number = 1 TO 10 WHILE quantity < 50
 quantity = quantity + number
 SAY 'Quantity = 'quantity ' (Loop 'number')'
END

The result of this example is as follows:

Quantity = 21 (Loop 1)
Quantity = 23 (Loop 2)
Quantity = 26 (Loop 3)
Quantity = 30 (Loop 4)

48 REXX for CICS Transaction Server: User Guide and Reference

Quantity = 35 (Loop 5)
Quantity = 41 (Loop 6)
Quantity = 48 (Loop 7)
Quantity = 56 (Loop 8)

You can substitute a DO UNTIL loop, change the comparison operator from < to > , and get the same
results.

quantity = 20
DO number = 1 TO 10 UNTIL quantity > 50
 quantity = quantity + number
 SAY 'Quantity = 'quantity ' (Loop 'number')'
END

Nested DO loops

Like nested IF…THEN…ELSE instructions, DO loops can contain other DO loops.

A simple example follows:

DO outer = 1 TO 2
 DO inner = 1 TO 2
 SAY 'HIP'
 END
 SAY 'HURRAH'
END

The output from this example is:

HIP
HIP
HURRAH
HIP
HIP
HURRAH

If you need to leave a loop when a certain condition arises, use the LEAVE instruction followed by the
name of the control variable of the loop. If the LEAVE instruction is for the inner loop, processing leaves
the inner loop and goes to the outer loop. If the LEAVE instruction is for the outer loop, processing leaves
both loops.

To leave the inner loop in the preceding example, add an IF…THEN…ELSE instruction that includes a
LEAVE instruction after the IF instruction.

DO outer = 1 TO 2
 DO inner = 1 TO 2
 IF inner > 1 THEN
 LEAVE inner
 ELSE
 SAY 'HIP'
 END
 SAY 'HURRAH'
END

The result is as follows:

HIP
HURRAH
HIP
HURRAH

Exercises: combining loops

1. What happens when the following program runs?

DO outer = 1 TO 3
 SAY /* Produces a blank line */
 DO inner = 1 TO 3
 SAY 'Outer' outer 'Inner' inner

Chapter 4. Controlling the flow within a program 49

 END
END

2. Now what happens when the LEAVE instruction is added?

DO outer = 1 TO 3
 SAY /* Produces a blank line */
 DO inner = 1 TO 3
 IF inner = 2 THEN
 LEAVE inner
 ELSE
 SAY 'Outer' outer 'Inner' inner
 END
END

ANSWERS

1. When this example runs, it produces the following:

Outer 1 Inner 1
Outer 1 Inner 2
Outer 1 Inner 3

Outer 2 Inner 1
Outer 2 Inner 2
Outer 2 Inner 3

Outer 3 Inner 1
Outer 3 Inner 2
Outer 3 Inner 3

2. The result is one line of output for each of the inner loops.

Outer 1 Inner 1

Outer 2 Inner 1

Outer 3 Inner 1

Interrupt instructions
Interrupt instructions include EXIT, SIGNAL, CALL, and RETURN.

Instructions that interrupt the flow of a program can cause the program to:

• End (EXIT)
• Skip to another part of the program marked by a label (SIGNAL)
• Go temporarily to a subroutine either within the program or outside the program (CALL or RETURN).

EXIT instructions
The EXIT instruction causes a REXX program to unconditionally end and return to where the program was
called. If another program called the REXX program, EXIT returns to that calling program.

Besides ending a program, EXIT can also return a value to the caller of the program. If the program was
called as a subroutine from another REXX program, the value is received in the REXX special variable
RESULT. If the program was called as a function, the value is received in the original expression at the
point where the function was called. Otherwise, the value is received in the REXX special variable RC. The
value can represent a return code and can be in the form of a constant or an expression that is computed.

50 REXX for CICS Transaction Server: User Guide and Reference

/******************************** REXX ****************************/
/* This program uses the EXIT instruction to end the program and */
/* return a value indicating whether a job applicant gets the */
/* job. A value of 0 means the applicant does not qualify for */
/* the job, but a value of 1 means the applicant gets the job. */
/* The value is placed in the REXX special variable RESULT. */
/**/
PULL months_experience /* Gets number from input stream */
PULL references /* Gets "Y" or "N" from input stream */
PULL start_tomorrow /* Gets "Y" or "N" from input stream */

IF (months_experience > 24) & (references = 'Y') & (start_tomorrow= 'Y')
THEN job = 1 /* person gets the job */
ELSE job = 0 /* person does not get the job */

EXIT job

Figure 23. Example Using the EXIT Instruction

For more information about calling external routines, see “Subroutines and functions” on page 62. For
more detailed information on the EXIT instruction, see EXIT.

CALL and RETURN instructions
The CALL instruction interrupts the flow of a program by passing control to an internal or external
subroutine. An internal subroutine is part of the calling program. An external subroutine is another
program. The RETURN instruction returns control from a subroutine back to the calling program and
optionally returns a value.

When calling an internal subroutine, CALL passes control to a label specified after the CALL keyword.
When the subroutine ends with the RETURN instruction, the instructions following CALL are processed.

Chapter 4. Controlling the flow within a program 51

instruction(s)
CALL sub1

instruction(s)
EXIT

sub1:
instruction(s)
RETURN

52 REXX for CICS Transaction Server: User Guide and Reference

When calling an external subroutine, CALL passes control to the program name that is specified after the
CALL keyword. When the external subroutine completes, you can use the RETURN instruction to return to
where you left off in the calling program.

MAIN

instruction(s)
CALL sub2

instruction(s)
RETURN

sub2:

instruction(s)
...
...
...

Chapter 4. Controlling the flow within a program 53

For more information about calling subroutines, see “Subroutines and functions” on page 62.

You can use the CALL instruction with the ON parameter to implement a routine that receives control
when REXX detects an exception condition, for example an error or failure condition. See Conditions and
condition traps.

For more details about the CALL and RETURN instructions, see CALL and RETURN.

SIGNAL instructions
The SIGNAL instruction, like CALL, interrupts the usual flow of a program and causes control to pass to a
specified label. The label to which control passes can be before or after the SIGNAL instruction. Unlike
CALL, SIGNAL does not return to a specific instruction to resume execution.

When you use SIGNAL from within a loop, the loop automatically ends. When you use SIGNAL from an
internal routine, the internal routine does not return to its caller.

SIGNAL is useful for testing programs or providing an emergency course of action. It should not be used
as a convenient way to move from one place in a program to another. SIGNAL does not provide a way to
return as does the CALL instruction.

You can use the SIGNAL instruction with the ON parameter to implement a routine that receives control
when REXX detects an exception condition, for example an error or failure condition. See Conditions and
condition traps.

For more information about the SIGNAL instruction, see “Using REXX special variables RC and SIGL” on
page 97 and SIGNAL.

Example

In the following example, if the expression is true, then the language processor goes to the label
Emergency: and skips all instructions in between.

54 REXX for CICS Transaction Server: User Guide and Reference

IF expression THEN
 SIGNAL Emergency
ELSE
 instruction(s)

Emergency:
instruction(s)

Chapter 4. Controlling the flow within a program 55

56 REXX for CICS Transaction Server: User Guide and Reference

Chapter 5. Functions
A function is a sequence of instructions that can receive data, process it, and return a value. In REXX,
there are several kinds of functions.

• Built-in functions are built into the language processor. For more information, see “Built-In functions”
on page 58.

• User-written functions are those an individual user writes or an installation supplies. These can be
internal or external. An internal function is part of the current program that starts at a label. An external
function is a self-contained program or program outside the calling program. For information about
user-written functions, see “Writing subroutines and functions” on page 64.

Regardless of the kind of function, all functions return a value to the program that issued the function call.
To call a function, type the function name immediately followed by parentheses enclosing arguments to
the function (if any). There can be no space between the function name and the left parenthesis.

function(arguments)

A function call can contain up to 20 arguments separated by commas. Arguments can be:

• Constant

function(55)

• Symbol

function(symbol_name)

• Option that the function recognizes

function(option)

• Literal string

function('With a literal string')

• Unspecified or omitted

function()

• Another function

function(function(arguments))

• Combination of argument types

function('With literal string', 55, option)
function('With literal string',, option) /* Second argument
omitted */

All functions must return values. When the function returns a value, the value replaces the function call.
In the following example, the language processor adds the value the function returns to 7 and produces
the sum.

SAY 7 + function(arguments)

A function call generally appears in an expression. Therefore a function call, like an expression, does not
usually appear in an instruction by itself.

© Copyright IBM Corp. 1974, 2020 57

Example of a function

Calculations that functions represent often require many instructions. For example, the simple calculation
for finding the highest number in a group of three numbers, might be written as follows:

/***************************** REXX **********************************/
/* This program receives three numbers as arguments and analyzes */
/* which number is the greatest. */
/***/

PARSE ARG number1, number2, number3 .

IF number1 > number2 THEN
 IF number1 > number3 THEN
 greatest = number1
 ELSE
 greatest = number3
ELSE
 IF number2 > number3 THEN
 greatest = number2
 ELSE
 greatest = number3

RETURN greatest

Figure 24. Finding a Maximum Number

Rather than writing multiple instructions every time you want to find the maximum of a group of three
numbers, you can use a built-in function that does the calculation for you and returns the maximum
number. The function is called MAX, and you can use it as follows:

MAX(number1,number2,number3,....)

To find the maximum of 45, -2, number , and 199 and put the maximum into the symbol biggest , write
the following instruction:

biggest = MAX(45,-2,number,199)

Built-In functions
More than 50 functions are built into the language processor.

The built-in functions fall into the following categories:
Arithmetic functions

Evaluate numbers from the argument and return a particular value.
Comparison functions

Compare numbers, or strings, or both and return a value.
Conversion functions

Convert one type of data representation to another type of data representation.
Formatting functions

Manipulate the characters and spacing in strings supplied in the argument.
String manipulating functions

Analyze a string supplied in the argument (or a variable representing a string) and return a particular
value.

Other functions
Do not clearly fit into any of the other categories.

The following tables briefly describe the functions in each category. For a complete description of these
functions, see Functions.

58 REXX for CICS Transaction Server: User Guide and Reference

Arithmetic functions

Function Description

ABS Returns the absolute value of the input number.

DIGITS Returns the current setting of NUMERIC DIGITS.

FORM Returns the current setting of NUMERIC FORM.

FUZZ Returns the current setting of NUMERIC FUZZ.

MAX Returns the largest number from the list specified, formatted according to the current
NUMERIC settings.

MIN Returns the smallest number from the list specified, formatted according to the
current NUMERIC settings.

RANDOM Returns a quasi-random, non-negative whole number in the range specified.

SIGN Returns a number that indicates the sign of the input number.

TRUNC Returns the integer part of the input number and optionally a specified number of
decimal places.

Comparison functions

Function Description

COMPARE Returns 0 if the two input strings are identical. Otherwise, returns the position of the
first character that does not match.

DATATYPE Returns a string indicating the input string is a particular data type, such as a number
or character.

SYMBOL Returns VAR , LIT , or BAD to indicate the state of the symbol (variable, literal, or bad).

Conversion functions

Function Description

B2X Returns the hexadecimal representation of the input binary string. (Binary to
Hexadecimal).

C2D Returns the decimal representation of the input character string. (Character to
Decimal).

C2X Returns the hexadecimal representation of the input character string. (Character to
Hexadecimal).

D2C Returns the character representation of the input decimal string. (Decimal to
Character).

D2X Returns the hexadecimal representation of the input decimal string. (Decimal to
Hexadecimal).

X2B Returns the binary representation of the input hexadecimal string. (Hexadecimal to
Binary).

X2C Returns the character representation of the input hexadecimal string. (Hexadecimal to
Character).

X2D Returns the decimal representation of the input hexadecimal string. (Hexadecimal to
Decimal).

Chapter 5. Functions 59

Formatting functions

Function Description

CENTER or
CENTRE

Returns a string of a specified length with the input string centered in it, with pad
characters added as necessary to make up the length.

COPIES Returns the specified number of concatenated copies of the input string.

FORMAT Returns the input number, rounded and formatted.

JUSTIFY 1 Returns a specified string formatted by adding pad characters between words to
justify to both margins.

LEFT Returns a string of the specified length, truncated or padded on the right as needed.

RIGHT Returns a string of the specified length, truncated or padded on the left as needed.

SPACE Returns the words in the input string with a specified number of pad characters
between each word.

1. Is a non-SAA built-in function REXX/CICS provides.

String manipulating functions

Function Description

ABBREV Returns a string indicating if one string is equal to the specified number of leading
characters of another string.

DELSTR Returns a string after deleting a specified number of characters, starting at a
specified point in the input string.

DELWORD Returns a string after deleting a specified number of words, starting at a specified
word in the input string.

FIND 1 Returns the word number of the first word of a specified phrase found within the
input string.

INDEX 1 Returns the character position of the first character of a specified string found in the
input string.

INSERT Returns a character string after inserting another input string into it from a specified
character position.

LASTPOS Returns the starting character position of the last occurrence of one string in
another.

LENGTH Returns the length of the input string.

OVERLAY Returns a string that is the target string overlaid by a second input string.

POS Returns the character position of one string in another.

REVERSE Returns a character string that is the reverse of the original.

STRIP Returns a character string after removing leading or trailing characters or both from
the input string.

SUBSTR Returns a portion of the input string beginning at a specified character position.

SUBWORD Returns a portion of the input string starting at a specified word number.

TRANSLATE Returns a character string with each character of the input string translated to
another character or unchanged.

60 REXX for CICS Transaction Server: User Guide and Reference

Function Description

VERIFY Returns a number indicating whether an input string is composed only of characters
from another input string or returns the character position of the first unmatched
character.

WORD Returns a word from an input string as a specified number indicates.

WORDINDEX Returns the character position in an input string of the first character in the specified
word.

WORDLENGTH Returns the length of a specified word in the input string.

WORDPOS Returns the word number of the first word of a specified phrase in the input string.

WORDS Returns the number of words in the input string.

1. Is a non-SAA built-in function REXX/CICS provides.

Other functions

Function Description

ADDRESS Returns the name of the environment to which commands are currently being sent.

ARG Returns an argument string or information about the argument strings to a program or
internal routine.

BITAND Returns a string composed of the two input strings logically ANDed together, bit by bit.

BITOR Returns a string composed of the two input strings logically ORed together, bit by bit.

BITXOR Returns a string composed of the two input strings eXclusive ORed together, bit by bit.

CONDITION Returns the condition information, such as name and status, associated with the
current trapped condition.

DATE Returns the date in the default format (dd mon yyyy) or in one of various optional
formats.

ERRORTEXT Returns the error message associated with the specified error number.

EXTERNALS1 This function always returns a 0.

LINESIZE1 Returns the width of the current output device.

QUEUED Returns the number of lines remaining in the external data queue at the time when the
function is called.

SOURCELINE Returns either the line number of the last line in the source file or the source line a
number specifies.

TIME Returns the local time in the default 24-hour clock format (hh:mm:ss) or in one of
various optional formats.

TRACE Returns the trace actions currently in effect.

USERID 1 Returns the current user ID. This is the last user ID specified on the SETUID
command, the user ID of the calling REXX program if one program calls another, the
user ID under which the job is running, or the job name.

VALUE Returns the value of a specified symbol and optionally assigns it a new value.

XRANGE Returns a string of all 1-byte codes (in ascending order) between and including
specified starting and ending values.

1. Is a non-SAA built-in function REXX/CICS provides.

Chapter 5. Functions 61

Testing input with built-in functions

Some of the built-in functions provide a convenient way to test input. When a program uses input, the
user might provide input that is not valid. For instance, in the example of using comparison expressions in
“Comparison operators” on page 24 , the program uses a dollar amount in the following instruction.

PARSE PULL yesterday /* Gets yesterday's price from input stream */

If the program pulls only a number, the program processes that information correctly. However, if the
program pulls a number preceded by a dollar sign or pulls a word, such as nothing, the program returns
an error. To avoid getting an error, you can check the input with the DATATYPE function as follows.

IF DATATYPE(yesterday) \= 'NUM'
THEN DO
 SAY 'The input amount was in the wrong format.'
 EXIT
END

Other useful built-in functions to test input are WORDS, VERIFY, LENGTH, and SIGN.

Exercise: writing a program with built-in functions

Write a program that checks a file name for a length of 8 characters. If the name is longer than 8
characters, the program truncates it to 8 and sends a message indicating the shortened name. Use the
built-in functions LENGTH function and SUBSTR (Substring) function.

ANSWER

/***************************** REXX *********************************/
/* This program tests the length of a file name. */
/* If the name is longer than 8 characters, the program truncates */
/* extra characters and sends a message indicating the shortened */
/* name. */
/**/
PULL name /* Gets name from input stream */

IF LENGTH(name) > 8 THEN /* Name is longer than 8 characters */
 DO
 name = SUBSTR(name,1,8) /* Shorten name to first 8 characters */
 SAY 'The name you specified was too long.'
 SAY name 'will be used.'
 END
ELSE NOP

Figure 25. Possible Solution

Subroutines and functions
Subroutines and functions are routines made up of a sequence of instructions that can receive data,
process it, and return a value.

The routines can be:
Internal

The routine is within the current program, marked by a label, and only that program uses the routine.
External

A REXX subroutine that exists as a separate file.

In many aspects, subroutines and functions are the same. However, they are different in a few major
aspects, such as how to call them and the way they return values.

• Calling a subroutine

To call a subroutine, use the CALL instruction followed by the subroutine name (label or program
member name). You can optionally follow this with up to 20 arguments separated by commas. The
subroutine call is an entire instruction.

62 REXX for CICS Transaction Server: User Guide and Reference

CALL subroutine_name argument1, argument2,...

• Calling a function

To call a function, use the function name (label or program member name) immediately followed by
parentheses that can contain arguments. There can be no space between the function name and the
left parentheses. The function call is part of an instruction, for example, an assignment instruction.

z = function(argument1, argument2,...)

• Returning a value from a subroutine

A subroutine does not have to return a value, but when it does, it sends back the value with the RETURN
instruction.

RETURN value

The calling program receives the value in the REXX special variable named RESULT.

SAY 'The answer is' RESULT

• Returning a value from a function

A function must return a value. When the function is a REXX program , the value is returned with either
the RETURN or EXIT instruction.

RETURN value

The calling program receives the value at the function call. The value replaces the function call, so that
in the following example, z = value.

z = function(argument1, argument2,...)

When to write subroutines instead of functions

The actual instructions that make up a subroutine or a function can be identical. It is the way you want to
use them in a program that turns them into either a subroutine or a function. For example, you can call the
built-in function SUBSTR as either a function or a subroutine. This is how to call SUBSTR as a function to
shorten a word to its first eight characters:

a = SUBSTR('verylongword',1,8) /* a is set to 'verylong' */

You get the same results if you call SUBSTR as a subroutine.

CALL SUBSTR 'verylongword', 1, 8
a = RESULT /* a is set to 'verylong' */

When deciding whether to write a subroutine or a function, ask yourself the following questions:

• Is a returned value optional? If so, write a subroutine.
• Do I need a value returned as an expression within an instruction? If so, write a function.

Subroutines and functions: similarities and differences

Subroutines and functions have the following similarities:

• They can be internal or external.

– Internal

- Can pass information by using common variables
- Can protect variables with the PROCEDURE instruction
- Can pass information by using arguments.

Chapter 5. Functions 63

– External

- Must pass information by using arguments
- Can use the ARG instruction or the ARG built-in function to receive arguments.

• They use the RETURN instruction to return to the caller.

Table 3. Differences between subroutines and functions

 Subroutines Functions

Calling Call by using the CALL instruction,
followed by the subroutine name and,
optionally, up to 20 arguments.

Call by specifying the function's name,
immediately followed by parentheses
that optionally contain up to 20
arguments.

Returning a Value Might return a value to the caller. If you
include a value on the RETURN
instruction, the language processor
assigns this value to the REXX special
variable RESULT.

Must return a value. Specify a value on
the RETURN instruction; the language
processor replaces the function call with
this value.

Writing subroutines and functions
A subroutine is a series of instructions that a program calls to perform a specific task. The instruction that
calls the subroutine is the CALL instruction. You can use the CALL instruction several times in a program
to call the same subroutine.

When the subroutine ends, it can return control to the instruction that directly follows the subroutine call.
The instruction that returns control is the RETURN instruction.

64 REXX for CICS Transaction Server: User Guide and Reference

instruction(s)
CALL sub1

instruction(s)
EXIT

sub1:
instruction(s)
RETURN

A function is a series of instructions that a program calls to perform a specific task and return a value. As
Chapter 5, “Functions,” on page 57 describes, a function can be built-in or user-written. Call a user-

Chapter 5. Functions 65

written function the same way as a built-in function: specify the function name immediately followed by
parentheses that can contain arguments. There can be no blanks between the function name and the left
parenthesis. The parentheses can contain up to 20 arguments or no arguments at all.

function(argument1, argument2,…)

or

function()

A function requires a return value because the function call generally appears in an expression.

z = function(arguments1, argument2,…)

When the function ends, it can use the RETURN instruction to send back a value to replace the function
call.

66 REXX for CICS Transaction Server: User Guide and Reference

instruction(s)

z=func1(arg1, arg2)

instruction(s)
EXIT

instruction(s)
RETURN

Chapter 5. Functions 67

Both subroutines and functions can be internal (a label designates these) or external (a REXX File System
or partitioned dataset member name that contains the subroutine or function designates these). The two
preceding examples illustrate an internal subroutine named sub1 and an internal function named func1.

Important: Because internal subroutines and functions generally appear after the main part of the
program, when you have an internal subroutine or function, it is important to end the main part of the
program with the EXIT instruction.

The following illustrates an external subroutine named sub2.

68 REXX for CICS Transaction Server: User Guide and Reference

MAIN

instruction(s)
CALL sub2

instruction(s)
RETURN

sub2:

instruction(s)
...
...
...

The following illustrates an external function named func2.

Chapter 5. Functions 69

MAIN

instruction(s)

z=func2(arg1)

instruction(s)
...
...
...
exit

ARG var1
nstruction(s)
RETURN value

FUNC2

70 REXX for CICS Transaction Server: User Guide and Reference

Choosing to use internal or external subroutines or functions
To determine whether to make a subroutine or function internal or external, you might consider factors,
such as:

• Size of the subroutine or function. Very large subroutines and functions often are external, whereas
small ones fit easily within the calling program.

• How you want to pass information. It is quicker to pass information through variables in an internal
subroutine or function. The next topic describes passing information this way.

• Whether the subroutine or function might be of value to more than one program or user. If so, an
external subroutine or function is preferable.

• Performance. For functions, the language processor searches for an internal function before it searches
for an external function. For the complete search order of functions, see Functions and subroutines.

Passing information
A program and its internal subroutine or function can share the same variables. Therefore, you can use
commonly shared variables to pass information between caller and internal subroutine or function. You
can also use arguments to pass information to and from an internal subroutine or an internal function.

External subroutines, however, cannot share variables with the caller. To pass information to them, you
need to use arguments or some other external way, such as the data stack. (Remember: An internal
function does not need to pass arguments within the parentheses that follow the function call. However,
all functions, both internal and external, must return a value.)

Passing information with variables

When a program and its internal subroutine or function share the same variables, the value of a variable is
what was last assigned. This is regardless of whether the assignment was in the main part of the program
or in the subroutine or function.

The following example shows passing information to a subroutine. The variables number1, number2, and
answer are shared. The value of answer is assigned in the subroutine and used in the main part of the
program.

/******************************* REXX ********************************/
/* This program receives a calculated value from an internal */
/* subroutine and uses that value in a SAY instruction. */
/***/

number1 = 5
number2 = 10
CALL subroutine
SAY answer /* Produces 15 */
EXIT

subroutine:
answer = number1 + number2
RETURN

Figure 26. Example of Passing Information in a Variable Using a Subroutine

The next example is the same, except it passes information to a function rather than a subroutine. The
subroutine includes the variable answer on the RETURN instruction. The language processor replaces the
function call with the value in answer.

Chapter 5. Functions 71

/******************************* REXX ********************************/
/* This program receives a calculated value from an internal */
/* function and uses SAY to produce that value. */
/***/

number1 = 5
number2 = 10
SAY add() /* Produces 15 */
SAY answer /* Also produces 15 */
EXIT

add:
answer = number1 + number2
RETURN answer

Figure 27. Example of Passing Information in a Variable Using a Function

Using the same variables in a program and its internal subroutine or function can sometimes create
problems. In the next example, the main part of the program and the subroutine use the same control
variable, i , for their DO loops. As a result, the DO loop runs only once in the main program because the
subroutine returns to the main program with i = 6.

/******************************* REXX ********************************/
/* NOTE: This program contains an error. */
/* It uses a DO loop to call an internal subroutine, and the */
/* subroutine uses a DO loop with the same control variable as the */
/* main program. The DO loop in the main program runs only once. */
/***/

number1 = 5
number2 = 10
DO i = 1 TO 5
 CALL subroutine
 SAY answer /* Produces 105 */
END
EXIT

subroutine:
DO i = 1 TO 5
 answer = number1 + number2
 number1 = number2
 number2 = answer
END
RETURN

Figure 28. Example of a Problem Caused by Passing Information in a Variable Using a Subroutine

The next example is the same, except it passes information using a function instead of a subroutine.

/******************************* REXX ********************************/
/* NOTE: This program contains an error. */
/* It uses a DO loop to call an internal function, and the */
/* function uses a DO loop with the same control variable as the */
/* main program. The DO loop in the main program runs only once. */
/***/

number1 = 5
number2 = 10
DO i = 1 TO 5
 SAY add() /* Produces 105 */
END
EXIT

add:
DO i = 1 TO 5
 answer = number1 + number2
 number1 = number2
 number2 = answer
END
RETURN answer

Figure 29. Example of a Problem Caused by Passing Information in a Variable Using a Function

72 REXX for CICS Transaction Server: User Guide and Reference

To avoid this kind of problem in an internal subroutine or function, you can use:

• The PROCEDURE instruction, as described in the next section.
• Different variable names in a subroutine or function than in the main part of the program . For a

subroutine, you can pass arguments on the CALL instruction. See “Passing information with arguments”
on page 74.

Protecting variables with the PROCEDURE instruction

When you use the PROCEDURE instruction immediately after the subroutine or function label, all variables
in the subroutine or function become local to the subroutine or function; they are shielded from the main
part of the program. You can also use the PROCEDURE EXPOSE instruction to protect all but a few
specified variables.

The following examples show how results differ when a subroutine or function uses or does not use
PROCEDURE.

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction to protect the */
/* variables within its subroutine. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* Produces 10 NUMBER2 */
EXIT

subroutine: PROCEDURE
number1 = 7
number2 = 5
RETURN

Figure 30. Example of Subroutine Using the PROCEDURE Instruction

/******************************* REXX ********************************/
/* This program does not use a PROCEDURE instruction to protect the */
/* variables within its subroutine. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* Produces 7 5 */
EXIT

subroutine:
number1 = 7
number2 = 5
RETURN

Figure 31. Example of Subroutine without the PROCEDURE Instruction

The next two examples are the same, except they use functions rather than subroutines.

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction to protect the */
/* variables within its function. */
/***/
number1 = 10
SAY pass() number2 /* Produces 7 NUMBER2 */
EXIT

pass: PROCEDURE
number1 = 7
number2 = 5
RETURN number1

Figure 32. Example of Function Using the PROCEDURE Instruction

Chapter 5. Functions 73

/******************************* REXX ********************************/
/* This program does not use a PROCEDURE instruction to protect the */
/* variables within its function. */
/***/
number1 = 10
SAY pass() number2 /* Produces 7 5 */
EXIT

pass:
number1 = 7
number2 = 5
RETURN number1

Figure 33. Example of Function without the PROCEDURE Instruction

Exposing variables with PROCEDURE EXPOSE

To protect all but specific variables, use the EXPOSE option with the PROCEDURE instruction, followed by
the variables that are to remain exposed to the subroutine or function.

The next example uses PROCEDURE EXPOSE in a subroutine.

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction with the EXPOSE option */
/* to expose one variable, number1, in its subroutine. The other */
/* variable, number2, is set to null and the SAY instruction */
/* produces this name in uppercase. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* produces 7 NUMBER2 */
EXIT

subroutine: PROCEDURE EXPOSE number1
number1 = 7
number2 = 5
RETURN

Figure 34. Example Using PROCEDURE EXPOSE in Subroutine

The next example is the same except PROCEDURE EXPOSE is in a function instead of a subroutine.

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction with the EXPOSE option */
/* to expose one variable, number1, in its function. */
/***/
number1 = 10
SAY pass() number1 /* Produces 5 7 */
EXIT

pass: PROCEDURE EXPOSE number1
number1 = 7
number2 = 5
RETURN number2

Figure 35. Example Using PROCEDURE EXPOSE in a Function

For more information about the PROCEDURE instruction, see PROCEDURE.

Passing information with arguments

A way to pass information to internal or external subroutines, or functions, is through arguments. When
calling a subroutine, you can pass up to 20 arguments separated by commas on the CALL instruction as
follows:

CALL subroutine_name argument1, argument2, argument3,…

In a function call, you can pass up to 20 arguments separated by commas.

74 REXX for CICS Transaction Server: User Guide and Reference

function(argument1,argument2,argument3,…)

Using the ARG instruction

A subroutine or function can receive the arguments with the ARG instruction. In the ARG instruction,
commas also separate arguments.

ARG arg1, arg2, arg3, …

The names of the arguments that are passed do not have to be the same as those on the ARG instruction
because information is passed by position rather than by argument name. The first argument sent is the
first argument received and so forth. You can also set up a template in the CALL instruction or function
call. The language processor then uses this template in the corresponding ARG instruction. For
information about parsing with templates, see “Parsing data” on page 83.

In the following example, the main routine sends information to a subroutine that computes the
perimeter of a rectangle. The subroutine returns a value in the variable perim by specifying the value in
the RETURN instruction. The main program receives the value in the special variable RESULT .

Chapter 5. Functions 75

PARSE ARG long wide
CALL perimeter long, wide
SAY ‘The perimeter is’ RESULT ‘inches.’
EXIT

perimeter:
ARG length, width
perim = 2 * length + 2 * width
RETURN perim

Figure 36. Example of Passing Arguments on the CALL Instruction

76 REXX for CICS Transaction Server: User Guide and Reference

The next example is the same except it uses ARG in a function instead of a subroutine.

PARSE ARG long wide
SAY ‘The perimeter is’ perimeter (long,wide) ‘inches.’
EXIT

perimeter:
ARG length, width
perim = 2 * length + 2 * width
RETURN perim

Figure 37. Example of Passing Arguments on the Call to an Internal Routine

Chapter 5. Functions 77

In the two preceding examples, notice the positional relationships between long and length , and wide
and width . Also notice how information is received from variable perim. Both programs include perim
on a RETURN instruction. For the program with a subroutine, the language processor assigns the value in
perim to the special variable RESULT. For the program using a function, the language processor replaces
the function call perimeter(long,wide) with the value in perim.

Using the ARG built-in function

Another way for a subroutine or function to receive arguments is with the ARG built-in function. This
function returns the value of a particular argument. A number represents the argument position.

For instance, in the previous example, instead of the ARG instruction:

ARG length, width

you can use the ARG function as follows:

length = ARG(1) /* puts the first argument into length */
width = ARG(2) /* puts the second argument into width */

For more information about the ARG function see ARG.

Receiving information from a subroutine or function
Although a subroutine or function can receive up to 20 arguments, it can specify only one expression on
the RETURN instruction.

That expression can be:

• A number

RETURN 55

• One or more variables whose values are substituted (or their names if no values have been assigned).

RETURN value1 value2 value3

• A literal string

RETURN 'Work complete.'

• An arithmetic, comparison, or logical expression whose value is substituted.

RETURN 5 * number

Exercise: writing an internal and an external subroutine

Write a program that plays a simulated coin toss game and produces the accumulated scores.

There should be four possible inputs:

• 'HEADS'
• 'TAILS'
• '' (Null - to quit the game)
• None of these three (incorrect response).

Write an internal subroutine without arguments to check for valid input. Send valid input to an external
subroutine that uses the RANDOM built-in function to generate random outcomes. Assume HEADS = 0
and TAILS = 1, and use RANDOM as follows:

RANDOM(0,1)

78 REXX for CICS Transaction Server: User Guide and Reference

Compare the valid input with the value from RANDOM. If they are the same, the user wins one point; if
they are different, the computer wins one point. Return the result to the main program where results are
tallied.

ANSWER

/***************************** REXX ********************************/
/* This program plays a simulated coin toss game. */
/* The input can be heads, tails, or null ("") to quit the game. */
/* First an internal subroutine checks input for validity. */
/* An external subroutine uses the RANDOM built-in function to */
/* obtain a simulation of a throw of dice and compares the user */
/* input to the random outcome. The main program receives */
/* notification of who won the round. It maintains and produces */
/* scores after each round. */
/***/
PULL flip /* Gets "HEADS", "TAILS", or "" */
 /* from input stream. */
computer = 0; user = 0 /* Initializes scores to zero */
CALL check /* Calls internal subroutine, check */
DO FOREVER
 CALL throw flip /* Calls external subroutine, throw */

 IF RESULT = 'machine' THEN /* The computer won */
 computer = computer + 1 /* Increase the computer score */
 ELSE /* The user won */
 user = user + 1 /* Increase the user score */

 SAY 'Computer score = ' computer ' Your score = ' user
 PULL flip
 CALL check /* Call internal subroutine, check */
END
EXIT

Figure 38. Possible Solution (Main program)

/*************************** REXX ************************************/
/* This internal subroutine checks for valid input of "HEADS", */
/* "TAILS", or "" (to quit). If the input is anything else, the */
/* subroutine says the input is not valid and gets the next input. */
/* The subroutine keeps repeating until the input is valid. */
/* Commonly used variables return information to the main program */
/***/
check:
 DO UNTIL outcome = 'correct'
 SELECT
 WHEN flip = 'HEADS' THEN
 outcome = 'correct'
 WHEN flip = 'TAILS' THEN
 outcome = 'correct'
 WHEN flip = '' THEN
 EXIT
 OTHERWISE
 outcome = 'incorrect'
 say 'Incorrect input, reply "HEADS", "TAILS" or blank'
 PULL flip
 END
 END
 RETURN

Figure 39. Possible Solution (Internal Subroutine Named CHECK)

Chapter 5. Functions 79

/******************************* REXX ********************************/
/* This external subroutine receives the valid input, analyzes it, */
/* gets a random "flip" from the computer, and compares the two. */
/* If they are the same, the user wins. If they are different, */
/* the computer wins. The routine returns the outcome to the */
/* calling program. */
/***/
throw:
 ARG input
 IF input = 'HEADS' THEN
 userthrow = 0 /* heads = 0 */
 ELSE
 userthrow = 1 /* tails = 1 */

 compthrow = RANDOM(0,1) /* choose a random number */
 /* between 0 and 1 */
 IF compthrow = userthrow THEN
 outcome = 'human' /* user chose correctly */
 ELSE
 outcome = 'machine' /* user chose incorrectly */

 RETURN outcome

Figure 40. Possible Solution (External Subroutine named THROW)

Exercise: writing a function

Write a function named AVG that receives a list of numbers separated by blanks and computes their
average. The final answer can be a decimal number. To call this function, you would use:

AVG(number1 number2 number3…)

Use the WORDS (see WORDS function) and WORD (see WORD function) built-in functions.

ANSWER

/******************************* REXX ********************************/
/* This function receives a list of numbers, adds them, computes */
/* their average, and returns the average to the calling program. */
/***/

ARG numlist /* receive the numbers in a single variable */

sum = 0 /* initialize sum to zero */

DO n = 1 TO WORDS(numlist) /* Repeat for as many times as there */
 /* are numbers */

 number = WORD(numlist,n) /* Word #n goes to number */
 sum = sum + number /* Sum increases by number */
END

average = sum / WORDS(numlist) /* Compute the average */

RETURN average

Figure 41. Possible solution

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

80 REXX for CICS Transaction Server: User Guide and Reference

Chapter 6. Manipulating Data
This section describes how to use compound variables and stems to access data and how to use parsing.

Using Compound Variables and Stems
Sometimes it is useful to store groups of related data in a way that makes data retrieval easy. For
example, you could store a list of employee names in an array and retrieve them by number. An array is
an arrangement of elements in one or more dimensions, identified by a single name. An array called
employee could contain names as follows:

EMPLOYEE
 (1) Adams, Joe
 (2) Crandall, Amy
 (3) Devon, David
 (4) Garrison, Donna
 (5) Leone, Mary
 (6) Sebastian, Isaac

In some computer languages, you use the number of the element to access an element in an array. For
example, employee(1) would retrieve Adams, Joe. In REXX, you use compound variables.

What Is a Compound Variable?
You can use compound variables to create an array or a list of variables in REXX. A compound variable, for
example: employee.1, consists of a stem and a tail.

A stem is a symbol with a period at the end. Here are some examples of stems:

FRED.
Array.
employee.

A tail is similar to a subscript. It follows the stem and consists of additional parts of the name that can be
constant symbols (as in employee.1), simple symbols (as in employee.n), or null. Thus, in REXX,
subscripts need not necessarily be numeric. A compound variable contains at least one period with
characters on both sides of it. Here are some more examples of compound variables:

FRED.5
Array.Row.Col
employee.name.phone

You cannot do any substitution for the name of the stem but you can use substitution for the tail. For
example:

employee.7='Amy Martin'
new=7
employee.new='May Davis'
say employee.7 /* Produces: May Davis */

As with other REXX variables, if you have not previously assigned a value to a variable in a tail, it takes on
the value of its own name in uppercase.

first = 'Fred'
last = 'Higgins'
name = first.last /* NAME is assigned FIRST.Higgins */
 /* The value FIRST appears because the */
 /* variable FIRST is a stem, which */
 /* cannot change. */
SAY name.first.middle.last /* Produces NAME.Fred.MIDDLE.Higgins */

You can use a DO loop to initialize a group of compound variables and set up an array.

© Copyright IBM Corp. 1974, 2020 81

DO i = 1 TO 6
 PARSE PULL employee.i
END

If you use the same names used in the example of the employee array, you have a group of compound
variables as follows:

employee.1 = 'Adams, Joe'
employee.2 = 'Crandall, Amy'
employee.3 = 'Devon, David'
employee.4 = 'Garrison, Donna'
employee.5 = 'Leone, Mary'
employee.6 = 'Sebastian, Isaac'

After the names are in the group of compound variables, you can easily access a name by its number or by
a variable that represents its number.

name = 3
SAY employee.name /* Produces 'Devon, David' */

For more information about compound variables, see Compound symbols.

Using stems
When working with compound variables, it is often useful to initialize an entire collection of variables to
the same value. You can do this easily by using an assignment that includes a stem. For example,
number.=0 initializes all array elements in the array named number. to 0.

You can change the values of all compound variables in an array the same way. For example, to change all
employee names to Nobody , use the following assignment instruction:

 employee. = 'Nobody'

As a result, all compound variables beginning with the stem employee., previously assigned or not, have
the value Nobody. After a stem assignment, you can assign individual compound variables new values.

employee.='Nobody'
SAY employee.5 /* Produces 'Nobody' */
SAY employee.10 /* Produces 'Nobody' */
SAY employee.oldest /* Produces 'Nobody' */

employee.new = 'Clark, Evans'
SAY employee.new /* Produces 'Clark, Evans' */

You can use stems with the EXECIO and RFS commands when reading to and writing from a file. See
EXECIO and RFS. RFS is the preferred I/O method under CICS.

Exercises - Using Compound Variables and Stems
1. After these assignment instructions, what do the following SAY instructions produce?

a = 3 /* assigns '3' to variable 'A' */
d = 4 /* '4' to 'D' */
c = 'last' /* 'last' to 'C' */
a.d = 2 /* '2' to 'A.4' */
a.c = 5 /* '5' to 'A.last' */
z.a.d = 'cv3d' /* 'cv3d' to 'Z.3.4' */

a. SAY a
b. SAY D
c. SAY c
d. SAY a.a
e. SAY A.D
f. SAY d.c

82 REXX for CICS Transaction Server: User Guide and Reference

g. SAY c.a
h. SAY a.first
i. SAY z.a.4

2. After these assignment instructions, what output do the SAY instructions produce?

hole.1 = 'full'
hole. = 'empty'
hole.s = 'full'

a. SAY hole.1
b. SAY hole.s
c. SAY hole.mouse

ANSWERS

1. a. 3
b. 4
c. last
d. A.3
e. 2
f. D.last
g. C.3
h. A.FIRST
i. cv3d

2. a. empty
b. full
c. empty

Parsing data
Parsing is separating data and assigning parts of it into one or more variables. Parsing can assign each
word in the data into a variable or can divide the data into smaller parts. Parsing is also useful to format
data into columns.

The variables to receive data are named in a template. A template is a model telling how to split the data.
It can be as simple as a list of variables to receive data. More complex templates can contain patterns;
see “Parsing with patterns” on page 86.

Parsing Instructions
The REXX parsing instructions are PULL, ARG, and PARSE. (PARSE has several variants.)

PULL instruction

PULL is an instruction that reads input and assigns it to one or more variables. If the program stack
contains information, the PULL instruction takes information from the program stack. When the program
stack is empty, PULL takes information from the current terminal input device. See “Getting information
from the program stack or terminal input device” on page 14 for information about the data stack.

/* This REXX program parses the string "Knowledge is power." */
PULL word1 word2 word3
 /* word1 contains 'KNOWLEDGE' */
 /* word2 contains 'IS' */
 /* word3 contains 'POWER.' */

Chapter 6. Manipulating Data 83

PULL translates character information to uppercase before assigning it into variables. If you do not want
uppercase translation, use the PARSE PULL instruction.

/* This REXX program parses the string: "Knowledge is power." */
PARSE PULL word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

You can include the optional keyword UPPER on any variant of the PARSE instruction. This causes the
language processor to translate character information to uppercase before assigning it into variables. For
example, using PARSE UPPER PULL gives the same result as using PULL.

ARG instruction

The ARG instruction takes information passed as arguments to a program, function, or subroutine, and
puts it into one or more variables. To pass the three arguments Knowledge is power. to a REXX
program named sample :

1. Call the program and pass the arguments as a string following the exec name:

REXX sample Knowledge is power.

2. Use the ARG instruction to receive the three arguments into variables.

/* SAMPLE -- A REXX program using ARG */
ARG word1 word2 word3
 /* word1 contains 'KNOWLEDGE' */
 /* word2 contains 'IS' */
 /* word3 contains 'POWER.' */

ARG translates character information to uppercase before assigning the arguments into variables.

If you do not want uppercase translation, use the PARSE ARG instruction instead of ARG.

/* REXX program using PARSE ARG */
PARSE ARG word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

PARSE UPPER ARG has the same result as ARG. It translates character information to uppercase before
assigning it into variables.

PARSE VALUE … WITH instruction

The PARSE VALUE…WITH instruction parses a specified expression, such as a literal string, into one or
more variables whose names follow the WITH subkeyword.

PARSE VALUE 'Knowledge is power.' WITH word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

PARSE VALUE does not translate character information to uppercase before assigning it into variables. If
you want uppercase translation, use PARSE UPPER VALUE. You could use a variable instead of a string in
PARSE VALUE (you would first assign the variable the value):

string='Knowledge is power.'
PARSE VALUE string WITH word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

Or you can use PARSE VAR to parse a variable.

84 REXX for CICS Transaction Server: User Guide and Reference

PARSE VAR instruction

The PARSE VAR instruction parses a specified variable into one or more variables.

quote = 'Knowledge is power.'
PARSE VAR quote word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

PARSE VAR does not translate character information to uppercase before assigning it into variables. If you
want uppercase translation, use PARSE UPPER VAR.

More about parsing into words
The behavior when the number of words in the data to parse is not the same as the number of variables in
the template is described.

In the examples in the previous topic, the number of words in the data to parse is always the same as the
number of variables in the template. Parsing always assigns new values to all variables named in the
template. If there are more variable names than words in the data to parse, the leftover variables receive
null (empty) values. If there are more words in the data to parse than variable names in the template,
each variable gets one word of data in sequence except the last variable, which gets the remainder of the
data.

In the next example, there are more variable names in the template than words of data; the leftover
variable receives a null value.

PARSE VALUE 'Extra variables' WITH word1 word2 word3
 /* word1 contains 'Extra' */
 /* word2 contains 'variables' */
 /* word3 contains '' */

In the next example there are more words in the data than variable names in the template; the last
variable gets the remainder of the data. The last variable name can contain several words and possibly
leading and trailing blanks.

PARSE VALUE 'More words in data' WITH var1 var2 var3
 /* var1 contains 'More' */
 /* var2 contains 'words' */
 /* var3 contains ' in data' */

Parsing into words generally removes leading and trailing blanks from each word before putting it into a
variable. However, when putting data into the last variable, parsing removes one word-separator blank
but retains any extra leading or trailing blanks. There are two leading blanks before words. Parsing
removes both the word-separator blank and the extra leading blank before putting 'words' into var2.
There are four leading blanks before in. Because var3 is the last variable, parsing removes the word-
separator blank but keeps the extra leading blanks. Thus, var3 receives ' in data' (with three leading
blanks).

A period in a template acts as a placeholder. It receives no data. You can use a period as a "dummy
variable" within a group of variables, or at the end of a template to collect unwanted information.

string='Example of using placeholders to discard junk'
PARSE VAR string var1 . var2 var3 .
 /* var1 contains 'Example' */
 /* var2 contains 'using' */
 /* var3 contains 'placeholders' */
 /* The periods collect the words 'of' and 'to discard junk' */

For more information about parsing instructions, see PARSE.

Chapter 6. Manipulating Data 85

Parsing with patterns
The simplest template is a group of blank-separated variable names. This parses data into blank-
delimited words. Templates can also contain patterns. A pattern can be a string, a number, or a variable
representing either of these.

String

If you use a string in a template, parsing checks the input data for a matching string. When assigning data
into variables, parsing generally skips over the part of the input string that matches the string in the
template.

phrase = 'To be, or not to be?' /* phrase containing comma */
PARSE VAR phrase part1 ',' part2 /* template containing comma */
 /* as string separator */
 /* part1 contains 'To be' */
 /* part2 contains ' or not to be?' */

In this example, notice that the comma is not included with 'To be' because the comma is the string
separator. (Notice also that part2 contains a value that begins with a blank. Parsing splits the input string
at the matching text. It puts data up to the start of the match in one variable and data starting after the
match in the next variable.

Variable

When you do not know in advance what string to specify as separator in a template, you can use a variable
enclosed in parentheses.

separator = ','
phrase = 'To be, or not to be?'
PARSE VAR phrase part1 (separator) part2
 /* part1 contains 'To be' */
 /* part2 contains ' or not to be?' */

Again, in this example, notice that the comma is not included with 'To be' because the comma is the
string separator.

Number

You can use numbers in a template to indicate the column at which to separate data. An unsigned integer
indicates an absolute column position. A signed integer indicates a relative column position.

An unsigned integer or an integer with the prefix of an equal sign (=) separates the data according to
absolute column position. The first segment starts at column 1 and goes up to, but does not include, the
information in the column number specified. Subsequent segments start at the column numbers
specified.

quote = 'Ignorance is bliss.'
 +....1....+....2
PARSE VAR quote part1 5 part2
 /* part1 contains 'Igno' */
 /* part2 contains 'rance is bliss.' */

The following code has the same result:

quote = 'Ignorance is bliss.'
 +....1....+....2
PARSE VAR quote 1 part1 =5 part2
 /* part1 contains 'Igno' */
 /* part2 contains 'rance is bliss.' */

Specifying the numeric pattern 1 is optional. If you do not use a numeric pattern to indicate a starting
point for parsing, this defaults to 1. The example also shows that the numeric pattern 5 is the same as =5.

If a template has several numeric patterns and a later one is lower than a preceding one, parsing loops
back to the column the lower number specifies.

86 REXX for CICS Transaction Server: User Guide and Reference

quote = 'Ignorance is bliss.'
 +....1....+....2

 PARSE VAR quote part1 5 part2 10 part3 1 part4
 /* part1 contains 'Igno' */
 /* part2 contains 'rance' */
 /* part3 contains ' is bliss.' */
 /* part4 contains 'Ignorance is bliss.' */

When each variable in a template has column numbers both before and after it, the two numbers indicate
the beginning and the end of the data for the variable.

quote = 'Ignorance is bliss.'
 +....1....+....2

PARSE VAR quote 1 part1 10 11 part2 13 14 part3 19 1 part4 20
 /* part1 contains 'Ignorance' */
 /* part2 contains 'is' */
 /* part3 contains 'bliss' */
 /* part4 contains 'Ignorance is bliss.' */

Thus, you could use numeric patterns to skip over part of the data:

quote = 'Ignorance is bliss.'
 +....1....+....2

PARSE VAR quote 2 var1 3 5 var2 7 8 var3 var 4 var5
SAY var1||var2||var3 var4 var5 /* || means concatenate */
 /* Says: grace is bliss. */

A signed integer in a template separates the data according to relative column position. The plus or minus
sign indicates movement right or left, respectively, from the starting position. In the next example,
remember that part1 starts at column 1 (by default because there is no number to indicate a starting
point).

quote = 'Ignorance is bliss.'
 +....1....+....2

PARSE VAR quote part1 +5 part2 +5 part3 +5 part4
 /* part1 contains 'Ignor' */
 /* part2 contains 'ance ' */
 /* part3 contains 'is bl' */
 /* part4 contains 'iss.' */

+5 part2 means parsing puts into part2 data starting in column 6 (1+5=6). +5 part3 means data put
into part3 starts with column 11 (6+5=11), and so on. The use of the minus sign is similar to the use of
the plus sign. It identifies a relative position in the data string. The minus sign "backs up" (moves to the
left) in the data string.

quote = 'Ignorance is bliss.'
 +....1....+....2
PARSE VAR quote part1 +10 part2 +3 part3 -3 part4
 /* part1 contains 'Ignorance ' */
 /* part2 contains 'is ' */
 /* part3 contains 'bliss.' */
 /* part4 contains 'is bliss.' */

In this example, part1 receives characters starting at column 1 (by default). +10 part2 receives
characters starting in column 11 (1+10=11). +3 part3 receives characters starting in column 14
(11+3=14). -3 part4 receives characters starting in column 11 (14-3=11).

To provide more flexibility, you can define and use variable numeric patterns in a parsing instruction. To
do this, first define the variable as an unsigned integer before the parsing instruction. Then, in the parsing
instruction, enclose the variable in parentheses and specify one of the following before the left
parenthesis:

• A plus sign (+) to indicate column movement to the right
• A minus sign (-) to indicate column movement to the left

Chapter 6. Manipulating Data 87

• An equal sign (=) to indicate an absolute column position.

(Without + , - , or = before the left parenthesis, the language processor would consider the variable to be
a string pattern.) The following example uses the variable numeric pattern movex.

quote = 'Ignorance is bliss.'
 +....1....+....2

movex = 3 /* variable position */
PARSE VAR quote part5 +10 part6 +3 part7 -(movex) part8
 /* part5 contains 'Ignorance ' */
 /* part6 contains 'is ' */
 /* part7 contains 'bliss.' */
 /* part8 contains 'is bliss.' */

For more information about parsing, see Parsing.

Parsing multiple strings as arguments
When passing arguments to a function or a subroutine, you can specify multiple strings to be parsed. The
ARG, PARSE ARG, and PARSE UPPER ARG instructions parse arguments. These are the only parsing
instructions that work on multiple strings.

To pass multiple strings, use commas to separate adjacent strings.

The next example passes three arguments to an internal subroutine.

CALL sub2 'String One', 'String Two', 'String Three'
:
:
EXIT

sub2:
PARSE ARG word1 word2 word3, string2, string3
 /* word1 contains 'String' */
 /* word2 contains 'One' */
 /* word3 contains '' */
 /* string2 contains 'String Two' */
 /* string3 contains 'String Three' */

The first argument is two words String One to parse into three variable names, word1, word2, and
word3. The third variable, word3, is set to null because there is no third word. The second and third
arguments are parsed entirely into variable names string2 and string3.

For more information about parsing multiple arguments that have been passed to a program or
subroutine, see Parsing multiple strings.

Exercise - practise with parsing

What are the results of the following parsing examples?

1. quote = 'Experience is the best teacher.'
PARSE VAR quote word1 word2 word3

a) word1 =
b) word2 =
c) word3 =

2. quote = 'Experience is the best teacher.'
PARSE VAR quote word1 word2 word3 word4 word5 word6

a) word1 =
b) word2 =
c) word3 =
d) word4 =
e) word5 =
f) word6 =

88 REXX for CICS Transaction Server: User Guide and Reference

3. PARSE VALUE 'Experience is the best teacher.' WITH word1 word2 . .
word3

a) word1 =
b) word2 =
c) word3 =

4. PARSE VALUE 'Experience is the best teacher.' WITH v1 5 v2
 +....1....+....2....+....3.

a) v1 =
b) v2 =

5. quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

PARSE VAR quote v1 v2 15 v3 3 v4

a) v1 =
b) v2 =
c) v3 =
d) v4 =

6. quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

PARSE UPPER VAR quote 15 v1 +16 =12 v2 +2 1 v3 +10

a) v1 =
b) v2 =
c) v3 =

7. quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

PARSE VAR quote 1 v1 +11 v2 +6 v3 -4 v4

a) v1 =
b) v2 =
c) v3 =
d) v4 =

8.
first = 7
quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

PARSE VAR quote 1 v1 =(first) v2 +6 v3

a) v1 =
b) v2 =
c) v3 =

9. quote1 = 'Knowledge is power.'
quote2 = 'Ignorance is bliss.'
quote3 = 'Experience is the best teacher.'
CALL sub1 quote1, quote2, quote3
EXIT

sub1:
PARSE ARG word1 . . , word2 . . , word3 .

a) word1 =
b) word2 =
c) word3 =

Chapter 6. Manipulating Data 89

ANSWERS

1. a) word1 = Experience
b) word2 = is
c) word3 = the best teacher.

2. a) word1 = Experience
b) word2 = is
c) word3 = the
d) word4 = best
e) word5 = teacher.
f) word6 = ''

3. a) word1 = Experience
b) word2 = is
c) word3 = teacher.

4. a) v1 = Expe
b) v2 = rience is the best teacher.

5. a) v1 = Experience
b) v2 = is (Note that v2 contains 'is ' .)
c) v3 = the best teacher.
d) v4 = perience is the best teacher.

6. a) v1 = THE BEST TEACHER
b) v2 = IS
c) v3 = EXPERIENCE

7. a) v1 = 'Experience '
b) v2 = 'is the'
c) v3 = ' best teacher.'
d) v4 = ' the best teacher.'

8. a) v1 = 'Experi'
b) v2 = 'ence i'
c) v3 = 's the best teacher.'

9. a) word1 = Knowledge
b) word2 = Ignorance
c) word3 = Experience

90 REXX for CICS Transaction Server: User Guide and Reference

Chapter 7. Using commands from a program
This section describes the use of commands in a REXX program.

The main categories of commands are:
REXX/CICS commands

These commands provide access to miscellaneous REXX/CICS facilities. See REXX/CICS Commands.
CICS commands

These commands implement the EXEC CICS commands that application programs use to access CICS
services. See CICS command summary.

Be aware that if restricted commands and keywords are defined in CICS TS 5.5 or later, those
restrictions do not apply to EXEC CICS commands called from a REXX program. For details, see
Controlling the use of specific CICS API and SPI commands.

SQL statements
These statements are prepared and executed dynamically. See REXX/CICS DB2 interface.

EDIT commands
These commands invoke the editor facilities from the REXX/CICS macros. See REXX/CICS text editor.

RFS commands
These commands are for the REXX File System (RFS). See REXX/CICS File System.

RLS commands
These commands are for the REXX List System (RLS). See REXX/CICS List System.

When a program issues a command, the REXX special variable RC is set to the return code. A program can
use the return code to determine a course of action within the program. Every time a command is issued,
RC is set. Therefore, RC contains the return code from the most recently issued command.

Using quotation marks in commands
Generally, to differentiate commands from other types of instructions, you enclose the command within
single or double quotation marks. If the command is not enclosed within quotation marks, it is processed
as an expression and might end in error. For example, the language processor treats an asterisk (*) as a
multiplication operator.

Many CICS commands use single quotation marks within the command. For this reason, it is
recommended that, as a matter of course, you enclose CICS commands within double quotation marks.

The following example places the word test in the temporary storage queue ABC.

"CICS WRITEQ TS QUEUE('ABC') FROM('test')"

Using variables in commands
When a command contains a variable, the value of the variable is not substituted if the variable is within
quotation marks. The language processor uses the value of a variable only for variables outside quotation
marks.

© Copyright IBM Corp. 1974, 2020 91

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_commandsummary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/configuring/cics/config-cics-api-restrict-file.html

Calling another REXX program as a command
You can call another program as an external routine, or you can call a program from another program
explicitly with the EXEC command.

“Subroutines and functions” on page 62 discussed how to call another program as an external routine.
You can also call a program from another program explicitly with the EXEC command. Like an external
routine, a program called explicitly or implicitly can return a value to the caller with the RETURN or EXIT
instruction. Unlike an external routine, which passes a value to the special variable RESULT, the program
that is called passes a value to the REXX special variable RC.

To explicitly call another program from within a program, use the EXEC command as you would any other
REXX/CICS command. The called program should end with a RETURN or EXIT instruction, ensuring that
control returns to the caller. The REXX special variable RC is set to the return code from the EXEC
command. You can optionally return a value to the caller on the RETURN or EXIT instruction. When
control passes back to the caller, the REXX special variable RC is set to the value of the expression
returned on the RETURN or EXIT instruction.

For example, to call a program named CALC and pass it an argument of four numbers, you could include
the following instructions:

"EXEC calc 24 55 12 38"
SAY 'The result is' RC

CALC might contain the following instructions:

ARG number1 number2 number3 number4
answer = number1 * (number2 + number3) - number4
RETURN answer

Issuing commands from a program
Discover what a host command environment is, how commands are passed to host command
environments, and how to change the host command environment.

About this task

An environment for executing commands is called a host command environment. Before a program runs,
an active host command environment is defined to handle the commands. When the language processor
encounters a command, it passes the command to the host command environment for processing.

When a REXX program runs on a host system, there is at least one default environment available for
executing commands.

The host command environment are as follows:
REXXCICS

This is the default REXX/CICS command environment. All REXX/CICS, SQL, EDIT, RFS, or RLS
commands can be issued from this environment. However, CICS commands must be prefixed with
CICS, SQL statements with EXECSQL, EDIT commands with EDITSVR, RFS commands with RFS, and
RLS commands with RLS.

CICS
This is an optional environment that only issues CICS commands. The first word of the host command
string is the command name (for example: SEND, RECEIVE).

EXECSQL
This is an optional environment that issues SQL statements (SELECT) to the CICS/Db2® interface.

EDITSVR
This is an optional environment that creates the edit session.

92 REXX for CICS Transaction Server: User Guide and Reference

FLSTSVR
This is an optional environment that executes commands for the File List Utility.

RFS
This is an optional environment that executes commands for the REXX File System.

RLS
This is an optional environment that executes commands for the REXX List System.

Note: It is recommended that the default environment of REXXCICS is used for all commands (that is, the
ADDRESS instruction should not be specified).

How is a command passed to the host environment?
The language processor evaluates each expression in a REXX program. This evaluation results in a
character string (which may be the null string). The character string is prepared appropriately and
submitted to the host command environment. The environment processes the string as a command, and,
after processing is complete, returns control to the language processor. If the string is not a valid
command for the current host command environment, a failure occurs and the special variable RC
contains the return code from the host command environment.

Changing the host command environment
You can change the host command environment from the default environment (REXXCICS) or from
whatever environment was previously established.

To change the host command environment, use the ADDRESS instruction followed by the name of an
environment.

The ADDRESS instruction has two forms; one affects only a single command, and one affects all
commands issued after the instruction.

• Single command

When an ADDRESS instruction includes both the name of the host command environment and a
command, only that command is sent to the specified environment. After the command is complete the
former host command environment becomes active again.

• All commands

When an ADDRESS instruction includes only the name of the host command environment, all
commands issued afterward within that host command environment are processed as that
environment's commands.

This ADDRESS instruction affects only the host command environment of the program that uses the
instruction. If a program calls an external routine, the host command environment is the default
environment regardless of the host command environment of the calling program. Upon return to the
original program, the host command environment that the ADDRESS instruction previously established
is resumed.

Determining the active host command environment

To find out which host command environment is currently active, use the ADDRESS built-in function. For
example:

curenv = ADDRESS()

In this example, curenv is set to the active host command environment, for example, REXXCICS.

Chapter 7. Using commands from a program 93

94 REXX for CICS Transaction Server: User Guide and Reference

Chapter 8. Diagnosing problems in a program
When you encounter an error in a program, there are several ways to locate the error.

• The TRACE instruction shows how the language processor evaluates each operation. For information
about using the TRACE instruction to evaluate expressions, see “Tracing expressions with the TRACE
instruction” on page 95. For information about using the TRACE instruction to evaluate host
commands, see “Tracing commands with the TRACE instruction” on page 97.

• REXX/CICS sets the special variables RC and SIGL as follows:
RC

Indicates the return code from a command.
SIGL

Indicates the line number from which there was a transfer of control because of a function call, a
SIGNAL instruction, or a CALL instruction.

Tracing expressions with the TRACE instruction
You can use the TRACE instruction to show how the language processor evaluates each operation of an
expression as it reads it, or to show the final result of an expression. These two types of tracing are useful
for debugging programs.

Tracing operations

To trace operations within an expression, use the TRACE I (TRACE Intermediates) form of the TRACE
instruction. The language processor breaks down all expressions that follow the instruction and analyzes
them as:
>V> Variable value

The data traced is the contents of a variable.
>L> Literal value

The data traced is a literal (string, uninitialized variable, or constant).
>O> Operation result

The data traced is the result of an operation on two terms.

The following example uses the TRACE I instruction. (The line numbers are not part of the program. They
facilitate the discussion of the example that follows it.)

 1 /************************* REXX ***************************/
 2 /* This program uses the TRACE instruction to show how */
 3 /* an expression is evaluated, operation by operation. */
 4 /**/
 5 a = 9
 6 y = 2
 7 TRACE I
 8
 9 IF a + 1 > 5 * y THEN
10 SAY 'a is big enough.'
11 ELSE NOP /* No operation on the ELSE path */

Figure 42. TRACE Shows How REXX Evaluates an Expression

When you run the example, the SAY instruction produces:

9 *-* IF a + 1 > 5 * y
>V> "9"
>L> "1"
>O> "10"
>L> "5"
>V> "2"

© Copyright IBM Corp. 1974, 2020 95

>O> "10"
>O> "0"

The 9 is the line number. The *-* indicates that what follows is the data from the program,
IF a + 1 < 5 * y . The remaining lines break down all the expressions.

Tracing results

To trace only the final result of an expression, use the TRACE R (TRACE Results) form of the TRACE
instruction. The language processor analyzes all expressions that follow the instruction as follows:

>>> Final result of an expression

If you changed the TRACE instruction operand in the previous example from an I to an R, you would see
the following results.

9 *-* IF a + 1 > 5 * y
 >>> "0"

In addition to tracing operations and results, the TRACE instruction offers other types of tracing. See
TRACE.

Exercises: using the TRACE instruction

Write a program with a complex expression, such as:

IF (a > z) | (c < 2 * d) THEN

Define a , z , c , and d in the program and use the TRACE I instruction.

ANSWER

/****************************** REXX ********************************/
/* This program uses the TRACE nstruction to show how the language */
* processor evaluates an expression, operation by operation. */
/**/
a = 1
z = 2
c = 3
d = 4

TRACE I

IF (a > z) | (c < 2 * d) THEN
 SAY 'At least one expression was true.'
ELSE
 SAY 'Neither expression was true.'

Figure 43. Possible solution

When you run this program, it produces:

 12 *-* IF (a > z) | (c < 2 * d)
 >V> "1"
 >V> "2"
 >O> "0"
 >V> "3"
 >L> "2"
 >V> "4"
 >O> "8"
 >O> "1"
 >O> "1"
 - THEN
 13 *-* SAY 'At least one expression was true.'
 >L> "At least one expression was true."
At least one expression was true.

96 REXX for CICS Transaction Server: User Guide and Reference

Tracing commands with the TRACE instruction
The TRACE instruction has many options for various types of tracing, including C for commands and E for
errors.

TRACE C

After TRACE C, the language processor traces each command before execution, then executes it and
sends the return code from the command to the current terminal output device. For more information on
specifying the current terminal output device, refer to the SET TERMOUT command. See SET.

TRACE E

When you specify TRACE E in a program, the language processor traces any host command that results in
a nonzero return code after execution and sends the return code from the command to the terminal.

If a program includes TRACE E and issues an incorrect command, the program sends error messages ,the
line number, the command, and the return code from the command to the output stream.

For more information about the TRACE instruction, see TRACE.

Using REXX special variables RC and SIGL
The REXX language has three special variables: RC, SIGL, and RESULT. REXX/CICS sets these variables
during particular situations and you can use them in an expression at any time.

If REXX/CICS did not set a value, a special variable has the value of its own name in uppercase, as do
other variables in REXX. You can use two special variables, RC and SIGL, to help diagnose problems in
programs.

RC

RC stands for return code. The language processor sets RC every time a program issues a command.
When a command ends without error, RC is usually 0. When a command ends in error, RC is whatever
return code is assigned to that error.

The RC variable can be especially useful in an IF instruction to determine which path a program should
take.

Note: Every command sets a value for RC, so it does not remain the same for the duration of a program.
When using RC, make sure it contains the return code of the command you want to test.

SIGL

The language processor sets the SIGL special variable in connection with a transfer of control within a
program because of a function, a SIGNAL or a CALL instruction. When the language processor transfers
control to another routine or another part of the program , it sets the SIGL special variable to the line
number from which the transfer occurred. (The line numbers in the following example are to aid in
discussion after the example. They are not part of the program.)

1 /* REXX */
2 :
3 CALL routine
4 :
5
6 routine:
7 SAY 'We came here from line' SIGL /* SIGL is set to 3 */
8 RETURN

If the called routine itself calls another routine, SIGL is reset to the line number from which the most
recent transfer occurred.

Chapter 8. Diagnosing problems in a program 97

SIGL and the SIGNAL ON ERROR instruction can help determine which command caused an error and
what the error was. When SIGNAL ON ERROR is in a program, any host command that returns a nonzero
return code causes a transfer of control to a routine named error. The error routine runs regardless of
other actions that would usually take place, such as the transmission of error messages.

For more information about the SIGNAL instruction, see SIGNAL.

Tracing with the interactive debug facility
The interactive debug facility lets a user control the execution of a program. The language processor
reads from the terminal, and writes output to the terminal.

Starting interactive debug

To start interactive debug, specify ? before the option of a TRACE instruction, for example: TRACE ?A.
There can be no blank(s) between the question mark and the option. Interactive debug is not carried over
into external routines that are called but is resumed when the routines return to the traced program .

Options in interactive debug

After interactive debug starts, you can provide one of the following during each pause or each time the
language processor reads from the input stream.

• A null line, which continues tracing. The language processor continues execution until the next pause or
read from the input stream. Repeated input of a null line, therefore, steps from pause point to pause
point until the program ends.

• An equal sign (=), which re-executes the last instruction traced. The language processor re-executes
the previously traced instruction with values possibly modified by instructions read from the input
stream. (The input can also be an assignment, which changes the value of a variable.)

• Additional instructions. This input can be any REXX instruction, including a command or call to another
program. This input is processed before the next instruction in the program is traced. For example, the
input could be a TRACE instruction that alters the type of tracing:

TRACE L /* Makes the language processor pause at labels only */

The input could be an assignment instruction. This could change the flow of a program, by changing the
value of a variable to force the execution of a particular branch in an IF THEN ELSE instruction. In the
following example, RC is set by a previous command.

IF RC = 0 THEN
 DO
 instruction1
 instruction2
 END
ELSE
 instructionA

If the command ends with a nonzero return code, the ELSE path is taken. To force taking the first path,
the input during interactive debug could be:

RC = 0

Ending interactive debug

You can end interactive debug in one of the following ways:

• Use the TRACE OFF instruction as input. The TRACE OFF instruction ends tracing, as stated in the
message at the beginning of interactive debug:

+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

98 REXX for CICS Transaction Server: User Guide and Reference

• Use the TRACE ? instruction as input.

The question mark prefix before a TRACE option can end interactive debug as well as beginning it. The
question mark reverses the previous setting (on or off) for interactive debug. Thus you can use TRACE ?
R within a program to start interactive debug, and provide input of another TRACE instruction with ?
before the option to end interactive debug but continue tracing with the specified option.

• Use TRACE with no options as input. If you specify TRACE with no options in the input stream, this turns
off interactive debug but continues tracing with TRACE Normal in effect. (TRACE Normal traces only
failing commands after execution.)

• Let the program run until it ends. Interactive debug automatically ends when the program that started
tracing ends. You can end the program prematurely using as input an EXIT instruction. The EXIT
instruction ends both the program and interactive debug.

Saving Interactive TRACE Output
REXX/CICS provides the ability to route trace output to a file.

The REXX command SET TERMOUT routes linemode output (such as SAY and TRACE output) to a file
instead of, or in addition to, the current terminal device. See SET.

Chapter 8. Diagnosing problems in a program 99

100 REXX for CICS Transaction Server: User Guide and Reference

Chapter 9. Using the REXX/CICS help utility
REXX/CICS includes an online help utility that you can use to search for and display the product
documentation that is supplied with REXX/CICS.

About this task

The help utility provides a table of contents, help topics, and a search results panel.

It is advisable to check the REXX for CICS Transaction Server product documentation that is supplied with
the latest release of the CICS Transaction Server for z/OS® product information for any updates that are
more recent than the online product documentation.

Procedure

Accessing help
• You can access help in the following ways:

• From the CICS environment, enter REXX CICHELP. The help table of contents is displayed.
• From the REXX/CICS interactive environment (you previously entered the CICS transaction REXX

with no parameters), enter HELP. The help table of contents is displayed.
• From the REXX/CICS text editor, enter HELP or press F1 (HELP). Help about that editor is displayed.
• From the File List Utility, enter HELP or press F1 (HELP). Help about that utility is displayed.

Accessing a help topic
• You can access a help topic in the following ways:

• From the REXX/CICS interactive environment, enter HELP followed by a search string for a topic
title, for example HELP TRANSLATE. The first help topic with the search string, in upper-case, in its
title is displayed.

This method can be useful to find help for specific REXX commands, functions, or keywords.
• Access the help table of contents, as described earlier, then select a topic from the list. Either

position the cursor on the line for the topic you want to select, or enter the line number for the topic
in the input field, then press Enter. The selected topic is displayed.

• Access the help table of contents, as described earlier, then enter a search string. All topics that
contain the search string are listed in a search results panel. The search is not case-sensitive. In
most cases, the search results panel shows both the topic name and the parent topic. For example,
if you search for ADDRESS, the result is shown as follows:

Keyword instructions > ADDRESS

To select a topic from the list, either position the cursor on the line for the topic you want to select,
or enter the line number for the topic in the input field, then press Enter. The selected topic is
displayed.

To display all the topics that are listed in the search results panel, enter ALL in the input field.
Scrolling through the table of contents, help topics, or the search results panel
• To scroll forward to the next screen, press F8 (FORWARD).

If you are at the end of the current help topic, the following message is displayed:

End of topic -- press F8 for next topic

If you are at the end of the table of contents or the search results panel, the following message is
displayed:

© Copyright IBM Corp. 1974, 2020 101

https://www.ibm.com/support/knowledgecenter/SSGMGV

Already at the bottom

• To scroll forward by part of a screen, position the cursor on a line in the help screen, then press F8
(FORWARD).
The selected line becomes the first line that is displayed on the help screen.

• To scroll backward to the previous screen, press F7 (BACKWARD).
If you are at the start of the current help topic, the following message is displayed:

Start of topic -- press F7 for previous topic

If you are at the start of the table of contents or the search results panel, the following message is
displayed:

Already at the top

• To scroll backward by part of a screen, position the cursor on a line in the help screen, then press F7
(BACKWARD).
The selected line becomes the last line that is displayed on the help screen.

Exiting from help, a help topic, or a search results panel
• To exit from help, a help topic, or a search results panel, press F3 (END function). You return to the

previous screen that you used.

For example, if the table of contents is displayed and you press F3, you might return to the CICS
environment or the REXX/CICS environment, depending on how you accessed help. If a topic is
displayed and you press F3, you might return to a search results panel or the help table of contents,
depending on how you accessed the help topic.

102 REXX for CICS Transaction Server: User Guide and Reference

Chapter 10. Programming Style and Techniques
The method you use for constructing your programs is just as important as the language you use to write
them.

Consider the data

When you are faced with the task of writing a program, the first thing to consider is the data you are
required to process. Make a list of the input data. What are the items and what are the possible values of
each? If the items have a kind of structure or pattern, draw a diagram to illustrate it. Then do the same for
the output data. Study your two diagrams and try to see if they fit together. If they do, you are well on the
way to designing your program.

Next, write the specification that the user will use. This might be a written specification, a HELP file or
both.

Last of all, write your program.

Here is an example:

You are required to write an interactive program that invites the user to play "Heads or tails" . The
game can be played as long as the user likes. To end the game the user should reply Quit in answer to
the question "Heads or tails?" The program is arranged so that the computer always wins.

Think about how you would write this program.

The computer starts off with:

Let's play a game! Type "Heads", "Tails",
or "Quit"
and press ENTER.

This means that there are four possible inputs:

• HEADS
• TAILS
• QUIT
• None of these three.

And so the corresponding outputs should be:

• Sorry. It was TAILS. Hard luck!
• Sorry. It was HEADS. Hard luck!
• That's not a valid answer. Try again!

And this sequence must be repeated indefinitely, ending with the return to CICS.

Now that you understand the specification, the input data and the output data, you are ready to write the
program.

If you had started by writing down some instructions without considering the data, it would have taken
you longer.

© Copyright IBM Corp. 1974, 2020 103

Test yourself
Write the program. If you are careful, it should run the first time!

/* CON EXEC */

/* Tossing a coin. The machine is lucky, not the user */

do forever
 say "Let's play a game! Type 'Heads', 'Tails'",
 "or 'Quit' and press ENTER."
 pull answer

 select
 when answer = "HEADS"
 then say "Sorry! It was TAILS. Hard luck!"
 when answer = "TAILS"
 then say "Sorry! It was HEADS. Hard luck!"
 when answer = "QUIT"
 then exit
 otherwise
 say "That's not a valid answer. Try again!"
 end
 say
end

Happy Hour
Here is a chance to have some fun. This is a very simple arcade game.

Type it in and play it with your friends. Later, you may want to improve it.

104 REXX for CICS Transaction Server: User Guide and Reference

/* CATMOUSE */

/* The user says where the mouse is to go. But where */
/* will the cat jump? */

say "This is the mouse ----------> @"
say "These are the cat's paws ---> ()"
say "This is the mousehole ------> O"
say "This is a wall -------------> |"
say
say "You are the mouse. You win if you reach",
 "the mousehole. You cannot go past"
say "the cat. Wait for him to jump over you.",
 "If you bump into him you're caught!"
say
say "The cat always jumps towards you, but he's not",
 "very good at judging distances."
say "If either player hits the wall he misses a turn."
say
say "Enter a number between 0 and 2 to say how far to",
 "the right you want to run."
say "Be careful, if you enter a number greater than 2 then",
 "the mouse will freeze and the cat will move!"
say

/*--*/
/* Parameters that can be changed to make a different */
/* game */
/*--*/
len = 14 /* length of corridor */
hole = 14 /* position of hole */
spring = 5 /* maximum distance cat can jump */
mouse = 1 /* mouse starts on left */
cat = len /* cat starts on right */
/*--*/
/* Main program */
/*--*/
do forever
 call display
 /*---*/
 /* Mouse's turn */
 /*---*/
 pull move
 if datatype(move,whole) & move >= 0 & move <= 2
 then select
 when mouse + move > len then nop /* hits wall */
 when cat > mouse,
 & mouse + move >= cat /* hits cat */
 then mouse = cat
 otherwise /* moves */
 mouse = mouse + move
 end
 if mouse = hole then leave /* reaches hole */
 if mouse = cat then leave /* hits cat */
 /*---*/
 /* Cat's turn */
 /*---*/
 jump = random(1,spring)
 if cat > mouse then do /* cat tries to jump left */
 Temp = cat - jump
 if Temp < 1 then nop /* hits wall */
 else cat = Temp
 end
 else do /* cat tries to jump right */
 if cat + jump > len then nop /* hits wall */
 else cat = cat + jump
 end
 if cat = mouse then leave
end
/*--*/
/* Conclusion */
/*--*/
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/* Design note: each position in the corridor occupies */
/* three character positions on the screen. */
/*--*/
display:
corridor = copies(" ",3*len) /* corridor */
corridor = overlay("O",corridor,3*hole-1) /* hole */

if mouse ¬= len /* mouse in hole? */
then corridor = overlay("@",corridor,3*mouse-1)/* mouse */

corridor = overlay("(",corridor,3*cat-2) /* cat */
corridor = overlay(")",corridor,3*cat)
say " |"corridor"|"
return

Figure 44. CATMOUSE

Chapter 10. Programming Style and Techniques 105

Good job! Now, take a while to put your new skills into action, or continue reading.

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Designing a program
Still thinking about method , which is just as important as language , let us take another look at
CATMOUSE.

The program is about a cat and a mouse and their positions in a corridor. At some stage their positions
will have to be pictured on the screen. The whole thing is too complicated to think about all at once; the
first step is to break it down into:

• Main program : calculate their positions
• Display subroutine : display their positions.

Now let us look at main program. The user (who plays the mouse) will want to see where everybody is
before making a move. The cat will not. The next step is to break the main program down further, into:

Do forever
 call Display
 Mouse's move
 Cat's move
end
Conclusion

Methods for designing loops
The method for designing loops is to ask two questions: will it always end, and whenever it terminates,
will the data meet the conditions required?

In the CATMOUSE example, the loop terminates (and the game ends) when:

1. The mouse runs to the hole.
2. The mouse runs into the cat.
3. The cat catches the mouse.

The conclusion
At the end of the program, the user must be told what happened.

call display
say who won

What do we have so far?
Putting all this together, we have:

106 REXX for CICS Transaction Server: User Guide and Reference

/*--*/
/* Main program */
/*--*/
do forever
 call display
 /*---*/
 /* Mouse's turn */
 /*---*/
 ...

 if mouse = hole then leave /* reaches hole */
 if mouse = cat then leave /* hits cat */
 /*---*/
 /* Cat's turn */
 /*---*/
 ...

 if cat = mouse then leave
end

/*--*/
/* Conclusion */
/*--*/
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/*--*/
display:
...

The method that we have just discussed is sometimes called stepwise refinement. You start with a
specification (which may be incomplete). Then you divide the proposed program into routines, such that
each routine will be easier to code than the program as a whole. Then you repeat the process for each of
these routines until you reach routines that you are sure you can code correctly at the first attempt.

While you are doing this, keep asking yourself two questions:

• What data does this routine handle?
• Is the specification complete?

Step-wise refinement: an example
Breaking a job down into simpler jobs is called step-wise refinement.

Your grandmother is going to knit you a warm woolen garment to wear when you go sailing. This is what
she might do.

1. Knit front
2. Knit back
3. Knit left arm
4. Knit right arm
5. Sew pieces together.

Each of these jobs is simpler to describe than the job of knitting a pullover. In computer jargon, breaking a
job down into simpler jobs is called step-wise refinement.

At this stage, look at the specification again. A sailor might need to put on the pullover in the dark, quickly,
without worrying about the front or back. Therefore, the front should be the same as the back; and the
two sleeves should also be the same. This could be programmed:

do 2
 CALL Knit_body_panel
end

Chapter 10. Programming Style and Techniques 107

do 2
 CALL Knit_sleeve
end
CALL sew_pieces_together

In programming, the best method is to go on refining your program, working from the top, until you get
down to something that is easy to code.

Top down is the best approach.

Reconsider the Data
When you are refining your program, your objective is to make each piece simpler.

This almost certainly means:

• Simpler input data for each segment or routine
• Simpler output data for each segment or routine
• Simpler processing
• And, therefore, simpler code.

If your pieces really are simpler, they will probably have simpler names, too. For instance:

• Knit cuff

rather than

• Make ribbing for cuffs and waistband.

Correcting your program
You can use various techniques to correct your program.

If you cannot understand why your program gives the wrong results:

• You can modify your program so that it indicates what it is doing.
• You can use the REXX interactive trace facilities. See Interactive Debugging of Programs.

You can evaluate which technique you prefer to use.

Modifying Your Program
You can modify your program and put in extra instructions so that it tells you what is happening.

You can put extra instructions into your program, such as:

 ...
say "Checkpoint A. x =" x
 ...
say "End of first routine"
 ...

Tracing your program
You can use the REXX interactive trace facilities to understand what is happening in your program.

For details about the TRACE instruction, see TRACE.

• To find out where your program is going, use TRACE Labels. The example shows a program and the
trace it gives on the screen.

108 REXX for CICS Transaction Server: User Guide and Reference

/* ROTATE */

/* Example: two iterations of wheel, six iterations */
/* of cog. On the first three iterations, "x < 2" */
/* is true. On the next three, it is false. */
trace L
do x = 1 to 2
wheel:
 do 3
cog:
 if x < 2 then do
true:
 end
 else do
false:
 end
 end
end
done:

Figure 45. ROTATE

This gives the following trace:

rotate
 6 *-* wheel:
 8 *-* cog:
 10 *-* true:
 8 *-* cog:
 10 *-* true:
 8 *-* cog:
 10 *-* true:
 6 *-* wheel:
 8 *-* cog:
 13 *-* false:
 8 *-* cog:
 13 *-* false:
 8 *-* cog:
 13 *-* false:
 17 *-* done:

• To see how the language processor is computing expressions, use TRACE Intermediates.
• To find out whether you are passing the right data to a command or subroutine, use TRACE Results.
• To make sure that you get to see nonzero return codes from commands, use TRACE Errors.

Coding style
A program must be easy to read to ensure that you can read it and find out whether it is correct.

"Easy to read" means different things to different programmers. Here, we give examples of different
styles; you can choose the style you prefer. A very good way to check your program is to ask a colleague
to read it, so use a coding style that your colleagues find easy to read.

The following program fragment, from the example program in “Happy Hour” on page 104, is difficult to
read for most people.

Chapter 10. Programming Style and Techniques 109

/**/
/* SAMPLE #1: A portion of CATMOUSE */
/* not divided into segments and written with no */
/* indentation, and no comments. This style is not */
/* recommended. */
/**/

do forever
call display
pull move
if datatype(move,whole) & move >= 0 & move <=2
then select
when mouse+move > len then nop
when cat > mouse,
& mouse+move >= cat,
then mouse = cat
otherwise
mouse = mouse + move
end
if mouse = hole then leave
if mouse = cat then leave
jump = random(1,spring)
if cat > mouse then do
if cat-jump < 1 then nop
else cat = cat-jump
end
else do
if cat+jump > len then nop
else cat = cat+jump
end
if cat = mouse then leave
end
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

This next example is easier to read. It is divided into segments, each with its own heading. The comments
on the right are sometimes called remarks. They can help the reader get a general idea of what is going
on.

