
CICS Transaction Server for z/OS
Version 5 Release 5

C++ OO Class Libraries

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
251.

This edition applies to the IBM® CICS® Transaction Server for z/OS® Version 5 Release 5 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this PDF..ix

Chapter 1. Installation and setup...1
Getting ready for object oriented CICS... 1
Installed contents.. 1

Header files...1
Dynamic link library.. 2
Sample source code... 2
Other data sets for CICS Transaction Server for z/OS...3

Chapter 2. Using the CICS foundation classes ... 5
C++ Objects..5

Creating an object...5
Using an object... 6
Deleting an object...6

Overview of the foundation classes...6
Base classes... 6
Resource identification classes... 7
Resource classes.. 8
Support Classes..10
Using CICS resources...11

Buffer objects...12
IccBuf class.. 12

Using CICS Services...14
File control..14
Program control..19
Starting transactions asynchronously... 20
Transient Data.. 23
Temporary storage... 24
Terminal control... 26
Time and date services.. 28

Compiling, executing, and debugging... 29
Compiling a CICS Foundation Class program..29
Executing Programs... 31
Program debugging.. 31

Conditions, errors, and exceptions..32
Foundation Class Abend codes..32
C++ Exceptions and the Foundation Classes.. 32
CICS conditions.. 34
Platform differences...36

Polymorphic Behavior..38
Example of polymorphic behavior... 41

Storage management.. 42
Parameter passing conventions.. 42
Scope of data in IccBuf reference returned from 'read' methods..43

Chapter 3. Foundation Classes: reference.. 45
Mapping EXEC CICS calls to Foundation Class methods..46
Mapping Foundation Class methods to EXEC CICS calls..51
Icc structure...58

 iii

Functions.. 58
Enumerations... 60

IccAbendData class... 62
IccAbendData constructor (protected)... 62
Public methods...62
Inherited public methods...66
Inherited protected methods.. 66

IccAbsTime class...66
IccAbsTime constructor...67
Public methods...67
Inherited public methods...70
Inherited protected methods.. 71

IccAlarmRequestId class.. 71
IccAlarmRequestId constructors.. 71
Public methods...72
Inherited public methods...73
Inherited protected methods.. 73

IccBase class... 73
IccBase constructor (protected)..73
Public methods...74
Protected methods...75
Enumerations... 75

IccBuf class..77
IccBuf constructors..77
Public methods...78
Inherited public methods...86
Inherited protected methods.. 86
Enumerations... 86

IccClock class.. 86
IccClock constructor.. 87
Public methods...87
Inherited public methods...90
Inherited protected methods.. 90
Enumerations... 90

IccCondition structure...91
Enumerations... 91

IccConsole class.. 93
IccConsole constructor (protected).. 93
Public methods...93
Inherited public methods...95
Inherited protected methods.. 96
Enumerations... 96

IccControl class... 96
IccControl constructor (protected)..97
Public methods...97
Inherited public methods.. 100
Inherited protected methods.. 101

IccConvId class... 101
IccConvId constructors... 101
Public methods.. 102
Inherited public methods.. 102
Inherited protected methods.. 102

IccDataQueue class...102
IccDataQueue constructors...103
Public methods.. 103
Inherited public methods.. 105
Inherited protected methods.. 105

IccDataQueueId class... 105

iv

IccDataQueueId constructors... 106
Public methods.. 106
Inherited public methods.. 107
Inherited protected methods.. 107

IccEvent class..107
IccEvent constructor..107
Public methods.. 108
Inherited public methods.. 109
Inherited protected methods.. 109

IccException class...109
IccException constructor...109
Public methods.. 110
Inherited public methods.. 111
Inherited protected methods.. 112
Enumerations... 112

IccFile class... 112
IccFile constructors... 113
Public methods.. 113
Inherited public methods.. 122
Inherited protected methods.. 123
Enumerations... 123

IccFileId class..124
IccFileId constructors..124
Public methods.. 125
Inherited public methods.. 125
Inherited protected methods.. 125

IccFileIterator class.. 126
IccFileIterator constructor.. 126
Public methods.. 126
Inherited public methods.. 127
Inherited protected methods.. 128

IccGroupId class... 128
IccGroupId constructors... 128
Public methods.. 129
Inherited public methods.. 129
Inherited protected methods.. 130

IccJournal class ..130
IccJournal constructors...130
Public methods.. 131
Inherited public methods.. 133
Inherited protected methods.. 134
Enumerations... 134

IccJournalId class... 134
IccJournalId constructors... 134
Public methods.. 135
Inherited public methods.. 136
Inherited protected methods.. 136

IccJournalTypeId class... 136
IccJournalTypeId constructors... 136
Public methods.. 137
Inherited public methods.. 137
Inherited protected methods.. 137

IccKey class... 138
IccKey constructors... 138
Public methods.. 138
Inherited public methods.. 141
Inherited protected methods.. 141
Enumerations... 141

 v

IccLockId class..141
IccLockId constructors.. 141
Public methods.. 142
Inherited public methods.. 142
Inherited protected methods.. 143

IccMessage class...143
IccMessage constructor...143
Public methods.. 143
Inherited public methods.. 144
Inherited protected methods.. 144

IccPartnerId class... 145
IccPartnerId constructors... 145
Public methods.. 145
Inherited public methods.. 146
Inherited protected methods.. 146

IccProgram class... 146
IccProgram constructors... 146
Public methods.. 147
Inherited public methods.. 149
Inherited protected methods.. 150
Enumerations... 150

IccProgramId class..150
IccProgramId constructors..150
Public methods.. 151
Inherited public methods.. 151
Inherited protected methods.. 151

IccRBA class.. 152
IccRBA constructor..152
Public methods.. 152
Inherited public methods.. 153
Inherited protected methods.. 153

IccRecordIndex class..154
IccRecordIndex constructor (protected).. 154
Public methods.. 154
Inherited public methods.. 155
Inherited protected methods.. 155
Enumerations... 155

IccRequestId class..155
IccRequestId constructors..155
Public methods.. 156
Inherited public methods.. 156
Inherited protected methods.. 157

IccResource class..157
IccResource constructor (protected).. 157
Public methods.. 157
Inherited public methods.. 162
Inherited protected methods.. 162
Enumerations... 162

IccResourceId class.. 163
IccResourceId constructors (protected)...163
Public methods.. 164
Protected methods.. 164
Inherited public methods.. 164
Inherited protected methods.. 165

IccRRN class..165
IccRRN constructors..165
Public methods.. 165
Inherited public methods.. 166

vi

Inherited protected methods.. 167
IccSemaphore class.. 167

IccSemaphore constructor.. 167
Public methods.. 168
Inherited public methods.. 169
Inherited protected methods.. 169
Enumerations... 169

IccSession class.. 170
IccSession constructors (public)... 170
IccSession constructor (protected)...171
Public methods.. 171
Inherited public methods.. 179
Inherited protected methods.. 179
Enumerations... 179

IccStartRequestQ class...180
IccStartRequestQ constructor (protected)... 180
Public methods.. 181
Inherited public methods.. 185
Inherited protected methods.. 186
Enumerations... 186

IccSysId class..186
IccSysId constructors..186
Public methods.. 187
Inherited public methods.. 187
Inherited protected methods.. 188

IccSystem class...188
IccSystem constructor (protected)... 188
Public methods.. 188
Inherited public methods.. 192
Inherited protected methods.. 193
Enumerations... 193

IccTask class... 193
IccTask Constructor (protected)... 193
Public methods.. 194
Inherited public methods.. 201
Inherited protected methods.. 201
Enumerations... 202

IccTempStore class...204
IccTempStore constructors...204
Public methods.. 204
Inherited public methods.. 207
Inherited protected methods.. 208
Enumerations... 208

IccTempStoreId class... 208
IccTempStoreId constructors... 208
Public methods.. 209
Inherited public methods.. 209
Inherited protected methods.. 209

IccTermId class...210
IccTermId constructors... 210
Public methods.. 210
Inherited public methods.. 211
Inherited protected methods.. 211

IccTerminal class...211
IccTerminal constructor (protected)...211
Public methods.. 212
Inherited public methods.. 224
Inherited protected methods.. 225

 vii

Enumerations... 225
IccTerminalData class...226

IccTerminalData constructor (protected)... 226
Public methods.. 227
Inherited public methods.. 232
Inherited protected methods.. 232

IccTime class... 232
IccTime constructor (protected)... 233
Public methods.. 233
Inherited public methods.. 234
Inherited protected methods.. 234
Enumerations... 234

IccTimeInterval class.. 235
IccTimeInterval constructors.. 235
Public methods.. 236
Inherited public methods.. 236
Inherited protected methods.. 237

IccTimeOfDay class...237
IccTimeOfDay constructors...237
Public methods.. 238
Inherited public methods.. 238
Inherited protected methods.. 239

IccTPNameId class... 239
IccTPNameId constructors..239
Public methods.. 240
Inherited public methods.. 240
Inherited protected methods.. 240

IccTransId class.. 241
IccTransId constructors.. 241
Public methods.. 241
Inherited public methods.. 242
Inherited protected methods.. 242

IccUser class..242
IccUser constructors..242
Public methods.. 243
Inherited public methods.. 245
Inherited protected methods.. 245

IccUserId class.. 246
IccUserId constructors.. 246
Public methods.. 246
Inherited public methods.. 247
Inherited protected methods.. 247

IccValue structure... 247
Enumeration...247

main function... 248

Notices..251

Index.. 257

viii

About this PDF

This PDF describes how to use the CICS C++ foundation classes, which allow an application programmer
to access CICS services that are available via the EXEC CICS API.

For details of the terms and notation used, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2020 ix

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/documentation/conventions.html

x CICS TS for z/OS: C++ OO Class Libraries

Chapter 1. Installation and setup
This section describes the CICS foundation classes installed on your CICS server.

Getting ready for object oriented CICS
You must be familiar with object oriented concepts and technology, the C++ language and with CICS in
order to understand the topics that follow.

This is not intended to be an introduction to any of these subjects.

Installed contents
The CICS foundation classes package consists of several files or data sets.

The CICS foundation classes package consists of several files or data sets. These contain the:

• header files
• executables (DLL's)
• samples
• other CICS Transaction Server for z/OS files

This section describes the files that comprise the CICS C++ Foundation Classes and explains where you
can find them on your CICS server.

Header files
The header files are the C++ class definitions needed to compile CICS C++ Foundation Class programs.

C++ Header File Classes Defined in this Header

ICCABDEH IccAbendData

ICCBASEH IccBase

ICCBUFEH IccBuf

ICCCLKEH IccClock

ICCCNDEH IccCondition (struct)

ICCCONEH IccConsole

ICCCTLEH IccControl

ICCDATEH IccDataQueue

ICCEH see “1” on page 2

ICCEVTEH IccEvent

ICCEXCEH IccException

ICCFILEH IccFile

ICCFLIEH IccFileIterator

ICCGLBEH Icc (struct) (global functions)

ICCJRNEH IccJournal

ICCMSGEH IccMessage

© Copyright IBM Corp. 1974, 2020 1

C++ Header File Classes Defined in this Header

ICCPRGEH IccProgram

ICCRECEH IccRecordIndex, IccKey, IccRBA and IccRRN

ICCRESEH IccResource

ICCRIDEH IccResourceId + subclasses (such as IccConvId)

ICCSEMEH IccSemaphore

ICCSESEH IccSession

ICCSRQEH IccStartRequestQ

ICCSYSEH IccSystem

ICCTIMEH IccTime, IccAbsTime, IccTimeInterval, IccTimeOfDay

ICCTMDEH IccTerminalData

ICCTMPEH IccTempStore

ICCTRMEH IccTerminal

ICCTSKEH IccTask

ICCUSREH IccUser

ICCVALEH IccValue (struct)

Note:

1. A single header that #includes all the listed header files is supplied as ICCEH
2. The file ICCMAIN is also supplied with the C++ header files. This contains the main function stub that

should be used when you build a Foundation Class program.
3. Header files are located in CICSTS55.CICS .SDFHC370.

Location

PDS: CICSTS55.CICS.SDFHC370.

Dynamic link library
The Dynamic Link Library is the runtime environment that is needed to support a CICS C++ Foundation
Class program.

Location

ICCFCDLL module in PDS: CICSTS55.CICS.SDFHLOAD.

Sample source code
The samples are provided to help you understand how to use the classes to build object oriented
applications.

Location

PDS: CICSTS55.CICS.SDFHSAMP.

2 CICS TS for z/OS: C++ OO Class Libraries

Running the sample applications
If you have installed the resources defined in the member DFHCURDS, you should be ready to run some of
the sample applications.

The sample programs are supplied as source code in library CICSTS55.CICS.SDFHSAMP and before you
can run the sample programs, you need to compile, pre-link and link them. To do this, use the procedure
ICCFCCL in data set CICSTS55.CICS.SDFHPROC.

ICCFCCL contains the Job Control Language needed to compile, pre-link and link a CICS user application.
Before using ICCFCCL you may find it necessary to perform some customization to conform to your
installation standards. See also Compiling programs.

Sample programs such as ICCBUF, ICCCLK and ICC$HEL require no additional CICS resource
definitions, and should now execute successfully.

Other sample programs, in particular the DTP samples named ICC$SES1 and ICC$SES2, require
additional CICS resource definitions. Refer to the prologues in the source of the sample programs for
information about these additional requirements.

Other data sets for CICS Transaction Server for z/OS
CICSTS55.CICS.SDFHSDCK contains the member

• ICCFCIMP - 'sidedeck' containing import control statements

CICSTS55.CICS.SDFHPROC contains the members

• ICCFCC - JCL to compile a CFC user program
• ICCFCCL - JCL to compile, prelink and link a CFC user program
• ICCFCGL - JCL to compile and link an XPLINK program that uses CFC libraries.
• ICCFCL - JCL to prelink and link a CFC user program

CICSTS55.CICS.SDFHLOAD contains the members

• DFHCURDS - program definitions required for CICS system definition.
• DFHCURDI - program definitions required for CICS system definition.

Chapter 1. Installation and setup 3

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhalg3.html

4 CICS TS for z/OS: C++ OO Class Libraries

Chapter 2. Using the CICS foundation classes
This section describes the CICS foundation classes and how to use them. There is a formal listing of the
user interface in Foundation Classes: reference.

C++ Objects
This section describes how to create, use, and delete objects.

This section describes how to create, use, and delete objects. In our context an object is an instance of a
class. An object cannot be an instance of a base or abstract base class. It is possible to create objects of
all the concrete (non-base) classes described in the reference part of this book.

Creating an object
If a class has a constructor it is executed when an object of that class is created. This constructor typically
initializes the state of the object. Foundation Classes' constructors often have mandatory positional
parameters that the programmer must provide at object creation time.

C++ objects can be created in one of two ways:

1. Automatically, where the object is created on the C++ stack. For example:

{
ClassX objX
ClassY objY(parameter1);
} //objects deleted here

Here, objX and objY are automatically created on the stack. Their lifetime is limited by the context in
which they were created; when they go out of scope they are automatically deleted (that is, their
destructors run and their storage is released).

2. Dynamically, where the object is created on the C++ heap. For example:

{
ClassX* pObjX = new ClassX;
ClassY* pObjY = new ClassY(parameter1);
} //objects NOT deleted here

Here we deal with pointers to objects instead of the objects themselves. The lifetime of the object
outlives the scope in which it was created. In the previous sample the pointers (pObjX and pObjY) are
'lost' as they go out of scope but the objects they pointed to still exist! The objects exist until they are
explicitly deleted as shown here:

{
ClassX* pObjX = new ClassX;
ClassY* pObjY = new ClassY(parameter1);
⋮
pObjX->method1();
pObjY->method2();
⋮
delete pObjX;
delete pObjY;
}

Most of the samples in this book use automatic storage. You are advised to use automatic storage,
because you do not have remember to explicitly delete objects, but you are free to use either style for
CICS C++ Foundation Class programs. For more information on Foundation Classes and storage
management see “Storage management” on page 42.

© Copyright IBM Corp. 1974, 2020 5

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal0l.html

Using an object
Any of the class public methods can be called on an object of that class.

Any of the class public methods can be called on an object of that class. The following example creates
object obj and then calls method doSomething on it:

ClassY obj("TEMP1234");
obj.doSomething();

Alternatively, you can do this using dynamic object creation:

ClassY* pObj = new ClassY("parameter1");
pObj->doSomething();

Deleting an object
When an object is destroyed its destructor function, which has the same name as the class preceded with
~(tilde), is automically called. (You cannot call the destructor explicitly).

If the object was created automatically it is automatically destroyed when it goes out of scope.

If the object was created dynamically it exists until an explicit delete operator is used.

Overview of the foundation classes
This topic is a formal introduction to what the Foundation Classes can do for you.

See ICC$HEL: C++ Hello World sample for a simple example to get you started. The section takes a brief
look at the CICS C++ Foundation Class library by considering the categories in turn.

See Foundation classes reference for more detailed information on the Foundation Classes.

Every class that belongs to the CICS Foundation Classes is prefixed by Icc.

Base classes
All classes inherit, directly or indirectly, from IccBase .

 IccBase
 IccRecordIndex
 IccResource
 IccControl
 IccTime
 IccResourceId

Figure 1. Base classes

All resource identification classes, such as IccTermId , and IccTransId , inherit from IccResourceId
class. These are typically CICS table entries.

All CICS resources—in fact any class that needs access to CICS services—inherit from IccResource class.

Base classes enable common interfaces to be defined for categories of class. They are used to create the
foundation classes, as provided by IBM , and they can be used by application programmers to create their
own derived classes.
IccBase

The base for every other foundation class. It enables memory management and allows objects to be
interrogated to discover which type they are.

6 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal9g.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal0l.html

IccControl
The abstract base class that the application program has to subclass and provide with an
implementation of the run method.

IccResource
The base class for all classes that access CICS resources or services. See “Resource classes” on page
8.

IccResourceId
The base class for all table entry (resource name) classes, such as IccFileId and IccTempStoreId.

IccTime
The base class for the classes that store time information: IccAbsTime , IccTimeInterval and
IccTimeOfDay.

Resource identification classes
Resource identification classes are as follows.

 IccBase
 IccResourceId
 IccConvId
 IccDataQueueId
 IccFileId
 IccGroupId
 IccJournalId
 IccJournalTypeId
 IccLockId
 IccPartnerId
 IccProgramId
 IccRequestId
 IccAlarmRequestId
 IccSysId
 IccTempStoreId
 IccTermId
 IccTPNameId
 IccTransId
 IccUserId

Figure 2. Resource identification classes

CICS resource identification classes define CICS resource identifiers – typically the name of the resource
as specified in its RDO resource definition. For example an IccFileId object represents a CICS file name.
All concrete resource identification classes have the following properties:

• The name of the class ends in Id.
• The class is a subclass of the IccResourceId class.
• The constructors check that any supplied resource identifier meets CICS standards. For example, an

IccFileId object must contain a 1 to 8 byte character field; providing a 9-byte field is not tolerated.

The resource identification classes improve type checking; methods that expect an IccFileId object as a
parameter do not accept an IccProgramId object instead. If character strings representing the resource
names are used instead, the compiler cannot check for validity – it cannot check whether the string is a
file name or a program name.

Many of the resource classes, described in “Resource classes” on page 8 , contain resource
identification classes. For example, an IccFile object contains an IccFileId object. You must use the
resource object, not the resource identification object, to operate on a CICS resource. For example, you
must use IccFile , rather than IccFileId to read a record from a file.

Chapter 2. Using the CICS foundation classes 7

Class CICS resource

IccAlarmRequestId alarm request

IccConvId conversation

IccDataQueueId transient data queue

IccFileId file

IccGroupId group

IccJournalId journal

IccJournalTypeId journal type

IccLockId (Not applicable)

IccPartnerId APPC partner definition files

IccProgramId program

IccRequestId request

IccSysId remote system

IccTempStoreId temporary storage queue

IccTermId terminal

IccTPNameId remote APPC TP name

IccTransId transaction

IccUserId user

Resource classes
All CICS resource classes inherit from the IccResource base class.

 IccBase
 IccResource
 IccAbendData
 IccClock
 IccConsole
 IccControl
 IccDataQueue
 IccFile
 IccFileIterator
 IccJournal
 IccProgram
 IccSemaphore
 IccSession
 IccStartRequestQ
 IccSystem
 IccTask
 IccTempStore
 IccTerminal
 IccTerminalData
 IccUser

Figure 3. Resource classes

These classes model the behavior of the major CICS resources, for example:

8 CICS TS for z/OS: C++ OO Class Libraries

• Terminals are modelled by IccTerminal.
• Programs are modelled by IccProgram.
• Temporary Storage queues are modelled by IccTempStore.
• Transient Data queues are modelled by IccDataQueue.

Any operation on a CICS resource may raise a CICS condition; the condition method of IccResource (see
IccResource method: condition) can interrogate it.

(Any class that accesses CICS services must be derived from IccResource).

Class CICS resource

IccAbendData task abend data

IccClock CICS time and date services

IccConsole CICS console

IccControl control of executing program

IccDataQueue transient data queue

IccFile file

IccFileIterator file iterator (browsing files)

IccJournal user or system journal

IccProgram program (outside executing program)

IccSemaphore semaphore (locking services)

IccSession session

IccStartRequestQ start request queue; asynchronous transaction
starts

IccSystem CICS system

IccTask current task

IccTempStore temporary storage queue

IccTerminal terminal belonging to current task

IccTerminalData attributes of IccTerminal

IccTime time specification

IccUser user (security attributes)

Chapter 2. Using the CICS foundation classes 9

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal14.html

Support Classes
Support classes are as follows.

 IccBase
 IccBuf
 IccEvent
 IccException
 IccMessage
 IccRecordIndex
 IccKey
 IccRBA
 IccRRN
 IccResource
 IccTime
 IccAbsTime
 IccTimeInterval
 IccTimeOfDay

Figure 4. Support classes

These classes are tools that complement the resource classes: they make life easier for the application
programmer and thus add value to the object model.

Resource class Description

IccAbsTime Absolute time (milliseconds since January 1 1900)

IccBuf Data buffer (makes manipulating data areas easier)

IccEvent Event (the outcome of a CICS command)

IccException Foundation Class exception (supports the C++ exception handling model)

IccTimeInterval Time interval (for example, five minutes)

IccTimeOfDay Time of day (for example, five minutes past six)

IccAbsTime, IccTimeInterval and IccTimeOfDay classes make it simpler for the application
programmer to specify time measurements as objects within an application program. IccTime is a base
class: IccAbsTime , IccTimeInterval , and IccTimeOfDay are derived from IccTime.

Consider method delay in class IccTask , whose signature is as follows:

void delay(const IccTime& time, const IccRequestId*
reqId = 0);

To request a delay of 1 minute and 7 seconds (that is, a time interval) the application programmer can do
this:

IccTimeInterval time(0, 1, 7);
task()->delay(time);

Note: The task method is provided in class IccControl and returns a pointer to the application's task
object.

Alternatively, to request a delay until 10 minutes past twelve (lunchtime?) the application programmer
can do this:

IccTimeOfDay lunchtime(12, 10);
task()->delay(lunchtime);

10 CICS TS for z/OS: C++ OO Class Libraries

The IccBuf class allows easy manipulation of buffers, such as file record buffers, transient data record
buffers, and COMMAREAs (for more information on IccBuf class see “Buffer objects” on page 12).

IccMessage class is used primarily by IccException class to encapsulate a description of why an
exception was thrown. The application programmer can also use IccMessage to create their own
message objects.

IccException objects are thrown from many of the methods in the Foundation Classes when an error is
encountered.

The IccEvent class allows a programmer to gain access to information relating to a particular CICS event
(command).

Using CICS resources
To use a CICS resource, such as a file or program, you must first create an appropriate object and then
call methods on the object.

Creating a resource object
When you create a resource object you create a representation of the actual CICS resource (such as a file
or program). You do not create the CICS resource; the object is the application's view of the resource. The
same is true of destroying objects.

U se an accompanying resource identification object when creating a resource object. For example:

IccFileId id("XYZ123");
IccFile file(id);

This allows the C++ compiler to protect you against doing something wrong such as:

IccDataQueueId id("WXYZ");
IccFile file(id); //gives error at compile time

The alternative of using the text name of the resource when creating the object is also permitted:

IccFile file("XYZ123");

Singleton classes
Many resource classes, such as IccFile , can be used to create multiple resource objects within a single
program.

IccFileId id1("File1");
IccFileId id2("File2");
IccFile file1(id1);
IccFile file2(id2);

However, some resource classes are designed to allow the programmer to create only one instance of the
class; these are called singleton classes. The following Foundation Classes are singleton:

• IccAbendData provides information about task abends.
• IccConsole , or a derived class, represents the system console for operator messages.
• IccControl , or a derived class, such as IccUserControl , controls the executing program.
• IccStartRequestQ , or a derived class, allows the application program to start CICS transactions (tasks)

asynchronously.
• IccSystem , or a derived class, is the application view of the CICS system in which it is running.
• IccTask , or a derived class, represents the CICS task under which the executing program is running.
• IccTerminal , or a derived class, represents your task's terminal, provided that your principal facility is a

3270 terminal.

Any attempt to create more than one object of a singleton class results in an error – a C++ exception is
thrown.

Chapter 2. Using the CICS foundation classes 11

A class method, instance , is provided for each of these singleton classes, which returns a pointer to the
requested object and creates one if it does not already exist. For example:

IccControl* pControl = IccControl::instance();

Calling methods on a resource object
Any of the public methods can be called on an object of that class.

For example:

IccTempStoreId id("TEMP1234");
IccTempStore temp(id);
temp.writeItem("Hello TEMP1234");

Method writeItem writes the contents of the string it is passed ("Hello TEMP1234") to the CICS
Temporary Storage queue "TEMP1234".

Buffer objects
The Foundation Classes make extensive use of IccBuf objects – buffer objects that simplify the task of
handling pieces of data or records.

Understanding the use of these objects is a necessary precondition for much of the rest of this book.

Each of the CICS Resource classes that involve passing data to CICS (for example by writing data records)
and getting data from CICS (for example by reading data records) make use of the IccBuf class. Examples
of such classes are IccConsole , IccDataQueue , IccFile , IccFileIterator , IccJournal , IccProgram ,
IccSession , IccStartRequestQ , IccTempStore , and IccTerminal.

IccBuf class
IccBuf , which is described in detail in the reference part of this book, provides generalized manipulation
of data areas.

Because it can be used in a number of ways, there are several IccBuf constructors that affect the
behavior of the object. Two important attributes of an IccBuf object are now described.

Data area ownership
IccBuf has an attribute indicating whether the data area has been allocated inside or outside of the
object.

The possible values of this attribute are 'internal' and 'external'. It can be interrogated by using the
dataAreaOwner method.

Internal/External ownership of buffers
When DataAreaOwner = external, it is the application programmer's responsibility to ensure the validity
of the storage on which the IccBuf object is based. If the storage is invalid or inappropriate for a
particular method applied to the object, unpredictable results will occur.

Data area extensibility
This attribute defines whether the length of the data area within the IccBuf object, once created, can be
increased.

The possible values of this attribute are 'fixed' and 'extensible'. It can be interrogated by using the
dataAreaType method.

As an object that is 'fixed' cannot have its data area size increased, the length of the data (for example, a
file record) assigned to the IccBuf object must not exceed the data area length, otherwise a C++
exception is thrown.

Note: By definition, an 'extensible' buffer must also be 'internal'.

12 CICS TS for z/OS: C++ OO Class Libraries

IccBuf constructors
There are several forms of the IccBuf constructor, used when creating IccBuf objects.

Some examples are shown here.

IccBuf buffer;

This creates an 'internal' and 'extensible' data area that has an initial length of zero. When data is
assigned to the object the data area length is automatically extended to accommodate the data being
assigned.

IccBuf buffer(50);

This creates an 'internal' and 'extensible' data area that has an initial length of 50 bytes. The data length
is zero until data is assigned to the object. If 50 bytes of data are assigned to the object, both the data
length and the data area length return a value of 50. When more than 50 bytes of data are assigned into
the object, the data area length is automatically (that is, without further intervention) extended to
accommodate the data.

IccBuf buffer(50, IccBuf::fixed);

This creates an 'internal' and 'fixed' data area that has a length of 50 bytes. If an attempt is made to
assign more than 50 bytes of data into the object, the data is truncated and an exception is thrown to
notify the application of the error situation.

struct MyRecordStruct
{
short id;
short code;
char data(30);
char rating;
};
MyRecordStruct myRecord;
IccBuf buffer(sizeof(MyRecordStruct), &myRecord);

This creates an IccBuf object that uses an 'external' data area called myRecord. By definition, an
'external' data area is also 'fixed'. Data can be assigned using the methods on the IccBuf object or using
the myRecord structure directly.

IccBuf buffer("Hello World");

This creates an 'internal' and 'extensible' data area that has a length equal to the length of the string
"Hello World". The string is copied into the object's data area. This initial data assignment can then be
changed using one of the manipulation methods (such as insert , cut , or replace) provided.

IccBuf buffer("Hello World");
buffer << " out there";
IccBuf buffer2(buffer);

Here the copy constructor creates the second buffer with almost the same attributes as the first; the
exception is the data area ownership attribute – the second object always contains an 'internal' data area
that is a copy of the data area in the first. In the given example buffer2 contains "Hello World out there"
and has both data area length and data length of 21.

IccBuf methods
An IccBuf object can be manipulated using a number of supplied methods; for example you can append
data to the buffer, change the data in the buffer, cut data out of the buffer, or insert data into the middle
of the buffer.

The operators const char* , = , += , == , != , and << have been overloaded in class IccBuf . There are also
methods that allow the IccBuf attributes to be queried. For more details see the reference section.

Chapter 2. Using the CICS foundation classes 13

Working with IccResource subclasses
To illustrate working with IccResource subclasses, consider writing a queue item to CICS temporary
storage using IccTempstore class.

IccTempStore store("TEMP1234");
IccBuf buffer(50);

The IccTempStore object created is the application's view of the CICS temporary storage queue named
"TEMP1234". The IccBuf object created holds a 50-byte data area (it also happens to be 'extensible').

buffer = "Hello Temporary Storage Queue";
store.writeItem(buffer);

The character string "Hello Temporary Storage Queue" is copied into the buffer. This is possible because
the operator= method has been overloaded in the IccBuf class.

The IccTempStore object calls its writeItem method, passing a reference to the IccBuf object as the first
parameter. The contents of the IccBuf object are written out to the CICS temporary storage queue.

Now consider the inverse operation, reading a record from the CICS resource into the application
program's IccBuf object:

buffer = store.readItem(5);

The readItem method reads the contents of the fifth item in the CICS Temporary Storage queue and
returns the data as an IccBuf reference.

The C++ compiler resolves the given line of code into two method calls, readItem defined in class
IccTempStore and operator= which has been overloaded in class IccBuf . This second method takes the
contents of the returned IccBuf reference and copies its data into the buffer.

The given style of reading and writing records using the foundation classes is typical. The final example
shows how to write code – using a similar style to the above example – but this time accessing a CICS
transient data queue.

IccDataQueue queue("DATQ");
IccBuf buffer(50);
buffer = queue.readItem();
buffer << "Some extra data";
queue.writeItem(buffer);

The readItem method of the IccDataQueue object is called, returning a reference to an IccBuf which it
then assigns (via operator= method, overloaded in class IccBuf) to the buffer object. The character
string – "Some extra data" – is appended to the buffer (via operator chevron « method, overloaded in
class IccBuf). The writeItem method then writes back this modified buffer to the CICS transient data
queue.

You can find further examples of this syntax in the samples presented in the following sections, which
describe how to use the foundation classes to access CICS services.

Refer to the reference section for further information on the IccBuf class. You might also find the supplied
sample – ICC$BUF – helpful.

Using CICS Services
This section describes how to use CICS services. The services are considered in turn.

File control
The file control classes IccFile , IccFileId , IccKey , IccRBA , and IccRRN allow you to read, write,
update and delete records in files.

In addition, IccFileIterator class allows you to browse through all the records in a file.

14 CICS TS for z/OS: C++ OO Class Libraries

An IccFile object is used to represent a file. It is convenient, but not necessary, to use an IccFileId object
to identify a file by name.

An application program reads and writes its data in the form of individual records. Each read or write
request is made by a method call. To access a record, the program must identify both the file and the
particular record.

VSAM (or VSAM-like) files are of the following types:
KSDS

Key-sequenced: each record is identified by a key – a field in a predefined position in the record. Each
key must be unique in the file.

The logical order of records within a file is determined by the key. The physical location is held in an
index which is maintained by VSAM.

When browsing, records are found in their logical order.

ESDS
Entry-sequenced: each record is identified by its relative byte address (RBA).

Records are held in an ESDS in the order in which they were first loaded into the file. New records are
always added at the end and records may not be deleted or have their lengths altered.

When browsing, records are found in the order in which they were originally written.

RRDS file
Relative record: records are written in fixed-length slots. A record is identified by the relative record
number (RRN) of the slot which holds it.

Reading records
A read operation uses two classes – IccFile to perform the operation and one of IccKey , IccRBA , and
IccRRN to identify the particular record, depending on whether the file access type is KSDS, ESDS, or
RRDS.

The readRecord method of IccFile class reads the record.

Reading KSDS records
Before reading a record you must use the registerRecordIndex method of IccFile to associate an object
of class IccKey with the file.

You must use a key, held in the IccKey object, to access records. A 'complete' key is a character string of
the same length as the physical file's key. Every record can be separately identified by its complete key.

A key can also be 'generic'. A generic key is shorter than a complete key and is used for searching for a set
of records. The IccKey class has methods that allow you to set and change the key.

IccFile class has methods isReadable , keyLength , keyPosition , recordIndex , and recordLength ,
which help you when reading KSDS records.

Reading ESDS records
You must use a relative byte address (RBA) held in an IccRBA object to access the beginning of a record.

Before reading a record you must use the registerRecordIndex method of IccFile to associate an object
of class IccRBA with the file.

IccFile class has methods isReadable , recordFormat , recordIndex , and recordLength that help you
when reading ESDS records.

Chapter 2. Using the CICS foundation classes 15

Reading RRDS records
You must use a relative record number (RRN) held in an IccRRN object to access a record.

Before reading a record you must use registerRecordIndex method of IccFile to associate an object of
class IccRRN with the file.

IccFile class has methods isReadable , recordFormat , recordIndex , and recordLength which help you
when reading RRDS records.

Writing records
Writing records is also known as "adding records".

This topic describes writing records that have not previously been written. Writing records that already
exist is not permitted unless they have been previously been put into 'update' mode. See “Updating
records” on page 16 for more information.

Before writing a record you must use registerRecordIndex method of IccFile to associate an object of
class IccKey , IccRBA , or IccRRN with the file. The writeRecord method of IccFile class writes the
record.

A write operation uses two classes – IccFile to perform the operation and one of IccKey , IccRBA , and
IccRRN to identify the particular record, depending on whether the file access type is KSDS, ESDS, or
RRDS.

If you have more than one record to write, you can improve the speed of writing by using mass insertion
of data. You begin and end this mass insertion by calling the beginInsert and endInsert methods of
IccFile.

Writing KSDS records
You must use a key, held in an IccKey object to access records.

A 'complete' key is a character string that uniquely identifies a record. Every record can be separately
identified by its complete key.

The writeRecord method of IccFile class writes the record.

IccFile class has methods isAddable , keyLength , keyPosition , recordIndex , recordLength , and
registerRecordIndex which help you when writing KSDS records.

Writing ESDS records
You must use a relative byte address (RBA) held in an IccRBA object to access the beginning of a record.

IccFile class has methods isAddable , recordFormat , recordIndex , recordLength , and
registerRecordIndex that help you when writing ESDS records.

Writing RRDS records
Use the writeRecord method to add a new ESDS record.

IccFile class has methods isAddable , recordFormat , recordIndex , recordLength , and
registerRecordIndex that help you when writing RRDS records.

Updating records
Updating a record is also known as "rewriting a record".

Before updating a record you must first read it, using readRecord method in 'update' mode. This locks the
record so that nobody else can change it.

Use rewriteRecord method to update the record. Note that the IccFile object remembers which record is
being processed and this information is not passed in again.

For an example, see code fragment: "Read record for update".

16 CICS TS for z/OS: C++ OO Class Libraries

The base key in a KSDS file must not be altered when the record is modified. If the file definition allows
variable-length records, the length of the record can be changed.

The length of records in an ESDS, RRDS, or fixed-length KSDS file must not be changed on update.

For a file defined to CICS as containing fixed-length records, the length of record being updated must be
the same as the original length. The length of an updated record must not be greater than the maximum
defined to VSAM.

Deleting records
Records can never be deleted from an ESDS file.

Deleting normal records
The deleteRecord method of IccFile class deletes one or more records, provided they are not locked by
virtue of being in 'update' mode.

The records to be deleted are defined by the IccKey or IccRRN object.

Deleting locked records
The deleteLockedRecord method of IccFile class deletes a record which has been previously locked by
virtue of being put in 'update' mode by the readRecord method.

Browsing records
Browsing, or sequential reading of files uses another class – IccFileIterator .

An object of this class must be associated with an IccFile object and an IccKey , IccRBA , or IccRRN
object. After this association has been made the IccFileIterator object can be used without further
reference to the other objects.

Browsing can be done either forwards, using readNextRecord method or backwards, using
readPreviousRecord method. The reset method resets the IccFileIterator object to point to the record
specified by the IccKey or IccRBA object.

Examples of browsing files are shown in page Code fragment "List all records in assending order of key".

Example of file control
This sample program demonstrates how to use the IccFile and IccFileIterator classes.

The source for this sample can be found in C++ sample programs , in file ICC$FIL. Here the code is
presented without any of the terminal input and output that can be found in the source file.

#include "icceh.hpp"
#include "iccmain.hpp"

The first two lines include the header files for the Foundation Classes and the standard main function
which sets up the operating environment for the application program.

const char* fileRecords[] =
{
//NAME KEY PHONE USERID
"BACH, J S 003 00-1234 BACH ",
"BEETHOVEN, L 007 00-2244 BEET ",
"CHOPIN, F 004 00-3355 CHOPIN ",
"HANDEL, G F 005 00-4466 HANDEL ",
"MOZART, W A 008 00-5577 WOLFGANG "
};

This defines several lines of data that are used by the sample program.

void IccUserControl::run()
{

The run method of IccUserControl class contains the user code for this example. As a terminal is to be
used, the example starts by creating a terminal object and clearing the associated screen.

Chapter 2. Using the CICS foundation classes 17

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

 short recordsDeleted = 0;
IccFileId id("ICCKFILE");
IccKey key(3,IccKey::generic);
IccFile file(id);
file.registerRecordIndex(&key);
key = "00";
recordsDeleted = file.deleteRecord();

The key and file objects are first created and then used to delete all the records whose key starts with
"00" in the KSDS file "ICCKFILE". key is defined as a generic key having 3 bytes, only the first two of which
are used in this instance.

 IccBuf buffer(40);
 key.setKind(IccKey::complete);
 for (short j = 0; j < 5; j++)
 {
 buffer = fileRecords[j];
 key.assign(3, fileRecords[j]+15);
 file.writeRecord(buffer);
 }

This next fragment writes all the data provided into records in the file. The data is passed by means of an
IccBuf object that is created for this purpose. setKind method is used to change key from 'generic' to
'complete'.

The for loop between these calls loops round all the data, passing the data into the buffer, using the
operator= method of IccBuf , and thence into a record in the file, by means of writeRecord. On the way
the key for each record is set, using assign , to be a character string that occurs in the data (3 characters,
starting 15 characters in).

 IccFileIterator fIterator(&file,
 &key);
 key = "000";
 buffer = fIterator.readNextRecord();
 while (fIterator.condition() == IccCondition::NORMAL)
 {
 term->sendLine("- record read: [%s]",(const char*) buffer);
 buffer = fIterator.readNextRecord();
 }

The loop shown here lists to the terminal, using sendLine , all the records in ascending order of key. It
uses an IccFileIterator object to browse the records. It starts by setting the minimum value for the key
which, as it happens, does not exist in this example, and relying on CICS to find the first record in key
sequence.

The loop continues until any condition other than NORMAL is returned.

 key = "\xFF\xFF\xFF";
fIterator.reset(&key);
buffer = fIterator.readPreviousRecord();
while (fIterator.condition() == IccCondition::NORMAL)
{
buffer = fIterator.readPreviousRecord();
}

The next loop is nearly identical to the last, but lists the records in reverse order of key.

 key = "008";
 buffer = file.readRecord(IccFile::update);
 buffer.replace(4, "5678", 23);
 file.rewriteRecord(buffer);

This fragment reads a record for update, locking it so that others cannot change it. It then modifies the
record in the buffer and writes the updated record back to the file.

 buffer = file.readRecord();

The same record is read again and sent to the terminal, to show that it has indeed been updated.

18 CICS TS for z/OS: C++ OO Class Libraries

 return;
}

The end of run , which returns control to CICS.

See C++ sample programs for the expected output from this sample.

Program control
This section describes how to access and use a program other than the one that is currently executing.

Program control uses IccProgram class, one of the resource classes.

Programs may be loaded, unloaded and linked to, using an IccProgram object. An IccProgram object can
be interrogated to obtain information about the program. See IccProgram class for more details.

The example shown here shows one program calling another two programs in turn, with data passing
between them via a COMMAREA. One program is assumed to be local, the second is on a remote CICS
system. The programs are in two files, ICC$PRG1 and ICC$PRG2. See C++ sample programs for the
location of these files and the expected output from these sample programs.

Most of the terminal IO in these samples has been omitted from the code that follows.

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

The code for both programs starts by including the header files for the Foundation Classes and the stub
for main method. The user code is located in the run method of the IccUserControl class for each
program.

IccSysId sysId("ICC2");
IccProgram icc$prg2("ICC$PRG2");
IccProgram remoteProg("ICC$PRG3");
IccBuf commArea(100, IccBuf::fixed);

The first program (ICC$PRG1) creates an IccSysId object representing the remote region, and two
IccProgram objects representing the local and remote programs that will be called from this program. A
100 byte, fixed length buffer object is also created to be used as a communication area between
programs.

icc$prg2.load();
if (icc$prg2.condition() == IccCondition::NORMAL)
{
term->sendLine("Loaded program: %s <%s> Length=%ld Address=%x",
icc$prg2.name(),
icc$prg2.conditionText(),
icc$prg2.length(),
icc$prg2.address());
icc$prg2.unload();
}

The program then attempts to load and interrogate the properties of program ICC$PRG2.

 commArea = "DATA SET BY ICC$PRG1";
icc$prg2.link(&commArea);

The communication area buffer is set to contain some data to be passed to the first program that ICC
$PRG1 links to (ICC$PRG2). ICC$PRG1 is suspended while ICC$PRG2 is run.

The called program, ICC$PRG2, is a simple program, the gist of which is as follows:

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG2";
return;

Chapter 2. Using the CICS foundation classes 19

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal0q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

ICC$PRG2 gains access to the communication area that was passed to it. It then modifies the data in this
communication area and passes control back to the program that called it.

The first program (ICC$PRG1) now calls another program, this time on another system, as follows:

remoteProg.setRouteOption(sysId);
commArea = "DATA SET BY ICC$PRG1";
remoteProg.link(&commArea);

The setRouteOption requests that calls on this object are routed to the remote system. The
communication area is set again (because it will have been changed by ICC$PRG2) and it then links to the
remote program (ICC$PRG3 on system ICC2).

The called program uses CICS temporary storage but the three lines we consider are:

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG3";
return;

Again, the remote program (ICC$PRG3) gains access to the communication area that was passed to it. It
modifies the data in this communication area and passes control back to the program that called it.

 return;
};

Finally, the calling program itself ends and returns control to CICS.

Starting transactions asynchronously
The IccStartRequestQ class enables a program to start another CICS transaction instance
asynchronously (and optionally pass data to the started transaction).

The same class is used by a started transaction to gain access to the data that the task that issued the
start request passed to it. Finally start requests (for some time in the future) can be cancelled.

Starting transactions
You can use any of the following methods to establish what data will be sent to the started transaction.

• registerData or setData
• setQueueName
• setReturnTermId
• setReturnTransId

The actual start is requested using the start method.

Accessing start data
A started transaction can access its start data by invoking the retrieveData method.

This method stores all the start data attributes in the IccStartRequestQ object such that the individual
attributes can be accessed using the following methods:

• data
• queueName
• returnTermId
• returnTransId

Cancelling unexpired start requests
Unexpired start requests (that is, start requests for some future time that has not yet been reached) can
be cancelled using the cancel method.

20 CICS TS for z/OS: C++ OO Class Libraries

Example of starting transactions
start transaction ISR1 on terminal PEO1 on system ICC1.

CICS system ICC1 ICC2

Transaction ISR1/ITMP ISR2

Program ICC$SRQ1/ICC$TMP ICC$SRQ2

Terminal PEO1 PEO2

This issues two start requests; the first is cancelled before it has expired. The second starts transaction
ISR2 on terminal PEO2 on system ICC2. This transaction accesses its start data and finishes by starting
transaction ITMP on the original terminal (PEO1 on system ICC1).

The programs and the expected output from them, can be found in C++ sample programs as files ICC
$SRQ1 and ICC$SRQ2. Here the code is presented without the terminal IO requests.

Transaction ISR1 runs program ICC$SRQ1 on system ICC1. Let us consider this program first:

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

These lines include the header files for the Foundation Classes, and the main function needed to set up
the class library for the application program. The run method of IccUserControl class contains the user
code for this example.

 IccRequestId req1;
IccRequestId req2("REQUEST1");
IccTimeInterval ti(0,0,5);
IccTermId remoteTermId("PE02");
IccTransId ISR2("ISR2");
IccTransId ITMP("ITMP");
IccBuf buffer;
IccStartRequestQ* startQ = startRequestQ();

Here we are creating a number of objects:
req1

An empty IccRequestId object ready to identify a particular start request.
req2

An IccRequestId object containing the user-supplied identifier "REQUEST1".
ti

An IccTimeInterval object representing 0 hours, 0 minutes, and 5 seconds.
remoteTermId

An IccTermId object; the terminal on the remote system where we start a transaction.
ISR2

An IccTransId object; the transaction we start on the remote system.
ITMP

An IccTransId object; the transaction that the started transaction starts on this program's terminal.
buffer

An IccBuf object that holds start data.

