
CICS Transaction Gateway

Programming Reference

Version 7.1

SC34-6759-02

���

CICS Transaction Gateway

Programming Reference

Version 7.1

SC34-6759-02

���

Note!

Before using this information and the product it supports, be sure to read the general information under

“Notices” on page 297.

Third Edition (July 2008)

This edition applies to Version 7.1 of the CICS Transaction Gateway, program number 5724-I81, 5655-R25 and

5724-J09. It will also apply to all subsequent versions, releases, and modifications until otherwise indicated in new

editions.

This edition replaces SC34-6674. Technical changes to the text are indicated by a vertical line to the left of the change.

© Copyright International Business Machines Corporation 1989, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Who should read this book vii

Installation path vii

Directory delimiters vii

Information specific to your operating system vii

Changes to programming reference

information ix

Chapter 1. COM 1

Buffer COM class 1

Interface Selection 1

Object Creation 1

Methods 2

Connect COM class 4

Interface Selection 4

Object Creation 4

Methods 5

ECI COM class 10

Interface Selection 10

Object Creation 11

Methods 11

EPI COM class 13

Interface Selection 13

Object Creation 13

Methods 14

Field COM class 17

Interface Selection 17

Methods 17

Flow COM class 22

Interface Selection 22

Object Creation 23

Methods 23

Map COM class 25

Interface Selection 26

Object Creation 26

Methods 26

Screen COM class 27

Interface Selection 28

Methods 28

SecAttr COM class 30

Interface Selection 30

Methods 31

SecTime COM class 32

Interface Selection 32

Methods 32

Session COM class 33

Interface Selection 33

Object Creation 33

Methods 34

Terminal COM class 35

Interface Selection 35

Object Creation 35

Methods 35

UOW COM class 45

Interface Selection 45

Object Creation 45

Methods 45

Chapter 2. Java 47

Class/interface page 47

Use page 48

Tree (Class Hierarchy) 48

Index page 48

Chapter 3. C++ 49

Ccl class 49

Enumerations 49

CclBuf class 49

CclBuf constructors 50

Public methods 51

Enumerations 55

CclConn class 56

CclConn constructor 56

Public methods 57

Enumerations 61

CclECI class 61

CclECI constructor (protected) 62

Public methods 62

CclEPI class 64

CclEPI constructor 64

Public methods 64

Enumerations 66

CclException class 66

Public methods 67

CclField class 68

Public methods 68

Enumerations 72

CclFlow class 74

CclFlow constructor 74

© Copyright IBM Corp. 1989, 2008 iii

Public methods 75

Enumerations 77

CclMap class 78

CclMap constructor 78

Public methods 78

Protected methods 79

CclScreen class 80

Public methods 81

Enumerations 83

CclSecAttr 83

Public Methods 83

CclSecTime 84

Public Methods 84

CclSession class 85

CclSession constructor 85

Public methods 86

Enumerations 87

CclTerminal class 87

CclTerminal constructor 87

Public methods 89

Enumerations 95

CclUOW class 97

CclUOW constructor 97

Public methods 97

Chapter 4. C and COBOL 99

External Call Interface 99

CICS_ExternalCall ECI_Parms . . . 99

Call types for the CICS_ExternalCall . . 102

ECI status block 131

CICS_EciListSystems NameSpace

Systems List 132

External Presentation Interface 133

EPI constants and data structures . . . 133

EPI functions 139

EPI events 166

External Security Interface 170

ESI constants and data structures . . . 170

ESI functions 172

Chapter 5. Java request monitoring, C

ECI and C EPI exits 181

Java request monitoring exits 181

C ECI exits reference 182

Identification token 183

C EPI exits reference 193

CICS_EpiInitializeExit 195

CICS_EpiTerminateExit 196

CICS_EpiAddTerminalExit 197

CICS_EpiTermIdExit 200

CICS_EpiTermIdInfoExit 201

CICS_EpiStartTranExtendedExit 202

CICS_EpiStartTranExit 203

CICS_EpiReplyExit 204

CICS_EpiDelTerminalExit 205

CICS_EpiGetEventExit 206

CICS_EpiSystemIdExit 208

CICS_EpiTranFailedExit 210

Chapter 6. Statistical API reference . . . 213

Appendix A. COM Global Constants . . . 215

Appendix B. COM EPI Specific Constants 217

Synchronization Types 217

CclEPI States 217

CclSession States 217

CclTerminal States 217

CclTerminal ATI States 218

CclTerminal EndTermReasons 218

CclTerminal Sign-on Types 218

CclScreen AID key codes 219

CclField Protected State Attributes 220

CclField Numeric Attributes 220

CclField Intensity Attributes 220

CclField Modified Attributes 220

CclField Highlight Attributes 221

CclField Transparency Attributes 221

CclField Color Attributes 221

Appendix C. COM ECI Constants 223

Synchronization Types 223

Flow status types 223

Connection Status Codes 223

Appendix D. COM Error Code References 225

Appendix E. Java encodings 229

Appendix F. C++ Exception Objects . . . 233

The product library and related literature 239

CICS Transaction Gateway books 239

Sample configuration documents 240

Redbooks 240

Other Useful Books 240

CICS Transaction Server publications . . 240

Microsoft Windows publications 241

APPC-related publications 241

iv CICS Transaction Gateway: Programming Reference

Obtaining books from IBM 242

Accessibility features for CICS

Transaction Gateway 243

Documentation 243

Starting the Gateway daemon 243

Setting EPITerminal properties

programmatically 243

cicsterm 244

The cicsterm -? command 245

Glossary 247

Index 269

Notices 297

Trademarks 299

Sending your comments to IBM 301

Contents v

||

vi CICS Transaction Gateway: Programming Reference

About this book

This information provides information about the APIs of the programming

languages that the CICS® Transaction Gateway supports (Java™, C++, C, and

COM) and the CICS Universal Client supports (C++, C and COM).

For information about programming methodology see the CICS Transaction

Gateway: Programming Guide, SC34-6965-00. For further information about Java

programming for the CICS Transaction Gateway, see the Javadocs shipped

with this product.

Who should read this book

This book is intended for anyone involved with programming for the CICS

Transaction Gateway and the CICS Universal Client.

It is assumed that you are familiar with the operating system under which

your CICS Transaction Gateway or CICS Universal Client runs.

An understanding of Internet terminology is helpful.

Installation path

The term <install_path> is used in file paths to represent the directory where

you installed the product. See the CICS Transaction Gateway: Administration

book for your operating system, for the default installation locations.

Directory delimiters

References to directory path names in this book use the Microsoft® Windows®

convention of a backslash (\) as delimiter, instead of the forward slash (/)

delimiter used on UNIX® and Linux® operating systems.

Information specific to your operating system

Unless otherwise specified, the term Windows refers to Windows 2000,

Windows 2003, Windows XP, and Windows Vista.

The term Windows Terminal Server means a server with the Terminal Services

feature enabled.

© Copyright IBM Corp. 1989, 2008 vii

viii CICS Transaction Gateway: Programming Reference

Changes to programming reference information

v CICS Transaction Gateway V7.1 introduces IP interconnectivity (IPIC) which

provides enhanced TCP/IP support for the J2EE Connector Architecture

(JCA). This means that JCA now supports channels and containers, using a

MappedRecord structure to hold your data.

v CICS Transaction Gateway enables users and third party vendors to write

tools to access request specific information. User exit points are provided at

key points in the product to allow user code to be run within the context of

each individual transaction.

© Copyright IBM Corp. 1989, 2008 ix

x CICS Transaction Gateway: Programming Reference

Chapter 1. COM

Buffer COM class

A CclOBuffer object contains a data area in memory which can be used to

hold information. A particular use for a CclOBuffer object is to hold a

COMMAREA used to pass data to and from a CICS server.

The CclOBuffer object is primarily intended for use with byte (binary) data.

Typically a COMMAREA contains an application-specific data structure, often

originating from a CICS server C program. The preferred method for handling

binary data in Visual Basic is now the Byte data type. The SetData and Data

methods allow the contents of the CclOBuffer object to be accessed as a Byte

array. The CclOBuffer object can be used for string data, and stores strings as

single-byte ANSI characters, but it does not provide any support for

code-page conversions or DBCS. Note that in 32-bit environments Visual Basic

uses 2-byte Unicode character representation; the COM class converts this to

and from single-byte ANSI.

When a CclOBuffer object is created it allocates an area of memory as its

buffer. The length of this buffer can be set explicitly via the SetLength

method.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOBuf

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.Buffer")

set var = New CclOBuf

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

© Copyright IBM Corp. 1989, 2008 1

Methods

AppendString

string

The source string.

Appends a string to existing data in the Ccl.Buffer object.

Data

Returns the contents of the buffer as a Byte array.

ExtractString

offset

The offset into the data area.

length

(optional) The length, in bytes, of the string to be extracted.

Returns a string from the data area starting at the specified offset.

If length is not specified, ExtractString returns data until it finds the first null

terminator. If length is specified, ExtractString returns the number of bytes

requested, including any nulls found in the string.

InsertString

offset

The offset in the data area where the string is to be inserted.

string

The source string.

AppendString(string as String)

Data() as Variant

 ExtractString (offset as Integer[,

 length as Integer]) as String

InsertString (offset as Integer,

 string as String)

2 CICS Transaction Gateway: Programming Reference

Inserts the given string into the data area at the given offset.

Length

Returns the length of the data area in bytes.

Overlay

offset

The offset in the data area where the string is to be inserted.

string

The source string.

Overlays the data area with the given string, starting at the given offset.

SetData

array

The array containing the source data.

Copies the supplied array into the buffer. Byte, Integer, and Long arrays are

supported.

SetLength

length

The new length of the data area, in bytes.

Changes the current length of the data area. If you increase the length of the

buffer object, the extra space is padded with nulls. The Client daemon

truncates any nulls before sending the buffer to a CICS server. If you decrease

the length of the buffer object, the contents are truncated.

Length() as Integer

Overlay (offset as Integer,

 string as String)

SetData(array as Variant)

SetLength(length as Integer)

Chapter 1. COM 3

SetString

string

Source string

Copies the supplied string into the object.

String

Returns the contents of the Ccl.Buffer object as a string.

Connect COM class

The Connect COM class is used to maintain and represent an ECI connection

between a client and a named server. Access to the server is optionally

controlled by a user ID and password. It can call a program in the server or

get information on the state of the connection.

Before the Connect COM class can be used to make calls to CICS, it must be

initialized using the Details method and, optionally, the TranDetails method.

Any interaction between client and server requires a CclOFlow object and a

CclOConnect object.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOConn

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.Connect")

set var = New CclOConn

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

SetString(string as String)

 String() as String

4 CICS Transaction Gateway: Programming Reference

Methods

AlterSecurity

AlterSecurity(newUserid as String, newPassword as String)

newUserid

The new userid

newPassword

The new password corresponding to the new userid.

Sets the userid and password to be used on the next link call.

Cancel

flow

The CclOFlow object used to control the client/server call

Cancels any Changed call that was previously issued to the server associated

with this connection.

Changed

flow

The CclOFlow object used to control the client/server call.

Requests the server to notify the client when the current connection status

changes. The call is ignored if there is an outstanding Changed call for this

connection.

ChangePassword

Cancel(flow as Object)

or

Cancel(flow as CclOFlow)

Changed(flow as Object)

or

Changed(flow as CclOFlow)

Chapter 1. COM 5

newPassword

The new password

Allows a client application to change the password held in the Connect object

and the password recorded by an external security manager for the userid

held in the Connect object. The external security manager is assumed to be

located in the server defined by the Connect object. A CclOSecAttr object is

returned if no errors occur.

Details

serverName

The name of the server. If no name is supplied the default server—the

first server named in the Gateway initialization file—is used. You can

discover this name, after the first call to the server by using the

ServerName method. The length is adjusted to 8 characters by padding

with blanks.

userId

The user ID, if needed. The length is adjusted to 16 characters by padding

with blanks.

password

The password corresponding to the user ID in userID, if needed. The

length is adjusted to 16 characters by padding with blanks.

Use this method to supply details of the CICS server. No interaction with the

CICS server takes place until the Link, Status or Changed methods are called.

The user ID and password are not needed if the connection is only used for

status calls or if the server has no security.

Link

ChangePassword (newPassword as String) as Object

or

ChangePassword (newPassword as String) as CclOSecAttr

Details (serverName as String,

 userId as String,

 password as String)

6 CICS Transaction Gateway: Programming Reference

flow

The CclOFlow object used to control the client/server call.

programName

The name of the server program that is being called. The length is

adjusted to 8 characters by padding with blanks or truncating, if

necessary.

commArea

A CclOBuffer object that holds the data to be passed to the called program

in a COMMAREA. A NULL value should be supplied if no COMMAREA

is to be sent.

unitOfWork

The CclOUOW object that identifies the unit of work (UOW) with which

this call is being associated. A NULL value should be supplied if no UOW

is to be used.

Calls the specified program on the server. The server program sees the

incoming call as an EXEC CICS LINK call.

MakeSecurityDefault

MakeSecurityDefault()

Informs the client that the current userid and password for this object is to

become the default for ECI and EPI requests passed to the server as specified

in the construction of the Connect object.

Password

Returns the password held by the CclOConnect object, padded with spaces.

Link (flow as Object,

 programName as String,

 commArea as Object,

 unitOfWork as Object)

or

Link (flow as CclOFlow,

 programName as String,

 commArea as CclOBuf,

 unitOfWork as CclOUOW)

 Password() as String

Chapter 1. COM 7

ServerName

Returns the name of the server system held by the CclOConnect object and

listed by the Gateway initialization file, or blanks if the default server is being

used and no calls have yet been made.

ServerStatus

Returns the status of the server connection, set by an earlier status or changed

request. Possible values are:

cclUnknowncclUnknown

The CICS server status is unknown

cclAvailablecclAvailable

The CICS server is available

cclUnavailablecclUnavailable

The CICS server is not available

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

ServerStatusText

Returns a string, set by an earlier status or changed request, indicating the

availability of the server.

Status

ServerName() as String

ServerStatus() as Integer

or

ServerStatus() as CclConnectStatusCodes

 ServerStatusText() as String

8 CICS Transaction Gateway: Programming Reference

flow

The CclOFlow object used to control the client/server call

Request the status of the server connection.

TranDetails

runTran

The CICS transaction under which called programs will run. The default

is to use the default server transaction. The length is adjusted to four

characters by padding with blanks.

attachTran

The CICS transaction to which called programs are attached. The default

is to use the default CPMI. The length is adjusted to four characters by

padding with blanks.

This method is used to supply additional information to the CICS server. The

information is optional, but can be used to affect the environment in which

programs are run on the CICS server.

Note: Use the Details method, to supply details of the CICS server, before

using the TranDetails method; see “Details” on page 6.

UnpaddedPassword

Returns the password held by the CclOConnect object, but with no padding

with spaces at the end.

UnpaddedServerName

Status(flow as Object)

or

Status(flow as CclOFlow)

TranDetails (runTran as String,

 attachTran as String)

 UnpaddedPassword() as String

 UnpaddedServerName() as String

Chapter 1. COM 9

Returns the server name held by the CclOConnect object, but with no

padding with spaces at the end.

UnpaddedUserid

Returns the userid held by the CclOConnect object, but with no padding with

spaces at the end.

UserId

Returns the user ID held by the CclOConnect object, padded with spaces, or

blanks if none.

VerifyPassword

VerifyPassword() as Object

or

VerifyPassword() as CclOSecAttr

Allows a client application to verify that the password held in the Connect

object matches the password recorded by an external security manager for the

userid held in the Connect object. The external security manager is assumed

to be located in the server defined by the Connect object. A CclOSecAttr

Object is returned if no errors occur.

ECI COM class

All applications using the ECI COM class must first create a CclOECI object.

The ECI COM class provides details of candidate CICS servers. It can also be

used to obtain error information.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOECI

The second method is preferred.

 UnpaddedUserid() as String

 UserId() as String

10 CICS Transaction Gateway: Programming Reference

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.ECI")

set var = New CclOECI

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

Methods

ErrorFormat

ErrorFormat() as Integer

Returns a value indicating the current setting for the Error Message Format.

Refer to “SetErrorFormat” on page 13 for a current list of valid values.

ErrorOffset

ErrorOffset() as Long

Returns a value which can be used to convert a Client daemon error value

retrieved from the ERR.Number method into the documented ExCode error

values. For more information on how to do this, refer to CICS Transaction

Gateway: Programming Guide.

ErrorWindow

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

display

true Permits the error window to be displayed to the user. This is the

default setting.

false The error window will not be displayed to the user. The

application must check for errors using the “ExCode” on page 12

method.

ErrorWindow(display as Boolean)

Chapter 1. COM 11

ExCode

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

ExCode() as Integer

or

ExCode() as CclECIExceptionCodes

Returns an enumeration that indicates the last ECI error.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

The ExCodeText method returns a text string describing the error value.

ExCodeText

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

 ExCodeText() as String

Returns a text string describing the last ECI error.

ServerCount

Returns the number of candidate servers to which the client may be

connected, as configured in the Gateway initialization file.

ServerDesc

index

The number of a connected server in the list, starting from 1

ServerCount() as Integer

 ServerDesc(index as Integer) as String

12 CICS Transaction Gateway: Programming Reference

Returns the description of the indexth server.

ServerName

index

The number of a connected server in the list, starting from 1

Returns the name of the indexth server.

SetErrorFormat

 SetErrorFormat(format as Integer)

format

0 Old format, provided for compatibility with earlier versions only.

1 New format, provides more information in the Visual Basic and

VBScript Err object. This format is recommended.

This method allows you to select an error message format.

EPI COM class

The EPI COM class initializes the Client daemon EPI function. It also has

methods that allow you to obtain information about CICS servers which could

be used. You create a CclOEPI object before you create CclOTerminal objects

to connect to CICS servers. The Diagnose, ExCode, and State methods

provide information on error conditions.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOEPI

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways

set var = CreateObject("Ccl.EPI")

set var = New CclOEPI

ServerName(index as Integer) as String

Chapter 1. COM 13

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

Methods

Diagnose

Returns a character string which holds a description of the last error.

ErrorFormat

ErrorFormat() as Integer

Returns a value indicating the current setting for the Error Message Format.

Refer to “SetErrorFormat” on page 16 for a current list of valid values.

ErrorOffset

ErrorOffset() as Long

Returns a value which can be used to convert a Client daemon error value

retrieved from the ERR.Number method into the documented ExCode error

values. For more information on how to do this, refer to CICS Transaction

Gateway: Programming Guide.

ErrorWindow

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

display

true Permits the error window to be displayed to the user. This is the

default setting.

false The error window will not be displayed to the user. The

application must check for errors using the ExCode method.

ExCode

Deprecated method

Diagnose() as String

ErrorWindow(display as Boolean)

14 CICS Transaction Gateway: Programming Reference

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

ExCode() as Integer

or

ExCode() as CclEPIExceptionCodes

Returns the condition code. Possible values are:

cclSystemErrorcclSystemError

An internal Client daemon system error occurred.

cclUnknownServercclUnknownServer

There is no CICS server corresponding to the supplied index on

ServerDesc or ServerName methods.

cclNoErrorcclNoError

The call has executed normally.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

ExCodeText

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

 ExCodeText() as String

Returns a string containing descriptive text for the most recent exception.

ServerCount

Returns the number of candidate servers to which the Client daemon may be

connected, as configured in the Gateway initialization file.

ServerDesc

ServerCount() as Integer

 ServerDesc(index as Integer) as String

Chapter 1. COM 15

index

The index number of a connected server (starting from 1).

Returns a description of the selected CICS server, or a NULL string if no

information is available in the Gateway initialization file for the specified

server.

ServerName

index

The index number of a connected server (starting from 1).

Returns the name of the requested CICS server, or a NULL string if no

information is available in the Gateway initialization file for the specified

server.

SetErrorFormat

 SetErrorFormat(format as Integer)

format

0 Old format, provided for compatibility with earlier versions only.

1 New format, provides more information in the Visual Basic and

VBScript Err object. This format is recommended.

This method allows you to select an error message format.

State

State() as Integer

or

State() as CclEPIStates

Returns a value which indicates the state of the EPI. Possible values are:

cclActive

Initialized

cclDiscon

Terminated

cclError

Error. Refer to CICS Transaction Gateway: Programming Guide.

ServerName(index as Integer) as String

16 CICS Transaction Gateway: Programming Reference

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Terminate

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

Terminates the Client daemon EPI in a controlled manner.

Field COM class

The Field COM class is used to access a single field on a 3270 screen.

CclOField objects are created and deleted when 3270 data from the CICS

server is processed by a CclOScreen object.

Field objects are returned by invoking a CclOScreen object’s fieldbyIndex or

fieldbyPosition method. For example:

 set var=Screen.fieldbyIndex(1)

Methods in this class allow field text and attributes to be read and updated.

Updated fields are sent to the CICS server on the next transmission.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOField

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Methods

AppendText

Terminate()

AppendText(textString as String)

Chapter 1. COM 17

textString

The text string to be appended to the field.

Appends the characters within textString to the end of the text already in the

field.

BackgroundColor

BackgroundColor() as Integer

or

BackgroundColor() as CclColorAttributes

Returns a value which indicates the background color of the field as listed in

“CclField Color Attributes” on page 221.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

BaseAttribute

BaseAttribute() as Integer

Returns the 3270 base attribute of the field.

Column

Returns the column number of the position of the start of the field on the

screen, with the leftmost column being 1.

DataTag

DataTag() as Integer

or

DataTag() as CclModifiedAttributes

Returns a value which indicates whether the data in the field has been

modified. Possible values are:

v cclModified

v cclUnmodified

Column() as Integer

18 CICS Transaction Gateway: Programming Reference

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

ForegroundColor

ForegroundColor() as Integer

or

ForegroundColor() as CclColorAttributes

Returns a value which indicates the foreground color of the field as listed in

“CclField Color Attributes” on page 221.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Highlight

Highlight() as Integer

or

Highlight() as CclHighlightAttributes

Returns a value which indicates which type of highlight is being used as

listed in “CclField Highlight Attributes” on page 221.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

InputProt

InputProt() as Integer

or

InputProt() as CclProtAttributes

Returns a value which indicates whether the field is protected. Possible values

are:

v cclProtect

v cclUnprotect

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Chapter 1. COM 19

InputType

InputType() as Integer

or

InputType() as CclNumericAttributes

Returns a value which indicates whether the field is alphanumeric or numeric.

Possible values are:

v cclAlphanumeric

v cclNumeric

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Intensity

Intensity() as Integer

or

Intensity() as CclIntensityAttributes

Returns a value which indicates whether the field is normal, intense or dark.

Possible values are:

v cclDark

v cclNormal

v cclIntense

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Length

Returns the total length of the field. This includes one byte used to store the

3270 attribute byte information; therefore the actual space for data is one less

byte than the value returned by this method. See also the “TextLength” on

page 22 method.

Position

Length() as Integer

20 CICS Transaction Gateway: Programming Reference

Returns the position of the start of the field as an offset from the top left

corner of the screen. The top row consists of positions 0 to 79; the second row,

positions 80 to 159; etc.

ResetDataTag

Resets the modified data tag (MDT) to cclUnmodified.

Row

Returns the row number of the position of the start of the field on the screen.

The top row is 1.

SetBaseAttribute

Attribute

The value of the base 3270 attribute to be entered into the field.

Sets the 3270 base attribute.

SetExtAttribute

Attribute

The type of extended attribute to be set.

Value

The value of the extended attribute.

Sets the extended 3270 attribute. If an invalid 3270 attribute type or value is

supplied a parameter exception is raised.

SetText

Position() as Integer

ResetDataTag()

Row() as Integer

SetBaseAttribute(Attribute as Integer)

SetExtAttribute(Attribute as Integer, Value as Integer)

SetText(textString as String)

Chapter 1. COM 21

textString

The null-terminated text to be entered into the field.

Copies textString into the field.

Text

Returns the text currently held in the field.

TextLength

Returns the number of characters currently held in the field.

Transparency

Transparency() as Integer

or

Transparency() as CclTransparencyAttributes

Returns a value which indicates the background transparency of the field as

listed in “CclField Transparency Attributes” on page 221.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Flow COM class

A CclOFlow object is used to control ECI communications for a client/server

pair.

A CclOFlow object is created for each client server interaction (call from client

and response from server) and destroyed when it has been used. CclOFlow

objects can be reused but an attempt to reuse a CclOFlow object that is

already in use is rejected.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOFlow

 Text() as String

TextLength() as Integer

22 CICS Transaction Gateway: Programming Reference

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.Flow")

set var = New CclOFlow

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

Methods

AbendCode

AbendCode() as String

Returns a four-character CICS transaction abend code, or spaces if no abend

has occurred.

CallType

CallType() as Integer

or

CallType() as CclFlowCallTypes

Returns the type of call the flow is currently executing.current

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

CallTypeText

CallTypeText() as String

Returns the type of call the flow is currently executing as text.

Diagnose

Diagnose() as String

Returns text describing the current state of the flow object.

Chapter 1. COM 23

Flowid

Flowid() as Integer

Returns a unique identifier for this flow object.

ForceReset

ForceReset()

Makes the flow inactive and resets it. Typically, this method is used to prepare

a flow object for re-use or deletion after a flow has been abandoned.

Poll

Poll(commArea as Object) as Boolean

or

Poll(commArea as CclOBuf) as Boolean

commArea

A CclOBuffer object into which the returned COMMAREA will be placed.

This parameter can be set to Nothing if no COMMAREA should be

returned.

Indicates whether a reply has been received from a deferred synchronous

Backout, Cancel, Changed, Commit, Link, or Status call request. This method

is only valid for deferred synchronous communications. Possible values are:

True A reply has been received.

False A reply has not been received.

SetSyncType

SetSyncType(syncType as Integer)

or

SetSyncType(syncType as CclFlowSyncTypes)

syncType

The synchronization type required for this CclOFlow object. Possible

values are:

v cclSync

v cclDSynccclDSync

24 CICS Transaction Gateway: Programming Reference

Sets the synchronization type required for this CclOFlow object. If cclSync is

used, link and status calls using this flow block the calling program until a

reply is received from CICS. If cclDSynccclDSync is used, link and status calls

using this flow return immediately to the calling program. The program can

then use the Poll method to receive the reply from CICS later.

SetTimeout

SetTimeout(Timeout as Integer)

Sets the timeout value for the flow object for the next activation of the flow.

This value can be set while a flow is active, but does not affect the current

active flow.

SyncType

SyncType() as Integer

or

SyncType() as CclFlowSyncTypes

Returns the type of synchronization being used.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Timeout

Timeout() as Integer

Returns the current timeout value set for the flow object.

Wait

Waits for a reply from the server, blocking the client process in the meantime.

This method is used when a deferred synchronous call was made, but the

application now wants to wait synchronously for a reply.

Map COM class

The Map COM class provides validation and access to 3270 screen data using

symbolic information obtained from CICS BMS maps. To use this interface,

run the CICSBMSC utility on your server program BMS maps.

Wait()

Chapter 1. COM 25

Note: CICSBMSC is not provided with CICS Transaction Gateway for the

Linux operating system. If you require this functionality, contact your

local IBM® support representative and ask them to forward your

request to the CICS service team.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOMap

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.Map")

set var = New CclOMap

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

Methods

ExCode

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

ExCode() as Integer

or

ExCode() as CclEPIExceptionCodes

Returns a value that indicates the current condition code.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

26 CICS Transaction Gateway: Programming Reference

FieldByName

FieldByName(name as Integer) as Object

or

FieldByName(name as Integer) as CclOField

name

Symbolic value for the required field. This value is provided in the

<mapname>.BAS file generated from the source BMS by the CICSBMSC

utility.

Returns the specified CclOField object.

Validate

Validate (screenRef as Object, mapname as String) as Boolean

or

Validate (screenRef as CclOScreen, mapname as String) as Boolean

screenRef

CclOScreen object

mapname

String value supplied in <mapname>.BAS file generated from the source

BMS by the CICSBMSC utility.

Validate map against the current screen.

This method can be used to verify that a specific BMS map has been received

from the CICS server. Possible return values are:

TRUE

Specified BMS map matches current screen contents.

FALSE

Specified BMS map does not match current screen contents

If TRUE is returned, the FieldByName method can be used to access fields

using their BMS name.

Screen COM class

The Screen COM class maintains all data on the 3270 virtual screen and

provides access to this data. It contains a collection of CclOField objects which

represent the fields on the current 3270 screen.

Chapter 1. COM 27

A single Screen object is created by the Terminal object when the terminal is

installed either with the Ccl Terminal connect or install method. The

application gets access to the CclOScreen object via the Ccl Terminal Screen

method.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOScreen

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Methods

CursorCol

Returns the current cursor column (the left col is 1).

CursorRow

Returns the current cursor row (the top row is 1).

Depth

Returns the number of rows on the screen.

FieldByIndex

FieldByIndex(index as Integer) as Object

or

FieldByIndex(index as Integer) as CclOField

index

The index number of the field required. The first field is number 1.

CursorCol() as Integer

CursorRow() as Integer

Depth() as Integer

28 CICS Transaction Gateway: Programming Reference

FieldByPosition

FieldByPosition (rowPos as Integer, colPos as Integer) as Object

or

FieldByPosition (rowPos as Integer, colPos as Integer) as CclOField

rowPos

The row number of the field (topmost row = 1).

colPos

The column number of the field (leftmost column = 1).

FieldCount

Returns the number of fields on the screen.

MapName

MapName() as String

Returns a string specifying the name of the map that was most recently

referenced in the MAP option of a SEND MAP command processed for the

terminal resource. If the terminal resource is not supported by BMS, or the

server has no record of any map being sent, the value returned is blank.

MapSetName

MapSetName() as String

Returns a string specifying the name of the mapset that was most recently

referenced in the MAPSET option of a SEND MAP command processed for

the terminal resource. If the MAPSET option was not specified on the most

recent request, BMS used the map name as the mapset name. In both cases,

the mapset name used may have been suffixed by a terminal suffix. If the

terminal resource is not supported by BMS, or the server has no record of any

mapset being sent, the value returned is blank.

SetAID

SetAID(key as Integer)

or

FieldCount() as Integer

Chapter 1. COM 29

SetAID(key as CclADIKeys)

key

 The AID key value as listed in “CclScreen AID key codes” on page 219.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Sets the AID key value to be passed to the server on the next transmission.

SetCursor

rowPos

The required row number of the cursor (the top row is 1).

colPos

The required column number of the cursor (the left column is 1).

Width

Returns the number of columns on the screen.

SecAttr COM class

The SecAttr COM class provides information about passwords reported back

by the external security manager when issuing verifySecurity or

changePassword methods on CclOConnect or CclOTerminal objects.

This object is created and owned by the CclOConnect or CclOTerminal Object

and access to this object is provided when invoking the VerifyPassword or

ChangePassword methods.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOSecAttr

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

SetCursor (rowPos as Integer, colPos as Integer)

Width() as Integer

30 CICS Transaction Gateway: Programming Reference

Methods

ExpiryTime

ExpiryTime() as Object

or

ExpiryTime() as CclOSecTime

Returns a CclOSecTime object that contains the date and time when the

password will expire.

InvalidCount

InvalidCount() as Integer

Returns the number of times an invalid password has been entered for the

userid.

LastAccessTime

LastAccessTime() as Object

or

LastAccessTime() as CclOSecTime

Returns a CclOSecTime object which contains the date and time when the

userid was last accessed.

LastVerifiedTime

LastVerifiedTime() as Object

or

LastVerifiedTime() as CclOSecTime

Returns a CclOSecTime object which contains the date and time of the last

verification.

Chapter 1. COM 31

SecTime COM class

The SecTime COM class provides date and time information in the

CclOSecAttr object for various entries reported back by the external security

manager when issuing verifySecurity or changePassword methods on Connect

or Terminal objects. These objects are created and owned by the CclOSecAttr

object and access is obtained via the various methods available on this object.

No constructors or destructors are available.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOSecTime

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Methods

Day

unsigned short Day() as Integer

Returns the day in the range 1 to 31.

GetDate

GetDate() as Date

Returns the date and time in a Visual Basic DATE type format.

Hours

unsigned short Hours() as Integer

Returns the hours in the range 0 to 23.

Hundredths

unsigned short Hundredths() as Integer

Returns the hundredths of a second in the range 0 to 99.

32 CICS Transaction Gateway: Programming Reference

Minutes

unsigned short Minutes() as Integer

Returns the minutes in the range 0 to 59.

Month

unsigned short Month() as Integer

Returns the month in the range 1 to 12.

Seconds

unsigned short Seconds() as Integer

Returns the seconds in the range 0 to 59.

Year

unsigned short Year() as Integer

Returns a 4 digit year.

Session COM class

The Session COM class controls the flow of data to and from CICS within a

single EPI session.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOSession

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.Session")

set var = New CclOSession

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

Chapter 1. COM 33

Methods

Diagnose

Diagnose() as String

Returns the text description of the current state of the session.

SetSyncType

SetSyncType(syncType as Integer)

or

SetSyncType(syncType as CclFlowSyncTypes)

syncType

The synchronization type required for this CclOSession object. Possible

values are:

v cclSync

v cclDSynccclDSync

Sets the synchronization type required for this CclOSession object. If cclSync is

used, Start and Send calls using this flow will block the calling program until

a reply is received from CICS. If cclDSynccclDSync is used, Start and Send

calls using this flow will return immediately to the calling program. The

program can then use the Poll method to receive the reply from CICS at a

later time.

State

State() as Integer

or

State() as CclEPIStates

Returns a value which indicates the current state of the session. Possible

values are:

cclActive

Connected

cclServer

Transaction in progress in the CICS server.

cclClient

CICS server is waiting for a response from the client

34 CICS Transaction Gateway: Programming Reference

cclDiscon

Disconnected

cclError

Error, call ExCode and Diagnose methods for further information.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

TransId

TransId() as String

Returns the four-letter name of the current transaction.

Terminal COM class

The Terminal COM class represents a 3270 terminal connection to a CICS

server. A CICS connection is established when the Connect method is called.

Methods can then be used to converse with a 3270 terminal application (often

a BMS application) in the CICS server.

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOTerminal

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.Terminal")

set var = New CclOTerminal

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

Methods

AlterSecurity

AlterSecurity(newUserid as String,newPassword as String)

newPassword

The new password to be given to newUserid.

Chapter 1. COM 35

newUserid

The new userid.

Allows you to redefine the userid and password for a terminal resource that

has been constructed without them (a sign-on incapable terminal). The

method can be called before you install a terminal. It changes the terminal

definition; the new userid and password are be used for the terminal when

install is called.

CCSId

Returns a long showing the selected code page.

ChangePassword

ChangePassword(newPassword as String) as Object

or

ChangePassword(newPassword as String) as CclOSecAttr

newPassword

The new password to be given

Allows a client application to change the password held in the terminal object

and the password recorded by an external security manager for the userid

held in the terminal object. The external security manager is assumed to be

located in the server defined by the terminal object. A CclOSecAttr Object is

returned if no errors occurred.

Connect

servName

The name of the server with which you want to communicate. If a NULL

string is provided, the default server system, defined in the Gateway

initialization file, is assumed. The name is expanded to 8 characters by

padding with blanks, if necessary.

devType

The name of the model terminal definition which the server uses to

CCSId() as long

Connect(servName as String,

 devType as String,

 nworkName as String)

36 CICS Transaction Gateway: Programming Reference

generate a terminal resource definition. If a NULL string is provided the

default model is used. The name is expanded to 16 characters by padding

with blanks, if necessary.

nworkName

The name of the terminal resource to be installed or reserved. The name is

expanded to 8 characters by padding with blanks, if necessary. If a NULL

string is supplied, the CICS server allocates a name.

Establishes a 3270 communication to the specified CICS server.

Devtype

Returns the terminal device type as a string.

Diagnose

Returns a character string which holds a description of the error returned by

the most recent server call.

Disconnect

Disconnect()

Disconnects the terminal from CICS. No attempt is made to purge any

outstanding running transaction.

DisconnectWithPurge

DisconnectWithPurge()

Disconnects the terminal from CICS and attempts to purge any outstanding

running transaction. This purge function does not cancel ATI requests queued

against the terminal.

DiscReason

DiscReason() as CclEndTermReasons

This method will return an enumeration showing the reason the terminal has

been disconnected. Possible values are shown in “CclTerminal

EndTermReasons” on page 218.

Devtype() as String

Diagnose() as String

Chapter 1. COM 37

ExCode

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

ExCode() as Integer

or

ExCode() as CclEPIExceptionCodes

Returns a value which indicates the most recent condition code returned by

the server.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

ExCodeText

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

ExCodeText() as String

Returns a text string describing the most recent condition code returned by

the server.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

Install

Install(session as Object, timeout as Integer)

or

Install(session as CclOSession, timeout as Integer)

session

The session object to be used by this terminal object.

38 CICS Transaction Gateway: Programming Reference

InstallTimeout

A value in the range 0 through 3600, specifying the maximum time in

seconds that installation of the terminal resource is allowed to take. A

value of 0 means that no limit is set.

This method installs a non-connected terminal resource. A cclInvalidState

error is raised if the terminal is already installed.

MakeSecurityDefault

Informs the client that the current userid and password for this object is to

become the default for ECI and EPI requests passed to the server as specified

in the construction of the Terminal object.

NetName

Returns the network name of the terminal.

Password

Password() as String

Returns a text string containing the current password for the userid associated

with the terminal. The string is empty if there is no password.

Poll

Checks to see if a replies have been received from a deferred synchronous

Start or Send request. Possible values are:

True No further replies outstanding

False Further replies outstanding

A CICS server transaction may send more than one reply in response to a

Terminal.Start or Terminal.Send call. More than one Terminal.Poll call may

therefore be needed to collect all the replies. The return code indicates

whether you need to perform more poll requests.

MakeSecurityDefault()

 NetName() as String

Poll() as Boolean

Chapter 1. COM 39

PollForReply

PollForReply() as Boolean

Checks to see if replies have been received from a deferred synchronous Start

or Send request. Possible values are

true Replies have been received

false No replies have been received

A CICS server transaction may send more than one reply in response to a

Terminal.Start or Terminal.Send call. More than one Terminal.PollForReply call

may therefore be needed to collect all replies. Use the Terminal.State method

to find out if further replies are expected. If there are, the value returned will

be cclServer.

QueryATI

QueryATI() as Integer

or

QueryATI() as CclATIStates

Returns a value that indicates whether Automatic Transaction Initiation (ATI)

is enabled or disabled. Possible values are:

v cclATIEnabled

v cclATIDisabled

ReadTimeout

ReadTimeout() as Integer

Returns the read timeout setting for the terminal.

ReceiveATI

ReceiveATI (session as Object)

or

ReceiveATI (session as CclOSession)

session

A pointer to the CclOSession object which is to be used for the CICS

server interaction.

40 CICS Transaction Gateway: Programming Reference

Waits for and receives 3270 data stream for a CICS ATI transaction. The

CclOSession object supplied can only be synchronous.

Screen

Returns the CclOScreen object that is handling the 3270 screen associated with

this terminal.

Send

session

The CclOSession object which controls the session which is to be used. It

is set to NULL if no CclOSession object is used.

Generates a 3270 data stream from the current contents of the CclOScreen

object and transmits it to the CICS server.

ServerName

Returns the name of the server system held by the CclOTerminal object and

listed by the Gateway initialization file, or blanks if the default server is being

used and no calls have yet been made.

SetATI

SetATI(stateVal as Integer)

or

SetATI(stateVal as CclATIStates)

stateVal

A value which indicates whether the ATI is to be enabled or disabled.

Possible values are:

v cclATIEnabled

Screen() as Object

Send(session as Object)

or

Send(session as CclOSession)

ServerName() as String

Chapter 1. COM 41

v cclATIDisabled

SetTermDefns

SetTermDefns (servName as String,

 devType as String,

 nworkName as String

 signonCapability as CclSignonTypes

 userid as String

 password as String

 ReadTimeout as Integer

 CCSid as Long)

servName

The name of the server with which you want to communicate. If a NULL

string is provided, the default server system, defined in the Gateway

initialization file, is assumed. The name is expanded to 8 characters by

padding with blanks, if necessary.

devType

The name of the model terminal definition which the server uses to

generate a terminal resource definition. If a NULL string is provided the

default model is used. The name is expanded to 16 characters by padding

with blanks, if necessary.

nworkName

The name of the terminal resource to be installed or reserved. The name is

expanded to 8 characters by padding with blanks, if necessary. If a NULL

string is supplied, the CICS server will allocate a name.

signonCapability

Set the sign-on capability to one of the following:

cclSignonCapable

cclSignonIncapable

ReadTimeout

A value in the range 0 through 3600, specifying the maximum time in

seconds between the time the classes go clientrepl state and the time that

the application program invokes the reply method.

userid

The name of the userid to associate with this terminal resource.

password

The password to associate with the userid.

CCSid

A long specifying the coded character set identifier (CCSID) that identifies

42 CICS Transaction Gateway: Programming Reference

the coded graphic character set used by the client application for data

passed between the terminal resource and CICS transactions. A zero

indicates that a default will be used.

Creates a terminal resource but does not make the connection to the Server.

SignonCapability

SignonCapability() as Integer

or

SignonCapability() as CclSignonTypes

Returns the type of terminal installed. Possible values are:

v cclSignonCapable

v cclSignonIncapable

Start

Start (session as Object,

 tranCode as String,

 startData as String)

or

Start (session as CclOSession,

 tranCode as String,

 startData as String)

session

The CclOSession object which controls the session which is to be used. It

is set to NULL if no CclOSession object is used.

tranCode

The name of the transaction which is to be started

startData

Start transaction data. A NULL value indicates no data is required for the

transaction being started.

Generates a 3270 data stream from the supplied data and transmits it to the

CICS server, starting the named transaction.

Chapter 1. COM 43

State

State() as Integer

or

State() as CclEPIStates

Returns a value which indicates the current state of the session. These values

are the same as those returned by the state method in the Session COM class.

Constants are available in the type library. Use the Visual Basic Object

Browser to view them.

TermId

TermId() as String

Returns the terminal ID.

TransId

 TransId() as String

Returns the 4-character name of the current CICS transaction. Note that if a

RETURN IMMEDIATE is run from the current transaction, TransId does not

provide the name of the new transaction; it still contains the name of the first

transaction.

Userid

Userid() as String

Returns a text string containing the current userid for the terminal. The string

is empty if there is no userid.

VerifyPassword

VerifyPassword() as Object

or

VerifyPassword() as CclOSecAttr

Allows a client application to verify that the password held in the terminal

object matches the password recorded by an external security manager for the

userid held in the terminal object. The external security manager is assumed

44 CICS Transaction Gateway: Programming Reference

to be located in the server defined by the terminal object. A CclOSecAttr

Object is returned if no errors occurred.

UOW COM class

Use this COM class when you make updates to recoverable resources in the

server within a “unit of work” (UOW). Each update in a UOW is identified

by a reference to its CclOUOW object — see Link method in Connect COM

class (“Link” on page 6).

Interface Selection

For Visual Basic, the following types of interface are available:

Dim var as Object

Dim var as CclOUOW

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the

variable is assumed to be of type Object.

Object Creation

You can create an object in two ways:

set var = CreateObject("Ccl.UOW")

set var = New CclOUOW

New is the preferred method in Visual Basic. For VBScript, you can use only

the CreateObject method.

Methods

BackOut

BackOut(flow as Object)

or

BackOut(flow as CclOFlow)

flow

The CclOFlow object which is used to control the client/server call

Terminate this UOW and back out all changes made to recoverable resources

in the server.

Chapter 1. COM 45

Commit

Commit(flow as Object)

or

Commit(flow as CclOFlow)

flow

The CclOFlow object which is used to control the client/server call

Terminate this UOW and commit all changes made to recoverable resources in

the server.

ForceReset

ForceReset()

Makes this UOW inactive and resets it. The UOW is neither committed or

backed out.

UowId

UowId() as long

Returns the identifier of the UOW. A zero return indicates that the UOW is

either complete or has not yet started, in other words it is inactive.

46 CICS Transaction Gateway: Programming Reference

Chapter 2. Java

Online programming reference information is provided for the Java classes

and interfaces provided with CICS Transaction Gateway.

The reference information is in HTML format and is generated using the

Javadoc tool provided with the JDK.

The following sections describe the different kinds of HTML pages that are

provided within the reference information.

See the README file for the latest information on using the programming

reference information.

Class/interface page

In the reference pages, each class and interface has its own page. In each of

these pages, there are three sections:

1. Class/interface description:

v Class inheritance diagram

v Direct Subclasses

v All Known Subinterfaces

v All Known Implementing Classes

v Class/interface declaration

v Class/interface description
2. Summary tables:

v Inner Class Summary

v Field Summary

v Constructor Summary

v Method Summary
3. Class/interface description:

v Field Detail

v Constructor Detail

v Method Detail

Each summary entry contains the first sentence from the detailed description

for that item. The summary entries are alphabetical, while the detailed

descriptions are in the order they appear in the source code. This preserves

the logical groupings established by the programmer.

© Copyright IBM Corp. 1989, 2008 47

Use page

Each documented class and interface has its own Use page. This page

describes what packages, classes, methods, constructors and fields use any

part of the given class. The Use page for a package or interface A includes:

v Subclasses of A

v Fields declared as A

v Methods that return A

v Methods and constructors with parameters of type A.

To access this page, go to the class or interface, then click on the Use link in

the navigation bar.

Tree (Class Hierarchy)

When viewing a particular class or interface page, selecting Tree displays the

class and interface hierarchy for CICS Transaction Gateway.

Index page

The Index contains an alphabetic list of all classes, interfaces, constructors,

methods, and fields.

 Related information

 Request monitoring user exit API information

48 CICS Transaction Gateway: Programming Reference

Chapter 3. C++

Ccl class

This class defines enumerations which are used by other classes—both ECI

and EPI.

Enumerations

Bool

There are two equivalent pairs of values:

v no and yes

v off and on

Sync

Possible values are:

async asynchronous

dsync deferred synchronous

sync synchronous

ExCode

For possible values, refer to Table 22 on page 233.

CclBuf class

A CclBuf object contains a data area in memory that can be used to hold

information. A particular use for a CclBuf object is to hold a COMMAREA,

which passes data to and from a CICS server.

The CclBuf object is primarily intended for use with byte (binary) data. A

typical COMMAREA contains an application-specific data structure, often

originating from a CICS server PL/1 or C program. Methods such as assign()

and insert() therefore provide a void* parameter type for application data

input. There is limited support for SBCS null-terminated strings (some of the

code samples make use of this), but there is no code-page conversion or DBCS

support in the CclBuf class.