110 REXX for CICS Transaction Server: User Guide and Reference

/**/
/* SAMPLE #2: A portion of CATMOUSE */
/* divided into segments and written with 'some' */
/* indentation and 'some' comments. */
/**/

/**/
/* Main program */
/**/
do forever
 call display
 /***/
 /* Mouse's turn */
 /***/
 pull move
 if datatype(move,whole) & move >= 0 & move <=2
 then select
 when mouse+move > len then nop /* hits wall */
 when cat > mouse,
 & mouse + move >= cat, /* hits cat */
 then mouse = cat
 otherwise /* moves */
 mouse = mouse + move
 end
 if mouse = hole then leave /* reaches hole */
 if mouse = cat then leave /* hits cat */
 /**/
 /* Cat's turn */
 /**/
 jump = random(1,spring)
 if cat > mouse then do /* cat tries to jump left */
 if cat - jump < 1 then nop /* hits wall */
 else cat = cat - jump
 end
 else do /* cat tries to jump right */
 if cat + jump > len then nop /* hits wall */
 else cat = cat + jump
 end
 if cat = mouse then leave
end
/**/
/* Conclusion */
/**/
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

This next example has additional features that are popular with some programmers. Keywords written in
uppercase and a different indentation style highlight the structure of the code; the abundant comments
recall the detail of the specification.

Chapter 10. Programming Style and Techniques 111

/**/
/* SAMPLE #3: A portion of CATMOUSE */
/* divided into segments and written with 'more' */
/* indentation and 'more' comments. */
/* Note commands in uppercase (to highlight logic) */
/**/

/**/
/* Main program */
/**/
DO FOREVER
 CALL display
 /**********************************/
 /* Mouse's turn */
 /**********************************/
 PULL move
 IF datatype(move,whole) & move >= 0 & move <=2
 THEN SELECT
 WHEN mouse+move > len /* mouse hits wall */
 THEN nop /* and loses turn */
 WHEN cat > mouse,
 & mouse+move >= cat, /* mouse hits cat */
 THEN mouse = cat /* and loses game */
 OTHERWISE mouse = mouse + move /* mouse ... */
 END /* moves to new location */
 IF mouse = hole THEN LEAVE /* mouse is home safely */
 IF mouse = cat THEN LEAVE /* mouse hits cat (ouch) */
 /**********************************/
 /* Cat's turn */
 /**********************************/
 jump = RANDOM(1,spring) /* determine cat's move */
 IF cat > mouse /* cat must jump left */
 THEN DO
 IF cat-jump < 1 /* cat hits wall */
 THEN nop /* misses turn */
 ELSE cat = cat-jump /* cat jumps left */
 END
 ELSE DO /* cat must jump right */
 IF cat+jump > len /* cat hits wall */
 THEN nop /* misses turn */
 ELSE cat = cat+jump /* cat jumps right */
 END
 IF cat = mouse THEN LEAVE /* cat catches mouse */
END
/**/
/* Conclusion */
/**/
CALL display /* on final display */
 IF cat = mouse /* who won? */
 THEN say "Cat wins" /* ... the cat */
 ELSE say "Mouse wins" /* ... the mouse */
EXIT

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

112 REXX for CICS Transaction Server: User Guide and Reference

Part 2. Configuring REXX

This section introduces aspects of configuring and administering REXX.

© Copyright IBM Corp. 1974, 2020 113

114 REXX for CICS Transaction Server: User Guide and Reference

Chapter 11. Configuring REXX support
Before you can run a REXX program, you must configure the REXX support.

Use the following steps:

1. Create the RFS filepools.
2. Create resource definitions.
3. Review LSRPOOL definitions.
4. Update the CICSTART member.
5. Modify the CICS initialization JCL.
6. Verify the installation.
7. Format the RFS filepools.
8. Create the help files.
9. Configure the REXX Db2 interface.

Create the RFS filepools
The REXX Filing System (RFS) uses two or more filepools to store data.

These are implemented as sets of VSAM clusters. The supplied member, CICVSAM, in
CICSTS55.REXX.SCICJCL, creates the VSAM data sets for two RFS filepools. Change this job to reflect
your own environment as required. For example, you might change the data set names to match your
installation standards. After you complete the changes, run the job to define the filepools.

If you change any filepool names or add filepool components in the resource definitions, you must make
corresponding changes to the filepool definitions in your CICSTART member. See “Create resource
definitions” on page 115 and “Update the CICSTART member” on page 116.

Ensure that the following definitions are consistent:

• The filepool definitions in CICSTART
• The resource definitions in CICRDOD (for the for Development System) or CICRDOR (for the Runtime

Facility)
• The VSAM cluster definitions in CICVSAM

Create resource definitions
Definitions for profile, program, transaction, and file resources for REXX are in group CICREXX, which is in
the supplied or upgraded CSD.

The CICRDOR job, for the Runtime Facility, or the CICRDOD job, for the Development System, in the
CICSTS55.REXX.SCICJCL data set adds the entries that the product requires, including REXX/CICS
profiles, VSAM files, programs, transactions, and transient data queues.

The transient data queues are used for REXX/CICS IMPORT and EXPORT commands. The jobs also
contain the definitions for the REXX/CICS SQL interface that authorize the transactions to the Db2 plan.

Edit the JCL, ensuring that you uncomment the entries as explained in comments at the beginning of the
JCL, and run the job.

Modifying TD queues for IMPORT and EXPORT commands

The REXX/CICS environment uses dynamic allocation to IMPORT members from a partitioned data set or
to EXPORT RFS files to a partitioned data set.

© Copyright IBM Corp. 1974, 2020 115

The CICRDOD or CICRDOR member in the CICSTS55.REXX.SCICJCL data set defines three transient data
entries used as input for IMPORT and three transient data entries for output for EXPORT, so that three
users can concurrently IMPORT and three users can concurrently EXPORT from and to partitioned data
sets.

Modify the number of TDQ entries to suit your requirements, but allow for at least one input and one
output entry. The TDQUEUE NAME must begin with REX and be suffixed with a valid character. Do not
have other applications using TDQUEUE names that begin with REX, because IMPORT and EXPORT use
them and can cause files to become corrupted.

Review LSRPOOL definitions
Because the RFS files have a maximum key length of 252, and the supplied VSAM definitions use a
control interval size of 18K, it is important to check that the LSRPOOL used for the RFS supports these
values.

If you fail to do this, you might get an OPEN error on the system console. For more information, see
LSRPOOL resources and Local shared resources (LSR) or nonshared resources (NSR).

Update the CICSTART member
The CICSTART member, in the hlq.CICSTS55.REXX.SCICEXEC data set, contains default definitions for
the REXX/CICS environment. CICSTART runs when the first transaction that uses the CICS/REXX program
is issued, after the CICS system starts.

CICSTART holds the permanent configuration for the environment. Either edit the supplied CICSTART
member, or use it as a model for your own CICSTART exec.

• Initialization

Use the initialization statements that set pseudo-conversational mode off (PSEUDO OFF) and check an
RLS directory (RLS CKDIR) exactly as shown at the start of the supplied CICSTART member.

• Define RFS filepools

The supplied CICSTART member defines two filepools:

'FILEPOOL DEFINE POOL1 RFSDIR1 RFSPOOL1 (USER'
 IF RC ¬= 0 THEN EXIT RC
'FILEPOOL DEFINE POOL2 RFSDIR2 RFSPOOL2 (USER'
 IF RC ¬= 0 THEN EXIT RC

If you changed any filepool names or added any filepools during the step “Create the RFS filepools” on
page 115, make corresponding changes to the filepool definitions in your CICSTART exec.

• Authorise user IDs

The supplied CICSTART member authorizes the user ID RCUSER. Ensure that your CICSTART exec
includes commands to authorize the users in your organization who require it.

Include any users who need access to format the filepools, otherwise the FILEPOOL FORMAT command
will fail with return code of -4.

For a region where CICS security is turned off (that is, the SIT parameter SEC=NO), include an
AUTHUSER command in CICSTART for the CICS default user ID. For example, if the default user ID for
the region is SYSA, include the following command:

'AUTHUSER SYSA'

• Associate CICS transaction IDs with REXX execs as required

CICSTART must include DEFTRNID statements that associate CICS transaction IDs, as defined by CICS
DEFINE TRANSACTION commands, with the REXX execs they are intended to invoke. The supplied
CICSTART member associates the REXX, EDIT, and FLST transactions with CICRXTRY, CICEDIT, and

116 REXX for CICS Transaction Server: User Guide and Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/resources/lsrpool/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/tuning/dfht3c00200.html

CICFLST execs, respectively. These CICS transactions are defined in the CICRDOR and CICRDOD JCL
files. See “Create resource definitions” on page 115.

Your CICSTART exec must include DEFTRNID statements for any CICS transactions that you define to
run REXX/CICS transactions.

• Set defaults for running REXX execs

Include SETSYS commands that you require for the environment. For example, you can set the
language, the retrieve PF key, and the pseudo-conversational setting for running REXX/CICS execs in
your installation.

By default, pseudo-conversational mode is on (although the CICSTART exec itself must run in
conversational mode). For more information about pseudo-conversational mode, see PSEUDO and
Processing dialogs with users.

• Define the help paths

The supplied CICSTART member defines the help path HELPPTH2 for the current help utility, and, for
compatibility, the help path HELPPTH for the previous help facility:

HELPPATH = 'POOL2:\BOOK'
'RLS VARPUT HELPPATH \SYSTEM\DEFAULTS'
IF RC ¬= 0 THEN EXIT
HELPPTH2 = 'POOL2:\HELP'
'RLS VARPUT HELPPTH2 \SYSTEM\DEFAULTS'
IF RC ¬= 0 THEN EXIT RC

For a new installation, where the previous help facility is not installed, you can remove the three
statements that define HELPPTH.

• Use EXECLOAD to preload execs as required

You can include EXECLOAD statements to preload execs. When execs are preloaded,performance can
improve because the exec does not need to be loaded for each user, and less storage is required
because all concurrent users can share the same copy.

You can use the list of EXECLOAD commands in the supplied CICSTART member, or include EXECLOAD
commands for the execs that that you require.

The supplied CICSTART member contains EXECLOAD commands for the CICEDIT, CICESVR, and
CICEPROF execs. These execs are components of the REXX/CICS text editor, which you can use when
developing your own REXX programs, and that is part of the REXX Development System only. If your
installation uses the REXX/CICS text editor, you can include these EXECLOAD commands.

For more information, see EXECLOAD.

Modify the CICS initialization JCL
Add DD statements to your CICS startup job and the DFHRPL concatenation.

Add the following DD statements to your CICS startup job:

//CICAUTH DD DSN=CICSTS55.REXX.SCICCMDS,DISP=SHR
//CICEXEC DD DSN=CICSTS55.REXX.SCICEXEC,DISP=SHR
//CICUSER DD DSN=CICSTS55.REXX.SCICUSER,DISP=SHR

Add a DD statement for the REXX data sets to the DFHRPL concatenation:

//DFHRPL DD DSN=CICSTS55.REXX.SCICLOAD,DISP=SHR

The REXX/CICS environment uses three data set concatenations that do not have resource definitions in
CICS; the CICCMDS, CICEXEC, and CICUSER DD names. These data sets are partitioned data sets and are
accessed by using MVS facilities.

Chapter 11. Configuring REXX support 117

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/recovery/dfht232.html

CICCMDS
The CICCMDS DD name concatenation starts by referencing the CICSTS55.REXX.SCICCMDS data set.
This data set contains the execs that implement REXX/CICS environment authorized commands. Only
authorized users, or execs authorized to use authorized commands, can access these execs. If you
extend the REXX/CICS environment with your own authorized commands, concatenate your data set
to this DD name concatenation.

CICEXEC
The CICEXEC DD name concatenation starts by referencing the CICSTS55.REXX.SCICEXEC data set.
This data set contains the execs that are supplied by the REXX/CICS environment that use authorized
commands. If you extend the REXX/CICS environment with your own execs that use authorized
commands, concatenate your data set to this DD name concatenation.

CICUSER
The CICUSER DD name concatenation starts by referencing the CICSTS55.REXX.SCICUSER data set.
This data set contains the execs that are supplied by the REXX/CICS environment that do not use
authorized commands. If you extend the REXX/CICS environment with your own execs that do not use
authorized commands, concatenate your data set to this DD name concatenation.

The facilities used to access these data set concatenations use CICS WAIT EXTERNAL capabilities to
avoid placing the CICS region into a wait.

Format the RFS filepools
You must format every REXX Filing System (RFS) filepool that is defined in CICSTART.

1. Ensure that all required configuration tasks are complete, and if necessary re-start CICS.
2. Sign on with a userid defined as an authorized user in CICSTART.
3. Enter REXX (which is the default transaction id associated with the CICRXTRY exec).

This action invokes the REXXTRY utility, which provides the interactive environment where you can
execute REXX and REXX/CICS commands interactively. The following line is displayed at the top of the
screen, a READ is displayed in the lower right corner, and the cursor is in the lower left corner:

Enter a REXX command or EXIT to quit
4. Prepare the filepools for use by entering the following command for every filepool that is defined in

CICSTART:

'FILEPOOL FORMAT poolname'

poolname is the filepool name that you specified in the CICSTART exec (the defaults are POOL1 and
POOL2).

It is advisable to use either single or double quotes to delimit the REXX command.

The interactive environment echoes each command at the next available line on the screen and
displays any requested output.

The FILEPOOL FORMAT command does not display any information to indicate that it has successfully
completed, but the word READ is displayed in the lower right corner of the screen.

5. To determine whether the FILEPOOL FORMAT command was successful, enter SAY RC (without
apostrophes). A 0 displayed on the next available line indicates that the command succeeded.

Attempting to re-format a filepool gives the following message:
Subcommand return code = 1836

6. Continue this process until all RFS filepools are formatted. You format the filepool only when a new
filepool is defined, or if you delete and redefine the clusters for an existing filepool.

If you fill the screen while formatting the filepools, or interactively executing REXX or REXX/CICS
commands and instructions, a MORE indicator is displayed at the bottom right corner. To clear the
screen, press the Enter key. You can press the Clear key any time you want to clear the screen of data.

118 REXX for CICS Transaction Server: User Guide and Reference

Press the PF3 key to exit from the interactive environment; this action simulates entering the EXIT
instruction. You can also enter the EXIT instruction yourself (without apostrophes).

In the interactive environment, you can press the RETRIEVE key to recall previously entered
commands. The default system setting for this key is PF12. The RETRIEVE key re-displays the
previously entered line at the input location. You can then modify this area and execute the instruction
again by pressing Enter. Pressing the RETRIEVE key multiple times continues to bring the preceding
previously entered command to the input area.

Verify the installation
An exec is supplied to verify that the installation is successful.

1. Under the REXX/CICS REXXTRY utility, enter CALL CICIVP1 to run the installation verification
program. Output from the exec is as follows (remember to press Enter when the screen displays
MORE):

EXEC CICIVP1
--
*** This is a test REXX program running under CICS-TS ***
*** It was loaded from CICUSER-CICIVP1
--

What is your name?

2. Type a name and press Enter. Output is as follows:

Welcome to REXX/CICS for CICS-TS , xxxx

Invoking nested exec CICIVP2 (which has tracing on)
 20 *-* say 'You entered CICIVP2 exec'
 >>> "You entered CICIVP2 exec"
You entered CICIVP2 exec
 21 *-* call CICIVP3
You entered CICIVP3 exec which has tracing off
 22 *-* exit
Back to CICIVP1 exec

 This is fullscreen output to terminal xxxx
 Now input some data and press ENTER or a PF key

The AID key that was pressed = ENTER
The cursor was at (Row Col): 24 7
The data that was entered (Row Col Data): 24 1 <DATA>
Example of more than one screen
1000 assignment statements have been executed
2000 assignment statements have been executed
3000 assignment statements have been executed
4000 assignment statements have been executed
5000 assignment statements have been executed
6000 assignment statements have been executed
7000 assignment statements have been executed
8000 assignment statements have been executed
9000 assignment statements have been executed
10000 assignment statements have been executed
11000 assignment statements have been executed
12000 assignment statements have been executed
13000 assignment statements have been executed
14000 assignment statements have been executed
15000 assignment statements have been executed
16000 assignment statements have been executed
17000 assignment statements have been executed
18000 assignment statements have been executed
19000 assignment statements have been executed
20000 assignment statements have been executed
Today's date is dd mmm yyyy
The time is hh:mm:ss
REXX/CICS CICIVP1 is now finished

Chapter 11. Configuring REXX support 119

Creating the help files
REXX/CICS includes an online help utility that you can use to search for and display the product
documentation that is supplied with REXX/CICS.

About this task

As part of installation, you must load the information from the CICS TS product delivery data sets into the
REXX/CICS file system.

Procedure

1. Define the REXX Filing System (RFS) filepools and set the help paths for the help utility.

The supplied CICSTART member, in the hlq.CICSTS55.REXX.SCICEXEC data set, includes statements
to define RFS filepools and to set help paths for REXX help. Check and, if necessary, change these
statements to meet your requirements. For details, see “Update the CICSTART member” on page 116.

The supplied CICSTART member defines the help path HELPPTH2 for the current help utility. For
compatibility, it also defines the help path HELPPTH for the previous help facility. You do not need
HELPPTH unless the previous help facility is installed and you want to use it until these installation
steps are complete.

2. Ensure that the user ID that will load the help information in step “3” on page 120 is authorized to
import the relevant data sets from the CICS TS product delivery libraries to the REXX Filing System.

The CICHLOAD exec in the hlq.CICSTS55.REXX.SCICEXEC data set imports help information from the
supplied hlq.CICSTS55.REXX.SCICDOC and hlq.CICSTS55.REXX.SCICPNL data sets. It uses the
information to build files in the RFS that REXX help uses.

One way to ensure this authorisation is to create copies of hlqCICSTS55.REXX.SCICDOC and
hlqCICSTS55.REXX.SCICPNL with the relevant user ID as the high-level qualifier.

3. Start REXX/CICS and issue the EXEC CICHLOAD command.

CICHLOAD imports help information and panel definitions from MVS libraries. When the following
messages are displayed, provide the data set names that you set in the previous step:

Please enter the MVS dataset name of the help package library
Example: hlq.CICSTS55.REXX.SCICDOC

Please enter the MVS dataset name of the panels library
Example: hlq.CICSTS55.REXX.SCICPNL

The supplied CICSTS55.REXX.SCICDOC data set contains the REXXHELP member, which contains
online help information. The CICHLOAD program processes this to create the files that the online help
utility uses. Files are created in the help path HELPPTH2 that you specified.

Any CICR3270 or CICR3820 members in this data set are superseded by the REXXHELP member and
a PDF that is supplied with the CICS Transaction Server for z/OS product information.

It is advisable to check the REXX for CICS Transaction Server product documentation that is supplied
with the latest release of the CICS Transaction Server for z/OS product information for any updates
that are more recent than the online product documentation.

Configure the REXX Db2 interface
This step is required only if the REXX EXECSQL command environment is enabled for Db2 support. Db2
must be fully installed before you can perform this step.

The CICRDOD or CICRDOR member in the CICSTS55.REXX.SCICJCL data set authorizes the REXX
transactions to use the Db2 plan.

120 REXX for CICS Transaction Server: User Guide and Reference

https://www.ibm.com/support/knowledgecenter/SSGMGV
https://www.ibm.com/support/knowledgecenter/SSGMGV

If you modify the supplied transactions for the REXX/CICS environment, or implement new transactions
that use the Db2 interface code, you must also modify or add the Db2 entry definitions.

Binding the CICSQL program to your Db2 plan

The CICBIND job in the CICSTS55.REXX.SCICJCL data set binds CICSQL to the correct Db2 package. Edit
and run the job.

You might receive condition code 4 for the job, depending on the level of Db2 being used.

Chapter 11. Configuring REXX support 121

122 REXX for CICS Transaction Server: User Guide and Reference

Chapter 12. REXX/CICS system definition and
administration

System definition, customization, and administration of REXX/CICS is described.

Authorized REXX/CICS commands and authorized command options
Several REXX/CICS commands, or command options, are identified as being authorized.

See REXX/CICS Commands. An authorized REXX/CICS command can be executed only if:

• The user ID issuing the exec is an authorized REXX/CICS user. Authorized users are defined by the
AUTHUSER command.

• The exec was loaded from a REXX/CICS authorized sublibrary. An authorized library is an MVS
partitioned dataset allocated (in the CICS startup procedure/JCL) to ddname CICAUTH or CICEXEC.

These rules apply regardless of whether the exec attempting the command was issued by an authorized
exec.

System profile exec
A system profile exec, named CICSTART, is issued before the first user exec is run after a CICS system
restart.

Usually, the system profile exec contains system customization commands, authorized sublibrary
definitions, authorized user definitions, and authorized command definitions that must reside in an
authorized MVS PDS REXX library allocated to ddname CICAUTH or CICEXEC.

The system user profile exec, named CICSPROF, is issued when you enter REXX/CICS for the first time
since the CICS system restart. The exec contains any setup instructions that need to be executed by every
user. CICSPROF also invokes the user profile.

The user profile is a user created and maintained exec. It allows you to customize your REXX/CICS
environment (for example: set path, change the retrieve key, invoke other execs). This profile should
reside in your personal RFS directory.

Related reference
“Update the CICSTART member” on page 116
The CICSTART member, in the hlq.CICSTS55.REXX.SCICEXEC data set, contains default definitions for
the REXX/CICS environment. CICSTART runs when the first transaction that uses the CICS/REXX program
is issued, after the CICS system starts.

Authorized MVS PDS REXX libraries
All MVS partitioned data sets allocated to ddnames CICAUTH and CICEXEC are considered REXX/CICS
authorized libraries.

If multiple data sets are concatenated together, they are searched in the order of concatenation. The
CICSTART exec resides in CICEXEC.

• Users can cause dynamic allocation of their own non-authorized libraries by using the REXX/CICS PATH
command.

• Any user can run an exec from CICEXEC data sets and any exec loaded from CICEXEC can use REXX/
CICS authorized commands.

• Data sets at the CICEXEC JCL DD statement must be variable blocked.

© Copyright IBM Corp. 1974, 2020 123

Defining authorized users
Users can be specified as authorized by using the AUTHUSER command.

It is advisable to place all AUTHUSER commands in the CICSTART exec, or in an exec issued from the
CICSTART exec. See “Update the CICSTART member” on page 116.

Setting system options
System options are specified by using the REXX/CICS SETSYS command.

It is advisable to place system-wide SETSYS commands in the CICSTART exec. See “Update the
CICSTART member” on page 116.

Defining a REXX file system (RFS) file pool
Use FILEPOOL commands to define, initialize, and add files to an RFS file pool. Use the RFS AUTH
command for RFS file sharing authorization.

• Use the FILEPOOL DEFINE command to define an RFS file pool.
• Use the FILEPOOL FORMAT command to initialize the first file in each file pool.
• Use the FILEPOOL ADD command to add a VSAM file to an RFS file pool.

RFS file sharing authorization

Use the RFS AUTH command to specify file sharing permission.

Normally, you can allow sharing of resources that you own. As an authorized REXX/CICS user, you can
specify permission for the sharing of any RFS directories that you have created.

Creating a PLT entry for CICSTART
The CICSTART exec can be issued immediately after CICS system initialization by creating a CICS
program load table (PLT) entry to invoke the CICREXD or CICREXR program.

Otherwise, the first REXX/CICS user after region startup will cause the CICSTART exec to be run.

Security exits
Replaceable security exits CICSECX1 and CICSECX2 are described. IBM provides sample assembler exits
that you can customize or replace.

This section contains Product-sensitive Programming Interface information.

Note: These exits must reside in the same region as REXX/CICS (for example: the use of distributed
program link is not allowed).

CICSECX1
CICSECX1 is an MVS dataset access security exit. This exit is called by an EXEC CICS LINK and the
parameters are passed in the COMMAREA.

Parameters

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

124 REXX for CICS Transaction Server: User Guide and Reference

The COMMAREA contains the following on input to the exit.

Parameter Number of Bytes Datatype Description

1 4 fullword Return code

2 8 character CICS sign on ID

3 4 character Function requested

4 3 Reserved for IBM use

5 44 character MVS Data set

Return codes
0

Function request allowed
4

Function request rejected

Function IDs
A

ALLOCATE REQUEST
E

EXPORT request
F

FREE REQUEST
I

IMPORT request

CICSECX2
CICSECX2 is a REXX File System access security exit.

Parameters

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The COMMAREA contains the following on input to the exit.

Parameter Number of Bytes Datatype Description

1 4 fullword Return code

2 8 character CICS sign on ID

3 1 character Function requested

4 3 Reserved for IBM use

5 4 fullword Address of fully qualified RFS file ID
string

6 4 fullword Length of the directory path for the RFS
file ID string

Return codes
0

Function request allowed

Chapter 12. REXX/CICS system definition and administration 125

non-zero
Not authorized

Function IDs
A

Alter
R

Read
U

Update

126 REXX for CICS Transaction Server: User Guide and Reference

Chapter 13. Performance considerations

Client/server support is a REXX feature that provides a substantial performance advantage. With this
facility, a server REXX exec can often be used instead of a nested REXX exec to provide application
function. The performance characteristics of such a server can be better managed. The advantage of a
server exec over a nested exec is that a server exec can be started and can process multiple client
requests before ending. This has a shorter path length, provides better response time, and often uses less
system resource. For more information, see High-level, natural, transparent REXX client interface.

Unlike typical CICS application programming, you do not need to issue EXEC CICS SUSPEND commands
because REXX/CICS handles this by suspending your program automatically at intervals.

REXX/CICS execs can reside in either VSAM-based REXX file system files or MVS partitioned data sets.
CICS allocates certain MVS partitioned data sets at CICS region startup time. The REXX PATH (only when
a dataset name is specified), IMPORT, EXPORT, and ALLOC commands can allocate MVS partitioned data
sets dynamically by using SVC 99. Excessive use of SVC 99 might cause performance degradation of the
CICS region.

© Copyright IBM Corp. 1974, 2020 127

128 REXX for CICS Transaction Server: User Guide and Reference

Chapter 14. Security
The REXX transaction can be controlled using CICS transaction security. The REXX transaction might be
made widely available, or might be limited to a few individuals, depending upon the nature of the CICS
region it is running in.

REXX/CICS can be viewed as a more sophisticated version of the CICS-supplied Command Level
Interpreter Transaction (CECI). The REXX transaction (used to issue REXX execs), much like the CECI
transaction, can be controlled using CICS transaction security.

Note: The REXX transaction is not required to execute existing REXX execs, but is required if users or
programmers want the ability to create or modify REXX execs, and then test them.

REXX/CICS supports multiple transaction identifiers
REXX/CICS supports the ability to associate transaction identifiers (TRANIDs), other than REXX, with the
REXX/CICS support program.

In this case, the name of the REXX exec that is issued is determined by a previous DEFTRNID command.
This gives you the ability to still use transaction security with REXX on an exec by exec basis.

REXX/CICS file security
Access at the RFS directory level is controlled with the RFS AUTH command and the RFS replaceable
security exit.

Access to authorized execs accessed by the CICAUTH ddname is controlled by the AUTH parameter on
the DEFCMD and DEFSCMD commands.

Access to dynamically allocated data sets is controlled by the dataset replaceable security exit.

REXX/CICS command level security
Command level security can be used to control access to CICS (and other product or system) facilities.

In some situations, current software practices limit the effectiveness of relying on CICS resource security
alone. For additional security control, REXX/CICS was designed with the concept of command level
security. Because most facilities under REXX/CICS are accessed as commands, command level security
can be used to control access to CICS (and other product or system) facilities. For example, VSAM file
access is accomplished through the READ, WRITE, and REWRITE commands.

REXX/command level security is controlled by the DEFSCMD and DEFCMD AUTH parameter and by the
provision of authorized REXX/CICS library support.

Command execution security controls the use of certain REXX/CICS commands, or command keywords.
In general, this is accomplished by the designation of certain commands (or command options) as
authorized. Such command designation is accomplished by the DEFCMD and DEFSCMD commands. For
authorized commands to execute properly, one of the following conditions must apply:

1. The command must be executed from an exec loaded from an MVS PDS allocated to ddnames
CICAUTH or CICEXEC in the CICS startup JCL procedure.

2. The command must be executed by an authorized user. A user can be authorized by the AUTHUSER
command.

© Copyright IBM Corp. 1974, 2020 129

REXX/CICS authorized command support
Any REXX/CICS command can be identified as authorized by a REXX/CICS systems administrator.
Authorized commands can be successfully executed only in an exec that is issued by an authorized REXX/
CICS user or that was loaded from an authorized REXX/CICS library.

Only authorized REXX/CICS users have access to the CICAUTH authorized exec library. All users have the
ability to run execs in the CICEXEC authorized library. All users can run execs in the unauthorized
CICUSER library. Authorized users can be defined by any existing authorized user or in an authorized
exec. The REXX/CICS CICSTART exec that is called at REXX/CICS initialization (at the first REXX/CICS
transaction after a CICS restart) is automatically authorized. This is the logical place to define authorized
users and libraries.

Because access to REXX/CICS libraries can easily be controlled, this is the logical counterpart to
controlling access to CICS production program libraries. Any commands that a site feels are sensitive
(such as READ, WRITE, and DELETE) could be defined as authorized in the production region. This would
mean that only authorized users could create execs that issue authorized commands and decide whether
all users could invoke these execs that contain authorized commands or only other authorized users.

Note: You can control the ability of REXX/CICS execs to access external APIs by redefining the CICS
START, LINK, and XCTL commands as REXX/CICS authorized commands.

Security definitions
Security definitions for REXX/CICS such as general users, authorized users, authorized commands,
authorized exec, and system libraries are described.

REXX/CICS general users

REXX/CICS users that are not defined as authorized by the AUTHUSER command cannot use REXX/CICS
authorized commands. However, these users can define, write, alter, and use user commands (defined
using the DEFCMD command) and execs. Users can also use (but not define, create, or alter) REXX/CICS
authorized execs that reside in the CICEXEC library.

Individual user's information is maintained by the REXX/CICS environment by the user ID designation.
Each user must be uniquely identified and each user must be signed on to the REXX/CICS environment
only once. Two users with the same user ID operating at the same time can create unusual results.

REXX/CICS authorized users

Authorized users are defined by the AUTHUSER command, and are allowed to use authorized REXX/CICS
commands (commands defined using the DEFCMD or DEFSCMD command with the AUTH option
specified).

REXX/CICS authorized commands

Authorized commands are REXX/CICS commands that can be used only by authorized users or from
authorized execs. Authorized commands are defined using the DEFCMD or DEFSCMD command with the
AUTH option specified.

REXX/CICS authorized execs

Authorized execs are programs (execs) that were loaded from ddname CICEXEC or CICAUTH and are
considered authorized. That is, these programs are allowed to use authorized REXX/CICS commands. All
REXX/CICS users have access to CICEXEC authorized programs, but only authorized users have access to
CICAUTH authorized programs.

130 REXX for CICS Transaction Server: User Guide and Reference

REXX/CICS system libraries

All authorized commands written in the REXX language must be loaded from an MVS partitioned dataset
concatenated to ddname CICAUTH. These can be both IBM and customer (or vendor) supplied.

All authorized execs must be loaded from an MVS partitioned dataset concatenated to ddname CICEXEC
or CICAUTH. These can be both IBM and customer (or vendor) supplied.

User execs that are not authorized but are being shared by all REXX/CICS users can be placed in an MVS
partitioned dataset allocated or concatenated to ddname CICUSER.

Note:

1. The AUTH option of the DEFCMD or DEFSCMD is itself an authorized command option. That is, AUTH
can be used only if the user issuing it is an authorized user or if it was issued from an exec loaded from
an authorized library.

2. The EXECLOAD and EXECDROP commands are authorized. Therefore, only an authorized user or exec
can EXECLOAD an exec from an authorized sublibrary.

Chapter 14. Security 131

132 REXX for CICS Transaction Server: User Guide and Reference

Part 3. REXX for CICS Transaction Server: Reference
REXX/CICS or REXX for CICS Transaction Server provides a native REXX-based language environment for
application development, customization, protoyping and procedures, along with associated runtime
features.

REXX/CICS runs under all supported releases of CICS Transaction Server.

This reference describes the REXX for CICS Interpreter (referred to from now on as the interpreter or
language processor) and the REstructured eXtended eXecutor (called REXX) language. This reference is
intended for experienced programmers, particularly those who have used a block-structured, high-level
language (for example, PL/I, Algol, or Pascal).

Descriptions include the use and syntax of the language and how the language processor "interprets" the
language while a program is running under the REXX/CICS interpreter. The reference also describes:

• Programming services that let you interface with REXX and the language processor.
• Customizing services that let you customize REXX processing and how the language processor accesses

and uses system services, such as storage and I/O requests.

© Copyright IBM Corp. 1974, 2020 133

134 REXX for CICS Transaction Server: User Guide and Reference

Chapter 15. Overview of product features
Product features of REXX/CICS are described.

The following product features are described:

• “SAA Level 2 REXX language support under REXX/CICS” on page 135
• “Support for the interpretive execution of REXX execs” on page 135
• “CICS-based text editor for REXX execs and data” on page 135
• “VSAM-based file system for REXX execs and data” on page 135
• “Dynamic support for EXEC CICS commands” on page 136
• “REXX interface to CEDA and CEMT transaction programs” on page 136
• “High-level client/server support” on page 136
• “Support for commands written in REXX” on page 136
• “Command definition of REXX commands” on page 136
• “Support for system- and user-profile execs” on page 136
• “Shared execs in virtual storage” on page 136
• “Db2/SQL interface” on page 137

SAA Level 2 REXX language support under REXX/CICS

REXX/CICS is currently at REXX language level 3.48 and provides all Systems Application Architecture
(SAA) REXX Level 2 capability except for stream I/O and REXX language processor exits.

Support for the interpretive execution of REXX execs

Interpretive execution of REXX execs provides the ability to create and run REXX execs without first
compiling them. The use of the interpreter provides a very productive development, customization,
prototyping, and command list (CLIST) processing environment. This is because it provides a fast
development cycle, source level interactive debug, and a native CICS-based development environment, in
one integrated package.

Note: REXX execs can freely invoke CICS programs and transactions written in any CICS supported
language.

CICS-based text editor for REXX execs and data

A native CICS text editor, similar to the TSO ISPF/PDF and VM/CMS XEDIT editors, is provided as part of
REXX/CICS, so execs (and other data) can be created and modified directly under CICS, and from CICS-
based application platforms. Edit support is provided for files residing in the provided VSAM-based REXX
File System (RFS), and for files existing in traditional Multiple Virtual Storage (MVS) partitioned data sets.

Note: SVC 99 is used to dynamically allocate partitioned data sets specified in the PATH, IMPORT,
EXPORT, ALLOC, and editor GETPDS commands. Other partitioned data sets (those concatenated to
ddnames CICAUTH, CICEXEC, and CICUSER) are allocated at region startup. It is advisable to use this
technique mainly for file migration purposes, to minimize the impact on system performance.

VSAM-based file system for REXX execs and data

REXX/CICS includes the REXX File System (RFS), a high-level file system that is hierarchically structured
and is similar to the Advanced Interactive Executive (AIX), and the VM Shared File systems. The RFS
automatically provides each REXX user with a file system to store execs and data. The file list utility
supports working with this file system, the text editor supports editing members of this file system, and
execs to be run are loaded from this file system. This file system is VSAM based for performance, security,
and portability reasons.

© Copyright IBM Corp. 1974, 2020 135

Dynamic support for EXEC CICS commands

Support for most EXEC CICS application programming commands is included in REXX/CICS. This is a
dynamic interface (no EXEC CICS command translation preprocessing step is needed). This support is
provided through the addition of an ADDRESS CICS command environment.

REXX interface to CEDA and CEMT transaction programs

With this interface, CEDA and CEMT commands can be easily issued from REXX execs, with any
subsequent output placed into a REXX variable, instead of being displayed at the terminal. This facilitates
the automation of many CICS administration and operation activities, and helps programmers.

High-level client/server support

REXX/CICS provides integrated client/server support to REXX execs by providing facilities to allow REXX
execs to act as clients (which make requests to REXX/CICS servers) and by providing facilities to allow
REXX execs to act as servers (with the ability to wait for and process requests from REXX/CICS clients).

REXX/CICS facilities are provided which allow REXX/CICS servers to wait on requests from clients
(WAITREQ), and to retrieve (C2S) and set (S2C) the contents of client REXX variables.

Note: Servers do not execute as nested execs of clients, but rather execute as parallel entities.

Servers use Automatic Server Initiation (ASI) to start automatically when they receive their first request.

Support for commands written in REXX

REXX/CICS supports the ability for users to write new REXX/CICS commands in REXX. These commands
do not function as nested REXX execs, and unlike nested REXX execs have the ability to get and set the
values of REXX variables in the user exec that issued the command. Therefore, commands written in
REXX can have similar capabilities as commands written in Assembler or other languages. Also,
commands can be quickly written in REXX to speed systems development (in a building block structure),
and then can selectively be rewritten in Assembler (or any other CICS supported language) at a later date,
if performance requirements dictate.

Command definition of REXX commands

REXX/CICS includes the ability for system administrators and users to dynamically define new REXX
commands,on either a system-wide or user-by-user basis. REXX can interface cleanly with other
products, applications, and system services. The goal for providing a command definition facility for new
or existing commands is to facilitate the rapid and consistent high-level integration of various products
and services together through the use of REXX. REXX command definition is accomplished with the REXX/
CICS DEFCMD and DEFSCMD commands.

Support for system- and user-profile execs

To facilitate REXX/CICS system and user environment tailoring, REXX/CICS attempts to execute
CICSTART, CICSPROF, and user PROFILE execs, if they exist. CICSTART is the system profile exec
(STARTUP profile) and it is issued before the first user exec is run after CICS system restart. CICSPROF is
the system user profile exec and it is issued when a user enters REXX/CICS for the first time since the
CICS system restart. CICSPROF also invokes the user PROFILE.

Shared execs in virtual storage

REXX/CICS supports shared copies of REXX execs residing in virtual storage. Shared execs improve the
interactive response time of REXX applications, and sharing reduces the total virtual storage requirement.
Execs can be preloaded by using the EXECLOAD command. Common system-wide execs are good
candidates for preloading through the placement of EXECLOAD commands in the CICSTART exec.

136 REXX for CICS Transaction Server: User Guide and Reference

Db2/SQL interface

REXX programs can contain SQL statements and Db2 commands. These statements are interpreted and
executed dynamically. The results of the SQL statements and Db2 commands are placed into REXX
variables for use within the REXX program.

Chapter 15. Overview of product features 137

138 REXX for CICS Transaction Server: User Guide and Reference

Chapter 16. How to read the syntax diagrams

REXX command syntax is described using the following structure.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>- symbol indicates the beginning of a statement.

The --> symbol indicates that the statement syntax is continued on the next line.

The >-- symbol indicates that a statement is continued from the previous line.

The -->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >-- symbol and end with
the --> symbol.

• Required items are on the horizontal line (the main path).

STATEMENT required_item

• Optional items are below the main path.

STATEMENT

optional_item

• If you can choose from two or more items, they are shown as a vertical set of alternatives.

If you must choose one of the items, one item in the set is on the main path.

STATEMENT required_choice1

required_choice2

If choosing is optional, the entire set is below the main path.

STATEMENT

optional_choice1

optional_choice2

• If one item in a set of alternatives is the default, it is shown above the main path with the remaining
choices below.

STATEMENT

default_choice

optional_choice

optional_choice

• An arrow returning to the left above the main line indicates an item that can be repeated.

STATEMENT repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the set.
• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram

that appears in greater detail following the main diagram.

© Copyright IBM Corp. 1974, 2020 139

STATEMENT fragment

fragment
expansion_provides_greater_detail

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but can be
specified in any case. Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

140 REXX for CICS Transaction Server: User Guide and Reference

Chapter 17. REXX General Concepts
The REstructured eXtended eXecutor (REXX) language is particularly suitable for command procedures,
application front ends, user-defined macros (such as editor subcommands), user-defined XEDIT
subcommands, prototyping, and personal computing.

REXX is a general purpose programming language like PL/I. REXX has the usual structured-programming
instructions such as IF, SELECT, DO WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes no restrictions on program format. There can be more than one clause on a line, or
a single clause can occupy more than one line. Indentation is allowed. You can, therefore, code programs
in a format that emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all variables fit into the storage
available.

Implementation maximum: No single request for storage can exceed the fixed limit of 16MB. This limit
applies to the size of a variable plus any control information. It also applies to buffers obtained to hold
numeric results.

The limit on the length of symbols (variable names) is 250 characters.

You can use compound symbols to construct arrays and for other purposes, for example:

NAME.Y.Z

Y and Z can be the names of variables or can be constant symbols.

REXX programs can reside in REXX File System directories or in MVS partitioned data sets. REXX
programs usually have a file type of EXEC.

A language processor (interpreter) runs REXX programs. That is, the program is processed line-by-line
and word-by-word, without first being translated to another form (compiled). The advantage of this to the
user is that if the program fails with a syntax error, the point of error is clearly indicated, which helps to
understand the difficulty and correct it.

Structure and General Syntax
It is advisable to start REXX programs with a comment. A REXX program is built from a series of clauses.

REXX programs are recommended to start with a comment. REXX/CICS does not require that REXX
programs start with a comment. However, for portability reasons, it is advisable to start each REXX
program with a comment that begins on the first line and includes the word REXX, as shown in the
following example.

/* REXX program */
 ...
 ...
 ...
EXIT

Figure 46. Example of using the REXX program identifier

A REXX program is built from a series of clauses that are composed of:

• Zero or more blanks (which are ignored)
• A sequence of tokens (see “Tokens” on page 143)
• Zero or more blanks (which are ignored)
• A semicolon (;) delimiter that can be implied by line-end, certain keywords, or the colon (:).

© Copyright IBM Corp. 1974, 2020 141

Conceptually, each clause is scanned from left to right before processing, and the tokens that compose
the clause are identified. At this stage, instruction keywords are recognized, comments are removed, and
multiple blanks (except in literal strings) are converted to single blanks. Blanks adjacent to operator
characters and special characters are also removed (see “Tokens” on page 143) .

Implementation maximum: The length of a clause cannot exceed 16K.

Characters
A character is a member of a defined set of elements that is used for the control or representation of data.

You can usually enter a character with a single keystroke. The coded representation of a character is its
representation in digital form. A character, the letter A, for example, differs from its coded representation
or encoding. Various coded character sets (such as ASCII and EBCDIC) use different encodings for the
letter A (decimal values 65 and 193, respectively). This information uses characters to convey meanings
and not to imply a specific character code, except where otherwise stated. The exceptions are certain
built-in functions that convert between characters and their representations. The functions C2D, C2X,
D2C, X2C, and XRANGE have a dependence on the character set in use.

A code page specifies the encodings for each character in a set. Be aware that:

• Some code pages do not contain all characters that REXX defines as valid (for example, ¬, the logical
NOT character).

• Some characters that REXX defines as valid have different encodings in different code pages (for
example, !, the exclamation point).

For information about Double-Byte Character Set characters, see Chapter 33, “Double-Byte Character Set
(DBCS) Support,” on page 457.

Comments
A comment is a sequence of characters (on one or more lines) delimited by /* and */. Any characters are
allowed within these delimiters.

Comments can contain other comments, as long as each begins and ends with the necessary delimiters.
They are called nested comments. Comments can be anywhere and can be of any length. They have no
effect on the program, but they do act as separators. Two tokens with only a comment in between are not
treated as a single token.

/* This is an example of a valid REXX comment */

Take special care when commenting out lines of code that contain /* or */ as part of a literal string.
Consider the following program segment:

01 parse pull input
02 if substr(input,1,5) = '/*123'
03 then call process
04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect because the language processor
would interpret the /* that is part of the literal string /*123 as the start of a nested comment. It would
not process the rest of the program because it would be looking for a matching comment end (*/).:

01 parse pull input
02 /* if substr(input,1,5) = '/*123'
03 then call process
04 */ dept = substr(input,32,5)

You can avoid this type of problem by using concatenation for literal strings that contain /* or */; line 2
would be:

if substr(input,1,5) = '/' || '*123'

You could comment out lines 2 and 3 correctly as follows:

142 REXX for CICS Transaction Server: User Guide and Reference

01 parse pull input
02 /* if substr(input,1,5) = '/' || '*123'
03 then call process
04 */ dept = substr(input,32,5)

For information about Double-Byte Character Set characters, see Chapter 33, “Double-Byte Character Set
(DBCS) Support,” on page 457 and the “OPTIONS” on page 177 instruction.

Tokens
A token is the unit of low-level syntax from which clauses are built.

Programs written in REXX are composed of tokens. They are separated by blanks or comments or by the
nature of the tokens themselves. The classes of tokens are:
Literal Strings:

A literal string is a sequence that includes any characters and that is delimited by the single quotation
mark ' or the double quotation mark ". Use two consecutive double quotation marks "" to represent
a " character in a string that is delimited by double quotation marks. Similarly, use two consecutive
single quotation marks '' to represent a ' character in a string that is delimited by single quotation
marks. A literal string is a constant and its contents are never modified when it is processed.

A literal string with no characters (that is, a string of length 0) is called a null string.

The following are examples of valid strings:

'Fred'
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't" */
'' /* The null string */

• A string that is followed immediately by a (is considered to be the name of a function.
• A string that is followed immediately by the symbol X or x is considered to be a hexadecimal string.
• A string that is followed immediately by the symbol B or b is considered to be a binary string.

Descriptions of these forms follow.

Implementation maximum: A literal string can contain up to 250 characters. The length of computed
results is limited only by the amount of storage available. See the note in Chapter 17, “REXX General
Concepts,” on page 141 for more information.

Hexadecimal Strings:
A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading 0
is assumed, if necessary, at the front of the string to make an even number of hexadecimal digits. The
groups of digits are optionally separated by one or more blanks, and the whole sequence is delimited
by single or double quotation marks, and immediately followed by the symbol X or x. (x or X cannot be
part of a longer symbol.) The blanks, which can be present only at byte boundaries (and not at the
beginning or end of the string), are to aid readability. The language processor ignores them. A
hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing the
hexadecimal digits removes blanks and converts each pair of hexadecimal digits into its equivalent
character, for example: 'C1'X to A.

You can use hexadecimal strings to include characters in a program even if you cannot directly enter
the characters themselves. The following are examples of valid hexadecimal strings:

'ABCD'x
"1d ec f8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number. Rather, it is an escape mechanism so
that a user can describe a character in terms of its encoding (and, therefore, is machine-dependent).
In EBCDIC, '40'X is the encoding for a blank. In every case, a string of the form '.....'x is simply an
alternative to a straightforward string. In EBCDIC 'C1'x and 'A' are identical, as are '40'x and a blank,
and must be treated identically.

Chapter 17. REXX General Concepts 143

Also, be aware that in Assembler language, hexadecimal numbers are represented with the X in front
of the number. REXX only accepts hexadecimal numbers in the format described previously. This
information might show hexadecimal numbers represented in both ways, but when you code a
hexadecimal string in REXX, place the X after the number.

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) cannot exceed 250 bytes.

Binary Strings:
A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group can
have fewer than four digits; in this case, up to three 0 digits are assumed to the left of the first digit,
making a total of four digits. The groups of digits are optionally separated by one or more blanks, and
the whole sequence is delimited by matching single or double quotation marks and immediately
followed by the symbol b or B. (b or B cannot be part of a longer symbol.) The blanks, which can be
present only at byte or nibble boundaries (and not at the beginning or end of the string), are to aid
readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of eight, leading zeros are added on the left to make a multiple of eight before
packing. Binary strings allow you to specify characters explicitly, bit by bit.

The following are examples of valid binary strings:

'11110000'b /* == 'f0'x */
"101 1101"b /* == '5d'x */
'1'b /* == '00000001'b and '01'x */
'10000 10101010'b /* == '0001 0000 1010 1010'b */
''b /* == '' */

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) cannot exceed 250 bytes.

Symbols:
Symbols are groups of characters, selected from the following character sets:

• English alphabetic characters (A-Z and a-z)

Some code pages do not include lowercase English characters a-z
• Numeric characters (0-9)
• Characters . ! ? and _ (underscore).

The encoding of the exclamation point character ! depends on the code page in use.
• Double-Byte Character Set (DBCS) characters (X'41'-X'FE'). ETMODE must be in effect for these

characters to be valid in symbols.

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a-z to
uppercase A-Z) before use.

The following are examples of valid symbols:

Fred
Albert.Hall
WHERE?
<.H.E.L.L.O> /* This is DBCS */

For information about Double-Byte Character Set (DBCS) characters, see Chapter 33, “Double-Byte
Character Set (DBCS) Support,” on page 457.

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned it a value, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin with a number or a period
are constant symbols and cannot be assigned a value.

144 REXX for CICS Transaction Server: User Guide and Reference

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0-9) or a period, and ends with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The sign in this context is part of the symbol and is not an
operator.

The following are examples of valid numbers in exponential notation:

17.3E-12
.03e+9

Implementation maximum: A symbol can consist of up to 250 characters. Its value, if it is a variable,
is limited only by the amount of storage available. See the note in Chapter 17, “REXX General
Concepts,” on page 141 for more information.

Numbers:
These are character strings that consist of one or more decimal digits, with an optional prefix of a plus
or minus sign, and optionally including a single period (.) that represents a decimal point. A number
can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding may occur to a
precision specified by the NUMERIC DIGITS instruction (default nine digits). See Chapter 21,
“Numbers and arithmetic operations,” on page 241 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any) and can have trailing blanks.
Blanks may not be embedded among the digits of a number or in the exponential part. Note that a
symbol or a literal string might be a number. A number cannot be the name of a variable.

The following are examples of valid numbers:

12
'-17.9'
127.0650
73e+128
' + 7.9E5 '
'0E000'

You can specify numbers with or without quotation marks around them. Note that the sequence
-17.9 (without quotation marks) in an expression is not simply a number. It is a minus operator
(which may be prefix minus if no term is to the left of it) followed by a positive number. The result of
the operation is a number.

A whole number is a number that has a zero (or no) decimal part and that the language processor
would not usually express in exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

Operator Characters:
The characters: + - \ / % * | & = ¬ > < and the sequences >= <= \> \< \= >< <> ==
\== // && || ** ¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= /= /== indicate
operations (see “Operators” on page 147). A few of these are also used in parsing templates, and the
equal sign is also used to indicate assignment. Blanks adjacent to operator characters are removed.
Therefore, the following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters might not be available in all character sets. In this situation, you can use
appropriate translations. In particular, the vertical bar (|) or character is often shown as a split
vertical bar.

Chapter 17. REXX General Concepts 145

Throughout the language, the not character, ¬, is synonymous with the backslash (\). You can use the
two characters interchangeably according to availability and personal preference.

Special Characters
The following characters, together with the individual characters from the operators, have special
significance when found outside of literal strings:

, ; :) (

These characters constitute the set of special characters. They all act as token delimiters, and blanks
adjacent to any of these are removed. The exception is a blank adjacent to the outside of a
parenthesis, which is deleted only if it is also adjacent to another special character (unless the
character is a parenthesis and the blank is outside it, too). For example, the language processor does
not remove the blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call.
The language processor does remove the blanks in (A) + (Z) because this is equivalent to (A)+
(Z).

The following example shows how a clause is composed of tokens.

'REPEAT' A + 3;

This is composed of six tokens:

• a literal string ('REPEAT')
• a blank operator
• a symbol (A, which can have a value)
• an operator (+)
• a second symbol (3, which is a number and a symbol)
• the clause delimiter (;)

The blanks between the A and the + and between the + and the 3 are removed. However, one of the
blanks between the 'REPEAT' and the A remains as an operator. Thus, this clause is treated as though
written:

'REPEAT' A+3;

Implied Semicolons
The last element in a clause is the semicolon delimiter. The language processor implies the semicolon: at
a line-end, after certain keywords, and after a colon if it follows a single symbol.

This means that you need to include semicolons only when there is more than one clause on a line, or to
end an instruction whose last character is a comma.

A line-end usually marks the end of a clause and, thus, REXX implies a semicolon at most end of lines.
However, there are the following exceptions:

• The line ends in the middle of a string.
• The line ends in the middle of a comment. The clause continues on to the next line.
• The last token was the continuation character (a comma) and the line does not end in the middle of a

comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single symbol, a label) and after
certain keywords when they are in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and */, must not be split by a line-end
(that is, / and * should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added. The two consecutive characters forming a literal
quotation mark within a string are also subject to this line-end ruling.

146 REXX for CICS Transaction Server: User Guide and Reference

Continuations
One way to continue a clause onto the next line is to use the comma, which is referred to as the
continuation character.

The comma is functionally replaced by a blank, and, thus, no semicolon is implied. One or more
comments can follow the continuation character before the end of the line. The continuation character
cannot be used in the middle of a string or it will be processed as part of the string itself. The same
situation holds true for comments. Note that the comma remains in execution traces.

The following example shows how to use the continuation character to continue a clause.

say 'You can use a comma',
 'to continue this clause.'

This displays:

You can use a comma to continue this clause.

Expressions and Operators
Expressions in REXX are a general mechanism for combining one or more pieces of data in various ways
to produce a result, usually different from the original data.

Expressions
Expressions consist of one or more terms (literal strings, symbols, function calls, or subexpressions)
interspersed with zero or more operators that denote operations to be carried out on terms.

A subexpression is a term in an expression bracketed in a left and a right parenthesis.

Terms include:

• Literal Strings (delimited by quotation marks), which are constants.
• Symbols (no quotation marks), which are translated to uppercase. A symbol that does not begin with a

digit or a period might be the name of a variable; in this case the value of that variable is used.
Otherwise a symbol is treated as a constant string. A symbol can also be compound.

• Function calls (see Chapter 19, “Functions,” on page 193), which are of the form:

symbol (

literal_string (

,

expression

)

Evaluation of an expression is left to right, modified by parentheses and by operator precedence in the
usual algebraic manner (see “Parentheses and Operator Precedence” on page 150). Expressions are
wholly evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings (because the data is not of a particular declared type,
such as Binary, Hexadecimal, or Array). Therefore, when an expression is evaluated, the result is a
character string. Terms and results (except arithmetic and logical expressions) can be the null string (a
string of length 0). REXX imposes no restriction on the maximum length of results. However, there is a
16MB limitation on the amount of a single storage request available to the language processor. See the
note in Chapter 17, “REXX General Concepts,” on page 141 for more information.

Operators
An operator is a representation of an operation, such as addition, to be carried out on one or two terms.

The following information describes how each operator (except for the prefix operators) acts on two
terms, which can be symbols, strings, function calls, intermediate results, or subexpressions. Each prefix

Chapter 17. REXX General Concepts 147

operator acts on the term or subexpression that follows it. Blanks (and comments) adjacent to operator
characters do not affect the operator; thus, operators constructed from more than one character can have
embedded blanks and comments. In addition, one or more blanks, where they occur in expressions but
are not adjacent to another operator, also act as an operator. There are four types of operators:

• Concatenation
• Arithmetic
• Comparison
• Logical

String concatenation operators
The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string.

The concatenation can occur with or without an intervening blank. The concatenation operators are:
(blank)

Concatenate terms with one blank in between
||

Concatenate without an intervening blank
(abuttal)

Concatenate without an intervening blank
You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This can
occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they are
separated only by a comment.

Examples

An example of syntactically distinct terms is: if Fred has the value 37.4, Fred'%' evaluates to 37.4%.

If the variable PETER has the value 1, (Fred)(Peter) evaluates to 37.41.

In EBCDIC, the two adjoining strings, one hexadecimal and one literal,

'c1 c2'x'CDE'

evaluate to ABCDE.

:

In the following example, there is no abuttal operator implied, and the expression is not valid.:

 Fred/* The NOT operator precedes Peter. */¬Peter

However, the following example results in an abuttal, and evaluates to 37.40:

 (Fred)/* The NOT operator precedes Peter. */(¬Peter)

Arithmetic operators

You can combine character strings that are valid numbers (see “Tokens” on page 143) by using the
following arithmetic operators:
+

Add
-

Subtract
*

Multiply

148 REXX for CICS Transaction Server: User Guide and Reference

/
Divide

%
Integer divide (divide and return the integer part of the result)

//
Remainder (divide and return the remainder - not modulo, because the result may be negative)

**
Power (raise a number to a whole-number power)

Prefix -
Same as the subtraction: 0 - number

Prefix +
Same as the addition: 0 + number.

See Chapter 21, “Numbers and arithmetic operations,” on page 241 for details about precision, the
format of valid numbers, and the operation rules for arithmetic. If an arithmetic result is shown in
exponential notation, it is likely that rounding has occurred.

Comparison operators
The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The ==,
\==, /==, and ¬== operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison, with
no padding of either of the strings being compared. The comparison of the two strings is from left to right.
If one string is shorter than and is a leading substring of another, then it is smaller than (less than) the
other. The strict comparison operators also do not attempt to perform a numeric comparison on the two
operands.

For all the other comparison operators, if both terms involved are numeric, a numeric comparison (in
which leading zeros are ignored, see “Numeric Comparisons” on page 246) occurs. Otherwise, both terms
are treated as character strings (leading and trailing blanks are ignored, and then the shorter string is
padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order depends on the character set used for the implementation. For example, in an EBCDIC
environment, lowercase alphabetic characters precede uppercase, and the digits 0-9 are higher than all
alphabetic characters.

The comparison operators and operations are:
=

True if the terms are equal (numerically or when padded, and so forth)
\=, ¬=, /=

True if the terms are not equal (inverse of =)
>

Greater than
<

Less than
><

Greater than or less than (same as not equal)
<>

Greater than or less than (same as not equal)
>=

Greater than or equal to

Chapter 17. REXX General Concepts 149

\<, ¬<
Not less than

<=
Less than or equal to

\>, ¬>
Not greater than

==
True if terms are strictly equal (identical)

\==, ¬==, /==
True if the terms are NOT strictly equal (inverse of ==)

>>
Strictly greater than

<<
Strictly less than

>>=
Strictly greater than or equal to

\<<, ¬<<
Strictly NOT less than

<<=
Strictly less than or equal to

\>>, ¬>>
Strictly NOT greater than

Note: Throughout the language, the not character, ¬, is synonymous with the backslash (\). You can use
the two characters interchangeably, according to availability and personal preference. The backslash can
appear in the following operators: \ (prefix not), \=, \==, \<, \>, \<<, and \>>.

Logical (Boolean) operators
A character string is taken to have the value false if it is 0, and true if it is 1. The logical operators take one
or two such values (values other than 0 or 1 are not allowed) and return 0 or 1 as appropriate.

&
AND

Returns 1 if both terms are true.

|
Inclusive OR

Returns 1 if either term is true.

&&
Exclusive OR

Returns 1 if either (but not both) is true.

Prefix \,¬
Logical NOT

Negates; 1 becomes 0, and 0 becomes 1.

Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator precedence modify this.

When parentheses are encountered (other than those that identify function calls) the entire
subexpression between the parentheses is evaluated immediately when the term is required.

150 REXX for CICS Transaction Server: User Guide and Reference

When the following sequence is encountered, and operator2 has a higher precedence than operator1,
the subexpression (term2 operator2 term3) is evaluated first. The same rule is applied repeatedly as
necessary.

term1 operator1 term2 operator2 term3

However, individual terms are evaluated from left to right in the expression (that is, as soon as they are
encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the 25
that would result if strict left to right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as (3+2)*5. Adding the parentheses makes the first
three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9) because the
prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is as follows:

1. + - ¬ \ (prefix operators)
2. ** (power)
3. * / % // (multiply and divide)
4. + - (add and subtract)
5. (blank) || (abuttal) (concatenation with or without blank)
6. Comparison operators:

• = > <
• == >> <<
• \= ¬=
• >< <>
• \> ¬>
• \< ¬<
• \== ¬==
• \>> ¬>>
• \<< ¬<<
• >= >>=
• <= <<=
• /= /==

7. & (and)
8. | && (or, exclusive or)

Examples

The symbol A is a variable with a value of 3, DAY is a variable with a value of Monday, and other variables
are uninitialized. The example expressions have the following evaluations:

A+5 -> '8'
A-4*2 -> '-5'
A/2 -> '1.5'
0.5**2 -> '0.25'
(A+1)>7 -> '0' /* that is, False */
' '='' -> '1' /* that is, True */
' '=='' -> '0' /* that is, False */
' '¬=='' -> '1' /* that is, True */
(A+1)*3=12 -> '1' /* that is, True */
'077'>'11' -> '1' /* that is, True */
'077' >> '11' -> '0' /* that is, False */
'abc' >> 'ab' -> '1' /* that is, True */
'abc' << 'abd' -> '1' /* that is, True */
'ab ' << 'abd' -> '1' /* that is, True */
Today is Day -> 'TODAY IS Monday'

Chapter 17. REXX General Concepts 151

'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> 'ond' /* Substr is a function */
'!'xxx'!' -> '!XXX!'
'000000' >> '0E0000' -> '1' /* that is, True */

Note: In the last example, the answer is different if the operator is > rather than >>. Because '0E0000' is
a valid number in exponential notation, a numeric comparison is done; thus '0E0000' and '000000'
evaluate as equal. The REXX order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common notations:

• The prefix minus operator always has a higher priority than the power operator.
• Power operators (like other operators) are evaluated left-to-right.

For example:

-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

Clauses and instructions
Clauses can be subdivided into null clauses, labels, instructions, assignments, keyword instructions, and
commands.

Null clauses

A clause consisting only of blanks or comments or both is a null clause. It is completely ignored (except
that if it includes a comment it is traced, if appropriate).

Note: A null clause is not an instruction; for example, putting an extra semicolon after the THEN or ELSE
in an IF instruction is not equivalent to using a dummy instruction (as it would be in PL/I). The NOP
instruction is provided for this purpose.

Labels

A clause that consists of a single symbol followed by a colon is a label. The colon in this context implies a
semicolon (clause separator), so no semicolon is required. Labels identify the targets of CALL instructions,
SIGNAL instructions, and internal function calls. More than one label may precede any instruction. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Any number of successive clauses can be labels. This permits multiple labels before other clauses.
Duplicate labels are permitted, but control passes only to the first of any duplicates in a program. The
duplicate labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL, or
function invocation.

You can use DBCS characters. See Chapter 33, “Double-Byte Character Set (DBCS) Support,” on page
457.

Instructions

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be: assignments, keyword instructions, or commands.

Assignments

A single clause of the form symbol=expression is an instruction known as an assignment. An
assignment gives a variable a (new) value. See “Assignments and Symbols” on page 153.

Keyword instructions

A keyword instruction is one or more clauses where the first clause starts with a keyword that identifies
the instruction. Keyword instructions control the external interfaces and the flow of control. Some

152 REXX for CICS Transaction Server: User Guide and Reference

keyword instructions can include nested instructions. In the following example, the DO construct (DO, the
group of instructions that follow it, and its associated END keyword) is considered to be a single keyword
instruction.

DO
 instruction
 instruction
 instruction
END

A subkeyword is a keyword that is reserved within the context of some particular instruction, for example,
the symbols TO and WHILE in the DO instruction.

Commands

A command is a clause that consists of only an expression. The expression is evaluated and the result is
passed as a command string to some external environment.

Assignments and Symbols
A variable is an object whose value can change during the running of a REXX program. The process of
changing the value of a variable is called assigning a new value to it.

The value of a variable is a single character string, of any length, that can contain any characters.

You can assign a new value to a variable with the ARG, PARSE, or PULL instructions, the VALUE built-in
function, or the variable pool interface. The most common way of changing the value of a variable is the
assignment instruction itself. Any clause of the following form is taken to be an assignment:

symbol=expression;

The result of expression becomes the new value of the variable named by the symbol to the left of the
equal sign. Currently, on VM if you omit expression, the variable is set to the null string. However, it is
advisable to set a variable explicitly to the null string: symbol=''. For example:

/* Next line gives FRED the value "Frederic" */
Fred='Frederic'

The symbol that names the variable cannot begin with a digit (0-9) or a period. (Without this restriction on
the first character of a variable name, you could redefine a number; for example 3=4; would give a
variable called 3 the value 4.)

You can use a symbol in an expression even if you have not assigned it a value, because a symbol has a
defined value at all times. A variable you have not assigned a value is uninitialized. Its value is the
characters of the symbol itself, translated to uppercase (that is, lowercase a-z to uppercase A-Z).
However, if it is a compound symbol, its value is the derived name of the symbol (see “Compound
symbols” on page 154). For example:

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in REXX varies according to its context. As a term in an expression (rather than a
keyword), a symbol belongs to one of four groups: constant symbols, simple symbols, compound
symbols, and stems. Constant symbols cannot be assigned new values. You can use simple symbols for
variables where the name corresponds to a single value. You can use compound symbols and stems for
more complex collections of variables, such as arrays and lists.

Chapter 17. REXX General Concepts 153

Constant Symbols
A constant symbol starts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string that consists of the characters of
the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

77
827.53
.12345
12e5 /* Same as 12E5 */
3D
17E-3

Simple Symbols
A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12
<.D.A.T.E>

Compound symbols
A compound symbol permits the substitution of variables within its name when you refer to it.

A compound symbol contains at least one period and at least two other characters. It cannot start with a
digit or a period, and if there is only one period in the compound symbol, it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period). This is followed
by a tail, parts of the name (delimited by periods) that are constant symbols, simple symbols, or null. The
derived name of a compound symbol is the stem of the symbol, in uppercase, followed by the tail, in
which all simple symbols have been replaced with their values. A tail itself can be comprised of the
characters A-Z, a-z, 0-9, and @ # $ ¢ . ! ? and underscore. The value of a tail can be any character
string, including the null string and strings containing blanks. For example:

taila='* ('
tailb=''
stem.taila=99
stem.tailb=stem.taila
say stem.tailb /* Displays: 99 */
/* But the following instruction would cause an error */
/* say stem.* (*/

You cannot use constant symbols with embedded signs (for example, 12.3E+5) after a stem; in this case,
the whole symbol would not be a valid symbol.

These are compound symbols:

FRED.3
Array.I.J
AMESSY..One.2.
<.F.R.E.D>.<.A.B>

Before the symbol is used (that is, at the time of reference), the language processor substitutes the
values of any simple symbols in the tail (I, J, and One in the examples), thus generating a new derived
name. This derived name is then used just like a simple symbol. That is, its value is by default the derived
name, or (if it was used as the target of an assignment) its value is the value of the variable named by the
derived name.

154 REXX for CICS Transaction Server: User Guide and Reference

The substitution into the symbol that takes place permits arbitrary indexing (subscripting) of collections
of variables that have a common stem. The values substituted can contain any characters (including
periods and blanks). Substitution is done only one time.

To summarize: the derived name of a compound variable that is referred to by the symbol

s0.s1.s2. --- .sn

is given by

d0.v1.v2. --- .vn

where d0 is the uppercase form of the symbol s0, and v1 to vn are the values of the constant or simple
symbols s1 through sn. Any of the symbols s1-sn can be null. The values v1-vn can also be null and can
contain any characters (in particular, lowercase characters are not translated to uppercase, blanks are
not removed, and periods have no special significance).

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable A */
z=4 /* '4' to Z */
c='Fred' /* 'Fred' to C */
a.z='Fred' /* 'Fred' to A.4 */
a.fred=5 /* '5' to A.FRED */
a.c='Bill' /* 'Bill' to A.Fred */
c.c=a.fred /* '5' to C.Fred */
y.a.z='Annie' /* 'Annie' to Y.3.4 */

say a z c a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering great scope to a programmer. A useful application is to set up an array
in which the subscripts are taken from the value of one or more variables, effecting a form of associative
memory (content addressable).

Implementation maximum: The length of a variable name, before and after substitution, cannot exceed
250 characters.

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Stems
A stem is a symbol that contains just one period, which is the last character. It cannot start with a digit or
a period.

These are stems:

FRED.
A.
<.A.B>.

By default, the value of a stem is the string that consists of the characters of its symbol (that is, translated
to uppercase). If the symbol has been assigned a value, it names a variable and its value is the value of
that variable.

When a stem is used as the target of an assignment, all possible compound variables whose names begin
with that stem receive the new value, whether they previously had a value or not. Following the
assignment, a reference to any compound symbol with that stem returns the new value until another
value is assigned to the stem, or to the individual variable.

For example:

hole. = "empty"
hole.9 = "full"

say hole.1 hole.mouse hole.9

Chapter 17. REXX General Concepts 155

/* says "empty empty full" */

Thus, you can give a whole collection of variables the same value. For example:

total. = 0
do forever
 say "Enter an amount and a name:"
 pull amount name
 if datatype(amount)='CHAR' then leave
 total.name = total.name + amount
 end

Note: You can always obtain the value that has been assigned to the whole collection of variables by
using the stem. However, this is not the same as using a compound variable whose derived name is the
same as the stem. For example:

total. = 0
null = ""
total.null = total.null + 5
say total. total.null /* says "0 5" */

You can manipulate collections of variables, referred to by their stem, with the DROP and PROCEDURE
instructions. DROP FRED. drops all variables with that stem (see “DROP” on page 172), and PROCEDURE
EXPOSE FRED. exposes all possible variables with that stem (see “PROCEDURE” on page 181).

Note:

1. When the ARG, PARSE, or PULL instruction, or the VALUE built-in function, or the variable pool
interface changes a variable, the effect is identical with an assignment. Anywhere a value can be
assigned, using a stem sets an entire collection of variables.

2. Because an expression can include the operator =, and an instruction can consist purely of an
expression (see “Commands to External Environments” on page 156), a possible ambiguity is resolved
by the following rule: any clause that starts with a symbol and whose second token is (or starts with)
an equal sign (=) is an assignment, rather than an expression (or a keyword instruction). This is not a
restriction, because you can ensure the clause is processed as a command in several ways, such as by
putting a null string before the first name, or by enclosing the first part of the expression in
parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in an assignment, this should
not cause confusion. For example, the following clause is an assignment, not an ADDRESS instruction:

Address='10 Downing Street';

3. You can use the SYMBOL function to test whether a symbol has been assigned a value (see “SYMBOL”
on page 216). In addition, you can set SIGNAL ON NOVALUE to trap the use of any uninitialized
variables (except when they are tails in compound variables; see Chapter 22, “Conditions and
condition traps,” on page 251).

Commands to External Environments
Issuing commands to the surrounding environment is an integral part of REXX.

Environment

The system under which REXX programs run is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a REXX program. You can
change the environment by using the ADDRESS instruction. You can find out the name of the current
environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the REXX program. The default environment for a REXX/CICS program is
REXXCICS.

156 REXX for CICS Transaction Server: User Guide and Reference

Commands

To send a command to the currently addressed environment, use a clause of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null string), which is then
prepared as appropriate and submitted to the underlying system. Any part of the expression not to be
evaluated should be enclosed in quotation marks.

The environment then processes the command, which might have side-effects. It eventually returns
control to the language processor, after setting a return code. A return code is a string, typically a number,
that returns some information about the command that has been processed. A return code usually
indicates if a command was successful or not, but can also represent other information. The language
processor places this return code in the REXX special variable RC. See “Special variables” on page 254.

In addition to setting a return code, the underlying system might also indicate to the language processor if
an error or failure occurred.

• An error is a condition raised by a command for which a program that uses that command would usually
be expected to be prepared. For example, a locate command to an editing system might report
requested string not found as an error.

• A failure is a condition raised by a command for which a program that uses that command would not
usually be expected to recover (for example, a command that is not executable or cannot be found).

Errors and failures in commands can affect REXX processing if a condition trap for ERROR or FAILURE is
ON (see Chapter 22, “Conditions and condition traps,” on page 251). They might also cause the command
to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is the default.
See “TRACE” on page 187.

Here is an example of submitting a command to the default REXX/CICS command environment. The
following sequence results in the string EXECIO * READ TSQUEUE1 MYDATA. being submitted to
REXX/CICS:

TSQ1 = 'TSQUEUE1'
"EXECIO * READ" TSQ1 "MYDATA."

On return, the return code placed in RC has the value 0 if the CICS temporary storage queue TSQUEUE1
was successfully read into MYDATA array. If TSQUEUE1 is empty, the appropriate return code is placed in
RC.

Note: Remember that the expression is evaluated before it is passed to the environment. Enclose any
part of the expression that is not to be evaluated in quotation marks. For example:

"EXECIO * READ" /* * does not mean "multiplied by" */

Basic structure of REXX running under CICS
REXX/CICS support provides a main interface program named CICREXD for the REXX/CICS Development
System, and CICREXR for the REXX/CICS Runtime Facility, which is used to load and issue REXX execs
within a CICS region.

Each REXX exec runs under a separate CICS task. Any nested REXX execs run under the CICS task of the
parent exec.

Note: To determine whether the exec is running in the development system or the runtime facility, you
can use the GETVERS command. See “GETVERS” on page 394.

REXX exec invocation

• Execs started from a terminal

Chapter 17. REXX General Concepts 157

CICS uses transaction identifiers associated with programs to determine which programs to execute.
REXX/CICS uses a table created by the REXX/CICS command, DEFTRNID, to associate CICS transaction
identifiers with specific REXX execs. The CICS transaction identifier associated with the REXX/CICS
supplied exec, CICRXTRY, is known as the default REXX/CICS transaction identifier. The supplied
default is REXX.

If REXX alone is entered from a CICS screen, the CICRXTRY exec is started. If other operands are
specified, for example: REXX MYEXEC ABC, the exec MYEXEC is started and ABC is passed to it as an
argument. CICS transaction identifiers other than the REXX/CICS default transaction identifier cause
the associated exec to be started and any other operands are passed as an argument to the exec. For
example: EDIT TEST.EXEC causes the REXX/CICS editor exec, CICEDIT, to start and TEST.EXEC, the
argument, names the file to edit or create. All REXX/CICS transaction identifiers must have CICS
definitions which associate them with the REXX/CICS main module, CICREXD.

• Execs started using a CICS START command

REXX/CICS execs can be started by using the CICS START command. The START command names the
CICS transaction identified to start and the table created by the REXX/CICS DEFTRNID command
names the exec to start.

If the exec is CICRXTRY and CICS start data is present, the first operand names the exec to start and
any other operands are passed to the exec as an argument. If no start data is present, CICRXTRY is
started.

For execs other than CICRXTRY, start data is passed to the exec as an argument. Usually, REXX/CICS
execs have a terminal associated with them. However, if a REXX/CICS exec does not have a terminal
associated to the transaction, any terminal output is either discarded or directed to a CICS temporary
storage queue as specified by the REXX/CICS SET TERMOUT command. An error is generated if
terminal input is requested for a transaction for which no terminal is associated.

• Execs started using a CICS LINK or XCTL command

The REXX/CICS interface program, CICREXD or CICREXR, can be invoked by using the CICS LINK or
XCTL command. A COMMAREA must be passed to the interface program when invoked in this way.

– If a CICS LINK is used to invoke REXX, the communications area must be at least 16 characters in
length. The first four characters are used to return a completion code to the calling application. This
completion code is a return code of REXX/CICS processing, as listed in “Return codes not associated
with a specific command” on page 440, not the return code of the called exec. The next 12
characters are reserved for future use. Data that follows the 16 character prefix can be used to pass a
blank delimited REXX exec name, and arguments to be passed to the exec. An exec started with CICS
LINK must run in conversational mode. This is necessary to protect the caller's storage for returning
to the calling application.

– If CICS XCTL is used to invoke REXX, the communications area might contain an MVS SIB type 1
control block. If a SIB is not used, the area must be at least 16 characters long. The 16 character
prefix is reserved for future use. Data that follows the 16 character prefix can be used to pass a blank
delimited REXX exec name, and arguments to be passed to the exec.

• Execs issued from an MVS SIB type 1 control block

REXX execs can be invoked from OfficeVision or MVS by an Application Type Description (ATD). When
creating an ATD, use XCTL or START for the invocation. If you use XCTL, use CICREXD or CICREXR as
the application program. If you use START, place the default transaction ID for REXX/CICS (for
example, REXX) in the application program field.

There are two ways to pass the exec name and any parameters:

– The MSG-TEXT field - (MSG-REDEF = '1')
– The Parameter Description Record (PDR) - 'REXXEXEC'

The MSG-TEXT field is filled in with the data keyed on the command line if the ATD name and at least
one parameter is specified. If the PDR REXXEXEC is used, the exec name plus any parameters needed
must be in the data area for the PDR. If both the MSG-TEXT and the PDR REXXEXEC are used, the data

158 REXX for CICS Transaction Server: User Guide and Reference

in the MSG-TEXT takes precedence. If neither of the two are used, the REXXTRY interactive utility
(CICRXTRY exec) is invoked.

Note: A utility called REXXTRY (CICRXTRY exec) is provided with REXX/CICS that allows the interactive
execution of REXX instructions and REXX/CICS commands. To invoke this utility, enter the REXX/CICS
transaction identifier associated with CICRXTRY without any operands.

Where execs execute

REXX/CICS execs are executed as part of the CICS task that issues them, within the CICS region. The
REXX interpreter is fully reentrant and runs above the 16 megabyte line (AMODE=31, RMODE=ANY).

Locating and loading Execs

The following rules are used to locate and load an exec into storage so it can be started:

1. Execs loaded into storage using EXECLOAD are searched and if the exec is found, the copy that is
loaded by EXECLOAD is used.

2. The user's current RFS directory, as defined by the REXX/CICS CD command, is searched. If found, the
exec is loaded and started.

3. The user's path, as defined by the REXX/CICS PATH command, is searched. If found, the exec is
loaded and started.

4. If the user is an authorized user, data sets specified with the ddname of CICAUTH in the CICS startup
JCL are searched.. If the exec is found, it is loaded and started.

5. Data sets specified with the ddnames of CICEXEC and CICUSER, in that order, are searched. If the
exec is not found, an error code is returned.

Editing execs

If the REXX/CICS Development System is installed, REXX execs can be edited using the supplied REXX/
CICS editor. See Chapter 23, “REXX/CICS text editor,” on page 257. Also, if REXX/CICS execs reside in an
MVS PDS, they can be edited using the ISPF/PDF editor under TSO (or other compatible editors).

The sequence numbers are not allowed in columns 73 through 80 of REXX/CICS execs.

REXX file system

Execs can be stored as members in the VSAM-based REXX File System (RFS), provided with REXX/CICS,
or in MVS partitioned data sets. See Chapter 24, “REXX/CICS File System,” on page 285.

Note: If the file identifier you specified for invoking an exec does not include a file type extension, only
RFS file identifiers with a file type of EXEC are searched when you attempt to locate and issue the REXX
exec. If the file identifier includes a file type extension, only RFS files with a matching file type are
searched (when you attempt to locate and run the exec). For MVS PDS searches, only the file name is
compared to the PDS member name.

Control of exec execution search order

The CD and PATH commands define the search order of user REXX libraries when you attempt to load an
exec. After the current directory (set by the CD command) is searched, all directories specified with the
PATH command are searched, followed by system MVS PDS libraries specified in the startup JCL for the
CICS region. For more detailed information on the search order, see “Functions and subroutines” on page
193.

Adding user-written commands

An exec can be defined so that it can be invoked as a REXX/CICS command. The DEFCMD command is
used to define REXX/CICS user commands. DEFCMD supports commands written in REXX as well as the
standard CICS supported languages. See “DEFCMD” on page 378.

Chapter 17. REXX General Concepts 159

Support of Standard REXX Features
Standard REXX features such as SAY and TRACE statements, PULL and PARSE EXTERNAL statements,
REXX stacking, and REXX functions are supported.

SAY and TRACE statements

The REXX SAY and TRACE terminal I/O output statements use CICS Terminal Control support to provide
simulated line-mode output. Also, the SET TERMOUT command can be used to route line-mode output
into a temporary storage queue. See “SET” on page 407.

PULL and PARSE EXTERNAL statements

The REXX PULL and PARSE EXTERNAL terminal I/O input statements use CICS Terminal Control support
to provide simulated line-mode input.

1. PULL (or PARSE PULL) first attempts to pull a line from the program stack and, only if it is empty,
issues a read to the terminal.

2. Attempting to perform terminal line-mode input from a REXX exec that is running as part of a non-
terminal attached transaction, is an error, which causes the exec to terminate with an error message.

REXX stack support

Each user has a shared program stack between multiple generations of REXX execs. This single automatic
program stack is not named. If named program stacks are required, use the RLS LPUSH, LQUEUE, and
LPULL commands.

REXX function support

REXX/CICS supports the standard SAA Level 2 built-in function set, with the following exceptions:

• Stream I/O functions are not supported.
• The USERID function returns a 1 to 8 character CICS user ID if the user is signed on. If the CICS user

has not signed on and a default user has been specified for the CICS region (by the CICS Systems
Programmer specifying DFLTUSER in the CICS startup parameters) then that value is used.

Note: The default user shares REXX File System and REXX List System directories.
• The STORAGE function, which allows a REXX user to display or modify the virtual storage of the CICS

region. This function can only be successfully invoked from an authorized exec or by an authorized user.

REXX command environment support
REXX command environments that are currently available (to use with the REXX ADDRESS command) are
REXXCICS, CICS, EXECSQL, EDITSVR, FLSTSVR, RFS and RLS.

Adding REXX host command environments

Support is provided for allowing new REXX/CICS commands and command environments to be
dynamically defined. New commands may be written in REXX or in any REXX/CICS supported language
(for example: Assembler, COBOL, C, PL/I). For more information on how commands and command
environments are defined to REXX/CICS, see Chapter 26, “REXX/CICS Command Definition,” on page
309.

Support for standard CICS features
Support for standard CICS features or facilities is described. This includes CICS mapped I/O support, data
set I/O services, interfaces to CICS facilities and services, issuing user applications from execs, REXX

160 REXX for CICS Transaction Server: User Guide and Reference

interfaces to CICS temporary and transient storage queues, pseudo-conversational transaction support,
and DBCS support.

CICS mapped I/O support

Support for CICS basic mapping support (BMS) I/O is provided by the CICS SEND MAP, RECEIVE MAP, and
CONVERSE MAP commands and the REXX/CICS CONVTMAP and COPYS2R commands. See Chapter 36,
“Basic mapping support example,” on page 477.

Note: BMS maps must be predefined by using normal CICS procedures.

Dataset I/O services

Standard CICS File I/O commands (such as EXEC CICS READ and WRITE) are supported. High-level I/O
can be performed from an EXEC to the VSAM-based REXX File System (RFS) by using the provided RFS
command. Also, dynamic allocation is used to allow standard MVS partitioned data sets to be used with
the IMPORT and EXPORT commands and the REXX/CICS editor.

Interfaces to CICS facilities and services

From the ADDRESS CICS command environment, support is provided for most CICS commands (as
defined in Reference: application development. See Chapter 30, “REXX/CICS commands,” on page 353
for detailed information on the commands supported.

Issuing user applications from execs

REXX/CICS supports the EXEC CICS START, LINK, and XCTL commands to provide the ability to START
CICS transactions or invoke CICS programs from within a REXX exec.

REXX interfaces to CICS storage queues

Command support exists for reading, writing, and deleting CICS temporary storage and transient data
queues from REXX/CICS.

Pseudo-conversational transaction support

CICS pseudo-conversational support for REXX execs is supported though the use of the CICS RETURN
TRANSID() command, by the REXX/CICS PSEUDO command (see “PSEUDO” on page 400), and the
SETSYS PSEUDO command (see “SETSYS” on page 409).

Interfaces to other programming languages
REXX/CICS supports (by support for CICS LINK and CICS XCTL REXX/CICS commands) the ability to
invoke CICS programs written in any REXX/CICS supported language. It provides the same support for the
programs used to implement new REXX commands, which are defined by using the DEFCMD and
DEFSCMD commands. Support is also provided to allow an EXEC CICS START to be issued from REXX
execs.

DBCS support

The full range of DBCS functions and handling techniques that are included in SAA Level 2 REXX are
available to the REXX/CICS user.

Other features

• A TERMID command has been provided to return the four character terminal identifier of a CICS user.
• A retrieve PF key can be specified to retrieve the last input line entered using line-mode I/O while in the

REXXTRY interactive utility (CICRXTRY exec). See the SET RETRIEVE command (“SET” on page 407).

Chapter 17. REXX General Concepts 161

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html

• The SET TERMOUT command allows line-mode terminal output (from SAY or TRACE) to be directed to a
CICS temporary storage queue instead of, or in addition to, the terminal.

• The PULL instruction sets the REXX variable PULLKEY, with the name of the AID key pressed if PULL
read data from the terminal.

• Line-mode output to the terminal causes MORE to appear in the lower right hand corner of the screen,
when the screen is full. Press Clear or Enter to proceed.