Finally, the startRequestQ method of IccControl class returns a pointer to the single instance (singleton)
class IccStartRequestQ.

 startQ->setRouteOption("ICC2");
startQ->registerData(&buffer);
startQ->setReturnTermId(terminal()->name());
startQ->setReturnTransId(ITMP);
startQ->setQueueName("startqnm");

Chapter 2. Using the CICS foundation classes 21

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

This code fragment prepares the start data that is passed when we issue a start request. The
setRouteOption says we will issue the start request on the remote system, ICC2. The registerData
method associates an IccBuf object that will contain the start data (the contents of the IccBuf object are
not extracted until we issue the start request). The setReturnTermId and setReturnTransId methods
allow the start requester to pass a transaction and terminal name to the started transaction. These fields
are typically used to allow the started transaction to start another transaction (as specified) on another
terminal, in this case ours.

The setQueueName is another piece of information that can be passed to the started transaction.

 buffer = "This is a greeting from program
'icc$srq1'!!";
req1 = startQ->start(ISR2, &remoteTermId, &ti);
startQ->cancel(req1);

Here we set the data that we pass on the start requests. We start transaction ISR2 after an interval ti (5
seconds). The request identifier is stored in req1 . Before the five seconds has expired (that is,
immediately) we cancel the start request.

 req1 = startQ->start(ISR2, &remoteTermID,
&ti, &req2);
return;
}

Again we start transaction ISR2 after an interval ti (5 seconds). This time the request is allowed to expire
so transaction ISR2 is started on the remote system. Meanwhile, we end by returning control to CICS.

Let us now consider the started program, ICC$SRQ2.

 IccBuf buffer;
IccRequestId req("REQUESTX");
IccTimeInterval ti(0,0,5);
IccStartRequestQ* startQ = startRequestQ();

Here, as in ICC$SRQ1 , we create a number of objects:
buffer

An IccBuf object to hold the start data we were passed by our caller (ICC$SRQ1).
req

An IccRequestId object to identify the start we will issue on our caller's terminal.
ti

An IccTimeInterval object representing 0 hours, 0 minutes, and 5 seconds.

The startRequestQ method of IccControl class returns a pointer to the singleton class
IccStartRequestQ.

 if (task()->startType() != IccTask::startRequest)
{
term->sendLine(
"This program should only be started via the StartRequestQ");
task()->abend("OOPS");
}

Here we use the startType method of IccTask class to check that ICC$SRQ2 was started by the start
method, and not in any other way (such as typing the transaction name on a terminal). If it was not
started as intended, we abend with an "OOPS" abend code.

 startQ->retrieveData();

We retrieve the start data that we were passed by ICC$SRQ1 and store within the IccStartRequestQ
object for subsequent access.

22 CICS TS for z/OS: C++ OO Class Libraries

 buffer = startQ->data();
term->sendLine("Start buffer contents = [%s]", buffer.dataArea());
term->sendLine("Start queue= [%s]", startQ->queueName());
term->sendLine("Start rtrn = [%s]",
startQ->returnTransId().name());
term->sendLine("Start rtrm = [%s]", startQ->returnTermId().name());

The start data buffer is copied into our IccBuf object. The other start data items (queue, returnTransId,
and returnTermId) are displayed on the terminal.

 task()->delay(ti);

We delay for five seconds (that is, we sleep and do nothing).

 startQ->setRouteOption("ICC1");

The setRouteOption signals that we will start on our caller's system (ICC1).

 startQ->start(
startQ->returnTransId(),startQ->returnTermId());
return;

We start a transaction called ITMP (the name of which was passed by ICC$SRQ1 in the returnTransId
start information) on the originating terminal (where ICC$SRQ1 completed as it started this transaction).
Having issued the start request, ICC$SRQ1 ends, by returning control to CICS.

Finally, transaction ITMP runs on the first terminal. This is the end of this demonstration of starting
transactions asynchronously.

Transient Data
The transient data classes, IccDataQueue and IccDataQueueId , allow you to store data in transient data
queues for subsequent processing.

You can:

• Read data from a transient data queue (readItem method)
• Write data to a transient data queue (writeItem method)
• Delete a transient data queue (empty method)

An IccDataQueue object is used to represent a temporary storage queue. An IccDataQueueId object is
used to identify a queue by name. Once the IccDataQueueId object is initialized it can be used to identify
the queue as an alternative to using its name, with the advantage of additional error detection by the C++
compiler.

The methods available in IccDataQueue class are similar to those in the IccTempStore class. For more
information on these see “Temporary storage” on page 24.

Reading data
The readItem method is used to read items from the queue.

It returns a reference to the IccBuf object that contains the information.

Writing data
The writeItem method of IccDataQueue adds a new item of data to the queue, taking the data from the
buffer specified.

Deleting queues
The empty method deletes all items on the queue.

Chapter 2. Using the CICS foundation classes 23

Example of managing transient data
This sample program demonstrates how to use the IccDataQueue and IccDataQueueId classes.

It can be found, along with the expected output, in C++ sample programs as file ICC$DAT. Here the code
is presented without the terminal IO requests.

#include "icceh.hpp"
#include "iccmain.hpp"

The first two lines include the header files for the foundation classes and the standard main function that
sets up the operating environment for the application program.

const char* queueItems[] =
{
"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"
};

This defines some buffer for the sample program.

void IccUserControl::run()
{

The run method of IccUserControl class contains the user code for this example.

 short itemNum =1;
IccBuf buffer(50);
IccDataQueueId id("ICCQ");
IccDataQueue queue(id);
queue.empty();

This fragment first creates an identification object, of type IccDataQueueId containing "ICCQ". It then
creates an IccDataQueue object representing the transient data queue "ICCQ", which it empties of data.

 for (short i=0 ; i<3 ; i++)
{
buffer = queueItems[i];
queue.writeItem(buffer);
}

This loop writes the three data items to the transient data object. The data is passed by means of an
IccBuf object that was created for this purpose.

 buffer = queue.readItem();
while (queue.condition() == IccCondition::NORMAL)
{
buffer = queue.readItem();
}

Having written out three records we now read them back in to show they were successfully written.

 return;
}

The end of run , which returns control to CICS.

Temporary storage
The temporary storage classes, IccTempStore and IccTempStoreId , allow you to store data in
temporary storage queues.

You can:

• Read an item from the temporary storage queue (readItem method)
• Write a new item to the end of the temporary storage queue (writeItem method)

24 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

• Update an item in the temporary storage queue (rewriteItem method)
• Read the next item in the temporary storage queue (readNextItem method)
• Delete all the temporary data (empty method)

An IccTempStore object is used to represent a temporary storage queue. An IccTempStoreId object is
used to identify a queue by name. Once the IccTempStoreId object is initialized it can be used to identify
the queue as an alternative to using its name, with the advantage of additional error detection by the C++
compiler.

The methods available in IccTempStore class are similar to those in the IccDataQueue class. For more
information on these see “Transient Data” on page 23.

Reading items
The readItem method of IccTempStore reads the specified item from the temporary storage queue.

It returns a reference to the IccBuf object that contains the information.

Writing items
Writing items is also known as "adding" items.

This section describes writing items that have not previously been written. Writing items that already exist
can be done using the rewriteItem method. See “Updating items” on page 25 for more information.

The writeItem method of IccTempStore adds a new item at the end of the queue, taking the data from
the buffer specified. If this is done successfully, the item number of the record added is returned.

Updating items
Updating an item is also known as "rewriting" an item.

The rewriteItem method of IccTempStore class is used to update the specified item in the temporary
storage queue.

Deleting items
You cannot delete individual items in a temporary storage queue.

To delete all the temporary data associated with an IccTempStore object use the empty method of
IccTempStore class.

Example of Temporary Storage
This sample program demonstrates how to use the IccTempStore and IccTempStoreId classes.

This program, and the expected output from it, can be found in C++ sample programs , as file ICC$TMP.
The sample is presented here without the terminal IO requests.

#include "icceh.hpp"
#include "iccmain.hpp"
#include <stdlib.h>

The first three lines include the header files for the foundation classes, the standard main function that
sets up the operating environment for the application program, and the standard library.

const char* bufferItems[] =
{
"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"
};

This defines some buffer for the sample program.

void IccUserControl::run()
{

The run method of IccUserControl class contains the user code for this example.

Chapter 2. Using the CICS foundation classes 25

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

 short itemNum = 1;
IccTempStoreId id("ICCSTORE");
IccTempStore store(id);
IccBuf buffer(50);
store.empty();

This fragment first creates an identification object, IccTempStoreId containing the field "ICCSTORE". It
then creates an IccTempStore object representing the temporary storage queue "ICCSTORE", which it
empties of records.

 for (short j=1 ; j <= 3 ; j++)
{
buffer = bufferItems[j-1];
store.writeItem(buffer);
}

This loop writes the three data items to the Temporary Storage object. The data is passed by means of an
IccBuf object that was created for this purpose.

 buffer = store.readItem(itemNum);
while (store.condition() == IccCondition::NORMAL)
{
buffer.insert(9, "Modified ");
store.rewriteItem(itemNum, buffer);
itemNum++;
buffer = store.readItem(itemNum);
}

This next fragment reads the items back in, modifies the item, and rewrites it to the temporary storage
queue. First, the readItem method is used to read the buffer from the temporary storage object. The data
in the buffer object is changed using the insert method of IccBuf class and then the rewriteItem method
overwrites the buffer. The loop continues with the next buffer item being read.

 itemNum = 1;
buffer = store.readItem(itemNum);
while (store.condition() == IccCondition::NORMAL)
{
term->sendLine(" - record #%d = [%s]", itemNum,
(const char*)buffer);
buffer = store.readNextItem();
}

This loop reads the temporary storage queue items again to show they have been updated.

 return;
}

The end of run , which returns control to CICS.

Terminal control
The terminal control classes, IccTerminal , IccTermId , and IccTerminalData , allow you to send data to,
receive data from, and find out information about the terminal belonging to the CICS task.

An IccTerminal object is used to represent the terminal that belongs to the CICS task. It can only be
created if the transaction has a 3270 terminal as its principal facility. The IccTermId class is used to
identify the terminal. IccTerminalData , which is owned by IccTerminal , contains information about the
terminal characteristics.

Sending data to a terminal
The send and sendLine methods of IccTerminal class are used to write data to the screen.

The set… methods allow you to do this. You may also want to erase the data currently displayed at the
terminal, using the erase method, and free the keyboard so that it is ready to receive input, using the
freeKeyboard method.

26 CICS TS for z/OS: C++ OO Class Libraries

Receiving data from a terminal
The receive and receive3270data methods of IccTerminal class are used to receive data from the
terminal.

Finding out information about a terminal
You can find out information about both the characteristics of the terminal and its current state.

The data object points to the IccTerminalData object that contains information about the characteristics
of the terminal. The methods in IccTerminalData allow you to discover, for example, the height of the
screen or whether the terminal supports Erase Write Alternative. Some of the methods in IccTerminal
also give you information about characteristics, such as how many lines a screen holds.

Other methods give you information about the current state of the terminal. These include line , which
returns the current line number, and cursor , which returns the current cursor position.

Example of terminal control
This sample program demonstrates how to use the IccTerminal , IccTermId , and IccTerminalData
classes.

This program, and the expected output from it, can be found in C++ sample programs , as file ICC$TRM.

#include "icceh.hpp"
#include "iccmain.hpp"

The first two lines include the header files for the Foundation Classes and the standard main function that
sets up the operating environment for the application program.

void IccUserControl::run()
{
IccTerminal& term = *terminal();
term.erase();

The run method of IccUserControl class contains the user code for this example. As a terminal is to be
used, the example starts by creating a terminal object and clearing the associated screen.

 term.sendLine("First part of the line...");
term.send("... a continuation of the line.");
term.sendLine("Start this on the next line");
term.sendLine(40, "Send this to column 40 of current line");
term.send(5, 10, "Send this to row 5, column 10");
term.send(6, 40, "Send this to row 6, column 40");

This fragment shows how the send and sendLine methods are used to send data to the terminal. All of
these methods can take IccBuf references (const IccBuf&) instead of string literals (const char*).

 term.setNewLine();

This sends a blank line to the screen.

 term.setColor(IccTerminal::red);
term.sendLine("A Red line of text.");
term.setColor(IccTerminal::blue);
term.setHighlight(IccTerminal::reverse);
term.sendLine("A Blue, Reverse video line of text.");

The setColor method is used to set the color of the text on the screen and the setHighlight method to set
the highlighting.

Chapter 2. Using the CICS foundation classes 27

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal12.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

 term << "A cout sytle interface... " <<
endl;
term << "you can " << "chain input together; "
<< "use different types, eg numbers: " << (short)123 <<
" "
<< (long)4567890 << " " << (double)123456.7891234
<< endl;
term << "... and everything is buffered till you issue a flush."
<< flush;

This fragment shows how to use the iostream–like interface endl to start data on the next line. To
improve performance, you can buffer data in the terminal until flush is issued, which sends the data to
the screen.

 term.send(24,1, "Program 'icc$trm' complete: Hit PF12
to End");
term.waitForAID(IccTerminal::PF12);
term.erase();

The waitForAID method causes the terminal to wait until the specified key is hit, before calling the erase
method to clear the display.

 return;
}

The end of run , which returns control to CICS.

Time and date services
The IccClock class controls access to the CICS time and date services.

IccAbsTime holds information about absolute time (the time in milliseconds that have elapsed since the
beginning of 1900), and this can be converted to other forms of date and time. The methods available on
IccClock objects and on IccAbsTime objects are very similar.

Example of time and date services
This sample program demonstrates how to use IccClock class.

The source for this program, and the expected output from it, can be found in C++ sample programs , as
file ICC$CLK . The sample is presented here without the terminal IO requests.

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

The first two lines include the header files for the Foundation Classes and the standard main function that
sets up the operating environment for the application program.

The run method of IccUserControl class contains the user code for this example.

 IccClock clock;

This creates a clock object.

 term->sendLine("date() = [%s]",
clock.date());
term->sendLine("date(DDMMYY) = [%s]",
clock.date(IccClock::DDMMYY));
term->sendLine("date(DDMMYY,':') = [%s]",
clock.date(IccClock::DDMMYY,':'));
term->sendLine("date(MMDDYY) = [%s]",
clock.date(IccClock::MMDDYY));
term->sendLine("date(YYDDD) = [%s]",
clock.date(IccClock::YYDDD));

Here the date method is used to return the date in the format specified by the format enumeration. In
order the formats are system, DDMMYY, DD:MM:YY, MMDDYY and YYDDD. The character used to
separate the fields is specified by the dateSeparator character (that defaults to nothing if not specified).

28 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

 term->sendLine("daysSince1900() = %ld",
clock.daysSince1900());
term->sendLine("dayOfWeek() = %d",
clock.dayOfWeek());
if (clock.dayOfWeek() == IccClock::Friday)
term->sendLine(40, "Today IS Friday");
else
term->sendLine(40, "Today is NOT Friday");

This fragment demonstrates the use of the daysSince1900 and dayOfWeek methods. dayOfWeek
returns an enumeration that indicates the day of the week. If it is Friday, a message is sent to the screen,
'Today IS Friday'; otherwise the message 'Today is NOT Friday' is sent.

 term->sendLine("dayOfMonth() = %d",
clock.dayOfMonth());
term->sendLine("monthOfYear() = %d",
clock.monthOfYear());

This demonstrates the dayOfMonth and monthOfYear methods of IccClock class.

 term->sendLine("time() = [%s]",
clock.time());
term->sendLine("time('-') = [%s]",
clock.time('-'));
term->sendLine("year() = [%ld]",
clock.year());

The current time is sent to the terminal, first without a separator (that is HHMMSS format), then with '-'
separating the digits (that is, HH-MM-SS format). The year is sent, for example 1996.

 return;
};

The end of run , which returns control to CICS.

Compiling, executing, and debugging
This section describes how to compile, execute, and debug a CICS Foundation Class program.

Compiling a CICS Foundation Class program
To compile and link a CICS Foundation Class program you need access to the program source, a compiler,
header files and a dynamic link library.

You need access to the following items:

• The source of the program you are compiling

Your C++ program source code needs #include statements for the Foundation Class headers and the
Foundation Class main() program stub:

#include "icceh.hpp"
#include "iccmain.hpp"

• The IBM C++ compiler
• The Foundation Classes header files (see Header files)
• The Foundation Classes dynamic link library (DLL). The ICCFCDLL module is in

CICSTS55.CICS .SDFHLOAD.

Note that, when using the Foundation Classes, you do not need to translate the "EXEC CICS " API before
compile.

The following sample job statements show how to compile, prelink and link a program called ICC$HEL :

 //ICC$HEL JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid

Chapter 2. Using the CICS foundation classes 29

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhalho.html

 //PROCLIB JCLLIB ORDER=(
 CICSTS55.CICS
 .SDFHPROC)
 //ICC$HEL EXEC ICCFCCL,INFILE=
 indatasetname
 (ICC$HEL),OUTFILE=
 outdatasetname
 (ICC$HEL)
 //

Header files
The header files are the C++ class definitions needed to compile CICS C++ Foundation Class programs.

C++ Header File Classes Defined in this Header

ICCABDEH IccAbendData

ICCBASEH IccBase

ICCBUFEH IccBuf

ICCCLKEH IccClock

ICCCNDEH IccCondition (struct)

ICCCONEH IccConsole

ICCCTLEH IccControl

ICCDATEH IccDataQueue

ICCEH see “1” on page 31

ICCEVTEH IccEvent

ICCEXCEH IccException

ICCFILEH IccFile

ICCFLIEH IccFileIterator

ICCGLBEH Icc (struct) (global functions)

ICCJRNEH IccJournal

ICCMSGEH IccMessage

ICCPRGEH IccProgram

ICCRECEH IccRecordIndex, IccKey, IccRBA and IccRRN

ICCRESEH IccResource

ICCRIDEH IccResourceId + subclasses (such as IccConvId)

ICCSEMEH IccSemaphore

ICCSESEH IccSession

ICCSRQEH IccStartRequestQ

ICCSYSEH IccSystem

ICCTIMEH IccTime, IccAbsTime, IccTimeInterval, IccTimeOfDay

ICCTMDEH IccTerminalData

ICCTMPEH IccTempStore

ICCTRMEH IccTerminal

ICCTSKEH IccTask

30 CICS TS for z/OS: C++ OO Class Libraries

C++ Header File Classes Defined in this Header

ICCUSREH IccUser

ICCVALEH IccValue (struct)

Note:

1. A single header that #includes all the listed header files is supplied as ICCEH
2. The file ICCMAIN is also supplied with the C++ header files. This contains the main function stub that

should be used when you build a Foundation Class program.
3. Header files are located in CICSTS55.CICS .SDFHC370.

Executing Programs
To run a compiled and linked (that is, executable) Foundation Classes program you need to do the
following.

1. Make the executable program available to CICS . This involves making sure the program is in a suitable
directory or load library. Depending on your server, you may also need to create a CICS program
definition (using CICS resource definition facilities) before you can execute the program.

2. Logon to a CICS terminal.
3. Run the program.

Program debugging
Having successfully compiled, linked, and attempted to run your Foundation Classes program, you might
need to debug it.

There are three options available to help debug a CICS Foundation Classes program:

• Use a symbolic debugger
• Run the Foundation Class Program with tracing active
• Run the Foundation Class Program with the CICS Execution Diagnostic Facility

Symbolic debugger

You can use a symbolic debugger to step through the source of your CICS Foundation Classes program.
Debug Tool is shipped as a feature with IBM C/C++. To debug a CICS Foundation Classes program with a
symbolic debugger, compile the program with a flag that adds debugging information to your executable
program. For CICS Transaction Server for z/OS, this flag is TEST(ALL).

For more information, see Debug Tool for z/OS.

Tracing

You can configure the CICS Foundation Classes to write a trace file for debugging purposes.

Exception tracing is always active. The CETR transaction controls the auxiliary and internal traces for all
CICS programs including those developed using the C++ classes.

Execution diagnostic facility

You can use the Execution Diagnostic Facility (EDF) to step through your CICS program, stopping at each
EXEC CICS call. The display screen shows the procedural EXEC CICS call interface rather than the CICS
Foundation Class type interface.

Chapter 2. Using the CICS foundation classes 31

https://www.ibm.com/support/knowledgecenter/SSGTSD/product.html

To enable EDF, use the preprocessor macro ICC_EDF in your source code before including the file
ICCMAIN.

 #define ICC_EDF //switch EDF on
#include "iccmain.hpp"

Alternatively use the appropriate flag on your compiler CPARM to declare ICC_EDF.

Conditions, errors, and exceptions
This section describes how the Foundation Classes have been designed to respond to various error
situations they might encounter.

Foundation Class Abend codes
For serious errors (such as insufficient storage to create an object) the Foundation Classes immediately
terminate the CICS task.

All CICS Foundation Class abend codes are of the form ACLx. If your application is terminated with an
abend code starting 'ACL' then please refer to CICS messages.

C++ Exceptions and the Foundation Classes
C++ exceptions are managed using the reserved words try , throw , and catch.

Refer to your compiler's documentation or one of the C++ books in the bibliography for more information.

Here is sample ICC$EXC1 (see C++ sample programs):

#include "icceh.hpp"
#include "iccmain.hpp"
class Test {
public:
void tryNumber(short num) {
IccTerminal* term = IccTerminal::instance();
*term << "Number passed = " << num << endl <<
flush;
if (num > 10) {
*term << ">>Out of Range - throwing exception" << endl
<< flush;
throw "!!Number is out of range!!";
}
}
};

The first two lines include the header files for the Foundation Classes and the standard main function that
sets up the operating environment for the application program.

We then declare class Test , which has one public method, tryNumber . This method is implemented
inline so that if an integer greater than ten is passed an exception is thrown. We also write out some
information to the CICS terminal.

32 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/messages/cics-messages/DFHmessages.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

void IccUserControl::run()
{
IccTerminal* term = IccTerminal::instance();
term->erase();
*term << "This is program 'icc$exc1' ..." << endl;
try {
Test test;
test.tryNumber(1);
test.tryNumber(7);
test.tryNumber(11);
test.tryNumber(6);
}
catch(const char* exception) {
term->setLine(22);
*term << "Exception caught: " << exception << endl
<< flush;
}
term->send(24,1,"Program 'icc$exc1' complete: Hit PF12 to End");
term->waitForAID(IccTerminal::PF12);
term->erase();
return;
}

The run method of IccUserControl class contains the user code for this example.

After erasing the terminal display and writing some text, we begin our try block. A try block can scope any
number of lines of C++ code.

Here we create a Test object and invoke our only method, tryNumber , with various parameters. The first
two invocations (1, 7) succeed, but the third (11) causes tryNumber to throw an exception. The fourth
tryNumber invocation (6) is not executed because an exception causes the program execution flow to
leave the current try block.

We then leave the try block and look for a suitable catch block. A suitable catch block is one with
arguments that are compatible with the type of exception being thrown (here a char*). The catch block
writes a message to the CICS terminal and then execution resumes at the line after the catch block.

The output from this CICS program is as follows:

This is program 'icc$exc1' ...
 Number passed = 1
 Number passed = 7
 Number passed = 11
 >>Out of Range - throwing exception
 Exception caught: !!Number is out of range!!
 Program 'icc$exc1' complete: Hit PF12 to End

The CICS C++ Foundation Classes do not throw char* exceptions as in the previous sample but they do
throw IccException objects instead.

There are several types of IccException . The type method returns an enumeration that indicates the
type. Here is a description of each type in turn.
objectCreationError

An attempt to create an object was invalid. This happens, for example, if an attempt is made to create
a second instance of a singleton class, such as IccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example, if an IccBuf object with too
much data is passed to the writeItem method of the IccTempStore class by the application program.

It also happens when attempting to create a subclass of IccResourceId , such as IccTermId , with a
string that is too long.

The following sample can be found in C++ sample programs , as file ICC$EXC2 . The sample is
presented here without many of the terminal IO requests.

Chapter 2. Using the CICS foundation classes 33

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{
try
{
IccTermId id1("1234");
IccTermId id2("12345");
}
catch(IccException& exception)
{
terminal()->send(21, 1, exception.summary());
}
return;
}

In the previous example the first IccTermId object is successfully created, but the second caused an
IccException to be thrown, because the string "12345" is 5 bytes where only 4 are allowed. See C++
sample programs for the expected output from this sample program.

invalidMethodCall
A method cannot be called. A typical reason is that the object cannot honor the call in its current
state. For example, a readRecord call on an IccFile object is only honored if an IccRecordIndex
object, to specify which record is to be read, has already been associated with the file.

CICSCondition
A CICS condition, listed in the IccCondition structure, has occurred in the object and the object was
configured to throw an exception.

familyConformanceError
Family subset enforcement is on for this program and an operation that is not valid on all supported
platforms has been attempted.

internalError
The CICS foundation classes have detected an internal error. Please call service.

CICS conditions
The CICS foundation classes provide a powerful framework for handling conditions that happen when
executing an application.

Accessing a CICS resource can raise a number of CICS conditions as documented in Foundation classes
reference.

A condition might represent an error or information being returned to the calling application; the deciding
factor is often the context in which the condition is raised.

The application program can handle the CICS conditions in a number of ways. Each CICS resource object,
such as a program, file, or data queue, can handle CICS conditions differently, if required.

A resource object can be configured to take one of the following actions for each condition it can
encounter:
noAction

Manual condition handling
callHandleEvent

Automatic condition handling
throwException

Exception handling
abendTask

Severe error handling.

Manual condition handling (noAction)
This is the default action for all CICS conditions (for any resource object).

This means that the condition must be handled manually, using the condition method. For example:

34 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal0l.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal0l.html

IccTempStore temp("TEMP1234");
IccBuf buf(40);
temp.setActionOnCondition(IccResource::noAction,
IccCondition::QIDERR);
buf = temp.readNextItem();
switch (temp.condition())
{
case IccCondition::QIDERR:
//do whatever here
⋮
default:
//do something else here
}

Automatic condition handling (callHandleEvent)
Activate this for any CICS condition, such as QIDERR, as follows.

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::callHandleEvent,
IccCondition::QIDERR);

When a call to any method on object 'temp' causes CICS to raise the QIDERR condition, handleEvent
method is automatically called. As the handleEvent method is only a virtual method, this call is only
useful if the object belongs to a subclass of IccTempStore and the handleEvent method has been
overridden.

Make a subclass of IccTempStore , declare a constructor, and override the handleEvent method.

class MyTempStore : public IccTempStore
{
public:
MyTempStore(const char* storeName) : IccTempStore(storeName) {}
HandleEventReturnOpt handleEvent(IccEvent& event);
};

Now implement the handleEvent method.

IccResource::HandleEventReturnOpt
MyTempStore::handleEvent(IccEvent& event)
{
switch (event.condition())
{
case …
⋮
case IccCondition::QIDERR:
//Handle QIDERR condition here.
⋮
//
default:
return rAbendTask;
}
}

This code is called for any MyTempStore object which is configured to 'callHandleEvent' for a particular
CICS condition.

Exception handling (throwException)
Activate this for any CICS condition, such as QIDERR, as follows.

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::throwException,
IccCondition::QIDERR);

Exception handling is by means of the C++ exception handling model using try , throw , and catch . For
example:

Chapter 2. Using the CICS foundation classes 35

try
{
buf = temp.readNextItem();
⋮
}
catch (IccException& exception)
{
//Exception handling code
⋮
}

An exception is thrown if any of the methods inside the try block raise the QIDERR condition for object
'temp'. When an exception is thrown, C++ unwinds the stack and resumes execution at an appropriate
catch block – it is not possible to resume within the try block. For a fuller example, see sample ICC
$EXC3.

Note: Exceptions can be thrown from the Foundation Classes for many reasons other than this example –
see “C++ Exceptions and the Foundation Classes” on page 32 for more details.

Severe error handling (abendTask)
This option allows CICS to terminate the task when certain conditions are raised.

Activate this for any CICS condition, such as QIDERR, as follows:

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::abendTask,
IccCondition::QIDERR);

If CICS raises the QIDERR condition for object 'temp' the CICS task terminates with an ACL3 abend.

Platform differences
The CICS Foundation Classes, as described here, are designed to be independent of the particular CICS
platform on which they are running. There are however some differences between platforms; these, and
ways of coping with them, are described here.

Note: References in this section to other CICS platforms are included for completeness. There have been
Technology Releases of the CICS Foundation Classes on those platforms.

Applications can be run in one of two modes:
fsAllowPlatformVariance

Applications written using the CICS Foundation Classes are able to access all the functions available
on the target CICS server.

fsEnforce
Applications are restricted to the CICS functions that are available across all CICS Servers (z/OS and
UNIX).

The default is to allow platform variance and the alternative is to force the application to only use features
which are common to all CICS platforms.

The class headers are the same for all platforms and they "support" (that is, define) all the CICS functions
that are available through the Foundation Classes on any of the CICS platforms. The restrictions on each
platform are documented in Foundation classes reference. Platform variations exist at:

• object level
• method level
• parameter level

Object level
Some objects are not supported on certain platforms.

For example, IccConsole objects cannot be created on CICS(r) for AIX® as CICS(r) for AIX(r) does not
support console services.

36 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal0l.html

Any attempt to create an IccConsole object on CICS(r) for AIX(r) causes an IccException object of type
'platformError' to be thrown, but would be acceptable on the other platforms

IccConsole* cons = console(); //No good on CICS for AIX

If you initialize your application with 'fsEnforce' selected (see initializeEnvironment) the previous
examples both cause an IccException object, of type 'familyConformanceError' to be thrown on all
platforms.

Unlike objects of the IccConsole and IccJournal classes, most objects can be created on any CICS server
platform. However the use of the methods can be restricted. Foundation Classes: reference fully
documents all platform restrictions.

Method level
Methods that run successfully on one platform can cause a problem on another platform.

Consider, for example method programId in the IccControl class:

void IccUserControl::run()
{
if (strcmp(programId.name(), "PROG1234") == 0)
//do something
}

Here method programId executes correctly on CICS TS for z/OS but throws an IccException object of
type 'platformError' on CICS(r) for AIX(r).

Alternatively, if you initialize your application with family subset enforcement on (see
initializeEnvironment function of Icc structure), method programId throws an IccException object of
type 'familyConformanceError' on any CICS server platform.

Parameter level
At this level a method is supported on all platforms, but a particular positional parameter has some
platform restrictions.

Consider method abend in IccTask class.

task()->abend();
 1

task()->abend("WXYZ");
 2

task()->abend("WXYZ", IccTask::respectAbendHandler);
 3

task()->abend("WXYZ", IccTask::ignoreAbendHandler);
 4

task()->abend("WXYZ", IccTask::ignoreAbendHandler,
 5

IccTask::suppressDump);

Abends 1 to 4 run successfully on all CICS server platforms.

If family subset enforcement is off, abend 5 throws an IccException object of type 'platformError' on a
CICS(r) for AIX(r) platform, but not on a CICS Transaction Server for z/OS platform.

If family subset enforcement is on, abend 5 throws an IccException object of type
'familyConformanceError', irrespective of the target CICS platform.

Chapter 2. Using the CICS foundation classes 37

Polymorphic Behavior
Polymorphism (poly = many, morphe = form) is the ability to treat many different forms of an object as if
they were the same.

Polymorphism is achieved in C++ by using inheritance and virtual functions. Consider the scenario where
we have three forms (ExpenseForm, LoanForm, PurchaseForm) that are specializations of a general Form:

38 CICS TS for z/OS: C++ OO Class Libraries

Form

LoanFormExpenseForm PurchaseForm

Chapter 2. Using the CICS foundation classes 39

Each form needs printing at some time. In procedural programming, we would either code a print function
to handle the three different forms or we would write three different functions (printExpenseForm,
printLoanForm, printPurchaseForm).

In C++, this can be achieved far more elegantly as follows:

 class Form {
public:
virtual void print();
};
class ExpenseForm : public Form {
public:
virtual void print();
};
class LoanForm : public Form {
public:
virtual void print();
};
class PurchaseForm : public Form {
public:
virtual void print();
};

Each of these overridden functions is implemented so that each form prints correctly. Now an application
using form objects can do this:

Form* pForm[10]
//create Expense/Loan/Purchase Forms…
for (short i=0 ; i < 9 ; i++)
pForm->print();

Here we create ten objects that might be any combination of Expense, Loan, and Purchase Forms.
However, because we are dealing with pointers to the base class, Form , we do not need to know which
sort of form object we have; the correct print method is called automatically.

Limited polymorphic behavior is available in the Foundation Classes. Three virtual functions are defined in
the base class IccResource :

virtual void clear();
virtual const IccBuf& get();
virtual void put(const IccBuf&

buffer

);

These methods have been implemented in the subclasses of IccResource wherever possible:

Class clear get put

IccConsole × × ✓

IccDataQueue ✓ ✓ ✓

IccJournal × × ✓

IccSession × ✓ ✓

IccTempStore ✓ ✓ ✓

IccTerminal ✓ ✓ ✓

These virtual methods are not supported by any subclasses of IccResource except those in the table.

Note: The default implementations of clear , get , and put in the base class IccResource throw an
exception to prevent the user from calling an unsupported method.

40 CICS TS for z/OS: C++ OO Class Libraries

Example of polymorphic behavior
The following sample can be found in the samples directory as file ICC$RES2.

It is presented here without the terminal IO requests. See C++ sample programs.

#include "icceh.hpp"
#include "iccmain.hpp"
char* dataItems[] =
{
"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"
};
void IccUserControl::run()
{

Here we include Foundation Class headers and the main function. dataItems contains some sample data
items. We write our application code in the run method of IccUserControl class.

 IccBuf buffer(50);
IccResource* pObj[2];

We create an IccBuf object (50 bytes initially) to hold our data items. An array of two pointers to
IccResource objects is declared.

 pObj[0] = new IccDataQueue("ICCQ");
pObj[1] = new IccTempStore("ICCTEMPS");

We create two objects whose classes are derived from IccResource – IccDataQueue and IccTempStore.

 for (short index=0; index <= 1 ; index++)
{
pObj[index]->clear();
}

For both objects we invoke the clear method. This is handled differently by each object in a way that is
transparent to the application program; this is polymorphic behavior.

 for (index=0; index <= 1 ; index++)
{
for (short j=1 ; j <= 3 ; j++)
{
buffer = dataItems[j-1];
pObj[index]->put(buffer);
}
}

Now we put three data items in each of our resource objects. Again the put method responds to the
request in a way that is appropriate to the object type.

 for (index=0; index <= 1 ; index++)
{
buffer = pObj[index]->get();
while (pObj[index]->condition() == IccCondition::NORMAL)
{
buffer = pObj[index]->get();
}
delete pObj[index];
}
return;
}

The data items are read back in from each of our resource objects using the get method. We delete the
resource objects and return control to CICS.

Chapter 2. Using the CICS foundation classes 41

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html

Storage management
C++ objects are usually stored on the stack or heap.

Objects on the stack are automatically destroyed when they go out of scope, but objects on the heap are
not.

Many of the objects that the CICS Foundation Classes create internally are created on the heap rather
than the stack. This can cause a problem in some CICS server environments.

On CICS Transaction Server for z/OS ,, CICS and Language Environment® manage all task storage so that it
is released at task termination (normal or abnormal).

In a CICS for AIX environment, storage allocated on the heap is not automatically released at task
termination. This can lead to "memory leaks" if the application programmer forgets to explicitly delete an
object on the heap, or, more seriously, if the task abends.

This problem has been overcome in the CICS Foundation Classes by providing operators new and delete
in the base Foundation Class, IccBase . These can be configured to map dynamic storage allocation
requests to CICS task storage, so that all storage is automatically released at task termination. The
disadvantage of this approach is a performance hit as the Foundation Classes typically issue a large
number of small storage allocation requests rather than a single, larger allocation request.

This facility is affected by the Icc::initializeEnvironment call that must be issued before using the
Foundation Classes. (This function is called from the default main function; see main function .)

The first parameter passed to the initializeEnvironment function is an enumeration that takes one of
these three values:
cmmDefault

The default action is platform dependent:
z/OS

same as 'cmmNonCICS' - see the 'cmmNonCICS' section.
UNIX

same as 'cmmCICS' - see the 'cmmCICS' section.
cmmNonCICS

The new and delete operators in class IccBase do not map dynamic storage allocation requests to
CICS task storage; instead the C++ default new and delete operators are invoked.

cmmCICS
The new and delete operators in class IccBase map dynamic storage allocation requests to CICS task
storage (which is automatically released at normal or abnormal task termination).

The default main function supplied with the Foundation Classes calls initializeEnvironment with an
enum of 'cmmDefault'. You can change this in your program without changing the supplied "header file"
ICCMAIN as follows:

#define ICC_CLASS_MEMORY_MGMT Icc::cmmNonCICS
#include "iccmain.hpp"

Alternatively, set the option DEV(ICC_CLASS_MEMORY_MGMT) when compiling.

Parameter passing conventions
The convention used for passing objects on Foundation Classes method calls is if the object is mandatory,
pass by reference; if it is optional pass by pointer.

For example, consider method start of class IccStartRequestQ , which has the following signature:

42 CICS TS for z/OS: C++ OO Class Libraries

const IccRequestId& start(const IccTransId&
transId,
const IccTime* time=0,
const IccRequestId* reqId=0);

Using the preceding convention, we see that an IccTransId object is mandatory, while an IccTime and an
IccRequestId object are both optional. This enables an application to use this method in any of the
following ways:

 IccTransId trn("ABCD");
IccTimeInterval int(0,0,5);
IccRequestId req("MYREQ");
IccStartRequestQ* startQ = startRequestQ();
startQ->start(trn);
startQ->start(trn, &int);
startQ->start(trn, &int, &req);
startQ->start(trn, 0, &req);

Scope of data in IccBuf reference returned from 'read' methods
Many of the subclasses of IccResource have 'read' methods that return const IccBuf references; for
example, IccFile::readRecord , IccTempStore::readItem and IccTerminal::receive.

Care should be taken if you choose to maintain a reference to the IccBuf object, rather than copy the data
from the IccBuf reference into your own IccBuf object. For example, consider the following

 IccBuf buf(50);
IccTempStore store("TEMPSTOR");
buf = store.readNextItem();

Here, the data in the IccBuf reference returned from IccTempStore::readNextItem is immediately
copied into the application's own IccBuf object, so it does not matter if the data is later invalidated.
However, the application might look like this

 IccTempStore store("TEMPSTOR");
const IccBuf& buf = store.readNextItem();

Here, the IccBuf reference returned from IccTempStore::readNextItem is not copied into the
application's own storage and care must therefore be taken.

Note: You are recommended not to use this style of programming to avoid using a reference to an IccBuf
object that does not contain valid data.

The returned IccBuf reference typically contains valid data until one of the following conditions is met:

• Another 'read' method is invoked on the IccResource object (for example, another readNextItem or
readItem method in the example).

• The resource updates are committed (see method IccTask::commitUOW).
• The task ends (normally or abnormally).

Chapter 2. Using the CICS foundation classes 43

44 CICS TS for z/OS: C++ OO Class Libraries

Chapter 3. Foundation Classes: reference
This section contains the reference information on the foundation classes and structures that are
provided as part of CICS. The classes and structures are arranged in alphabetic order. All the functionality
you require to create object-oriented CICS programs is included within these classes and structures.

All of the classes and structures begin with the unique prefix Icc. Do not create your own classes with this
prefix.

Icc structure contains some functions and enumerations that are widely applicable. IccValue structure
consists of a large enumeration of all the CVDA values used in traditional CICS programs.

The description of each class starts with a simple diagram that shows how it is derived from IccBase
class, the basis of all the other classes. This is followed by a short description and an indication of the
name of the header file that includes it and, where appropriate, a sample source file that uses it.

Within each class or structure description are, where appropriate, the following sections:

1. Inheritance diagram
2. Brief description of class
3. Header file where class is defined. For the location of the C++ header files on your system see Header

files.
4. Sample program demonstrating class. For the location of the supplied C++ sample programs on your

system see C++ sample programs.
5. Icc… constructors
6. Public methods (in alphabetic order)
7. Protected methods (in alphabetic order)
8. Inherited public methods (in tabular form)
9. Inherited protected methods (in tabular form)

10. Enumerations

Methods, including constructors, start with a formal function prototype that shows what a call returns and
what the parameters are. There follows a description, in order, of the parameters. To avoid duplication,
inherited methods just have an indication of the class from which they are derived (and where they are
described).

The convention for names is:

1. Variable names are shown as variable.
2. Names of classes, structures, enumerations and methods are shown as method
3. Members of enumerations are shown as 'enumMember'.
4. The names of all the supplied classes and structures begin with Icc.
5. Compound names have no separators, but have capital letters to demark the beginning of second and

subsequent words, as in IccJournalTypeId.
6. Class and structure names and enumeration types begin with capital letters. Other names begin with

lowercase letters.

For further information on how to use these classes, see Using the CICS foundation classes.

© Copyright IBM Corp. 1974, 2020 45

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/samples/dfhal19.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal0k.html

Mapping EXEC CICS calls to Foundation Class methods
The following table shows the correspondence between CICS calls made using the EXEC CICS API and
the equivalent calls from the Foundation Classes.

EXEC CICS Class Method

ABEND IccTask abend

ADDRESS COMMAREA IccControl commArea

ADDRESS CWA IccSystem workArea

ADDRESS EIB No direct access to EIB: please use appropriate method on
appropriate class.

ADDRESS TCTUA IccTerminal workArea

ADDRESS TWA IccTask workArea

ALLOCATE IccSession allocate

ASKTIME IccClock update

ASSIGN ABCODE IccAbendData abendCode

ASSIGN ABDUMP IccAbendData isDumpAvaliable

ASSIGN ABPROGRAM IccAbendData programName

ASSIGN ALTSCRNHT IccTerminalData alternateHeight

ASSIGN ALTSCRNWD IccTerminalData alternateWidth

ASSIGN APLKYBD IccTerminalData isAPLKeyboard

ASSIGN APLTEXT IccTerminalData isAPLText

ASSIGN ASRAINTRPT IccAbendData ASRAInterrupt

ASSIGN ASRAKEY IccAbendData ASRAKeyType

ASSIGN ASRAPSW IccAbendData ASRAPSW

ASSIGN ASRAREGS IccAbendData ASRARegisters

ASSIGN ASRASPC IccAbendData ASRASpaceType

ASSIGN ASRASTG IccAbendData ASRAStorageType

ASSIGN APPLID IccSystem applName

ASSIGN BTRANS IccTerminalData isBTrans

ASSIGN CMDSEC IccTask isCommandSecurityOn

ASSIGN COLOR IccTerminalData isColor

ASSIGN CWALENG IccSystem workArea

ASSIGN DEFSCRNHT IccTerminalData defaultHeight

ASSIGN DEFSCRNWD IccTerminalData defaultWidth

ASSIGN EWASUPP IccTerminalData isEWA

ASSIGN EXTDS IccTerminalData isExtended3270

ASSIGN FACILITY IccTerminal name

46 CICS TS for z/OS: C++ OO Class Libraries

EXEC CICS Class Method

ASSIGN FCI IccTask facilityType

ASSIGN GCHARS IccTerminalData graphicCharSetId

ASSIGN GCODES IccTerminalData graphicCharCodeSet

ASSIGN GMMI IccTerminalData isGoodMorning

ASSIGN HILIGHT IccTerminalData isHighlight

ASSIGN INITPARM IccControl initData

ASSIGN INITPARMLEN IccControl initData

ASSIGN INVOKINGPROG IccControl callingProgramId

ASSIGN KATAKANA IccTerminalData isKatakana

ASSIGN NETNAME IccTerminal netName

ASSIGN OUTLINE IccTerminalData isFieldOutline

ASSIGN ORGABCODE IccAbendData originalAbendCode

ASSIGN PRINSYSID IccTask principalSysId

ASSIGN PROGRAM IccControl programId

ASSIGN PS IccTerminalData isPS

ASSIGN QNAME IccTask triggerDataQueueId

ASSIGN RESSEC IccTask isResourceSecurityOn

ASSIGN RESTART IccTask isRestarted

ASSIGN SCRNHT IccTerminal height

ASSIGN SCRNWD IccTerminal width

ASSIGN SOSI IccTerminalData isSOSI

ASSIGN STARTCODE IccTask startType, isCommitSupported,
isStartDataAvailable

ASSIGN SYSID IccSystem sysId

ASSIGN TASKPRIORITY IccTask priority

ASSIGN TCTUALENG IccTerminal workArea

ASSIGN TEXTKYBD IccTerminalData isTextKeyboard

ASSIGN TEXTPRINT IccTerminalData isTextPrint

ASSIGN TWALENG IccTask workArea

ASSIGN USERID IccTask userId

ASSIGN VALIDATION IccTerminalData isValidation

CANCEL IccClock cancelAlarm

CANCEL IccStartRequestQ cancel

CHANGE PASSWORD IccUser changePassword

CHANGE TASK IccTask setPriority

CONNECT PROCESS IccSession connectProcess

Chapter 3. Foundation Classes: reference 47

EXEC CICS Class Method

CONVERSE IccSession converse

DELAY IccTask delay

DELETE IccFile deleteRecord

DELETE IccFile deleteLockedRecord

DELETEQ TD IccDataQueue empty

DELETEQ TS IccTempStore empty

DEQ IccSemaphore unlock

DUMP TRANSACTION IccTask dump

DUMP TRANSACTION IccTask setDumpOpts

ENDBR IccFileIterator IccFileIterator (destructor)

ENQ IccSemaphore lock

ENQ IccSemaphore tryLock

ENTER TRACENUM IccTask enterTrace

EXTRACT ATTRIBUTES IccSession state, stateText

EXTRACT PROCESS IccSession extractProcess

FORMATTIME YYDDD, YYMMDD,
etc

IccClock date

FORMATTIME DATE IccClock date

FORMATTIME DATEFORM IccSystem dateFormat

FORMATTIME DAYCOUNT IccClock daysSince1900

FORMATTIME DAYOFWEEK IccClock dayOfWeek

FORMATTIME DAYOFMONTH IccClock dayOfMonth

FORMATTIME MONTHOFYEAR IccClock monthOfYear

FORMATTIME TIME IccClock time

FORMATTIME YEAR IccClock year

FREE IccSession free

FREEMAIN IccTask freeStorage

GETMAIN IccTask getStorage

HANDLE ABEND IccControl setAbendHandler,
cancelAbendHandler,
resetAbendHandler

INQUIRE FILE ACCESSMETHOD IccFile accessMethod

INQUIRE FILE ADD IccFile isAddable

INQUIRE FILE BROWSE IccFile isBrowsable

INQUIRE FILE DELETE IccFileControl isDeletable

INQUIRE FILE EMPTYSTATUS IccFile isEmptyOn

48 CICS TS for z/OS: C++ OO Class Libraries

EXEC CICS Class Method

INQUIRE FILE ENABLESTATUS IccFile enableStatus

INQUIRE FILE KEYPOSITION IccFile keyPosition

INQUIRE FILE OPENSTATUS IccFile openStatus

INQUIRE FILE READ IccFile isReadable

INQUIRE FILE RECORDFORMAT IccFile recordFormat

INQUIRE FILE RECORDSIZE IccFile recordLength

INQUIRE FILE RECOVSTATUS IccFile isRecoverable

INQUIRE FILE TYPE IccFile type

INQUIRE FILE UPDATE IccFile isUpdatable

ISSUE ABEND IccSession issueAbend

ISSUE CONFIRMATION IccSession issueConfirmation

ISSUE ERROR IccSession issueError

ISSUE PREPARE IccSession issuePrepare

ISSUE SIGNAL IccSession issueSignal

LINK IccProgram link

LINK INPUTMSG INPUTMSGLEN IccProgram setInputMessage

LOAD IccProgram load

POST IccClock setAlarm

READ IccFile readRecord

READNEXT IccFileIterator readNextRecord

READPREV IccFileIterator readPreviousRecord

READQ TD IccDataQueue readItem

READQ TS IccTempStore readItem

RECEIVE (APPC) IccSession receive

RECEIVE (3270) IccTerminal receive, receive3270Data

RELEASE IccProgram unload

RESETBR IccFileIterator reset

RETRIEVE IccStartRequestQ retrieveData 1

Note: The retrieveData method gets the start information from CICS and stores it in the
IccStartRequestQ object: the information can then be accessed using data, queueName, returnTermId
and returnTransId methods.