The maximum data length for a buffer is the maximum value for unsigned

long (232) for 32 bit platforms. CICS imposes a limit of 32 KB in

© Copyright IBM Corp. 1989, 2008 49

COMMAREAs. This may be reduced by setting the MaxBufferSize parameter

in the CICS Transaction Gateway initialization file. See the CICS Transaction

Gateway: Administration book for your operating system, for more information.

If a buffer object used as a COMMAREA is too long, a data length exception

is raised.

When a CclBuf object is created it either uses an area of memory passed to it

as its buffer, or allocates its own. The length of the data in this buffer can be

reduced after the CclBuf object is created. The length of the data in this buffer

can only be increased beyond the original length if the CclBuf object is created

with a DataAreaType of extensible, rather than fixed.

If a buffer object has a DataAreaType of fixed and a method is called which

would result in its data area length being exceeded, a buffer overflow

exception is raised. If the exception is not handled, the buffer will contain the

result of the call, truncated to the data area length.

If a method is called that results in a buffer object having a data length

smaller than its data area length, the data is padded with nulls.

Many of the methods return object references. This makes it possible for users

to chain calls to member functions. For example, the code:

would create the following string:

Some inserted text at the end

CclBuf constructors

CclBuf (1)

CclBuf(unsigned long length, DataAreaType type = extensible)

length

The initial length of the data area, in bytes. The default is 0.

type

An enumeration indicating whether the data area can be extended.

Possible values are extensible or fixed. The default is extensible.

Creates a CclBuf object, allocating its own data area with the given length. All

the bytes within it are set to null. The data length is set to zero and remains

zero until data is put in the buffer.

CclBuf comma1;

comma1="Some text";

comma1.insert(9,"inserted ",5) += " at the end";

50 CICS Transaction Gateway: Programming Reference

CclBuf (2)

CclBuf(unsigned long length, void* dataArea)

length

The length of the supplied data area, in bytes.

dataArea

The address of the first byte of the supplied data area.

Creates a CclBuf object that cannot be extended, adopting the given data area

as its own. The DataAreaOwner is set external.

CclBuf (3)

CclBuf(const char* text, DataAreaType type = extensible)

text

A string to be copied into the new CclBuf object.

type

An enumeration indicating whether the data area can be extended.

Possible values are extensible or fixed. The default is extensible.

Creates a CclBuf object, allocating its own data area with the same length as

the text string and copies the string into its data area.

CclBuf (4)

CclBuf(const CclBuf& buffer)

buffer

A reference to the CclBuf object that is to be copied.

This copy constructor creates a new CclBuf object, which is a copy of the

given object. The data length, data area length and data area type of the new

buffer are the same as the old buffer. The data area owner of the new buffer is

internal.

Public methods

assign

CclBuf& assign(unsigned long length, const void* dataArea)

length

The length of the source data area, in bytes.

dataArea

The address of the source data area.

Chapter 3. C++ 51

Overwrites the current contents of the data area with the source data and

resets the data length.

cut

CclBuf& cut(unsigned long length, unsigned long offset = 0)

length

The number of bytes to be cut from the data area.

offset

The offset into the data area. The default is zero.

Cuts the specified data from the data area. Data in the data area is padded

with nulls.

dataArea

const void* dataArea(unsigned long offset = 0) const

offset

The offset into the data area. The default is zero.

Returns the address of the given offset into the data area.

dataAreaLength

unsigned long dataAreaLength() const

Returns the length of the data area in bytes.

dataAreaOwner

DataAreaOwner dataAreaOwner() const

Returns an enumeration value indicating whether the data area has been

allocated by the CclBuf constructor or has been supplied from elsewhere.

Possible values are internal and external.

dataAreaType

DataAreaType dataAreaType() const

Returns an enumeration value indicating whether the data area can be

extended. Possible values are extensible and fixed.

52 CICS Transaction Gateway: Programming Reference

dataLength

unsigned long dataLength() const

Returns the length of data in the data area. This cannot be greater than the

value returned by dataAreaLength.

insert

CclBuf& insert(unsigned long length,

 const void* dataArea,

 unsigned long offset = 0)

length

The length of the data, in bytes, to be inserted into the CclBuf object.

dataArea

The start of the source data to be inserted into the CclBuf object.

offset

The offset into the data area where the data is to be inserted. The default

is zero.

Inserts the source data into the data area at the given offset.

listState

const char* listState() const

Returns a formatted string containing the current state of the object. For

example:

Buffer state..&CclBuf=000489B4 &CclBufI=00203A00

dataLength=8 &dataArea=002039C0

dataAreaLength=8 dataAreaOwner=0 dataAreaType=1

operator= (1)

CclBuf& operator=(const CclBuf& buffer)

buffer

A reference to a CclBuf object.

Assigns data from another buffer object.

operator= (2)

CclBuf& operator=(const char* text)

Chapter 3. C++ 53

text

The string to be assigned to the CclBuf object.

Assigns data from a string.

operator+= (1)

CclBuf& operator+=(const CclBuf& buffer)

buffer

A reference to a CclBuf object.

Appends data from another buffer object to the data in the data area.

operator+= (2)

CclBuf& operator+=(const char* text)

text

The string to be appended to the CclBuf object.

Appends a string to the data in the data area.

operator==

Ccl::Bool operator==(const CclBuf& buffer) const

buffer

A reference to a CclBuf object.

Returns an enumeration indicating whether the data contained in the buffers

of the two CclBuf objects is the same. Possible values are yes, indicating that

the data lengths and contents are the same, or no.

operator!=

Ccl::Bool operator!=(const CclBuf& buffer) const

buffer

A reference to a CclBuf object.

Returns an enumeration indicating whether the data contained in the buffers

of the two CclBuf objects is different. Possible values are yes or no. no means

that the data lengths are the same and the contents are the same.

54 CICS Transaction Gateway: Programming Reference

replace

CclBuf& replace(unsigned long length,

 const void* dataArea,

 unsigned long offset = 0)

length

The length of the source data area, in bytes.

dataArea

The address of the start of the source data area.

offset

The position where the new data is to be written, relative to the start of

the CclBuf data area. The default is zero.

Overwrites the current contents of the data area at the given offset with the

source data. The data length remains the same.

setDataLength

unsigned long setDataLength(unsigned long length)

length

The new length of the data area, in bytes.

Changes the current length of the data area and returns the new length. If the

CclBuf object is not extensible, the data area length is set to either the original

length of the data area, or length, whichever is less.

If length is greater than the data area length, the data is padded with nulls.

Enumerations

DataAreaOwner

Indicates whether the data area of a CclBuf object has been allocated outside

the object. Possible values are:

internal

The data area has been allocated by the CclBuf constructor.

external

The data area has been allocated externally.

DataAreaType

Indicates whether the data area of a CclBuf object can be made longer than its

original length. Possible values are:

Chapter 3. C++ 55

extensible

The data area of a CclBuf object can be made longer than its original

length.

fixed The data area of a CclBuf object cannot be made longer than its

original length.

CclConn class

An object of class CclConn is used to represent an ECI connection between a

client and a named server. See Server connection in the CICS Transaction

Gateway: Programming Guide. Access to the server is optionally controlled by a

userId and password. It can call a program in the server or get information on

the state of the connection. See Passing data to a server program in the CICS

Transaction Gateway: Programming Guide and Monitoring server availability in the

CICS Transaction Gateway: Programming Guide for more information.

The creation of a CclConn object does not cause any interaction with the CICS

server, nor does it guarantee that the server is available to process requests.

Any interaction between client and server requires the use of a CclFlow

object. See Compiling and Linking in the CICS Transaction Gateway: Programming

Guide for more information.

A CclConn object cannot be copied or assigned. Any attempt to delete a

CclConn object for which there are active CclFlow or CclUOW objects raises

an activeFlow or an activeUOW exception.

CclConn constructor

CclConn(const char* serverName = 0,

 const char* userId = 0,

 const char* password = 0,

 const char* runTran = 0,

 const char* attachTran = 0)

serverName

The name of the server. If no name is supplied the default server is used.

After the first call to the server you can discover this name by using the

serverName method. The length is adjusted to 8 characters by padding

with blanks or truncating, if necessary.

userId

The userId, if needed. The length is adjusted to 16 characters by padding

with blanks or truncating, if necessary.

56 CICS Transaction Gateway: Programming Reference

password

The password corresponding to the userId in userID, if needed. The length

is adjusted to 16 characters by padding with blanks or truncating, if

necessary.

runTran

The CICS transaction under which the called program will run. The

default is to use the default server transaction. The length is adjusted to 4

characters by padding with blanks or truncating, if necessary.

attachTran

The CICS transaction to which the called program is attached. The default

is to use the default CPMI. The length is adjusted to 4 characters by

padding with blanks or truncating, if necessary.

 This constructor creates a CclConn object; it does not cause any interaction

with the CICS server or guarantee that the server is available to process

requests. The userId and password are not needed if the connection is used

only for status calls, or if the server has no security.

Public methods

alterSecurity

void alterSecurity(const char* newUserid, const char* newPassword)

newUserid

The new userid

newPassword

The new password corresponding to the new userid

Updates the Userid and Password to be used on the next link call

cancel

void cancel(CclFlow& flow)

flow

A reference to the CclFlow object used to control the server request call.

Cancels any changed call that was previously issued to the server associated

with this connection.

changed

void changed(CclFlow& flow)

flow

A reference to the CclFlow object used to control the server request call.

Chapter 3. C++ 57

Requests the server to notify the Client daemon when the current connection

status changes. The call is ignored if there is already an outstanding changed

call for this connection. Use serverStatus or serverStatusText to obtain server

availability.

changePassword

CclSecAttr* changePassword(const char* newPassword)

newPassword

the new password to be given

Allows a Client application to change:

v The password held in the terminal object

v The password recorded by an external security manager for the userid held

in the terminal object

The external security manager is assumed to be located in the server defined

by the terminal object.

link

void link(CclFlow& flow,

 const char* programName,

 CclBuf* commarea = 0,

 CclUOW* unit = 0)

flow

A reference to the CclFlow object used to control the server request call.

programName

The name of the server program that is being called. The length is

adjusted to 8 characters by padding with blanks or truncating, if

necessary.

commarea

A pointer to a CclBuf object that holds the data to be passed to the called

program in a COMMAREA. The default is not to pass a COMMAREA.

unit

A pointer to the CclUOW object that identifies the unit of work (UOW) in

which this call participates. The default is none. See Managing logical units

of work in the CICS Transaction Gateway: Programming Guide.

Requests execution of the specified program on the server. The server

program sees the incoming call as an EXEC CICS LINK call.

If the commarea buffer object is too long, a dataLength exception is raised and

the request is denied. CICS imposes a limit of 32 KB which can be made

58 CICS Transaction Gateway: Programming Reference

smaller by using the MaxBufferSize parameter in the CICS Transaction

Gateway Initialization file.

listState

const char* listState() const

Returns a formatted string containing the current state of the object. For

example:

Connection state..&CclConn=000489AC &CclConnI=00203A50

flowCount=0 &CclFlow(changed)=00000000 token(changed)=0

serverName="server " userId="userId " password="password "

&CclUOWI=00000000 runTran="run " attachTran="att "

makeSecurityDefault

void makeSecurityDefault()

Informs the client that the current userid and password for this object is to

become the default for ECI and EPI requests passed to the server as specified

in the construction of the connection object.

password (1)

const char* password() const

Returns the password held by the CclConn object, padded with spaces to 10

characters, or blanks if there is no password.

password (2)

void password(Ccl::Bool unpadded)

unpadded

Ccl::Yes

returns a null terminated string of the stored password with no

space padding in the string.

Ccl::No

returns the string padded with spaces — the same as invoking the

password method with no parameters.

serverName (1)

const char* serverName() const

Chapter 3. C++ 59

Returns the name of the server system held by the CclConn object, padded

with spaces, or blanks if the default server is being used and no calls have yet

been made.

serverName (2)

void serverName(Ccl::Bool unpadded)

unpadded

Ccl::Yes

returns a null terminated string of the stored server name with no

space padding in the string.

Ccl::No

returns the string padded with spaces — the same as invoking the

serverName method with no parameters.

status

void status(CclFlow& flow)

flow

A reference to the CclFlow object used to control the server request call.

Requests the status of the server connection. When the reply has been

received, use serverStatus or serverStatusText to obtain server availability.

serverStatus

ServerStatus serverStatus() const

Returns an enumeration value, set by an earlier status or changed request,

indicating the availability of the server. Possible values are listed under

Enumerations.

serverStatusText

const char* serverStatusText() const

Returns a string, set by an earlier status or changed request, indicating the

availability of the server.

userId (1)

const char* userId() const

Returns the user ID held by the CclConn object, padded with spaces, or

blanks if none.

60 CICS Transaction Gateway: Programming Reference

userId (2)

void userId(Ccl::Bool unpadded)

unpadded

Ccl::Yes

returns a null terminated string of the stored userid with no space

padding in the string.

Ccl::No

returns the string padded with spaces exactly as invoking the

userId method with no parameters.

verifyPassword

CclSecAttr* verifyPassword()

Allows a Client application to verify that the password held in the CclConn

object matches the password recorded by an external security manager for the

userid held in the CclConn object. The external security manager is assumed

to be located in the server defined by the CclConn object.

Enumerations

ServerStatus

Indicates the availability of the server. Possible values are:

unknown

The server status is unknown.

available

The server is available.

unavailable

The server is not available.

CclECI class

Only one instance of the CclECI class can exist. It is created by the instance

class method. It controls the client interface to the available servers.

CclECI should be sub-classed to implement your own handleException

method.

Only one instance of a CclECI subclass can exist. Any attempt to create more

than one raises a multipleInstance exception.

A CclECI object cannot be copied or assigned.

Chapter 3. C++ 61

CclECI constructor (protected)

CclECI()

 This constructor is protected and can be accessed only from a subclass.

Public methods

exCode

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

Ccl::ExCode exCode() const

Returns an enumeration indicating the most recent exception code. The

possible values are listed under Table 22 on page 233.

exCodeText

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

const char* exCodeText() const

Returns a text string describing the most recent exception code.

handleException

virtual void handleException(CclException &except)

except

A CclException object that contains information about the exception just

raised.

This method is called whenever an exception is raised. To deal with

exceptions, you should always subclass CclECI, and provide your own

implementation of handleException. See Handling Exceptions in the CICS

Transaction Gateway: Programming Guide. The default implementation merely

throws the exception object.

62 CICS Transaction Gateway: Programming Reference

instance

static CclECI* instance()

A class method that returns a pointer to the single CclECI object that exists on

the client. Here is an example of its use:

CclECI* pmgr = CclECI::instance();

listState

const char* listState() const

Returns a formatted string containing the current state of the object. For

example:

ECI state..&CclECI=00203AE0 &CclECII=00203B20

retCode=0 exCode=0

serverCount=0 &serverBuffer=00000000

serverCount

unsigned short serverCount() const

Returns the number of available servers to which the CICS Transaction

Gateway may be connected, as configured in the CICS Transaction Gateway

initialization file. In practice, some or all of these servers may not be available.

See Finding potential servers in the CICS Transaction Gateway: Programming

Guide.

serverDesc

const char* serverDesc(unsigned short index = 1) const

index

The index of a connected server in the list. The default index is 1.

Returns the description of the indexth server. See Finding potential servers in the

CICS Transaction Gateway: Programming Guide.

serverName

const char* serverName(unsigned short index = 1) const

index

The index of a connected server in the list. The default index is 1.

Returns the name of the indexth server. See Finding potential servers in the CICS

Transaction Gateway: Programming Guide.

Chapter 3. C++ 63

CclEPI class

The CclEPI class initializes and terminates the CICS Transaction Gateway EPI

function. It also has methods which allow you to obtain information about

CICS servers configured in the CICS Transaction Gateway initialization file.

You must create one object of this class for each application process before

you create CclTerminal objects to connect to CICS servers.

CclEPI constructor

CclEPI()

 This method initializes the CICS EPI interface on the client. An initEPI

exception is raised if initialization fails. Initialization of the CICS Transaction

Gateway EPI is synchronous. In other words, initialization is complete when

the call to the CclEPI constructor returns.

Public methods

diagnose

const char* diagnose() const

Returns a character string that holds a description of the condition returned

by the most recent server call.

exCode

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

Ccl::ExCode exCode() const

Returns an enumeration indicating the most recent exception code. The

possible values are listed under Table 22 on page 233.

exCodeText

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

const char* exCodeText() const

Returns a text string describing the most recent exception code.

64 CICS Transaction Gateway: Programming Reference

handleException

virtual void handleException(CclException &except)

except

A CclException object that contains information about the exception just

raised.

This method is called whenever an exception is raised. To deal with

exceptions, use try...catch, or subclass CclEPI and provide your own

implementation of handleException. The default implementation merely

throws the exception object.

serverCount

unsigned short serverCount()

Returns the number of available servers to which the CICS Transaction

Gateway may be connected, as configured in the CICS Transaction Gateway

initialization file.

serverDesc

const char* serverDesc(unsigned short index = 1)

index

The index of a configured server

Returns a description of the selected CICS server, or NULL if no information

is available in the CICS Transaction Gateway initialization file for the specified

server. If the index exceeds the number of servers configured, a maxServers

exception is raised.

serverName

const char* serverName(unsigned short index = 1)

index

The index of a configured server

Returns the name of the requested CICS server, or NULL if no information is

available in the CICS Transaction Gateway initialization file for the specified

server. If the index exceeds the number of servers configured, a maxServers

exception is raised.

Chapter 3. C++ 65

state

State state() const

Returns an enumeration indicating the state of the EPI. Possible values are:

active EPI has been initialized successfully

discon

EPI has terminated

error EPI initialization has failed

terminate

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

void terminate()

Terminates the CICS Transaction Gateway EPI in a controlled manner. The

CclEPI object remains in existence, so that anything which occurs during the

termination can be monitored by the application.

Because the terminate method is invoked during CclEPI object destruction,

you do not need to invoke this method.

Enumerations

State

An enumeration indicating the state of the EPI. Possible values are:

active EPI has been initialized successfully

discon

EPI has terminated

error EPI initialization has failed

CclException class

A CICS Transaction Gateway object constructs an object of the CclException

class if it encounters a problem.

To deal with such a problem, you should subclass the CclECI or CclEPI class

and provide your own implementation of the handleException method. See

Handling Exceptions in the CICS Transaction Gateway: Programming Guide. This

method has access to the methods of the CclException object and can be

coded to take whatever action is necessary. For example, it can stop the

program or display a dialog box.

66 CICS Transaction Gateway: Programming Reference

Alternatively, you can use a C++ try...catch block to handle exceptions.

A CclException object cannot be assigned and its constructors are intended for

use by the CICS Transaction Gateway class implementation only.

Public methods

abendCode

const char* abendCode()

Returns a null-terminated string containing the ECI abend code, or blanks if

no abend code is available.

className

const char* className() const

Returns the name of the class in which the exception was raised.

diagnose

const char* diagnose() const

Returns text explaining the exception for use in diagnostic output, for

example:

unknown server, classname=CclFlowI, methodName=afterReply, originCode=13

"link", flowId=2, retCode=-22, abendCode=" "

exCode

Ccl::ExCode exCode() const

Returns the exception code. See Table 22 on page 233.

exCodeText

const char* exCodeText() const

Returns a text string that describes the exception code.

exObject

void* exObject() const

This method is relevant to to both the ECI and EPI.

Chapter 3. C++ 67

exObject returns a pointer to the object controlling any server interaction at

the time of the exception. If there was no such object, a null pointer is

returned.

v In the case of ECI the pointer should be cast to a CclFlow*. For example:

CclFlow* pflo = (CclFlow*) ex.exObject();

v In the case of EPI exObject returns the relevant CclTerminal object pointer

in the exception block. Cast this to a CclTerminal*; for example:

CclTerminal* pTerm = (CclFlow*)ex.exObject();

methodName

const char* methodName() const

Returns the name of the method in which the exception was raised.

CclField class

An object of the CclField class is responsible for looking after a single field on

a 3270 screen. CclField objects are created and deleted when 3270 data from

the CICS server is processed by a CclScreen object.

Methods in this class allow field text and attributes to be read and updated.

Modified fields are sent to the CICS server on the next send.

Public methods

appendText (1)

void appendText(const char* text, unsigned short length)

text

The text to be appended to the field

length

The number of characters to be appended to the field

Appends length characters from text to the end of the text already in the field.

appendText (2)

void appendText(const char* text)

text

The null-terminated text string to be appended to the field

Appends the characters within the text string to the end of the text already in

the field.

68 CICS Transaction Gateway: Programming Reference

backgroundColor

Color backgroundColor() const

Returns an enumeration indicating the background color of the field. The

possible values are shown under Color at the end of the description of this

class.

baseAttribute

char baseAttribute() const

Returns the 3270 base attribute of the field.

column

unsigned short column() const

Returns the column number of the position of the start of the field on the

screen, with the leftmost column being 1.

dataTag

BaseMDT dataTag() const

Returns an enumeration indicating whether the data in the field has been

modified. Possible values are:

v modified

v unmodified

foregroundColor

Color foregroundColor() const

Returns an enumeration indicating the foreground color of the field. The

possible values are shown under Color at the end of the description of this

class.

highlight

Highlight highlight() const

Returns an enumeration indicating which type of highlight is being used. The

possible values are shown under Highlight at the end of the description of

this class.

Chapter 3. C++ 69

inputProt

BaseProt inputProt() const

Returns an enumeration indicating whether the field is protected. Possible

values are:

v protect

v unprotect

inputType

BaseType inputType() const

Returns an enumeration indicating the input data type for this field. Possible

values are:

v alphanumeric

v numeric

intensity

BaseInts intensity() const

Returns an enumeration indicating the field intensity. Possible values are :

v dark

v normal

v intense

length

unsigned short length() const

Returns the total length of the field. This includes one byte used to store the

3270 attribute byte information. The actual space for data is one byte less than

the value returned by this method. See also the “textLength” on page 72

method.

position

unsigned short position() const

Returns the position of the start of the field on the screen, given by position =

column number + (n x row number), where n is the number of columns in a

row (usually 80).

70 CICS Transaction Gateway: Programming Reference

resetDataTag

void resetDataTag()

Resets the modified data tag (MDT) to unmodified.

row

unsigned short row() const

Returns the row number of the position of the start of the field on the screen.

The top row is 1.

setBaseAttribute

void setBaseAttribute(char attribute)

attribute

The value of the base 3270 attribute byte to be entered into the field

Sets the 3270 base attribute.

setExtAttribute

void setExtAttribute(char attribute, char value)

attribute

The type of extended attribute being set

value

The value of the extended attribute

Sets an extended 3270 attribute. If an invalid 3270 attribute type or value is

supplied, a parameter exception is raised.

setText (1)

These methods update the field with the given text.

void setText(const char* text, unsigned short length)

text

The text to be entered into the field

length

The number of characters to be entered into the field

Copies length characters from text into the field.

Chapter 3. C++ 71

setText (2)

void setText(const char* text)

text

The null-terminated text to be entered into the field

Copies text, without the terminating null, into the field.

text

const char* text() const

Returns the text currently held in the field.

textLength

unsigned short textLength() const

Returns the number of characters currently held in the field.

transparency

Transparency transparency() const

Returns an enumeration indicating the background transparency of the field.

Possible values are shown under Transparency at the end of the description of

this class.

Enumerations

BaseInts

Indicates the field intensity. Possible values are:

v normal

v intense

v dark

BaseMDT

Indicates whether data in the field has been modified. Possible values are:

v unmodified

v modified

72 CICS Transaction Gateway: Programming Reference

BaseProt

Indicates whether the field is protected. Possible values are:

v protect

v unprotect

BaseType

Indicates field input data type. Possible values are:

v alphanumeric

v numeric

Color

Possible values are:

 defaultColor yellow paleGreen

blue neutral paleCyan

red black gray

pink darkBlue white

green orange

cyan purple

Highlight

Indicates which type of highlight is being used. Possible values are:

 defaultHlt blinkHlt underscoreHlt

normalHlt reverseHlt intenseHlt

Transparency

Indicates the background transparency of the field. Possible values are:

defaultTran

default transparency

orTran

OR with underlying color

xorTran

XOR with underlying color

opaqueTran

opaque

Chapter 3. C++ 73

CclFlow class

A CclFlow object is used to control ECI communications for a client/server

pair and to determine the synchronization of reply processing. Refer to

Compiling and Linking in the CICS Transaction Gateway: Programming Guide for

an explanation of synchronization. CclFlow automatically calls its

handleReply method when a reply is available; this simplifies control of

interleaved replies. Subclass CclFlow to implement your own handleReply

method.

A CclFlow object is created for each client/server interaction (request from

client and response from server). CclFlow objects can be reused when they

become inactive, that is, when reply processing is complete. An attempt to

delete or reuse an active CclFlow object raises an activeFlow exception.

CclFlow constructor

CclFlow (1)

CclFlow(Ccl::Sync syncType, unsigned long stackPages = 3)

syncType

The type of synchronization

stackPages

If asynchronous, the number of 4kb stack pages. The default is 3. If not

asynchronous, this parameter is ignored.

CclFlow (2)

CclFlow(Ccl::Sync syncType,

 unsigned long stackPages,

 const unsigned short &timeout)

syncType

The type of synchronization

stackPages

If asynchronous, the number of 4kb stack pages. If not asynchronous, this

parameter is ignored.

timeout

The time in seconds to wait for the ECI program to respond. If a timeout

occurs, the HandleException method is called with a timeout CclException

Object. Valid values are 0-32767.

74 CICS Transaction Gateway: Programming Reference

Public methods

abendCode

const char* abendCode() const

Returns the abend code from the most recently executed CICS transaction, or

blank if there have been none.

callType

CallType callType() const

Returns an enumeration value indicating the most recent type of server

request.

callTypeText

const char* callTypeText() const

Returns the name of the most recent server request.

connection

CclConn* connection() const

Returns a pointer to the CclConn object that represents the server being used,

if any, or zeros.

diagnose

const char* diagnose() const

Returns text explaining the exception for use in diagnostic output; for

example:

"link", flowId=2, retCode=-22, abendCode=" "

flowId

unsigned short flowId() const

Returns the unique identity of this CclFlow object.

forceReset

void forceReset()

Chapter 3. C++ 75

Makes the flow inactive and resets it. This is typically used to prepare a

CclFlow object for re-use or deletion after a flow has been abandoned, for

example when a C++ throw is used in a exception handler. This applies only

to dsync and async flows. You cannot issue this on a sync call from another

thread.

handleReply

virtual void handleReply(CclBuf* commarea)

commarea

A pointer to the CclBuf object containing the returned COMMAREA or

zero if none.

This method is called whenever a reply is received from a server, irrespective

of the type of synchronization or the type of call. See Compiling and Linking in

the CICS Transaction Gateway: Programming Guide. To deal with replies, you

should subclass CclFlow and provide your own implementation of

handleReply. The default implementation merely returns to the caller.

listState

const char* listState() const

Returns a formatted string containing the current state of the object. For

example:

Flow state..&CclFlow=000489A4 &CclFlowI=00203B70

syncType=2 threadId=0 stackPages=9 callType=0 flowId=0 commLength=0

retCode=0 systemRC=0 abendCode=" " &CclConnI=00000000 &CclUOWI=00000000

poll

Ccl::Bool poll(CclBuf* commarea = 0)

commarea

An optional pointer to the CclBuf object that will be used to contain the

returned COMMAREA.

Returns an enumeration, defined within the Ccl class indicating whether a

reply has been received from a deferred synchronous Backout, Cancel,

Changed, Commit, Link, or Status call request. If poll is used on a flow

object that is not deferred synchronous, a syncType exception is raised.

Possible values are:

yes A reply has been received. handleReply has been called

synchronously.

no No reply has been received. The client process is not blocked.

76 CICS Transaction Gateway: Programming Reference

setTimeout

void setTimeout(const unsigned short &timeout)

timeout

the defined time in seconds to wait for the ECI program to respond. If a

timeout occurs, the HandleException method is called with a timeout

CclException Object. Valid values are 0-32767.

Sets the timeout value for the flow object for the next activation of the flow.

This value can be set while a flow is active but does not affect the current

active flow

syncType

Ccl::Sync syncType() const

Returns an enumeration, defined within the Ccl class indicating the type of

synchronization being used. Possible values are shown in “Sync” on page 49.

timeout

short timeout()

Retrieves the current timeout value set for the flow object.

uow

CclUOW* uow() const

Returns a pointer to any CclUOW object containing information on any units

of work (UOWs) associated with this interaction.

wait

void wait()

Waits for a reply from the server, blocking the client process in the meantime.

If wait is used on a synchronous flow object, a syncType exception is raised.

Enumerations

CallType

The possible values for server requests in progress under the control of a

CclFlow object are:

inactive

No server call is currently in progress

Chapter 3. C++ 77

link A CclConn::link call to a server program

backout

A CclUOW::backout call to back out changes made to recoverable

resources on the server

commit

A CclUOW::commit call to commit changes made to recoverable

resources on the server

status A CclConn::status call to determine the status of a server connection

changed

A CclConn::changed call to request notification when the status of a

connection to a server changes

cancel

A CclConn::cancel call to cancel an earlier CclConn::changed request.

CclMap class

The CclMap class is a base class for map classes created by the CICS BMS

Map Conversion Utility. The methods provided by CclMap class are inherited

by the classes generated from BMS maps.

CclMap constructor

CclMap(CclScreen* screen)

screen

A pointer to the matching CclScreen object.

 Creates a CclMap object and checks (validates) that the map matches the

content of the screen, defined by the CclScreen object. If validation was

unsuccessful, an invalidMap exception is raised. If the supplied CclScreen

object is invalid, a parameter exception is raised.

Public methods

exCode

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

Ccl::ExCode exCode() const

Returns an enumeration indicating the most recent exception code. The

possible values are listed in Table 22 on page 233.

78 CICS Transaction Gateway: Programming Reference

exCodeText

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

const char* exCodeText() const

Returns a text string describing the most recent exception code.

field (1)

CclField* field(unsigned short index)

index

The index number of the required CclField object.

Returns a pointer to the CclField object identified by index in the BMS map.

field (2)

CclField* field(unsigned short row, unsigned short column)

row

The row number of the required CclField object within the map. The top

row is 1.

column

The column number of the required CclField object within the map. The

left column is 1.

Returns a pointer to the CclField object identified by position in the BMS

map.

Protected methods

namedField

CclField* namedField(unsigned long index)

index

The index number of the required CclField object.

Returns the address of the indexth object.

Chapter 3. C++ 79

validate

void validate(const MapData* map,

 const FieldIndex* index,

 const FieldData* fields)

map

A structure that contains information about the map. The structure is

defined within this class and contains the following members, which are

all unsigned short integers:

row Map row position on screen

col Map column position on screen

width

Map width in columns

depth Map depth in rows

fields Number of fields

labels

Number of labeled fields

index

The index number of the required CclField object. FieldIndex is a typedef

of this class and is equivalent to an unsigned short integer.

fields

A structure that contains information about a particular field. The

structure is defined within this class and contains the following members,

which are all unsigned short integers:

row Field row (within map)

col Field column (within map)

len Field length

Validate map against the current screen.

CclScreen class

The CclScreen EPI class maintains all data on the 3270 virtual screen and

provides access to this data. It contains a collection of CclField objects which

represent the fields on the current 3270 screen.

A single CclScreen object is created by the CclTerminal object; use the screen

method on the CclTerminal object to obtain it. The CclScreen object is updated

by the CclTerminal object when 3270 data is received from CICS. A

dataStream exception is raised if an unsupported data stream is received.

80 CICS Transaction Gateway: Programming Reference

Public methods

cursorCol

unsigned short cursorCol() const

Returns the column number of the current position of the cursor. The left

column is 1.

cursorRow

unsigned short cursorRow() const

Returns the row number of the current position of the cursor. The top row is

1.

depth

unsigned short depth() const

Returns the number of rows in the screen.

field (1)

These methods allow you to access fields on the current screen by returning a

pointer to the relevant CclField object.

CclField* field(unsigned short index)

index

The index number of the field of interest

field (2)

CclField* field(unsigned short row, unsigned short column)

row

The row number of the field

column

The column number of the field

fieldCount

unsigned short fieldCount() const

Returns the number of fields in the screen.

Chapter 3. C++ 81

mapName

const char* mapName()

Returns a padded null terminated string specifying the name of the map that

was most recently referenced in the MAP option of a SEND MAP command

processed for the terminal resource. If the terminal resource is not supported

by BMS, or the server has no record of any map being sent, the value

returned is spaces.

mapSetName

const char* mapSetName()

Returns a padded null terminated string specifying the name of the mapset

that was most recently referenced in the MAPSET option of a SEND MAP

command processed for the terminal resource. If the MAPSET option was not

specified on the most recent request, BMS used the map name as the mapset

name. In both cases, the mapset name used may have been suffixed by a

terminal suffix. If the terminal resource is not supported by BMS, or the server

has no record of any mapset being sent, the value returned is spaces.

setAID

void setAID(const AID key)

key

An AID key. See the “AID” on page 83 enumerations at the end of this

chapter.

Sets the AID key value to be passed to the server on the next transmission.

setCursor

void setCursor(unsigned short row, unsigned short col)

row

The required row number of the cursor. The top row is 1.

col

The required column number of the cursor. The left column is 1.

Requests that the cursor position be set. If the supplied row or column values

are outside the screen boundaries, a parameter exception is raised.

82 CICS Transaction Gateway: Programming Reference

width

unsigned short width() const

Returns the number of columns on the screen.

Enumerations

AID

Indicates an AID key. Possible values are:

v enter

v clear

v PA1—PA3

v PF1—PF24

CclSecAttr

The CclSecAttr class provides information about passwords reported back by

the external security manager when verifyPassword or changePassword

methods are issued on CclConn or CclTerminal objects.

This object is created and owned by the CclConn or CclTerminal Object;

access to this object is provided when the verifyPassword or changePassword

methods are invoked.

Public Methods

expiryTime

CclSecTime* expiryTime() const

Returns a CclSecTime object that contains the Date and Time at which the

password will expire

invalidCount

unsigned short invalidCount() const

Returns the Number of times that an invalid password has been entered for

the userid.

lastAccessTime

CclSecTime* lastAccessTime() const

Chapter 3. C++ 83

Returns a CclSecTime object that contains the date and time when the userid

was last accessed.

lastVerifiedTime

CclSecTime* lastVerifiedTime() const

Returns a CclSecTime object that contains the date and time of the Last

Verification.

CclSecTime

The CclSecTime class provides date and time information in the CclSecAttr

object for various entries reported back by the external security manager

when verifyPassword or changePassword methods are issued on CclConn or

CclTerminal objects.

These objects are created and owned by the CclSecAttr object and access is

obtained via the various methods available on this object. No Constructors or

Destructors are available.

Public Methods

day

unsigned short day() const

Returns the day with a range from 1 to 31; 1 represents the first day of the

month.

get_time_t

time_t get_time_t() const

Returns the date and time in a time_t format.

get_tm

tm get_tm() const

Returns the date and time in a tm structure.

hours

unsigned short hours() const

Returns the hours with a range from 0 to 23.

84 CICS Transaction Gateway: Programming Reference

hundredths

unsigned short hundredths() const

Returns the hundredths of seconds with a range from 0 to 99.

minutes

unsigned short minutes() const

Returns the minutes with a range from 0 to 59.

month

unsigned short month() const

Returns the month with a range from 1 to 12. January is 1.

seconds

unsigned short seconds() const

Returns the seconds with a range from 0 to 59.

year

unsigned short year() const

Returns a 4–digit year

CclSession class

The CclSession class allows the programmer to implement reusable code to

handle a segment (one or more transmissions) of a 3270 conversation. In

multi-threaded environments it provides asynchronous handling of replies

from CICS.

The CclSession class controls the flow of data to and from CICS within a

single 3270 session. You should derive your own classes from CclSession.

CclSession constructor

CclSession(Ccl::Sync syncType)

syncType

The protocol to be used on transmissions to the CICS server. Possible

values are:

Chapter 3. C++ 85

async asynchronous

dsync deferred synchronous

sync synchronous

Public methods

diagnose

const char* diagnose() const

Returns a text description of the last error.

handleReply

virtual void handleReply(State state, CclScreen* screen)

state

An enumeration indicating the state of the data flow. The scope of the

values is shown under State at the end of the description of this class.

screen

A pointer to the CclScreen object.

This is a virtual method which you can override when you develop your own

class derived from CclSession. It is called when data is received from CICS.

state

State state() const

Returns an enumeration indicating the current state of the session. Possible

values are shown under State at the end of the description of this class.

terminal

CclTerminal* terminal() const

Returns a pointer to the CclTerminal object for this session. This method

returns a NULL pointer until the CclSession object has been associated with a

CclTerminal object (that is, until the CclSession object has been used as a

parameter on a CclTerminal send method).

transID

const char* transID() const

Returns the 4-letter name of the current transaction.

86 CICS Transaction Gateway: Programming Reference

Enumerations

State

Indicates the state of a session. Possible values are:

idle The terminal is connected and no CICS transaction is in progress.

server

A CICS transaction is in progress in the server.

client A CICS transaction is in progress, and the server is waiting for a

response from the client.

discon

The terminal is disconnected.

error There is an error in the terminal.

CclTerminal class

An object of class CclTerminal represents a 3270 terminal connection to a

CICS server. A CICS connection is established when the object is created.

Methods can then be used to converse with a 3270 terminal application (often

a BMS application) in the CICS server.

The EPI must be initialized (that is, a CclEPI object created) before a

CclTerminal object can be created.

The CclTerminal class destructor does not purge ATI requests queued against

the terminal.

CclTerminal constructor

CclTerminal (1)

CclTerminal(const char* server = NULL,

 const char* devtype = NULL,

 const char* netname = NULL)

server

The name of the server with which you want to communicate. If no name

is provided the default server system is assumed. The length is adjusted

to 8 characters by padding with blanks.

devtype

The name of the model terminal definition that the server uses to generate

a terminal resource definition. If no string is provided the default model is

used. The length is adjusted to 16 characters by padding with blanks.

Chapter 3. C++ 87

netname

The name of the terminal resource to be installed or reserved. The default

is to use the contents of devtype. The length is adjusted to 8 characters by

padding with blanks.

Creates the CclTerminal object that is used for EPI communication between

the client and server.

This constructor does an implicit install terminal. You do not need to invoke

the install method if you construct a terminal object this way.

If the named server is not configured in the CICS Transaction Gateway

initialization file, an unknownServer exception is raised.

If invalid values are supplied for server, devtype or netname, a parameter

exception is raised.

If a CclEPI object has not been created, an initEPI exception is raised.

If the maximum number of supported terminal connections has been

exceeded, a maxRequests exception is raised.

CclTerminal (2)

CclTerminal(const char* server,

 const char* devtype,

 const char* netname,

 signonType signonCapability

 const char* userid

 const char* password

 const unsigned short &readTimeOut,

 const unsigned short &CCSid)

server

The name of the server with which you want to communicate. If no name

is provided the default server system is assumed. The length is adjusted

to 8 characters by padding with blanks.

devtype

The name of the model terminal definition which the server uses to

generate a terminal resource definition. If no string is provided the default

model is used. The length is adjusted to 16 characters by padding with

blanks.

netname

The name of the terminal resource to be installed or reserved. The default

is to use the contents of devtype. The length is adjusted to 8 characters by

padding with blanks.

88 CICS Transaction Gateway: Programming Reference

signonCapability

 Sets the type of sign-on capability for the terminal.

Possible values are:

v CclTerminal::SignonCapable

v CclTerminal::SignonIncapable

userid

The name of the userid to associate with this terminal resource

password

The password to associate with the userid

readTimeOut

A value in the range 0 through 3600, specifying the maximum time in

seconds between the time the classes go clientrepl state and the

application program invokes the reply method.

CCSid

An unsigned short specifying the coded character set identifier (CCSID)

that identifies the coded graphic character set used by the Client

application for data passed between the terminal resource and CICS

transactions. A zero string means that a default will be used.

Creates a Terminal object that does not do an implicit install terminal. You

must run the install method to install the terminal.

Public methods

alterSecurity

void alterSecurity(const char* userid,const char* password)

userid

The new userid

password

The new password for userid

Allows you to re-define the userid and password for a terminal resource. You

may call the method before you install a terminal. It changes only the

terminal definition; the new userid and password will be used for the

terminal when install is called.

changePassword

CclSecAttr* changePassword(const char* newPassword)

newPassword

The new password

Chapter 3. C++ 89

Allows a Client application to change the password held in the terminal object

and the password recorded by an external security manager for the userid

held in the terminal object. The external security manager is assumed to be

located in the server defined by the terminal object.

CCSid

unsigned short CCSid()

Returns the selected code page as an unsigned short.

diagnose

const char* diagnose()

Returns a character string that holds a description of the error returned by the

most recent server call.

disconnect (1)

void disconnect()

Disconnects the terminal from CICS. No attempt is made to purge any

outstanding running transaction.

disconnect (2)

void disconnect(Ccl::Bool withPurge)

withPurge

Ccl::Yes

Disconnects the terminal from CICS and attempts to purge any

outstanding running transaction. This purge function does not

cancel ATI requests queued against the terminal.

Ccl::No

Disconnects the terminal from CICS. No attempt is made to purge

outstanding running transactions.

discReason

void discReason(void)

Returns the reasons for a disconnection. See “EndTerminalReason” on page

96.

90 CICS Transaction Gateway: Programming Reference

exCode

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

Ccl::ExCode exCode() const

Returns an enumeration indicating the most recent exception code. The

possible values are listed in Table 22 on page 233.

exCodeText

Deprecated method

: Do not use this method in new applications. The method has been

deprecated and is provided only for compatibility.

const char* exCodeText() const

Returns a text string describing the most recent exception code.

install

void install(CclSession *session,

 const unsigned short &installTimeOut)

session

A pointer to the CclSession object that is to be used for the CICS server

interaction.

installTimeOut

A value in the range 0 to 3600, specifying the maximum time in seconds

that installation of the terminal resource is allowed to take. A value of 0

means that no limit is set.

Connects a non-connected terminal resource. Throws an invalidState error if

already connected, or a timeout error if a timeout occurs.

makeSecurityDefault

void makeSecurityDefault()

Informs the client that the current userid and password for this object are to

become the default for ECI and EPI requests passed to the server as specified

in the construction of the Terminal object.

Chapter 3. C++ 91

netName

const char* netName() const

Returns the network name of the terminal as a null terminated string.

password

const char* password()

Returns a null terminated string containing the current password setting for

the terminal, or null if the terminal has no password.

poll

Ccl::Bool poll()

Polls for data from the CICS server.

For deferred synchronous transmissions (that is, if a deferred synchronous

CclSession object was used on a previous send call) the poll method is called

by the application when it wants to receive data from the CICS server. If a

reply from CICS is ready, the CclTerminal object updates the CclScreen object

with the contents of the 3270 data stream received from CICS, the

handleReply virtual function on the CclSession object is called, and the poll

method returns Ccl::yes. If no reply has been received from CICS, the poll

method returns Ccl::no.

The poll method is used only for deferred synchronous transmissions; a

syncType exception is raised if the poll method is called when a synchronous

or asynchronous session is in use. An invalidState exception is raised if the

poll method is called when there was no previous send call. The CclTerminal

object should be in server state for poll to be called.

A CICS server transaction may send more than one reply in response to a

CclTerminal send call. More than one CclTerminal poll call may therefore be

needed to collect all the replies. Use the CclTerminal state method to find out

if further replies are expected. If there are, the value returned will be server.

See EPI call synchronization types in the CICS Transaction Gateway: Programming

Guide.

queryATI

ATIState queryATI()

Returns an enumeration indicating whether the “Automatic Transaction

Initiation” (ATI) is enabled or disabled. Possible values are:

92 CICS Transaction Gateway: Programming Reference

v disabled

v enabled

readTimeout

const char* readTimeout()

Returns the read timeout value for the terminal as a null terminated string .

receiveATI

void receiveATI(CclSession* session)

session

pointer to the CclSession object that is to be used for the CICS server

interaction.

Waits for and receives 3270 data stream for a CICS ATI transaction. The

CclSession object supplied as a parameter determines whether the call is

synchronous or asynchronous, and can be subclassed to provide a reply

handler

screen

CclScreen* screen() const

Returns a pointer to the CclScreen object that is handling the 3270 screen

associated with this terminal session.

send (1)

void send(CclSession* session,

 const char* transid,

 const char* startdata = NULL)

session

A pointer to the CclSession object that controls the session which is to be

used. If no valid CclSession object is supplied, a parameter exception is

raised.

transid

The name of the transaction which is to be started

startdata

start transaction data. The default is to have no data for the transaction

being started.

Chapter 3. C++ 93

Formats and sends a 3270 data stream, starting the named transaction. The

CclTerminal object must be in idle state (connected to a CICS server but with

no transaction in progress). If the object is not in idle state, an invalidState

exception is raised.

send (2)

void send(CclSession* session)

The session parameter is described above.

Formats and sends a 3270 data stream. The CclTerminal object must be in idle

state (see above) or in client state (that is, with a transaction in progress and

the CICS server waiting for a response). If the object is not in idle or client

state, an invalidState exception is raised.

setATI

void setATI(ATIState newstate)

newstate

An enumeration indicating whether the ATI is to be enabled or disabled.

The scope of the values is within this class and the possible values are

disabled and enabled.

signonCapability

signonType signonCapability()

Returns the type of sign-on capability applied to the terminal at installation.

Possible values are:

v CclTerminal::signonCapable

v CclTerminal::signonIncapable

v CclTerminal::signonUnknown

state

State state() const

Returns an enumeration indicating the current state of the session. Possible

values are shown at the end of the description of this class.

serverName

const char* serverName() const

94 CICS Transaction Gateway: Programming Reference

Returns the name of the CICS server to which this terminal session is

connected.

termID

const char* termID() const

Returns the 4-character terminal ID.

transID

const char* transID() const

Returns the 4-character name of the current CICS transaction. If a RETURN

IMMEDIATE is run from the current transaction, TransId does not provide the

name of the new transaction; it still contains the name of the first transaction.

userId

const char* userId()

Returns a null terminated string containing the current userid setting for the

terminal, Null if none.

verifyPassword

CclSecAttr* verifyPassword()

Allows a Client application to verify that the password held in the terminal

object matches the password recorded by an external security manager for the

userid held in the terminal object. The external security manager is assumed

to be located in the server defined by the terminal object.