• Line-mode input from the terminal causes READ to appear in the lower right hand corner of the screen.

162 REXX for CICS Transaction Server: User Guide and Reference

Chapter 18. Keyword instructions
A keyword instruction is one or more clauses, where the first clause starts with a keyword that identifies
the instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams, symbols (words) in capitals denote keywords or sub-keywords; other words (such
as expression) denote a collection of tokens as defined previously. However, the keywords and
subkeywords are not case dependent; the symbols if, If, and iF all have the same effect. You can
usually omit most of the clause delimiters (;) shown because they are implied by the end of a line.

As explained in “Clauses and instructions” on page 152, a keyword instruction is recognized only if its
keyword is the first token in a clause, and if the second token does not start with an = character (implying
an assignment) or a colon (implying a label). The keywords ELSE, END, OTHERWISE, THEN, and WHEN
are recognized in the same situation. Any clause that starts with a keyword defined by REXX cannot be a
command. Therefore, the following is an ARG keyword instruction, not a command that starts with a call
to the ARG built-in function.

arg(fred) rest

A syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT instruction.
(The keyword THEN is also recognized in the body of an IF or WHEN clause.) In other contexts, keywords
are not reserved and can be used as labels or as the names of variables (though this is generally not
recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of individual instructions.
For example, the symbols VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions,
respectively. For details, see the description of each instruction. For a general discussion on reserved
keywords, see “Reserved keywords” on page 473.

Blanks adjacent to keywords have no effect other than to separate the keyword from the subsequent
token. One or more blanks following VALUE are required to separate the expression from the subkeyword
in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following example, although it would
add to the readability:

ADDRESS VALUE'ENVIR'||number

ADDRESS
ADDRESS temporarily or permanently changes the destination of commands. Commands are strings sent
to an external environment. You can send commands by specifying clauses consisting of only an
expression or by using the ADDRESS instruction.

ADDRESS

environment

expression

VALUE

expression1

;

The concept of alternative subcommand environments is described in “Issuing commands from a
program” on page 92.

© Copyright IBM Corp. 1974, 2020 163

To send a single command to a specified environment, code an environment, a literal string or a single
symbol, which is taken to be a constant, followed by an expression. (The environment name is the name
of an external procedure or process that can process commands.) The environment name is limited to
eight characters. The expression is evaluated, and the resulting string is routed to the environment to be
processed as a command. (Enclose in quotation marks any part of the expression you do not want to be
evaluated.) After execution of the command, environment is set back to whatever it was before, thus
temporarily changing the destination for a single command. The special variable RC is set, just as it would
be for other commands. (See “Commands to External Environments” on page 156.) Errors and failures in
commands processed in this way are trapped or traced as usual.

Examples

ADDRESS CICS "READQ TSQ QUEUE('QUEUE1') INTO(VAR1)" /* CICS */

If you specify only environment, a lasting change of destination occurs: all commands that follow (clauses
that are neither REXX instructions nor assignment instructions) are routed to the specified command
environment, until the next ADDRESS instruction is processed. The previously selected environment is
saved.

address cics
"READQ TSQ QUEUE('QUEUE1') INTO(VAR1)"
ADDRESS RFS
'COPY PROFILE.EXEC TEMP.EXEC'

Similarly, you can use the VALUE form to make a lasting change to the environment. Here expression1
(which may be simply a variable name) is evaluated, and the result forms the name of the environment.
You can omit the subkeyword VALUE if expression1 does not begin with a literal string or symbol (that is, if
it starts with a special character, such as an operator character or parenthesis).

ADDRESS ('ENVIR'||number) /* Same as ADDRESS VALUE 'ENVIR'||number */

With no arguments, commands are routed back to the environment that was selected before the previous
lasting change of environment was made, and the current environment name is saved. After changing the
environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments alternately.

The two environment names are automatically saved across internal and external subroutine and function
calls. See “CALL” on page 165.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function (see “ADDRESS” on page 197).

ARG
ARG retrieves the argument strings provided to a program or internal routine and assigns them to
variables.

ARG

template_list

;

ARG is a short form of the instruction:

PARSE UPPER ARG

template_list

;

The template_list is often a single template but can be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks, patterns, or both.

164 REXX for CICS Transaction Server: User Guide and Reference

Unless a subroutine or internal function is being processed, the strings passed as parameters to the
program are parsed into variables according to the rules described in the section on parsing (Chapter 20,
“Parsing,” on page 227).

If a subroutine or internal function is being processed, the data used will be the argument strings that the
caller passes to the routine.

In either case, the language processor translates the passed strings to uppercase (that is, lowercase a-z
to uppercase A - Z) before processing them. Use the PARSE ARG instruction if you do not want uppercase
translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source string or strings
(typically with different templates). The source string does not change. The only restrictions on the length
or content of the data parsed are those the caller imposes.

Examples

/* String passed is "Easy Rider" */

Arg adjective noun .

/* Now: ADJECTIVE contains 'EASY' */
/* NOUN contains 'RIDER' */

If you expect more than one string to be available to the program or routine, you can use a comma in the
parsing template_list so each template is selected in turn.

/* Function is called by FRED('data X',1,5) */

Fred: Arg string, num1, num2

/* Now: STRING contains 'DATA X' */
/* NUM1 contains '1' */
/* NUM2 contains '5' */

Note:

1. The ARG built-in function can also retrieve or check the argument strings to a REXX program or
internal routine, see “ARG (Argument)” on page 197.

2. The source of the data being processed is also made available on entry to the program. See the PARSE
instruction (SOURCE option) “PARSE” on page 179 for details.

CALL
CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify ON
or OFF).

CALL name

,

expression

OFF ERROR

FAILURE

HALT

ON ERROR

FAILURE

HALT

NAME trapname

;

Chapter 18. Keyword instructions 165

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. For information on condition traps, see Chapter
22, “Conditions and condition traps,” on page 251.

To call a routine, specify name, a literal string or symbol that is taken as a constant. The name must be a
symbol, which is treated literally, or a literal string. The routine called can be:
An internal routine

A function or subroutine that is in the same program as the CALL instruction or function call that calls
it.

A built-in routine
A function (which may be called as a subroutine) that is defined as part of the REXX language.

An external routine
A function or subroutine that is not built-in or is not in the same program as the CALL instruction or
function call that calls it.

If name is a string (that is, you specify name in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. The names of built-in functions (and
generally the names of external routines, too) are in uppercase; therefore the name in the literal string
must also be in uppercase.

The called routine can optionally return a result, and when it does, the CALL instruction is functionally
identical with the following clause:

result=name (

,

expression

) ;

If the called routine does not return a result, you get an error if you call it as a function (as previously
shown).

REXX/CICS supports specifying up to 20 expressions, separated by commas. The expressions are
evaluated in order from left to right and form the argument strings during execution of the routine. Any
ARG or PARSE ARG instruction, or ARG built-in function, in the called routine accesses these strings
rather than any previously active in the calling program, until control returns to the CALL instruction. You
can omit expressions, if appropriate, by including extra commas.

The CALL then causes a branch to the routine called name, using exactly the same mechanism as function
calls, see Chapter 19, “Functions,” on page 193. The search order is in the section on functions but briefly
is as follows:
Internal routines:

These are sequences of instructions inside the same program, starting at the label that matches name
in the CALL instruction. If you specify the routine name in quotation marks, an internal routine is not
considered for that search order. You can use SIGNAL and CALL together to call an internal routine
whose name was determined at the time of execution; this is known as a multi-way call (see
“SIGNAL” on page 186). The RETURN instruction completes the execution of an internal routine.

Built-in routines:
These are routines built into the language processor for providing various functions. They always
return a string that is the result of the routine. (See “Built-in Functions” on page 196.)

External routines:
Users can write or use routines that are external to the language processor and the calling program.
External routines must be coded in REXX. If the CALL instruction calls an external routine written in
REXX as a subroutine, you can retrieve any argument strings with the ARG or PARSE ARG instructions
or the ARG built-in function.

During execution of an internal routine, all variables previously known are generally accessible. However,
the PROCEDURE instruction can set up a local variables environment to protect the subroutine and caller
from each other. The EXPOSE option on the PROCEDURE instruction can expose selected variables to a
routine.

166 REXX for CICS Transaction Server: User Guide and Reference

Calling an external program as a subroutine is similar to calling an internal routine. The external routine,
however, is an implicit PROCEDURE in that all the caller's variables are always hidden. The status of
internal values (NUMERIC settings, and so forth) start with their defaults (rather than inheriting those of
the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine, the line number of the CALL instruction is available in the
variable SIGL (in the caller's variable environment). This may be used as a debug aid, as it is, therefore,
possible to find out how control reached a routine. If the internal routine uses the PROCEDURE
instruction, it needs to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should process a RETURN instruction, and at that point control returns to the
clause following the original CALL. If the RETURN instruction specified an expression, the variable
RESULT is set to the value of that expression. Otherwise, the variable RESULT is dropped (becomes
uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Implementation maximum: The total nesting of control structures, which includes internal routine calls,
is dependent upon available storage.

Example

/* Recursive subroutine execution... */
arg z
call factorial z
say z'! =' result
exit

factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 call factorial n-1
 return result * n

During internal subroutine (and function) execution, all important pieces of information are automatically
saved and then restored upon return from the routine. These are:

• The status of DO loops and other structures.

Executing a SIGNAL while within a subroutine is safe because DO loops, and so forth, that were active
when the subroutine was called are not ended. (But those currently active within the subroutine are
ended.)

• Trace action.

After a subroutine is debugged, you can insert a TRACE Off at the beginning of it, and this does not
affect the tracing of the caller. Conversely, if you simply want to debug a subroutine, you can insert a
TRACE Results at the start and tracing is automatically restored to the conditions at entry (for example,
Off) upon return. Similarly, ? (interactive debug) and ! (command inhibition) are saved across routines.

• NUMERIC settings.

The DIGITS, FUZZ, and FORM of arithmetic operations (see “NUMERIC” on page 176) are saved and
then restored on return. A subroutine can, therefore, set the precision, and so forth, that it needs to use
without affecting the caller.

• ADDRESS settings.

The current and previous destinations for commands (see “ADDRESS” on page 163) are saved and then
restored on return.

• Condition traps.

Condition traps (CALL ON and SIGNAL ON) are saved and then restored on return. This means that CALL
ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without affecting the
conditions the caller set up.

• Condition information.

Chapter 18. Keyword instructions 167

This information describes the state and origin of the current trapped condition. The CONDITION built-
in function returns this information. See “CONDITION” on page 200.

• Elapsed-time clocks.

A subroutine inherits the elapsed-time clock from its caller (see “TIME” on page 217), but because the
time clock is saved across routine calls, a subroutine or internal function can independently restart and
use the clock without affecting its caller. For the same reason, a clock started within an internal routine
is not available to the caller.

• OPTIONS settings.

ETMODE and EXMODE are saved and then restored on return. For more information, see “OPTIONS” on
page 177.

DO
DO groups instructions together and optionally processes them repetitively. During repetitive execution, a
control variable (name) can be stepped through some range of values.

DO repetitor conditional ;

instruction

END
name

;

repetitor
name=expri

TO exprt BY exprb FOR exprf

FOREVER

exprr

conditional
WHILE exprw

UNTIL expru

DO groups instructions together and optionally processes them repetitively. During repetitive execution, a
control variable (name) can be stepped through some range of values.

Syntax Notes

• The exprr, expri, exprb, exprt, and exprf options (if present) are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or zero.
If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

• The exprw or expru options (if present) can be any expression that evaluates to 1 or 0.
• The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which they

are written.
• The instruction can be any instruction, including assignments, commands, and keyword instructions

(including any of the more complex constructs such as IF, SELECT, and the DO instruction itself).
• The subkeywords WHILE and UNTIL are reserved within a DO instruction, in that they cannot be used as

symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb, or
exprf. FOREVER is also reserved, but only if it immediately follows the keyword DO and an equal sign
does not follow it.

• The exprb option defaults to 1, if relevant.

168 REXX for CICS Transaction Server: User Guide and Reference

Simple DO group

If you do not specify repetitor or conditional, the construct merely groups a number of instructions
together. These are processed one time.

In the following example, the instructions are processed one time.

/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do
 a=a+2
 Say 'Smile!'
 End

Repetitive DO loops

If a DO instruction has a repetitor phrase, a conditional phrase, or both, the group of instructions forms a
repetitive DO loop. The instructions are processed according to the repetitor phrase, optionally modified
by the conditional phrase. See “Conditional phrases (WHILE and UNTIL)” on page 170.

• Simple repetitive loops

A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the group of instructions is
nominally processed "forever", that is, until the condition is satisfied or a REXX instruction is processed
that ends the loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see “Conditional phrases (WHILE and UNTIL)” on page
170

In the simple form of a repetitive loop, exprr is evaluated immediately (and must result in a positive
whole number or zero), and the loop is then processed that many times. For example:

/* This displays "Hello" five times */
Do 5
 say 'Hello'
 end

Similar to the distinction between a command and an assignment, if the first token of exprr is a symbol
and the second token is (or starts with) =, the controlled form of repetitor is expected.

• Controlled Repetitive Loops

The controlled form specifies name, a control variable that is assigned an initial value (the result of
expri, formatted as though 0 had been added) before the first execution of the instruction list. The
variable is then stepped (by adding the result of exprb) before the second and subsequent times that
the instruction list is processed.

The instruction list is processed repeatedly while the end condition (determined by the result of exprt) is
not met. If exprb is positive or 0, the loop is ended when name is greater than exprt. If negative, the loop
is ended when name is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated only one time, before the
loop begins and before the control variable is set to its initial value. The default value for exprb is 1. If
exprt is omitted, the loop runs indefinitely unless some other condition stops it. For example:

Do I=3 to -2 by -1 /* Displays: */
 say i /* 3 */
 end /* 2 */
 /* 1 */
 /* 0 */
 /* -1 */
 /* -2 */

Chapter 18. Keyword instructions 169

The numbers do not have to be whole numbers:

I=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */
 say Y /* 1.0 */
 end /* 1.7 */
 /* 2.4 */
 /* 3.1 */
 /* 3.8 */

The control variable can be altered within the loop, and this may affect the iteration of the loop. Altering
the value of the control variable is not usually considered good programming practice, though it may be
appropriate in certain circumstances.

The end condition is tested at the start of each iteration (and after the control variable is stepped, on
the second and subsequent iterations). Therefore, if the end condition is met immediately, the group of
instructions can be skipped entirely. Note also that the control variable is referred to by name. If (for
example) the compound name A.I is used for the control variable, altering I within the loop causes a
change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In this case, you must
specify exprf, and it must evaluate to a positive whole number or zero. This acts just like the repetition
count in a simple repetitive loop, and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only one time: when the DO
instruction is first processed and before the control variable receives its initial value. Like the TO
condition, the FOR condition is checked at the start of each iteration. For example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */
 say Y /* 0.3 */
 end /* 1.0 */
 /* 1.7 */

In a controlled loop, the name describing the control variable can be specified on the END clause. This
name must match name in the DO clause in all respects except case (note that no substitution for
compound variables is carried out); a syntax error results if it does not. This enables the nesting of loops
to be checked automatically, with minimal overhead. For example:

Do K=1 to 10
 ...
 ...
 End k /* Checks that this is the END for K loop */

Note: The NUMERIC settings can affect the successive values of the control variable, because REXX
arithmetic rules apply to the computation of stepping the control variable.

Conditional phrases (WHILE and UNTIL)

A conditional phrase can modify the iteration of a repetitive DO loop. It may cause the termination of a
loop. It can follow any of the forms of repetitor (none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprw or expru, respectively, is evaluated each time around the loop using the latest
values of all variables (and must evaluate to either 0 or 1), and the loop is ended if exprw evaluates to 0 or
expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop, the
condition is evaluated at the bottom; before the control variable has been stepped. For example:

Do I=1 to 10 by 2 until i>6
 say i
 end
/* Displays: "1" "3" "5" "7" */

Note: Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

170 REXX for CICS Transaction Server: User Guide and Reference

Execute instruction(s)
in the DO group

Evaluate exprr + 0 or
evaluate expri + 0 and
exprt + 0, exprb + 0, and
exprt + 0 in order written

Assign start value to control
variable

Use TO value (expr) to test
control variable for termination

Discontinue execution of DO
group if TO value is exceeded

Discontinue execution of DO
group if number of iterations
is exceeded

Discontinue execution of DO
group if FOR value (number of
iterations through the loop) is
exceeded

Discontinue execution of DO
group if WHILE condition is
not met

Discontinue execution of DO
group if UNTIL condition is
met

Use count of iterations (exprr)
to test for termination

Use FOR value (exprf) to test
for termination

Use WHILE expression (exprw)
to test for termination

Use UNTIL expression (expru)
to test for termination

Use BY expression (exprb) to
update control variable

Figure 47. Concept of a DO Loop

Chapter 18. Keyword instructions 171

DROP
DROP unassigns variables, that is, restores them to their original uninitialized state.

DROP name

(name)

;

If name is not enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that
is a valid variable name, separated from any other name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
(Blanks are not necessary either inside or outside the parentheses, but you can add them.) This subsidiary
list must follow the same rules as the original list (that is, be valid variable names, separated by blanks)
except that no parentheses are allowed.

Variables are dropped in sequence from left to right. It is not an error to specify a name more than one
time or to DROP a variable that is not known. If an exposed variable is named (see “PROCEDURE” on page
181), the variable in the older generation is dropped.

Examples

j=4
Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

mylist='c d e'
drop (mylist) f
/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period, as the last character), drops all
variables starting with that stem.

Drop z.
/* Drops all variables with names starting with Z. */

EXIT
EXIT leaves a program unconditionally.

EXIT

expression

;

Optionally, EXIT returns a character string to the caller. The program is stopped immediately, even if an
internal routine is currently being run. If no internal routine is active, RETURN (see “RETURN” on page
184) and EXIT are identical in their effect on the program that is being run.

If you specify expression, it is evaluated and the string resulting from the evaluation is passed back to the
caller when the program stops. For example:

j=3
Exit j*4
/* Would exit with the string '12' */

172 REXX for CICS Transaction Server: User Guide and Reference

If you do not specify expression, no data is passed back to the caller. If the program was called as an
external function, this is detected as an error; either immediately (if RETURN was used), or on return to
the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction EXIT, in that it stops the
whole program and returns no result string.

Note: If the program was called through a command interface, an attempt is made to convert the
returned value to a return code acceptable by the underlying operating system. If the conversion fails, it is
deemed to be unsuccessful because of the underlying operating system and thus is not subject to
trapping with SIGNAL ON SYNTAX. The returned string must be a whole number whose value fits in a
general register (that is, must be in the range -2**31 through 2**31-1).

IF
IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in 0 or 1.

IF expression
;

THEN instruction
;

ELSE instruction
;

The instruction after the THEN is processed only if the result is 1 (true). If you specify an ELSE, the
instruction after the ELSE is processed only if the result of the evaluation is 0 (false).

Examples

if answer='YES' then say 'OK!'
 else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before the ELSE.

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

If answer = 'YES' Then
 If name = 'FRED' Then
 say 'OK, Fred.'
 Else
 nop
Else
 say 'Why not?'

Note:

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, SELECT, or the IF instruction itself. A null clause is not an instruction,
so putting an extra semicolon (or label) after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the IF clause to be ended by the THEN,
without a ; being required. If this were not so, people who are accustomed to other computer
languages would experience considerable difficulties.

Chapter 18. Keyword instructions 173

INTERPRET
INTERPRET processes instructions that have been built dynamically by evaluating expression.

INTERPRET expression ;

The expression is evaluated and is then processed (interpreted) just as though the resulting string were a
line inserted into the program (and bracketed by a DO; and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such as
DO…END and SELECT…END must be complete. For example, a string of instructions being interpreted
cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive DO loop) unless it also
contains the whole repetitive DO…END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Examples

1. data='FRED'
interpret data '= 4'
/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

2. data='do 3; say "Hello there!"; end'
interpret data /* Displays: */
 /* Hello there! */
 /* Hello there! */
 /* Hello there! */

Note:

1. Label clauses are not permitted in an interpreted character string.
2. If you are new to the concept of the INTERPRET instruction and are getting results that you do not

understand, you may find that executing it with TRACE R or TRACE I in effect is helpful. For example:

/* Here is a small REXX program. */
Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello"' indirect'"!"'

When this is run, it gives the following trace:

kitty
 3 *-* name='Kitty'
 >L> "Kitty"
 4 *-* indirect='name'
 >L> "name"
 5 *-* interpret 'say "Hello"' indirect'"!"'
 >L> "say "Hello""
 >V> "name"
 >O> "say "Hello" name"
 >L> ""!""
 >O> "say "Hello" name"!""
 - say "Hello" name"!"
 >L> "Hello"
 >V> "Kitty"
 >O> "Hello Kitty"
 >L> "!"
 >O> "Hello Kitty!"
Hello Kitty!

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and another
literal string. The resulting pure character string is then interpreted, just as though it were actually part
of the original program. Because it is a new clause, it is traced as such (the second *-* trace flag

174 REXX for CICS Transaction Server: User Guide and Reference

under line 5) and is then processed. Again a literal string is concatenated to the value of a variable
(NAME) and another literal, and the final result (Hello Kitty!) is then displayed.

3. For many purposes, you can use the VALUE function (see “VALUE” on page 220) instead of the
INTERPRET instruction. The following line could, therefore, replace line 5 in the last example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are to be
interpreted together, or when an expression is to be evaluated dynamically.

ITERATE
ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other than that with a
simple DO).

ITERATE
name

;

Execution of the group of instructions stops, and control is passed to the DO instruction just as though the
END clause had been encountered. The control variable (if any) is incremented and tested, as usual, and
the group of instructions is processed again, unless the DO instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE steps the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active loop
(which may be the innermost), and this is the loop that is stepped. Any active loops inside the one
selected for iteration are ended (as though by a LEAVE instruction).

Example

do i=1 to 4
 if i=2 then iterate
 say i
 end
/* Displays the numbers: "1" "3" "4" */

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects the innermost loop.

LEAVE
LEAVE causes an immediate exit from one or more repetitive DO loops (that is, any DO construct other
than a simple DO).

LEAVE
name

;

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had been
met. However, on exit, the control variable (if any) will contain the value it had when the LEAVE instruction
was processed.

Chapter 18. Keyword instructions 175

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active loop
(which may be the innermost), and that loop (and any active loops inside it) is then ended. Control then
passes to the clause following the END that matches the DO clause of the selected loop.

Example

do i=1 to 5
 say i
 if i=3 then leave
 end
/* Displays the numbers: "1" "2" "3" */

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. LEAVE cannot be used to end an inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the innermost loop.

NOP
NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE clause:

NOP ;

Example

Select
 when a=c then nop /* Do nothing */
 when a>c then say 'A > C'
 otherwise say 'A < C'
end

Note: Putting an extra semicolon instead of the NOP would merely insert a null clause, which would be
ignored. The second WHEN clause would be seen as the first instruction expected after the THEN, and
would, therefore, be treated as a syntax error. NOP is a true instruction, however, and is, therefore, a valid
target for the THEN clause.

NUMERIC
NUMERIC changes the way in which a program carries out arithmetic operations.

NUMERIC DIGITS

expression1

FORM
SCIENTIFIC

ENGINEERING

VALUE

expression2

FUZZ

expression3

;

176 REXX for CICS Transaction Server: User Guide and Reference

The options of this instruction are described in detail in Chapter 21, “Numbers and arithmetic
operations,” on page 241 and “Errors” on page 248, but in summary:

NUMERIC DIGITS
This option controls the precision to which arithmetic operations and arithmetic built-in functions are
evaluated. If you omit expression1, the precision defaults to 9 digits. Otherwise, expression1 must
evaluate to a positive whole number and must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available; see the note in
Chapter 17, “REXX General Concepts,” on page 141 for more information) but note that high
precisions are likely to require a good deal of processing time. It is recommended that you use the
default value wherever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See “DIGITS”
on page 205.

NUMERIC FORM
This option controls which form of exponential notation REXX uses for the result of arithmetic
operations and arithmetic built-in functions. This may be either SCIENTIFIC (in which case only one,
nonzero digit appears before the decimal point) or ENGINEERING (in which case the power of 10 is
always a multiple of 3). The default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING
set the FORM directly, or it is taken from the result of evaluating the expression (expression2) that
follows VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit
the subkeyword VALUE if expression2 does not begin with a symbol or a literal string (that is, if it
starts with a special character, such as an operator character or parenthesis).

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See “FORM” on
page 207.

NUMERIC FUZZ
This option controls how many digits, at full precision, are ignored during a numeric comparison
operation. See “Numeric Comparisons” on page 246. If you omit expression3, the default is 0 digits.
Otherwise, expression3 must evaluate to 0 or a positive whole number, rounded if necessary
according to the current NUMERIC DIGITS setting, and must be smaller than the current NUMERIC
DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ value
during every numeric comparison. The numbers are subtracted under a precision of DIGITS minus
FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. See “FUZZ” on
page 209.

Note: The three numeric settings are automatically saved across internal and external subroutine and
function calls. See the CALL instruction (“CALL” on page 165) for more details.

OPTIONS
OPTIONS passes special requests or parameters to the language processor. For example, these may be
language processor options or perhaps define a special character set.

OPTIONS expression ;

The expression is evaluated, and the result is examined one word at a time. The language processor
converts the words to uppercase. If the language processor recognizes the words, then they are obeyed.
Words that are not recognized are ignored and assumed to be instructions to a different processor.

The language processor recognizes the following words:
ETMODE

specifies that literal strings and symbols and comments containing DBCS characters are checked for
being valid DBCS strings. If you use this option, it must be the first instruction of the program.

Chapter 18. Keyword instructions 177

If the expression is an external function call, for example OPTIONS 'GETETMOD'(), and the program
contains DBCS literal strings, enclose the name of the function in quotation marks to ensure that the
entire program is not scanned before the option takes effect. It is not recommended to use internal
function calls to set ETMODE because of the possibility of errors in interpreting DBCS literal strings in
the program.

NOETMODE
specifies that literal strings and symbols and comments containing DBCS characters are not checked
for being valid DBCS strings. NOETMODE is the default. The language processor ignores this option
unless it is the first instruction in a program.

EXMODE
specifies that instructions, operators, and functions handle DBCS data in mixed strings on a logical
character basis. DBCS data integrity is maintained.

NOEXMODE
specifies that any data in strings is handled on a byte basis. The integrity of DBCS characters, if any,
may be lost. NOEXMODE is the default.

Note:

1. Because of the language processor's scanning procedures, you must place an OPTIONS 'ETMODE'
instruction as the first instruction in a program containing DBCS characters in literal strings, symbols,
or comments. If you do not place OPTIONS 'ETMODE' as the first instruction and you use it later in
the program, you receive error message CICREX488E. If you do place it as the first instruction of your
program, all subsequent uses are ignored. If the expression contains anything that would start a label
search, all clauses tokenized during the label search process are tokenized within the current setting
of ETMODE. Therefore, if this is the first statement in the program, the default is NOETMODE.

2. To ensure proper scanning of a program containing DBCS literals and DBCS comments, enter the
words ETMODE, NOETMODE, EXMODE, and NOEXMODE as literal strings (that is, enclosed in quotation
marks) in the OPTIONS instruction.

3. The EXMODE setting is saved and restored across subroutine and function calls.
4. To distinguish DBCS characters from 1-byte EBCDIC characters, sequences of DBCS characters are

enclosed with a shift-out (SO) character and a shift-in (SI) character. The hexadecimal values of the SO
and SI characters are X'0E' and X'0F', respectively.

5. When you specify OPTIONS 'ETMODE', DBCS characters within a literal string are excluded from the
search for a closing quotation mark in literal strings.

6. The words ETMODE, NOETMODE, EXMODE, and NOEXMODE can appear several times in the result.
The one that takes effect is determined by the last valid one specified between the pairs ETMODE-
NOETMODE and EXMODE-NOEXMODE.

178 REXX for CICS Transaction Server: User Guide and Reference

PARSE
PARSE assigns data (from various sources) to one or more variables according to the rules of parsing.

PARSE

UPPER

ARG

EXTERNAL

NUMERIC

PULL

SOURCE

VALUE

expression

WITH

VAR name

VERSION

template_list

;

See Chapter 20, “Parsing,” on page 227.

The template_list is often a single template but may be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks or patterns or both.

Each template is applied to a single source string. Specifying multiple templates is never a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See “Parsing multiple
strings” on page 236.

If you do not specify a template, no variables are set but action is taken to prepare the data for parsing, if
necessary. Thus for PARSE EXTERNAL and PARSE PULL, a data string is removed from the queue, for
PARSE LINEIN (and PARSE PULL if the queue is empty), a line is taken from the default input stream, and
for PARSE VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does
not have a value, the NOVALUE condition (if it is enabled) is raised.

If you specify the UPPER option, the data to be parsed is first translated to uppercase (that is, lowercase
a-z to uppercase A-Z). Otherwise, no uppercase translation takes place during the parsing.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the string or strings passed to a program or internal routine as input arguments. (See “ARG” on
page 164 for details and examples.)

Note: You can also retrieve or check the argument strings to a REXX program or internal routine with
the ARG built-in function (see “ARG (Argument)” on page 197.)

PARSE EXTERNAL
This is a non-SAA subkeyword provided in REXX/CICS. The next string from the terminal input buffer
is parsed. This queue may contain data that is the result of external asynchronous events such as user
console input, or messages. If that queue is empty, a console read results. Note that this mechanism
should not be used for typical console input, for which PULL is more general, but rather for special
applications (such as debugging) where the program stack cannot be disturbed.

PARSE NUMERIC
This is a non-SAA subkeyword provided in REXX/CICS. The current numeric controls (as set by the
NUMERIC instruction) are available. These controls are in the order DIGITS FUZZ FORM. For example:

Parse Numeric Var1

Chapter 18. Keyword instructions 179

After this instruction, Var1 would be equal to: 9 0 SCIENTIFIC. See “NUMERIC” on page 176 and
the built-in functions in “DIGITS” on page 205, “FORM” on page 207, and “FUZZ” on page 209.

PARSE PULL
parses the next string from the external data queue. If the external data queue is empty, PARSE PULL
reads a line from the default input stream (the user's terminal), and the program pauses, if necessary,
until a line is complete. You can add data to the head or tail of the queue by using the PUSH and
QUEUE instructions. You can find the number of lines currently in the queue with the QUEUED built-in
function; see “QUEUED” on page 213. Other programs in the system can alter the queue and use it as
a means of communication with programs written in REXX. See also the PULL instruction (“PULL” on
page 182).

Note: PULL and PARSE PULL read from the program stack. If that is empty, they read from the
terminal input buffer; and if that too is empty, they read from the console.

PARSE SOURCE
parses data describing the source of the program running. The language processor returns a string
that is fixed (does not change) while the program is running. The PARSE SOURCE instruction returns a
source string containing the following tokens:

1. The characters CICS.
2. The string COMMAND, FUNCTION, or SUBROUTINE depending on whether the program was

invoked as a host command, from a function call in an expression, by a CALL instruction, or as a
server process.

3. The name of the exec in uppercase. The name of the file (RFS), or MVS partitioned dataset or
DDNAME/member from which the exec was originally loaded. The three formats are:

• DDNAME - member
• RFS fully qualified file identifier
• Dataset name (member)

4. Initial (default) host command environment that is always REXXCICS.
5. Identifier of the specific CICS environment, which in this case is CICS-TS.

PARSE VALUE
parses the data that is the result of evaluating expression. If you specify no expression, the null string
is used. Note that WITH is a subkeyword in this context and cannot be used as a symbol within
expression.

Thus, the following example gets the current time and splits it into its constituent parts:

PARSE VALUE time() WITH hours ':' mins ':' secs

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is valid as a variable name
(that is, it cannot start with a period or a digit). The variable name is not changed unless it appears in
the template. For example the following instruction removes the first word from string, puts it in the
variable word1, and assigns the remainder back to string:

PARSE VAR string word1 string

Similarly, the following example in addition translates the data from string to uppercase before it is
parsed.

PARSE UPPER VAR string word1 string

PARSE VERSION
parses information describing the language level and the date of the language processor. This
information consists of five words delimited by blanks:

1. The string REXX370, signifying the 370 implementation.
2. The language level description (for example, 3.48).

180 REXX for CICS Transaction Server: User Guide and Reference

3. The language processor release date (for example, 05 April 2000).

PROCEDURE
PROCEDURE, within an internal routine (subroutine or function), protects variables by making them
unknown to the instructions that follow it.

PROCEDURE

EXPOSE name

(name)

;

After a RETURN instruction is processed, the original variables environment is restored and any variables
used in the routine (that were not exposed) are dropped. (An exposed variable is one belonging to a caller
of a routine that the PROCEDURE instruction has exposed. When the routine refers to, or alters, the
variable, the original (caller's) copy of the variable is used.) An internal routine need not include a
PROCEDURE instruction; in this case the variables it is manipulating are those the caller "owns". If used,
the PROCEDURE instruction must be the first instruction processed after the CALL or function invocation;
that is, it must be the first instruction following the label.

If you use the EXPOSE option, any variable specified by name is exposed. Any reference to it (including
setting and dropping) refers to the variables environment the caller owns. Hence, the values of existing
variables are accessible, and any changes are persistent even on RETURN from the routine. If name is not
enclosed in parentheses, it identifies a variable you want to expose and must be a symbol that is a valid
variable name, separated from any other name with one or more blanks.

If parentheses enclose a single name, then, after the variable name is exposed, the value of name is
immediately used as a subsidiary list of variables. (Blanks are not necessary either inside or outside the
parentheses, but you can add them.) This subsidiary list must follow the same rules as the original list
(that is, valid variable names, separated by blanks) except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than one
time, or to specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some limited set of
the caller's variables can be made accessible, and these variables can be changed (or new variables in
this set can be created). All these changes are visible to the caller upon RETURN from the routine.

Examples

/* This is the main REXX program */
j=1; z.1='a'
call toft
say j k m /* Displays "1 7 M" */
exit

/* This is a subroutine */
toft: procedure expose j k z.j
 say j k z.j /* Displays "1 K a" */
 k=7; m=3 /* Note: M is not exposed */
 return

If Z.J in the EXPOSE list was placed before J, the caller's value of J would not be visible at that time, so
Z.1 would not be exposed.

The variables in a subsidiary list are also exposed from left to right.

/* This is the main REXX program */
j=1;k=6;m=9
a ='j k m'
call test
exit

Chapter 18. Keyword instructions 181

/* This is a subroutine */
test: procedure expose (a) /* Exposes A, J, K, and M */
 say a j k m /* Displays "j k m 1 6 9" */
 return

You can use subsidiary lists to more easily expose a number of variables at one time or, with the VALUE
built-in function, to manipulate dynamically named variables.

/* This is the main REXX program */
c=11; d=12; e=13
Showlist='c d' /* but not E */
call Playvars
say c d e f /* Displays "11 New 13 9" */
exit

/* This is a subroutine */
Playvars: procedure expose (showlist) f
 say word(showlist,2) /* Displays "d" */
 say value(word(showlist,2),'New') /* Displays "12" and sets new value */
 say value(word(showlist,2)) /* Displays "New" */
 e=8 /* E is not exposed */
 f=9 /* F was explicitly exposed */
 return

Specifying a stem as name exposes this stem and all possible compound variables whose names begin
with that stem. See “Stems” on page 155)

/* This is the main REXX program */
a.=11; i=13; j=15
i = i + 1
C.5 = 'FRED'
call lucky7
say a. a.1 i j c. c.5
say 'You should see 11 7 14 15 C. FRED'
exit
lucky7:Procedure Expose i j a. c.
/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1='7' /* This sets A.1 in the caller's */
 /* environment, even if it did not */
 /* previously exist. */
return

Variables can be exposed through several generations of routines by ensuring that they are included on all
intermediate PROCEDURE instructions.

For details and examples of how routines are called, see the CALL instruction “CALL” on page 165 and
function descriptions Chapter 19, “Functions,” on page 193.

PULL
PULL reads a string from the program stack. If the program stack is empty, PULL then tries reading a line
from the current terminal input device.

PULL

template_list

;

PULL is a short form of the following instruction:
PARSE UPPER PULL

template_list

;

The current head-of-queue is read as one string. Without a template_list specified, no further action is
taken (and the string is thus effectively discarded). If specified, a template_list is usually a single
template, which is a list of symbols separated by blanks or patterns or both. (The template_list can be
several templates separated by commas, but PULL parses only one source string; if you specify several

182 REXX for CICS Transaction Server: User Guide and Reference

comma-separated templates, variables in templates other than the first one are assigned the null string.)
The string is translated to uppercase (that is, lowercase a-z to uppercase A-Z) and then parsed into
variables according to the rules described in the section on parsing (Chapter 20, “Parsing,” on page 227).
Use the PARSE PULL instruction if you do not desire uppercase translation.

Note:

1. The REXX/CICS implementation of the external data queue is the program stack. The language
processor reads a line from the program stack. If the program stack is empty, a terminal read occurs.
The program stack for you is in an RLS queue named \SYSTEM\userid*PROGSTACK*.

2. If the PULL causes a read from the terminal, the variable PULLKEY is set upon completion of the PULL
command. It will contain the name of the aid key pressed in response to the PULL command (for
example: ENTER, PFKEY 1, PAKEY 1, MSR, PEN, or CLEAR).

For information on named queues, see the REXX List System LPULL command “LPULL” on page 303.

Example

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used on the template to isolate the first word the user
enters.

If the external data queue is empty, a console read is issued and the program pauses, if necessary, until a
line is complete.

The QUEUED built-in function (see “QUEUED” on page 213) returns the number of lines currently in the
program stack.

PUSH
PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) onto the
external data queue.

PUSH

expression

;

If you do not specify expression, a null string is stacked.

Note: The REXX/CICS implementation of the external data queue is the program stack. The language
processor reads a line from the program stack. If the program stack is empty, a terminal read occurs. The
program stack for you is in an RLS queue named \SYSTEM\userid*PROGSTACK*.

For information on named queues, see the REXX List System LPUSH command, “LPUSH” on page 304.

Example

a='Fred'
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described in “QUEUED” on page 213) returns the number of lines currently
in the external data queue.

Chapter 18. Keyword instructions 183

QUEUE
QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out).

QUEUE

expression

;

If you do not specify expression, a null string is queued.

Note: The REXX/CICS implementation of the external data queue is the program stack. The language
processor reads a line from the program stack. If the program stack is empty, a terminal read occurs. The
program stack for you is in an RLS queue named \SYSTEM\userid*PROGSTACK*.

Example

a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

The QUEUED built-in function (described in “QUEUED” on page 213) returns the number of lines currently
in the external data queue.

RETURN
RETURN returns control (and possibly a result) from a REXX program or internal routine to the point of its
invocation.

RETURN

expression

;

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect on
the program that is being run. See “EXIT” on page 172.

If a subroutine is being run (see the CALL instruction), expression (if any) is evaluated, control passes
back to the caller, and the REXX special variable RESULT is set to the value of expression. If expression is
omitted, the special variable RESULT is dropped (becomes uninitialized). The various settings saved at the
time of the CALL (such as tracing and addresses) are also restored. See “CALL” on page 165.

If a function is being processed, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point where
the function was called. See the description of functions in Chapter 19, “Functions,” on page 193 for more
details.

If a PROCEDURE instruction was processed within the routine (subroutine or internal function), all
variables of the current generation are dropped (and those of the previous generation are exposed) after
expression is evaluated and before the result is used or assigned to RESULT.

SAY
SAY writes a line to the default output stream (the terminal) so the user sees it displayed.

SAY

expression

;

The result of expression can be of any length. If you omit expression, the null string is written.

184 REXX for CICS Transaction Server: User Guide and Reference

You can use the SET TERMOUT command to redirect SAY output.

Example

data=100
Say data 'divided by 4 =>' data/4
/* Displays: "100 divided by 4 => 25" */

SELECT
SELECT conditionally calls one of several alternative instructions.

SELECT ; WHEN expression
;

THEN
;

instruction

OTHERWISE
;

instruction

END ;

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If the result is 1, the
instruction following the associated THEN (which may be a complex instruction such as IF, DO, or
SELECT) is processed and control then passes to the END. If the result is 0, control passes to the next
WHEN clause.

If none of the WHEN expressions evaluates to 1, control passes to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE causes an error (but note that you can omit
the instruction list that follows OTHERWISE).

Example

 balance=100
 check=50
 balance = balance - check
 Select
 when balance > 0 then
 say 'Congratulations! You still have' balance 'dollars left.'
 when balance = 0 then do
 say 'Warning, Balance is now zero! STOP all spending.'
 say "You cut it close this month! Hope you do not have any"
 say "checks left outstanding."
 end
 Otherwise
 say "You have just overdrawn your account."
 say "Your balance now shows" balance "dollars."
 say "Oops! Hope the bank does not close your account."
 end /* Select */

Note:

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is not
equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the WHEN clause to be ended by the
THEN without a ; (delimiter) being required.

Chapter 18. Keyword instructions 185

SIGNAL
SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE expression),
or controls the trapping of certain conditions (if you specify ON or OFF).

SIGNAL labelname

VALUE

expression

OFF ERROR

FAILURE

HALT

NOVALUE

SYNTAX

ON ERROR

FAILURE

HALT

NOVALUE

SYNTAX

NAME trapname

;

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. See Chapter 22, “Conditions and condition
traps,” on page 251.

To change the flow of control, a label name is derived from labelname or taken from the result of
evaluating the expression after VALUE. The labelname you specify must be a literal string or symbol that is
taken as a constant. If you use a symbol for labelname, the search is independent of alphabetic case. If
you use a literal string, the characters should be in uppercase. This is because the language processor
translates all labels to uppercase, regardless of how you enter them in the program. Similarly, for SIGNAL
VALUE, the expression must evaluate to a string in uppercase or the language processor does not find the
label. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal string
(that is, if it starts with a special character, such as an operator character or parenthesis). All active
pending DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended (that is, they
cannot be resumed). Control then passes to the first label in the program that matches the given name, as
though the search had started from the top of the program.

Example

Signal fred; /* Transfer control to label FRED below */

Fred: say 'Hi!'

Because the search effectively starts at the top of the program, control always passes to the first
occurrence, if duplicates are present, of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of a
transfer of control to a label.

Using SIGNAL VALUE

The VALUE form of the SIGNAL instruction allows a branch to a label whose name is determined at the
time of execution. This can safely effect a multi-way CALL (or function call) to internal routines because

186 REXX for CICS Transaction Server: User Guide and Reference

any DO loops, and so forth, in the calling routine are protected against termination by the call mechanism.
For example:

fred='PETE'
call multiway fred, 7

exit
Multiway: procedure
 arg label . /* One word, uppercase */
 /* Can add checks for valid labels here */
 signal value label /* Transfer control to wherever */

Pete: say arg(1) '!' arg(2) /* Displays: "PETE ! 7" */
 return

TRACE
TRACE controls the tracing action (that is, how much is displayed to the user) during processing of a REXX
program.

TRACE

number

?

!

Normal

All

Commands

Error

Failure

Intermediates

Labels

Off

Results

Scan

;

Alternatively:

TRACE

string

symbol

VALUE

expression

;

Tracing describes some or all of the clauses in a program, producing descriptions of clauses as they are
processed. TRACE is mainly used for debugging. Its syntax is more concise than that of other REXX
instructions because TRACE is usually entered manually during interactive debugging. (This is a form of
tracing in which the user can interact with the language processor while the program is running.) For this
use, economy of key strokes is especially convenient.

If specified, the number must be a whole number.

The string or expression evaluates to:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later

Chapter 18. Keyword instructions 187

• Null.

The symbol is taken as a constant, and is, therefore:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later.

The option that follows TRACE or the result of evaluating expression determines the tracing action. You
can omit the subkeyword VALUE if expression does not begin with a symbol or a literal string (that is, if it
starts with a special character, such as an operator or parenthesis).

Alphabetic character (word) options

Although you can enter the word in full, only the capitalized and highlighted letter is needed; all
characters following it are ignored. That is why these are referred to as alphabetic character options. See
“Commands to External Environments” on page 156 for definitions of ERROR and FAILURE.

TRACE actions correspond to the alphabetic character options as follows:
All

Traces (that is, displays) all clauses before execution.
Commands

Traces all commands before execution. If the command results in an error or failure,tracing also
displays the return code from the command.

Error
Traces any command resulting in an error or failure after execution, together with the return code
from the command.

Failure
Traces any command resulting in a failure after execution, together with the return code from the
command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during evaluation of expressions
and substituted names.

Labels
Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine calls
and transfers of control because of the SIGNAL instruction.

Normal
Traces any command resulting in a negative return code after execution, together with the return code
from the command. This is the default setting.

Off
Traces nothing and resets the special prefix options (described later) to OFF.

Results
Traces all clauses before execution. Displays final results (contrast with Intermediates, preceding)
of evaluating an expression. Also displays values assigned during PULL, ARG, and PARSE instructions.
This setting is recommended for general debugging.

Scan
Traces all remaining clauses in the data without them being processed. Basic checking (for missing
ENDs and so forth) is carried out, and the trace is formatted as usual. This is valid only if the TRACE S
clause itself is not nested in any other instruction (including INTERPRET or interactive debug) or in an
internal routine.

Prefix options

The prefixes ! and ? are valid either alone or with one of the alphabetic character options. You can specify
both prefixes, in any order, on one TRACE instruction. You can specify a prefix more than one time. Each

188 REXX for CICS Transaction Server: User Guide and Reference

occurrence of a prefix on an instruction reverses the action of the previous prefix. The prefix(es) must
immediately precede the option (no intervening blanks).

The prefixes ! and ? modify tracing and execution as follows:
?

Controls interactive debug. During usual execution, a TRACE option with a prefix of ? causes
interactive debug to be switched on. See “Interactive debugging of programs” on page 475. While
interactive debug is on, interpretation pauses after most clauses that are traced. For example, the
instruction TRACE ?E makes the language processor pause for input after executing any command
that returns an error (that is, a nonzero return code).

Any TRACE instructions in the program being traced are ignored. (This is so that you do not exit from
interactive debug unexpectedly.)

You can switch off interactive debug in several ways:

• Entering TRACE O turns off all tracing.
• Entering TRACE with no options restores the defaults. It turns off interactive debug but continues

tracing with TRACE Normal (which traces any failing command after execution) in effect.
• Entering TRACE ? turns off interactive debug and continues tracing with the current option.
• Entering a TRACE instruction with a ? prefix before the option turns off interactive debug and

continues tracing with the new option.

Using the ? prefix, therefore, switches you alternately in or out of interactive debug. (Because the
language processor ignores any further TRACE statements in your program after you are in interactive
debug, use CALL TRACE '?' to turn off interactive debug.)

!
Inhibits host command execution. During regular execution, a TRACE instruction with a prefix of !
suspends execution of all subsequent host commands. For example, TRACE !C causes commands to
be traced but not processed. As each command is bypassed, the REXX special variable RC is set to 0.
You can use this action for debugging potentially destructive programs. This does not inhibit any
commands entered manually while in interactive debug. These are always processed.

You can switch off command inhibition, when it is in effect, by issuing a TRACE instruction with a
prefix !. Repeated use of the ! prefix, therefore, switches you alternately in or out of command
inhibition mode. Or, you can turn off command inhibition at any time by issuing TRACE O or TRACE
with no options.

Numeric options

If interactive debug is active and if the option specified is a positive whole number (or an expression that
evaluates to a positive whole number), that number indicates the number of debug pauses to be skipped
over. (See “Interactive debugging of programs” on page 475.) However, if the option is a negative whole
number (or an expression that evaluates to a negative whole number), all tracing, including debug pauses,
is temporarily inhibited for the specified number of clauses. For example, TRACE -100 means that the
next 100 clauses that would usually be traced are not, in fact, displayed. After that, tracing resumes as
before.

Tracing tips

1. When a loop is being traced, the DO clause itself is traced on every iteration of the loop.
2. You can retrieve the trace actions currently in effect by using the TRACE built-in function (see “TRACE”

on page 218).
3. If available at the time of execution, comments associated with a traced clause are included in the

trace, as are comments in a null clause, if you specify TRACE A, R, I, or S.
4. Commands traced before execution always have the final value of the command (that is, the string

passed to the environment), and the clause generating it produced in the traced output.
5. Trace actions are automatically saved across subroutine and function calls. See “CALL” on page 165.

Chapter 18. Keyword instructions 189

Example

One of the most common traces to use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */

Format of TRACE output

Every clause traced appears with automatic formatting (indentation) according to its logical depth of
nesting and so forth. The language processor may replace any control codes in the encoding of data (for
example, EBCDIC values less than '40'x) with a question mark (?) to avoid console interference. Results
(if requested) are indented an extra two spaces and are enclosed in double quotation marks so that
leading and trailing blanks are apparent.

A line number precedes the first clause traced on any line. If the line number is greater than 99999, the
language processor truncates it on the left, and the ? prefix indicates the truncation. For example, the line
number 100354 appears as ?00354. All lines displayed during tracing have a three-character prefix to
identify the type of data being traced. These can be:
-

Identifies the source of a single clause, that is, the data actually in the program.
+++

Identifies a trace message. This may be the nonzero return code from a command, the prompt
message when interactive debug is entered, an indication of a syntax error when in interactive debug,
or the traceback clauses after a syntax error in the program.

>>>
Identifies the result of an expression (for TRACE R) or the value assigned to a variable during parsing,
or the value returned from a subroutine call.

>.>
Identifies the value "assigned" to a placeholder during parsing (see “The period as placeholder” on
page 228).

The following prefixes are used only if TRACE Intermediates is in effect:
>C>

The data traced is the name of a compound variable, traced after substitution and before use,
provided that the name had the value of a variable substituted into it.

>F>
The data traced is the result of a function call.

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

>O>
The data traced is the result of an operation on two terms.

>P>
The data traced is the result of a prefix operation.

>V>
The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N , command inhibition (!) off, and
interactive debug (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced. Any
CALL or INTERPRET or function invocations active at the time of the error are also traced. If an attempt to
transfer control to a label that could not be found caused the error, that label is also traced. The special
trace prefix +++ identifies these traceback lines.

190 REXX for CICS Transaction Server: User Guide and Reference

UPPER
UPPER translates the contents of one or more variables to uppercase. The variables are translated in
sequence from left to right.

This is a non-SAA instruction provided in REXX/CICS.

UPPER variable ;

The variable is a symbol, separated from any other variables by one or more blanks or comments. Specify
only simple symbols and compound symbols. See “Simple Symbols” on page 154.

Using this instruction is more convenient than repeatedly invoking the TRANSLATE built-in function.

Example

a1='Hello'; b1='there'
Upper a1 b1
say a1 b1 /* Displays "HELLO THERE" */

An error is signaled if a constant symbol or a stem is encountered. Using an uninitialized variable is not an
error, and has no effect, except that it is trapped if the NOVALUE condition (SIGNAL ON NOVALUE) is
enabled.

Chapter 18. Keyword instructions 191

192 REXX for CICS Transaction Server: User Guide and Reference

Chapter 19. Functions
A function is an internal, built-in, or external routine that returns a single result string. (A subroutine is a
function that is an internal, built-in, or external routine that may or may not return a result and that is
called with the CALL instruction.)

Syntax
A function call is a term in an expression that calls a routine that carries out some procedures and returns
a string. This string replaces the function call in the continuing evaluation of the expression.

You can include function calls to internal and external routines in an expression anywhere that a data
term (such as a string) would be valid, using the notation:

function_name (

,

expression

)

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation-defined maximum number of expressions, separated by commas,
between the parentheses. In REXX/CICS, the implementation maximum is up to 20 expressions. These
expressions are called the arguments to the function. Each argument expression may include further
function calls.

The left parenthesis must be adjacent to the name of the function, with no blank in between, or the
construct is not recognized as a function call. (A blank operator would be assumed at this point instead.)
Only a comment (which has no effect) can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting strings are all then passed to the
function. This then runs some operation (usually dependent on the argument strings passed, though
arguments are not mandatory) and eventually returns a single character string. This string is then
included in the original expression just as though the entire function reference had been replaced by the
name of a variable whose value is that returned data.

For example, the function SUBSTR is built-in to the language processor (see section “SUBSTR
(Substring)” on page 216) and could be used as:

N1='abcdefghijk'
Z1='Part of N1 is: 'substr(N1,2,7)
/* Sets Z1 to 'Part of N1 is: bcdefgh' */

A function can have a variable number of arguments. You need to specify only those that are required. For
example, SUBSTR('ABCDEF',4) would return DEF.

Functions and subroutines
The function calling mechanism is identical to that for subroutines. The only difference between functions
and subroutines is that functions must return data, whereas subroutines do not need to.

The following types of routines can be called as functions:
Internal

If the routine name exists as a label in the program, the current processing status is saved, so that it is
later possible to return to the point of invocation to resume execution. Control is then passed to the
first label in the program that matches the name. As with a routine called by the CALL instruction,
various other status information (such as TRACE and NUMERIC settings) is saved too. For details, see

© Copyright IBM Corp. 1974, 2020 193

the CALL instruction (“CALL” on page 165). You can use SIGNAL and CALL together to call an internal
routine whose name is determined at the time of execution; this is known as a multi-way call (see
“SIGNAL” on page 186).

If you are calling an internal routine as a function, you must specify an expression in any RETURN
instruction to return from it. This is not necessary if it is called as a subroutine. For example:

/* Recursive internal function execution... */
arg x
say x'! =' factorial(x)
exit

factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 return factorial(n-1) * n

While searching for an internal label, syntax checking is performed and the exec is tokenized. See
Performance considerations for more details. FACTORIAL is unusual in that it calls itself (this is
recursive invocation). The PROCEDURE instruction ensures that a new variable n is created for each
invocation.

Note: When there is a search for a routine, the language processor currently scans the statements in
the REXX program to locate the internal label. During the search, the language processor might
encounter a syntax error. As a result, a syntax error might be raised on a statement different from the
original line being processed.

Built-in
These functions are always available and are defined in “Built-in Functions” on page 196.

External
You can write or use functions that are external to your program and to the language processor.
External routines must be written in REXX. You can call a REXX program as a function and, in this
case, pass more than one argument string. The ARG or PARSE ARG instructions or the ARG built-in
function can retrieve these argument strings. When called as a function, a program must return data
to the caller.

Note:

1. External REXX functions can easily perform an EXEC CICS LINK to a program written in any CICS-
supported language. Also, REXX/CICS command routines can be written in assembler.

2. Calling an external REXX program as a function is similar to calling an internal routine. The external
routine is, however, an implicit PROCEDURE in that all the caller's variables are always hidden and
the status of internal values (such as NUMERIC settings) start with their defaults (rather than
inheriting those of the caller).

3. Other REXX programs can be called as functions. You can use either EXIT or RETURN to leave the
called REXX program, and in either case you must specify an expression.

4. With care, you can use the INTERPRET instruction to process a function with a variable function
name. However, avoid this if possible because it reduces the clarity of the program.

Search order

The search order for functions is: internal routines, built-in functions, external functions.

Internal routines are not used if the function name is given as a literal string (that is, specified in quotation
marks); in this case, the function must be built-in or external. This lets you usurp the name of, say, a built-
in function to extend its capabilities, yet still be able to call the built-in function when needed. For
example:

/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure
 arg in

194 REXX for CICS Transaction Server: User Guide and Reference

 if in='' then in='Standard'
 return 'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal string must be in uppercase for
the search to succeed, as in the example. The same is usually true of external functions.

External functions and subroutines have a system-defined search order.

Whenever an exec, command, external function, or subroutine that is written in REXX is invoked by REXX/
CICS (for example, from the CICS command line, CALL instruction, EXEC command, or a command in an
exec), the search order for locating the target exec is as follows:

• Search order for a DEFCMD defined command exec or other called exec.

If this is an attempt to execute an authorized command, a check is made to see if this is an authorized
user or the command is in an exec loaded from ddname CICEXEC or CICAUTH. If none of these are true,
the command fails with a return code of -4.

1. In the current exec for an internal function or subroutine.

This search can be bypassed by explicitly identifying the function (or subroutine) as external by
enclosing its name in quotes.

2. Execs in storage (from an earlier EXECLOAD).
3. The current RFS directory.
4. The current PATH. RFS directories and MVS partitioned data sets are searched in the order listed in

the most recent PATH command, if it was executed. See “PATH” on page 399.
5. PDS data sets allocated (or concatenated) to ddname CICAUTH.

If user is an authorized user or if the current exec was loaded from CICEXEC and the search is for an
authorized command's program, then check CICAUTH ddname.

6. PDS data sets allocated (or concatenated) to ddname CICEXEC.
7. PDS data sets allocated (or concatenated) to ddname CICUSER.

For more information on the DEFCMD command, see “DEFCMD” on page 378.

Note:

1. The only MVS dataset type that REXX/CICS execs invoke from is the MVS Partitioned Organization
(DSORG=PO). MVS sequential data sets (DSORG=PS) are not supported.

2. REXX execs residing in MVS partitioned data sets may not have sequence numbers in columns 73
through 80.

3. An attempt is made to dynamically allocate (by SVC 99) any MVS partitioned data sets specified on
the last PATH statement, if the target exec has not been located before the dataset name is reached
(when processing the PATH list from left to right).

4. The DEFSCMD AUTH parameter is used to specify that a REXX/CICS command is an authorized
command.

5. EXECLOAD and EXECDROP commands are authorized commands and will allow only REXX/CICS
authorized users or execs loaded from CICEXEC to execute them.

Errors during execution

If an external or built-in function detects any error, the language processor is informed and a syntax error
results. Execution of the clause that included the function call is, therefore, ended. Similarly, if an external
function fails to return data correctly, the language processor detects this and reports it as an error.

If a syntax error occurs during the execution of an internal function, it can be trapped (using SIGNAL ON
SYNTAX) and recovery may then be possible. If the error is not trapped, the program is ended.

Chapter 19. Functions 195

Built-in Functions
REXX provides a rich set of built-in functions, including character manipulation, conversion, and
information functions.

Other built-in and external functions are generally available; see “External Functions Provided in REXX/
CICS” on page 224.

General notes on the built-in functions are as follows:

• The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no space in between.

• The built-in functions work internally with NUMERIC DIGITS 9 and NUMERIC FUZZ 0 and are unaffected
by changes to the NUMERIC settings, except where stated. Any argument named as a number is
rounded, if necessary, according to the current setting of NUMERIC DIGITS (just as though the number
had been added to 0) and checked for validity before use. This occurs in the following functions: ABS,
FORMAT, MAX, MIN, SIGN, and TRUNC, and for certain options of DATATYPE. This is not true for
RANDOM.

• Any argument named as a string can be a null string.
• If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start

character or word in a string, it must be a positive whole number, unless otherwise stated.
• Where the last argument is optional, you can always include a comma to indicate that you omitted it; for

example, DATATYPE(1,), like DATATYPE(1), would return NUM. You can include any number of trailing
commas; they are ignored. (Where there are actual parameters, the default values apply.)

• If you specify a pad character, it must be exactly one character long. (A pad character extends a string,
usually on the right. For an example, see the LEFT built-in function “LEFT” on page 210.)

• If a function has an option you can select by specifying the first character of a string, that character can
be in upper- or lowercase.

• Some built-in functions support DBCS. For a complete list and descriptions of these functions, see
Chapter 33, “Double-Byte Character Set (DBCS) Support,” on page 457.

ABBREV (Abbreviation)
The ABBREV function returns 1 if info is equal to the leading characters of information and the length of
info is not less than length. ABBREV returns 0 if either of these conditions is not met.

ABBREV(information , info

, length

)

If you specify length, it must be a positive whole number or zero. The default for length is the number of
characters in info.

Examples

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri') -> 0
ABBREV('PRINT','PRI',4) -> 0
ABBREV('PRINT','PRY') -> 0
ABBREV('PRINT','') -> 1
ABBREV('PRINT','',1) -> 0

Note: A null string always matches if a length of 0 (or the default) is used. This allows a default keyword
to be selected automatically; for example:

say 'Enter option:'; pull option .
select /* keyword1 is to be the default */
 when abbrev('keyword1',option) then ...
 when abbrev('keyword2',option) then ...

196 REXX for CICS Transaction Server: User Guide and Reference

 ...
 otherwise nop;
end;

ABS (Absolute Value)
The ABS function returns the absolute value of number. The result has no sign and is formatted according
to the current NUMERIC settings.

ABS(number)

Examples

ABS('12.3') -> 12.3
ABS(' -0.307') -> 0.307

ADDRESS
The ADDRESS function returns the name of the environment to which commands are currently being
submitted. The environment may be a name of a subcommand environment.

ADDRESS()

See the ADDRESS instruction (“ADDRESS” on page 163) for more information. Trailing blanks are
removed from the result.

Examples

ADDRESS() -> 'CICS' /* default under CICS */
ADDRESS() -> 'EDITSVR' /* default under CICS editor */

ARG (Argument)
The ARG function returns an argument string or information about the argument strings to a program or
internal routine.

ARG(
n

, option

)

If you do not specify n, the number of arguments passed to the program or internal routine is returned.

If you specify only n, the nth argument string is returned. If the argument string does not exist, the null
string is returned. The n must be a positive whole number.

If you specify option, ARG tests for the existence of the nth argument string. The following are valid
options. (Only the capitalized and highlighted letter is needed; all characters following it are ignored.)
Exists

returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was called.
Returns 0 otherwise.

Omitted
returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Returns 0 otherwise.

Examples

/* following "Call name;" (no arguments) */
ARG() -> 0
ARG(1) -> ''
ARG(2) -> ''

Chapter 19. Functions 197

ARG(1,'e') -> 0
ARG(1,'O') -> 1

/* following "Call name 'a',,'b';" */
ARG() -> 3
ARG(1) -> 'a'
ARG(2) -> ''
ARG(3) -> 'b'
ARG(n) -> '' /* for n>=4 */
ARG(1,'e') -> 1
ARG(2,'E') -> 0
ARG(2,'O') -> 1
ARG(3,'o') -> 0
ARG(4,'o') -> 1

Note:

1. The number of argument strings is the largest number n for which ARG(n,'e') would return 1 or 0 if
there are no explicit argument strings. That is, it is the position of the last explicitly specified argument
string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0 argument
strings if it is called with the name only and has 1 argument string if anything else (including blanks) is
included with the command.

3. You can retrieve and directly parse the argument strings to a program or internal routine with the ARG
or PARSE ARG instructions. (See “ARG” on page 164, “PARSE” on page 179, and Chapter 20,
“Parsing,” on page 227.)

BITAND (Bit by Bit AND)
The BITAND function returns a string composed of the two input strings logically ANDed together, bit by
bit.

BITAND(string1
,

string2 , pad

)

The encodings of the strings are used in the logical operation. The length of the result is the length of the
longer of the two strings. If no pad character is provided, the AND operation stops when the shorter of the
two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string.

Examples

BITAND('12'x) -> '12'x
BITAND('73'x,'27'x) -> '23'x
BITAND('13'x,'5555'x) -> '1155'x
BITAND('13'x,'5555'x,'74'x) -> '1154'x
BITAND('pQrS',,'BF'x) -> 'pqrs' /* EBCDIC */

BITOR (Bit by Bit OR)
The BITOR function returns a string composed of the two input strings logically inclusive-ORed together,
bit by bit.

BITOR(string1
,

string2 , pad

)

The encodings of the strings are used in the logical operation. The length of the result is the length of the
longer of the two strings. If no pad character is provided, the OR operation stops when the shorter of the
two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial

198 REXX for CICS Transaction Server: User Guide and Reference

result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string.

Examples

BITOR('12'x) -> '12'x
BITOR('15'x,'24'x) -> '35'x
BITOR('15'x,'2456'x) -> '3556'x
BITOR('15'x,'2456'x,'F0'x) -> '35F6'x
BITOR('1111'x,,'4D'x) -> '5D5D'x
BITOR('pQrS',,'40'x) -> 'PQRS' /* EBCDIC */

BITXOR (Bit by Bit Exclusive OR)
The BITXOR function returns a string composed of the two input strings logically eXclusive-ORed
together, bit by bit.

BITXOR(string1
,

string2 , pad

)

The encodings of the strings are used in the logical operation. The length of the result is the length of the
longer of the two strings. If no pad character is provided, the XOR operation stops when the shorter of the
two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string.

Examples

BITXOR('12'x) -> '12'x
BITXOR('12'x,'22'x) -> '30'x
BITXOR('1211'x,'22'x) -> '3011'x
BITXOR('1111'x,'444444'x) -> '555544'x
BITXOR('1111'x,'444444'x,'40'x) -> '555504'x
BITXOR('1111'x,,'4D'x) -> '5C5C'x
BITXOR('C711'x,'222222'x,' ') -> 'E53362'x /* EBCDIC */

B2X (Binary to Hexadecimal)
The B2X function returns a string, in character format, that represents binary_string converted to
hexadecimal.

B2X(binary_string)

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
blanks in binary_string (at four-digit boundaries only, not leading or trailing) to aid readability; they are
ignored.

The returned string uses uppercase alphabetic characters for the values A-F, and does not include blanks.

If binary_string is the null string, B2X returns a null string. If the number of binary digits in binary_string is
not a multiple of four, then up to three 0 digits are added on the left before the conversion to make a total
that is a multiple of four.

Examples

B2X('11000011') -> 'C3'
B2X('10111') -> '17'
B2X('101') -> '5'
B2X('1 1111 0000') -> '1F0'

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms. For
example:

Chapter 19. Functions 199

X2D(B2X('10111')) -> '23' /* decimal 23 */

CENTER/CENTRE
The CENTER or CENTRE function returns a string of length length with string centered in it, with pad
characters added as necessary to make up length.

CENTER(

CENTRE(

string , length

, pad

)

The length must be a positive whole number or zero. The default pad character is blank. If the string is
longer than length, it is truncated at both ends to fit. If an odd number of characters are truncated or
added, the right-hand end loses or gains one more character than the left-hand end.

Examples

CENTER(abc,7) -> ' ABC '
CENTER(abc,8,'-') -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue '

Note: To avoid errors because of the difference between British and American spellings, this function can
be called either CENTRE or CENTER.

COMPARE
The COMPARE function returns 0 if the strings, string1 and string2, are identical. Otherwise, returns the
position of the first character that does not match.

COMPARE(string1 , string2

, pad

)

The shorter string is padded on the right with pad if necessary. The default pad character is a blank.

Examples

COMPARE('abc','abc') -> 0
COMPARE('abc','ak') -> 2
COMPARE('ab ','ab') -> 0
COMPARE('ab ','ab',' ') -> 0
COMPARE('ab ','ab','x') -> 3
COMPARE('ab-- ','ab','-') -> 5

CONDITION
The CONDITION function returns the condition information associated with the current trapped condition.

CONDITION(

option

)

See Chapter 22, “Conditions and condition traps,” on page 251 for a description of condition traps. You
can request the following information:

• The name of the current trapped condition
• Any descriptive string associated with that condition
• The instruction processed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition.

To select the information to return, use the following options. (Only the capitalized and highlighted letter
is needed; all characters following it are ignored.)

200 REXX for CICS Transaction Server: User Guide and Reference

Condition name
returns the name of the current trapped condition.

Description
returns any descriptive string associated with the current trapped condition. If no description is
available, returns a null string.

Instruction
returns either CALL or SIGNAL, the keyword for the instruction processed when the current condition
was trapped. This is the default if you omit option.

Status
returns the status of the current trapped condition. This can change during processing, and can be:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed or ignored.

If no condition has been trapped, the CONDITION function returns a null string in all four cases.

Examples

CONDITION() -> 'CALL' /* perhaps */
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'
CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /* perhaps */

Note: The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine called
with CALL ON trapname has returned, the current trapped condition reverts to the condition that was
current before the CALL took place (which might be none). CONDITION returns the values it returned
before the condition was trapped.

COPIES
The COPIES function returns n concatenated copies of string. The n must be a positive whole number or
zero.

COPIES(string , n)

Examples

COPIES('abc',3) -> 'abcabcabc'
COPIES('abc',0) -> ''

C2D (Character to Decimal)
The C2D function returns the decimal value of the binary representation of string.

C2D(string
, n

)

If the result cannot be expressed as a whole number, an error results. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS. If you specify n, it is the length of the returned
result. If you do not specify n, string is processed as an unsigned binary number.

If string is null, returns 0.

Implementation maximum: The input string cannot have more than 250 characters that are significant in
forming the final result. Leading sign characters ('00'x and 'FF'x) do not count toward this total.

Chapter 19. Functions 201

Examples

C2D('09'X) -> 9
C2D('81'X) -> 129
C2D('FF81'X) -> 65409
C2D('') -> 0
C2D('a') -> 129 /* EBCDIC */

If you specify n, the string is taken as a signed number expressed in n characters. The number is positive
if the leftmost bit is off, and negative, in two's complement notation, if the leftmost bit is on. In both
cases, it is converted to a whole number, which may, therefore, be negative. The string is padded on the
left with '00'x characters (note, not “sign-extended”), or truncated on the left to n characters. This
padding or truncation is as though RIGHT(string,n,'00'x) had been processed. If n is 0, C2D always
returns 0.

C2D('81'X,1) -> -127
C2D('81'X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('F081'X,2) -> -3967
C2D('F081'X,1) -> -127
C2D('0031'X,0) -> 0

C2X (Character to Hexadecimal)
The C2X function returns a string, in character format, that represents string converted to hexadecimal.

C2X(string)

The returned string contains twice as many bytes as the input string. For example, on an EBCDIC system,
C2X(1) returns F1 because the EBCDIC representation of the character 1 is 'F1'X.

The string returned uses uppercase alphabetics for the values A-F and does not include blanks. The string
can be of any length. If string is null, returns a null string.

Examples

C2X('72s') -> 'F7F2A2' /* 'C6F7C6F2C1F2'X in EBCDIC */
C2X('0123'X) -> '0123' /* 'F0F1F2F3'X in EBCDIC */

DATATYPE
The DATATYPE function returns NUM if you specify only string and if string is a valid REXX number that can
be added to 0 without error. DATATYPE returns CHAR if string is not a valid number.

DATATYPE(string

, type

)

If you specify type, returns 1 if string matches the type; otherwise returns 0. If string is null, the function
returns 0 (except when type is X, which returns 1 for a null string). The following are valid types. Only the
capitalized letter is needed; all characters following it are ignored. For the hexadecimal option, you
must start your string specifying the name of the option with x rather than h.)
Alphanumeric

returns 1 if string contains only characters from the ranges a-z, A-Z, and 0-9.
Binary

returns 1 if string contains only the characters 0 or 1 or both.
C

returns 1 if string is a mixed SBCS/DBCS string.
Dbcs

returns 1 if string is a DBCS-only string enclosed by SO and SI bytes.

202 REXX for CICS Transaction Server: User Guide and Reference

Lowercase
returns 1 if string contains only characters from the range a-z.

Mixed case
returns 1 if string contains only characters from the ranges a-z and A-Z.

Number
returns 1 if string is a valid REXX number.

Symbol
returns 1 if string contains only characters that are valid in REXX symbols. (See “Tokens” on page
143.) Note that both uppercase and lowercase alphabetics are permitted.

Uppercase
returns 1 if string contains only characters from the range A-Z.

Whole number
returns 1 if string is a REXX whole number under the current setting of NUMERIC DIGITS.

heXadecimal
returns 1 if string contains only characters from the ranges a-f, A-F, 0-9, and blank (as long as blanks
appear only between pairs of hexadecimal characters). Also returns 1 if string is a null string, which is
a valid hexadecimal string.

Note: The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

Examples

DATATYPE(' 12 ') -> 'NUM'
DATATYPE('') -> 'CHAR'
DATATYPE('123*') -> 'CHAR'
DATATYPE('12.3','N') -> 1
DATATYPE('12.3','W') -> 0
DATATYPE('Fred','M') -> 1
DATATYPE('','M') -> 0
DATATYPE('Fred','L') -> 0
DATATYPE('?20K','s') -> 1
DATATYPE('BCd3','X') -> 1
DATATYPE('BC d3','X') -> 1

DATE
The DATE function returns, by default, the local date in the format: dd mon yyyy (day month year, for
example, 13 Mar 1992), with no leading zero or blank on the day.

DATE(

option

)

If the active language has an abbreviated form of the month name, then it is used (for example, Jan or
Feb).

You can use the following options to obtain specific formats. Only the capitalized letter is needed; all
characters following it are ignored.
Base

returns the number of complete days (that is, not including the current day) since and including the
base date, 1 January 0001, in the format: dddddd (no leading zeros or blanks). The expression
DATE('B')//7 returns a number in the range 0-6 that corresponds to the current day of the week,
where 0 is Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week independent of the national
language in which you are working.

Note: The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except century years

Chapter 19. Functions 203

that are not divisible by 400). It does not take into account any errors in the calendar system that
created the Gregorian calendar originally.

Century
returns the number of days, including the current day, since and including January 1 of the last year
that is a multiple of 100 in the format: ddddd (no leading zeros). Example: A call to DATE(C) on 13
March 1992 returns 33675, the number of days from 1 January 1900 to 13 March 1992. Similarly, a
call to DATE(C) on 2 January 2000 returns 2, the number of days from 1 January 2000 to 2 January
2000.

Days
returns the number of days, including the current day, so far in this year in the format: ddd (no leading
zeros or blanks).

European
returns date in the format: dd/mm/yy.

Julian
returns date in the format: yyddd.

Month
returns full English name of the current month, for example, August.

Normal
returns date in the format: dd mon yyyy. This is the default.

Ordered
returns date in the format: yy/mm/dd (suitable for sorting, and so forth).

Standard
returns date in the format: yyyymmdd (suitable for sorting, and so forth).

Usa
returns date in the format: mm/dd/yy.

Weekday
returns the English name for the day of the week, in mixed case, for example, Tuesday.

Note: The first call to DATE or TIME in one clause causes a time stamp to be made that is then used for all
calls to these functions in that clause. Therefore, multiple calls to any of the DATE or TIME functions or
both in a single expression or clause are guaranteed to be consistent with each other.

Examples

The examples assume that today is 13 March 1992:

DATE() -> '13 Mar 1992'
DATE('B') -> 727269
DATE('C') -> 33675
DATE('D') -> 73
DATE('E') -> '13/03/92'
DATE('J') -> 92073
DATE('M') -> 'March'
DATE('N') -> '13 Mar 1992'
DATE('O') -> '92/03/13'
DATE('S') -> '19920313'
DATE('U') -> '03/13/92'
DATE('W') -> 'Friday'

DBCS (Double-Byte Character Set Functions)
The functions that are part of DBCS processing functions are listed.

• DBADJUST
• DBBRACKET
• DBCENTER
• DBCJUSTIFY
• DBLEFT

204 REXX for CICS Transaction Server: User Guide and Reference

• DBRIGHT
• DBRLEFT
• DBRRIGHT
• DBTODBCS
• DBTOSBCS
• DBUNBRACKET
• DBVALIDATE
• DBWIDTH

See Chapter 33, “Double-Byte Character Set (DBCS) Support,” on page 457.

DELSTR (Delete String)
The DELSTR function returns string after deleting the substring that begins at the nth character and is of
length characters.

DELSTR(string , n

, length

)

If you omit length, or if length is greater than the number of characters from n to the end of string, the
function deletes the rest of string (including the nth character). The length must be a positive whole
number or zero. The n must be a positive whole number. If n is greater than the length of string, the
function returns string unchanged.

Examples

DELSTR('abcd',3) -> 'ab'
DELSTR('abcde',3,2) -> 'abe'
DELSTR('abcde',6) -> 'abcde'

DELWORD (Delete Word)
The DELWORD function returns string after deleting the substring that starts at the nth word and is of
length blank-delimited words.

DELWORD(string , n

, length

)

If you omit length, or if length is greater than the number of words from n to the end of string, the function
deletes the remaining words in string (including the nth word). The length must be a positive whole
number or zero. The n must be a positive whole number. If n is greater than the number of words in string,
the function returns string unchanged. The string deleted includes any blanks following the final word
involved but none of the blanks preceding the first word involved.

Examples

DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is '
DELWORD('Now is the time',5) -> 'Now is the time'
DELWORD('Now is the time',3,1) -> 'Now is time'

DIGITS
The DIGITS function returns the current setting of NUMERIC DIGITS.

DIGITS()

Chapter 19. Functions 205

See the NUMERIC instruction “NUMERIC” on page 176 for more information.

Example

DIGITS() -> 9 /* by default */

D2C (Decimal to Character)
The D2C function returns a string, in character format, that represents wholenumber, a decimal number,
converted to binary.

D2C(wholenumber
, n

)

If you specify n, it is the length of the final result in characters; after conversion, the input string is sign-
extended to the required length. If the number is too big to fit into n characters, then the result is
truncated on the left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as needed.
Therefore, the returned result has no leading '00'x characters.

Implementation maximum: The output string may not have more than 250 significant characters,
though a longer result is possible if it has additional leading sign characters ('00'x and 'FF'x).

Examples

D2C(9) -> ' ' /* '09'x is unprintable in EBCDIC */
D2C(129) -> 'a' /* '81'x is an EBCDIC 'a' */
D2C(129,1) -> 'a' /* '81'x is an EBCDIC 'a' */
D2C(129,2) -> ' a' /* '0081'x is EBCDIC ' a' */
D2C(257,1) -> ' ' /* '01'x is unprintable in EBCDIC */
D2C(-127,1) -> 'a' /* '81'x is EBCDIC 'a' */
D2C(-127,2) -> ' a' /* 'FF'x is unprintable EBCDIC; */
 /* '81'x is EBCDIC 'a' */
D2C(-1,4) -> ' ' /* 'FFFFFFFF'x is unprintable in EBCDIC */
D2C(12,0) -> '' /* '' is a null string */

D2X (Decimal to Hexadecimal)
The D2X function returns a string, in character format, that represents wholenumber, a decimal number,
converted to hexadecimal.

D2X(wholenumber
, n

)

The returned string uses uppercase alphabetics for the values A-F and does not include blanks.

If you specify n, it is the length of the final result in characters; after conversion the input string is sign-
extended to the required length. If the number is too big to fit into n characters, it is truncated on the left.
The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the returned result has no
leading zeros.

Implementation maximum: The output string may not have more than 500 significant hexadecimal
characters, though a longer result is possible if it has additional leading sign characters (0 and F).

Examples

D2X(9) -> '9'
D2X(129) -> '81'
D2X(129,1) -> '1'
D2X(129,2) -> '81'
D2X(129,4) -> '0081'

206 REXX for CICS Transaction Server: User Guide and Reference

D2X(257,2) -> '01'
D2X(-127,2) -> '81'
D2X(-127,4) -> 'FF81'
D2X(12,0) -> ''

ERRORTEXT
The ERRORTEXT function returns the REXX error message associated with error number n.

ERRORTEXT(n)

The n must be in the range 0-99, and any other value is an error. Returns the null string if n is in the
allowed range but is not a defined REXX error number. See Chapter 31, “Error numbers and messages,”
on page 415 for a complete description of error numbers and messages.

Examples

ERRORTEXT(16) -> 'Label not found'
ERRORTEXT(60) -> ''

EXTERNALS
The EXTERNALS function returns the number of elements in the terminal input buffer (system external
event queue).

EXTERNALS()

In CICS, there is no equivalent buffer. Therefore, in the CICS implementation of REXX, the EXTERNALS
function always returns a 0. For example:

EXTERNALS() -> 0 /* Always */

FIND
The FIND function returns the word number of the first word of phrase found in string, or returns 0 if
phrase is not found or if there are no words in phrase.

WORDPOS is the preferred built-in function for this type of word search. See “WORDPOS (Word Position)”
on page 222.

FIND(string , phrase)

The phrase is a sequence of blank-delimited words. Multiple blanks between words in phrase or string are
treated as a single blank for the comparison.

Examples

FIND('now is the time','is the time') -> 2
FIND('now is the time','is the') -> 2
FIND('now is the time','is time ') -> 0

FORM
The FORM function returns the current setting of NUMERIC FORM.

FORM()

See the NUMERIC instruction “NUMERIC” on page 176

Chapter 19. Functions 207

Example

FORM() -> 'SCIENTIFIC' /* by default */

FORMAT
The FORMAT function returns number, rounded and formatted.

FORMAT(number
,

before ,

after

expnt

)

expnt

,
expp , expt

The number is first rounded according to standard REXX rules, just as though the operation number+0
had been carried out. The result is precisely that of this operation if you specify only number. If you
specify any other options, the number is formatted as follows.

The before and after options describe how many characters are used for the integer and decimal parts of
the result, respectively. If you omit either or both of these, the number of characters used for that part is
as needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

Examples

FORMAT('3',4) -> ' 3'
FORMAT('1.73',4,0) -> ' 2'
FORMAT('1.73',4,3) -> ' 1.730'
FORMAT('-.76',4,1) -> ' -0.8'
FORMAT('3.03',4) -> ' 3.03'
FORMAT(' - 12.73',,4) -> '-12.7300'
FORMAT(' - 12.73') -> '-12.73'
FORMAT('0.000') -> '0'

The first three arguments are as described previously. In addition, expp and expt control the exponent
part of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS
and FORM. The expp sets the number of places for the exponent part; the default is to use as many as
needed (which may be zero). The expt sets the trigger point for use of exponential notation. The default is
the current setting of NUMERIC DIGITS.

If expp is 0, no exponent is supplied, and the number is expressed in simple form with added zeros as
necessary. If expp is not large enough to contain the exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent would
be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a nonzero expp is
specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent would be 0
and expp is not specified, simple form is used. The expp must be less than 10, but there is no limit on the
other arguments.

Examples:

FORMAT('12345.73',,,2,2) -> '1.234573E+04'
FORMAT('12345.73',,3,,0) -> '1.235E+4'
FORMAT('1.234573',,3,,0) -> '1.235'

208 REXX for CICS Transaction Server: User Guide and Reference

FORMAT('12345.73',,,3,6) -> '12345.73'
FORMAT('1234567e5',,3,0) -> '123456700000.000'

FUZZ
The FUZZ function returns the current setting of NUMERIC FUZZ.

FUZZ()

See the NUMERIC instruction “NUMERIC” on page 176.

Example

FUZZ() -> 0 /* by default */

INDEX
The INDEX function returns the character position of one string, needle, in another, haystack, or returns 0
if the string needle is not found or is a null string.

POS is the preferred built-in function for obtaining the position of one string in another. See “POS
(Position)” on page 212.

INDEX(haystack , needle

, start

)

By default the search starts at the first character of haystack (start has the value 1). You can override this
by specifying a different start point, which must be a positive whole number.

Examples

INDEX('abcdef','cd') -> 3
INDEX('abcdef','xd') -> 0
INDEX('abcdef','bc',3) -> 0
INDEX('abcabc','bc',3) -> 5
INDEX('abcabc','bc',6) -> 0

INSERT
The INSERT function inserts the string new, padded or truncated to length length, into the string target
after the nth character.

INSERT(new , target

,
n ,

length , pad

)

The default value for n is 0, which means insert before the beginning of the string. If specified, n and
length must be positive whole numbers or zero. If n is greater than the length of the target string, padding
is added before the string new also. The default value for length is the length of new. If length is less than
the length of the string new, then INSERT truncates new to length length. The default pad character is a
blank.

Examples

INSERT(' ','abcdef',3) -> 'abc def'
INSERT('123','abc',5,6) -> 'abc 123 '
INSERT('123','abc',5,6,'+') -> 'abc++123+++'

Chapter 19. Functions 209

INSERT('123','abc') -> '123abc'
INSERT('123','abc',,5,'-') -> '123--abc'

JUSTIFY
The JUSTIFY function returns string formatted by adding pad characters between blank-delimited words
to justify to both margins.

JUSTIFY(string , length

, pad

)

This is done to width length (length must be a positive whole number or zero). The default pad character is
a blank.