RETRIEVE INTO, LENGTH IccStartRequestQ data

RETRIEVE QUEUE IccStartRequestQ queueName

RETRIEVE RTRANSID IccStartRequestQ returnTransId

RETRIEVE RTERMID IccStartRequestQ returnTermId

RETURN IccControl main 2

Chapter 3. Foundation Classes: reference 49

EXEC CICS Class Method

Note: Returning (using C++ reserved word return) from method run in class IccControl results in an
EXEC CICS RETURN.

RETURN TRANSID IccTerminal setNextTransId 3

RETURN IMMEDIATE IccTerminal setNextTransId 3

RETURN COMMAREA LENGTH IccTerminal setNextCommArea 3

RETURN INPUTMSG,
INPUTMSGLEN

IccTerminal setNextInputMessage 3

Note: Issue this call before returning from IccControl::run.

REWRITE IccFile rewriteRecord

SEND (APPC) IccSession send, sendInvite, sendLast

SEND (3270) IccTerminal send, sendLine

SEND CONTROL CURSOR IccTerminal setCursor setLine, setNewLine

SEND CONTROL ERASE IccTerminal erase

SEND CONTROL FREEKB IccTerminal freeKeyboard

SET FILE ADD|BROWSE|DELETE|
…

IccFile setAccess

SET FILE EMPTYSTATUS IccFile setEmptyOnOpen

SET FILE OPEN STATUS|
ENABLESTATUS

IccFile setStatus

SIGNOFF IccTerminal signoff

SIGNON IccTerminal signon

START TRANSID AT/AFTER IccStartRequestQ start 4

START TRANSID FROM LENGTH IccStartRequestQ setData, registerDataBuffer 4

START TRANSID NOCHECK IccStartRequestQ setStartOpts 4

START TRANSID PROTECT IccStartRequestQ setStartOpts 4

START TRANSID QUEUE IccStartRequestQ setQueueName 4

START TRANSID REQID IccStartRequestQ start 4

START TRANSID TERMID IccStartRequestQ start 4

START TRANSID USERID IccStartRequestQ start 4

START TRANSID RTERMID IccStartRequestQ setReturnTermId 4

START TRANSID RTRANSID IccStartRequestQ setReturnTransId 4

Note: Use methods setData, setQueueName, setReturnTermId, setReturnTransId, setStartOpts to
set the state of the IccStartRequestQ object before issuing start requests with the start method.

STARTBR IccFileIterator IccFileIterator (constructor)

SUSPEND IccTask suspend

SYNCPOINT IccTask commitUOW

50 CICS TS for z/OS: C++ OO Class Libraries

EXEC CICS Class Method

SYNCPOINT ROLLBACK IccTask rollBackUOW

UNLOCK IccFile unlockRecord

VERIFY PASSWORD IccUser verifyPassword

WAIT CONVID IccSession flush

WAIT EVENT IccTask waitOnAlarm

WAIT EXTERNAL IccTask waitExternal

WAIT JOURNALNUM IccJournal wait

WRITE IccFile writeRecord

WRITE OPERATOR IccConsole write, writeAndGetReply

WRITEQ TD IccDataQueue writeItem

WRITEQ TS IccTempStore writeItem, rewriteItem

Mapping Foundation Class methods to EXEC CICS calls
The following table shows the correspondence between CICS calls made using the Foundation Classes
and the equivalent EXEC CICS API calls.

Table 1. IccAbendData Class

Method EXEC CICS

abendCode ASSIGN ABCODE

ASRAInterrupt ASSIGN ASRAINTRPT

ASRAKeyType ASSIGN ASRAKEY

ASRAPSW ASSIGN ASRAPSW

ASRARegisters ASSIGN ASRAREGS

ASRASpaceType ASSIGN ASRASPC

ASRAStorageType ASSIGN ASRASTG

isDumpAvailable ASSIGN ABDUMP

originalAbendCode ASSIGN ORGABCODE

programName ASSIGN ABPROGRAM

Table 2. IccAbsTime Class

Method EXEC CICS

date FORMATTIME YYDDD/YYMMDD/etc.

dayOfMonth FORMATTIME DAYOFMONTH

dayOfWeek FORMATTIME DAYOFWEEK

daysSince1900 FORMATTIME DAYCOUNT

monthOfYear FORMATTIME MONTHOFYEAR

time FORMATTIME TIME

Chapter 3. Foundation Classes: reference 51

Table 2. IccAbsTime Class (continued)

Method EXEC CICS

year FORMATTIME YEAR

Table 3. IccClock Class

Method EXEC CICS

cancelAlarm CANCEL

date FORMATTIME YYDDD/YYMMDD/etc.

dayOfMonth FORMATTIME DAYOFMONTH

dayOfWeek FORMATTIME DAYOFWEEK

daysSince1900 FORMATTIME DAYCOUNT

monthOfYear FORMATTIME MONTHOFYEAR

setAlarm POST

time FORMATTIME TIME

update ASKTIME

year FORMATTIME YEAR

Table 4. IccConsole Class

Method EXEC CICS

write WRITE OPERATOR

writeAndGetReply WRITE OPERATOR

Table 5. IccControl Class

Method EXEC CICS

callingProgramId ASSIGN INVOKINGPROG

cancelAbendHandler HANDLE ABEND CANCEL

commArea ADDRESS COMMAREA

initData ASSIGN INITPARM & INITPARMLEN

programId ASSIGN PROGRAM

resetAbendHandler HANDLE ABEND RESET

setAbendHandler HANDLE ABEND PROGRAM

Table 6. IccDataQueue Class

Method EXEC CICS

empty DELETEQ TD

readItem READQ TD

writeItem WRITEQ TD

52 CICS TS for z/OS: C++ OO Class Libraries

Table 7. IccFile Class

Method EXEC CICS

access INQUIRE FILE ADD|BROWSE|DELETE|READ|
UPDATE

accessMethod INQUIRE FILE ACCESSMETHOD

deleteRecord DELETE FILE RIDFLD

deleteLockedRecord DELETE FILE

enableStatus INQUIRE FILE ENABLESTATUS

isAddable INQUIRE FILE ADD

isBrowsable INQUIRE FILE BROWSE

isDeletable INQUIRE FILE DELETE

isEmptyOnOpen INQUIRE FILE EMPTYSTATUS

isReadable INQUIRE FILE READ

isRecoverable INQUIRE FILE RECOVSTATUS

isUpdatable INQUIRE FILE UPDATE

keyPosition INQUIRE FILE KEYPOSITION

openStatus INQUIRE FILE OPENSTATUS

readRecord READ FILE

recordFormat INQUIRE FILE RECORDFORMAT

recordLength INQUIRE FILE RECORDSIZE

rewriteRecord REWRITE FILE

setAccess SET FILE ADD BROWSE DELETE etc.

setEmptyOnOpen SET FILE EMPTYSTATUS

setStatus SET FILE OPENSTATUS ENABLESTATUS

type INQUIRE FILE TYPE

unlockRecord UNLOCK FILE

writeRecord WRITE FILE

Table 8. IccFileIterator Class

Method EXEC CICS

IccFileIterator (constructor) STARTBR FILE

~IccFileIterator (destructor) ENDBR FILE

readNextRecord READNEXT FILE

readPreviousRecord READPREV FILE

reset RESETBR FILE

Chapter 3. Foundation Classes: reference 53

Table 9. IccJournal Class

Method EXEC CICS

wait WAIT JOURNALNUM

writeRecord WRITE JOURNALNUM

Table 10. IccProgram Class

Method EXEC CICS

link LINK PROGRAM

load LOAD PROGRAM

unload RELEASE PROGRAM

Table 11. IccResource Class

Method EXEC CICS

condition (RESP & RESP2)

setRouteOption (SYSID)

Table 12. IccSemaphore Class

Method EXEC CICS

lock ENQ RESOURCE

tryLock ENQ RESOURCE NOSUSPEND

unlock DEQ RESOURCE

Table 13. IccSession Class

Method EXEC CICS

allocate ALLOCATE

connectProcess CONNECT PROCESS CONVID

converse CONVERSE CONVID

extractProcess EXTRACT PROCESS CONVID

flush WAIT CONVID

free FREE CONVID

issueAbend ISSUE ABEND CONVID

issueConfirmation ISSUE CONFIRMATION CONVID

issueError ISSUE ERROR CONVID

issuePrepare ISSUE PREPARE CONVID

issueSignal ISSUE SIGNAL CONVID

receive RECEIVE CONVID

send SEND CONVID

sendInvite SEND CONVID INVITE

54 CICS TS for z/OS: C++ OO Class Libraries

Table 13. IccSession Class (continued)

Method EXEC CICS

sendLast SEND CONVID LAST

state EXTRACT ATTRIBUTES

Table 14. IccStartRequestQ Class

Method EXEC CICS

cancel CANCEL

retrieveData RETRIEVE

start START TRANSID

Table 15. IccSystem Class

Method EXEC CICS

applName ASSIGN APPLID

beginBrowse INQUIRE (FILE, TDQUEUE, etc) START

dateFormat FORMATTIME DATEFORM

endBrowse INQUIRE (FILE, TDQUEUE, etc) END

freeStorage FREEMAIN

getFile INQUIRE FILE

getNextFile INQUIRE FILE NEXT

getStorage GETMAIN SHARED

operatingSystem INQUIRE SYSTEM OPSYS

operatingSystemLevel INQUIRE SYSTEM OPREL

release INQUIRE SYSTEM RELEASE

releaseText INQUIRE SYSTEM RELEASE

sysId ASSIGN SYSID

workArea ADDRESS CWA

Table 16. IccTask Class

Method EXEC CICS

abend ABEND

commitUOW SYNCPOINT

delay DELAY

dump DUMP TRANSACTION

enterTrace ENTER TRACENUM

facilityType ASSIGN STARTCODE, TERMCODE, PRINSYSID, FCI

freeStorage FREEMAIN

isCommandSecurityOn ASSIGN CMDSEC

Chapter 3. Foundation Classes: reference 55

Table 16. IccTask Class (continued)

Method EXEC CICS

isCommitSupported ASSIGN STARTCODE

isResourceSecurityOn ASSIGN RESSEC

isRestarted ASSIGN RESTART

isStartDataAvailable ASSIGN STARTCODE

principalSysId ASSIGN PRINSYSID

priority ASSIGN TASKPRIORITY

rollBackUOW SYNCPOINT ROLLBACK

setPrioity CHANGE TASK PRIORITY

startType ASSIGN STARTCODE

suspend SUSPEND

triggerDataQueueId ASSIGN QNAME

userId ASSIGN USERID

waitExternal WAIT EXTERNAL / WAITCICS

waitOnAlarm WAIT EVENT

workArea ADDRESS TWA

Table 17. IccTempStore Class

Method EXEC CICS

empty DELETEQ TS

readItem READQ TS ITEM

readNextItem READQ TS NEXT

rewriteItem WRITEQ TS ITEM REWRITE

writeItem WRITEQ TS ITEM

Table 18. IccTerminal Class

Method EXEC CICS

erase SEND CONTROL ERASE

freeKeyboard SEND CONTROL FREEKB

height ASSIGN SCRNHT

netName ASSIGN NETNAME

receive RECEIVE

receive3270Data RECEIVE BUFFER

send SEND

sendLine SEND

setCursor SEND CONTROL CURSOR

56 CICS TS for z/OS: C++ OO Class Libraries

Table 18. IccTerminal Class (continued)

Method EXEC CICS

setLine SEND CONTROL CURSOR

setNewLine SEND CONTROL CURSOR

signoff SIGNOFF

signon SIGNON

waitForAID RECEIVE

width ASSIGN SCRNWD

workArea ADDRESS TCTUA

Table 19. IccTerminalData Class

Method EXEC CICS

alternateHeight ASSIGN ALTSCRNHT

alternateWidth ASSIGN ALTSCRNWD

defaultHeight ASSIGN DEFSCRNHT

defaultWidth ASSIGN DEFSCRNWD

graphicCharSetId ASSIGN GCHARS

graphicCharCodeSet ASSIGN GCODES

isAPLKeyboard ASSIGN APLKYBD

isAPLText ASSIGN APLTEXT

isBTrans ASSIGN BTRANS

isColor ASSIGN COLOR

isEWA ASSIGN ESASUPP

isExtended3270 ASSIGN EXTDS

isGoodMorning ASSIGN GMMI

isHighlight ASSIGN HILIGHT

isKatakana ASSIGN KATAKANA

isMSRControl ASSIGN MSRCONTROL

isFieldOutline ASSIGN OUTLINE

isPS ASSIGN PS

isSOSI ASSIGN SOSI

isTextKeyboard ASSIGN TEXTKYBD

isTextPrint ASSIGN TEXTPRINT

isValidation ASSIGN VALIDATION

Chapter 3. Foundation Classes: reference 57

Table 20. IccUser Class

Method EXEC CICS

changePassword CHANGE PASSWORD

verifyPassword VERIFY PASSWORD

Icc structure
This structure holds global enumerations and functions for the CICS Foundation Classes. These globals
are defined within this structure to avoid name conflicts.

Header file: ICCGLBEH

Functions
Functions in Icc structure are as follows.

boolText
Returns the text that represents the boolean value described by the parameters, such as "yes" or "on".

static const char* boolText (Bool test,
 BoolSet set = trueFalse)

test
A boolean value, defined in this structure, that has one of two values, chosen from a set of values
given by set.

set
An enumeration, defined in this structure, that indicates from which pair of values test is selected. The
default is to use true and false.

catchException
This is the function of last resort, used to intercept IccException objects that the application fails to
catch. It can be called from the main function in the stub program, listed in ICCMAIN header file, and
described in “main function” on page 248. All OO CICS programs should use this stub or a close
equivalent.

static void catchException(IccException&exception)

exception
A reference to an IccException object that holds information about a particular type of exception.

conditionText
Returns the symbolic name associated with a condition value. For example, if conditionText is called with
condition of IccCondition::NORMAL, it returns "NORMAL", if it is called with condition of
IccCondition::IOERR, it returns "IOERR", and so on.

58 CICS TS for z/OS: C++ OO Class Libraries

static const char* conditionText(IccCondition::Codes condition)

condition
An enumeration, defined in the IccCondition structure, that indicates the condition returned by a call
to CICS.

initializeEnvironment
Initializes the CICS Foundation Classes. The rest of the class library can only be called after this function
has been called. It is called from the main function in the stub program, listed in ICCMAIN header file,
and described in CICS C++ main function. All OO CICS programs should use this stub or a close
equivalent.

static void initializeEnvironment (ClassMemoryMgmt mem = cmmDefault,
 FamilySubset fam = fsDefault,
 Icc::Bool EDF)

mem
An enumeration, defined in this structure, that indicates the memory management policy for the
foundation classes.

fam
An enumeration, defined in this structure, that indicates whether the use of CICS features that are not
available on all platforms is permitted.

EDF
A boolean that indicates whether EDF tracing is initially on.

isClassMemoryMgmtOn
Returns a boolean value, defined in this structure, that indicates whether class memory management is
on.

static Bool isClassMemoryMgmtOn()

isEDFOn
Returns a Boolean value, defined in this structure, that indicates whether EDF tracing is on at the global
level.

static Bool isEDFOn()

See setEDF in this structure, isEDFOn and setEDF in IccResource class on “IccResource class” on page
157 and Program debugging.

isFamilySubsetEnforcementOn
Returns a boolean value, defined in this structure, that indicates whether it is permitted to use CICS
features that are not available on all platforms.

static Bool isFamilySubsetEnforcementOn()

Chapter 3. Foundation Classes: reference 59

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/dfhal1h.dita

returnToCICS
This call returns the program flow to CICS.

static void returnToCICS()

It is called by the main function in the stub program, listed in ICCMAIN header file, and described in
“main function” on page 248. All OO CICS programs should use this stub or a close equivalent.

setEDF
Sets EDF tracing on or off at the global level.

static void setEDF(Icc::Bool onOff = off)

onOff
A boolean, defined in this structure, that indicates whether EDF tracing is enabled. As EDF is more
suitable for tracing programs that use EXEC CICS calls than object oriented programs, the default is
off.

unknownException
This function is called by the main function in ICCMAIN header file and is used to intercept unknown
exceptions.

static void unknownException()

See “main function” on page 248 and catchException in this structure).

Enumerations
References in this section to other CICS platforms, such as CICS(r) for AIX, are included for
completeness. There have been Technology Releases of the CICS Foundation Classes on those platforms.

Bool
Three equivalent pairs of boolean values are as follows.

• true, yes, on
• false, no, off

true, yes, and on evaluate to 1, while false, no, and off evaluate to zero. Thus you can code test functions
as follows:

if (task()->isStartDataAvailable())
{
 //do something
}

Note: 'true' and 'false' are compiler keywords in the z/OS 1.2 C/C++ compiler and will not be generated by
ICCGLBEH when using this compiler, or any later version.

BoolSet
BoolSet enumerations are as follows.

• trueFalse

60 CICS TS for z/OS: C++ OO Class Libraries

• yesNo
• onOff

ClassMemoryMgmt
ClassMemoryMgmt enumerations are as folows.

cmmDefault
The defaults for the different platforms are:
z/OS

cmmNonCICS
UNIX

cmmCICS
cmmNonCICS

The C++ environment performs the memory management required by the program.

In z/OS Language Environment ensures that the storage for CICS tasks is released at the end of the
task, or if the task terminates abnormally.

On CICS for AIX dynamic storage release does not occur at normal or abnormal task termination. This
means that programs are susceptible to memory leaks.

cmmCICS
The new and delete operators defined in IccBase class map storage allocations to CICS; storage is
automatically released at task termination.

FamilySubset
FamilySubset enumerations are as follows.

fsDefault
The defaults for the different platforms are all the same: fsAllowPlatformVariance

fsEnforce
Enforces Family Subset conformance; that is, it disallows use of any CICS features that are not
available on all CICS servers (OS/2, AIX, and z/OS).

Note: CICS OS/2 is no longer supported.

fsAllowPlatformVariance
Allows each platform to access all the CICS features available on that platform.

GetOpt
This enumeration is used on a number of methods throughout the classes. It indicates whether the value
held internally by the object is to be returned to the caller, or whether it has to be refreshed from CICS
first.

object
If the value has been previously retrieved from CICS and stored within the object, return this stored
value. Otherwise, get a copy of the value from CICS and store within the object.

CICS
Force the object to retrieve a fresh value from CICS (and store it within the object) even if there is
already a value stored within the object from a previous invocation.

Platforms
Indicates on which operating system the program is being run.

Possible values are:

• OS2
• UNIX
• MVS™

Chapter 3. Foundation Classes: reference 61

IccAbendData class
This is a singleton class used to retrieve diagnostic information from CICS about a program abend.

IccBase
 IccResource
 IccAbendData

Header file: ICCABDEH

IccAbendData constructor (protected)
IccAbendData constructor in IccAbendData class

Constructor
IccAbendData()

Public methods
These are the public methods in this class.

The opt parameter
Many methods have the same parameter, opt, which is described under the abendCode method.

abendCode
Returns the current 4-character abend code.

const char* abendCode(Icc::GetOpt opt = Icc::object)

opt
An enumeration, defined in the Icc structure, that indicates whether a value should be refreshed from
CICS or whether the existing value should be retained. The possible values are described under the
GetOpt enumeration in the Icc structure in “GetOpt” on page 61.

Conditions

INVREQ

ASRAInterrupt
Returns 8 characters of status word (PSW) interrupt information at the point when the latest abend with a
code of ASRA, ASRB, ASRD, or AICA occurred.The field contains binary zeroes if no ASRA or ASRB abend
occurred during the execution of the issuing transaction, or if the abend originally occurred in a remote
DPL server program.

const char* ASRAInterrupt(Icc::GetOpt opt = Icc::object)

62 CICS TS for z/OS: C++ OO Class Libraries

Conditions

INVREQ

ASRAKeyType
Returns an enumeration, defined in IccValue, that indicates the execution key at the time of the last
ASRA, ASRB, AICA, or AEYD abend, if any.

The possible values are:
CICSEXECKEY

The task was executing in CICS-key at the time of the last ASRA, ASRB, AICA, or AEYD abend. Note
that all programs execute in CICS key if CICS subsystem storage protection is not active.

USEREXECKEY
The task was executing in user-key at the time of the last ASRA, ASRB, AICA, or AEYD abend. Note
that all programs execute in CICS key if CICS subsystem storage protection is not active.

NONCICS
The execution key at the time of the last abend was not one of the CICS keys; that is, not key 8 or key
9.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

IccValue::CVDA ASRAKeyType(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

ASRAPSW
Returns an 8-character status word (PSW) at the point when the latest abend with a code of ASRA, ASRB,
ASRD, or AICA occurred.The field contains nulls if no ASRA, ASRB, ASRD, or AICA abend occurred during
the execution of the issuing transaction, or if the abend originally occurred in a remote DPL server.

const char* ASRAPSW(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

ASRARegisters
Returns the contents of general registers 0–15, as a 64-byte data area, at the point when the latest ASRA,
ASRB, ASRD, or AICA abend occurred. The contents of the registers are returned in the order 0, 1, …,
15.Note that nulls are returned if no ASRA, ASRB, ASRD, or AICA abend occurred during the execution of
the issuing transaction, or if the abend originally occurred in a remote DPL server program.

const char* ASRARegisters(Icc::GetOpt opt = Icc::object)

Chapter 3. Foundation Classes: reference 63

Conditions

INVREQ

ASRASpaceType
Returns an enumeration, defined in IccValue structure, that indicates what type of space, if any, was in
control at the time of the last ASRA, ASRB, AICA, or AEYD abend.

Possible values are:
SUBSPACE

The task was executing in either its own subspace or the common subspace at the time of the last
ASRA, ASRB, AICA, or AEYD abend.

BASESPACE
The task was executing in the base space at the time of the last ASRA, ASRB, AICA, or AEYD abend.
Note that all tasks execute in the base space if transaction isolation is not active.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

IccValue::CVDA ASRASpaceType(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

ASRAStorageType
Returns an enumeration, defined in IccValue structure, that indicates what type of storage, if any, was
being addressed at the time of the last ASRA, ASRB, AICA, or AEYD abend.

Possible values are:
CICS

CICS-key storage is being addressed. This can be in one of the CICS dynamic storage areas (CDSA or
ECDSA), or in one of the read-only dynamic storage areas (RDSA or ERDSA) if either of the following
apply:

• CICS is running with the NOPROTECT option on the RENTPGM system initialization parameter
• storage protection is not active

USER
User-key storage in one of the user dynamic storage areas (RDSA or ERDSA) is being addressed.

READONLY
Read-only storage in one of the read-only dynamic storage areas (RDSA or ERDSA) when CICS is
running with the PROTECT option on the RENTPGM system initialization parameter.

NOTAPPLIC
One of:

• No ASRA or AEYD abend has been found for this task.
• The storage affected by an abend is not managed by CICS.
• The ASRA abend is not caused by a 0C4 abend.
• An ASRB or AICA abend has occurred since the last ASRA or AEYD abend.

IccValue::CVDA ASRAStorageType(Icc::GetOpt opt = Icc::object)

64 CICS TS for z/OS: C++ OO Class Libraries

Conditions

INVREQ

instance
Returns a pointer to the single IccAbendData object. If the object does not already exist, it is created by
this method.

static IccAbendData* instance()

isDumpAvailable
Returns a boolean, defined in Icc structure, that indicates whether a dump has been produced. If it has,
use programName method to find the name of the failing program of the latest abend.

Icc::Bool isDumpAvailable(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

originalAbendCode
Returns the original abend code for this task in case of repeated abends.

const char* originalAbendCode(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

programName
Returns the name of the program that caused the abend.

const char* programName(Icc::GetOpt opt = Icc::oldValue)

Conditions

INVREQ

Chapter 3. Foundation Classes: reference 65

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccAbsTime class
This class holds information about absolute time, the time in milliseconds that has elapsed since the
beginning of the year 1900.

IccBase
 IccResource
 IccTime
 IccAbsTime

Header file: ICCTIMEH

66 CICS TS for z/OS: C++ OO Class Libraries

IccAbsTime constructor
IccAbsTime constructor in IccAbsTime class.

Constructor (1)
IccAbsTime(const char* absTime)

absTime
The 8-byte value of time, in packed decimal format.

Constructor (2)
The copy constructor.

IccAbsTime(const IccAbsTime& time)

Public methods
These are the public methods in this class.

date
Returns the date, as a character string.

const char* date (IccClock::DateFormat format = IccClock::defaultFormat,
 char dateSeparator = '\0')

format
An enumeration, defined in IccClock class, that indicates the format of the date. The default is to use
the installation default, the value set when the CICS region is initialized.

dateSeparator
The character that separates the different fields of the date The default is no separation character.

Conditions

INVREQ

dayOfMonth
Returns the day of the month in the range 1 to 31.

unsigned long dayOfMonth()

Conditions

INVREQ

Chapter 3. Foundation Classes: reference 67

dayOfWeek
Returns an enumeration, defined in IccClock class, that indicates the day of the week.

IccClock::DayOfWeek dayOfWeek()

Conditions

INVREQ

daysSince1900
Returns the number of days that have elapsed since the first day of 1900.

unsigned long daysSince1900()

Conditions

INVREQ

hours
Returns the hours component of the time.

virtual unsigned long hours() const

milliSeconds
Returns the number of milliseconds that have elapsed since the first day of 1900.

long double milliSeconds()

minutes
Returns the minutes component of the time.

virtual unsigned long minutes() const

monthOfYear
Returns an enumeration, defined in IccClock class, that indicates the month of the year.

IccClock::MonthOfYear monthOfYear()

Conditions

INVREQ

68 CICS TS for z/OS: C++ OO Class Libraries

operator=
Assigns one IccAbsTime object to another.

IccAbsTime& operator=(const IccAbsTime& absTime)

packedDecimal
Returns the time as an 8-byte packed decimal string that expresses the number of milliseconds that have
elapsed since the beginning of the year 1900.

const char* packedDecimal() const

seconds
Returns the seconds component of the time.

virtual unsigned long seconds() const

time
Returns the time as a text string.

const char* time(char timeSeparator = '\0')

timeSeparator
The character that delimits the time fields. The default is no time separation character.

Conditions

INVREQ

timeInHours
Returns the number of hours that have elapsed since the day began.

unsigned long timeInHours()

timeInMinutes
Returns the number of minutes that have elapsed since the day began.

unsigned long timeInMinutes()

Chapter 3. Foundation Classes: reference 69

timeInSeconds
Returns the number of seconds that have elapsed since the day began.

unsigned long timeInSeconds()

year
Returns the year as a 4-digit integer, e.g. 1996.

unsigned long year()

Conditions

INVREQ

Inherited public methods
These are the inherited public methods in IccAbsTime class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

hours IccTime

isEDFOn IccResource

minutes IccTime

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

timeInHours IccTime

timeInMinutes IccTime

timeInSeconds IccTime

type IccTime

70 CICS TS for z/OS: C++ OO Class Libraries

Inherited protected methods
Inherited protected methods in IccAbsTime class:

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccAlarmRequestId class
An IccAlarmRequestId object represents a unique alarm request.

IccBase
 IccResourceId
 IccRequestId
 IccAlarmRequestId

It contains the 8-character name of the request identifier and a pointer to a 4-byte timer event control
area. IccAlarmRequestId is used by the setAlarm method of IccClock class when setting an alarm, and
the waitOnAlarm method of IccTask when waiting for an alarm.

Header file: ICCRIDEH

IccAlarmRequestId constructors
IccAlarmRequestId constructors IccAlarmRequestId constructors:

Constructor (1)
Creates a new object with no information present.

IccAlarmRequestId()

Constructor (2)
Creates an object with information already set.

IccAlarmRequestId (const char* nam,
 const void* timerECA)

name
The 8-character name of the request.

timerECA
A pointer to a 4-byte timer event control area.

Constructor (3)
The copy constructor.

IccAlarmRequestId(const IccAlarmRequestId& id)

Chapter 3. Foundation Classes: reference 71

id
A reference to an IccAlarmRequestId object.

Public methods
These methods are used to copy information into an IccAlarmRequestId object.

isExpired
Returns a boolean, defined in Icc structure, that indicates whether the alarm has expired.

Icc::Bool isExpired()

operator= (1)
IccAlarmRequestId& operator=(const IccRequestId& id)

id
A reference to an IccRequestId object.

operator= (2)
IccAlarmRequestId& operator=(const IccAlarmRequestId& id)

id
A reference to an IccAlarmRequestId object.

operator= (3)
IccAlarmRequestId& operator=(const char* requestName)

requestName
The 8-character name of the alarm request.

setTimerECA
void setTimerECA(const void* timerECA)

timerECA
A pointer to a 4-byte timer event control area.

72 CICS TS for z/OS: C++ OO Class Libraries

timerECA
Returns a pointer to the 4-byte timer event control area.

const void* timerECA() const

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccBase class
IccBase class is the base class from which all CICS Foundation Classes are derived.

IccBase

(The methods associated with IccBase are described here although, in practice, they can only be called
on objects of the derived classes).

Header file: ICCBASEH

IccBase constructor (protected)
IccBase constructor (protected) in IccBase class

Constructor
IccBase(ClassType type)

type
An enumeration that indicates what the subclass type is. For example, for an IccTempStore object,
the class type is 'cTempStore'.

Chapter 3. Foundation Classes: reference 73

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

classType
Returns an enumeration that indicates what the subclass type is. For example, for an IccTempStore
object, the class type is 'cTempStore'. The possible values are listed under ClassType on page ClassType.

ClassType classType() const

className
Returns the name of the class. For example, an IccTempStore object returns "IccTempStore".Suppose a
class MyDataQueue inherits from IccDataQueue. If MyDataQueue calls
setClassName("MyDataQueue"), MyDataQueue::className(IccBase::customName) returns
"MyDataQueue" and MyDataQueue::className(IccBase::baseName) returns "IccDataQueue". An
IccDataQueue object returns "IccDataQueue" for both opt values.

const char* className(NameOpt opt=customName)

opt
An enumerator, defined in this class, that indicates whether to return the base name of the class or
the name as customized by a derived class.

customClassNum
Returns the number that an application designer has associated with a subclass that he or she has
designed.

unsigned short customClassNum() const

operator delete
Destroys an object in an orderly manner.

void operator delete(void* object)

object
A pointer to an object that is to be destroyed.

operator new
Creates a new object of given size. This operator enables the Foundation Classes to use CICS storage
allocation (see “initializeEnvironment” on page 59).

74 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/foundation-classes/cltype.dita

void* operator new(size_t size)

size
The size of the object that is to be created, in bytes.

Protected methods

setClassName
Sets the name of the class. It is useful for diagnostic purposes to be able to get a string representation of
the name of the class to which an object belongs.

void setClassName(const char* className)

className
The name of the class. For example, if you create a class MyTempStore that is a specialization of
IccTempStore, you might call setClassName("MyTempStore").

setCustomClassNum
Assigns an identification number to a subclass that is not an original part of the classes, as supplied.

void setCustomClassNum(unsigned short number)

number
The number that an application designer associates with a subclass for identification purposes.

Enumerations
Enumerations in IccBase class:

ClassType
The names are derived by deleting the first two characters from the name of the class.

The possible values are:

• cAbendData
• cAlarmRequestId
• cBuf
• cClock
• cConsole
• cControl
• cConvId
• cCUSTOM

Chapter 3. Foundation Classes: reference 75

• cDataQueue
• cDataQueueId
• cEvent
• cException
• cFile
• cFileId
• cFileIterator
• cGroupId
• cJournal
• cJournalId
• cJournalTypeId
• cLockId
• cMessage
• cPartnerId
• cProgram
• cProgramId
• cRecordIndex
• cRequestId
• cSemaphore
• cSession
• cStartRequestQ
• cSysId
• cSystem
• cTask
• cTempStore
• cTempStoreId
• cTermId
• cTerminal
• cTerminalData
• cTime
• cTPNameId
• cTransId
• cUser
• cUserId

Note: cCUSTOM allows the class library to be extended by non-IBM developers.

NameOpt
NameOpt in Enumerations:

See“className” on page 74.

baseName
Returns the default name assigned to the class as provided by IBM.

customName
Returns the name assigned using setClassName method from a subclass or, if setClassName has not
been invoked, the same as baseName.

76 CICS TS for z/OS: C++ OO Class Libraries

IccBuf class
IccBuf class is supplied for the general manipulation of buffers.

IccBase
 IccBuf

This class is used by other classes that make calls to CICS, but does not itself call CICS services. See
Buffer objects.

Header file: ICCBUFEH

Sample: ICC$BUF

IccBuf constructors
IccBuf constructors in IccBuf class:

Constructor (1)
Creates an IccBuf object, allocating its own data area with the given length and with all the bytes within it
set to NULL.

IccBuf (unsigned long length = 0,
 DataAreaType type = extensible)

length
The initial length of the data area, in bytes. The default length is 0.

type
An enumeration that indicates whether the data area can be dynamically extended. Possible values
are extensible or fixed. The default is extensible.

Constructor (2)
Creates an IccBuf object that cannot be extended, adopting the given data area as its own.See warning
about Internal/External ownership of buffers.

IccBuf (unsigned long length,
 void* dataArea)

length
The length of the supplied data area, in bytes

dataArea
The address of the first byte of the supplied data area.

Constructor (3)
Creates an IccBuf object, allocating its own data area with the same length as the text string, and copies
the string into its data area.

Chapter 3. Foundation Classes: reference 77

IccBuf (const char* text,
 DataAreaType type = extensible)

text
A null-terminated string to be copied into the new IccBuf object.

type
An enumeration that indicates whether the data area can be extended. Possible values are extensible
or fixed. The default is extensible.

Constructor (4)
The copy constructor—creates a new IccBuf object that is a copy of the given object. The created IccBuf
object always has an internal data area.

IccBuf(const IccBuf& buffer)

buffer
A reference to an IccBuf object that is to be copied into the new object.

Public methods
These are the public methods in this class.

append (1)
Appends data from the given data area to the data area in the object.

IccBuf& append (unsigned long length,
 const void* dataArea)

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

append (2)
Append data, in the form of format string and variable argument, to the data area in the object. This is the
same as the form used by printf in the standard C library. Note that it is the responsibility of the
application programmer to ensure that the optional parameters are consistent with the format string.

IccBuf& append (const char* format,
 ...)

78 CICS TS for z/OS: C++ OO Class Libraries

format
The null-terminated format string

...
The optional parameters.

assign (1)
Assigns data from the given data area to the data area in the object.

IccBuf& assign (unsigned long length,
 const void* dataArea)

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

assign (2)
Assigns data, in the form of format string and variable argument, to the data area in the object. This is the
same as the form used by printf in the standard C library.

IccBuf& assign (const char* format,
 ...)

format
The format string

...
The optional parameters.

cut
Makes the specified cut to the data in the data area and returns a reference to the IccBuf object.

IccBuf& cut (unsigned long length,
 unsigned long offset = 0)

length
The number of bytes to be cut from the data area.

offset
The offset into the data area. The default is no offset.

dataArea
Returns the address of data at the given offset into the data area.

Chapter 3. Foundation Classes: reference 79

const void* dataArea(unsigned long offset = 0) const

offset
The offset into the data area. The default is no offset.

dataAreaLength
Returns the length of the data area in bytes.

unsigned long dataAreaLength() const

dataAreaOwner
Returns an enumeration that indicates whether the data area has been allocated by the IccBuf
constructor or has been supplied from elsewhere.

DataAreaOwner dataAreaOwner() const

The possible values are listed under “DataAreaOwner” on page 86.

dataAreaType

DataAreaType dataAreaType() const

Returns an enumeration that indicates whether the data area can be extended. The possible values are
listed under “DataAreaType” on page 86.

dataLength
Returns the length of data in the data area. This cannot be greater than the value returned by
dataAreaLength

unsigned long dataLength() const

insert
Inserts the given data into the data area at the given offset and returns a reference to the IccBuf object.

IccBuf& insert (unsigned long length,
 const void* dataArea,
 unsigned long offset = 0)

length
The length of the data, in bytes, to be inserted into the IccBuf object

80 CICS TS for z/OS: C++ OO Class Libraries

dataArea
The start of the source data to be inserted into the IccBuf object

offset
The offset in the data area where the data is to be inserted. The default is no offset.

isFMHContained

Icc::Bool isFMHContained() const

Returns a boolean, defined in Icc structure, that indicates whether the data area contains FMHs (function
management headers).

operator const char*

operator const char*() const

Casts an IccBuf object to a null terminated string.

IccBuf data("Hello World");
cout « (const char*) data;

operator= (1)
Assigns data from another buffer object and returns a reference to the IccBuf object.

IccBuf& operator=(const IccBuf& buffer)

buffer
A reference to an IccBuf object.

operator= (2)
Assigns data from a null-terminated string and returns a reference to the IccBuf object. See also the
assign method.

IccBuf& operator=(const char* text)

text
The null-terminated string to be assigned to the IccBuf object.

operator+= (1)
Appends data from another buffer object and returns a reference to the IccBuf object.

IccBuf& operator+=(const IccBuf& buffer)

Chapter 3. Foundation Classes: reference 81

buffer
A reference to an IccBuf object.

operator+= (2)
Appends data from a null-terminated string and returns a reference to the IccBuf object. See also the
append method.

IccBuf& operator+=(const char* text)

text
The null-terminated string to be appended to the IccBuf object.

operator==
Returns a boolean, defined in Icc structure, that indicates whether the data contained in the buffers of the
two IccBuf objects is the same. It is true if the current lengths of the two data areas are the same and the
contents are the same.

Icc::Bool operator==(const IccBuf& buffer) const

buffer
A reference to an IccBuf object.

operator!=
Returns a boolean, defined in Icc structure, that indicates whether the data contained in the buffers of the
two IccBuf objects is different. It is true if the current lengths of the two data areas are different or if the
contents are different.

Icc::Bool operator!=(const IccBuf& buffer) const

buffer
A reference to an IccBuf object.

operator« (1)
Appends another buffer.

operator«(const IccBuf& buffer)

82 CICS TS for z/OS: C++ OO Class Libraries

operator« (2)
Appends a string.

operator«(const char* text)

operator« (3)
Appends a character.

operator«(char ch)

operator« (4)
Appends a character.

operator«(signed char ch)

operator« (5)
Appends a character.

operator«(unsigned char ch)

operator« (6)
Appends a string.

operator«(const signed char* text)

operator« (7)
Appends a string.

operator«(const unsigned char* text)

operator« (8)
Appends a short.

operator«(short num)

operator« (9)
Appends an unsigned short.

operator«(unsigned short num)

Chapter 3. Foundation Classes: reference 83

operator« (10)
Appends a long.

operator«(long num)

operator« (11)
Appends an unsigned long.

operator«(unsigned long num)

operator« (12)
Appends an integer.

operator«(int num)

operator« (13)
Appends a float.

operator«(float num)

operator« (14)
Appends a double.

operator«(double num)

operator« (15)
Appends a long double.

operator«(long double num)

Appends data of various types to the IccBuf object. The types are converted to a 'readable' format, for
example from a long to a string representation.

overlay
Makes the data area external and fixed. Any existing internal data area is destroyed.See warning about
Internal/External ownership of buffers.

84 CICS TS for z/OS: C++ OO Class Libraries

IccBuf& overlay (unsigned long length,
 void* dataArea)

length
The length of the existing data area.

dataArea
The address of the existing data area.

replace
Replaces the current contents of the data area at the given offset with the data provided and returns a
reference to the IccBuf object.

IccBuf& replace (unsigned long length,
 const void* dataArea,
 unsigned long offset = 0)

length
The length of the source data area, in bytes.

dataArea
The address of the start of the source data area.

offset
The position where the new data is to be written, relative to the start of the IccBuf data area. The
default is no offset.

setDataLength
Changes the current length of the data area and returns the new length. If the IccBuf object is not
extensible, the data area length is set to either the original length of the data area or length , whichever is
less.

unsigned long setDataLength(unsigned long length)

length
The new length of the data area, in bytes

setFMHContained
Allows an application program to indicate that a data area contains function management headers.

void setFMHContained(Icc::Bool yesNo = Icc::yes)

Chapter 3. Foundation Classes: reference 85

yesNo
A boolean, defined in Icc structure, that indicates whether the data area contains FMHs. The default
value is yes.

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

DataAreaOwner
Indicates whether the data area of a IccBuf object has been allocated outside the object.

Possible values are:
internal

The data area has been allocated by the IccBuf constructor.
external

The data area has been allocated externally.

DataAreaType
Indicates whether the data area of a IccBuf object can be made longer than its original length.

Possible values are:
extensible

The data area can be automatically extended to accommodate more data.
fixed

The data area cannot grow in size. If you attempt to assign too much data, the data is truncated, and
an exception is thrown.

IccClock class
The IccClock class controls access to the CICS time and date services.

IccBase
 IccResource
 IccClock

86 CICS TS for z/OS: C++ OO Class Libraries

Header file: ICCCLKEH

Sample: ICC$CLK

IccClock constructor

Constructor

IccClock(UpdateMode update = manual)

update
An enumeration, defined in this class, that indicates whether the clock is to update its time
automatically whenever a time or date service is used, or whether it is to wait until an explicit update
method call is made. If the time is updated manually, the initial clock time is the time when the
IccClock object object is created.

Public methods
These are the public methods in this class.

absTime
Returns a reference to an IccAbsTime object that contains the absolute time as provided by CICS.

IccAbsTime& absTime()

cancelAlarm
Cancels a previous setAlarm request if the alarm time has not yet been reached, that is, the request has
not expired.

void cancelAlarm(const IccRequestId* reqId = 0)

reqId
An optional pointer to the IccRequestId object that holds information on an alarm request.

Conditions

ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

date
Returns the date as a string.

const char* date (DateFormat format = defaultFormat,
 char dateSeparator = '\0')

Chapter 3. Foundation Classes: reference 87

format
An enumeration, defined in this class, that indicates in which format you want the date to be returned.

dateSeparator
The character that is used to separate different fields in the date. The default is no separation
character.

Conditions

INVREQ

dayOfMonth
Returns the day component of the date, in the range 1 to 31.

unsigned long dayOfMonth()

Conditions

INVREQ

dayOfWeek
Returns an enumeration, defined in this class, that indicates the day of the week.

DayOfWeek dayOfWeek()

Conditions

INVREQ

daysSince1900
Returns the number of days that have elapsed since 1st January, 1900.

unsigned long daysSince1900()

Conditions

INVREQ

milliSeconds
Returns the number of milliseconds that have elapsed since 00:00 on 1st January, 1900.

long double milliSeconds()

monthOfYear

MonthOfYear monthOfYear()

Returns an enumeration, defined in this class, that indicates the month of the year.

88 CICS TS for z/OS: C++ OO Class Libraries

Conditions

INVREQ

setAlarm
Sets an alarm at the time specified in time. It returns a reference to an IccAlarmRequestId object that
can be used to cancel the alarm—see cancelAlarm method.

See also the “waitOnAlarm” on page 200 method of class IccTask.

const IccAlarmRequestId& setAlarm (const IccTime& time,
 const IccRequestId* reqId = 0)

time
A reference to an IccTime object that contains time information. As IccTime is an abstract class time
is, in practise, an object of class IccAbsTime, IccTimeOfDay, or IccTimeInterval.

reqId
An optional pointer to an IccRequestId object that is used to identify this particular alarm request.

Conditions

EXPIRED, INVREQ

time
Returns the time as a text string.

const char* time(char timeSeparator = '\0')

timeSeparator
The character that delimits the time fields. The default is no separation character.

Conditions

INVREQ

update
Updates the clock time and date from CICS. See the IccClock constructor.

void update()

year

unsigned long year()

Returns the 4-figure year number, such as 1996.

Chapter 3. Foundation Classes: reference 89

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

DateFormat

• defaultFormat
• DDMMYY
• MMDDYY
• YYDDD
• YYDDMM
• YYMMDD
• DDMMYYYY

90 CICS TS for z/OS: C++ OO Class Libraries

• MMDDYYYY
• YYYYDDD
• YYYYDDMM
• YYYYMMDD

DayOfWeek
Indicates the day of the week.

• Sunday
• Monday
• Tuesday
• Wednesday
• Thursday
• Friday
• Saturday

MonthOfYear
Indicates the month of the year.

• January
• February
• March
• April
• May
• June
• July
• August
• September
• October
• November
• December

UpdateMode
Indicates whether the clock is automatically updated.

manual
The clock initially holds the time at which it was created. It is subsequently updated only when an
update method call is made.

automatic
The clock is updated to the current CICS time and date whenever any time or date method is called
(for example, daysSince1900).

IccCondition structure
This structure contains an enumeration of all the CICS condition codes.