Enumerations

ATIState

Indicates whether “Automatic Transaction Initiation” (ATI) is enabled or

disabled. Possible values are:

v enabled

v disabled

signonType

Indicates the sign-on capability of a terminal. Possible values are:

Chapter 3. C++ 95

signonCapable

Sign-on Capable

signonIncapable

Sign-on Incapable

signonUnknown

Sign-on Unknown

State

Indicates the state of the CclTerminal object. Possible values are:

client A CICS transaction is in progress and the server is waiting for a

response from the client.

discon

The terminal is disconnected.

error There is an error in the terminal.

idle The terminal is connected and no CICS transaction is in progress.

server

A CICS transaction is in progress in the server.

termDefined

A terminal has been defined but not installed.

txnTimedOut

A conversational transaction has timed out, but the END_TRAN event

has not been retrieved. For synchronous and asynchronous terminals

the terminal method blocks until the event has been received and the

terminal becomes idle. For deferred synchronous terminals it indicates

that a poll() needs to be done to get the event. This resets the terminal

to the idle state; handleException() and handleReply() are not

invoked.

EndTerminalReason

Indicates the EndTerminalReason of the CclTerminal object. Possible values

are:

signoff

A disconnect was requested or the user has signed off the terminal.

shutdown

The CICS server has been shutdown.

outofService

The terminal has been switched to out of service.

unknown

An unknown situation has occurred.

failed The terminal failed to disconnect.

notDiscon

The terminal is not disconnected.

96 CICS Transaction Gateway: Programming Reference

CclUOW class

Use this ECI class when you make updates to recoverable resources in the

server within a “unit of work” (UOW). Each update in a UOW is identified at

the client by a reference to its CclUOW—see link in CclConn (“link” on page

58).

A CclUOW object cannot be copied or assigned. An attempt to delete a

CclUOW object for which there is an active CclFlow object raises an

activeFlow exception. Any attempt to delete an active CclUOW object, that is

one which has not been committed or backed out, raises an activeUOW

exception.

CclUOW constructor

CclUOW()

 Creates a CclUOW object.

Public methods

backout

void backout(CclFlow& flow)

flow

A reference to the CclFlow object that is used to control the client/server

call

Terminate this UOW and back out all changes made to recoverable resources

in the server.

commit

void commit(CclFlow& flow)

flow

A reference to the CclFlow object that is used to control the client/server

call

Terminate this UOW and commit all changes made to recoverable resources in

the server.

forceReset

void forceReset()

Make this UOW inactive and reset it.

Chapter 3. C++ 97

listState

const char* listState() const

Returns a zero-terminated formatted string containing the current state of the

object. For example:

UOW state..&CclUOW=0004899C &CclUOWI=00203BD0

&CclConnI=00000000 uowId=0 &CclFlowI=00000000

uowId

unsigned long uowId() const

Returns the identifier of the UOW. 0 means that the UOW is either complete

or has not yet started. In other words, it is inactive.

98 CICS Transaction Gateway: Programming Reference

Chapter 4. C and COBOL

COBOL is only supported on AIX and Windows platforms.

The callback functions of ECI and EPI are not supported in COBOL

applications.

External Call Interface

CICS_ExternalCall ECI_Parms

Purpose

CICS_ExternalCall gives access to the program link calls, status information

calls, and reply solicitation calls. The function performed is controlled by the

eci_call_type field in the ECI parameter block.

Parameters

ECI_Parms

A pointer to the ECI parameter block. Set the parameter block to nulls

before use. The parameter block fields that are used as input and

output are described in detail for each call type in the following

sections. A brief summary of the fields follows:

eci_call_type

An integer field defining the type of call being made. For

details of the functions provided, see Types of ECI call in CICS

Transaction Gateway: Programming Guide.

eci_program_name

The name of a program to be called.

eci_userid

User ID for security checking.

eci_password

Password for security checking.

eci_transid

A transaction identifier.

eci_abend_code

Abend code for a failed program.

eci_commarea

A COMMAREA for use by a called program, or for returned

status information.

© Copyright IBM Corp. 1989, 2008 99

eci_commarea_length

The length of the COMMAREA. The size of the COMMAREA

must be set to the largest size of the input or output data.

This length must not exceed 32 500 bytes. If the input data is

less than the length of the COMMAREA, pad the

COMMAREA with nulls. The Client daemon strips off the null

padding and sends only the data on the ECI request to the

CICS server.

eci_timeout

The time to wait for a response from the CICS server. For

more information on the ECI time-out support, see the CICS

Transaction Gateway: Programming Guide.

reserved1

A return code giving more information about an unexpected

error.

 This field was previously eci_system_ return_code. In Version

3.1 and higher of the product, this field is kept for

compatibility. No information is returned in this field; all

system errors are written to the CICS Transaction Gateway’s

error log.

eci_extend_mode

Used to manage logical units of work that span multiple ECI

requests. See CICS Transaction Gateway: Programming Guide for

more details.

eci_message_qualifier

A user-provided reference to an asynchronous call.

eci_luw_token

An identifier for a logical unit of work.

eci_sysid

Reserved for future use; leave null.

eci_version

The version of the ECI for which the application is coded. Use

the value ECI_VERSION_1A.

eci_system_name

The name of a CICS server.

eci_callback

A pointer to a callback routine for an asynchronous request.

Not supported in COBOL applications.

100 CICS Transaction Gateway: Programming Reference

|

eci_userid2

User ID for security checking. This is used if the User ID or

password is more than 8 Characters.

eci_password2

Password for security checking. This is used if the User ID or

password is more than 8 Characters.

eci_tpn

A transaction identifier for the mirror transaction.

Return Codes

In addition to the return codes described for each call type in the following

sections, the following return codes are possible.

ECI_ERR_INVALID_CALL_TYPE

The call type was not one of the valid call types.

ECI_ERR_CALL_FROM_CALLBACK

The call was made from a callback routine.

ECI_ERR_REQUEST_TIMEOUT

The time-out interval expired before the request could be processed,

or the specified interval was negative.

ECI_ERR_RESPONSE_TIMEOUT

The time-out interval expired while the program was running.

ECI_ERR_SYSTEM_ERROR

An internal system error occurred. The error might have been in the

CICS Transaction Gateway or in the server. The programmer should

save the information returned in the CICS Transaction Gateway’s error

log, as this will help service personnel to diagnose the error.

ECI_ERR_INVALID_VERSION

The value supplied for eci_version was invalid.

In some implementations, some of the return codes documented here and for

each call type will never be returned.

The mapping of actual return code values to the symbolic names is contained

in the following file for the Windows operating systems:

C <install_path>\include\cics_eci.h

Cobol <install_path>\copybook\cicseci.cbl

and in the following files for the UNIX and Linux operating systems:

C <install_path>/include/cics_eci.h

Chapter 4. C and COBOL 101

Call types for the CICS_ExternalCall

ECI_SYNC call type

Environment

The ECI_SYNC call type is available in all environments.

Purpose

The ECI_SYNC call type provides a synchronous program link call to start,

continue, or end a logical unit of work. The calling application does not get

control back until the called CICS program has run to completion.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input

parameter fields.

eci_call_type

Required input parameter, which must be set to ECI_SYNC.

eci_program_name

Input parameter, required except when eci_extend_mode is

ECI_COMMIT or ECI_BACKOUT. (See the Logical units of work in ECI

table in CICS Transaction Gateway: Programming Guide for more details.)

 An 8-character field containing the name of the program to be called.

Pad unused characters with spaces. This field is transmitted to the

server without conversion to uppercase.

The characters used are translated from the client’s code page to an

EBCDIC code page before transmission. If the server uses an ASCII

code page, they will be retranslated. The only characters guaranteed

to be invariant under these translations are the uppercase characters A

to Z, and the numeric characters 0 to 9. Some EBCDIC servers

(Katakana and Hebrew character set A) do not use the standard

representations of the lowercase alphabetic characters; use them with

care when communicating with such servers.

eci_userid

Required input parameter.

 An 8-character field containing a user ID. Pad unused characters with

spaces.

Consult the documentation for the CICS Transaction Gateway and the

server to check whether this field is converted to upper case before

being transmitted to the server. If a user ID or password longer than 8

102 CICS Transaction Gateway: Programming Reference

characters is required, set eci_userid and eci_password to nulls, and

use fields eci_userid2 and eci_password2 instead.

If a user ID is supplied, the server uses the user ID and any supplied

password to authenticate the user. The supplied user ID and

password are used in subsequent security checking in the server.

eci_password

Required input parameter.

 An 8-character field containing a password. Pad unused characters

with spaces.

Consult the documentation for the CICS Transaction Gateway and the

server to check whether this field is converted to upper case before

being transmitted to the server. If a user ID or password longer than 8

characters is required, set this field and eci_userid to nulls, and use

fields eci_userid2 and eci_password2 instead.

eci_transid

Optional input parameter

 A 4-character field optionally containing the ID of a CICS transaction.

Pad unused characters with spaces. The parameter is ignored if

eci_tpn is used (set to any value other than nulls). The use of this

parameter depends on the client from which the request is sent. The

value of eci_transid is converted from ASCII to EBCDIC, with no

upper case translation, and stored in EIBTRNID for the duration of

the LINK to the program specified in the eci_program_name.

The called program runs under the mirror transaction CPMI, but is

linked to under the eci_transid transaction name. This name is

available to the called program for querying the transaction ID. Some

servers use the transaction ID to determine security and performance

attributes for the called program. In those servers, use this parameter

to control the processing of your called programs.

If the ECI request is extended (see the description of

eci_extend_mode), the eci_transid parameter has a meaning only for

the first call in the unit of work.

If the field is all nulls, and eci_tpn is not specified, the default server

transaction ID is used.

eci_abend_code

Output parameter.

 A 4-character field in which a CICS abend code is returned if the

transaction that executes the called program abends. Unused

characters are padded with spaces.

Chapter 4. C and COBOL 103

eci_commarea

Optional input parameter.

 A pointer to the data to be passed to the called CICS program as its

COMMAREA. The COMMAREA will be used by the called program

to return information to the application.

If no COMMAREA is required, supply a null pointer and set the

length (specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of

the server, data conversion must be performed at the server. To do

this, use CICS-supplied resource conversion capabilities, such as the

DFHCNV macro definitions.

eci_commarea_length

Optional input parameter.

 The length of the COMMAREA in bytes. This value may not exceed

32 500. (Some client/server combinations may allow larger

COMMAREAs, but this is not guaranteed to work.)

If no COMMAREA is required, set this field to zero and supply a null

pointer in eci_commarea.

eci_timeout

The time in seconds to wait for a response from the CICS server. A

value of 0 means that no limit is set.

 If timeout occurs, the conversation is abended.

reserved1

Output parameter.

 This field was previously eci_system_ return_code. In the CICS

Transaction Gateway Version 3.1, and higher, this field is reserved for

compatibility with earlier versions. No information is returned in this

field; all system errors are written to the CICS Transaction Gateway’s

error log.

eci_extend_mode

Required input parameter.

 An integer field determining whether a logical unit of work is

terminated at the end of this call.) (See the Logical units of work in ECI

table in CICS Transaction Gateway: Programming Guide for more details.)

The values for this field (shown by their symbolic names) are as

follows:

ECI_NO_EXTEND

1. If the input eci_luw_token field is zero, this is the only

call for a logical unit of work.

104 CICS Transaction Gateway: Programming Reference

2. If the input eci_luw_token field is not zero, this is the last

call for the specified logical unit of work.

In either case, changes to recoverable resources are committed

by a CICS end-of-task syncpoint, and the logical unit of work

ends.

If you set eci_extend_mode to ECI_NO_EXTEND and

eci_luw_token to 0, you will observe one request flowing from

client to server and one reply flowing from server to client.

The server sends the reply after the program specified in

eci_program_name has been invoked and the changes made

by that program have been committed.

ECI_EXTENDED

1. If the input eci_luw_token field is zero, this is the first call

for a logical unit of work that is to be continued.

2. If the input eci_luw_token field is not zero, this call is

intended to continue the specified logical unit of work.

In either case the logical unit of work continues after the

called program completes successfully, and changes to

recoverable resources remain uncommitted.

ECI_COMMIT

Terminate the current logical unit of work, identified by the

input eci_luw_token field, and commit all changes made to

recoverable resources.

ECI_BACKOUT

Terminate the logical unit of work identified by the input

eci_luw_token field, and back out all changes made to

recoverable resources.

eci_luw_token

Required input and output parameter.

 An integer field used for identifying the logical unit of work to which

a call belongs. It must be set to zero at the start of a logical unit of

work (regardless of whether the logical unit of work is going to be

extended). If the logical unit of work is to be extended, the ECI

updates eci_luw_token with a valid value on the first call of the

logical unit of work, and this value should be used as input to all

later calls related to the same logical unit of work. (See the Logical

units of work in ECI table in CICS Transaction Gateway: Programming

Guide for more details.)

If the return code is not ECI_NO_ERROR, and the call was continuing

or ending an existing logical unit of work, this field is used as output

to report the condition of the logical unit of work. If it is set to zero,

Chapter 4. C and COBOL 105

the logical unit of work has ended, and its updates have been backed

out. If it is nonzero, it is the same as the input value, the logical unit

of work is continuing, and its updates are still pending.

eci_sysid

Required input parameter.

 Reserved for future use, but this field should be initialized with nulls

before the start of each logical unit of work.

eci_version

Required input parameter.

 The version of the ECI for which the application is coded. Use the

value ECI_VERSION_1A.

eci_system_name

Optional input parameter.

 An 8-character field that specifies the name of the server to which the

ECI request is to be directed. Pad unused characters with spaces. If

supplied, it should be one of the server names returned by

CICS_EciListSystems. The value may be supplied whenever

eci_luw_token is set to zero. (If it is supplied when eci_luw_token is

not zero, it is ignored, because the server was established at the start

of the logical unit of work.)

If the field is set to nulls, the default server is selected; the name of

the chosen server is returned in this field, and must be used in

subsequent related ECI requests. If ECI requests made in different

logical units of work must be directed to the same server,

eci_system_name must identify that server by name.

eci_userid2

Optional input parameter.

 If the eci_userid field is set to nulls, the eci_userid2 field specifies the

user ID (if any) to be used at the server for any authority validation.

The user ID can be up to 16 characters.

See the description of the eci_userid field for information about how

the user ID is used.

eci_password2

Optional input parameter.

 If the eci_password field is set to nulls, the eci_password2 field

specifies the password (if any) to be used at the server for any

authority validation. The password can be up to 16 characters.

See the description of the eci_password field for information about

how the password is used.

106 CICS Transaction Gateway: Programming Reference

eci_tpn

Optional input parameter.

 A 4-character field that specifies the transaction ID of the transaction

that will be used in the server to process the ECI request. This

transaction must be defined in the server as a CICS mirror transaction.

If the field is not set, the default mirror transaction CPMI is used.

If the ECI request is extended (see the description of

eci_extend_mode), this parameter has a meaning only for the first

request.

If this field is used, the contents of eci_transid are ignored.

Return codes

See also the general list of return codes for CICS_ExternalCall in

“CICS_ExternalCall ECI_Parms” on page 99.

ECI_NO_ERROR

The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH

The value in eci_commarea_length field is outside the valid range, or

is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null eci_commarea

pointer.

ECI_ERR_INVALID_EXTEND_MODE

The value in eci_extend_mode field is not valid.

ECI_ERR_NO_CICS

The CICS Transaction Gateway is unavailable, or the server

implementation is unavailable, or a logical unit of work was to be

begun, but the CICS server specified in eci_system_name is not

available. No resources have been updated.

ECI_ERR_CICS_DIED

A logical unit of work was to be begun or continued, but the CICS

server was no longer available. If eci_extend_mode was

ECI_EXTENDED, the changes are backed out, and the logical unit of

work ends. If eci_extend_mode was ECI_NO_EXTEND,

ECI_COMMIT, or ECI_BACKOUT, the application cannot determine

whether the changes have been committed or backed out, and must

log this condition to aid future manual recovery.

ECI_ERR_TRANSACTION_ABEND

The CICS transaction that executed the requested program abended.

The abend code will be found in eci_abend_code. For information

Chapter 4. C and COBOL 107

about abend codes and their meaning, consult the documentation for

the server system to which the request was directed.

ECI_ERR_LUW_TOKEN

The value supplied in eci_luw_token is invalid.

ECI_ERR_ALREADY_ACTIVE

An attempt was made to continue an existing logical unit of work, but

there was an outstanding asynchronous call for the same logical unit

of work.

ECI_ERR_RESOURCE_SHORTAGE

The server implementation or the Client daemon did not have enough

resources to complete the request.

ECI_ERR_NO_SESSIONS

A new logical unit of work was being created, but the application

already has as many outstanding logical units of work as the

configuration will support.

ECI_ERR_INVALID_DATA_AREA

Either the pointer to the ECI parameter block is invalid, or the pointer

supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK

An attempt was made to commit a logical unit of work, but the server

was unable to commit the changes, and backed them out instead.

ECI_ERR_UNKNOWN_SERVER

The requested server could not be located. Only servers returned by

CICS_EciListSystems are acceptable.

ECI_ERR_MAX_SESSIONS

This is returned if the MAXREQUESTS limit, as defined in your

configuration file, was exceeded.

ECI_ERR_MAX_SYSTEMS

You tried to start requests to more servers than your configuration

allows. Consult the documentation for your CICS Transaction

Gateway or server to see how to control the number of servers you

can use.

ECI_ERR_SECURITY_ERROR

You did not supply a valid combination of user ID and password.

ECI_ASYNC call type

Environment

108 CICS Transaction Gateway: Programming Reference

Purpose

The ECI_ASYNC call type provides an asynchronous program link call to

start, continue, or end a logical unit of work. The calling application gets

control back when the ECI has accepted the request. At this point the

parameters have been validated; however, the request might still be queued

for later processing.

If no callback routine is provided, the application must use a reply solicitation

call to determine whether the request has ended and what the outcome was.

If a callback routine is provided, the callback routine eci_callback is invoked

when a response is available.

Note: Some compilers do not support the use of callback routines. Consult

your compiler documentation for more information.

It is important that the Eci parameter blocks of outstanding

ECI_ASYNC calls are not modified before the results of the call are

received. Results will be incorrect if these blocks are modified before

this stage.

When the callback routine is called, it is passed a single parameter—the value

specified in eci_message_qualifier. This enables the callback routine to

identify the asynchronous call that is completing. Follow these guidelines

when using the callback routine:

1. The minimum possible processing should be performed within the

callback routine.

2. ECI functions cannot be invoked from within the callback routine.

3. The callback routine should indicate to the main body of the application

that the reply is available using an appropriate technique for the operating

system upon which the ECI application is executing. For example, in a

multithreaded environment, the callback routine might post a semaphore

to signal another thread that an event has occurred.

4. The application, not the callback routine, must use a reply solicitation call

to receive the actual response.

ECI parameter block fields

Set the ECI parameter block to nulls before you set the input parameter fields.

eci_call_type

Required input parameter.

 Must be set to ECI_ASYNC.

Chapter 4. C and COBOL 109

eci_program_name

Input only, required parameter except when eci_extend_mode is

ECI_COMMIT or ECI_BACKOUT. (See the Logical units of work in ECI

table in CICS Transaction Gateway: Programming Guide for more details.)

 An 8-character field containing the name of the program to be called.

Pad unused characters with spaces. This field is transmitted to the

server without conversion to uppercase.

The characters used are translated from the client’s code page to an

EBCDIC code page before transmission. If the server uses an ASCII

code page, they will be retranslated. The only characters guaranteed

to be invariant under these translations are the uppercase characters A

to Z, and the numeric characters 0 to 9. Some EBCDIC servers

(Katakana and Hebrew character set A) do not use the standard

representations of the lowercase alphabetic characters; use them with

care when communicating with such servers.

eci_userid

Required input parameter.

 An 8-character field containing a user ID. Pad unused characters with

spaces.

Consult the documentation for the CICS Transaction Gateway and the

server to check whether this field is converted to upper case before

being transmitted to the server. (If a user ID or password longer than

8 characters is required, set eci_userid and eci_password to nulls, and

use eci_userid2 and eci_password2 instead.)

If a user ID is supplied, the server uses the user ID and any supplied

password to authenticate the user. The supplied user ID and

password are used in subsequent security checking in the server.

eci_password

Required input parameter.

 An 8-character field containing a password. Pad unused characters

with spaces.

Consult the documentation for the CICS Transaction Gateway and the

server to check whether this field is converted to upper case before

being transmitted to the server. (If a user ID or password longer than

8 characters is required, set eci_userid and eci_password to nulls, and

use eci_userid2 and eci_password2 instead.)

eci_transid

Optional input parameter

 A 4-character field optionally containing the ID of a CICS transaction.

Pad unused characters with spaces. The parameter is ignored if

110 CICS Transaction Gateway: Programming Reference

eci_tpn is used (set to any value other than nulls). The use of this

parameter depends on the client from which the request is sent. The

value of eci_transid is converted from ASCII to EBCDIC, with no

upper case translation, and stored in EIBTRNID for the duration of

the LINK to the program specified in the eci_program_name.

The called program runs under the mirror transaction CPMI, but is

linked to under the eci_transid transaction name. This name is

available to the called program for querying the transaction ID. Some

servers use the transaction ID to determine security and performance

attributes for the called program. In those servers, use this parameter

to control the processing of your called programs.

If the ECI request is extended (see eci_extend_mode), the eci_transid

parameter has a meaning only for the first call in the unit of work.

If the field is all nulls, and eci_tpn is not specified, the default server

transaction ID is used.

eci_commarea

Required input parameter.

 A pointer to the data to be passed to the called CICS program as its

COMMAREA.

If no COMMAREA is required, supply a null pointer and set the

length (specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of

the server, data conversion must be performed at the server. To do

this, use CICS-supplied resource conversion capabilities, such as the

DFHCNV macro definitions.

eci_commarea_length

Required input parameter.

 The length of the COMMAREA in bytes. This value may not exceed

32 500. (Some client/server combinations may allow larger

COMMAREAs, but this is not guaranteed to work.)

If no COMMAREA is required, set this field to zero and supply a null

pointer in eci_commarea.

eci_timeout

The time in seconds to wait for a response from the CICS server. A

value of 0 means that no limit is set.

 If timeout occurs, the conversation is abended.

reserved1

Output parameter.

Chapter 4. C and COBOL 111

This field was previously eci_system_ return_code. In the CICS

Transaction Gateway Version 3.1, and higher, this field is reserved for

compatibility with earlier versions. No information is returned in this

field; all system errors are written to the error log.

eci_extend_mode

Required input parameter.

 An integer field determining whether a logical unit of work is

terminated at the end of this call. (See the Logical units of work in ECI

table in CICS Transaction Gateway: Programming Guide for more details.)

Values (shown by their symbolic names) for this field are as follows:

ECI_NO_EXTEND

1. If the input eci_luw_token field is zero, this is the only

call for a logical unit of work.

2. If the input eci_luw_token field is not zero, this is the last

call for the specified logical unit of work.

In either case, changes to recoverable resources are committed

by a CICS end-of-task syncpoint, and the logical unit of work

ends.

ECI_EXTENDED

1. If the input eci_luw_token field is zero, this is the first call

for a logical unit of work that is to be continued.

2. If the input eci_luw_token field is not zero, this call is

intended to continue the specified logical unit of work.

In either case the logical unit of work continues after the

called program completes, and changes to recoverable

resources remain uncommitted.

ECI_COMMIT

Terminate the current logical unit of work, identified by the

input eci_luw_token field, and commit all changes made to

recoverable resources.

ECI_BACKOUT

Terminate the logical unit of work identified by the input

eci_luw_token field, and back out all changes made to

recoverable resources.

eci_message_qualifier

Optional input parameter.

112 CICS Transaction Gateway: Programming Reference

An integer field allowing the application to identify each

asynchronous call if it is making more than one. If a callback routine

is specified, the value in this field is returned to the callback routine

during the notification process.

eci_luw_token

Required input and output parameter.

 An integer field used for identifying the logical unit of work to which

a call belongs. It must be set to zero at the start of a logical unit of

work (regardless of whether the logical unit of work is going to be

extended), and the ECI updates it with a valid value on the first or

only call of the logical unit of work. If the logical unit of work is to be

extended, this value should be used as input to all later calls related

to the same logical unit of work. (See the Logical units of work in ECI

table in CICS Transaction Gateway: Programming Guide for more details.)

If the return code is not ECI_NO_ERROR, and the call was continuing

or ending an existing logical unit of work, this field is used as output

to report the condition of the logical unit of work. If it is set to zero,

the logical unit of work has ended, and its updates have been backed

out. If it is nonzero, it is the same as the input value, the logical unit

of work is continuing, and its updates are still pending.

eci_sysid

Required input parameter.

 Reserved for future use, but this field should be initialized with nulls

before the start of each logical unit of work.

eci_version

Required input parameter.

 The version of the ECI for which the application is coded. Use the

value ECI_VERSION_1A.

eci_system_name

Optional input parameter.

 An 8-character field that specifies the name of the server to which the

ECI request is to be directed. Pad unused characters with spaces. The

value may be supplied whenever eci_luw_token is set to zero. (If it is

supplied when eci_luw_token is not zero, it is ignored, because the

server was established at the start of the logical unit of work.)

If the field is set to nulls, the default server is selected.You can obtain

the name of the chosen server from the eci_system_name field of the

reply solicitation call you use to get the result of this asynchronous

request. (If later ECI requests made in different logical units of work

must be directed to the same server as this request, eci_system_name

in those requests must identify that server by name.)

Chapter 4. C and COBOL 113

eci_callback

Optional input parameter.

 A pointer to the routine to be called when the asynchronous request

completes. (The callback routine will be called only if the return code

is ECI_NO_ERROR, and the pointer is not null.)

eci_userid2

Optional input parameter.

 If the eci_userid field is set to nulls, the eci_userid2 field specifies the

user ID (if any) to be used at the server for any authority validation.

The user ID can be up to 16 characters.

See the description of the eci_userid field for information about how

the user ID is used.

eci_password2

Optional input parameter.

 If the eci_password field is set to nulls, the eci_password2 field

specifies the password (if any) to be used at the server for any

authority validation. The password can be up to 16 characters.

See the description of the eci_password field for information about

how the password is used.

eci_tpn

Optional input parameter.

 A 4-character field that specifies the transaction ID of the transaction

that will be used in the server to process the ECI request. This

transaction must be defined in the server as a CICS mirror transaction.

If the field is not set, the default mirror transaction CPMI is used.

If the ECI request is extended (see the description of

eci_extend_mode), this parameter has a meaning only for the first

request.

If this field is used, the contents of eci_transid are ignored.

Return codes

See also the general list of return codes for CICS_ExternalCall in

“CICS_ExternalCall ECI_Parms” on page 99.

If the return code is not ECI_NO_ERROR, the callback routine will not be

called, and there will be no asynchronous reply for this request.

114 CICS Transaction Gateway: Programming Reference

ECI_NO_ERROR

The call to the ECI completed successfully. No errors have yet been

detected. The callback routine will be called when the request

completes.

ECI_ERR_INVALID_DATA_LENGTH

The value in eci_commarea_length field is outside the valid range, or

is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null eci_commarea

pointer.

ECI_ERR_INVALID_EXTEND_MODE

The value in eci_extend_mode field is not valid.

ECI_ERR_NO_CICS

Either the client or the server implementation is not available.

ECI_ERR_LUW_TOKEN

The value supplied in eci_luw_token is invalid.

ECI_ERR_THREAD_CREATE_ERROR

The server implementation or the client failed to create a thread to

process the request.

ECI_ERR_ALREADY_ACTIVE

An attempt was made to continue an existing logical unit of work, but

there was an outstanding asynchronous call for the same logical unit

of work.

ECI_ERR_RESOURCE_SHORTAGE

The server implementation or the client did not have enough

resources to complete the request.

ECI_ERR_NO_SESSIONS

A new logical unit of work was being created, but the application

already has as many outstanding logical units of work as the

configuration will support.

ECI_ERR_INVALID_DATA_AREA

Either the pointer to the ECI parameter block is invalid, or the pointer

supplied in eci_commarea is invalid.

ECI_STATE_SYNC call type

Environment

The ECI_STATE_SYNC call type is available in all environments.

Chapter 4. C and COBOL 115

Purpose

The ECI_STATE_SYNC call type provides a synchronous call that gives

information about the status of the server.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input

parameter fields.

eci_call_type

Required input parameter.

 Must be set to ECI_STATE_SYNC.

eci_commarea

Input parameter, required except when eci_extend_mode has the

value ECI_STATE_CANCEL.

 A pointer to the area of storage where the application receives the

returned COMMAREA containing status information. See Status

information calls, in the External call interface chapter, in CICS

Transaction Gateway: Programming Guide, and “ECI status block” on

page 131, for more details.

If eci_extend_mode has the value ECI_STATE_CANCEL, supply a

null pointer and set the length (specified in eci_commarea_length) to

zero.

eci_commarea_length

Required input and output parameter, except when eci_extend_mode

has the value ECI_STATE_CANCEL.

 The length of the COMMAREA in bytes, which must be the length of

the ECI_STATUS structure that gives the layout of the status

information COMMAREA. See Status information calls, in the External

call interface chapter, in CICS Transaction Gateway: Programming Guide,

and “ECI status block” on page 131, for more details. Area size must

not exceed 32 500 bytes

If no COMMAREA is required, set this field to zero and supply a null

pointer in eci_commarea.

reserved1

Output parameter.

 This field was previously eci_system_ return_code. In the CICS

Transaction Gateway Version 3.1, and higher, this field is reserved for

compatibility with earlier versions. No information is returned in this

field; all system errors are written to the error log.

116 CICS Transaction Gateway: Programming Reference

eci_extend_mode

Required input parameter.

 An integer field further qualifying the call type. The values for this

field (shown by their symbolic names) are as follows:

ECI_STATE_IMMEDIATE

Force a status reply to be sent as soon as it is available. The

layout of the returned COMMAREA is defined in the

ECI_STATUS structure. See Status information calls, in the

External call interface chapter, in CICS Transaction Gateway:

Programming Guide, and “ECI status block” on page 131, for

more details.

ECI_STATE_CHANGED

Force a status reply to be sent only when the status changes.

The supplied COMMAREA must contain the status as

perceived by the application. A reply is sent only when there

is a change from the status that the application supplied. The

layout of the COMMAREA is defined in the ECI_STATUS

structure. See Status information calls, in the External call

interface chapter, in CICS Transaction Gateway: Programming

Guide, and “ECI status block” on page 131, for more details.

The eci_luw_token field that is returned on the immediate

response provides a token to identify the request.

ECI_STATE_CANCEL

Cancel an ECI_STATE_CHANGED type of operation. No

COMMAREA is required for this request. The eci_luw_token

field must contain the token that was received during the

ECI_STATE_CHANGED call.

eci_luw_token

Optional input and output parameter.

 When a deferred status request is being set up (eci_extend_mode set

to ECI_STATE_CHANGED), the token identifying the request is

returned in the eci_luw_token field.

When a deferred status request is being cancelled (eci_extend_mode

set to ECI_STATE_CANCEL), the eci_luw_token field must contain

the token that was received during the ECI_STATE_CHANGED call.

This field is not used when other values of eci_extend_mode are

specified.

eci_sysid

Required input parameter.

 Reserved for future use, but this field should be initialized with nulls

before the start of each logical unit of work.

Chapter 4. C and COBOL 117

eci_version

Required input parameter.

 The version of the ECI for which the application is coded. Use the

value ECI_VERSION_1A.

eci_system_name

Optional input parameter.

 An 8-character field that specifies the name of the server for which

status information is required. Pad unused characters with spaces. If

supplied, it should be one of the server names returned by

CICS_EciListSystems. The value may be supplied whenever

eci_luw_token is set to zero.

If the field is set to nulls, the default server is selected; the name of

the chosen server is returned in this field.

Return codes

See also the general list of return codes for CICS_ExternalCall in

“CICS_ExternalCall ECI_Parms” on page 99.

ECI_NO_ERROR

The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH

The value in eci_commarea_length field is outside the valid range, or

is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null eci_commarea

pointer.

ECI_ERR_INVALID_EXTEND_MODE

The value in eci_extend_mode field is not valid.

ECI_ERR_LUW_TOKEN

The value supplied in eci_luw_token is invalid.

ECI_ERR_INVALID_DATA_AREA

Either the pointer to the ECI parameter block is invalid, or the pointer

supplied in eci_commarea is invalid.

ECI_ERR_UNKNOWN_SERVER

The requested server could not be located. Only servers returned by

CICS_EciListSystems are acceptable.

ECI_STATE_ASYNC call type

Environment

118 CICS Transaction Gateway: Programming Reference

Purpose

The ECI_STATE_ASYNC call type provides an asynchronous status

information call. The calling application gets control back when the ECI

accepts the request. At this point the parameters have been validated;

however, the request might still be queued for later processing.

If no callback routine is provided, the application must use a reply solicitation

call to determine that the request has ended and what the outcome was.

If a callback routine is provided, the callback routine eci_callback is invoked

when a response is available.

Note: Some compilers do not support the use of callback routines. Consult

your compiler documentation for more information.

Note: It is important that the Eci parameter blocks of outstanding

ECI_STATE_ASYNC calls are not modified before the results of the call

are received. Results will be incorrect if these blocks are modified

before this stage.

When the callback routine is called, it is passed a single parameter—the value

specified in eci_message_qualifier. This enables the callback routine to

identify the asynchronous call that is completing. Note the following

guidelines on the use of the callback routine:

1. The minimum possible processing should be performed within the

callback routine.

2. ECI functions cannot be invoked from within the callback routine.

3. The callback routine should indicate to the main body of the application

that the reply is available using an appropriate technique for the operating

system upon which the ECI application is executing. For example, in a

multithreaded environment, the callback routine might post a semaphore

to signal another thread that an event has occurred.

4. The application, not the callback routine, must use a reply solicitation call

to receive the actual response.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input

parameter fields.

eci_call_type

Required input parameter.

 Must be set to ECI_STATE_ASYNC.

Chapter 4. C and COBOL 119

eci_commarea

Input parameter, required except when eci_extend_mode has the

value ECI_STATE_CANCEL.

 A pointer to the area of storage where the application receives the

returned COMMAREA containing status information. See Status

information calls, in the External call interface chapter, in CICS

Transaction Gateway: Programming Guide, and “ECI status block” on

page 131, for more details.

If eci_extend_mode has the value ECI_STATE_CANCEL, supply a

null pointer and set the length (specified in eci_commarea_length) to

zero.

eci_commarea_length

Required input parameter, except when eci_extend_mode has the

value ECI_STATE_CANCEL.

 The length of the COMMAREA in bytes, which must be the length of

the ECI_STATUS structure that gives the layout of the status

information COMMAREA. See Status information calls, in the External

call interface chapter, in CICS Transaction Gateway: Programming Guide,

and “ECI status block” on page 131, for more details. Area size must

not exceed 32 500 bytes

If no COMMAREA is required, set this field to zero and supply a null

pointer in eci_commarea.

reserved1

Output parameter.

 This field was previously eci_system_ return_code. In the CICS

Transaction Gateway Version 3.1, and higher, this field is reserved for

compatibility with earlier versions. No information is returned in this

field; all system errors are written to the error log.

eci_extend_mode

Required input parameter.

 An integer field further qualifying the call type. The values for this

field (shown by their symbolic names) are as follows:

ECI_STATE_IMMEDIATE

Force a status reply to be sent immediately it is available. The

layout of the returned COMMAREA is defined in the

ECI_STATUS structure. See Status information calls, in the

External call interface chapter, in CICS Transaction Gateway:

Programming Guide, and “ECI status block” on page 131, for

more details.

120 CICS Transaction Gateway: Programming Reference

ECI_STATE_CHANGED

Force a status reply to be sent only when the status changes.

The supplied COMMAREA must contain the status as

perceived by the application. A reply is sent only when there

is a change from the status that the application supplied. The

layout of the COMMAREA is defined in the ECI_STATUS

structure. See Status information calls, in the External call

interface chapter, in CICS Transaction Gateway: Programming

Guide, and “ECI status block” on page 131, for more details.

The eci_luw_token field that is returned on the immediate

response identifies the logical unit of work to which this call

belongs.

ECI_STATE_CANCEL

Cancel an ECI_STATE_CHANGED type of operation. No

COMMAREA is required for this request. The eci_luw_token

field must contain the token that was received during the

ECI_STATE_CHANGED call.

eci_message_qualifier

Optional input parameter.

 An integer field allowing you to identify each asynchronous call if

you are making more than one. If a callback routine is specified, the

value in this field is returned to the callback routine during the

notification process.

eci_luw_token

Optional input and output parameter.

 When a deferred status request is being set up (eci_extend_mode set

to ECI_STATE_CHANGED), the token identifying the request is

returned in the eci_luw_token field.

When a deferred status request is being cancelled (eci_extend_mode

set to ECI_STATE_CANCEL), the eci_luw_token field must contain

the token that was received during the ECI_STATE_CHANGED call.

This field is not used when other values of eci_extend_mode are

specified.

eci_sysid

Required input parameter.

 Reserved for future use, but this field should be initialized with nulls

before the start of each logical unit of work.

eci_version

Required input parameter.

Chapter 4. C and COBOL 121

The version of the ECI for which the application is coded. Use the

value ECI_VERSION_1A.

eci_system_name

Optional input parameter.

 An 8-character field that specifies the name of the server for which

status information is requested. Pad unused characters with spaces. If

supplied, it should be one of the server names returned by

CICS_EciListSystems. The value may be supplied whenever

eci_luw_token is set to zero.

If the field is set to nulls, the default server is selected.You can find

out the name of the server from the eci_system_name field of the

reply solicitation call you use to get the result of this asynchronous

request. field.

eci_callback

Optional input parameter.

 A pointer to the routine to be called when the asynchronous request

completes. (The callback routine will be called only if the return code

is ECI_NO_ERROR, and the pointer is not null.)

Return codes

See also the general list of return codes for CICS_ExternalCall in

“CICS_ExternalCall ECI_Parms” on page 99.

If the return code is not ECI_NO_ERROR, the callback routine will not be

called, and there will be no asynchronous reply for this request.

ECI_NO_ERROR

The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH

The value in eci_commarea_length field is outside the valid range, or

is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null eci_commarea

pointer.

ECI_ERR_INVALID_EXTEND_MODE

The value in eci_extend_mode field is not valid.

ECI_ERR_LUW_TOKEN

The value supplied in eci_luw_token is invalid.

ECI_ERR_INVALID_DATA_AREA

Either the pointer to the ECI parameter block is invalid, or the pointer

supplied in eci_commarea is invalid.

122 CICS Transaction Gateway: Programming Reference

ECI_GET_REPLY call type

Purpose

The ECI_GET_REPLY call type provides a reply solicitation call to return

information appropriate to any outstanding reply for any asynchronous

request. If there is no such reply, ECI_ERR_NO_REPLY is returned. (To cause

the application to wait until a reply is available, use call type

ECI_GET_REPLY_WAIT instead.)

Note: It is important that the Eci parameter blocks of outstanding

ECI_ASYNC calls are not modified before the results of the call are

received (for example using this get reply call). Results will be incorrect

if these blocks are modified before this stage.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input

parameter fields.

The following fields are the fields of the ECI parameter block that might be

supplied as input.

In the course of an ECI_GET_REPLY call, the ECI parameter block is updated

as follows:

1. All the outputs from the reply, some of which overwrite input fields, are

added. These fields are those that are output from the corresponding

synchronous version of the asynchronous request.

2. The eci_message_qualifier value supplied as input to the asynchronous

request to which this reply relates is restored.

3. Any inputs that are not updated become undefined, except the pointer to

the COMMAREA. Do not use the contents of these fields again.

eci_call_type

Required input parameter.

 Must be set to ECI_GET_REPLY.

eci_commarea

Optional input parameter.

 A pointer to the area of storage where the application receives the

returned COMMAREA. The contents of the returned commarea

depend on the type of asynchronous call to which a reply is being

sought. For a program link call, it is the COMMAREA expected to be

returned from the called program, if any. For a status information call,

except when eci_extend_mode has the value ECI_STATE_CANCEL, it

Chapter 4. C and COBOL 123

is a COMMAREA containing status information. See Status information

calls, in the External call interface chapter, in CICS Transaction Gateway:

Programming Guide, and “ECI status block” on page 131, for more

details.

If no COMMAREA is required, supply a null pointer and set the

length (specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of

the server, data conversion must be performed at the server. To do

this, use CICS-supplied resource conversion capabilities, such as the

DFHCNV macro definitions.

eci_commarea_length

Required input parameter.

 The length of the COMMAREA in bytes. This value may not exceed

32 500. (Some client/server combinations may allow larger

COMMAREAs, but this is not guaranteed to work.)

If no COMMAREA is required, set this field to zero and supply a null

pointer in eci_commarea.

eci_sysid

Required input parameter.

 Reserved for future use, but this field should be initialized with nulls

before the start of each logical unit of work.

eci_version

Required input parameter.

 The version of the ECI for which the application is coded. Use the

value ECI_VERSION_1A.

Return codes

See also the general list of return codes for CICS_ExternalCall in

“CICS_ExternalCall ECI_Parms” on page 99.

ECI_NO_ERROR

The asynchronous request to which this reply relates completed

successfully.

ECI_ERR_INVALID_DATA_LENGTH

The value in eci_commarea_length field is unacceptable for one of the

following reasons:

v It is outside the valid range.

v It is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null

eci_commarea pointer.

124 CICS Transaction Gateway: Programming Reference

v It is not large enough for the output COMMAREA from the

asynchronous request to which this reply relates.

In the last case, you can use the output eci_commarea_length to

allocate more storage for the COMMAREA, and then use the output

eci_message_qualifier (if it identifies the asynchronous request

uniquely) with an ECI_GET_SPECIFIC_REPLY call type to retrieve the

reply.

ECI_ERR_NO_CICS

The CICS server specified in eci_system_name in the asynchronous

request to which this reply relates is not available. No resources have

been updated.

ECI_ERR_CICS_DIED

A logical unit of work was to be begun or continued by the

asynchronous request to which this reply relates, but the CICS server

was no longer available. If eci_extend_mode was ECI_EXTENDED,

the changes are backed out, and the logical unit of work ends. If

eci_extend_mode was ECI_NO_EXTEND, ECI_COMMIT, or

ECI_BACKOUT, the application cannot determine whether the

changes have been committed or backed out, and must log this

condition to aid future manual recovery.

ECI_ERR_NO_REPLY

There was no outstanding reply.

ECI_ERR_TRANSACTION_ABEND

The asynchronous request to which this reply relates caused a

program to be executed in the server, but the CICS transaction that

executed the requested program abended. The abend code will be

found in eci_abend_code. For information about abend codes and

their meaning, consult the documentation for the server system to

which the request was directed.

ECI_ERR_THREAD_CREATE_ERROR

The CICS server or CICS Transaction Gateway failed to create the

thread to process the asynchronous call to which this reply relates.

ECI_ERR_RESOURCE_SHORTAGE

The server implementation or CICS Transaction Gateway did not have

enough resources to complete the asynchronous request to which this

reply relates.

ECI_ERR_INVALID_DATA_AREA

Either the pointer to the ECI parameter block is invalid, or the pointer

supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK

The asynchronous request to which this reply relates attempted to

Chapter 4. C and COBOL 125

commit a logical unit of work, but the server was unable to commit

the changes, and backed them out instead.

ECI_ERR_UNKNOWN_SERVER

The asynchronous request to which this reply relates specified a

server that could not be located. Only servers returned by

CICS_EciListSystems are acceptable.

ECI_ERR_MAX_SESSIONS

There were not enough communication resources to satisfy the

asynchronous request to which this reply relates. Consult the

documentation for your CICS Transaction Gateway or server to see

how to control communication resources.

ECI_ERR_MAX_SYSTEMS

The asynchronous request to which this reply relates attempted to

start requests to more servers than your configuration allows. Consult

the documentation for your CICS Transaction Gateway or server to

see how to control the number of servers you can use.

ECI_ERR_SECURITY_ERROR

You did not supply a valid combination of userid and password on

the asynchronous request to which this reply relates.

ECI_GET_REPLY_WAIT call type

Purpose

The ECI_GET_REPLY_WAIT call type provides a reply solicitation call to

return information appropriate to any outstanding reply for any asynchronous

request. If there is no such reply, the application waits until there is. (You can

get an indication that no reply is available by using call type ECI_GET_REPLY

instead.)

Note: It is important that the Eci parameter blocks of outstanding

ECI_STATE_ASYNC calls are not modified before the results of the call

are received. Results will be incorrect if these blocks are modified

before this stage.

ECI parameter block fields

Same as for ECI_GET_REPLY, but eci_call_type must be set to

ECI_GET_REPLY_WAIT.

Return codes

Same as for ECI_GET_REPLY, except that ECI_ERR_NO_REPLY cannot be

returned.

126 CICS Transaction Gateway: Programming Reference

ECI_GET_SPECIFIC_REPLY call type

Purpose

The ECI_GET_SPECIFIC_REPLY call type provides a reply solicitation call to

return information appropriate to any outstanding reply that matches the

eci_message_qualifier input. If there is no such reply, ECI_ERR_NO_REPLY is

returned. (To cause the application to wait until a reply is available, use call

type ECI_GET_REPLY_WAIT instead.)

Note: It is important that the Eci parameter blocks of outstanding

ECI_STATE_ASYNC calls are not modified before the results of the call

are received. Results will be incorrect if these blocks are modified

before this stage.

ECI parameter block fields

Set the ECI parameter block to nulls before setting the input parameter fields.

The following fields are the fields of the ECI parameter block that might be

supplied as input.

In the course of an ECI_GET_REPLY call, the ECI parameter block is updated

as follows:

1. All the outputs from the reply, some of which overwrite input fields, are

added. These fields are those that are output from the corresponding

synchronous version of the asynchronous request.

2. Any inputs that are not updated become undefined, except the pointer to

the COMMAREA and the input eci_message_qualifier. Do not use the

contents of these fields again.

eci_call_type

Required input parameter.

 Must be set to ECI_GET_SPECIFIC_REPLY.

eci_commarea

Optional input parameter.

 A pointer to the area of storage where the application receives the

returned COMMAREA. The contents of the returned commarea

depend on the type of asynchronous call to which a reply is being

sought. For a program link call, it is the COMMAREA expected to be

returned from the called program, if any. For a status information call,

except one in which eci_extend_mode had the value

ECI_STATE_CANCEL, it is a COMMAREA containing status

information. See Status information calls, in the External call interface

Chapter 4. C and COBOL 127

chapter, in CICS Transaction Gateway: Programming Guide, and “ECI

status block” on page 131, for more details.

If the code page of the application is different from the code page of

the server, data conversion must be performed at the server. To do

this, use CICS-supplied resource conversion capabilities, such as the

DFHCNV macro definitions.

eci_commarea_length

Required input parameter.

 The length of the COMMAREA in bytes. This value may not exceed

32 500. (Some client/server combinations may allow larger

COMMAREAs, but this is not guaranteed to work.)

eci_message_qualifier

Required input parameter.