The first step is to remove extra blanks as though SPACE(string) had been run (that is, multiple blanks
are converted to single blanks, and leading and trailing blanks are removed). If length is less than the
width of the changed string, the string is then truncated on the right and any trailing blank is removed.
Extra pad characters are then added evenly from left to right to provide the required length, and the pad
character replaces the blanks between words.

Examples

JUSTIFY('The blue sky',14) -> 'The blue sky'
JUSTIFY('The blue sky',8) -> 'The blue'
JUSTIFY('The blue sky',9) -> 'The blue'
JUSTIFY('The blue sky',9,'+') -> 'The++blue'

LASTPOS (Last Position)
The LASTPOS function returns the position of the last occurrence of one string, needle, in another,
haystack.

LASTPOS(needle , haystack

, start

)

LASTPOS returns 0 if needle is the null string or is not found. By default the search starts at the last
character of haystack and scans backward. You can override this by specifying start, the point at which
the backward scan starts. start must be a positive whole number and defaults to LENGTH(haystack) if
larger than that value or omitted. See also the POS function, “POS (Position)” on page 212.

Examples

LASTPOS(' ','abc def ghi') -> 8
LASTPOS(' ','abcdefghi') -> 0
LASTPOS('xy','efgxyz') -> 4
LASTPOS(' ','abc def ghi',7) -> 4

LEFT
The LEFT function returns a string of length length, containing the leftmost length characters of string.

LEFT(string , length

, pad

)

The string returned is padded with pad characters (or truncated) on the right as needed. The default pad
character is a blank. length must be a positive whole number or zero. The LEFT function is exactly
equivalent to:

SUBSTR (string , 1 , length

, pad

)

210 REXX for CICS Transaction Server: User Guide and Reference

Examples

LEFT('abc d',8) -> 'abc d '
LEFT('abc d',8,'.') -> 'abc d...'
LEFT('abc def',7) -> 'abc de'

LENGTH
The LENGTH function returns the length of string.

LENGTH(string)

Examples

LENGTH('abcdefgh') -> 8
LENGTH('abc defg') -> 8
LENGTH('') -> 0

LINESIZE
The LINESIZE function returns the current terminal line width (the point at which the language processor
breaks lines displayed using the SAY instruction).

LINESIZE()

LINESIZE returns a default value of 80 if:

• No terminal is attached.Output is being redirected.

Note: To determine whether a terminal is attached, specify the REXX/CICS command SCRNINFO,
“SCRNINFO” on page 406. The values for screen height and screen width are 0 if there is no terminal
attached.

MAX (Maximum)
The MAX function returns the largest number from the list specified, formatted according to the current
NUMERIC settings.

MAX(

,

number)

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MAX if more
arguments are needed.

Examples

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.03) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,MAX(20,21)) -> 21

MIN (Minimum)
The MIN function returns the smallest number from the list specified, formatted according to the current
NUMERIC settings.

MIN(

,

number)

Chapter 19. Functions 211

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MIN if more
arguments are needed.

Examples

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7
MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,MIN(2,1)) -> 1

OVERLAY
The OVERLAY function returns the string target, which, starting at the nth character, is overlaid with the
string new, padded or truncated to length length.

OVERLAY(new , target

,
n ,

length , pad

)

The overlay might extend beyond the end of the original target string. If you specify length, it must be a
positive whole number or zero. The default value for length is the length of new. If n is greater than the
length of the target string, padding is added before the new string. The default pad character is a blank,
and the default value for n is 1. If you specify n, it must be a positive whole number.

Examples

OVERLAY(' ','abcdef',3) -> 'ab def'
OVERLAY('.','abcdef',3,2) -> 'ab. ef'
OVERLAY('qq','abcd') -> 'qqcd'
OVERLAY('qq','abcd',4) -> 'abcqq'
OVERLAY('123','abc',5,6,'+') -> 'abc+123+++'

POS (Position)
The POS function returns the position of one string, needle, in another, haystack.

POS(needle , haystack

, start

)

POS returns 0 if needle is the null string or is not found or if start is greater than the length of haystack. By
default the search starts at the first character of haystack (that is, the value of start is 1). You can override
this by specifying start (which must be a positive whole number), the point at which the search starts. See
also the INDEX and LASTPOS functions, “INDEX” on page 209 and “LASTPOS (Last Position)” on page
210.

Examples

POS('day','Saturday') -> 6
POS('x','abc def ghi') -> 0
POS(' ','abc def ghi') -> 4
POS(' ','abc def ghi',5) -> 8

212 REXX for CICS Transaction Server: User Guide and Reference

QUEUED
The QUEUED function returns the number of lines remaining in the external data queue when the function
is called. If no lines are remaining, a PULL or PARSE PULL reads from the terminal input buffer. If no
terminal input is waiting, this causes a console read.

QUEUED()

Example

QUEUED() -> 5 /* Perhaps */

RANDOM
The RANDOM function returns a quasi-random nonnegative whole number in the range min to max
inclusive.

RANDOM(
max

min ,

, max , seed

)

If you specify max or min or both, max minus min cannot exceed 100000. The min and max default to 0
and 999, respectively. To start a repeatable sequence of results, use a specific seed as the third
argument, as described in Note “1” on page 213. This seed must be a positive whole number ranging from
0 to 999999999.

Examples

RANDOM() -> 305
RANDOM(5,8) -> 7
RANDOM(2) -> 0 /* 0 to 2 */
RANDOM(,,1983) -> 123 /* reproducible */

Note:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify a seed only the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /* any number would */
 /* do for a seed */
do 39
 sequence = sequence RANDOM(1,6)
 end
say sequence

The numbers are generated mathematically, using the initial seed, so that as far as possible they
appear to be random. Running the program again produces the same sequence; using a different initial
seed almost certainly produces a different sequence. If you do not supply a seed, the first time
RANDOM is called, the microsecond field of the time-of-day clock is used as the seed; and hence your
program almost always gives different results each time it is run.

2. The random number generator is global for an entire program; the current seed is not saved across
internal routine calls.

REVERSE
The REVERSE function returns string, swapped end for end.

REVERSE(string)

Chapter 19. Functions 213

Examples

REVERSE('ABc.') -> '.cBA'
REVERSE('XYZ ') -> ' ZYX'

RIGHT
The RIGHT function returns a string of length length containing the rightmost length characters of string.

RIGHT(string , length

, pad

)

The string returned is padded with pad characters (or truncated) on the left as needed. The default pad
character is a blank. The length must be a positive whole number or zero.

Examples

RIGHT('abc d',8) -> ' abc d'
RIGHT('abc def',5) -> 'c def'
RIGHT('12',5,'0') -> '00012'

SIGN
The SIGN function returns a number that indicates the sign of number. The number is first rounded
according to standard REXX rules, just as though the operation number+0 had been carried out.

SIGN(number)

SIGN returns -1 if number is less than 0, returns 0 if it is 0, and returns 1 if it is greater than 0.

Examples

SIGN('12.3') -> 1
SIGN(' -0.307') -> -1
SIGN(0.0) -> 0

SOURCELINE
The SOURCELINE function returns the line number of the final line in the program if you omit n, or returns
the nth line in the program if you specify n.

SOURCELINE(
n

)

If specified, n must be a positive whole number and must not exceed the number of the final line in the
program.

Examples

SOURCELINE() -> 10
SOURCELINE(1) -> '/* This is a 10-line REXX program */'

214 REXX for CICS Transaction Server: User Guide and Reference

SPACE
The SPACE function returns the blank-delimited words in string with n pad characters between each
word.

SPACE(string
,

n , pad

)

If you specify n, it must be a positive whole number or zero. If it is 0, all blanks are removed. Leading and
trailing blanks are always removed. The default for n is 1, and the default pad character is a blank.

Examples

SPACE('abc def ') -> 'abc def'
SPACE(' abc def',3) -> 'abc def'
SPACE('abc def ',1) -> 'abc def'
SPACE('abc def ',0) -> 'abcdef'
SPACE('abc def ',2,'+') -> 'abc++def'

STORAGE
See “External Functions Provided in REXX/CICS” on page 224.

STRIP
The STRIP function returns string with leading or trailing characters or both removed, based on the option
you specify.

STRIP(string
,

option , char

)

The following are valid options. Only the capitalized letter is needed; all characters following it are
ignored.
Both

removes both leading and trailing characters from string. This is the default.
Leading

removes leading characters from string.
Trailing

removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the default is a blank. If you specify
char, it must be exactly one character long.

Examples

STRIP(' ab c ') -> 'ab c'
STRIP(' ab c ','L') -> 'ab c '
STRIP(' ab c ','t') -> ' ab c'
STRIP('12.7000',,0) -> '12.7'
STRIP('0012.700',,0) -> '12.7'

Chapter 19. Functions 215

SUBSTR (Substring)
The SUBSTR function returns the substring of string that begins at the nth character and is of length
length, padded with pad if necessary.

SUBSTR(string , n
,

length , pad

)

The n must be a positive whole number. If n is greater than LENGTH(string), then only pad characters
are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Examples

SUBSTR('abc',2) -> 'bc'
SUBSTR('abc',2,4) -> 'bc '
SUBSTR('abc',2,6,'.') -> 'bc....'

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient for
selecting substrings, especially if more than one substring is to be extracted from a string. See also the
LEFT and RIGHT functions.

SUBWORD
The SUBWORD function returns the substring of string that starts at the nth word, and is up to length
blank-delimited words.

SUBWORD(string , n

, length

)

The n must be a positive whole number. If you omit length, it defaults to the number of remaining words
in string. The returned string never has leading or trailing blanks, but includes all blanks between the
selected words.

Examples

SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> 'the time'
SUBWORD('Now is the time',5) -> ''

SYMBOL
The SYMBOL function returns the state of the symbol named by name.

SYMBOL(name)

SYMBOL returns BAD if name is not a valid REXX symbol. SYMBOL returns VAR if it is the name of a
variable (that is, a symbol that has been assigned a value). Otherwise, returns LIT, indicating that it is
either a constant symbol or a symbol that has not yet been assigned a value (that is, a literal).

As with symbols in REXX expressions, lowercase characters in name are translated to uppercase and
substitution in a compound name occurs if possible.

Note: Specify name as a literal string (or it should be derived from an expression) to prevent substitution
before it is passed to the function.

216 REXX for CICS Transaction Server: User Guide and Reference

Examples

/* following: Drop A.3; J=3 */
SYMBOL('J') -> 'VAR'
SYMBOL(J) -> 'LIT' /* has tested "3" */
SYMBOL('a.j') -> 'LIT' /* has tested A.3 */
SYMBOL(2) -> 'LIT' /* a constant symbol */
SYMBOL('*') -> 'BAD' /* not a valid symbol */

TIME
The TIME function returns the local time in the 24-hour clock format: hh:mm:ss (hours, minutes, and
seconds) by default, for example, 04:41:37.

TIME(

option

)

You can use the following options to obtain alternative formats, or to gain access to the elapsed-time
clock. Only the capitalized letter is needed; all characters following it are ignored.
Civil

returns the time in Civil format: hh:mmxx. The hours may take the values 1 through 12, and the
minutes the values 00 through 59. The minutes are followed immediately by the letters am or pm. This
distinguishes times in the morning (12 midnight through 11:59 a.m. - appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59 p.m. - appearing as 12:00pm through
11:59pm). The hour has no leading zero. The minute field shows the current minute (rather than the
nearest minute) for consistency with other TIME results.

Elapsed
returns sssssssss.uuuuuu, the number of seconds.microseconds since the elapsed-time clock
(described later) was started or reset. The number has no leading zeros or blanks, and the setting of
NUMERIC DIGITS does not affect the number. The fractional part always has six digits.

Hours
returns up to two characters giving the number of hours since midnight in the format: hh (no leading
zeros or blanks, except for a result of 0).

Long
returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of seconds, in microseconds).
The first eight characters of the result follow the same rules as for the Normal form, and the fractional
part is always six digits.

Minutes
returns up to four characters giving the number of minutes since midnight in the format: mmmm (no
leading zeros or blanks, except for a result of 0).

Normal
returns the time in the default format hh:mm:ss, as described previously. The hours can have the
values 00 through 23, and minutes and seconds, 00 through 59. All these are always two digits. Any
fractions of seconds are ignored (times are never rounded up). This is the default.

Reset
returns sssssssss.uuuuuu, the number of seconds.microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The number has
no leading zeros or blanks, and the setting of NUMERIC DIGITS does not affect the number. The
fractional part always has six digits.

Seconds
returns up to five characters giving the number of seconds since midnight in the format: sssss (no
leading zeros or blanks, except for a result of 0).

Note: The first call to DATE or TIME in one clause causes a time stamp to be made that is then used for all
calls to these functions in that clause. Therefore, multiple calls to any of the DATE or TIME functions or
both in a single expression or clause are guaranteed to be consistent with each other.

Chapter 19. Functions 217

Implementation maximum: If the number of seconds in the elapsed time exceeds nine digits (equivalent
to over 31.6 years), an error results.

Examples

The following examples, assume that the time is 4:54 p.m.:

TIME() -> '16:54:22'
TIME('C') -> '4:54pm'
TIME('H') -> '16'
TIME('L') -> '16:54:22.123456' /* Perhaps */
TIME('M') -> '1014' /* 54 + 60*16 */
TIME('N') -> '16:54:22'
TIME('S') -> '60862' /* 22 + 60*(54+60*16) */

The elapsed-time clock

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program to
TIME('E') or TIME('R'), the elapsed-time clock is started, and either call returns 0. From then on,
calls to TIME('E') and to TIME('R') return the elapsed time since that first call or since the last call to
TIME('R').

The clock is saved across internal routine calls, which is to say that an internal routine inherits the time
clock its caller started. Any timing the caller is doing is not affected, even if an internal routine resets the
clock. An example of the elapsed-time clock:

time('E') -> 0 /* The first call */
/* pause of one second here */
time('E') -> 1.002345 /* or thereabouts */
/* pause of one second here */
time('R') -> 2.004690 /* or thereabouts */
/* pause of one second here */
time('R') -> 1.002345 /* or thereabouts */

Note: See the previous note about consistency of times in a single clause. The elapsed-time clock is
synchronized to the other calls to TIME and DATE, so multiple calls to the elapsed-time clock in a single
clause always return the same result. For the same reason, the interval between two usual TIME/DATE
results can be calculated exactly using the elapsed-time clock.

TRACE
The TRACE function returns trace actions currently in effect and, optionally, alters the setting.

TRACE(

option

)

If you specify option, it selects the trace setting. It must be one of the valid prefixes ? or ! or one of the
alphabetic character options associated with the TRACE instruction (that is, starting with A, C, E, F, I, L, N,
O, R, or S) or both.

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debug is
active. Also unlike the TRACE instruction, option cannot be a number.

Examples

TRACE() -> '?R' /* maybe */
TRACE('O') -> '?R' /* also sets tracing off */
TRACE('?I') -> 'O' /* now in interactive debug */

218 REXX for CICS Transaction Server: User Guide and Reference

TRANSLATE
The TRANSLATE function returns string with each character translated to another character or
unchanged. You can also use this function to reorder the characters in string.

TRANSLATE(string

,

tableo ,

tablei , pad

)

The output table is tableo and the input translation table is tablei. TRANSLATE searches tablei for each
character in string. If the character is found, the corresponding character in tableo is used in the result
string; if there are duplicates in tablei, the first (leftmost) occurrence is used. If the character is not found,
the original character in string is used. The result string is always the same length as string.

The tables can be of any length. If you specify neither translation table and omit pad, string is simply
translated to uppercase (that is, lowercase a-z to uppercase A-Z), but, if you include pad, the language
processor translates the entire string to pad characters. tablei defaults to XRANGE('00'x,'FF'x), and
tableo defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

Examples

TRANSLATE('abcdef') -> 'ABCDEF'
TRANSLATE('abbc','&','b') -> 'a&&c'
TRANSLATE('abcdef','12','ec') -> 'ab2d1f'
TRANSLATE('abcdef','12','abcd','.') -> '12..ef'
TRANSLATE('APQRV',,'PR') -> 'A Q V'
TRANSLATE('APQRV',XRANGE('00'X,'Q')) -> 'APQ '
TRANSLATE('4123','abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE function to reorder the characters in a string.
In the example, the last character of any four-character string specified as the second argument would be
moved to the beginning of the string.

TRUNC (Truncate)
The TRUNC function returns the integer part of number and n decimal places.

TRUNC(number
, n

)

The default n is 0 and returns an integer with no decimal point. If you specify n, it must be a positive
whole number or zero. The number is first rounded according to standard REXX rules, just as though the
operation number+0 had been carried out. The number is then truncated to n decimal places (or trailing
zeros are added if needed to make up the specified length). The result is never in exponential form.

Note: The number is rounded according to the current setting of NUMERIC DIGITS if necessary before the
function processes it.

Examples

TRUNC(12.3) -> 12
TRUNC(127.09782,3) -> 127.097
TRUNC(127.1,3) -> 127.100
TRUNC(127,2) -> 127.00

Chapter 19. Functions 219

USERID
The USERID function returns the CICS signon user ID if the user is signed on to CICS, or the CICS region
default user ID (if one was specified by the CICS systems programmer).

USERID()

User IDs are padded on the right with blanks so that the returned value is always eight bytes long.

Example

USERID() -> 'ARTHUR' /* Maybe */

VALUE
The VALUE function returns the value of the symbol that name (often constructed dynamically) represents
and optionally assigns it a new value.

VALUE(name
,

newvalue , selector

)

By default, VALUE refers to the current REXX variables environment, however, if you want to specify
selector the value must be RLS. If the selector of RLS is specified, the variable operated on is a REXX List
System (RLS) variable, rather than a REXX variable. If you use the function to refer to REXX variables,
name must be a valid REXX symbol. (You can confirm this by using the SYMBOL function.) Lowercase
characters in name are translated to uppercase. Substitution in a compound name (see“Compound
symbols” on page 154) occurs if possible.

If you specify newvalue, the named variable is assigned this new value. This does not affect the result
returned; that is, the function returns the value of name as it was before the new assignment.

Examples

/* After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' */
VALUE('a'k) -> 'A3' /* looks up A3 */
VALUE('a'k||k) -> '7' /* looks up A33 */
VALUE('fred') -> 'K' /* looks up FRED */
VALUE(fred) -> '3' /* looks up K */
VALUE(fred,5) -> '3' /* looks up K and */
 /* then sets K=5 */
VALUE(fred) -> '5' /* looks up K */
VALUE('LIST.'k) -> 'Hi' /* looks up LIST.5 */

The following example returns the VALUE of the REXX variable FRED that has been stored in an RLS
variable.

/* REXX EXEC - ASSIGN FIND VALUE OF FRED */
FRED = 7
'RLS VARPUT FRED \USERS\userid\'
X = VALUE(FRED,,RLS)
SAY X
/* X now = 7 */

Note:

1. If the VALUE function refers to an uninitialized REXX variable, the default value of the variable is
always returned; the NOVALUE condition is not raised. A reference to RLS variables never raises
NOVALUE.

2. If you specify the name as a single literal string and omit newvalue and selector, the symbol is a
constant and so the string between the quotation marks can usually replace the whole function call.
For example, fred=VALUE('k'); is identical with the assignment fred=k;, unless the NOVALUE
condition is being trapped. See Chapter 22, “Conditions and condition traps,” on page 251.

220 REXX for CICS Transaction Server: User Guide and Reference

VERIFY
The VERIFY function returns a number that, by default, indicates whether string is composed only of
characters from reference.

VERIFY(string , reference
,

option , start

)

VERIFY returns 0 if all characters in string are in reference, or returns the position of the first character in
string that is not in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized letter is needed. All
characters following it are ignored, and it can be in upper- or lowercase, as usual.) If you specify Match,
the function returns the position of the first character in string that is in reference, or returns 0 if none of
the characters are found.

The default for start is 1; thus, the search starts at the first character of string. You can override this by
specifying a different start point, which must be a positive whole number.

If string is null, the function returns 0, regardless of the value of the third argument. Similarly, if start is
greater than LENGTH(string), the function returns 0. If reference is null, the function returns 0 if you
specify Match; otherwise the function returns the start value.

Examples

VERIFY('123','1234567890') -> 0
VERIFY('1Z3','1234567890') -> 2
VERIFY('AB4T','1234567890') -> 1
VERIFY('AB4T','1234567890','M') -> 3
VERIFY('AB4T','1234567890','N') -> 1
VERIFY('1P3Q4','1234567890',,3) -> 4
VERIFY('123','',N,2) -> 2
VERIFY('ABCDE','',,3) -> 3
VERIFY('AB3CD5','1234567890','M',4) -> 6

WORD
The WORD function returns the nth blank-delimited word in string or returns the null string if fewer than n
words are in string.

WORD(string , n)

The n must be a positive whole number. This function is exactly equivalent to SUBWORD(string,n,1).

Examples

WORD('Now is the time',3) -> 'the'
WORD('Now is the time',5) -> ''

WORDINDEX
The WORDINDEX function returns the position of the first character in the nth blank-delimited word in
string or returns 0 if fewer than n words are in string.

WORDINDEX(string , n)

The n must be a positive whole number.

Chapter 19. Functions 221

Examples

WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> 0

WORDLENGTH
The WORDLENGTH function returns the length of the nth blank-delimited word in string or returns 0 if
fewer than n words are in string.

WORDLENGTH(string , n)

The n must be a positive whole number.

Examples

WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> 0

WORDPOS (Word Position)
The WORDPOS function returns the word number of the first word of phrase found in string or returns 0 if
phrase contains no words or if phrase is not found.

WORDPOS(phrase , string

, start

)

Multiple blanks between words in either phrase or string are treated as a single blank for the comparison,
but otherwise the words must match exactly.

By default the search starts at the first word in string. You can override this by specifying start (which
must be positive), the word at which to start the search.

Examples

WORDPOS('the','now is the time') -> 3
WORDPOS('The','now is the time') -> 0
WORDPOS('is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> 0
WORDPOS('be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

WORDS
The WORDS function returns the number of blank-delimited words in string.

WORDS(string)

Examples

WORDS('Now is the time') -> 4
WORDS(' ') -> 0

222 REXX for CICS Transaction Server: User Guide and Reference

XRANGE (Hexadecimal Range)
The XRANGE function returns a string of all valid 1-byte encodings (in ascending order) between and
including the values start and end.

XRANGE(

start , end

)

The default value for start is '00'x, and the default value for end is 'FF'x. If start is greater than end, the
values wrap from 'FF'x to '00'x. If specified, start and end must be single characters.

Examples

XRANGE('a','f') -> 'abcdef'
XRANGE('03'x,'07'x) -> '0304050607'x
XRANGE(,'04'x) -> '0001020304'x
XRANGE('i','j') -> '898A8B8C8D8E8F9091'x /* EBCDIC */
XRANGE('FE'x,'02'x) -> 'FEFF000102'x

X2B (Hexadecimal to Binary)
The function returns a string, in character format, that represents hexstring converted to binary.

X2B(hexstring)

The hexstring is a string of hexadecimal characters. It can be of any length. Each hexadecimal character is
converted to a string of four binary digits. You can optionally include blanks in hexstring (at byte
boundaries only, not leading or trailing) to aid readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any blanks.

If hexstring is null, the function returns a null string.

Examples

X2B('C3') -> '11000011'
X2B('7') -> '0111'
X2B('1 C1') -> '000111000001'

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into binary
form. For example:

X2B(C2X('C3'x)) -> '11000011'
X2B(D2X('129')) -> '10000001'
X2B(D2X('12')) -> '1100'

X2C (Hexadecimal to Character)
The X2C function returns a string, in character format, that represents hexstring converted to character.

X2C(hexstring)

The returned string is half as many bytes as the original hexstring. hexstring can be of any length. If
necessary, it is padded with a leading 0 to make an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns a null string.

Chapter 19. Functions 223

Examples

X2C('F7F2 A2') -> '72s' /* EBCDIC */
X2C('F7f2a2') -> '72s' /* EBCDIC */
X2C('F') -> ' ' /* '0F' is unprintable EBCDIC */

X2D (Hexadecimal to Decimal)
The X2D function returns the decimal representation of hexstring.

X2D(hexstring
, n

)

The hexstring is a string of hexadecimal characters. If the result cannot be expressed as a whole number,
an error results. That is, the result must not have more digits than the current setting of NUMERIC
DIGITS.

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, hexstring is processed as an unsigned binary number.

Implementation maximum: The input string may not have more than 500 hexadecimal characters that
will be significant in forming the final result. Leading sign characters (0 and F) do not count towards this
total.

Examples

X2D('0E') -> 14
X2D('81') -> 129
X2D('F81') -> 3969
X2D('FF81') -> 65409
X2D('c6 f0'X) -> 240 /* EBCDIC */

If you specify n, the string is taken as a signed number expressed in n hexadecimal digits. If the leftmost
bit is off, then the number is positive; otherwise, it is a negative number in two's complement notation. In
both cases it is converted to a whole number, which may, therefore, be negative. If n is 0, the function
returns 0.

If necessary, hexstring is padded on the left with 0 characters (note, not “sign-extended”), or truncated
on the left to n characters. For example:

X2D('81',2) -> -127
X2D('81',4) -> 129
X2D('F081',4) -> -3967
X2D('F081',3) -> 129
X2D('F081',2) -> -127
X2D('F081',1) -> 1
X2D('0031',0) -> 0

External Functions Provided in REXX/CICS
Additional external functions are provided in the REXX/CICS environment.

STORAGE
The STORAGE function returns length bytes from the user's memory starting at address.

Important: This is an authorized function. The STORAGE function, which allows a REXX user to display
and/or modify the 31-bit virtual storage of the CICS region, can be successfully invoked only from an
authorized exec or by an authorized user.

224 REXX for CICS Transaction Server: User Guide and Reference

STORAGE(address
,

length , data

)

The length is in decimal; the default is 1 byte. The address is a hexadecimal number. The high-order bit of
address is ignored. Ensure that you specify a 31-bit address, otherwise results might be unpredictable.
You cannot specify a 64-bit address.

If you specify data, after the old value has been retrieved, storage starting at address is overwritten with
data (the length argument has no effect on this).

Note: The STORAGE function can operate on a 31-bit address. The STORAGE function cannot operate on
a 64-bit address.

Example

/* The following results vary from system to system. */
STORAGE(200000,32)
/* This returns 32 bytes of storage at hex address 200000 as a result. */

SYSSBA
The function

SYSSBA(row , col)

SYSSBA converts screen row,col to a set buffer address (SBA).

row
specifies the row number counting from the top of the screen.

col
specifies the column number (counting from the left of the screen).

Note: The SYSSBA function queries the terminal model on each invocation and uses this to adjust the SBA
calculation to terminal type.

Example

x = SYSSBA(10,20)

This example returns a three byte set buffer address for screen row 10, column 20 into REXX variable x.

Chapter 19. Functions 225

226 REXX for CICS Transaction Server: User Guide and Reference

Chapter 20. Parsing
Parsing splits up the data in a source string and assigns pieces of it into the variables named in a
template.

The parsing instructions are ARG, PARSE, and PULL. See “ARG” on page 164, “PARSE” on page 179, and
“PULL” on page 182.

The data to parse is a source string. A template is a model specifying how to split the source string. The
simplest kind of template consists of only a list of variable names. For example:

variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words. More complicated templates
contain patterns in addition to variable names.
String patterns

Match characters in the source string to specify where to split it. See “Templates that contain string
patterns” on page 229.

Positional patterns
Indicate the character positions at which to split the source string. See “Templates that contain
positional (numeric) patterns” on page 229.

Parsing is essentially a two-step process.

1. Parse the source string into appropriate substrings by using patterns.
2. Parse each substring into words.

Simple templates for parsing into words
Here is a parsing instruction:

parse value 'time and tide' with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to parse is between the keywords PARSE
VALUE and the keyword WITH, the source string time and tide. Parsing divides the source string into
blank-delimited words and assigns them to the variables named in the template as follows:

var1='time'
var2='and'
var3='tide'

In this example, the source string to parse is a literal string, time and tide. In the next example, the
source string is a variable.

/* PARSE VALUE using a variable as the source string to parse */
string='time and tide'
parse value string with var1 var2 var3 /* same results */

PARSE VALUE does not convert lowercase a–z in the source string to uppercase A–Z. If you want to
convert characters to uppercase, use PARSE UPPER VALUE. See “Using UPPER” on page 233 for a
summary of the effect of parsing instructions on case.

All of the parsing instructions assign the parts of a source string into the variables named in a template.
There are various parsing instructions because of differences in the nature or origin of source strings. See
“Parsing instructions summary” on page 234.

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to parse is always a
variable. In PARSE VAR, the name of the variable containing the source string follows the keywords

© Copyright IBM Corp. 1974, 2020 227

PARSE VAR. In the next example, the variable stars contains the source string. The template is star1
star2 star3.

/* PARSE VAR example */
stars='Sirius Polaris Rigil'
parse var stars star1 star2 star3 /* star1='Sirius' */
 /* star2='Polaris' */
 /* star3='Rigil' */

All variables in a template receive new values. If there are more variables in the template than words in
the source string, the leftover variables receive null (empty) values. This is true for all parsing: for parsing
into words with simple templates and for parsing with templates containing patterns. Here is an example
using parsing into words.

/* More variables in template than (words in) the source string */
satellite='moon'
parse var satellite Earth Mercury /* Earth='moon' */
 /* Mercury='' */

If there are more words in the source string than variables in the template, the last variable in the
template receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template */
satellites='moon Io Europa Callisto...'
parse var satellites Earth Jupiter /* Earth='moon' */
 /* Jupiter='Io Europa Callisto...'*/

Parsing into words removes leading and trailing blanks from each word before it is assigned to a variable.
The exception to this is the word or group of words assigned to the last variable. The last variable in a
template receives leftover data, preserving extra leading and trailing blanks. Here is an example:

/* Preserving extra blanks */
solar5='Mercury Venus Earth Mars Jupiter '
parse var solar5 var1 var2 var3 var4
/* var1 ='Mercury' */
/* var2 ='Venus' */
/* var3 ='Earth' */
/* var4 =' Mars Jupiter ' */

In the source string, Earth has two leading blanks. Parsing removes both of them (the word-separator
blank and the extra blank) before assigning var3='Earth'. Mars has three leading blanks. Parsing
removes one word-separator blank and keeps the other two leading blanks. It also keeps all five blanks
between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value ' Pluto ' with var1 /* var1=' Pluto '*/

The period as placeholder

A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. A
placeholder saves the overhead of unneeded variables. It is useful:

• As a "dummy variable" in a list of variables
• To collect unwanted information at the end of a string.

The period in the first example is a placeholder. Be sure to separate adjacent periods with spaces;
otherwise, an error results.

/* Period as a placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars . . brightest . /* brightest='Sirius' */

/* Alternative to period as placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /* brightest='Sirius' */

228 REXX for CICS Transaction Server: User Guide and Reference

Templates that contain string patterns
A string pattern matches characters in the source string to indicate where to split it.

A string pattern can be literal or variable:
Literal string pattern

One or more characters within quotation marks.
Variable string pattern

A variable within parentheses with no plus (+) or minus (-) or equal sign (=) before the left
parenthesis. See “Parsing with variable patterns” on page 233 for details.

Here are two templates: a simple template and a template containing a literal string pattern:

var1 var2 /* simple template */
var1 ', ' var2 /* template with literal string pattern */

The literal string pattern is: ', '. This template:

• Puts characters from the start of the source string up to (but not including) the first character of the
match (the comma) into var1

• Puts characters starting with the character after the last character of the match (the character after the
blank that follows the comma) and ending with the end of the string into var2.

A template with a string pattern can omit some of the data in a source string when assigning data into
variables. The next two examples contrast simple templates with templates containing literal string
patterns.

/* Simple template */
name='Smith, John'
parse var name ln fn /* Assigns: ln='Smith,' */
 /* fn='John' */

Notice that the comma remains (the variable ln contains 'Smith,'). In the next example, the template
is ln ', ' fn. This removes the comma.

/* Template with literal string pattern */
name='Smith, John'
parse var name ln ', ' fn /* Assigns: ln='Smith' */
 /* fn='John' */

First, the language processor scans the source string for ', '. It splits the source string at that point. The
variable ln receives data, starting with the first character of the source string and ending with the last
character before the match. The variable fn receives data, starting with the first character after the match
and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. There is a
special case in which a template with a string pattern does not omit matching data in the source string;
see “Combining string and positional patterns: a special case” on page 236. We used the pattern ',
' (with a blank) instead of ',' (no blank) because, without the blank in the pattern, the variable fn
receives ' John' (including a blank).

If the source string does not contain a match for a string pattern, any variables preceding the unmatched
string pattern get all the data in question. Any variables after that pattern receive the null string.

A null string is never found. It always matches the end of the source string.

Templates that contain positional (numeric) patterns
A positional pattern is a number that identifies the character position at which to split data in the source
string. The number must be a whole number.

An absolute positional pattern is:

Chapter 20. Parsing 229

• A number with no plus (+) or minus (-) sign preceding it, or with an equal sign (=) preceding it.
• A variable in parentheses with an equal sign before the left parenthesis. See “Parsing with variable

patterns” on page 233 for details on variable positional patterns.

The number specifies the absolute character position at which to split the source string.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to the 11th position in the
input string, 21 to the 21st position. This template:

• Puts characters 1 through 10 of the source string into variable1
• Puts characters 11 through 20 into variable2
• Puts characters 21 to the end into variable3.

Positional patterns are probably most useful for working with a file of records, such as:

 character positions:
 1 11 21 40
 +--+end of
 FIELDS: |LASTNAME |FIRST |PSEUDONYM |record
 +--+

The following example uses this record structure.

/* Parsing with absolute positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
 parse var record.n lastname 11 firstname 21 pseudonym
 If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* Says 'By George!' after record 2 */

The source string is first split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 into lastname, characters 11 to 20 into firstname, and characters 21 to 40 into
pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

 lastname 11 firstname 21 pseudonym

Specifying the 1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign is the same as no sign
before a number in a template. The number refers to a particular character position in the source string.
These two templates work the same:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding it. (It can also be a
variable within parentheses, with a plus (+) or minus (-) sign preceding the left parenthesis; for details
see “Parsing with variable patterns” on page 233.)

The number specifies the relative character position at which to split the source string. The plus or minus
indicates movement right or left, respectively, from the start of the string (for the first pattern) or from the
position of the last match. The position of the last match is the first character of the last match. Here is
the same example as for absolute positional patterns done with relative positional patterns:

230 REXX for CICS Transaction Server: User Guide and Reference

/* Parsing with relative positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
 parse var record.n lastname +10 firstname + 10 pseudonym
 If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* same results */

Blanks between the sign and the number are insignificant. Therefore, +10 and + 10 have the same
meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable (except in the special case when a string
pattern precedes a variable name and a positional pattern follows the variable name; see “Combining
string and positional patterns: a special case” on page 236). The templates from the examples of
absolute and relative positional patterns give the same results.

| | |lastname 11| |firstname 21 | | pseudonym |
| | |lastname +10| |firstname + 10| | pseudonym |
+------+ +------------+ +--------------+ +-----------+
 | | | |
(Implied Put characters Put characters Put characters
starting 1 through 10 11 through 20 21 through
point is in lastname. in firstname. end of string
position (Non-inclusive (Non-inclusive in pseudonym.
1.) stopping point stopping point
 is 11 (1+10).) is 21 (11+10).)

Only with positional patterns can a matching operation back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional) */
string='astronomers'
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string 'study' var1||var2||var3||var4
/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position. Here
is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) */
string='astronomers'
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string 'study' var1||var2||var3||var4 /* same results */

In the previous example, the relative positional pattern -3 backs up to the first character in the source
string.

The templates in the last two examples are equivalent.

| 2 | |var1 4 | | 1 | |var2 2| | 4 var3 5| |11 var4 |
| 2 | |var1 +2 | | -3 | |var2 +1| |+2 var3 +1| |+6 var4 |
+-----+ +--------+ +------+ +-------+ +----------+ +--------+
 | | | | | |

Start Non- Go to 1. Non- Go to 4 Go to 11
at 2. inclusive (4-3=1) inclusive (2+2=4). (5+6=11).
 stopping stopping Non-inclusive
 point is 4 point is stopping point
 (2+2=4). 2 (1+1=2). is 5 (4+1=5).

You can use templates with positional patterns to make multiple assignments:

/* Making multiple assignments */
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans. */

Chapter 20. Parsing 231

Combining patterns and parsing into words

What happens when a template contains patterns that divide the source string into sections containing
multiple words? String and positional patterns divide the source string into substrings. The language
processor then applies a section of the template to each substring, following the rules for parsing into
words.

/* Combining string pattern and parsing into words */
name=' John Q. Public'
parse var name fn init '.' ln /* Assigns: fn='John' */
 /* init=' Q' */
 /* ln=' Public' */

The pattern divides the template into two sections:

• fn init
• ln

The matching pattern splits the source string into two substrings:

• ' John Q'
• ' Public'

The language processor parses these substrings into words based on the appropriate template section.

John had three leading blanks. All are removed because parsing into words removes leading and trailing
blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the rest because init is
the last variable in that section of the template.

For the substring ' Public', parsing assigns the entire string into ln without removing any blanks. This
is because ln is the only variable in this section of the template. (For details about treatment of blanks,
see “Simple templates for parsing into words” on page 227.)

/* Combining positional patterns with parsing into words */
string='R E X X'
parse var string var1 var2 4 var3 6 var4 /* Assigns: var1='R' */
 /* var2='E' */
 /* var3=' X' */
 /* var4=' X' */

The pattern divides the template into three sections:

• var1 var2
• var3
• var4

The matching patterns split the source string into three substrings that are individually parsed into words:

• 'R E'
• ' X'
• ' X'

The variable var1 receives 'R'; var2 receives 'E'. Both var3 and var4 receive ' X' (with a blank
before the X) because each is the only variable in its section of the template. (For details on treatment of
blanks, see “Simple templates for parsing into words” on page 227.)

232 REXX for CICS Transaction Server: User Guide and Reference

Parsing with variable patterns
You might want to specify a pattern by using the value of a variable instead of a fixed string or number.
You do this by placing the name of the variable in parentheses. This is a variable reference.

About this task

Blanks are not necessary inside or outside the parentheses, but you can add them if you want.

The template in the next parsing instruction contains the following literal string pattern '. '.

parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:

strngptrn='. '
parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the variable name, the value of the
variable is then treated as a string pattern. The variable can be one that has been set earlier in the same
template. For example:

/* Using a variable as a string pattern */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/90 */
pull date
parse var date month 3 delim +1 day +2 (delim) year
 /* Sets: month='11'; delim='/'; day='15'; year='90' */

If an equal, a plus, or a minus sign precedes the left parenthesis, the value of the variable is treated as an
absolute or relative positional pattern. The value of the variable must be a positive whole number or zero.

The variable can be one that has been set earlier in the same template. In the following example, the first
two fields specify the starting character positions of the last two fields.

/* Using a variable as a positional pattern */
dataline = '12 26Samuel ClemensMark Twain'
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/* Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' */

Why is the positional pattern 6 needed in the template? Remember that word parsing occurs after the
language processor divides the source string into substrings by using patterns. Therefore, the positional
pattern =(pos1) cannot be correctly interpreted as =12 until after the language processor has split the
string at column 6 and assigned the blank-delimited words 12 and 26 to pos1 and pos2, respectively.

Using UPPER
Specifying UPPER on any of the PARSE instructions converts characters to uppercase (lowercase a-z to
uppercase A-Z) before parsing.

About this task

The following table summarizes the effect of the parsing instructions on case.

Converts alphabetic characters to uppercase
before parsing

Maintains alphabetic characters in case entered

ARG

PARSE UPPER ARG

PARSE ARG

PARSE UPPER EXTERNAL PARSE EXTERNAL

Chapter 20. Parsing 233

Converts alphabetic characters to uppercase
before parsing

Maintains alphabetic characters in case entered

PARSE UPPER NUMERIC PARSE NUMERIC

PULL

PARSE UPPER PULL

PARSE PULL

PARSE UPPER SOURCE PARSE SOURCE

PARSE UPPER VALUE PARSE VALUE

PARSE UPPER VAR PARSE VAR

PARSE UPPER VERSION PARSE VERSION

The ARG instruction is simply a short form of PARSE UPPER ARG. The PULL instruction is simply a short
form of PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG (instead of ARG
or PARSE UPPER ARG) and use PARSE PULL (instead of PULL or PARSE UPPER PULL).

Parsing instructions summary
All parsing instructions assign parts of the source string into the variables named in the template.

About this task

The following table summarizes where the source string comes from.

Instruction Where the source string comes from

ARG

PARSE ARG

Arguments you list when you call the program or arguments in the call to a
subroutine or function.

PARSE EXTERNAL Next line from terminal input buffer

PARSE NUMERIC Numeric control information (from NUMERIC instruction).

PULL

PARSE PULL

The string at the head of the external data queue. (If queue empty, uses
default input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about the executing program.

PARSE VALUE Expression between the keyword VALUE and the keyword WITH in the
instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language, language level, and (three-
word) date.

Parsing instructions examples
Examples that parse source strings into words are shown.

About this task
ARG

/* ARG with source string named in REXX program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */

234 REXX for CICS Transaction Server: User Guide and Reference

/* red, blue) on call. Assume call is: palette red blue */
arg var1 var2 /* Assigns: var1='RED'; var2='BLUE' */
If var1<>'RED' & var1<>'YELLOW' & var1<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(var1)+length(var2)
SELECT;
 When total=7 then new='purple'
 When total=9 then new='orange'
 When total=10 then new='green'
 Otherwise new=var1 /* entered duplicates */
END
Say new; exit /* Displays: "purple" */

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the
arguments in the CALL to a subroutine is in “Parsing multiple strings” on page 236.

PARSE ARG
Works the same as ARG except that PARSE ARG does not convert alphabetic characters to uppercase
before parsing.

PARSE EXTERNAL

Say "Enter Yes or No =====> "
parse upper external answer 2 .
If answer='Y'
 then say "You said 'Yes'!"
 else say "You said 'No'!"

PARSE NUMERIC

parse numeric digits fuzz form
say digits fuzz form /* Displays: '9 0 SCIENTIFIC' */
 /* (if defaults are in effect) */

PARSE PULL

PUSH '80 7' /* Puts data on queue */
parse pull fourscore seven /* Assigns: fourscore='80'; seven='7' */
SAY fourscore+seven /* Displays: "87" */

PARSE SOURCE

parse source sysname .
Say sysname /* Displays: "CICS" */

PARSE VALUE
See the example in “Simple templates for parsing into words” on page 227.

PARSE VAR
See the examples throughout the parsing information, starting in “Simple templates for parsing into
words” on page 227.

PARSE VERSION

parse version . level .
say level /* Displays: "3.48" */

PULL
Works the same as PARSE PULL except that PULL converts alphabetic characters to uppercase before
parsing.

Advanced parsing information
Advanced parsing includes parsing multiple strings, parsing with DBCS characters, and special cases.

Flow charts that depict a conceptual view of parsing are provided.

Chapter 20. Parsing 235

Parsing multiple strings
Only ARG and PARSE ARG can have more than one source string. To parse multiple strings, you can
specify multiple comma-separated templates.

About this task

Here is an example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. (For an ARG
instruction, the source strings to parse come from arguments you specify when you call a program or
CALL a subroutine or function.) Each comma is an instruction to the parser to move on to the next string.

Example:

/* Parsing multiple strings in a subroutine */
num='3'
musketeers="Porthos Athos Aramis D'Artagnon"
CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth /* Displays: "4" and " D'Artagnon" */
EXIT

Sub:
parse arg subtotal, . . . fourth
total=subtotal+1
RETURN

When a REXX program is started as a command, only one argument string is recognized. You can pass
multiple argument strings for parsing:

• When one REXX program calls another REXX program with the CALL instruction or a function call.
• When programs written in other languages start a REXX program.

If there are more templates than source strings, each variable in a leftover template receives a null string.
If there are more source strings than templates, the language processor ignores leftover source strings. If
a template is empty (two commas in a row) or contains no variable names, parsing proceeds to the next
template and source string.

Combining string and positional patterns: a special case
There is a special case in which absolute and relative positional patterns do not work identically.

About this task

We have shown how parsing with a template that contains a string pattern skips over the data in the
source string that matches the pattern (see “Templates that contain string patterns” on page 229). But a
template that contains the following sequence does not skip over the matching data.:

• string pattern
• variable name
• relative positional pattern

A relative positional pattern moves relative to the first character matching a string pattern. As a result,
assignment includes the data in the source string that matches the string pattern.

/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip over any data. */
string='REstructured eXtended eXecutor'
parse var string var1 3 junk 'X' var2 +1 junk 'X' var3 +1 junk
say var1||var2||var3 /* Concatenates variables; displays: "REXX" */

Here is how this template works:

|var1 3| |junk 'X'| |var2 +1| |junk 'X'| |var3 +1 | | junk |

236 REXX for CICS Transaction Server: User Guide and Reference

+-------+ +--------+ +-------+ +---------+ +--------+ +------+
 | | | | | |
Put Starting Starting Starting Starting Starting
characters at 3, put with first with char- with with char-
1 through characters 'X' put 1 acter after second 'X' acter
2 in var1. up to (not (+1) first 'X' put 1 (+1) after sec-
(Stopping including) character put up to character ond 'X'
point is first 'X' in var2. second 'X' in var3. put rest
3.) in junk. in junk. in junk.

var1='RE' junk= var2='X' junk= var3='X' junk=
 'structured e' 'tended e' 'ecutor'

Parsing with DBCS characters
Parsing with DBCS characters generally follows the same rules as parsing with SBCS characters.

About this task

Literal strings and symbols can contain DBCS characters, but numbers must be in SBCS characters. See
“PARSE” on page 460 for examples of DBCS parsing.

Details of steps in parsing
Figures that give a conceptual view of parsing are provided.

The three figures that follow are to help you understand the concept of parsing. Please note that the
figures do not include error cases.

The figures include terms whose definitions are as follows:
string start

is the beginning of the source string (or substring).
string end

is the end of the source string (or substring).
length

is the length of the source string.
match start

is in the source string and is the first character of the match.
match end

is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position
is in the source string. For a string pattern, it is the first matching character. For a positional pattern, it
is the position of the matching character.

token
is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value
is the numeric value of a positional pattern. This can be either a constant or the resolved value of a
variable.

Chapter 20. Parsing 237

 +--+
 V |
 +--------------------------------+ |
 |START | |
 |Token is first one in template. | |
 |Length=length(source string) | |
 |Match start=1. Match end=1. | |
 +--------------------------------+ |
 +----------> | |
 | V |
 | +-------------------+yes +--------------------+ |
 | |End of template? |--->|Parsing complete. | |
 | +-------------------+ +--------------------+ |
 | V no |
 | +-------------------+ |
 | |CALL Find Next | |
 | | Pattern. | |
 | +-------------------+ |
 | V |
 | +-------------------+ |
 | |CALL Word Parsing. | |
 | +-------------------+ |
 | V |
 | +-------------------+ |
 | |Step to next token.| |
 | +-------------------+ |
 | V |
 | +-------------------+ yes +--------------------+ |
 | |Token a comma? |---->|Set next source | |
 | +-------------------+ |string and template.|---+
 | | no +--------------------+
 +------------+

Figure 48. Conceptual Overview of Parsing

238 REXX for CICS Transaction Server: User Guide and Reference

 +--+
 V |
+-------------+ +--------------------------------+ |
Start:	yes	String start=match end.	
End of	--->	Match start=length + 1.	
template?		Match end=length + 1. Return.	
+-------------+ +--------------------------------+ |
 V no |
+-------------+ +--------------------------------+ |
|Token period |yes | | |
|or variable? |--->|Step to next token. |---+
+-------------+ +--------------------------------+
 V no
+-------------+ +---------+ +----------+ +---------------------------------+
|Token a plus?|yes |Variable |yes |Resolve | |String start=match start. |
| |--->|form? |--->|its value.|-->|Match start=min(length + 1, |
+-------------+ +---------+ +----------+A | match start + value). |
 | no | no | |Match end=match start. Return. |
 V +---------------------+ +---------------------------------+
+-------------+ +---------+ +----------+ +---------------------------------+
|Token a |yes |Variable |yes |Resolve | |String start=match start. |
|minus? |--->|form? |--->|its value.|-->|Match start=max(1, match |
+-------------+ +---------+ +----------+A | start - value). |
 | no | no | |Match end=match start. Return. |
 V +---------------------+ +---------------------------------+
+-------------+ +---------+ +----------+ +---------------------------------+
|Token an |yes |Variable |yes |Resolve | |String start=match end. |
|equal? |--->|form? |--->|its value.|-->|Match start=min(length+1, value).|
+-------------+ +---------+ +----------+A |Match end=match start. Return. |
 | no | no | +---------------------------------+
 V +---------------------+
+-------------+ +-----------------------------------+
|Token a |yes |String start=match end. |
|number? |--->|Match start=min(length+1, value). |
+-------------+ |Match end=match start. Return. |
 V no +-----------------------------------+
+-------------+
|Token a lit- |yes
|eral string? |--------------------------+
+-------------+ |
 | no |
 V V
+-------------+ +----------+ +---------------+ +---------------------------+
|Token a var- |yes |Resolve | |Match found in |yes |String start=match end. |
|iable string?|--->|its value.|-->|rest of string?|--->|Match start=match position.|
+-------------+ +----------+ +---------------+ |Match end=match position + |
 | no | no | pattern length. Return. |
 | V +---------------------------+
 | +--------------------------------+
 | |String start=match end. |
 | |Match start=length + 1. |
 | |Match end=length + 1. Return. |
 V +--------------------------------+
+-------------+ +--------------------------------+
|Token a |yes |Match start=length + 1. |
| comma? |--------->|Match end=length + 1. Return. |
+-------------+ +--------------------------------+

Figure 49. Conceptual View of Finding Next Pattern

Chapter 20. Parsing 239

+-------------------------+ +------------------------+
|Start: Match end <= |no | |
| string start? |--->|String end=match start. |
+-------------------------+ +------------------------+
 V yes
+-------------------------+
|String end=length + 1. |
+-------------------------+
 V
+--+
|Substring=substr(source string,string start,(string end-string start))|
|Token=previous pattern. |
+--+
 V <---+
+-------------------------+no |
|Any more tokens? |-------------+ |
+-------------------------+ | |
 V yes | |
+-------------------------+ | |
|Step to next token. | | |
+-------------------------+ | |
 V V |
+-------------------------+no +------------------------+ |
|Token a variable or a |--->|Return. | |
|period? | +------------------------+ |
+-------------------------+ |
 V yes |
+-------------------------+no |
|Any more tokens? |-------------+ |
+-------------------------+ | |
 V yes V |
+-------------------------+ +------------------------+ |
|Next token a variable or | no |Assign rest of substring| |
|period? |--->|to variable. | |
+-------------------------+ +------------------------+ |
 V yes +--------------->|
+-------------------------+ no +------------------------+ |
|Any substring left? |--->|Assign null string to | |
+-------------------------+ |variable. | |
 V yes +------------------------+ |
+-------------------------+ +--------------->|
|Strip any leading blanks.| |
+-------------------------+ |
 V |
+-------------------------+ no +------------------------+ |
|Any substring left? |--->|Assign null string to | |
+-------------------------+ |variable. | |
 | +------------------------+ |
 V yes +--------------->|
+-------------------------+ no +------------------------+ |
|Blank found in substring?|--->|Assign rest of substring| |
| | |to variable. | |
+-------------------------+ +------------------------+ |
 V yes +--------------->|
+---+ |
|Assign word from substring to variable and step past blank.| |
+---+ |
 +---+

Figure 50. Conceptual View of Word Parsing

240 REXX for CICS Transaction Server: User Guide and Reference

Chapter 21. Numbers and arithmetic operations
REXX defines the usual arithmetic operations (addition, subtraction, multiplication, and division) in as
natural a way as possible. What this really means is that the rules followed are those that are
conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the rules vary considerably
(indeed much more than generally appreciated) from person to person and from application to application
and in ways that are not always predictable. The arithmetic described here is, therefore, a compromise
that (although not the simplest) should provide acceptable results in most applications.

Introduction: numbers
Numbers (that is, character strings used as input to REXX arithmetic operations and built-in functions)
can be expressed very flexibly. Leading and trailing blanks are permitted, and exponential notation can be
used.

Some valid numbers are:

 12 /* a whole number */
 '-76' /* a signed whole number */
 12.76 /* decimal places */
' + 0.003 ' /* blanks around the sign and so forth */
 17. /* same as "17" */
 .5 /* same as "0.5" */
 4E9 /* exponential notation */
 0.73e-7 /* exponential notation */

In exponential notation, a number includes an exponent, a power of ten by which the number is
multiplied before use. The exponent indicates how the decimal point is shifted. Thus, in the preceding
examples, 4E9 is simply a short way of writing 4000000000, and 0.73e-7 is short for 0.000000073.

The arithmetic operators include addition (+), subtraction (-), multiplication (*), power (**), division (/),
prefix plus (+), and prefix minus (-). In addition, there are two further division operators: integer divide (%)
divides and returns the integer part; remainder (//) divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to definite rules. The
most important of these rules are as follows (for full details, see “Definition of arithmetic facilities” on
page 242):

• Results are calculated up to some maximum number of significant digits (the default is 9, but you can
alter this with the NUMERIC DIGITS instruction to give whatever accuracy you need). Thus, if a result
requires more than 9 digits, it would usually be rounded to 9 digits. For example, the division of 2 by 3
would result in 0.666666667 (it would require an infinite number of digits for perfect accuracy).

• Except for division and power, trailing zeros are preserved (this is in contrast to most popular
calculators, which remove all trailing zeros in the decimal part of results). So, for example:

2.40 + 2 -> 4.40
2.40 - 2 -> 0.40
2.40 * 2 -> 4.80
2.40 / 2 -> 1.2

This behavior is desirable for most calculations (especially financial calculations).

If necessary, you can remove trailing zeros with the STRIP function (see “STRIP” on page 215), or by
division by 1.

• A zero result is always expressed as the single digit 0.
• Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS (the

default is 9). If the number of places needed before the decimal point exceeds the NUMERIC DIGITS

© Copyright IBM Corp. 1974, 2020 241

setting, or the number of places after the point exceeds twice the NUMERIC DIGITS setting, the number
is expressed in exponential notation:

1e6 * 1e6 -> 1E+12 /* not 1000000000000 */
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

Definition of arithmetic facilities
A precise definition of the arithmetic facilities of the REXX language is given here.

Numbers
A number in REXX is a character string that includes one or more decimal digits, with an optional decimal
point.

See “Exponential notation” on page 246 for an extension of this definition. The decimal point can be
embedded in the number, or can be a prefix or suffix. The group of digits (and optional decimal point)
constructed this way can have leading or trailing blanks and an optional sign (+ or -) that must come
before any digits or decimal point. The sign can also have leading or trailing blanks.

Therefore, number is defined as follows:

blanks sign

blanks

digits

digits . digits

. digits

digits .

blanks

blanks
are one or more spaces

sign
is either + or -

digits
are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

Precision
Precision is the maximum number of significant digits that can result from an operation.

Precision is controlled by the following instruction:
NUMERIC DIGITS

expression

;

The expression is evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) to which calculations are carried out. Results are rounded to that precision,
if necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The REXX standard for the default
precision is 9.

Note that NUMERIC DIGITS can set values below the default of nine. However, use small values with
care; the loss of precision and rounding thus requested affects all REXX computations, including, for
example, the computation of new values for the control variable in DO loops.

242 REXX for CICS Transaction Server: User Guide and Reference

Arithmetic Operators
REXX arithmetic is performed by the operators +, -, *, /, %, //, and ** (add, subtract, multiply, divide,
integer divide, remainder, and power), which all act on two terms, and the prefix plus and minus
operators, which both act on a single term.

Before every arithmetic operation, the term or terms being operated upon have leading zeros removed
(noting the position of any decimal point, and leaving only one zero if all the digits in the number are
zeros). They are then truncated (if necessary) to DIGITS + 1 significant digits before being used in the
computation. (The extra digit is a “guard” digit. It improves accuracy because it is inspected at the end of
an operation, when a number is rounded to the required precision.) The operation is then carried out
under up to double that precision, as described under the individual operations that follow. When the
operation is completed, the result is rounded if necessary to the precision specified by the NUMERIC
DIGITS instruction.

Rounding is done in the traditional manner. The digit to the right of the least significant digit in the result
(the “guard digit”) is inspected and values of 5 through 9 are rounded up, and values of 0 through 4 are
rounded down. Even/odd rounding would require the ability to calculate to arbitrary precision at all times
and is, therefore, not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point if otherwise there would be no digit before it.
Significant trailing zeros are retained for addition, subtraction, and multiplication, according to the rules
that follow, except that a result of zero is always expressed as the single digit 0. For division, insignificant
trailing zeros are removed after rounding.

The FORMAT built-in function (see “FORMAT” on page 208) allows a number to be represented in a
particular format if the standard result provided does not meet your requirements.

Arithmetic operation rules: basic operators
The basic operators (addition, subtraction, multiplication, and division) operate on numbers as follows.

Addition and subtraction

If either number is 0, the other number, rounded to NUMERIC DIGITS digits, if necessary, is used as the
result (with sign adjustment as appropriate). Otherwise, the two numbers are extended on the right and
left as necessary, up to a total maximum of DIGITS + 1 digits (the number with the smaller absolute value
may, therefore, lose some or all of its digits on the right) and are then added or subtracted as appropriate.

Example:

xxx.xxx + yy.yyyyy

becomes:

 xxx.xxx00
+ 0yy.yyyyy

 zzz.zzzzz

The result is then rounded to the current setting of NUMERIC DIGITS if necessary (taking into account any
extra "carry digit" on the left after addition, but otherwise counting from the position corresponding to the
most significant digit of the terms being added or subtracted). Finally, any insignificant leading zeros are
removed.

The prefix operators are evaluated using the same rules; the operations +number and -number are
calculated as 0+number and 0-number, respectively.

Multiplication

The numbers are multiplied together ("long multiplication") resulting in a number that can be as long as
the sum of the lengths of the two operands.

Chapter 21. Numbers and arithmetic operations 243

Example:

 xxx.xxx * yy.yyyyy

becomes:

 zzzzz.zzzzzzzz

The result is then rounded, counting from the first significant digit of the result, to the current setting of
NUMERIC DIGITS.

Division

For the following division, the following steps are taken:

yyy / xxxxx

First the number yyy is extended with zeros on the right until it is larger than the number xxxxx (with
note being taken of the change in the power of ten that this implies). Thus, in this example, yyy might
become yyy00. Traditional long division then takes place. This might be written:

 zzzz
 +---------
 xxxxx | yyy00

The length of the result (zzzz) is such that the rightmost z is at least as far right as the rightmost digit of
the (extended) y number in the example. During the division, the y number is extended further as
necessary. The z number may increase up to NUMERIC DIGITS+1 digits, at which point the division stops
and the result is rounded. Following completion of the division (and rounding if necessary), insignificant
trailing zeros are removed.

Examples of basic operators

The following examples illustrate the main implications of the rules just described.

/* With: Numeric digits 5 */
12+7.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4

Note: With all the basic operators, the position of the decimal point in the terms being operated upon is
arbitrary. The operations may be carried out as integer operations with the exponent being calculated and
applied afterward. Therefore, the significant digits of a result are not in any way dependent on the
position of the decimal point in either of the terms involved in the operation.

Arithmetic operation rules: additional operators
The operation rules for the power (**), integer divide (%), and remainder (//) operators are described.

Power

The ** (power) operator raises a number to a power, which can be positive, negative, or 0. The power must
be a whole number. (The second term in the operation must be a whole number and is rounded to DIGITS
digits, if necessary, as described in “Numbers used directly by REXX” on page 248.) If negative, the
absolute value of the power is used, and then the result is inverted (divided into 1). For calculating the

244 REXX for CICS Transaction Server: User Guide and Reference

power, the number is effectively multiplied by itself for the number of times expressed by the power, and
finally trailing zeros are removed (as though the result were divided by 1).

In practice, the power is calculated by the process of left-to-right binary reduction (see “1” on page 245
for the reason). For a**n: n is converted to binary, and a temporary accumulator is set to 1. If n = 0 the
initial calculation is complete. (Thus, a**0 = 1 for all a, including 0**0.) Otherwise each bit (starting at
the first nonzero bit) is inspected from left to right. If the current bit is 1, the accumulator is multiplied by
a. If all bits have now been inspected, the initial calculation is complete; otherwise the accumulator is
squared and the next bit is inspected for multiplication. When the initial calculation is complete, the
temporary result is divided into 1 if the power was negative.

The multiplications and division are done under the arithmetic operation rules, using a precision of
DIGITS + L + 1 digits. L is the length in digits of the integer part of the whole number n (that is, excluding
any decimal part, as though the built-in function TRUNC(n) had been used). Finally, the result is rounded
to NUMERIC DIGITS digits, if necessary, and insignificant trailing zeros are removed.

Integer division

The % (integer divide) operator divides two numbers and returns the integer part of the result. The result
returned is defined to be that which would result from repeatedly subtracting the divisor from the
dividend while the dividend is larger than the divisor. During this subtraction, the absolute values of both
the dividend and the divisor are used: the sign of the final result is the same as that which would result
from regular division.

The result returned has no fractional part (that is, no decimal point or zeros following it). If the result
cannot be expressed as a whole number, the operation is in error and will fail; that is, the result must not
have more digits than the current setting of NUMERIC DIGITS. For example, 10000000000%3 requires 10
digits for the result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were in effect. Note
that this operator may not give the same result as truncating regular division (which could be affected by
rounding).

Reminder

The // (remainder) operator returns the remainder from integer division and is defined as being the residue
of the dividend after the operation of calculating integer division as previously described. The sign of the
remainder, if nonzero, is the same as that of the original dividend.

This operation fails under the same conditions as integer division (that is, if integer division on the same
two terms would fail, the remainder cannot be calculated).

Examples of additional operators

The following examples use the power, integer divide, and remainder operators:

/* Again with: Numeric digits 5 */
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

Note:

1. A particular algorithm for calculating powers is used, because it is efficient (though not optimal) and
considerably reduces the number of actual multiplications performed. It, therefore, gives better
performance than the simpler definition of repeated multiplication. Because results may differ from
those of repeated multiplication, the algorithm is defined here.

Chapter 21. Numbers and arithmetic operations 245

2. The integer divide and remainder operators are defined so that they can be calculated as a by-product
of the standard division operation. The division process is ended as soon as the integer result is
available; the residue of the dividend is the remainder.

Numeric Comparisons
You can use any of the comparison operators for comparing numeric strings.

The comparison operators are listed in section “Comparison operators” on page 149. However, you
should not use ==, \==, ¬==, >>, \>>, ¬>>, <<, \<<, and ¬<< for comparing numbers because leading and
trailing blanks and leading zeros are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers (calculating the difference)
and then comparing the result with 0. That is, the operation:

A ? Z

where ? is any numeric comparison operator, is identical with:

(A - Z) ? '0'

It is, therefore, the difference between two numbers, when subtracted under REXX subtraction rules, that
determines their equality.

A quantity called fuzz affects the comparison of two numbers. This controls the amount by which two
numbers can differ before being considered equal for the purpose of comparison. The FUZZ value is set
by the following instruction:

NUMERIC FUZZ

expression

;

Here expression must result in a positive whole number or zero. The default is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ value for each numeric
comparison. That is, the numbers are subtracted under a precision of DIGITS minus FUZZ digits during
the comparison. Clearly the FUZZ setting must be less than DIGITS.

Thus if DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as though
NUMERIC DIGITS 8 had been put in effect for the duration of the operation.

Example

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* Displays "0" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1
say 4.9999 = 5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

Exponential notation
Exponential notation is useful for both large and small numbers.

The preceding description of numbers describes "pure" numbers, in the sense that the character strings
that describe numbers can be very long. For example:

10000000000 * 10000000000

would give

100000000000000000000

and

246 REXX for CICS Transaction Server: User Guide and Reference

.00000000001 * .00000000001

would give

0.0000000000000000000001

For both large and small numbers some form of exponential notation is useful, both to make long
numbers more readable, and to make execution possible in extreme cases. In addition, exponential
notation is used whenever the "simple" form would give misleading information.

For example:

numeric digits 5
say 54321*54321

would display 2950800000 in long form. This is clearly misleading, and so the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as:

blanks sign

blanks

digits

digits . digits

. digits

digits .

E

sign

digits blanks

The integer following the E represents a power of ten that is to be applied to the number. The E can be in
uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be numeric to the user.
Specifically, because of the format of numbers in exponential notation, strings, such as 0E123 (0 raised to
the 123 power) and 1E342 (1 raised to the 342 power), are numeric. In addition, a comparison such as
0E123=0E567 gives a true result of 1 (0 is equal to 0). To prevent problems when comparing nonnumeric
strings, use the strict comparison operators.

Here are some examples:

12E7 = 120000000 /* Displays "1" */
12E-5 = 0.00012 /* Displays "1" */
-12e4 = -120000 /* Displays "1" */
0e123 = 0e456 /* Displays "1" */
0e123 == 0e456 /* Displays "0" */

The preceding numbers are valid for input data at all times. The results of calculations are returned in
either conventional or exponential form, depending on the setting of NUMERIC DIGITS. If the number of
places needed before the decimal point exceeds DIGITS, or the number of places after the point exceeds
twice DIGITS, exponential form is used. The exponential form REXX generates always has a sign following
the E to improve readability. If the exponent is 0, then the exponential part is omitted; that is, an
exponential part of E+0 is never generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in long form, by
using the FORMAT built-in function (see “FORMAT” on page 208).

Scientific notation is a form of exponential notation that adjusts the power of ten so a single nonzero digit
appears to the left of the decimal point. Engineering notationis a form of exponential notation in which
from one to three digits (but not simply 0) appear before the decimal point, and the power of ten is always
expressed as a multiple of three. The integer part may, therefore, range from 1 through 999. You can
control whether Scientific or Engineering notation is used with the following instruction:

Chapter 21. Numbers and arithmetic operations 247

NUMERIC FORM
SCIENTIFIC

ENGINEERING

VALUE

expression

;

Scientific notation is the default.

/* after the instruction */
Numeric form scientific

123.45 * 1e11 -> 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 * 1e11 -> 12.345E+12

Numeric information
To determine the current settings of the NUMERIC options, use the built-in functions DIGITS, FORM, and
FUZZ.

These functions return the current settings of NUMERIC DIGITS, NUMERIC FORM, and NUMERIC FUZZ,
respectively.

Whole numbers
Within the set of numbers REXX understands, it is useful to distinguish the subset defined as whole
numbers.

A whole number in REXX is a number that has a decimal part that is all zeros (or that has no decimal part).
In addition, it must be possible to express its integer part simply as digits within the precision set by the
NUMERIC DIGITS instruction. REXX would express larger numbers in exponential notation, after
rounding, and, therefore, these could no longer be safely described or used as whole numbers.

Numbers used directly by REXX
As discussed, the result of any arithmetic operation is rounded (if necessary) according to the setting of
NUMERIC DIGITS.

Similarly, when REXX directly uses a number (which has not necessarily been involved in an arithmetic
operation), the same rounding is also applied. It is just as though the number had been added to 0.

In the following cases, the number used must be a whole number, and the largest number you can use is
999999999.

• The positional patterns in parsing templates (including variable positional patterns)
• The power value (right hand operand) of the power operator
• The values of exprr and exprf in the DO instruction
• The values given for DIGITS or FUZZ in the NUMERIC instruction
• Any number used in the numeric option in the TRACE instruction.

Errors
Two types of errors can occur during arithmetic operations.

• Overflow or Underflow

This error occurs if the exponential part of a result would exceed the range that the language processor
can handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the

248 REXX for CICS Transaction Server: User Guide and Reference

largest number that can be expressed as an exact integer in default precision. Because the default
precision is 9, REXX/CICS supports exponents in the range -999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.
• Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an arithmetic operation
may fail because of lack of storage. This is considered a terminating error as usual, rather than an
arithmetic error.

Chapter 21. Numbers and arithmetic operations 249

250 REXX for CICS Transaction Server: User Guide and Reference

Chapter 22. Conditions and condition traps
A condition is a specified event or state that CALL ON or SIGNAL ON can trap. A condition trap can modify
the flow of execution in a REXX program.

Condition traps are turned on or off using the ON or OFF subkeywords of the SIGNAL and CALL
instructions (see “CALL” on page 165 and “SIGNAL” on page 186).

CALL

SIGNAL

OFF condition

ON condition

NAME trapname

;

condition and trapname are single symbols that are taken as constants. Following one of these
instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting for all
condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to the routine or label
trapname if you have specified trapname. Otherwise, control passes to the routine or label condition.
CALL or SIGNAL is used, depending on whether the most recent trap for the condition was set using CALL
ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function, or an external routine. If
you use SIGNAL, the trapname can be only an internal label.

The conditions and their corresponding events that can be trapped are:

ERROR
raised if a command indicates an error condition upon return. It is also raised if any command
indicates failure and neither CALL ON FAILURE nor SIGNAL ON FAILURE is active. The condition is
raised at the end of the clause that called the command but is ignored if the ERROR condition trap is
already in the delayed state. The delayed state is the state of a condition trap when the condition has
been raised but the trap has not yet been reset to the enabled (ON) or disabled (OFF) state. See Note.

CALL ON ERROR and SIGNAL ON ERROR trap all positive return codes, and negative return codes only
if CALL ON FAILURE and SIGNAL ON FAILURE are not set.

FAILURE
raised if a command indicates a failure condition upon return. The condition is raised at the end of the
clause that called the command but is ignored if the FAILURE condition trap is already in the delayed
state.

CALL ON FAILURE and SIGNAL ON FAILURE trap all negative return codes from commands.

HALT
raised if an external attempt is made to interrupt and end execution of the program. The condition is
usually raised at the end of the clause that was being processed when the external interruption
occurred.

NOVALUE
raised if an uninitialized variable is used:

• As a term in an expression
• As the name following the VAR subkeyword of a PARSE instruction
• As a variable reference in a parsing template, a PROCEDURE instruction, or a DROP instruction.

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except tails in compound variables.

/* The following does not raise NOVALUE. */
signal on novalue
a.=0
say a.z

© Copyright IBM Corp. 1974, 2020 251

say 'NOVALUE is not raised.'
exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language processing error is detected while the program is running. This includes all
kinds of processing errors, including true syntax errors and "run-time" errors, such as attempting an
arithmetic operation on nonnumeric terms. You can specify this condition only for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and any
trapname) of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT (and a
SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a new trap name
replaces any previous trap name, any OFF reference disables the trap for CALL or SIGNAL, and so on.

Note: The state (ON, OFF, or DELAY, and any trapname) of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the caller. See the
CALL instruction (CALL) for details of other information that is saved during a subroutine call.

Related reference
“Action when a condition is trapped” on page 252
When a condition trap is currently enabled (ON) and the specified condition occurs, instead of the usual
flow of control, a CALL trapname or SIGNAL trapname instruction is processed automatically.

Action when a condition is not trapped
When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition.

• For HALT and SYNTAX, the processing of the program ends, and a message (see Chapter 31, “Error
numbers and messages,” on page 415) describing the nature of the event that occurred usually
indicates the condition.

• For all other conditions, the condition is ignored and its state remains OFF.

Action when a condition is trapped
When a condition trap is currently enabled (ON) and the specified condition occurs, instead of the usual
flow of control, a CALL trapname or SIGNAL trapname instruction is processed automatically.

You can specify the trapname after the NAME subkeyword of the CALL ON or SIGNAL ON instruction. If
you do not specify trapname, the name of the condition itself (ERROR, FAILURE, HALT, NOTREADY,
NOVALUE, or SYNTAX) is used.

For example, the instruction call on error enables the condition trap for the ERROR condition. If the
condition occurred, then a call to the routine identified by the name ERROR is made. The instruction call
on error name commanderror would enable the trap and call the routine COMMANDERROR if the
condition occurred.

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL or
CALL is processed:

• If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the condition is
disabled (set to OFF), and the SIGNAL takes place in exactly the same way as usual (see SIGNAL).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction for
the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON SYNTAX
is enabled when a SYNTAX condition occurs, then, if the SIGNAL ON SYNTAX label name is not found, a
usual syntax error termination occurs.

252 REXX for CICS Transaction Server: User Guide and Reference

• If the action taken is a CALL (which can occur only at a clause boundary), the CALL is made in the usual
way (see CALL) except that the call does not affect the special variable RESULT. If the routine should
RETURN any data, then the returned character string is ignored.

Because these conditions (ERROR, FAILURE, and HALT) can arise during execution of an INTERPRET
instruction, execution of the INTERPRET may be interrupted and later resumed if CALL ON was used.

As the condition is raised, and before the CALL is made, the condition trap is put into a delayed state.
This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL) ON (or OFF) is
made for the condition. This delayed state prevents a premature condition trap at the start of the
routine called to process a condition trap. When a condition trap is in the delayed state it remains
enabled, but if the condition is raised again, it is either ignored (for ERROR, FAILURE, or NOTREADY) or
(for the other conditions) any action (including the updating of the condition information) is delayed
until one of the following events occurs:

1. A CALL ON or SIGNAL ON, for the delayed condition, is processed. In this case a CALL or SIGNAL
takes place immediately after the new CALL ON or SIGNAL ON instruction has been processed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is processed. In this case the condition trap is
disabled and the default action for the condition occurs at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is no longer delayed and the
subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is, the flow is not affected by
the CALL).

Note:

1. You must be extra careful when you write a syntax trap routine. Where possible, put the routine near
the beginning of the program. This is necessary because the trap routine label might not be found if
there are certain scanning errors, such as a missing ending comment. Also, the trap routine should
not contain any statements that might cause more of the program in error to be scanned. Examples
of this are calls to built-in functions with no quotation marks around the name. If the built-in
function name is in uppercase and is enclosed in quotation marks, REXX goes directly to the
function, rather than searching for an internal label.

2. In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the condition,
the current instruction is ended, if necessary. Therefore, the instruction during which an event
occurs may be only partly processed. For example, if SYNTAX is raised during the evaluation of the
expression in an assignment, the assignment does not take place. Note that the CALL for ERROR,
FAILURE, HALT, and NOTREADY traps can occur only at clause boundaries. If these conditions arise
in the middle of an INTERPRET instruction, execution of INTERPRET may be interrupted and later
resumed. Similarly, other instructions, for example, DO or SELECT, may be temporarily interrupted
by a CALL at a clause boundary.

3. The state (ON, OFF, or DELAY, and any trapname) of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the caller. See
the CALL instruction (CALL) for details of other information that is saved during a subroutine call.

4. The state of condition traps is not affected when an external routine is called by a CALL, even if the
external routine is a REXX program. On entry to any REXX program, all condition traps have an initial
setting of OFF.

5. While user input is processed during interactive tracing, all condition traps are temporarily set OFF.
This prevents any unexpected transfer of control; for example, should the user accidentally use an
uninitialized variable while SIGNAL ON NOVALUE is active. For the same reason, a syntax error
during interactive tracing does not cause exit from the program but is trapped specially and then
ignored after a message is given.

6. The system interface detects certain execution errors either before execution of the program starts
or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Chapter 22. Conditions and condition traps 253

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of successive
clauses can be labels; therefore, multiple labels are allowed before another type of clause.

Related information
Conditions and condition traps

Condition information
When any condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped condition,
and certain condition information associated with it is recorded.

You can inspect this information by using the CONDITION built-in function (see “CONDITION” on page
200).

The condition information includes:

• The name of the current trapped condition
• The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition
• Any descriptive string associated with that condition.

The current condition information is replaced when control is passed to a label as the result of a condition
trap (CALL ON or SIGNAL ON). Condition information is saved and restored across subroutine or function
calls, including one because of a CALL ON trap. Therefore, a routine called by a CALL ON can access the
appropriate condition information. Any previous condition information is still available after the routine
returns.

Descriptive strings

The descriptive string varies, depending on the condition trapped.
ERROR

The string that was processed and resulted in the error condition.
FAILURE

The string that was processed and resulted in the failure condition.
HALT

Any string associated with the halt request. This can be the null string if no string was provided.
NOVALUE

The derived name of the variable whose attempted reference caused the NOVALUE condition. The
NOVALUE condition trap can be enabled only using SIGNAL ON.

SYNTAX
Any string the language processor associated with the error. This can be the null string if you did not
provide a specific string. Note that the special variables RC and SIGL provide information on the
nature and position of the processing error. You can enable the SYNTAX condition trap only by using
SIGNAL ON.

Special variables
A special variable is one that can be set automatically during processing of a REXX program.

There are three special variables: RC, RESULT, and SIGL. None of these has an initial value, but the
program can alter them. (For information about RESULT, see “RETURN” on page 184.)

RC

For ERROR and FAILURE, the REXX special variable RC is set to the command return code, as usual,
before control is transferred to the condition label.

254 REXX for CICS Transaction Server: User Guide and Reference

For SIGNAL ON SYNTAX, RC is set to the syntax error number.

SIGL

Following any transfer of control because of a CALL or SIGNAL, the program line number of the clause
causing the transfer of control is stored in the special variable SIGL. Where the transfer of control is
because of a condition trap, the line number assigned to SIGL is that of the last clause processed (at the
current subroutine level) before the CALL or SIGNAL took place. This is especially useful for SIGNAL ON
SYNTAX when the number of the line in error can be used, for example, to control a text editor. Typically,
code following the SYNTAX label may PARSE SOURCE to find the source of the data, then call an editor to
edit the source file positioned at the line in error. Note that in this case you may have to run the program
again before any changes made in the editor can take effect.

Alternatively, SIGL can be used to help determine the cause of an error (such as the occasional failure of a
function call) as in the following example:

signal on syntax
a = a + 1 /* This is to create a syntax error */
say 'SYNTAX error not raised'
exit

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
 say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(rc)
 say "SOURCELINE"(sigl)
 trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in error,
and finally drops into debug mode to let you inspect the values of the variables used at the line in error.

Chapter 22. Conditions and condition traps 255

256 REXX for CICS Transaction Server: User Guide and Reference

Chapter 23. REXX/CICS text editor
REXX/CICS provides a general purpose CICS-based text editor.

The editor is provided so that execs and data can be created, updated, and viewed from within the CICS
environment.

The REXX/CICS editor includes several prefix commands (for example: C, CC, M, MM, B, A, F, P). To use
the editor, enter EDIT.

While in an editor session, commands entered on the command line can be chained by placing a ";"
between each command. Support is also provided for macros written in REXX. This lets you customize
editor settings with a profile exec, add new commands to the editor, or use the editor facilities as part of
an application.

Note: The REXX/CICS text editor does not support binary files.

Invoking the REXX/CICS text editor

You can start a REXX/CICS edit session from a CICS terminal (clear screen), a REXX/CICS session,
another edit session, or a REXX exec. You can enter the editor by executing the CICS EDIT transaction
identifier (or your site-defined transaction identifier for the REXX/CICS editor). From a clear REXX/CICS
screen, enter EDIT followed by a REXX File System (RFS) file identifier and an edit session is issued for
this file.

Note: If you specify REXX as a CICS transaction identifier with no exec name, the IBM-supplied REXXTRY
interactive utility (CICRXTRY exec) is issued. REXXTRY provides an interactive shell for performing REXX
statements and commands.

While you are in the editor, you can start another edit session by entering EDIT fileid. The syntax for
this method of invocation is defined in the EDIT command, “EDIT” on page 266. When you write an exec,
you can start the REXX/CICS editor session by issuing the CICS EDIT transaction identifier as a command.
If a file ID is not specified when you invoke the editor, the file ID defaults to file NONAME in your current
RFS directory. A fully qualified file ID is: poolid:\dir1\dir2\fn.ft

However, you can specify a partial file ID if the target file is in (or is going to be created in) your current
directory (as specified by the CD command).

The following examples show four different ways to start an edit session:

EDIT TEST.EXEC (From terminal using CICS transaction ID EDIT)
EDIT TEST.EXEC (From within an edit session using the EDIT editor command)
'EDIT TEST.EXEC' (From within an exec using the EDIT command)
'EDIT TEST.EXEC' (From terminal using the REXX/CICS REXXTRY utility)

The first example starts a session from REXX/CICS. The second starts a new session from an existing
session. The third starts a session from a REXX exec. The fourth starts a session from the REXX/CICS
REXXTRY utility.

Screen format

When you call the editor without a profile, the default screen definition is displayed as shown in the
following figure.

© Copyright IBM Corp. 1974, 2020 257

EDIT ---- POOL1:\USERS\USER1\TEST ------------------------------- COLUMN 1 73
COMMAND ===>
00000 ***************************** TOP OF DATA ************************
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013 **************************** BOTTOM OF DATA **********************

F1=HELP F2=LADD F3=FIL F4=SPLT F5=F F6=JN F7=BA F8=FWD F10=LFT F11=RGT F12=QUI

The first line is reserved for the title line that contains the following:

• Fully qualified file ID
• Column numbers
• Displayed messages.

The informational lines that let you know where the top and bottom of the file is are the only lines that are
displayed when you start a new edit session. These lines consist of a prefix area and a data area. The line
where *** TOP OF DATA *** is displayed, in this example, is the current line. This is distinguished,
from the rest, by being highlighted and it is the line most of the command line commands affect. The
command line lets you interact with the editor on a high level basis. All of the screen lines, except for the
title line, may be moved for convenience.

Prefix commands

The editor provides several prefix commands. These commands are entered in the prefix area and give
you the ability to copy, move, insert, delete, and replicate lines on either an individual or a consecutive
block basis.

• Individual line commands.

The following commands work with individual lines and consist of one character:
/

Specify current line in file
I

Insert a line
D

Delete a line
C

Copy a line
M

Move a line
R

Replicate a line
"

Synonym for replicate

When you enter one of the previous commands in the prefix area of a line, the command performs its
respective function on that line. If you enter an "I" in the prefix area of line 00000, the editor opens a

258 REXX for CICS Transaction Server: User Guide and Reference

new line just below it for input. You can also append a number to the end of the prefix command. This
acts as a replication factor. If the number "5" is appended to the "I", five lines are opened for input
instead of one.

• Consecutive block commands.

The following commands work with consecutive blocks of lines and consist of two characters:
DD

Delete a block of lines
CC

Copy a block of lines
MM

Move a block of lines
RR

Replicate a block of lines
""

Synonym for replicate

Block commands are processed in pairs. You place one command in the prefix area of the first line of
the block and place the same command in the prefix area of the last line of the block. For example, to
delete a block of lines, you place a "DD" in the prefix area of line 00001 and another "DD" in the prefix
area of line 00005. This deletes all lines between line 00001 and line 00005, inclusive. The only block
prefix command that allows a replication factor is the replicate command. So, when you specify a
number with the replicate block command you need to know how many times you want the block (not
individual lines) replicated. The replication factor must be specified with the first RR replication
command.

• Destination commands.

The following commands are called destination prefix commands:
A

After
B

Before
F

Following
P

Preceding

These commands give the move and copy prefix commands a destination for a block of text. When you
enter these in the prefix area, the text from a copy or a move is placed either before or after that line
according to what destination command is specified. The replicate prefix command does not use a
destination prefix command. Instead, it places its output immediately after the block that is to be
replicated.

Macros under the REXX/CICS editor

The editor supports REXX macros, giving the macros the ability to alter the editor settings and display the
editor screens. Macros can process all of the editor command line commands.

The following example addresses the editor command environment and alters the editor settings.

/* Macro to alter the setting of the REXX/CICS editor */
ADDRESS EDITSVR
'SET NUMBERS OFF'
'SET CURLINE 10'
'SET MSGLINE 2'
'SET CMDLINE TOP'
'SET CASE MIXED IGNORE'

Chapter 23. REXX/CICS text editor 259

The following example enters the text Some, More, and DATA on three separate lines and then displays
the current edit screen.

/* Macro to use the REXX/CICS editor as an I/O interface */
ADDRESS EDITSVR
'INPUT Some'
'INPUT More'
'INPUT DATA'
'DISPLAY'

Command Line Commands
The syntax and description for each of the command line commands is described.