Header file: ICCCNDEH

Enumerations

Chapter 3. Foundation Classes: reference 91

Codes

The possible values are:

Value Value Value

0 NORMAL 35 TSIOERR 70 NOTAUTH

1 ERROR 36 MAPFAIL __

2 RDATT 37 INVERRTERM 72 SUPPRESSED

3 WRBRK 38 INVMPSZ __

4 ICCEOF 39 IGREQID __

5 EODS 40 OVERFLOW 75 RESIDERR

6 EOC 41 INVLDC __

7 INBFMH 42 NOSTG __

8 ENDINPT 43 JIDERR __

9 NONVAL 44 QIDERR __

10 NOSTART 45 NOJBUFSP 80 NOSPOOL

11 TERMIDERR 46 DSSTAT 81 TERMERR

12 FILENOTFOUND 47 SELNERR 82 ROLLEDBACK

13 NOTFND 48 FUNCERR 83 END

14 DUPREC 49 UNEXPIN 84 DISABLED

15 DUPKEY 50 NOPASSBKRD 85 ALLOCERR

16 INVREQ 51 NOPASSBKWR 86 STRELERR

17 IOERR __ 87 OPENERR

18 NOSPACE 53 SYSIDERR 88 SPOLBUSY

19 NOTOPEN 54 ISCINVREQ 89 SPOLERR

20 ENDFILE 55 ENQBUSY 90 NODEIDERR

21 ILLOGIC 56 ENVDEFERR 91 TASKIDERR

22 LENGERR 57 IGREQCD 92 TCIDERR

23 QZERO 58 SESSIONERR 93 DSNNOTFOUND

24 SIGNAL 59 SYSBUSY 94 LOADING

25 QBUSY 60 SESSBUSY 95 MODELIDERR

26 ITEMERR 61 NOTALLOC 96 OUTDESCERR

27 PGMIDERR 62 CBIDERR 97 PARTNERIDERR

28 TRANSIDERR 63 INVEXITREQ 98 PROFILEIDERR

29 ENDDATA 64 INVPARTNSET 99 NETNAMEIDERR

30 INVTSREQ 65 INVPARTN 100 LOCKED

31 EXPIRED 66 PARTNFAIL 101 RECORDBUSY

32 RETPAGE __ 102 UOWNOTFOUND

33 RTEFAIL __ 103 UOWLNOTFOUND

34 RTESOME 69 USERIDERR

92 CICS TS for z/OS: C++ OO Class Libraries

Range

maxValue
The highest CICS condition, currently 103.

IccConsole class
This is a singleton class that represents the CICS console.

IccBase
 IccResource
 IccConsole

Header file: ICCCONEH

Sample: ICC$CON

IccConsole constructor (protected)

Constructor
No more than one of these objects is permitted in a task. An attempt to create more objects causes an
exception to be thrown.

IccConsole()

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

instance
Returns a pointer to the single IccConsole object that represents the CICS console. If the object does not
already exist, it is created by this method.

static IccConsole* instance()

put
Writes the data in send to the CICS console. put is a synonym for write. See Polymorphic Behavior.

virtual void put(const IccBuf& send)

send
A reference to an IccBuf object that contains the data that is to be written to the console.

Chapter 3. Foundation Classes: reference 93

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

replyTimeout

unsigned long replyTimeout() const

Returns the length of the reply timeout in milliseconds.

resetRouteCodes

void resetRouteCodes()

Removes all route codes held in the IccConsole object.

setAllRouteCodes

void setAllRouteCodes()

Sets all possible route codes in the IccConsole object, that is, 1 through 28.

setReplyTimeout (1)

void setReplyTimeout(IccTimeInterval& interval)

interval
A reference to a IccTimeInterval object that describes the length of the time interval required.

setReplyTimeout (2)
The two different forms of this method are used to set the length of the reply timeout.

void setReplyTimeout(unsigned long seconds)

seconds
The length of the time interval required, in seconds.

setRouteCodes
Saves route codes in the object for use on subsequent write and writeAndGetReply calls. Up to 28 codes
can be held in this way.

void setRouteCodes (unsigned short numRoutes,
 …)

94 CICS TS for z/OS: C++ OO Class Libraries

numRoutes
The number of route codes provided in this call—the number of arguments that follow this one.

…
One or more arguments, the number of which is given by numRoutes. Each argument is a route code,
of type unsigned short, in the range 1 to 28.

write
Writes the data in send to the CICS console.

void write (const IccBuf& send,
 SeverityOpt opt = none)

send
A reference to an IccBuf object that contains the data that is to be written to the console.

opt
An enumeration that indicates the severity of the console message.

Conditions

INVREQ, LENGERR, EXPIRED

writeAndGetReply
Writes the data in send to the CICS console and returns a reference to an IccBuf object that contains the
reply from the CICS operator.

const IccBuf& writeAndGetReply (const IccBuf& send,
 SeverityOpt opt= none)

send
A reference to an IccBuf object that contains the data that is to be written to the console.

opt
An enumeration that indicates the severity of the console message.

Conditions

INVREQ, LENGERR, EXPIRED

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

Chapter 3. Foundation Classes: reference 95

Method Class

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

SeverityOpt

Possible values are:

• none
• warning
• error
• severe

IccControl class
IccControl class controls an application program that uses the supplied Foundation Classes.

IccBase
 IccResource
 IccControl

This class is a singleton class in the application program; each program running under a CICS task has a
single IccControl object.

96 CICS TS for z/OS: C++ OO Class Libraries

IccControl has a pure virtual run method, where application code is written, and is therefore an abstract
base class. The application programmer must subclass IccControl, and implement the run method.

Header file: ICCCTLEH

IccControl constructor (protected)

Constructor

IccControl()

Public methods
These are the public methods in this class.

callingProgramId
Returns a reference to an IccProgramId object that represents the program that called this program. The
returned IccProgramId reference contains a null name if the executing program was not called by
another program.

const IccProgramId& callingProgramId()

Conditions

INVREQ

cancelAbendHandler
Cancels a previously established exit at this logical program level.

void cancelAbendHandler()

Conditions

NOTAUTH, PGMIDERR

commArea
Returns a reference to an IccBuf object that encapsulates the COMMAREA—the communications area of
CICS memory that is used for passing data between CICS programs and transactions.

IccBuf& commArea()

Conditions

INVREQ

console
Returns a pointer to the single IccConsole object. If this object has not yet been created, this method
creates the object before returning a pointer to it.

Chapter 3. Foundation Classes: reference 97

IccConsole* console()

initData

const IccBuf& initData()

Returns a reference to an IccBuf object that contains the initialization parameters specified for the
program in the INITPARM system initialization parameter.

Conditions

INVREQ

instance
Returns a pointer to the single IccControl object. The object is created if it does not already exist.

static IccControl* instance()

isCreated

static Icc::Bool isCreated()

Returns a boolean value that indicates whether the IccControl object already exists. Possible values are
true or false.

programId

const IccProgramId& programId()

Returns a reference to an IccProgramId object that refers to this executing program.

Conditions

INVREQ

resetAbendHandler
Reactivates a previously cancelled abend handler for this logical program level. (See
cancelAbendHandler on page “cancelAbendHandler” on page 97).

void resetAbendHandler()

Conditions

NOTAUTH, PGMIDERR

98 CICS TS for z/OS: C++ OO Class Libraries

returnProgramId
Returns a reference to an IccProgramId object that refers to the program that resumes control when this
logical program level issues a return.

const IccProgramId& returnProgramId()

run

virtual void run() = 0

This method should be implemented in a subclass of IccControl by the application programmer.

session

IccSession* session()

Returns a pointer to the IccSession object that represents the principal facility for this program. An
exception is thrown if this program does not have a session as its principal facility.

setAbendHandler (1)

void setAbendHandler(const IccProgramId& programId)

programId
A reference to the IccProgramId object that indicates which program is affected.

setAbendHandler (2)
These methods set the abend handler to the named program for this logical program level.

void setAbendHandler(const char* programName)

programName
The name of the program affected.

Conditions

NOTAUTH, PGMIDERR

startRequestQ
Returns a pointer to the IccStartRequestQ object. If this object has not yet been created, this method
creates the object before returning a pointer to it.

Chapter 3. Foundation Classes: reference 99

IccStartRequestQ* startRequestQ()

system

IccSystem* system()

Returns a pointer to the IccSystem object. If this object has not yet been created, this method creates
the object before returning a pointer to it.

task

IccTask* task()

Returns a pointer to the IccTask object. If this object has not yet been created, this method creates the
object before returning a pointer to it.

terminal

IccTerminal* terminal()

Returns a pointer to the IccTerminal object. If this object has not yet been created, this method creates
the object before returning a pointer to it.

This method has a condition, that the transaction must have a terminal as its principal facility. That is,
there must be a physical terminal involved.

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

100 CICS TS for z/OS: C++ OO Class Libraries

Method Class

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccConvId class
IccConvId class is used to identify an APPC conversation.

IccBase
 IccResourceId
 IccConvId

IccConvId class is used to identify an APPC conversation.

Header file: ICCRIDEH

IccConvId constructors

Constructor (1)

IccConvId(const char* convName)

convName
The 4-character name of the conversation.

Constructor (2)
The copy constructor.

IccConvId(const IccConvId& convId)

convId
A reference to an IccConvId object.

Chapter 3. Foundation Classes: reference 101

Public methods
These are the public methods in this class.

operator= (1)

IccConvId& operator=(const char* convName)

operator= (2)
Assigns new value.

IccConvId& operator=(const IccConvId id)

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccDataQueue class
This class represents a CICS transient data queue.

IccBase
 IccResource
 IccDataQueue

Header file: ICCDATEH

Sample: ICC$DAT

102 CICS TS for z/OS: C++ OO Class Libraries

IccDataQueue constructors

Constructor (1)

IccDataQueue(const IccDataQueueId& id)

id
A reference to an IccDataQueueId object that contains the name of the CICS transient data queue.

Constructor (2)

IccDataQueue(const char* queueName)

queueName
The 4-byte name of the queue that is to be created. An exception is thrown if queueName is not valid.

Public methods
These are the public methods in this class.

clear
A synonym for empty. See Polymorphic Behavior.

virtual void clear()

empty

void empty()

Empties the queue, that is, deletes all items on the queue.

Conditions

ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR, DISABLED, INVREQ

get
A synonym for readItem. See Polymorphic Behavior.

virtual const IccBuf& get()

Chapter 3. Foundation Classes: reference 103

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

put
A synonym for writeItem. See Polymorphic Behavior.

virtual void put(const IccBuf& buffer)

buffer
A reference to an IccBuf object that contains data to be put into the queue.

readItem

const IccBuf& readItem()

Returns a reference to an IccBuf object that contains one item read from the data queue.

Conditions

IOERR, ISCINVREQ, LENGERR, NOTAUTH, NOTOPEN, QBUSY, QIDERR, QZERO, SYSIDERR, DISABLED,
INVREQ

writeItem (1)

void writeItem(const IccBuf& item)

item
A reference to an IccBuf object that contains data to be written to the queue.

writeItem (2)
Writes an item of data to the queue.

void writeItem(const char* text)

text
Text that is to be written to the queue.

Conditions

IOERR, ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, QIDERR, SYSIDERR, DISABLED, INVREQ

104 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

className IccBase

classType IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

isRouteOptionOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

routeOption IccResource

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccDataQueueId class
IccDataQueueId is used to identify a CICS Transient Data Queue name.

IccBase
 IccResourceId
 IccDataQueueId

IccDataQueueId is used to identify a CICS Transient Data Queue name.

Header file: ICCRIDEH

Chapter 3. Foundation Classes: reference 105

IccDataQueueId constructors

Constructor (1)

IccDataQueueId(const char* queueName)

queueName
The 4-character name of the queue

Constructor (2)

IccDataQueueId(const IccDataQueueId& id)

id
A reference to an IccDataQueueId object.

Public methods
These are the public methods in this class.

operator= (1)

IccDataQueueId& operator=(const char* queueName)

queueName
The 4-character name of the queue

operator= (2)
Assigns new value.

IccDataQueueId& operator=(const IccDataQueueId& id)

id
A reference to an IccDataQueueId object.

106 CICS TS for z/OS: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccEvent class
The IccEvent class contains information on a specific CICS call, called a CICS event.

IccBase
 IccEvent

Header file: ICCEVTEH

Sample: ICC$RES1

IccEvent constructor

Constructor

IccEvent (const IccResource* object,
 const char* methodName)

object
A pointer to the IccResource object that is responsible for this event.

methodName
The name of the method that caused the event to be created.

Chapter 3. Foundation Classes: reference 107

Public methods
These are the public methods in this class.

className
Returns the name of the class responsible for this event.

const char* className() const

classType

IccBase::ClassType classType() const

Returns an enumeration, described under classType on page “classType” on page 74 in IccBase class,
that indicates the type of class that is responsible for this event.

condition
Returns an enumerated type that indicates the condition returned from this CICS event. The possible
values are described under the Codes type in the IccCondition structure.

IccCondition::Codes condition(IccResource::ConditionType type =
 IccResource::majorCode) const

type
An enumeration that indicates whether a major code or minor code is being requested. Possible
values are 'majorCode' or 'minorCode'. 'majorCode' is the default value.

conditionText

const char* conditionText() const

Returns the text of the CICS condition code, such as "NORMAL" or "LENGERR".

methodName

const char* methodName() const

Returns the name of the method responsible for this event.

summary

const char* summary()

108 CICS TS for z/OS: C++ OO Class Libraries

Returns a summary of the CICS event in the form:

CICS event summary: IccDataQueue::readItem condition=23 (QZERO) minor=0

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccException class
IccException class contains information about CICS Foundation Class exceptions.

IccBase
 IccException

It is used to create objects that are 'thrown' to application programs. They are generally used for error
conditions such as invalid method calls, but the application programmer can also request an exception is
thrown when CICS raises a particular condition.

Header file: ICCEXCEH

Samples: ICC$EXC1, ICC$EXC2, ICC$EXC3

IccException constructor

Constructor

IccException (Type exceptionType,
 IccBase::ClassType classType,
 const char* className,
 const char* methodName,
 IccMessage* message,
 IccBase* object = 0,
 unsigned short exceptionNum = 0)

Chapter 3. Foundation Classes: reference 109

exceptionType
An enumeration, defined in this class, that indicates the type of the exception

classType
An enumeration, defined in this class, that indicates from which type of class the exception was
thrown

className
The name of the class from which the exception was thrown

methodName
The name of the method from which the exception was thrown

message
A pointer to the IccMessage object that contains information about why the exception was created.

object
A pointer to the object that threw the exception

exceptionNum
The unique exception number.

Note: When the IccException object is created it takes ownership of the IccMessage given on the
constructor. When the IccException is deleted, the IccMessage object is deleted automatically by the
IccException destructor. Therefore, do not delete the IccMessage object before deleting the
IccException object.

Public methods
These are the public methods in this class.

className
Returns the name of the class responsible for throwing this exception.

const char* className() const

classType

IccBase::ClassType classType() const

Returns an enumeration, described under ClassType in IccBase class, that indicates the type of class
which threw this exception.

message

IccMessage* message() const

Returns a pointer to an IccMessage object that contains information on any message associated with this
exception.

methodName

const char* methodName() const

Returns the name of the method responsible for throwing this exception.

110 CICS TS for z/OS: C++ OO Class Libraries

number

unsigned short number() const

Returns the unique exception number.

This is a useful diagnostic for IBM service. The number uniquely identifies from where in the source code
the exception was thrown.

summary

const char* summary()

Returns a string containing a summary of the exception. This combines the className, methodName,
number, Type, and IccMessage::text methods into the following form:

CICS exception summary: 094 IccTempStore::readNextItem type=CICSCondition

type

Type type() const

Returns an enumeration, defined in this class, that indicates the type of exception.

typeText

const char* typeText() const

Returns a string representation of the exception type, for example, "objectCreationError",
"invalidArgument".

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

operator delete IccBase

operator new IccBase

Chapter 3. Foundation Classes: reference 111

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

Type

objectCreationError
An attempt to create an object was invalid. This happens, for example, if an attempt is made to create
a second instance of a singleton class, such as IccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example, if an IccBuf object with too
much data is passed to the writeItem method of the IccTempStore class by the application program.
An attempt to create an IccFileId object with a 9-character filename also generates an exception of
this type.

invalidMethodCall
A method call cannot proceed. A typical reason is that the object cannot honor the call in its current
state. For example, a readRecord call on an IccFile object is only honored if an IccRecordIndex
object, to specify which record is to be read, has already been associated with the file.

CICSCondition
A CICS condition, listed in the IccCondition structure, has occurred in the object and the object was
configured to throw an exception.

platformError
An operation is invalid because of limitations of this particular platform.

A platformError exception can occur at 3 levels:

1. An object is not supported on this platform.
2. An object is supported on this platform, but a particular method is not.
3. A method is supported on this platform, but a particular positional parameter is not.

See Platform differences for more details.

familyConformanceError
Family subset enforcement is on for this program and an operation that is not valid on all supported
platforms has been attempted.

internalError
The CICS Foundation Classes have detected an internal error. Please call your support organization.

IccFile class
IccFile class enables the application program to access CICS files.

IccBase
 IccResource
 IccFile

Header file: ICCFILEH

Sample: ICC$FIL

112 CICS TS for z/OS: C++ OO Class Libraries

IccFile constructors

Constructor (1)

IccFile (const IccFileId& id,
 IccRecordIndex* index = 0)

id
A reference to the IccFileId object that identifies which file is being operated on

index
An optional pointer to the IccRecordIndex object that identifies which record in the file is being
operated on.

Constructor (2)
To access files using an IccFile object, it must have an IccRecordIndex object associated with it. If this
association is not made when the object is created, use the registerRecordIndex method.

IccFile (const char* fileName,
 IccRecordIndex* index = 0)

fileName
The 8-character name of the file

index
An optional pointer to the IccRecordIndex object that identifies which record in the file is being
operated on.

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

access
Returns a composite number indicating the access properties of the file. See also isReadable,
isBrowsable, isAddable, isDeletable, and isUpdatable methods.

unsigned long access(Icc::GetOpt opt =Icc::object)

opt
An enumeration, defined in Icc structure, that indicates whether you can use a value previously
retrieved from CICS (object), or whether the object should retrieve a fresh value from CICS.

Chapter 3. Foundation Classes: reference 113

accessMethod
Returns an enumeration, defined in IccValue, that represents the access method for this file.

Possible values are:

• VSAM
• BDAM
• SFS

IccValue::CVDA accessMethod(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

beginInsert (VSAM only)
Signals the start of a mass insertion of data into the file.

void beginInsert()

deleteLockedRecord
Deletes a record that has been previously locked by readRecord method in update mode. (See also
readRecord method.)

void deleteLockedRecord(unsigned long updateToken = 0)

updateToken
A token that indicates which previously read record is to be deleted. This is the token that is returned
from readRecord method when in update mode.

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFIND,
NOTOPEN, SYSIDERR, LOADING

deleteRecord
Deletes one or more records, as specified by the associated IccRecordIndex object, and returns the
number of deleted records.

unsigned short deleteRecord()

114 CICS TS for z/OS: C++ OO Class Libraries

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFIND,
NOTOPEN, SYSIDERR, LOADING

enableStatus
Returns an enumeration, defined in IccValue, that indicates whether the file is enabled to be used by
programs.

Possible values are:

• DISABLED
• DISABLING
• ENABLED
• UNENABLED

IccValue::CVDA enableStatus(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

endInsert (VSAM only)
Marks the end of a mass insertion operation. See beginInsert.

void endInsert()

isAddable
Indicates whether more records can be added to the file.

Icc::Bool isAddable(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isBrowsable
Indicates whether the file can be browsed.

Chapter 3. Foundation Classes: reference 115

Icc::Bool isBrowsable(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isDeletable
Indicates whether the records in the file can be deleted.

Icc::Bool isDeletable(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isEmptyOnOpen
Returns a Boolean that indicates whether the EMPTYREQ option is specified. EMPTYREQ causes the
object associated with this file to be set to empty when opened, if it is a VSAM data set defined as
reusable.

Icc::Bool isEmptyOnOpen(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isReadable
Indicates whether the file records can be read.

Icc::Bool isReadable(Icc::GetOpt opt = Icc::object)

opt
See access method.

116 CICS TS for z/OS: C++ OO Class Libraries

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isRecoverable

Icc::Bool isRecoverable(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

isUpdatable
Indicates whether the file can be updated.

Icc::Bool isUpdatable(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

keyLength
Returns the length of the search key.

unsigned long keyLength(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

keyPosition
Returns the position of the key field in each record relative to the beginning of the record. If there is no
key, zero is returned.

long keyPosition(Icc::GetOpt opt = Icc::object)

Chapter 3. Foundation Classes: reference 117

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

openStatus
Returns a CVDA that indicates the open status of the file. Possible values are:

IccValue::CVDA openStatus(Icc::GetOpt opt = Icc::object)

opt
See access method.

CLOSED
The file is closed.

CLOSING
The file is in the process of being closed. Closing a file may require dynamic deallocation of data sets
and deletion of shared resources, so the process may last a significant length of time.

CLOSEREQUEST
The file is open and one or more application tasks are using it. A request has been received to close it.

OPEN
The file is open.

OPENING
The file is in the process of being opened.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

readRecord
Reads a record and returns a reference to an IccBuf object that contains the data from the record.

const IccBuf& readRecord (ReadMode mode = normal,
 unsigned long* updateToken = 0)

mode
An enumeration, defined in this class, that indicates in which mode the record is to be read.

updateToken
A pointer to an unsigned long token that will be updated by the method when mode is update and you
want to make multiple read updates. The token uniquely identifies the update request and is passed
to the deleteLockedRecord, rewriteRecord, or unlockRecord methods

118 CICS TS for z/OS: C++ OO Class Libraries

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH,
NOTFND, NOTOPEN, SYSIDERR, LOADING

recordFormat
Returns a CVDA that indicates the format of the data. Possible values are:

IccValue::CVDA recordFormat(Icc::GetOpt opt = Icc::object)

opt
See access method.

FIXED
The records are of fixed length.

UNDEFINED (BDAM data sets only)
The format of records on the file is undefined.

VARIABLE
The records are of variable length. If the file is associated with a data table, the record format is
always variable length, even if the source data set contains fixed-length records.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

recordIndex
Returns a pointer to an IccRecordIndex object that indicates which records are to be accessed when
using methods such as readRecord, writeRecord, and deleteRecord.

IccRecordIndex* recordIndex() const

recordLength
Returns the length of the current record.

unsigned long recordLength(Icc::GetOpt opt = Icc::object)

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

registerRecordIndex

void registerRecordIndex(IccRecordIndex* index)

Chapter 3. Foundation Classes: reference 119

index
A pointer to an IccKey, IccRBA, or IccRRN object that will be used by methods such as readRecord,
writeRecord, etc..

rewriteRecord
Updates a record with the contents of buffer.

void rewriteRecord (const IccBuf& buffer,
 unsigned long updateToken = 0)

buffer
A reference to the IccBuf object that holds the new record data to be written to the file.

updateToken
The token that identifies which previously read record is to be rewritten. See readRecord.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFND, NOTOPEN,
SYSIDERR, LOADING

setAccess
Sets the permitted access to the file.

For example:

file.setAccess(IccFile::readable + IccFile::notUpdatable);

void setAccess(unsigned long access)

access
A positive integer value created by ORing (or adding) one or more of the values of the Access
enumeration, defined in this class.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setEmptyOnOpen

void setEmptyOnOpen(Icc::Bool trueFalse)

Specifies whether or not to make the file empty when it is next opened.

120 CICS TS for z/OS: C++ OO Class Libraries

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setStatus
Sets the status of the file.

void setStatus(Status status)

status
An enumeration, defined in this class, that indicates the required status of the file after this method is
called.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

type
Returns a CVDA that identifies the type of data set that corresponds to this file. Possible values are:

IccValue::CVDA type(Icc::GetOpt opt = Icc::object)

opt
See access method.

ESDS
The data set is an entry-sequenced data set.

KEYED
The data set is addressed by physical keys.

KSDS
The data set is a key-sequenced data-set.

NOTKEYED
The data set is not addressed by physical keys.

RRDS
The data set is a relative record data set.

VRRDS
The data set is a variable relative record data set.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

unlockRecord
Unlock a record, previously locked by reading it in update mode. See readRecord.

void unlockRecord(unsigned long updateToken = 0)

Chapter 3. Foundation Classes: reference 121

updateToken
A token that indicates which previous readRecord update request is to be unlocked.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, IOERR, ISCINVREQ, NOTAUTH, NOTOPEN, SYSIDERR, INVREQ

writeRecord
Write either a single record or a sequence of records, if used with the beginInsert and endInsert
methods.

void writeRecord(const IccBuf& buffer)

buffer
A reference to the IccBuf object that holds the data that is to be written into the record.

Conditions

DISABLED, DUPREC, FILENOTFOUND, ILLOGIC, INVREEQ, IOERR, ISCINVREQ, LENGERR, NOSPACE,
NOTAUTH, NOTOPEN, SYSIDERR, LOADING, SUPPRESSED

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

className IccBase

classType IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

isRouteOptionOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

routeOption IccResource

setActionOnAnyCondition IccResource

122 CICS TS for z/OS: C++ OO Class Libraries

Method Class

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

Access

readable
File records can be read by CICS tasks.

notReadable
File records cannot be read by CICS tasks.

browsable
File records can be browsed by CICS tasks.

notBrowsable
File records cannot be browsed by CICS tasks.

addable
Records can be added to the file by CICS tasks.

notAddable
Records cannot be added to the file by CICS tasks.

updatable
Records in the file can be updated by CICS tasks.

notUpdatable
Records in the file cannot be updated by CICS tasks.

deletable
Records in the file can be deleted by CICS tasks.

notDeletable
Records in the file cannot be deleted by CICS tasks.

fullAccess
Equivalent to readable AND browsable AND addable AND updatable AND deletable.

noAccess
Equivalent to notReadable AND notBrowsable AND notAddable AND notUpdatable AND notDeletable.

ReadMode
ReadMode is the mode in which a file is read.

normal
No update is to be performed (that is, read-only mode)

update
The record is to be updated. The record is locked by CICS until:

• it is rewritten using the rewriteRecord method or

Chapter 3. Foundation Classes: reference 123

• it is deleted using the deleteLockedRecord method or
• it is unlocked using the unlockRecord method or
• the task commits or rolls back its resource updates or
• the task is abended.

SearchCriterion

equalToKey
The search only finds an exact match.

gteqToKey
The search finds either an exact match or the next record in search order.

Status

open
File is open, ready for read/write requests by CICS tasks.

closed
File is closed, and is therefore not currently being used by CICS tasks.

enabled
File is enabled for access by CICS tasks.

disabled
File is disabled from access by CICS tasks.

IccFileId class
IccFileId is used to identify a file name in the CICS system.

IccBase
 IccResourceId
 IccFileId

Header file: ICCRIDEH

IccFileId constructors

Constructor (1)

IccFileId(const char* fileName)

fileName
The name of the file.

Constructor (2)

IccFileId(const IccFileId& id)

124 CICS TS for z/OS: C++ OO Class Libraries

id
A reference to an IccFileId object.

Public methods
These are the public methods in this class.

operator= (1)

IccFileId& operator=(const char* fileName)

fileName
The 8-byte name of the file.

operator= (2)
Assigns new value.

IccFileId& operator=(const IccFileId& id)

id
A reference to an IccFileId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

Chapter 3. Foundation Classes: reference 125

IccFileIterator class
This class is used to create IccFileIterator objects that can be used to browse through the records of a
CICS file, represented by an IccFile object.

IccBase
 IccResource
 IccFileIterator

Header file: ICCFLIEH

Sample: ICC$FIL

IccFileIterator constructor

Constructor
The IccFile and IccRecordIndex object must exist before the IccFileIterator is created.

IccFileIterator (IccFile* file,
 IccRecordIndex* index,
 IccFile::SearchCriterion search = IccFile::gteqToKey)

file
A pointer to the IccFile object that is to be browsed

index
A pointer to the IccRecordIndex object that is being used to select a record in the file

search
An enumeration, defined in IccFile, that indicates the criterion being used to find a search match. The
default is gteqToKey.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFND, NOTOPEN,
SYSIDERR, LOADING

Public methods
These are the public methods in this class.

readNextRecord
Read the record that follows the current record.

const IccBuf& readNextRecord (IccFile::ReadMode mode = IccFile::normal,
 unsigned long* updateToken = 0)

mode
An enumeration, defined in IccFile class, that indicates the type of read request

126 CICS TS for z/OS: C++ OO Class Libraries

updateToken
A returned token that is used to identify this unique update request on a subsequent rewriteRecord,
deleteLockedRecord, or unlockRecord method on the file object.

Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH,
NOTFIND, SYSIDERR

readPreviousRecord
Read the record that precedes the current record.

const IccBuf& readPreviousRecord (IccFile::ReadMode mode = IccFile::normal,
 unsigned long* updateToken = 0)

mode
An enumeration, defined in IccFile class, that indicates the type of read request.

updateToken
See readNextRecord.

Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH,
NOTFIND, SYSIDERR

reset
Resets the IccFileIterator object to point to the record identified by the IccRecordIndex object and the
specified search criterion.

void reset (IccRecordIndex* index,
 IccFile::SearchCriterion search = IccFile::gteqToKey)

index
A pointer to the IccRecordIndex object that is being used to select a record in the file.

search
An enumeration, defined in IccFile, that indicates the criterion being used to find a search match. The
default is gteqToKey.

Conditions

FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

Chapter 3. Foundation Classes: reference 127

Method Class

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

className IccBase

classType IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

isRouteOptionOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

routeOption IccResource

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccGroupId class
IccGroupId class is used to identify a CICS group.

IccBase
 IccResourceId
 IccGroupId

IccGroupId class is used to identify a CICS group.

Header file: ICCRIDEH

IccGroupId constructors

Constructor (1)

128 CICS TS for z/OS: C++ OO Class Libraries

IccGroupId(const char* groupName)

groupName
The 8-character name of the group.

Constructor (2)
The copy constructor.

IccGroupId(const IccGroupId& id)

id
A reference to an IccGroupId object.

Public methods
These are the public methods in this class.

operator= (1)

IccGroupId& operator=(const char* groupName)

groupName
The 8-character name of the group.

operator= (2)
Assigns new value.

IccGroupId& operator=(const IccGroupId& id)

id
A reference to an IccGroupId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

Chapter 3. Foundation Classes: reference 129

Method Class

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccJournal class
IccJournal class represents a user or system CICS journal.

IccBase
 IccResource
 IccJournal

Header file: ICCJRNEH

Sample: ICC$JRN

IccJournal constructors

Constructor (1)

IccJournal (const IccJournalId& id,
 unsigned long options = 0)

id
A reference to an IccJournalId object that identifies which journal is being used.

options
An integer, constructed from the Options enumeration defined in this class, that affects the behavior
of writeRecord calls on the IccJournal object. The values may be combined by addition or bitwise
ORing, for example:

IccJournal::startIO | IccJournal::synchronous

The default is to use the system default.

Constructor (2)

130 CICS TS for z/OS: C++ OO Class Libraries

IccJournal (unsigned short journalNum,
 unsigned long options = 0)

journalNum
The journal number (in the range 1-99)

options
See above.

Public methods
These are the public methods in this class.

clearPrefix
Clears the current prefix as set by registerPrefix or setPrefix.If the current prefix was set using
registerPrefix, then the IccJournal class only removes its own reference to the prefix. The buffer itself is
left unchanged.If the current prefix was set by setPrefix, then the IccJournal's copy of the buffer is
deleted.

void clearPrefix()

journalTypeId
Returns a reference to an IccJournalTypeId object that contains a 2-byte field used to identify the origin
of journal records.

const IccJournalTypeId& journalTypeId() const

put
A synonym for writeRecord—puts data into the journal. See Polymorphic Behavior for information on
polymorphism.

virtual void put(const IccBuf& buffer)

buffer
A reference to an IccBuf object that holds data to be put into the journal.

registerPrefix

void registerPrefix(const IccBuf* prefix)

Stores pointer to prefix object for use when the writeRecord method is called on this IccJournal object.

Chapter 3. Foundation Classes: reference 131

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

setJournalTypeId (1)

void setJournalTypeId(const IccJournalTypeId& id)

setJournalTypeId (2)
Sets the journal type—a 2 byte identifier—included in the journal record created when using the
writeRecord method.

void setJournalTypeId(const char* jtypeid)

setPrefix (1)

void setPrefix(const IccBuf& prefix)

setPrefix (2)

void setPrefix(const char* prefix)

Stores the current contents of prefix for inclusion in the journal record created when the writeRecord
method is called.

wait
Waits until a previous journal write has completed.

void wait (unsigned long requestNum=0,
 unsigned long option = 0)

requestNum
The write request. Zero indicates the last write on this journal.

option
An integer that affects the behaviour of writeRecord calls on the IccJournal object. Values other than
0 should be made from the Options enumeration, defined in this class. The values may be combined
by addition or bitwise ORing, for example IccJournal::startIO +
IccJournal::synchronous. The default is to use the system default.

132 CICS TS for z/OS: C++ OO Class Libraries

writeRecord (1)

unsigned long writeRecord (const IccBuf& record,
 unsigned long option = 0)

record
A reference to an IccBuf object that holds the record

option
See above.

writeRecord (2)
Writes the data in the record to the journal.The returned number represents the particular write request
and can be passed to the wait method in this class.

unsigned long writeRecord (const char* record,
 unsigned long option = 0)

record
The name of the record

option
See above.

Conditions

IOERR, JIDERR, LENGERR, NOJBUFSP, NOTAUTH, NOTOPEN

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

Chapter 3. Foundation Classes: reference 133

Method Class

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

Options
The behaviour of writeRecord calls on the IccJournal object.

The values can be combined in an integer by addition or bitwise ORing.
startIO

Specifies that the output of the journal record is to be initiated immediately. If 'synchronous' is
specified for a journal that is not frequently used, you should also specify 'startIO' to prevent the
requesting task waiting for the journal buffer to be filled. If the journal is used frequently, startIO is
unnecessary.

noSuspend
Specifies that the NOJBUFSP condition does not suspend an application program.

synchronous
Specifies that synchronous journal output is required. The requesting task waits until the record has
been written.

IccJournalId class
IccJournalId is used to identify a journal number in the CICS sytem.

IccBase
 IccResourceId
 IccJournalId

Header file: ICCRIDEH

IccJournalId constructors

Constructor (1)

134 CICS TS for z/OS: C++ OO Class Libraries

IccJournalId(unsigned short journalNum)

journalNum
The number of the journal, in the range 1 to 99

Constructor (2)
The copy constructor.

IccJournalId(const IccJournalId& id)

id
A reference to an IccJournalId object.

Public methods
These are the public methods in this class.

number
Returns the journal number, in the range 1 to 99.

unsigned short number() const

operator= (1)

IccJournalId& operator=(unsigned short journalNum)

journalNum
The number of the journal, in the range 1 to 99

operator= (2)
Assigns new value.

IccJournalId& operator=(const IccJournalId& id)

id
A reference to an IccJournalId object.

Chapter 3. Foundation Classes: reference 135

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccJournalTypeId class
An IccJournalTypeId class object is used to help identify the origin of a journal record—it contains a 2-
byte field that is included in the journal record.

IccBase
 IccResourceId
 IccJournalTypeId

An IccJournalTypeId class object is used to help identify the origin of a journal record—it contains a 2-
byte field that is included in the journal record.

Header file: ICCRIDEH

IccJournalTypeId constructors

Constructor (1)

IccJournalTypeId(const char* journalTypeName)

journalTypeName
A 2-byte identifier used in journal records.

Constructor (2)

136 CICS TS for z/OS: C++ OO Class Libraries

IccJournalTypeId(const IccJournalId& id)

id
A reference to an IccJournalTypeId object.

Public methods
These are the public methods in this class.

operator= (1)

void operator=(const IccJournalTypeId& id)

id
A reference to an IccJournalTypeId object.

operator= (2)
Sets the 2-byte field that is included in the journal record.

void operator=(const char* journalTypeName)

journalTypeName
A 2-byte identifier used in journal records.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

Chapter 3. Foundation Classes: reference 137

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccKey class
IccKey class is used to hold a search key for an indexed (KSDS) file.

IccBase
 IccRecordIndex
 IccKey

Header file: ICCRECEH

Sample: ICC$FIL

IccKey constructors

Constructor (1)

IccKey (const char* initValue,
 Kind kind = complete)

Constructor (2)

IccKey (unsigned short completeLength,
 Kind kind= complete)

Constructor (3)

IccKey(const IccKey& key)

Public methods
These are the public methods in this class.

assign
Copies the search key into the IccKey object.

void assign (unsigned short length,
 const void* dataArea)

138 CICS TS for z/OS: C++ OO Class Libraries

length
The length of the data area

dataArea
A pointer to the start of the data area that holds the search key.

completeLength
Returns the length of the key when it is complete.

unsigned short completeLength() const

kind

Kind kind() const

Returns an enumeration, defined in this class, that indicates whether the key is generic or complete.

operator= (1)

IccKey& operator=(const IccKey& key)

operator= (2)

IccKey& operator=(const IccBuf& buffer)

operator= (3)
Assigns new value to key.

IccKey& operator=(const char* value)

operator== (1)

Icc::Bool operator==(const IccKey& key) const

operator== (2)

Chapter 3. Foundation Classes: reference 139

Icc::Bool operator==(const IccBuf& text) const

operator== (3)
Tests equality.

Icc::Bool operator==(const char* text) const

operator!= (1)

Icc::Bool operator !=(const IccKey& key) const

operator!= (2)

Icc::Bool operator!=(const IccBuf& text) const

operator!= (3)
Tests inequality.

Icc::Bool operator!=(const char* text) const

setKind
Changes the type of key from generic to complete or vice versa.

void setKind(Kind kind)

kind
An enumeration, defined in this class, that indicates whether the key is generic or complete.

value

const char* value()

Returns the start of the data area containing the search key.

140 CICS TS for z/OS: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

length IccRecordIndex

operator delete IccBase

operator new IccBase

type IccRecordIndex

value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

Kind

complete
Specifies that the supplied key is not generic.

generic
Specifies that the search key is generic. A search is satisfied when a record is found with a key whose
prefix matches the supplied key.

IccLockId class
IccLockId class is used to identify a lock request.

IccBase
 IccResourceId
 IccLockId

IccLockId class is used to identify a lock request.

Header file: ICCRIDEH

IccLockId constructors

Constructor (1)

IccLockId(const char* name)

Chapter 3. Foundation Classes: reference 141

name
The 8-character name of the lock request.

Constructor (2)
The copy constructor.

IccLockId(const IccLockId& id)

id
A reference to an IccLockId object.

Public methods
These are the public methods in this class.

operator= (1)

IccLockId& operator=(const char* name)

name
The 8-character name of the lock request.

operator= (2)
Assigns new value.

IccLockId& operator=(const IccLockId& id)

id
A reference to an IccLockId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

142 CICS TS for z/OS: C++ OO Class Libraries

Method Class

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccMessage class
IccMessage can be used to hold a message description.

IccBase
 IccMessage

It is used primarily by the IccException class to describe why the IccException object was created.

Header file: ICCMSGEH

IccMessage constructor

Constructor

IccMessage (unsigned short number,
 const char* text,
 const char* className = 0,
 const char* methodName = 0)

number
The number associated with the message

text
The text associated with the message

className
The optional name of the class associated with the message

methodName
The optional name of the method associated with the message.

Public methods
These are the public methods in this class.

className
Returns the name of the class with which the message is associated, if any. If there is no name to return,
a null pointer is returned.

Chapter 3. Foundation Classes: reference 143

const char* className() const

methodName

const char* methodName() const

Returns the name of the method with which the message is associated, if any. If there is no name to
return, a null pointer is returned.

number

unsigned short number() const

Returns the number of the message.

summary

const char* summary()

Returns the text of the message.

text

const char* text() const

Returns the text of the message in the same way as summary.

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

144 CICS TS for z/OS: C++ OO Class Libraries

IccPartnerId class
IccPartnerId class represents CICS remote (APPC) partner transaction definitions.

IccBase
 IccResourceId
 IccPartnerId

IccPartnerId class represents CICS remote (APPC) partner transaction definitions.

Header file: ICCRIDEH

IccPartnerId constructors

Constructor (1)

IccPartnerId(const char* partnerName)

partnerName
The 8-character name of an APPC partner.

Constructor (2)
The copy constructor.

IccPartnerId(const IccPartnerId& id)

id
A reference to an IccPartnerId object.

Public methods

operator= (1)

IccPartnerId& operator=(const char* partnerName)

partnerName
The 8-character name of an APPC partner.

operator= (2)
Assigns new value.

Chapter 3. Foundation Classes: reference 145

IccPartnerId& operator=(const IccPartnerId& id)

id
A reference to an IccPartnerId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccProgram class
The IccProgram class represents any CICS program outside of your currently executing one, which the
IccControl object represents.

IccBase
 IccResource
 IccProgram

Header file: ICCPRGEH

Sample: ICC$PRG1, ICC$PRG2, ICC$PRG3

IccProgram constructors

Constructor (1)

IccProgram(const IccProgramId& id)

146 CICS TS for z/OS: C++ OO Class Libraries

id
A reference to an IccProgramId object.

Constructor (2)

IccProgram(const char* progName)

progName
The 8-character name of the program.

Public methods

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

address
Returns the address of a program module in memory. This is only valid after a successful load call.

const void* address() const

clearInputMessage
Clears the current input message which was set by setInputMessage or registerInputMessage.If the
current input message was set using registerInputMessage then only the pointer is deleted: the buffer is
left unchanged.If the current input message was set using setInputMessage then clearInputMessage
releases the memory used by that buffer.

void clearInputMessage()

entryPoint

const void* entryPoint() const

Returns a pointer to the entry point of a loaded program module. This is only valid after a successful load
call.

length

unsigned long length() const

Returns the length of a program module. This is only valid after a successful load call.

Chapter 3. Foundation Classes: reference 147

link

void link (const IccBuf* commArea = 0,
 const IccTransId* transId = 0,
 CommitOpt opt = noCommitOnReturn)

commArea
An optional pointer to the IccBuf object that contains the COMMAREA—the buffer used to pass
information between the calling program and the program that is being called

transId
An optional pointer to the IccTransId object that indicates the name of the mirror transaction under
which the program is to run if it is a remote (DPL) program link

opt
An enumeration, defined in this class, that affects the behavior of the link when the program is remote
(DPL). The default (noCommitOnReturn) is not to commit resource changes on the remote CICS region
until the current task commits its resources. The alternative (commitOnReturn) means that the
resources of the remote program are committed whether or not this task subsequently abends or
encounters a problem.

Conditions: INVREQ, NOTAUTH, PGMIDERR, SYSIDERR, LENGERR, ROLLEDBACK, TERMERR

Restrictions

Links may be nested, that is, a linked program may link to another program. However, due to
implementation restrictions, you may only nest such programs 15 times. If this is exceeded, an exception
is thrown.

load

void load(LoadOpt opt = releaseAtTaskEnd)

opt
An enumeration, defined in this class, that indicates whether CICS should automatically allow the
program to be unloaded at task termination (releaseAtTaskEnd), or not (hold).

Conditions: NOTAUTH, PGMIDERR, INVREQ, LENGERR

registerInputMessage
Store pointer to InputMessage for when the link method is called.

void registerInputMessage(const IccBuf& msg)

148 CICS TS for z/OS: C++ OO Class Libraries

setInputMessage
Specifies data to be made available, by the IccSession::receive() method, to the called program, when
using the link method in this class.

void setInputMessage(const IccBuf& msg)

unload
Allow a program to be unloaded. It can be reloaded by a call to load.

void unload()

Conditions

NOTAUTH, PGMIDERR, INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

className IccBase

classType IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

isRouteOptionOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

routeOption IccResource

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

setRouteOption IccResource

Chapter 3. Foundation Classes: reference 149

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

CommitOpt

noCommitOnReturn
Changes to resources on the remote CICS region are not committed until the current task commits its
resources. This is the default setting.

commitOnReturn
Changes to resources on the remote CICS region are committed whether or not the current task
subsequently abends or encounters a problem.

LoadOpt

releaseAtTaskEnd
Indicates that CICS should automatically allow the program to be unloaded at task termination.

hold
Indicates that CICS should not automatically allow the program to be unloaded at task termination.
(In this case, this or another task must explicitly use the unload method).

IccProgramId class
IccProgramId objects represent program names in the CICS system.

IccBase
 IccResourceId
 IccProgramId

Header file: ICCRIDEH

IccProgramId constructors

Constructor (1)

IccProgramId(const char* progName)

progName
The 8-character name of the program.

Constructor (2)

The copy constructor.

IccProgramId(const IccProgramId& id)

150 CICS TS for z/OS: C++ OO Class Libraries

id
A reference to an IccProgramId object.

Public methods

operator= (1)

IccProgramId& operator=(const char* progName)

progName
The 8-character name of the program.

operator= (2)
Assigns new value.

IccProgramId& operator=(const IccProgramId& id)

id
A reference to an IccProgramId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

Chapter 3. Foundation Classes: reference 151

IccRBA class
An IccRBA object holds a relative byte address which is used for accessing VSAM ESDS files.

IccBase
 IccRecordIndex
 IccRBA

An IccRBA object holds a relative byte address which is used for accessing VSAM ESDS files.

Header file: ICCRECEH

IccRBA constructor

Constructor

IccRBA(unsigned long initRBA = 0)

initRBA
An initial value for the relative byte address.

Public methods

operator= (1)

IccRBA& operator=(const IccRBA& rba)

operator= (2)
Assigns a new value for the relative byte address.

IccRBA& operator=(unsigned long num)

num
A valid relative byte address.

operator== (1)

Icc::Bool operator== (const IccRBA& rba) const

152 CICS TS for z/OS: C++ OO Class Libraries

operator== (2)
Tests equality

Icc::Bool operator== (unsigned long num) const

operator!= (1)

Icc!:Bool operator== (const IccRBA& rba) const

operator!= (2)
Tests inequality

Icc::Bool operator!=(unsigned long num) const

number

unsigned long number() const

Returns the relative byte address.

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

length IccRecordIndex

operator delete IccBase

operator new IccBase

type IccRecordIndex

value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

Chapter 3. Foundation Classes: reference 153

Method Class

setCustomClassNum IccBase

IccRecordIndex class
CICS File Control Record Identifier.

IccBase
 IccRecordIndex
 IccKey
 IccRBA
 IccRRN

CICS File Control Record Identifier. Used to tell CICS which particular record the program wants to
retrieve, delete, or update. IccRecordIndex is a base class from which IccKey, IccRBA, and IccRRN are
derived.

Header file: ICCRECEH

IccRecordIndex constructor (protected)

Constructor

IccRecordIndex(Type type)

type
An enumeration, defined in this class, that indicates whether the index type is key, RBA, or RRN.

Note: This is protected because you should not create IccRecordIndex objects; see subclasses IccKey,
IccRBA, and IccRRN.

Public methods

length
Returns the length of the record identifier.

unsigned short length() const

type

Type type() const

Returns an enumeration, defined in this class, that indicates whether the index type is key, RBA, or RRN.

154 CICS TS for z/OS: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

Type
Type indicates the access method.

Possible values are:

• key
• RBA
• RRN

IccRequestId class
An IccRequestId is used to hold the name of a request.

IccBase
 IccResourceId
 IccRequestId

An IccRequestId is used to hold the name of a request. This request identifier can subsequently be used
to cancel a request—see, for example, start and cancel methods in IccStartRequestQ class.