 An integer field that identifies the asynchronous call for which a reply

is being solicited.

eci_sysid

Required input parameter.

 Reserved for future use, but this field should be initialized with nulls

before the start of each logical unit of work.

eci_version

Required input parameter.

 The version of the ECI for which the application is coded. Use the

value ECI_VERSION_1A.

Return codes

See also the general list of return codes for CICS_ExternalCall in

“CICS_ExternalCall ECI_Parms” on page 99.

ECI_NO_ERROR

The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH

The value in eci_commarea_length field is unacceptable for one of the

following reasons:

v It is outside the valid range.

v It is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null

eci_commarea pointer.

v It is not large enough for the output COMMAREA from the

asynchronous request to which this reply relates.

128 CICS Transaction Gateway: Programming Reference

In the last case, you can use the output eci_commarea_length to

allocate more storage for the COMMAREA, and then retry the

ECI_GET_SPECIFIC_REPLY call.

ECI_ERR_NO_CICS

The CICS server specified in eci_system_name in the asynchronous

request to which this reply relates is not available. No resources have

been updated.

ECI_ERR_CICS_DIED

A logical unit of work was to be begun or continued by the

asynchronous request to which this reply relates, but the CICS server

was no longer available. If eci_extend_mode was ECI_EXTENDED,

the changes are backed out, and the logical unit of work ends. If

eci_extend_mode was ECI_NO_EXTEND, ECI_COMMIT, or

ECI_BACKOUT, the application cannot determine whether the

changes have been committed or backed out, and must log this

condition to aid future manual recovery.

ECI_ERR_NO_REPLY

There was no outstanding reply that matched the input

eci_message_qualifier.

ECI_ERR_TRANSACTION_ABEND

The asynchronous request to which this reply relates caused a

program to be executed in the server, but the CICS transaction that

executed the requested program abended. The abend code will be

found in eci_abend_code. For information about abend codes and

their meaning, consult the documentation for the server system to

which the request was directed.

ECI_ERR_THREAD_CREATE_ERROR

The CICS server or CICS Transaction Gateway failed to create the

thread to process the asynchronous request to which this reply relates.

ECI_ERR_RESOURCE_SHORTAGE

The CICS server or CICS Transaction Gateway did not have enough

resources to complete the asynchronous request to which this reply

relates.

ECI_ERR_INVALID_DATA_AREA

Either the pointer to the ECI parameter block is invalid, or the pointer

supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK

The asynchronous request to which this reply relates attempted to

commit a logical unit of work, but the server was unable to commit

the changes, and backed them out instead.

Chapter 4. C and COBOL 129

ECI_ERR_UNKNOWN_SERVER

The asynchronous request to which this reply relates specified a

server that could not be located. Only servers returned by

CICS_EciListSystems are acceptable.

ECI_ERR_MAX_SESSIONS

There were not enough communication resources to satisfy the

asynchronous request to which this reply relates. Consult the

documentation for your CICS Transaction Gateway or server to see

how to control communication resources.

ECI_ERR_MAX_SYSTEMS

The asynchronous request to which this reply relates attempted to

start requests to more servers than your configuration allows. Consult

the documentation for your CICS Transaction Gateway or server to

see how to control the number of servers you can use.

ECI_ERR_SECURITY_ERROR

You did not supply a valid combination of userid and password on

the asynchronous request to which this reply relates.

ECI_GET_SPECIFIC_REPLY_WAIT call type

Environment

Purpose

The ECI_GET_SPECIFIC_REPLY_WAIT call type provides a reply solicitation

call to return information appropriate to any outstanding reply that matches

the input eci_message_qualifier. If there is no such reply, the application

waits until there is. (You can get an indication that no reply is available by

using call type ECI_GET_SPECIFIC_REPLY instead.)

Note: It is important that the Eci parameter blocks of outstanding

ECI_STATE_ASYNC calls are not modified before the results of the call

are received. Results will be incorrect if these blocks are modified

before this stage.

ECI parameter block fields

Same as for ECI_GET_SPECIFIC_REPLY, but eci_call_type must be set to

ECI_GET_SPECIFIC_REPLY_WAIT.

Return codes

Same as for ECI_GET_SPECIFIC_REPLY, except that ECI_ERR_NO_REPLY

cannot be returned.

130 CICS Transaction Gateway: Programming Reference

Note: If you issue an ECI_GET_SPECIFIC_REPLY_WAIT call against an

outstanding ECI_STATE_AYSNC call with eci_extend mode set to

ECI_STATE_CHANGED, no response will ever be received if an

ECI_STATE_ASYNC call with eci_extend_mode set to

ECI_STATE_CANCEL is issued.

ECI status block

The ECI status block is used in status information calls to pass information to

and from the ECI. It contains the following fields:

ConnectionType

An integer field specifying the type of system on which the

application is running, with the following possible values:

ECI_CONNECTED_NOWHERE

Application is not connected to anything.

ECI_CONNECTED_TO_CLIENT

Application is running on a client system.

ECI_CONNECTED_TO_SERVER

Application is using a server implementation of the ECI.

CicsServerStatus

An integer field specifying the state of the CICS server, with the

following possible values:

ECI_SERVERSTATE_UNKNOWN

The CICS server state could not be determined.

ECI_SERVERSTATE_UP

The CICS server is available to run programs.

ECI_SERVERSTATE_DOWN

The CICS server is not available to run programs.

CicsClientStatus

An integer field specifying the state of the Client daemon, with the

following possible values:

ECI_CLIENTSTATE_UNKNOWN

The Client daemon state could not be determined.

ECI_CLIENTSTATE_UP

The Client daemon is available to receive ECI calls.

ECI_CLIENTSTATE_INAPPLICABLE

The application is using a server implementation of the ECI.

Chapter 4. C and COBOL 131

CICS_EciListSystems NameSpace Systems List

Purpose

The CICS_EciListSystems function provides a list of CICS servers to which

CICS_ExternalCall requests may be directed. There is no guarantee that a

communications link exists between the Client daemon and any server in the

list, or that any of the servers is available to process requests.

The list of servers is returned as an array of system information structures,

one element for each CICS server. The structure, called CICS_EciSystem_t,

defines the following fields.

SystemName

A pointer to a null-terminated string specifying the name of a CICS

server. If the name is shorter than CICS_ECI_SYSTEM_MAX, it is

padded with nulls to a length of CICS_ECI_SYSTEM_MAX + 1.

Description

A pointer to a null-terminated string that provides a description of the

system, if one is available. If the description is shorter than

CICS_ECI_DESCRIPTION_MAX characters, it is padded with nulls to

a length of CICS_ECI_DESCRIPTION_MAX + 1.

Parameters

NameSpace

A pointer reserved for future use. Ensure that this is a null pointer.

Systems

On entry to the function, this parameter specifies the number of

elements in the array provided in the List parameter. On return it

contains the actual number of systems found.

List An array of CICS_EciSystem_t structures that are filled in and

returned by the function. The application must provide storage for the

array, and must set the Systems parameter to indicate the number of

elements in the array. The first name in the list is the default server.

However, the way in which the default is defined depends upon the

operating system.

Return Codes

ECI_NO_ERROR

The function completed successfully. The number of systems found is

at least one, and does not exceed the value supplied as input in the

Systems parameter.

ECI_ERR_MORE_SYSTEMS

There was not enough space in the List array to store the information.

The supplied array has been filled, and the Systems parameter has

132 CICS Transaction Gateway: Programming Reference

been updated to contain the total number of systems found, so that

you can reallocate an array of suitable size and try the function again.

ECI_ERR_NO_SYSTEMS

No CICS servers can be located. In this case, the value returned in

Systems is zero.

ECI_ERR_NO_CICS

The Client daemon is not active.

ECI_ERR_INVALID_DATA _LENGTH

The value specified in the Systems parameter is so large that the

length of storage for the List parameter exceeds 32 767.

ECI_ERR_CALL_FROM_CALLBACK

The call was made from a callback routine.

ECI_ERR_SYSTEM_ERROR

An internal system error occurred.

External Presentation Interface

EPI constants and data structures

This section describes the constants and data structures that you will need to

use the EPI. They are referred to in “EPI functions” on page 139.

EPI constants

The following constants are referred to symbolically in the descriptions of the

EPI data structures, functions, and events in this Chapter. Their values are

given here to help you understand the descriptions. However, your code

should always use the symbolic names of EPI constants provided for the

programming language you are using.

Lengths of fields

v CICS_EPI_SYSTEM_MAX (8)

v CICS_EPI_DESCRIPTION_MAX (60)

v CICS_EPI_NETNAME_MAX (8)

v CICS_EPI_TRANSID_MAX (4)

v CICS_EPI_ABEND_MAX (4)

v CICS_EPI_DEVTYPE_MAX (16)

v CICS_EPI_ERROR_MAX (60).

v CICS_EPI_PASSWORD_MAX (10)

v CICS_EPI_USERID_MAX (10)

v CICS_EPI_MAPNAME_MAX (7)

v CICS_EPI_MAPSETNAME_MAX (8)

Chapter 4. C and COBOL 133

v CICS_EPI_TERMID_MAX (4)

Relating to TermIndex

v CICS_EPI_TERM_INDEX_NONE 0xFFFF.

Version numbers (See EPI versions, in CICS Transaction Gateway: Programming

Guide.)

v CICS_EPI_VERSION_200

EPI data structures

The following data structures are available for use with the EPI.

v CICS_EpiSystem_t

v CICS_EpiAttributes_t

v CICS_EpiDetails_t

v CICS_EpiEventData_t

In the descriptions of the fields in the data structures, fields described as

strings are null-terminated strings.

CICS_EpiSystem_t:

Purpose

The CICS_EpiSystem_t structure contains the name and description of a CICS

server. An array of these structures is returned from the CICS_EpiListSystems

function.

Fields

SystemName

A string naming the CICS server. It can be passed as a parameter to

the CICS_EpiAddTerminal and CICS_EpiAddExTerminal functions,

to identify the CICS server in which the terminal resource should be

installed. If the name is shorter than CICS_EPI_SYSTEM_MAX

characters, it is padded with nulls to a length of

CICS_EPI_SYSTEM_MAX + 1.

Description

A string giving a brief description of the server. If the description is

shorter than CICS_EPI_DESCRIPTION_MAX, it is padded with nulls

to a length of CICS_EPI_DESCRIPTION_MAX + 1.

CICS_EpiAttributes_t:

134 CICS Transaction Gateway: Programming Reference

Purpose

The CICS_EpiAttributes_t structure holds information about the attributes to

be associated with a terminal resource installed by the

CICS_EpiAddExTerminal function.

Fields

EpiAddType

Indicates whether the application is prepared to wait until the request

to install the terminal is complete. Use one of the following values:

CICS_EPI_ADD_ASYNC

The calling application gets control back when the request to

install the terminal resource has been accepted; at this point

the parameters have been validated.

 Assuming valid parameters, the

CICS_EPI_EVENT_ADD_TERM event is generated when the

request to install the terminal has completed.

The TermIndex is returned for use with the

CICS_EpiGetEvent function.

CICS_EPI_ADD_SYNC

The calling application gets control back when the request to

install the terminal resource has completed. Returned

information is immediately available.

InstallTimeOut

A value in the range 0 through 3600, specifying the maximum time in

seconds that installation of the terminal resource is allowed to take; a

value of 0 means that no limit is set.

 A value of 3600 is assumed if a larger value is specified.

ReadTimeOut

A value in the range 0 through 3600, specifying the maximum time in

seconds that is allowed between notification of a

CICS_EPI_EVENT_CONVERSE event for the terminal resource and

the following invocation of the CICS_EpiReply; a value of 0 means

that no limit is set.

 A value of 3600 is assumed if a larger value is specified.

If time-out occurs, the conversation is abended. This results in a

CICS_EPI_EVENT_END_TRAN event being generated; the

EndReason field is set to CICS_EPI_READTIMEOUT_EXPIRED; the

AbendCode field is not set.

Chapter 4. C and COBOL 135

SignonCapability

Indicates whether the application may start server-provided sign-on

and signoff transactions from the terminal resource. Use one of the

following values:

CICS_EPI_SIGNON_CAPABLE

The terminal resource is to be installed as sign-on capable.

CICS_EPI_SIGNON_INCAPABLE

The resource is to be installed as sign-on incapable.

CCSId

A value in the range 1 through 65536 specifying the coded character

set identifier (CCSID) that identifies the coded graphic character set

used by the client application for data passed between the terminal

resource and CICS transactions.

 A value of 0 means that a default CCSID is used.

For details on the CCSID values for various character sets see Data

conversion when using the Client daemon, in the CICS Transaction

Gateway: Administration book for your operating system.

UserId

A string specifying the userid to be associated with the terminal

resource. If the userid is shorter than CICS_EPI_USERID_MAX, it

must be padded with nulls to a length of CICS_EPI_USERID_MAX+1.

Password

A string specifying the password to be associated with the terminal

resource. If the password is shorter than CICS_EPI_PASSWORD_MAX

characters, it must be padded with nulls to a length of

CICS_EPI_PASSWORD_MAX+1.

CICS_EpiDetails_t:

Purpose

The CICS_EpiDetails_t structure holds information about a terminal resource

installed by the CICS_EpiAddTerminal or the CICS_EpiAddExTerminal

function.

Fields

NetName

A string specifying the VTAM®-style netname of the terminal resource.

If the name is shorter than CICS_EPI_NETNAME_MAX characters, it

is padded with nulls to a length of CICS_EPI_NETNAME_MAX + 1.

136 CICS Transaction Gateway: Programming Reference

NumLines

The number of rows supported by the terminal resource.

NumColumns

The number of columns supported by the terminal resource.

MaxData

The maximum size of data that can be sent to this terminal resource

from a CICS transaction, and the maximum size of data that can be

sent from this terminal resource to a CICS transaction by a

CICS_EpiStartTran call or CICS_EpiReply call.

 The maximum size may be defined in the model terminal definition

specified by the DevType parameter on the CICS_EpiAddTerminal

call that installed the terminal resource in the server. If the value

either is not specified in the model terminal definition, a default value

of 12000 is assumed.

ErrLastLine

1 if the terminal resource should display error messages on its last

row, 0 otherwise.

ErrIntensify

1 if the terminal resource should display error messages intensified, 0

otherwise.

ErrColor

The 3270 attribute defining the color to be used to display error

messages.

ErrHilight

The 3270 attribute defining the highlight value to be used to display

error messages.

Hilight

1 if the terminal resource is defined to support extended highlighting,

0 otherwise.

Color 1 if the terminal resource is defined to support color, 0 otherwise.

System

A string specifying the name of the server in which the terminal

resource has been installed. If the name is shorter than

CICS_EPI_SYSTEM_MAX characters, it is padded with nulls to a

length of CICS_EPI_SYSTEM_MAX + 1.

TermId

A string specifying the name of the terminal resource. If the name is

shorter than CICS_EPI_TERMID_MAX characters, it is padded with

nulls to a length of CICS_EPI_TERMID_MAX + 1.

Chapter 4. C and COBOL 137

SignonCapability

The sign-on capability assigned by the server to the terminal resource:

CICS_EPI_SIGNON_CAPABLE

if the application may start server-provided sign-on and

signoff transactions at the terminal resource.

CICS_EPI_SIGNON_INCAPABLE

if the application may not start server-provided sign-on and

signoff transactions at the terminal resource.

CICS_EPI_SIGNON_UNKNOWN

if the CICS_EpiAddTerminal function was used to add the

terminal resource. (This value is also returned if the

CICS_EpiAddExTerminal function was used to add the

terminal resource and prerequisite changes have not been

applied to the server.)

CICS_EpiEventData_t:

Purpose

The CICS_EpiEventData_t structure holds details of a terminal-related event.

Not all fields are valid for all events, and fields that are not valid are set to

nulls. This structure is an output from CICS_EpiGetEvent.

Fields

TermIndex

The terminal index for the terminal resource against which this event

occurred.

Event The event indicator; that is, one of the event codes listed in “EPI

events” on page 166.

EndReason

The reason for termination, if the event is a

CICS_EPI_EVENT_END_TERM or CICS_EPI_EVENT_END_TRAN

event.

TransId

A string specifying a transaction name. If the name is shorter than

CICS_EPI_TRANSID_MAX characters, it is padded with spaces to this

length, followed by a single null character.

Reserved1

A reserved field.

 Prior to CICS Transaction Gateway Version 3.1, this field was called

AbendCode.

138 CICS Transaction Gateway: Programming Reference

Data A pointer to a buffer that is updated with any terminal data stream

associated with the event.

 On input the Data parameter should be set to point to a

CICS_EpiDetails_t structure on the first invocation of

CICS_EpiGetEvent for a terminal being added asynchronously. The

details structure is updated on return from CICS_EpiGetEvent.

Size The maximum size of the buffer addressed by Data. On return from

the CICS_EpiGetEvent call, this contains the actual length of data

returned.

EndReturnCode

A string containing the CICS_EPI_returncode.

MapName

A string specifying the name of the map that was most recently

referenced in the MAP option of a SEND MAP command processed

for the terminal resource, if the event is a CICS_EPI_EVENT_SEND or

a CICS_EPI_EVENT_CONVERSE event. If the terminal resource is not

supported by BMS, or the server has no record of any map being sent,

the value returned is spaces. If the name is shorter than

CICS_EPI_MAPNAME_MAX characters, it is padded with spaces to

this length, followed by a single null character.

MapSetName

A string specifying the name of the mapset that was most recently

referenced in the MAPSET option of a SEND MAP command

processed for the terminal resource, if the event is a

CICS_EPI_EVENT_SEND or a CICS_EPI_EVENT_CONVERSE event.

If the MAPSET option was not specified on the most recent request,

BMS used the map name as the mapset name. In both cases, the

mapset name used may have been suffixed by a terminal suffix. If the

terminal resource is not supported by BMS, or the server has no

record of any mapset being sent, the value returned is spaces. If the

name is shorter than CICS_EPI_MAPSETNAME_MAX characters, it is

padded with spaces to this length, followed by a single null character.

Note: The Data and Size fields should be set before the call to

CICS_EpiGetEvent is made.

EPI functions

This section describes the functions provided by the EPI that can be called

from an application program:

v CICS_EpiInitialize

v CICS_EpiTerminate

v CICS_EpiListSystems

v CICS_EpiAddTerminal

Chapter 4. C and COBOL 139

v CICS_EpiAddExTerminal

v CICS_EpiInquireSystem

v CICS_EpiDelTerminal

v CICS_EpiPurgeTerminal

v CICS_EpiSetSecurity

v CICS_EpiStartTran

v CICS_EpiReply

v CICS_EpiATIState

v CICS_EpiGetEvent

Table 1 summarizes the functions of the interface, the parameters passed to

each function, and the possible return codes from each function.

The mapping of actual return code values to the symbolic names is contained

in the following file for the Windows operating systems:

C \include\cics_eci.h

Cobol \copybook\cicsepi.cbl

and in the following files for the UNIX and Linux operating systems:

C /include/cics_eci.h

 Table 1. Summary of EPI functions

Function name Parameters Return codes: CICS_EPI_

CICS_EpiInitialize Version ERR_FAILED

ERR_IS_INIT

ERR_VERSION

NORMAL

CICS_EpiTerminate none ERR_FAILED

ERR_NOT_INIT

ERR_IN_CALLBACK

NORMAL

CICS_EpiListSystems NameSpace

Systems

List

ERR_FAILED

ERR_MORE_SYSTEMS

ERR_NO_SYSTEMS

ERR_NOT_INIT

ERR_NULL_PARM

ERR_IN_CALLBACK

NORMAL

140 CICS Transaction Gateway: Programming Reference

Table 1. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiAddTerminal NameSpace

System

Netname

DevType

NotifyFn

Details

TermIndex

ERR_ALREADY_INSTALLED

ERR_FAILED

ERR_IN_CALLBACK

ERR_MAX_SESSIONS

ERR_MAX_SYSTEMS

ERR_MODELID_INVALID

ERR_NOT_3270_DEVICE

ERR_NOT_INIT

ERR_NULL_PARM

ERR_RESOURCE_SHORTAGE

ERR_SECURITY

ERR_SERVER_BUSY

ERR_SERVER_DOWN

ERR_SYSTEM

ERR_TERMID_INVALID

NORMAL

CICS_EpiAddExTerminal System

Netname

DevType

NotifyFn

Details

TermIndex

Attributes

ERR_FAILED

ERR_NOT_INIT

ERR_SYSTEM

ERR_SECURITY

ERR_NULL_PARM

ERR_VERSION

ERR_IN_CALLBACK

ERR_SERVER_DOWN

ERR_RESPONSE_TIMEOUT

ERR_SIGNON_NOT_POSS

ERR_PASSWORD_INVALID

ERR_ADDTYPE_INVALID

ERR_SIGNONCAP_INVALID

ERR_USERID_INVALID

ERR_TERMID_INVALID

ERR_MODELID_INVALID

ERR_NOT_3270_DEVICE

ERR_ALREADY_INSTALLED

ERR_CCSID_INVALID

ERR_SERVER_BUSY

ERR_RESOURCE_SHORTAGE

ERR_MAX_SESSIONS

ERR_MAX_SYSTEMS

NORMAL

Chapter 4. C and COBOL 141

Table 1. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiInquireSystem TermIndex

System

ERR_BAD_INDEX

ERR_FAILED

ERR_NOT_INIT

ERR_NULL_PARM

ERR_IN_CALLBACK

NORMAL

CICS_EpiDelTerminal TermIndex ERR_BAD_INDEX

ERR_FAILED

ERR_NOT_INIT

ERR_TRAN_ACTIVE

ERR_IN_CALLBACK

NORMAL

CICS_EpiPurgeTerminal TermIndex ERR_BAD_INDEX

ERR_FAILED

ERR_NOT_INIT

ERR_IN_CALLBACK

ERR_VERSION

NORMAL

CICS_EpiSetSecurity TermIndex

UserId

Password

ERR_NOT_INIT

ERR_BAD_INDEX

ERR_IN_CALLBACK

ERR_SYSTEM_ERROR

ERR_VERSION

ERR_PASSWORD_INVALID

ERR_USERID_INVALID

ERR_NULL_PASSWORD

ERR_NULL_USERID

NORMAL

CICS_EpiStartTran TermIndex

TransId

Data

Size

ERR_ATI_ACTIVE

ERR_BAD_INDEX

ERR_FAILED

ERR_NO_DATA

ERR_NOT_INIT

ERR_TTI_ACTIVE

ERR_IN_CALLBACK

ERR_SERVER_DOWN

ERR_RESOURCE_SHORTAGE

ERR_MAX_SESSIONS

NORMAL

142 CICS Transaction Gateway: Programming Reference

Table 1. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiReply TermIndex

Data

Size

ERR_BAD_INDEX

ERR_FAILED

ERR_NO_CONVERSE

ERR_NO_DATA

ERR_NOT_INIT

ERR_IN_CALLBACK

ERR_ABENDED

ERR_SERVER_DOWN

NORMAL

CICS_EpiATIState TermIndex

ATIState

ERR_ATI_STATE

ERR_BAD_INDEX

ERR_FAILED

ERR_NOT_INIT

ERR_IN_CALLBACK

ERR_NULL_PARAM

NORMAL

CICS_EpiGetEvent TermIndex

Wait

ERR_BAD_INDEX

ERR_FAILED

ERR_MORE_DATA

ERR_MORE_EVENTS

ERR_NO_EVENT

ERR_NOT_INIT

ERR_WAIT

ERR_NULL_PARAM

ERR_IN_CALLBACK

NORMAL

CICS_GetSysError TermIndex

SysErr

ERR_NOT_INIT

ERR_BAD_INDEX

ERR_FAILED

ERR_NULL_PARAM

ERR_VERSION

NORMAL

Refer to the definitions of the functions to discover the types and usage of the

parameters, the data structures used by the functions, and the meanings of the

return codes.

CICS_EpiInitialize

 CICS_EpiInitialize Version

Chapter 4. C and COBOL 143

Purpose

The CICS_EpiInitialize function initializes the EPI. All other EPI calls from

this application are invalid before this call is made.

Parameters

Version

The version of the EPI for which this application is coded. This makes

it possible for old applications to remain compatible with future

versions of the EPI. The version described here is

CICS_EPI_VERSION_200. See EPI versions, in CICS Transaction

Gateway: Programming Guide, for more information.

 The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_IS_INIT

The EPI is already initialized.

CICS_EPI_ERR_VERSION

The EPI cannot support the version requested.

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiTerminate

 CICS_EpiTerminate

Purpose

The CICS_EpiTerminate function ends the application’s use of the EPI,

typically just before the application terminates. All other EPI calls (except for

CICS_EpiInitialize) are invalid when this call has completed.

The application should issue CICS_EpiDelTerminal calls before terminating,

to delete any terminal resources.

Parameters

None.

144 CICS Transaction Gateway: Programming Reference

Return codes

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_TTI_ACTIVE

A transaction started from the EPI is still active or a

CICS_EpiGetEvent call is still outstanding.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiListSystems

 CICS_EpiListSystems

 NameSpace

Systems

List

Purpose

The CICS_EpiListSystems function returns a list of CICS servers that are

candidates to act as servers for EPI requests. There is no guarantee that a

communications link exists between the CICS Transaction Gateway and any

server in the list, or that any of the servers is available to process requests.

The list is returned as an array of system information structures, one element

for each CICS server. See “CICS_EpiSystem_t” on page 134 for the contents of

the structure.

EPI applications should call this function immediately after each

CICS_EpiInitialize call made to determine which CICS servers are available.

Parameters

NameSpace

A pointer reserved for future use. Ensure that this is a null pointer.

Systems

A pointer to a number. On entry to the function, this number specifies

the number of elements in the array specified in the List parameter.

Chapter 4. C and COBOL 145

This value should accurately reflect the amount of storage that is

available to the EPI to store the result. On return, it contains the

actual number of servers found.

 The EPI uses this parameter for both input and output.

List An array of CICS_EpiSystem_t structures that are filled in and

returned by the function. The application should provide the storage

for the array and must set the Systems parameter to indicate the

number of elements in the array. The first name in the list is the

default server. However, the way in which the default is defined is

operating system dependent.

 The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_MORE_SYSTEMS

There was not enough space in the List array to store the details of all

the CICS servers found. The supplied array has been filled, and the

Systems parameter has been updated to contain the total number of

servers found, thus allowing you to reallocate an array of suitable size

and try the function again.

CICS_EPI_ERR_NO_SYSTEMS

No CICS servers can be located. In this case, the value returned in

Systems is zero.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_NULL_PARM

Systems is a null pointer.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_NORMAL

The function completed successfully. The number of systems found is

at least one, and does not exceed the value supplied as input in the

Systems parameter.

CICS_EpiAddTerminal

The CICS_EpiAddTerminal function installs a new terminal resource, or

reserves an existing terminal resource, for the application’s use.

146 CICS Transaction Gateway: Programming Reference

CICS_EpiAddTerminal

 NameSpace

System

NetName

DevType

NotifyFn

Details

TermIndex

Purpose

It provides a terminal index, which should be used to identify the terminal

resource on all further EPI calls. It also provides the information defined in

the CICS_EpiDetails_t data structure.

There is a limit on the number of terminals you can add with this operation:

The maximum varies according to the resources available on the client system.

Note: The CICS_EpiAddTerminal function adds terminal resources whose

sign-on capability is dependant upon the server in which the terminal

resource is installed, for example, they would be sign-on incapable on

CICS Transaction Server for z/OS® servers.

Parameters

NameSpace

A pointer reserved for future use. Ensure that this is a null pointer.

System

A pointer to a null-terminated string that specifies the name of the

server in which the terminal resource is to be installed or reserved. If

the name is shorter than CICS_EPI_SYSTEM_MAX characters, it must

be padded with nulls to a length of CICS_EPI_SYSTEM_MAX + 1.

 If the string is all nulls, the default server is selected by the EPI. To

determine the name of the server chosen, use

CICS_EpiInquireSystem.

The EPI uses this parameter only for input.

NetName

A pointer to a null-terminated string that specifies the name of the

terminal resource to be installed or reserved, or null. The

interpretation of this name is server-dependent.

 If a string is supplied that is shorter than

CICS_EPI_NETNAME_MAX, it must be padded with nulls to a length

of CICS_EPI_NETNAME_MAX + 1.

Chapter 4. C and COBOL 147

The string is transmitted to the server without conversion to

uppercase.

The characters used are translated from the client’s code page to an

EBCDIC code page before transmission. If the server uses an ASCII

code page, they will be retranslated. The only characters guaranteed

to be invariant under these translations are the uppercase characters A

to Z, and the numeric characters 0 to 9. Some EBCDIC servers

(Katakana and Hebrew character set A) do not use the standard

representations of the lowercase alphabetic characters; use them with

care when communicating with such servers.

The use of NetName is as follows:

1. If a name is supplied using the NetName, and it matches the

name of an existing terminal resource in the server, the server

attempts to reserve that terminal resource.

2. If a name is supplied, but it does not match the name of an

existing terminal resource in the server, the server installs a

terminal resource using the model terminal definition specified by

the DevType parameter described below, and gives it the input

name. (If DevType is a null pointer,

CICS_EPI_ERR_TERMID_INVALID is returned for

CICS_EPI_VERSION_200 or later, otherwise

CICS_EPI_ERR_FAILED is returned.)

3. If NetName is a null pointer, a terminal resource is installed using

the model terminal definition specified in DevType. If DevType is

a null pointer, the selected terminal type is not predictable, so you

are advised to use DevType to ensure consistent results. The name

of the terminal resource is returned in the NetName field of the

CICS_EpiDetails_t structure.

The EPI uses this parameter only for input.

DevType

A pointer to a null-terminated string that is used in the server to

select a model terminal definition from which a terminal resource

definition is generated, or a null pointer.

 If a string is supplied that is shorter than CICS_EPI_DEVTYPE_MAX

characters, it should be padded with nulls to a length of

CICS_EPI_DEVTYPE_MAX + 1.

The string is transmitted to the server without conversion to

uppercase.

The characters used are translated from the client’s code page to an

EBCDIC code page before transmission. If the server uses an ASCII

code page, they will be retranslated. The only characters guaranteed

to be invariant under these translations are the uppercase characters A

148 CICS Transaction Gateway: Programming Reference

to Z, and the numeric characters 0 to 9. Some EBCDIC servers

(Katakana and Hebrew character set A) do not use the standard

representations of the lowercase alphabetic characters; use them with

care when communicating with such servers.

The EPI uses this parameter only for input.

NotifyFn

A pointer to a callback routine that is called whenever an event occurs

for the terminal resource, such as the arrival of an ATI request. If a

callback routine is not required, this parameter should be set to null.

Not supported in COBOL applications.

 The EPI uses this parameter only for input.

Details

A pointer to the CICS_EpiDetails_t structure that on return contains

various details about the terminal resource that was installed or

reserved.

 The EPI uses the fields in this structure only for output.

TermIndex

A pointer to a terminal index for the terminal resource just installed or

reserved. The returned terminal index must be used as input to all

further EPI function calls to identify the terminal resource to which

the function is directed. The terminal index supplied is the first

available integer starting from 0.

 The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_SYSTEM

The specified server is not known to the client.

CICS_EPI_ERR_SECURITY

The server rejected the attempt for security reasons.

CICS_EPI_ERR_NULL_PARM

TermIndex was a null pointer.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN

The function failed because the server was down.

Chapter 4. C and COBOL 149

|

CICS_EPI_ERR_TERMID_INVALID

The function failed because an invalid TermId was supplied.

CICS_EPI_ERR_MODELID_INVALID

The function failed because an invalid Model terminal definition was

supplied.

CICS_EPI_ERR_NOT_3270_DEVICE

The function failed because the device type supplied was not for a

3270 device.

CICS_EPI_ERR_ALREADY_INSTALLED

The function failed because the terminal was already installed.

CICS_EPI_ERR_SERVER_BUSY

The function failed because the server was busy.

CICS_EPI_ERR_RESOURCE_SHORTAGE

The CICS server or CICS Transaction Gateway did not have enough

resources to complete the terminal install.

CICS_EPI_ERR_MAX_SESSIONS

The MAXREQUESTS limit has been exceeded.

CICS_EPI_ERR_MAX_SYSTEMS

An attempt was made to start connections to more servers than your

configuration allows.

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiAddExTerminal

The CICS_EpiAddExTerminal function installs a new terminal resource, or

reserves an existing terminal resource, for the application’s use.

 CICS_EpiAddExTerminal

 System

NetName

DevType

NotifyFn

Details

TermIndex

Attributes

Purpose

It provides a terminal index, which should be used to identify the terminal

resource on all further EPI calls. It also provides the information defined in

the CICS_EpiDetails_t data structure.

150 CICS Transaction Gateway: Programming Reference

Some attributes, for example the character set and encoding scheme to be

used for 3270 data and the sign-on capability, may be determined by the

application. These attributes are specified in the CCSID and

SignonCapability fields in the CICS_EpiAttributes_t structure.

Parameters

System

A pointer to a null-terminated string that specifies the name of the

server in which the terminal resource is to be installed or reserved. If

the name is shorter than CICS_EPI_SYSTEM_MAX characters, it must

be padded with nulls to a length of CICS_EPI_SYSTEM_MAX + 1.

 If the string is all nulls, the default server is selected by the EPI. To

determine the name of the server chosen, use

CICS_EpiInquireSystem.

The EPI uses this parameter only for input.

NetName

A pointer to a null-terminated string that specifies the name of the

terminal resource to be installed or reserved, or null. The

interpretation of this name is server-dependent.

 If a string is supplied that is shorter than

CICS_EPI_NETNAME_MAX, it must be padded with nulls to a length

of CICS_EPI_NETNAME_MAX + 1.

The string is transmitted to the server without conversion to

uppercase.

The characters used are translated from the client’s code page to an

EBCDIC code page before transmission. If the server uses an ASCII

code page, they will be retranslated. The only characters guaranteed

to be invariant under these translations are the uppercase characters A

to Z, and the numeric characters 0 to 9. Some EBCDIC servers

(Katakana and Hebrew character set A) do not use the standard

representations of the lowercase alphabetic characters; use them with

care when communicating with such servers.

The use of NetName is as follows:

1. If a name is supplied using the NetName, and it matches the

name of an existing terminal resource in the server, the server

attempts to reserve that terminal resource.

2. If a name is supplied, but does not match the name of an existing

terminal resource in the server, the server installs a terminal

resource using the model terminal definition specified by the

DevType parameter described below, and gives it the input name.

(If DevType is a null pointer, CICS_EPI_ERR_TERMID_INVALID

Chapter 4. C and COBOL 151

is returned for CICS_EPI_VERSION_200 or later, otherwise

CICS_EPI_ERR_FAILED is returned.)

3. If NetName is a null pointer, a terminal resource is installed using

the model terminal definition specified in DevType. If DevType is

a null pointer, the selected terminal type is not predictable, so you

are advised to use DevType to ensure consistent results. The name

of the terminal resource is returned in the NetName field of the

CICS_EpiDetails_t structure.

The EPI uses this parameter only for input.

DevType

A pointer to a null-terminated string that is used in the server to

select a model terminal definition from which a terminal resource

definition is generated, or a null pointer.

 If a string is supplied that is shorter than CICS_EPI_DEVTYPE_MAX

characters, it should be padded with nulls to a length of

CICS_EPI_DEVTYPE_MAX + 1.

The string is transmitted to the server without conversion to

uppercase.

The characters used are translated from the client’s code page to an

EBCDIC code page before transmission. If the server uses an ASCII

code page, they will be retranslated. The only characters guaranteed

to be invariant under these translations are the uppercase characters A

to Z, and the numeric characters 0 to 9. Some EBCDIC servers

(Katakana and Hebrew character set A) do not use the standard

representations of the lowercase alphabetic characters; use them with

care when communicating with such servers.

The EPI uses this parameter only for input.

NotifyFn

A pointer to a callback routine that is called whenever an event occurs

for the terminal resource, such as the arrival of an ATI request. If a

callback routine is not required, this parameter should be set to null.

Not supported in COBOL applications.

 The EPI uses this parameter only for input.

Details

A pointer to the CICS_EpiDetails_t structure that on return contains

various details about the terminal resource that was installed or

reserved. For asynchronous calls, the Details parameter should be set

to NULL. If the pointer is not set to nulls, the details are added to the

structure when the request to install the terminal resource has

completed. For asynchronous calls this is done when the

CICS_EPI_EVENT_ADD_TERM event occurs.

152 CICS Transaction Gateway: Programming Reference

|

The EPI uses the fields in this structure only for output.

TermIndex

A pointer to a terminal index for the terminal resource just installed or

reserved. The returned terminal index must be used as input to all

further EPI function calls to identify the terminal resource to which

the function is directed. The terminal index supplied is the first

available integer starting from 0.

 The EPI uses this parameter only for output.

Attributes

A pointer to the CICS_EpiAttributes_t structure that specifies

attributes definable by the client application for the terminal resource

that is to be installed The structure must be set to nulls before use.

 Default attributes are assumed if the pointer is set to null.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_SYSTEM

The specified server is not known to the CICS Transaction Gateway.

CICS_EPI_ERR_SECURITY

The server rejected the attempt for security reasons.

CICS_EPI_ERR_NULL_PARM

TermIndex was a null pointer.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_ERR_RESPONSE_TIMEOUT

No response was received from the server within the specified

interval.

CICS_EPI_ERR_SIGNON_NOT_POSS

The server does not allow terminal resources to be installed as sign-on

capable.

CICS_EPI_ERR_SERVER_DOWN

The function failed because the server was down.

CICS_EPI_ERR_PASSWORD_INVALID

The length of the password exceeds CICS_EPI_PASSWORD_MAX.

Chapter 4. C and COBOL 153

CICS_EPI_ERR_ADDTYPE_INVALID

The value assigned to the EpiAddType field in the

CICS_EpiAttributes_t structure is neither CICS_EPI_ADD_ASYNC

nor CICS_EPI_ADD_SYNC.

CICS_EPI_ERR_SIGNONCAP_INVALID

The value assigned to the SignonCapability field in the

CICS_EpiAttributes_t structure is neither

CICS_EPI_SIGNON_CAPABLE nor CICS_EPI_SIGNON_INCAPABLE.

CICS_EPI_ERR_USERID_INVALID

The length of the userid exceeds CICS_EPI_USERID_MAX.

CICS_EPI_ERR_TERMID_INVALID

The function failed because an invalid TermId was supplied.

CICS_EPI_ERR_MODELID_INVALID

The function failed because an invalid Model terminal definition was

supplied.

CICS_EPI_ERR_NOT_3270_DEVICE

The function failed because the device type supplied was not for a

3270 device.

CICS_EPI_ERR_ALREADY_INSTALLED

The function failed because the terminal was already installed.

CICS_EPI_ERR_CCSID_INVALID

The function failed because an invalid CCSID was supplied.

 For details on the CCSID values for various character sets, see Data

conversion when using the Client daemon, in the CICS Transaction

Gateway: Administration book for your operating system.

CICS_EPI_ERR_SERVER_BUSY

The function failed because the server was busy.

CICS_EPI_ERR_VERSION

The function is not supported for the version at which the EPI was

initialized.

CICS_EPI_ERR_RESOURCE_SHORTAGE

The CICS server or CICS Transaction Gateway did not have enough

resources to complete the terminal install.

CICS_EPI_ERR_MAX_SESSIONS

There were not enough communication resources to satisfy this

request.

CICS_EPI_ERR_MAX_SYSTEMS

An attempt was made to start connections to more servers than your

configuration allows.

154 CICS Transaction Gateway: Programming Reference

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiInquireSystem

 CICS_EpiInquireSystem TermIndex

System

Purpose

The CICS_EpiInquireSystem function returns the name of the server on

which a given terminal resource (identified by its terminal index) is installed.

Parameters

TermIndex

The terminal index of the terminal resource whose location is to be

determined.

 The EPI uses this parameter only for input.

System

A pointer to a string of length CICS_ECI_SYSTEM_MAX + 1 in which

the name of the server will be returned.

 The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_NULL_PARM

System was a null pointer.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_NORMAL

The function completed successfully. The name of the server is

returned in the System parameter padded with nulls to a length of

CICS_EPI_SYSTEM_MAX +1.

Chapter 4. C and COBOL 155

CICS_EpiDelTerminal

 CICS_EpiDelTerminal TermIndex

Purpose

The CICS_EpiDelTerminal function deletes a previously added terminal

resource. The application should not consider the deletion complete until it

receives the corresponding CICS_EPI_EVENT_END_TERM event. The

terminal index remains allocated until a CICS_EpiGetEvent call retrieves the

CICS_EPI_EVENT_END_TERM event. A call to this function fails if the

terminal resource is currently running a transaction. To ensure that a terminal

resource is deleted, the application must wait until the current transaction

finishes and process all outstanding events before issuing the

CICS_EpiDelTerminal call.

If the terminal resource was autoinstalled, its definition is deleted from the

server. When a CICS_EpiDelTerminal call has completed successfully for a

terminal resource, use of the terminal index is restricted to CICS_EpiGetEvent

calls until the application has received the corresponding

CICS_EPI_EVENT_END_TERM event.

Parameters

TermIndex

The terminal index of the terminal resource to be deleted.

 The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_TRAN_ACTIVE

A transaction is currently running against the terminal resource, or

there are unprocessed events for the terminal resource.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_NORMAL

The function completed successfully.

156 CICS Transaction Gateway: Programming Reference

CICS_EpiPurgeTerminal

 CICS_EpiPurgeTerminal

 TermIndex

Purpose

The CICS_EpiPurgeTerminal function purges a previously added terminal

resource. The application should not consider the deletion complete until it

receives the corresponding CICS_EPI_EVENT_END_TERM event.

The CICS_EpiPurgeTerminal call differs from the CICS_EpiDelTerminal call

in that the application does not have to wait until the current transaction

finishes or process all outstanding events before issuing the call.

If the terminal resource was autoinstalled, its definition is deleted from the

server.

This purge function does not cancel ATI requests already received by the

server, and queued against the terminal.

Parameters

TermIndex

The terminal index of the terminal resource to be deleted.

 The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_ERR_VERSION

The function is not supported for the version at which the EPI was

initialized.

CICS_EPI_NORMAL

The function completed successfully.

Chapter 4. C and COBOL 157

CICS_EpiSetSecurity

 CICS_EpiSetSecurity TermIndex

UserId

Password

Purpose

The CICS_EpiSetSecurity function allows a client application to specify a

userid and password to be associated with a terminal resource previously

installed as sign-on incapable.

The CICS_EpiSetSecurity function may be invoked at any time; the userid

and password will be used as further transactions are started for the terminal

resource. A CICS Transaction Gateway determined userid and password will

be used if the function either has not been invoked for the terminal resource

or has been invoked and has set the userid, and by implication the password,

to nulls.

Note that the client application is responsible for verifying the userid and

password.

Parameters

TermIndex

The terminal index of the terminal.

 The EPI uses this parameter only for input.

UserId

A pointer to a null-terminated string that specifies the userid. If the

userid is shorter than CICS_EPI_USERID_MAX characters, it must be

padded with nulls to a length of CICS_EPI_USERID_MAX+1.

 The EPI uses this parameter only for input.

Password

A pointer to a null-terminated string that specifies the password. If

the password is shorter than CICS_EPI_PASSWORD_MAX characters,

it must be padded with nulls to a length of

CICS_EPI_PASSWORD_MAX+1.

 The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

158 CICS Transaction Gateway: Programming Reference

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_ERR_SYSTEM_ERROR

An internal system error occurred.

CICS_EPI_ERR_VERSION

The function is not supported for the version at which the EPI was

initialized.

CICS_EPI_ERR_NULL_PASSWORD

Password was a null pointer.

CICS_EPI_ERR_NULL_USERID

Userid was a null pointer.

CICS_EPI_ERR_PASSWORD_INVALID

The length of the password exceeds CICS_EPI_PASSWORD_MAX.

CICS_EPI_ERR_USERID_INVALID

The length of the userid exceeds CICS_EPI_USERID_MAX.

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiStartTran

Purpose

 CICS_EpiStartTran

 TermIndex

TransId

Data

Size

The CICS_EpiStartTran function starts a new transaction from a terminal

resource, or continues a pseudoconversation.

v Starting a new transaction—do this after CICS_EpiAddTerminal, or after a

CICS_EPI_EVENT_END_TRAN event indicated that the previous

transaction did not specify a transaction to process the next input from the

terminal resource.

v Continuing a pseudoconversation—do this after a

CICS_EPI_EVENT_END_TRAN event that indicated that the previous

transaction specified did specify a transaction to process the next input

from the terminal resource.

Chapter 4. C and COBOL 159

If the call is successful, no further start requests can be issued for this terminal

resource until the transaction ends; this is indicated by the

CICS_EPI_EVENT_END_TRAN event.

Parameters

TermIndex

The terminal index of the terminal resource that is to run the

transaction.

 The EPI uses this parameter only for input.

TransId

A pointer to a string specifying the transaction to be run, or the null

pointer. If a new transaction is being started, and this input is the null

pointer, the name of the transaction is extracted from the data stream

supplied in the Data parameter. If a pseudoconversation is being

continued, and the pointer is not null, the string must be the name of

the transaction returned in the preceding

CICS_EPI_EVENT_END_TRAN event for this terminal resource. If the

pointer is not null, and the string is shorter than

CICS_EPI_TRANSID_MAX characters, it should be padded with

spaces to this length.

 The EPI uses this parameter only for input.

Data A pointer to the 3270 data stream to be associated with the

transaction. This parameter must not be a null pointer, because the

data stream must contain at least an AID byte.

 If a new transaction is being started, and the TransId parameter is the

null pointer, the data stream must be at least 4 bytes long, must

contain the name of the transaction to be started, and might contain

data to be supplied to the transaction on its first EXEC CICS RECEIVE

command.

If a new transaction is being started, and the TransId parameter is not

the null pointer, the data stream might be only one byte (an AID

byte), or 3 bytes (an AID byte and a cursor address), or longer than 3

bytes (an AID byte, a cursor address, and data and SBA commands).

In the last case, the data is supplied to the transaction program on the

first EXEC CICS RECEIVE command.

If a pseudoconversation is being continued, the data stream might be

only one byte (an AID byte), or 3 bytes (an AID byte and a cursor

address), or longer than 3 bytes (an AID byte, a cursor address, and

data and SBA commands). In the last case the data is supplied to the

transaction program on the first EXEC CICS RECEIVE command.

160 CICS Transaction Gateway: Programming Reference

The details of the format of 3270 data streams for CICS are described

in 3270 data streams for the EPI, in CICS Transaction Gateway:

Programming Guide.

The length of the 3270 data stream must not exceed the value that

was returned in MaxData in CICS_EpiDetails_t when the terminal

resource was installed with CICS_EpiAddTerminal.