ARBCHAR
ARBCHAR sets the arbitrary characters.

ARBCHAR arbchar

Operands
arbchar

specifies a printable (typeable) character.

Return codes
0

Normal return
202

Invalid operand

Example

'ARBCHAR .'

This example defines the character "." as being the arbitrary character.

Note: The arbitrary character takes the place of text in a string. The default value for the arbitrary
character is a ".". For more information on how you can do searches with the arbitrary character, see the
FIND command, “FIND” on page 269.

ARGS
ARGS stores the default parameters to be passed to the program being edited when invoked with the text
editor EXEC command.

ARGS

1

arguments

Notes:
1 If arguments is not specified, any previously defined arguments are deleted.

Operands
arguments

specifies the parameter string to be passed. If you do not specify arguments, any previously defined
arguments are deleted.

260 REXX for CICS Transaction Server: User Guide and Reference

Return codes
0

Normal return

Example

'ARGS A B C'
'EXEC'
'ARGS'

The first line of this example defines the arguments to be passed as A, B, and C. The second line executes
the last saved copy of the file that is currently being edited, passing it the arguments defined in line one.
The last line deletes the arguments.

BACKWARD
BACKWARD scrolls backward toward the beginning of a file for a specified number of screen displays.

BAckward
1

n

*

Operands
n

specifies the number of screen displays you want to scroll backward. If you specify an asterisk (*), the
screen scrolls to the top of the file and the current line is set to the top of the file. If n is not specified,
the screen scrolls back one display.

Return codes
0

Normal return
202

Invalid operand

Example

'BACKWARD'

This example scrolls one screen toward the top of the file.

Note: The editor, by default, sets PF7 to BACKWARD and PF8 to FORWARD.

BOTTOM
BOTTOM scrolls to the bottom of the file.

BOTTOM

Return codes
0

Normal return

Chapter 23. REXX/CICS text editor 261

Example

'BOTTOM'

This example scrolls to the bottom of the file.

CANCEL
CANCEL ends the current edit session without saving the changes.

CANCEL

Return codes
0

Normal return
210

Request failed

Example

'CANCEL'

This example quits the current editor session unconditionally, without saving any file changes.

Note:

1. CANCEL lets you exit the editor without saving changes, and without any warning messages that
changes have been made.

2. CANCEL is a synonym for QQUIT.

CASE
CASE sets the case translation and interpretation preferences.

CASE

1

MIXED RESPECT

IGNORE

UPPER RESPECT

IGNORE

Notes:
1 The default is set in the user profile.

Operands
UPPER

translates lowercase characters to uppercase when entered.
MIXED

works with each character in its original form.
RESPECT

respects the case of each character while doing a search.
IGNORE

ignores the case of each character while doing a search.

262 REXX for CICS Transaction Server: User Guide and Reference

Return codes
0

Normal request
202

Invalid operand

Example

'CASE MIXED RESPECT'

This example sets the case to MIXED and the sensitivity to RESPECT. For more information on sensitivity,
see the FIND command, “FIND” on page 269.

CHANGE
CHANGE changes a string in the file.

CHANGE /string1/string2/

ALL

Operands
string1

specifies the string being replaced.
string2

specifies the string that replaces string1.
ALL

is a keyword indicating that all occurrences on all lines, from the current line, to the end of the file, are
changing.

/
is the delimiting character.

Return codes
0

Normal return
202

Invalid operand
210

Request failed
223

Search argument not found

Example

'CHANGE /noeditor/editor/'

This example replaces the first occurrence of noeditor with editor.

Note: The CHANGE command respects the sensitivity settings of the editor when locating string1 and
when changing string2 as defined by the CASE command or the system default.

Chapter 23. REXX/CICS text editor 263

CMDLINE
CMDLINE sets the command line display preferences.

CMDLINE TOP

BOTTOM

Operands
TOP

displays the command line on the second line of the screen.
BOTTOM

displays the command line on the bottom line of the screen.

Return codes
0

Normal return
202

Invalid operand

Example

'CMDLINE TOP'

This example places the command line on the second line of the screen.

CTLCHAR
CTLCHAR sets a control character's function.

CTLCHAR character

OFF

ESCAPE

PROTECT

NOPROTECT

OFF

Operands
character

specifies a control character to use.
OFF

drops all definitions of control characters if OFF is used without specifying a character or drops the
specific character if one is specified.

ESCAPE
specifies that the following character in the string, passed to the RESERVED command, is a control
character.

PROTECT
specifies that the string passed to the RESERVED command is protected from user input.

NOPROTECT
specifies that user input, passed to the RESERVED command, is allowed on this string.

Return codes
0

Normal return

264 REXX for CICS Transaction Server: User Guide and Reference

202
Invalid operand

Example

'CTLCHAR ! ESCAPE'
'CTLCHAR % PROTECT'
'RESERVED 20 HIGH !% Important Info'

This example defines ! as the escape character and % as the field protection character. After you enter
these commands, the screen line 20 will be protected and contain the text that follows the control
characters, !%.

CURLINE
CURLINE sets the current line display preferences.

CURLINE number

Operands
number

specifies the screen line number.

Return codes
0

Normal return
202

Invalid operand

Example

'CURLINE 3'

This example sets the current display line to screen line 3.

Note: The current line is displayed at the screen line number specified in this command. However, the
current line cannot be displayed on line 1 because line 1 is reserved for the title line.

DISPLAY
DISPLAY shows the current edit screen.

DISPLAY

Return codes
0

Normal return
210

Request failed

Example

'DISPLAY'

This example displays the current edit screen.

Chapter 23. REXX/CICS text editor 265

Note: The DISPLAY command is only useful when it runs from a macro. It displays the current edit
session's screen. When it runs from a normal terminal edit session there is no noticeable effect.

DOWN
DOWN scrolls forward in the file.

DOWN
1

number

Operands
number

specifies the number of lines to scroll. If you do not specify number, the screen moves down only one
line.

Return codes
0

Normal return
202

Invalid operand

Example

'DOWN 5'

This example scrolls forward through the file five lines.

EDIT
EDIT opens a new edit session.

EDIT
NONAME

fileid

PDS_name(mem) PDS

(MACRO macroname

Operands
fileid

specifies the file ID of the file to be created or edited.
PDS_name(mem)

specifies a fully qualified MVS PDS name and member name to be edited.
PDS

is a keyword that follows a the PDS member name when a PDS is being edited.
MACRO

is a keyword specifying a group of instructions applied to the file being edited.
macroname

specifies the file name portion of the profile macro file ID (REXX exec name).

266 REXX for CICS Transaction Server: User Guide and Reference

Return codes
0

Normal return
203

File not found
204

Not authorized
211

Invalid file ID
226

File is currently being edited
299

Internal error
1748

No entry for ddname in Task Input/Output Table (TIOT)
1749

Cannot export to multi unit dataset
1750

ddname has more than one dataset in concatenation

Example

'EDIT TEST.EXEC'

This example opens an edit session for the file TEST.EXEC.

Note:

1. The directory used when editing a file, is determined as follows:

• If a fully qualified directory ID is explicitly given, it is always used.
• If a partially qualified file ID is specified, the current directory and path are searched in an attempt to
find an existing file that would match the file ID (if it were fully resolved using that directory name).

– If such a match is successful, the edit session is for an existing file and the file ID is fully resolved
using the directory the file was found in.

– If the file is not located in the search order, an edit session for a new file is created, with the fully
resolved file ID specifying the current working directory (as specified by the CD command).

2. An MVS PDS member is distinguished by using the keyword PDS after the member name. Members
must be enclosed in parentheses, quotes are not allowed.

3. The default user profile macro that the editor tries to call is CICEPROF. The CICEPROF macro creates
an ISPF/PDF like environment. A second profile macro, named CICXPROF, is provided. CICXPROF
creates a VM/CMS XEDIT like environment.

4. If a file ID or PDS name is not specified, an RFS file with the special name, NONAME, is created.

EXEC
EXEC executes a REXX program within an editor session.

EXEC

1

REXX_program

arguments

Notes:

Chapter 23. REXX/CICS text editor 267

1 If REXX_program is not specified, the last saved copy of the file that is currently being edited is
executed.

Operands
REXX_program

specifies the REXX program name to execute. If you do not specify a name, the last saved copy of the
file that is currently being edited will be executed. If any arguments have been defined using the
ARGS command, these will be passed.

arguments
specifies the arguments to be passed to the program specified in the REXX_program operand.

Return codes
n

The return code set by the exit of the called exec. See “EXIT” on page 172.
0

Normal return
-3

Exec not found
-10

Exec name not specified
-11

Invalid exec name
-12

GETMAIN error
-99

Internal error

Example

'EXEC TEST1.EXEC X Y Z'

This example executes program TEST1.EXEC and passes X, Y, and Z as arguments.

FILE
FILE saves the current file being edited.

FILe

1

fileid

Notes:
1 If fileid is not specified, the file is saved as the default file ID.

Operands
fileid

specifies the file ID of the file. If you do not specify fileid, the file is saved as the default file ID.

Return codes
0

Normal return

268 REXX for CICS Transaction Server: User Guide and Reference

202
Invalid operand

204
Not authorized

207
Insufficient space in file pool

210
Request failed

Example

'FILE'

This example saves the current file being edited, using the current file ID specification for the edit
session. The current file ID is initially taken from the file ID specified on the edit command, when an edit
session is created.

FIND
FIND locates a string of text in the file.

Find

previous_searcharg

searcharg

Operands
searcharg

specifies the text string to be searched on. If you do not specify searcharg, a search is performed on
the previous search string (previous_searcharg).

Return codes
0

Normal return
202

Invalid operand
223

Search argument not found

Example

'FIND REDT'

This example finds the first occurrence of REDT.

'FIND Redt'

If CASE is set to RESPECT then this example will not find the first occurrence of REDT. It will find the first
occurrence of Redt. For more information, see the CASE command, “CASE” on page 262.

The searcharg can contain the arbitrary character, in which case the arbitrary character represents any
text string which might be imbedded at the arbitrary character's location.

'FIND ONE.THREE'

This example finds the first occurrence of any string with ONE and THREE joined by another string.

Chapter 23. REXX/CICS text editor 269

Note:

1. When the RESPECT flag is set with the CASE command, the case of the searcharg is respected.
2. The search begins at the current line and continues downward until BOTTOM OF DATA is reached, or a

match is made. If BOTTOM OF DATA is reached without a match, then the current line remains where
it was before the FIND was processed, rather than making BOTTOM OF DATA the current line.

FORWARD
FORWARD scrolls forward toward the end of the file for a specified number of screen displays.

FORward
1

n

*

Operands
n

specifies the number of screen displays you want to scroll forward. If you specify an asterisk (*), the
screen scrolls to the bottom of the file and the current line is set to the last line of data. If n is not
specified, the screen scrolls forward one display.

Return codes
0

Normal return
202

Invalid operand

Example

'FORWARD'

This example scrolls one screen toward the end of the file.

Note: The editor, by default, sets PF7 to BACKWARD and PF8 to FORWARD.

GET
GET imports an RFS file into the current edit session.

GET

fileid

Operands
fileid

specifies the file ID of the file.

Return codes
0

Normal return
203

File not found
204

Not authorized

270 REXX for CICS Transaction Server: User Guide and Reference

210
Request failed

Example

'GET POOL1:\USERS\USER1\TEST.EXEC'

This example pulls the REXX File System file TEST.EXEC in after the current line.

GETPDS
GETPDS imports a member from an MVS PDS into the current edit session. The file is inserted after the
current line.

GETPDS PDS_name (mem)

Operands
PDS_name(mem)

specifies a fully qualified MVS PDS and member name.

Return codes
0

Normal return
203

File not found
204

Not authorized
210

Request failed

Example

'GETLIB MYFILE.PROJ1(MEM1)'

This example gets PDS member MEM1 and puts it after the current line in an edit session.

Note: You cannot use GETPDS to get the member of a dataset unless the CICS region has external
security manager access to the dataset and your CICS sign on matches the high level dataset prefix.

INPUT
INPUT inserts a new line after the current line.

Input

1

text

Notes:
1 If text is not specified, the new line is blank.

Operands
text

specifies the text being inserted on the new line. If you do not specify text, the new line is blank.

Chapter 23. REXX/CICS text editor 271

Return codes
0

Normal return

Example

'INPUT Test Input Data'

This example places the text Test Input Data on a newly inserted line after the current line.

JOIN
JOIN joins two lines into one.

JOIN

Return codes
0

Normal return
210

Request failed

Example

'JOIN'

This example joins the line that the cursor is on with the line immediately following it.

LEFT
LEFT scrolls left in the file.

LEFT
1

number

Operands
number

specifies the number of characters to scroll. If you do not specify number, the screen scrolls left one
character in the file. If you specify 0 for number, the file scrolls to the far left side.

Return codes
0

Normal return
202

Invalid operand
210

Request failed

Example

'LEFT 20'

This example scrolls 20 characters to the left.

272 REXX for CICS Transaction Server: User Guide and Reference

LINEADD
LINEADD adds a blank line after the cursor line.

LINEADD

Return codes
0

Normal return
230

Cursor is not in file area

Example

'PFKEY 2 LINEADD'

This example causes the addition of a blank line after the line where the cursor resides (if it is a file line)
whenever PF2 is pressed.

Note: LINEADD is mainly useful when assigned to a program function (PF) key. It is by default assigned to
PF2.

LPREFIX
LPREFIX enters a prefix command into the current line prefix area.

LPREFIX prefix

Operands
prefix

specifies any standard prefix (such a C, CC, M, MM, B, A) that is entered during an edit session.

Return codes
0

Normal return
202

Invalid operand

Example

'LPREFIX D'

This example causes the deletion of the current file line.

Note: LPREFIX is provided to let you use the prefix commands from within edit macros.

MACRO
MACRO calls a macro.

MACRO fileid

Chapter 23. REXX/CICS text editor 273

Operands
fileid

specifies the file ID of the macro you want to run. If this file ID includes a file type suffix, then an
attempt is made to call an exec with that suffix. Otherwise, an attempt is made to call an exec whose
suffix is EXEC.

Return codes
n

The return code that is set by the exit of the called exec. See “EXIT” on page 172.
0

Normal return
-3

Exec not found
-10

Exec name not specified
-11

Invalid exec name
-12

GETMAIN error
-99

Internal error

Example

'MACRO POOL1:\USERS\USER1\TEST'

This example calls the macro, POOL1:\USERS\USER1\TEST.EXEC.

Note: Macros can make calls to the REXX/CICS editor server. Any command that you can enter from the
command line of the editor can be run from a macro.

MSGLINE
MSGLINE sets the message line display preferences.

MSGLINE

number

OFF

INFO

Operands
number

displays the message line on the corresponding screen line.
OFF

does not display the message line.
INFO

displays messages in the header line.

Return codes
0

Normal return

274 REXX for CICS Transaction Server: User Guide and Reference

202
Invalid operand

Example

'MSGLINE 2'

This example places the message line on screen line 2.

NULLS
NULLS controls whether the fields on the screen will be written with trailing blanks or trailing nulls.

NULLS ON

OFF

Operands
ON

specifies that fields on the screen are written with trailing nulls.
OFF

specifies that fields on the screen are written with trailing blanks.

Return codes
0

Normal return
202

Invalid operand

Example

'NULLS ON'

This example causes trailing nulls on the fields of the screen.

NUMBERS
NUMBERS sets the prefix area display preferences.

NUMbers ON

OFF

Operands
ON

displays sequential numbers in the prefix area.
OFF

displays equal signs in the prefix area.

Return codes
0

Normal return
202

Invalid operand

Chapter 23. REXX/CICS text editor 275

Example

'NUMBERS ON'

This example displays sequential numbers in the prefix area.

Note: Line number sequencing is not done on the data within the edit session, but are pseudo line
numbers associated with the file lines during the edit session only.

PFKEY
PFKEY sets or processes a program function (PF) key.

PFkey number

1

text

Notes:
1 If text is not specified, the PF key is processed.

Operands
number

specifies the PF key that is set or processed.
text

specifies the text that the PF key is set to. If you do not specify text, the PF key is processed.

Return codes
0

Normal return
202

Invalid Operand
229

Number out of range

Example

'PFKEY 3 quit'
'PFKEY 3'

This example first sets PFKEY 3 to quit and then processes the PF key.

PFKLINE
PFKLINE sets the program function (PF) key line display preferences.

PFKLINE TOP

BOTTOM

number

OFF

Operands
TOP

displays the PF key line on the second line of the screen.
BOTTOM

displays the PF key line on the bottom line of the screen.

276 REXX for CICS Transaction Server: User Guide and Reference

number
specifies the screen line number.

OFF
removes the PF key from the display screen.

Return codes
0

Normal return
202

Invalid operand

Example

'PFKLINE BOTTOM'

This example places the PF key line on the bottom line of the screen.

QQUIT
QQUIT ends the current edit session without saving changes.

QQuit

Return codes
0

Normal return

Example

'QQUIT'

This example quits the current editor session unconditionally, without saving any file changes.

Note:

1. QQUIT lets you exit the editor without saving changes, and without any warning messages that
changes have been made.

2. A synonym for QQUIT is CANCEL.

Chapter 23. REXX/CICS text editor 277

QUERY
QUERY displays the current settings of the editor.

QUERY CHANGES

CMDLINE

COLUMN

DIR

FILEID

MSGLINE

NULLS

NUMBERS

PFKLINE

PFKEY. n

RECORDS

Operands
CHANGES

displays the number of modifications to the file since it was last saved.
CMDLINE

displays the current setting of the command line. For more information see the Text Editor command
“CMDLINE” on page 264.

COLUMN
displays the starting column in the file that is displayed on the screen.

DIR
displays the directory that is associated with the file.

FILEID
displays the name of the file being edited.

MSGLINE
displays the current setting of the message line. For more information see the Text Editor command
“MSGLINE” on page 274.

NULLS
displays the current setting of NULLS. For more information see the Text Editor command “NULLS” on
page 275.

NUMBERS
displays the current setting of NUMBERS. For more information see the Text Editor command
“NUMBERS” on page 275.

PFKLINE
displays the current setting of the PFKLINE. For more information see the Text Editor command
“PFKLINE” on page 276.

PFKEY.n
displays the command that is processed if PFKEY n is pressed. The n is any number from 1 to 24.

RECORDS
displays the number of lines in the file.

Return codes
0

Normal return

278 REXX for CICS Transaction Server: User Guide and Reference

202
Invalid operand

236
Not defined

Example

'QUERY PFKEY.1'

This example displays the command that is processed when PFKEY 1 is pressed.

QUIT
QUIT ends the current edit session.

QUIT

Return codes
0

Normal return
210

Request failed

Example

'QUIT'

This example exits the editor.

Note: When the current file has been changed, the editor does not let you exit until either a save is done
or you enter the QQUIT command.

RESERVED
RESERVED reserves a line on the screen for your output.

REServed line HIGH

NOHIGH

OFF

text

Operands
line

specifies the line that is reserved and the text is displayed.
HIGH

is a keyword specifying that the text is highlighted.
NOHIGH

is a keyword specifying that the text is the usual intensity.
OFF

is a keyword specifying that the line is freed from its reserved state.
text

specifies a string of text, with optional control characters, that is displayed on the reserved line.

Chapter 23. REXX/CICS text editor 279

Return codes
0

Normal return
202

Invalid operand
210

Request failed
229

Number out of range

Example

'CTLCHAR ! ESCAPE'
'CTLCHAR % PROTECT'
'RESERVED 20 HIGH !% Important Info'

This example displays Important Info in a high intensity, protected field on screen line 20.

RESET
RESET terminates any pending prefix commands.

RESET

Return codes
0

Normal return

Example

'RESET'

This example cancels all pending prefix commands.

RIGHT
RIGHT scrolls right in the file.

RIght
1

number

Operands
number

specifies the number of characters to scroll. If you do not specify number, the screen scrolls to the
right one character in the file. If you specify 0 for number, the file scrolls to the far right.

Return codes
0

Normal return
202

Invalid operand

280 REXX for CICS Transaction Server: User Guide and Reference

Example

'RIGHT 20'

This example scrolls 20 characters to the right in the file.

Note: If the value you specified causes a target outside of the record, scrolling stops at the right side of
the record.

SAVE
SAVE saves a file to an RFS file or PDS member.

Save

1

fileid

Notes:
1 If fileid is not specified, the file is saved as the default file ID.

Operands
fileid

specifies the file ID of the file. If you do not specify fileid, the file is saved as the default file ID.

Return codes
0

Normal return
202

Invalid operand
207

Insufficient space in file pool
210

Request failed

Example

'SAVE SYSTEM:\USERS\USER1\TEST.EXEC'

This example saves the current file to the RFS and names it as SYSTEM:\USERS\USER1\TEST.EXEC.

SORT
SORT sorts the lines from the current line on down.

SORT *

num

A

D

1

fromcol

tocol

Operands
*

specifies that all the lines from the current line to the end of the file are sorted.
num

specifies that the lines from the current line for the value of num are sorted.

Chapter 23. REXX/CICS text editor 281

A
specifies that the lines are sorted in ascending order. (This is the default.)

D
specifies that the lines are sorted in descending order.

fromcol
specifies that the lines are sorted on data beginning in this column. If you do not specify fromcol tocol,
sorting begins at the first column.

tocol
specifies that the lines are sorted on data ending in this column.

Return codes
0

Normal return
202

Invalid operand
229

Number out of range

Example

'SORT * A 5 10'

This example sorts all lines in the file from the current line down and is sorted on columns 5 to 10.

Note: If you sort a large number of lines, the sort will work very slowly.

SPLIT
SPLIT splits a line into two lines.

SPLIT

Return codes
0

Normal return
210

Request failed

Example

'SPLIT'

This example splits the line, that the cursor is on, into two lines. One line contains all the text on that line
to the left of the cursor and the line following contains the remaining text (under and to the right of the
cursor).

STRIP
STRIP strips the trailing blanks off all file lines.

STRIP

Return codes
0

Normal return

282 REXX for CICS Transaction Server: User Guide and Reference

Example

'STRIP'

This example strips all trailing blanks of each file line.

Note: This command is especially useful when you import data sets from partitioned data sets, then save
them into an RFS, because partitioned data sets pad with blanks.

SYNONYM
SYNONYM assigns a command action to any other valid command.

SYNONYM syn

command

Operands
syn

specifies any valid command that executes the command action for which it is a synonym.
command

specifies any valid command.

Return codes
0

Normal return

Example

'SYNONYM GL GETLIB'

This example makes GL equivalent to the command GETLIB.

TOP
TOP scrolls to the top of the file.

TOP

Return codes
0

Normal return

Example

'TOP'

This example scrolls to the top of the file.

TRUNC
TRUNC truncates each line in the file to the given length.

TRUNC column

Chapter 23. REXX/CICS text editor 283

Operands
column

specifies the last column you want to keep.

Return codes
0

Normal return
202

Invalid operand

Example

'TRUNC 72'

This example truncates all lines in the file to a length of 72 characters.

Note: This command is useful when you are working with data sets that have sequence numbers that
require removing. The editor does not currently have support for placing or maintaining sequence
numbers in a file.

UP
UP scrolls backward in the file (towards the top of the file).

UP
1

number

Operands
number

specifies the number of lines to scroll. If you do not specify number, the default scroll amount is set to
1.

Return codes
0

Normal return
202

Invalid operand

Example

'UP 20'

This example scrolls 20 lines backward in the file.

284 REXX for CICS Transaction Server: User Guide and Reference

Chapter 24. REXX/CICS File System
The REXX File System (RFS) is provided for the storage of text files and execs created with the REXX/CICS
editor, and by execs using RFS commands and data imported from outside of the REXX File System.

RFS was modeled after the Advanced Interactive Executive (AIX®) and OS/2 file systems. The concept of
directories is the main idea taken from these environments. Partitioning each directory into several
subdirectories will give a hierarchical organization.

You can access RFS functions by using the RFS command. In addition to providing the ability to perform
file I/O, the RFS command provides you the ability to do essential file system maintenance.

A file list utility (FLST) is provided as a full screen interface to the REXX File System. This utility can also
be used as a platform where other CICS work can be performed.

File pools, directories, and files
File pools are sets of VSAM files. In each file pool, there is a root directory. Files are either data files or
REXX execs.

The first VSAM file in the pool contains information about the pool and must be formatted before data can
be written to the pool. All other VSAM files in the pool are extensions of the first file and only need to be
defined in the pool's list of VSAM files after they have been allocated and defined to Access Method
Services and CICS. VSAM files can be added to a file pool, at will, to provide additional storage space in
that pool. However, defining and adding space to file pools is a task for REXX/CICS administrators or CICS
Systems Programmers. File pools are given a unique one to eight character name.

The root directory for a file pool is named file_pool_name:\. This directory can contain files as well as
subdirectories. A subdirectory is a directory within another directory. Subdirectories can be created
within any other directory. A new directory can be created with the RFS MKDIR command. All directories,
except the root, are distinguished by a one to eight character directory file name joined, by a period, with
an optional one to eight character directory file type. This is called the directory ID.

A file pool can be defined to be a user or non-user file pool. One directory that should exist in all user file
pools is the USERS directory. This directory contains several subdirectories that correspond to the users
on the system. When you save a file into the RFS for the first time, a new subdirectory is created in the
USERS directory. This new directory is named with your user ID if you are signed onto CICS. Otherwise,
the directory name will default to the CICS DFLTUSER value. After this directory is created, you can create
any number of subdirectories within that personal directory. You can place files in any of the directories
that you create.

Files are either data files or REXX execs. They use the same naming conventions as directories (a file
name and an optional file type joined with a period). The default file type for REXX execs is EXEC. Files are
created with the REXX/CICS editor or with the RFS DISKW command.

A fully qualified file ID consists of a file pool name followed by a :\, each directory's ID in the path
followed by a \, and the file ID, which is comprised of a file name and an optional file type.

Examples

The following example shows a fully qualified file ID. POOL1 is the file pool name, USERS and USER1 are
directory ID's, and TEST.EXEC is the file ID.

POOL1:\USERS\USER1\TEST.EXEC

The following example shows file pools, directories, and files.

POOL1: File Pool
 \ Root Directory
 TEST1.EXEC File

© Copyright IBM Corp. 1974, 2020 285

 USERS\ Subdirectory
 USER1\ Subdirectory
 TEST2.EXEC File
 DOCS\ Subdirectory
 TEST3.DOCUMENT File
 USER2\ Subdirectory
 LETTER.DOCUMENT File
 PROJECT1\ Subdirectory
 PROD1.EXEC File
 DATA\ Subdirectory
 PROD1.DATA File

WORK:\ File Pool and Root Directory
 TEST1.DATA File
 CHARTS\ Subdirectory
 CHART1.DATA File
 CHART2.DATA File

This example shows two file pools (POOL1 and WORK). File pool POOL1 contains a file (TEST1.EXEC) and
two subdirectories (USERS and PROJECT1). Inside the USERS subdirectory are two subdirectories
(USER1 and USER2) that correspond to user IDs (USER1 and USER2). User USER1 has a file (TEST2.EXEC)
and a subdirectory (DOCS) inside its directory. Inside the DOCS subdirectory there is another file
(TEST3.DOCUMENT). User USER2 has a file (LETTER.DOCUMENT) inside its directory. File pool WORK
contains a file (TEST1.DATA) and a subdirectory (CHARTS). Inside subdirectory CHARTS are two files
(CHART1.DATA and CHART2.DATA).

Current directory and path
The current directory is the current working directory, and is first in the search order when working with
REXX File System (RFS).

The current directory can be set using the CD command, “CD” on page 355. The CD command has a
similar format to the cd command in operating systems such as DOS. The syntax is CD followed by the
partially or fully qualified directory name. To change from a subdirectory back to the parent directory,
type CD ... To change to another subdirectory, CD can be followed by the subdirectory name.

Examples

In the following example, the first command sets the current directory to POOL1:\USERS\USER1 and the
second command sets the current directory to POOL1:\USERS\USER1\DOCS. The third command
changes the current directory back to POOL1:\USERS\USER1.

'CD POOL1:\USERS\USER1'
'CD DOCS'
'CD ..'

The PATH command is used to define the search order for REXX execs, after the current directory is
searched. See “PATH” on page 399 for more information. The syntax is PATH, followed by a list,
separated by spaces, of fully qualified directory names.

The following example first sets a current directory, then defines the search order.

'CD POOL1:\USERS\USER1\EXECS'
'PATH POOL1:\ POOL1:\USERS\USER1'
'EXEC TEST2.EXEC'

The exec name is fully qualified, using the directory ID of each directory in the search before the search of
each respective directory is performed. The fully qualified names are as follows:

'POOL1:\USERS\USER1\EXECS\TEST2.EXEC'
'POOL1:\TEST2.EXEC'
'POOL1:\USERS\USER1\TEST2.EXEC'

When the REXX/CICS command EXEC is invoked, all three directories above are searched resulting in
REXX/CICS finding the exec in the POOL1:\USERS\USER1 directory. If TEST2.EXEC existed in the POOL1:\

286 REXX for CICS Transaction Server: User Guide and Reference

directory, RFS would have stopped searching when it was found. The first copy found in the search order
is accessed.

Note: Whenever a file name is not fully qualified, RFS follows the search order looking for the exec,
beginning with the current directory. The first copy found is executed. If none are found, an error is
returned indicating the target file or exec was not found.

Security
There are two general types of REXX/CICS File System security: file access security and command
execution security.

• File access security controls access to execs and data. RFS file security can be controlled at two levels;
the CICS level, and at the RFS directory level.

1. At the CICS level, authorization to access file pool VSAM files can be given to specific users. This
gives a high level of security.

2. At the RFS directory level, user directories are private directories and can be accessed only by the
owning user (by default).

However, the owner of a directory can use the RFS AUTH command to define a directory as being
publicr, publicw, or secured. publicr means any other REXX/CICS user has read/only access to this
directory. publicw means any other REXX/CICS user has read/write access to this directory. secured
means that the RFS security exit will be invoked to determine whether access should be allowed. For
more information, see the RFS AUTH command, “AUTH” on page 287. Non-user directories can be
created and their access levels defined by an authorized user.

• Command execution security controls the use of certain REXX/CICS commands, or command keywords.
For more information, see Security.

RFS commands
Under the RFS command environment, you issue commands to interface with RFS. If you set the
command environment to RFS, you should not specify RFS in front of RFS commands.

Example

'RFS DISKR POOL1:\USERS\USER1\TEST.EXEC DATA.'

This example reads the contents of the RFS file TEST.EXEC into the REXX compound variable DATA.
TEST.EXEC is in the fully qualified directory: POOL1:\USERS\USER1\.

The syntax for the RFS commands follow.

AUTH
AUTH authorizes access to RFS directories.

RFS AUTH dirid
PRIVATE

PUBLICR

PUBLICW

SECURED

Chapter 24. REXX/CICS File System 287

Operands
dirid

specifies a REXX File System directory identifier. This is partially or fully qualified. See the CD
command, “CD” on page 355, for more information.

PRIVATE
specifies that only the owner of the directory has read/write access to the files. This is the default.

PUBLICR
specifies that any user has read-only access to the files in the directory.

PUBLICW
specifies that any user has read/write access to the files in the directory.

SECURED
specifies that an external security manager grants access to the files in the directory.

Return codes

See the RFS command “RFS” on page 401.

Example

'RFS AUTH POOL1:\USERS\USER1\DOCS PUBLICR'

This example makes directory DOCS a public directory. All users have read/only access to the files in
directory DOCS.

CKDIR
CKDIR checks for an existing RFS directory level.

RFS CKDIR dirid

Operands
dirid

specifies a REXX File System directory identifier. This is partially or fully qualified. See the CD
command, “CD” on page 355, for more information.

Return codes

See the RFS command, “RFS” on page 401.

Example

'RFS CKDIR POOL1:\USERS\USER1\DOCS'

This example checks for a directory called DOCS in the existing directory POOL1:\USERS\USER1.

CKFILE
CKFILE checks to see if the specified, partially or fully qualified, file ID exists.

RFS CKFILE fileid

Operands
fileid

specifies the file identifier.

288 REXX for CICS Transaction Server: User Guide and Reference

Return codes

See the RFS command, “RFS” on page 401.

Example

'CKFILE POOL1:\USERS\USER1\TEST.EXEC'

This example checks for a file called TEST.EXEC in the existing directory POOL1:\USERS\USER1.

COPY
COPY copies a file.

RFS COPY fileid1 fileid2

Operands
fileid1

specifies the source file identifier, it may be a fully or partially qualified directory and file identifier.
fileid2

specifies the target file identifier, it may be a fully or partially qualified directory and file identifier.

Note: If the target file (fileid2) already exists, the contents of fileid1 replaces it.

Return codes

See the RFS command, “RFS” on page 401.

Example

'RFS COPY POOL1:\USERS\USER1\TEST1.EXEC POOL1:\USERS\USER1\TEST2.EXEC'

This example copies TEST1.EXEC to TEST2.EXEC within the directory POOL1:\USERS\USER1.

DELETE
DELETE deletes an RFS file.

RFS DELETE fileid

Operands
fileid

specifies the name of the file to be deleted. This can be partially or fully qualified. See the CD
command, “CD” on page 355, for more information.

Return codes

See the RFS command, “RFS” on page 401.

Example

'RFS DELETE POOL1:\USERS\USER1\TEST1.EXEC'

This example deletes file TEST1.EXEC within directory POOL1:\USERS\USER1.

Chapter 24. REXX/CICS File System 289

DISKR
DISKR reads records from an RFS file.

RFS DISKR fileid
DATA.

stem.

Operands
fileid

specifies the file identifier.
stem.

specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. The default
stem is DATA..

Return codes

See the RFS command, “RFS” on page 401.

Example

'RFS DISKR POOL1:\USERS\USER1\TEST.DATA DATA.'

This example stores the entire contents of the RFS file POOL1:\USERS\USER1\TEST.DATA in the DATA.
REXX compound variable.

Note: DATA.0 is set to the number of records read from the file. DATA.n contains the nth record read from
the file.

DISKW
DISKW writes records to an RFS file from a stem. The file is overlaid with the data in the stem.

RFS DISKW fileid
DATA.

stem.

Operands
fileid

specifies the file identifier.
stem.

specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. The default
stem is DATA..

Return codes

See “RFS” on page 401.

Example

'RFS DISKW POOL1:\USERS\USER1\TEST.EXEC DATA.'

This example stores the contents of the DATA. REXX compound variable into the RFS file POOL1:\USERS
\USER1\TEST.EXEC.

Note: Set DATA.0 to the number of records to be written to the file.

290 REXX for CICS Transaction Server: User Guide and Reference

GETDIR
GETDIR returns a list of the contents of the current or specified directory into the specified REXX array.

RFS GETDIR stem.

dirid

Operands
stem.

specifies the name of a stem. A stem must end in a period; see “Stems” on page 155.
dirid

specifies a REXX File System directory level identifier. This is partially or fully qualified. See the CD
command “CD” on page 355 for more information.

Return codes

See the RFS command, “RFS” on page 401.

Example

'RFS GETDIR DIRDOC. POOL1:\USERS\USER1\DOCS'

This example places the contents of directory DOCS in the DIRDOC. REXX compound variable.

MKDIR
MKDIR creates a new RFS directory level.

RFS MKDIR dirid

Operands
dirid

specifies a REXX File System directory identifier. This is partially or fully qualified. See the CD
command, “CD” on page 355, for more information.

Return codes

See the RFS command, “RFS” on page 401.

Example

'RFS MKDIR POOL1:\USERS\USER1\DOCS'

This example creates a new directory called DOCS in the existing directory POOL1:\USERS\USER1.

Note: Only authorized users can create directories outside of their \USERS\userid directory structure.

RDIR
RDIR removes the specified RFS directory.

RFS RDIR dirid

Operands
dirid

specifies a REXX File System directory identifier. This is partially or fully qualified. Refer to the CD
command, “CD” on page 355, for more information.

Chapter 24. REXX/CICS File System 291

Return codes

Refer to the RFS command, “RFS” on page 401.

Example

'RFS RDIR POOL1:\USERS\USER1\DOCS'

This example deletes a directory called DOCS in the existing directory POOL1:\USERS\USER1.

RENAME
RENAME renames an RFS file to a new name.

RFS RENAME fileid1 fileid2

Operands
fileid1

specifies the source file identifier, it may be a fully or partially qualified directory and file identifier.
fileid2

specifies the source target file identifier, it may be a fully or partially qualified directory and file
identifier.

Note: If the target file (fileid2) already exists, the contents of fileid1 replaces it.

Return codes

See the RFS command, “RFS” on page 401.

Example

'RFS RENAME POOL1:\USERS\USER1\TEST1.EXEC POOL1:\USERS\USER1\TEST2.EXEC'

This example renames the file POOL1:\USERS\USER1\TEST1.EXEC to POOL1:\USERS
\USER1\TEST2.EXEC.

REXX/CICS File List Utility
The File List Utility (FLST) provides a full screen interface to the REXX File System.

When running, FLST manages RFS, calls an exec, or starts a transaction. It is meant to be a high level
interface to REXX, RFS, and CICS.

Invocation
When you want to run FLST, go to a cleared CICS screen or a cleared REXX/CICS screen, enter FLST and
FLST starts running.

The FLST screen format follows.

292 REXX for CICS Transaction Server: User Guide and Reference

 USER=USER1 - DIRECTORY=\USERS\USER1
 CMD FILENAME FILETYPE ATTRIBUTES RECORDS SIZE DATE TIME
 TEST1 EXEC FILE 11 1 1994/03/27 10:30:29
 TEST2 EXEC FILE 5 1 1994/03/27 10:31:04

 COMMAND ===>
F1=HELP F2=REFRESH F3=END F7=UP 18 F8=DOWN 18 F11=EDIT F12=CANCEL

Your user ID is displayed in the upper left hand corner. The current directory is displayed beside your user
ID. The rest of the screen looks very similar to a REXX/CICS editor session. FLST uses the editor for all I/O
except for the first two lines that are displayed using the RESERVED command in the editor. The
advantages of using the REXX/CICS editor for the I/O shell are seen in the ability to search for a file name
or file type in a large directory and your ability to save the directory to a file on disk.

Macros under the REXX/CICS File List Utility
The REXX File List Utility supports REXX macros, giving the macros the ability to alter the FLST settings
and display the FLST screens. Macros can process all of the FLST commands.

Example

The following example addresses the FLST environment and alters the FLST settings.

/* Macro to set some FLST settings */
ADDRESS FLSTSVR
'SET PFKEY 11 EDIT'
'SET PFKEY 12 CANCEL'
'SYNONYM DISCARD RFS DELETE'

FLST Commands
This section describes the FLST commands. You can type these commands anywhere on the source FLST
command column or from the command line.

Note: If data is entered in multiple places, program function keys take precedence, followed by data
entered on the command line, and finally data entered on the command column.

CANCEL
CANCEL terminates without executing any commands in the command column.

When you type CANCEL from the command line, use the following syntax:
CANCEL

COPY
COPY copies a file.

When you type COPY on the FLST command column, use the following syntax:
COPY / fileid

Chapter 24. REXX/CICS File System 293

Operands
fileid

specifies the file ID of the file where the results are placed.

Note: If fileid already exists, it is replaced.

Example

'COPY / TEST3.EXEC'

This example, executed from the command column next to TEST1.EXEC, creates a new file, TEST3.EXEC,
that is identical to TEST1.EXEC.

When you type COPY from the command line, use the following syntax:
COPY fileid1 fileid2

Operands
fileid1

specifies the file ID of the file the command acts on.
fileid2

specifies the file ID of the file where the results are placed.

Note: If fileid2 already exists, the contents of fileid1 replaces it.

Example

'COPY TEST1.EXEC TEST3.EXEC'

This example, executed from the command line, creates a new file (TEST3.EXEC) that is identical to
TEST1.EXEC.

DELETE
DELETE deletes a file.

When you type DELETE on the FLST command column, use the following syntax:
DELETE

When you type DELETE from the command line, use the following syntax:
DELETE fileid

Operands
fileid

specifies the file ID of the file the command acts on.

Example

'DELETE TEST1.EXEC'

This example, executed from the command line, deletes file TEST1.EXEC.

DOWN
DOWN scrolls down one or more lines.

When you type DOWN from the command line, use the following syntax:

294 REXX for CICS Transaction Server: User Guide and Reference

DOWN
n

Operands
n

specifies the number of lines to be scrolled down.

Example

'DOWN 5'

This example scrolls forward through the list five lines.

END
END executes all commands you typed, then terminates when END is typed on the command line or used
as a PF key.

When you type END from the command line, use the following syntax:
END

EXEC
EXEC executes the exec, then terminates.

When you type EXEC on the FLST command column, use the following syntax:
EXEC

/ parameter

Operands
parameter

specifies the parameters passed to the exec as arguments.

Example

'EXEC / PARMS'

This example, executed on the command column next to TEST3.EXEC, executes exec TEST3.EXEC and
passes PARMS as the argument.

When you type EXEC from the command line, use the following syntax:
EXEC fileid1

parameter

Operands
fileid

specifies the file ID of the file the command acts on.
parameter

specifies the parameters passed to the exec as arguments.

Return codes
n

The return code that is set by the exit of the called exec. See “EXIT” on page 172.

Chapter 24. REXX/CICS File System 295

0
Normal return

-3
Exec not found

-10
Exec name not specified

-11
Invalid exec name

-12
GETMAIN error

-99
Internal error

Example

'EXEC TEST3 PARMS'

This example executes exec TEST3.EXEC and passes PARMS as the argument.

FLST
FLST calls the file list utility.

When you type FLST from the command line, use the following syntax:
FLST

dirid

Operands
dirid

specifies the ID of a full or partial directory. If you do not specify dirid, FLST defaults to the current
working directory.

Example

'FLST'

This example displays the file list for the member of the current working directory.

Note: See Chapter 24, “REXX/CICS File System,” on page 285 for more information about the REXX File
System.

MACRO
MACRO calls a macro.

When you type MACRO from the command line, use the following syntax:
MACRO fileid

Operands
fileid

specifies the file ID of the macro you want to run. If this file ID includes a file type suffix, then an
attempt is made to call an exec with that suffix. Otherwise, an attempt is made to call an exec whose
suffix is EXEC.

296 REXX for CICS Transaction Server: User Guide and Reference

Return codes
n

The return code that is set by the exit of the called exec. See “EXIT” on page 172.
0

Normal return
-3

Exec not found
-10

Exec name not specified
-11

Invalid exec name
-12

GETMAIN error
-99

Internal error

Example

'MACRO POOL1:\USERS\USER1\TEST'

This example calls the macro, POOL1:\USERS\USER1\TEST.EXEC.

Note: Macros can make calls to the REXX/CICS FLST server. Any command that can be entered from the
command line of the FLST can be run from a macro.

PFKEY
PFKEY sets or processes a program function (PF) key.

When you type PFKEY from the command line, use the following syntax:
PFkey number

text

Operands
number

specifies the PF key that is set or processed.
text

specifies the text that the PF key is set to.

Example

'PFKEY 3 quit'
'PFKEY 3'

This example first sets PFKEY 3 to quit and then processes the PF key.

Note: If you specify text, the PF key is set with the text. If you do not specify text, the PF key is processed.

REFRESH
REFRESH refreshes the file list.

When you type REFRESH on the FLST command column, use the following syntax:
REFRESH

dirid

Chapter 24. REXX/CICS File System 297

Operands
dirid

specifies a REXX File System directory identifier. This is partially or fully qualified. See the CD
command, “CD” on page 355, for more information.

Example

'REFRESH'

This example refreshes the file list for the member of the current working directory.

RENAME
RENAME renames a file

When you type RENAME on the FLST command column, use the following syntax:
RENAME / fileid

Operands
fileid

specifies the new file ID.

Note: If fileid already exists, it is replaced.

Example

'RENAME / TEST4.EXEC'

This example, executed from the command column next to TEST3.EXEC, renames TEST3.EXEC to
TEST4.EXEC.

When you type RENAME from the command line, use the following syntax:
RENAME fileid1 fileid2

Operands
fileid1

specifies the file ID of the file the command acts on.
fileid2

specifies the new file ID.

Note: If fileid2 already exists, the contents of fileid1 replaces it.

Example

'RENAME TEST3.EXEC TEST4.EXEC'

This example, executed from the command line, renames file TEST3.EXEC to TEST4.EXEC.

SORT
SORT sorts the file list.

When you type SORT from the command line, use the following syntax:

298 REXX for CICS Transaction Server: User Guide and Reference

SORT
DT

FN

FT

AT

RC

SZ

Operands
DT

specifies sorting the files by date/time. (This is the default.)
FN

specifies sorting the files by file name.
FT

specifies sorting the files by file type.
AT

specifies sorting the files by attribute.
RC

specifies sorting the file by number of records.
SZ

specifies sorting the files by size.

Example

'SORT FN'

This example sorts the file list by file name.

SYNONYM
SYNONYM assigns a command action to any other valid command.

When you type SYNONYM from the command line, use the following syntax:
SYNONYM syn

command

Operands
syn

specifies any valid command that executes the command action for which it is a synonym.
command

specifies any valid command.

Example

'SYNONYM DISCARD RFS DELETE'

This example makes DISCARD equivalent to the RFS command DELETE.

UP
UP scrolls up one or more lines.

When you type UP from the command line, use the following syntax:

Chapter 24. REXX/CICS File System 299

UP
n

Operands
n

specifies the number of lines to be scrolled up.

Example

'UP 5'

This example scrolls backward through the list five lines.

FLST return codes
FLST uses the standard return codes for the REXX/CICS File System, except for when it is specified
differently.

See the RFS command “RFS” on page 401 for more information.

Running execs and transactions from FLST
Most REXX/CICS execs can be run from FLST by simply entering the exec name. The exec name with its
arguments is entered on the command line, or the exec name is typed on a FLST command column. The
latter case uses the file ID as the argument for the transaction. REXX execs are run by issuing an
EXECUTE command either on the command line, in which case a file ID is needed, or on a FLST command
column.

300 REXX for CICS Transaction Server: User Guide and Reference

Chapter 25. REXX/CICS List System
REXX/CICS provides a facility for maintaining tables or lists of data in virtual storage. This facility is called
the REXX List System (RLS).

This system provides management of lists of temporary system and user information. The externals for
accessing the RLS are the RLS and CLD commands, instead of RFS and CD commands used with the REXX
File System. Also, the RLS is only for data, not for execs.

Directories and lists
RLS has one root directory. You access the RLS system by reading its anchor address from a CICS
temporary storage queue named *CICREX*.

This *CICREX* queue contains one item after the first access of RLS. This item contains the address of an
area of 6 fullwords. It contains RLS control information and a pointer to the root directory. The root
directory RLS is named \. This directory can contain lists, saved variables, or special lists called queues as
well as subdirectories. A subdirectory is a directory within another directory. Subdirectories can be
created within any other directory. A new directory can be created with the RLS MKDIR command. All
directories, except the root, are distinguished by a one to 250 character directory file name. This is called
the directory ID.

One RLS directory that always exists is the USERS directory. This directory contains several subdirectories
which correspond to the users on the system. When you save a list into the RLS for the first time, a new
subdirectory may be created in the USERS directory. This new directory is named with your user ID if you
are signed onto CICS. Otherwise, the directory name defaults to the value in CICS DFLTUSER. After this
directory is created, you can create any number of subdirectories within that personal directory. You can
place lists in any of the directories that you create.

Lists are always data files. They use the same naming conventions as directories.

A fully qualified list ID consists of a \, each directory's ID in the path followed by a \, and the list ID.

Examples

The following example shows a fully qualified list ID. USERS and USER1 are directory ID's, and
TEST.DATA is the list ID.

\USERS\USER1\TEST.DATA

The following example shows RLS directories and lists.

 \ Root Directory
 TEST1.DATA File
 USERS\ Subdirectory
 USER1\ Subdirectory
 TEST2.DATA File
 DOCS\ Subdirectory
 TEST3.DOCUMENT File
 USER2\ Subdirectory
 LETTER.DOCUMENT File
 PROJECT1\ Subdirectory
 PROD1.INFO File
 DATA\ Subdirectory
 PROD1.DATA File

 \ Root Directory
 TEST1.DATA File
 CHARTS\ Subdirectory
 CHART1.DATA File
 CHART2.DATA File

© Copyright IBM Corp. 1974, 2020 301

This example shows a list directory structure. The root directory contains a file (TEST1.DATA) and two
subdirectories (USERS and PROJECT1). Inside the USERS subdirectory are two subdirectories (USER1
and USER2) that correspond to user IDs (USER1 and USER2). User USER1 has a list (TEST2.DATA) and a
subdirectory (DOCS) inside its directory. Inside the DOCS subdirectory there is another list
(TEST3.DOCUMENT). User USER2 has a file (LETTER.DOCUMENT) inside its directory. The root directory
contains a file (TEST1.DATA) and a subdirectory (CHARTS). Inside subdirectory CHARTS are two files
(CHART1.DATA and CHART2.DATA).

Current directory and path
The current list directory is the current working directory, and is first in the search order when working
with REXX List System (RLS).

The current list directory can be set using the CLD command “CLD” on page 371. The syntax is CLD
followed by the fully or partially qualified directory name. To change from a subdirectory back to the
parent directory, type CLD ... To change to another subdirectory, CLD can be followed by the
subdirectory name.

Example

In the following example, the first command sets the current directory to \USERS\USER1 and the second
command sets the current directory to \USERS\USER1\DOCS. The third command changes the current
directory back to \USERS\USER1.

CLD \USERS\USER1
CLD DOCS
CLD ..

Note: If CLD is never specified, the default directory is \USERS\userid\.

Security
The RLS commands are authorized REXX/CICS commands.

This means that they can be executed only by an authorized user, or from within an exec that is loaded
from CICAUTH or CICEXEC ddnames in the region startup JCL.

RLS commands
Under the RLS command environment, you issue commands to interface with RLS.

If you set the command environment to RLS, you should not specify RLS in front of RLS commands.

Example

'RLS READ \USERS\USER1\TEST.DATA DATA.'

This example reads the contents of the RLS list \USERS\USER1\TEST.DATA into the DATA. REXX
compound variable.

The syntax for the RLS commands follow.

CKDIR
CKDIR checks for an existing RLS directory level.

RLS CKDIR dirid

302 REXX for CICS Transaction Server: User Guide and Reference

Operands
dirid

specifies a REXX List System directory level identifier. This is partially or fully qualified. See the CLD
command “CLD” on page 371 for more information.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS CKDIR \USERS\USER1\DOCS'

This example checks for a directory called DOCS in the existing directory \USERS\USER1.

DELETE
DELETE deletes an RLS list.

RLS DELETE listname

Operands
listname

specifies a REXX List System list identifier. This is partially or fully qualified. See the CLD command
“CLD” on page 371 for more information.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS DELETE \USERS\USER1\TEST.DATA'

This example deletes RLS list TEST.DATA.

LPULL
LPULL pulls a record from the top of the RLS queue.

RLS LPULL varname

QUEUE

queid

Operands
varname

specifies a simple REXX variable name. It does not end in a period, distinguishing a variable name
from a stem name.

QUEUE
is a keyword specifying the special default name.

queid
specifies the identifier for a special type of RLS list accessed by LPULL, LPUSH, or LQUEUE.

Return codes

See the RLS command “RLS” on page 404.

Chapter 25. REXX/CICS List System 303

Example

'RLS LPULL VARA QUEUE1'

This example pulls a record from the top of the RLS queue QUEUE1.

LPUSH
LPUSH pushes a record onto the top of the RLS queue (LIFO).

RLS LPUSH varname

QUEUE

queid

Operands
varname

specifies a simple REXX variable name. It does not end in a period, distinguishing a variable name
from a stem name.

QUEUE
is a keyword specifying the special default name.

queid
specifies the identifier for a special type of RLS list accessed by LPULL, LPUSH, or LQUEUE.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS LPUSH VARA QUEUE1'

This example pushes a record (the contents of VARA) onto the top of the RLS queue QUEUE1.

LQUEUE
LQUEUE adds a record to the end of the RLS queue (FIFO).

RLS LQUEUE varname

QUEUE

queid

Operands
varname

specifies a simple REXX variable name. It does not end in a period, distinguishing a variable name
from a stem name.

QUEUE
is a keyword specifying the special default name.

queid
specifies the identifier for a special type of RLS list accessed by LPULL, LPUSH, or LQUEUE.

Return codes

See the RLS command “RLS” on page 404.

304 REXX for CICS Transaction Server: User Guide and Reference

Example

'RLS LQUEUE VARA QUEUE1'

This example adds a record (the contents of VARA) to the end of the RLS queue QUEUE1.

MKDIR
MKDIR creates a new RLS directory level.

RLS MKDIR dirid

Operands
dirid

specifies a REXX List System directory level identifier. This is partially or fully qualified. See the CLD
command “CLD” on page 371 for more information.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS MKDIR \USERS\USER1\DOCS'

This example creates a new directory called DOCS in the existing directory \USERS\USER1.

READ
READ reads records from an RLS list.

RLS READ listname
DATA.

stem. (UPD

Operands
listname

specifies the list identifier.
stem.

specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. The default
stem is DATA..

UPD
is a keyword that enqueues on a file for update.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS READ \USERS\USER1\TEST.DATA DATA.'

This example stores the entire contents of the RLS list \USERS\USER1\TEST.DATA in the DATA. REXX
compound variable.

Note: DATA.0 is set to the number of records read from the list. DATA.n contains the nth record read from
the list.

Chapter 25. REXX/CICS List System 305

VARDROP
VARDROP deletes an RLS saved variable.

RLS VARDROP varname dirid

Operands
varname

specifies a simple REXX variable name. It does not end in a period, distinguishing a variable name
from a stem name.

dirid
specifies a REXX List System directory level identifier. This is partially or fully qualified. See the CLD
command “CLD” on page 371 for more information.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS VARDROP VAR1'

This example deletes variable VAR1 from the current directory.

VARGET
VARGET takes an RLS saved variable and copies it into a REXX variable of the same name.

RLS VARGET varname dirid

Operands
varname

specifies a simple REXX variable name. It does not end in a period, distinguishing a variable name
from a stem name.

dirid
specifies a REXX List System directory level identifier. This is partially or fully qualified. See the CLD
command “CLD” on page 371.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS VARGET VAR1'

This example copies the value of variable VAR1 from the current directory into a REXX variable named
VAR1.

VARPUT
VARPUT takes a REXX variable and copies it into an RLS saved variable of the same name.

RLS VARPUT varname dirid

306 REXX for CICS Transaction Server: User Guide and Reference

Operands
varname

specifies a simple REXX variable name. It does not end in a period, distinguishing a variable name
from a stem name.

dirid
specifies a REXX List System directory level identifier. This is partially or fully qualified. See the CLD
command “CLD” on page 371 for more information.

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS VARPUT VAR1'

This example takes the value of REXX variable VAR1 and copies it into variable VAR1 in the current
directory.

WRITE
WRITE writes records to an RLS list.

RLS WRITE listname
DATA.

stem.

Operands
listname

specifies the list identifier.
stem.

specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. The default
stem is DATA..

Return codes

See the RLS command “RLS” on page 404.

Example

'RLS WRITE \USERS\USER1\TEST.DATA DATA.'

This example stores the entire contents of the REXX compound variable DATA. into the RLS list \USERS
\USER1\TEST.DATA.

Note: Set DATA.0 to the number of records to be written to the list.

Chapter 25. REXX/CICS List System 307

308 REXX for CICS Transaction Server: User Guide and Reference

Chapter 26. REXX/CICS Command Definition
The REXX/CICS Command Definition Facility provides a way to define or redefine REXX commands and
environments.

The Command Definition Facility provides the capability to:

• Define new commands and environments from a REXX exec.
• Share a common command environment with multiple independent developers.
• Write new REXX commands in the REXX language.
• Change command's implementation language transparently.
• Define authorized commands selectively.
• Redefine existing command names (without a code change).

Background
A strength of REXX is its extendibility. You can write your own external functions, subroutines, or
commands to extend the capabilities of the REXX language. Because of this, one use for REXX is as an
application integration platform.

REXX/CICS provides you the ability to seamlessly integrate your Line Of Business (LOB) application
facilities, REXX language facilities, CICS system facilities, and various software products into an
integrated software platform.

The main methods used to extend the REXX language to add function, or to provide an interface to an
external facility or product, are:

• REXX External Functions (or subroutines)
• REXX Commands (sometimes called subcommands).

As an example to distinguish between the two, let's say we want to add the capability to REXX to sort a
REXX array. You can do this by adding a sort function called ARRYSORT:

x = ARRYSORT(STEM1.)

You can also do this by adding a REXX command called ARRYSORT:

'ARRYSORT STEM1.'

Note: In the command example, it is not necessary to place quotes around the command. However, it is
good coding practice to place single or double quotes around portions of command strings that do not
involve REXX variable substitution.

REXX external functions are traditionally used to extend the capabilities of the REXX language, whereas
REXX commands are traditionally used to interface to outside applications, products or system facilities.
However, both methods can be used in either way.

Some major differences between REXX commands and external functions are:

• Functions always return a result; commands do not.
• Functions raise an error condition; commands always set a return code.

© Copyright IBM Corp. 1974, 2020 309

Defining commands
Use the DEFCMD command to perform basic command definitions that affect only your user ID. If you are
a systems administrator or system programmer, use the DEFSCMD command to perform system-wide
REXX/CICS command definitions.

The DEFCMD and DEFSCMD commands are used from within a REXX exec to define or change REXX
command definitions. You can add or change your own command definitions, using the DEFCMD
command, without any special authorization. You must be a REXX/CICS authorized user to use DEFSCMD
to change command definitions that affect other REXX/CICS users. See “DEFCMD” on page 378 and
“DEFSCMD” on page 380 for details.

Command arguments passed to REXX programs
When a REXX/CICS command is written in REXX and that command is used, the REXX program (defined
by DEFCMD or DEFSCMD) is either invoked or awakened (from a WAITREQ induced "sleep").

If the program is invoked, the command string is passed as an argument to the exec. Also, if it is invoked,
the very first WAITREQ command issued (if any) falls through immediately, with the command string
being placed in the REXX variable REQUEST. If the REXX exec was already started earlier and waiting for a
request (because of an earlier WAITREQ command), the command string is only placed in the REXX
variable REQUEST.

Note: Command programs written in REXX can get and set the contents of REXX variables in the REXX
exec that caused them to be invoked, by using the C2S and S2C commands. See “C2S” on page 377 and
“S2C” on page 411 for more information.

Command arguments passed to assembler programs
REXX/CICS command programs can be written in assembler language.

Assembler language routines must exist in a CICS program properly defined (for example, by using the
CEDA DEFINE PROGRAM command). These programs are invoked by an EXEC CICS LINK if the CICSLINK
option was specified on the DEFCMD or DEFSCMD commands.

Alternatively, if the DEFCMD or DEFSCMD command specifies the CICSLOAD option, the program is EXEC
CICS LOADed by the first command that causes it to be invoked for the current CICS task, and its load
address is remembered. Any subsequent commands in the same CICS task that use this program perform
a direct branch entry (by an assembler BASSM instruction) into the program. It is recommended that
these assembler programs return control by using an assembler BSM instruction so that the correct mode
switching (if any) occurs.

The following information describes the contents of the registers when an assembler language command
program gets control, and the parameters upon entry to these programs.

Entry Specifications when DEFCMD CICSLOAD is specified:

When the code for the command program gets control by a direct branch, the contents of the registers
are:
Register 0

Unpredictable
Register 1

Address of the CICPARMS control block
Registers 2-12

Unpredictable
Register 13

Address of 18 fullword register save area

310 REXX for CICS Transaction Server: User Guide and Reference

Register 14
Return address

Register 15
Entry point address

Before the program returns to the caller, it should place the return code it wants reflected into the
CICPARMS RETCODE field.

Entry Specifications when DEFCMD CICSLINK is specified:
When the code for the command program gets control by an EXEC CICS LINK, the CICS commarea
contains the CICPARMS control block.

Before the program returns to the caller, it should place the return code it wants reflected into the
CICPARMS RETCODE field.

CICPARMS control block
This topic contains Product-sensitive Programming Interface information.

The following table shows the CICPARMS control block for mapping passed parameters to assembler
routines.

Table 4. CICPARMS control block

Offset
(decimal)

Number of
bytes

Field name Description

0 12 Reserved for IBM use.

12 4 RXWBADDR REXX work block address which is required to be
placed into register 10 before calls to the CICGETV
stub routine (for REXX variable access)

16 8 ENVNAME Internal environment name taken from the
DEFCMD or DEFSCMD command definition

24 16 CICCMD Internal command name taken from the command
definition, or in the case where an asterisk was
specified, the actual command name from the
command string

40 4 ARGSTR Address of the command argument string
beginning with the first non-blank character after
the command name in the command string

44 4 ARGLEN Length of above argument string, in characters

48 4 PLIST Address of a standard parsed parameter list of the
command line parsed into 8 character tokens,
followed by a end of list fence of hex high values
(X'FFFFFFFFFFFFFFFF')

52 4 EPLIST Address of an extended parameter list that
matches up with the standard PLIST listed earlier,
but is in a different format. The extended PLIST
has an 8 byte entry for each token. The first 4 bytes
is a fullword address of the start of the string that
comprises a token. The second word contains the
length of a token, in bytes.

Chapter 26. REXX/CICS Command Definition 311

Table 4. CICPARMS control block (continued)

Offset
(decimal)

Number of
bytes

Field name Description

56 4 RETCODE Return code to be reflected in the exec
immediately after the execution of the command.
This return code is automatically placed into the
special REXX variable RC.

60 4 Reserved for IBM use

64 4 USERWORD For user use so information can be passed across
multiple command routine calls

68 4 Reserved for IBM use

72 4 Reserved for IBM use

76 1 TYPEFLAG One character code that identifies the call type of
the DEFCMD or DEFSCMD definition. The code for
REXX is R, for CICSLINK is C, and for CICSLOAD is L

77 1 ITRACE Internal trace flag. This is a one character code,
which has a value of 0 through 9 to indicate if
internal tracing is active and what level of tracing is
active. The value of zero indicates the normal
situation of no tracing. Values from 1 to 9 indicate
that increasingly progressively detailed tracing has
been requested.

Non-REXX language interfaces
REXX/CICS makes it possible to convert a REXX process to a non-REXX process.

To do this requires that non-REXX command routines can access REXX variables in the REXX exec that
issued the command to be processed. The routine used to accomplish this is called CICGETV and must be
linkedited with your command routine, and called as is described in the following information.

CICGETV: call to get, set, or drop a REXX variable
CICGETV calls this linkedit stub subroutine from an assembler REXX/CICS command routine, to retrieve
from, set ,or drop REXX variables in the REXX program that issued the command.

This topic contains Product-sensitive Programming Interface information.

CALL CICGETV , (operands)

operands
varname_addr ,varname_len ,data_addr ,data_len ,function_name

Operands
varname_addr

specifies the address of a character string containing the name of the REXX variable. The variable
name (that this address points to) must be in uppercase.

varname_len
specifies the length of the variable name.

312 REXX for CICS Transaction Server: User Guide and Reference

data_addr
specifies the fullword address where the address of variable contents are.

data_len
specifies the length of area pointed to by data_addr (fullword).

function_name
specifies the particular CICGETV function to be performed. There are three choices:
GET

retrieves the address and length of a REXX variable.
PUT

creates or replaces a REXX variable.
DEL

deletes a REXX variable.

Note:

1. Immediately before any call to the CICGETV linkedited routine stub, register 10 must be loaded with
the value of the RXWBADDR field in the passed parms (CICPARMS).

2. If a get request is issued for a variable that does not exist, the value returned is the same as the
variable name.

3. CICGETV uses a standard save area convention with R13 pointing to an 18 fullword length area. R1
points to a standard parameter list. R14 contains the return address. R15, upon entry to CICGETV,
returns CICGETV's entry point. Upon return, R15 contains the return code.

4. The CICGETV module is located in the REXX/CICS distribution library.
5. A return code of zero is reflected to indicate the success of the operation, or a decimal 99 indicating an

internal error (such as a storage limit exceeded situation).

Chapter 26. REXX/CICS Command Definition 313

314 REXX for CICS Transaction Server: User Guide and Reference

Chapter 27. REXX/CICS Db2 interface
The REXX/CICS Db2 interface provides a means of executing SQL statements and Db2 commands from a
REXX exec.

The SQL are prepared and executed dynamically. You issue the Db2 commands by using theDb2
instrumentation facility interface (IFI). The REXX/CICS Db2 interface provides the results of the SQL in
REXX predefined variables. The REXX/CICS Db2 interface supports DB2® Version 2.3 and later. This
information explains how to use the interface to Db2 from REXX/CICS.

For more information about SQL statements or Db2 commands, see SQL: The language of Db2 in Db2 for
z/OS product documentation and Db2 commands. For more information about IFI, see Programming for
the instrumentation facility interface (IFI) in Db2 for z/OS product documentation.

Note: REXX/CICS transaction identifiers must be entered in the Db2 Resource Control Table (RCT). Refer
to sample JCL CICRCT.

Programming considerations
To embed SQL within a REXX exec, the host command environment must be changed. The ADDRESS
instruction, followed by the name of the environment, is used to change the host command environment.

The ADDRESS instruction has two forms; one affects all commands issued after the instruction, and one
affects only a single command. For more information about host command environments, see “Changing
the host command environment” on page 93 and for more information about the ADDRESS instruction,
see “ADDRESS” on page 163.

The REXX/CICS command environments that support the REXX/CICS Db2 interface are:
EXECDB2

the command environment that supports Db2 commands.
EXECSQL

the command environment that supports SQL statements.

Note: EXECSQL and EXECDB2 are authorized commands. You must be a REXX/CICS authorized user to
use the EXECSQL and EXECDB2 command environments.

REXX/CICS provides an exec called CICRXTRY that can be used to process REXX statements and
commands interactively. CICRXTRY can be pseudo-conversational. The PSEUDO and SETSYS PSEUDO
commands are used to turn pseudo-conversational mode on or off. If the environment is set to pseudo-
conversational, SQL statements issued from CICRXTRY will be committed. If the environment is set to
conversational, any SQL statements issued from the CICRXTRY exec will not be committed and any
resources that are locked will remain locked until you exit the CICRXTRY exec or issue a CICS
SYNCPOINT command. Similar considerations should be made if embedding SQL statements in lengthy
REXX execs.

Embedding SQL statements
You can use the EXECSQL command environment to process the SQL. Each SQL statement is prepared
and executed dynamically by using the CICS Db2 attachment facility.

You can make each request by writing a valid SQL statement as a REXX command directed to the
EXECSQL environment. The SQL statement is made up of the following elements:

• SQL keywords
• Pre-declared identifiers
• Literal values.

© Copyright IBM Corp. 1974, 2020 315

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_12.0.0/comref/src/tpc/db2z_commanddescriptions.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_program4ifi.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_program4ifi.html

Use the following syntax:

"EXECSQL statement"

or

ADDRESS EXECSQL
"statement"
"statement"
 .
 .
 .

SQL can exist on more than one line. Each part of the statement is enclosed in quotes and a comma
delimits additional statement text as follows:

ADDRESS EXECSQL
"SQL text",
"additional text",
 .
 .
 .
"final text"

The following rules apply to embedded SQL:

• You can pass the following SQL directly to the EXECSQL command environment:

ALTER
CREATE
COMMENT ON
DELETE
DROP
EXPLAIN
GRANT
INSERT
LABEL ON
LOCK
REVOKE
SELECT
SET CURRENT SQLID
UPDATE.

• You cannot use the following SQL statements:

BEGIN DECLARE SECTION
CLOSE
COMMIT
CONNECT
DECLARE CURSOR
DECLARE STATEMENT
DECLARE TABLE
DESCRIBE
END DECLARE SECTION
EXECUTE
EXECUTE IMMEDIATE
FETCH
INCLUDE
OPEN
PREPARE
ROLLBACK

316 REXX for CICS Transaction Server: User Guide and Reference

SET CURRENT PACKAGESET
SET HOST VARIABLE
WHENEVER

• Host variables are not allowed in the SQL. Instead, you can use REXX variables to pass input data to the
EXECSQL environment. The REXX variables are not embedded in quotes. The output from the EXECSQL
environment is provided in REXX predefined variables (see “Receiving the results” on page 317).

• When you code a SQL SELECT statement, you cannot use the INTO clause. Instead, the REXX/CICS Db2
interface returns the requested items in compound variables with stem names equal to the Db2 column
names.

• The default number of rows returned for a SELECT statement is 250. If you need more or less rows, you
can set the REXX variable SQL_SELECT_MAX before issuing the SELECT statement.

Receiving the results
The EXECSQL command environment returns results in predefined REXX variables.

These variables are:
RC

Each operation sets this return code. Possible values are:
n

The SQLCODE if the SQL statement resulted in an error or warning.
0

The SQL statement was processed by the EXECSQL environment. The REXX variables for the
SQLCA contain the completion status of the SQL statement.

30
There was not enough memory to build the SQLDSECT variable.

31
There was not enough memory to build the SQL statement area.

32
There was not enough memory to build the SQLDA variable.

33
There was not enough memory to build the results area for the SELECT statement.

SQLCA
A set of SQLCA variables are updated after SQL statements are processed. The entries of the SQLCA
are described in “Using the SQL communications area” on page 318.

SQL_COLNAME.n
Contains the name of each Db2 column whose data was returned by a SELECT statement.
SQL_COLUMNS should be used as the maximum value for n.

SQL_COLTYPE.n
Contains the type of each Db2 column whose data was returned by a SELECT statement.
SQL_COLUMNS should be used as the maximum value for n.

Note: Although all data types are supported, not all are displayable. REXX functions can be used to
convert the data into the format that you want.

For information about the meaning of specific SQLTYPE codes found in SQL_COLTYPE, see SQL: The
language of Db2 in Db2 for z/OS product documentation.

SQL_COLLEN.n
Contains the length of each Db2 column whose data was returned by a SELECT statement. If the data
type is DECIMAL, the scale is placed after the length of the column (after one blank space).
SQL_COLUMNS should be used as the maximum value for n.

SQL_COLUMNS
Contains the count of the number of columns returned.

Chapter 27. REXX/CICS Db2 interface 317

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html

column.n
The results of a SQL SELECT statement are stored in these REXX compound variables. The column is
the name of the Db2 column. Each item contains data for one row from Db2. The count of the number
of SQL rows returned is contained in column.0. The count should be used as the maximum value for n.

SQLCOLn.1
Some SELECT functions, such as CURRENT SQLID, MAX, and AVG, are not associated with a particular
Db2 column. To view the results, you must reference column name SQLCOLn.1.

The n begins with, and is incremented by one, for each function included in the SELECT statement. All
columns represented by SQLCOLn appear in the SQL_COLNAME compound variable.

Using the SQL communications area
The fields that make up the SQL Communications Area (SQLCA) are automatically included by the REXX/
CICS Db2 interface when you issue SQL statements.

The SQLCODE and SQLSTATE fields of the SQLCA contain SQL return codes. These values are set by the
REXX/CICS Db2 interface after each SQL statement is executed.

The SQLCA fields are maintained in separate variables rather than in a contiguous data area. The variables
that are maintained are defined as follows:
SQLCODE

The primary SQL return code.
SQLERRM

Error and warning message tokens. Adjacent tokens are separated by a byte containing X'FF'.
SQLERRP

Product code and, if there is an error, the name of the module that returned the error.
SQLERRD.n

Six variables containing diagnostic information. (The variable n is a number between 1 and 6.)

Note: The count of the number of SQL rows affected by the DELETE, INSERT, and UPDATE command
is contained in SQLERRD.3.

SQLWARN.n
Eleven variables containing warning flags. (The variable n is a number between 0 and 10.)

SQLSTATE
The alternate SQL return code.

Example using SQL statements
In the example, the program prompts for the name of a department, obtains the names and phone
numbers of all members of that department from the EMPLOYEE table, and presents that information on
the screen.

/**/
/* Exec to list names and phone numbers by department */
/**/

/*--*/
/* Get the department number to be used in the select statement */
/*--*/
 Say 'Enter a department number'
 Pull dept

/*--*/
/* Retrieve all rows from the EMPLOYEE table for the department */
/*--*/
 "EXECSQL SELECT LASTNAME, PHONENO FROM EMPLOYEE ",
 "WHERE WORKDEPT = '"dept"'"
 If rc <> 0 then
 do
 Say ' '
 Say 'Error accessing EMPLOYEE table'
 Say 'RC =' rc
 Say 'SQLCODE =' SQLCODE
 Exit rc

318 REXX for CICS Transaction Server: User Guide and Reference

 end

/*---------------------------------------*/
/* Display the members of the department */
/*---------------------------------------*/
 Say 'Here are the members of Department' dept
 Do n = 1 to lastname.0
 Say lastname.n phoneno.n
 End

 Exit

Embedding Db2 commands
You can use the EXECDB2 command environment to process the Db2 commands. Each Db2 command is
passed to the Db2 instrumentation facility interface (IFI).

Most Db2 commands that are issued using DSN under TSO can be issued from CICS using the REXX/CICS
Db2 Interface. The Db2 messages are returned in the predefined REXX compound variable
DB2_OUTPUT.n.

You can make each request by writing a valid Db2 command as a REXX command directed to the
EXECDB2 environment. Use the following syntax:

ADDRESS EXECDB2 "DB2 command"

or

 ADDRESS EXECDB2
 "DB2 command"
 "DB2 command"
 .
 .
 .

Db2 commands can exist on more than one line. Each part of the command is enclosed in single quotes
and a comma delimits additional command text as follows:

 ADDRESS EXECDB2
 "DB2 command",
 "additional text",
 .
 .
 .
 "final text"

The following rules apply to embedded Db2 commands:

• The REXX exec can issue many Db2 commands, but be careful which commands you use. For example,
do not use "-STOP DB2".

• The following Db2 commands are passed directly to the EXECDB2 command environment:

-ALTER BUFFERPOOL
-ARCHIVE LOG
-CANCEL DDF THREAD
-DISPLAY ARCHIVE
-DISPLAY BUFFERPOOL
-DISPLAY DATABASE
-DISPLAY LOCATION
-DISPLAY RLIMIT
-DISPLAY THREAD
-DISPLAY TRACE
-DISPLAY UTILITY
-MODIFY TRACE

Chapter 27. REXX/CICS Db2 interface 319

-RECOVER BSDS
-RECOVER INDOUBT
-RESET INDOUBT
-SET ARCHIVE
-START DATABASE
-START DDF
-START RLIMIT
-START TRACE
-STOP DATABASE
-STOP DB2
-STOP DDF
-STOP RLIMIT
-STOP TRACE
-TERM UTILITY

• You cannot use the following Db2 command:

-START DB2. You can issue this command only from an MVS console.
• You can use REXX variables when passing input data to the EXECDB2 environment. The REXX variables

are not embedded in quotes. The output from the EXECDB2 environment is provided in REXX
predefined variables (see “Receiving the results” on page 320).

• The Db2 command string must be between six and 4092 characters long.
• The total length of all messages returned from the Db2 IFI is limited to 24K. If there are more messages

than will fit in 24K bytes of memory, you can issue the Db2 command again, but with more specific
parameter values, thus reducing the number of output messages.

Receiving the results
The EXECDB2 command environment returns results in predefined REXX variables.

These variables are:
RC

Each operation sets this return code. Possible values are:
n

A positive value that indicates the results of the call to the Db2 instrumentation facility interface
(IFI). If the RC from the Db2 IFI is not zero, the REXX variable DB2_RC2 contains the Db2 IFI
reason code. The DB2_RC2 value is used in conjunction with the RC by using Db2 codes for error
determination. See Db2 codes in Db2 for z/OS product documentation.

0
The Db2 command was processed by the Db2 IFI.

50

The specified Db2 command is either too short or too long to be accepted for processing by the
Db2 IFI. The Db2 command cannot be less than 6 or greater than 4092 characters long.

51
There was not enough memory to build the output area for the Db2 IFI.

52
There was not enough memory to build the communications area for the Db2 IFI.

53
There was not enough memory to build the return area for the Db2 IFI.

54
The DB2_RC2 REXX variable could not be built.

55
The DB2_BNM REXX variable could not be built.

320 REXX for CICS Transaction Server: User Guide and Reference

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/codes/src/tpc/db2z_codes.html

56
The DB2_OUTPUT.n REXX variable could not be built.

57
The DB2_OUTPUT.0 REXX variable could not be built.

DB2_OUTPUT.n

The Db2 messages returned from the Db2 IFI are stored in this REXX compound variable. Each
DB2_OUTPUT.n item contains one Db2 message. DB2_OUTPUT.0 contains the count of the number of
Db2 messages returned. The count is used as the maximum value for n.

DB2_RC2

If the return code from the Db2 IFI is not zero, this variable contains the reason code associated with
the return code. The DB2_RC2 variable contains a hexadecimal value. To convert it to a printable
value, use the C2X built-in REXX function. See “C2X (Character to Hexadecimal)” on page 202. The
DB2_RC2 value is used in conjunction with the RC by using Db2 codes for error determination. See
Db2 codes in Db2 for z/OS product documentation.

DB2_BNM

If the Db2 IFI cannot return all Db2 messages, DB2_BNM contains the number of bytes not moved.
This situation might occur if the length of all messages returned exceeds 24K. You can issue the Db2
command again, specifying more parameter values to reduce the output.

Example using Db2 commands
The example of REXX code checks to see whether all tablespaces in a database are in RW status.

/**/
 /* Exec to verify that tablespaces are in RW status */
 /**/

 db_name = 'DSN8D23A'
 cmd = "-DISPLAY DATABASE("db_name") LIMIT(500)"
 "EXECDB2" cmd
 If rc <> 0 then
 do
 Say ' '
 Say 'Error in DB2 -DISPLAY DATABASE command'
 Say 'RC =' rc
 Say 'DB2_RC2 =' C2X(DB2_RC2)
 Exit rc
 end

 /*---*/
 /* Scan the DB2 messages, skipping over the "header" */
 /* and "trailer" messages. */
 /*---*/
 first = 10
 last = DB2_OUTPUT.0 - 2
 Do n = first to last
 If substr(DB2_OUTPUT.n, 20, 2) <> "RW" then
 Say "Tablespace" substr(DB2_OUTPUT.n, 1, 8) "is not in RW status"
 End

 Exit

Chapter 27. REXX/CICS Db2 interface 321

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/codes/src/tpc/db2z_codes.html

322 REXX for CICS Transaction Server: User Guide and Reference

Chapter 28. REXX/CICS high-level client/server
support

REXX/CICS introduces REXX language Client/Server support. REXX/CICS provides a high-level client/
server capability.

This capability includes:

• High-level, natural, transparent REXX client interface
• Support for REXX-based application clients and servers.

Some advantages of client/server computing are:

• The ability to effectively integrate the strengths of mainframes, mini-computers, and workstations in a
transparent fashion.

• The ability to incrementally scale the size of computers' systems up or down (right-sizing).
• The simplification of complex application systems by breaking them down into manageable sets of

clients and servers.
• Applications and data can be distributed throughout a network for better performance, integrity, or

security.
• The ability for enterprise-wide access to data and applications, wherever they reside in the network,

from a variety of unlike computer systems or workstations.

High-level, natural, transparent REXX client interface
REXX/CICS supports a high-level, easy to use interface from client REXX execs to application servers
through the ADDRESS keyword instruction in REXX.

The ADDRESS instruction includes an external environment name that is used to determine the name of
the external procedure that is called to process subsequent REXX command strings.

REXX/CICS provides the optional ability for the environment name (specified in the ADDRESS instruction)
to be the name of an application server. This capability is provided by the REXX/CICS DEFCMD and
DEFSCMD commands.

The DEFCMD command provides the ability to define (or redefine) REXX commands and environments,
and it provides the ability to specify whether an environment-command combination is to be handled by a
traditional CALLed routine or by an REXX application server.

Support for REXX-based application clients and servers
In addition to the REXX client interface, several facilities provide support for the use of application servers
written in REXX.

One facility is the WAITREQ command, which is used by servers to wait for requests from clients. Another
facility, the C2S and S2C commands, provide the ability for servers to fetch or set the contents of client
variables. Another capability, Automatic Server Initiation (ASI) provides for servers to be started
automatically when a request arrives from a client.

© Copyright IBM Corp. 1974, 2020 323

Value of REXX in client/server computing
Some advantages of using REXX for implementing client/server solutions are listed.

• The availability of REXX interpreter support under REXX/CICS with its quick development cycle and
source-based interactive debugging allows the rapid prototyping and development of complex systems.

• The high-level client/server interfaces in REXX/CICS can improve development productivity and lower
maintenance costs.

• Because REXX/CICS allows REXX clients and servers to be recoded in non-REXX languages,
performance intensive parts of an application system can be selectively rewritten, if needed.

The FLST and EDIT commands that REXX/CICS provides are examples of client/server environments.

REXX/CICS client exec example
/* EXAMPLE REXX/CICS EXEC */

TRACE 'O' /* turn off source tracing */

ARG parm1 parm2 parm3

"CICS READQ TS QUEUE(MYQ) INTO(DATA) ITEM(5) NUMITEMS(1)"
if rc ¬= 0 then EXIT 100

SAY 'TSQ Data=' data
"CICS SEND TEXT FROM(DATA) ERASE"

/* Define the SERVER EXEC as a REXX/CICS command */
'DEFCMD REXXCICS SERVER = = SERVER1 (REXX'

/* example of directing a subcommand to a server */
/* named SERVER1, which is written in REXX also */
DATA = 1
'SERVER COMMAND1 DATA'
say data /* ==> 2 */
if rc ¬= 0 then SAY 'Request to SERVER1 failed, RC=' rc
EXIT

REXX/CICS server exec example
/* EXAMPLE REXX/CICS SERVER1 EXEC */

TRACE 'O' /* turn off source tracing */

/*--*/
/* Loop waiting on requests from clients */
/*--*/
Do Forever
 'WAITREQ'
 parse var request cmd varname
 Select
 When request = 'COMMAND1' then CALL command1
 When request = 'COMMAND2' then CALL command2
 When request = 'STOP' then CALL stop_server
 Otherwise
 End /* Select */
End /* Do Forever */
exit

/* subroutine to process command1 */
Command1:
'C2S' varname 'WORK'
WORK = WORK + 1
'S2C WORK' varname
 return

/* subroutine to process command2 */

324 REXX for CICS Transaction Server: User Guide and Reference

Command2:
 return

/* routine to shut down this server */
stop_server:
 say 'The Server is stopping'
 exit

Chapter 28. REXX/CICS high-level client/server support 325

326 REXX for CICS Transaction Server: User Guide and Reference

Chapter 29. REXX/CICS Panel Facility
The REXX panel facility provides the REXX programmer with simple tools and commands for panel
definition and for panel input/output to 3270 type terminals.

The panel facility allows easy definition of panels using any editor. The requirement is that the panel
source definition file should be in the REXX File System (RFS) before it is further processed. The panel
input/output command provides the ability within a REXX program to change dynamically many of the
field attributes statically defined by the panel definition facility. The following example demonstrates the
capability and function of the panel facility and also helps you understand and visualize the general
concepts described in this information. An overview of the example is as follows:

• It defines field control characters that set the characteristics of panel fields.
• It uses the field control characters to define a panel layout. The control character definition and the

panel definition (the two parts together are called panel source) is saved in the REXX File System.
• It uses the panel source to generate a panel object that is used to send or receive panels in a REXX

program.

Example of panel definition

 ** SAMPLE PANEL DEFINITION.

 define the field control characters to be used in the panel layout.
.DEFINE < blue protect
.DEFINE @ blue skip
.DEFINE ! red protect
.DEFINE > green unprotect underline
.DEFINE # green unprotect numeric right underline

define a panel named applican, which
queries an applicant's name and address.
(this line and the above lines are treated as comments).