Header file: ICCRIDEH

IccRequestId constructors

Constructor (1)
An empty IccRequestId object.

IccRequestId()

Constructor (2)

Chapter 3. Foundation Classes: reference 155

IccRequestId(const char* requestName)

requestName
The 8-character name of the request.

Constructor (3)

The copy constructor.

IccRequestId(const IccRequestId& id)

id
A reference to an IccRequestId.

Public methods

operator= (1)

IccRequestId& operator=(const IccRequestId& id)

id
A reference to an IccRequestId object whose properties are copied into this object.

operator= (2)
Assigns new value.

IccRequestId& operator=(const char* reqestName)

requestName
An 8-character string which is copied into this object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

156 CICS TS for z/OS: C++ OO Class Libraries

Method Class

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccResource class
IccResource class is a base class that is used to derive other classes.

IccBase
 IccResource

The methods associated with IccResource are described here although, in practise, they are only called
on objects of derived classes.

IccResource is the parent class for all CICS resources—tasks, files, programs, etc. Every class inherits
from IccBase, but only those that use CICS services inherit from IccResource.

Header file: ICCRESEH

Sample: ICC$RES1, ICC$RES2

IccResource constructor (protected)

Constructor

IccResource(IccBase::ClassType classType)

classType
An enumeration that indicates what the subclass type is. For example, for an IccTempStore object,
the class type is cTempStore. The possible values are listed under ClassType in the description of the
IccBase class.

Public methods

actionOnCondition
Returns an enumeration that indicates what action the class will take in response to the specified
condition being raised by CICS. The possible values are described in this class.

ActionOnCondition actionOnCondition(IccCondition::Codes condition)

Chapter 3. Foundation Classes: reference 157

condition
The name of the condition as an enumeration. See IccCondition structure for a list of the possible
values.

actionOnConditionAsChar

char actionOnConditionAsChar(IccCondition::Codes condition)

This method is the same as actionOnCondition but returns a character, rather than an enumeration, as
follows:
0 (zero)

No action is taken for this CICS condition.
H

The virtual method handleEvent is called for this CICS condition.
X

An exception is generated for this CICS condition.
A

This program is abended for this CICS condition.

actionsOnConditionsText
Returns a string of characters, one character for each possible condition. Each character indicates the
actions to be performed for that corresponding condition. .

The characters used in the string are described in “actionOnConditionAsChar” on page 158. For example,
the string: 0X00H0A … shows the actions for the first seven conditions are as follows:
condition 0 (NORMAL)

action=0 (noAction)
condition 1 (ERROR)

action=X (throwException)
condition 2 (RDATT)

action=0 (noAction)
condition 3 (WRBRK)

action=0 (noAction)
condition 4 (ICCEOF)

action=H (callHandleEvent)
condition 5 (EODS)

action=0 (noAction)
condition 6 (EOC)

action=A (abendTask)

const char* actionsOnConditionsText()

158 CICS TS for z/OS: C++ OO Class Libraries

clear
Clears the contents of the object. This method is virtual and is implemented, wherever appropriate, in the
derived classes. See Polymorphic Behavior for a description of polymorphism. The default
implementation in this class throws an exception to indicate that it has not been overridden in a subclass.

virtual void clear()

condition
Returns a number that indicates the condition code for the most recent CICS call made by this object.

unsigned long condition(ConditionType type = majorCode) const

type
An enumeration, defined in this class, that indicates the type of condition requested. Possible values
are majorCode (the default) and minorCode.

conditionText

const char* conditionText() const

Returns the symbolic name of the last CICS condition for this object.

get

virtual const IccBuf& get()

Gets data from the IccResource object and returns it as an IccBuf reference. This method is virtual and is
implemented, wherever appropriate, in the derived classes. See Polymorphic Behavior for a description of
polymorphism. The default implementation in this class throws an exception to indicate that it has not
been overridden in a subclass.

handleEvent
This virtual function may be re-implemented in a subclass (by the application programmer) to handle
CICS events (see IccEvent class on page “IccEvent class” on page 107).

virtual HandleEventReturnOpt handleEvent(IccEvent& event)

event
A reference to an IccEvent object that describes the reason why this method is being called.

id

Chapter 3. Foundation Classes: reference 159

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

const IccResourceId* id() const

Returns a pointer to the IccResourceId object associated with this IccResource object.

isEDFOn

Icc::Bool isEDFOn() const

Returns a boolean value that indicates whether EDF trace is active. Possible values are yes or no.

isRouteOptionOn

Icc::Bool isRouteOptionOn() const

Returns a boolean value that indicates whether the route option is active. Possible values are yes or no.

name

const char* name() const

Returns a character string that gives the name of the resource that is being used. For an IccTempStore
object, the 8-character name of the temporary storage queue is returned. For an IccTerminal object, the
4-character terminal name is returned. This is equivalent to calling id()→name.

put
Puts information from the buffer into the IccResource object. This method is virtual and is implemented,
wherever appropriate, in the derived classes. See Polymorphic Behavior for more information on
polymorphism. The default implementation in this class throws an exception to indicate that it has not
been overridden in a subclass.

virtual void put(const IccBuf& buffer)

buffer
A reference to an IccBuf object that contains data that is to be put into the object.

routeOption

const IccSysId& routeOption() const

Returns a reference to an IccSysId object that represents the system to which all CICS requests are
routed—explicit function shipping.

setActionOnAnyCondition
Specifies the default action to be taken by the CICS foundation classes when a CICS condition occurs.

160 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

void setActionOnAnyCondition(ActionOnCondition action)

action
The name of the action as an enumeration. The possible values are listed under the description of this
class.

setActionOnCondition
Specifies what action is automatically taken by the CICS foundation classes when a given CICS condition
occurs.

void setActionOnCondition (ActionOnCondition action,
 IccCondition::Codes condition)

action
The name of the action as an enumeration. The possible values are listed under the description of this
class.

condition
See IccCondition structure.

setActionsOnConditions

void setActionsOnConditions(const char* actions = 0)

actions
A string that indicates what action is to be taken for each condition. The default is not to indicate any
actions, in which case each condition is given a default ActionOnCondition of noAction. The string
should have the same format as the one returned by the actionsOnConditionsText method.

setEDF
Switches EDF on or off for this resource object. These methods force the object to route CICS requests to
the named remote system. This is called explicit function shipping.

void setEDF(Icc::Bool onOff)
onOff

A boolean value that selects whether EDF trace is switched on or off.

setRouteOption (1)
The parameters are:

void setRouteOption(const IccSysId& sysId)

Chapter 3. Foundation Classes: reference 161

sysId
The IccSysId object that represents the remote system to which commands are routed.

setRouteOption (2)
This option is only valid for certain classes: Attempting to use this method on other subclasses of
IccResource causes an exception to be thrown.

Valid classes are:

• IccDataQueue
• IccFile
• IccFileIterator
• IccProgram
• IccStartRequestQ
• IccTempStore

To turn off the route option specify no parameter, for example:

obj.setRouteOption()

void setRouteOption(const char* sysName = 0)

sysName
The 4-character name of the system to which commands are routed.

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

ActionOnCondition

Possible values are:

162 CICS TS for z/OS: C++ OO Class Libraries

noAction
Carry on as normal; it is the application program's responsibility to test CICS conditions using the
condition method, after executing a method that calls CICS services.

callHandleEvent
Call the virtual handleEvent method.

throwException
An IccException object is created and thrown. This is typically used for more serious conditions or
errors.

abendTask
Abend the CICS task.

HandleEventReturnOpt

Possible values are:
rContinue

The CICS event proceeded satisfactorily and normal processing is to resume.
rThrowException

The application program could not handle the CICS event and an exception is to be thrown.
rAbendTask

The application program could not handle the CICS event and the CICS task is to be abended.

ConditionType

Possible values are:
majorCode

The returned value is the CICS RESP value. This is one of the values in IccCondition::codes.
minorCode

The returned value is the CICS RESP2 value.

IccResourceId class
This is a base class from which IccTransId and other classes, whose names all end in "Id", are derived.

IccBase
 IccResourceId

Many of these derived classes represent CICS resource names.

Header file: ICCRIDEH

IccResourceId constructors (protected)

Constructor (1)

IccResourceId (IccBase::ClassType typ,
 const IccResourceId& id)

type
An enumeration, defined in IccBase class, that indicates the type of class.

id
A reference to an IccResourceId object that is used to create this object.

Chapter 3. Foundation Classes: reference 163

Constructor (2)

IccResourceId (IccBase::ClassType type,
 const char* resName)

type
An enumeration, defined in IccBase class, that indicates the type of class.

resName
The name of a resource that is used to create this object.

Public methods
These are the public methods in this class.

name
Returns the name of the resource identifier as a string. Most …Id objects have 4- or 8-character names.

const char* name() const

nameLength

unsigned short nameLength() const

Returns the length of the name returned by the name method.

Protected methods

operator=
Set an IccResourceId object to be identical to id.

IccResourceId& operator=(const IccResourceId& id)

id
A reference to an IccResourceId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

164 CICS TS for z/OS: C++ OO Class Libraries

Method Class

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccRRN class
An IccRRN object holds a relative record number and is used to identify records in VSAM RRDS files.

IccBase
 IccRecordIndex
 IccRRN

An IccRRN object holds a relative record number and is used to identify records in VSAM RRDS files.

Header file: ICCRECEH

IccRRN constructors

Constructor

IccRRN(unsigned long initRRN = 1)

initRRN
The initial relative record number—an integer greater than 0. The default is 1.

Public methods
These are the public methods in this class.

operator= (1)

IccRRN& operator=(const IccRRN& rrn)

operator= (2)
Assigns a new value for the relative record number.

IccRRN& operator=(unsigned long num)

Chapter 3. Foundation Classes: reference 165

num
A relative record number—an integer greater than 0.

operator== (1)

Icc::Bool operator== (const IccRRN& rrn) const

operator== (2)
Tests equality

Icc::Bool operator== (unsigned long num) const

operator!= (1)

Icc::Bool operator!= (const IccRRN& rrn) const

operator!= (2)
Tests inequality

Icc::Bool operator!=(unsigned long num) const

number

unsigned long number() const

Returns the relative record number.

Inherited public methods
These are the public methods inherited by this class.

Method Class

className IccBase

classType IccBase

customClassNum IccBase

length IccRecordIndex

operator delete IccBase

operator new IccBase

166 CICS TS for z/OS: C++ OO Class Libraries

Method Class

type IccRecordIndex

value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccSemaphore class
This class enables synchronization of resource updates.

IccBase
 IccResource
 IccSemaphore

Header file: ICCSEMEH

Sample: ICC$SEM

IccSemaphore constructor

Constructor (1)

IccSemaphore (const char* resource,
 LockType type = byValue,
 LifeTime life = UOW)

resource
A text string, if type is byValue, otherwise an address in storage.

type
An enumeration, defined in this class, that indicates whether locking is by value or by address. The
default is by value.

life
An enumeration, defined in this class, that indicates how long the semaphore lasts. The default is to
last for the length of the UOW.

Constructor (2)

IccSemaphore (const IccLockId& id,
 LifeTime life = UOW)

Chapter 3. Foundation Classes: reference 167

id
A reference to an IccLockId object

life
An enumeration, defined in this class, that indicates how long the semaphore lasts. The default is to
last for the length of the UOW.

Public methods
These are the public methods in this class.

lifeTime
Returns an enumeration, defined in this class, that indicates whether the lock lasts for the length of the
current unit-of-work ('UOW') or until the task terminates('task').

LifeTime lifeTime() const

lock

void lock()

Attempts to get a lock. This method blocks if another task already owns the lock.

Conditions

ENQBUSY, LENGERR, INVREQ

tryLock
Attempts to get a lock. This method does not block if another task already owns the lock. It returns a
boolean that indicates whether it succeeded.

Icc::Bool tryLock()

Conditions

ENQBUSY, LENGERR, INVREQ

type
Returns an enumeration, defined in this class, that indicates what type of semaphore this is.

LockType type() const

unlock

void unlock()

Release a lock.

168 CICS TS for z/OS: C++ OO Class Libraries

Conditions

LENGERR, INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

LockType

byValue
The lock is on the contents (for example, name).

byAddress
The lock is on the memory address.

LifeTime

UOW
The semaphore lasts for the length of the current unit of work.

Chapter 3. Foundation Classes: reference 169

task
The semaphore lasts for the length of the task.

IccSession class
This class enables APPC and DTP programming.

IccBase
 IccResource
 IccSession

Header file: ICCSESEH

Sample: ICC$SES1, ICC$SES2

IccSession constructors (public)

Constructor (1)

IccSession(const IccPartnerId& id)

id
A reference to an IccPartnerId object

Constructor (2)

IccSession (const IccSysId& sysId,
 const char* profile = 0)

sysId
A reference to an IccSysId object that represents a remote CICS system

profile
The 8-character name of the profile.

Constructor (3)

IccSession (const char* sysName,
 const char* profile = 0)

sysName
The 4-character name of the remote CICS system with which this session is associated

170 CICS TS for z/OS: C++ OO Class Libraries

profile
The 8-character name of the profile.

IccSession constructor (protected)

Constructor
This constructor is for back end DTP CICS tasks that have a session as their principal facility. In this case
the application program uses the session method on the IccControl object to gain access to their
IccSession object.

IccSession()

Public methods
These are the public methods in this class.

allocate
Establishes a session (communication channel) to the remote system.

void allocate(AllocateOpt option = queue)

option
An enumeration, defined in this class, that indicates what action CICS is to take if a communication
channel is unavailable when this method is called.

Conditions

INVREQ, SYSIDERR, CBIDERR, NETNAMEIDERR, PARTNERIDERR, SYSBUSY

connectProcess (1)
This method can only be used if an IccPartnerId object was used to construct this session object.

void connectProcess (SyncLevel level,
 const IccBuf* PIP = 0)

level
An enumeration, defined in this class, that indicates what sync level is to be used for this conversation

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to the remote system

connectProcess (2)

Chapter 3. Foundation Classes: reference 171

void connectProcess (SyncLevel level,
 const IccTransId& transId,
 const IccBuf* PIP = 0)

level
An enumeration, defined in this class, that indicates what sync level is to be used for this conversation

transId
A reference to an IccTransId object that holds the name of the transaction to be started on the
remote system

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to the remote system

connectProcess (3)
Starts a partner process on the remote system in preparation for sending and receiving information.

void connectProcess (SyncLevel level,
 const IccTPNameId& TPName,
 const IccBuf* PIP = 0)

level
An enumeration, defined in this class, that indicates what sync level is to be used for this conversation

TPName
A reference to an IccTPNameId object that contains the 1–64 character TP name.

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to the remote system

Conditions

INVREQ, LENGERR, NOTALLOC, PARTNERIDERR, NOTAUTH, TERMERR, SYSBUSY

converse
converse sends the contents of send and returns a reference to an IccBuf object that holds the reply
from the remote APPC partner.

const IccBuf& converse(const IccBuf& send)

send
A reference to an IccBuf object that contains the data that is to be sent.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

172 CICS TS for z/OS: C++ OO Class Libraries

convId
Returns a reference to an IccConvId object that contains the 4-byte conversation identifier.

const IccConvId& convId()

errorCode

const char* errorCode() const

Returns the 4-byte error code received when isErrorSet returns true. See the relevant DTP Guide for
more information.

extractProcess

void extractProcess()

Retrieves information from an APPC conversation attach header and holds it inside the object. See
PIPList, process, and syncLevel methods to retrieve the information from the object. This method should
be used by the back end task if it wants access to the PIP data, the process name, or the synclevel under
which it is running.

Conditions

INVREQ, NOTALLOC, LENGERR

flush
Ensure that accumulated data and control information are transmitted on an APPC mapped conversation.

void flush()

Conditions

INVREQ, NOTALLOC

free
Return the APPC session to CICS so that it may be used by other tasks.

void free()

Conditions

INVREQ, NOTALLOC

get
A synonym for receive. See Polymorphic Behavior for information on polymorphism.

Chapter 3. Foundation Classes: reference 173

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

virtual const IccBuf& get()

isErrorSet

Icc::Bool isErrorSet() const

Returns a boolean variable, defined in Icc structure, that indicates whether an error has been set.

isNoDataSet

Icc::Bool isNoDataSet() const

Returns a boolean variable, defined in Icc structure, that indicates if no data was returned on a send—just
control information.

isSignalSet

Icc::Bool isSignalSet() const

Returns a boolean variable, defined in Icc structure, that indicates whether a signal has been received
from the remote process.

issueAbend

void issueAbend()

Abnormally ends the conversation. The partner transaction sees the TERMERR condition.

Conditions

INVREQ, NOTALLOC, TERMERR

issueConfirmation
Sends positive response to a partner's send request that specified the confirmation option.

void issueConfirmation()

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL

issueError
Signals an error to the partner process.

void issueError()

174 CICS TS for z/OS: C++ OO Class Libraries

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL

issuePrepare
This only applies to DTP over APPC links. It enables a syncpoint initiator to prepare a syncpoint slave for
syncpointing by sending only the first flow ('prepare to commit') of the syncpoint exchange.

void issuePrepare()

Conditions

INVREQ, NOTALLOC, TERMERR

issueSignal
Signals that a mode change is needed.

void issueSignal()

Conditions

INVREQ, NOTALLOC, TERMERR

PIPList
Returns a reference to an IccBuf object that contains the PIP data sent from the front end process. A call
to this method should be preceded by a call to extractProcess on back end DTP processes.

IccBuf& PIPList()

process

const IccBuf& process() const

Returns a reference to an IccBuf object that contains the process data sent from the front end process. A
call to this method should be preceded by a call to extractProcess on back end DTP processes.

put
A synonym for send. See Polymorphic Behavior for information on polymorphism.

virtual void put(const IccBuf& data)

data
A reference to an IccBuf object that holds the data to be sent to the remote process.

Chapter 3. Foundation Classes: reference 175

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

receive

const IccBuf& receive()

Returns a reference to an IccBuf object that contains the data received from the remote system.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

send (1)

void send (const IccBuf& send,
 SendOpt option = normal)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the send method. The default is
normal.

send (2)
Sends data to the remote partner.

void send(SendOpt option = normal)

option
An enumeration, defined in this class, that affects the behavior of the send method. The default is
normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendInvite (1)

void sendInvite (const IccBuf& send,
 SendOpt option = normal)

send
A reference to an IccBuf object that contains the data that is to be sent.

176 CICS TS for z/OS: C++ OO Class Libraries

option
An enumeration, defined in this class, that affects the behavior of the sendInvite method. The default
is normal.

sendInvite (2)
Sends data to the remote partner and indicates a change of direction, that is, the next method on this
object will be receive.

void sendInvite(SendOpt option = normal)

option
An enumeration, defined in this class, that afffects the behavior of the sendInvite method. The
default is normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendLast (1)

void sendLast (const IccBuf& send,
 SendOpt option = normal)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the sendLast method. The default is
normal.

sendLast (2)
Sends data to the remote partner and indicates that this is the final transmission. The free method must
be invoked next, unless the sync level is 2, when you must commit resource updates before the free. (See
commitUOW on page “commitUOW” on page 194 in IccTaskClass).

void sendLast(SendOpt option = normal)

option
An enumeration, defined in this class, that affects the behavior of the sendLast method. The default is
normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

Chapter 3. Foundation Classes: reference 177

state
Returns a CVDA, defined in IccValue structure, that indicates the current state of the APPC conversation.

Possible values are:

• ALLOCATED
• CONFFREE
• CONFSEND
• FREE
• PENDFREE
• PENDRECEIVE
• RECEIVE
• ROLLBACK
• SEND
• SYNCFREE
• SYNCRECEIVE
• SYNCSEND
• NOTAPPLIC

IccValue::NOTAPPLIC is returned if there is no APPC conversation state.

IccValue::CVDA state(StateOpt option = lastCommand)

option
An enumeration, defined in this class, that indicates how to report the state of the conversation

Conditions

INVREQ, NOTALLOC

stateText
Returns the symbolic name of the state that state method would return. For example, if state returns
IccValue::ALLOCATED, stateText would return "ALLOCATED".

const char* stateText(StateOpt option = lastCommand)

option
An enumeration, defined in this class, that indicates how to report the state of the conversation

syncLevel

SyncLevel syncLevel() const

Returns an enumeration, defined in this class, that indicates the synchronization level that is being used
in this session. A call to this method should be preceded by a call to extractProcess on back end DTP
processes.

178 CICS TS for z/OS: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

AllocateOpt

queue
If all available sessions are in use, CICS is to queue this request (and block the method) until it can
allocate a session.

noQueue
Control is returned to the application if it cannot allocate a session. CICS raises the SYSBUSY
condition.

Indicates whether queuing is required on an allocate method.

SendOpt

normal
The default.

Chapter 3. Foundation Classes: reference 179

confirmation
Indicates that a program using SyncLevel level1 or level2 requires a response from the remote
partner program. The remote partner can respond positively, using the issueConfirmation method, or
negatively, using the issueError method. The sending program does not receive control back from
CICS until the response is received.

wait
Requests that the data is sent and not buffered internally. CICS is free to buffer requests to improve
performance if this option is not specified.

StateOpt
Use StateOpt to indicate how the state of a conversation is to be reported.

lastCommand
Return the state at the time of the completion of the last operation on the session.

extractState
Return the explicitly extracted current state.

SyncLevel

level0
Sync level 0

level1
Sync level 1

level2
Sync level 2

IccStartRequestQ class
This is a singleton class that enables the application programmer to request an asynchronous start of
another CICS transaction.

IccBase
 IccResource
 IccStartRequestQ

(see the start method on page “start” on page 184).

An asynchronously started transaction uses the IccStartRequestQ class method retrieveData to gain the
information passed to it by the transaction that issued the start request.

An unexpired start request can be cancelled by using the cancel method.

Header file: ICCSRQEH

Sample: ICC$SRQ1, ICC$SRQ2

IccStartRequestQ constructor (protected)

Constructor

IccStartRequestQ()

180 CICS TS for z/OS: C++ OO Class Libraries

Public methods
These are the public methods in this class.

cancel
Cancels a previously issued start request that has not yet expired.

void cancel (const IccRequestId& reqId,
 const IccTransId* transId = 0)

reqId
A reference to an IccRequestId object that represents the request to be cancelled

transId
An optional pointer to an IccTransId object that represents the transaction that is to be cancelled.

Conditions

ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

clearData
clearData clears the current data that is to be passed to the started transaction.

void clearData()

The data was set using setData or registerData.

If the data was set using registerData, only the pointer to the data is removed, the data in the buffer is
left unchanged.

If the data was set using setData, then clearData releases the memory used by the buffer.

data
Returns a reference to an IccBuf object that contains data passed on a start request. A call to this method
should be preceded by a call to retrieveData method.

const IccBuf& data() const

instance

static IccStartRequestQ* instance()

Returns a pointer to the single IccStartRequestQ object. If the object does not exist it is created. See
also startRequestQ method on page “startRequestQ” on page 99 of IccControl.

queueName

Chapter 3. Foundation Classes: reference 181

const char* queueName() const

Returns the name of the queue that was passed by the start requester. A call to this method should be
preceded by a call to retrieveData method.

registerData
Registers an IccBuf object to be interrogated for start data on each subsequent start method
invocation.This just stores the address of the IccBuf object within the IccStartRequestQ so that the
IccBuf object can be found when using the start method. This differs from the setData method, which
takes a copy of the data held in the IccBuf object during the time that it is invoked.

void registerData(const IccBuf* buffer)

buffer
A pointer to the IccBuf object that holds data to be passed on a start request.

reset

void reset()

Clears any associations previously made by set… methods in this class.

retrieveData
Used by a task that was started, via an async start request, to gain access to the information passed by
the start requester. The information is returned by the data, queueName, returnTermId, and
returnTransId methods.

void retrieveData(RetrieveOpt option = noWait)

option
An enumeration, defined in this class, that indicates what happens if there is no start data available.

Conditions

ENDDATA, ENVDEFERR, IOERR, LENGERR, NOTFND, INVREQ

Note: The ENVDEFERR condition will be raised if all the possible options (setData, setQueueName,
setReturnTermId, and setReturnTransId) are not used before issuing the start method. This condition is
therefore not necessarily an error condition and your program should handle it accordingly.

returnTermId
Returns a reference to an IccTermId object that identifies which terminal is involved in the session. A call
to this method should be preceded by a call to retrieveData method.

const IccTermId& returnTermId() const

182 CICS TS for z/OS: C++ OO Class Libraries

returnTransId

const IccTransId& returnTransId() const

Returns a reference to an IccTransId object passed on a start request. A call to this method should be
preceded by a call to retrieveData method.

setData

void setData(const IccBuf& buf)

Copies the data in buf into the IccStartRequestQ, which passes it to the started transaction when the
start method is called. See also registerData on page “registerData” on page 182 for an alternative way
to pass data to started transactions.

setQueueName
Requests that this queue name be passed to the started transaction when the start method is called.

void setQueueName(const char* queueName)

queueName
An 8-character queue name.

setReturnTermId (1)

void setReturnTermId(const IccTermId& termId)

termId
A reference to an IccTermId object that identifies which terminal is involved in the session.

setReturnTermId (2)
Requests that this return terminal ID be passed to the started transaction when the start method is
called.

void setReturnTermId(const char* termName)

termName
The 4-character name of the terminal that is involved in the session.

setReturnTransId (1)

Chapter 3. Foundation Classes: reference 183

void setReturnTransId(const IccTransId& transId)

transId
A reference to an IccTransId object.

setReturnTransId (2)
Requests that this return transaction ID be passed to the started transaction when the start method is
called.

void setReturnTransId(const char* transName)

transName
The 4-character name of the return transaction.

setStartOpts
Sets whether the started transaction is to have protection and whether it is to be checked.

void setStartOpts (ProtectOpt popt = none,
 CheckOpt copt = check)

popt
An enumeration, defined in this class, that indicates whether start requests are to be protected

copt
An enumeration, defined in this class, that indicates whether start requests are to be checked.

start
Asynchronously starts the named CICS transaction. The returned reference to an IccRequestId object
identifies the start request and can be used subsequently to cancel the start request.

const IccRequestId& start (const IccTransId& transId,
 const IccTermId* termId,
 const IccTime* time = 0,
 const IccRequestId* reqId = 0)

or

const IccRequestId& start (const IccTransId& transId,
 const IccUserId* userId,
 const IccTime* time = 0,
 const IccRequestId* reqId = 0)

or

184 CICS TS for z/OS: C++ OO Class Libraries

const IccRequestId& start (const IccTransId& transId,
 const IccTime* time = 0,
 const IccRequestId* reqId = 0)

transId
A reference to an IccTransId object that represents the transaction to be started

termId
A reference to an IccTermId object that identifies which terminal is involved in the session.

userId
A reference to an IccUserId object that represents the user ID.

time
An (optional) pointer to an IccTime object that specifies when the task is to be started. The default is
for the task to be started immediately.

reqId
An (optional) pointer to an IccRequestId object that is used to identify this start request so that the
cancel can cancel the request.

Conditions

INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH, SYSIDERR, TERMIDERR, TRANSIDERR, USERIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

className IccBase

classType IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

isRouteOptionOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

routeOption IccResource

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

Chapter 3. Foundation Classes: reference 185

Method Class

setEDF IccResource

setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

RetrieveOpt

• noWait
• wait

ProtectOpt

• none
• protect

CheckOpt

• check
• noCheck

IccSysId class
IccSysId class is used to identify a remote CICS system.

IccBase
 IccResourceId
 IccSysId

IccSysId class is used to identify a remote CICS system.

Header file: ICCRIDEH

IccSysId constructors

Constructor (1)

IccSysId(const char* name)

name
The 4-character name of the CICS system.

186 CICS TS for z/OS: C++ OO Class Libraries

Constructor (2)
The copy constructor.

IccSysId(const IccSysId& id)

id
A reference to an IccSysId object.

Public methods
These are the public methods in this class.

operator= (1)

IccSysId& operator=(const IccSysId& id)

id
A reference to an existing IccSysId object.

operator= (2)
Sets the name of the CICS system held in the object.

IccSysId& operator=(const char* name)

name
The 4-character name of the CICS system.

Inherited public methods
Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Chapter 3. Foundation Classes: reference 187

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccSystem class
This is a singleton class that represents the CICS system. It is used by an application program to discover
information about the CICS system on which it is running.

IccBase
 IccResource
 IccSystem

Header file: ICCSYSEH

Sample: ICC$SYS

IccSystem constructor (protected)

Constructor

IccSystem()

Public methods
These are the public methods in this class.

applName
Returns the 8-character name of the CICS region.

const char* applName()

Conditions

INVREQ

beginBrowse (1)

void beginBrowse (ResourceType resource,
 const IccResourceId* resId = 0)

resource
An enumeration, defined in this class, that indicates the type of resource to be browsed within the
CICS system.

188 CICS TS for z/OS: C++ OO Class Libraries

resId
An optional pointer to an IccResourceId object that indicates the starting point for browsing through
the resources.

beginBrowse (2)
Signals the start of a browse through a set of CICS resources.

void beginBrowse (ResourceType resource,
 const char* resName)

resource
An enumeration, defined in this class, that indicates the type of resource to be browsed within the
CICS system.

resName
The name of the resource that is to be the starting point for browsing the resources.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

dateFormat
Returns the default dateFormat for the CICS region.

const char* dateFormat()

Conditions

INVREQ

endBrowse
Signals the end of a browse through a set of CICS resources.

void endBrowse(ResourceType resource)

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

freeStorage
Releases the storage obtained by the IccSystem getStorage method.

void freeStorage(void* pStorage)

Conditions

INVREQ

Chapter 3. Foundation Classes: reference 189

getFile (1)

IccFile* getFile(const IccFileId& id)

id
A reference to an IccFileId object that identifies a CICS file.

getFile (2)
Returns a pointer to the IccFile object identified by the argument.

IccFile* getFile(const char* fileName)

fileName
The name of a CICS file.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getNextFile
This method is only valid after a successful beginBrowse(IccSystem::file) call. It returns the next file
object in the browse sequence in the CICS system.

IccFile* getNextFile()

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getStorage
Obtains a block of storage of the requested size and returns a pointer to it. The storage is not released
automatically at the end of task; it is only released when a freeStorage operation is performed.

void* getStorage (unsigned long size,
 char initByte = -1,
 unsigned long storageOpts = 0)

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in IccTask class, that affects the way that CICS allocates storage.

190 CICS TS for z/OS: C++ OO Class Libraries

Conditions

LENGERR, NOSTG

instance
Returns a pointer to the singleton IccSystem object. The object is created if it does not already exist.

static IccSystem* instance()

operatingSystem

char operatingSystem()

Returns a 1-character value that identifies the operating system under which CICS is running:
A

AIX
N

Windows
X

z/OS

Conditions

NOTAUTH

operatingSystemLevel
Returns a halfword binary field giving the release number of the operating system under which CICS is
running. The value returned is ten times the formal release number (the version number is not
represented). For example, MVS/ESA Version 3 Release 2.1 would produce a value of 21.

unsigned short operatingSystemLevel()

Conditions

NOTAUTH

IccSystem public method: release
Returns the level of the CICS system. The value is taken from the number returned in the RELEASE
parameter of the EXE CICS INQUIRE SYSTEM command.

For example, the release level returned for CICS Transaction Server for z/OS Version 4 Release 2 is 670.

unsigned long release()

Conditions

NOTAUTH

releaseText
Returns the same as release, except as a 4-character string. For example, CICS Transaction Server for
z/OS [Version 1] Release 3 would return "0130".

Chapter 3. Foundation Classes: reference 191

const char* releaseText()

Conditions

NOTAUTH

sysId
Returns a reference to the IccSysId object that identifies this CICS system.

IccSysId& sysId()

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the work area for the CICS system.

const IccBuf& workArea()

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

192 CICS TS for z/OS: C++ OO Class Libraries

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

ResourceType

• autoInstallModel
• connection
• dataQueue
• exitProgram
• externalDataSet
• file
• journal
• modename
• partner
• profile
• program
• requestId
• systemDumpCode
• tempStore
• terminal
• transactionDumpCode
• transaction
• transactionClass

IccTask class
IccTask is a singleton class used to invoke task related CICS services.

IccBase
 IccResource
 IccTask

Header file: ICCTSKEH

Sample: ICC$TSK

IccTask Constructor (protected)

Constructor

IccTask()

Chapter 3. Foundation Classes: reference 193

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

abend
Requests CICS to abend this task.

void abend (const char* abendCode = 0,
 AbendHandlerOpt opt1 = respectAbendHandler,
 AbendDumpOpt opt2 = createDump)

abendCode
The 4-character abend code

opt1
An enumeration, defined in this class, that indicates whether to respect or ignore any abend handling
program specified by setAbendHandler method in IccControl class

opt2
An enumeration, defined in this class, that indicates whether a dump is to be created.

abendData

IccAbendData* abendData()

Returns a pointer to an IccAbendData object that contains information about the program abends, if any,
that relate to this task.

commitUOW

void commitUOW()

Commit the resource updates within the current UOW for this task. This also causes a new UOW to start
for subsequent resource update activity.

Conditions

INVREQ, ROLLEDBACK

delay
Requests that this task be delayed for an interval of time, or until a specific time.

void delay (const IccTime& time,
 const IccRequestId* reqId = 0)

194 CICS TS for z/OS: C++ OO Class Libraries

time
A reference to an object that contains information about the delay time. The object can be one of
these types:
IccAbsTime

Expresses time as the number of milliseconds since the beginning of the year 1900.
IccTimeInterval

Expresses an interval of time, such as 3 hours, 2 minutes, and 1 second.
IccTimeOfDay

Expresses a time of day, such as 13 hours, 30 minutes (1-30 pm).
reqId

An optional pointer to an IccRequestId object that can be used to cancel an unexpired delay request.

Conditions

EXPIRED, INVREQ

dump
Requests CICS to take a memory dump for this task. (See also setDumpOpts.) Returns the character
identifier of the dump.

const char* dump (const char* dumpCode,
 const IccBuf* buf = 0)

dumpCode
A 4-character label that identifies this dump

buf
A pointer to the IccBuf object that contains additional data to be included in the dump.

Conditions

INVREQ, IOERR, NOSPACE, NOSTG, NOTOPEN, OPENERR, SUPPRESSED

enterTrace
Writes a user trace entry in the CICS trace table.

void enterTrace (unsigned short traceNum,
 const char* resource = 0,
 IccBuf* data = 0,
 TraceOpt opt = normal)

traceNum
The trace identifier for a user trace table entry; a value in the range 0 through 199.

resource
An 8-character name to be entered in the resource field of the trace table entry.

Chapter 3. Foundation Classes: reference 195

data
A pointer to the IccBuf object containing data to be included in the trace record.

opt
An enumeration, defined in this class, that indicates whether tracing should be normal or whether
only exceptions should be traced.

Conditions

INVREQ, LENGERR

facilityType
Returns an enumeration, defined in this class, that indicates what type of principal facility this task has.
This is usually a terminal, such as when the task was started by someone keying a transaction name on a
CICS terminal. It is a session if the task is the back end of a mapped APPC conversation.

FacilityType facilityType()

Conditions

INVREQ

freeStorage
Releases the storage obtained by the IccTask getStorage method.

void freeStorage(void* pStorage)

Conditions

INVREQ

getStorage
Obtains a block of storage of the requested size. The storage is released automatically at the end of task,
or when the freeStorage operation is performed. See also getStorage on page “getStorage” on page 190
in IccSystemclass.

void* getStorage (unsigned long size,
 char initByte = -1,
 unsigned short storageOpts = 0)

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in this class, that affects the way that CICS allocates storage.

Conditions

LENGERR, NOSTG

196 CICS TS for z/OS: C++ OO Class Libraries

instance
Returns a pointer to the singleton IccTask object. The object is created if it does not already exist.

static IccTask* instance();

isCommandSecurityOn

Icc::Bool isCommandSecurityOn()

Returns a boolean, defined in Icc structure, that indicates whether this task is subject to command
security checking.

Conditions

INVREQ

isCommitSupported
Returns a boolean, defined in Icc structure that indicates whether this task can support the commit
method. This method returns true in most environments; the exception to this is in a DPL environment
(see link on page “link” on page 148 in IccProgram).

Icc::Bool isCommitSupported()

Conditions

INVREQ

isResourceSecurityOn
Returns a boolean, defined in Icc structure, that indicates whether this task is subject to resource
security checking.

Icc::Bool isResourceSecurityOn()

Conditions

INVREQ

isRestarted
Returns a boolean, defined in Icc structure, that indicates whether this task has been automatically
restarted by CICS.

Icc::Bool isRestarted()

Conditions

INVREQ

isStartDataAvailable
Returns a boolean, defined in Icc structure, that indicates whether start data is available for this task. See
the retrieveData method in IccStartRequestQ class if start data is available.

Chapter 3. Foundation Classes: reference 197

Icc::Bool isStartDataAvailable()

Conditions

INVREQ

number
Returns the number of this task, unique within the CICS system.

unsigned long number() const

principalSysId

IccSysId& principalSysId(Icc::GetOpt opt = Icc::object)

Returns a reference to an IccSysId object that identifies the principal system identifier for this task.

Conditions

INVREQ

priority
Returns the priority for this task.

unsigned short priority(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

rollBackUOW
Roll back (backout) the resource updates associated with the current UOW within this task.

void rollBackUOW()

Conditions

INVREQ, ROLLEDBACK

setDumpOpts
Set the dump options for this task. This method affects the behavior of the dump method defined in this
class.

void setDumpOpts(unsigned long opts = dDefault)

198 CICS TS for z/OS: C++ OO Class Libraries

opts
An integer, made by adding or logically ORing values from the DumpOpts enumeration, defined in this
class.

setPriority
Changes the dispatch priority of this task.

void setPriority(unsigned short pri)

pri
The new priority.

Conditions

INVREQ

setWaitText
Sets the text that will appear when someone inquires on this task while it is suspended as a result of a
waitExternal or waitOnAlarm method call.

void setWaitText(const char* name)

name
The 8-character string label that indicates why this task is waiting.

startType

StartType startType()

Returns an enumeration, defined in this class, that indicates how this task was started.

Conditions

INVREQ

suspend
Suspend this task, allowing other tasks to be dispatched.

void suspend()

transId

const IccTransId& transId()

Returns the IccTransId object representing the transaction name of this CICS task.

triggerDataQueueId

Chapter 3. Foundation Classes: reference 199

const IccDataQueueId& triggerDataQueueId()

Returns a reference to the IccDataQueueId representing the trigger queue, if this task was started as a
result of data arriving on an IccDataQueue. See startType method.

Conditions

INVREQ

userId
Returns the ID of the user associated with this task.

const IccUserId& userId(Icc::GetOpt opt = Icc::object)

opt
An enumeration, defined in Icc structure, that indicates whether the information already existing in
the object is to be used or whether it is to be refreshed from CICS.

Conditions

INVREQ

waitExternal
Waits for events that post Event Control Blocks (ECBs).

The call causes the issuing task to be suspended until one of the ECBs has been posted—that is, one of
the events has occurred. The task can wait on more than one ECB and can be dispatched as soon as any
of them are posted. For more information about ECB, see WAIT EXTERNAL.

void waitExternal (long** ECBList,
 unsigned long numEvents,
 WaitPurgeability opt = purgeable,
 WaitPostType type = MVSPost)

ECBList
A pointer to a list of addresses of ECBs that represent events.

numEvents
The number of events in ECBList.

opt
An enumeration, defined in this class, that indicates whether the wait is purgeable.

type
An enumeration, defined in this class, that indicates whether the post type is a standard MVS POST.

Conditions

INVREQ

waitOnAlarm
Suspends the task until the alarm goes off (expires).

See also “setAlarm” on page 89 in IccClock.

void waitOnAlarm(const IccAlarmRequestId& id)

200 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/commands-api/dfhp4_waitexternal.html

id
A reference to the IccAlarmRequestId object that identifies a particular alarm request.

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the work area for this task.

IccBuf& workArea()

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Chapter 3. Foundation Classes: reference 201

Enumerations

AbendHandlerOpt

respectAbendHandler
Allows control to be passed to an abend handling program if one is in effect.

ignoreAbendHandler
Does not allow control to be passed to any abend handling program that may be in effect.

AbendDumpOpt

createDump
Take a transaction dump when servicing an abend request.

suppressDump
Do not take a transaction dump when servicing an abend request.

DumpOpts
The values may be added, or bitwise ORed, together to get the intended combination.

The values may be added, or bitwise ORed, together to get the intended combination. For example
IccTask::dProgram + IccTask::dDCT + IccTask::dSIT.
dDefault

dComplete

dTask

dStorage

dProgram

dTerminal

dTables

dDCT

dFCT

dPCT

dPPT

dSIT

dTCT

dTRT

FacilityType

none
The task has no principal facility, that is, it is a background task.

202 CICS TS for z/OS: C++ OO Class Libraries

terminal
This task has a terminal as its principal facility.

session
This task has a session as its principal facility, that is, it was probably started as a back-end DTP
program.

dataqueue
This task has a transient data queue as its principal facility.

StartType

DPL
Distributed program link request

dataQueueTrigger
Trigger by data arriving on a data queue

startRequest
Started as a result of an asynchronous start request. See IccStartRequestQ class.

FEPIRequest
Front end programming interface.

terminalInput
Started via a terminal input

CICSInternalTask
Started by CICS.

StorageOpts

ifSOSReturnCondition
If insufficient space is available, return NOSTG condition instead of blocking the task.

below
Allocate storage below the 16Mb line.

userDataKey
Allocate storage in the USER data key.

CICSDataKey
Allocate storage in the CICS data key.

TraceOpt

normal
The trace entry is a standard entry.

exception
The trace entry is an exception entry.

WaitPostType

MVSPost
ECB is posted using the MVS POST service.

handPost
ECB is hand posted (that is, using some method other than the MVS POST service).

WaitPurgeability

purgeable
Task can be purged via a system call.

notPurgeable
Task cannot be purged via a system call.

Chapter 3. Foundation Classes: reference 203

IccTempStore class
IccTempStore objects are used to manage the temporary storage of data.

IccBase
 IccResource
 IccTempStore

(IccTempStore data can exist between transaction calls.)

Header file: ICCTMPEH

Sample: ICC$TMP

IccTempStore constructors

Constructor (1)

IccTempStore (const IccTempStoreId& id,
 Location loc = auxStorage)

id
Reference to an IccTempStoreId object

loc
An enumeration, defined in this class, that indicates where the storage is to be located when it is first
created. The default is to use auxiliary storage (disk).

Constructor (2)

IccTempStore (const char* storeName,
 Location loc = auxStorage)

storeName
Specifies the 8-character name of the queue to be used. The name must be unique within the CICS
system.

loc
An enumeration, defined in this class, that indicates where the storage is to be located when it is first
created. The default is to use auxiliary storage (disk).

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

204 CICS TS for z/OS: C++ OO Class Libraries

clear
A synonym for empty. See Polymorphic Behavior for information on polymorphism.

virtual void clear()

empty

void empty()

Deletes all the temporary data associated with the IccTempStore object and deletes the associated TD
queue.

Conditions

INVREQ, ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR

get
A synonym for readNextItem. See Polymorphic Behavior for information on polymorphism.

virtual const IccBuf& get()

numberOfItems

unsigned short numberOfItems() const

Returns the number of items in temporary storage. This is only valid after a successful writeItem call.

put
A synonym for writeItem. See Polymorphic Behavior for information on polymorphism.

virtual void put(const IccBuf& buffer)

buffer
A reference to an IccBuf object that contains the data that is to be added to the end of the temporary
storage queue.

readItem
Reads the specified item from the temporary storage queue and returns a reference to the IccBuf object
that contains the information.

const IccBuf& readItem(unsigned short itemNum)

itemNum
Specifies the item number of the logical record to be retrieved from the queue.

Chapter 3. Foundation Classes: reference 205

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR, SYSIDERR

readNextItem
Reads the next item from a temporary storage queue and returns a reference to the IccBuf object that
contains the information.

const IccBuf& readNextItem()

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR, SYSIDERR

rewriteItem
The parameters are:This method updates the specified item in the temporary storage queue.

void rewriteItem (unsigned short itemNum,
 const IccBuf& item,
 NoSpaceOpt opt = suspend)

itemNum
Specifies the item number of the logical record that is to be modified

item
The name of the IccBuf object that contains the update data.

opt
An enumeration, defined in this class, that indicates whether the application program is to be
suspended if a shortage of space in the queue prevents the record being added. suspend is the
default.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH, QIDERR, SYSIDERR

writeItem (1)

unsigned short writeItem (const IccBuf& item,
 NoSpaceOpt opt = suspend)

item
The name of the IccBuf object that contains the data that is to added to the end of the temporary
storage queue.

opt
An enumeration, defined in this class, that indicates whether the application program is to be
suspended if a shortage of space in the queue prevents the record being added. suspend is the
default.

206 CICS TS for z/OS: C++ OO Class Libraries

writeItem (2)
This method adds a new record at the end of the temporary storage queue. The returned value is the item
number that was created (if this was done successfully).

unsigned short writeItem (const char* text,
 NoSpaceOpt opt = suspend)

text
The text string that is to added to the end of the temporary storage queue.

opt
An enumeration, defined in this class, that indicates whether the application program is to be
suspended if a shortage of space in the queue prevents the record being added. suspend is the
default.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH, QIDERR, SYSIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

className IccBase

classType IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

isRouteOptionOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

routeOption IccResource

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Chapter 3. Foundation Classes: reference 207

Method Class

setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

Location

auxStorage
Temporary store data is to reside in auxiliary storage (disk).

memory
Temporary store data is to reside in memory.

NoSpaceOpt
Take this action if a shortage of space in the queue prevents the record being added immediately.

suspend
Suspend the application program.

returnCondition
Do not suspend the application program, but raise the NOSPACE condition instead.

IccTempStoreId class
IccTempStoreId class is used to identify a temporary storage name in the CICS system.

IccBase
 IccResourceId
 IccTempStoreId

Header file: ICCRIDEH

IccTempStoreId constructors

Constructor (1)

IccTempStoreId(const char* name)

name
The 8-character name of the temporary storage entry.

Constructor (2)
The copy constructor.

208 CICS TS for z/OS: C++ OO Class Libraries

IccTempStoreId(const IccTempStoreId& id)

id
A reference to an IccTempStoreId object.

Public methods
These are the public methods in this class.

operator= (1)

IccTempStoreId& operator=(const char* name)

name
The 8-character name of the temporary storage entry.

operator= (2)
Assigns a new value.

IccTempStoreId& operator=(const IccTempStoreId& id)

id
A reference to an IccTempStoreId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

Chapter 3. Foundation Classes: reference 209

IccTermId class
IccTermId class is used to identify a terminal name in the CICS system.