The EPI uses this parameter only for input.

Size The size in bytes of the initial data to be passed to the transaction.

 The EPI uses this parameter only for input.

Note: The application might expect a terminal resource to be free to start a

transaction and yet get an unexpected return code of

CICS_EPI_ERR_ATI_ACTIVE from a call to CICS_EpiStartTran. If this

happens, it means that the EPI has started an ATI request against the

terminal resource and issued the corresponding

CICS_EPI_EVENT_START_ATI event, but the application has not yet

retrieved the event by issuing a CICS_EpiGetEvent call.

Return codes

CICS_EPI_ERR_ATI_ACTIVE

An ATI transaction is active for this terminal resource.

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NO_DATA

No initial data was supplied.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_TTI_ACTIVE

A transaction started from the EPI is already active for this terminal

resource.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN

The function failed because the server was down.

CICS_EPI_ERR_RESOURCE_SHORTAGE

The CICS server or CICS Transaction Gateway did not have enough

resources to complete the terminal install.

Chapter 4. C and COBOL 161

CICS_EPI_ERR_MAX_SESSIONS

There were not enough communication resources to satisfy this

request.

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiReply

 CICS_EpiReply

 TermIndex

Data

Size

Purpose

The CICS_EpiReply function sends data from a terminal resource to a CICS

transaction. It should only be issued in response to a

CICS_EPI_EVENT_CONVERSE event.

Parameters

TermIndex

The terminal index of the terminal resource from which the data is

being sent.

 The EPI uses this parameter only for input.

Data A pointer to the 3270 data stream to be sent to the transaction. This

parameter must not be a null pointer, because the data stream must

contain at least an AID byte. The data stream might be one byte (an

AID byte), 3 bytes (an AID byte and a cursor address), or more than 3

bytes (an AID byte, a cursor address, and data and SBA commands).

In the last case, what follows the cursor address is supplied to the

transaction program on the first EXEC CICS RECEIVE command.

 The length of the 3270 data stream must not exceed the value that

was returned in MaxData in CICS_EpiDetails_t when the terminal

resource was installed with CICS_EpiAddTerminal.

The EPI uses this parameter only for input.

Size The size of the data in bytes.

 The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

162 CICS Transaction Gateway: Programming Reference

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NO_CONVERSE

No reply is expected by the terminal resource.

CICS_EPI_ERR_NO_DATA

No reply data was supplied.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN

The function failed because the server was down.

CICS_EPI_ERR_ABENDED

The read timeout period has expired and the conversation has

abended, but the CICS_EPI_EVENT_END_TRAN event has not yet

been received by the application.

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiATIState

 CICS_EpiATIState TermIndex

ATIState

Purpose

The CICS_EpiATIState function allows the calling application to query and

alter the way in which ATI requests for a terminal resource are handled. If

ATI requests are enabled (CICS_EPI_ATI_ON) and an ATI request is issued in

the server, the request is started when the terminal resource becomes free. If

ATI requests are held (CICS_EPI_ATI_HOLD), any ATI requests issued are

queued, and started when ATI requests are next enabled.

The state for ATI requests after a CICS_EpiAddTerminal call is

CICS_EPI_ATI_HOLD. The EPI application may change the state to

CICS_EPI_ATI_ON when it is ready to allow ATI requests to be processed.

(The server also maintains a ATI state for terminal resources, which is

independent of the ATI state maintained in the EPI. Changes to the ATI state

on the server do not affect the ATI status in the EPI.)

Chapter 4. C and COBOL 163

Parameters

TermIndex

The terminal index of the terminal resource whose ATI state is

required.

 The EPI uses this parameter only for input.

ATIState

The EPI uses this parameter for both input and output depending on

the input value as follows:

CICS_EPI_ATI_ON

Enable ATI requests, and return the previous ATI state in this

parameter.

CICS_EPI_ATI_HOLD

Hold ATI requests until they are next enabled, and return the

previous ATI state in this parameter.

CICS_EPI_ATI_QUERY

Do not change the ATI state; just return the current state in

this parameter.

Return codes

CICS_EPI_ERR_ATI_STATE

An invalid ATIState value was provided.

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_NULL_PARAM

ATIState was a null pointer.

CICS_EPI_NORMAL

The function completed successfully.

CICS_EpiGetEvent

 CICS_EpiGetEvent TermIndex

Wait

Event

164 CICS Transaction Gateway: Programming Reference

Purpose

The CICS_EpiGetEvent function obtains information about an event that has

occurred for a terminal resource.

Remember that this call may be attempted only from the application, not from

the callback routine.

Parameters

TermIndex

The terminal index of the terminal resource for which to obtain an

event. This can be set to the constant CICS_EPI_TERM_INDEX_NONE

to indicate that the next event for any terminal resource used by this

application is to be returned. The application can examine the

TermIndex field in the returned CICS_EpiEventData_t structure to

determine the terminal resource against which the event was

generated.

 The EPI uses this parameter for both input and output.

Wait An indication of what should happen if no event has been generated

for the terminal resource. Use one of the following values:

CICS_EPI_WAIT

Do not return until the next event occurs.

CICS_EPI_NOWAIT

Return immediately with an error code. This option is used if

the application elects to poll for events.

The EPI uses this parameter only for input.

Event A pointer to a CICS_EpiEventData_t structure that on return contains

the details of the event that occurred. The Data field in the structure

should be set to point to the data buffer that is updated with any

terminal data stream associated with the event. The Size field should

be set to indicate the maximum size of this buffer, and is updated to

contain the actual length of data returned.

Return codes

CICS_EPI_ERR_BAD_INDEX

The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED

The function failed for an unexpected reason.

Chapter 4. C and COBOL 165

CICS_EPI_ERR_MORE_DATA

The supplied data buffer was not large enough to contain the terminal

data; the data has been truncated.

CICS_EPI_ERR_MORE_EVENTS

An event was successfully obtained, but there are more events

outstanding against this terminal resource.

CICS_EPI_ERR_NO_EVENT

No events are outstanding for this terminal resource.

CICS_EPI_ERR_NOT_INIT

CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_WAIT

The Wait parameter is not valid.

CICS_EPI_ERR_NULL_PARM

Event is a null pointer.

CICS_EPI_ERR_IN_CALLBACK

The function was called from a callback routine.

CICS_EPI_NORMAL

The function completed successfully, and there are no more events.

EPI events

EPI events occur when CICS has data to pass to the EPI application. The

application can handle EPI events in a variety of ways. See Events and

callbacks, in CICS Transaction Gateway: Programming Guide. Whichever

mechanism is used, the data from CICS is obtained by calling

CICS_EpiGetEvent.

CICS_EPI_EVENT_ADD_TERM

Purpose

The CICS_EPI_EVENT_ADD_TERM event indicates that an asynchronous

request to install a terminal resource has completed. If the terminal resource

was installed details will have been placed in the CICS_EpiDetails_t

structure, pointed to by Data.

Fields completed

Event The CICS_EPI_EVENT_ADD_TERM event code.

EndReturnCode

The reason for termination. Refer to the CICS_EpiAddExTerminal

function for details of return codes.

166 CICS Transaction Gateway: Programming Reference

Data A pointer to the CICS_EpiDetails_t structure that is updated with the

terminal details, if the EndReturnCode is CICS_EPI_NORMAL.

CICS_EPI_EVENT_SEND

Purpose

The CICS_EPI_EVENT_SEND event indicates that a transaction has sent some

3270 data to a terminal resource, typically as a result of an EXEC CICS SEND

command. No reply is expected, and none should be attempted.

Fields completed

Event The CICS_EPI_EVENT_SEND event code.

Data A pointer to the buffer that is updated to contain the data sent by the

transaction. See 3270 data streams for the EPI, in CICS Transaction

Gateway: Programming Guide, for details of the data stream format.

Size The length of the data in the Data buffer.

CICS_EPI_EVENT_CONVERSE

Purpose

The CICS_EPI_EVENT_CONVERSE event indicates that a transaction is

expecting a reply as a result of either an EXEC CICS RECEIVE command, or

an EXEC CICS CONVERSE command.

The application should issue a CICS_EpiReply call to return the data to CICS,

as follows:

v If the transaction has issued an EXEC CICS RECEIVE command without

specifying the BUFFER option, the buffer might contain data sent from the

transaction, or it might be empty. If there is data to process, deal with it

before replying. Send the reply when the data to be sent is available.

v If the transaction has issued an EXEC CICS RECEIVE BUFFER command,

the data buffer contains the 3270 Read Buffer command and the Size field

is set to 1. The reply should be sent immediately.

Fields completed

Event The CICS_EPI_EVENT_CONVERSE event code.

Data A pointer to the buffer that is updated to contain the data sent by the

transaction, as defined above.

Size The length of the data in the buffer. This may be set to zero to

indicate that no data was sent, but a reply is still expected.

Chapter 4. C and COBOL 167

CICS_EPI_EVENT_END_TRAN

Purpose

The CICS_EPI_EVENT_END_TRAN event indicates the end of a transaction

that was running against a terminal resource. If the transaction failed, the

EndReason and EndReturnCode specify the cause. If the transaction

completed normally, the EndReason field is set to

CICS_EPI_TRAN_NO_ERROR and EndReturnCode is set to

CICS_EPI_NORMAL. If the transaction was pseudoconversational, the

TransId field contains the name of the next transaction required. The

application should start this transaction by issuing a CICS_EpiStartTran call.

The CICS_EPI_EVENT_END_TRAN event occurs when a transaction running

against a terminal resource abends or ends following execution of a RETURN

command for which the IMMEDIATE option was not specified.

Fields completed

Event The CICS_EPI_EVENT_END_TRAN event code.

EndReason

An indication of what caused the end transaction event. It can be one

of the following values:

CICS_EPI_TRAN_NO_ERROR

Normal transaction termination.

CICS_EPI_TRAN_NOT_STARTED

The transaction failed to start.

CICS_EPI_TRAN_STATE_UNKNOWN

The transaction failed to complete.

CICS_EPI_READTIMEOUT_EXPIRED

The read timeout expired.

TransId

The name of the next transaction to start, if the previous transaction

was pseudoconversational. This name is 4 characters long and

null-terminated. If there is no next transaction, the field is set to nulls.

EndReturnCode

A string containing the CICS_EPI_returncode.

168 CICS Transaction Gateway: Programming Reference

CICS_EPI_EVENT_START_ATI

Purpose

The CICS_EPI_EVENT_START_ATI event indicates that an ATI transaction has

been started against the terminal resource. If the terminal resource receives an

ATI request while it is running another transaction, the request is held until

the transaction ends. The transaction is then started on behalf of the terminal

resource, and the CICS_EPI_EVENT_START_ATI event is generated to inform

the application.

Fields completed

Event The CICS_EPI_EVENT_START_ATI event code.

TransId

The name of the transaction that was started. This name is 4

characters long and null-terminated.

CICS_EPI_EVENT_END_TERM

Purpose

The CICS_EPI_EVENT_END_TERM event indicates that a terminal resource

no longer exists. After this event, the terminal index that was previously used

for the terminal resource is not valid. If the EPI detects that a CICS server has

shut down, CICS_EPI_EVENT_END_TERM events are generated for all

terminal resources that the application has installed in that server and not

subsequently deleted.

Fields completed

Event The CICS_EPI_EVENT_END_TERM event code.

EndReason

An indication of why the terminal resource was deleted. It can be one

of the following values:

CICS_EPI_END_SIGNOFF

The terminal resource was signed off. This can be as a result

of running the CESF transaction or of calling the

CICS_EpiDelTerminal function.

CICS_EPI_END_SHUTDOWN

The CICS server is shutting down.

CICS_EPI_END_OUTSERVICE

The terminal resource has been switched out of service.

Chapter 4. C and COBOL 169

CICS_EPI_END_UNKNOWN

An unexpected error has occurred.

CICS_EPI_END_FAILED

An attempt to delete a terminal resource failed.

External Security Interface

ESI constants and data structures

This section describes the constants and data structures that you need to use

the ESI.

ESI constants

The following constants are referred to symbolically in the descriptions of the

ESI data structures, and functions in this information. Their values are given

here to help you understand the descriptions. However, your code should

always use the symbolic names of ESI constants provided for the

programming language you are using.

Lengths of fields

v CICS_ESI_PASSWORD_MAX (10)

v CICS_ESI_SYSTEM_MAX (8)

v CICS_ESI_USERID_MAX (10)

ESI data structures

The following data structures are available for use with the ESI.

v CICS_EsiDate_t

v CICS_EsiTime_t

v CICS_EsiDetails_t

In the descriptions of the fields in the data structures, fields described as

strings are null-terminated strings.

CICS_EsiDate_t:

Purpose

The CICS_EsiDate_t structure contains a date represented as year, month, and

day.

Fields

Year 4-digit year held in cics_ushort_t format.

170 CICS Transaction Gateway: Programming Reference

Month

Month held in cics_ushort_t format; values range from 1 to 12 with 1

representing January.

Day Day held in cics_ushort_t format; values range from 1 to 31 with 1

representing the first day of the month.

CICS_EsiTime_t:

Purpose

The CICS_EsiTime structure contains a time represented as hours, minutes,

seconds, and hundredths of a second.

Fields

Hours Hours held in cics_ushort_t format; values range from 0 to 23.

Minutes

Minutes held in cics_ushort_t format; values range from 0 to 59.

Seconds

Seconds held in cics_ushort_t format; values range from 0 to 59.

Hundredths

Hundredths of a second held in cics_ushort_t format; values range

from 0 to 99.

CICS_EsiDetails_t:

Purpose

The CICS_EsiDetails_t structure contains information returned from a

successful invocation of either the CICS_VerifyPassword or the

CICS_ChangePassword functions.

Fields

LastVerifiedDate

The date on which the password was last verified.

LastVerifiedTime

The time at which the password was last verified.

ExpiryDate

The date on which the password will expire.

ExpiryTime

The time at which the password will expire.

Chapter 4. C and COBOL 171

LastAccessDate

The date on which the userid was last accessed.

LastAccessTime

The time at which the userid was last accessed.

InvalidCount

The number of times that an invalid password has been entered for

the userid.

ESI functions

This section describes the functions provided by the ESI that can be called

from an application program:

v CICS_VerifyPassword

v CICS_ChangePassword

v CICS_SetDefaultSecurity

CICS_VerifyPassword

 CICS_VerifyPassword

 UserId

Password

System

Details

Purpose

The CICS_VerifyPassword function allows a client application to verify that a

password matches the password recorded by an external security manager for

a specified userid.

Note that the external security manager is assumed to be located in a server

to which the client is connected.

Parameters

UserId

 A pointer to a null-terminated string that specifies the userid whose

password is to be verified. If the userid is shorter than

CICS_ESI_USERID_MAX characters, it must be padded with nulls to a

length of CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

Password

 A pointer to a null-terminated string that specifies the password to be

checked by the external security manager for the specified userid. If

172 CICS Transaction Gateway: Programming Reference

the password is shorter than CICS_ESI_PASSWORD_MAX characters,

it must be padded with nulls to a length of

CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

System

 A pointer to a null-terminated string that specifies the name of the

server in which the password is to be verified. If the name is shorter

than CICS_ESI_SYSTEM_MAX characters, it must be padded with

nulls to a length of CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, the default server is selected.

The ESI uses this parameter only for input.

Details

 A pointer to the CICS_EsiDetails_t structure that on return contains

further information returned by the external security manager.

The ESI uses the fields in this structure only for output.

Return codes

CICS_ESI_NO_ERROR

The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK

The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR

An internal system error occurred.

CICS_ESI_ERR_NO_CICS

The CICS Transaction Gateway is unavailable, or the specified server

is unavailable.

CICS_ESI_ERR_CICS_DIED

The specified server is no longer available.

CICS_ESI_ERR_RESOURCE_SHORTAGE

The CICS Transaction Gateway did not have enough resources to

complete the request.

CICS_ESI_ERR_NO_SESSIONS

The application has as many outstanding ECI and EPI requests as the

configuration will support.

CICS_ESI_ERR_UNKNOWN_SERVER

The requested server could not be located. Only servers returned by

the CICS_EciListSystems and CICS_EpiListSystems functions are

acceptable.

Chapter 4. C and COBOL 173

CICS_ESI_ERR_MAX_SESSIONS

There were not enough communications resources to satisfy the

request. Consult the documentation for your CICS Transaction

Gateway or server to see how to control the number of servers you

can use.

CICS_ESI_ERR_MAX_SYSTEMS

You tried to start requests to more servers than your configuration

allows. Consult the documentation for your CICS Transaction

Gateway or server to see how to control the number of servers you

can use.

CICS_ESI_ERR_NULL_USERID

The userid is set to nulls.

CICS_ESI_ERR_NULL_PASSWORD

The password is set to nulls.

CICS_ESI_ERR_PEM_NOT_SUPPORTED

Password expiry management is supported only for communications

with the requested server over SNA.

CICS_ESI_ERR_PEM_NOT_ACTIVE

The requested server does not support password expiry management.

CICS_ESI_ERR_PASSWORD_EXPIRED

The password has expired.

CICS_ESI_ERR_PASSWORD_INVALID

The password is invalid.

CICS_ESI_ERR_USERID_INVALID

The userid is not known to the external security manager.

CICS_ESI_ERR_SECURITY_ERROR

An error has been detected by the external security manager. The

most likely explanation is that the userid has been revoked.

The mapping of actual return code values to the symbolic names is contained

in the <install_path>\include\cics_esi.h file. COBOL users can find it in the

<install_path>\copybook\cicsesi.cbl file.

CICS_ChangePassword

 CICS_ChangePassword

 UserId

OldPassword

NewPassword

System

Details

174 CICS Transaction Gateway: Programming Reference

Purpose

The CICS_ChangePassword function allows a client application to change the

password recorded by an external security manager for a specified userid.

Note that the external security manager is assumed to be located in a server

to which the CICS Transaction Gateway is connected.

Parameters

UserId

 A pointer to a null-terminated string that specifies the userid whose

password is to be changed. If the userid is shorter than

CICS_ESI_USERID_MAX characters, it must be padded with nulls to a

length of CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

OldPassword

 A pointer to a null-terminated string that specifies the current

password for the specified userid. If the password is shorter than

CICS_ESI_PASSWORD_MAX characters, it must be padded with nulls

to a length of CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

NewPassword

 A pointer to a null-terminated string that specifies the new password

for the specified userid. If the password is shorter than

CICS_ESI_PASSWORD_MAX characters, it must be padded with nulls

to a length of CICS_ESI_PASSWORD_MAX+1.

The password is changed only if the currently password is correctly

specified.

The ESI uses this parameter only for input.

System

 A pointer to a null-terminated string that specifies the name of the

server in which the password is to be verified. If the name is shorter

than CICS_ESI_SYSTEM_MAX characters, it must be padded with

nulls to a length of CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, the default server is selected.

The ESI uses this parameter only for input.

Details

Chapter 4. C and COBOL 175

A pointer to the CICS_EsiDetails_t structure that on return contains

further information returned by the external security manager.

The ESI uses the fields in this structure only for output.

Return codes

CICS_ESI_NO_ERROR

The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK

The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR

An internal system error occurred.

CICS_ESI_ERR_NO_CICS

The CICS Transaction Gateway is unavailable, or the specified server

is unavailable.

CICS_ESI_ERR_CICS_DIED

The specified server is no longer available. To confirm that the

password has been changed, use the CICS_VerifyPassword function.

CICS_ESI_ERR_RESOURCE_SHORTAGE

The CICS Transaction Gateway did not have enough resources to

complete the request.

CICS_ESI_ERR_NO_SESSIONS

The application has as many outstanding ECI and EPI requests as the

configuration will support.

CICS_ESI_ERR_UNKNOWN_SERVER

The requested server could not be located. Only servers returned by

the CICS_EciListSystems and CICS_EpiListSystems functions are

acceptable.

CICS_ESI_ERR_MAX_SESSIONS

There were not enough communications resources to satisfy the

request. Consult the documentation for your CICS Transaction

Gateway or server to see how to control the number of servers you

can use.

CICS_ESI_ERR_MAX_SYSTEMS

You tried to start requests to more servers than your configuration

allows. Consult the documentation for your CICS Transaction

Gateway or server to see how to control the number of servers you

can use.

CICS_ESI_ERR_NULL_USERID

The userid is set to nulls.

176 CICS Transaction Gateway: Programming Reference

CICS_ESI_ERR_NULL_OLD_PASSWORD

The current password is set to nulls.

CICS_ESI_ERR_NULL_NEW_PASSWORD

The new password is set to nulls.

CICS_ESI_ERR_PEM_NOT_SUPPORTED

Password expiry management is supported only for communications

with the requested server over SNA.

CICS_ESI_ERR_PEM_NOT_ACTIVE

The requested server does not support password expiry management.

CICS_ESI_ERR_PASSWORD_INVALID

The password is invalid.

CICS_ESI_ERR_PASSWORD_REJECTED

The new password does not confirm to the standards defined for the

external security manager.

CICS_ESI_ERR_USERID_INVALID

The userid is not known to the external security manager.

CICS_ESI_ERR_SECURITY_ERROR

An error has been detected by the external security manager. The

most likely explanation is that the userid has been revoked.

The mapping of actual return code values to the symbolic names is contained

in the <install_path>\include\cics_esi.h file. COBOL users can find it in the

<install_path>\copybook\cicsesi.cbl file.

CICS_SetDefaultSecurity

 CICS_SetDefaultSecurity UserId

Password

System

Purpose

The CICS_SetDefaultSecurity function allows a client application to specify a

default userid and password to be used for ECI and EPI requests passed to

the server.

The userid, and the password, can be set to nulls, that is, binary zeroes. In

this case the default userid and password are unset, so that CICS Transaction

Gateway acts as if no userid and password has been set.

The userid, and the password, can also be set to spaces. However, this is valid

only if Usedfltuser=yes is specified in the CICS connection definition. In this

Chapter 4. C and COBOL 177

case CICS uses its default userid. Refer to the documentation for your CICS

server for more information on the Usedfltuser specification.

The client application is responsible for verifying the userid and password.

Note that the userid and password, if required, may be obtained from any one

of several places. The assumption is that the CICS Transaction Gateway uses

the following search order:

1. Either the ECI parameter block for the ECI or the terminal specific values

set by the CICS_EpiSetSecurity function.

2. The server specific values set by the CICS_SetDefaultSecurity function.

3. Defaults, for example the Windows userid, from the CICS Transaction

Gateway’s pop up window, and so on

Parameters

UserId

 A pointer to a null-terminated string that specifies the userid to be set.

If the userid is shorter than CICS_ESI_USERID_MAX characters, it

must be padded with nulls to a length of CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

Password

 A pointer to a null-terminated string that specifies the password to be

set for the specified userid. If the password is shorter than

CICS_ESI_PASSWORD_MAX characters, it must be padded with nulls

to a length of CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

System

 A pointer to a null-terminated string that specifies the name of the

server for which the password and userid are to be set. If the name is

shorter than CICS_ESI_SYSTEM_MAX characters, it must be padded

with nulls to a length of CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, the default server is selected.

The ESI uses this parameter only for input.

Return codes

CICS_ESI_NO_ERROR

The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK

The function was invoked from a callback routine.

178 CICS Transaction Gateway: Programming Reference

CICS_ESI_ERR_SYSTEM_ERROR

An internal system error occurred.

CICS_ESI_ERR_NO_CICS

The CICS Transaction Gateway is unavailable, or the specified server

is unavailable.

CICS_ESI_ERR_UNKNOWN_SERVER

The requested server could not be located. Only servers returned by

the CICS_EciListSystems and CICS_EpiListSystems functions are

acceptable.

CICS_ESI_ERR_USERID_INVALID

The length of the userid exceeds CICS_ESI_USERID_MAX.

CICS_ESI_ERR_PASSWORD_INVALID

The length of the password exceeds CICS_ESI_PASSWORD_MAX.

The mapping of actual return code values to the symbolic names is contained

in the <install_path>\include\cics_esi.h file. COBOL users can find it in the

<install_path>\copybook\cicsesi.cbl file.

Chapter 4. C and COBOL 179

180 CICS Transaction Gateway: Programming Reference

Chapter 5. Java request monitoring, C ECI and C EPI exits

This information contains reference material for the Java request monitoring,

C ECI and C EPI user exits.

For information about installing and using the exits, see CICS Transaction

Gateway: Programming Guide.

The C exit routines are described under the following headings:

v Purpose—describes the kind of processing that the exit is intended to

perform.

v When called—describes where in ECI or EPI processing the exit is called.

v Parameters—describes the parameters supplied to the exit. Parameters are

classified as follows:

– Input—the exit may look at it, but must not change it.

– Output—the exit must not look at it, but must store a value in it.

– Input-output—the exit may look at it, and may store a value in it.
v Return codes—describes the possible values the exit can return to the ECI

or EPI. In each case the subsequent behavior of the ECI or EPI is described.

Java request monitoring exits

Online programming reference information is provided for the Java classes

and interfaces provided with CICS Transaction Gateway.

The reference information is in HTML format and is generated using the

Javadoc tool provided with the JDK.

Java request monitoring exits are only available in the CICS Transaction

Gateway.

See the README file for the latest information on using the programming

reference information.

 Related information

 Request monitoring user exit API information

© Copyright IBM Corp. 1989, 2008 181

C ECI exits reference

In this section the following exits are discussed:

v CICS_EciInitializeExit

v CICS_EciTerminateExit

v CICS_EciExternalCallExit1

v CICS_EciExternalCallExit2

v CICS_EciSystemIdExit

v CICS_EciDataSendExit

v CICS_EciDataReturnExit

v CICS_EciSetProgramAliasExit

Table 2 summarizes the exit names, the parameters passed to each exit, and

the possible return codes.

 Table 2. Summary of ECI exits

Function name Parameters Return codes:

CICS_EciInitializeExit

 Version

Anchor

 CICS_EXIT_OK

CICS_EXIT_NO_EXIT

CICS_EXIT_CANT_INIT_EXITS

user-defined

CICS_EciTerminateExit

 Anchor CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_STORAGE

user-defined

CICS_EciExternalCallExit1

 Anchor

Token

ParmPtr

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user-defined

CICS_EciExternalCallExit2

 Anchor

Token

ParmPtr

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user-defined

CICS_EciSystemIdExit

 Anchor

Token

ParmPtr

Reason

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

CICS_EXIT_GIVE_UP

user_defined

182 CICS Transaction Gateway: Programming Reference

Table 2. Summary of ECI exits (continued)

Function name Parameters Return codes:

CICS_EciDataSendExit

 Anchor

Token

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

CICS_EciDataReturnExit

 Anchor

Token

ParmPtr

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

CICS_EciSetProgramAliasExit

 Anchor

EciParms

Program

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

Identification token

In order for the exits to be able to relate calls for the same ECI request, an

identification token is passed in as a parameter to all exits except

CICS_EciInitializeExit and CICS_EciTerminateExit. The token is the same for

CICS_EciExternalCallExit1 and CICS_EciExternalCallExit2 that relate to the

same call, and on intervening CICS_EciDataSendExit,

CICS_EciDataReturnExit, and CICS_EciSystemIdExit exits. (Note that

CICS_EciExternalCallExit1 and CICS_EciExternalCallExit2 are not called for

a reply solicitation request.)

The token is unique within the operating system that initiated the request, for

the duration of the request. It may be reused once the last exit for the request

has been called.

In the case of an extended logical unit of work, the token may be different on

different requests within the logical unit of work. (Since we allow reuse of the

token, and a new program link call may not be made until the

ECI_GET_REPLY request for the previous asynchronous request has

completed, it may also be the same.)

The token is 8 bytes long. 8 null bytes is not a valid value for the token and is

not supplied to the exits.

Process model implementation

All exits that relate to a particular request (i.e. have the same identification

token) are called in the context of the application process.

Chapter 5. Java request monitoring, C ECI and C EPI exits 183

CICS_EciInitializeExit

 Function name:

CICS_EciInitializeExit

Parameters

Version

Anchor

Purpose

To allow the user to set up an exit environment.

When called

On the first invocation of CICS_ExternalCall, for each process, after

parameter validation has occurred.

Parameters

Version

Input parameter. The version of the ECI under which the exit is

running.

Anchor

Output parameter. A pointer to a pointer that will be passed to the

ECI exits. The second pointer is not used by the ECI; it is passed to

the exits as supplied. You can acquire storage in this exit and pass its

address to the other exits.

Return codes

CICS_EXIT_OK

The ECI continues processing this request, calling the exits where

appropriate.

CICS_EXIT_NO_EXIT

The ECI continues processing this request, but does not call any more

exits.

CICS_EXIT_CANT_INIT_EXITS

The ECI writes a CICS Transaction Gateway trace record, and then

continues processing this request, but does not call any more exits.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then continues processing this request, but does not

call any more exits.

184 CICS Transaction Gateway: Programming Reference

CICS_EciTerminateExit

 Function name:

CICS_EciTerminateExit

 Parameters

Anchor

Purpose

To allow the user to clean up the exit environment. Any storage acquired by

CICS_EciInitializeExit must be released in this exit.

CICS_EciTerminateExit is not called by the Client daemon.

When called

On termination of the process that issued the CICS_EciInitializeExit.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EciInitializeExit.

Return codes

CICS_EXIT_OK

Termination continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The ECI writes a CICS

Transaction Gateway trace record, and then continues with

termination.

CICS_EXIT_BAD_STORAGE

CICS detected a storage error. The ECI writes a CICS Transaction

Gateway trace record, and then continues with termination.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then continues with termination.

Chapter 5. Java request monitoring, C ECI and C EPI exits 185

CICS_EciExternalCallExit1

 Function name:

CICS_EciExternalCallExit1

 Parameters:

Anchor

Token

ParmPtr

Purpose

To allow the user to pick the best system to run the program. This exit is

called exactly once on each program link and each status information call. It is

not called on a reply solicitation call. Although the exit is called when

eci_luw_token is not zero, any change it makes to eci_system_name is

ignored, as the server was selected when the logical unit of work was started.

When called

On invocation of CICS_ExternalCall, for each program link call and each

status information call, after the ECI has validated the parameters.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for

this request.

ParmPtr

Input parameter. A pointer to the ECI parameter block. The exit must

treat all fields in the ECI parameter block as inputs, except the

eci_system_name field, which it may change.

Return codes

CICS_EXIT_OK

The ECI continues to process the request with the eci_system_name

now specified in the ECI parameter block.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The ECI writes a CICS

Transaction Gateway trace record, and then continues to process the

request with the eci_system_name now specified in the ECI parameter

block.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The ECI writes a CICS

186 CICS Transaction Gateway: Programming Reference

Transaction Gateway trace record, and then continues to process the

request with the eci_system_name now specified in the ECI parameter

block.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then continues to process the request with the

eci_system_name now specified in the ECI parameter block.

Notes

There is a limited set of conditions under which the exit may select a new

system. The exit may select a system if the call is a program link or status

information call, and if a new logical unit of work is being started. In other

cases, the exit should return CICS_EXIT_OK.

If the calling application has put binary zeros as the system name in the

parameter block, then the application is expecting that the system will be

dynamically selected, and the exit may safely select the system.

If however the calling application has placed a system name in the parameter

block, or if the application is a version 0 application, then it may not be

expecting the target system to change, and application errors could result. In

this case the exit would generally return without specifying a replacement

system, with the result that the specified or default system name is to be used.

If the exit chooses to change the selected system in this situation, then it may

do so, but the following should be borne in mind.

v The exit routine must be sensitive to whether or not the modification of the

target system will cause errors in the ECI application running on the client.

v The exit routine must maintain a knowledge base, keyed on appropriate

data available to it, to enable it to determine whether this modification is

acceptable to the client application.

CICS_EciExternalCallExit2

 Function name:

CICS_EciExternalCallExit2

 Parameters:

Anchor

Token

ParmPtr

Purpose

To allow the user to see the results of synchronous ECI calls for information

gathering purposes only. This exit is called exactly once on every application

Chapter 5. Java request monitoring, C ECI and C EPI exits 187

program link or status information call. It is not called on reply solicitation

calls.

When called

Before the ECI call returns to the application, and after the return data is filled

into the ECI parameter block.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for

this request.

ParmPtr

Input parameter. A pointer to the ECI parameter block. The exit must

treat all fields in the ECI parameter block as inputs.

Return codes

CICS_EXIT_OK

The ECI returns control to the application that issued the

CICS_ExternalCall request.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The ECI writes a CICS

Transaction Gateway trace record, and then returns control to the

application that issued the CICS_ExternalCall request.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The ECI writes a CICS

Transaction Gateway trace record, and then returns control to the

application that issued the CICS_ExternalCall request.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then returns control to the application that issued

the CICS_ExternalCall request.

CICS_EciSystemIdExit

 Function name:

CICS_EciSystemIdExit

 Parameters:

Anchor

Token

ParmPtr

Reason

188 CICS Transaction Gateway: Programming Reference

Purpose

To allow the user to supply a new system name when the name supplied in

the ECI parameter block is not valid.

When called

This exit is called when an error occurs that may be corrected by selection of

a new system, userid, or password. This would be when the ECI has returned

one of the following codes:

v ECI_ERR_NO_CICS

v ECI_ERR_UNKNOWN_SERVER

v ECI_ERR_SECURITY_ERROR

v ECI_ERR_SYSTEM_ERROR

v ECI_ERR_RESOURCE_SHORTAGE

v ECI_ERR_MAX_SYSTEMS.

It may be called when either when the Client daemon detects an error before

data is sent to the server, or after data returns from the server.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for

this request.

ParmPtr

Input parameter. A pointer to the ECI parameter block. The exit must

treat all fields in the ECI parameter block as inputs, except the

following, which it may set:

v eci_system_name

v eci_userid

v eci_password.

Reason

Input parameter. A standard ECI error code that explains why the

application request has not so far succeeded.

Return codes

CICS_EXIT_OK

The ECI retries the application call using the new parameters in the

Chapter 5. Java request monitoring, C ECI and C EPI exits 189

ECI parameter block. (The CICS program communication area

supplied by the application to the CICS_ExternalCall is preserved.)

The application callback routine will not be called, nor will

CICS_EciExternalCallExit2.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The ECI writes a CICS

Transaction Gateway trace record, and then returns to the application

that issued the CICS_ExternalCall request.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The ECI writes a CICS

Transaction Gateway trace record, and then returns to the application

that issued the CICS_ExternalCall request.

CICS_EXIT_GIVE_UP

The ECI returns to the application that issued the CICS_ExternalCall

request.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then retries the application call as described for

CICS_EXIT_OK.

CICS_EciDataSendExit

 Function name:

CICS_EciDataSendExit

 Parameters:

Anchor

Token

Purpose

To allow the user to time calls for performance analysis.

When called

As close as possible to the time that the request will be sent to the server.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for

this request.

190 CICS Transaction Gateway: Programming Reference

Return codes

CICS_EXIT_OK

The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The ECI writes a CICS

Transaction Gateway trace record, and then continues processing the

request.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The ECI writes a CICS

Transaction Gateway trace record, and then continues processing the

request.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then continues processing the request.

CICS_EciDataReturnExit

 Function name:

CICS_EciDataReturnExit

 Parameters:

Anchor

Token

ParmPtr

Purpose

To allow the user to time calls for performance analysis.

When called

As close as possible to the time that the response from the server has been

received, and the ECI block and commarea data for eventual return to the

application has been built. It is also called if there is a timeout because of a

lack of response from the server.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for

this request.

Chapter 5. Java request monitoring, C ECI and C EPI exits 191

ParmPtr

Input parameter. A pointer to the ECI parameter block. The exit must

treat all fields in the ECI parameter block as inputs.

Return codes

CICS_EXIT_OK

The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The ECI writes a CICS

Transaction Gateway trace record, and then continues processing the

request.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The ECI writes a CICS

Transaction Gateway trace record, and then continues processing the

request.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then continues processing the request.

CICS_EciSetProgramAliasExit

 Function name:

CICS_EciSetProgramAliasExit

 Parameters:

Anchor

EciParms

Program

Purpose

To allow the user to change the program name that the WorkLoad Manager of

CICS Transaction Gateway for Windows uses for load balancing

This exit is only available when the WorkLoad Manager is enabled.

When called

Immediately before the WorkLoad Manager tries to select a server for an ECI

program to connect to.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EciInitializeExit.

192 CICS Transaction Gateway: Programming Reference

ECIParms

ECI parameter block.

Program

The alias name of the ECI program that the WorkLoad Manager will

use for load balancing.

Return codes

CICS_EXIT_OK

The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The ECI writes a CICS

Transaction Gateway trace record, and then continues processing the

request.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The ECI writes a CICS

Transaction Gateway trace record, and then continues processing the

request.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway

trace record, and then continues processing the request.

C EPI exits reference

In this section the following exits are discussed:

v CICS_EpiInitializeExit

v CICS_EpiTerminateExit

v CICS_EpiAddTerminalExit

v CICS_EpiTermIdExit

v CICS_EpiTermIdInfoExit

v CICS_EpiStartTranExtendedExit

v CICS_EpiStartTranExit

v CICS_EpiReplyExit

v CICS_EpiDelTerminalExit

v CICS_EpiGetEventExit

v CICS_EpiSystemIdExit

v CICS_EpiTranFailedExit

Table 3 on page 194 summarizes the exit names, the parameters passed to

each exit, and the possible return codes.

Chapter 5. Java request monitoring, C ECI and C EPI exits 193

Table 3. Summary of EPI exits

Function name Parameters Return codes:

CICS_EpiInitializeExit

 Version

Anchor

 CICS_EXIT_OK

CICS_EXIT_NO_EXIT

CICS_EXIT_CANT_INIT_EXITS

user-defined

CICS_EpiTerminateExit

 Anchor CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_STORAGE

user-defined

CICS_EpiAddTerminalExit

 Anchor

NameSpace

System

NetName

DevType

 CICS_EXIT_OK

CICS_EXIT_DONT_ADD_TERMINAL

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user-defined

CICS_EpiTermIdExit

 Anchor

TermIndex

System

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user-defined

CICS_EpiTermIdInfoExit

 Anchor

Version

TermIndex

EpiDetails

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user-defined

CICS_EpiStartTranExtendedExit

 Anchor

TermIndex

TransId

Data

Size

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user-defined

CICS_EpiStartTranExit

 Anchor

TransId

Data

Size

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user-defined

CICS_EpiReplyExit

 Anchor

TermIndex

Data

Size

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

194 CICS Transaction Gateway: Programming Reference

Table 3. Summary of EPI exits (continued)

Function name Parameters Return codes:

CICS_EpiDelTerminalExit

 Anchor

TermIndex

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

CICS_EpiGetEventExit

 Anchor

TermIndex

Wait

Event

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

CICS_EpiSystemIdExit

 Anchor

NameSpace

System

NetName

DevType

FailedSystem

Reason

SubReason

UserId

PassWord

 CICS_EXIT_OK

CICS_EXIT_DONT_ADD_TERMINAL

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

CICS_EpiTranFailedExit

 Anchor

TermIndex

Wait

Event

 CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR

CICS_EXIT_BAD_PARM

user_defined

CICS_EpiInitializeExit

 Function name:

CICS_EpiInitializeExit

Parameters:

Version

Anchor

Purpose

To allow the user to set up an exit environment.

When called

On each invocation of CICS_EpiInitialize, after the EPI has validated the

parameters.

Chapter 5. Java request monitoring, C ECI and C EPI exits 195

Parameters

Version

Input parameter. The version of the EPI under which the exit is

running.

Anchor

Output parameter. A pointer to a pointer that will be passed to the

EPI exits. The second pointer is not used by the EPI; it is passed to

the exits as supplied. You can acquire storage in this exit and pass its

address to the other exits.

Return codes

CICS_EXIT_OK

The EPI continues processing this request, calling the exits where

appropriate.

CICS_EXIT_NO_EXIT

The EPI continues processing this request, but does not call any more

exits.

CICS_EXIT_CANT_INIT_EXITS

The EPI writes a CICS Transaction Gateway trace record, and then

continues processing this request, but does not call any more exits.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then continues processing this request, but does not

call any more exits.

CICS_EpiTerminateExit

 Function name:

CICS_EpiTerminateExit

 Parameters:

Anchor

Purpose

To allow the user to clean up the exit environment. Any storage acquired by

CICS_EpiInitializeExit must be released in this exit.

When called

On each invocation of CICS_EpiTerminate, after the EPI has validated the

parameters.

196 CICS Transaction Gateway: Programming Reference

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

Return codes

CICS_EXIT_OK

Termination continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then continues with

termination.

CICS_EXIT_BAD_STORAGE

CICS detected a storage error. The EPI writes a CICS Transaction

Gateway trace record, and then continues with termination.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then continues with termination.

CICS_EpiAddTerminalExit

 Function name:

CICS_EpiAddTerminalExit

 Parameters:

Anchor

NameSpace

System

NetName

DevType

Purpose

To allow the user to select a server, or override the one passed to

CICS_EpiAddTerminal or CICS_EpiAddExTerminal in the System parameter.

When called

On each invocation of CICS_EpiAddTerminal or CICS_EpiAddExTerminal,

after the EPI has validated the parameters.

Parameters

Anchor

Input parameter. The pointer storage set up by

CICS_EpiInitializeExit.

Chapter 5. Java request monitoring, C ECI and C EPI exits 197

NameSpace

Input-output parameter. On input, its value depends on the value

supplied for the NameSpace parameter of the CICS_EpiAddTerminal

or CICS_EpiAddExTerminal call to which this exit relates:

v If a null pointer was supplied, this input is a pointer to a null

string.

v If a non-null pointer was supplied, the Namespace input parameter

points to a copy of this data.

On output, it will be used by the EPI in the same way as the value

specified on the call would have been used.

System

Input-output parameter. On input, it is the value supplied for the

System parameter of the CICS_EpiAddTerminal or

CICS_EpiAddExTerminal call to which this exit relates. On output, it

will be used by the EPI in the same way as the value specified on the

call would have been used.

NetName

Input-output parameter. On input, it is the value supplied for the

NetName parameter of the CICS_EpiAddTerminal or

CICS_EpiAddExTerminal call to which this exit relates. On output, it

will be used by the EPI in the same way as the value specified on the

call would have been used.

DevType

Input-output parameter. On input, it is the value supplied for the

DevType parameter of the CICS_EpiAddTerminal or

CICS_EpiAddExTerminal call to which this exit relates. On output, it

will be used by the EPI in the same way as the value specified on the

call would have been used.

Return codes

CICS_EXIT_OK

Processing continues with the output values of NameSpace, System,

NetName, and DevType.

CICS_EXIT_DONT_ADD_TERMINAL

The CICS_EpiAddTerminal or CICS_EpiAddExTerminal is ended

with a return code of CICS_EPI_ERR_FAILED.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then continues as for

CICS_EXIT_OK.

198 CICS Transaction Gateway: Programming Reference

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then continues as for

CICS_EXIT_OK.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then continues as for CICS_EXIT_OK.

Notes

Note on selection of systems:

If the calling application does not specify system name in its parameter list,

then it is expecting that the system will be dynamically selected, and the exit

may safely select the system.

If however the calling application specifies a system name, then it may not be

expecting the target system to change and application errors could result. In

this case the exit would generally not specify a replacement system, with the

result that the specified or default system name, device type, etc. is to be

used. If the exit chooses to change the selected system in this situation, then it

may do so, but the following should be borne in mind.

v The exit routine must be sensitive to whether or not the modification of the

target system will cause errors in the EPI application running on the client.

v The exit routine must maintain a knowledge base, keyed on appropriate

data available to it, to enable it to determine whether this modification is

acceptable to the client application.

CICS_EpiAddTerminalExit and CICS_EpiSystemIdExit:

The relationship between these exits is as follows. The exits will get multiple

chances to make a selection of the system. The first chance will always occur

on the CICS_EpiAddTerminalExit. This exit will only receive the parameters

passed by the application to CICS_EpiAddTerminal or

CICS_EpiAddExTerminal. If an error occurs when CICS tries to add the

terminal (whether or not the exit has made a selection) then

CICS_EpiSystemIdExit will be called. CICS_EpiSystemIdExit will

additionally be passed the error that occurred on the attempt to add the

terminal, and will get a chance to correct the error. This continues to occur

until either a terminal is successfully added, or until CICS_EpiSystemIdExit

signals to give up.

If no error occurs on the attempt to add the terminal, then

CICS_EpiSystemIdExit will not be called.

Chapter 5. Java request monitoring, C ECI and C EPI exits 199

CICS_EpiTermIdExit

 Function name:

CICS_EpiTermIdExit

 Parameters:

Anchor

TermIndex

System

Purpose

To allow the user to know the terminal index allocated after a successful call

to CICS_EpiAddTerminal.

CICS_EpiTermIdExit is provided for compatibility with older applications

only. All new applications that use the EPI exits should use

CICS_EpiTermIdInfoExit instead.

When called

On each invocation of CICS_EpiAddTerminal, after the server has allocated

the terminal.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex

Input parameter. This is the terminal index for the terminal resource

just reserved or installed.

System

Input parameter. A pointer to a null-terminated string that specifies

the name of the server in which the terminal resource has been

reserved or installed.

Return codes

CICS_EXIT_OK

Processing continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then continues as for

CICS_EXIT_OK.

200 CICS Transaction Gateway: Programming Reference

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then continues as for

CICS_EXIT_OK.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then continues as for CICS_EXIT_OK.

CICS_EpiTermIdInfoExit

 Function name:

CICS_EpiTermIdInfoExit

 Parameters:

Anchor

Version

TermIndex

EpiDetails

Purpose

To allow the user to retrieve information about the current terminal.

When called

Immediately after a CICS terminal has been installed

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

Version

Input parameter. The EPI version.

TermIndex

Input parameter. The index of the terminal being installed.

EpiDetails

Input parameter. A pointer to the CICS_EpiDetails_t structure,

containing details about the terminal being installed.

Return codes

CICS_EXIT_OK

Processing continues.

Chapter 5. Java request monitoring, C ECI and C EPI exits 201

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then continues as for

CICS_EXIT_OK.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then continues as for

CICS_EXIT_OK.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then continues as for CICS_EXIT_OK.

CICS_EpiStartTranExtendedExit

 Function name:

CICS_EpiStartTranExtendedExit

 Parameters:

Anchor

TermIndex

TransId

Data

Size

Purpose

To allow the user to see when a transaction is started, for information

gathering purposes. This exit does not select a system, and has no return data.

When called

On invocation of CICS_EpiStartTran, after the EPI has validated the

parameters.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex

Input parameter. The value supplied by the TermIndex parameter of

the CICS_EpiReply call to which this exit relates.

TransId

Input parameter. The value supplied for the TransId parameter of the

CICS_EpiStartTran call to which this exit relates.