.PANEL applican

< Please type the requested information below @

 !Applicant's name
@Last name ...:>&lname @
@First name ..:>&fname @
@MI...........:>1&mi

 !Applicant's mailing address

@Street.......:>&mail_street @
@City.........:>&mail_city @
@State........:>2&mail_state
@Zip...:#5&mail_zip

.PANEL

** END OF SAMPLE PANEL DEFINITION.

** START OF REXX PROGRAM USING THE PREVIOUS PANEL.

/* program to query applicant's name and address */
lname = ''; /* null out all name parts */
fname = '';
mi = '';
mail_street = '';
mail_city = 'DALLAS'; /* prefill the most likely response for city/state */
mail_state = 'TX';
mail_zip = '';
do forever;
 'panel send applican cursor(lname)';
 if rc > 0 then
 call error_routine;

© Copyright IBM Corp. 1974, 2020 327

 'panel receive applican'; /* pseudo-conversational this would be separate */
 if pan.aid = 'PF3' | pan.aid = 'PF12' then
 leave;
 if pan.aid = 'ENTER' & pan.rea = 124 then
 iterate;
 if pan.aid = 'CLEAR' | substr(pan.aid,1,2) = 'PA' then
 iterate; /* go to beginning of loop */
 if rc > 0 then
 call error_routine;

 /* process the name and address */

end;
'panel end';
exit

error_routine:
 Say 'An error has occurred'
return;

** END OF REXX PROGRAM and end of sample.

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Defining panels
Defining a panel requires two steps.

1. Use an editor to create the panel source file in the REXX File System. The panel source should contain
field control characters and the panel layout. The panel layout can contain field control characters,
regular displayable text characters, and possibly, imbedded variable names.

2. Convert the panel source into an intermediate form (panel object) that can be used by the panel input/
output commands. The panel facility automatically generates the intermediate file when the input/
output command that is referencing that panel is first invoked or an explicit command in the REXX
environment (or a REXX exec containing the command) can be invoked to generate the intermediate
file.

Note: This automatic generation is executed whenever the panel object cannot be found, or when the
panel source has a date or time change that is later than the panel object. Any change to the panel
source causes a new panel object to be created. Therefore, be cautious when you change a panel
source after a program that uses that panel is out of the testing phase. It is to your advantage to move
the panel source out of the RFS, or into an RFS directory that the program cannot access, after the
project goes into production.

Defining the field control characters with the .DEFINE verb
The field control characters define the attributes of fields on the panel.

These control characters are definable by using the .DEFINE verb and must precede the panel layout.
The .DEFINE verb is terminated at 'End of line', unless the continuation character (a comma) is the last
character on the line. The continuation character cannot follow the .DEFINE verb immediately because it
would be ambiguous whether the comma is the control character being defined or a continuation
character.

Spaces delimit each keyword and order is unimportant except that the control character that is defined
must immediately follow the verb.

If any text does not start with .DEFINE in column one, it is ignored and treated as a comment unless the
line is a continuation.

A total of 32 control characters (including default control characters) can be actively defined at one time.

If all characters are deleted by using the DROP keyword, the five default control characters are re-
activated.

328 REXX for CICS Transaction Server: User Guide and Reference

Certain keyword combinations are incompatible and are not allowed. Others that might appear to be
meaningless are allowed, for example, INVISIBLE and color. This combination might be useful if the field
attribute is changed dynamically in a REXX program (the invisible field can be made visible, which makes
color meaningful).

The .DEFINE verb has the following characteristics:

• It must start on the first column, followed by a space, and capitalized.
• It terminates at 'End of line' unless a continuation character (a comma) is used.
• All keywords have a minimum of a two-character abbreviation.
• The maximum number of control characters that you can define at one time is 32. (The default control

characters are included in this count.)
• It must be placed before the .PANEL verb.

You can also define variable identifier control characters that let you associate REXX variables with Panel
Facility variables. Then you can imbed the variable identifier control character in your panel definition,
instead of the REXX variable name. The same REXX variable can be assigned to different variable
identifier control characters.

• A stem name must end in a period.
• A variable list can have more variables listed than are used.
• A variable list cannot have less listed than are used; this causes an error.
• Multiple variable identifier control characters can be defined and each one is independent of any other.

.DEFINE
The format of the .DEFINE verb is shown, with the default control characters that are specified if you do
not want to define your own.

.DEFINE char

options

VAriable

stem.

variable

DROP

options

Chapter 29. REXX/CICS Panel Facility 329

UNProtect

PRotect

SKip

NORmal

BRight

INVisible

DEfcolor

GReen

RED

BLUe

TUrquoise

WHite

YEllow

PInk

BLInk

REVerse

UNDerline

NOJustify

LEft

RIght

PAd (
NULls

BLAnks

char

) NUMeric CUrsor MDT

Default field control characters
#

Defcolor skip normal
+

Defcolor protect bright
%

Defcolor unprotect normal
!

Defcolor unprotect bright
&

Variable identifier

Operands
char

specifies the control character being defined.
VAriable

defines a REXX variable identifier control character. Variable identifier control characters are used to
associate Panel Facility control characters with REXX variable names. More than one variable control
character can be defined at one time. Following the VARIABLE keyword may be a list of variable
names (variable) or a single stem name (stem.). The variable list can contain one to 32,767 variable
names. Only one stem name can be specified and the stem name must end in a period. This period
identifies the variable as a stem and leaving off the period causes the name to be interpreted as a
simple variable.

Using a variable list and a stem name cannot be mixed. When the panel generator encounters a
variable control character, a substitution is done. Simple variable lists are substituted in the same
order as listed. For example, the third variable control character is replaced with the third variable
listed for that control character. The stem variable is replaced by appending a three-character number
(tail) to the stem name. The number starts at 1 and is incremented as that stem control character is
encountered. Therefore, the tenth stem control character for a particular stem would have a 10 as the
tail (STEM.10). Because these variables are REXX variables, they must follow the REXX variable
naming rules.

DROP
drops char as a field control character.

330 REXX for CICS Transaction Server: User Guide and Reference

Options
UNProtect

specifies that the field is not protected from operator input. (This is the default.)
PRotect

specifies that the field is protected from operator input.
SKip

specifies a protected field with the auto-skip feature. Operator entering a character in the last position
of the previous unprotected field causes the cursor to skip over this field.

NORmal
specifies that the field is not highlighted. (This is the default.)

BRight
specifies that the field is highlighted.

INVisible
specifies that the field is invisible.

GReen
RED
BLUe
TUrquoise
WHite
YEllow
PInk
DEfcolor

are the choices for the color.

Note:

1. When you do not specify a default color, the color is based on the field type and intensity values:
protect/normal displays blue, protect/bright displays white, unprotect/normal displays green, and
unprotect/bright displays red.

2. If any field on a panel has explicitly specified a color (including DEFCOLOR), all bright fields with
DEFCOLOR or no color specified are displayed white and all normal fields with DEFCOLOR or no
color specified are displayed green. This is a 3270 hardware limitation and not the panel facility.

BLInk
specifies that the field blinks.

REVerse
specifies that the field is in reverse video.

UNDerline
specifies that the field is underlined.

NOJustify
specifies that justification is not done (left justified but blanks are not stripped).

LEft
specifies that the field is left justified (leading blanks are stripped).

RIght
specifies that the field is right justified (trailing blanks are stripped).

PAd()
specified only in the context of fields having variables. In an unprotected field the pad character fills
the character positions that are not occupied by a variable value. In a protected field, the pad
character is similar but the scope of the fill area is not the whole field as in the unprotected field. It is
bound by where the variable starts, within the protected field to either the end of the field or the start
of the next variable or text.

NULls
specifies that a field will be padded with the null character.

Chapter 29. REXX/CICS Panel Facility 331

BLAnks
specifies that a field will be padded with blanks.

char
specifies a single character to be used to pad a field.

NUMeric
specifies a field is numeric (unprotected field only).

CUrsor
specifies that the cursor is positioned at the beginning of this field. If multiple cursor fields are
defined, then the last one defined contains the cursor. The cursor is placed in the top left corner if a
cursor field is not defined.

MDT
sets the modify bit tag on for the field. Always return this field on a read, even if the field was not
modified by the operator.

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Defining the actual PANEL layout with the .PANEL verb
A .PANEL verb that signals the start of the panel layout follows the .DEFINE verbs.

This verb must also start at column one and be capitalized. Specify the lines in the panel definition in the
same positions that you want them displayed. All text entered after the panel verb is significant to the
panel generator, including blank lines, and therefore comment lines are not allowed. The first character
must be a protect, skip, or unprotect control character. The panel definition ends at the end of file or the
next .PANEL verb starting in column one. Only one panel definition per file is supported.

The panel layout is close to what you see, with the exception of the control characters and the imbedded
variables that are not shown when the panel is displayed. A field typed on the third line after the .PANEL
starting at column ten is positioned on the terminal screen third line, column ten.

The .PANEL verb has the following characteristics:

• It must start in the first column, followed by a space, and capitalized.
• It must have a panel name on the same line as .PANEL, unless it is an end of panel indicator.
• It must have at least one field and the first character following the .PANEL line must be a protect, skip,

or unprotect control character.
• The field ends at the start of the next field unless an explicit input field length is being used. An empty
field can be used to terminate a field.

• To use a control character as a regular displayable character, type two consecutive control characters.
To display two consecutive control characters, type four consecutive control characters. For each pair of
control characters that get displayed as one character, the subsequent text in the field will be displayed
one position to the left, except if there are 7 or more consecutive spaces following the pair of control
characters.

• The protect or skip field can have any number of variables or text that will fit in that field. A variable in a
protected field has area available for substitution, starts at the variable identifier control character, and
ends just before the next control character or text.

• Space is not allowed between a variable identifier control character and the variable name. A space
causes the variable name to be interpreted as plain text.

• The unprotect field can have only one associated variable.
• The unprotected field can have a number explicitly stating the field length. The number must be

between the unprotect and variable control characters. When the explicit field length is used, a field
does not need termination. If an explicit length field is the last field of a line then a terminating field is
created with a skip attribute to force a field end.

332 REXX for CICS Transaction Server: User Guide and Reference

• When an explicit input field length is used, all of the following field's column positions are adjusted left
or right to force proper alignment, so the explicit length field and the field immediately after abut each
other. Other fields on that line keep their spacing intact. This alignment only affects that one line; the
fields on the next line are unaffected. For example, a line has 5 fields with the 1st and 4th fields having
explicit length and spacing. Between fields 1 and 2 is 4, between 2 and 3 is 5, between 3 and 4 is 6, and
between 4 and 5 is 7. When this line is displayed, field 2 starts immediately after field 1 (no space),
separation between fields 2 and 3 is still 5, separation between fields 3 and 4 is still 6, and field 5
follows immediately after field 4 (no space). If the explicit length causes the current field or subsequent
fields to overflow into the next field, an error is returned when the panel is displayed.

• When a field does not terminate on the same line (for example, field spans lines), the field length varies
with the width of the screen on which the panel is being displayed. Also, if the last field has no
terminator, that field wraps the screen until the first field start is encountered.

• Only the fields containing a variable can have its attributes dynamically changed during panel output.
• If a protect or skip field is changed dynamically to an unprotected field, only the first variable in the field

has the operator input assigned to it. All of the contents of the input field are assigned.
• The panel source file must reside in the REXX File System before it can be processed into the

intermediate file (panel object) used by the runtime panel facility.

.PANEL
The format of the .PANEL verb is shown.

.PANEL panel_name

protect_cc

skip_cc variable_pair

text

variable_cc

unprotect_cc

field_length

variable_cc

variable_pair

.PANEL

Operands
panel_name

specifies the panel being defined. It must be one to eight characters in length and follow the rules for
REXX File System file names. See Chapter 24, “REXX/CICS File System,” on page 285.

Note: The panel_name must be the same as the RFS file name. The complete RFS file name should be
panel_name.PANSRC.

protect_cc
specifies the protect field control character.

skip_cc
specifies the skip field control character.

variable_pair
specifies the variable control character followed by the variable name. (There cannot be a space
between them.)

Chapter 29. REXX/CICS Panel Facility 333

text
displayable characters.

variable_cc
specifies the variable identifier control character.

unprotect_cc
specifies the unprotect control character.

field_length
specifies the explicit input field length value.

Panel generation and panel input/output
Panel definition can be done outside the REXX environment; however, panel generation and input/output
is performed in a REXX exec or in the REXX interactive environment.

The REXX interactive environment is an ideal place to test the initial panel development. To test display
the panel, use the TEST panel command. This displays the panel with no panel object file created. Also,
there is no substitution for the variables on the panel. To create the panel object, use either the
GENERATE, SEND, or the CONVERSE panel commands. Use the FILE keyword to explicitly state what
directory in RFS to find the panel source, or let it default to the current directory.

The panel source name must have the panel name as the file name and PANSRC as the file type. The panel
object is created and filed in the same directory as the panel source with the file name equal to the source
file name and with a file type of PANOBJ. GENERATE creates the panel object and does not display the
panel. SEND creates the panel object, displays the panel, and attempts variable substitution. CONVERSE
is similar to SEND with an implied wait and receive.

Note: There are side effects of being in a REXX interactive environment. Several panel keywords act
differently: the cursor position on the SEND is ignored and keyboard lock is also ignored for SEND and
CONVERSE.

The characteristics of the PANEL command are as follows:

• All the arguments or keywords are not meaningful or valid for all commands.
• The last panel command in a REXX exec is the END command. This releases any storage held by

previous panel commands. This command needs no other operands.
• Only the fields with associated variables can have their attributes changed dynamically.
• A panel object file is created for the panel that is being displayed if one does not exist. The file name is

the same as the panel source file name and the file type will be 'PANOBJ'.
• Only the first variable in a protect/skip field is assigned the input entered by the terminal operator when

the field is changed to an input field.
• The dynamic attribute changes effect the present panel execution and do not last. Subsequent panel

displays revert to what was defined statically by the panel definition step unless the attributes are again
dynamically changed.

• A SEND must be performed before a RECEIVE and the panel names must match.
• Only the attributes indicate change, the others stay as defined statically.
• A panel sent with a position argument needs to be received with the same position values so the

operator input is assigned correctly to the REXX variables.
• Enclose the field ID list within parenthesis, when multiple fields are listed.
• There must be one ATTRIBUTE argument for each different attribute change.

Note:

• To change the number of ATTRIBUTE arguments dynamically, you must use a REXX variable (put the
literal attribute string in REXX variable and use the variable). For example, a program needs to change

334 REXX for CICS Transaction Server: User Guide and Reference

one field to blue, or change one field to blue and another field to blinking, depending on operator input.
One solution is as follows:

field_id = 'xxxx'; /* name of field needing attribute changed*/
attr_string = 'attr(' field_id 'blue)';
if operator_input = y then
 attr_string = attr_string 'attr(' field_id2 'blink)'
'panel send panel_name' attr_string;

• The REXX panel facility generates the panel object if the object is not found or if the object is older than
the source.

PANEL RUNTIME
The format of the PANEL RUNTIME commands is shown.

PANEL Send

Receive

Converse

Test

End

Generate

panel_name

FIle (directory_name)

CUrsor (field_id

row column

)

ATtrib (field_id

(field_id)

attribute values

)

ALarm NOErase POsition (row column)

FReekb

LOckkb

CLrinput

attribute values

Chapter 29. REXX/CICS Panel Facility 335

UNProtect

PRotect

SKip

NORmal

BRight

INVisible

GReen

RED

BLUe

TUrquoise

WHite

YEllow

PInk

DEfcolor

BLInk

REVerse

UNDerline

NOJustify

LEft

RIght

PAd (
NULls

BLAnks

char

) NUMeric CUrsor MDT

Operands
Send

is the panel command that sends a panel.
Receive

is the panel command that receives a panel.
Converse

is the panel command that sends a panel and waits for operator input.
Test

is the panel command that displays a panel. An intermediate file (panel object) is not created and
variable substitutions are not attempted.

End
is a command that terminates the panel session. Command releases all storage held by the panel
facility. This command does not have arguments and any arguments supplied are ignored.

Generate
is an explicit command that creates a panel object. The panel is not displayed.

panel_name
specifies the name of the panel to input/output or generate.

FIle()
specifies the name of the RFS directory (directory_name) containing this panel. (Specified for all panel
commands except END.)

CUrsor()
(specified for SEND and CONVERSE only) positions the cursor on the panel.
field_id

specifies the REXX variable name where the cursor should be positioned on the panel.
row

specifies the row within the panel where the cursor should be positioned. The row value is relative
to the starting row of the panel. The default starting row of the panel is 1, but may be changed
using the POSITION() keyword.

column
specifies the column within the panel where the cursor should be positioned. The column value is
relative to the starting column of the panel. The default starting column of the panel is 1, but may
be changed using the POSITION() keyword.

336 REXX for CICS Transaction Server: User Guide and Reference

ATtrib(field_id attribute_values)|((field_ids) attribute_values)
(specified for SEND and CONVERSE only) dynamically sets attributes to override those specified in the
panel definition.
field_id

specifies the field whose attributes are dynamically set. It must be a variable name associated
with the field. If you specify a list of fields, they must be enclosed with parentheses.

attribute_values
specifies the attributes to set. Only the stated attributes are changed; other attributes default to
what was statically defined. For example, if BLUE is specified for a field that was originally defined
as RED and UNDERLINE, that field becomes BLUE and UNDERLINE.

For the list of attributes, see “Attributes” on page 337.

ALarm
(specified for SEND and CONVERSE only) sounds the bell when displaying panel. (The default is no
alarm).

NOErase
(specified for SEND and CONVERSE only) do not erase the screen before displaying this one. (The
default is erase before a panel write).

To avoid unexpected results, such as changing attributes in the underlying panel while displaying this
second panel, or the display of characters from the underlying panel in the second panel, use the
following guidelines:

• If you use variables in the second panel, position the panel in a blank area of the underlying panel.
• Position the second panel so that it ends at the right boundary of the screen, or it is followed by only

blank columns of the underlying panel.

POsition()
(specified for SEND, CONVERSE, and RECEIVE only) positions the panel on the output screen. Row
(row) and column (column) specifies where the top left corner of the panel should begin. (The default
is row 1 col 1). For example, POS(5 10) means to have the panel start in row 5 and column 10, the
actual movement is 4 rows down and 9 columns to the right.

FReekb
(specified for SEND and CONVERSE only) frees the keyboard, allowing operator input. (This is the
default.)

LOckkb
(specified for SEND and CONVERSE only) locks the keyboard.

CLrinput
(specified for SEND and CONVERSE only) clears all input fields before displaying the panel. Variable
substitution is not attempted and pad characters fill the input area.

Attributes
UNProtect

specifies that the field is not protected from operator input.
PRotect

specifies that the field is protected from operator input.
SKip

specifies a protected field with the auto-skip feature. An operator entering a character in the last
position of the previous unprotected field causes the cursor to skip over this field.

NORmal
specifies that the field is not highlighted.

BRight
specifies that the field is highlighted.

Chapter 29. REXX/CICS Panel Facility 337

INVisible
specifies that the field is invisible.

GReen
RED
BLUe
TUrquoise
WHite
YEllow
PInk
DEfcolor

are the choices for the color.

Note:

1. When you do not specify a default color, the color is based on the field type and intensity values:
protect/normal displays blue, protect/bright displays white, unprotect/normal displays green, and
unprotect/bright displays red.

2. If any field on a panel has explicitly specified a color (including DEFCOLOR), all bright fields with
DEFCOLOR or no color specified are displayed white and all normal fields with DEFCOLOR or no
color specified are displayed green. This is a 3270 hardware limitation and not the panel facility.

BLInk
specifies that the field blinks.

REVerse
specifies that the field is in reverse video.

UNDerline
specifies that the field is underlined.

NOJustify
specifies that no justification is done.

For input, leading and trailing blanks and leading and trailing pad characters are not stripped.

For output, leading and trailing blanks and leading and trailing pad characters are not stripped. Data is
truncated on the right, if necessary. Truncation does not cause a break in execution, but results in a
Return Code of 4 and Reason Code of 117. Pad characters replace null positions to the right of the
variable data.

LEft
specifies that the field is left justified.

For input, leading and trailing blanks and leading and trailing pad characters are stripped.

For output, leading blanks are stripped, and nulls to the right of the variable data are replaced by pad
characters. After leading blanks are stripped, data is truncated on the right, if necessary. Truncation
does not cause a break in execution, but results in a Return Code of 4 and Reason Code of 117.

RIght
specifies that the field is right justified.

For input, leading and trailing blanks and leading and trailing pad characters are stripped.

For output, trailing blanks are stripped, and nulls to the left of the variable data are replaced by pad
characters. After trailing blanks are stripped, data is truncated on the left, if necessary. Truncation
does not cause a break in execution, but results in a Return Code of 4 and Reason Code of 117. For
output, pad characters replace null and blank positions to the left of the variable data.

PAd()
specified only in context of fields having variables. In an unprotected field the pad character fills the
character positions that are not occupied by a variable value. In a protected field, the pad character is
similar but the scope of the fill area is not the whole field as in the unprotected field. It is bound by
where the variable starts, within the protected field to either the end of the field or the start of the
next variable or text.

338 REXX for CICS Transaction Server: User Guide and Reference

NULls
specifies that a field will be padded with the null character.

BLanks
specifies that a field will be padded with blanks.

char
specifies a single character to be used to pad a field.

NUMeric
specifies a field is numeric (unprotected field only).

CUrsor
specifies that the cursor is positioned at the beginning of this field. If multiple cursor fields are
defined, then the last one defined contains the cursor. The cursor is placed in the top left corner if a
cursor field is not defined.

MDT
(specified for SEND and CONVERSE only) sets the modify bit tag for all input fields on the panel.

PANEL Variables
The implicitly defined PANEL variables that can be used by the REXX program and the PANEL error related
variables are listed.

PAN.AID
Attention identifier that last caused panel input.

ENTER ENTER
CLEAR CLEAR
CLRP CLEAR PARTITION
PEN SELECTOR PEN
OPID OPERATOR ID
MSRE MAGNETIC READER
STRF STRUCTURE FIELD
TRIG TRIGGER
PA1
PA2
PA3
PF1
PF2
PF3
PF4
PF5
PF6
PF7
PF8
PF9
PF10
PF11
PF12
PF13
PF14
PF15
PF16
PF17
PF18
PF19
PF20
PF21
PF22
PF23
PF24

PAN.CURS
Position of cursor in last panel input. This is in the form of row column, separated by a blank. For
example, '10 5' would be row 10 and column 5. The row and column values are absolute to the start
of the screen and are unaffected by the POSITION() keyword.

PAN.CNAM
REXX variable name (field ID) associated with the cursor position. If the field has no associated
variable then PAN_CNAM is not updated.

The PANEL error related variables are as follows.

Chapter 29. REXX/CICS Panel Facility 339

PAN.REA
Reason code if warning or error occurs. REXX return code, RC, should be examined first. If the RC is
10, PAN.REA contains state codes and input codes to help in error determination. See “State codes
and input codes” on page 342 for more information.

PAN.LOC
Internal location code. Three- to four-digit number used by IBM support. If the REXX variable RC
contains the value 10, use PAN.LOC in conjunction with PAN.REA for error determination.

PAN.LINE
Line number in the source panel definition where an error that occurred during panel object
generation was detected.

Panel facility return code information
The main return code for the panel command is set in the REXX variable, RC. Each level of return code is
accompanied by additional information in the form of a reason code and a line number (if applicable).

When an error is detected while processing panel source code (location code of 11xx or 12xx) and RC is
not 12 or 16, the REXX variable PAN.LINE contains the number of the line in error.

Return codes
4

Warning. Panel facility continues processing. Processing stops for other return code values.
8

Programmer error
10

Programmer error; PAN.REA contains more information to help determine the cause of the error. See
“State codes and input codes” on page 342 for more information.

12
CICS command error; the CICS EIBRESP is returned in the panel reason code. If the error is not
programmer resolvable, save and collect as much information as needed to recreate the error and
contact IBM support.

14
RFS errors; reason code contains the RFS return code.

16
Internal system error; save and collect as much information as needed to recreate the error and
contact IBM support.

System error reason codes
401

Panel facility ran out of storage space while processing the command.
402

Internal control character identifier table and control character informational table are out of
synchronization.

403
Panel object data has been corrupted. First check that the file is correct and that it is a panel object.

404
CICS receive buffer corrupted.

405
Bad validation request.

406
Storage free request failed.

407
Storage get request failed

340 REXX for CICS Transaction Server: User Guide and Reference

408
Attempt to get or put REXX variable failed.

409
Aid is unknown

410
Dynamic match error.

Programmer-introduced warning and error reason codes
101

Keyword repeated or keyword within a like category was repeated. For example, RED and BLUE;
UNDERLINE and REVERSE.

102
Keywords are incompatible. For example, PROTECT and NUMERIC.

103
Missing keyword or panel name.

104
The control character being defined is invalid or missing.

105
Panel is too large for the screen.

108
Parenthesis missing.

109
Pad character invalid.

110
Task has no associated terminal.

111
Panel has no input fields defined during a receive.

112
Panel name is invalid.

115
REXX variable name (or field ID) is invalid.

116
Number is specified incorrectly. Explicit length value in panel source or row col value.

117
Variable value was too long and was truncated to fit output field.

118
Text field was truncated. Check to see if explicit length did not force a subsequent field to overlay
another field.

119
Bad or missing panel command. It should be SEND, RECEIVE, CONVERSE, TEST, or END.

122
A modified field was received but it had no corresponding input field definition.

124
Empty received buffer. Clear, ENTER, and the PA keys will cause this.

125
File name is invalid.

126
Field identifier for the ATTRIBUTE keyword was not found in the panel.

129
Too many arguments supplied with the command.

Chapter 29. REXX/CICS Panel Facility 341

130
SEND must be performed before a RECEIVE.

131
Panel source has no panel definition. .PANEL was probably not in column 1 or did not have a space
after.

132
Keyword encountered is unknown.

133
DROP asked for a control character not presently active.

136
Continuation is in effect but end of source was encountered.

137
Row or column specified is too large for the current display CURSOR() or POSITION() the likely source
of error.

138
Variable identifier control character was being defined and more than one stem name was listed.

139
More variable fields defined than listed in the control character definition.

140
Explicit input field value caused field to go past screen end.

143
Panel name in file does not match the panel name in the panel runtime command.

144
Panel has more rows than the present screen allows.

145
Panel has more columns than the present screen allows.

State codes and input codes
For return code 10, the reason code (in PAN.REA) has a special meaning.

The reason code consists of two 2-digit numeric codes, the first number stating what keyword is being
processed (state code) and the second number stating the input that caused the error condition (input
code). Use the location code in PAN.LOC to determine which state code list and input code list to use.

For example:

RC = 10
PAN.REA = 0199
PAN.LOC = 1177

When you use the state code and input code lists for the 11xx location codes, the keyword being
processed was .DEFINE for state code 01 and the input code contained an unknown symbol for input
code 99.

State codes for 11xx location codes
01

.DEFINE and control char
02

field type (protect/skip/unprotect)
03

color (red/blue/green/...)
04

Intensity (bright/normal/invisible)

342 REXX for CICS Transaction Server: User Guide and Reference

05
Justify (left/right/nojustify)

06
Numeric

07
extended highlight (blink/reverse/underline)

08
MDT

09
Cursor

10
Pad()

11
Variable

12
Drop

State codes for 20xx location codes
01

panel commands (send/receive/converse/...)
02

File()
03

Cursor()
04

Position()
05

Alarm
06

Noerase
07

Keyboard lock (lockkb/freekb)
08

Clrinput
09

Attribute
10

field type (protect/skip/unprotect)
11

color (red/blue/green/...)
12

Intensity (bright/normal/invisible)
13

Justify (left/right/nojustify)
14

Numeric
15

extended highlight (blink/reverse/underline)
16

MDT

Chapter 29. REXX/CICS Panel Facility 343

17
Cursor

18
Pad()

19
closing parenthesis of the ATTRIBUTE argument

Input codes for 11xx and 20xx location codes
01

field type (protect/skip/unprotect)
02

color (red/blue/green/...)
03

Intensity (bright/normal/invisible)
04

Justify (left/right/nojustify)
05

Numeric
06

extended highlight (blink/reverse/underline)
07

MDT
08

Cursor
09

Pad()
10

Variable
11

Drop
12

(not used)
13

File()
14

Cursor()
15

Position()
16

Alarm
17

Noerase
18

Keyboard lock (lockkb/freekb)
19

Clrinput
20

Attribute
21

closing parenthesis of the ATTRIBUTE argument

344 REXX for CICS Transaction Server: User Guide and Reference

98
End of command; more operands were expected

99
Unknown symbol; keyword or control character was expected

State codes for 12xx location codes
01

panel name
02

protect/skip field
03

unprotect field
04

text within a protect/skip field
05

(not implemented yet)
06

explicit input field length number
07

unprotect variable
08

protect/skip variable

Input codes for 12xx location codes
01

Plain displayable text
02

Explicit length number
03

Protect field control character
04

Unprotect field control character
05

Variable control character
07

End of panel
08

Invalid or unknown input

Location codes
Numbers under 1000 are in the mainline processor.
10xx

Panel generator common processor
11xx

.DEFINE verb processor
12xx

.PANEL verb processor
20xx

Panel runtime command processor

Chapter 29. REXX/CICS Panel Facility 345

21xx
Dynamic attribute resolution processor

30xx
Output 3270 data stream processor

40xx
Input 3270 data stream and REXX variable assignment processor

90xx
CICS interface processor

Examples of sample panels

Example 1

.DEFINE > prot blue

.DEFINE ? prot red

.DEFINE # unprot num green

.DEFINE < unprot invisible num

.DEFINE @ protect turq

.DEFINE + prot blue underline

.PANEL signon
> Panel signon &companyname

?&message

@ Welcome to ACME On-Line Tax Services

+Please enter your Account Number and Personal ID Number and press ENTER>

>Account Number :#7&account_num

>PIN :<4&pin

Example 2

.DEFINE > prot green

.DEFINE < unprot underline white

.DEFINE + var service.

.DEFINE % skip turq

.PANEL service
> Panel service &disp_date &companyname

% &salutation
% Tab the cursor to the type of service wanted and press the ENTER key.

<+> Itemized tax preparation

<+> Non-itemized tax preparation

<+> Query return status

<+> Show calendar

<+> Exit

Example 3

.DEFINE # protect bright

.DEFINE + protect
A panel to display a static message without erasing previous panel.
Notice the position of the escape sequence in lines 1 and 6.
See product information for an explanation about escape sequences.
.PANEL msgbox1
#++---+++

346 REXX for CICS Transaction Server: User Guide and Reference

#| |+
#| We are sorry but the service you have |+
#| chosen is not available at this time. |+
#| Press ENTER to continue. |+
#| |+
#++---+++

Example 4

.DEFINE) protect bright

.DEFINE + drop

.DEFINE & var msg.
A panel to display output dynamic messages.
.PANEL msgbox2
)+---+#
)| |#
)| & |#
)| & |#
)| |#
)+---+#

Example 5

.DEFINE > skip blue

.DEFINE < skip green right

.DEFINE % var center_days.

.DEFINE + var right_days.

.DEFINE # VAR left_days.

.DEFINE @ var pf3 pf7 pf8

.PANEL calendar
> Panel calendar &disp_date &companyname

 > &disp_left_mon &disp_center_mon &disp_right_mon
>su mo tu we th fr sa su mo tu we th fr sa su mo tu we th fr sa
<# <# <# <# <# <# <# > <% <% <% <% <% <% <% > <+ <+ <+ <+ <+ <+ <+ >
<# <# <# <# <# <# <# > <% <% <% <% <% <% <% > <+ <+ <+ <+ <+ <+ <+ >
<# <# <# <# <# <# <# > <% <% <% <% <% <% <% > <+ <+ <+ <+ <+ <+ <+ >
<# <# <# <# <# <# <# > <% <% <% <% <% <% <% > <+ <+ <+ <+ <+ <+ <+ >
<# <# <# <# <# <# <# > <% <% <% <% <% <% <% > <+ <+ <+ <+ <+ <+ <+ >
<# <# > <% <% > <+ <+ >

>@ = Leave Calendar >@ = Backup a month >@ = Go forward a month

Note: The following characters might display differently in the REXX online help depending on the code
page used in your emulator configuration: @ # $ ¢. See also .

Example of a REXX panel program
 /* REXX program sample using Panel Facility */
 /* data base */
ACCOUNT.1234561 = '1231 John W. Smith Mr.'
ACCOUNT.1234562 = '1232 Jane M. Brown Miss'
ACCOUNT.1234563 = '1233 Mary R. Scott Mrs.'

MESSAGE = '' /* no output message yet */
COMPANYNAME = 'ACME On-Line Tax Services'
CURS_NAME = 'ACCOUNT_NUM' /* put cursor on LNAME field */
ATTR_STRING = '' /* no dynamic attributes on first send */
PATH_NAME = 'FILE(POOL1:\USERS\BLAKELY)'
CLR_INP_FIELDS = 'CLR'

Chapter 29. REXX/CICS Panel Facility 347

DO FOREVER
 'PANEL SEND SIGNON' CLR_INP_FIELDS PATH_NAME ,
 'CURSOR(' CURS_NAME ')' ATTR_STRING
 IF RC > 4 THEN /* more than a warning */
 SIGNAL ERROR /* clean up and exit */
 'PANEL RECEIVE SIGNON '
 IF RC > 4 THEN
 SIGNAL ERROR /* clean up and exit */

 /* check return code and reason code to see if any data received */
 IF RC=4 & PAN.REA = 124 THEN /* warning and no input received */
 ITERATE /* redisplay panel */

 CLR_INP_FIELDS = '' /* display input fields with variable values */
 IF &lnot;SEARCH(ACCOUNT_NUM) THEN /* search for account number */
 DO;
 MESSAGE = ' Account Number not found, Please re-ENTER Number'
 CURS_NAME = 'ACCOUNT_NUM' /* put cursor in ACCOUNT field */
 ATTR_STRING = 'ATTR(ACCOUNT_NUM REV)'
 ITERATE
 END;

 IF WORD(ACCOUNT.ACCOUNT_NUM,1) ¬= PIN THEN /* pin mismatch ? */
 DO;
 MESSAGE = ' PIN Number is incorrect, Please check to see your',
 'Account Number is correct and re-ENTER your PIN';
 CURS_NAME = 'PIN';
 ATTR_STRING = 'ATTR(PIN REV)';
 ITERATE ; /* display the panel again */
 END;
 LEAVE ;
END ; /* forever */

SERVICE. = '';
DISP_DATE = DATE('U'); /* set to display current date */
MSG.1 = 'Be sure cursor is in the first column!';
MSG.2 = 'Press ENTER or and PF key to continue.';
SALUTATION = 'Hi' WORD(ACCOUNT.ACCOUNT_NUM,5) ,
 WORD(ACCOUNT.ACCOUNT_NUM,4) ||,
 ', How may we be a service to you?';

DO FOREVER;
 PAN.CNAM = '';
 'PANEL SEND SERVICE CURSOR(SERVICE.1)' PATH_NAME
 IF RC > 4 THEN
 SIGNAL ERROR; /* clean up and exit */
 'PANEL RECEIVE SERVICE'
 IF RC > 4 THEN
 SIGNAL ERROR; /* clean up and exit */
 SALUTATION = ''; /* greeting only once */

 SELECT;
 WHEN PAN.CNAM = 'SERVICE.1' THEN
 CALL ITEMIZE_ROUTINE;
 WHEN PAN.CNAM = 'SERVICE.2' THEN
 CALL NON_ITEMIZE_ROUTINE;
 WHEN PAN.CNAM = 'SERVICE.3' THEN
 CALL QUERY_RET_ROUTINE;
 WHEN PAN.CNAM = 'SERVICE.4' THEN
 CALL CAL;
 WHEN PAN.CNAM = 'SERVICE.5' THEN
 CALL EXIT_ROUTINE;

 OTHERWISE
 DO;
 'PANEL SEND MSGBOX2 POS(7 10) NOERASE' PATH_NAME
 IF RC > 4 THEN
 SIGNAL ERROR;
 'PANEL RECEIVE MSGBOX2'
 IF RC > 4 THEN
 SIGNAL ERROR;
 END;
 END; /* select */

348 REXX for CICS Transaction Server: User Guide and Reference

END; /* do forever */
EXIT

SEARCH: ; ARG ACC_NUM ;
IF SYMBOL('ACCOUNT.ACC_NUM') == 'VAR' THEN
 RETURN(1)
ELSE
 RETURN(0);

ITEMIZE_ROUTINE:
NON_ITEMIZE_ROUTINE:
QUERY_RET_ROUTINE:
'PANEL SEND MSGBOX1 POS(7 10) NOERASE' PATH_NAME
 IF RC > 4 THEN
 SIGNAL ERROR;
'PANEL RECEIVE MSGBOX1'
IF RC > 4 THEN
 SIGNAL ERROR;
RETURN;

CAL: PROCEDURE
COMPANYNAME = 'ACME On-Line Tax Service';
PATH_NAME = 'FILE(POOL1:\USERS\BLAKELY\)'
DISP_DATE = DATE('U');

/* calling date function in on statement ensures consistent date */
/* data save has format of YYYYMMDDNNNNNN */
DATE_SAVE = DATE('S') || DATE('B');

/* set number of days each month has */
NUM_OF_DAYS.1 = 31;
NUM_OF_DAYS.3 = 31;
NUM_OF_DAYS.4 = 30;
NUM_OF_DAYS.5 = 31;
NUM_OF_DAYS.6 = 30;
NUM_OF_DAYS.7 = 31;
NUM_OF_DAYS.8 = 31;
NUM_OF_DAYS.9 = 30;
NUM_OF_DAYS.10 = 31;
NUM_OF_DAYS.11 = 30;
NUM_OF_DAYS.12 = 31;

/* set names of each month for panel display */
MONTH_NAME.1 = 'January';
MONTH_NAME.2 = 'February';
MONTH_NAME.3 = 'March';
MONTH_NAME.4 = 'April';
MONTH_NAME.5 = 'May';
MONTH_NAME.6 = 'June';
MONTH_NAME.7 = 'July';
MONTH_NAME.8 = 'August';
MONTH_NAME.9 = 'September';
MONTH_NAME.10 = 'October';
MONTH_NAME.11 = 'November';
MONTH_NAME.12 = 'December';

/* get number of complete days from year 1900 to 1st of month */
TOT_DAYS = SUBSTR(DATE_SAVE,9,6)-SUBSTR(DATE_SAVE,7,2) +1;

/* save current year and month to highlight today date on display */
CUR_YEAR = SUBSTR(DATE_SAVE,1,4);
/* get month part of date. adding 0 strips the leading zero */
CUR_MONTH = SUBSTR(DATE_SAVE,5,2) +0;

YEAR = CUR_YEAR;/* these variables will change with whats displayed */
MONTH = CUR_MONTH;

IF YEAR // 400 &lnot;= 0 & YEAR // 4 = 0 THEN /* leap year? */
 NUM_OF_DAYS.2 = 29;
ELSE
 NUM_OF_DAYS.2 = 28;

/* find 1st weekday of the month. Sun = 0 AND Sat = 6 */
FIRST_WEEKDAY = (TOT_DAYS+1) // 7;
FIRST_WEEKDAY_SAVE = FIRST_WEEKDAY;

Chapter 29. REXX/CICS Panel Facility 349

DISP_CENTER_MON = MONTH_NAME.MONTH; /* center display month name */
CENTER_DAYS. = ''; /* null out all unused month days */
/* starting at the first weekday of the month fill center month */
DO I = FIRST_WEEKDAY+1 TO NUM_OF_DAYS.MONTH + FIRST_WEEKDAY ;
 CENTER_DAYS.I = I - FIRST_WEEKDAY;
END;

/* set up to fill in the left side month */
IF MONTH = 1 THEN
 LEFT_MONTH = 12;
ELSE
 LEFT_MONTH = MONTH - 1;

DISP_LEFT_MON = MONTH_NAME.LEFT_MONTH; /* left display month name */
FIRST_WEEKDAY = (TOT_DAYS - NUM_OF_DAYS.LEFT_MONTH+1) // 7;
LEFT_DAYS. = '';
DO I = FIRST_WEEKDAY+1 TO NUM_OF_DAYS.LEFT_MONTH + FIRST_WEEKDAY ;
 LEFT_DAYS.I = I - FIRST_WEEKDAY;
END;

/* set up to fill in the right side month */
FIRST_WEEKDAY = (TOT_DAYS + NUM_OF_DAYS.MONTH +1) // 7;
IF MONTH = 12 THEN
 RIGHT_MONTH = 1;
ELSE
 RIGHT_MONTH = MONTH + 1;
DISP_RIGHT_MON = MONTH_NAME.RIGHT_MONTH; /* right display month name */
RIGHT_DAYS. = '';
DO I = FIRST_WEEKDAY+1 TO NUM_OF_DAYS.RIGHT_MONTH + FIRST_WEEKDAY ;
 RIGHT_DAYS.I = I - FIRST_WEEKDAY;
END;

CUR_DAY_FIELD = 'CENTER_DAYS.'|| (SUBSTR(DATE_SAVE,7,2)+FIRST_WEEKDAY_SAVE)
ATTR_STRING = 'ATTRIB(' CUR_DAY_FIELD 'RED)' ;

 'PANEL SEND CALENDAR' PATH_NAME ATTR_STRING
 'PANEL RECEIVE CALENDAR'

DO FOREVER;
 IF PAN.AID = 'PF3' THEN
 RETURN;

 IF PAN.AID = 'PF7' THEN /* go back one month request */
 DO;
 IF MONTH = 1 THEN /* always keep track of center month */
 DO;
 MONTH = 12;
 YEAR = YEAR - 1;
 IF YEAR // 400 &lnot;= 0 & YEAR // 4 = 0 THEN /* leap year? */
 NUM_OF_DAYS.2 = 29;
 ELSE
 NUM_OF_DAYS.2 = 28;
 END;

 ELSE
 MONTH = MONTH - 1;
 TOT_DAYS = TOT_DAYS - NUM_OF_DAYS.MONTH;
 DISP_RIGHT_MON = DISP_CENTER_MON;
 DISP_CENTER_MON = DISP_LEFT_MON;
 DO I = 1 TO 37;
 RIGHT_DAYS.I = CENTER_DAYS.I;
 CENTER_DAYS.I = LEFT_DAYS.I;
 END;

 IF MONTH = 1 THEN
 LEFT_MONTH = 12;
 ELSE
 LEFT_MONTH = MONTH - 1;
 FIRST_WEEKDAY = (TOT_DAYS - NUM_OF_DAYS.LEFT_MONTH +1) // 7;
 DISP_LEFT_MON = MONTH_NAME.LEFT_MONTH;
 LEFT_DAYS. = '';
 DO I = FIRST_WEEKDAY+1 TO NUM_OF_DAYS.LEFT_MONTH + FIRST_WEEKDAY ;
 LEFT_DAYS.I = I - FIRST_WEEKDAY;
 END;

350 REXX for CICS Transaction Server: User Guide and Reference

 END; /* if pan.aid = 'pf7' */
 ELSE

 IF PAN.AID = 'PF8' THEN /* go forward one month request */
 DO;
 TOT_DAYS = TOT_DAYS + NUM_OF_DAYS.MONTH;
 IF MONTH = 12 THEN /* always keep track of center month */
 DO;
 MONTH = 1;
 YEAR = YEAR + 1;
 IF YEAR // 400 &lnot;= 0 & YEAR // 4 = 0 THEN /* leap year? */
 NUM_OF_DAYS.2 = 29;
 ELSE
 NUM_OF_DAYS.2 = 28;
 END;
 ELSE
 MONTH = MONTH + 1;

 DISP_LEFT_MON = DISP_CENTER_MON;
 DISP_CENTER_MON = DISP_RIGHT_MON;
 DO I = 1 TO 37
 LEFT_DAYS.I = CENTER_DAYS.I; /* shift the months to left */
 CENTER_DAYS.I = RIGHT_DAYS.I;
 END;

 IF MONTH = 12 THEN /* need a new right month */
 RIGHT_MONTH = 1;
 ELSE
 RIGHT_MONTH = MONTH + 1;

 DISP_RIGHT_MON = MONTH_NAME.RIGHT_MONTH;
 FIRST_WEEKDAY = (TOT_DAYS + NUM_OF_DAYS.MONTH +1) // 7;
 RIGHT_DAYS. = '';
 DO I = FIRST_WEEKDAY+1 TO NUM_OF_DAYS.RIGHT_MONTH + FIRST_WEEKDAY;
 RIGHT_DAYS.I = I - FIRST_WEEKDAY;
 END;
 END; /* if pan.aid = 'pf8' */

/* see if today's date is in any of the three month being displayed */
/* and set it to red. */

 ATTR_STRING = ''; /* assume current day not on screen */
 IF YEAR = CUR_YEAR THEN
 SELECT;
 WHEN MONTH = CUR_MONTH THEN /* current month in middle */
 DO;
 CUR_DAY_FIELD = 'CENTER_DAYS.'||,
 (SUBSTR(DATE_SAVE,7,2)+FIRST_WEEKDAY_SAVE);
 ATTR_STRING = 'ATTRIB(' CUR_DAY_FIELD 'RED)' ;
 END;

 WHEN MONTH = CUR_MONTH + 1 THEN /* current month in left display */
 DO;
 CUR_DAY_FIELD = 'LEFT_DAYS.'||,
 (SUBSTR(DATE_SAVE,7,2)+FIRST_WEEKDAY_SAVE);
 ATTR_STRING = 'ATTRIB(' CUR_DAY_FIELD 'RED)' ;
 END;

 WHEN MONTH = CUR_MONTH - 1 THEN /* current month in right display */
 DO;
 CUR_DAY_FIELD = 'RIGHT_DAYS.'||,
 (SUBSTR(DATE_SAVE,7,2)+FIRST_WEEKDAY_SAVE);
 ATTR_STRING = 'ATTRIB(' CUR_DAY_FIELD 'RED)' ;
 END;

 OTHERWISE;
 END; /* select */

 'PANEL SEND CALENDAR' PATH_NAME ATTR_STRING
 'PANEL RECEIVE CALENDAR'

END; /* do forever loop */

ERROR:
 SAY 'RETURN CODE ' RC

Chapter 29. REXX/CICS Panel Facility 351

 SAY 'REA CODE ' PAN.REA
 SAY 'LOC CODE ' PAN.LOC
 EXIT;
EXIT_ROUTINE:
 'PANEL END';
 SENDE;
 EXIT;

************ panel definitions ***********************
each definition needs to be in a separate RFS file.
**

352 REXX for CICS Transaction Server: User Guide and Reference

Chapter 30. REXX/CICS commands
Detailed reference information for all REXX/CICS commands is provided. Return code information for all
commands is returned after command execution in the special REXX variable RC.

You can use all the commands in this section with the command environment name REXXCICS. This is
also the default. However, depending on how you define the command, you can use a more specific
environment name (such as CICS) instead. If you need to reset the command environment because
another command environment is in use, enter the following command before you issue the REXX/CICS
command:

ADDRESS REXXCICS

REXX/CICS supports all EXEC CICS commands, except for the following:

• System Programming (SPI) commands
• Handle Condition
• Handle Aid
• Handle Abend
• Ignore Condition
• Push
• Pop

The syntax for CICS commands under REXX/CICS is documented in Reference: application development.
Mapping between the existing EXEC CICS command definitions with the REXX commands is as follows:

• Use CICS as the prefix for CICS commands, rather than EXEC CICS.
• All data value fields can be specified as a literal character string or as a REXX variable name.
• All data area fields can be specified as a REXX variable name, which is either the source or the target for

the intended data.
• Do not use the same REXX variable as both the source and target fields on a CICS command. If you do

this, the result of the command execution will be unpredictable.
• Whenever you do not specify a LENGTH option, the length is automatically determined from the length

of the related REXX variable or character string.
• When using the CICS ENQ command from REXX/CICS, use the LENGTH parameter, or unpredictable

results might occur.
• NOHANDLE is automatically specified for all CICS commands. The EIBRESP value from the execution of

each command is returned in the REXX special variable RC. Also, EIB fields are placed in REXX variables
DFHEIBLK, EIBRESP, EIBRESP2, and EIBRCODE.

• For an explanation of the return code values, see Reference: application development. For information
on return codes with negative values, see Chapter 32, “Return Codes,” on page 427.

Example of EXEC CICS to REXX/CICS command mapping

• Non-REXX:

EXEC CICS XCTL PROGRAM('PGMA') COMMAREA(COMA) LENGTH(COMAL)

• REXX/CICS:

"CICS XCTL PROGRAM('PGMA') COMMAREA(COMA)"

© Copyright IBM Corp. 1974, 2020 353

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html

Note: The EXEC CICS READ, WRITE, and DELETE commands are implemented by default as REXX/CICS
authorized commands, to control their use. Refer to Authorized REXX/CICS commands and authorized
command options and to Security.

ALLOC
ALLOC associates a dataset with a data definition name.

This is an authorized command.

ALLOC ddname dsname (member) SHR

OLD

Operands
ddname

specifies the data definition name.
dsname

specifies the fully qualified dataset name.
member

specifies the member name in the dataset.
SHR

dataset exists but exclusive control is not required.
OLD

dataset exists and exclusive control is required.

Return codes
The return code given by SVC 99

For more information, see z/OS MVS Programming: Authorized Assembler Services Guide.
1702

Invalid operand

Note:

• The dsname contains your user ID as the high level prefix for security reasons. Also, a user exit is
provided for additional security handling of data definition names and dataset names. When you leave
the member name off of the ALLOC command, a sequential dataset is allocated. For performance
reasons, if the dataset has been migrated, the allocation request is refused.

• An allocation sample exit, CICSECX1, is provided with this command, to let installations perform
security checking.

AUTHUSER
AUTHUSER authorizes a list of user IDs.

This is an authorized command.

AUTHUSER userid

354 REXX for CICS Transaction Server: User Guide and Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/toc.htm

Operands
userid

is a CICS signon user ID that becomes REXX/CICS authorized.

Return codes
0

Normal return
2602

Invalid operand or operand missing
2621

Specified user ID invalid length
2642

Error storing user ID

Example

'AUTHUSER USER2 SYSPGMR'

This example makes USER2 and SYSPGMR REXX/CICS authorized users.

Note:

1. If you are an authorized user you can use REXX/CICS authorized commands, regardless of whether
you are running in an exec that was loaded from an authorized REXX/CICS library.

2. If an error is detected in the list of user IDs, the user ID with the error is placed in the REXX special
variable RESULT and processing of the list stops.

3. AUTHUSER commands are cumulative; previous AUTHUSER command definitions remain in effect
until the CICS region is recycled.

CD
CD changes the RFS file system directory.

CD

dirid

Operands
dirid

specifies a partial or full REXX File System directory that becomes the new current working directory
for you.

If dirid is not specified, the current working directory is retrieved and placed in the REXX special
variable RESULT, instead of changing the current working directory.

A full directory ID is in the form: poolid:\dirid1\...\diridn

When a full directory ID is specified, it completely replaces the previous directory setting.

A partial directory ID does not begin with a poolid. In this case, the partial directory ID is appended to
the end of the existing directory ID. If the partial directory ID begins with two periods, this indicates
that one directory level is removed (from the right), before the new partial directory ID is appended to
the end. In this case, a backslash is required before the directory ID.

For example: If the current directory is POOL1:\USERS\USER1\ABC and you enter CD ..\XYZ, the
new current directory will be POOL1:\USERS\USER1\XYZ.

Chapter 30. REXX/CICS commands 355

The default directory ID for you is poolid:\USERS\userid\, where poolid: is the file pool identifier
of the first RFS file pool defined and userid is your CICS signon user ID. If you are not signed onto
CICS, userid defaults to the value in CICS DFLTUSER.

Return codes
0

Normal return
521

Error in retrieving file pool definition
522

Error in creating default RFS directory
523

Error in storing current RFS directory information
524

RFS directory does not exist or access not authorized
525

Error in retrieving directory information
526

Invalid file pool/directory
527

Cannot go back past root directory
528

Error setting result value

Example

'CD \USERS\USER2\XYZ'

This example changes your current working directory to \USERS\USER2\XYZ in the file pool you are
currently using, regardless of the previous directory setting.

If your current directory is \USERS\USER2 and you enter:

'CD XYZ'

your current directory is changed to \USERS\USER2\XYZ.

Note: The CD command works in conjunction with the PATH command identifying the search order for the
execution of REXX execs. The current directory (specified by the CD command) is always searched first
for execs. Then, the directories and MVS partitioned data sets listed in the PATH command are searched.
Finally, any MVS partitioned data sets allocated in the CICS region startup JCL are searched.

CEDA
Executes a CEDA command for resource definition online (RDO).

CEDA RDO_Command

Operands
RDO_Command

specifies a command string passed as input to the CEDA transaction program.

356 REXX for CICS Transaction Server: User Guide and Reference

Return codes
n

The return code that is passed back by CICS if an error is detected
0

Normal return
-101

Invalid command

Any warning or error messages are placed in the variable CEDATOUT. The results of the execution, if any,
are placed in the variable CEDAEOUT. The maximum length returned in CEDAEOUT is approximately 28K
bytes. Each variable has the following format:

• Binary halfword containing inclusive length of field.
• Binary halfword containing the number of messages produced.
• Binary halfword containing the highest message-severity: 0 and 4 continue to execution; 8 and 12 do

not continue to execution.
• Variable-length data containing:

– For CEDATOUT: any diagnostic messages
– For CEDAEOUT: data that would normally appear on CEDA screen, including messages. Each line

begins with a new line (NL) character and otherwise, consists of blanks and uppercase alphanumeric
characters.

The format of this data is not guaranteed from release to release, but it is the same as that displayed by
CEDA.

Example

'CEDA INSTALL PROGRAM(XYZ) GROUP(ABC)'

This example shows a CICS command that is passed to the CEDA transaction program for execution.

CEMT
CEMT executes a CICS master terminal command from REXX.

CEMT master_term_cmd

Operands
master_term_cmd

specifies a command string passed as input to the CEMT transaction program.

Return codes
n

The return code that is passed back by CICS if an error is detected. Calling CEMT from REXX uses the
DFHEMTA (CEMT programmable interface), so the codes returned will be those for the CEMT
command. Possible return codes are:
1

NOT FOUND
2

CLASS NOT FOUND
3

ERROR

Chapter 30. REXX/CICS commands 357

4
BEGINS WITH DFH

5
CHANGE INVALID

6
CANNOT NEWCOPY

7
NOT AUTHORIZED

8
OPTION CONFLICT

9
PRIORITY > 255

10
NOT FOR CONSOLE

11
PROGRAM NOT FOUND

12
INVALID AUTHID

13
INVALID ATI / TTI

14
IS NOT INTRA

15
OPEN/SWITCH FAIL

16
SDUMP BUSY

17
NOT SUCCESSFUL

18
0>=TRIGGER>32767

19
NOT FOR INDIRECT

20
0>MAXIMUM>999

21
IS NOT EXTRA

22
OPEN/CLOSE FAILED

23
SDUMP SUPPRESSED

24
BEGINS WITH C

25
NOT ACTIVE

26
NOT CLOSED

27
NOT FOR SYS LOG

28
ALREADY EXISTS

358 REXX for CICS Transaction Server: User Guide and Reference

29
CATALOG I/O ERROR

30
1>MAXTASKS>2000

31
NOT FOR REMOTE

32
NOSTG DSALIMIT

33
0>AGING>65535

34
AKP NOT IN SYSTEM

35
MAXT. < AMAXT.

36
NOT IN SYSTEM

37
INVALID COMAUTHID

38
50>AKP>65535

39
CATALOG FULL

40
2M>DSALIMIT>16M

41
1>MAXACTIVE>999

42
INVALID DUMPCODE

43
INVALID DB2ID

44
500>RUN. >2700000

45
100>TIME>3600000

46
BAD TRANSAC CLASS

47
TIME < SCANDELAY

48
CEILING REACHED

49
1>MROBATCH>255

50
48M>EDSALIM>2047M

51
CLOSE FAILED

52
NOT FOR BDAM

53
CLOCK INOPERATIVE

Chapter 30. REXX/CICS commands 359

54
NOT VALID VTAM

55
NOT FOR PATH

56
OPEN FILE

57
BEING CLOSED

58
BEING IMMCLOSED

59
0>SCANDELAY>5000

60
NOT FOR SNASVCMG

61
NOT FOR THIS TASK

62
NOT FOR YOUR TERM

63
INVALID MSGQUEUE

64
NOT FOR YOUR LINE

65
QUEUE IS DISABLED

66
NOSTG EDSALIMIT

67
PARTIAL DUMP

68
DDNAME NOT FOUND

69
BEING ACQUIRED

70
BEING FORCECLOSED

71
NOT FOR HOLD PROG

72
LOAD FAILED

73
SDUMP FAILED

74
EMPTY OR NOT CLSD

75
NOT DISABLED

76
CLOSE REQUESTED

77
BEING OPENED

78
BEING UNENABLED

360 REXX for CICS Transaction Server: User Guide and Reference

79
BEING DISABLED

80
BEING QUIESCED

81
SEE MSG DFHIR3793

82
START/SWITCH FAIL

83
INVALID PLAN

84
INVALID INTERVAL

85
OUT &¬REL INVALID

86
SEE MSG DFHIR3768

87
SEE MSG DFHIR3786

88
NOT FOR MAPSET

89
SEE MSG DFHIR3771

90
NOT FOR PARTITION

91
SEE MSG DFHIR3773

92
INV DSRTPROGRAM

93
SEE MSG DFHIR3775

94
SEE MSG DFHIR3776

95
SEE MSG DFHIR3777

96
SEE MSG DFHIR3778

97
SEE MSG DFHIR3779

98
SEE MSG DFHIR3780

99
SEE MSG DFHIR3781

100
SEE MSG DFHIR3791

101
ONLY FOR VTAM

102
GOING OUT

103
SPECIFY NUMBER

Chapter 30. REXX/CICS commands 361

104
NUMBER ERROR

105
NEGPOLL INVALID

106
>20000

107
INVALID ENDOFDAY

108
MAX | SHUTDOWN

109
LINE DCB NOT OPEN

110
INV PLANEXITNAME

111
SET FAILED

112
REMOVE FAILED

113
INVALID SIGNID

114
FILECOUNT > 0

115
INV STATSQUEUE

116
BACKOUT FAILED

117
INV COMTHREADLIM

118
>MAXIMUM

119
INV PURGECYCLE

120
IS INDOUBT

121
4>TCBLIMIT>2000

122
CONNECTION ¬ACQD

123
DATASET QUIESCING

124
IN PROGRESS

125
DATASET UNAVAIL

126
DATASET QUIESCED

127
BACKUP OCCURRING

128
RESOURCE MISSING

362 REXX for CICS Transaction Server: User Guide and Reference

129
STATS MISSING

130
IS SIT PARAMETER

131
CANNOT LOAD PLT

132
INV THREADLIMIT

133
NO DATASET

134
RECOVERY REQUIRED

135
PURGE FAILED

136
FILE IN USE

137
ONLY FOR BDAM

138
STOPPED

139
SEE MSG DFHIR3798

140
PROGRAM IS URM

141
IN USE

142
IN USE BY ICE

143
IN USE BY PCT

144
NOT RELEASED

145
DELETE FAILED

146
INVALID RECOVSTAT

147
NOT OUTSERVICE

148
INV PROTECTNUM

149
INVALID DB2ENTRY

150
IS ENABLED EXIT

151
INV DTRPROGRAM

152
IN USE BY AID

153
NOT FOR SESSION

Chapter 30. REXX/CICS commands 363

154
NOT FOR PIPELINE

155
NOT DISCARDABLE

156
NOT LOCAL SYSTEM

157
NOT FOR SYSTEM

158
NOT FOR MODEL

159
NO ACTION

160
CANNOT LOAD XLT

161
ISC NOT DEFINED

162
ALREADY ACTIVE

163
INVALID TRANSID

164
DUPLICATE TRANSID

165
NO BWO SUPPORT

166
DSNB IS INVALID

167
DSNB BDAM OR PATH

168
UPDATE COUNT > 0

169
DSN ¬ SMS MANAGED

170
BWO ERROR

171
DFHTMP ERROR

172
PRESET SIGNON ERR

173
NOT FOR CPSVCMG

174
PRM UNAVAILABLE

175
NOT WHEN XLN DONE

176
INV PROGAUTOINST

177
INV PROGAUTOCTLG

178
INV PROGAUTOEXIT

364 REXX for CICS Transaction Server: User Guide and Reference

179
FREE NOT COMPLETE

180
BEING RELEASED

181
REUSE DEFINED

182
UNBLOCKED DEFINED

183
0< MAX. <99999999

184
FORMAT NOT VARBLE

185
NO LSRPOOL

186
CONNECTING

187
INVALID FREQUENCY

188
0>PURGET.>1000000

189
INVALID PSDINT

190
NOT WITH XRF

191
SETLOGON FAILURE

192
BACK LEVEL VTAM

193
ACB CLOSED

194
RECOVERY ERROR

195
DEFERRED

196
NOT FOR LOCAL SYS

197
SEE MSG DFHIR3799

198
ONLY FOR APPC

199
ESM INACTIVE

200
REGISTER ERROR

201
DEREGISTER ERROR

202
AIDS CANCELED

203
WAITING FOR DB2

Chapter 30. REXX/CICS commands 365

204
DB2 INACTIVE

205
INVALID INITPARM

206
NOT REQUIRED

207
STILL CLOSING

208
NO AIDS CANCELED

209
DFSMS CATLG ERROR

210
DSNB REMOVED

211
NO RLS SUPPORT

212
SYSTEM LOCKED

213
SDTRAN NOT FOUND

214
SDTRAN DISABLED

215
SDTRAN SHUT DIS

216
DSN ¬ DFSMS VSAM

217
DATASET MIGRATED

218
INVALID IDLE

219
NOT LU61 OR LU62

220
NETID 0 USE PRFRM

221
SEE MSG DFHZC0178

222
NOT GR REGISTERED

223
ENTER NETID

224
NO AFFINITY FOUND

225
SESSIONS IN USE

226
SEE MSG DFHZC0176

227
DELETE INFLIGHT

228
USED BY INDIRECTS

366 REXX for CICS Transaction Server: User Guide and Reference

229
IRC IS OPEN

230
IS ERROR CONSOLE

231
SDTRAN IS REMOTE

232
XRF NOT ACTIVE

233
SYSID IN ERROR

234
ERR: SHUNTED UOWS

235
SEE MSG DFHZC0173

236
RLS AND CMT

237
DISCONNECTING

238
KEYLENGTH ERROR

239
RECORDSIZE ERROR

240
MISSING POOL NAME

241
INVALID NAME

242
POOL NOT FOUND

243
CONTEN AND RECOV

244
INVALID ACTION

245
LASTUSED<INTERVAL

246
WAITING

247
NO AUDITLOG

248
PARAM MISMATCH

249
NO CFDT SERVER

250
TCPIP CLOSED

251
PORT IN USE

252
PORT NOT AUTH

253
INVALID STATUS

Chapter 30. REXX/CICS commands 367

254
PROFILE NOT FOUND

255
ADDRESS UNKNOWN

256
INVALID Q-TYPE

257
1>MAXOPENTCBS>2000

258
NO JVMCLASS SET

259
NOT A JVM PROGRAM

260
INVALID JVMCLASS

261
INVALID DSNAME

262
1>MAXSOCKETS>65535

263
EXCEEDS HARD LIMIT

264
AT MAXSOCKETS

265
TCPIPSERVICE NOT OPENED

266
SESSBEANTIME > 143999

267
RESOURCE NOT INSERVICE

268
MISSING CORBASERVER NAME

269
DJAR IS PENDING RESOLUTION

270
INVALID DB2GROUPID

271
DB2ID & GROUPID ENTERED

272
1>MAXJVMTCBS>999

273
1>MAXXPTCBS>999

274
NOT IIOPLISTENER

275
DSNAPRH NOT FOUND

276
MAXOPENTCBS < DB2CONN TCBLIMIT

277
TCBLIMIT > MAXOPENTCBS

278
DB2 GROUPID NOT FOUND

368 REXX for CICS Transaction Server: User Guide and Reference

279
DB2 ID NOT FOUND

280
DJAR CLASH (CORBASERVER SCAN)

281
JVMPROFILE INVALID..SET PROGRAM

282
BEING STARTED

283
BEING RELOADED

284
BEING ENABLED

285
BEING DISCARDED

286
NOT STARTED

287
NOT STOPPED

288
DB2 RESTART-LIGHT

289
CACHESIZE INVALID

290
TCPIP INACTIVE

291
ATTEMPT FORCE PURGE

292
1>MAXSSLTCBS>1024

293
PIPELINE NOT ENABLED

294
MISSING JVMPROFILE

295
NOT VALID FOR DFHRPL

296
RANKING 10 RESERVED FOR DFHRPL

297
RANKING OUT OF RANGE

298
NO ACQ FOR SEND=0

299
MAXJVMTCBS EXCEEDED

300
PSTYPE=NOPS AND PSDI > 0

301
INV FILELIMIT

302
INV PROGRAMLIMIT

303
INV TSQUEUELIMIT

Chapter 30. REXX/CICS commands 369

304
MQNAME IN USE

305
INVALID MQNAME

306
MQNAME NOT FOUND

307
WAITING FOR QMGR

308
1>THREADLIMIT>256

309
NO MORE THREADS

310
THREADS LIMITED

311
DRAINING

312
SEE MSG DFHPI2024

313
EXCESSIVE NUMBER OF ELEMENTS

314
1M>TSMAINLIM>32G

315
ATTEMPT PURGE 1ST

316
USING JVMSERVER

317
INV REUSELIMIT

318
> 25.00% OF MEMLIMIT

319
DEFINED BY BUNDLE

320
SEE MSG DFHSO0123

321
NOT FOR JVM PROG

322
USED BY MGMTPART

Note: Not all return codes are possible in all CICS releases.

0
Normal return

-102
Invalid command

Any warning or error messages are placed in the variable CEMTTOUT. The results of the execution, if any,
are placed in the variable CEDAEOUT. The maximum length returned in CEMTEOUT is approximately 28K
bytes. Each variable has the following format:

• Binary halfword containing inclusive length of field.
• Binary halfword containing the number of messages produced.

370 REXX for CICS Transaction Server: User Guide and Reference

• Binary halfword containing the highest message-severity: 0 and 4 continue to execution; 8 and 12 do
not continue to execution.

• Variable-length data containing:

– For CEMTTOUT: any diagnostic messages
– For CEMTEOUT: data that would normally appear on CEMT screen, including messages. Each line

begins with a new line (NL) character and otherwise, consists of blanks and uppercase alphanumeric
characters.

The format of this data is not guaranteed from release to release, but it is the same as that displayed by
CEMT.

To parse the contents of CEMTEOUT, you can use the following example:

PARSE VAR CEMTEOUT BUFFLEN 3 MSGCOUNT 5 MAXRC REST

This example places:

• the first halfword (containing the inclusive length of CEMTEOUT) into the REXX variable BUFFLEN
• the second halfword (containing the number of messages produced) into the REXX variable MSGCOUNT
• the third halfword (containing the highest message-severity) into the REXX variable MAXRC
• the remainder of CEMTEOUT into the REXX variable REST

The values contained in the first 3 halfwords usually display as periods because they are unprintable
binary fields. To display their values, they must first be converted. For example, to display the value of
BUFFLEN, you could use one of the following:

• SAY C2X(BUFFLEN)

• VAR1 = C2X(BUFFLEN)
SAY VAR1

Example

'CEMT SET PROGRAM(XYZ) NEWCOPY'

This example shows a CICS command passed to the CEMT transaction program for execution.

CLD
CLD changes your current RLS list directory.

CLD

dirid

Operands
dirid

specifies a partial or full REXX List System directory that becomes the new current working directory
for you.

If dirid is not specified, the current working directory is retrieved and placed into the REXX variable
RESULT, instead of changing the current working directory.

A full directory ID starts with a slash and is in the form: \dirid1\...\diridn

When you specify a full directory ID, it completely replaces the previous directory setting.

A partial directory ID does not begin with a slash. In this case, the partial directory ID is appended to
the end of the existing directory ID. If the partial directory ID begins with two periods, this indicates

Chapter 30. REXX/CICS commands 371

that one directory level is removed (from the right), before the new partial directory ID is appended to
the end. In this case, a backslash is required before the directory ID.

For example: If the current directory is \USERS\USER1\ABC and you enter CLD ..\XYZ, the new
current directory will be \USERS\USER1\XYZ.

The default directory ID for you is \USERS\genid\, where genid is your CICS signon user ID. If you
are not signed onto CICS, genid defaults to the value in DFLTUSER.

Return codes
0

Normal return
923

Error in storing current RLS directory information
924

RLS directory does not exist or access not authorized
925

Error in retrieving directory information
926

Invalid directory
927

Cannot go back past root directory
928

Error setting result value

Example

'CLD \USERS\USER2\XYZ'

This example changes your current working list directory to \USERS\USER2\XYZ, regardless of the
previous directory setting.

If your current directory is \USERS\USER2 and you enter:

'CLD XYZ'

your current directory is changed to \USERS\USER2\XYZ.

Note:

1. The current directory (specified by the CLD command) is always searched first, attempting to locate an
RLS list with the appropriate list name.

2. A fully qualified RLS file name bypasses the search of your directories.

CONVTMAP
CONVTMAP reads an MVS sequential file or member of a PDS and converts a DSECT (created by a
previously assembled BMS map) into a structure, and stores the result in a REXX File System file.

CONVTMAP mvs_dataset_name rfs_fileid

The BMS map used as input to CONVTMAP must be in assembler language format. The resulting output
file is formatted as a REXX file structure. See Chapter 36, “Basic mapping support example,” on page
477.

372 REXX for CICS Transaction Server: User Guide and Reference

Operands
mvs_dataset_name

specifies a fully qualified MVS dataset name. The dataset must be a physical sequential dataset, or, if
its a PDS, the PDS member must be specified in parenthesis.

rfs_fileid
specifies a fully qualified REXX File system file, or only the REXX file name. If a fully qualified name is
not supplied, the current REXX directory is used to store the file.

Return codes
n

The return code from the attempt to process the MVS data set.
0

Normal return
-302

Invalid operand
-321

Invalid input record
-322

RFS error writing output file

Example

'CONVTMAP USER1.TEST.DATA(MAP1) POOL1:\USERS\USER1\MAP1.DATA'

This example shows the input BMS map DSECT, MAP1, a member of the MVS PDS dataset
USER1.TEST.DATA, being formatted and written out to the RFS file POOL1:\USERS\USER1\MAP1.DATA.

COPYR2S
COPYR2S copies REXX variable contents to 31-bit storage that was obtained earlier by a GETMAIN
request.

This is an authorized command.

COPYR2S source_vname

*

stor_anchor offset

length

struct_vname fieldname

struct_name fieldname

If the intended storage area addressed by stor_anchor exceeds 32767 bytes, ensure that the GETMAIN
request specified the FLENGTH option.

Note: COPYR2S can operate on a 31-bit address. COPYR2S cannot operate on a 64-bit address.

Operands
source_vname

specifies the REXX variable containing the value copied to the storage area that was obtained earlier
by a GETMAIN request.

Note: This value should be in quotes so that substitution does not occur.

*
specifies that all the REXX variables are copied. If you specify an asterisk (*), you cannot specify
fieldname.

Chapter 30. REXX/CICS commands 373

stor_anchor
specifies the REXX variable containing the anchor for the target storage area that was obtained earlier
by a GETMAIN request. This anchor consists of four bytes, containing the 31-bit address of the
storage that was obtained by a GETMAIN request. Ensure that the anchor specifies a 31-bit address,
otherwise results might be unpredictable.

offset
specifies the displacement into the storage area (obtained by a GETMAIN request) that the contents
of the REXX variable is copied to. The first byte of the area is indicated by a displacement of zero.

length
specifies the length in decimal bytes of the copy performed. If this length is specified, the contents of
the source REXX variable is truncated, or padded with blanks to match this length, and then copied.
However, the source REXX variable is not altered in this process. If this length is omitted, the current
length of the source REXX variable is used.

struct_vname
specifies a REXX variable containing a structure definition (or mapping) of the fields in the storage
area that was obtained by a GETMAIN request. The format of the data in this variable is: field1_name
length ... fieldn_name length. This capability is provided so that field displacements are easily
calculated and changed, from a central location.

struct_name
specifies the structure file ID containing a structure definition (or mapping) of the fields in the storage
area that was obtained by a GETMAIN request.

Structures are made up of records in the following format: fieldname location length type, where:

fieldname
specifies a 1 to 12 character symbolic name of the field.

location
specifies the position in structure that this field starts (the first position is 1).

length
specifies decimal length of this field in bytes.

type
specifies the field data type: C (character), F (fullword), or H (halfword).

fieldname
is a 1 to 12 character symbolic name associated with the destination field for this copy. This name
must exist in the above specified REXX variable or structure definition file. The fieldname must be
specified when struct_vname or struct_name is specified.

Return codes
0

Normal return
2002

Invalid operand
2021

Invalid structure definition
2022

Invalid variable structure definition
2023

Field name not found
2025

Failure processing GETVAR request
2026

Invalid numeric input

374 REXX for CICS Transaction Server: User Guide and Reference

2027
RFS read error

2028
Invalid offset

2029
Invalid length value

Examples

The following example requests 200 bytes of virtual storage and copies the hex value of '00000000'x into
bytes 4 through 7 of that area.

/* Needed if entering example from the REXXTRY utility */
'PSEUDO OFF'
'CICS GETMAIN SET(WORKANC) LENGTH(200)'/* get 200 bytes of working storage */
VAR1 = '00000000'x /* set a REXX variable with 4 bytes of hex */
'COPYR2S VAR1 WORKANC 4'

The following example requests 200 bytes of virtual storage and copies the character string ABC to
position 7 of the area that was obtained by a GETMAIN request that is referenced by anchor WORKANC.

'CICS GETMAIN SET(WORKANC) LENGTH(200)'/* get 200 bytes of working storage */
VAR1 = 'ABC' /* set a REXX variable with 3 characters */
struct1 = 'flda 4 fldb 2 fldc 3 fldd 8 flde 5'
'COPYR2S VAR1 WORKANC STRUCT1 FLDC'

COPYS2R
COPYS2R copies data from 31-bit storage that was obtained earlier by a GETMAIN request to a REXX
variable.

This is an authorized command.

COPYS2R stor_anchor vname

*

offset length

struct_vname fieldname

struct_name fieldname

If the intended storage area addressed by stor_anchor exceeds 32767 bytes, ensure that the GETMAIN
request specified the FLENGTH option.

Note: COPYS2R can operate on a 31-bit address. COPYS2R cannot operate on a 64-bit address.

Operands
stor_anchor

specifies the REXX variable containing the anchor for the target storage area that was obtained earlier
by a GETMAIN request. This anchor consists of four bytes, containing the address of the 31-bit
storage that was obtained earlier by a GETMAIN request. Ensure that the anchor specifies a 31-bit
address, otherwise results might be unpredictable.

vname
specifies the REXX variable containing the value to be copied from the storage area that was obtained
earlier by a GETMAIN request..

Note: This value should be in quotes so that substitution does not occur.

*
specifies that all the REXX variables are copied. If you specify an asterisk (*) you cannot specify
fieldname.

Chapter 30. REXX/CICS commands 375

offset
specifies the displacement into the storage area (obtained by a GETMAIN request), that the contents
of the REXX variable is copied from. The first byte of the area is indicated by a displacement of zero.

length
specifies the length in decimal bytes of the copy performed. If this length is specified, the contents of
the source REXX variable is truncated, or padded with blanks to match this length, and then copied.
However, the source REXX variable is not altered in this process. If this length is omitted, the current
length of the source REXX variable is used.

struct_vname
specifies a REXX variable containing a structure definition (or mapping) of the fields in the storage
area that was obtained by a GETMAIN request. The format of the data in this variable is: field1_name
length ... fieldn_name length. This capability is provided so that field displacements are easily
calculated and changed, from a central location.

struct_name
specifies the structure file ID containing a structure definition (or mapping) of the fields in the storage
area that was obtained by a GETMAIN request.

Structures are made up of records in the following format: fieldname location length type, where:

fieldname
specifies a 1 to 12 character symbolic name of the field.

location
specifies the position in structure that this field starts (the first position is 1).

length
specifies decimal length of this field in bytes.

type
specifies the field data type: C (character), F (fullword), or H (halfword).

fieldname
is a 1 to 12 character symbolic name associated with the destination field for this copy. This name
must exist in the above specified REXX variable or structure definition file. The fieldname must be
specified when struct_vname or struct_name is specified.

Return codes
0

Normal return
2102

Invalid operand
2121

Invalid structure definition
2122

Invalid variable structure definition
2123

Field name not found
2125

Failure processing GETVAR request
2126

Invalid numeric input
2127

RFS read error
2128

Invalid offset

376 REXX for CICS Transaction Server: User Guide and Reference

2129
Invalid length value

Example

var1 = '' /* set REXX variable VAR1 to null */
struct1 = 'flda 4 fldb 2 fldc 3 fldd 8 flde 5'
'COPYS2R WORKANC VAR1 STRUCT1 FLDC'

This example copies three bytes of data from positions 7 through 9 of the earlier GETMAINed storage
area anchored by the fullword address in REXX variable WORKANC, and copies it to REXX variable VAR1.

Note:

1. Anchor addresses are not limited to being set by the GETMAIN command. For example, a COPYS2R
can be used to copy a fullword address of an area obtained by a GETMAIN request to a REXX variable
that is used as the anchor for a subsequent COPYS2R or COPYR2S.

2. There can be multiple structure (field) definitions for an area obtained by a GETMAIN request; they can
overlap, be nested, and used to redefine fields.

3. Anchor addresses do not need to point to the beginning of an area obtained by a GETMAIN request.
However, it is important that anchor addresses are within an area obtained by a GETMAIN request that
you own, and that any operation on them does not exceed their boundaries.

C2S
C2S copies a client REXX variable to a server REXX variable.

C2S client_rexx_varname
server_rexx_varname

Operands
client_rexx_varname

specifies the client REXX variable to copy from.
server_rexx_varname

is an optional name that specifies the server REXX variable to copy into. If it is not specified, it
defaults to the same as the client_rexx_varname.

Return codes
0

Normal return
2440

No variable name specified
2441

Error retrieving variable
2442

Error storing variable
2448

No client available

Example

'C2S VARA VARB'

Chapter 30. REXX/CICS commands 377

This example shows that the contents of the client REXX variable VARA are copied into the server REXX
variable VARB. The length of VARB is the same as the length of VARA.

Note:

1. The maximum variable name length supported for this command is 250 characters.
2. This command is intended for use only by REXX/CICS server execs (for example, exec defined by

DEFCMD or DEFSCMD).

DEFCMD
DEFCMD defines (or redefines) REXX user commands.

DEFCMD etarget ecmdnm

etarget *

itarget icmdnm

itarget *

= =

pgmname

CICS_loadmod

execname

(CLEAR

(CICSLINK

CICSLOAD

REXX

AUTH

Operands
etarget

is the 1 to 8 character name of the external target environment you used in a REXX exec issuing this
command. This is the external environment name that you directed the command string to. This
environment name is looked up in a table and together with the command name determines which
REXX program the command string is directed to for processing.

Note: The external target can match the environment name on the ADDRESS keyword instruction or,
if REXXCICS is the current environment (the default condition), can be specified as the first token of
the command string.

ecmdnm
is the first command name token that you used issuing this command. This is the first word of the
command name as it is known to you. If a special value of asterisk (*) is specified (as part of this
definition), then all commands that you issued with an environment name of etarget and that are not
more explicitly defined elsewhere, are covered by this command definition. Command names may be
up to 16 characters long.

itarget
specifies an internal environment name that this command definition passes to the agent that
processes the command string. This is needed so that the external environment names known to you
can be redefined without breakage of the agents that process these commands. If the internal and
external names are identical, then there is no need for you to specify the internal name. A special
value of "=" indicates that itarget is the same as etarget.

icmdnm
is the first word of the internal command name. This is the first part of the command name that is
passed to the REXX command agent to specify what command is processed. This is specified only if it
is different from ecmdnm. A special value of "=" indicates that icmdnm is the same as ecmdnm.

pgmname
specifies the CICS program that is called by an EXEC CICS LINK to process the command.

CICS_loadmod
specifies the name of the CICS program called because the CICSLOAD option was specified.

378 REXX for CICS Transaction Server: User Guide and Reference

Note: The program is loaded only on the first instance of a command and its address is remembered
for subsequent commands.

execname
specifies the exec called as a REXX command server processing this command (or commands). If this
server exec is already running, this command is routed to the executing server. If a REXX server by
this name is not running, Automatic Server Initiation (ASI) is used to start the server automatically.
The execname can be either a file name (where the file type defaults to EXEC) or it can be in the form
filename.filetype.

CICSLINK
is a keyword indicating that the processing agent for the defined REXX command is a standard CICS
program that is called by an EXEC CICS LINK.

CICSLOAD
is a keyword indicating that the processing agent is a CICS program that is loaded by an EXEC
CICSLOAD.

REXX
is a keyword indicating that the processing agent for this REXX command is a REXX exec that operates
as a command server.

AUTH
This is an authorized option.

This is a keyword indicating that this is an authorized REXX/CICS command. It is a command that can
be executed only by an authorized REXX/CICS user (specified on AUTHUSER command) or from within
an exec loaded from an authorized library.

CLEAR
is a keyword indicating that the purpose of this DEFCMD is to clear any previous definitions for the
specified external target environment and command names.

Return codes
0

Normal return
1001

Invalid command
1021

Cannot load program
1023

Entry not found
1048

No client available
1099

Internal error

Example

'DEFCMD CICS SEND = = SENDPGM (CICSLINK'

This example defines a command called SEND for this user only. The user can issue this command, under
the default command environment of REXXCICS, by entering:

'CICS SEND arg1 arg2 ... argn'

This example shows program SENDPGM being called by an EXEC CICS LINK command to process this
command.

Note:

Chapter 30. REXX/CICS commands 379

1. When the REXX/CICS environment name is REXXCICS (which is the default when all execs or macros
are called), the first token of the command string is the environment name that could have been used
with an ADDRESS environment REXX instruction. This provides a more integrated command
environment and removes the need for constant environment switching by ADDRESS instructions.

2. The calling and parameter passing sequences for command programs receiving control by an EXEC
CICS LINK and an Assembler BASSM instruction (the CICSLOAD option) are similar. Refer to Chapter
26, “REXX/CICS Command Definition,” on page 309 for more information on writing command
programs.

3. You can use DEFCMD to tailor a user's command set dynamically on a user by user, or application by
application basis. DEFCMD commands can be placed in the user's PROFILE EXEC or in application
execs. DEFCMD can also be used to override system command definitions.

4. DEFCMD REXXCICS * is not allowed.
5. User command definitions are searched before system command definitions (except for DEFCMD,

which cannot be overridden).
6. REXX commands can be written in REXX. These REXX commands in turn call other REXX commands

which are written in REXX, in a building block fashion. Since DEFCMD hides the implementation detail
from the REXX user (programmer), a command can be quickly written in REXX and later transparently
rewritten in another language, if it becomes performance critical.

DEFSCMD
DEFSCMD defines (or redefines) REXX system commands.

This is an authorized command.

DEFSCMD etarget ecmdnm

etarget *

* *

itarget icmdnm

itarget *

= =

pgmname

CICS_loadmod

execname

(CLEAR

(CICSLINK

CICSLOAD

REXX

AUTH

Operands
etarget

is the name of the external target environment you used in a REXX exec issuing this command. This is
the external environment name that you directed the command string to. This environment name is
looked up in a table and together with the command name determines which program, REXX exec, or
queue this command string is directed to for processing.