IccBase
 IccResourceId
 IccTermId

Header file: ICCRIDEH

IccTermId constructors

Constructor (1)

IccTermId(const char* name)

name
The 4-character name of the terminal

Constructor (2)
The copy constructor.

IccTermId(const IccTermId& id)

id
A reference to an IccTermId object.

Public methods
These are the public methods in this class.

operator= (1)

IccTermId& operator=(const char* name)

name
The 4-character name of the terminal

operator= (2)
Assigns a new value.

IccTermId& operator=(const IccTermId& id)

210 CICS TS for z/OS: C++ OO Class Libraries

id
A reference to an IccTermId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccTerminal class
This is a singleton class that represents the terminal that belongs to the CICS task. It can only be created
if the transaction has a 3270 terminal as its principal facility, otherwise an exception is thrown.

IccBase
 IccResource
 IccTerminal

Header file: ICCTRMEH

Sample: ICC$TRM

IccTerminal constructor (protected)

Constructor

IccTerminal()

Chapter 3. Foundation Classes: reference 211

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

AID
Returns an enumeration, defined in this class, that indicates which AID (action identifier) key was last
pressed at this terminal.

AIDVal AID()

clear

virtual void clear()

A synonym for erase. See Polymorphic Behavior for information on polymorphism.

cursor

unsigned short cursor()

Returns the current cursor position as an offset from the upper-left corner of the screen.

data

IccTerminalData* data()

Returns a pointer to an IccTerminalData object that contains information about the characteristics of the
terminal. The object is created if it does not already exist.

erase

void erase()

Erase all the data displayed at the terminal.

Conditions

INVREQ, INVPARTN

freeKeyboard
Frees the keyboard so that the terminal can accept input.

void freeKeyboard()

212 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

Conditions

INVREQ, INVPARTN

get
A synonym for receive. See Polymorphic Behavior for information on polymorphism.

virtual const IccBuf& get()

height

unsigned short height(Icc::getopt opt = Icc::object)

Returns how many lines the screen holds.

Conditions

INVREQ

inputCursor
Returns the position of the cursor on the screen.

unsigned short inputCursor()

instance

static IccTerminal* instance()

Returns a pointer to the single IccTerminal object. The object is created if it does not already exist.

line

unsigned short line()

Returns the current line number of the cursor from the beginning of the screen.

netName

const char* netName()

Returns the 8-byte string representing the network logical unit name of the principal facility.

operator« (1)
Sets the foreground color for data subsequently sent to the terminal.

IccTerminal& operator « (Color color)

Chapter 3. Foundation Classes: reference 213

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

operator« (2)
Sets the highlighting used for data subsequently sent to the terminal.

IccTerminal& operator « (Highlight highlight)

operator« (3)
Writes another buffer.

IccTerminal& operator « (const IccBuf& buffer)

operator« (4)
Writes a character.

IccTerminal& operator « (char ch)

operator« (5)
Writes a character.

IccTerminal& operator « (signed char ch)

operator« (6)
Writes a character.

IccTerminal& operator « (unsigned char ch)

operator« (7)
Writes a string.

IccTerminal& operator « (const char* text)

operator« (8)
Writes a string.

214 CICS TS for z/OS: C++ OO Class Libraries

IccTerminal& operator « (const signed char* text)

operator« (9)
Writes a string.

IccTerminal& operator « (const unsigned char* text)

operator« (10)
Writes a short.

IccTerminal& operator « (short num)

operator« (11)
Writes an unsigned short.

IccTerminal& operator « (unsigned short num)

operator« (12)
Writes a long.

IccTerminal& operator « (long num)

operator« (13)
Writes an unsigned long.

IccTerminal& operator « (unsigned long num)

operator« (14)
Writes an integer.

IccTerminal& operator « (int num)

Chapter 3. Foundation Classes: reference 215

operator« (15)
Writes a float.

IccTerminal& operator « (float num)

operator« (16)
Writes a double.

IccTerminal& operator « (double num)

operator« (17)
Writes a long double.

IccTerminal& operator « (long double num)

operator« (18)

IccTerminal& operator « (IccTerminal& (*f)(IccTerminal&))

Enables the following syntax:

Term « "Hello World" « endl;
Term « "Hello again" « flush;

put

virtual void put(const IccBuf& buf)

A synonym for sendLine. See Polymorphic Behavior for information on polymorphism.

receive
Receives data from the terminal

const IccBuf& receive(Case caseOpt = upper)

caseOpt
An enumeration, defined in this class, that indicates whether text is to be converted to uppercase.

216 CICS TS for z/OS: C++ OO Class Libraries

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/c/dfhal9k.html

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

receive3270Data
Receives the 3270 data buffer from the terminal

const IccBuf& receive3270Data(Case caseOpt = upper)

caseOpt
An enumeration, defined in this class, that indicates whether text is to be converted to uppercase.

Conditions

INVREQ, LENGERR, TERMERR

send (1)

void send(const IccBuf& buffer)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send (2)

void send (const char* format,
 ...)

format
A format string, as in the printf standard library function.

…
The optional arguments that accompany format.

send (3)

void send (unsigned short row,
 unsigned short col,
 const IccBuf& buffer)

row
The row where the writing of the data is started.

Chapter 3. Foundation Classes: reference 217

col
The column where the writing of the data is started.

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send (4)
Writes the specified data to either the current cursor position or to the cursor position specified by the
arguments.

void send (unsigned short row,
 unsigned short col,
 const char* format,
 ...)

row
The row where the writing of the data is started.

col
The column where the writing of the data is started.

format
A format string, as in the printf standard library function.

…
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

send3270Data (1)

void send3270Data(const IccBuf& buffer)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send3270Data (2)

void send3270 Data(const char* format,
 ...)

format
A format string, as in the printf standard library function

…
The optional arguments that accompany format.

218 CICS TS for z/OS: C++ OO Class Libraries

send3270Data (3)

void send3270Data (unsigned short col,
 const IccBuf& buf)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send3270Data (4)
Writes the specified data to either the next line of the terminal or to the specified column of the current
line.

void send3270Data (unsigned short col,
 const char* format,
 ...)

col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

…
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

sendLine (1)

void sendLine(const IccBuf&buffer)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (2)

void sendLine (const char* format,
 ...)

Chapter 3. Foundation Classes: reference 219

format
A format string, as in the printf standard library function

…
The optional arguments that accompany format.

sendLine (3)

void sendLine (unsigned short col,
 const IccBuf& buf)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (4)
Writes the specified data to either the next line of the terminal or to the specified column of the current
line.

void sendLine (unsigned short col,
 const char* format,
 ...)

col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

…
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

setColor
Changes the color of the text subsequently sent to the terminal.

void setColor(Color color=defaultColor)

color
An enumeration, defined in this class, that indicates the color of the text that is written to the screen.

220 CICS TS for z/OS: C++ OO Class Libraries

setCursor (1)

void setCursor(unsigned short offset)

offset
The position of the cursor where the upper-left corner is 0.

setCursor (2)
Two different ways of setting the position of the cursor on the screen.

void setCursor (unsigned short row,
 unsigned short col)

row
The row number of the cursor where the top row is 1

col
The column number of the cursor where the left column is 1

Conditions

INVREQ, INVPARTN

setHighlight
Changes the higlighting of the data subsequently sent to the terminal.

void setHighlight(Highlight highlight = normal)

highlight
An enumeration, defined in this class, that indicates the highlighting of the text that is written to the
screen.

setLine
Moves the cursor to the start of line lineNum, where 1 is the first line of the terminal. The default is to
move the cursor to the start of line 1.

void setLine(unsigned short lineNum = 1)

lineNum
The line number, counting from the start.

Conditions

INVREQ, INVPARTN

Chapter 3. Foundation Classes: reference 221

setNewLine
Requests that numLines blank lines be sent to the terminal.

void setNewLine(unsigned short numLines = 1)

numLines
The number of blank lines.

Conditions

INVREQ, INVPARTN

setNextCommArea
Specifies the COMMAREA that is to be passed to the next transaction started on this terminal.

void setNextCommArea(const IccBuf& commArea)

commArea
A reference to the buffer that is to be used as a COMMAREA.

setNextInputMessage
Specifies data that is to be made available, by the receive method, to the next transaction started at this
terminal.

void setNextInputMessage(const IccBuf& message)

message
A reference to the buffer that holds the input message.

setNextTransId
Specifies the next transaction that is to be started on this terminal.

void setNextTransId (const IccTransId& transid,
 NextTransIdOpt opt = queue)

transid
A reference to the IccTransId object that holds the name of a transaction

opt
An enumeration, defined in this class, that indicates whether transId should be queued or started
immediately (that is, it should be the very next transaction) at this terminal.

222 CICS TS for z/OS: C++ OO Class Libraries

signoff

void signoff()

Signs off the user who is currently signed on. Authority reverts to the default user.

Conditions

INVREQ

signon (1)

void signon (const IccUserId& id,
 const char* password = 0,
 const char* newPassword = 0)

id
A reference to an IccUserId object

password
The 8-character existing password.

newPassword
An optional 8-character new password.

signon (2)
Signs the user on to the terminal.

void signon (IccUser& user,
 const char* password = 0,
 const char* newPassword = 0)

user
A reference to an IccUser object

password
The 8-character existing password.

newPassword
An optional 8-character new password. This method differs from the first signon method in that the
IccUser object is interrogated to discover IccGroupId and language information. The object is also
updated with language and ESM return and response codes.

Conditions

INVREQ, NOTAUTH, USERIDERR

Chapter 3. Foundation Classes: reference 223

waitForAID (1)
Waits for any input and returns an enumeration, defined in this class, that indicates which AID key is
expected.

AIDVal waitForAID()

waitForAID (2)
Waits for the specified AID key to be pressed, before returning control. This method loops, receiving input
from the terminal, until the correct AID key is pressed by the operator.

void waitForAID(AIDVal aid)

aid
An enumeration, defined in this class, that indicates which AID key was last pressed.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

width
Returns the width of the screen in characters.

unsigned short width(Icc::getopt opt = Icc::object)

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the terminal work area.

IccBuf& workArea()

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

224 CICS TS for z/OS: C++ OO Class Libraries

Method Class

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

AIDVal

ENTER

CLEAR

PA1 to PA3

PF1 to PF24

Case

upper

mixed

Color

defaultColor

blue

red

Chapter 3. Foundation Classes: reference 225

pink

green

cyan

yellow

neutral

Highlight

defaultHighlight

blink

reverse

underscore

NextTransIdOpt

queue
Queue the transaction with any other outstanding starts queued on the terminal.

immediate
Start the transaction immediately, that is, before any other outstanding starts queued on the terminal.

IccTerminalData class
IccTerminalData is a singleton class owned by IccTerminal. It contains information about the terminal
characteristics.

See “data” on page 212 in IccTerminal class).

IccBase
 IccResource
 IccTerminalData

Header file: ICCTMDEH

Sample: ICC$TRM

IccTerminalData constructor (protected)

Constructor

IccTerminalData()

226 CICS TS for z/OS: C++ OO Class Libraries

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the abendCode method
in“abendCode” on page 62.

alternateHeight
Returns the alternate height of the screen, in lines.

unsigned short alternateHeight(Icc::GetOpt opt = Icc::object)

opt
An enumeration that indicates whether the information in the object should be refreshed from CICS
before being extracted. The default is not to refresh.

Conditions

INVREQ

alternateWidth
Returns the alternate width of the screen, in characters.

unsigned short alternateWidth(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

defaultHeight
Returns the default height of the screen, in lines.

unsigned short defaultHeight(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

defaultWidth
Returns the default width of the screen, in characters.

unsigned short defaultWidth(Icc::GetOpt opt = Icc::object)

Chapter 3. Foundation Classes: reference 227

Conditions

INVREQ

graphicCharCodeSet
Returns the binary code page global identifier as a value in the range 1 to 65534, or 0 for a non-graphics
terminal.

unsigned short graphicCharCodeSet(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

graphicCharSetId
Returns the graphic character set global identifier as a number in the range 1 to 65534, or 0 for a non-
graphics terminal.

unsigned short graphicCharSetId(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isAPLKeyboard
Returns a boolean that indicates whether the terminal has the APL keyboard feature.

Icc::Bool isAPLKeyboard(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isAPLText
Returns a boolean that indicates whether the terminal has the APL text feature.

Icc::Bool isAPLText(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

228 CICS TS for z/OS: C++ OO Class Libraries

isBTrans
Returns a boolean that indicates whether the terminal has the background transparency capability.

Icc::Bool isBTrans(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isColor
Returns a boolean that indicates whether the terminal has the extended color capability.

Icc::Bool isColor(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isEWA
Returns a Boolean that indicates whether the terminal supports Erase Write Alternative.

Icc::Bool isEWA(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isExtended3270
Returns a Boolean that indicates whether the terminal supports the 3270 extended data stream.

Icc::Bool isExtended3270(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isFieldOutline
Returns a boolean that indicates whether the terminal supports field outlining.

Icc::Bool isFieldOutline(Icc::GetOpt opt = Icc::object)

Chapter 3. Foundation Classes: reference 229

Conditions

INVREQ

isGoodMorning
Returns a boolean that indicates whether the terminal has a 'good morning' message.

Icc::Bool isGoodMorning(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isHighlight
Returns a boolean that indicates whether the terminal has extended highlight capability.

Icc::Bool isHighlight(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isKatakana
Returns a boolean that indicates whether the terminal supports Katakana.

Icc::Bool isKatakana(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isMSRControl
Returns a boolean that indicates whether the terminal supports magnetic slot reader control.

Icc::Bool isMSRControl(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

230 CICS TS for z/OS: C++ OO Class Libraries

isPS
Returns a boolean that indicates whether the terminal supports programmed symbols.

Icc::Bool isPS(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isSOSI
Returns a boolean that indicates whether the terminal supports mixed EBCDIC/DBCS fields.

Icc::Bool isSOSI(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isTextKeyboard
Returns a boolean that indicates whether the terminal supports TEXTKYBD.

Icc::Bool isTextKeyboard(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isTextPrint
Returns a boolean that indicates whether the terminal supports TEXTPRINT.

Icc::Bool isTextPrint(Icc::GetOpt opt = Icc::object)

Conditions

INVREQ

isValidation
Returns a boolean that indicates whether the terminal supports validation.

Icc::Bool isValidation(Icc::GetOpt opt = Icc::object)

Chapter 3. Foundation Classes: reference 231

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccTime class
IccTime is used to contain time information and is the base class from which IccAbsTime,
IccTimeInterval, and IccTimeOfDay classes are derived.

IccBase
 IccResource
 IccTime

232 CICS TS for z/OS: C++ OO Class Libraries

Header file: ICCTIMEH

IccTime constructor (protected)

Constructor

IccTime (unsigned long hours = 0,
 unsigned long minutes = 0,
 unsigned long seconds = 0)

hours
The number of hours

minutes
The number of minutes

seconds
The number of seconds

Public methods
These are the public methods in this class.

hours
Returns the hours component of time—the value specified in the constructor.

virtual unsigned long hours() const

minutes

virtual unsigned long minutes() const

Returns the minutes component of time—the value specified in the constructor.

seconds

virtual unsigned long seconds() const

Returns the seconds component of time—the value specified in the constructor.

timeInHours

virtual unsigned long timeInHours()

Returns the time in hours.

timeInMinutes

Chapter 3. Foundation Classes: reference 233

virtual unsigned long timeInMinutes()

Returns the time in minutes.

timeInSeconds

virtual unsigned long timeInSeconds()

Returns the time in seconds.

type

Type type() const

Returns an enumeration, defined in this class, that indicates what type of subclass of IccTime this is.

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

className IccBase

classType IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

isEDFOn IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

Enumerations

234 CICS TS for z/OS: C++ OO Class Libraries

Type

absTime
The object is of IccAbsTime class. It is used to represent a current date and time as the number of
milliseconds that have elapsed since the beginning of the year 1900.

timeInterval
The object is of IccTimeInterval class. It is used to represent a length of time, such as 5 minutes.

timeOfDay
The object is of IccTimeOfDay class. It is used to represent a particular time of day, such as midnight.

IccTimeInterval class
This class holds information about a time interval.

IccBase
 IccResource
 IccTime
 IccTimeInterval

Header file: ICCTIMEH

IccTimeInterval constructors

Constructor (1)

IccTimeInterval (unsigned long hours = 0,
 unsigned long minutes = 0,
 unsigned long seconds = 0)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
The copy constructor.

IccTimeInterval(const IccTimeInterval& time)

Chapter 3. Foundation Classes: reference 235

Public methods
These are the public methods in this class.

operator=
Assigns one IccTimeInterval object to another.

IccTimeInterval& operator=(const IccTimeInterval& timeInterval)

set
Changes the time held in the IccTimeInterval object.

void set (unsigned long hours,
 unsigned long minutes,
 unsigned long seconds)

hours
The new hours setting

minutes
The new minutes setting

seconds
The new seconds setting

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

hours IccTime

isEDFOn IccResource

minutes IccTime

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

236 CICS TS for z/OS: C++ OO Class Libraries

Method Class

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

timeInHours IccTime

timeInMinutes IccTime

timeInSeconds IccTime

type IccTime

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccTimeOfDay class
This class holds information about the time of day.

IccBase
 IccResource
 IccTime
 IccTimeOfDay

Header file: ICCTIMEH

IccTimeOfDay constructors

Constructor (1)

IccTimeOfDay (unsigned long hours = 0,
 unsigned long minutes = 0,
 unsigned long seconds = 0)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
The copy constructor

Chapter 3. Foundation Classes: reference 237

IccTimeOfDay(const IccTimeOfDay& time)

Public methods
These are the public methods in this class.

operator=
Assigns one IccTimeOfDay object to another.

IccTimeOfDay& operator=(const IccTimeOfDay& timeOfDay)

set
Changes the time held in the IccTimeOfDay object.

void set (unsigned long hours,
 unsigned long minutes,
 unsigned long seconds)

hours
The new hours setting

minutes
The new minutes setting

seconds
The new seconds setting

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

hours IccTime

isEDFOn IccResource

minutes IccTime

238 CICS TS for z/OS: C++ OO Class Libraries

Method Class

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

timeInHours IccTime

timeInMinutes IccTime

timeInSeconds IccTime

type IccTime

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

setCustomClassNum IccBase

IccTPNameId class
IccTPNameId class holds a 1-64 byte TP partner name.

IccBase
 IccResourceId
 IccTPNameId

IccTPNameId class holds a 1-64 byte TP partner name.

Header file: ICCRIDEH

IccTPNameId constructors

Constructor (1)

IccTPNameId(const char* name)

name
The 1- to 64-character TP name.

Constructor (2)
The copy constructor.

IccTPNameId(const IccTPNameId& id)

Chapter 3. Foundation Classes: reference 239

id
A reference to an IccTPNameId object.

Public methods
These are the public methods in this class.

operator= (1)

IccTPNameId& operator=(const char* name)

name
The 1- to 64-character TP name.

operator= (2)
Assigns a new value.

IccTPNameId& operator=(const IccTPNameId& id)

id
A reference to an IccTPNameId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

240 CICS TS for z/OS: C++ OO Class Libraries

IccTransId class
IccTransId class identifies a transaction name in the CICS system.

IccBase
 IccResourceId
 IccTransId

Header file: ICCRIDEH

IccTransId constructors

Constructor (1)

IccTransId(const char* name)

name
The 4-character transaction name.

Constructor (2)
The copy constructor.

IccTransId(const IccTransId& id)

id
A reference to an IccTransId object.

Public methods
These are the public methods in this class.

operator= (1)

IccTransId& operator=(const char* name)

name
The 4-character transaction name.

operator= (2)
Assigns a new value.

IccTransId& operator=(const IccTransId& id)

Chapter 3. Foundation Classes: reference 241

id
A reference to an IccTransId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccUser class
This class represents a CICS user.

IccBase
 IccResource
 IccUser

Header file: ICCUSREH

Sample: ICC$USR

IccUser constructors

Constructor (1)

IccUser (const IccUserId& id,
 const IccGroupId* gid = 0)

id
A reference to an IccUserId object that contains the user ID name

242 CICS TS for z/OS: C++ OO Class Libraries

gid
An optional pointer to an IccGroupId object that contains information about the user's group ID.

Constructor (2)

IccUser (const char* userName,
 const char* groupName = 0)

userName
The 8-character user ID

gid
The optional 8-character group ID.

Public methods
These are the public methods in this class.

changePassword
Attempts to change the user's password.

void changePassword (const char* password,
 const char* newPassword)

password
The user's existing password—a string of up to 8 characters

newPassword
The user's new password—a string of up to 8 characters.

Conditions

INVREQ, NOTAUTH, USERIDERR

daysUntilPasswordExpires
Returns the number of days before the password expires. This method is valid after a successful
verifyPassword method call in this class.

unsigned short daysUntilPasswordExpires() const

ESMReason

unsigned long ESMReason() const

Returns the external security reason code of interest if a changePassword or verifyPassword method
call is unsuccessful.

Chapter 3. Foundation Classes: reference 243

ESMResponse

unsigned long ESMResponse() const

Returns the external security response code of interest if a changePassword or verifyPassword method
call is unsuccessful.

groupId

const IccGroupId& groupId() const

Returns a reference to the IccGroupId object that holds information on the user's group ID.

invalidPasswordAttempts

unsigned long invalidPasswordAttempts() const

Returns the number of times the wrong password has been entered for this user since the last successful
signon. This method should only be used after a successful verifyPassword method.

language

const char* language() const

Returns the user's language after a successful call to signon in IccTerminal.

lastPasswordChange

const IccAbsTime& lastPasswordChange() const

Returns a reference to an IccAbsTime object that holds the time when the password was last changed.
This method should only be used after a successful verifyPassword method.

lastUseTime

const IccAbsTime& lastUseTime() const

Returns a reference to an IccAbsTime object that holds the time when the user ID was last used. This
method should only be used after a successful verifyPassword method.

passwordExpiration

const IccAbsTime& passwordExpiration() const

Returns a reference to an IccAbsTime object that holds the time when the password will expire. This
method should only be used after a successful verifyPassword method.

setLanguage

244 CICS TS for z/OS: C++ OO Class Libraries

void setLanguage(const char* language)

Sets the IBM-defined national language code that is to be associated with this user. This should be a
three character value.

verifyPassword

void verifyPassword(const char* password)

Checks that the supplied password matches the password recorded by the external security manager for
this IccUser.

Conditions

INVREQ, NOTAUTH, USERIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class

actionOnCondition IccResource

actionOnConditionAsChar IccResource

actionsOnConditionsText IccResource

classType IccBase

className IccBase

condition IccResource

conditionText IccResource

customClassNum IccBase

handleEvent IccResource

id IccResource

isEDFOn IccResource

name IccResource

operator delete IccBase

operator new IccBase

setActionOnAnyCondition IccResource

setActionOnCondition IccResource

setActionsOnConditions IccResource

setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

setClassName IccBase

Chapter 3. Foundation Classes: reference 245

Method Class

setCustomClassNum IccBase

IccUserId class
IccUserId class represents an 8-character user name.

IccBase
 IccResourceId
 IccUserId

IccUserId class represents an 8-character user name.

Header file: ICCRIDEH

IccUserId constructors

Constructor (1)

IccUserId(const char* name)

name
The 8-character name of the user ID.

Constructor (2)
The copy constructor.

IccUserId(const IccUserId& id)

id
A reference to an IccUserId object.

Public methods
These are the public methods in this class.

operator= (1)

IccUserId& operator=(const char* name)

name
The 8-character name of the user ID.

246 CICS TS for z/OS: C++ OO Class Libraries

operator= (2)
Assigns a new value.

IccUserId& operator=(const IccUserId& id)

id
A reference to an IccUserId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class

classType IccBase

className IccBase

customClassNum IccBase

name IccResourceId

nameLength IccResourceId

operator delete IccBase

operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class

operator= IccResourceId

setClassName IccBase

setCustomClassNum IccBase

IccValue structure
This structure contains CICS-value data areas (CVDAs) as an enumeration.

Header file: ICCVALEH

Enumeration

Listing of valid CVDAs
Valid CVDAs are listed in the CVDAs and numeric values topics in the System Programming reference
information.

Chapter 3. Foundation Classes: reference 247

main function
You are recommended to include this code in your application.

It initializes the CICS Foundation Classes correctly, provides default exception handling, and releases
allocated memory after it is finished. You may substitute your own variation of this main function, but this
should rarely be necessary.

Source file: ICCMAIN

The stub has three functions:

1. It initializes the Foundation Classes environment. You can customize the way it does this by using
#defines that control:

• Memory management (see Storage management)
• Family Subset enforcement (see “FamilySubset” on page 61)
• EDF enablement (see Program debugging)

2. It provides a default definition of a class IccUserControl, derived from IccControl, that includes a
default constructor and run method.

3. It invokes the run method of the user's control object using a try-catch construct.

The following information is the functional part of the main code:

 int main() 1

 {
 Icc::initializeEnvironment(ICC_CLASS_MEMORY_MGMT, 2

 ICC_FAMILY_SUBSET,
 ICC_EDF_BOOL);
 try 3

 {
 ICC_USER_CONTROL control; 4

 control.run(); 5

 }
 catch(IccException& exc) 6

 {
 Icc::catchException(exc); 7

 }
 catch(…) 8

 {
 Icc::unknownException(); 9

 }
 Icc::returnToCICS(); 10

 }

 1
This is the main C++ entry point.

 2
This call initializes the environment and is essential. The three parameters have previously been
defined to the defaults for the platform.

 3
Run the user's application code, using try and catch, in case the application code does not catch
exceptions.

 4
Create control object.

248 CICS TS for z/OS: C++ OO Class Libraries

 5
Invoke run method of control object (defined as pure virtual in IccControl.

 6
Catch any IccException objects not caught by the application.

 7
Call this function to abend task.

 8
Catch any other exceptions not caught by application.

 9
Call this function to abend task.

 10
Return control to CICS.

Chapter 3. Foundation Classes: reference 249

250 CICS TS for z/OS: C++ OO Class Libraries

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2020 251

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 5 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• CICS security
• Developing for external interfaces
• Reference: application developmenth
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 5 , but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
5 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

252 Notices

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/system-programming/developing_sysprogs.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/security/security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/applications/developing/interfaces/externalInterfaces.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-systemprogramming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.5.0/reference/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex® SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java™ Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 5 , but that
might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Notices 253

https://www.ibm.com/legal/copytrade.shtml

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

254 Notices

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 255

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

256 CICS TS for z/OS: C++ OO Class Libraries

Index

Special Characters
… (parameter)

in sendLine 220

Numerics
0 (zero)

in actionOnConditionAsChar 158

A
A

in actionOnConditionAsChar 158
in operatingSystem 191

abend
in IccTask class 194
in Parameter level 37

abend codes 32
abendCode

in IccAbendData class 62
abendCode (parameter)

in abend 194
abendData

in IccTask class 194
AbendDumpOpt

in Enumerations 202
in IccTask class 202

AbendHandlerOpt
in Enumerations 202
in IccTask class 202

abendTask
in ActionOnCondition 163
in CICS conditions 34

absTime
in IccClock class 87
in Type 235

absTime (parameter)
in Constructor 67
in operator= 69

access
in IccFile class 113

Access
in Enumerations 123
in IccFile class 123

access (parameter)
in setAccess 120

Accessing start data
in Starting transactions asynchronously 20
in Using CICS Services 20

accessMethod
in IccFile class 114

action (parameter)
in setActionOnAnyCondition 161
in setActionOnCondition 161

actionOnCondition
in IccResource class 157

ActionOnCondition
in Enumerations 162
in IccResource class 162

actionOnConditionAsChar
in IccResource class 158

actions (parameter)
in setActionsOnConditions 161

actionsOnConditionsText
in IccResource class 158

addable
in Access 123

address
in IccProgram class 147

AID
in IccTerminal class 212

aid (parameter)
in waitForAID 224

AIDVal
in Enumerations 225
in IccTerminal class 225

AIX, CICS for
in Platform differences 36

allocate
in IccSession class 171

AllocateOpt
in Enumerations 179
in IccSession class 179

alternateHeight
in IccTerminalData class 227
in Public methods 227

alternateWidth
in IccTerminalData class 227
in Public methods 227

append
in IccBuf class 78

applName
in IccSystem class 188

ASRAInterrupt
in IccAbendData class 62
in Public methods 62

ASRAKeyType
in IccAbendData class 63
in Public methods 63

ASRAPSW
in IccAbendData class 63

ASRARegisters
in IccAbendData class 63
in Public methods 63

ASRASpaceType
in IccAbendData class 64
in Public methods 64

ASRAStorageType
in IccAbendData class 64
in Public methods 64

assign
in Example of file control 18
in IccBuf class 79

Index 257

assign (continued)
in IccKey class 138

automatic
in UpdateMode 91

Automatic condition handling (callHandleEvent)
in CICS conditions 35
in Conditions, errors, and exceptions 35

automatic creation 5
automatic deletion 5
auxStorage

in Location 208

B
base class

overview 6
Base classes

in Overview of the foundation classes 6
baseName (parameter)

in NameOpt 76
BASESPACE

in ASRASpaceType 64
BDAM 15
beginBrowse

in IccSystem class 188, 189
beginInsert

in Writing records 16
beginInsert (VSAM only)

in IccFile class 114
in Public methods 114

below
in StorageOpts 203

blink
in Highlight 226

blue
in Color 225

Bool
in Enumerations 60
in Icc structure 60

BoolSet
in Enumerations 60
in Icc structure 60

boolText
in Functions 58
in Icc structure 58

browsable
in Access 123

browsing records 17
Browsing records

in File control 17
in Using CICS Services 17

buf (parameter)
in dump 195
in put 216
in send3270Data 219
in sendLine 220
in setData 183

buffer
in Example of starting transactions 21, 22

buffer (parameter)
in Constructor 78
in operator!= 82
in operator« 82, 214
in operator+= 82

buffer (parameter) (continued)
in operator= 81
in operator== 82
in Polymorphic Behavior 40
in put 104, 131, 160, 205
in registerData 182
in rewriteRecord 120
in send 217, 218
in send3270Data 218, 219
in sendLine 219, 220
in writeRecord 122

Buffer objects
Data area extensibility 12
Data area ownership 12
IccBuf constructors 13
IccBuf methods 13
Working with IccResource subclasses 14

buffers 12, 14
byAddress

in LockType 169
byValue

in LockType 169

C
C++ exceptions 32
C++ Exceptions and the Foundation Classes

in Conditions, errors, and exceptions 32
callHandleEvent

in ActionOnCondition 163
in CICS conditions 34

calling conventions 42
Calling methods on a resource object

in Overview of the foundation classes 12
in Using CICS resources 12

callingProgramId
in IccControl class 97
in Public methods 97

cancel
in Cancelling unexpired start requests 20
in IccRequestId class 155
in IccStartRequestQ class 180, 181

cancelAbendHandler
in IccControl class 97

cancelAlarm
in IccClock class 87

Cancelling unexpired start requests
in Starting transactions asynchronously 20
in Using CICS Services 20

Case
in Enumerations 225
in IccTerminal class 225

caseOpt (parameter)
in receive 216
in receive3270Data 217

catch
in C++ Exceptions and the Foundation Classes 32, 33
in Exception handling (throwException) 35, 36
in main function 248

catchException
in Functions 58
in Icc structure 58

ch (parameter)
in operator« 83, 214

258 CICS TS for z/OS: C++ OO Class Libraries

changePassword
in IccUser class 243
in Public methods 243

char*
in C++ Exceptions and the Foundation Classes 33

CheckOpt
in Enumerations 186
in IccStartRequestQ class 186

CICS
in ASRAStorageType 64
in GetOpt 61
in Platform differences 36

CICS conditions
abendTask 36
automatic condition handling 35
Automatic condition handling (callHandleEvent) 35
callHandleEvent 35
exception handling 35
Exception handling (throwException) 35
in Conditions, errors, and exceptions 34
manual condition handling 34
Manual condition handling (noAction) 34
noAction 34
severe error handling 36
Severe error handling (abendTask) 36
throwException 35

CICS for AIX
in Platform differences 36

CICS resources 11
CICSCondition

in C++ Exceptions and the Foundation Classes 34
in Type 112

CICSDataKey
in StorageOpts 203

CICSEXECKEY
in ASRAKeyType 63

CICSInternalTask
in StartType 203

class
base 6
resource 8
resource identification 7
singleton 11
support 10

ClassMemoryMgmt
in Enumerations 61
in Icc structure 61

className
in IccBase class 74
in IccEvent class 108
in IccException class 110
in IccMessage class 143

className (parameter)
in Constructor 109, 110, 143
in setClassName 75

classType
in IccBase class 74
in IccEvent class 108
in IccException class 110

ClassType
in Enumerations 75
in IccBase class 75

classType (parameter)
in Constructor 109, 110, 157

clear
in Example of polymorphic behavior 41
in IccDataQueue class 103
in IccResource class 159
in IccTempStore class 205
in IccTerminal class 212
in Polymorphic Behavior 40

CLEAR
in AIDVal 225

clearData
in IccStartRequestQ class 181

clearInputMessage
in IccProgram class 147

clearPrefix
in IccJournal class 131

closed
in Status 124

cmmCICS
in ClassMemoryMgmt 61
in Storage management 42

cmmDefault
in ClassMemoryMgmt 61
in Storage management 42

cmmNonCICS
in ClassMemoryMgmt 61
in Storage management 42

Codes
in Enumerations 92
in IccCondition structure 92

col (parameter)
in send 217, 218
in send3270Data 219
in sendLine 220
in setCursor 221

Color
in Enumerations 225
in IccTerminal class 225

color (parameter)
in operator« 213
in setColor 220

commArea
in IccControl class 97

commArea (parameter)
in link 148
in setNextCommArea 222

commitOnReturn
in CommitOpt 150

CommitOpt
in Enumerations 150
in IccProgram class 150

commitUOW
in IccTask class 194

compiling programs 29
Compiling Programs

in Compiling, executing, and debugging 29
complete

in Kind 141
complete key 15
completeLength

in IccKey class 139
in Public methods 139

completeLength (parameter)
in Constructor 138

condition

Index 259

condition (continued)
in IccEvent class 108
in IccResource class 159
in Manual condition handling (noAction) 34
in Resource classes 9

condition (parameter)
in actionOnCondition 158
in actionOnConditionAsChar 158
in conditionText 58, 59
in setActionOnCondition 161

condition 0 (NORMAL)
in actionsOnConditionsText 158

condition 1 (ERROR)
in actionsOnConditionsText 158

condition 2 (RDATT)
in actionsOnConditionsText 158

condition 3 (WRBRK)
in actionsOnConditionsText 158

condition 4 (ICCEOF)
in actionsOnConditionsText 158

condition 5 (EODS)
in actionsOnConditionsText 158

condition 6 (EOC)
in actionsOnConditionsText 158

Conditions, errors, and exceptions
Automatic condition handling (callHandleEvent) 35
Exception handling (throwException) 35
Manual condition handling (noAction) 34
Method level 37
Object level 36
Parameter level 37
Severe error handling (abendTask) 36

conditionText
in Functions 58
in Icc structure 58
in IccEvent class 108
in IccResource class 159

ConditionType
in Enumerations 163
in IccResource class 163

confirmation
in SendOpt 180

connectProcess
in IccSession class 171, 172
in Public methods 171, 172

console
in IccControl class 97

Constructor
in IccAbendData class 62
in IccAbendData constructor (protected) 62
in IccAbsTime class 67
in IccAbsTime constructor 67
in IccAlarmRequestId class 71
in IccAlarmRequestId constructors 71
in IccBase class 73
in IccBase constructor (protected) 73
in IccBuf class 77, 78
in IccBuf constructors 77, 78
in IccClock class 87
in IccClock constructor 87
in IccConsole class 93
in IccConsole constructor (protected) 93
in IccControl class 97
in IccControl constructor (protected) 97

Constructor (continued)
in IccConvId class 101
in IccConvId constructors 101
in IccDataQueue class 103
in IccDataQueue constructors 103
in IccDataQueueId class 106
in IccDataQueueId constructors 106
in IccEvent class 107
in IccEvent constructor 107
in IccException class 109
in IccException constructor 109
in IccFile class 113
in IccFile constructors 113
in IccFileId class 124
in IccFileId constructors 124
in IccFileIterator class 126
in IccFileIterator constructor 126
in IccGroupId class 128, 129
in IccGroupId constructors 128, 129
in IccJournal class 130
in IccJournal constructors 130
in IccJournalId class 134, 135
in IccJournalId constructors 134, 135
in IccJournalTypeId class 136
in IccJournalTypeId constructors 136
in IccKey class 138
in IccKey constructors 138
in IccLockId class 141, 142
in IccLockId constructors 141, 142
in IccMessage class 143
in IccMessage constructor 143
in IccPartnerId class 145
in IccPartnerId constructors 145
in IccProgram class 146, 147
in IccProgram constructors 146, 147
in IccProgramId class 150
in IccProgramId constructors 150
in IccRBA class 152
in IccRBA constructor 152
in IccRecordIndex class 154
in IccRecordIndex constructor (protected) 154
in IccRequestId class 155, 156
in IccRequestId constructors 155, 156
in IccResource class 157
in IccResource constructor (protected) 157
in IccResourceId class 163, 164
in IccResourceId constructors (protected) 163, 164
in IccRRN class 165
in IccRRN constructors 165
in IccSemaphore class 167
in IccSemaphore constructor 167
in IccSession class 170, 171
in IccSession constructor (protected) 171
in IccSession constructors (public) 170
in IccStartRequestQ class 180
in IccStartRequestQ constructor (protected) 180
in IccSysId class 186, 187
in IccSysId constructors 186, 187
in IccSystem class 188
in IccSystem constructor (protected) 188
in IccTask class 193
in IccTask Constructor (protected) 193
in IccTempStore class 204
in IccTempStore constructors 204

260 CICS TS for z/OS: C++ OO Class Libraries

Constructor (continued)
in IccTempStoreId class 208
in IccTempStoreId constructors 208
in IccTermId class 210
in IccTermId constructors 210
in IccTerminal class 211
in IccTerminal constructor (protected) 211
in IccTerminalData class 226
in IccTerminalData constructor (protected) 226
in IccTime class 233
in IccTime constructor (protected) 233
in IccTimeInterval class 235
in IccTimeInterval constructors 235
in IccTimeOfDay class 237
in IccTimeOfDay constructors 237
in IccTPNameId class 239
in IccTPNameId constructors 239
in IccTransId class 241
in IccTransId constructors 241
in IccUser class 242, 243
in IccUser constructors 242, 243
in IccUserId class 246
in IccUserId constructors 246

converse
in IccSession class 172

convId
in IccSession class 173

convId (parameter)
in Constructor 101

convName (parameter)
in Constructor 101
in operator= 102

copt (parameter)
in setStartOpts 184

createDump
in AbendDumpOpt 202

creating a resource object 11
Creating a resource object

in Overview of the foundation classes 11
in Using CICS resources 11
Singleton classes 11

Creating an object
in C++ Objects 5

creating object 5
current (parameter)

in setPrefix 132
cursor

in Finding out information about a terminal 27
in IccTerminal class 212

customClassNum
in IccBase class 74
in Public methods 74

cut
in IccBuf class 79
in IccBuf constructors 13

CVDA
in Enumeration 247
in IccValue structure 247

cyan
in Color 226

D
data

data (continued)
in Accessing start data 20
in Finding out information about a terminal 27
in IccStartRequestQ class 181
in IccTerminal class 212

data (parameter)
in enterTrace 195, 196
in put 175

data area extensibility 12
Data area extensibility

in Buffer objects 12
in IccBuf class 12

data area ownership 12
Data area ownership

in Buffer objects 12
in IccBuf class 12

dataArea
in IccBuf class 79

dataArea (parameter)
in append 78
in assign 79, 139
in Constructor 77
in insert 80, 81
in overlay 85
in replace 85

dataAreaLength
in IccBuf class 80
in Public methods 80

dataAreaOwner
in Data area ownership 12
in IccBuf class 80

DataAreaOwner
in Enumerations 86
in IccBuf class 86

dataAreaType
in Data area extensibility 12
in IccBuf class 80

DataAreaType
in Enumerations 86
in IccBuf class 86

dataItems
in Example of polymorphic behavior 41

dataLength
in IccBuf class 80

dataqueue
in FacilityType 203

dataQueueTrigger
in StartType 203

date
in IccAbsTime class 67
in IccClock class 87

date services 28
dateFormat

in IccSystem class 189
DateFormat

in Enumerations 90
in IccClock class 90

dateSeparator (parameter)
in date 67, 87, 88
in Example of time and date services 28

dayOfMonth
in Example of time and date services 29
in IccAbsTime class 67
in IccClock class 88

Index 261

dayOfWeek
in Example of time and date services 29
in IccAbsTime class 68
in IccClock class 88

DayOfWeek
in Enumerations 91
in IccClock class 91

daysSince1900
in Example of time and date services 29
in IccAbsTime class 68
in IccClock class 88

daysUntilPasswordExpires
in IccUser class 243

dComplete
in DumpOpts 202

dDCT
in DumpOpts 202

dDefault
in DumpOpts 202

debugging programs 31
Debugging Programs

in Compiling, executing, and debugging 31
defaultColor

in Color 225
defaultHeight

in IccTerminalData class 227
in Public methods 227

defaultHighlight
in Highlight 226

defaultWidth
in IccTerminalData class 227
in Public methods 227

delay
in IccTask class 194
in Support Classes 10

deletable
in Access 123

delete
in Deleting an object 6
in Storage management 42

delete operator 5
deleteLockedRecord

in Deleting locked records 17
in IccFile class 114

deleteRecord
in Deleting normal records 17
in IccFile class 114

deleteRecord method 17
Deleting an object

in C++ Objects 6
deleting items 25
Deleting items

in Temporary storage 25
in Using CICS Services 25

Deleting locked records
in Deleting records 17
in File control 17

Deleting normal records
in Deleting records 17
in File control 17

deleting queues 23
Deleting queues

in Transient Data 23
in Using CICS Services 23

deleting records 17
Deleting records

Deleting locked records 17
Deleting normal records 17
in File control 17
in Using CICS Services 17

dFCT
in DumpOpts 202

DFHCURDI 3
DFHCURDS 3
disabled

in Status 124
doSomething

in Using an object 6
dPCT

in DumpOpts 202
DPL

in StartType 203
dPPT

in DumpOpts 202
dProgram

in DumpOpts 202
dSIT

in DumpOpts 202
dStorage

in DumpOpts 202
dTables

in DumpOpts 202
dTask

in DumpOpts 202
dTCT

in DumpOpts 202
dTerminal

in DumpOpts 202
dTRT

in DumpOpts 202
dump

in IccTask class 195
dumpCode (parameter)

in dump 195
DumpOpts

in Enumerations 202
in IccTask class 202

dynamic creation 5
dynamic deletion 5
dynamic link library 2
Dynamic link library

in Installed contents 2
Location 2

E
ECBList (parameter)

in waitExternal 200
EDF (parameter)

in initializeEnvironment 59
empty

in Deleting items 25
in Deleting queues 23
in IccDataQueue class 103
in IccTempStore class 205
in Temporary storage 25
in Transient Data 23

enabled

262 CICS TS for z/OS: C++ OO Class Libraries

enabled (continued)
in Status 124

enableStatus
in IccFile class 115

endBrowse
in IccSystem class 189

endInsert
in Writing records 16

endInsert (VSAM only)
in IccFile class 115
in Public methods 115

endl
in Example of terminal control 28

ENTER
in AIDVal 225

enterTrace
in IccTask class 195

entryPoint
in IccProgram class 147

Enumeration
CVDA 247
in IccValue structure 247

Enumerations
AbendDumpOpt 202
AbendHandlerOpt 202
Access 123
ActionOnCondition 162
AIDVal 225
AllocateOpt 179
Bool 60
BoolSet 60
Case 225
CheckOpt 186
ClassMemoryMgmt 61
ClassType 75
Codes 92
Color 225
CommitOpt 150
ConditionType 163
DataAreaOwner 86
DataAreaType 86
DateFormat 90
DayOfWeek 91
DumpOpts 202
FacilityType 202
FamilySubset 61
GetOpt 61
HandleEventReturnOpt 163
Highlight 226
in Icc structure 60
in IccBase class 75
in IccBuf class 86
in IccClock class 90
in IccCondition structure 91
in IccConsole class 96
in IccException class 112
in IccFile class 123
in IccJournal class 134
in IccKey class 141
in IccProgram class 150
in IccRecordIndex class 155
in IccResource class 162
in IccSemaphore class 169
in IccSession class 179

Enumerations (continued)
in IccStartRequestQ class 186
in IccSystem class 193
in IccTask class 202
in IccTempStore class 208
in IccTerminal class 225
in IccTime class 234
Kind 141
LifeTime 169
LoadOpt 150
Location 208
LockType 169
MonthOfYear 91
NameOpt 76
NextTransIdOpt 226
NoSpaceOpt 208
Options 134
Platforms 61
ProtectOpt 186
Range 93
ReadMode 123
ResourceType 193
RetrieveOpt 186
SearchCriterion 124
SendOpt 179
SeverityOpt 96
StartType 203
StateOpt 180
Status 124
StorageOpts 203
SyncLevel 180
TraceOpt 203
Type 112, 155, 235
UpdateMode 91
WaitPostType 203
WaitPurgeability 203

equalToKey
in SearchCriterion 124

erase
in Example of terminal control 28
in IccTerminal class 212
in Sending data to a terminal 26

errorCode
in IccSession class 173

ESDS
in File control 15

ESDS file 15
ESMReason

in IccUser class 243
ESMResponse

in IccUser class 244
event (parameter)

in handleEvent 159
Example of file control

in File control 17
in Using CICS Services 17

Example of managing transient data
in Transient Data 24
in Using CICS Services 24

Example of polymorphic behavior
in Miscellaneous 41
in Polymorphic Behavior 41

Example of starting transactions
in Starting transactions asynchronously 21

Index 263

Example of starting transactions (continued)
in Using CICS Services 21

Example of Temporary Storage
in Temporary storage 25
in Using CICS Services 25

Example of terminal control
in Terminal control 27
in Using CICS Services 27

Example of time and date services
in Time and date services 28
in Using CICS Services 28

exception
in TraceOpt 203

exception (parameter)
in catchException 58

Exception handling (throwException)
in CICS conditions 35
in Conditions, errors, and exceptions 35

exceptionNum (parameter)
in Constructor 109, 110

exceptions 32
exceptionType (parameter)

in Constructor 109, 110
Executing Programs

in Compiling, executing, and debugging 31
extensible

in DataAreaType 86
external

in DataAreaOwner 86
extractProcess

in IccSession class 173
extractState

in StateOpt 180

F
facilityType

in IccTask class 196
FacilityType

in Enumerations 202
in IccTask class 202

fam (parameter)
in initializeEnvironment 59

familyConformanceError
in C++ Exceptions and the Foundation Classes 34
in Type 112