202 CICS Transaction Gateway: Programming Reference

Data Input parameter. The value supplied for the Data parameter of the

CICS_EpiStartTran call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of the

CICS_EpiStartTran call to which this exit relates.

Return codes

CICS_EXIT_OK

Processing of the CICS_EpiStartTran call continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiStartTran call continues.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiStartTran call continues.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then processing of the CICS_EpiStartTran call

continues.

CICS_EpiStartTranExit

 Function name:

CICS_EpiStartTranExit

 Parameters:

Anchor

TransId

Data

Size

Purpose

To allow the user to see when a transaction is started, for information

gathering purposes. This exit will not select a system, and has no return data.

When called

On invocation of CICS_EpiStartTran, after the EPI has validated the

parameters.

Chapter 5. Java request monitoring, C ECI and C EPI exits 203

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

TransId

Input parameter. The value supplied for the TransId parameter of the

CICS_EpiStartTran call to which this exit relates.

Data Input parameter. The value supplied for the Data parameter of the

CICS_EpiStartTran call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of the

CICS_EpiStartTran call to which this exit relates.

Return codes

CICS_EXIT_OK

Processing of the CICS_EpiStartTran call continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiStartTran call continues.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiStartTran call continues.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then processing of the CICS_EpiStartTran call

continues.

CICS_EpiReplyExit

 Function name:

CICS_EpiReplyExit

 Parameters:

Anchor

TermIndex

Data

Size

Purpose

To allow the user to see when a transaction is replied to, for information

gathering purposes.

204 CICS Transaction Gateway: Programming Reference

When called

On invocation of CICS_EpiReply, after the EPI has validated the parameters.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex

Input parameter. The value supplied for the TermIndex parameter of

the CICS_EpiReply call to which this exit relates.

Data Input parameter. The value supplied for the Data parameter of the

CICS_EpiReply call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of the

CICS_EpiReply call to which this exit relates.

Return codes

CICS_EXIT_OK

Processing of the CICS_EpiReply call continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiReply call continues.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiReply call continues.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then processing of the CICS_EpiReply call

continues.

CICS_EpiDelTerminalExit

 Function Name:

CICS_EpiDelTerminalExit

 Parameters:

Anchor

TermIndex

Purpose

To allow the user to clean up any terminal-related data structures.

Chapter 5. Java request monitoring, C ECI and C EPI exits 205

When called

On invocation of CICS_EpiDelTerminal or CICS_EpiPurgeTerminal, after the

EPI has validated the parameters. To allow the user to clean up any

terminal-related data structures.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex

Input parameter. The value supplied for the TermIndex parameter of

the CICS_EpiDelTerminal or CICS_EpiPurgeTerminal call to which

this exit relates.

Return codes

CICS_EXIT_OK

Processing of the CICS_EpiDelTerminalor CICS_EpiPurgeTerminal

call continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiDelTerminal or CICS_EpiPurgeTerminal call continues.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiDelTerminal or CICS_EpiPurgeTerminal call continues.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then processing of the CICS_EpiDelTerminal or

CICS_EpiPurgeTerminal call continues.

CICS_EpiGetEventExit

 Function name:

CICS_EpiGetEventExit

 Parameters:

Anchor

TermIndex

Wait

Event

206 CICS Transaction Gateway: Programming Reference

Purpose

To allow the user to collect data relating to the event that has arrived.

When called

Immediately before CICS_EpiGetEvent returns to the caller. The exit can then

examine the data returned, time the response from the system, etc.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex

Input parameter. The value to be returned to the application in the

TermIndex parameter of the CICS_EpiGetEvent call to which this exit

relates.

Wait Input parameter. The value supplied for the Wait parameter of the

CICS_EpiGetEvent call to which this exit relates.

Event Input parameter. The value to be returned to the application in the

Event parameter of the CICS_EpiGetEvent call to which this exit

relates.

Return codes

CICS_EXIT_OK

Processing of the CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiGetEvent call continues.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then processing of the CICS_EpiGetEvent call

continues.

Chapter 5. Java request monitoring, C ECI and C EPI exits 207

CICS_EpiSystemIdExit

 Function name:

CICS_EpiSystemIdExit

 Parameters:

Anchor

NameSpace

System

NetName

DevType

FailedSystem

Reason

SubReason

UserId

PassWord

Purpose

To allow the user to supply a new system name when the value supplied for

CICS_Epi_AddTerminal or CICS_EpiAddExTerminal was invalid.

When called

Immediately before CICS_EpiAddTerminal or CICS_EpiAddExTerminal

returns to the application when an error occurred while trying to add the

terminal. The error can be CICS_EPI_ERR_SYSTEM, CICS_EPI_ERR_FAILED,

or CICS_EPI_ERR_SERVER_DOWN. It occurs whether or not

CICS_EpiAddTerminalExit or CICS_EpiAddExTerminal has been called

previously.

Note: On some systems the completion of CICS_EpiAddTerminal or

CICS_EpiAddExTerminal is returned to the application

asynchronously, and in this case this exit will be called asynchronously.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

NameSpace

Input-output parameter. The NameSpace parameter used in the failed

CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

System

Input-output parameter. The System parameter used in the failed

CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

208 CICS Transaction Gateway: Programming Reference

NetName

Input-output parameter. The NetName parameter used in the failed

CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

DevType

Input-output parameter. The DevType parameter used in the failed

CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

FailedSystem

Input parameter. The identifier of the system on which the failure

occurred.

Reason

Input parameter. The reason for the failure:. CICS_EPI_ERR_SYSTEM

or CICS_EPI_ERR_FAILED.

SubReason

Input parameter. More about the failure.

UserId

Output parameter. Not used.

PassWord

Output parameter. Not used.

Return codes

CICS_EXIT_OK

The EPI will retry the CICS_EpiAddTerminal or

CICS_EpiAddExTerminal call using the values specified as output of

this exit. Note that in this case the considerations described in

“CICS_EpiAddTerminalExit” on page 197 apply.

CICS_EXIT_DONT_ADD_TERMINAL

The CICS_EpiAddTerminal or CICS_EpiAddExTerminal is ended

with a return code of CICS_EPI_ERR_FAILED.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then the error that caused the

exit to be called is returned to the application.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then the error that caused the

exit to be called is returned to the application.

user-defined

User-defined return codes must have a value not less than

Chapter 5. Java request monitoring, C ECI and C EPI exits 209

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then the error that caused the exit to be called is

returned to the application.

CICS_EpiTranFailedExit

 Function Name:

CICS_EpiTranFailedExit

 Parameters:Anchor

TermIndex

Wait

Event

Purpose

To allow the user to collect data when a transaction abends or a terminal fails.

When called

Immediately before CICS_EpiGetEvent returns to the caller, with or without

GetEventExit, when the event is CICS_EPI_EVENT_END_TRAN, and the

AbendCode field is not blank.

Note that there are some failures on remote systems that can occur and will

simply cause the presentation of a 3270 data stream with an error message

and no abend code in the CICS_EPI_EVENT_END_TRAN. This error message

may not even occur on the same event as the CICS_EPI_EVENT_END_TRAN.

If the exit requires to handle this situation, it may monitor it through

CICS_EpiGetEventExit and scan the appropriate 3270 data streams.

Parameters

Anchor

Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex

Input parameter. The value to be returned to the application in the

TermIndex parameter of the CICS_EpiGetEvent call to which this exit

relates.

Wait Input parameter. The value supplied for the Wait parameter of the

CICS_EpiGetEvent call to which this exit relates.

Event Input parameter. The value to be returned to the application in the

Event parameter of the CICS_EpiGetEvent call to which this exit

relates.

210 CICS Transaction Gateway: Programming Reference

Return codes

CICS_EXIT_OK

Processing of the CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_ANCHOR

CICS detected an invalid anchor field. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_PARM

CICS detected an invalid parameter. The EPI writes a CICS

Transaction Gateway trace record, and then processing of the

CICS_EpiGetEvent call continues.

user-defined

User-defined return codes must have a value not less than

CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway

trace record, and then processing of the CICS_EpiGetEvent call

continues.

Chapter 5. Java request monitoring, C ECI and C EPI exits 211

212 CICS Transaction Gateway: Programming Reference

Chapter 6. Statistical API reference

The information center contains statistical API reference material supplied

with CICS Transaction Gateway.

The documentation is also included as part of Installing CICS Transaction

Gateway in <install_path>/docs/ctgstatsdoc.zip. To view the documentation,

expand the contents of the compressed file into a suitable directory and view

the index.htmlfile with a Web browser.

The material is not included with the CICS Universal Client.

© Copyright IBM Corp. 1989, 2008 213

|
|
|
|

214 CICS Transaction Gateway: Programming Reference

Appendix A. COM Global Constants

Constants are provided in the type libraries for the Client daemon COM

libraries. The libraries are in CCLIECI.DLL and CCLIEPI.DLL.

If you are using Visual Basic, you can look at the definitions in the type

libraries by using Visual Basic Object viewer or another type library viewer.

If you are using VBScript, you cannot access the enumerations defined in the

type library; use the numeric values provided here.

The exception code constants are listed in Appendix D, “COM Error Code

References,” on page 225.

© Copyright IBM Corp. 1989, 2008 215

216 CICS Transaction Gateway: Programming Reference

Appendix B. COM EPI Specific Constants

Synchronization Types

 Table 4. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

CclEPI States

 Table 5. CclEPI States

VB Enumeration Value Description

cclEPIActive 0 EPI initialized OK

cclDiscon 1 EPI Terminated

cclEPIError 2 EPI failed to initialize, handle exception

for more information

CclSession States

 Table 6. CclSession States

VB Enumeration Value Description

cclSessionIdle 0 Idle, client needs to initiate transaction

cclSessionServer 1 Waiting for server

ccISessionClient 2 Waiting for Client daemon to respond

ccISessionDiscon 3 Disconnected

ccISessionError 4 Session Error, handle exception for more

information

CclTerminal States

 Table 7. CclTerminal States

VB Enumeration Value Description

cclInit 0 Terminal defined but not installed

© Copyright IBM Corp. 1989, 2008 217

Table 7. CclTerminal States (continued)

VB Enumeration Value Description

cclActive 1 Terminal connected (not used)

cclIdle 2 Idle, Client daemon needs to initiate

transaction

cclServer 3 Waiting for server

cclClient 4 Waiting for client to respond

cclDiscon 5 Disconnected

cclError 6 Terminal error, handle exception for more

information

CclTerminal ATI States

 Table 8. CclTerminal ATI states

VB Enumeration Value Description

cclATIEnabled 0 ATIs are allowed

cclATIDisabled 1 ATIs are not allowed

CclTerminal EndTermReasons

 Table 9. CclTerminal ATI states

VB Enumeration Value Description

cclSignoff 0 Disconnect request or user has signed off

the terminal

cclShutdown 1 The CICS server has been shut down

cclOutOfService 2 The terminal has been switched to out of

use

cclUnknown 3 An unknown situation as occurred

cclFailed 4 The terminal failed to disconnect

cclNotDiscon 5 The terminal is not disconnected

CclTerminal Sign-on Types

 Table 10. CclTerminal Sign-on Types

VB Enumeration Value Description

cclSignonCapable 0 Terminal supports sign-on transaction

218 CICS Transaction Gateway: Programming Reference

Table 10. CclTerminal Sign-on Types (continued)

VB Enumeration Value Description

cclSignonIncapable 1 Terminal does not support sign-on

transaction

cclSignonUnknown 2 Terminal sign-on capability is unknown

CclScreen AID key codes

 Table 11. CclScreen AID key codes

VB Enumeration Value Description

cclEnter 0 Enter key

cclClear 1 Clear key

cclPA1 2 Program Attention key 1

cclPA2 3 Program Attention key 2

cclPA3 4 Program Attention key 3

cclPF1 5 Program Function key 1

cclPF2 6 Program Function key 2

cclPF3 7 Program Function key 3

cclPF4 8 Program Function key 4

cclPF5 9 Program Function key 5

cclPF6 10 Program Function key 6

cclPF7 11 Program Function key 7

cclPF8 12 Program Function key 8

cclPF9 13 Program Function key 9

cclPF10 14 Program Function key 10

cclPF11 15 Program Function key 11

cclPF12 16 Program Function key 12

cclPF13 17 Program Function key 13

cclPF14 18 Program Function key 14

cclPF15 19 Program Function key 15

cclPF16 20 Program Function key 16

cclPF17 21 Program Function key 17

cclPF18 22 Program Function key 18

cclPF19 23 Program Function key 19

cclPF20 24 Program Function key 20

Appendix B. COM EPI Specific Constants 219

Table 11. CclScreen AID key codes (continued)

VB Enumeration Value Description

cclPF21 25 Program Function key 21

cclPF22 26 Program Function key 22

cclPF23 27 Program Function key 23

cclPF24 28 Program Function key 24

CclField Protected State Attributes

 Table 12. CclField Protected state attributes

VB Enumeration Value Description

cclProtect 0 Protected Field (cannot be modified)

cclUnprotect 1 Unprotected (input) field

CclField Numeric Attributes

 Table 13. CclField Numeric Attributes

VB Enumeration Value Description

cclAlphanumeric 0 Alphanumeric input field

cclNnumeric 1 Numeric input field

CclField Intensity Attributes

 Table 14. CclField Intensity attributes

VB Enumeration Value Description

cclNormal 0 Normal display

cclIntense 1 Intensified display

cclDark 2 Non-display field

CclField Modified Attributes

 Table 15. CclField Modified Attributes

VB Enumeration Value Description

cclUnmodified 0 Field has not been changed

cclModified 1 Field has been changed

220 CICS Transaction Gateway: Programming Reference

CclField Highlight Attributes

 Table 16. CclField Highlight attributes

VB Enumeration Value Description

cclHltDefault 0 Default field text highlighting

cclHltNormal 1 Field text highlight as specified by 3270

base attribute

cclHltBlink 2 Blinking text

cclHltReverse 3 Reverse video text

cclHltUnderscore 4 Underscored text

cclHltIntense 5 High intensity text

CclField Transparency Attributes

 Table 17. CclField Transparency attributes

VB Enumeration Value Description

cclTrnDefault 0 Default (opaque) field background

cclTrnOr 1 Transparent field background (OR)

cclTrnXorcclTrnXor 2 Transparent field background (XOR)

cclTrnOpaque 3 Opaque field background

CclField Color Attributes

 Table 18. CclField Color attributes

VB Enumeration Value Description

cclDefaultColor 0

cclBlue 1

cclRed 2

cclPink 3

cclGreen 4

cclCyan 5

cclYellow 6

cclNeutral 7

cclBlack 8

Appendix B. COM EPI Specific Constants 221

Table 18. CclField Color attributes (continued)

VB Enumeration Value Description

cclDarkBlue 9

cclOrange 10

cclPurple 11

cclPaleGreen 12

cclPaleCyan 13

cclGray 14

cclWhite 15

222 CICS Transaction Gateway: Programming Reference

Appendix C. COM ECI Constants

Synchronization Types

 Table 19. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

Flow status types

 Table 20. Flow status types

VB Enumeration Value Description

cclInactive 0 Flow is inactive

cclLink 1 Flow is currently making a link call

cclBackout 2 Flow is currently backing out a UOW

cclCommit 3 Flow is currently committing a UOW

cclStatus 4 Flow is requesting status

cclChanged 5 Flow is requesting a status change

cclCancel 6 Flow is requesting a status cancel

Connection Status Codes

 Table 21. Connection status code

VB Enumeration Value Description

cclUnknown 0 The CICS server status is unknown

cclAvailable 1 The CICS server status is available

cclUnavailable 2 The CICS server status is unavailable

© Copyright IBM Corp. 1989, 2008 223

224 CICS Transaction Gateway: Programming Reference

Appendix D. COM Error Code References

 Enumeration Value Description ECI EPI

cclNoError 0 No error occurred Yes Yes

cclBufferOverflow 1 Attempted to increase a CclBuf object

which isn’t Extensible

Yes

cclMultipleInstance 2 Attempted to create more than one ECI

object

Yes

cclActiveFlow 3 Current Flow is still active, you cannot use

this flow until it is inactive

Yes

cclActiveUOW 4 Current UOW is still active, you need to

backout or commit.

Yes

cclSyncType 5 Incorrect synchronization type for method

call.

Yes Yes

cclDataLength 9 CommArea > 32768 Bytes or inbound 3270

data stream too large for Terminal Buffer

size.

Yes Yes

cclNoCICS 10 The Client daemon is unavailable, or the

server implementation is unavailable, or a

logical unit of work was to be begun, but

the CICS server specified is not available.

No resources have been updated

Yes Yes

cclCICSDied 11 A logical unit of work was to be begun or

continued, but the CICS server was no

longer available. If this is a link call with

an active UOW, the changes are backed

out. If This was a UOW Commit or the

application cannot determine whether the

changes have been committed or backed

out, and must log this condition to aid

future manual recovery

Yes

cclNoReply 12 There was no outstanding reply Yes

cclTransaction 13 ECI Program Abended Yes

cclSystemError 14 Unknown internal error occurred Yes Yes

cclResource 15 The server implementation or the Client

daemon did not have enough resources to

complete the request e.g. insufficient SNA

sessions.

Yes Yes

© Copyright IBM Corp. 1989, 2008 225

Enumeration Value Description ECI EPI

cclMaxUOWs 16 A new logical unit of work was being

created, but the application already has as

many outstanding logical units of work as

the configuration will support.

Yes

cclUnknownServer 17 The requested server could not be located Yes Yes

cclSecurity 18 You did not supply a valid combination of

user ID and password, though the server

expects it.

Yes Yes

cclMaxServers 19 You attempted to start requests to more

servers than your configuration allows.

You should consult the documentation for

your Client daemon or server to see how

to control the number of servers you can

use.

Yes Yes

cclMaxRequests 20 There were not enough communication

resources to satisfy the request. You should

consult the documentation for your Client

daemon or server to see how to control

communication resources

Yes Yes

cclRolledBack 21 An attempt was made to commit a logical

unit of work, but the server was unable to

commit the changes, and backed them out

instead

Yes

cclParameter 22 Incorrect parameter supplied Yes Yes

cclInvalidState 23 The Object is not in the correct state to

invoke the method, e.g. terminal object still

in server state and an attempt to send data

is made.

Yes Yes

ccltransId 24 Null transid supplied or returned for a

pseudo conversational transaction

Yes

cclInitEPI 25 No EPI object or EPI failed to initialize

correctly

Yes

cclConnect 26 Unexpected error trying to add the

terminal

Yes

ccldata stream 27 Unsupported Data Stream Yes

cclInvalidMap 28 Map definition and Screen do not match Yes

cclClass 29 Unknown internal Class error occurred. Yes Yes

cclStartTranFailure 30 Transaction failed to start Yes

cclTimeout 31 Timeout occurred before response from

Server

Yes Yes

cclNoPassword 32 The object’s password is null. Yes Yes

226 CICS Transaction Gateway: Programming Reference

Enumeration Value Description ECI EPI

cclNoUserid 33 The object’s userid is null Yes Yes

cclNullNewPassword 34 The provided password is null Yes Yes

cclPemNotSupported 35 The CICS Server does not support the

Password Expiry Management facilities.

The method cannot be used

Yes Yes

cclPemNotActive 36 Password Expiry Management is not active Yes Yes

cclPasswordExpired 37 The password has expired. No information

has been returned

Yes Yes

cclPasswordInvalid 38 The password is invalid. Yes Yes

cclPasswordRejected 39 Change password failed because the

password doesn’t conform to standards

defined

Yes Yes

cclUseridInvalid 40 The userid is unknown Yes Yes

cclInvalidTermid 41 Invalid Terminal ID Yes

cclInvalidModelId 42 Invalid Model/Type Yes

cclnot3270 43 Not a 3270 device Yes

cclinvalidCCSId 44 Invalid CCSid Yes

cclServerBusy 45 CICS server is busy Yes

cclSignonNotPoss 46 The server does not allow the terminal to

be installed as sign-on capable.

Yes

Appendix D. COM Error Code References 227

228 CICS Transaction Gateway: Programming Reference

Appendix E. Java encodings

This appendix lists the supported Java encodings. A canonical name is

converted to the corresponding CCSid so that a CICS server can determine in

which code page a data stream can be located.

Note:

1. Your CICS server must support EPI Version 2 for the encodings to

be implemented.

2. Check your CICS Server documentation to find out which CCSids

your server supports.

 Canonical name Description CCSid

Cp1252 Windows Latin-1 5348

ISO8859_1 ISO 8859-1, Latin alphabet No. 1 819

UTF8 Eight-bit Unicode Transformation format 1208

ASCII American Standard Code for Information Interchange 437

Big5 Big 5, Traditional Chinese 950

Cp037 USA, Canada (Bilingual, French), Netherlands, Portugal, Brazil,

Australia

37

Cp273 IBM Austria, Germany 273

Cp277 IBM Denmark, Norway 277

Cp278 IBM Finland, Sweden 278

Cp280 IBM Italy 280

Cp284 IBM Catalan/Spain, Spanish Latin America 284

Cp285 IBM United Kingdom, Ireland 285

Cp297 IBM France 297

Cp420 IBM Arabic 420

Cp424 IBM Hebrew 424

Cp437 MS-DOS United States, Australia, New Zealand, South Africa 437

Cp500 EBCDIC 500V1 500

Cp838 IBM Thailand extended SBCS 9030

Cp850 MS-DOS Latin-1 850

Cp852 MS-DOS Latin-2 852

Cp855 IBM Cyrillic 855

© Copyright IBM Corp. 1989, 2008 229

Canonical name Description CCSid

Cp856 IBM Hebrew 856

Cp857 IBM Turkish 857

Cp858 Variant of Cp850 with euro character 858

Cp862 PC Hebrew 862

Cp864 PC Arabic 864

Cp865 MS-DOS Nordic 865

Cp866 MS-DOS Russian 866

Cp868 MS-DOS Pakistan 868

Cp869 IBM Modern Greek 869

Cp870 IBM Multilingual Latin-2 870

Cp871 IBM Iceland 871

Cp874 IBM Thai 9066

Cp875 IBM Greek 875

Cp918 IBM Pakistan (Urdu) 918

Cp921 IBM Latvia, Lithuania (AIX®, DOS) 921

Cp922 IBM Estonia (AIX, DOS) 922

Cp923 IBM Latin-9 923

Cp930 Japanese Katakana-Kanji mixed with 4370 UDC, superset of

5026

930

Cp933 Korean Mixed with 1880 UDC, superset of 5029 933

Cp935 Simplified Chinese Host mixed with 1880 UDC, superset of 5031 935

Cp937 Traditional Chinese Host mixed with 6204 UDC, superset of

5033

937

Cp939 Japanese Latin Kanji mixed with 4370 UDC, superset of 5035 939

Cp942 IBM OS/2® Japanese, superset of Cp932 942

Cp942C Variant of Cp942 942

Cp943 IBM OS/2 Japanese, superset of Cp932 and Shift-JIS 943

Cp943C Variant of Cp943 943

Cp948 OS/2 Chinese (Taiwan) superset of 938 948

Cp949 PC Korean 949

Cp949C Variant of Cp949 949

Cp950 PC Chinese (Hong Kong, Taiwan) 950

Cp964 AIX Chinese (Taiwan) 964

Cp970 AIX Korean 970

230 CICS Transaction Gateway: Programming Reference

Canonical name Description CCSid

Cp1006 IBM AIX Pakistan (Urdu) 1006

Cp1025 IBM Multilingual Cyrillic: Bulgaria, Bosnia, Herzegovinia,

Macedonia (FYR)

1025

Cp1026 IBM Latin-5, Turkey 1026

Cp1097 IBM Iran (Farsi)/Persian 1097

Cp1098 IBM Iran (Farsi)/Persian 1098

Cp1112 IBM Latvia, Lithuania 1112

Cp1122 IBM Estonia 1122

Cp1123 IBM Ukraine 1123

Cp1124 IBM AIX Ukraine 1124

Cp1140 Variant of Cp037 with euro character 1140

Cp1141 Variant of Cp273 with euro character 1141

Cp1142 Variant of Cp277 with euro character 1142

Cp1143 Variant of Cp278 with euro character 1143

Cp1144 Variant of Cp280 with euro character 1144

Cp1145 Variant of Cp284 with euro character 1145

Cp1146 Variant of Cp285 with euro character 1146

Cp1147 Variant of Cp297 with euro character 1147

Cp1148 Variant of Cp500 with euro character 1148

Cp1149 Variant of Cp871 with euro character 1149

Cp1250 Windows Eastern European 5346

Cp1251 Windows Cyrillic 5347

Cp1253 Windows Greek 5349

Cp1254 Windows Turkish 5350

Cp1255 Windows Hebrew 5351

Cp1256 Windows Arabic 5352

Cp1257 Windows Baltic 5353

Cp1258 Windows Vietnamese 5354

Cp1381 IBM OS/2, DOS People’s Republic of China (PRC) 1381

Cp1383 IBM AIX, People’s Republic of China (PRC) 1383

EUC_CN GB2312, EUC encoding, Simplified Chinese 1383

EUC_JP JIS X 0201, 0208, 0212, EUC encoding, Japanese 954

EUC_KR KS C 5601, EUC encoding, Korean 970

Appendix E. Java encodings 231

Canonical name Description CCSid

GBK GBK, Simplified Chinese 1386

ISO8859_2 ISO 8859-2, Latin alphabet No. 2 912

ISO8859_5 ISO 8859-5, Latin/Cyrillic alphabet 915

ISO8859_6 ISO 8859-6, Latin/Arabic alphabet 1089

ISO8859_7 ISO 8859-7, Latin/Greek alphabet 813

ISO8859_8 ISO 8859-8, Latin/Hebrew alphabet 916

ISO8859_9 ISO 8859-9, Latin alphabet No. 5 920

ISO8859_15_FDIS ISO 8859-15, Latin alphabet No. 9 923

JIS0201 JIS X 0201, Japanese 5050

JIS0208 JIS X 0208, Japanese 5050

JIS0212 JIS X 0212, Japanese 5050

EUC_TW CNS 11643 (Plane 1-3), EUC encoding, Traditional Chinese 964

MS932 Windows Japanese 943

MS936 Windows Simplified Chinese 1386

MS949 Windows Korean 1363

232 CICS Transaction Gateway: Programming Reference

Appendix F. C++ Exception Objects

All exception objects provide the following information

v Class Name

v Method Name

v Exception Code

v Exception Text

v Abend Code (ECI Only)

v Origin Point

The Class name can contain a trailing ’I’, which implies it is an

internally-contained class for the well known class. For example, CclFlowI is

contained by CclFlow. If an internal class is reported the method reported

might be an internal method, not an external one.

The Origin Point is a unique value which defines the exact point within the

class library where the exception was generated. These are mainly useful for

service.

The more important items of information are the Exception Code, Exception

Text and Abend Code (ECI only). The following is a Summary of these

Exception Codes and Text and whether they are relevant to ECI or EPI or

both.

 Table 22. Exception codes

Enumeration Text Description ECI EPI

Ccl::noError no error No error occurred Yes Yes

Ccl::bufferOverflow buffer overflow Attempted to increase a

CclBuf object which isn’t

Extensible

Yes

Ccl::multipleInstance multiple instance Attempted to create more

than one ECI object

Yes

Ccl::activeFlow flow is active Current Flow is still active,

you cannot use this flow

until it is inactive

Yes

Ccl::activeUOW UOW is active Current UOW is still active,

you need to backout or

commit.

Yes

Ccl::syncType sync error Incorrect synchronization

type for method call.

Yes Yes

© Copyright IBM Corp. 1989, 2008 233

Table 22. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::threadCreate thread create error Internal thread creation

error

Yes Yes

Ccl::threadWait thread wait error Internal thread wait error Yes

Ccl::threadKill thread kill error Internal thread kill error Yes

Ccl::dataLength data length invalid CommArea > 32768 Bytes

or inbound 3270 data

stream too large for

Terminal Buffer size.

Yes Yes

Ccl::noCICS no CICS The Gateway is unavailable,

or the server

implementation is

unavailable, or a logical

unit of work was to be

begun, but the CICS server

specified is not available.

No resources have been

updated

Yes Yes

Ccl::CICSDied CICS died A logical unit of work was

to be begun or continued,

but the CICS server was no

longer available. If this is a

link call with an active

UOW, the changes are

backed out. If this was a

UOW Commit or Backout,

the application cannot

determine whether the

changes have been

committed or backed out,

and must log this condition

to aid future manual

recovery.

Yes

Ccl::noReply no reply There was no outstanding

reply

Yes

Ccl::transaction transaction abend ECI Program Abended Yes

Ccl::systemError system error Unknown internal error

occurred

Yes Yes

Ccl::resource resource shortage The server implementation

or the Gateway did not

have enough resources to

complete the request e.g.

insufficient SNA sessions.

Yes Yes

234 CICS Transaction Gateway: Programming Reference

Table 22. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::maxUOWs exceeded max UOWs A new logical unit of work

was being created, but the

application already has as

many outstanding logical

units of work as the

configuration will support.

Yes

Ccl::unknownServer unknown server The requested server could

not be located

Yes Yes

Ccl::security security error You did not supply a valid

combination of user ID and

password, though the server

expects it.

Yes Yes

Ccl::maxServers exceeded max servers You attempted to start

requests to more servers

than your configuration

allows. You should consult

the documentation for your

Gateway or server to see

how to control the number

of servers you can use.

Yes Yes

Ccl::maxRequests exceeded max requests There were not enough

communication resources to

satisfy the request. You

should consult the

documentation for your

Gateway or server to see

how to control

communication resources

Yes Yes

Ccl::rolledBack rolled back An attempt was made to

commit a logical unit of

work, but the server was

unable to commit the

changes, and backed them

out instead

Yes

Ccl::parameter parameter error Incorrect parameter

supplied

Yes Yes

Ccl::invalidState invalid object state The Object is not in the

correct state to invoke the

method, e.g. terminal object

still in server state and an

attempt to send data is

made.

Yes Yes

Appendix F. C++ Exception Objects 235

Table 22. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::transId invalid transaction Null transid supplied or

returned for a pseudo

conversational transaction

Yes

Ccl::initEPI EPI not initialized EPI has failed to initialize

correctly or EPI object is

missing

Yes

Ccl::connect connection failed Unexpected error trying to

add the terminal

Yes

Ccl::data stream 3270 data stream error Unsupported Data Stream Yes

Ccl::invalidMap map/screen mismatch Map definition and Screen

do not match

Yes

Ccl::cclClass CICS class error Unknown internal Class

error occurred.

Yes Yes

Ccl::startTranFailure Start Transaction Failure Transaction failed to start Yes

Ccl::timeout Timeout Occurred Timeout occurred before

response from Server

Yes Yes

Ccl::noPassword Password is Null The object’s password is

null.

Yes Yes

Ccl::noUserid Userid is Null The object’s userid is null Yes Yes

Ccl::nullNewPassword A NULL new password

was supplied

The provided password is

null

Yes Yes

Ccl::pemNotSupported PEM is not supported on

the server

The CICS Server does not

support the Password

Expiry Management

facilities. The method

cannot be used

Yes Yes

Ccl::pemNotActive PEM is not active on the

server

Password Expiry

Management is not active

Yes Yes

Ccl::passwordExpired Password has expired The password has expired.

No information has been

returned

Yes Yes

Ccl::passwordInvalid Password is invalid The password is invalid. Yes Yes

Ccl::passwordRejected New password was rejected Change password failed

because the password does

not conform to standards

defined

Yes Yes

Ccl::useridInvalid Userid unknown at server The userid is unknown Yes Yes

Ccl:invalidTermid Termid is invalid The terminal ID is invalid Yes

236 CICS Transaction Gateway: Programming Reference

Table 22. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl:invalidModelid Modelid is invalid Invalid Model/Device Type Yes

Ccl:not3270 Not a 3270 device Not a 3270 device Yes

Ccl:invalidCCSid Code page (CCSid value) is

invalid

Invalid CCSid Yes

Ccl:serverBusy Server is too busy CICS server is busy Yes

Ccl:signonNotPossible Sign-on Capable terminal is

not possible

The server does not allow

the terminal to be installed

as sign-on capable.

Yes

Appendix F. C++ Exception Objects 237

238 CICS Transaction Gateway: Programming Reference

The product library and related literature

This information lists books on the CICS Transaction Gateway, and related

topics.

CICS Transaction Gateway books

v CICS Transaction Gateway: Windows Administration, SC34-6960-00

This book describes the administration of the CICS Transaction Gateway for

Windows.

v CICS Transaction Gateway: UNIX and Linux Administration, SC34-6959-00

This book describes the administration of the CICS Transaction Gateway for

UNIX and Linux.

v CICS Universal Client: Windows Administration, SC34-6963-00

This book describes the administration of the CICS Transaction Gateway for

Windows.

v CICS Universal Client: UNIX and Linux Administration, SC34-6962-00

This book describes the administration of the CICS Transaction Gateway for

the Linux operating system.

v CICS Transaction Gateway: z/OS Administration, SC34-6961-00

This book describes the administration of the CICS Transaction Gateway for

z/OS.

v CICS Transaction Gateway: Messages, SC34-6964-00

This online book lists and explains the error messages that can be generated

by the CICS Transaction Gateway.

v CICS Transaction Gateway: Programming Reference, SC34-6966-00

This book provides information on the APIs of the programming languages

supported by the CICS Transaction Gateway.

Additional HTML pages contain JAVA programming reference information.

v CICS Transaction Gateway: Programming Guide, SC34-6965-00

This introduction to programming for the CICS Transaction Gateway

provides the information that you need to allow user applications to use

CICS facilities in a client/server environment.

© Copyright IBM Corp. 1989, 2008 239

Sample configuration documents

Several sample configuration documents are available in portable document

format (PDF). These documents give step-by-step guidance for configuring

CICS Transaction Gateway for communication with CICS servers, using

various protocols. They provide detailed instructions that extend the

information in the CICS Transaction Gateway library.

Visit the following Web site:

www.ibm.com/software/cics/ctg

and follow the Library link.

Redbooks

The following International Technical Support Organization (ITSO) Redbook

publication contains many examples of client/server configurations:

v CICS Transaction Gateway V5 - The WebSphere® Connector for CICS, SG24-6133

v Revealed! Architecting Web Access to CICS, SG24-5466

v Enterprise JavaBeans for z/OS and OS/390® CICS Transaction Server V2.2,

SG24-6284

v Java Connectors for CICS: Featuring the J2EE Connector Architecture, SG24-6401.

This book provides information on developing J2EE applications.

v Systems Programmer’s Guide to Resource Recovery Services (RRS),

SG24-6980-00. This book provides information on using RRS in various

scenarios.

v Communications Server for z/OS V1R2 TCP/IP Implementation Guide,

SG24-6517-00. This book provides information on using Communications

Server for z/OS V1R2, including load balancing.

v Redpaper: Transactions in J2EE, REDP-3659-00. This redpaper provides a

discussion of transactions in the J2EE environment, including one- and XA

transactions.

You can obtain ITSO Redbooks® from a number of sources. For the latest

information, see:

www.ibm.com/redbooks/

Other Useful Books

CICS Transaction Server publications

CICS Transaction Server for z/OS RACF Security Guide, SC34-6249

240 CICS Transaction Gateway: Programming Reference

http://www.ibm.com/software/cics/ctg
http://www.ibm.com/redbooks/

CICS interproduct communication

The following books describe the intercommunication facilities of the CICS

server products:

v CICS Family: Interproduct Communication, SC34-6267

v CICS Transaction Server for Windows V5.0 Intercommunication, SC34-6209

v CICS Transaction Server for z/OS CICS External Interfaces Guide, SC34-6449

v CICS Transaction Server for z/OS: Intercommunication Guide, SC34-6448

v CICS/VSE 2.3: Intercommunication Guide, SC33-0701

v CICS Transaction Server for iSeries® V5R2: Intercommunication, SC41-5456

v TXSeries® 5.1: CICS Intercommunication Guide, SC09-4462

The first book above is a CICS family book containing a platform-independent

overview of CICS interproduct communication.

CICS problem determination books

The following books describe the problem determination facilities of the CICS

server products:

v Transaction Server for Windows V5.0: Problem Determination, GC34-6210

v CICS Transaction Server for z/OS V3.1 CICS Problem Determination Guide,

SC34-6441

v CICS/VSE 2.3 Problem Determination Guide, SC33-0716

v CICS Transaction Server for iSeries V5R2: Problem Determination, SC41-5453

v TXSeries V5.1: CICS Problem Determination Guide, SC09-4465

You can find information on CICS products at the following Web site:

www.ibm.com/software/cics/ctg

Microsoft Windows publications

See this Web site:

www.microsoft.com/windows

APPC-related publications

IBM products

IBM Communications Server

See this Web page:

www.ibm.com/software/network/commserver/library

IBM Personal Communications

See this Web page:

www.ibm.com/software/network/pcomm/library

The product library and related literature 241

http://www.ibm.com/software/cics/ctg
http://www.microsoft.com/windows
http://www.ibm.com/software/network/commserver/library
http://www.ibm.com/software/network/pcomm/library

Microsoft products

See this page Web:

http://www.microsoft.com/hiserver/techinfo/productdoc/default.mspx

Systems Network Architecture (SNA)

v SNA Formats, GA27-3136

v Systems Network Architecture Technical Overview, GC30-3073

v Guide to SNA over TCP/IP, SC31-6527

Obtaining books from IBM

For information on books you can download, visit our Web site at:

www.ibm.com/software/cics/ctg

and follow the Library link.

242 CICS Transaction Gateway: Programming Reference

http://www.microsoft.com/hiserver/techinfo/productdoc/default.mspx
http://www.ibm.com/software/cics/ctg

Accessibility features for CICS Transaction Gateway

Accessibility features help users who have a physical disability, such as

restricted mobility or limited vision, to use information technology products

successfully. The CICS Transaction Gateway supports keyboard-only

operation. Topics on the following pages give details of accessibility features.

Visit the IBM Accessibility Center for more information about IBM’s

commitment to accessibility.

Documentation

See the Eclipse information center for an HTML version of the documentation.

Starting the Gateway daemon

You can start the Gateway daemon from a command prompt using a screen

reader.

In some Telnet sessions, the screen reader might reread CICS Transaction

Gateway log output or the command prompt after the CICS Transaction

Gateway has started. This behavior is expected, and does not mean that the

CICS Transaction Gateway has failed to start.

To determine if the CICS Transaction Gateway started correctly, check for the

message:

 ’CTG6512I CICS Transaction Gateway initialization complete’.

If the CICS Transaction Gateway did not start successfully, this message is

produced:

 ’CTG6513E CICS Transaction Gateway failed to initialize’.

Setting EPITerminal properties programmatically

The EPITerminal terminal properties sheet is not accessible. To set properties

programmatically, use the getTerminal() method of the EPITerminal object and

cast it to a Terminal object. For example, if epiTerm is an EPITerminal object,

code something like the following:

Terminal term = (Terminal)epiTerm.getTerminal();

You can then use methods on the Terminal object to set these properties. To

set the name for a CICS server named YOURSERV, code the following:

© Copyright IBM Corp. 1989, 2008 243

|

|
|

|
|
|
|

|
|

|

|
|

|

|

http://www.ibm.com/able

term.setServerName("YOURSERV");

See the Javadoc supplied with the product for full details of these setter

methods.

cicsterm

Although cicsterm is accessible, it relies on the application that is being

processed to define an accessible 3270 screen.

The bottom row of cicsterm contains status information. The following list

shows this information, as it appears from left to right:

Status For example, 1B is displayed while cicsterm is connecting to a server.

Displayed at columns 1 – 3.

Terminal name

Also referred to as LU Name. Columns 4 – 7.

Action

For example, X-System, indicating that you cannot enter text in the

terminal window because cicsterm is waiting for a response from the

server. Columns 9 – 16.

Error number

Errors in the form CCLNNNN, relating to the CICS Transaction

Gateway. Columns 17 – 24.

Server name

The server to which cicsterm is connected. Columns 27 – 35.

Upper case

An up arrow is displayed when the Shift key is pressed. Column 42.

Caps Lock

A capital A is displayed when Caps Lock is on. Column 43.

Insert on

The caret symbol (^) is displayed if text will be inserted, rather than

overwriting existing text. If you have difficulty seeing the caret,

change the font face and size, or use a screen magnifier to increase the

size of the status line. Column 52.

Cursor position

The cursor position, in the form ROW/COLUMN, where ROW is a

two-digit number, and COLUMN a three-digit number. The top left of

the screen is 01/001. Column 75–80.

Note: You might need to change the default behavior of your screen

reader if it reads only the last digit of the cursor position.

Customize your screen reader to specify that columns 75–80 of

244 CICS Transaction Gateway: Programming Reference

the status row are to be treated as one field. This will cause the

full area to be read when any digit changes.

The cicsterm -? command

After issuing the cicsterm -? command, use the up arrow key to move from

the OK button to the list of messages. Use the up and down arrow keys to

move through the messages. Press Tab and then Enter when done.

Accessibility features for CICS Transaction Gateway 245

246 CICS Transaction Gateway: Programming Reference

Glossary

This glossary defines special terms used in the CICS Transaction Gateway

library.

3270 emulation

The use of software that enables a client to emulate an IBM 3270

display station or printer, and to use the functions of an IBM host

system.

abnormal end of task (abend)

The termination of a task, job, or subsystem because of an error

condition that recovery facilities cannot resolve.

Advanced program-to-program communication (APPC)

An implementation of the SNA/SDLC LU 6.2 protocol that allows

interconnected systems to communicate and share the processing of

programs. The Client daemon uses APPC to communicate with CICS

server systems.

APAR See Authorized program analysis report.

API Application programming interface.

applet A small application program that performs a specific task and is

usually portable between operating systems. Often written in Java,

applets can be downloaded from the Internet and run in a Web

browser.

application identifier

The name by which a CICS system is known in a network of

interconnected CICS systems. CICS Transaction Gateway application

identifiers do not need to be defined in SYS1.VTAMLST. The CICS

APPLID is specified in the APPLID system initialization parameter.

application programming interface (API)

A functional interface that allows an application program that is

written in a high-level language to use specific data or functions of

the operating system or another program.

APPLID

See application identifier.

ARM See automatic restart management.

Authorized program analysis report (APAR)

A request for correction of a defect in a current release of an

IBM-supplied program.

© Copyright IBM Corp. 1989, 2008 247

ATI See automatic transaction initiation.

attach In SNA, the request unit that flows on a session to initiate a

conversation.

Attach Manager

The component of APPC that matches attaches received from remote

computers to accepts issued by local programs.

autoinstall

A method of creating and installing resources dynamically as

terminals log on, and deleting them at logoff.

automatic restart manager

A z/OS recovery function that can improve the availability of specific

batch jobs or started tasks, and therefore result in faster resumption of

productive work. Acronym: ARM.

automatic transaction initiation (ATI)

The initiation of a CICS transaction by an internally generated request,

for example, the issue of an EXEC CICS START command or the

reaching of a transient data trigger level. CICS resource definition can

associate a trigger level and a transaction with a transient data

destination. When the number of records written to the destination

reaches the trigger level, the specified transaction is automatically

initiated.

bean A definition or instance of a JavaBeans™ component. See also

JavaBeans.

bean-managed transaction

A transaction where the J2EE bean itself is responsible for

administering transaction tasks such as committal or rollback. See also

container-managed transaction.

BIND command

In SNA, a request to activate a session between two logical units

(LUs).

business logic

The part of a distributed application that is concerned with the

application logic rather than the user interface of the application.

Compare with presentation logic.

CA See certificate authority.

callback

A way for one thread to notify another application thread that an

event has happened.

certificate authority

In computer security, an organization that issues certificates. The

248 CICS Transaction Gateway: Programming Reference

certificate authority authenticates the certificate owner’s identity and

the services that the owner is authorized to use. It issues new

certificates and revokes certificates from users who are no longer

authorized to use them.

change-number-of-sessions (CNOS)

An internal transaction program that regulates the number of parallel

sessions between the partner LUs with specific characteristics.

channel

A channel is a set of containers, grouped together to pass data to

CICS. There is no limit to the number of containers that can be added

to a channel, and the size of individual containers is limited only by

the amount of storage that you have available.

CICS connectivity components

A generic reference to the Client daemon, EXCI, and the IPIC protocol.

CICS on System/390®

A generic reference to the products CICS Transaction Server for z/OS,

CICS for MVS/ESA™, CICS Transaction Server for VSE/ESA™, and

CICS/VSE®.

CICS TS

Abbreviation of CICS Transaction Server.

class In object-oriented programming, a model or template that can be

instantiated to create objects with a common definition and therefore,

common properties, operations, and behavior. An object is an instance

of a class.

classpath

In the execution environment, an environment variable keyword that

specifies the directories in which to look for class and resource files.

Client API

The Client API is the interface used by Client applications to invoke

services in CICS using the Client daemon. See External Call Interface,

External Presentation Interface, and External Security Interface.

Client application

The client application is a user application written in a supported

programming language, other than Java, that uses the Client API.

Client daemon

The Client daemon, process cclclnt, exists only on UNIX, Windows,

and Linux. It manages network connections to CICS servers. It

processes ECI, EPI, and ESI requests, sending and receiving the

appropriate flows from the CICS server to satisfy the application

requests. It uses the CLIENT section of ctg.ini for its configuration.

Glossary 249

|
|
|
|
|

|
|

client/server

Pertaining to the model of interaction in distributed data processing in

which a program on one computer sends a request to a program on

another computer and awaits a response. The requesting program is

called a client; the answering program is called a server.

CNOS See Change-Number-of-Sessions.

code page

An assignment of hexadecimal identifiers (code points) to graphic

characters. Within a given code page, a code point can have only one

meaning.

color mapping file

A file that is used to customize the 3270 screen color attributes on

client workstations.

commit phase

The second phase in a XA process. If all participants acknowledge that

they are prepared to commit , the transaction manager issues the

commit request. If any participant is not prepared to commit the

transaction manager issues a back-out request to all participants.

communication area (COMMAREA)

A communication area that is used for passing data both between

programs within a transaction and between transactions.

configuration file

A file that specifies the characteristics of a program, system device,

server or network.

connection

In data communication, an association established between functional

units for conveying information.

 In Open Systems Interconnection architecture, an association

established by a given layer between two or more entities of the next

higher layer for the purpose of data transfer.

In TCP/IP, the path between two protocol application that provides

reliable data stream delivery service.

In Internet, a connection extends from a TCP application on one

system to a TCP application on another system.

container

A container is a named block of data designed for passing information

between programs. A container is a ″named COMMAREA″ that is not

limited to 32KB. Containers are grouped together in sets called

channels.