Note: The external target can match the environment name on the ADDRESS keyword instruction or
can be specified as the first token of the command string, if REXXCICS is the current environment
(which is the default).

ecmdnm
is the first command name token that you used issuing this command. This is the first word of the
command name as it is known to you. If a special value of asterisk (*) is specified (as part of this
definition), then all commands that you issued with an environment name of etarget and that are not
more explicitly defined elsewhere, are covered by this command definition.

itarget
specifies an internal environment name that this command definition passes to the agent that
processes the command string. This is needed so that the external environment names known to you

380 REXX for CICS Transaction Server: User Guide and Reference

can be redefined without breakage of the agents that process these commands. If the internal and
external names are identical, then there is no need for you to specify the internal name. A special
value of "=" indicates that itarget is the same as etarget.

icmdnm
is the first word of the internal command name. This is the first part of the command name that is
passed to the REXX command agent to specify what command is processed. This is specified only if it
is different from ecmdnm. A special value of "=" indicates that icmdnm is the same as ecmdnm.

pgmname
specifies the CICS program that is called by an EXEC CICS LINK to process the command.

CICS_loadmod
specifies the name of the CICS program called because the CICSLOAD option was specified.

Note: The program is only loaded on the first instance of a command and its address is remembered
for subsequent commands.

execname
specifies the exec called as a REXX command server processing this command (or commands). If this
server exec is already running then this command is routed to the executing server. If a REXX server
by this name is not running, then Automatic Server Initiation (ASI) is used to start the server
automatically. The execname can be either a file name (where the file type defaults to EXEC) or in the
form filename.filetype.

CICSLINK
is a keyword indicating that the processing agent for the defined REXX command is a standard CICS
program that is called by an EXEC CICS LINK.

CICSLOAD
is a keyword indicating that the processing agent is a CICS program that is loaded by an EXEC
CICSLOAD.

REXX
is a keyword indicating that the processing agent for this REXX command is a REXX exec that operates
as a command server.

AUTH
is a keyword indicating that this is an authorized REXX/CICS command. It is a command that can be
executed only by an authorized REXX/CICS user (specified on AUTHUSER command) or from within an
exec loaded from an authorized library.

CLEAR
is a keyword indicating that the purpose of this DEFSCMD is to clear any previous definitions for the
specified external target environment and command names.

Return codes
0

Normal return
1101

Invalid command
1121

Cannot load program
1123

Entry not found
1148

No client available
1199

Internal error

Chapter 30. REXX/CICS commands 381

Example

'DEFSCMD CICS SEND = = SENDPGM (CICSLINK'

This example defines a command called SEND for this user only. The user can issue this command, under
the default command environment of REXXCICS, by entering:

'CICS SEND arg1 arg2 ... argn'

This example shows program SENDPGM being called by an EXEC CICS LINK command to process this
command.

Note:

1. When the REXX/CICS environment name is REXXCICS (which is the default when all execs or macros
are called), then the first token of the command string is the environment name that could have been
used with an ADDRESS environment REXX instruction. This provides a more integrated command
environment and removes the need for constant environment switching by ADDRESS instructions.

2. The calling and parameter passing sequences for command programs receiving control by an EXEC
CICS LINK and an Assembler BASSM instruction (the CICSLOAD option) are similar. Refer to Chapter
26, “REXX/CICS Command Definition,” on page 309 for more information on writing command
programs.

3. If the first two operands of DEFSCMD are all asterisks (* *), this is a catch-all definition that specifies a
command processing agent issued for REXX commands that are not under the scope (do not match) of
any more specific command definitions.

4. User command definitions are searched before system command definitions (except for DEFSCMD,
which cannot be overridden).

5. REXX commands can be written in REXX. These REXX commands in turn call other REXX commands
which are written in REXX, in a building block fashion. Since DEFSCMD hides the implementation detail
from the REXX user (programmer), a command can be quickly written in REXX and later transparently
rewritten in another language, if it becomes performance critical.

DEFTRNID
DEFTRNID is a region-wide authorized command that can be used to define the name of an exec to be
invoked for a particular CICS transaction identifier.

This is an authorized command.

DEFTRNID trnid execname

CLEAR

Operands
trnid

specifies a one to four character CICS transaction ID.
execname

specifies a 1 to 17 character REXX/CICS exec name, in the form: filename.filetype if it is in the REXX
File System. If the exec exists in an MVS partitioned data set, it is a one to eight character name.

CLEAR
is a keyword indicating that the definition be removed for this transaction ID.

Return codes
0

Normal return

382 REXX for CICS Transaction Server: User Guide and Reference

1202
Invalid operand

1222
Invalid option

1223
Error storing trantable information

1225
Error retrieving trantable information

1226
Exec name length error

1228
Error setting trantable value

1233
Transaction not found in table

Example

Define a new CICS transaction ID named XYZ, make it call exec TESTEXEC when it is started, then
complete the following steps:

1. Create TESTEXEC in the dataset allocated or concatenated to ddname CICUSER.
2. Under the REXX/CICS REXXTRY utility, enter the command DEFTRNID XYZ TESTEXEC and exit the

REXXTRY utility.
3. Under RDO, for the REXX Development System for CICS, enter:

CEDA DEFINE TRAN(XYZ) PROGRAM(CICREXD) GROUP(CICREXX)

For the REXX Runtime Facility for CICS, enter:

CEDA DEFINE TRAN(XYZ) PROGRAM(CICREXR) GROUP(CICREXX)

Then enter:

CEDA INSTALL TRAN(XYZ) GROUP(CICREXX)

4. Clear the screen, type CICS transaction identifier XYZ, and press Enter. The TESTEXEC exec should
now run.

Note:

1. DEFTRNID definitions should usually be placed in the CICSTART exec that executes at REXX/CICS
startup.

2. The transaction ID must be defined to invoke the supplied CICREXD or CICREXR program. See step
“3” on page 383 in the example.

DIR
DIR displays the current directory contents or optionally returns the directory contents in a REXX
compound variable.

DIR

dirid (stem.

Chapter 30. REXX/CICS commands 383

Operands
dirid

specifies the partial or full REXX File System directory that is displayed. If you omit this, then the
current directory is displayed.

stem.
specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. Stem.0 contains
the number of elements in the entry. If you omit this, the contents are displayed on the screen.

Return codes
0

Normal return
321

Cannot access current RFS directory information
322

Invalid stem name
325

Error retrieving RFS directory

Example

'DIR \USERS\USER2 (X.'

This example places the directory contents of \USERS\USER2 into the REXX compound variable X.1
through X.n. X.0 contains the number of elements returned.

Note: The current directory is specified by the CD command.

EDIT
EDIT opens a new edit session.

EDIT
NONAME

fileid

PDS_name (mem) PDS

(MACRO macroname

Operands
NONAME

a file ID is not specified. This is the default.
fileid

is the file ID of the file you are editing.
PDS_name(mem)

specifies a fully qualified MVS PDS name and member name.
PDS

is a keyword that follows the PDS member name when a PDS is being edited.
MACRO

is a keyword specifying a group of instructions applied to the file being edited.
macroname

is the file name portion of the profile macro file ID (REXX exec name).

384 REXX for CICS Transaction Server: User Guide and Reference

Return codes
0

Normal return
201

Invalid command
211

Invalid file ID
226

File is currently being edited
299

Internal error

Example

'CD \USERS\USER2\' /* specify current working directory */
'EDIT TEST.EXEC' /* edit an existing file in the PATH */
 /* or create new file in current dir */

This example edits member TEST.EXEC in directory \USERS\USER2.

Refer to Chapter 23, “REXX/CICS text editor,” on page 257 for more information about the REXX/CICS
editor.

EXEC
EXEC calls a REXX exec at a lower level (as a nested exec). All variables for this new exec are kept
separate from the higher level exec, which is suspended until the nested exec ends.

EXEC execid args

Operands
execid

is the 1 to 17 character identifier of the exec in the format name.modifier, where name and modifier
are each up to 8 characters. If you do not specify modifier, EXEC is assumed.

args
is the argument string for the called exec.

Return codes
n

A return code that is set by the exit of the called exec. See “EXIT” on page 172.
0

Normal return
-3

Exec not found
-10

Exec name not specified
-11

Invalid exec name
-12

GETMAIN error
-99

Internal error

Chapter 30. REXX/CICS commands 385

Example

'EXEC ABC'

This example executes exec ABC.EXEC.

EXECDROP
EXECDROP removes an exec from virtual storage that was previously loaded by using the EXECLOAD
command.

This is an authorized command.

EXECDROP ddn member

(MEM

name (RFS

PDS

Operands
ddn

specifies the ddname that is read.
member

specifies the member of the partitioned dataset that is used.
name

specifies a fully qualified RFS file name or the fully qualified PDS name and member.
MEM

indicates that a ddname and member name has been specified.
RFS

indicates that an RFS file has been specified.
PDS

indicates that a partitioned dataset name and member has been specified.

Return codes
0

Normal return
1401

Invalid command
1402

Invalid operand
1423

Error storing EXECLOAD information
1425

Error retrieving EXECLOAD information
1448

No client available

Example

'EXECDROP POOL1:\USERS\USER2\TEST.EXEC (RFS'

This example removes RFS file from virtual storage.

386 REXX for CICS Transaction Server: User Guide and Reference

Note: If a partial directory ID is given, it is temporarily appended to the end of the current working
directory value to get a fully qualified directory ID.

EXECIO
EXECIO performs file input or output to a CICS temporary storage queue.

EXECIO lines

*

READ tsqname

WRITE tsqname

stem.

varname recno

reclen

Operands
lines

specifies the number of lines to read or write. An asterisk (*) is a special case that is specified for
READ operations only, and indicates that the file is read from the target line (or line 1 if no target line
is specified) to the end of the file.

READ
reads one or more records from a CICS temporary storage queue (TSQ).

WRITE
writes (or re-writes) one or more records to a CICS temporary storage queue.

tsqname
specifies a 1 to 8 character temporary storage queue name.

stem.
specifies the name of a stem. A stem must end in a period; see “Stems” on page 155.

varname
specifies a REXX variable name that is the source or target for this EXECIO operation.

recno
specifies a record number in the temporary storage queue that READ or WRITE begins with.

reclen
specifies the length of the record written to CICS temporary storage. If reclen is omitted, the length
defaults to 80 bytes.

Return codes
n

The return code that is passed back by CICS if an error is detected
0

Normal return
-202

Invalid operand
-221

Too many operands specified
-222

Recno operand out of range
-224

Lines operand invalid

Chapter 30. REXX/CICS commands 387

Example

x.1 = 'line 1'
x.2 = 'Line Two'
'EXECIO 2 WRITE QUEUE1 X.'

This example writes data to a CICS temporary storage queue.

'EXECIO 2 READ QUEUE1 Y.'
say y.0 /* ==> 2 */
say y.1 /* ==> 'line 1' */
say y.2 /* ==> 'Line Two' */

This example reads data from a temporary storage queue.

Note:

1. The maximum record length allowed is 256 bytes.
2. If a stem is specified for a READ operation (and a stem should be specified if more than one record is

read), the actual number of records read is placed into stem.0.
3. Use the CICS-supplied CEBR transaction to browse temporary storage queues. For example, enter:
CEBR QUEUE1 to look at the queue created in the example.

4. CEBR provides PUT and GET functions that you can use to copy between CICS transient data queues
and CICS temporary storage queues.

EXECLOAD
EXECLOAD loads an exec into virtual storage.

This is an authorized command.

EXECLOAD ddn member

(MEM

name (RFS

PDS

Operands
ddn

specifies the ddname that is read.
member

specifies the member of the partitioned dataset that is used.
name

specifies a fully qualified RFS file name or the fully qualified PDS name and member.
MEM

indicates that a ddname and member name has been specified.
RFS

indicates that an RFS file has been specified.
PDS

indicates that a partitioned dataset name and member has been specified.

Return codes
0

Normal return

388 REXX for CICS Transaction Server: User Guide and Reference

1501
Invalid command

1502
Invalid operand

1523
Error storing EXECLOAD information

1525
Error retrieving EXECLOAD information

1530
Unable to link to CICPDS routine

1531
Error returned from CICPDS routine

1532
Error returned from RFS READ

1532
Error returned from PDS build

1547
GETMAIN error

1548
No client available

1599
Internal error

Example

'EXECLOAD POOL1:\USERS\USER2\TEST.EXEC (RFS'

This example loads the exec TEST.EXEC from RFS into virtual storage. Subsequent calls of TEXT.EXEC will
use the loaded copy.

Note:

1. If an exec is loaded into virtual storage, it is automatically shared by all users.
2. If an EXECLOAD is performed to replace an in-storage exec with a newer copy, a shadow of previous

copies is kept in virtual storage until all active execs based on these copies end. This is accomplished
by a use count.

3. Execs that are loaded into virtual storage are always used before other execs. Name your programs
carefully because, if two execs have the same name and one resides in your RFS current directory and
one is loaded into virtual storage, you cannot run your RFS copy.

4. When an exec is loaded into virtual storage, the copy of the exec inherits security characteristics from
where it was loaded. For example, any user can run an exec from a CICEXEC data set and any exec
loaded from CICEXEC can use REXX/CICS authorized commands. See Modify the CICS initialization
JCL.

EXECMAP
EXECMAP returns the ddnames and members, the number of users, the descriptor table start (in hex),
and the amount of storage required of the execs that were loaded by using EXECLOAD.

EXECMAP

Chapter 30. REXX/CICS commands 389

Return codes
0

Normal return
1623

EXECLOAD directory not found

Example

'EXECMAP'

If the exec POOL1:\USERS\USER1\TEST.EXEC was previously loaded by using EXECLOAD, the resulting
display is as follows.

EXEC name Use Location Size Fully Qualified Name
TEST.EXEC 0 09369083 287 POOL1:\USERS\USER1\TEST.EXEC

EXPORT
EXPORT exports an RFS file to an MVS dataset.

EXPORT rfs_fileid dsn

Operands
dsn

specifies a fully qualified (without quotes) MVS physical sequential or partitioned organization dataset
name. If the dataset is partitioned (DSORG=PO), the member name must be provided in parenthesis.

rfs_fileid
specifies a fully qualified REXX File System file ID.

Return codes
0

Normal return
1701

Invalid command
1702

Invalid operand
1723

RFS write error
1724

RFS read error
1725

Dynamic allocation failed
1726

Dynamic free failed
1727

Transient data queue open failed
1728

Member not enqueued
1729

Member in use

390 REXX for CICS Transaction Server: User Guide and Reference

1730
Records truncated

1733
Input for export not found

1735
Transient data error

1736
Unexpected CICS error.

1737
Invalid request

1738
Invalid dataset name

1739
Invalid disposition

1741
Unsupported DSORG

1742
Error building transient data pool

1743
REXX transient data queue not available/found

1744
User not signed on/authorized for dataset access

1745
Empty dataset

1746
REXX queue not found

1748
No entry for ddname in Task Input/Output Table (TIOT)

1749
Cannot export to multi unit dataset

1750
ddname has more than one dataset in concatenation

1799
Internal error

Example

'EXPORT POOL1:\USERS\USER1\TEST.DATA USER1.TEST.DATA'

This example copies POOL1:\USERS\USER1\TEST.DATA from an RFS file to an MVS sequential dataset.

Note:

1. This command performs an SVC 99 and therefore is not recommended for frequent use because
performance concerns.

2. The REXX/CICS-supplied CICSECX1 security exit is invoked to verify that your CICS sign-on user ID is
authorized to access the specified MVS dataset. By default, the high level prefix of the dataset name
must match your CICS sign on user ID. The CICS region must also have authorization to access the
specified MVS dataset (for example, by an external security manager if external security is enabled).

3. The MVS dataset is allocated DISP=OLD.

Chapter 30. REXX/CICS commands 391

4. The MVS data specified in dsn must already be allocated. If the dataset is sequential, it is replaced by
the contents of the RFS file specified in rfs_fileid. If the dataset is partitioned and the member name
specified already exists, it is replaced by the contents of the RFS file.

5. If you export to an MVS dataset that is defined to the CICS region, the disposition of the dataset will be
changed to OLD until the CICS region is recycled.

FILEPOOL
FILEPOOL performs RFS file pool administration activities.

This is an authorized command.

FILEPOOL DEFINE poolid dirid fileid (

USER

FORMAT poolid

ADD poolid fileid

Operands
DEFINE

defines a new RFS file pool.
poolid

specifies the name of the target file pool.
dirid

specifies the CICS file identifier of the file pool directory.
fileid

specifies the CICS file identifier of the VSAM file for the file pool.
USER

is an optional keyword indicating that this is a user file pool, and you automatically have a \USERS
directory created, so that multiple users share this file pool, using RFS security (as compared to CICS
security) to control access to directories.

FORMAT
formats the first file in a new RFS file pool.

ADD
adds an additional VSAM file to an existing file pool.

Return codes
0

Normal return
1802

Invalid operand
1821

Invalid file pool subcommand
1822

File pool subcommand not specified
1823

Error storing file pool information
1824

File pool ID not specified
1825

Error retrieving file pool information

392 REXX for CICS Transaction Server: User Guide and Reference

1826
Invalid file pool ID

1827
Invalid file pool data retrieved

1828
File pool not defined

1829
RFS could not add library to file pool

1830
RFS could not create users directory

1831
DDNAME for file pool must be specified

1832
Invalid DDNAME

1833
File pool variable corrupted

1834
Pool ID already exists

1835
DDNAME already used

1836
Could not format file pool

1837
File pool needs to be formatted first

1838
File pool ADD record is full

1839
File ID is not found

Example

'FILEPOOL DEFINE POOL1 REXXDIR1 REXXLIB1 (USER'

This example defines file pool POOL1 and tells RFS the CICS file definition to use is REXXLIB1. It also
indicates to the FILEPOOL FORMAT command to issue an RFS MKDIR to build the \USERS directory.

Note: This is an authorized command, performed by a REXX/CICS administrator or systems programmer.

FLST
FLST calls the file list utility to work with the files.

FLST

dirid

Operands
dirid

specifies an optional full or partial directory ID that a file list is displayed. If you do not specify dirid, it
defaults to the current working directory.

Chapter 30. REXX/CICS commands 393

Return codes

FLST returns the return code given by RFS.

Example

'FLST'

This example displays the file list for the member of the current working directory.

Note:

1. The default user profile macro that the FLST tries to call is EXEC ID FLSTPROF. The FLSTPROF macro
provides the capability for you (or a group of users) to specify your own unique defaults.

2. Refer to Chapter 24, “REXX/CICS File System,” on page 285 for more information about the REXX File
System.

FREE
FREE unallocates a data definition name.

FREE DDNAME ddname

Operands
DDNAME

is a keyword indicating free is by ddname.
ddname

specifies the data definition name.

Return codes
The return code given by SVC 99

For more information, see z/OS MVS Programming: Authorized Assembler Services Guide.
1702

Invalid operand

Example

 'ALLOC USER1A USER1.REXX(TEST)'
 'FREE DDNAME USER1A'

This example allocates the member TEST of dataset USER1.REXX into the ddname USER1A and then
frees the ddname USER1A for use with another dataset.

GETVERS
GETVERS retrieves the current REXX/CICS, program name, version, and compile time information, and
places it into the REXX variable VERSION.

GETVERS

The returned information is in the form: pgmname VxRyMmmmm mm/dd/yyyy hh:mm, where:

pgmname
specifies CICREXD for the REXX/CICS Development System or CICREXR for the REXX/CICS Runtime
Facility.

394 REXX for CICS Transaction Server: User Guide and Reference

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/toc.htm

x
specifies the REXX/CICS Version number.

y
specifies the REXX/CICS Release number.

mm/dd/yyyy
specifies the compilation date for the REXX/CICS base program.

hh.mm
specifies the compilation time for the REXX/CICS base program.

Return codes
0

Normal return
1910

Request failed

Example

'GETVERS'

This example retrieves the current REXX/CICS version and compile time information and places it into the
REXX variable VERSION. Its format could look like: CICREXR V1R1M0000 14/12/2018 12:00.

HELP
HELP browses or searches this product information online.

HELP

search_term

Operands
search_term

specifies the string you want located.

Return codes
n

The return code that is passed by from internal RFS or PANEL commands
0

Normal return

IMPORT
IMPORT imports an MVS sequential dataset or partitioned dataset member into an RFS file.

IMPORT dsn rfs_fileid

Operands
dsn

specifies a fully qualified (without quotes) MVS physical sequential or partitioned organization dataset
name. If the dataset is partitioned (DSORG=PO), the member name must be provided in parentheses.

Chapter 30. REXX/CICS commands 395

rfs_fileid
specifies a fully qualified REXX File System file ID.

Return codes
0

Normal return
1701

Invalid command
1702

Invalid operand
1723

RFS write error
1724

RFS read error
1725

Dynamic allocation failed
1726

Dynamic free failed
1727

Transient data queue open failed
1728

Member not enqueued
1729

Member in use
1730

Records truncated
1733

Input for export not found
1735

Transient data error
1736

Unexpected CICS error.
1737

Invalid request
1738

Invalid dataset name
1739

Invalid disposition
1741

Unsupported DSORG
1742

Error building transient data pool
1743

REXX transient data queue not available/found
1744

User not signed on/authorized for dataset access
1745

Empty dataset
1746

REXX queue not found

396 REXX for CICS Transaction Server: User Guide and Reference

1799
Internal error

Example

'IMPORT USER1.TEST.DATA POOL1:\USERS\USER1\TEST.DATA'

This example copies USER1.TEST.DATA from an MVS sequential dataset to an RFS file POOL1:\USERS
\USER1\TEST.DATA.

Note:

1. This command performs an SVC 99 and therefore is not recommended for frequent use because of
performance concerns.

2. The REXX/CICS-supplied CICSECX1 security exit is invoked to verify that your CICS sign-on user ID is
authorized to access the specified MVS dataset. By default, the high level prefix of the dataset name
must match your CICS sign on user ID. The CICS region must also have authorization to access the
specified MVS dataset (for example, by an external security manager if external security is enabled).

3. The MVS dataset is allocated with DISP=SHR.
4. If the RFS file specified in rfs_fileid already exists, it is replaced by the contents of the MVS dataset.

LISTCMD
LISTCMD lists REXX command definition information (previously specified by DEFCMD).

LISTCMD
envname cmdname

Operands
envname

specifies the name of the command environment defined using DEFCMD or DEFSCMD.
cmdname

specifies the name of a command specified in DEFCMD or DEFSCMD.

Return codes
0

Normal return
821

Invalid environment name
822

Invalid command name

Example

'LISTCMD EDITSVR MYCMD'

This example returns the information defined in DEFCMD for the subcommand MYCMD.

Chapter 30. REXX/CICS commands 397

LISTPOOL
LISTPOOL displays RFS file pool information to the terminal or to a specified stem array, if a stem has
been specified.

LISTPOOL

stem.

Operands
stem.

specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. Three columns
of information are returned:

• the pool ID
• the ddname of the first file in the file pool
• whether or not it contains a user's directory.

Return codes
0

Normal return
2225

Error retrieving file pool information
2226

Invalid stem variable name

Example

'LISTPOOL LST.'

This example places information about the RFS file pools into REXX compound variable LST.1 through
LST.n. LST.0 contains the number of elements returned.

Note: This is a general user command that displays all defined RFS file pools.

LISTTRNID
LISTTRNID lists the current transaction ID definitions created by the DEFTRNID command.

This is an authorized command.

LISTTRNID

Return codes
0

Normal return
2325

Error retrieving trantable information

Example

'LISTTRNID'

398 REXX for CICS Transaction Server: User Guide and Reference

The CICSTART exec defines the default transactions and their EXEC names. The resulting display is:

 TRNID EXEC name
 REXX CICRXTRY
 EDIT CICEDIT
 FLST CICFLST
 *SIB CICOVSIB
 End of Transaction table list.

PATH
PATH defines the search path for REXX execs.

PATH

dirid

pdsid

Note: The SET command (without parameters) is used to retrieve the current path setting.

Operands
dirid

specifies one or more fully qualified REXX File System directories that are searched when you are
attempting to locate an exec to be executed.

A full RFS directory ID starts with a pool ID and is in the form: POOL1:\dirid1\...\diridn

When more than one directory ID is specified, a blank is used to separate them.

pdsid
specifies one or more MVS partitioned dataset names.

Return codes
0

Normal return
625

Error retrieving path information
626

Invalid RFS directory name
627

Invalid PDS name
628

Error setting RESULT value
629

Invalid dataset name
630

Error storing path information
631

No path currently defined
632

Resulting PATH contains no RFS directories or PDS names

Chapter 30. REXX/CICS commands 399

Examples

'PATH POOL1:\USERS\USER2 POOL2:\USERS\USER2\PROJECT1'

This example shows that the directories in this list are searched in the order specified (from left to right).

'PATH MYUSERID.REXX1.EXECS MYUSERID.REXX2.EXECS'

This example shows you that the search is started with the first partitioned dataset.

Note:

1. The dirids and pdsids can be mixed in a single PATH statement.
2. You can create a very long PATH directory list by concatenating strings together into a variable, and

then specifying this variable on the PATH command.
3. PATH command definitions are not carried across CICS restarts. To change a PATH definition

permanently, insert a PATH command into your PROFILE exec in the base directory for your user ID.
4. The PATH command is not cumulative, that is, the last PATH command replaces the previous PATH

definition.
5. If dirid or pdsid is not specified, the users current working path is retrieved and placed in the REXX

special variable RESULT.
6. If you receive a non-zero return code, the contents of the RESULT special variable are unpredictable.

PSEUDO
PSEUDO turns the pseudo-conversational mode on or off.

PSEUDO ON

OFF

Operands
ON

enables automatic pseudo-conversational support so that when one the following conditions is
encountered in the current exec, instead of a conversational terminal read occurring immediately, an
EXEC CICS RETURN TRANSID is used to suspend the exec until terminal input occurs, and then the
terminal read occurs:

• REXX PULL instruction
• REXX/CICS WAITREAD command
• PANEL RECEIVE command
• screen is full and MORE appears in the lower right corner of the screen (implicit READ, waiting for

screen to be cleared)

OFF
disables (turns off) automatic pseudo-conversational support.

Return codes
0

Normal return
2502

Invalid operand
2521

Operand not specified

400 REXX for CICS Transaction Server: User Guide and Reference

Example

'PSEUDO ON'

This example turns the pseudo-conversational mode on.

Note: The PSEUDO ON/OFF setting is temporary. The pseudo setting exists while the current exec is
executing. Any nested execs inherit the current setting of PSEUDO. When the current exec ends, the value
of pseudo upon entry to the exec will be restored. The SETSYS PSEUDO command defines the systems
default setting of PSEUDO.

CAUTION: PSEUDO ON causes your REXX exec to immediately become pseudo-conversational,
which will cause CICS to commit any file changes, and free any non-shared GETMAINed areas, at
the next pseudo-conversational terminal read.

RFS
RFS performs file input/output to the REXX File System.

RFS AUTH dirid
PRIVATE

PUBLICR

PUBLICW

SECURED

CKDIR dirid

CKFILE fileid

COPY fileid1 fileid2

DELETE fileid

DISKR fileid
DATA.

stem.

DISKW fileid
DATA.

stem.

GETDIR stem.

dirid

MKDIR dirid

RDIR dirid

RENAME fileid1 fileid2

Operands
AUTH

is a command that authorizes access to RFS directories. The specified access applies to all files in this
directory.

dirid
specifies a REXX File System directory identifier. This is partially or fully qualified. Refer to the CD
command “CD” on page 355 for more information.

PRIVATE
specifies that only the owner of the directory has read/write access to the files. This is the default.

Chapter 30. REXX/CICS commands 401

PUBLICR
specifies that any user has read-only access to the files in the directory.

PUBLICW
specifies that any user has read/write access to the files in the directory.

SECURED
specifies that an external security manager grants access to the files in the directory.

CKDIR
is a command that checks for an existing RFS directory level.

CKFILE
is a command that checks to see if the specified, partially or fully qualified, file ID exists.

fileid
specifies the file identifier.

COPY
is a command that copies a file, replacing any existing file.

fileid1
specifies the source file identifier. It can be a fully or partially qualified directory and file identifier.

fileid2
specifies the target file identifier. It can be a fully or partially qualified directory and file identifier.

DELETE
is a command that deletes an RFS directory level or RFS file.

fileid
specifies the source file identifier. It can be fully or partially qualified.

DISKR
is a command that reads records from an RFS file.

stem
specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. The default
stem is DATA..

DISKW
is a command that writes records to an RFS file.

GETDIR
is a command that returns a list of the contents of the current or specified directory into the specified
REXX array.

MKDIR
is a command that creates a new RFS directory level.

RDIR
is a command that removes the specified RFS directory.

RENAME
is a command that renames an RFS file to a new name.

fileid1
specifies the source file identifier. It can be a fully or partially qualified directory and file identifier.

fileid2
specifies the source target file identifier. It can be a fully or partially qualified directory and file
identifier.

Return codes
0

Normal return
101

Invalid command

402 REXX for CICS Transaction Server: User Guide and Reference

102
Invalid operand

103
File not found

104
Not authorized

105
File already exists

107
Insufficient space in file pool

110
Request failed

111
Invalid file ID

113
Directory not found

115
Directory already exists

116
Directory not specified

121
File corrupted

122
Invalid or out of range stem.0

126
Path error

127
CICS I/O error

128
Command not valid from this location

130
Directory not empty

131
Missing operand

132
Missing file pool data record. File pool is probably not formatted.

199
Internal error

Note: File access security checking is performed at the directory level, rather than the file level. If a
specified file ID is not a fully qualified ID, the current directory or PATH directories are used in an attempt
to resolve the partial name into a fully qualified name; in this case no further checking is necessary. If a
fully qualified file ID is used, the directory it resides in is checked for proper access authorization, at file
open time.

Chapter 30. REXX/CICS commands 403

RLS
RLS performs list input/output to the REXX List System.

RLS CKDIR dirid

DELETE listname

LPULL varname

QUEUE

queid

LPUSH varname

QUEUE

queid

LQUEUE varname

QUEUE

queid

MKDIR dirid

READ listname
DATA.

stem. (UPD

VARDROP varname dirid

VARGET varname dirid

VARPUT varname dirid

WRITE listname
DATA.

stem.

Operands
CKDIR

is a command that checks for an existing RLS directory level.
dirid

specifies a REXX List System directory level identifier. This is partially or fully qualified. Refer to the
CLD command “CLD” on page 371 for more information.

DELETE
is a command that deletes an RLS directory level or RLS list.

listname
specifies a REXX List System list identifier. This is partially or fully qualified.

LPULL
is a command that pulls a record from the top of the queue.

varname
specifies a simple REXX variable name. It does not end in a period, distinguishing a variable name
from a stem name.

QUEUE
specifies the special default name.

queid
is the identifier for a special type of RLS list accessed by LPULL, LPUSH, or LQUEUE.

404 REXX for CICS Transaction Server: User Guide and Reference

LPUSH
is a command that pushes a record onto the top of the queue (LIFO).

LQUEUE
is a command that adds a record to the end of the queue (FIFO).

MKDIR
is a command that creates a new RLS directory level.

READ
is a command that reads records from an RLS list into a stem.

listname
specifies the list identifier.

stem.
specifies the name of a stem. A stem must end in a period; see “Stems” on page 155. The default
stem is DATA..

UPD
enqueues on a list for update.

VARDROP
is a keyword indicating that an RLS variable is deleted.

VARGET
is a command that takes an RLS variable and copies it into a REXX variable of the same name.

VARPUT
is a command that takes a REXX variable and copies it into an RLS variable of the same name.

WRITE
is a command that writes records to an RLS list from a stem.

Return codes
0

Normal return
701

Invalid command
702

Invalid operand
713

Directory not found
715

Directory already exists
716

Directory not specified
723

List not found
726

List not specified
728

List is in update mode
729

List is not in update mode
730

User is not signed on
732

Queue empty

Chapter 30. REXX/CICS commands 405

733
Named queue not found

736
Stem or variable not specified

737
Stem or variable name too long

738
Stem or variable count invalid

743
Block not found

746
CICGETV error

747
GETMAIN error

748
FREEMAIN error

749
ENQ error

750
DEQ error

751
Dynamic area GETMAIN error

752
Error in saved variable data

753
Saved variable not found

754
User not owner of list

SCRNINFO
SCRNINFO returns a two-digit decimal screen height (in lines) in the variable SCRNHT, and returns a
three-digit decimal screen width (in columns) in the variable SCRNWD.

SCRNINFO

Return codes
n

The return code that is passed back by CICS if an error is detected
0

Normal return
-499

Internal error

Example

'SCRNINFO'

Note:

406 REXX for CICS Transaction Server: User Guide and Reference

1. The screen information that is returned is obtained by doing an EXEC CICS ASSIGN SCRNHT(scrnht)
SCRNWD(scrnwd).

2. The values for screen height and screen width is 0 if there is no terminal attached.

SET
SET sets the REXX/CICS processing options for the current user. It is advisable to place any SET
commands that you require in your user profile exec.

SET

1

LANG
ENG

CANFR

ESPAN

FRANC

GER

HANZI

KANJI

UCENG

RETRieve pfkeynn

TERMOUT
TERM

NOTERM

CEBRxxxx

tsq_name

CANCEL

SYSTRACE FULL

OFF

ON

Notes:
1 If no parameters are passed to the SET command, SET creates a stem variable (SET.) that contains
all of the processing options for the user that was created by the SET, SETSYS, or PATH commands.

Operands
LANG

specifies the language that the REXX runtime environment uses for messages and dates.

Multiple REXX/CICS users can use different languages at the same time in the same region.

ENG
English. This is the default.

CANFR
Canadian French

ESPAN
Spanish

FRANC
French

GER
German

Chapter 30. REXX/CICS commands 407

HANZI
Traditional Chinese

KANJi
Kanji

UCENG
Uppercase English

RETRieve
specifies a PF key to retrieve the last line entered.
pfkeynn

specifies the PF key number.
TERMOUT

sends terminal line-mode output to a CICS temporary storage queue (for example, SAY and TRACE
output) even when a terminal is attached.
CANCEL

specifies that line-mode output is not sent to a CICS temporary storage queue.
NOTERM

specifies that terminal line-mode output is not displayed on the terminal.
TERM

specifies that line-mode output is sent to the terminal.
tsq_name

specifies the CICS temporary storage queue name. The default tsq_name is CEBRxxxx where xxxx
is your terminal ID. (If you enter the CEBR transaction without specifying a TSQ name, this is the
default name that is used.)

SYSTRACE
specifies whether REXX/CICS system trace is on. Use this option only under the guidance of IBM
service.

REXX/CICS system trace is emitted only if CICS user trace is also active.

FULL
specifies that basic REXX/CICS system trace (entry and return) and supplementary trace is on, in
addition to exception trace.

OFF
specifies that REXX/CICS system trace is off. Only exception trace is on.

ON
specifies that basic REXX/CICS system trace is on, in addition to exception trace.

Return codes
0

Normal return
421

Invalid SET subcommand
422

Error storing variable
423

Invalid language
426

Invalid or missing RETRIEVE PFkey operand
427

Invalid TERMOUT operand

408 REXX for CICS Transaction Server: User Guide and Reference

428
Invalid or missing SYSTRACE operand

Example

'SET TERMOUT TERM TSQ1'

This example sets the processing option to send terminal line-mode output to temporary storage queue
TSQ1.

SETSYS
SETSYS sets the REXX/CICS processing options for the system. It is advisable to place system-wide
SETSYS commands in the CICSTART exec.

This is an authorized command.

SETSYS LANG
ENG

CANFR

ESPAN

FRANC

GER

HANZI

KANJI

UCENG

RETRieve pfkeynn

PSEUDO OFF

ON

SYSTRACE FULL

OFF

ON

Operands
LANG

specifies the language that the REXX runtime environment uses for messages and dates.
ENG

English. This is the default.
CANFR

Canadian French
ESPAN

Spanish
FRANC

French
GER

German
HANZI

Traditional Chinese

Chapter 30. REXX/CICS commands 409

KANJi
Kanji

UCENG
Uppercase English

RETRieve
specifies a PF key to retrieve the last line entered.
pfkeynn

specifies the PF key number.
PSEUDO

specifies the default region-wide REXX/CICS automatic pseudo-conversational setting. See
“PSEUDO” on page 400.

If this option has not been set before, the automatic pseudo-conversational setting is on.

OFF
specifies that the automatic pseudo-conversational setting is off.

ON
specifies that the automatic pseudo-conversational setting is on.

SYSTRACE
specifies whether REXX/CICS system trace is on. Use this option only under the guidance of IBM
service.

REXX/CICS system trace is emitted only if CICS user trace is also active. If this option has not been
set before, REXX/CICS system trace is off.

FULL
specifies that basic REXX/CICS system trace (entry and return) and supplementary trace is on, in
addition to exception trace.

OFF
specifies that REXX/CICS system trace is off. Only exception trace is on.

ON
specifies that basic REXX/CICS system trace is on, in addition to exception trace.

Return codes
0

Normal return
2721

Invalid SETSYS subcommand
2722

Error storing variable
2723

Invalid language
2726

Invalid or missing RETRIEVE PFkey operand
2728

Invalid or missing SYSTRACE operand
2732

Invalid or missing PSEUDO operand

Example

'SETSYS RETRIEVE 12'

410 REXX for CICS Transaction Server: User Guide and Reference

This example sets PF key 12 as the retrieve key.

SETSYS SYSTRACE ON

This example sets basic REXX/CICS system trace on for all users.

S2C
S2C copies a server REXX variable to a client REXX variable.

S2C server_rexx_varname

client_rexx_varname

Operands
server_rexx_varname

is the name of the server REXX variable copying from.
client_rexx_varname

is the optional name of the client REXX variable copying into. If you do not specify, it defaults to the
same as the server_rexx_varname.

Return codes
0

Normal return
2840

No variable name specified
2841

Error retrieving variable
2842

Error storing variable
2848

No client available

Example

'S2C VARA VARB'

This example shows the contents of the server REXX variable VARA copying into the client REXX variable
VARB. The length of VARB is the same as the length of VARA.

Note:

1. The maximum allowed length for a varname for this command is 250 characters. If a longer name is
specified, only the first 250 characters are used.

2. The maximum length of a variable copied by S2C is 6000 bytes.
3. You can use the S2C command from only a server exec.

TERMID
TERMID returns the four-character CICS terminal ID from the CICS field EIBTRMID in the variable
TERMID.

TERMID

Chapter 30. REXX/CICS commands 411

Return codes
0

Normal return
2921

Error in obtaining terminal ID
2928

Error setting TERMID value

Example

'TERMID'

This example places the CICS terminal ID from the CICS field EIBTRMID in the variable TERMID.

WAITREAD
WAITREAD performs full screen terminal input and places the results into the compound variable.

WAITREAD

The results in the compound variable are as follows:P

WAITREAD.0
contains the number of elements returned.

WAITREAD.1
contains the AID description.

WAITREAD.2
contains the cursor position.

WAITREAD.3 through WAITREAD.n
contains the remaining 3270 fields that have been modified.

Return codes
0

Normal return
3021

No terminal is attached
3099

Internal error

Example

'WAITREAD'

This example reads input from the terminal screen and places the results in the REXX compound variable
WAITREAD.1 through WAITREAD.n.

Note: A read modified is performed to the terminal and an array is returned with information from this
read. The format of these elements is: field_row field_column data

412 REXX for CICS Transaction Server: User Guide and Reference

WAITREQ
WAITREQ is used only in REXX servers, causing the server to wait for a request. After a request is
received, it is placed into REXX variable REQUEST.

WAITREQ

Return codes
0

Normal return
3121

WAITREQ not enabled
3122

Exec not a server
3123

Error saving request variable
3199

Internal error

The return code reflected to the client program is the value of the REXX server variable at entry to the
WAITREQ command, or at exit of the server exec.

Example

'WAITREQ'

This example causes the server exec to be suspended until another request for the server is encountered.
When the request is encountered, the server exec is restored to its presuspended status with a new
request value.

Chapter 30. REXX/CICS commands 413

414 REXX for CICS Transaction Server: User Guide and Reference

Chapter 31. Error numbers and messages
Error codes and their associated CICS messages are listed.

External interfaces to the language processor can generate three error messages either before the
language processor gains control. or after control has left the language processor. Therefore, SIGNAL ON
SYNTAX cannot trap the following errors:

• 3 and 5 (if the initial requirements for storage could not be met)
• 26 (if on exit the returned string could not be converted to form a valid return code)

Error 4 can be trapped only by SIGNAL ON HALT or CALL ON HALT.

The following five errors that the language processor detects cannot be trapped by SIGNAL ON SYNTAX
unless the label SYNTAX appears earlier in the program than the clause with the error:

• 6
• 12
• 13
• 22
• 30

Table 5. Error Codes and CICS Messages

Error code CICS message Error code CICS message

No number CICREX255T Error 26 CICREX466E

Error 3 CICREX451E Error 27 CICREX467E

Error 4 CICREX452E Error 28 CICREX486E

Error 5 CICREX450E Error 29 CICREX487E

Error 6 CICREX453E Error 30 CICREX468E

Error 7 CICREX454E Error 31 CICREX469E

Error 8 CICREX455E Error 32 CICREX492E

Error 9 CICREX456E Error 33 CICREX488E

Error 10 CICREX457E Error 34 CICREX470E

Error 11 CICREX458E Error 35 CICREX471E

Error 12 CICREX459E Error 36 CICREX472E

Error 13 CICREX460E Error 37 CICREX473E

Error 14 CICREX461E Error 38 CICREX489E

Error 15 CICREX462E Error 39 CICREX474E

Error 16 CICREX463E Error 40 CICREX475E

Error 17 CICREX465E Error 41 CICREX476E

Error 18 CICREX491E Error 42 CICREX477E

Error 19 CICREX482E Error 43 CICREX478E

Error 20 CICREX483E Error 44 CICREX479E

Error 21 CICREX464E Error 45 CICREX480E

© Copyright IBM Corp. 1974, 2020 415

Table 5. Error Codes and CICS Messages (continued)

Error code CICS message Error code CICS message

Error 22 CICREX449E Error 46 CICREX218E

Error 23 CICREX1106E Error 47 CICREX219E

Error 24 CICREX484E Error 48 CICREX490E

Error 25 CICREX485E Error 49 CICREX481E

In these messages, the term language processor refers to the REXX/CICS interpreter.

In addition to the error messages in the following section, the language processor issues the following
terminal (unrecoverable) message “CICREX255T” on page 416.

CICREXnnn error messages
CICREX218E Error 46 Invalid variable reference

Explanation

Within an ARG, DROP, PARSE, PULL, or PROCEDURE
instruction, the syntax of a variable reference (a
variable whose value is to be used, indicated by its
name being enclosed in parentheses) is incorrect. The
right parenthesis that should immediately follow the
variable name might be missing.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX219E Error 47 Unexpected label

Explanation

A label, being used incorrectly, was encountered in the
expression being evaluated for an INTERPRET
instruction or in an expression entered during
interactive debug.

System action

Execution stops.

User response

Do not use a label in these expressions.

CICREX255T Insufficient storage for Exec
interpreter

Explanation

There is insufficient storage for the language
processor to initialize itself.

System action

Execution is terminated at the point of the error.

User response

Redefine storage and reissue the command.

CICREX449E Error 22 running fn ft, line nn:
Invalid character string

Explanation

A character string scanned with OPTIONS ETMODE in
effect contains one of the following:

• Unmatched shift-out (SO) and shift-in (SI) control
characters

• An odd number of bytes between the shift-out (SO)
and shift-in (SI) characters.

System action

Execution stops.

User response

Correct the incorrect character string in the EXEC file.

CICREX450E Error 5 running fn ft, line nn: User
storage exhausted or request
exceeds limit

Explanation

While trying to process a program, the language
processor could not get the resources it needed to
continue. (For example, it could not get the space

416 REXX for CICS Transaction Server: User Guide and Reference

needed for its work areas or variables.) The program
that called the language processor might have used up
most of the available storage, or a request for storage
might have been for more than the implementation
maximum.

System action

Execution stops.

User response

Run the exec or macro on its own, or check a program
issuing NUCXLOAD for a possible loop that has not
terminated properly. See your system administrator
for additional storage requirements.

CICREX451E Error 3 running fn ft: Program is
unreadable

Explanation

The REXX program could not be read. This is probably
due to bad data in the exec file or an I/O error.

System action

Execution stops.

User response

Examine and correct the exec file.

Note: Sequence numbers are not allowed in columns
73 through 80 in a REXX exec.

CICREX452E Error 4 running fn ft, line nn:
Program interrupted

Explanation

The system interrupted execution of your REXX
program. Certain utility modules might force this
condition if they detect a disastrous error condition.

System action

Execution stops.

User response

Look for a problem with a utility module called in your
exec or macro.

CICREX453E Error 6 running fn ft, line nn:
Unmatched /* or quote

Explanation

A comment or literal string was started but never
finished. This could be because the language
processor detected:

• The end of the file (or the end of data in an
INTERPRET statement) without finding the ending
*/ for a comment or the ending quote for a literal
string

• The end of the line for a literal string.

System action

Execution stops.

User response

Edit the exec and add the closing */ or quote. You can
also insert a TRACE SCAN statement at the top of your
program and rerun it. The resulting output should
show where the error exists.

CICREX454E Error 7 running fn ft, line nn:
WHEN or OTHERWISE expected

Explanation

The language processor expects a series of WHENs
and an OTHERWISE in a SELECT statement. This
message is issued when any other instruction is found,
or if all WHEN expressions are found to be false and an
OTHERWISE is not present. The error is often caused
by forgetting the DO and END instructions around the
list of instructions following a WHEN. For example:

 WRONG RIGHT

Select Select
 When a1=b1 then When a1=b1 then DO
 Say 'A1 equals B1' Say 'A1 equals
B1'
 exit exit
 Otherwise nop end
 end Otherwise nop
 end

System action

Execution stops.

User response

Make the necessary corrections.

CICREX455E Error 8 running fn ft, line nn:
Unexpected THEN or ELSE

Explanation

The language processor has found a THEN or an ELSE
that does not match a corresponding IF clause. This
situation is often caused by using an incorrect DO-END
in the THEN part of a complex IF-THEN-ELSE
construction. For example,

 WRONG RIGHT

If a1=b1 then do; If a1=b1 then do;

Chapter 31. Error numbers and messages 417

 Say EQUALS Say EQUALS
 exit exit
 else end
 Say NOT EQUALS else
 Say NOT EQUALS

System action

Execution stops.

User response

Make the necessary corrections.

CICREX456E Error 9 running fn ft, line nn:
Unexpected WHEN or OTHERWISE

Explanation

The language processor has found a WHEN or
OTHERWISE instruction outside of a SELECT
construction. You might have accidentally enclosed
the instruction in a DO-END construction by leaving off
an END instruction, or you might have tried to branch
to it with a SIGNAL statement (which cannot work
because the SELECT is then terminated).

System action

Execution stops.

User response

Make the necessary correction.

CICREX457E Error 10 running fn ft, line nn:
Unexpected or unmatched END

Explanation

The language processor has found more ENDs in your
program than DOs or SELECTs, or the ENDs were
placed so that they did not match the DOs or SELECTs.
Putting the name of the control variable on ENDs that
close repetitive loops can help locate this kind of error.

This message can be caused if you try to signal into the
middle of a loop. In this case, the END will be
unexpected because the previous DO will not have
been executed. Remember, also, that SIGNAL
terminates any current loops, so it cannot be used to
transfer control from one place inside a loop to
another.

This message can also be caused if you place an END
immediately after a THEN or ELSE construction or if
you specified a name on the END keyword that does
not match the name following DO.

System action

Execution stops.

User response

Make the necessary corrections. It can be helpful to
use TRACE Scan to show the structure of the program,
making it easier to find your error. Putting the name of
the control variable on ENDs that close repetitive loops
can also help locate this kind of error.

CICREX458E Error 11 running fn ft, line nn:
Control stack full

Explanation

This message is issued if you exceed the limit of 250
levels of nesting of control structures (DO-END, IF-
THEN-ELSE, and so forth) or when user storage limit is
reached, whichever is less.

This message could be caused by a looping
INTERPRET instruction, such as:

line='INTERPRET line'
INTERPRET line

These lines would loop until they exceeded the nesting
level limit and this message would be issued. Similarly,
a recursive subroutine that does not terminate
correctly could loop until it causes this message.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX459E Error 12 running fn ft, line nn:
Clause too long

Explanation

You have exceeded the limit for the length of the
internal representation of a clause. The actual limit is
the amount of storage that can be obtained on a single
request.

If the cause of this message is not obvious, it might be
because of a missing quote that has caused a number
of lines to be included in one long string. In this case,
the error probably occurred at the start of the data
included in the clause traceback (flagged by +++ on
the console).

The internal representation of a clause does not
include comments or multiple blanks that are outside
of strings. Note also that any symbol (name) or string
gains two characters in length in the internal
representation.

418 REXX for CICS Transaction Server: User Guide and Reference

System action

Execution stops.

User response

Make the necessary corrections.

CICREX460E Error 13 running fn ft, line nn:
Invalid character in program

Explanation

The language processor found an incorrect character
outside of a literal (quoted) string. Valid characters
are:

• A-Z a-z 0-9 (alphanumeric characters)
• @ # $ ¢ . ? ! _ (name characters)
• & * () - + = \ ¬ ' " ; : < , > / | (special characters)

If surrounded by X'0E' (shift-out) and X'0F' (shift-in),
and if ETMODE is on, the following are also valid
characters:

• X'41' - X'FE' (DBCS Characters)

Some causes of this error are:

1. Using accented and other language-specific
characters in symbols.

2. Using DBCS characters without ETMODE in effect.

Note: The following characters might display
differently in the REXX online help depending on the
code page used in your emulator configuration: @ # $
¢. See also .

System action

Execution stops.

User response

Make the necessary corrections.

CICREX461E Error 14 running fn ft, line nn:
Incomplete DO/SELECT/IF

Explanation

The language processor has reached the end of the file
(or end of data for an INTERPRET instruction) and has
found that there is a DO or SELECT without a matching
END, or an IF that is not followed by a THEN clause.

System action

Execution stops.

User response

Make the necessary corrections. You can use TRACE
Scan to show the structure of the program, making it
easier to find where the missing END or THEN should
be. Putting the name of the control variable on ENDs
that close repetitive loops can also help locate this
kind of error.

CICREX462E Error 15 running fn ft, line nn:
Invalid hexadecimal or binary
string

Explanation

Binary strings are new in REXX and the language
processor might now be considering the string in your
statement to be binary when that was not your
intention.

For the language processor, hexadecimal strings
cannot have leading or trailing blanks and can have
imbedded blanks only at byte boundaries. Only the
digits 0-9 and the letters a-f and A-F are allowed.
Similarly, binary strings can have blanks only at the
boundaries of groups of four binary digits, and only the
digits 0 and 1 are allowed.

The following are all valid hexadecimal or binary
constants:

'13'x '0101 1100'b
'A3C2 1c34'x '001100'B
'1de8'x "0 11110000"b

You might have mistyped one of the digits, for
example, typing a letter o instead of 0. Or you might
have put the 1-character symbol X, x, B, or b (the
name of the variable X or B, respectively) after a literal
string, when the string is not intended as a
hexadecimal or binary specification. In this case, use
the explicit concatenation operator (||) to
concatenate the string to the value of the symbol.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX463E Error 16 running fn ft, line nn:
Label not found

Explanation

The language processor could not find the label
specified by a SIGNAL instruction or a label matching
an enabled condition when the corresponding
(trapped) event occurred. You might have mistyped
the label or forgotten to include it, or you might have

Chapter 31. Error numbers and messages 419

typed it in mixed case when it needs to be in
uppercase.

System action

Execution stops. The name of the missing label is
included in the error traceback.

User response

Make the necessary corrections.

CICREX464E Error 21 running fn ft, line nn:
Invalid data on end of clause

Explanation

You have followed a clause, such as SELECT or NOP,
by some data other than a comment.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX465E Error 17 running fn ft, line nn:
Unexpected PROCEDURE

Explanation

The language processor encountered a PROCEDURE
instruction in an incorrect position. This could occur
because no internal routines are active, because a
PROCEDURE instruction has already been
encountered in the internal routine, or because the
PROCEDURE instruction was not the first instruction
executed after the CALL or function invocation. This
error can be caused by "dropping through" to an
internal routine, rather than invoking it with a CALL or a
function call.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX466E Error 26 running fn ft, line nn:
Invalid whole number

Explanation

The language processor found an expression in the
NUMERIC instruction, a parsing positional pattern, or
the right-hand term of the exponentiation (**) operator

that did not evaluate to a whole number, or was
greater than the limit, for these uses, of 999999999.

This message can also be issued if the return code
passed back from an EXIT or RETURN instruction
(when a REXX program is called as a command) is not
a whole number or will not fit in a general register. This
error might be caused by mistyping the name of a
symbol so that it is not the name of a variable in the
expression on any of these statements. This might be
true, for example, if you entered "EXIT CR" instead of
"EXIT RC".

System action

Execution stops.

User response

Make the necessary corrections.

CICREX467E Error 27 running fn ft, line nn:
Invalid DO syntax

Explanation

The language processor found a syntax error in the DO
instruction. You might have used BY, TO, FOR, WHILE,
OR UNTIL twice, or used a WHILE and an UNTIL.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX468E Error 30 running fn ft, line nn:
Name or string > 250 characters

Explanation

The language processor found a variable or a literal
(quoted) string that is longer than the limit.

The limit for names is 250 characters, following any
substitutions. A possible cause of this error is the use
of a period (.) in a name, causing an unexpected
substitution.

The limit for a literal string is 250 characters. This
error can be caused by leaving off an ending quote (or
putting a single quote in a string) because several
clauses can be included in the string. For example, the
string 'don't' should be written as 'don''t' or
"don't".

System action

Execution stops.

420 REXX for CICS Transaction Server: User Guide and Reference

User response

Make the necessary corrections.

CICREX469E Error 31 running fn ft, line nn:
Name starts with number or .

Explanation

The language processor found a symbol whose name
begins with a numeric digit or a period (.). The REXX
language rules do not allow you to assign a value to a
symbol whose name begins with a number or a period
because you could then redefine numeric constants,
and that would be catastrophic.

System action

Execution stops.

User response

Rename the variable correctly. It is best to start a
variable name with an alphabetic character, but some
other characters are allowed.

CICREX470E Error 34 running fn ft, line nn:
Logical value not 0 or 1

Explanation

The language processor found an expression in an IF,
WHEN, DO WHILE, or DO UNTIL phrase that did not
result in a 0 or 1. Any value operated on by a logical
operator (¬, \, |, &, or &&) must result in a 0 or 1. For
example, the phrase "If result then exit rc" will fail if
result has a value other than 0 or 1. Thus, the phrase
would be better written as If result¬=0 then
exit rc.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX471E Error 35 running fn ft, line nn:
Invalid expression

Explanation

The language processor found a grammatical error in
an expression. This could be because:

• You ended an expression with an operator.
• You specified, in an expression, two operators next

to one another with nothing in between them.
• You did not specify an expression when one was

required.

• You did not specify a right parenthesis when one was
required.

• You used special characters (such as operators) in
an intended character expression without enclosing
them in quotation marks.

An example of the last case is that LISTFILE * * *
should be written as LISTFILE '* * *' (if LISTFILE
is not a variable) or even as 'LISTFILE * * *'.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX472E Error 36 running fn ft, line nn:
Unmatched (in expression

Explanation

The language processor found an unmatched
parenthesis in an expression. This message occurs if
you include a single parenthesis in a command without
enclosing it in quotation marks. For example, write
COPY A B C A B D (REP as COPY A B C A B D
'('REP.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX473E Error 37 running fn ft, line nn:
Unexpected , or)

Explanation

The language processor found a comma (,) outside a
routine invocation or too many right parentheses in an
expression. This message occurs if you include a
comma in a character expression without enclosing it
in quotation marks. For example, the following
instruction:

Say Enter A, B, or C

should be written as:

Say 'Enter A, B, or C'

System action

Execution stops.

Chapter 31. Error numbers and messages 421

User response

Make the necessary corrections.

CICREX474E Error 39 running fn ft, line nn:
Evaluation stack overflow

Explanation

The language processor was not able to evaluate the
expression because it is too complex (such as many
nested parentheses and functions).

System action

Execution stops.

User response

Break up the expressions by assigning subexpressions
to temporary variables.

CICREX475E Error 40 running fn ft, line nn:
Invalid call to routine

Explanation

The language processor encountered an incorrectly
used call to a routine. Some possible causes are:

• You passed incorrect data (arguments) to the built-in
or external routine (this depends on the actual
routine).

• You passed too many arguments to the built-in,
external, or internal routine.

• The module invoked was not compatible with the
language processor.

If you were not trying to invoke a routine, you might
have a symbol or a string adjacent to a parenthesis
(when you meant it to be separated by a space or an
operator. This causes it to be seen as a function call.
For example, TIME(4+5) should probably be written as
TIME*(4+5).

System action

Execution stops.

User response

Make the necessary corrections.

CICREX476E Error 41 running fn ft, line nn: Bad
arithmetic conversion

Explanation

The language processor found a term in an arithmetic
expression that was not a valid number or that had an

exponent outside the allowed range of -999999999 to
+999999999.

You might have mistyped a variable name, or included
an arithmetic operator in a character expression
without putting it in quotation marks. For example, the
command MSG * Hi! should be written as 'MSG *
Hi!', otherwise the language processor will try to
multiply "MSG" by "Hi!".

System action

Execution stops.

User response

Make the necessary corrections.

CICREX477E Error 42 running fn ft, line nn:
Arithmetic overflow/underflow

Explanation

The language processor encountered a result of an
arithmetic operation that required an exponent greater
than the limit of 9 digits (more than 999999999 or
less than -999999999).

This error can occur during evaluation of an expression
(often as a result of trying to divide a number by 0), or
during the stepping of a DO loop control variable.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX478E Error 43 running fn ft, line nn:
Routine not found

Explanation

The language processor was unable to find a routine
called in your program. You invoked a function within
an expression, or in a subroutine invoked by CALL, but
the specified label is not in the program, or is not the
name of a built-in function, and REXX/CICS cannot
locate it externally.

The simplest, and probably most common, cause of
this error is mistyping the name. Another possibility
might be that one of the standard function packages is
not available.

If you were not trying to invoke a routine, you might
have put a symbol or string adjacent to a "(" when you
meant it to be separated by a space or operator. The
language processor would see that as a function

422 REXX for CICS Transaction Server: User Guide and Reference

invocation. For example, the string 3(4+5) should be
written as 3*(4+5).

System action

Execution stops.

User response

Make the necessary corrections.

CICREX479E Error 44 running fn ft, line nn:
Function did not return data

Explanation

The language processor invoked an external routine
within an expression. The routine seemed to end
without error, but it did not return data for use in the
expression.

This might be caused by specifying the name of a
module that is not intended for use as a REXX function.
It should be called as a command or subroutine.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX480E Error 45 running fn ft, line nn: No
data specified on function RETURN

Explanation

A REXX program has been called as a function, but an
attempt is being made to return (by a RETURN;
instruction) without passing back any data. Similarly,
an internal routine, called as a function, must end with
a RETURN statement specifying an expression.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX481E Error 49 running fn ft, line nn:
Language processor failure

Explanation

The language processor carries out numerous internal
self-consistency checks. It issues this message if it
encounters a severe error.

System action

Execution stops.

User response

Report any occurrence of this message to your IBM
representative.

CICREX482E Error 19 running fn ft, line nn:
String or symbol expected

Explanation

The language processor expected a symbol following
the CALL or SIGNAL instructions, but none was found.
You might have omitted the string or symbol, or you
might have inserted a special character (such as a
parenthesis) in it.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX483E Error 20 running fn ft, line nn:
Symbol expected

Explanation

The language processor either expected a symbol
following the CALL ON, CALL OFF, END, ITERATE,
LEAVE, NUMERIC, PARSE, PROCEDURE, SIGNAL ON,
or SIGNAL OFF keywords or expected a list of symbols
or variable references following the DROP, UPPER, or
PROCEDURE (with EXPOSE option) keywords. Either
there was no symbol when one was required or some
other characters were found.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX484E Error 24 running fn ft, line nn:
Invalid TRACE request

Explanation

The language processor issues this message when:

• The action specified on a TRACE instruction, or the
argument to the TRACE built-in function, starts with
a letter that does not match one of the valid
alphabetic character options. The valid options are
A, C, E, F, I, L, N, O, R, or S.

Chapter 31. Error numbers and messages 423

• An attempt is made to request TRACE Scan when
inside any control construction or while in interactive
debug

• In interactive trace, you enter a number that is not a
whole number.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX485E Error 25 running fn ft, line nn:
Invalid sub-keyword found

Explanation

The language processor expected a specific sub-
keyword at this position in an instruction and
something else was found. For example, the NUMERIC
instruction must be followed by the sub-keyword
DIGITS, FUZZ, or FORM. If NUMERIC is followed by
anything else, this message is issued.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX486E Error 28 running fn ft, line nn:
Invalid LEAVE or ITERATE

Explanation

The language processor encountered an incorrect
LEAVE or ITERATE instruction. The instruction was
incorrect because of one of the following:

• No loop is active.
• The name specified on the instruction does not

match the control variable of any active loop.

Note that internal routine calls and the INTERPRET
instruction protect DO loops by making them inactive.
Therefore, for example, a LEAVE instruction in a
subroutine cannot affect a DO loop in the calling
routine.

You can cause this message to be issued if you use the
SIGNAL instruction to transfer control within or into a
loop. A SIGNAL instruction terminates all active loops,
and any ITERATE or LEAVE instruction issued then
would cause this message to be issued.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX487E Error 29 running fn ft, line nn:
Environment name too long

Explanation

The language processor encountered an environment
name specified on an ADDRESS instruction that is
longer than the limit of 8 characters.

System action

Execution stops.

User response

Specify the environment name correctly.

CICREX488E Error 33 running fn ft, line nn:
Invalid expression result

Explanation

The language processor encountered an expression
result that is incorrect in its specific context. The result
might be incorrect in one of the following:

• ADDRESS VALUE expression
• NUMERIC DIGITS expression
• NUMERIC FORM VALUE expression
• NUMERIC FUZZ expression
• OPTIONS expression
• SIGNAL VALUE expression
• TRACE VALUE expression.

(FUZZ must be smaller than DIGITS.)

System action

Execution stops.

User response

Make the necessary corrections.

CICREX489E Error 38 running fn ft, line nn:
Invalid template or pattern

Explanation

The language processor found an incorrect special
character, for example %, within a parsing template,
or the syntax of a variable trigger was incorrect (no

424 REXX for CICS Transaction Server: User Guide and Reference

symbol was found after a left parenthesis). This
message is also issued if the WITH sub-keyword is
omitted in a PARSE VALUE instruction.

System action

Execution stops.

User response

Make the necessary corrections.

CICREX490E Error 48 running fn ft, line nn:
Failure in system service

Explanation

The language processor halts execution of the
program because some system service, such as user
input or output or manipulation of the console stack,
has failed to work correctly.

System action

Execution stops.

User response

Ensure that your input is correct and that your program
is working correctly. If the problem persists, notify
your system support personnel.

CICREX491E Error 18 running fn ft, line nn:
THEN expected

Explanation

All REXX IF and WHEN clauses must be followed by a
THEN clause. Another clause was found before a THEN
statement was found.

System action

Execution stops.

User response

Insert a THEN clause between the IF or WHEN clause
and the following clause.

CICREX492E Error 32 running fn ft, line nn:
Invalid use of stem

Explanation

The REXX program attempted to change the value of a
symbol that is a stem. (A stem is that part of a symbol
up to the first period. You use a stem when you want
to affect all variables beginning with that stem.) This
might be in the UPPER instruction where the action in
this case is unknown, and therefore in error.

System action

Execution stops.

User response

Change the program so that it does not attempt to
change the value of a stem.

CICREX1106E Error 23 running fn ft, line nn:
Invalid SBCS/DBCS mixed string.

Explanation

A character string that has unmatched SO-SI pairs
(that is, an SO without an SI) or an odd number of
bytes between the SO-SI characters was processed
with OPTIONS EXMODE in effect.

System action

Execution stops.

User response

Correct the incorrect character string.

Chapter 31. Error numbers and messages 425

426 REXX for CICS Transaction Server: User Guide and Reference

Chapter 32. Return Codes
The REXX/CICS return codes are listed.

A command might also return a return code that is listed in “Return codes not associated with a specific
command” on page 440.

Panel facility return codes
4

Warning. Panel facility continues processing
8

Programmer error
10

Programmer error with state information
12

CICS command error
14

RFS errors; reason code contains the RFS return code
16

Internal system error

See Chapter 29, “REXX/CICS Panel Facility,” on page 327, for additional codes (for example: state and
reason codes).

SQL return codes
n

An SQLCODE if the SQL statement resulted in an error or warning
0

The SQL statement was processed by the EXECSQL environment
30

There was not enough memory to build the SQLDSECT variable
31

There was not enough memory to build the SQL statement area
32

There was not enough memory to build the SQLDA variable
33

There was not enough memory to build the results area for the SELECT statement

Db2 return codes
n

A positive value that indicates the results of the call to the Db2 instrumentation facility interface (IFI).
If the RC from the Db2 IFI is not zero, the REXX variable DB2_RC2 contains the Db2 IFI reason code.
The DB2_RC2 value is used in conjunction with the RC by using Db2 codes in Db2 for z/OS product
documentation for error determination.

0
The Db2 command was processed by the Db2 IFI.

© Copyright IBM Corp. 1974, 2020 427

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/codes/src/tpc/db2z_codes.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/codes/src/tpc/db2z_codes.html

50

The specified Db2 command is either too short or too long to be accepted for processing by the Db2
IFI. The Db2 command cannot be less than 6 or greater than 4092 characters long.

51
There was not enough memory to build the output area for the Db2 IFI.

52
There was not enough memory to build the communications area for the Db2 IFI.

53
There was not enough memory to build the return area for the Db2 IFI.

54
The DB2_RC2 REXX variable could not be built.

55
The DB2_BNM REXX variable could not be built.

56
The DB2_OUTPUT.n REXX variable could not be built.

57
The DB2_OUTPUT.0 REXX variable could not be built.

RFS and FLST
0

Normal return
101

Invalid command
102

Invalid operand
103

File not found
104

Not authorized
105

File already exists
107

Insufficient space in filepool
110

Request failed
111

Invalid file ID
113

Directory not found
115

Directory already exists
116

Directory not specified
121

File corrupted
122

Invalid or out of range stem.0

428 REXX for CICS Transaction Server: User Guide and Reference

126
Path error

127
CICS I/O error

128
Command not valid from this location

130
Directory not empty

131
Missing operand

132
Missing file pool data record. File pool is probably not formatted.

199
Internal error

EDITOR and EDIT
0

Normal return
201

Invalid command
202

Invalid operand
203

File not found
204

Not authorized
207

Insufficient space in filepool
210

Request failed
211

Invalid file ID
223

Search argument not found
226

File is currently being edited
229

Number out of range
230

Cursor is not in file area
231

Out of virtual storage
232

Prefix command conflict
236

Not defined
299

Internal error

Chapter 32. Return Codes 429

1748
No entry for ddname in Task Input/Output Table (TIOT)

1749
Cannot export to multi unit dataset

1750
ddname has more than one dataset in concatenation

DIR
0

Normal return
321

Cannot access current RFS directory information
322

Invalid stem name
325

Error retrieving RFS directory

SET
0

Normal return
421

Invalid SET subcommand
422

Error storing variable
423

Invalid language
426

Invalid RETRIEVE PFkey operand
427

Invalid TERMOUT operand

CD
0

Normal return
521

Error in retrieving filepool definition
522

Error in creating default RFS directory
523

Error in storing current RFS directory information
524

RFS directory does not exist or access not authorized
525

Error in retrieving directory information
526

Invalid filepool/directory

430 REXX for CICS Transaction Server: User Guide and Reference

527
Cannot go back past root directory

528
Error setting result value

PATH
0

Normal return
625

Error retrieving path information
626

Invalid RFS directory name
627

Invalid PDS name
628

Error setting RESULT value
629

Invalid dataset name
630

Error storing path information
631

No path currently defined
632

Resulting PATH contains no RFS directories or PDS names

RLS
0

Normal return
701

Invalid command
702

Invalid operand
713

Directory not found
715

Directory already exists
716

Directory not specified
723

List not found
726

List not specified
728

List is in update mode
729

List is not in update mode

Chapter 32. Return Codes 431

730
User is not signed on

732
Queue empty

733
Named queue not found

736
Stem or variable not specified

737
Stem or variable name too long

738
Stem or variable count invalid

743
Block not found

746
CICGETV error

747
GETMAIN error

748
FREEMAIN error

749
ENQ error

750
DEQ error

751
Dynamic area GETMAIN error

752
Error in saved variable data

753
Saved variable not found

754
User not owner of list

LISTCMD
0

Normal return
821

Invalid environment name
822

Invalid command name

CLD
0

Normal return
923

Error in storing current RLS directory information

432 REXX for CICS Transaction Server: User Guide and Reference

924
RLS directory does not exist or access not authorized

925
Error in retrieving directory information

926
Invalid directory

927
Cannot go back past root directory

928
Error setting result value

DEFCMD
0

Normal return
1001

Invalid command
1021

Cannot load program
1023

Entry not found
1048

No client available
1099

Internal error

DEFSCMD
0

Normal return
1101

Invalid command
1121

Cannot load program
1123

Entry not found
1148

No client available
1199

Internal error

DEFTRNID
0

Normal return
1202

Invalid operand
1222

Invalid option

Chapter 32. Return Codes 433

1223
Error storing trantable information

1225
Error retrieving trantable information

1226
Exec name length error

1228
Error setting trantable value

1233
Transaction not found in table

EXECDROP
0

Normal return
1401

Invalid command
1402

Invalid operand
1423

Error storing EXECLOAD information
1425

Error retrieving EXECLOAD information
1448

No client available

EXECLOAD
0

Normal return
1501

Invalid command
1502

Invalid operand
1523

Error storing EXECLOAD information
1525

Error retrieving EXECLOAD information
1530

Unable to link to CICPDS routine
1531

Error returned from CICPDS routine
1532

Error returned from RFS READ
1533

Error returned from PDS build
1547

GETMAIN error

434 REXX for CICS Transaction Server: User Guide and Reference

1548
No client available

1599
Internal error

EXECMAP
0

Normal return
1623

EXECLOAD directory not found

ALLOC and FREE
The return code given by SVC 99

For more information, see z/OS MVS Programming: Authorized Assembler Services Guide.
1702

Invalid operand

EXPORT and IMPORT
0

Normal return
1701

Invalid command
1702

Invalid operand
1723

RFS write error
1724

RFS read error
1725

Dynamic allocation failed
1726

Dynamic free failed
1727

Transient data queue open failed
1728

Member not enqueued
1729

Member in use
1730

Records truncated
1733

Input for export not found
1735

Transient data error
1736

Unexpected CICS error

Chapter 32. Return Codes 435

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/toc.htm

1737
Invalid request

1738
Invalid dataset name

1739
Invalid disposition

1741
Unsupported DSORG

1742
Error building transient data pool

1743
REXX transient data queue not available/found

1744
User not signed on/authorized for dataset access

1745
Empty dataset

1746
REXX queue not found

1748
No entry for ddname in Task Input/Output Table (TIOT)

1749
Cannot export to multi unit dataset

1750
ddname has more than one dataset in concatenation

1799
Internal error

FILEPOOL
0

Normal return
1802

Invalid operand
1821

Invalid file pool subcommand
1822

Filepool subcommand not specified
1823

Error storing file pool information
1824

File pool ID not specified
1825

Error retrieving file pool information
1826

Invalid file pool ID
1827

Invalid file pool data retrieved
1828

File pool not defined

436 REXX for CICS Transaction Server: User Guide and Reference

1829
RFS could not add library to file pool

1830
RFS could not create users directory

1831
DDNAME for file pool must be specified

1832
Invalid DDNAME

1833
File pool variable corrupted

1834
Pool ID already exists

1835
DDNAME already used

1836
Could not format file pool

1837
File pool needs to be formatted first

1838
File pool ADD record is full

1839
File ID is not found

GETVERS
0

Normal return
1910

Request failed

COPYR2S
0

Normal return
2002

Invalid operand
2021

Invalid structure definition
2022

Invalid variable structure definition
2023

Field name not found
2025

Failure processing GETVAR request
2026

Invalid numeric input
2027

RFS read error

Chapter 32. Return Codes 437

2028
Invalid offset

2029
Invalid length value

COPYS2R
0

Normal return
2102

Invalid operand
2121

Invalid structure definition
2122

Invalid variable structure definition
2123

Field name not found
2125

Failure processing GETVAR request
2126

Invalid numeric input
2127

RFS read error
2128

Invalid offset
2129

Invalid length value

LISTPOOL
0

Normal return
2225

Error retrieving filepool information
2226

Invalid stem variable name

LISTTRNID
0

Normal return
2325

Error retrieving trantable information

C2S
0

Normal return

438 REXX for CICS Transaction Server: User Guide and Reference

2440
No variable name specified

2441
Error retrieving variable

2442
Error storing variable

2448
No client available

PSEUDO
0

Normal return
2502

Invalid operand
2521

Operand not specified

AUTHUSER
0

Normal return
2602

Invalid operand or operand missing
2621

Specified user ID invalid length
2642

Error storing user ID

SETSYS
0

Normal return
2721

Invalid SETSYS subcommand
2722

Error storing variable
2723

Invalid language
2726

Invalid RETRIEVE PFkey operand
2727

Invalid TERMOUT operand
2732

Invalid PSEUDO operand

Chapter 32. Return Codes 439

S2C
0

Normal return
2840

No variable name specified
2841

Error retrieving variable
2842

Error storing variable
2848

No client available

TERMID
0

Normal return
2921

Error in obtaining terminal ID
2928

Error setting TERMID value

WAITREAD
0

Normal return
3021

No terminal is attached
3099

Internal error

WAITREQ
0

Normal return
3121

WAITREQ not enabled
3122

Exec not a server
3123

Error saving request variable
3199

Internal error

Return codes not associated with a specific command
-3

Exec not found or unrecognized command.

440 REXX for CICS Transaction Server: User Guide and Reference

-4
User not an authorized user, or EXEC not allowed to use authorized commands.

-5
TWA size was not specified, or TWA size specified was less than 4 characters in length for this CICS
transaction definition.

-6
REXX/CICS started with a CICS LINK and less than 16 characters provided in the communications
area. Or REXX/CICS started with a CICS XCTL and either the communications area does not contain an
MVS SIB type 1 control block, or the communications area length is less than 16 characters.

-99
Internal error

EXEC
n

The return code that is set by the exit of the called exec. See “EXIT” on page 172.
0

Normal return
-3

Exec not found
-10

Exec name not specified
-11

Invalid exec name
-12

GETMAIN error
-99

Internal error

CEDA and CEMT
n

The return code that is passed back by CICS if an error is detected. Calling CEMT from REXX uses the
DFHEMTA (CEMT programmable interface), so the codes returned will be those for the CEMT
command. Possible return codes for CEMT are:
1

NOT FOUND
2

CLASS NOT FOUND
3

ERROR
4

BEGINS WITH DFH
5

CHANGE INVALID
6

CANNOT NEWCOPY
7

NOT AUTHORIZED

Chapter 32. Return Codes 441

8
OPTION CONFLICT

9
PRIORITY > 255

10
NOT FOR CONSOLE

11
PROGRAM NOT FOUND

12
INVALID AUTHID

13
INVALID ATI / TTI

14
IS NOT INTRA

15
OPEN/SWITCH FAIL

16
SDUMP BUSY

17
NOT SUCCESSFUL

18
0>=TRIGGER>32767

19
NOT FOR INDIRECT

20
0>MAXIMUM>999

21
IS NOT EXTRA

22
OPEN/CLOSE FAILED

23
SDUMP SUPPRESSED

24
BEGINS WITH C

25
NOT ACTIVE

26
NOT CLOSED

27
NOT FOR SYS LOG

28
ALREADY EXISTS

29
CATALOG I/O ERROR

30
1>MAXTASKS>2000

31
NOT FOR REMOTE

32
NOSTG DSALIMIT

442 REXX for CICS Transaction Server: User Guide and Reference

33
0>AGING>65535

34
AKP NOT IN SYSTEM

35
MAXT. < AMAXT.

36
NOT IN SYSTEM

37
INVALID COMAUTHID

38
50>AKP>65535

39
CATALOG FULL

40
2M>DSALIMIT>16M

41
1>MAXACTIVE>999

42
INVALID DUMPCODE

43
INVALID DB2ID

44
500>RUN. >2700000

45
100>TIME>3600000

46
BAD TRANSAC CLASS

47
TIME < SCANDELAY

48
CEILING REACHED

49
1>MROBATCH>255

50
48M>EDSALIM>2047M

51
CLOSE FAILED

52
NOT FOR BDAM

53
CLOCK INOPERATIVE

54
NOT VALID VTAM

55
NOT FOR PATH

56
OPEN FILE

57
BEING CLOSED

Chapter 32. Return Codes 443

58
BEING IMMCLOSED

59
0>SCANDELAY>5000

60
NOT FOR SNASVCMG

61
NOT FOR THIS TASK

62
NOT FOR YOUR TERM

63
INVALID MSGQUEUE

64
NOT FOR YOUR LINE

65
QUEUE IS DISABLED

66
NOSTG EDSALIMIT

67
PARTIAL DUMP

68
DDNAME NOT FOUND

69
BEING ACQUIRED

70
BEING FORCECLOSED

71
NOT FOR HOLD PROG

72
LOAD FAILED

73
SDUMP FAILED

74
EMPTY OR NOT CLSD

75
NOT DISABLED

76
CLOSE REQUESTED

77
BEING OPENED

78
BEING UNENABLED

79
BEING DISABLED

80
BEING QUIESCED

81
SEE MSG DFHIR3793

82
START/SWITCH FAIL

444 REXX for CICS Transaction Server: User Guide and Reference

83
INVALID PLAN

84
INVALID INTERVAL

85
OUT &¬REL INVALID

86
SEE MSG DFHIR3768

87
SEE MSG DFHIR3786

88
NOT FOR MAPSET

89
SEE MSG DFHIR3771

90
NOT FOR PARTITION

91
SEE MSG DFHIR3773

92
INV DSRTPROGRAM

93
SEE MSG DFHIR3775

94
SEE MSG DFHIR3776

95
SEE MSG DFHIR3777

96
SEE MSG DFHIR3778

97
SEE MSG DFHIR3779

98
SEE MSG DFHIR3780

99
SEE MSG DFHIR3781

100
SEE MSG DFHIR3791

101
ONLY FOR VTAM

102
GOING OUT

103
SPECIFY NUMBER

104
NUMBER ERROR

105
NEGPOLL INVALID

106
>20000

107
INVALID ENDOFDAY

Chapter 32. Return Codes 445

108
MAX | SHUTDOWN

109
LINE DCB NOT OPEN

110
INV PLANEXITNAME

111
SET FAILED

112
REMOVE FAILED

113
INVALID SIGNID

114
FILECOUNT > 0

115
INV STATSQUEUE

116
BACKOUT FAILED

117
INV COMTHREADLIM

118
>MAXIMUM

119
INV PURGECYCLE

120
IS INDOUBT

121
4>TCBLIMIT>2000

122
CONNECTION ¬ACQD

123
DATASET QUIESCING

124
IN PROGRESS

125
DATASET UNAVAIL

126
DATASET QUIESCED

127
BACKUP OCCURRING

128
RESOURCE MISSING

129
STATS MISSING

130
IS SIT PARAMETER

131
CANNOT LOAD PLT

132
INV THREADLIMIT

446 REXX for CICS Transaction Server: User Guide and Reference

133
NO DATASET

134
RECOVERY REQUIRED

135
PURGE FAILED

136
FILE IN USE

137
ONLY FOR BDAM

138
STOPPED

139
SEE MSG DFHIR3798

140
PROGRAM IS URM

141
IN USE

142
IN USE BY ICE

143
IN USE BY PCT

144
NOT RELEASED

145
DELETE FAILED

146
INVALID RECOVSTAT

147
NOT OUTSERVICE

148
INV PROTECTNUM

149
INVALID DB2ENTRY

150
IS ENABLED EXIT

151
INV DTRPROGRAM

152
IN USE BY AID

153
NOT FOR SESSION

154
NOT FOR PIPELINE

155
NOT DISCARDABLE

156
NOT LOCAL SYSTEM

157
NOT FOR SYSTEM

Chapter 32. Return Codes 447

158
NOT FOR MODEL

159
NO ACTION

160
CANNOT LOAD XLT

161
ISC NOT DEFINED

162
ALREADY ACTIVE

163
INVALID TRANSID

164
DUPLICATE TRANSID

165
NO BWO SUPPORT

166
DSNB IS INVALID

167
DSNB BDAM OR PATH

168
UPDATE COUNT > 0

169
DSN ¬ SMS MANAGED

170
BWO ERROR

171
DFHTMP ERROR

172
PRESET SIGNON ERR

173
NOT FOR CPSVCMG

174
PRM UNAVAILABLE

175
NOT WHEN XLN DONE

176
INV PROGAUTOINST

177
INV PROGAUTOCTLG

178
INV PROGAUTOEXIT

179
FREE NOT COMPLETE

180
BEING RELEASED

181
REUSE DEFINED

182
UNBLOCKED DEFINED

448 REXX for CICS Transaction Server: User Guide and Reference

183
0< MAX. <99999999

184
FORMAT NOT VARBLE

185
NO LSRPOOL

186
CONNECTING

187
INVALID FREQUENCY

188
0>PURGET.>1000000

189
INVALID PSDINT

190
NOT WITH XRF

191
SETLOGON FAILURE

192
BACK LEVEL VTAM

193
ACB CLOSED

194
RECOVERY ERROR

195
DEFERRED

196
NOT FOR LOCAL SYS

197
SEE MSG DFHIR3799

198
ONLY FOR APPC

199
ESM INACTIVE

200
REGISTER ERROR

201
DEREGISTER ERROR

202
AIDS CANCELED

203
WAITING FOR DB2

204
DB2 INACTIVE

205
INVALID INITPARM

206
NOT REQUIRED

207
STILL CLOSING

Chapter 32. Return Codes 449

208
NO AIDS CANCELED

209
DFSMS CATLG ERROR

210
DSNB REMOVED

211
NO RLS SUPPORT

212
SYSTEM LOCKED

213
SDTRAN NOT FOUND

214
SDTRAN DISABLED

215
SDTRAN SHUT DIS

216
DSN ¬ DFSMS VSAM

217
DATASET MIGRATED

218
INVALID IDLE

219
NOT LU61 OR LU62

220
NETID 0 USE PRFRM

221
SEE MSG DFHZC0178

222
NOT GR REGISTERED

223
ENTER NETID

224
NO AFFINITY FOUND

225
SESSIONS IN USE

226
SEE MSG DFHZC0176

227
DELETE INFLIGHT

228
USED BY INDIRECTS

229
IRC IS OPEN

230
IS ERROR CONSOLE

231
SDTRAN IS REMOTE

232
XRF NOT ACTIVE

450 REXX for CICS Transaction Server: User Guide and Reference

233
SYSID IN ERROR

234
ERR: SHUNTED UOWS

235
SEE MSG DFHZC0173

236
RLS AND CMT

237
DISCONNECTING

238
KEYLENGTH ERROR

239
RECORDSIZE ERROR

240
MISSING POOL NAME

241
INVALID NAME

242
POOL NOT FOUND

243
CONTEN AND RECOV

244
INVALID ACTION

245
LASTUSED<INTERVAL

246
WAITING

247
NO AUDITLOG

248
PARAM MISMATCH

249
NO CFDT SERVER

250
TCPIP CLOSED

251
PORT IN USE

252
PORT NOT AUTH

253
INVALID STATUS

254
PROFILE NOT FOUND

255
ADDRESS UNKNOWN

256
INVALID Q-TYPE

257
1>MAXOPENTCBS>2000

Chapter 32. Return Codes 451

258
NO JVMCLASS SET

259
NOT A JVM PROGRAM

260
INVALID JVMCLASS

261
INVALID DSNAME

262
1>MAXSOCKETS>65535

263
EXCEEDS HARD LIMIT

264
AT MAXSOCKETS

265
TCPIPSERVICE NOT OPENED

266
SESSBEANTIME > 143999

267
RESOURCE NOT INSERVICE

268
MISSING CORBASERVER NAME

269
DJAR IS PENDING RESOLUTION

270
INVALID DB2GROUPID

271
DB2ID & GROUPID ENTERED

272
1>MAXJVMTCBS>999

273
1>MAXXPTCBS>999

274
NOT IIOPLISTENER

275
DSNAPRH NOT FOUND

276
MAXOPENTCBS < DB2CONN TCBLIMIT

277
TCBLIMIT > MAXOPENTCBS

278
DB2 GROUPID NOT FOUND

279
DB2 ID NOT FOUND

280
DJAR CLASH (CORBASERVER SCAN)

281
JVMPROFILE INVALID..SET PROGRAM

282
BEING STARTED

452 REXX for CICS Transaction Server: User Guide and Reference

283
BEING RELOADED

284
BEING ENABLED

285
BEING DISCARDED

286
NOT STARTED

287
NOT STOPPED

288
DB2 RESTART-LIGHT

289
CACHESIZE INVALID

290
TCPIP INACTIVE

291
ATTEMPT FORCE PURGE

292
1>MAXSSLTCBS>1024

293
PIPELINE NOT ENABLED

294
MISSING JVMPROFILE

295
NOT VALID FOR DFHRPL

296
RANKING 10 RESERVED FOR DFHRPL

297
RANKING OUT OF RANGE

298
NO ACQ FOR SEND=0

299
MAXJVMTCBS EXCEEDED

300
PSTYPE=NOPS AND PSDI > 0

301
INV FILELIMIT

302
INV PROGRAMLIMIT

303
INV TSQUEUELIMIT

304
MQNAME IN USE

305
INVALID MQNAME

306
MQNAME NOT FOUND

307
WAITING FOR QMGR

Chapter 32. Return Codes 453

308
1>THREADLIMIT>256

309
NO MORE THREADS

310
THREADS LIMITED

311
DRAINING

312
SEE MSG DFHPI2024

313
EXCESSIVE NUMBER OF ELEMENTS

314
1M>TSMAINLIM>32G

315
ATTEMPT PURGE 1ST

316
USING JVMSERVER

317
INV REUSELIMIT

318
> 25.00% OF MEMLIMIT

319
DEFINED BY BUNDLE

320
SEE MSG DFHSO0123

321
NOT FOR JVM PROG

322
USED BY MGMTPART

Note: Not all return codes are possible in all CICS releases.