FamilySubset
in Enumerations 61
in Icc structure 61

FEPIRequest
in StartType 203

file (parameter)
in Constructor 126
in Example of file control 18

file control
browsing records 17
deleting records 17
example 17
rewriting records 16
updating records 16

File control
Browsing records 17
Deleting locked records 17
Deleting normal records 17

File control (continued)
Deleting records 17
Example of file control 17
in Using CICS Services 14
Reading ESDS records 15
Reading KSDS records 15
Reading records 15
Reading RRDS records 16
Updating records 16
Writing ESDS records 16
Writing KSDS records 16
Writing records 16
Writing RRDS records 16

fileName (parameter)
in Constructor 113, 124
in getFile 190
in operator= 125

Finding out information about a terminal
in Terminal control 27
in Using CICS Services 27

fixed
in DataAreaType 86

flush
in Example of terminal control 28
in IccSession class 173

for
in Example of file control 18

Form
in Polymorphic Behavior 40

format (parameter)
in append 78, 79
in assign 79
in date 67, 87, 88
in Example of time and date services 28
in send 217, 218
in send3270Data 218, 219
in sendLine 220

Foundation Class Abend codes
in Conditions, errors, and exceptions 32

free
in IccSession class 173

freeKeyboard
in IccTerminal class 212
in Sending data to a terminal 26

freeStorage
in IccSystem class 189
in IccTask class 196

fsAllowPlatformVariance
in FamilySubset 61
in Platform differences 36

fsDefault
in FamilySubset 61

fsEnforce
in FamilySubset 61
in Platform differences 36

fullAccess
in Access 123

Functions
boolText 58
catchException 58
conditionText 58
in Icc structure 58
initializeEnvironment 59
isClassMemoryMgmtOn 59

264 CICS TS for z/OS: C++ OO Class Libraries

Functions (continued)
isEDFOn 59
isFamilySubsetEnforcementOn 59
returnToCICS 60
setEDF 60
unknownException 60

G
generic

in Kind 141
generic key 15
get

in Example of polymorphic behavior 41
in IccDataQueue class 103
in IccResource class 159
in IccSession class 173
in IccTempStore class 205
in IccTerminal class 213
in Polymorphic Behavior 40

getFile
in IccSystem class 190

getNextFile
in IccSystem class 190

GetOpt
in Enumerations 61
in Icc structure 61

getStorage
in IccSystem class 190
in IccTask class 196

gid (parameter)
in Constructor 242, 243

graphicCharCodeSet
in IccTerminalData class 228

graphicCharSetId
in IccTerminalData class 228

green
in Color 226

groupId
in IccUser class 244

groupName (parameter)
in Constructor 129, 243
in operator= 129

gteqToKey
in SearchCriterion 124

H
H

in actionOnConditionAsChar 158
handleEvent

in Automatic condition handling (callHandleEvent) 35
in IccResource class 159

HandleEventReturnOpt
in Enumerations 163
in IccResource class 163

handPost
in WaitPostType 203

Header files
in Installed contents 1, 30
Location 2

height
in IccTerminal class 213

Highlight
in Enumerations 226
in IccTerminal class 226

highlight (parameter)
in operator« 214
in setHighlight 221

hold
in LoadOpt 150

hours
in IccAbsTime class 68
in IccTime class 233

hours (parameter)
in Constructor 233, 235, 237
in set 236, 238

I
Icc

in Foundation Classes—reference 45
in Foundation Classes: reference 45
in Method level 37
in Overview of the foundation classes 6

Icc structure
Bool 60
BoolSet 60
boolText 58
catchException 58
ClassMemoryMgmt 61
conditionText 58
FamilySubset 61
GetOpt 61
initializeEnvironment 59
isClassMemoryMgmtOn 59
isEDFOn 59
isFamilySubsetEnforcementOn 59
Platforms 61
returnToCICS 60
setEDF 60
unknownException 60

Icc::initializeEnvironment
in Storage management 42

ICC$BUF 3
ICC$CLK 3
ICC$HEL 3
ICC$SES1 3
ICC$SES2 3
IccAbendData

in Singleton classes 11
IccAbendData class

abendCode 62
ASRAInterrupt 62
ASRAKeyType 63
ASRAPSW 63
ASRARegisters 63
ASRASpaceType 64
ASRAStorageType 64
Constructor 62
instance 65
isDumpAvailable 65
originalAbendCode 65
programName 65

IccAbendData constructor (protected)
Constructor 62
in IccAbendData class 62

Index 265

IccAbsTime
in Base classes 7
in delay 195
in IccTime class 232
in Support Classes 10
in Time and date services 28

IccAbsTime class
Constructor 67
date 67
dayOfMonth 67
dayOfWeek 68
daysSince1900 68
hours 68
milliSeconds 68
minutes 68
monthOfYear 68
operator= 69
packedDecimal 69
seconds 69
time 69
timeInHours 69
timeInMinutes 69
timeInSeconds 70
year 70

IccAbsTime constructor
Constructor 67
in IccAbsTime class 67

IccAbsTime,
in Support Classes 10

IccAlarmRequestId
in IccAlarmRequestId class 71

IccAlarmRequestId class
Constructor 71
isExpired 72
operator= 72
setTimerECA 72
timerECA 73

IccAlarmRequestId constructors
Constructor 71
in IccAlarmRequestId class 71

IccBase
in Base classes 6
in Foundation Classes—reference 45
in IccAbendData class 62
in IccAbsTime class 66
in IccAlarmRequestId class 71
in IccBase class 73
in IccBuf class 77
in IccClock class 86
in IccConsole class 93
in IccControl class 96
in IccConvId class 101
in IccDataQueue class 102
in IccDataQueueId class 105
in IccEvent class 107
in IccException class 109
in IccFile class 112
in IccFileId class 124
in IccFileIterator class 126
in IccGroupId class 128
in IccJournal class 130
in IccJournalId class 134
in IccJournalTypeId class 136
in IccKey class 138

IccBase (continued)
in IccLockId class 141
in IccMessage class 143
in IccPartnerId class 145
in IccProgram class 146
in IccProgramId class 150
in IccRBA class 152
in IccRecordIndex class 154
in IccRequestId class 155
in IccResource class 157
in IccResourceId class 163
in IccRRN class 165
in IccSemaphore class 167
in IccSession class 170
in IccStartRequestQ class 180
in IccSysId class 186
in IccSystem class 188
in IccTask class 193
in IccTempStore class 204
in IccTempStoreId class 208
in IccTermId class 210
in IccTerminal class 211
in IccTerminalData class 226
in IccTime class 232
in IccTimeInterval class 235
in IccTimeOfDay class 237
in IccTPNameId class 239
in IccTransId class 241
in IccUser class 242
in IccUserId class 246
in Resource classes 8
in Resource identification classes 7
in Storage management 42
in Support Classes 10

IccBase class
className 74
classType 74
ClassType 75
Constructor 73
customClassNum 74
NameOpt 76
operator delete 74
operator new 75
overview 6
setClassName 75
setCustomClassNum 75

IccBase constructor (protected)
Constructor 73
in IccBase class 73

IccBuf
in Buffer objects 12
in C++ Exceptions and the Foundation Classes 33
in Data area extensibility 12
in Data area ownership 12
in Example of file control 18
in Example of managing transient data 24
in Example of polymorphic behavior 41
in Example of starting transactions 21–23
in Example of Temporary Storage 26
in Example of terminal control 27
in IccBuf class 12, 77
in IccBuf constructors 13
in IccBuf methods 13
in Reading data 23

266 CICS TS for z/OS: C++ OO Class Libraries

IccBuf (continued)
in Reading items 25
in Scope of data in IccBuf reference returned from 'read'
methods 43
in Support Classes 11
in Working with IccResource subclasses 14

IccBuf class
append 78
assign 79
Constructor 77, 78
constructors 13
cut 79
data area extensibility 12
Data area extensibility 12
data area ownership 12
Data area ownership 12
dataArea 79
dataAreaLength 80
dataAreaOwner 80
DataAreaOwner 86
dataAreaType 80
DataAreaType 86
dataLength 80
IccBuf constructors 13
IccBuf methods 13
in Buffer objects 12
insert 80
isFMHContained 81
methods 13
operator const char* 81
operator!= 82
operator« 82, 84
operator+= 81, 82
operator= 81
operator== 82
overlay 84
replace 85
setDataLength 85
setFMHContained 85
Working with IccResource subclasses 14

IccBuf constructors
Constructor 77, 78
in Buffer objects 13
in IccBuf class 13, 77

IccBuf methods
in Buffer objects 13
in IccBuf class 13

IccBuf reference 43
IccClock

in Example of time and date services 28, 29
in IccAlarmRequestId class 71
in IccClock class 86
in Time and date services 28

IccClock class
absTime 87
cancelAlarm 87
Constructor 87
date 87
DateFormat 90
dayOfMonth 88
dayOfWeek 88
DayOfWeek 91
daysSince1900 88
milliSeconds 88

IccClock class (continued)
monthOfYear 88
MonthOfYear 91
setAlarm 89
time 89
update 89
UpdateMode 91
year 89

IccClock constructor
Constructor 87
in IccClock class 87

IccCondition
in C++ Exceptions and the Foundation Classes 34

IccCondition structure
Codes 92
Range 93

IccConsole
in Buffer objects 12
in Object level 36, 37
in Singleton classes 11

IccConsole class
Constructor 93
instance 93
overview 11
put 93
replyTimeout 94
resetRouteCodes 94
setAllRouteCodes 94
setReplyTimeout 94
setRouteCodes 94
SeverityOpt 96
write 95
writeAndGetReply 95

IccConsole constructor (protected)
Constructor 93
in IccConsole class 93

IccControl
in Base classes 7
in Example of starting transactions 21, 22
in IccControl class 96, 97
in IccProgram class 146
in main function 248, 249
in Mapping EXEC CICS calls to Foundation Class
methods 46
in Method level 37
in Singleton classes 11
in Support Classes 10

IccControl class
callingProgramId 97
cancelAbendHandler 97
commArea 97
console 97
Constructor 97
initData 98
instance 98
isCreated 98
overview 7, 11
programId 98
resetAbendHandler 98
returnProgramId 99
run 99
session 99
setAbendHandler 99
startRequestQ 99

Index 267

IccControl class (continued)
system 100
task 100
terminal 100

IccControl constructor (protected)
Constructor 97
in IccControl class 97

IccControl::run
in Mapping EXEC CICS calls to Foundation Class
methods 46

IccConvId
in IccConvId class 101

IccConvId class
Constructor 101
operator= 102

IccConvId constructors
Constructor 101
in IccConvId class 101

IccDataQueue
in Buffer objects 12
in Example of managing transient data 24
in Example of polymorphic behavior 41
in Resource classes 9
in Temporary storage 25
in Transient Data 23
in Working with IccResource subclasses 14
in Writing data 23

IccDataQueue class
clear 103
Constructor 103
empty 103
get 103
put 104
readItem 104
writeItem 104

IccDataQueue constructors
Constructor 103
in IccDataQueue class 103

IccDataQueueId
in Example of managing transient data 24
in IccDataQueueId class 105
in Transient Data 23

IccDataQueueId class
Constructor 106
operator= 106

IccDataQueueId constructors
Constructor 106
in IccDataQueueId class 106

IccEvent
in IccEvent class 107
in Support Classes 11

IccEvent class
className 108
classType 108
condition 108
conditionText 108
Constructor 107
methodName 108
summary 108

IccEvent constructor
Constructor 107
in IccEvent class 107

IccException
in C++ Exceptions and the Foundation Classes 33, 34

IccException (continued)
in IccException class 109
in IccMessage class 143
in main function 249
in Method level 37
in Object level 37
in Parameter level 37
in Support Classes 11

IccException class
CICSCondition type 34
className 110
classType 110
Constructor 109
familyConformanceError type 34
internalError type 34
invalidArgument type 33
invalidMethodCall type 34
message 110
methodName 110
number 111
objectCreationError type 33
summary 111
type 111
Type 112
typeText 111

IccException constructor
Constructor 109
in IccException class 109

ICCFCC 3
ICCFCCL 3
ICCFCGL 3
ICCFCIMP 3
ICCFCL 3
IccFile

in Browsing records 17
in Buffer objects 12
in C++ Exceptions and the Foundation Classes 34
in Deleting locked records 17
in Deleting normal records 17
in Example of file control 17
in File control 14, 15
in IccFile class 112
in IccFileIterator class 126
in Reading ESDS records 15
in Reading KSDS records 15
in Reading records 15
in Reading RRDS records 16
in Resource identification classes 7
in Singleton classes 11
in Updating records 16
in Writing ESDS records 16
in Writing KSDS records 16
in Writing records 16
in Writing RRDS records 16

IccFile class
access 113
Access 123
accessMethod 114
beginInsert (VSAM only) 114
Constructor 113
deleteLockedRecord 17, 114
deleteRecord 114
deleteRecord method 17
enableStatus 115

268 CICS TS for z/OS: C++ OO Class Libraries

IccFile class (continued)
endInsert (VSAM only) 115
isAddable 115
isBrowsable 115
isDeletable 116
isEmptyOnOpen 116
isReadable 116
isReadable method 15
isRecoverable 117
isUpdatable 117
keyLength 117
keyLength method 15
keyPosition 117
keyPosition method 15
openStatus 118
ReadMode 123
readRecord 118
readRecord method 15
recordFormat 119
recordFormat method 15
recordIndex 119
recordIndex method 15
recordLength 119
recordLength method 15
registerRecordIndex 15, 119
registerRecordIndex method 15
rewriteRecord 120
rewriteRecord method 16
SearchCriterion 124
setAccess 120
setEmptyOnOpen 120
setStatus 121
Status 124
type 121
unlockRecord 121
writeRecord 122
writeRecord method 16

IccFile constructors
Constructor 113
in IccFile class 113

IccFile::readRecord
in Scope of data in IccBuf reference returned from 'read'
methods 43

IccFileId
in Base classes 7
in File control 14, 15
in IccFileId class 124
in Resource identification classes 7

IccFileId class
Constructor 124
operator= 125
overview 7, 15
reading records 14

IccFileId constructors
Constructor 124
in IccFileId class 124

IccFileIterator
in Browsing records 17
in Buffer objects 12
in Example of file control 17, 18
in File control 14
in IccFileIterator class 126

IccFileIterator class
Constructor 126

IccFileIterator class (continued)
overview 14
readNextRecord 126
readNextRecord method 17
readPreviousRecord 17, 127
reset 127

IccFileIterator constructor
Constructor 126
in IccFileIterator class 126

IccGroupId
in IccGroupId class 128

IccGroupId class
Constructor 128, 129
operator= 129

IccGroupId constructors
Constructor 128, 129
in IccGroupId class 128

IccJournal
in Buffer objects 12
in IccJournal class 130
in Object level 36, 37

IccJournal class
clearPrefix 131
Constructor 130
journalTypeId 131
Options 134
put 131
registerPrefix 131
setJournalTypeId 132
setPrefix 132
wait 132
writeRecord 133

IccJournal constructors
Constructor 130
in IccJournal class 130

IccJournalId
in IccJournalId class 134

IccJournalId class
Constructor 134, 135
number 135
operator= 135

IccJournalId constructors
Constructor 134, 135
in IccJournalId class 134

IccJournalTypeId
in Foundation Classes—reference 45
in IccJournalTypeId class 136

IccJournalTypeId class
Constructor 136
operator= 137

IccJournalTypeId constructors
Constructor 136
in IccJournalTypeId class 136

IccKey
in Browsing records 17
in Deleting normal records 17
in File control 14
in IccKey class 138
in IccRecordIndex class 154
in Reading KSDS records 15
in Reading records 15
in Writing KSDS records 16
in Writing records 16

IccKey class

Index 269

IccKey class (continued)
assign 138
completeLength 139
Constructor 138
kind 139
Kind 141
operator!= 140
operator= 139
operator== 139, 140
reading records 14
setKind 140
value 140

IccKey constructors
Constructor 138
in IccKey class 138

IccLockId
in IccLockId class 141

IccLockId class
Constructor 141, 142
operator= 142

IccLockId constructors
Constructor 141, 142
in IccLockId class 141

IccMessage
in IccMessage class 143
in Support Classes 11

IccMessage class
className 143
Constructor 143
methodName 144
number 144
summary 144
text 144

IccMessage constructor
Constructor 143
in IccMessage class 143

IccPartnerId
in IccPartnerId class 145

IccPartnerId class
Constructor 145
operator= 145

IccPartnerId constructors
Constructor 145
in IccPartnerId class 145

IccProgram
in Buffer objects 12
in IccProgram class 146
in Program control 19
in Resource classes 9

IccProgram class
address 147
clearInputMessage 147
CommitOpt 150
Constructor 146, 147
entryPoint 147
length 147
link 148
load 148
LoadOpt 150
program control 19
setInputMessage 149
unload 149

IccProgram constructors
Constructor 146, 147

IccProgram constructors (continued)
in IccProgram class 146

IccProgramId
in IccProgramId class 150
in Resource identification classes 7

IccProgramId class
Constructor 150
operator= 151

IccProgramId constructors
Constructor 150
in IccProgramId class 150

IccRBA
in Browsing records 17
in File control 14
in IccRBA class 152
in IccRecordIndex class 154
in Reading ESDS records 15
in Reading records 15
in Writing ESDS records 16
in Writing records 16
in Writing RRDS records 16

IccRBA class
Constructor 152
number 153
operator!= 153
operator= 152
operator== 152, 153
reading records 14

IccRBA constructor
Constructor 152
in IccRBA class 152

IccRecordIndex
in C++ Exceptions and the Foundation Classes 34
in IccRecordIndex class 154

IccRecordIndex class
Constructor 154
length 154
type 154
Type 155

IccRecordIndex constructor (protected)
Constructor 154
in IccRecordIndex class 154

IccRequestId
in Example of starting transactions 21, 22
in IccRequestId class 155
in Parameter passing conventions 43

IccRequestId class
Constructor 155, 156
operator= 156

IccRequestId constructors
Constructor 155, 156
in IccRequestId class 155

IccResource
in Base classes 6, 7
in Example of polymorphic behavior 41
in IccResource class 157
in Polymorphic Behavior 40
in Resource classes 9
in Scope of data in IccBuf reference returned from 'read'
methods 43

IccResource class
actionOnCondition 157
ActionOnCondition 162
actionOnConditionAsChar 158

270 CICS TS for z/OS: C++ OO Class Libraries

IccResource class (continued)
actionsOnConditionsText 158
clear 159
condition 159
conditionText 159
ConditionType 163
Constructor 157
get 159
handleEvent 159
HandleEventReturnOpt 163
id 159
isEDFOn 160
isRouteOptionOn 160
name 160
overview 6, 7
put 160
routeOption 160
setActionOnAnyCondition 160
setActionOnCondition 161
setActionsOnConditions 161
setEDF 161
setRouteOption 161, 162
working with subclasses 14

IccResource constructor (protected)
Constructor 157
in IccResource class 157

IccResourceId
in Base classes 6, 7
in C++ Exceptions and the Foundation Classes 33
in Resource identification classes 7

IccResourceId class
Constructor 163, 164
name 164
nameLength 164
operator= 164
overview 6, 7

IccResourceId constructors (protected)
Constructor 163, 164
in IccResourceId class 163

IccRRN
in Browsing records 17
in Deleting normal records 17
in File control 14
in IccRecordIndex class 154
in IccRRN class 165
in Reading records 15
in Reading RRDS records 16
in Writing records 16

IccRRN class
Constructor 165
number 166
operator!= 166
operator= 165
operator== 166
reading records 14

IccRRN constructors
Constructor 165
in IccRRN class 165

IccSemaphore class
Constructor 167
lifeTime 168
LifeTime 169
lock 168
LockType 169

IccSemaphore class (continued)
tryLock 168
type 168
unlock 168

IccSemaphore constructor
Constructor 167
in IccSemaphore class 167

IccSession
in Buffer objects 12

IccSession class
allocate 171
AllocateOpt 179
connectProcess 171, 172
Constructor 170, 171
converse 172
convId 173
errorCode 173
extractProcess 173
flush 173
free 173
get 173
isErrorSet 174
isNoDataSet 174
isSignalSet 174
issueAbend 174
issueConfirmation 174
issueError 174
issuePrepare 175
issueSignal 175
PIPList 175
process 175
put 175
receive 176
send 176
sendInvite 176, 177
sendLast 177
SendOpt 179
state 178
StateOpt 180
stateText 178
syncLevel 178
SyncLevel 180

IccSession constructor (protected)
Constructor 171
in IccSession class 171

IccSession constructors (public)
Constructor 170
in IccSession class 170

IccStartRequestQ
in Accessing start data 20
in Buffer objects 12
in Example of starting transactions 21, 22
in IccRequestId class 155
in IccStartRequestQ class 180
in Mapping EXEC CICS calls to Foundation Class
methods 46
in Parameter passing conventions 42
in Singleton classes 11
in Starting transactions asynchronously 20

IccStartRequestQ class
cancel 181
CheckOpt 186
clearData 181
Constructor 180

Index 271

IccStartRequestQ class (continued)
data 181
instance 181
overview 11
ProtectOpt 186
queueName 181
registerData 182
reset 182
retrieveData 182
RetrieveOpt 186
returnTermId 182
returnTransId 183
setData 183
setQueueName 183
setReturnTermId 183
setReturnTransId 183, 184
setStartOpts 184
start 184

IccStartRequestQ constructor (protected)
Constructor 180
in IccStartRequestQ class 180

IccSysId
in IccSysId class 186
in Program control 19

IccSysId class
Constructor 186, 187
operator= 187

IccSysId constructors
Constructor 186, 187
in IccSysId class 186

IccSystem
in Singleton classes 11

IccSystem class
applName 188
beginBrowse 188, 189
Constructor 188
dateFormat 189
endBrowse 189
freeStorage 189
getFile 190
getNextFile 190
getStorage 190
instance 191
operatingSystem 191
operatingSystemLevel 191
overview 11
release 191
releaseText 191
ResourceType 193
sysId 192
workArea 192

IccSystem constructor (protected)
Constructor 188
in IccSystem class 188

IccTask
in C++ Exceptions and the Foundation Classes 33
in Example of starting transactions 22
in IccAlarmRequestId class 71
in IccTask class 193
in Parameter level 37
in Singleton classes 11
in Support Classes 10

IccTask class
abend 194

IccTask class (continued)
abendData 194
AbendDumpOpt 202
AbendHandlerOpt 202
commitUOW 194
Constructor 193
delay 194
dump 195
DumpOpts 202
enterTrace 195
facilityType 196
FacilityType 202
freeStorage 196
getStorage 196
instance 197
isCommandSecurityOn 197
isCommitSupported 197
isResourceSecurityOn 197
isRestarted 197
isStartDataAvailable 197
number 198
overview 11
principalSysId 198
priority 198
rollBackUOW 198
setDumpOpts 198
setPriority 199
setWaitText 199
startType 199
StartType 203
StorageOpts 203
suspend 199
TraceOpt 203
transId 199
triggerDataQueueId 199
userId 200
waitExternal 200
waitOnAlarm 200
WaitPostType 203
WaitPurgeability 203
workArea 201

IccTask Constructor (protected)
Constructor 193
in IccTask class 193

IccTask::commitUOW
in Scope of data in IccBuf reference returned from 'read'
methods 43

IccTempstore
in Working with IccResource subclasses 14

IccTempStore
in Automatic condition handling (callHandleEvent) 35
in Buffer objects 12
in C++ Exceptions and the Foundation Classes 33
in Deleting items 25
in Example of polymorphic behavior 41
in Example of Temporary Storage 25, 26
in IccTempStore class 204
in Reading items 25
in Resource classes 9
in Temporary storage 24, 25
in Transient Data 23
in Updating items 25
in Working with IccResource subclasses 14
in Writing items 25

272 CICS TS for z/OS: C++ OO Class Libraries

IccTempStore class
clear 205
Constructor 204
empty 205
get 205
Location 208
NoSpaceOpt 208
numberOfItems 205
put 205
readItem 205
readNextItem 206
rewriteItem 206
writeItem 206, 207

IccTempStore constructors
Constructor 204
in IccTempStore class 204

IccTempStore::readItem
in Scope of data in IccBuf reference returned from 'read'
methods 43

IccTempStore::readNextItem
in Scope of data in IccBuf reference returned from 'read'
methods 43

IccTempStoreId
in Base classes 7
in Example of Temporary Storage 25, 26
in IccTempStoreId class 208
in Temporary storage 24, 25

IccTempStoreId class
Constructor 208
operator= 209

IccTempStoreId constructors
Constructor 208
in IccTempStoreId class 208

IccTermId
in Base classes 6
in C++ Exceptions and the Foundation Classes 33, 34
in Example of starting transactions 21
in Example of terminal control 27
in IccTermId class 210
in Terminal control 26

IccTermId class
Constructor 210
operator= 210
overview 6

IccTermId constructors
Constructor 210
in IccTermId class 210

IccTerminal
in Buffer objects 12
in Example of terminal control 27
in Finding out information about a terminal 27
in IccTerminalData class 226
in Receiving data from a terminal 27
in Resource classes 8, 9
in Singleton classes 11
in Terminal control 26

IccTerminal class
AID 212
AIDVal 225
Case 225
clear 212
Color 225
Constructor 211
cursor 212

IccTerminal class (continued)
data 212
erase 212
freeKeyboard 212
get 213
height 213
Highlight 226
inputCursor 213
instance 213
line 213
netName 213
NextTransIdOpt 226
operator« 213–216
put 216
receive 216
receive3270Data 217
registerInputMessage 148
send 217, 218
send3270Data 218, 219
sendLine 219, 220
setColor 220
setCursor 221
setHighlight 221
setLine 221
setNewLine 222
setNextCommArea 222
setNextInputMessage 222
setNextTransId 222
signoff 223
signon 223
waitForAID 224
width 224
workArea 224

IccTerminal constructor (protected)
Constructor 211
in IccTerminal class 211

IccTerminal::receive
in Scope of data in IccBuf reference returned from 'read'
methods 43

IccTerminalData
in Example of terminal control 27
in Finding out information about a terminal 27
in IccTerminalData class 226
in Terminal control 26

IccTerminalData class
alternateHeight 227
alternateWidth 227
Constructor 226
defaultHeight 227
defaultWidth 227
graphicCharCodeSet 228
graphicCharSetId 228
isAPLKeyboard 228
isAPLText 228
isBTrans 229
isColor 229
isEWA 229
isExtended3270 229
isFieldOutline 229
isGoodMorning 230
isHighlight 230
isKatakana 230
isMSRControl 230
isPS 231

Index 273

IccTerminalData class (continued)
isSOSI 231
isTextKeyboard 231
isTextPrint 231
isValidation 231

IccTerminalData constructor (protected)
Constructor 226
in IccTerminalData class 226

IccTime
in Base classes 7
in IccTime class 232
in Parameter passing conventions 43
in Support Classes 10

IccTime class
Constructor 233
hours 233
minutes 233
overview 7
seconds 233
timeInHours 233
timeInMinutes 233
timeInSeconds 234
type 234
Type 235

IccTime constructor (protected)
Constructor 233
in IccTime class 233

IccTimeInterval
in Base classes 7
in delay 195
in Example of starting transactions 21, 22
in IccTime class 232
in Support Classes 10

IccTimeInterval class
Constructor 235
operator= 236
set 236

IccTimeInterval constructors
Constructor 235
in IccTimeInterval class 235

IccTimeOfDay
in Base classes 7
in delay 195
in IccTime class 232
in Support Classes 10

IccTimeOfDay class
Constructor 237
operator= 238
set 238

IccTimeOfDay constructors
Constructor 237
in IccTimeOfDay class 237

IccTPNameId
in IccTPNameId class 239

IccTPNameId class
Constructor 239
operator= 240

IccTPNameId constructors
Constructor 239
in IccTPNameId class 239

IccTransId
in Base classes 6
in Example of starting transactions 21
in IccResourceId class 163

IccTransId (continued)
in IccTransId class 241
in Parameter passing conventions 43

IccTransId class
Constructor 241
operator= 241
overview 6

IccTransId constructors
Constructor 241
in IccTransId class 241

IccUser class
changePassword 243
Constructor 242, 243
daysUntilPasswordExpires 243
ESMReason 243
ESMResponse 244
groupId 244
invalidPasswordAttempts 244
language 244
lastPasswordChange 244
lastUseTime 244
passwordExpiration 244
setLanguage 244
verifyPassword 245

IccUser constructors
Constructor 242, 243
in IccUser class 242

IccUserControl
in C++ Exceptions and the Foundation Classes 33
in Example of file control 17
in Example of managing transient data 24
in Example of polymorphic behavior 41
in Example of starting transactions 21
in Example of Temporary Storage 25
in Example of terminal control 27
in Example of time and date services 28
in main function 248
in Program control 19
in Singleton classes 11

IccUserId
in IccUserId class 246

IccUserId class
Constructor 246
operator= 246, 247

IccUserId constructors
Constructor 246
in IccUserId class 246

IccValue
in Foundation Classes: reference 45

IccValue structure
CVDA 247

id
in IccResource class 159

Id
in Resource identification classes 7

id (parameter)
in Constructor 71, 72, 103, 106, 113, 124, 125, 129,
130, 135, 137, 142, 145–147, 151, 156, 163, 167, 168,
170, 187, 204, 209, 210, 240–242, 246
in getFile 190
in operator= 72, 102, 106, 125, 129, 135, 137, 142,
146, 151, 156, 164, 187, 209, 211, 240, 242, 247
in setJournalTypeId 132
in signon 223

274 CICS TS for z/OS: C++ OO Class Libraries

id (parameter) (continued)
in waitOnAlarm 200, 201

ifSOSReturnCondition
in StorageOpts 203

ignoreAbendHandler
in AbendHandlerOpt 202

immediate
in NextTransIdOpt 226

index (parameter)
in Constructor 113, 126
in registerRecordIndex 120
in reset 127

Inherited protected methods
in IccAbendData class 66
in IccAbsTime class 71
in IccAlarmRequestId class 73
in IccBuf class 86
in IccClock class 90
in IccConsole class 96
in IccControl class 101
in IccConvId class 102
in IccDataQueue class 105
in IccDataQueueId class 107
in IccEvent class 109
in IccException class 112
in IccFile class 123
in IccFileId class 125
in IccFileIterator class 128
in IccGroupId class 130
in IccJournal class 134
in IccJournalId class 136
in IccJournalTypeId class 137
in IccKey class 141
in IccLockId class 143
in IccMessage class 144
in IccPartnerId class 146
in IccProgram class 150
in IccProgramId class 151
in IccRBA class 153
in IccRecordIndex class 155
in IccRequestId class 157
in IccResource class 162
in IccResourceId class 165
in IccSemaphore class 169
in IccSession class 179
in IccStartRequestQ class 186
in IccSysId class 188
in IccSystem class 193
in IccTask class 201
in IccTempStore class 208
in IccTempStoreId class 209
in IccTermId class 211
in IccTerminal class 225
in IccTerminalData class 232
in IccTime class 234
in IccTimeInterval class 237
in IccTimeOfDay class 239
in IccTransId class 242
in IccUser class 245
in IccUserId class 247

Inherited public methods
in IccAbendData class 66
in IccAbsTime class 70
in IccAlarmRequestId class 73

Inherited public methods (continued)
in IccBuf class 86
in IccClock class 90
in IccConsole class 95
in IccControl class 100
in IccConvId class 102
in IccDataQueue class 105
in IccDataQueueId class 107
in IccEvent class 109
in IccException class 111
in IccFile class 122
in IccFileId class 125
in IccFileIterator class 127
in IccGroupId class 129
in IccJournal class 133
in IccJournalId class 136
in IccJournalTypeId class 137
in IccKey class 141
in IccLockId class 142
in IccMessage class 144
in IccPartnerId class 146
in IccProgram class 149
in IccProgramId class 151
in IccRBA class 153
in IccRecordIndex class 155
in IccRequestId class 156
in IccResourceId class 164
in IccRRN class 166
in IccSemaphore class 169
in IccSession class 179
in IccStartRequestQ class 185
in IccSysId class 187
in IccSystem class 192
in IccTask class 201
in IccTempStore class 207
in IccTempStoreId class 209
in IccTermId class 211
in IccTerminal class 224
in IccTerminalData class 232
in IccTime class 234
in IccTimeInterval class 236
in IccTimeOfDay class 238
in IccTPNameId class 240
in IccTransId class 242
in IccUser class 245
in IccUserId class 247

initByte (parameter)
in getStorage 190, 196

initData
in IccControl class 98
in Public methods 98

initializeEnvironment
in Functions 59
in Icc structure 59
in Method level 37
in Storage management 42

initRBA (parameter)
in Constructor 152

initRRN (parameter)
in Constructor 165

initValue (parameter)
in Constructor 138

inputCursor
in IccTerminal class 213

Index 275

insert
in Example of Temporary Storage 26
in IccBuf class 80
in IccBuf constructors 13

Installed contents
Location 2

instance
in IccAbendData class 65
in IccConsole class 93
in IccControl class 98
in IccStartRequestQ class 181
in IccSystem class 191
in IccTask class 197
in IccTerminal class 213
in Singleton classes 12

internal
in DataAreaOwner 86

internalError
in C++ Exceptions and the Foundation Classes 34
in Type 112

interval (parameter)
in setReplyTimeout 94

invalidArgument
in C++ Exceptions and the Foundation Classes 33
in Type 112

invalidMethodCall
in C++ Exceptions and the Foundation Classes 34
in Type 112

invalidPasswordAttempts
in IccUser class 244

isAddable
in IccFile class 115
in Writing ESDS records 16
in Writing KSDS records 16
in Writing RRDS records 16

isAPLKeyboard
in IccTerminalData class 228
in Public methods 228

isAPLText
in IccTerminalData class 228
in Public methods 228

isBrowsable
in IccFile class 115

isBTrans
in IccTerminalData class 229

isClassMemoryMgmtOn
in Functions 59
in Icc structure 59

isColor
in IccTerminalData class 229

isCommandSecurityOn
in IccTask class 197

isCommitSupported
in IccTask class 197

isCreated
in IccControl class 98

isDeletable
in IccFile class 116

isDumpAvailable
in IccAbendData class 65

isEDFOn
in Functions 59
in Icc structure 59
in IccResource class 160

isEmptyOnOpen
in IccFile class 116

isErrorSet
in IccSession class 174

isEWA
in IccTerminalData class 229

isExpired
in IccAlarmRequestId class 72

isExtended3270
in IccTerminalData class 229
in Public methods 229

isFamilySubsetEnforcementOn
in Functions 59
in Icc structure 59

isFieldOutline
in IccTerminalData class 229
in Public methods 229

isFMHContained
in IccBuf class 81
in Public methods 81

isGoodMorning
in IccTerminalData class 230
in Public methods 230

isHighlight
in IccTerminalData class 230

isKatakana
in IccTerminalData class 230

isMSRControl
in IccTerminalData class 230

isNoDataSet
in IccSession class 174

isPS
in IccTerminalData class 231

ISR2
in Example of starting transactions 21

isReadable
in IccFile class 116
in Reading ESDS records 15
in Reading KSDS records 15
in Reading RRDS records 16

isReadable method 15
isRecoverable

in IccFile class 117
isResourceSecurityOn

in IccTask class 197
isRestarted

in IccTask class 197
isRouteOptionOn

in IccResource class 160
in Public methods 160

isSignalSet
in IccSession class 174

isSOSI
in IccTerminalData class 231

isStartDataAvailable
in IccTask class 197

issueAbend
in IccSession class 174

issueConfirmation
in IccSession class 174

issueError
in IccSession class 174

issuePrepare
in IccSession class 175

276 CICS TS for z/OS: C++ OO Class Libraries

issueSignal
in IccSession class 175

isTextKeyboard
in IccTerminalData class 231
in Public methods 231

isTextPrint
in IccTerminalData class 231
in Public methods 231

isUpdatable
in IccFile class 117

isValidation
in IccTerminalData class 231

item (parameter)
in rewriteItem 206
in writeItem 104, 206

itemNum (parameter)
in readItem 205
in rewriteItem 206

ITMP
in Example of starting transactions 21

J
journalNum (parameter)

in Constructor 131, 135
in operator= 135

journalTypeId
in IccJournal class 131

journalTypeName (parameter)
in Constructor 136
in operator= 137

jtypeid (parameter)
in setJournalTypeId 132

K
key

complete 15
generic 15

key (parameter)
in Constructor 138
in Example of file control 18
in operator!= 140
in operator= 139
in operator== 139

keyLength
in IccFile class 117
in Reading KSDS records 15
in Writing KSDS records 16

keyLength method 15
keyPosition

in IccFile class 117
in Reading KSDS records 15
in writing KSDS records 16

keyPosition method 15
kind

in IccKey class 139
Kind

in Enumerations 141
in IccKey class 141

kind (parameter)
in Constructor 138
in setKind 140

KSDS
in File control 15

KSDS file 15

L
language

in IccUser class 244
language (parameter)

in setLanguage 245
lastCommand

in StateOpt 180
lastPasswordChange

in IccUser class 244
lastUseTime

in IccUser class 244
length

in IccProgram class 147
in IccRecordIndex class 154

length (parameter)
in append 78
in assign 79, 139
in Constructor 77
in cut 79
in insert 80
in overlay 85
in replace 85
in setDataLength 85

level (parameter)
in connectProcess 171, 172

level0
in SyncLevel 180

level1
in SyncLevel 180

level2
in SyncLevel 180

life (parameter)
in Constructor 167, 168

lifeTime
in IccSemaphore class 168

LifeTime
in Enumerations 169
in IccSemaphore class 169

line
in Finding out information about a terminal 27
in IccTerminal class 213

lineNum (parameter)
in setLine 221

link
in IccProgram class 148

load
in IccProgram class 148

LoadOpt
in Enumerations 150
in IccProgram class 150

loc (parameter)
in Constructor 204

Location
in Dynamic link library 2
in Enumerations 208
in Header files 2
in IccTempStore class 208
in Installed contents 2
in Sample source code 2

Index 277

lock
in IccSemaphore class 168

LockType
in Enumerations 169
in IccSemaphore class 169

M
main

in C++ Exceptions and the Foundation Classes 32
in Example of file control 17
in Example of managing transient data 24
in Example of polymorphic behavior 41
in Example of starting transactions 21
in Example of Temporary Storage 25
in Example of terminal control 27
in Example of time and date services 28
in Header files 2, 31
in main function 248
in Program control 19
in Storage management 42

majorCode
in ConditionType 163

manual
in UpdateMode 91

Manual condition handling (noAction)
in CICS conditions 34
in Conditions, errors, and exceptions 34

maxValue
in Range 93

mem (parameter)
in initializeEnvironment 59

memory
in Location 208

message
in IccException class 110

message (parameter)
in Constructor 109, 110
in setNextInputMessage 222

method
in Foundation Classes—reference 45

Method level
in Conditions, errors, and exceptions 37
in Platform differences 37

methodName
in IccEvent class 108
in IccException class 110
in IccMessage class 144

methodName (parameter)
in Constructor 107, 109, 110, 143

milliSeconds
in IccAbsTime class 68
in IccClock class 88

minorCode
in ConditionType 163

minutes
in IccAbsTime class 68
in IccTime class 233

minutes (parameter)
in Constructor 233, 235, 237
in set 236, 238

Miscellaneous
Example of polymorphic behavior 41

mixed

mixed (continued)
in Case 225

mode (parameter)
in readNextRecord 126
in readPreviousRecord 127
in readRecord 118

monthOfYear
in Example of time and date services 29
in IccAbsTime class 68
in IccClock class 88

MonthOfYear
in Enumerations 91
in IccClock class 91

msg (parameter)
in clearInputMessage 147
in registerInputMessage 148
in setInputMessage 149

MVS/ESA
in ClassMemoryMgmt 61
in Storage management 42

MVSPost
in WaitPostType 203

MyTempStore
in Automatic condition handling (callHandleEvent) 35

N
N

in operatingSystem 191
name

in IccResource class 160
in IccResourceId class 164

name (parameter)
in Constructor 71, 141, 142, 186, 208, 210, 239, 241,
246
in operator= 142, 187, 209, 210, 240, 241, 246
in setWaitText 199

nameLength
in IccResourceId class 164

NameOpt
in Enumerations 76
in IccBase class 76

netName
in IccTerminal class 213

neutral
in Color 226

new
in Storage management 42

new operator 5
newPassword (parameter)

in changePassword 243
in signon 223

NextTransIdOpt
in Enumerations 226
in IccTerminal class 226

noAccess
in Access 123

noAction
in ActionOnCondition 163
in CICS conditions 34

noCommitOnReturn
in CommitOpt 150

NONCICS
in ASRAKeyType 63

278 CICS TS for z/OS: C++ OO Class Libraries

none
in FacilityType 202

noQueue
in AllocateOpt 179

normal
in ReadMode 123
in SendOpt 179
in TraceOpt 203

NoSpaceOpt
in Enumerations 208
in IccTempStore class 208

noSuspend
in Options 134

notAddable
in Access 123

NOTAPPLIC
in ASRAKeyType 63
in ASRASpaceType 64
in ASRAStorageType 64

notBrowsable
in Access 123

notDeletable
in Access 123

notPurgeable
in WaitPurgeability 203

notReadable
in Access 123

notUpdatable
in Access 123

num (parameter)
in operator!= 153
in operator« 83, 84, 215, 216
in operator= 152, 166
in operator== 153

number
in IccException class 111
in IccJournalId class 135
in IccMessage class 144
in IccRBA class 153
in IccRRN class 166
in IccTask class 198
in Writing RRDS records 16

number (parameter)
in Constructor 143
in setCustomClassNum 75

numberOfItems
in IccTempStore class 205

numEvents (parameter)
in waitExternal 200

numLines (parameter)
in setNewLine 222

numRoutes (parameter)
in setRouteCodes 95

O
obj (parameter)

in Using an object 6
object

creating 5
deleting 6
in GetOpt 61
using 6

object (parameter)

object (parameter) (continued)
in Constructor 107, 109, 110
in operator delete 74

Object level
in Conditions, errors, and exceptions 36
in Platform differences 36

objectCreationError
in C++ Exceptions and the Foundation Classes 33
in Type 112

offset (parameter)
in cut 79
in dataArea 80
in insert 80, 81
in replace 85
in setCursor 221

onOff (parameter)
in setEDF 60, 161

open
in Status 124

openStatus
in IccFile class 118

operatingSystem
in IccSystem class 191
in Public methods 191

operatingSystemLevel
in IccSystem class 191

operator const char*
in IccBuf class 81

operator delete
in IccBase class 74
in Public methods 74

operator new
in IccBase class 75

operator!=
in IccBuf class 82
in IccKey class 140
in IccRBA class 153
in IccRRN class 166
in Public methods 82

operator«
in IccBuf class 82, 84
in IccTerminal class 213–216
in Working with IccResource subclasses 14

operator+=
in IccBuf class 81, 82

operator=
in Example of file control 18
in IccAbsTime class 69
in IccAlarmRequestId class 72
in IccBuf class 81
in IccConvId class 102
in IccDataQueueId class 106
in IccFileId class 125
in IccGroupId class 129
in IccJournalId class 135
in IccJournalTypeId class 137
in IccKey class 139
in IccLockId class 142
in IccPartnerId class 145
in IccProgramId class 151
in IccRBA class 152
in IccRequestId class 156
in IccResourceId class 164
in IccRRN class 165

Index 279

operator= (continued)
in IccSysId class 187
in IccTempStoreId class 209
in IccTermId class 210
in IccTimeInterval class 236
in IccTimeOfDay class 238
in IccTPNameId class 240
in IccTransId class 241
in IccUserId class 246, 247
in Protected methods 164
in Public methods 69, 236
in Working with IccResource subclasses 14

operator==
in IccBuf class 82
in IccKey class 139, 140
in IccRBA class 152, 153
in IccRRN class 166

opt (parameter)
in abendCode 62
in access 113
in accessMethod 114
in alternateHeight 227
in alternateWidth 227
in ASRAInterrupt 62
in ASRAKeyType 63
in ASRAPSW 63
in ASRARegisters 63
in ASRASpaceType 64
in ASRAStorageType 65
in className 74
in defaultHeight 227
in defaultWidth 228
in enableStatus 115
in enterTrace 195, 196
in graphicCharCodeSet 228
in graphicCharSetId 228
in height 213
in isAddable 115
in isAPLKeyboard 228
in isAPLText 228
in isBrowsable 116
in isBTrans 229
in isColor 229
in isDeletable 116
in isDumpAvailable 65
in isEmptyOnOpen 116
in isEWA 229
in isExtended3270 229
in isFieldOutline 230
in isGoodMorning 230
in isHighlight 230
in isKatakana 230
in isMSRControl 230
in isPS 231
in isReadable 116
in isRecoverable 117
in isSOSI 231
in isTextKeyboard 231
in isTextPrint 231
in isUpdatable 117
in isValidation 232
in keyLength 117
in keyPosition 118
in link 148

opt (parameter) (continued)
in load 148
in openStatus 118
in originalAbendCode 65
in principalSysId 198
in priority 198
in programName 65
in recordFormat 119
in recordLength 119
in rewriteItem 206
in setNextTransId 222
in type 121
in userId 200
in waitExternal 200
in width 224
in write 95
in writeAndGetReply 95
in writeItem 206, 207

opt1 (parameter)
in abend 194

opt2 (parameter)
in abend 194

option (parameter)
in allocate 171
in retrieveData 182
in send 176
in sendInvite 176, 177
in sendLast 177
in state 178
in stateText 178
in wait 132
in writeRecord 133