250 CICS Transaction Gateway: Programming Reference

container-managed transaction

A transaction where the EJB container is responsible for

administration of tasks such as committal or rollback. See also

bean-managed transaction.

control table

In CICS, a storage area used to describe or define the configuration or

operation of the system.

conversation

A connection between two programs over a session that allows them

to communicate with each other while processing a transaction.

conversation security

In APPC, a process that allows validation of a user ID or group ID

and password before establishing a connection.

daemon

A program that runs unattended to perform continuous or periodic

systemwide functions, such as network control. A daemon may be

launched automatically, such as when the operating system is started,

or manually.

data link control (DLC)

A set of rules used by nodes on a data link (such as an SDLC link or a

token ring) to accomplish an orderly exchange of information.

DBCS See double-byte character set.

dependent logical unit

A logical unit that requires assistance from a system services control

point (SSCP) to instantiate an LU-to-LU session.

deprecated

Pertaining to an entity, such as a programming element or feature,

that is supported but no longer recommended, and that might become

obsolete.

digital certificate

An electronic document used to identify an individual, server,

company, or some other entity, and to associate a public key with the

entity. A digital certificate is issued by a certificate authority and is

digitally signed by that authority.

digital signature

Information that is encrypted with an entity’s private key and is

appended to a message to assure the recipient of the authenticity and

integrity of the message. The digital signature proves that the message

was signed by the entity that owns, or has access to, the private key

or shared secret symmetric key.

Glossary 251

distributed application

An application for which the component application programs are

distributed between two or more interconnected processors.

distributed processing

The processing of different parts of the same application in different

systems, on one or more processors.

distributed program link (DPL)

A link that enables an application program running on one CICS

system to link to another application program running in another

CICS system.

DLL See dynamic link library.

domain

In the Internet, a part of a naming hierarchy in which the domain

name consists of a sequence of names (labels) separated by periods

(dots).

domain name

In TCP/IP, a name of a host system in a network.

domain name server

In TCP/IP, a server program that supplies name-to-address translation

by mapping domain names to internet addresses. Synonymous with

name server.

dotted decimal notation

The syntactical representation for a 32-bit integer that consists of four

8-bit numbers written in base 10 with periods (dots) separating them.

It is used to represent IP addresses.

double-byte character set (DBCS)

A set of characters in which each character is represented by 2 bytes.

Languages such as Japanese, Chinese and Korean, which contain more

symbols than can be represented by 256 code points, require

double-byte character sets. Because each character requires 2 bytes, the

typing, display, and printing of DBCS characters requires hardware

and programs that support DBCS. Contrast with single-byte character

set.

DPL See distributed program link.

dynamic link library (DLL)

A collection of runtime routines made available to applications as

required.

EBCDIC

See Extended binary-coded decimal interchange code.

ECI See external call interface.

252 CICS Transaction Gateway: Programming Reference

EJB See Enterprise JavaBeans.

emulation program

A program that allows a host system to communicate with a

workstation in the same way as it would with the emulated terminal.

emulator

A program that causes a computer to act as a workstation attached to

another system.

encryption

The process of transforming data into an unintelligible form in such a

way that the original data can be obtained only by using a decryption

process.

enterprise bean

A Java component that can be combined with other resources to create

J2EE applications. There are three types of enterprise beans: entity

beans, session beans, and message-driven beans.

Enterprise JavaBeans

A component architecture defined by Sun Microsystems for the

development and deployment of object-oriented, distributed,

enterprise-level applications (J2EE).

environment variable

A variable that specifies the operating environment for a process. For

example, environment variables can describe the home directory, the

command search path, the terminal in use, and the current time zone.

EPI See external presentation interface.

ESI See external security interface.

Ethernet

A local area network that allows multiple stations to access the

transmission medium at will without prior coordination, avoids

contention by using carrier sense and deference, and resolves

contention by using collision detection and transmission. Ethernet

uses carrier sense multiple access with collision detection

(CSMA/CD).

EXCI See External CICS Interface.

external call interface (ECI)

A facility that allows a non-CICS program to run a CICS program.

Data is exchanged in a COMMAREA as for normal CICS

interprogram communication.

Extended binary-coded decimal interchange code (EBCDIC)

A coded character set of 256 8-bit characters developed for the

representation of textual data.

Glossary 253

extended logical unit of work (extended LUW)

A logical unit of work that is extended across successive ECI requests

to the same CICS server.

External CICS Interface (EXCI)

The EXCI is an MVS™ application programming interface provided by

CICS Transaction Server for z/OS that enables a non-CICS program to

call a CICS program and to pass and receive data using a

COMMAREA or container. The CICS application program is invoked

as if linked-to by another CICS application program.

external presentation interface (EPI)

A facility that allows a non-CICS program to appear to CICS as one or

more standard 3270 terminals. 3270 data can be presented to the user

by emulating a 3270 terminal or by using a graphical user interface.

external security interface (ESI)

A facility that enables client applications to verify and change

passwords for user IDs on CICS servers.

firewall

A configuration of software that prevents unauthorized traffic between

a trusted network and an untrusted network.

gateway

A device or program used to connect two systems or networks.

gateway classes

The Gateway Classes are the Java class library used by Java Client

applications to invoke services in CICS.

Gateway daemon

The Gateway daemon is a long-running Java process used only in

remote mode. The Gateway daemon listens for network requests from

remote Java Client applications. It issues these requests to CICS using

the CICS connectivity components. These are the Client daemon on

UNIX, Windows, and Linux platforms, and EXCI or IPIC on z/OS.

The Gateway daemon runs the protocol listener threads, the

connection manager threads, and the worker threads. It uses the

GATEWAY section of ctg.ini (and on z/OS the STDENV file or the

ctgenvvar script) for its configuration.

Gateway group

A collection of Gateway daemon instances, that uses the services of a

single ctgmaster. The group provides a TCP/IP load balancing

capability for XA transactions.

254 CICS Transaction Gateway: Programming Reference

gateway token

Gateway tokens are used in the statistical data API. A token represents

a specific Gateway daemon, once a connection is established

successfully.

global transaction

A recoverable unit of work performed by one or more resource

managers in a distributed transaction processing environment and

coordinated by an external transaction manager.

host A computer that is connected to a network (such as the Internet or an

SNA network) and provides an access point to that network. The host

can be any system; it does not have to be a mainframe.

host address

An IP address that is used to identify a host on a network.

host ID

In TCP/IP, that part of the Internet address that defines the host on

the network. The length of the host ID depends on the type of

network or network class (A, B, or C).

host name

In the Internet suite of protocols, the name given to a computer.

Sometimes, host name is used to mean the fully qualified domain

name; other times, it is used to mean the most specific subname of a

fully qualified domain name. For example, if

mycomputer.city.company.com is the fully qualified domain name,

either of the following may be considered the host name:

mycomputer.city.company.com, mycomputer.

hover help

Information that can be viewed by holding a mouse over an item such

as an icon in the user interface.

HTTP See Hypertext Transfer Protocol.

HTTPS

See Hypertext Transfer Protocol Secure.

Hypertext Transfer Protocol

In the Internet suite of protocols, the protocol that is used to transfer

and display hypertext and XML documents.

Hypertext Transfer Protocol Secure

A TCP/IP protocol that is used by World Wide Web servers and Web

browsers to transfer and display hypermedia documents securely

across the Internet.

Glossary 255

ID data

An ID data structure holds an individual result from a statistical API

function.

iKeyman

A tool for maintaining digital certificates for JSSE.

independent logical unit

A logical unit (LU) that can both send and receive a BIND, and which

supports single, parallel, and multiple sessions. See BIND.

Internet Architecture Board

The technical body that oversees the development of the internet suite

of protocols known as TCP/IP.

Internet Protocol (IP)

In TCP/IP, a protocol that routes data from its source to its

destination in an Internet environment.

interoperability

The capability to communicate, execute programs, or transfer data

among various functional units in a way that requires the user to have

little or no knowledge of the unique characteristics of those units.

IP Internet Protocol.

IPIC See IP interconnectivity (IPIC).

IP address

A unique address for a device or logical unit on a network that uses

the IP standard.

IP interconnectivity (IPIC)

The IPIC protocol enables Distributed Program Link (DPL) access

from a non-CICS program to a CICS program over TCP/IP, using the

External Call Interface (ECI). IPIC passes and receives data using

COMMAREAs, or containers.

J2EE See Java 2 Platform Enterprise Edition

J2EE Connector architecture (JCA)

A standard architecture for connecting the J2EE platform to

heterogeneous enterprise information systems (EIS).

Java An object-oriented programming language for portable interpretive

code that supports interaction among remote objects.

Java 2 Platform Enterprise Edition (J2EE)

An environment for developing and deploying enterprise applications,

defined by Sun Microsystems Inc. The J2EE platform consists of a set

of services, application programming interfaces (APIs), and protocols

that allow multitiered, Web-based applications to be developed.

256 CICS Transaction Gateway: Programming Reference

||

|
|
|
|
|

JavaBeans

As defined for Java by Sun Microsystems, a portable,

platform-independent, reusable component model.

Java Client application

The Java client application is a user application written in Java,

including servlets and enterprise beans, that uses the Gateway classes.

Java Development Kit (JDK)

The name of the software development kit that Sun Microsystems

provided for the Java platform, up to and including v 1.1.x.

Sometimes used erroneously to mean the Java platform or as a generic

term for any software developer kits for Java.

JavaGateway

The URL of the CICS Transaction Gateway with which the Java Client

application will communicate. The JavaGateway takes the form

protocol://address:port. These protocols are supported: tcp://,

ssl://, and local:. The CICS Transaction Gateway runs with the

default port value of 2006. This parameter is not relevant if you are

using the protocol local:. For example, you might specify a

JavaGateway of tcp://ctg.business.com:2006. If you specify the

protocol as local: you will connect directly to the CICS server,

bypassing any CICS Transaction Gateway servers.

Java Native Interface (JNI)

A programming interface that allows Java code running in a Java

virtual machine to work with functions that are written in other

programming languages.

Java Runtime Environment (JRE)

A subset of the Java Software Development Kit (SDK) that supports

the execution, but not the development, of Java applications. The JRE

comprises the Java Virtual Machine (JVM), the core classes, and

supporting files.

Java Secure Socket Extension (JSSE)

A Java package that enables secure Internet communications. It

implements a Java version of the Secure Sockets Layer (SSL) and

Transport Layer Security (TSL) protocols and supports data

encryption, server authentication, message integrity, and optionally

client authentication.

Java virtual machine (JVM)

A software implementation of a processor that runs compiled Java

code (applets and applications).

JDK See Java development kit (JDK).

JCA See J2EE Connector Architecture (JCA).

Glossary 257

JNI See Java Native Interface (JNI).

JRE See Java Runtime Environment

JSSE See Java Secure Socket Extension (JSSE).

JVM See Java Virtual Machine (JVM).

keyboard mapping

A list that establishes a correspondence between keys on the keyboard

and characters displayed on a display screen, or action taken by a

program, when that key is pressed.

key ring

In the JSSE protocol, a file that contains public keys, private keys,

trusted roots, and certificates.

local mode

“Local mode” describes the use of the CICS Transaction Gateway local

protocol. The Gateway daemon is not used in local mode.

local transaction

A recoverable unit of work managed by a resource manager and not

coordinated by an external transaction manager

logical unit (LU)

In SNA, a port through which an end user accesses the SNA network

in order to communicate with another end user and through which

the end user accesses the functions provided by system services

control points (SSCP). An LU can support at least two sessions, one

with an SSCP and one with another LU, and may be capable of

supporting many sessions with other logical units. See network

addressable unit, primary logical unit, secondary logical unit.

logical unit 6.2 (LU 6.2)

A type of logical unit that supports general communications between

programs in a distributed processing environment.

 The LU type that supports sessions between two applications using

APPC.

logical unit of work (LUW)

A recoverable unit of work performed within CICS.

LU-LU session

In SNA, a session between two logical units (LUs) in an SNA

network. It provides communication between two end users, or

between an end user and an LU services component.

LU-LU session type 6.2

In SNA, a type of session for communication between peer systems.

Synonymous with APPC protocol.

258 CICS Transaction Gateway: Programming Reference

LUW See logical unit of work.

managed mode

Describes an environment in which connections are obtained from

connection factories that the J2EE server has set up. Such connections

are owned by the J2EE server.

medium access control (MAC) sublayer

One of two sublayers of the ISO Open Systems Interconnection data

link layer proposed for local area networks by the IEEE Project 802

Committee on Local Area Networks and the European Computer

Manufacturers Association (ECMA). It provides functions that depend

on the topology of the network and uses services of the physical layer

to provide services to the logical link control (LLC) sublayer. The OSI

data link layer corresponds to the SNA data link control layer.

method

In object-oriented programming, an operation that an object can

perform. An object can have many methods.

mode In SNA, a set of parameters that defines the characteristics of a

session between two LUs.

name server

In TCP/IP, synonym for Domain Name Server. In Internet

communications, a host that translates symbolic names assigned to

networks and hosts into Internet addresses.

network address

In SNA, an address, consisting of subarea and element fields, that

identifies a link, link station, or network addressable unit (NAU).

Subarea nodes use network addresses; peripheral nodes use local

addresses. The boundary function in the subarea node to which a

peripheral node is attached transforms local addresses to network

addresses and vice versa. See also network name.

network addressable unit (NAU)

In SNA, a logical unit, a physical unit, or a system services control

point. The NAU is the origin or the destination of information

transmitted by the path control network. See also logical unit, network

address, network name.

network name

In SNA, the symbolic identifier by which end users refer to a network

addressable unit (NAU), link station, or link. See also network address.

node type

In SNA, a designation of a node according to the protocols it supports

and the network addressable units (NAUs) it can contain. Four types

Glossary 259

are defined: 1, 2, 4, and 5. Type 1 and type 2 nodes are peripheral

nodes; type 4 and type 5 nodes are subarea nodes.

nonmanaged mode

An environment in which the application is responsible for generating

and configuring connection factories. The J2EE server does not own or

know about these connection factories and therefore provides no

Quality of Service facilities.

object In object-oriented programming, a concrete realization of a class that

consists of data and the operations associated with that data.

object-oriented (OO)

Describing a computer system or programming language that

supports objects.

one-phase commit

A protocol with a single commit phase, that is used for the

coordination of changes to recoverable resources when a single

resource manager is involved.

pacing

A technique by which a receiving station controls the rate of

transmission of a sending station to prevent overrun.

parallel session

In SNA, two or more concurrently active sessions between the same

two LUs using different pairs of network addresses. Each session can

have independent session parameters.

PING In Internet communications, a program used in TCP/IP networks to

test the ability to reach destinations by sending the destinations an

Internet Control Message Protocol (ICMP) echo request and waiting

for a reply.

partner logical unit (PLU)

In SNA, the remote participant in a session.

partner transaction program

The transaction program engaged in an APPC conversation with a

local transaction program.

PLU See primary logical unit and partner logical unit.

port An endpoint for communication between devices, generally referring

to a logical connection. A 16-bit number identifying a particular

Transmission Control Protocol (TCP) or User Datagram Protocol

(UDP) resource within a given TCP/IP node.

prepare phase

The first phase of a XA process in which all participants are requested

to confirm readiness to commit.

260 CICS Transaction Gateway: Programming Reference

presentation logic

The part of a distributed application that is concerned with the user

interface of the application. Compare with business logic.

primary logical unit (PLU)

In SNA, the logical unit that contains the primary half-session for a

particular logical unit-to-logical unit (LU-to-LU) session. See also

secondary logical unit.

protocol boundary

The signals and rules governing interactions between two components

within a node.

Query strings

Query strings are used in the statistical data API. A query string is an

input parameter, specifying the statistical data to be retrieved.

Resource Access Control Facility (RACF®)

An IBM licensed program that provides access control by identifying

users to the system; verifying users of the system; authorizing access

to protected resources; logging detected unauthorized attempts to

enter the system; and logging detected accesses to protected resources.

region In workload management on CICS Transaction Gateway for Windows,

an instance of a CICS server.

remote mode

“Remote mode” describes the use of one of the supported CICS

Transaction Gateway network protocols to connect to the Gateway

daemon.

remote procedure call (RPC)

A protocol that allows a program on a client computer to run a

program on a server.

request unit (RU)

In SNA, a message unit that contains control information such as a

request code, or function management (FM) headers, end-user data, or

both.

request/response unit

A generic term for a request unit or a response unit. See also request

unit and response unit.

response file

A file that contains predefined values that is used instead of someone

having to enter those values one at a time. See CID methodology.

response unit (RU)

A message unit that acknowledges a request unit; it may contain

prefix information received in a request unit.

Glossary 261

resource group ID

A resource group ID is a logical grouping of resources, grouped for

statistical purposes. A resource group ID is associated with a number

of resource group statistics, each identified by a statistic ID.

resource ID

A resource ID refers to a specific resource. Information about the

resource is included in resource-specific statistics. Each statistic is

identified by a statistic ID.

resource manager

The participant in a transaction responsible for controlling access to

recoverable resources. In terms of the CICS resource adapters this is

represented by an instance of a ConnectionFactory.

Resource Recovery Services (RRS)

A z/OS facility that provides two-phase sync point support across

participating resource managers.

Result set

A result set is a set of data calculated or recorded by a statistical API

function.

Result set token

A result set token is a reference to the set of results returned by a

statistical API function.

rollback

An operation in a transaction that reverses all the changes made

during the unit of work. After the operation is complete, the unit of

work is finished. Also known as a backout.

RU Request unit. Response unit.

RPC See remote procedure call.

SBCS See single-byte character set.

secondary logical unit (SLU)

In SNA, the logical unit (LU) that contains the secondary half-session

for a particular LU-LU session. Contrast with primary logical unit. See

also logical unit.

Secure Sockets Layer (SSL)

A security protocol that provides communication privacy. SSL enables

client/server applications to communicate in a way that is designed to

prevent eavesdropping, tampering, and message forgery. SSL applies

only to internet protocols, and is not applicable to SNA.

servlet

A Java program that runs on a Web server and extends the server’s

262 CICS Transaction Gateway: Programming Reference

functionality by generating dynamic content in response to Web client

requests. Servlets are commonly used to connect databases to the Web.

session limit

In SNA, the maximum number of concurrently active logical unit to

logical unit (LU-to-LU) sessions that a particular logical unit (LU) can

support.

single-byte character set (SBCS)

A character set in which each character is represented by 1 byte.

Contrast with double-byte character set.

sign-on capable terminal

A sign-on capable terminal allows sign-on transactions, either

CICS-supplied (CESN) or user-written, to be run. Contrast with

sign-on incapable terminal.

SIT See system initialization table.

SNA sense data

An SNA-defined encoding of error information In SNA, the data sent

with a negative response, indicating the reason for the response.

SNASVCMG mode name

The SNA service manager mode name. This is the

architecturally-defined mode name identifying sessions on which

CNOS is exchanged. Most APPC-providing products predefine

SNASVCMG sessions.

socket A network communication concept, typically representing a point of

connection between a client and a server. A TCP/IP socket will

normally combine a host name or IP address, and a port number.

SSL See Secure Sockets Layer (SSL).

SSLight

An implementation of SSL, written in Java, and no longer supported

by CICS Transaction Gateway.

statistic data

A statistic data structure holds individual statistical result returned

after calling a statistical API function.

statistic group

A statistic group is a generic term for a collection of statistic IDs.

statistic ID

A statistic ID is a label refering to a specific statistic. A statistic ID is

used to retrieve specific statistical data, and always has a direct

relationship with a statistic group.

Glossary 263

system initialization table

A table containing parameters used to start a CICS control region.

System Management Interface Tool (SMIT)

An interface tool of the AIX operating system for installing,

maintaining, configuring, and diagnosing tasks.

standard error

In many workstation-based operating systems, the output stream to

which error messages or diagnostic messages are sent.

subnet

An interconnected, but independent segment of a network that is

identified by its Internet Protocol (IP) address.

subnet address

In Internet communications, an extension to the basic IP addressing

scheme where a portion of the host address is interpreted as the local

network address.

sync point

A logical point in the execution of program where the changes made

by the program are consistent and complete, and can be committed.

The output, which has been held up to that point, is sent to its

destination, the input is removed from the message queues, and

updates are made available to other applications. When a program

terminates abnormally, CICS recovery and restart facilities do not

backout updates prior to the last completed sync point.

Systems Network Architecture (SNA)

An architecture that describes the logical structure, formats, protocols,

and operational sequences for transmitting information units through

the networks and also the operational sequences for controlling the

configuration and operation of networks.

System SSL

An implementation of SSL, no longer supported by CICS Transaction

Gateway on z/OS.

TCP62 SNA logical unit type 62 (LU62) protocol encapsulated in TCP/IP.

This allows APPC applications to communicate over a TCP/IP

Network without changes to the applications.

TCP/IP

See Transmission Control Protocol/Internet Protocol.

TCP/IP load balancing

The ability to distribute TCP/IP connections across target servers.

terminal emulation

The capability of a microcomputer or personal computer to operate as

264 CICS Transaction Gateway: Programming Reference

if it were a particular type of terminal linked to a processing unit and

to access data. See also emulator, emulation program.

thread A stream of computer instructions that is in control of a process. In

some operating systems, a thread is the smallest unit of operation in a

process. Several threads can run concurrently, performing different

jobs.

timeout

A time interval that is allotted for an event to occur or complete

before operation is interrupted.

TLS See Transport Layer Security (TLS).

token-ring network

A local area network that connects devices in a ring topology and

allows unidirectional data transmission between devices by a

token-passing procedure. A device must receive a token before it can

transmit data.

trace A record of the processing of a computer program. It exhibits the

sequences in which the instructions were processed.

transaction manager

A software unit that coordinates the activities of resource managers by

managing global transactions and coordinating the decision to commit

them or roll them back.

transaction program

A program that uses the Advanced Program-to-Program

Communications (APPC) application programming interface (API) to

communicate with a partner application program on a remote system.

Transmission Control Protocol/Internet Protocol (TCP/IP)

An industry-standard, nonproprietary set of communications protocols

that provide reliable end-to-end connections between applications

over interconnected networks of different types.

Transport Layer Security (TLS)

A security protocol that provides communication privacy. TLS enables

client/server applications to communicate in a way that is designed to

prevent eavesdropping, tampering, and message forgery. TLS applies

only to internet protocols, and is not applicable to SNA. TLS is also

known as SSL 3.1.

two-phase commit

A protocol with both a prepare and a commit phase, that is used for

the coordination of changes to recoverable resources when more than

one resource manager is used by a single transaction.

Glossary 265

type 2.0 node

A node that attaches to a subarea network as a peripheral node and

provides a range of end-user services but no intermediate routing

services.

type 2.1 node

An SNA node that can be configured as an endpoint or intermediate

routing node in a network, or as a peripheral node attached to a

subarea network.

Uniform Resource Locator (URL)

A sequence of characters that represent information resources on a

computer or in a network such as the Internet. This sequence of

characters includes (a) the abbreviated name of the protocol used to

access the information resource and (b) the information used by the

protocol to locate the information resource.

unit of recovery (UR)

A defined package of work to be performed by the RRS.

unit of work (UOW)

A recoverable sequence of operations performed by an application

between two points of consistency. A unit of work begins when a

transaction starts or at a user-requested sync point. It ends either at a

user-requested sync point or at the end of a transaction.

user session

Any APPC session other than a SNASVCMG session.

verb A reserved word that expresses an action to be taken by an

application programming interface (API), a compiler, or an object

program.

 In SNA, the general name for a transaction program’s request for

communication services.

version string

A character string containing version information about the statistical

data API.

Web browser

A software program that sends requests to a Web server and displays

the information that the server returns.

Web server

A software program that responds to information requests generated

by Web browsers.

wide area network (WAN)

A network that provides communication services to a geographic area

266 CICS Transaction Gateway: Programming Reference

larger than that served by a local area network or a metropolitan area

network, and that may use or provide public communication facilities.

wrapping trace

A configuration in which the Maximum Client wrap size setting is

greater than 0. The total size of Client daemon binary trace files is

limited to the value specified in the Maximum Client wrap size

setting. With standard I/O tracing, two files, called cicscli.bin and

cicscli.wrp, are used; each can be up to half the size of the

Maximum Client wrap size.

XA requests

An XA request is any request sent or received by the CICS Transaction

Gateway in support of an XA transaction. These requests include the

XA commands commit, complete, end, forget, prepare, recover,

rollback, and start.

XA transaction

A global transaction that adheres to the X/Open standard for

distributed transaction processing (DTP.)

Glossary 267

|
|
|
|
|

268 CICS Transaction Gateway: Programming Reference

Index

Special characters
_CICS_DIED return code

CICS_ChangePassword function 176

CICS_VerifyPassword function 173

;=
in CclBuf class 54

in Public methods 54

(parameter)
in changed 58

<install_path> vii

A
abendCode

in CclException class 67

in CclFlow class 75

in Public methods 67, 75

AbendCode
in Methods

in Flow COM Class 23

accessibility 243

active
in state 66

in State 66

activeFlow
in CclConn class 56

in CclFlow class 74

in CclUOW class 97

activeUOW
in CclConn class 56

in CclUOW class 97

AID
in CclScreen class 83

in Enumerations 83

alphanumeric
in BaseType 73

in inputType 70

alterSecurity
in CclConn class 57

in CclTerminal class 89

in Public methods 57, 89

AlterSecurity
in Methods

in Connect COM Class 5

in Terminal COM Class 35

alterSecurity (parameter)
in alterSecurity 57

AppendString
in Methods

in Buffer COM Class 2

appendText
in CclField class 68

in Public methods 68

AppendText
in Methods

in Field COM Class 17

array (parameter)
in SetData 3

assign
in CclBuf class 51

in Public methods 51

async
in CclSession constructor 86

in Sync 49

ATIState
in CclTerminal class 95

in Enumerations 95

ATIState parameter
CICS_EpiATIState function 164

attachTran (parameter)
in CclConn constructor 56, 57

in TranDetails 9

attribute (parameter)
in setBaseAttribute 71

in setExtAttribute 71

Attribute (parameter)
in SetBaseAttribute 21

in SetExtAttribute 21

Attributes parameter
CICS_EpiAddExTerminal function 153

available
in ServerStatus 61

B
backgroundColor

in CclField class 69

in Public methods 69

BackgroundColor
in Methods

in Field COM Class 18

backout
in CallType 78

in CclUOW class 97

in Public methods 97

Backout
in Poll 24

BackOut
in Methods

in UOW COM Class 45

© Copyright IBM Corp. 1989, 2008 269

baseAttribute
in CclField class 69

in Public methods 69

BaseAttribute
in Methods

in Field COM Class 18

BaseInts
in CclField class 72

in Enumerations 72

BaseMDT
in CclField class 72

in Enumerations 72

BaseProt
in CclField class 73

in Enumerations 73

BaseType
in CclField class 73

in Enumerations 73

black
in Color 73

blinkHlt
in Highlight 73

blue
in Color 73

books 239

Bool
in Ccl class 49

in Enumerations 49

Buffer
in AppendString 2

in Buffer COM Class 1

in Link 7

in Poll 24

in String 4

buffer (parameter)
;= 54

in CclBuf 51

r= 53

Buffer COM class
Methods

AppendString 2

Data 2

ExtractString 2

InsertString 2

Length 3

Overlay 3

SetData 3

SetLength 3

SetString 4

String 4

C
callback routine

ECI 109, 114, 119, 122

EPI 149, 152

callType
in CclFlow class 75

in Public methods 75

CallType
in CclFlow class 77

in Enumerations 77

in Methods
in Flow COM Class 23

callTypeText
in CclFlow class 75

in Public methods 75

CallTypeText
in Methods

in Flow COM Class 23

cancel
in CallType 78

in CclConn class 57

in Public methods 57

Cancel
in Methods

in Connect COM Class 5

in Poll 24

Ccal Screen.fieldbyPosition method
in Field COM class 17

Ccl class
Bool 49

Sync 49

Ccl.Field
in FieldByName 27

Ccl.Screen
in Send 41

cclActive
in State 16, 34

cclAlphanumeric
in InputType 20

cclATIDisabled
in QueryATI 40

in SetATI 42

cclATIEnabled
in QueryATI 40

in SetATI 41

cclAvailable
in ServerStatus 8

CclBuf
in CclBuf class 50, 51

in CclBuf constructors 50, 51

CclBuf class
;= 54

assign 51

CclBuf 50, 51

cut 52

dataArea 52

dataAreaLength 52

dataAreaOwner 52

DataAreaOwner 55

270 CICS Transaction Gateway: Programming Reference

CclBuf class (continued)
dataAreaType 52

DataAreaType 55

dataLength 53

insert 53

listState 53

r= 53

replace 55

setDataLength 55

CclBuf constructors
CclBuf 50, 51

in CclBuf class 50

cclClient
in State 34

CclConn class
alterSecurity 57

cancel 57

change password 58

changed 57

link 58

listState 59

makeSecurityDefault 59

password 59

serverName 59, 60

serverStatus 60

ServerStatus 61

serverStatusText 60

status 60

userId 60, 61

verifyPassword 61

CclConn constructor
in CclConn class 56

cclDark
in Intensity 20

cclDiscon
in State 16, 35

cclDSync
in SetSyncType 24, 25, 34

CclECI class
exCode 62

exCodeText 62

handleException 62

instance 63

listState 63

serverCount 63

serverDesc 63

serverName 63

CclECI constructor (protected)
in CclECI class 62

CclEPI class
diagnose 64

exCode 64

exCodeText 64

handleException 65

serverCount 65

CclEPI class (continued)
serverDesc 65

serverName 65

state 66

State 66

terminate 66

CclEPI constructor
in CclEPI class 64

cclError
in State 16, 35

CclException class
abendCode 67

className 67

diagnose 67

exCode 67

exCodeText 67

exObject 67

methodName 68

CclField class
appendText 68

backgroundColor 69

baseAttribute 69

BaseInts 72

BaseMDT 72

BaseProt 73

BaseType 73

Color 73

column 69

dataTag 69

foregroundColor 69

highlight 69

Highlight 73

inputProt 70

inputType 70

intensity 70

length 70

position 70

resetDataTag 71

row 71

setBaseAttribute 71

setExtAttribute 71

setText 71, 72

text 72

textLength 72

transparency 72

Transparency 73

CclFlow
in CclFlow class 74

in CclFlow constructor 74

CclFlow class
abendCode 75

callType 75

CallType 77

callTypeText 75

CclFlow 74

Index 271

CclFlow class (continued)
connection 75

diagnose 75

flowId 75

forceReset 75

handleReply 76

listState 76

poll 76

setTimeout 77

syncType 77

timeout 77

uow 77

wait 77

CclFlow constructor
CclFlow 74

in CclFlow class 74

cclIntense
in Intensity 20

CclMap class
exCode 78

exCodeText 79

field 79

namedField 79

validate 80

CclMap constructor
in CclMap class 78

cclModified
in DataTag 18

cclNoError
in ExCode 15

cclNormal
in Intensity 20

cclNumeric
in InputType 20

CclOSecTime
in Ccl SecAttr interface 31

cclProtect
in InputProt 19

CclScreen class
AID 83

cursorCol 81

cursorRow 81

depth 81

field 81

fieldCount 81

mapName 82

mapSetName 82

setAID 82

setCursor 82

width 83

cclServer
in State 34

CclSession class
diagnose 86

handleReply 86

CclSession class (continued)
state 86

State 87

terminal 86

transID 86

CclSession constructor
in CclSession class 85

cclSync
in SetSyncType 24, 25, 34

cclSystemError
in ExCode 15

CclTerminal class
alterSecurity 89

ATIState 95

CCSid 90

changePassword 89

diagnose 90

disconnect 90

discReason 90

EndTerminalReason 96

exCode 91

exCodeText 91

install 91

makeSecurityDefault 91

netName 92

password 92

poll 92

queryATI 92

readTimeout 93

receiveATI 93

screen 93

send 93, 94

serverName 94

setATI 94

signonCapability 94

signonType 95

state 94

State 96

termID 95

transID 95

userId 95

verifyPassword 95

CclTerminal constructor
in CclTerminal class 87

cclUnavailable
in ServerStatus 8

cclUnknown
in ServerStatus 8

cclUnknownServer
in ExCode 15

cclUnmodified
in DataTag 18

in ResetDataTag 21

cclUnprotect
in InputProt 19

272 CICS Transaction Gateway: Programming Reference

CclUOW class
backout 97

commit 97

forceReset 97

listState 98

uowId 98

CclUOW constructor
in CclUOW class 97

CCSid
in CclTerminal class 90

in Public methods 90

CCSId
in Methods

in Terminal COM class 36

CCSid (parameter)
in CclTerminal constructor 88

in SetTermDefns 42

change password
in CclConn class 58

in Public methods 58

changed
in CallType 78

in CclConn class 57

in Public methods 57

in ServerStatus 8

in ServerStatusText 8

Changed
in Cancel 5

in Changed 5

in Details 6

in Methods
in Connect COM Class 5

in Poll 24

changePassword
in CclTerminal class 89

in Public methods 89

ChangePassword
in Methods

in Connect COM Class 5

in Terminal COM Class 36

CICS_ChangePassword function
definition 174

CICS_ECI_DESCRIPTION_MAX 132

CICS_ECI_SYSTEM_MAX 132

CICS_EciDataReturnExit 191

CICS_EciDataSendExit 190

CICS_EciExternalCallExit1 186

CICS_EciExternalCallExit2 187

CICS_EciInitializeExit 184

CICS_EciListSystems function 132

ECI_ERR_INVALID_DATA _LENGTH 133

ECI_ERR_MORE_SYSTEMS 132

ECI_ERR_NO_CICS 133

ECI_ERR_NO_SYSTEMS 133

ECI_ERR_SYSTEM_ERROR 133

CICS_EciListSystems function (continued)
ECI_NO_ERROR 132

CICS_EciSetProgramAliasExit 192

CICS_EciSystem_t data structure
definition 132

use 132

CICS_EciSystemIdExit 188

CICS_EciTerminateExit 185

CICS_EPI_ADD_TERM event
definition 166

CICS_EPI_ATI_HOLD 163, 164

CICS_EPI_ATI_ON 163, 164

CICS_EPI_ATI_QUERY 164

CICS_EPI_DESCRIPTION_MAX, 134

CICS_EPI_DEVTYPE_MAX 148, 152

CICS_EPI_END_FAILED 170

CICS_EPI_END_OUTSERVICE 169

CICS_EPI_END_SHUTDOWN 169

CICS_EPI_END_SIGNOFF 169

CICS_EPI_END_UNKNOWN 170

CICS_EPI_ERR_ABENDED return code
CICS_EpiReply function 163

CICS_EPI_ERR_ADDTYPE_INVALID return code
CICS_EpiAddExTerminal function 154

CICS_EPI_ERR_ALREADY_INSTALLED return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EPI_ERR_ATI_ACTIVE return code
CICS_EpiStartTran function 161

CICS_EPI_ERR_ATI_STATE return code
CICS_EpiATIState function 164

CICS_EPI_ERR_BAD_INDEX return code
CICS_EpiATIState function 164

CICS_EpiDelTerminal function 156

CICS_EpiGetEvent function 165

CICS_EpiInquireSystem function 155

CICS_EpiPurgeTerminal function 157

CICS_EpiReply function 162

CICS_EpiSetSecurity function 158

CICS_EpiStartTran function 161

CICS_EPI_ERR_CCSID_INVALID return code
CICS_EpiAddExTerminal function 154

CICS_EPI_ERR_FAILED return code
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EpiATIState function 164

CICS_EpiDelTerminal function 156

CICS_EpiGetEvent function 165

CICS_EpiInitialize function 144

CICS_EpiInquireSystem function 155

CICS_EpiListSystems function 146

CICS_EpiPurgeTerminal function 157

CICS_EpiReply function 163

CICS_EpiStartTran function 161

CICS_EpiTerminate function 145

Index 273

CICS_EPI_ERR_IN_CALLBACK return code
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EpiATIState function 164

CICS_EpiDelTerminal function 156

CICS_EpiGetEvent function 166

CICS_EpiInquireSystem function 155

CICS_EpiListSystems function 146

CICS_EpiPurgeTerminal function 157

CICS_EpiReply function 163

CICS_EpiSetSecurity function 159

CICS_EpiStartTran function 161

CICS_EpiTerminate function 145

CICS_EPI_ERR_IS_INIT return code
CICS_EpiInitialize function 144

CICS_EPI_ERR_MAX_SESSIONS return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EpiStartTran function 162

CICS_EPI_ERR_MAX_SYSTEMS return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EPI_ERR_MODEL_INVALID return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EPI_ERR_MORE_DATA return code
CICS_EpiGetEvent function 166

CICS_EPI_ERR_MORE_EVENTS return code
CICS_EpiGetEvent function 166

CICS_EPI_ERR_MORE_SYSTEMS return code
CICS_EpiListSystems function 146

CICS_EPI_ERR_NO_CONVERSE return code
CICS_EpiReply function 163

CICS_EPI_ERR_NO_DATA return code
CICS_EpiReply function 163

CICS_EpiStartTran function 161

CICS_EPI_ERR_NO_EVENT return code
CICS_EpiGetEvent function 166

CICS_EPI_ERR_NO_SYSTEMS return code
CICS_EpiListSystems function 146

CICS_EPI_ERR_NOT_3270_DEVICE return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EPI_ERR_NOT_INIT return code
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EpiATIState function 164

CICS_EpiDelTerminal function 156

CICS_EpiGetEvent function 166

CICS_EpiInquireSystem function 155

CICS_EpiListSystems function 146

CICS_EpiPurgeTerminal function 157

CICS_EpiReply function 163

CICS_EpiSetSecurity function 159

CICS_EpiStartTran function 161

CICS_EPI_ERR_NOT_INIT return code (continued)
CICS_EpiTerminate function 145

CICS_EPI_ERR_NULL_PARM return code
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EpiGetEvent function 166

CICS_EpiInquireSystem function 155

CICS_EpiListSystems function 146

CICS_EPI_ERR_NULL_PASSWORD return code
CICS_EpiSetSecurity function 159

CICS_EPI_ERR_NULL_USERID return code
CICS_EpiSetSecurity function 159

CICS_EPI_ERR_PASSWORD_INVALID return code
CICS_EpiAddExTerminal function 153

CICS_EpiSetSecurity function 159

CICS_EPI_ERR_RESOURCE _SHORTAGE return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EpiStartTran function 161

CICS_EPI_ERR_RESPONSE_TIMEOUT return code
CICS_EpiAddExTerminal function 153

CICS_EPI_ERR_SECURITY return code
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EPI_ERR_SERVER_BUSY return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EPI_ERR_SERVER_DOWN return code
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EpiReply function 163

CICS_EpiStartTran function 161

CICS_EPI_ERR_SIGNON_NOT_POSS return code
CICS_EpiAddExTerminal function 153

CICS_EPI_ERR_SIGNONCAP_INVALID return code
CICS_EpiAddExTerminal function 154

CICS_EPI_ERR_SYSTEM return code
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EPI_ERR_SYSTEM_ERROR return code
CICS_EpiSetSecurity function 159