0
Normal return

-101
Invalid command

EXECIO
n

The return code that is passed back by CICS if an error is detected
0

Normal return
-202

Invalid operand
-221

Too many operands specified
-222

Recno operand out of range

454 REXX for CICS Transaction Server: User Guide and Reference

-224
Lines operand invalid

CONVTMAP
n

The return code from the attempt to process the MVS dataset
0

Normal return
-302

Invalid operand
-321

Invalid input record
-322

RFS error writing output file

SCRNINFO
n

The return code that is passed back by CICS if an error is detected
0

Normal return
-499

Internal error

CICS
-521

Command not supported
-522

Invalid command or keyword
-523

Option must be specified
-524

Unsupported option specified
-525

Conflicting options specified
-526

Implied option not specified
-527

Redundant specification for option
-528

Value for option not specified
-529

Value specified for option which should not have a value
-530

Value specified for option is not numeric
-531

Invalid value

Chapter 32. Return Codes 455

-532
Value specified is too long

-533
Value specified is too short

-534
Value not specified

-535
Variable table overflow

-536
Number of variables exceeds variable table limit

-537
Argument must be a variable

-538
Variable does not exist

-539
Invalid variable name

-540
Master system trace flag must be on for tracing

-541
Parsing error

-542
Generic name is invalid

-543
Missing right parenthesis

-544
Ambiguous value/keyword

-545
RIDFLD must be fullword variable

-546
RIDFLd must be variable

-547
Invalid GETVAR return code

-548
Internal GETVAR error

-549
Bad PUTVAR return code

-550
PUTVAR failed

-551
Unable to obtain storage

-552
Exec CICS command table not found

456 REXX for CICS Transaction Server: User Guide and Reference

Chapter 33. Double-Byte Character Set (DBCS)
Support

A Double-Byte Character Set supports languages that have more characters than can be represented by 8
bits (such as Korean Hangeul and Japanese kanji). REXX has a full range of DBCS functions and handling
techniques.

These DBCS functions and handling techniques include:

• Symbol and string handling capabilities with DBCS characters
• An option that allows DBCS characters in symbols, comments, and literal strings.
• An option that allows data strings to contain DBCS characters.
• A number of functions that specifically support the processing of DBCS character strings
• Defined DBCS enhancements to current instructions and functions.

Note: The use of DBCS does not affect the meaning of the built-in functions as described in Chapter 19,
“Functions,” on page 193. This explains how the characters in a result are obtained from the characters of
the arguments by such actions as selecting, concatenating, and padding. This information describes how
the resulting characters are represented as bytes. This internal representation is not usually seen if the
results are printed. It might be seen if the results are displayed on certain terminals.

DBCS: general description
Characteristics that help to define the rules that DBCS uses to represent extended characters are listed.

• Each DBCS character consists of 2 bytes.
• There are no DBCS control characters.
• The codes are in the ranges defined in the following table, which shows the valid DBCS code for the

DBCS blank. You cannot have a DBCS blank in a simple symbol, in the stem of a compound variable, or
in a label.

Table 6. DBCS Ranges

Byte EBCDIC

1st X'41' to X'FE'

2nd X'41' to X'FE'

DBCS blank X'4040'

• DBCS alphanumeric and special symbols:

A DBCS contains double-byte representation of alphanumeric and special symbols corresponding to
those of the Single-Byte Character Set (SBCS). In EBCDIC, the first byte of a double-byte alphanumeric
or special symbol is X'42' and the second is the same hex code as the corresponding EBCDIC code.

Here are some examples:

X'42C1' is an EBCDIC double-byte A
X'4281' is an EBCDIC double-byte a
X'427D' is an EBCDIC double-byte quote

• No case translation:

In general, there is no concept of lowercase and uppercase in DBCS.
• The following notation conventions are used in this information:

© Copyright IBM Corp. 1974, 2020 457

– DBCS character: .A .B .C .D
– SBCS character: a b c d e
– DBCS blank: '. '
– EBCDIC shift-out (X'0E'): <
– EBCDIC shift-in (X'0F'): >

Note: In EBCDIC, the shift-out (SO) and shift-in (SI) characters distinguish DBCS characters from SBCS
characters.

Enabling DBCS data operations and symbol use
The OPTIONS instruction controls how REXX regards DBCS data.

• To enable DBCS operations, use the EXMODE option.
• To enable DBCS symbols, use the ETMODE option on the OPTIONS instruction; this must be the first

instruction in the program. See “OPTIONS” on page 177.

If OPTIONS ETMODE is in effect, the language processor does validation to ensure that SO and SI are
paired in comments. Otherwise, the contents of the comment are not checked. The comment delimiters
(/* and */) must be SBCS characters.

Symbols and strings
In DBCS, there are DBCS-only symbols and strings, and mixed symbols and strings.

DBCS-only symbols and mixed SBCS/DBCS symbols

A DBCS-only symbol consists of only non-blank DBCS codes as indicated in the following table:

Table 7. DBCS Ranges

Byte EBCDIC

1st X'41' to X'FE'

2nd X'41' to X'FE'

DBCS blank X'4040'

A mixed DBCS symbol is formed by a concatenation of SBCS symbols, DBCS-only symbols, and other
mixed DBCS symbols. In EBCDIC, the SO and SI bracket the DBCS symbols and distinguish them from the
SBCS symbols.

The default value of a DBCS symbol is the symbol itself, with SBCS characters translated to uppercase.

A constant symbol must begin with an SBCS digit (0-9) or an SBCS period. The delimiter (period) in a
compound symbol must be an SBCS character.

DBCS-only strings and mixed SBCS/DBCS strings

A DBCS-only string consists of only DBCS characters.

A mixed SBCS/DBCS string is formed by a combination of SBCS and DBCS characters. In EBCDIC, the SO
and SI bracket the DBCS data and distinguish it from the SBCS data. Because the SO and SI are needed
only in the mixed strings, they are not associated with the DBCS-only strings.

In EBCDIC:

• DBCS-only string: .A.B.C
• Mixed string: ab<.A.B>
• Mixed string: <.A.B>
• Mixed string: ab<.C.D>ef

458 REXX for CICS Transaction Server: User Guide and Reference

DBCS symbol validation
The rules and conditions that apply to use DBCS symbols are listed.

• The DBCS portion of the symbol must be an even number of bytes in length
• DBCS alphanumeric and special symbols are regarded as different to their corresponding SBCS

characters. Only the SBCS characters are recognized by REXX in numbers, instruction keywords, or
operators

• DBCS characters cannot be used as special characters in REXX
• SO and SI cannot be contiguous
• Nesting of SO or SI is not permitted
• SO and SI must be paired
• No part of a symbol consisting of DBCS characters cancontain a DBCS blank.
• Each part of a symbol consisting of DBCS characters must be bracketed with SO and SI.

These examples show some possible misuses:

• <.A.BC> Incorrect because of odd byte length.
• <.A.B><.C> Incorrect contiguous SO/SI.
• <> Incorrect contiguous SO/SI (null DBCS symbol).
• <.A<.B>.C> Incorrectly nested SO/SI
• <.A.B.C Incorrect because SO/SI not paired
• <.A. .B> Incorrect because contains blank
• '. A<.B><.C> Incorrect symbol

Mixed string validation
The validation of mixed strings depends on the instruction, operator, or function.

If you use a mixed string with an instruction, operator, or function that does not allow mixed strings, this
causes a syntax error.

The following rules apply for mixed string validation:

• DBCS strings must be an even number of bytes in length, unless you have SO and SI.

EBCDIC only:

• SO and SI must be paired in a string.
• Nesting of SO or SI is not permitted.

These examples show some possible misuses:

• 'ab<cd' Incorrect - not paired.
• '<.A<.B>.C> Incorrect - nested.
• '<.A.BC>' Incorrect - odd byte length.

The end of a comment delimiter is not found within DBCS character sequences. For example, when the
program contains /* < */, the */ is not recognized as ending the comment because the scanning is
looking for the > (SI) to go with the < (SO) and not looking for */.

When a variable is created, modified, or referred to in a REXX program under OPTIONS EXMODE, it is
validated whether it contains a correct mixed string or not. When a referred variable contains a mixed
string that is not valid, it depends on the instruction, function, or operator whether it causes a syntax
error.

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER instructions all require valid mixed strings
with OPTIONS EXMODE in effect.

Chapter 33. Double-Byte Character Set (DBCS) Support 459

Instructions and DBCS
Descriptions and examples of how instructions work with DBCS are provided.

PARSE
Example of the PARSE instruction with DBCS.

In EBCDIC:

x1 = '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1
 w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 1 w1
 w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1 .
 w1 -> '<.A.B>'

The leading and trailing SO and SI are unnecessary for word parsing and, thus, they are stripped off.
However, one pair is still needed for a valid mixed DBCS string to be returned.

PARSE VAR x1 . w2
 w2 -> '<. ><.E><.F><>'

Here the first blank delimited the word and the SO is added to the string to ensure the DBCS blank and the
valid mixed string.

PARSE VAR x1 w1 w2
 w1 -> '<.A.B>'
 w2 -> '<. ><.E><.F><>'

PARSE VAR x1 w1 w2 .
 w1 -> '<.A.B>'
 w2 -> '<.E><.F>'

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 'abc<>def <.A.B><><.C.D>'

PARSE VAR x2 w1 '' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

PARSE VAR x2 w1 '<>' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

PARSE VAR x2 w1 '<><>' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

Notice that for the last three examples '', <>, and <><> are each a null string (a string of length 0). When
parsing, the null string matches the end of string. For this reason, w1 is assigned the value of the entire
string and w2 is assigned the null string.

PUSH and QUEUE
PUSH and QUEUE instructions with DBCS.

The PUSH and QUEUE instructions add entries to the program stack. Because a stack entry is limited to
255 bytes, the expression must be truncated less than 256 bytes. If the truncation splits a DBCS string,
REXX ensures that the integrity of the SO-SI pairing will be kept under OPTIONS EXMODE.

SAY and TRACE
SAY and TRACE instructions with DBCS.

The SAY and TRACE instructions write data to the output stream. In the same way as for the PUSH and
QUEUE instructions, REXX guarantees that the SO-SI pairs are kept for any data that is separated to meet
the requirements of the output stream. The SAY and TRACE instructions display data on the user's

460 REXX for CICS Transaction Server: User Guide and Reference

terminal. In the same way as for the PUSH and QUEUE instructions, REXX guarantees that the SO-SI pairs
are kept for any data that is separated to meet the requirements of the terminal line size. This is generally
130 bytes or fewer if the DIAG-24 value returns a smaller value.

When the data is split up in shorter lengths, the DBCS data integrity is kept under OPTIONS EXMODE. In
EBCDIC, if the terminal line size is less than 4, the string is treated as SBCS data, because 4 is the
minimum for mixed string data.

UPPER
UPPER instruction with DBCS.

Under OPTIONS EXMODE, the UPPER instruction translates only SBCS characters in contents of one or
more variables to uppercase; it never translates DBCS characters. If the content of a variable is not valid
mixed string data, no uppercase translation occurs.

DBCS function handling
Some built-in functions can handle DBCS.

The functions that deal with word delimiting and length determining conform with the following rules
under OPTIONS EXMODE:

• Counting characters.

Logical character lengths are used when counting the length of a string (that is, 1 byte for one SBCS
logical character, 2 bytes for one DBCS logical character). In EBCDIC, SO and SI are considered to be
transparent, and are not counted, for every string operation.

• Character extraction from a string.

Characters are extracted from a string on a logical character basis. In EBCDIC, leading SO and trailing SI
are not considered as part of one DBCS character. For instance, .A and .B are extracted from <.A.B>,
and SO and SI are added to each DBCS character when they are finally preserved as completed DBCS
characters. When multiple characters are consecutively extracted from a string, SO and SI that are
between characters are also extracted. For example, .A><.B is extracted from <.A><.B>, and when
the string is finally used as a completed string, the SO prefixes it and the SI suffixes it to give <.A><.B>.

Here are some EBCDIC examples:

S1 = 'abc<>def'

SUBSTR(S1,3,1) -> 'c'
SUBSTR(S1,4,1) -> 'd'
SUBSTR(S1,3,2) -> 'c<>d'

S2 = '<><.A.B><>'

SUBSTR(S2,1,1) -> '<.A>'
SUBSTR(S2,2,1) -> '<.B>'
SUBSTR(S2,1,2) -> '<.A.B>'
SUBSTR(S2,1,3,'x') -> '<.A.B><>x'

S3 = 'abc<><.A.B>'

SUBSTR(S3,3,1) -> 'c'
SUBSTR(S3,4,1) -> '<.A>'
SUBSTR(S3,3,2) -> 'c<><.A>'
DELSTR(S3,3,1) -> 'ab<><.A.B>'
DELSTR(S3,4,1) -> 'abc<><.B>'
DELSTR(S3,3,2) -> 'ab<.B>'

• Character concatenation.

String concatenation can only be done with valid mixed strings. In EBCDIC, adjacent SI and SO (or SO
and SI) that are a result of string concatenation are removed. Even during implicit concatenation as in
the DELSTR function, unnecessary SO and SI are removed.

• Character comparison.

Chapter 33. Double-Byte Character Set (DBCS) Support 461

Valid mixed strings are used when comparing strings on a character basis. A DBCS character is always
considered greater than an SBCS one if they are compared. In all but the strict comparisons, SBCS
blanks, DBCS blanks, and leading and trailing contiguous SO and SI (or SI and SO) in EBCDIC are
removed. SBCS blanks may be added if the lengths are not identical.

In EBCDIC, contiguous SO and SI (or SI and SO) between nonblank characters are also removed for
comparison.

Note: The strict comparison operators do not cause syntax errors even if you specify mixed strings that
are not valid.

In EBCDIC:

 '<.A>' = '<.A. >' -> 1 /* true */
 '<><><.A>' = '<.A><><>' -> 1 /* true */
 '<> <.A>' = '<.A>' -> 1 /* true */
'<.A><><.B>' = '<.A.B>' -> 1 /* true */
 'abc' < 'ab<. >' -> 0 /* false */

• Word extraction from a string

Word means that characters in a string are delimited by an SBCS or a DBCS blank.

In EBCDIC, leading and trailing contiguous SO and SI (or SI and SO) are also removed when words are
separated in a string, but contiguous SO and SI (or SI and SO) in a word are not removed or separated
for word operations. Leading and trailing contiguous SO and SI (or SI and SO) of a word are not removed
if they are among words that are extracted at the same time.

In EBCDIC:

W1 = '<><. .A. . .B><.C. .D><>'

SUBWORD(W1,1,1) -> '<.A>'
SUBWORD(W1,1,2) -> '<.A. . .B><.C>'
SUBWORD(W1,3,1) -> '<.D>'
SUBWORD(W1,3) -> '<.D>'

W2 = '<.A. .B><.C><> <.D>'

SUBWORD(W2,2,1) -> '<.B><.C>'
SUBWORD(W2,2,2) -> '<.B><.C><> <.D>'

Built-in Function Examples
Examples for built-in functions, those that support DBCS and follow the rules defined, are provided.

For full function descriptions and the syntax diagrams, refer to Chapter 19, “Functions,” on page 193.

ABBREV
Applying the character comparison and character extraction from a string rules.

In EBCDIC:

ABBREV('<.A.B.C>','<.A.B>') -> 1
ABBREV('<.A.B.C>','<.A.C>') -> 0
ABBREV('<.A><.B.C>','<.A.B>') -> 1
ABBREV('aa<>bbccdd','aabbcc') -> 1

COMPARE
Applying the character concatenation for padding, character extraction from a string, and character
comparison rules.

In EBCDIC:

COMPARE('<.A.B.C>','<.A.B><.C>') -> 0
COMPARE('<.A.B.C>','<.A.B.D>') -> 3
COMPARE('ab<>cde','abcdx') -> 5
COMPARE('<.A><>','<.A>','<. >') -> 0

462 REXX for CICS Transaction Server: User Guide and Reference

COPIES
Applying the character concatenation rule.

In EBCDIC:

COPIES('<.A.B>',2) -> '<.A.B.A.B>'
COPIES('<.A><.B>',2) -> '<.A><.B.A><.B>'
COPIES('<.A.B><>',2) -> '<.A.B><.A.B><>'

DATATYPE
Example of DATATYPE function.

DATATYPE('<.A.B>') -> 'CHAR'
DATATYPE('<.A.B>','D') -> 1
DATATYPE('<.A.B>','C') -> 1
DATATYPE('a<.A.B>b','D') -> 0
DATATYPE('a<.A.B>b','C') -> 1
DATATYPE('abcde','C') -> 0
DATATYPE('<.A.B','C') -> 0
DATATYPE('<.A.B>','S') -> 1 /* if ETMODE is on */

If string is not a valid mixed string and C or D is specified as type, 0 is returned.

FIND
Applying the word extraction from a string and character comparison rules.

FIND('<.A. .B.C> abc','<.B.C> abc') -> 2
FIND('<.A. .B><.C> abc','<.B.C> abc') -> 2
FIND('<.A. . .B> abc','<.A> <.B>') -> 1

INDEX, POS, and LASTPOS
Applying the character extraction from a string and character comparison rules.

INDEX('<.A><.B><><.C.D.E>','<.D.E>') -> 4
POS('<.A>','<.A><.B><><.A.D.E>') -> 1
LASTPOS('<.A>','<.A><.B><><.A.D.E>') -> 3

INSERT and OVERLAY
Applying the character extraction from a string and character comparison rules.

In EBCDIC:

INSERT('a','b<><.A.B>',1) -> 'ba<><.A.B>'
INSERT('<.A.B>','<.C.D><>',2) -> '<.C.D.A.B><>'
INSERT('<.A.B>','<.C.D><><.E>',2) -> '<.C.D.A.B><><.E>'
INSERT('<.A.B>','<.C.D><>',3,,'<.E>') -> '<.C.D><.E.A.B>'

OVERLAY('<.A.B>','<.C.D><>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',3) -> '<.C.D><><.A.B>'
OVERLAY('<.A.B>','<.C.D><>',4,,'<.E>') -> '<.C.D><.E.A.B>'
OVERLAY('<.A>','<.C.D><.E>',2) -> '<.C.A><.E>'

JUSTIFY
Applying the character concatenation for padding and character extraction from a string rules.

JUSTIFY('<><. .A. . .B><.C. .D>',10,'p')
 -> '<.A>ppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',11,'p')
 -> '<.A>pppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',10,'<.P>')
 -> '<.A.P.P.P.B><.C.P.P.P.D>'
JUSTIFY('<><.X. .A. . .B><.C. .D>',11,'<.P>')
 -> '<.X.P.P.A.P.P.B><.C.P.P.D>'

Chapter 33. Double-Byte Character Set (DBCS) Support 463

LEFT, RIGHT, and CENTER
Applying the character concatenation for padding and character extraction from a string rules.

In EBCDIC:

LEFT('<.A.B.C.D.E>',4) -> '<.A.B.C.D>'
LEFT('a<>',2) -> 'a<> '
LEFT('<.A>',2,'*') -> '<.A>*'
RIGHT('<.A.B.C.D.E>',4) -> '<.B.C.D.E>'
RIGHT('a<>',2) -> ' a'
CENTER('<.A.B>',10,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E>'
CENTER('<.A.B>',11,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E.E>'
CENTER('<.A.B>',10,'e') -> 'eeee<.A.B>eeee'

LENGTH
Applying the counting characters rule.

In EBCDIC:

LENGTH('<.A.B><.C.D><>') -> 4

REVERSE
Applying the character extraction from a string and character concatenation rules.

In EBCDIC:

REVERSE('<.A.B><.C.D><>') -> '<><.D.C><.B.A>'

SPACE
Applying the word extraction from a string and character concatenation rules.

In EBCDIC:

SPACE('a<.A.B. .C.D>',1) -> 'a<.A.B> <.C.D>'
SPACE('a<.A><><. .C.D>',1,'x') -> 'a<.A>x<.C.D>'
SPACE('a<.A><. .C.D>',1,'<.E>') -> 'a<.A.E.C.D>'

STRIP
Applying the character extraction from a string and character concatenation rules.

In EBCDIC:

STRIP('<><.A><.B><.A><>',,'<.A>') -> '<.B>'

SUBSTR and DELSTR
Applying the character extraction from a string and character concatenation rules.

In EBCDIC:

SUBSTR('<><.A><><.B><.C.D>',1,2) -> '<.A><><.B>'
DELSTR('<><.A><><.B><.C.D>',1,2) -> '<><.C.D>'
SUBSTR('<.A><><.B><.C.D>',2,2) -> '<.B><.C>'
DELSTR('<.A><><.B><.C.D>',2,2) -> '<.A><><.D>'
SUBSTR('<.A.B><>',1,2) -> '<.A.B>'
SUBSTR('<.A.B><>',1) -> '<.A.B><>'

SUBWORD and DELWORD
Applying the word extraction from a string and character concatenation rules.

In EBCDIC:

SUBWORD('<><. .A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><. .A. . .B><.C. .D>',1,2) -> '<><. .D>'
SUBWORD('<><.A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><.A. . .B><.C. .D>',1,2) -> '<><.D>'
SUBWORD('<.A. .B><.C><> <.D>',1,2) -> '<.A. .B><.C>'
DELWORD('<.A. .B><.C><> <.D>',1,2) -> '<.D>'

464 REXX for CICS Transaction Server: User Guide and Reference

SYMBOL
Example of SYMBOL function.

In EBCDIC:

Drop A.3 ; <.A.B>=3 /* if ETMODE is on */

SYMBOL('<.A.B>') -> 'VAR'
SYMBOL(<.A.B>) -> 'LIT' /* has tested "3" */
SYMBOL('a.<.A.B>') -> 'LIT' /* has tested A.3 */

TRANSLATE
Applying the character extraction from a string, character comparison, and character concatenation rules.

In EBCDIC:

TRANSLATE('abcd','<.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>bcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>xcd','<><.A.B.C>','ab<>c') -> '<.A>x<.C>d'

VALUE
Example of VALUE function.

In EBCDIC:

Drop A3 ; <.A.B>=3 ; fred='<.A.B>'

VALUE('fred') -> '<.A.B>' /* looks up FRED */
VALUE(fred) -> '3' /* looks up <.A.B> */
VALUE('a'<.A.B>) -> 'A3' /* if ETMODE is on */

VERIFY
Applying the character extraction from a string and character comparison rules.

In EBCDIC:

VERIFY('<><><.A.B><><.X>','<.B.A.C.D.E>') -> 3

WORD, WORDINDEX, and WORDLENGTH
Applying the word extraction from a string and, for WORDINDEX and WORDLENGTH, applying the
counting characters rules.

In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORD(W,1) -> '<.A>'
WORDINDEX(W,1) -> 2
WORDLENGTH(W,1) -> 1

Y = '<><.A. . .B><.C. .D>'

WORD(Y,1) -> '<.A>'
WORDINDEX(Y,1) -> 1
WORDLENGTH(Y,1) -> 1

Z = '<.A .B><.C> <.D>'

WORD(Z,2) -> '<.B><.C>'
WORDINDEX(Z,2) -> 3
WORDLENGTH(Z,2) -> 2

WORDS
Applying the word extraction from a string rule.

In EBCDIC:

Chapter 33. Double-Byte Character Set (DBCS) Support 465

W = '<><. .A. . .B><.C. .D>'

WORDS(W) -> 3

WORDPOS
Applying the word extraction from a string and character comparison rules.

In EBCDIC:

WORDPOS('<.B.C> abc','<.A. .B.C> abc') -> 2
WORDPOS('<.A.B>','<.A.B. .A.B><. .B.C. .A.B>',3) -> 4

DBCS Processing Functions
The functions that support DBCS mixed strings are described. These functions handle mixed strings,
regardless of the OPTIONS mode.

Note: When used with DBCS functions, length is always measured in bytes (as opposed to
LENGTH(string), which is measured in characters).

Counting option

In EBCDIC, when specified in the functions, the counting option can control whether the SO and SI are
considered present when determining the length. Y specifies count SO and SI in mixed strings. N, the
default, specifies do not count the SO and SI.

DBADJUST
In EBCDIC, DBADJUST adjusts all contiguous SI and SO (or SO and SI) characters in string based on the
operation specified.

DBADJUST (string

, operation

)

The following are valid operations. Only the capitalized and highlighted letter is needed; all characters
following it are ignored.
Blank

changes contiguous characters to blanks (X'4040').
Remove

removes contiguous characters, and is the default.

EBCDIC examples

DBADJUST('<.A><.B>a<>b','B') -> '<.A. .B>a b'
DBADJUST('<.A><.B>a<>b','R') -> '<.A.B>ab'
DBADJUST('<><.A.B>','B') -> '<. .A.B>'

DBBRACKET
In EBCDIC, DBBRACKET adds SO and SI brackets to a DBCS-only string.

DBBRACKET (string)

If string is not a DBCS-only string, a SYNTAX error results. That is, the input string must be an even
number of bytes in length and each byte must be a valid DBCS value.

466 REXX for CICS Transaction Server: User Guide and Reference

EBCDIC examples

DBBRACKET('.A.B') -> '<.A.B>'
DBBRACKET('abc') -> SYNTAX error
DBBRACKET('<.A.B>') -> SYNTAX error

DBCENTER
DBCENTER returns a string of length length with string centered in it, with pad characters added as
necessary to make up length.

DBCENTER (string , length
,

pad , option

)

The default pad character is a blank. If string is longer than length, it is truncated at both ends to fit. If an
odd number of characters are truncated or added, the right-hand end loses or gains one more character
than the left-hand end.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

EBCDIC examples

DBCENTER('<.A.B.C>',4) -> ' <.B> '
DBCENTER('<.A.B.C>',3) -> ' <.B>'
DBCENTER('<.A.B.C>',10,'x') -> 'xx<.A.B.C>xx'
DBCENTER('<.A.B.C>',10,'x','Y') -> 'x<.A.B.C>x'
DBCENTER('<.A.B.C>',4,'x','Y') -> '<.B>'
DBCENTER('<.A.B.C>',5,'x','Y') -> 'x<.B>'
DBCENTER('<.A.B.C>',8,'<.P>') -> ' <.A.B.C> '
DBCENTER('<.A.B.C>',9,'<.P>') -> ' <.A.B.C.P>'
DBCENTER('<.A.B.C>',10,'<.P>') -> '<.P.A.B.C.P>'
DBCENTER('<.A.B.C>',12,'<.P>','Y') -> '<.P.A.B.C.P>'

DBCJUSTIFY
DBCJUSTIFY formats string by adding pad characters between nonblank characters to justify to both
margins and length of bytes length (length must be nonnegative).

DBCJUSTIFY (string , length
,

pad , option

)

formats string by adding pad characters between nonblank characters to justify to both margins and
length of bytes length (length must be nonnegative). Rules for adjustments are the same as for the
JUSTIFY function. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Examples

DBCJUSTIFY('<><AA BB><CC>',20,,'Y')
 -> '<AA> <BB> <CC>'

DBCJUSTIFY('<>< AA BB>< CC>',20,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC>'

DBCJUSTIFY('<>< AA BB>< CC>',21,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','Y')

Chapter 33. Double-Byte Character Set (DBCS) Support 467

 -> '<AAXXXXBB> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','N')
 -> '<AAXXBBXXCC> '

DBLEFT
DBLEFT returns a string of length length containing the leftmost length characters of string.

DBLEFT (string , length
,

pad , option

)

The string returned is padded with pad characters (or truncated) on the right as needed. The default pad
character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

EBCDIC examples

DBLEFT('ab<.A.B>',4) -> 'ab<.A>'
DBLEFT('ab<.A.B>',3) -> 'ab '
DBLEFT('ab<.A.B>',4,'x','Y') -> 'abxx'
DBLEFT('ab<.A.B>',3,'x','Y') -> 'abx'
DBLEFT('ab<.A.B>',8,'<.P>') -> 'ab<.A.B.P>'
DBLEFT('ab<.A.B>',9,'<.P>') -> 'ab<.A.B.P> '
DBLEFT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBLEFT('ab<.A.B>',9,'<.P>','Y') -> 'ab<.A.B> '

DBRIGHT
DBRIGHT returns a string of length length containing the rightmost length characters of string.

DBRIGHT (string , length
,

pad , option

)

The string returned is padded with pad characters (or truncated) on the left as needed. The default pad
character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

EBCDIC examples

DBRIGHT('ab<.A.B>',4) -> '<.A.B>'
DBRIGHT('ab<.A.B>',3) -> ' <.B>'
DBRIGHT('ab<.A.B>',5,'x','Y') -> 'x<.B>'
DBRIGHT('ab<.A.B>',10,'x','Y') -> 'xxab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>') -> '<.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',9,'<.P>') -> ' <.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBRIGHT('ab<.A.B>',11,'<.P>','Y') -> ' ab<.A.B>'
DBRIGHT('ab<.A.B>',12,'<.P>','Y') -> '<.P>ab<.A.B>'

DBRLEFT
DBRLEFT returns the remainder from the DBLEFT function of string. If length is greater than the length of
string, returns a null string.

DBRLEFT (string , length

, option

)

468 REXX for CICS Transaction Server: User Guide and Reference

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

EBCDIC examples

DBRLEFT('ab<.A.B>',4) -> '<.B>'
DBRLEFT('ab<.A.B>',3) -> '<.A.B>'
DBRLEFT('ab<.A.B>',4,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',3,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',8) -> ''
DBRLEFT('ab<.A.B>',9,'Y') -> ''

DBRRIGHT
DBRRIGHT returns the remainder from the DBRIGHT function of string. If length is greater than the length
of string, returns a null string.

DBRRIGHT (string , length

, option

)

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

EBCDIC examples

DBRRIGHT('ab<.A.B>',4) -> 'ab'
DBRRIGHT('ab<.A.B>',3) -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5) -> 'a'
DBRRIGHT('ab<.A.B>',4,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',8) -> ''
DBRRIGHT('ab<.A.B>',8,'Y') -> ''

DBTODBCS
DBTODBCS converts all passed, valid, SBCS characters (including the SBCS blank) within string to the
corresponding DBCS equivalents.

DBTODBCS (string)

Other single-byte codes and all DBCS characters are not changed. In EBCDIC, SO and SI brackets are
added and removed where appropriate.

EBCDIC examples

DBTODBCS('Rexx 1988') -> '<.R.e.x.x. .1.9.8.8>'
DBTODBCS('<.A> <.B>') -> '<.A. .B>'

Note: In these examples, the .x is the DBCS character corresponding to an SBCS x.

DBTOSBCS
DBTOSBCS converts all passed, valid DBCS characters (including the DBCS blank) within string to the
corresponding SBCS equivalents.

DBTOSBCS (string)

Other DBCS characters and all SBCS characters are not changed. In EBCDIC, SO and SI brackets are
removed where appropriate.

Chapter 33. Double-Byte Character Set (DBCS) Support 469

EBCDIC examples

DBTOSBCS('<.S.d>/<.2.-.1>') -> 'Sd/2-1'
DBTOSBCS('<.X. .Y>') -> '<.X> <.Y>'

Note: In these examples, the .d is the DBCS character corresponding to an SBCS d. However, the .X
and .Y do not have corresponding SBCS characters and are not converted.

DBUNBRACKET
In EBCDIC, DBUNBRACKET removes the SO and SI brackets from a DBCS-only string enclosed by SO and
SI brackets. If the string is not bracketed, a SYNTAX error results.

DBUNBRACKET (string)

EBCDIC examples

DBUNBRACKET('<.A.B>') -> '.A.B'
DBUNBRACKET('ab<.A>') -> SYNTAX error

DBVALIDATE
DBVALIDATE returns 1 if the string is a valid mixed string or SBCS string. Otherwise, returns 0.

DBVALIDATE (string

, 'C'

)

Mixed string validation rules are:

• Only valid DBCS character codes
• DBCS string is an even number of bytes in length
• EBCDIC only: Proper SO and SI pairing.

In EBCDIC, if C is omitted, only the leftmost byte of each DBCS character is checked to see that it falls in
the valid range for the implementation it is being run on (that is, in EBCDIC, the leftmost byte range is
from X'41' to X'FE').

EBCDIC examples

z='abc<de'

DBVALIDATE('ab<.A.B>') -> 1
DBVALIDATE(z) -> 0

y='C1C20E111213140F'X

DBVALIDATE(y) -> 1
DBVALIDATE(y,'C') -> 0

DBWIDTH
DBWIDTH returns the length of string in bytes.

DBWIDTH (string

, option

)

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

470 REXX for CICS Transaction Server: User Guide and Reference

EBCDIC examples

DBWIDTH('ab<.A.B>','Y') -> 8
DBWIDTH('ab<.A.B>','N') -> 6

Chapter 33. Double-Byte Character Set (DBCS) Support 471

472 REXX for CICS Transaction Server: User Guide and Reference

Chapter 34. Reserved keywords and special variables
You can use keywords as ordinary symbols in many situations where there is no ambiguity.

The precise rules are given here.

There are three special variables: RC, RESULT, and SIGL.

Reserved keywords
The free syntax of REXX implies that some symbols are reserved for the language processor's use in
certain contexts. In specific instructions, some symbols might be reserved to separate the parts of the
instruction. These symbols are referred to as keywords.

Examples of REXX keywords are the WHILE in a DO instruction and the THEN (which acts as a clause
terminator in this case) following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and that are not followed
by an = or : are checked to see if they are instruction keywords. You can use the symbols freely
elsewhere in clauses without their being taken as keywords.

It is not, however, recommended for users to run host commands or commands with the same name as
REXX keywords (QUEUE, for example). This can create problems for programmers whose REXX programs
might be used for some time and in circumstances outside their control, and who want to make the
program absolutely watertight.

In this case, a REXX program can be written with (at least) the first words in command lines enclosed in
quotation marks, for example:

'SCRNINFO'

This also has the advantage of being more efficient, and, with this style, you can use the SIGNAL ON
NOVALUE condition to check the integrity of an exec.

An alternative strategy is to precede such command strings with two adjacent quotation marks, which
concatenates the null string on to the front, for example:

''SCRNINFO

A third option is to enclose the entire expression (or the first symbol) in parentheses, for example:

(SCRNINFO)

The choice of any strategy is a personal one by the programmer. The REXX language does not impose it.

Special variables
RC, RESULT, and SIGL are special variables.

There are three special variables that the language processor can set automatically:
RC

is set to the return code from any run host command (or subcommand). Following the SIGNAL events,
SYNTAX, ERROR, and FAILURE, RC is set to the code appropriate to the event: the syntax error
number (see Chapter 31, “Error numbers and messages,” on page 415 or the command return code.
RC is unchanged following a NOVALUE or HALT event.

Note: Host commands run manually from debug mode do not change the value of RC.

© Copyright IBM Corp. 1974, 2020 473

RESULT
is set by a RETURN instruction in a subroutine that has been called if the RETURN instruction specifies
an expression. If the RETURN instruction has no expression on it, RESULT is dropped (becomes
uninitialized.)

SIGL
contains the line number of the clause currently executing when the last transfer of control to a label
took place. (A SIGNAL, a CALL, an internal function invocation, or a trapped error condition could
cause this.)

None of these variables has an initial value. You can alter them, just as with any other variable, and the
PROCEDURE and DROP instructions affect these variables in the usual way.

Certain other information is always available to a REXX program. This includes the name that the program
was called and the source of the program (which is available using the PARSE SOURCE instruction; see
“PARSE” on page 179). PARSE SOURCE output consists of the string CICS followed by the call type, the
name of the exec in uppercase, the name of the file, and the PDS or DDNAME/member being run. These
are followed by the name by which the program was called and the initial (default) command
environment.

In addition, PARSE VERSION (see “PARSE” on page 179) makes available the version and date of the
language processor code that is running. The built-in functions TRACE and ADDRESS return the current
trace setting and environment name, respectively.

You can obtain the current settings of the NUMERIC function by using the DIGITS, FORM, and FUZZ built-
in functions.

474 REXX for CICS Transaction Server: User Guide and Reference

Chapter 35. Debug aids
This section describes the interactive debugging of problems, interrupting execution, and controlling
tracing.

Interactive debugging of programs
The debug facility permits interactively controlled execution of a program.

Changing the TRACE action to one with a prefix ? (for example, TRACE ?A or the TRACE built-in function)
turns on interactive debug and indicates to the user that interactive debug is active. Further TRACE
instructions in the program are ignored, and the language processor pauses after nearly all instructions
that are traced at the console (see the following for the exceptions). When the language processor
pauses, indicated by a READ in the lower corner of the screen, three debug actions are available:

1. Entering a null line (with no characters, even blanks) makes the language processor continue
execution until the next pause for debug input. Repeatedly entering a null line, therefore, steps from
pause point to pause point. For TRACE ?A, for example, this is equivalent to single-stepping through
the program.

2. Entering an equal sign (=) with no blanks makes the language processor rerun the clause last traced.
For example: if an IF clause is about to take the wrong branch, you can change the value of the
variable(s) on which it depends, and then rerun it.

Once the clause has been rerun, the language processor pauses again.
3. Anything else entered is treated as a line of one or more clauses, and processed immediately (that is,

as though DO; line; END; had been inserted in the program). The same rules apply as in the
INTERPRET instruction (for example, DO-END constructs must be complete). If an instruction has a
syntax error in it, a standard message is displayed and you are prompted for input again. Similarly all
the other SIGNAL conditions are disabled while the string is processed to prevent unintentional
transfer of control.

During execution of the string, no tracing takes place, except that nonzero return codes from host
commands are displayed. Host commands are always run (that is, are not affected by the prefix ! on
TRACE instructions), but the variable RC is not set.

Once the string has been processed, the language processor pauses again for further debug input
unless a TRACE instruction was entered. In this latter case, the language processor immediately alters
the tracing action (if necessary) and then continues executing until the next pause point (if any). To
alter the tracing action (from All to Results, for example) and then rerun the instruction, you must use
the built-in function TRACE (see “TRACE” on page 218). For example, CALL TRACE I changes the
trace action to I and allows re-execution of the statement after which the pause was made.
Interactive debug is turned off, when it is in effect, if a TRACE instruction uses a prefix, or at any time
when a TRACE O or TRACE with no options is entered.

You can use the numeric form of the TRACE instruction to allow sections of the program to be run
without pause for debug input. TRACE n (that is, positive result) allows execution to continue,
skipping the next n pauses (when interactive debug is or becomes active). TRACE -n (that is, negative
result) allows execution to continue without pause and with tracing inhibited for n clauses that would
otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored across subroutine calls. This
means that if you are stepping through a program (say after using TRACE ?R to trace Results) and then
enter a subroutine in which you have no interest, you can enter TRACE O to turn tracing off. No further
instructions in the subroutine are traced, but on return to the caller, tracing is restored.

© Copyright IBM Corp. 1974, 2020 475

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R instruction at its start. Having
traced the routine, the original status of tracing is restored and (if tracing was off on entry to the
subroutine) tracing (and interactive debug) is turned off until the next entry to the subroutine.

Because any instructions can be run in interactive debug, you have considerable control over execution.

Note: While in interactive debug, pauses might occur because of PULL statements as well as because of
interactive debug. For programs containing PULL statements, it is important to be aware of the reason for
each pause. In programs, PULL statements are often paired with SAY statements. The user should enter
the data for the PULL at the pause after the trace line for the PULL (the pause specifically for entering data
for the PULL). The user should not enter the data at the pause after the corresponding SAY statement
(this is an interactive debug pause).

Note: Some clauses cannot safely be re-run, and, therefore, the language processor does not pause after
them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.
• All END clauses (not a useful place to pause in any case).
• All THEN, ELSE, OTHERWISE, or null clauses.
• All RETURN and EXIT clauses.
• All SIGNAL and CALL clauses (the language processor pauses after the target label has been traced).
• Any clause that raises a condition that CALL ON or SIGNAL ON traps (the pause takes place after the

target label for the CALL or SIGNAL has been traced).
• Any clause that causes a syntax error. (These may be trapped by SIGNAL ON SYNTAX, but cannot be re-

run.)

Examples

Say expr /* displays the result of evaluating the */
 /* expression. */

name=expr /* alters the value of a variable. */

Trace O /* (or Trace with no options) turns off */
 /* interactive debug and all tracing. */

Trace ?A /* turns off interactive debug but continues */
 /* tracing all clauses. */

Trace L /* makes the language processor pause at labels */
 /* only. This is similar to the traditional */
 /* "breakpoint" function, except that you */
 /* do not have to know the exact name and */
 /* spelling of the labels in the program. */

exit /* stops execution of the program. */

Do i=1 to 10; say stem.i; end
 /* displays ten elements of the array stem. */

Interrupting execution and controlling tracing
You can use standard CICS facilities to interrupt a REXX exec (the REXX transaction).

If properly authorized, you can issue the CEMT SET TASK PURGE command to halt an exec. For more
information, see CEMT SET TASK.

476 REXX for CICS Transaction Server: User Guide and Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/transactions/dfha7nn.html

Chapter 36. Basic mapping support example
This example shows the procedure to use the CICS basic mapping support (BMS) in the REXX/CICS
environment.

1. BMS maps must be assembled and linked into a CICS library. This library must be in the LIBDEF in the
CICS region startup JCL.

2. If you are going to use the REXX/CICS CONVTMAP command to generate a file structure, the BMS map
must be assembled to produce the map DSECT.

3. BMS maps must be defined to CICS using Resource Definition Online (RDO).
4. If you want to read from or send data to the screen, you need to GETMAIN CICS storage for the length

of the map input/output areas. The storage must be initialized to nulls.
5. If a field within a file structure is represented by more than one label, then the last label to reference

that field in the structure must be used when referencing the field.

This example uses BMS map PANELG. The map definition is as follows.

 TITLE 'PANEL GROUP FOR REXX/CICS ' 00000010
 PRINT ON,NOGEN 00000020
PANELG DFHMSD TYPE=MAP,LANG=ASM,MODE=INOUT,STORAGE=AUTO,SUFFIX= 00000030
 TITLE 'TEST PANEL FOR REXX/CICS ' 00000040
DPANEL1 DFHMDI SIZE=(24,80),CTRL=(FREEKB),MAPATTS=(COLOR,HILIGHT), *00000050
 DSATTS=(COLOR,HILIGHT),COLUMN=1,LINE=1,DATA=FIELD, *00000060
 TIOAPFX=YES,OBFMT=NO 00000070
 DFHMDF POS=(1,1),LENGTH=1,ATTRB=(PROT,BRT) 00000080
 DFHMDF POS=(5,27),LENGTH=22,INITIAL='REXXCICS HEADER PANEL1', *00000090
 ATTRB=(PROT,NORM) 00000100
 DFHMDF POS=(5,73),LENGTH=6,INITIAL='PANEL1',ATTRB=(PROT,NORM) 00000110
 DFHMDF POS=(9,6),LENGTH=25, *00000120
 INITIAL='PLEASE ENTER YOUR USERID:',ATTRB=(PROT,NORM) 00000130
* DUSERID 00000140
DUSERID DFHMDF POS=(9,32),LENGTH=8,ATTRB=(UNPROT,BRT,IC,FSET) 00000150
 DFHMDF POS=(9,41),LENGTH=1,ATTRB=(PROT,NORM) 00000160
 DFHMDF POS=(14,6),LENGTH=4,INITIAL='MSG:',ATTRB=(PROT,NORM) 00000170
* DMSG 00000180
DMSG DFHMDF POS=(14,11),LENGTH=29,ATTRB=(UNPROT,NORM,FSET) 00000190
 DFHMDF POS=(14,41),LENGTH=1,ATTRB=(PROT,NORM) 00000200
 DFHMSD TYPE=FINAL 00000210
 END 00000220

The map DSECT is as follows. The DSECT is in an MVS PDS named USER.REXXCICS.MAPS(PANELG).

 DS 0H ENSURE ALIGNMENT
DPANEL1S EQU * . START OF MAP DEFINITION
 DS 12C . TIOA PREFIX
 SPACE
DUSERIDL DS CL2 . INPUT DATA FIELD LEN
DUSERIDF DS 0C . DATA FIELD FLAG
DUSERIDA DS C . DATA FIELD ATTRIBUTE
DUSERIDC DS C . COLOUR ATTRIBUTE
DUSERIDH DS C . HIGHLIGHTING ATTRIBUTE
DUSERIDI DS 0CL8 . INPUT DATA FIELD
DUSERIDO DS CL8 . OUTPUT DATA FIELD
 SPACE
DMSGL DS CL2 . INPUT DATA FIELD LEN
DMSGF DS 0C . DATA FIELD FLAG
DMSGA DS C . DATA FIELD ATTRIBUTE
DMSGC DS C . COLOUR ATTRIBUTE
DMSGH DS C . HIGHLIGHTING ATTRIBUTE
DMSGI DS 0CL29 . INPUT DATA FIELD
DMSGO DS CL29 . OUTPUT DATA FIELD
 SPACE
DPANEL1E EQU * . END OF MAP DEFINITION
 ORG DPANEL1S . ADDRESS START OF MAP
* CALCULATE MAPLENGTH, ASSIGNING A VALUE OF ONE WHERE LENGTH=ZERO
DPANEL1L EQU DPANEL1E-DPANEL1S
DPANEL1I DS 0CL(DPANEL1L+1-(DPANEL1L/DPANEL1L))
DPANEL1O DS 0CL(DPANEL1L+1-(DPANEL1L/DPANEL1L))
 ORG

© Copyright IBM Corp. 1974, 2020 477

* * * END OF MAP DEFINITION * * *
 SPACE 3
 ORG

The CONVTMAP command is used to take the DSECT and create a file structure stored in the RFS. The
command is entered as follows:

'CONVTMAP USER.TEST(PANELG) POOL1:\USERS\USER1\PANELG.DATA'

The following is the file structure created by CONVTMAP.

00000 ***************************** TOP OF DATA *************************
00001 DUSERIDL 13 2 C
00002 DUSERIDF 15 1 C
00003 DUSERIDA 15 1 C
00004 DUSERIDC 16 1 C
00005 DUSERIDH 17 1 C
00006 DUSERIDI 18 8 C
00007 DUSERIDO 18 8 C
00008 DMSGL 26 2 C
00009 DMSGF 28 1 C
00010 DMSGA 28 1 C
00011 DMSGC 29 1 C
00012 DMSGH 30 1 C
00013 DMSGI 31 29 C
00014 DMSGO 31 29 C
00015 ***************************** BOTTOM OF DATA***********************

The following example is exec BMSMAP1. It creates a simple panel that asks for a user ID.

/* This EXEC uses CICS SEND and RECEIVE commands */
/* The panel has two fields USERID and a message */
/* field. The panel is initially displayed with */
/* a message - "USERID must be 8 characters" */

/* GETMAIN storage to be used for data mapping */
/* and initialize */
'PSEUDO OFF'
ZEROES = '00'x
'CICS GETMAIN SET(WORKPTR) LENGTH(90) INITIMG(ZEROES)'

VAR1 = 'USERID must be 8 characters'

/* Copy the REXX variable VAR1 to the GETMAINed storage */
'COPYR2S VAR1 WORKPTR 30'

/* Copy the storage area to REXX variable */
'COPYS2R WORKPTR X 0 90'

'CICS SEND MAP(PANELG) FREEKB ERASE FROM(X)'
'CICS RECEIVE MAP(PANELG) INTO(Y)'

/* Copy Y into the GETMAINED storage area and then copy the data */
/* to REXX variables using the file structure generated */
/* previously by the CONVTMAP command */
'COPYR2S Y WORKPTR 0 90'
'COPYS2R WORKPTR * POOL1:\USERS\USER1\PANELG.DATA'

/* loop until the user enters a USERID exactly 8 characters in */
/* length */
do forever
MUSERID = STRIP(DUSERIDO)
if LENGTH(MUSERID) < 8 then
 do
 DMSGO = 'Please enter 8 char USERID'
 'COPYR2S * WORKPTR POOL1:\USERS\USER1\PANELG.DATA'
 'COPYS2R WORKPTR X 0 90'
 'CICS SEND MAP(PANELG) FREEKB ERASE FROM(X)'
 'CICS RECEIVE MAP(PANELG) INTO(Z)'
 'COPYR2S Z WORKPTR 0 90'
 'COPYS2R WORKPTR * POOL1:\USERS\USER1\PANELG.DATA'
 END
 ELSE LEAVE
END
'SENDE'
say ' '

478 REXX for CICS Transaction Server: User Guide and Reference

say 'Hello' DUSERIDO', Welcome to REXX/CICS !!'
exit

The BMSMAP1 exec created the following panels.

 REXX/CICS HEADER PANEL1 PANEL1

PLEASE ENTER YOUR USERID:

MSG: USERID must be 8 characters

 REXX/CICS HEADER PANEL1 PANEL1

PLEASE ENTER YOUR USERID: TEST

MSG: Please enter 8 character USERID

Chapter 36. Basic mapping support example 479

480 REXX for CICS Transaction Server: User Guide and Reference

Chapter 37. Bibliography

Where to find more information

You can find more information about CICS TS and REXX in the following information:

• Reference: application development contains information about the application programming
commands.

• Reference: system programming contains information about the system programming commands.
• The REXX Language, A Practical Approach to Programming, by M. F. Cowlishaw offers general

information about the REXX language.
• CICS supplied transactions descriptions contains information about CEMT and CEDA.
• z/OS MVS Programming: Assembler Services Guide.
• z/OS MVS Programming: Assembler Services Reference ABE-HSP.
• z/OS MVS Programming: Assembler Services Reference IAR-XCT.

© Copyright IBM Corp. 1974, 2020 481

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-systemprogramming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/transactions/dfha7_cst_descriptions.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa600/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa700/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa900/toc.htm

482 REXX for CICS Transaction Server: User Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 1974, 2020 483

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

This book is intended to help you write programs for the REXX/CICS interpreter. This book primarily
documents General-use Programming Interface and Associated Guidance Information provided by REXX
for Customer Information Control System (REXX for CICS). General-use programming interfaces allow the
customer to write programs that obtain the services of REXX for CICS. However, this book also
documents Product-sensitive Programming Interface and Associated Guidance Information provided by
REXX for CICS. Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of REXX for CICS. Use of
such interfaces creates dependencies on the detailed design or implementation of the IBM software
product.

Product-sensitive programming interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces might need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs by an introductory statement to a chapter or section.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

484 Notices

http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled "Cookies, Web Beacons and
Other Technologies" and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 485

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

486 REXX for CICS Transaction Server: User Guide and Reference

Index

Special Characters
! prefix on TRACE option 187
? prefix on TRACE option 187
.DEFINE verb 328, 329
.PANEL verb 332, 333
* (multiplication operator) 22, 148, 243
- tracing flag 187
** (power operator) 22, 148
/ (division operator) 22, 148, 243
// (remainder operator) 22, 148
/= (not equal operator) 149
/== (strictly not equal operator) 149
\ (NOT operator) 25, 27, 149
\< (not less than operator) 25, 149
\<< (strictly not less than operator) 149
\= (not equal operator) 25, 149
\== (strictly not equal operator) 25, 149
\> (not greater than operator) 25, 149
\>> (strictly not greater than operator) 149
& (AND logical operator) 27, 150
&& (exclusive OR operator) 27, 150
% (integer division operator) 22, 148
+ (addition operator) 22, 148, 243
+++ tracing flag 187
< (less than operator) 25, 149
<< (strictly less than operator) 149
<<= (strictly less than or equal operator) 149
<= (less than or equal operator) 25, 149
<> (less than or greater than operator) 149
= (equal sign) 25
== (strictly equal operator) 25, 148, 149, 243
> (greater than operator) 25, 149
>.> tracing flag 187
>< (greater than or less than operator) 25, 149
>= (greater than or equal operator) 25, 149
>> (strictly greater than operator) 149
>>= (strictly greater than or equal operator) 149
>>> tracing flag 187
>C> tracing flag 187
>F> tracing flag 187
>L> tracing flag 187
>O> tracing flag 187
>P> tracing flag 187
>V> tracing flag 187
¬ (NOT operator) 25, 150
¬< (not less than operator) 149
¬<< (strictly not less than operator) 149
¬= (not equal operator) 149
¬== (strictly not equal operator) 149
¬> (not greater than operator) 149
¬>> (strictly not greater than operator) 149
| (inclusive OR operator) 27, 150
|| (concatenation operator) 29, 148

A
abuttal 29, 148
action taken when a condition is not trapped 252
action taken when a condition is trapped 252
active loops 175
ADDRESS instruction

example 8
address setting 163, 165
advanced topics in parsing 235
algebraic precedence 150
ALLOC command 354
alphanumeric checking with DATATYPE 202
AND, logical operator 150
ANDing character strings together 198
ARBCHAR command 260
ARG instruction 15, 75
ARG option of PARSE instruction 179
ARGS command 260
arithmetic 241
arithmetic operator

type of 21
assembler program

command arguments passed 310
associative storage 154
assumption, XEDIT 11
AUTH command 287
AUTHUSER command 123, 124, 129, 354
automatic server initiation (ASI) 323

B
backslash, use of 143, 149
BACKWARD command 261
Base option of DATE function 203
basic mapping support (BMS) 160, 372
BASSM assembler instruction 310
bits checked using DATATYPE 202
blank line 10
blanks, treatment of 85
BMS example 477
BMSMAP1 exec 477
BOTTOM command 261
bottom of program reached during execution 172
BSM assembler instruction 310
BY phrase of DO instruction 168

C
C2S command 310, 323, 377
CALL instruction 51, 68
CANCEL command 262, 277
CASE command 262
CATMOUSE EXEC 104
CD command 157, 257, 286, 355, 383
CEDA command 356
CEMT command 357

Index 487

Century option of DATE function 203
CHANGE command 263
checking arguments with ARG function 197
CICEPROF macro 266
CICGETV routine 312
CICPARMS control block 311
CICREX program 124
CICREX1106E 425
CICREX218E 416
CICREX219E 416
CICREX255T 416
CICREX449E 416
CICREX450E 416
CICREX451E 417
CICREX452E 417
CICREX453E 417
CICREX454E 417
CICREX455E 417
CICREX456E 418
CICREX457E 418
CICREX458E 418
CICREX459E 418
CICREX460E 419
CICREX461E 419
CICREX462E 419
CICREX463E 419
CICREX464E 420
CICREX465E 420
CICREX466E 420
CICREX467E 420
CICREX468E 420
CICREX469E 421
CICREX470E 421
CICREX471E 421
CICREX472E 421
CICREX473E 421
CICREX474E 422
CICREX475E 422
CICREX476E 422
CICREX477E 422
CICREX478E 422
CICREX479E 423
CICREX480E 423
CICREX481E 423
CICREX482E 423
CICREX483E 423
CICREX484E 423
CICREX485E 424
CICREX486E 424
CICREX487E 424
CICREX488E 424
CICREX489E 424
CICREX490E 425
CICREX491E 425
CICREX492E 425
CICS

return codes 455
CICS commands 91
CICS messages

REXX error codes 415
CICS overview 133
CICSECX1 security exit 124
CICSECX2 security exit 125
CICSLINK option on DEFCMD command 310

CICSLOAD option on DEFCMD command 310
CICSPROF exec 130
CICSTART exec 123, 124
CICXPROF macro 266
CKDIR command 288, 302
CKFILE command 288
clause

REXX types 8
CLD command 302, 371
client exec example 324
client/server 127
client/server support

REXX/CICS 323
CMDLINE command 264
code page 142
coding style 109
collating sequence using XRANGE 223
combining string and positional patterns 236
comma 86
command

quotation mark 91
command arguments passed to assembler programs 310
command arguments passed to REXX programs 310
command execution security 287
command level interpreter transaction (CECI) 129
commands

EDIT 91
RFS 91
RLS 91

COMPARE function 200
CON EXEC (exercise) 104
conceptual overview of parsing 237
configuration

REXX 115
Configure the REXX Db2 Interface 120
constant 20
constant symbols 154
content addressable storage 154
control variable 41
CONVTMAP command 372
COPY command 289
copying a string using COPIES 201
COPYR2S command 373
COPYS2R command 375
correcting your program 108
Create the Help Files 101, 120
Create the RFS Filepools 115
CTLCHAR command 264
CURLINE command 265
current directory 286, 302
current terminal line width 211

D
date and version of the language processor 179
Db2 Interface 315
DBADJUST function 466
DBBRACKET function 466
DBCENTER function 467
DBCJUSTIFY function 467
DBCS

characters 457
description 457
function handling 461

488 REXX for CICS Transaction Server: User Guide and Reference

DBCS (continued)
handling 457
names, using 10
processing functions 466
strings 457
support 457

DBCS symbol validation 459
DBLEFT function 468
DBRIGHT function 468
DBRLEFT function 468
DBRRIGHT function 469
DBTODBCS function 469
DBTOSBCS function 469
DBUNBRACKET function 470
DBVALIDATE function 470
DBWIDTH function 470
debug aids 475
DEFCMD command 129, 310, 323, 378
defining

panels 328
definition

directory ID 285
file pool 285
root directory 285
subdirectory 285

DEFSCMD command 310, 380
DEFTRNID command 382
DELETE command 289, 303
derived names of variables 154
description

variable 19
developing

REXX programs 1
DIGITS option of NUMERIC instruction 176, 242
DIR command 10, 383
directory ID 285, 301
DISKR command 290
DISKW command 285, 290
DISPLAY command 265
DO…END instruction 41
DOWN command 266
DPATH command 286

E
EDIT command 257, 266, 384
EDITSVR 92
embedding Db2 319
embedding SQL 315
engineering notation 246
equal sign in pattern 88
equality, testing of 149
error

debugging 95, 97
error codes 415
ERROR condition of SIGNAL and CALL instructions 254
error messages 12
ETMODE 177, 458
European option of DATE function 203
evaluation of expressions 147
example

ADDRESS instruction 8
current directory 286
debug aids 475

example (continued)
fully qualified file ID 285
sample panel 346
simple REXX program 5
using DBCS names 10

exception conditions saved during subroutine calls 165
exclusive OR operator 27, 150
exclusive-ORing character strings together 199
EXEC command 267, 385
exec identifier 8
EXECDB2 command environment 315
EXECDROP command 386
EXECIO command 387
EXECLOAD command 388
EXECMAP command 389
EXECSQL command environment 315
exercise

calculating arithmetic expressions 24
writing a function 80

EXIT instruction 50, 68
EXMODE 458
EXPORT command 390
EXPOSE option of PROCEDURE instruction 181
exposed variable 181
expression

arithmetic 21
comparison 24
concatenation 28
definitions 21
tracing 95, 97

expressions 20
EXTERNAL option of PARSE instruction 179

F
FAILURE condition of SIGNAL and CALL instructions 251,
254
failure, definition 156
feature

of REXX 3
FIFO (first-in/first-out) stacking 184
file access security 287
FILE command 268
file list utility (FLST) 292
file name, type, mode of program 179
file pool

root directory 285
file system

commands 287
file type extension 157
FILEPOOL command 124, 392
FIND command 269
FIND function 207
flowchart 38
FLST

execs 300
transactions 300

FLST command
CANCEL 293
COPY 293
DELETE 294
DOWN 294
END 295, 300
EXEC 295

Index 489

FLST command (continued)
FLST 296
MACRO 296
PFKEY 297
REFRESH 297
RENAME 298
SORT 298
SYNONYM 299
UP 299

FLST commands 293
FLSTSVR 92
FOR phrase of DO instruction 168
FOREVER repetitor on DO instruction 168
FORM function 207
FORM option of NUMERIC instruction 176, 246
Format the RFS Filepools 118
FORWARD command 270
FREE command 394
free format

REXX instruction 6
fully qualified file ID 257
function

comparison to a subroutine 63
protecting a variable 73

functions 193
FUZZ function 209

G
general concepts 141
GET command 270
GETDIR command 291
GETPDS command 271
GETVERS command 394
greater than operator 149
greater than or equal operator (>=) 149
greater than or less than operator (><) 149
grouping instructions to run repetitively 168
guard digit 243

H
HALT condition of SIGNAL and CALL instructions 251, 254
Halt Interpretation (HI) immediate command 475
halt, trapping 251
HELLO EXEC 11
HELP command 395
host command environment 92
hours calculated from midnight 217

I
identifying users 220
implied semicolons 146
IMPORT command 395
imprecise numeric comparison 246
inclusive OR operator 27, 150
indefinite loops 168
indentation during tracing 187
INDEX 209
indirect evaluation of data 174
inequality, testing of 149
infinite loops 168

input
preventing translation to uppercase 16

INPUT command 271
inserting a string into another 209
Install resource definitions 115
instruction

PROCEDURE 73
SAY 5

instrumentation facility interface (IFI) 315
interactive debug 187, 475
interpretive execution of data 174
interrupt instructions 50

J
JOIN command 272
Julian option of DATE function 203
justification, text right, RIGHT function 214
justifying text with JUSTIFY function 210

L
LEAVE instruction 49
leaving your program 172
LEFT command 272
less than operator (<) 149
less than or equal operator (<=) 149
less than or greater than operator (<>) 149
LIFO (last-in/first-out) stacking 183
line length and width of terminal 211
LINEADD command 273
LINEIN option of PARSE instruction 179
LISTCMD command 397
LISTPOOL command 398
LISTTRNID command 398
literal string 6, 143
LPREFIX command 273
LPULL command 303
LPUSH command 304
LQUEUE command 304

M
MACRO command 273
mapping between commands 353
master terminal transaction (CEMT) 3
messages

interpreting 12
minutes calculated from midnight 217
mixed DBCS string 202
MKDIR command 285, 291, 301, 305
Month option of DATE function 203
MSGLINE command 274
multi-way call 165, 186
multiple strings 88, 236

N
nesting of control structures 165
nibbles 143
NOETMODE 177
NOEXMODE 177
Normal option of DATE function 203

490 REXX for CICS Transaction Server: User Guide and Reference

not equal operator 149
not greater than operator 149
not less than operator 149
NOT operator 143, 150
NOTYPING flag cleared before error messages 415
NULLS command 275
NUMBERS command 275

O
operator

arithmetic 21
concatenation 28

OPTIONS instruction 458
Ordered option of DATE function 203
ORing character strings together 198
overflow, arithmetic 248
overlaying a string onto another 212
overview

of CICS 133

P
packing a string with X2C 223
pad character, definition 196
page, code 142
panel

definition 328
generation 334
input/output 334
object generator 328

PANEL command 334, 335
panel facility return codes 340
panel facility state codes 342
PARSE ARG instruction 84
PARSE PULL instruction 84
PARSE UPPER ARG instruction 84
PARSE UPPER PULL instruction 84
PARSE UPPER VALUE 84
PARSE UPPER VAR 85
parsing

into words 85
PARSE ARG 84
PARSE UPPER ARG 84

parsing case 236
parsing instructions 234
parsing multiple strings in a subroutine 236
passing

arguments 17
information 71

PATH command 157, 286, 399
pattern in parsing 86
permanent command destination change 163
PFKEY command 276
PFKLINE command 276
placeholder 85
placeholder in parsing 15, 85
powers of ten in numbers 143
precedence of operators 150
precision of arithmetic 242
predefined variables 315, 317, 320
presumed command destinations 163
PROCEDURE instruction 73, 74

product overview 133
program

configuration 113
error message 12
passing information to 14
receiving input 15

program identifier 5, 141
program load table (PLT) 124
protecting variables 181
PSEUDO command 400
pseudo random number function of RANDOM 213
PULL instruction 11, 14, 83
PULL option of PARSE instruction 179

Q
QQUIT command 277, 279
QUERY command 278
querying TRACE setting 218
QUIT command 279

R
random number function of RANDOM 213
RC 473
RDIR command 291
READ command 305
recursive call 165
relative numeric pattern in parsing 86
relative positional patterns 229
RENAME command 292
reordering data with TRANSLATE function 219
repeating a string with COPIES 201
repetitive loops 41
reservation of keywords 473
RESERVED command 279, 292
RESET command 280
resetting command environment 353
resource definition online (RDO) 477
resource definition online transaction (CEDA) 3
restoring variables 172
RESULT 473
return codes 427
RETURN instruction 51, 68
REXX

clauses 8
REXX instruction

formatting 5
PROCEDURE 73
PULL 14
syntax 5, 6

REXX language
feature of 3

REXX program identifier 5, 8, 141
REXX programs

expressions 19
operators 19
variables 19

REXX/CICS 427
REXX/CICS Command Definition Facility 309
REXX/CICS commands 353
REXX/CICS File System (RFS) 285
REXX/CICS List System (RLS) 301

Index 491

REXX/CICS Panel Facility 327
REXX/CICS text editor 257
REXXCICS 92
RFS 92
RFS command 285, 401
RIGHT command 280
RLS 92
RLS command

CKDIR 302
DELETE 303
LPULL 303
LPUSH 304
LQUEUE 304
MKDIR 305
READ 305
VARDROP 306
VARGET 306
VARPUT 306
WRITE 307

RLS commands 302
root directory 285, 301
rules

free format 5, 6
syntax 5, 6

running
REXX programs 5

S
S2C command 310, 323, 411
SAVE command 281
SAY instruction 5, 11, 12, 160
SBCS strings 457
scientific notation 246
SCRNINFO command 406
searching a string for a phrase 207
seconds calculated from midnight 217
secure

file access 287
security 129, 287, 302
Security exit 124
SELECT WHEN…OTHERWISE…END 38
selecting a default with ABBREV function 196
sequence, collating using XRANGE 223
server exec example 324
set buffer address (SBA) 225
SET command 407
SETSYS command 124, 409
shift-in (SI) characters 457
Shift-in (SI) characters 461
shift-out (SO) characters 457
Shift-out (SO) characters 461
SIGL 473
SIGNAL instruction 54
significant digits in arithmetic 242
SORT command 281
SOURCE option of PARSE instruction 179
spacing, formatting, SPACE function 215
special case 236
special variables 473
SPLIT command 282
SQL Communications Area (SQLCA) 318
SQL statements 91
Standard option of DATE function 203

statements
SQL 91

strict comparison 149
strictly equal operator 149
strictly greater than operator 149
strictly greater than or equal operator 149
strictly less than operator 149
strictly less than or equal operator 149
strictly not equal operator 149
strictly not greater than operator 149
strictly not less than operator 149
string

DBCS 457
string and positional patterns 236
string parsing 236
string pattern in parsing 86
STRIP command 282
structure and syntax 141
style, coding 109
subdirectory 285, 301
subexpression 147
subkeyword 153
subroutine

comparison to a function 63
protecting variable 73
writing 64

subsidiary list 172, 181
SUBSTR 216
substring 216
symbols and strings in DBCS 458
SYNONYM command 283
syntax

rules of REXX 5, 6
SYNTAX condition of SIGNAL instruction 251, 254
syntax diagrams

REXX 139
SYSSBA function 225
systems administrator 130

T
tail 154
template

parsing 86
templates containing positional patterns 229
temporary command destination change 163
temporary storage queue (TSQ) 387
ten, powers of 246
TERMID command 411
terms and data 147
text editor 257
text spacing 215
TO phrase of DO instruction 168
TOP command 283
trace

trace operation 95, 97
Trace End (TE) immediate command 475
TRACE instruction 160
Trace Start (TS) immediate command 475
traceback, on syntax error 187
transaction identifier 129, 257
TRUNC command 283
truncating numbers 219
type of data checking with DATATYPE 202

492 REXX for CICS Transaction Server: User Guide and Reference

typing in a program 11

U
unassigning variables 172
unconditionally leaving your program 172
underflow, arithmetic 248
uninitialized variable 153
UNTIL phrase of DO instruction 168
unusual change in flow of control 251
UP command 284
Update CICS Initialization JCL 117
Update CICSTART.PROC 116
Update LSRPOOL Definitions 116
Usa option of DATE function 203
USERS directory 285, 301
users, identifying 220
using a period as a placeholder 85

V
value of variable, getting with VALUE 220
VALUE option of PARSE instruction 179
VAR option of PARSE instruction 179
VARDROP command 306
VARGET command 306
variable

description 19
variable string pattern in parsing 86
variable string patterns 233
VARPUT command 306
verbs

DEFINE 328
PANEL 332

Verify the installation 119
VERSION option of PARSE instruction 179

W
WAITREAD command 412
WAITREQ command 310, 323, 413
warning, STORAGE function 224
Weekday option of DATE function 203
WHILE phrase of DO instruction 168
word from a string 221
WRITE command 301, 307
writing

REXX programs 5

X
XOR, logical 150
XORing character strings together 199

Index 493

494 REXX for CICS Transaction Server: User Guide and Reference

IBM®

	Contents
	About this PDF
	Part 1. Developing REXX applications
	Chapter 1. Features and components of REXX
	Chapter 2. Writing and running a REXX application
	Syntax of REXX instructions
	Format of REXX instructions
	Letter case of REXX instructions
	Types of REXX clauses

	Programs using double-byte character set names
	Typing in a program
	Running a program

	Interpreting error messages
	Preventing translation to uppercase
	Passing information to a program
	Getting information from the program stack or terminal input device
	Specifying values when calling a program
	Preventing translation of input to uppercase
	Exercises: using the ARG instruction

	Passing arguments

	Chapter 3. Processing variable data by using variables and expressions
	Variables
	Expressions
	Arithmetic operators
	Comparison operators
	Logical (Boolean) operators
	Concatenation operators
	Priority of operators

	Chapter 4. Controlling the flow within a program
	Conditional instructions
	IF…THEN…ELSE instructions
	Nested IF…THEN…ELSE instructions
	SELECT WHEN…OTHERWISE…END instructions

	Looping instructions
	Repetitive loops
	Conditional loops
	Compound loops

	Interrupt instructions
	EXIT instructions
	CALL and RETURN instructions
	SIGNAL instructions

	Chapter 5. Functions
	Built-In functions
	Subroutines and functions
	Writing subroutines and functions
	Choosing to use internal or external subroutines or functions
	Passing information
	Passing information with variables
	Passing information with arguments

	Receiving information from a subroutine or function
	Exercise: writing an internal and an external subroutine
	Exercise: writing a function

	Chapter 6. Manipulating Data
	Using Compound Variables and Stems
	What Is a Compound Variable?
	Using stems
	Exercises - Using Compound Variables and Stems

	Parsing data
	Parsing Instructions
	More about parsing into words
	Parsing with patterns
	Parsing multiple strings as arguments
	Exercise - practise with parsing

	Chapter 7. Using commands from a program
	Using quotation marks in commands
	Using variables in commands
	Calling another REXX program as a command
	Issuing commands from a program
	How is a command passed to the host environment?
	Changing the host command environment

	Chapter 8. Diagnosing problems in a program
	Tracing expressions with the TRACE instruction
	Tracing commands with the TRACE instruction
	Using REXX special variables RC and SIGL
	Tracing with the interactive debug facility
	Saving Interactive TRACE Output

	Chapter 9. Using the REXX/CICS help utility
	Chapter 10. Programming Style and Techniques
	Test yourself
	Happy Hour
	Designing a program
	Methods for designing loops
	The conclusion
	What do we have so far?
	Step-wise refinement: an example
	Reconsider the Data

	Correcting your program
	Modifying Your Program
	Tracing your program

	Coding style

	Part 2. Configuring REXX
	Chapter 11. Configuring REXX support
	Create the RFS filepools
	Create resource definitions
	Review LSRPOOL definitions
	Update the CICSTART member
	Modify the CICS initialization JCL
	Format the RFS filepools
	Verify the installation
	Creating the help files
	Configure the REXX Db2 interface

	Chapter 12. REXX/CICS system definition and administration
	Authorized REXX/CICS commands and authorized command options
	System profile exec
	Authorized MVS PDS REXX libraries
	Defining authorized users
	Setting system options
	Defining a REXX file system (RFS) file pool
	Creating a PLT entry for CICSTART
	Security exits
	CICSECX1
	CICSECX2

	Chapter 13. Performance considerations
	Chapter 14. Security
	REXX/CICS supports multiple transaction identifiers
	REXX/CICS file security
	REXX/CICS command level security
	REXX/CICS authorized command support
	Security definitions

	Part 3. REXX for CICS Transaction Server: Reference
	Chapter 15. Overview of product features
	Chapter 16. How to read the syntax diagrams
	Chapter 17. REXX General Concepts
	Structure and General Syntax
	Characters
	Comments
	Tokens
	Implied Semicolons
	Continuations

	Expressions and Operators
	Expressions
	Operators
	String concatenation operators
	Arithmetic operators
	Comparison operators
	Logical (Boolean) operators

	Parentheses and Operator Precedence

	Clauses and instructions
	Assignments and Symbols
	Constant Symbols
	Simple Symbols
	Compound symbols
	Stems

	Commands to External Environments
	Basic structure of REXX running under CICS
	Support of Standard REXX Features
	REXX command environment support
	Support for standard CICS features
	Interfaces to other programming languages

	Chapter 18. Keyword instructions
	ADDRESS
	ARG
	CALL
	DO
	DROP
	EXIT
	IF
	INTERPRET
	ITERATE
	LEAVE
	NOP
	NUMERIC
	OPTIONS
	PARSE
	PROCEDURE
	PULL
	PUSH
	QUEUE
	RETURN
	SAY
	SELECT
	SIGNAL
	TRACE
	UPPER

	Chapter 19. Functions
	Syntax
	Functions and subroutines
	Built-in Functions
	ABBREV (Abbreviation)
	ABS (Absolute Value)
	ADDRESS
	ARG (Argument)
	BITAND (Bit by Bit AND)
	BITOR (Bit by Bit OR)
	BITXOR (Bit by Bit Exclusive OR)
	B2X (Binary to Hexadecimal)
	CENTER/CENTRE
	COMPARE
	CONDITION
	COPIES
	C2D (Character to Decimal)
	C2X (Character to Hexadecimal)
	DATATYPE
	DATE
	DBCS (Double-Byte Character Set Functions)
	DELSTR (Delete String)
	DELWORD (Delete Word)
	DIGITS
	D2C (Decimal to Character)
	D2X (Decimal to Hexadecimal)
	ERRORTEXT
	EXTERNALS
	FIND
	FORM
	FORMAT
	FUZZ
	INDEX
	INSERT
	JUSTIFY
	LASTPOS (Last Position)
	LEFT
	LENGTH
	LINESIZE
	MAX (Maximum)
	MIN (Minimum)
	OVERLAY
	POS (Position)
	QUEUED
	RANDOM
	REVERSE
	RIGHT
	SIGN
	SOURCELINE
	SPACE
	STORAGE
	STRIP
	SUBSTR (Substring)
	SUBWORD
	SYMBOL
	TIME
	TRACE
	TRANSLATE
	TRUNC (Truncate)
	USERID
	VALUE
	VERIFY
	WORD
	WORDINDEX
	WORDLENGTH
	WORDPOS (Word Position)
	WORDS
	XRANGE (Hexadecimal Range)
	X2B (Hexadecimal to Binary)
	X2C (Hexadecimal to Character)
	X2D (Hexadecimal to Decimal)

	External Functions Provided in REXX/CICS
	STORAGE
	SYSSBA

	Chapter 20. Parsing
	Simple templates for parsing into words
	Templates that contain string patterns
	Templates that contain positional (numeric) patterns
	Parsing with variable patterns
	Using UPPER
	Parsing instructions summary
	Parsing instructions examples
	Advanced parsing information
	Parsing multiple strings
	Combining string and positional patterns: a special case
	Parsing with DBCS characters
	Details of steps in parsing

	Chapter 21. Numbers and arithmetic operations
	Introduction: numbers
	Definition of arithmetic facilities
	Numbers
	Precision
	Arithmetic Operators
	Arithmetic operation rules: basic operators
	Arithmetic operation rules: additional operators
	Numeric Comparisons
	Exponential notation
	Numeric information
	Whole numbers
	Numbers used directly by REXX
	Errors

	Chapter 22. Conditions and condition traps
	Action when a condition is not trapped
	Action when a condition is trapped
	Condition information
	Special variables

	Chapter 23. REXX/CICS text editor
	Command Line Commands
	ARBCHAR
	ARGS
	BACKWARD
	BOTTOM
	CANCEL
	CASE
	CHANGE
	CMDLINE
	CTLCHAR
	CURLINE
	DISPLAY
	DOWN
	EDIT
	EXEC
	FILE
	FIND
	FORWARD
	GET
	GETPDS
	INPUT
	JOIN
	LEFT
	LINEADD
	LPREFIX
	MACRO
	MSGLINE
	NULLS
	NUMBERS
	PFKEY
	PFKLINE
	QQUIT
	QUERY
	QUIT
	RESERVED
	RESET
	RIGHT
	SAVE
	SORT
	SPLIT
	STRIP
	SYNONYM
	TOP
	TRUNC
	UP

	Chapter 24. REXX/CICS File System
	File pools, directories, and files
	Current directory and path
	Security
	RFS commands
	AUTH
	CKDIR
	CKFILE
	COPY
	DELETE
	DISKR
	DISKW
	GETDIR
	MKDIR
	RDIR
	RENAME

	REXX/CICS File List Utility
	Invocation
	Macros under the REXX/CICS File List Utility
	FLST Commands
	CANCEL
	COPY
	DELETE
	DOWN
	END
	EXEC
	FLST
	MACRO
	PFKEY
	REFRESH
	RENAME
	SORT
	SYNONYM
	UP

	FLST return codes
	Running execs and transactions from FLST

	Chapter 25. REXX/CICS List System
	Directories and lists
	Current directory and path
	Security
	RLS commands
	CKDIR
	DELETE
	LPULL
	LPUSH
	LQUEUE
	MKDIR
	READ
	VARDROP
	VARGET
	VARPUT
	WRITE

	Chapter 26. REXX/CICS Command Definition
	Background
	Defining commands
	Command arguments passed to REXX programs
	Command arguments passed to assembler programs
	CICPARMS control block
	Non-REXX language interfaces
	CICGETV: call to get, set, or drop a REXX variable

	Chapter 27. REXX/CICS Db2 interface
	Programming considerations
	Embedding SQL statements
	Receiving the results
	Using the SQL communications area
	Example using SQL statements

	Embedding Db2 commands
	Receiving the results
	Example using Db2 commands

	Chapter 28. REXX/CICS high-level client/server support
	High-level, natural, transparent REXX client interface
	Support for REXX-based application clients and servers
	Value of REXX in client/server computing
	REXX/CICS client exec example
	REXX/CICS server exec example

	Chapter 29. REXX/CICS Panel Facility
	Defining panels
	Defining the field control characters with the .DEFINE verb
	.DEFINE
	Defining the actual PANEL layout with the .PANEL verb
	.PANEL
	Panel generation and panel input/output
	PANEL RUNTIME
	PANEL Variables
	Panel facility return code information
	State codes and input codes
	Location codes

	Examples of sample panels
	Example of a REXX panel program

	Chapter 30. REXX/CICS commands
	ALLOC
	AUTHUSER
	CD
	CEDA
	CEMT
	CLD
	CONVTMAP
	COPYR2S
	COPYS2R
	C2S
	DEFCMD
	DEFSCMD
	DEFTRNID
	DIR
	EDIT
	EXEC
	EXECDROP
	EXECIO
	EXECLOAD
	EXECMAP
	EXPORT
	FILEPOOL
	FLST
	FREE
	GETVERS
	HELP
	IMPORT
	LISTCMD
	LISTPOOL
	LISTTRNID
	PATH
	PSEUDO
	RFS
	RLS
	SCRNINFO
	SET
	SETSYS
	S2C
	TERMID
	WAITREAD
	WAITREQ

	Chapter 31. Error numbers and messages
	CICREXnnn error messages

	Chapter 32. Return Codes
	Panel facility return codes
	SQL return codes
	Db2 return codes
	RFS and FLST
	EDITOR and EDIT
	DIR
	SET
	CD
	PATH
	RLS
	LISTCMD
	CLD
	DEFCMD
	DEFSCMD
	DEFTRNID
	EXECDROP
	EXECLOAD
	EXECMAP
	ALLOC and FREE
	EXPORT and IMPORT
	FILEPOOL
	GETVERS
	COPYR2S
	COPYS2R
	LISTPOOL
	LISTTRNID
	C2S
	PSEUDO
	AUTHUSER
	SETSYS
	S2C
	TERMID
	WAITREAD
	WAITREQ
	Non command-specific return codes
	EXEC
	CEDA and CEMT
	EXECIO
	CONVTMAP
	SCRNINFO
	CICS

	Chapter 33. Double-Byte Character Set (DBCS) Support
	DBCS: general description
	Enabling DBCS data operations and symbol use
	Symbols and strings
	DBCS symbol validation
	Mixed string validation

	Instructions and DBCS
	PARSE
	PUSH and QUEUE
	SAY and TRACE
	UPPER

	DBCS function handling
	Built-in Function Examples
	ABBREV
	COMPARE
	COPIES
	DATATYPE
	FIND
	INDEX, POS, and LASTPOS
	INSERT and OVERLAY
	JUSTIFY
	LEFT, RIGHT, and CENTER
	LENGTH
	REVERSE
	SPACE
	STRIP
	SUBSTR and DELSTR
	SUBWORD and DELWORD
	SYMBOL
	TRANSLATE
	VALUE
	VERIFY
	WORD, WORDINDEX, and WORDLENGTH
	WORDS
	WORDPOS

	DBCS Processing Functions
	DBADJUST
	DBBRACKET
	DBCENTER
	DBCJUSTIFY
	DBLEFT
	DBRIGHT
	DBRLEFT
	DBRRIGHT
	DBTODBCS
	DBTOSBCS
	DBUNBRACKET
	DBVALIDATE
	DBWIDTH

	Chapter 34. Reserved keywords and special variables
	Reserved keywords
	Special variables

	Chapter 35. Debug aids
	Interactive debugging of programs
	Interrupting execution and controlling tracing

	Chapter 36. Basic mapping support example
	Chapter 37. Bibliography

	Notices
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