Options
in Enumerations 134
in IccJournal class 134

options (parameter)
in Constructor 130, 131

opts (parameter)
in setDumpOpts 198, 199

originalAbendCode
in IccAbendData class 65

Other data sets for CICS
in Installed contents 3

overlay
in IccBuf class 84

overview of Foundation Classes 6
Overview of the foundation classes

Calling methods on a resource object 12
Creating a resource object 11

P
PA1 to PA3

in AIDVal 225
packedDecimal

in IccAbsTime class 69
Parameter level

in Conditions, errors, and exceptions 37
in Platform differences 37

parameter passing 42
Parameter passing conventions

in Miscellaneous 42
partnerName (parameter)

in Constructor 145

280 CICS TS for z/OS: C++ OO Class Libraries

partnerName (parameter) (continued)
in operator= 145

password (parameter)
in changePassword 243
in signon 223
in verifyPassword 245

passwordExpiration
in IccUser class 244

PF1 to PF24
in AIDVal 225

pink
in Color 226

PIP (parameter)
in connectProcess 171, 172

PIPList
in IccSession class 175

platform differences
method level 37
object level 36
parameter level 37

Platform differences
in Conditions, errors, and exceptions 36
Method level 37
Object level 36
Parameter level 37

platformError
in Type 112

Platforms
in Enumerations 61
in Icc structure 61

polymorphic behavior 38
Polymorphic Behavior

Example of polymorphic behavior 41
in Miscellaneous 38

popt (parameter)
in setStartOpts 184

prefix (parameter)
in registerPrefix 131
in setPrefix 132

pri (parameter)
in setPriority 199

principalSysId
in IccTask class 198
in Public methods 198

print
in Polymorphic Behavior 40

priority
in IccTask class 198
in Public methods 198

process
in IccSession class 175

profile (parameter)
in Constructor 170, 171

progName (parameter)
in Constructor 147, 150
in operator= 151

program control
example 19
introduction 19

Program control
in Using CICS Services 19

programId
in IccControl class 98
in Method level 37

programId (continued)
in Public methods 98

programId (parameter)
in setAbendHandler 99

programName
in IccAbendData class 65
in Public methods 65

programName (parameter)
in setAbendHandler 99

Protected methods
in IccBase class 75
in IccResourceId class 164
operator= 164
setClassName 75
setCustomClassNum 75

ProtectOpt
in Enumerations 186
in IccStartRequestQ class 186

pStorage (parameter)
in freeStorage 189

Public methods
abend 194
abendCode 62
abendData 194
absTime 87
access 113
accessMethod 114
actionOnCondition 157
actionOnConditionAsChar 158
actionsOnConditionsText 158
address 147
AID 212
allocate 171
alternateHeight 227
alternateWidth 227
append 78
applName 188
ASRAInterrupt 62
ASRAKeyType 63
ASRAPSW 63
ASRARegisters 63
ASRASpaceType 64
ASRAStorageType 64
assign 79, 138
beginBrowse 188, 189
beginInsert (VSAM only) 114
callingProgramId 97
cancel 181
cancelAbendHandler 97
cancelAlarm 87
changePassword 243
className 74, 108, 110, 143
classType 74, 108, 110
clear 103, 159, 205, 212
clearData 181
clearInputMessage 147
clearPrefix 131
commArea 97
commitUOW 194
completeLength 139
condition 108, 159
conditionText 108, 159
connectProcess 171, 172
console 97

Index 281

Public methods (continued)
converse 172
convId 173
cursor 212
customClassNum 74
cut 79
data 181, 212
dataArea 79
dataAreaLength 80
dataAreaOwner 80
dataAreaType 80
dataLength 80
date 67, 87
dateFormat 189
dayOfMonth 67, 88
dayOfWeek 68, 88
daysSince1900 68, 88
daysUntilPasswordExpires 243
defaultHeight 227
defaultWidth 227
delay 194
deleteLockedRecord 114
deleteRecord 114
dump 195
empty 103, 205
enableStatus 115
endBrowse 189
endInsert (VSAM only) 115
enterTrace 195
entryPoint 147
erase 212
errorCode 173
ESMReason 243
ESMResponse 244
extractProcess 173
facilityType 196
flush 173
free 173
freeKeyboard 212
freeStorage 189, 196
get 103, 159, 173, 205, 213
getFile 190
getNextFile 190
getStorage 190, 196
graphicCharCodeSet 228
graphicCharSetId 228
groupId 244
handleEvent 159
height 213
hours 68, 233
id 159
in IccAbendData class 62
in IccAbsTime class 67
in IccAlarmRequestId class 72
in IccBase class 74
in IccBuf class 78
in IccClock class 87
in IccConsole class 93
in IccControl class 97
in IccConvId class 102
in IccDataQueue class 103
in IccDataQueueId class 106
in IccEvent class 108
in IccException class 110

Public methods (continued)
in IccFile class 113
in IccFileId class 125
in IccFileIterator class 126
in IccGroupId class 129
in IccJournal class 131
in IccJournalId class 135
in IccJournalTypeId class 137
in IccKey class 138
in IccLockId class 142
in IccMessage class 143
in IccPartnerId class 145
in IccProgram class 147
in IccProgramId class 151
in IccRBA class 152
in IccRecordIndex class 154
in IccRequestId class 156
in IccResource class 157
in IccResourceId class 164
in IccRRN class 165
in IccSemaphore class 168
in IccSession class 171
in IccStartRequestQ class 181
in IccSysId class 187
in IccSystem class 188
in IccTask class 194
in IccTempStore class 204
in IccTempStoreId class 209
in IccTermId class 210
in IccTerminal class 212
in IccTerminalData class 227
in IccTime class 233
in IccTimeInterval class 236
in IccTimeOfDay class 238
in IccTPNameId class 240
in IccTransId class 241
in IccUser class 243
in IccUserId class 246
initData 98
inputCursor 213
insert 80
instance 65, 93, 98, 181, 191,
197, 213
invalidPasswordAttempts 244
isAddable 115
isAPLKeyboard 228
isAPLText 228
isBrowsable 115
isBTrans 229
isColor 229
isCommandSecurityOn 197
isCommitSupported 197
isCreated 98
isDeletable 116
isDumpAvailable 65
isEDFOn 160
isEmptyOnOpen 116
isErrorSet 174
isEWA 229
isExpired 72
isExtended3270 229
isFieldOutline 229
isFMHContained 81
isGoodMorning 230

282 CICS TS for z/OS: C++ OO Class Libraries

Public methods (continued)
isHighlight 230
isKatakana 230
isMSRControl 230
isNoDataSet 174
isPS 231
isReadable 116
isRecoverable 117
isResourceSecurityOn 197
isRestarted 197
isRouteOptionOn 160
isSignalSet 174
isSOSI 231
isStartDataAvailable 197
issueAbend 174
issueConfirmation 174
issueError 174
issuePrepare 175
issueSignal 175
isTextKeyboard 231
isTextPrint 231
isUpdatable 117
isValidation 231
journalTypeId 131
keyLength 117
keyPosition 117
kind 139
language 244
lastPasswordChange 244
lastUseTime 244
length 147, 154
lifeTime 168
line 213
link 148
load 148
lock 168
message 110
methodName 108, 110, 144
milliSeconds 68, 88
minutes 68, 233
monthOfYear 68, 88
name 160, 164
nameLength 164
netName 213
number 111, 135, 144, 153,
166, 198
numberOfItems 205
openStatus 118
operatingSystem 191
operatingSystemLevel 191
operator const char* 81
operator delete 74
operator new 75
operator!= 82, 140, 153, 166
operator« 82, 84, 213–216
operator+= 81, 82
operator= 69, 72, 81, 102,
106, 125, 129, 135, 137, 139,
142, 145, 151, 152, 156, 165,
187, 209, 210, 236, 238, 240,
241, 246, 247
operator== 82, 139, 140, 152,
153, 166
originalAbendCode 65

Public methods (continued)
overlay 84
packedDecimal 69
passwordExpiration 244
PIPList 175
principalSysId 198
priority 198
process 175
programId 98
programName 65
put 93, 104, 131, 160, 175,
205, 216
queueName 181
readItem 104, 205
readNextItem 206
readNextRecord 126
readPreviousRecord 127
readRecord 118
receive 176, 216
receive3270Data 217
recordFormat 119
recordIndex 119
recordLength 119
registerData 182
registerInputMessage 148
registerPrefix 131
registerRecordIndex 119
release 191
releaseText 191
replace 85
replyTimeout 94
reset 127, 182
resetAbendHandler 98
resetRouteCodes 94
retrieveData 182
returnProgramId 99
returnTermId 182
returnTransId 183
rewriteItem 206
rewriteRecord 120
rollBackUOW 198
routeOption 160
run 99
seconds 69, 233
send 176, 217, 218
send3270Data 218, 219
sendInvite 176, 177
sendLast 177
sendLine 219, 220
session 99
set 236, 238
setAbendHandler 99
setAccess 120
setActionOnAnyCondition 160
setActionOnCondition 161
setActionsOnConditions 161
setAlarm 89
setAllRouteCodes 94
setColor 220
setCursor 221
setData 183
setDataLength 85
setDumpOpts 198
setEDF 161

Index 283

Public methods (continued)
setEmptyOnOpen 120
setFMHContained 85
setHighlight 221
setInputMessage 149
setJournalTypeId 132
setKind 140
setLanguage 244
setLine 221
setNewLine 222
setNextCommArea 222
setNextInputMessage 222
setNextTransId 222
setPrefix 132
setPriority 199
setQueueName 183
setReplyTimeout 94
setReturnTermId 183
setReturnTransId 183, 184
setRouteCodes 94
setRouteOption 161, 162
setStartOpts 184
setStatus 121
setTimerECA 72
setWaitText 199
signoff 223
signon 223
start 184
startRequestQ 99
startType 199
state 178
stateText 178
summary 108, 111, 144
suspend 199
syncLevel 178
sysId 192
system 100
task 100
terminal 100
text 144
time 69, 89
timeInHours 69, 233
timeInMinutes 69, 233
timeInSeconds 70, 234
timerECA 73
transId 199
triggerDataQueueId 199
tryLock 168
type 111, 121, 154, 168, 234
typeText 111
unload 149
unlock 168
unlockRecord 121
update 89
userId 200
value 140
verifyPassword 245
wait 132
waitExternal 200
waitForAID 224
waitOnAlarm 200
width 224
workArea 192, 201, 224
write 95

Public methods (continued)
writeAndGetReply 95
writeItem 104, 206, 207
writeRecord 122, 133
year 70, 89

purgeable
in WaitPurgeability 203

put
in Example of polymorphic behavior 41
in IccConsole class 93
in IccDataQueue class 104
in IccJournal class 131
in IccResource class 160
in IccSession class 175
in IccTempStore class 205
in IccTerminal class 216
in Polymorphic Behavior 40

Q
queue

in AllocateOpt 179
in NextTransIdOpt 226

queueName
in Accessing start data 20
in IccStartRequestQ class 181

queueName (parameter)
in Constructor 103, 106
in operator= 106
in setQueueName 183

R
rAbendTask

in HandleEventReturnOpt 163
Range

in Enumerations 93
in IccCondition structure 93

RBA 15
rba (parameter)

in operator!= 153
in operator= 152
in operator== 152

rContinue
in HandleEventReturnOpt 163

readable
in Access 123

reading data 23
Reading data

in Transient Data 23
in Using CICS Services 23

Reading ESDS records
in File control 15
in Reading records 15

reading items 25
Reading items

in Temporary storage 25
in Using CICS Services 25

Reading KSDS records
in File control 15
in Reading records 15

Reading records
in File control 15

284 CICS TS for z/OS: C++ OO Class Libraries

Reading records (continued)
in Using CICS Services 15
Reading ESDS records 15
Reading KSDS records 15
Reading RRDS records 16

Reading RRDS records
in File control 16
in Reading records 16

readItem
in Example of Temporary Storage 26
in IccDataQueue class 104
in IccTempStore class 205
in Reading data 23
in Reading items 25
in Scope of data in IccBuf reference returned from 'read'
methods 43
in Temporary storage 24
in Transient Data 23
in Working with IccResource subclasses 14

ReadMode
in Enumerations 123
in IccFile class 123

readNextItem
in IccTempStore class 206
in Scope of data in IccBuf reference returned from 'read'
methods 43
in Temporary storage 25

readNextRecord
in Browsing records 17
in IccFileIterator class 126
in Public methods 126

readNextRecord method 17
READONLY

in ASRAStorageType 64
readPreviousRecord

in Browsing records 17
in IccFileIterator class 127

readRecord
in C++ Exceptions and the Foundation Classes 34
in Deleting locked records 17
in IccFile class 118
in Reading records 15
in Updating records 16

readRecord method 15
receive

in IccSession class 176
in IccTerminal class 216
in Receiving data from a terminal 27

receive3270data
in Receiving data from a terminal 27

receive3270Data
in IccTerminal class 217
in Public methods 217

receiving data from a terminal 27
Receiving data from a terminal

in Terminal control 27
in Using CICS Services 27

record (parameter)
in writeRecord 133

recordFormat
in IccFile class 119
in Reading ESDS records 15
in Reading RRDS records 16
in Writing ESDS records 16

recordFormat (continued)
in Writing RRDS records 16

recordFormat method 15
recordIndex

in IccFile class 119
in Reading ESDS records 15
in Reading KSDS records 15
in Reading RRDS records 16
in Writing ESDS records 16
in Writing KSDS records 16
in Writing RRDS records 16

recordIndex method 15
recordLength

in IccFile class 119
in Reading ESDS records 15
in Reading KSDS records 15
in Reading RRDS records 16
in Writing ESDS records 16
in Writing KSDS records 16
in Writing RRDS records 16

recordLength method 15
red

in Color 225
registerData

in Example of starting transactions 22
in IccStartRequestQ class 182
in Starting transactions 20

registerInputMessage
in IccTerminal class 148

registerPrefix
in IccJournal class 131
in Public methods 131

registerRecordIndex
in IccFile class 119
in Reading ESDS records 15
in Reading KSDS records 15
in Reading RRDS records 16
in Writing ESDS records 16
in Writing KSDS records 16
in Writing records 16
in Writing RRDS records 16

registerRecordIndex method 15
relative byte address 15
relative record number 15
release

in IccSystem class 191
releaseAtTaskEnd

in LoadOpt 150
releaseText

in IccSystem class 191
remoteTermId

in Example of starting transactions 21
replace

in IccBuf class 85
in IccBuf constructors 13

replyTimeout
in IccConsole class 94

req
in Example of starting transactions 22

req1
in Example of starting transactions 21

req2
in Example of starting transactions 21

reqestName (parameter)

Index 285

reqestName (parameter) (continued)
in operator= 156

reqId (parameter)
in cancel 181
in cancelAlarm 87
in delay 195
in setAlarm 89
in start 185

requestName (parameter)
in Constructor 156
in operator= 72, 156

requestNum (parameter)
in wait 132

reset
in Browsing records 17
in IccFileIterator class 127
in IccStartRequestQ class 182

resetAbendHandler
in IccControl class 98

resetRouteCodes
in IccConsole class 94
in Public methods 94

resId (parameter)
in beginBrowse 188, 189

resName (parameter)
in beginBrowse 189
in Constructor 164

resource (parameter)
in beginBrowse 188, 189
in Constructor 167
in endBrowse 189
in enterTrace 195

resource class 8
Resource classes

in Overview of the foundation classes 8
resource identification class 7
Resource identification classes

in Overview of the foundation classes 7
resource object

creating 11
ResourceType

in Enumerations 193
in IccSystem class 193

respectAbendHandler
in AbendHandlerOpt 202

retrieveData
in Accessing start data 20
in IccStartRequestQ class 180, 182
in Mapping EXEC CICS calls to Foundation Class
methods 46

RetrieveOpt
in Enumerations 186
in IccStartRequestQ class 186

return
in Mapping EXEC CICS calls to Foundation Class
methods 46

returnCondition
in NoSpaceOpt 208

returnProgramId
in IccControl class 99
in Public methods 99

returnTermId
in Accessing start data 20
in IccStartRequestQ class 182

returnToCICS
in Functions 60
in Icc structure 60

returnTransId
in Accessing start data 20
in IccStartRequestQ class 183

reverse
in Highlight 226

rewriteItem
in Example of Temporary Storage 26
in IccTempStore class 206
in Temporary storage 25
in Updating items 25
in Writing items 25

rewriteRecord
in IccFile class 120
in Updating records 16

rewriteRecord method 16
rewriting records 16
rollBackUOW

in IccTask class 198
routeOption

in IccResource class 160
row (parameter)

in send 217, 218
in setCursor 221

RRDS file
in File control 15

RRN 15
rrn (parameter)

in operator!= 166
in operator= 165
in operator== 166

rThrowException
in HandleEventReturnOpt 163

run
in Base classes 7
in C++ Exceptions and the Foundation Classes 33
in Example of file control 17, 19
in Example of managing transient data 24
in Example of polymorphic behavior 41
in Example of starting transactions 21
in Example of Temporary Storage 25, 26
in Example of terminal control 27, 28
in Example of time and date services 28, 29
in IccControl class 97, 99
in main function 248, 249
in Mapping EXEC CICS calls to Foundation Class
methods 46
in Program control 19

Running the sample applications 3

S
sample source 2
Sample source code

in Installed contents 2
Location 2

scope of data 43
Scope of data in IccBuf reference returned from 'read'

methods
in Miscellaneous 43

scope of references 43
SDFHLOAD 3

286 CICS TS for z/OS: C++ OO Class Libraries

SDFHPROC 3
SDFHSDCK 3
search (parameter)

in Constructor 126
in reset 127

SearchCriterion
in Enumerations 124
in IccFile class 124

seconds
in IccAbsTime class 69
in IccTime class 233

seconds (parameter)
in Constructor 233, 235, 237
in set 236, 238
in setReplyTimeout 94

send
in Example of terminal control 27
in IccSession class 176
in IccTerminal class 217, 218

send (parameter)
in converse 172
in put 93
in send 176
in sendInvite 176
in sendLast 177
in write 95
in writeAndGetReply 95

send3270Data
in IccTerminal class 218, 219

sending data to a terminal 26
Sending data to a terminal

in Terminal control 26
in Using CICS Services 26

sendInvite
in IccSession class 176, 177

sendLast
in IccSession class 177

sendLine
in Example of file control 18
in Example of terminal control 27
in IccTerminal class 219, 220

SendOpt
in Enumerations 179
in IccSession class 179

sequential reading of files 17
session

in FacilityType 203
in IccControl class 99

set
in IccTimeInterval class 236
in IccTimeOfDay class 238

set (parameter)
in boolText 58

set…
in Sending data to a terminal 26

setAbendHandler
in IccControl class 99

setAccess
in IccFile class 120

setActionOnAnyCondition
in IccResource class 160

setActionOnCondition
in IccResource class 161

setActionsOnConditions

setActionsOnConditions (continued)
in IccResource class 161

setAlarm
in IccAlarmRequestId class 71
in IccClock class 89

setAllRouteCodes
in IccConsole class 94

setClassName
in IccBase class 75
in Protected methods 75

setColor
in Example of terminal control 27
in IccTerminal class 220

setCursor
in IccTerminal class 221

setCustomClassNum
in IccBase class 75
in Protected methods 75

setData
in IccStartRequestQ class 183
in Starting transactions 20

setDataLength
in IccBuf class 85

setDumpOpts
in IccTask class 198

setEDF
in Functions 60
in Icc structure 60
in IccResource class 161

setEmptyOnOpen
in IccFile class 120
in Public methods 120

setFMHContained
in IccBuf class 85
in Public methods 85

setHighlight
in Example of terminal control 27
in IccTerminal class 221

setInputMessage
in IccProgram class 149
in Public methods 149

setJournalTypeId
in IccJournal class 132

setKind
in Example of file control 18
in IccKey class 140

setLanguage
in IccUser class 244

setLine
in IccTerminal class 221

setNewLine
in IccTerminal class 222

setNextCommArea
in IccTerminal class 222
in Public methods 222

setNextInputMessage
in IccTerminal class 222

setNextTransId
in IccTerminal class 222

setPrefix
in IccJournal class 132

setPriority
in IccTask class 199
in Public methods 199

Index 287

setQueueName
in Example of starting transactions 22
in IccStartRequestQ class 183
in Starting transactions 20

setReplyTimeout
in IccConsole class 94

setReturnTermId
in Example of starting transactions 22
in IccStartRequestQ class 183
in Starting transactions 20

setReturnTransId
in Example of starting transactions 22
in IccStartRequestQ class 183, 184
in Starting transactions 20

setRouteCodes
in IccConsole class 94

setRouteOption
in Example of starting transactions 22, 23
in IccResource class 161, 162
in Program control 20
in Public methods 161, 162

setStartOpts
in IccStartRequestQ class 184

setStatus
in IccFile class 121

setTimerECA
in IccAlarmRequestId class 72

setWaitText
in IccTask class 199

Severe error handling (abendTask)
in CICS conditions 36
in Conditions, errors, and exceptions 36

SeverityOpt
in Enumerations 96
in IccConsole class 96

signoff
in IccTerminal class 223

signon
in IccTerminal class 223
in Public methods 223

singleton class 11
Singleton classes

in Creating a resource object 11
in Using CICS resources 11

size (parameter)
in getStorage 190, 196
in operator new 75

start
in Example of starting transactions 22
in IccRequestId class 155
in IccStartRequestQ class 180, 184
in Mapping EXEC CICS calls to Foundation Class
methods 46
in Parameter passing conventions 42
in Starting transactions 20

Starting transactions
in Starting transactions asynchronously 20
in Using CICS Services 20

starting transactions asynchronously 20
Starting transactions asynchronously

Accessing start data 20
Cancelling unexpired start requests 20
Example of starting transactions 21
in Using CICS Services 20

Starting transactions asynchronously (continued)
Starting transactions 20

startIO
in Options 134

startRequest
in StartType 203

startRequestQ
in Example of starting transactions 21, 22
in IccControl class 99

startType
in Example of starting transactions 22
in IccTask class 199

StartType
in Enumerations 203
in IccTask class 203

state
in IccSession class 178

StateOpt
in Enumerations 180
in IccSession class 180

stateText
in IccSession class 178

Status
in Enumerations 124
in IccFile class 124

status (parameter)
in setStatus 121

Storage management
in Miscellaneous 42

StorageOpts
in Enumerations 203
in IccTask class 203

storageOpts (parameter)
in getStorage 190, 196

storeName (parameter)
in Constructor 204

SUBSPACE
in ASRASpaceType 64

summary
in IccEvent class 108
in IccException class 111
in IccMessage class 144

support classes 10
Support Classes

in Overview of the foundation classes 10
suppressDump

in AbendDumpOpt 202
suspend

in IccTask class 199
in NoSpaceOpt 208

synchronous
in Options 134

syncLevel
in IccSession class 178

SyncLevel
in Enumerations 180
in IccSession class 180

sysId
in IccSystem class 192

sysId (parameter)
in Constructor 170
in setRouteOption 161, 162

sysName (parameter)
in Constructor 170

288 CICS TS for z/OS: C++ OO Class Libraries

sysName (parameter) (continued)
in setRouteOption 162

system
in IccControl class 100

T
task

in IccControl class 100
in LifeTime 170

temporary storage
deleting items 25
example 25
introduction 24
reading items 25
updating items 25
Writing items 25

Temporary storage
Deleting items 25
Example of Temporary Storage 25
in Using CICS Services 24
Reading items 25
Updating items 25
Writing items 25

termId (parameter)
in setReturnTermId 183
in start 185

terminal
finding out about 27
in FacilityType 203
in IccControl class 100
receiving data from 27
sending data to 26

terminal control
example 27
finding out information 27
introduction 26
receiving data 27
sending data 26

Terminal control
Example of terminal control 27
Finding out information about a terminal 27
in Using CICS Services 26
Receiving data from a terminal 27
Sending data to a terminal 26

terminalInput
in StartType 203

termName (parameter)
in setReturnTermId 183

Test
in C++ Exceptions and the Foundation Classes 32, 33

test (parameter)
in boolText 58

text
in IccMessage class 144

text (parameter)
in Constructor 77, 78, 143
in operator!= 140
in operator« 83, 214, 215
in operator+= 82
in operator= 81
in operator== 140
in writeItem 104, 207

throw

throw (continued)
in C++ Exceptions and the Foundation Classes 32
in Exception handling (throwException) 35

throwException
in ActionOnCondition 163
in CICS conditions 34

ti
in Example of starting transactions 21, 22

time
in IccAbsTime class 69
in IccClock class 89

time (parameter)
in Constructor 67, 235, 238
in delay 195
in setAlarm 89
in start 185

Time and date services
Example of time and date services 28
in Using CICS Services 28

time services 28
timeInHours

in IccAbsTime class 69
in IccTime class 233

timeInMinutes
in IccAbsTime class 69
in IccTime class 233

timeInSeconds
in IccAbsTime class 70
in IccTime class 234

timeInterval
in Type 235

timeInterval (parameter)
in operator= 236

timeOfDay
in Type 235

timeOfDay (parameter)
in operator= 238

timerECA
in IccAlarmRequestId class 73

timerECA (parameter)
in Constructor 71
in setTimerECA 72

timeSeparator (parameter)
in time 69, 89

TPName (parameter)
in connectProcess 172

traceNum (parameter)
in enterTrace 195

TraceOpt
in Enumerations 203
in IccTask class 203

tracing
activating trace output 31

transId
in IccTask class 199

transid (parameter)
in setNextTransId 222

transId (parameter)
in cancel 181
in connectProcess 172
in link 148
in setNextTransId 222
in setReturnTransId 184
in start 185

Index 289

transient data
deleting queues 23
example 24
introduction 23
reading data 23
Writing data 23

Transient Data
Deleting queues 23
Example of managing transient data 24
in Using CICS Services 23
Reading data 23
Writing data 23

transName (parameter)
in setReturnTransId 184

triggerDataQueueId
in IccTask class 199

trueFalse (parameter)
in setEmptyOnOpen 120

try
in C++ Exceptions and the Foundation Classes 32, 33
in Exception handling (throwException) 35, 36
in main function 248

tryLock
in IccSemaphore class 168

tryNumber
in C++ Exceptions and the Foundation Classes 32, 33

type
in C++ Exceptions and the Foundation Classes 33
in IccException class 111
in IccFile class 121
in IccRecordIndex class 154
in IccSemaphore class 168
in IccTime class 234

Type
in Enumerations 112, 155, 235
in IccException class 112
in IccRecordIndex class 155
in IccTime class 235

type (parameter)
in condition 108, 159
in Constructor 73, 77, 78, 154, 163, 164, 167
in waitExternal 200

typeText
in IccException class 111

U
underscore

in Highlight 226
UNIX

in ClassMemoryMgmt 61
in Storage management 42

unknownException
in Functions 60
in Icc structure 60

unload
in IccProgram class 149

unlock
in IccSemaphore class 168

unlockRecord
in IccFile class 121

UOW
in LifeTime 169

updatable

updatable (continued)
in Access 123

update
in IccClock class 89
in ReadMode 123

update (parameter)
in Constructor 87

UpdateMode
in Enumerations 91
in IccClock class 91

updateToken (parameter)
in deleteLockedRecord 114
in readNextRecord 126, 127
in readPreviousRecord 127
in readRecord 118
in rewriteRecord 120
in unlockRecord 122

updating items 25
Updating items

in Temporary storage 25
in Using CICS Services 25

updating records 16
Updating records

in File control 16
in Using CICS Services 16

upper
in Case 225

USER
in ASRAStorageType 64

user (parameter)
in signon 223

userDataKey
in StorageOpts 203

USEREXECKEY
in ASRAKeyType 63

userId
in IccTask class 200

userId (parameter)
in start 185

userName (parameter)
in Constructor 243

Using an object
in C++ Objects 6

using CICS resources 11
Using CICS resources

Calling methods on a resource object 12
Creating a resource object 11
in Overview of the foundation classes 11
Singleton classes 11

Using CICS Services
Accessing start data 20
Browsing records 17
Cancelling unexpired start requests 20
Deleting items 25
Deleting queues 23
Deleting records 17
Example of file control 17
Example of managing transient data 24
Example of starting transactions 21
Example of Temporary Storage 25
Example of terminal control 27
Example of time and date services 28
Finding out information about a terminal 27
Reading data 23

290 CICS TS for z/OS: C++ OO Class Libraries

Using CICS Services (continued)
Reading items 25
Reading records 15
Receiving data from a terminal 27
Sending data to a terminal 26
Starting transactions 20
Updating items 25
Updating records 16
Writing data 23
Writing items 25
Writing records 16

V
value

in IccKey class 140
value (parameter)

in operator= 139
variable (parameter)

in Foundation Classes—reference 45
verifyPassword

in IccUser class 245
in Public methods 245

VSAM 15

W
wait

in IccJournal class 132
in SendOpt 180

waitExternal
ECBList (parameter)

in waitExternal 200
in IccTask class 200
numEvents (parameter)

in waitExternal 200
opt (parameter)

in waitExternal 200
type (parameter)

in waitExternal 200
waitForAID

in Example of terminal control 28
in IccTerminal class 224

waitOnAlarm
in IccAlarmRequestId class 71
in IccTask class 200

WaitPostType
in Enumerations 203
in IccTask class 203

WaitPurgeability
in Enumerations 203
in IccTask class 203

width
in IccTerminal class 224

workArea
in IccSystem class 192
in IccTask class 201
in IccTerminal class 224

Working with IccResource subclasses
in Buffer objects 14
in IccBuf class 14

write
in IccConsole class 95

writeAndGetReply
in IccConsole class 95

writeItem
in C++ Exceptions and the Foundation Classes 33
in Calling methods on a resource object 12
in IccDataQueue class 104
in IccTempStore class 206, 207
in Temporary storage 24
in Transient Data 23
in Working with IccResource subclasses 14
in Writing data 23
in Writing items 25

writeRecord
in Example of file control 18
in IccFile class 122
in IccJournal class 133
in Writing KSDS records 16
in Writing records 16
in Writing RRDS records 16

writeRecord method
IccFile class 16

Writing data
in Transient Data 23
in Using CICS Services 23

Writing ESDS records
in File control 16
in Writing records 16

Writing items
in Temporary storage 25
in Using CICS Services 25

Writing KSDS records
in File control 16
in Writing records 16

Writing records
in File control 16
in Using CICS Services 16
Writing ESDS records 16
Writing KSDS records 16
Writing RRDS records 16

Writing RRDS records
in File control 16
in Writing records 16

X
X

in actionOnConditionAsChar 158
in operatingSystem 191

XPLINK 3

Y
year

in IccAbsTime class 70
in IccClock class 89

yellow
in Color 226

yesNo (parameter)
in setFMHContained 85, 86

Index 291

292 CICS TS for z/OS: C++ OO Class Libraries

IBM®

	Contents
	About this PDF
	Chapter 1. Installation and setup
	Getting ready for object oriented CICS
	Installed contents
	Header files
	Location

	Dynamic link library
	Location

	Sample source code
	Location
	Running the sample applications

	Other data sets for CICS Transaction Server for z/OS

	Chapter 2. Using the CICS foundation classes
	C++ Objects
	Creating an object
	Using an object
	Deleting an object

	Overview of the foundation classes
	Base classes
	Resource identification classes
	Resource classes
	Support Classes
	Using CICS resources
	Creating a resource object
	Singleton classes

	Calling methods on a resource object

	Buffer objects
	IccBuf class
	Data area ownership
	Internal/External ownership of buffers

	Data area extensibility
	IccBuf constructors
	IccBuf methods
	Working with IccResource subclasses

	Using CICS Services
	File control
	Reading records
	Reading KSDS records
	Reading ESDS records
	Reading RRDS records

	Writing records
	Writing KSDS records
	Writing ESDS records
	Writing RRDS records

	Updating records
	Deleting records
	Deleting normal records
	Deleting locked records

	Browsing records
	Example of file control

	Program control
	Starting transactions asynchronously
	Starting transactions
	Accessing start data
	Cancelling unexpired start requests
	Example of starting transactions

	Transient Data
	Reading data
	Writing data
	Deleting queues
	Example of managing transient data

	Temporary storage
	Reading items
	Writing items
	Updating items
	Deleting items
	Example of Temporary Storage

	Terminal control
	Sending data to a terminal
	Receiving data from a terminal
	Finding out information about a terminal
	Example of terminal control

	Time and date services
	Example of time and date services

	Compiling, executing, and debugging
	Compiling a CICS Foundation Class program
	Header files

	Executing Programs
	Program debugging

	Conditions, errors, and exceptions
	Foundation Class Abend codes
	C++ Exceptions and the Foundation Classes
	CICS conditions
	Manual condition handling (noAction)
	Automatic condition handling (callHandleEvent)
	Exception handling (throwException)
	Severe error handling (abendTask)

	Platform differences
	Object level
	Method level
	Parameter level

	Polymorphic Behavior
	Example of polymorphic behavior

	Storage management
	Parameter passing conventions
	Scope of data in IccBuf reference returned from 'read' methods

	Chapter 3. Foundation Classes: reference
	Mapping EXEC CICS calls to Foundation Class methods
	Mapping Foundation Class methods to EXEC CICS calls
	Icc structure
	Functions
	boolText
	catchException
	conditionText
	initializeEnvironment
	isClassMemoryMgmtOn
	isEDFOn
	isFamilySubsetEnforcementOn
	returnToCICS
	setEDF
	unknownException

	Enumerations
	Bool
	BoolSet
	ClassMemoryMgmt
	FamilySubset
	GetOpt
	Platforms

	IccAbendData class
	IccAbendData constructor (protected)
	Constructor

	Public methods
	abendCode
	ASRAInterrupt
	ASRAKeyType
	ASRAPSW
	ASRARegisters
	ASRASpaceType
	ASRAStorageType
	instance
	isDumpAvailable
	originalAbendCode
	programName

	Inherited public methods
	Inherited protected methods

	IccAbsTime class
	IccAbsTime constructor
	Constructor (1)
	Constructor (2)

	Public methods
	date
	dayOfMonth
	dayOfWeek
	daysSince1900
	hours
	milliSeconds
	minutes
	monthOfYear
	operator=
	packedDecimal
	seconds
	time
	timeInHours
	timeInMinutes
	timeInSeconds
	year

	Inherited public methods
	Inherited protected methods

	IccAlarmRequestId class
	IccAlarmRequestId constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)

	Public methods
	isExpired
	operator= (1)
	operator= (2)
	operator= (3)
	setTimerECA
	timerECA

	Inherited public methods
	Inherited protected methods

	IccBase class
	IccBase constructor (protected)
	Constructor

	Public methods
	classType
	className
	customClassNum
	operator delete
	operator new

	Protected methods
	setClassName
	setCustomClassNum

	Enumerations
	ClassType
	NameOpt

	IccBuf class
	IccBuf constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)
	Constructor (4)

	Public methods
	append (1)
	append (2)
	assign (1)
	assign (2)
	cut
	dataArea
	dataAreaLength
	dataAreaOwner
	dataAreaType
	dataLength
	insert
	isFMHContained
	operator const char*
	operator= (1)
	operator= (2)
	operator+= (1)
	operator+= (2)
	operator==
	operator!=
	operator« (1)
	operator« (2)
	operator« (3)
	operator« (4)
	operator« (5)
	operator« (6)
	operator« (7)
	operator« (8)
	operator« (9)
	operator« (10)
	operator« (11)
	operator« (12)
	operator« (13)
	operator« (14)
	operator« (15)
	overlay
	replace
	setDataLength
	setFMHContained

	Inherited public methods
	Inherited protected methods
	Enumerations
	DataAreaOwner
	DataAreaType

	IccClock class
	IccClock constructor
	Constructor

	Public methods
	absTime
	cancelAlarm
	date
	dayOfMonth
	dayOfWeek
	daysSince1900
	milliSeconds
	monthOfYear
	setAlarm
	time
	update
	year

	Inherited public methods
	Inherited protected methods
	Enumerations
	DateFormat
	DayOfWeek
	MonthOfYear
	UpdateMode

	IccCondition structure
	Enumerations
	Codes
	Range

	IccConsole class
	IccConsole constructor (protected)
	Constructor

	Public methods
	instance
	put
	replyTimeout
	resetRouteCodes
	setAllRouteCodes
	setReplyTimeout (1)
	setReplyTimeout (2)
	setRouteCodes
	write
	writeAndGetReply

	Inherited public methods
	Inherited protected methods
	Enumerations
	SeverityOpt

	IccControl class
	IccControl constructor (protected)
	Constructor

	Public methods
	callingProgramId
	cancelAbendHandler
	commArea
	console
	initData
	instance
	isCreated
	programId
	resetAbendHandler
	returnProgramId
	run
	session
	setAbendHandler (1)
	setAbendHandler (2)
	startRequestQ
	system
	task
	terminal

	Inherited public methods
	Inherited protected methods

	IccConvId class
	IccConvId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccDataQueue class
	IccDataQueue constructors
	Constructor (1)
	Constructor (2)

	Public methods
	clear
	empty
	get
	put
	readItem
	writeItem (1)
	writeItem (2)

	Inherited public methods
	Inherited protected methods

	IccDataQueueId class
	IccDataQueueId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccEvent class
	IccEvent constructor
	Constructor

	Public methods
	className
	classType
	condition
	conditionText
	methodName
	summary

	Inherited public methods
	Inherited protected methods

	IccException class
	IccException constructor
	Constructor

	Public methods
	className
	classType
	message
	methodName
	number
	summary
	type
	typeText

	Inherited public methods
	Inherited protected methods
	Enumerations
	Type

	IccFile class
	IccFile constructors
	Constructor (1)
	Constructor (2)

	Public methods
	access
	accessMethod
	beginInsert (VSAM only)
	deleteLockedRecord
	deleteRecord
	enableStatus
	endInsert (VSAM only)
	isAddable
	isBrowsable
	isDeletable
	isEmptyOnOpen
	isReadable
	isRecoverable
	isUpdatable
	keyLength
	keyPosition
	openStatus
	readRecord
	recordFormat
	recordIndex
	recordLength
	registerRecordIndex
	rewriteRecord
	setAccess
	setEmptyOnOpen
	setStatus
	type
	unlockRecord
	writeRecord

	Inherited public methods
	Inherited protected methods
	Enumerations
	Access
	ReadMode
	SearchCriterion
	Status

	IccFileId class
	IccFileId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccFileIterator class
	IccFileIterator constructor
	Constructor

	Public methods
	readNextRecord
	readPreviousRecord
	reset

	Inherited public methods
	Inherited protected methods

	IccGroupId class
	IccGroupId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccJournal class
	IccJournal constructors
	Constructor (1)
	Constructor (2)

	Public methods
	clearPrefix
	journalTypeId
	put
	registerPrefix
	setJournalTypeId (1)
	setJournalTypeId (2)
	setPrefix (1)
	setPrefix (2)
	wait
	writeRecord (1)
	writeRecord (2)

	Inherited public methods
	Inherited protected methods
	Enumerations
	Options

	IccJournalId class
	IccJournalId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	number
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccJournalTypeId class
	IccJournalTypeId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccKey class
	IccKey constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)

	Public methods
	assign
	completeLength
	kind
	operator= (1)
	operator= (2)
	operator= (3)
	operator== (1)
	operator== (2)
	operator== (3)
	operator!= (1)
	operator!= (2)
	operator!= (3)
	setKind
	value

	Inherited public methods
	Inherited protected methods
	Enumerations
	Kind

	IccLockId class
	IccLockId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccMessage class
	IccMessage constructor
	Constructor

	Public methods
	className
	methodName
	number
	summary
	text

	Inherited public methods
	Inherited protected methods

	IccPartnerId class
	IccPartnerId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccProgram class
	IccProgram constructors
	Constructor (1)
	Constructor (2)

	Public methods
	address
	clearInputMessage
	entryPoint
	length
	link
	load
	registerInputMessage
	setInputMessage
	unload

	Inherited public methods
	Inherited protected methods
	Enumerations
	CommitOpt
	LoadOpt

	IccProgramId class
	IccProgramId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccRBA class
	IccRBA constructor
	Constructor

	Public methods
	operator= (1)
	operator= (2)
	operator== (1)
	operator== (2)
	operator!= (1)
	operator!= (2)
	number

	Inherited public methods
	Inherited protected methods

	IccRecordIndex class
	IccRecordIndex constructor (protected)
	Constructor

	Public methods
	length
	type

	Inherited public methods
	Inherited protected methods
	Enumerations
	Type

	IccRequestId class
	IccRequestId constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccResource class
	IccResource constructor (protected)
	Constructor

	Public methods
	actionOnCondition
	actionOnConditionAsChar
	actionsOnConditionsText
	clear
	condition
	conditionText
	get
	handleEvent
	id
	isEDFOn
	isRouteOptionOn
	name
	put
	routeOption
	setActionOnAnyCondition
	setActionOnCondition
	setActionsOnConditions
	setEDF
	setRouteOption (1)
	setRouteOption (2)

	Inherited public methods
	Inherited protected methods
	Enumerations
	ActionOnCondition
	HandleEventReturnOpt
	ConditionType

	IccResourceId class
	IccResourceId constructors (protected)
	Constructor (1)
	Constructor (2)

	Public methods
	name
	nameLength

	Protected methods
	operator=

	Inherited public methods
	Inherited protected methods

	IccRRN class
	IccRRN constructors
	Constructor

	Public methods
	operator= (1)
	operator= (2)
	operator== (1)
	operator== (2)
	operator!= (1)
	operator!= (2)
	number

	Inherited public methods
	Inherited protected methods

	IccSemaphore class
	IccSemaphore constructor
	Constructor (1)
	Constructor (2)

	Public methods
	lifeTime
	lock
	tryLock
	type
	unlock

	Inherited public methods
	Inherited protected methods
	Enumerations
	LockType
	LifeTime

	IccSession class
	IccSession constructors (public)
	Constructor (1)
	Constructor (2)
	Constructor (3)

	IccSession constructor (protected)
	Constructor

	Public methods
	allocate
	connectProcess (1)
	connectProcess (2)
	connectProcess (3)
	converse
	convId
	errorCode
	extractProcess
	flush
	free
	get
	isErrorSet
	isNoDataSet
	isSignalSet
	issueAbend
	issueConfirmation
	issueError
	issuePrepare
	issueSignal
	PIPList
	process
	put
	receive
	send (1)
	send (2)
	sendInvite (1)
	sendInvite (2)
	sendLast (1)
	sendLast (2)
	state
	stateText
	syncLevel

	Inherited public methods
	Inherited protected methods
	Enumerations
	AllocateOpt
	SendOpt
	StateOpt
	SyncLevel

	IccStartRequestQ class
	IccStartRequestQ constructor (protected)
	Constructor

	Public methods
	cancel
	clearData
	data
	instance
	queueName
	registerData
	reset
	retrieveData
	returnTermId
	returnTransId
	setData
	setQueueName
	setReturnTermId (1)
	setReturnTermId (2)
	setReturnTransId (1)
	setReturnTransId (2)
	setStartOpts
	start

	Inherited public methods
	Inherited protected methods
	Enumerations
	RetrieveOpt
	ProtectOpt
	CheckOpt

	IccSysId class
	IccSysId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccSystem class
	IccSystem constructor (protected)
	Constructor

	Public methods
	applName
	beginBrowse (1)
	beginBrowse (2)
	dateFormat
	endBrowse
	freeStorage
	getFile (1)
	getFile (2)
	getNextFile
	getStorage
	instance
	operatingSystem
	operatingSystemLevel
	release
	releaseText
	sysId
	workArea

	Inherited public methods
	Inherited protected methods
	Enumerations
	ResourceType

	IccTask class
	IccTask Constructor (protected)
	Constructor

	Public methods
	abend
	abendData
	commitUOW
	delay
	dump
	enterTrace
	facilityType
	freeStorage
	getStorage
	instance
	isCommandSecurityOn
	isCommitSupported
	isResourceSecurityOn
	isRestarted
	isStartDataAvailable
	number
	principalSysId
	priority
	rollBackUOW
	setDumpOpts
	setPriority
	setWaitText
	startType
	suspend
	transId
	triggerDataQueueId
	userId
	waitExternal
	waitOnAlarm
	workArea

	Inherited public methods
	Inherited protected methods
	Enumerations
	AbendHandlerOpt
	AbendDumpOpt
	DumpOpts
	FacilityType
	StartType
	StorageOpts
	TraceOpt
	WaitPostType
	WaitPurgeability

	IccTempStore class
	IccTempStore constructors
	Constructor (1)
	Constructor (2)

	Public methods
	clear
	empty
	get
	numberOfItems
	put
	readItem
	readNextItem
	rewriteItem
	writeItem (1)
	writeItem (2)

	Inherited public methods
	Inherited protected methods
	Enumerations
	Location
	NoSpaceOpt

	IccTempStoreId class
	IccTempStoreId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccTermId class
	IccTermId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccTerminal class
	IccTerminal constructor (protected)
	Constructor

	Public methods
	AID
	clear
	cursor
	data
	erase
	freeKeyboard
	get
	height
	inputCursor
	instance
	line
	netName
	operator« (1)
	operator« (2)
	operator« (3)
	operator« (4)
	operator« (5)
	operator« (6)
	operator« (7)
	operator« (8)
	operator« (9)
	operator« (10)
	operator« (11)
	operator« (12)
	operator« (13)
	operator« (14)
	operator« (15)
	operator« (16)
	operator« (17)
	operator« (18)
	put
	receive
	receive3270Data
	send (1)
	send (2)
	send (3)
	send (4)
	send3270Data (1)
	send3270Data (2)
	send3270Data (3)
	send3270Data (4)
	sendLine (1)
	sendLine (2)
	sendLine (3)
	sendLine (4)
	setColor
	setCursor (1)
	setCursor (2)
	setHighlight
	setLine
	setNewLine
	setNextCommArea
	setNextInputMessage
	setNextTransId
	signoff
	signon (1)
	signon (2)
	waitForAID (1)
	waitForAID (2)
	width
	workArea

	Inherited public methods
	Inherited protected methods
	Enumerations
	AIDVal
	Case
	Color
	Highlight
	NextTransIdOpt

	IccTerminalData class
	IccTerminalData constructor (protected)
	Constructor

	Public methods
	alternateHeight
	alternateWidth
	defaultHeight
	defaultWidth
	graphicCharCodeSet
	graphicCharSetId
	isAPLKeyboard
	isAPLText
	isBTrans
	isColor
	isEWA
	isExtended3270
	isFieldOutline
	isGoodMorning
	isHighlight
	isKatakana
	isMSRControl
	isPS
	isSOSI
	isTextKeyboard
	isTextPrint
	isValidation

	Inherited public methods
	Inherited protected methods

	IccTime class
	IccTime constructor (protected)
	Constructor

	Public methods
	hours
	minutes
	seconds
	timeInHours
	timeInMinutes
	timeInSeconds
	type

	Inherited public methods
	Inherited protected methods
	Enumerations
	Type

	IccTimeInterval class
	IccTimeInterval constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator=
	set

	Inherited public methods
	Inherited protected methods

	IccTimeOfDay class
	IccTimeOfDay constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator=
	set

	Inherited public methods
	Inherited protected methods

	IccTPNameId class
	IccTPNameId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccTransId class
	IccTransId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccUser class
	IccUser constructors
	Constructor (1)
	Constructor (2)

	Public methods
	changePassword
	daysUntilPasswordExpires
	ESMReason
	ESMResponse
	groupId
	invalidPasswordAttempts
	language
	lastPasswordChange
	lastUseTime
	passwordExpiration
	setLanguage
	verifyPassword

	Inherited public methods
	Inherited protected methods

	IccUserId class
	IccUserId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	IccValue structure
	Enumeration
	Listing of valid CVDAs

	main function

	Notices
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