CICS_EPI_ERR_TERMID_INVALID return code
CICS_EpiAddExTerminal function 154

CICS_EpiAddTerminal function 150

CICS_EPI_ERR_TRAN_ACTIVE return code
CICS_EpiDelTerminal function 156

CICS_EPI_ERR_TTI_ACTIVE return code
CICS_EpiStartTran function 161

CICS_EpiTerminate function 145

CICS_EPI_ERR_USERID_INVALID return code
CICS_EpiAddExTerminal function 154

CICS_EpiSetSecurity function 159

CICS_EPI_ERR_VERSION return code
CICS_EpiAddExTerminal function 154

CICS_EpiInitialize function 144

274 CICS Transaction Gateway: Programming Reference

CICS_EPI_ERR_VERSION return code (continued)
CICS_EpiPurgeTerminal function 157

CICS_EpiSetSecurity function 159

CICS_EPI_ERR_WAIT return code
CICS_EpiGetEvent function 166

CICS_EPI_EVENT_CONVERSE event
definition 167

use 162, 167

CICS_EPI_EVENT_END_TERM event
definition 169

use 138, 156, 157

CICS_EPI_EVENT_END_TRAN event
definition 168

use 138, 159, 160

CICS_EPI_EVENT_SEND event
definition 167

CICS_EPI_EVENT_START_ATI event
definition 169

use 161

CICS_EPI_NETNAME_MAX 136, 147, 151

CICS_EPI_NORMAL return code
CICS_EpiAddExTerminal function 155

CICS_EpiAddTerminal function 150

CICS_EpiATIState function 164

CICS_EpiDelTerminal function 156

CICS_EpiGetEvent function 166

CICS_EpiInitialize function 144

CICS_EpiInquireSystem function 155

CICS_EpiListSystems function 146

CICS_EpiPurgeTerminal function 157

CICS_EpiReply function 163

CICS_EpiSetSecurity function 159

CICS_EpiStartTran function 162

CICS_EpiTerminate function 145

CICS_EPI_NOWAIT 165

CICS_EPI_NULL_PARAM return code
CICS_EpiATIState function 164

CICS_EPI_READTIMEOUT _EXPIRED 168

CICS_EPI_SYSTEM_MAX 134, 147, 151

CICS_EPI_TERM_INDEX_NONE 165

CICS_EPI_TRAN_NO_ERROR 168

CICS_EPI_TRAN_NOT_STARTED 168

CICS_EPI_TRAN_STATE _UNKNOWN 168

CICS_EPI_TRANSID_MAX 138, 160

CICS_EPI_VERSION_200 144

CICS_EPI_WAIT 165

CICS_EpiAddExTerminal function
definition 150

use 134, 135, 136

CICS_EpiAddTerminal function
definition 147

use 134, 136, 159, 163

CICS_EpiAddTerminalExit 197

CICS_EpiATIState function
definition 163

CICS_EpiAttributes_t data structure
definition 134

CICS_EpiDelTerminal function
definition 156

use 144, 156, 169

CICS_EpiDelTerminalExit 205

CICS_EpiDetails_t data structure
definition 136

use 147, 149, 150, 152

CICS_EpiEventData_t data structure
definition 138

use 165

CICS_EpiGetEvent function
definition 164

use 138, 139, 156, 161

CICS_EpiGetEventExit 206

CICS_EpiInitialize function
definition 143

use 144, 145

CICS_EpiInitializeExit 195

CICS_EpiInquireSystem function
definition 155

CICS_EpiListSystems function
definition 145

use 134

CICS_EpiPurgeTerminal function
ATI request cancellation 157

definition 157

CICS_EpiReply function
definition 162

use 167

CICS_EpiReplyExit 204

CICS_EpiSetSecurity function
definition 158

CICS_EpiStartTran function
definition 159

use 161, 168

CICS_EpiStartTranExit 203

CICS_EpiStartTranExtendedExit 202

CICS_EpiSystem_t data structure
definition 134

use 146

CICS_EpiSystemIdExit 208

CICS_EpiTermIdExit 200

CICS_EpiTermIdInfoExit 201

CICS_EpiTerminate function
definition 144

CICS_EpiTerminateExit 196

CICS_EpiTranFailedExit 210

CICS_ESI_ERR_CALL_ FROM_CALLBACK return code
CICS_ChangePassword function 176

CICS_SetDefaultSecurity function 178

CICS_VerifyPassword function 173

CICS_ESI_ERR_MAX_SESSIONS return code
CICS_ChangePassword function 176

Index 275

CICS_ESI_ERR_MAX_SESSIONS return code

(continued)
CICS_VerifyPassword function 174

CICS_ESI_ERR_MAX_SYSTEMS return code
CICS_ChangePassword function 176

CICS_VerifyPassword function 174

CICS_ESI_ERR_NO_CICS return code
CICS_ChangePassword function 176

CICS_SetDefaultSecurity function 179

CICS_VerifyPassword function 173

CICS_ESI_ERR_NO_SESSIONS return code
CICS_ChangePassword function 176

CICS_VerifyPassword function 173

CICS_ESI_ERR_NULL_ NEW_PASSWORD return code
CICS_ChangePassword function 177

CICS_ESI_ERR_NULL_ OLD_PASSWORD return code
CICS_ChangePassword function 177

CICS_ESI_ERR_NULL_PASSWORD return code
CICS_VerifyPassword function 174

CICS_ESI_ERR_NULL_USERID return code
CICS_ChangePassword function 176

CICS_VerifyPassword function 174

CICS_ESI_ERR_PASSWORD _REJECTED return code
CICS_ChangePassword function 177

CICS_ESI_ERR_PASSWORD_EXPIRED return code
CICS_VerifyPassword function 174

CICS_ESI_ERR_PASSWORD_INVALID return code
CICS_ChangePassword function 177

CICS_SetDefaultSecurity function 179

CICS_VerifyPassword function 174

CICS_ESI_ERR_PEM_NOT _SUPPORTED return code
CICS_ChangePassword function 177

CICS_VerifyPassword function 174

CICS_ESI_ERR_PEM_NOT_ACTIVE return code
CICS_ChangePassword function 177

CICS_VerifyPassword function 174

CICS_ESI_ERR_RESOURCE_SHORTAGE return code
CICS_ChangePassword function 176

CICS_VerifyPassword function 173

CICS_ESI_ERR_SECURITY_ERROR return code
CICS_ChangePassword function 177

CICS_VerifyPassword function 174

CICS_ESI_ERR_SYSTEM_ERROR return code
CICS_ChangePassword function 176

CICS_SetDefaultSecurity function 179

CICS_VerifyPassword function 173

CICS_ESI_ERR_UNKNOWN_SERVER return code
CICS_ChangePassword function 176

CICS_SetDefaultSecurity function 179

CICS_VerifyPassword function 173

CICS_ESI_ERR_USERID_INVALID return code
CICS_ChangePassword function 177

CICS_SetDefaultSecurity function 179

CICS_VerifyPassword function 174

CICS_ESI_NO_ERROR return code
CICS_ChangePassword function 176

CICS_SetDefaultSecurity function 178

CICS_VerifyPassword function 173

CICS_EsiDate_t data structure
definition 170

CICS_EsiDetails_t data structure
definition 171

CICS_EsiTime_t data structure
definition 171

CICS_EXIT_BAD_ANCHOR return code
CICS_EciDataReturnExit 192

CICS_EciDataSendExit 191

CICS_EciExternalCallExit1 186

CICS_EciExternalCallExit2 188

CICS_EciSetProgramAliasExit 193

CICS_EciSystemIdExit 190

CICS_EciTerminateExit 185

CICS_EpiAddTerminalExit 198

CICS_EpiDelTerminalExit 206

CICS_EpiGetEventExit 207

CICS_EpiReplyExit 205

CICS_EpiStartTranExit 204

CICS_EpiStartTranExtendedExit 203

CICS_EpiSystemIdExit 209

CICS_EpiTermIdExit 200

CICS_EpiTermIdInfoExit 202

CICS_EpiTerminateExit 197

CICS_EpiTranFailedExit 211

CICS_EXIT_BAD_PARM return code
CICS_EciDataReturnExit 192

CICS_EciDataSendExit 191

CICS_EciExternalCallExit1 186

CICS_EciExternalCallExit2 188

CICS_EciSetProgramAliasExit 193

CICS_EciSystemIdExit 190

CICS_EpiAddTerminalExit 199

CICS_EpiDelTerminalExit 206

CICS_EpiGetEventExit 207

CICS_EpiReplyExit 205

CICS_EpiStartTranExit 204

CICS_EpiStartTranExtendedExit 203

CICS_EpiSystemIdExit 209

CICS_EpiTermIdExit 201

CICS_EpiTermIdInfoExit 202

CICS_EpiTranFailedExit 211

CICS_EXIT_BAD_STORAGE return code
CICS_EciTerminateExit 185

CICS_EpiTerminateExit 197

CICS_EXIT_CANT_INIT_EXITS return code
CICS_EciInitializeExit 184

CICS_EpiInitializeExit 196

CICS_EXIT_DONT_ADD_TERMINAL return code
CICS_EpiAddTerminalExit 198

CICS_EpiSystemIdExit 209

276 CICS Transaction Gateway: Programming Reference

CICS_EXIT_GIVE_UP return code
CICS_EciSystemIdExit 190

CICS_EXIT_NO_EXIT return code
CICS_EciInitializeExit 184

CICS_EpiInitializeExit 196

CICS_EXIT_OK return code
CICS_EciDataReturnExit 192

CICS_EciDataSendExit 191

CICS_EciExternalCallExit1 186

CICS_EciExternalCallExit2 188

CICS_EciInitializeExit 184

CICS_EciSetProgramAliasExit 193

CICS_EciSystemIdExit 189

CICS_EciTerminateExit 185

CICS_EpiAddTerminalExit 198

CICS_EpiDelTerminalExit 206

CICS_EpiGetEventExit 207

CICS_EpiInitializeExit 196

CICS_EpiReplyExit 205

CICS_EpiStartTranExit 204

CICS_EpiStartTranExtendedExit 203

CICS_EpiSystemIdExit 209

CICS_EpiTermIdExit 200

CICS_EpiTermIdInfoExit 201

CICS_EpiTerminateExit 197

CICS_EpiTranFailedExit 211

CICS_ExternalCall 132

CICS_SetDefaultSecurity function
definition 177

CICS_VerifyPassword function
definition 172

CicsClientStatus 131

CicsServerStatus 131

className
in CclException class 67

in Public methods 67

clear
in AID 83

client
in send 94

in State 87, 96

code page 104, 111, 124, 128

col
in validate 80

col (parameter)
in setCursor 82

Color
in CclField class 73

in Enumerations 73

colPos (parameter)
in FieldByPosition 29

in SetCursor 30

column
in CclField class 69

in Public methods 69

Column
in Methods

in Field COM Class 18

column (parameter)
in field 79, 81

commarea (parameter)
in handleReply 76

in link 58, 59

in poll 76

commArea (parameter)
in AbendCode 23

in Link 7

in Poll 24

commit
in CallType 78

in CclUOW class 97

in Public methods 97

Commit
in Methods

in UOW COM Class 46

in Poll 24

Connect
in Connect COM Class 4

in Methods
in Terminal COM Class 36

in ServerName 8

in Terminal COM class 35

in UOW COM Class 45

in UserId 10

Connect COM class
Methods

AlterSecurity 5

Cancel 5

Changed 5

ChangePassword 5

Details 6

Link 6

MakeSecurityDefault 7

Password 7

ServerName 8

ServerStatus 8

ServerStatusText 8

Status 8

TranDetails 9

UnpaddedPassword 9

UnpaddedServerName 9

UnpaddedUserid 10

UserId 10

VerifyPassword 10

connection
in CclFlow class 75

in Public methods 75

ConnectionType 131

CreateObject 1

Index 277

cursorCol
in CclScreen class 81

in Public methods 81

CursorCol
in Methods

in Screen COM Class 28

cursorRow
in CclScreen class 81

in Public methods 81

CursorRow
in Methods

in Screen COM Class 28

cut
in CclBuf class 52

in Public methods 52

cyan
in Color 73

D
dark

in BaseInts 72

in intensity 70

darkBlue
in Color 73

Data
in Methods

in Buffer COM Class 2

data conversion 104, 111, 124, 128

Data parameter
CICS_EpiReply function 162

CICS_EpiStartTran function 160

dataArea
in CclBuf class 52

in Public methods 52

dataArea (parameter)
in assign 51

in CclBuf 51

in insert 53

in replace 55

dataAreaLength
in CclBuf class 52

in Public methods 52

dataAreaOwner
in CclBuf class 52

in Public methods 52

DataAreaOwner
in CclBuf class 55

in Enumerations 55

dataAreaType
in CclBuf class 52

in Public methods 52

DataAreaType
in CclBuf class 55

in Enumerations 55

dataLength
in CclBuf class 53

in link 59

in Public methods 53

dataStream
in CclScreen class 80

dataTag
in CclField class 69

in Public methods 69

DataTag
in Methods

in Field COM Class 18

Day
in SecTime COM Class 32

default installation location vii

defaultColor
in Color 73

defaultHlt
in Highlight 73

defaultTran
in Transparency 73

depth
in CclScreen class 81

in Public methods 81

in validate 80

Depth
in Methods

in Screen COM Class 28

Description
CICS_EciListSystems 132

Details
in Connect COM class 4

in Methods
in Connect COM Class 6

Details parameter
CICS_ChangePassword function 176

CICS_EpiAddExTerminal function 152

CICS_EpiAddTerminal function 149

CICS_VerifyPassword function 173

Devtype
in Methods

in Terminal COM Class 37

devtype (parameter)
in CclTerminal constructor 87, 88

devType (parameter)
in Connect 36

in SetTermDefns 42

DevType parameter
CICS_EpiAddExTerminal function 152

CICS_EpiAddTerminal function 148

DFHCNV macro 104, 111, 124, 128

diagnose
in CclEPI class 64

in CclException class 67

in CclFlow class 75

278 CICS Transaction Gateway: Programming Reference

diagnose (continued)
in CclSession class 86

in CclTerminal class 90

in Public methods 64, 67, 75, 86, 90

Diagnose
in EPI COM Class 13

in Methods
in EPI COM Class 14

in Flow COM Class 23

in Session COM Class 34

in Terminal COM Class 37

in State 16, 35

disability 243

disabled
in ATIState 95

in queryATI 93

in setATI 94

discon
in state 66

in State 66, 87, 96

disconnect
in CclTerminal class 90

in Public methods 90

Disconnect
in Disconnect 37

in Methods
in Terminal COM Class 37

DisconnectWithPurge
in Methods

in Terminal COM Class 37

discReason
in CclTerminal class 90

in Public methods 90

DiscReason
in DiscReason 37

in Methods
in Terminal COM Class 37

display (parameter)
in ErrorWindow 11, 14

documentation 239

dsync
in CclSession constructor 86

in Sync 49

E
ECI COM class

Methods
ErrorFormat 11

ErrorOffset 11

ErrorWindow 11

ExCode 12

ExCodeText 12

ServerCount 12

ServerDesc 12

ServerName 13

ECI COM class (continued)
Methods (continued)

SetErrorFormat 13

ECI exits 182

ECI parameter block 99

ECI status block 131

eci_abend_code
field in ECI parameter block 99

with ECI_SYNC call type 103

ECI_ASYNC call type
definition 108

ECI_BACKOUT 102, 105, 110, 112

eci_call_type 99

field in ECI parameter block 99

with ECI_ASYNC call type 109

with ECI_GET_REPLY call type 123

with ECI_GET_REPLY_WAIT call type 126

with ECI_GET_SPECIFIC_REPLY call type 127

with ECI_GET_SPECIFIC_REPLY_WAIT call

type 130

with ECI_STATE_ASYNC call type 119

with ECI_STATE_SYNC call type 116

with ECI_SYNC call type 102

eci_callback 109, 119

field in ECI parameter block 100

with ECI_ASYNC call type 114

with ECI_STATE_ASYNC call type 122

ECI_CLIENTSTATE_INAPPLICABLE 131

ECI_CLIENTSTATE_UNKNOWN 131

ECI_CLIENTSTATE_UP 131

eci_commarea
field in ECI parameter block 99

with ECI_ASYNC call type 111

with ECI_GET_REPLY call type 123

with ECI_GET_SPECIFIC_REPLY call type 127

with ECI_STATE_ASYNC call type 120

with ECI_STATE_SYNC call type 116

with ECI_SYNC call type 104

eci_commarea_length
field in ECI parameter block 100

with ECI_ASYNC call type 111

with ECI_GET_REPLY call type 124

with ECI_GET_SPECIFIC_REPLY call type 128

with ECI_STATE_ASYNC call type 120

with ECI_STATE_SYNC call type 116

with ECI_SYNC call type 104

ECI_COMMIT 102, 105, 110, 112

ECI_CONNECTED_NOWHERE 131

ECI_CONNECTED_TO_CLIENT 131

ECI_CONNECTED_TO_SEVER 131

ECI_ERR_ALREADY_ACTIVE 108, 115

ECI_ERR_CALL_FROM _CALLBACK 101, 133

ECI_ERR_CICS_DIED 107, 125, 129

ECI_ERR_INVALID_CALL_TYPE 101

Index 279

ECI_ERR_INVALID_DATA _LENGTH 107, 115, 118,

122, 124, 128, 133

ECI_ERR_INVALID_DATA_AREA 108, 115, 118, 122,

125, 129

ECI_ERR_INVALID_EXTEND _MODE 107, 115, 118,

122

ECI_ERR_INVALID_VERSION 101

ECI_ERR_LUW_TOKEN 108, 115, 118, 122

ECI_ERR_MAX_SESSIONS 108, 126, 130

ECI_ERR_MAX_SYSTEMS 108, 126, 130

ECI_ERR_MORE_SYSTEMS 132

ECI_ERR_NO_CICS 107, 115, 125, 129, 133

ECI_ERR_NO_REPLY 125, 129

ECI_ERR_NO_SESSIONS 108, 115

ECI_ERR_NO_SYSTEMS 133

ECI_ERR_REQUEST_TIMEOUT 101

ECI_ERR_RESOURCE_SHORTAGE 108, 115, 125, 129

ECI_ERR_RESPONSE_TIMEOUT 101

ECI_ERR_ROLLEDBACK 108, 125, 129

ECI_ERR_SECURITY_ERROR 108, 126, 130

ECI_ERR_SYSTEM_ERROR 101, 133

ECI_ERR_THREAD_CREATE _ERROR 115, 125, 129

ECI_ERR_TRANSACTION _ABEND 107, 125

ECI_ERR_TRANSACTION_ABEND 129

ECI_ERR_UNKNOWN_SERVER 108, 118, 126, 130

eci_extend_mode 102, 103, 107, 110, 111, 114, 116, 117,

120, 121, 123, 127

field in ECI parameter block 100

with ECI_ASYNC call type 112

with ECI_STATE_ASYNC call type 120

with ECI_STATE_SYNC call type 117

with ECI_SYNC call type 104

ECI_EXTENDED 105, 112

ECI_GET_REPLY call type
definition 123

ECI_GET_REPLY_WAIT call type
definition 126

ECI_GET_SPECIFIC_REPLY call type
definition 127

ECI_GET_SPECIFIC_REPLY_WAIT call type
definition 130

eci_luw_token
field in ECI parameter block 100

with ECI_ASYNC call type 113

with ECI_STATE_ASYNC call type 121

with ECI_STATE_SYNC call type 117

with ECI_SYNC call type 105

eci_message_qualifier
field in ECI parameter block 100

with ECI_ASYNC call type 109, 112

with ECI_GET_SPECIFIC_REPLY call type 127, 128

with ECI_STATE_ASYNC call type 119, 121

ECI_NO_ERROR 107, 115, 118, 122, 124, 128, 132

ECI_NO_EXTEND 104, 112

eci_password 103, 106, 110, 114

eci_password (continued)
field in ECI parameter block 99

with ECI_ASYNC call type 110

with ECI_SYNC call type 103

eci_password2 103, 110

field in ECI parameter block 101

with ECI_ASYNC call type 114

with ECI_SYNC call type 106

eci_program_name
field in ECI parameter block 99

with ECI_ASYNC call type 110

with ECI_SYNC call type 102

ECI_SERVERSTATE_DOWN 131

ECI_SERVERSTATE_UNKNOWN 131

ECI_SERVERSTATE_UP 131

ECI_STATE_ASYNC call type
definition 118

ECI_STATE_CANCEL 116, 117, 120, 121, 123, 127

ECI_STATE_CHANGED 117, 121

ECI_STATE_IMMEDIATE 117, 120

ECI_STATE_SYNC call type
definition 115

ECI_STATUS 131

ECI_SYNC call type
definition 102

eci_sysid
field in ECI parameter block 100

with ECI_ASYNC call type 113

with ECI_GET_REPLY call type 124

with ECI_GET_SPECIFIC_REPLY call type 128

with ECI_STATE_ASYNC call type 121

with ECI_STATE_SYNC call type 117

with ECI_SYNC call type 106

eci_system_name
field in ECI parameter block 100

with ECI_ASYNC call type 113

with ECI_STATE_ASYNC call type 122

with ECI_STATE_SYNC call type 118

with ECI_SYNC call type 106

eci_timeout
field in ECI parameter block 100

with ECI_SYNC call type 104, 111

eci_tpn
field in ECI parameter block 101

with ECI_ASYNC call type 114

with ECI_SYNC call type 107

eci_transid
field in ECI parameter block 99

with ECI_ASYNC call type 110

with ECI_SYNC call type 103

eci_userid 103, 106, 110, 114

field in ECI parameter block 99

with ECI_ASYNC call type 110

with ECI_SYNC call type 102

eci_userid2 103, 110

280 CICS Transaction Gateway: Programming Reference

eci_userid2 (continued)
field in ECI parameter block 101

with ECI_ASYNC call type 114

with ECI_SYNC call type 106

eci_version
field in ECI parameter block 100

with ECI_ASYNC call type 113

with ECI_GET_REPLY call type 124

with ECI_GET_SPECIFIC_REPLY call type 128

with ECI_STATE_ASYNC call type 121

with ECI_STATE_SYNC call type 118

with ECI_SYNC call type 106

enabled
in ATIState 95

in queryATI 93

in setATI 94

EndTerminalReason
in CclTerminal class 96

in Enumerations 96

enter
in AID 83

Enumerations
AID 83

ATIState 95

BaseInts 72

BaseMDT 72

BaseProt 73

BaseType 73

Bool 49

CallType 77

Color 73

DataAreaOwner 55

DataAreaType 55

EndTerminalReason 96

Highlight 73

in Ccl class 49

in CclBuf class 55

in CclConn class 61

in CclEPI class 66

in CclField class 72

in CclFlow class 77

in CclScreen class 83

in CclSession class 87

in CclTerminal class 95

ServerStatus 61

signonType 95

State 66, 87, 96

Sync 49

Transparency 73

EPI
constants 133

data structures 134

events 166

functions 139

in EPI COM Class 13

EPI COM class
Methods

Diagnose 14

ErrorFormat 14

ErrorOffset 14

ErrorWindow 14

ExCode 15

ExCodeText 15

ServerCount 15

ServerDesc 15

ServerName 16

SetErrorFormat 16

State 16

Terminate 17

EPI exits 193

error
in state 66

in State 66, 87, 96

ErrorFormat
in Methods

in ECI COM Class 11

in EPI COM Class 14

ErrorOffset
in Methods

in ECI COM Class 11

in EPI COM Class 14

ErrorWindow
in Methods

in ECI COM Class 11

in EPI COM Class 14

ESI
constants 170

data structures 170

functions 172

Event parameter
CICS_EpiGetEvent function 165

except (parameter)
in handleException 62, 65

exCode
in CclECI class 62

in CclEPI class 64

in CclException class 67

in CclMap class 78

in CclTerminal class 91

in Public methods 62, 64, 67, 78, 91

ExCode 11, 14

in EPI COM Class 13

in ErrorWindow 11, 14

in Methods
in ECI COM Class 12

in EPI COM Class 15

in Map COM Class 26

in Terminal COM Class 38

in State 16, 35

Index 281

exCodeText
in CclECI class 62

in CclEPI class 64

in CclException class 67

in CclMap class 79

in CclTerminal class 91

in Public methods 62, 64, 67, 79, 91

ExCodeText
in ExCode 12

in Methods
in ECI COM Class 12

in EPI COM Class 15

in Terminal COM Class 38

EXEC CICS CONVERSE 167

EXEC CICS RECEIVE 160, 162, 167

EXEC CICS RECEIVE BUFFER 167

EXEC CICS SEND 167

exObject
in CclException class 67

in Public methods 67

ExpiryTime
in SecAttr COM class 31

extensible
in CclBuf 50, 51

in CclBuf class 50

in dataAreaType 52

in DataAreaType 56

in setDataLength 55

external
in dataAreaOwner 52

in DataAreaOwner 55

ExtractString
in Methods

in Buffer COM Class 2

F
failed

in EndTerminalReason 96

false
in ErrorWindow 11, 14

False
in Poll 24, 39

FALSE
in Validate 27

field
in CclMap class 79

in CclScreen class 81

in Public methods 79, 81

Field
in Field COM Class 17

in Screen COM Class 27

Field COM class
Methods

AppendText 17

BackgroundColor 18

Field COM class (continued)
Methods (continued)

BaseAttribute 18

Column 18

DataTag 18

ForegroundColor 19

Highlight 19

InputProt 19

InputType 20

Intensity 20

Length 20

Position 20

ResetDataTag 21

Row 21

SetBaseAttribute 21

SetExtAttribute 21

SetText 21

Text 22

TextLength 22

Transparency 22

FieldByIndex
in Methods

in Screen COM Class 28

FieldByName
in Methods

in Map COM Class 27

in Validate 27

FieldByPosition
in Methods

in Screen COM Class 29

fieldCount
in CclScreen class 81

in Public methods 81

FieldCount
in Methods

in Screen COM Class 29

fields
in validate 80

fields (parameter)
in validate 80

fixed
in CclBuf 50, 51

in CclBuf class 50

in dataAreaType 52

in DataAreaType 56

Flow
in Cancel 5

in Changed 5

in Commit 46

in Connect COM Class 4

in Flow COM class 22

in Flow COM Class 22

in Link 7

in SetSyncType 24, 25

in Status 9

282 CICS Transaction Gateway: Programming Reference

flow (parameter)
in backout 97

in BackOut 45

in cancel 57

in Cancel 5

in changed 57

in Changed 5

in commit 97

in Commit 46

in link 58

in Link 7

in status 60

in Status 9

Flow COM class
Methods

AbendCode 23

CallType 23

CallTypeText 23

Diagnose 23

Flowid 24

ForceReset 24

Poll 24

SetSyncType 24

SetTimeout 25

SyncType 25

Timeout 25

Wait 25

flowId
in CclFlow class 75

in Public methods 75

Flowid
in Methods

in Flow COM Class 24

forceReset
in CclFlow class 75

in CclUOW class 97

in Public methods 75, 97

ForceReset
in Methods

in Flow COM Class 24

in UOW COM Class 46

foregroundColor
in CclField class 69

in Public methods 69

ForegroundColor
in Methods

in Field COM Class 19

format (parameter)
in SetErrorFormat 13, 16

G
Gateway initialization fileClient initialization file

in Connect 36

in Details 6

in ServerCount 12, 15

Gateway initialization fileClient initialization file

(continued)
in ServerDesc 16

in ServerName 8, 16, 41

GetDate
in SecTime COM Class 32

glossary of terms and abbreviations 247

gray
in Color 73

green
in Color 73

H
handleException

in CclECI class 62

in CclEPI class 65

in Public methods 62, 65

handleReply
in CclFlow class 76

in CclSession class 86

in Public methods 76, 86

highlight
in CclField class 69

in Public methods 69

Highlight
in CclField class 73

in Enumerations 73

in Methods
in Field COM Class 19

Hours
in SecTime COM Class 32

Hundredths
in SecTime COM Class 32

I
idle

in send 94

in State 87, 96

in Buffer COM Class 1

inactive
in CallType 77

index (parameter)
in ExCode 15

in field 79, 81

in FieldByIndex 28

in namedField 79

in serverDesc 63, 65

in ServerDesc 12, 13, 15, 16

in serverName 63, 65

in ServerName 13, 16

in validate 80

initEPI
in CclEPI constructor 64

in CclTerminal constructor 88

Index 283

initialization file
in CclTerminal constructor 88

in serverCount 63, 65

in serverDesc 65

in serverName 65

inputProt
in CclField class 70

in Public methods 70

InputProt
in Methods

in Field COM Class 19

inputType
in CclField class 70

in Public methods 70

InputType
in Methods

in Field COM Class 20

insert
in CclBuf class 53

in Public methods 53

InsertString
in Methods

in Buffer COM Class 2

install
in CclTerminal class 91

in Public methods 91

Install
in Methods

in Terminal COM Class 38

install_path vii

installation
default location vii

path vii

installation path vii

instance
in CclECI class 63

in Public methods 63

intense
in BaseInts 72

in intensity 70

intenseHlt
in Highlight 73

intensity
in CclField class 70

in Public methods 70

Intensity
in Methods

in Field COM Class 20

internal
in CclBuf 51

in dataAreaOwner 52

in DataAreaOwner 55

invalidMap
in CclMap constructor 78

invalidState
in poll 92

in send 94

J
Javadoc 47, 181

K
key (parameter)

in setAID 82

in SetAID 29, 30

L
labels

in validate 80

LastVerifiedTime
in SecAttr COM class 31

len
in validate 80

length
in CclField class 70

in Public methods 70

Length
in Methods

in Buffer COM Class 3

in Field COM Class 20

length (parameter)
in appendText 68

in assign 51

in CclBuf 50, 51

in cut 52

in ExtractString 2

in insert 53

in replace 55

in setDataLength 55

in SetLength 3

in setText 71

link
in CallType 78

in CclConn class 58

in Public methods 58

in SetSyncType 25

Link
in Details 6

in Methods
in Connect COM Class 6

in Poll 24

in UOW COM class 45

List parameter 133

CICS_EciListSystems 132

CICS_EpiListSystems function 146

listState
in CclBuf class 53

in CclConn class 59

in CclECI class 63

in CclFlow class 76

284 CICS Transaction Gateway: Programming Reference

listState (continued)
in CclUOW class 98

in Public methods 53, 59, 63, 76, 98

M
makeSecurityDefault

in CclConn class 59

in CclTerminal class 91

in Public methods 59, 91

MakeSecurityDefault
in Methods

in Connect COM Class 7

in Terminal COM Class 39

Map
in Map COM Class 25

map (parameter)
in validate 80

Map COM class
Methods

ExCode 26

FieldByName 27

Validate 27

mapName
in CclScreen class 82

in Public methods 82

MapName
in Methods

in Screen COM Class 29

mapname (parameter)
in Validate 27

mapSetName
in CclScreen class 82

in Public methods 82

MapSetName
in Methods

in Screen COM Class 29

MaxBufferSize (parameter)
in CclBuf class 50

maxRequests
in CclTerminal constructor 88

maxServers
in serverDesc 65

in serverName 65

methodName
in CclException class 68

in Public methods 68

Methods
AbendCode 23

AlterSecurity 5, 35

AppendString 2

AppendText 17

BackgroundColor 18

BackOut 45

BaseAttribute 18

CallType 23

Methods (continued)
CallTypeText 23

Cancel 5

CCSId 36

Changed 5

ChangePassword 5, 36

Column 18

Commit 46

Connect 36

CursorCol 28

CursorRow 28

Data 2

DataTag 18

Depth 28

Details 6

Devtype 37

Diagnose 14, 23, 34, 37

Disconnect 37

DisconnectWithPurge 37

DiscReason 37

ErrorFormat 11, 14

ErrorOffset 11, 14

ErrorWindow 11, 14

ExCode 12, 15, 26, 38

ExCodeText 12, 15, 38

ExtractString 2

FieldByIndex 28

FieldByName 27

FieldByPosition 29

FieldCount 29

Flowid 24

ForceReset 24, 46

ForegroundColor 19

Highlight 19

in Buffer COM Class 2

in Connect COM Class 5

in ECI COM Class 11

in EPI COM Class 14

in Field COM Class 17

in Flow COM Class 23

in Map COM Class 26

in Screen COM Class 28

in Session COM Class 34

in Terminal COM Class 35

in UOW COM Class 45

InputProt 19

InputType 20

InsertString 2

Install 38

Intensity 20

Length 3, 20

Link 6

MakeSecurityDefault 7, 39

MapName 29

MapSetName 29

Index 285

Methods (continued)
NetName 39

Overlay 3

Password 7, 39

Poll 24, 39

PollForReply 40

Position 20

QueryATI 40

ReadTimeout 40

ReceiveATI 40

ResetDataTag 21

Row 21

Screen 41

Send 41

ServerCount 12, 15

ServerDesc 12, 15

ServerName 8, 13, 16, 41

ServerStatus 8

ServerStatusText 8

SetAID 29

SetATI 41

SetBaseAttribute 21

SetCursor 30

SetData 3

SetErrorFormat 13, 16

SetExtAttribute 21

SetLength 3

SetString 4

SetSyncType 24, 34

SetTermDefns 42

SetText 21

SetTimeout 25

SignonCapability 43

Start 43

State 16, 34, 44

Status 8

String 4

SyncType 25

TermId 44

Terminate 17

Text 22

TextLength 22

Timeout 25

TranDetails 9

TransId 35, 44

Transparency 22

UnpaddedPassword 9

UnpaddedServerName 9

UnpaddedUserid 10

UowId 46

Userid 44

UserId 10

Validate 27

VerifyPassword 10, 44

Wait 25

Methods (continued)
Width 30

migration vii

Minutes
in SecTime COM Class 33

modified
in BaseMDT 72

in dataTag 69

Month
in SecTime COM Class 33

multipleInstance
in CclECI class 61

N
n (parameter)

in position 70

name (parameter)
in FieldByName 27

namedField
in CclMap class 79

in Protected methods 79

NameSpace parameter
CICS_EciListSystems 132

CICS_EpiAddTerminal function 147

CICS_EpiListSystems function 145

netName
in CclTerminal class 92

in Public methods 92

NetName
in Methods

in Terminal COM Class 39

netname (parameter)
in CclTerminal constructor 87, 88

NetName parameter
CICS_EpiAddExTerminal function 151

CICS_EpiAddTerminal function 147

neutral
in Color 73

New
in Buffer COM Class 1

newPassword (parameter)
in alterSecurity 57

in AlterSecurity 5, 35

in changed 58

in ChangePassword 6

in changePassword method 89

NewPassword parameter
CICS_ChangePassword function 175

newstate (parameter)
in setATI 94

newUserid (parameter)
in alterSecurity 57

in AlterSecurity 5, 35

no
;= 54

286 CICS Transaction Gateway: Programming Reference

no (continued)
in Bool 49

in poll 76

normal
in BaseInts 72

in intensity 70

normalHlt
in Highlight 73

notDiscon
in EndTerminalReason 96

Nothing
in Poll 24

NotifyFn parameter
CICS_EpiAddExTerminal function 152

CICS_EpiAddTerminal function 149

numeric
in BaseType 73

in inputType 70

nworkName (parameter)
in Connect 36, 37

in SetTermDefns 42

O
off

in Bool 49

offset (parameter)
in cut 52

in dataArea 52

in ExtractString 2

in insert 53

in InsertString 2

in Overlay 3

in replace 55

OldPassword parameter
CICS_ChangePassword function 175

on
in Bool 49

opaqueTran
in Transparency 73

orange
in Color 73

orTran
in Transparency 73

outofService
in EndTerminalReason 96

Overlay
in Methods

in Buffer COM Class 3

P
PA1

in AID 83

PA3
in AID 83

paleCyan
in Color 73

paleGreen
in Color 73

parameter
in CclMap constructor 78

in CclTerminal constructor 88

in send 93

in setCursor 82

in setExtAttribute 71

password 58

in CclConn class 59

in CclTerminal class 92

in Public methods 59, 92

in verifyPassword method 61

Password
in Methods

in Connect COM Class 7

in Terminal COM Class 39

password (parameter)
in alterSecurity method 89

in CclConn constructor 56, 57

in CclTerminal constructor 88

in ChangePassword 36

in Details 6

in SetTermDefns 42

Password parameter
CICS_EpiSetSecurity function 158

CICS_SetDefaultSecurity function 178

CICS_VerifyPassword function 172

PF1
in AID 83

PF24
in AID 83

pink
in Color 73

poll
in CclFlow class 76

in CclTerminal class 92

in Public methods 76, 92

Poll
in Methods

in Flow COM Class 24

in Terminal COM Class 39

in SetSyncType 25, 34

PollForReply
in Methods

in Terminal COM Class 40

position
in CclField class 70

in Public methods 70

Position
in Methods

in Field COM Class 20

Index 287

programming
reference 47, 181

programName (parameter)
in link 58

in Link 7

protect
in BaseProt 73

in inputProt 70

Protected methods
in CclMap class 79

namedField 79

validate 80

Public methods
;= 54

abendCode 67, 75

alterSecurity 57, 89

appendText 68

assign 51

backgroundColor 69

backout 97

baseAttribute 69

callType 75

callTypeText 75

cancel 57

CCSid 90

change password 58

changed 57

changePassword 89

className 67

column 69

commit 97

connection 75

cursorCol 81

cursorRow 81

cut 52

dataArea 52

dataAreaLength 52

dataAreaOwner 52

dataAreaType 52

dataLength 53

dataTag 69

depth 81

diagnose 64, 67, 75, 86, 90

disconnect 90

discReason 90

exCode 62, 64, 67, 78, 91

exCodeText 62, 64, 67, 79, 91

exObject 67

field 79, 81

fieldCount 81

flowId 75

forceReset 75, 97

foregroundColor 69

handleException 62, 65

handleReply 76, 86

Public methods (continued)
highlight 69

in CclBuf class 51

in CclConn class 57

in CclECI class 62

in CclEPI class 64

in CclException class 67

in CclField class 68

in CclFlow class 75

in CclMap class 78

in CclScreen class 81

in CclSession class 86

in CclTerminal class 89

in CclUOW class 97

inputProt 70

inputType 70

insert 53

install 91

instance 63

intensity 70

length 70

link 58

listState 53, 59, 63, 76, 98

makeSecurityDefault 59, 91

mapName 82

mapSetName 82

methodName 68

netName 92

password 59, 92

poll 76, 92

position 70

queryATI 92

r= 53

readTimeout 93

receiveATI 93

replace 55

resetDataTag 71

row 71

screen 93

send 93, 94

serverCount 63, 65

serverDesc 63, 65

serverName 59, 60, 63, 65, 94

serverStatus 60

serverStatusText 60

setAID 82

setATI 94

setBaseAttribute 71

setCursor 82

setDataLength 55

setExtAttribute 71

setText 71, 72

setTimeout 77

signonCapability 94

state 66, 86, 94

288 CICS Transaction Gateway: Programming Reference

Public methods (continued)
status 60

syncType 77

termID 95

terminal 86

terminate 66

text 72

textLength 72

timeout 77

transID 86, 95

transparency 72

uow 77

uowId 98

userId 60, 61, 95

verifyPassword 61, 95

wait 77

width 83

publications 239

purple
in Color 73

Q
queryATI

in CclTerminal class 92

in Public methods 92

QueryATI
in Methods

in Terminal COM Class 40

R
r=

in CclBuf class 53

in Public methods 53

readTimeout
in CclTerminal class 93

in Public methods 93

ReadTimeout
in Methods

in Terminal COM Class 40

readTimeOut (parameter)
in CclTerminal constructor 88

ReadTimeout (parameter)
in SetTermDefns 42

receiveATI
in CclTerminal class 93

in Public methods 93

ReceiveATI
in Methods

in Terminal COM Class 40

red
in Color 73

replace
in CclBuf class 55

in Public methods 55

reserved1
field in ECI parameter block 100

with ECI_ASYNC call type 111

with ECI_STATE_ASYNC call type 120

with ECI_STATE_SYNC call type 116

with ECI_SYNC call type 104

resetDataTag
in CclField class 71

in Public methods 71

ResetDataTag
in Methods

in Field COM Class 21

in ResetDataTag 21

reverseHlt
in Highlight 73

row
in CclField class 71

in Public methods 71

in validate 80

Row
in Methods

in Field COM Class 21

row (parameter)
in field 79, 81

in setCursor 82

rowPos (parameter)
in FieldByPosition 29

in SetCursor 30

runTran (parameter)
in CclConn constructor 56, 57

in TranDetails 9

S
screen

in CclTerminal class 93

in Public methods 93

Screen
in Field COM Class 17

in Methods
in Terminal COM Class 41

in Screen 41

in Screen COM class 27, 28

in Validate 27

screen (parameter)
in CclMap constructor 78

in handleReply 86

Screen COM class
Methods

CursorCol 28

CursorRow 28

Depth 28

FieldByIndex 28

FieldByPosition 29

FieldCount 29

MapName 29

Index 289

Screen COM class (continued)
Methods (continued)

MapSetName 29

SetAID 29

SetCursor 30

Width 30

Screen.fieldbyIndex method
in Ccl Field COM class 17

screenRef (parameter)
in Validate 27

Seconds
in SecTime COM Class 33

send
in CclTerminal class 93, 94

in Public methods 93, 94

Send
in Methods

in Terminal COM Class 41

in Poll 39

in SetSyncType 34

server
in poll 92

in State 87, 96

server (parameter)
in CclTerminal constructor 87, 88

serverCount
in CclECI class 63

in CclEPI class 65

in Public methods 63, 65

ServerCount
in Methods

in ECI COM Class 12

in EPI COM Class 15

serverDesc
in CclECI class 63

in CclEPI class 65

in Public methods 63, 65

ServerDesc
in ExCode 15

in Methods
in ECI COM Class 12

in EPI COM Class 15

serverName
in CclConn class 59, 60

in CclECI class 63

in CclEPI class 65

in CclTerminal class 94

in Public methods 59, 60, 63, 65, 94

ServerName
in Details 6

in ExCode 15

in Methods
in Connect COM Class 8

in ECI COM Class 13

in EPI COM Class 16

ServerName (continued)
in Methods (continued)

in Terminal COM Class 41

serverName (parameter)
in CclConn constructor 56

in Details 6

serverStatus
in CclConn class 60

in Public methods 60

ServerStatus
in CclConn class 61

in Enumerations 61

in Methods
in Connect COM Class 8

serverStatusText
in CclConn class 60

in Public methods 60

ServerStatusText
in Methods

in Connect COM Class 8

servName (parameter)
in Connect 36

in SetTermDefns 42

Session
in Send 41

in Session COM Class 33

in SetSyncType 34

in Start 43

in State 44

session (parameter)
in ReceiveATI 40

in receiveATI method 93

in send 93, 94

in Send 41

in Start 43

Session COM class
Methods

Diagnose 34

SetSyncType 34

State 34

TransId 35

setAID
in CclScreen class 82

in Public methods 82

SetAID
in Methods

in Screen COM Class 29

setATI
in CclTerminal class 94

in Public methods 94

SetATI
in Methods

in Terminal COM Class 41

setBaseAttribute
in CclField class 71

290 CICS Transaction Gateway: Programming Reference

setBaseAttribute (continued)
in Public methods 71

SetBaseAttribute
in Methods

in Field COM Class 21

setCursor
in CclScreen class 82

in Public methods 82

SetCursor
in Methods

in Screen COM Class 30

SetData
in Methods

in Buffer COM Class 3

setDataLength
in CclBuf class 55

in Public methods 55

SetErrorFormat
in Methods

in ECI COM Class 13

in EPI COM Class 16

setExtAttribute
in CclField class 71

in Public methods 71

SetExtAttribute
in Methods

in Field COM Class 21

SetLength
in Buffer COM Class 1

in Methods
in Buffer COM Class 3

SetString
in Methods

in Buffer COM Class 4

SetSyncType
in Methods

in Flow COM Class 24

in Session COM Class 34

SetTermDefns
in Methods

in Terminal COM Class 42

setText
in CclField class 71, 72

in Public methods 71, 72

SetText
in Methods

in Field COM Class 21

setTimeout
in CclFlow class 77

in Public methods 77

SetTimeout
in Methods

in Flow COM Class 25

shutdown
in EndTerminalReason 96

signoff
in EndTerminalReason 96

signonCapability
in CclTerminal class 94

in Public methods 94

SignonCapability
in Methods

in Terminal COM Class 43

signonCapability (parameter)
in CclTerminal constructor 88

in SetTermDefns 42

signonCapable
in signonType 96

signonIncapable
in signonType 96

signonType
in CclTerminal class 95

in Enumerations 95

signonUnknown
in signonType 96

Size parameter
CICS_EpiReply function 162

CICS_EpiStartTran function 161

stackPages (parameter)
in CclFlow 74

Start
in Methods

in Terminal COM Class 43

in Poll 39

in SetSyncType 34

startdata (parameter)
in send 93

startData (parameter)
in Start 43

state
in CclEPI class 66

in CclSession class 86

in CclTerminal class 94

in Public methods 66, 86, 94

State
in CclEPI class 66

in CclSession class 87

in CclTerminal class 96

in Enumerations 66, 87, 96

in EPI COM Class 13

in Methods
in EPI COM Class 16

in Session COM Class 34

in Terminal COM Class 44

in State 44

state (parameter)
in handleReply 86

stateVal (parameter)
in SetATI 41

Index 291

status
in CallType 78

in CclConn class 60

in Public methods 60

in ServerStatus 8

in ServerStatusText 8

in SetSyncType 25

Status
in Details 6

in Methods
in Connect COM Class 8

in Poll 24

String
in Methods

in Buffer COM Class 4

string (parameter)
in AppendString 2

in InsertString 2

in Overlay 3

in SetString 4

sync
in CclSession constructor 86

in Sync 49

Sync
in Ccl class 49

in Enumerations 49

syncType
in CclFlow class 77

in poll 76, 92

in Public methods 77

in wait 77

SyncType
in Methods

in Flow COM Class 25

syncType (parameter)
in CclFlow 74

in CclSession constructor 85

in SetSyncType 24, 34

in SyncType 25

system information structure 132, 145

System parameter
CICS_ChangePassword function 175

CICS_EpiAddExTerminal function 151

CICS_EpiAddTerminal function 147

CICS_SetDefaultSecurity function 178

CICS_VerifyPassword function 173

SystemName parameter
CICS_EciListSystems 132

Systems parameter 133

CICS_EciListSystems 132

CICS_EpiListSystems function 145

T
termDefined

in State 96

termID
in CclTerminal class 95

in Public methods 95

TermId
in Methods

in Terminal COM Class 44

terminal
in CclSession class 86

in Public methods 86

Terminal
in EPI COM Class 13

in Screen COM Class 28

in ServerName 41

Terminal COM class
Methods

AlterSecurity 35

CCSId 36

ChangePassword 36

Connect 36

Devtype 37

Diagnose 37

Disconnect 37

DisconnectWithPurge 37

DiscReason 37

ExCode 38

ExCodeText 38

Install 38

MakeSecurityDefault 39

NetName 39

Password 39

Poll 39

PollForReply 40

QueryATI 40

ReadTimeout 40

ReceiveATI 40

Screen 41

Send 41

ServerName 41

SetATI 41

SetTermDefns 42

SignonCapability 43

Start 43

State 44

TermId 44

TransId 44

Userid 44

VerifyPassword 44

terminal index 147, 150

Terminal.Connect
in Screen COM Class 28

Terminal.Screen
in Screen COM Class 28

terminate
in CclEPI class 66

in Public methods 66

292 CICS Transaction Gateway: Programming Reference

Terminate
in Methods

in EPI COM Class 17

in Terminate 17

TermIndex parameter
CICS_EpiAddExTerminal function 153

CICS_EpiAddTerminal function 149

CICS_EpiATIState function 164

CICS_EpiDelTerminal function 156

CICS_EpiGetEvent function 165

CICS_EpiInquireSystem function 155

CICS_EpiPurgeTerminal function 157

CICS_EpiReply function 162

CICS_EpiSetSecurity function 158

CICS_EpiStartTran function 160

text
in CclField class 72

in Public methods 72

Text
in Methods

in Field COM Class 22

text (parameter)
;= 54

in appendText 68

in CclBuf 51

in setText 71, 72

r= 53, 54

textLength
in CclField class 72

in Public methods 72

TextLength
in Methods

in Field COM Class 22

textString (parameter)
in AppendText 17, 18

in SetText 21, 22

timeout
in CclFlow class 77

in Public methods 77

Timeout
in Methods

in Flow COM Class 25

timeout (parameter)
in CclFlow 74

in Install 38

in setTimeout 77

tranCode (parameter)
in Start 43

TranDetails
in Connect COM Class 4

in Methods
in Connect COM Class 9

transID
in CclSession class 86

in CclTerminal class 95

transID (continued)
in Public methods 86, 95

TransId
in Methods

in Session COM Class 35

in Terminal COM Class 44

transid (parameter)
in send 93

TransId parameter
CICS_EpiStartTran function 160

transparency
in CclField class 72

in Public methods 72

Transparency
in CclField class 73

in Enumerations 73

in Methods
in Field COM Class 22

true
in ErrorWindow 11, 14

True
in Poll 24, 39

TRUE
in Validate 27

txnTimedOut
in State 96

type (parameter)
in CclBuf 50, 51

U
unavailable

in ServerStatus 61

underscoreHlt
in Highlight 73

unit (parameter)
in link 58

unitOfWork (parameter)
in Link 7

unknown
in EndTerminalReason 96

in ServerStatus 61

unknownServer
in CclTerminal constructor 88

unmodified
in BaseMDT 72

in dataTag 69

unmodified (parameter)
in resetDataTag 71

unpadded (parameter)
in status 59, 60, 61

UnpaddedPassword
in Methods

in Connect COM Class 9

Index 293

UnpaddedServerName
in Methods

in Connect COM Class 9

UnpaddedUserid
in Methods

in Connect COM Class 10

unprotect
in BaseProt 73

in inputProt 70

uow
in CclFlow class 77

in Public methods 77

UOW
in Link 7

in UOW COM class 45

UOW COM class
Methods

BackOut 45

Commit 46

ForceReset 46

UowId 46

uowId
in CclUOW class 98

in Public methods 98

UowId
in Methods

in UOW COM Class 46

user-defined
CICS_EpiSystemIdExit 209

CICS_EpiTerminateExit 197

user-defined return code
CICS_EciDataReturnExit 192

CICS_EciDataSendExit 191

CICS_EciExternalCallExit1 187

CICS_EciExternalCallExit2 188

CICS_EciInitializeExit 184

CICS_EciSetProgramAliasExit 193

CICS_EciSystemIdExit 190

CICS_EciTerminateExit 185

CICS_EpiAddTerminalExit 199

CICS_EpiDelTerminalExit 206

CICS_EpiGetEventExit 207

CICS_EpiInitializeExit 196

CICS_EpiReplyExit 205

CICS_EpiStartTranExit 204

CICS_EpiStartTranExtendedExit 203

CICS_EpiTermIdExit 201

CICS_EpiTermIdInfoExit 202

CICS_EpiTranFailedExit 211

userId
in CclConn class 60, 61

in CclTerminal class 95

in Public methods 60, 61, 95

Userid
in Methods

in Terminal COM Class 44

UserId
in Methods

in Connect COM Class 10

userid (parameter)
in alterSecurity method 89

in CclTerminal constructor 88

in SetTermDefns 42

userId (parameter)
in CclConn constructor 56

in Details 6

userID (parameter)
in CclConn constructor 57

in Details 6

UserId parameter
CICS_ChangePassword function 175

CICS_EpiSetSecurity function 158

CICS_SetDefaultSecurity function 178

CICS_VerifyPassword function 172

V
validate

in CclMap class 80

in Protected methods 80

Validate
in Methods

in Map COM Class 27

value (parameter)
in setExtAttribute 71

Value (parameter)
in SetExtAttribute 21

verifyPassword
in CclConn class 61

in CclTerminal class 95

in Public methods 61, 95

VerifyPassword
in Methods

in Connect COM Class 10

in Terminal COM Class 44

Version parameter
CICS_EpiInitialize function 144

W
wait

in CclFlow class 77

in Public methods 77

Wait
in Methods

in Flow COM Class 25

in Wait 25

Wait parameter
CICS_EpiGetEvent function 165

294 CICS Transaction Gateway: Programming Reference

white
in Color 73

width
in CclScreen class 83

in Public methods 83

in validate 80

Width
in Methods

in Screen COM Class 30

withPurge
in disconnect method

in CclTerminal class 90

WorkLoad Manager 192

X
xorTran

in Transparency 73

Y
Year

in SecTime COM Class 33

yellow
in Color 73

yes
;= 54

in Bool 49

in poll 76

Index 295

296 CICS Transaction Gateway: Programming Reference

Notices

This information was developed for products and services offered in the

U.S.A. IBM may not offer the products, services, or features discussed in this

document in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any

other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,

OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore

this statement may not apply to you.

© Copyright IBM Corp. 1989, 2008 297

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s)

described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact IBM United

Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire,

England, SO21 2JN. Such information may be available, subject to appropriate

terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Programming License Agreement, or any

equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application

programming interfaces for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under

all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

298 CICS Transaction Gateway: Programming Reference

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

AIX

AnyNet

AS/400

CICS

CICS/400

CICS/ESA

CICS/VSE

DB2

Domino

Hummingbird

IBM

IBM

IBMLink

IMS

iSeries

MQSeries

MVS

MVS/ESA

Notes

OS/2

OS/390

POWER

pSeries

RACF

Redbooks

RETAIN

RMF

RS/6000

SAA

SP2

System/390

Tivoli

TXSeries

VisualAge

VSE/ESA

VTAM

WebSphere

z/OS

zSeries

Notices 299

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and

other countries.

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries,

or both.

Other company, product or service names may be trademarks or service

marks of others.

300 CICS Transaction Gateway: Programming Reference

Sending your comments to IBM

If you especially like or dislike anything about this book, use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and

on the accuracy, organization, subject matter, or completeness of this book.

Limit your comments to the information in this book and the way in which

the information is presented.

To ask questions, make comments about the functions of IBM products or

systems, or to request additional publications, contact your IBM representative

or your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use

or distribute your comments in any way it believes appropriate, without

incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom
v By fax:

– +44 1962 842327 (if you are outside the UK)

– 01962 842327 (if you are in the UK)
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1989, 2008 301

302 CICS Transaction Gateway: Programming Reference

���

Program Number: 5724-I81, 5655-R25 and 5724-J09

SC34-6759-02

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

C
IC

S
Tr

an
sa

ct
io

n
G

at
ew

ay

Pr
og

ra
m

m
in

g
R

ef
er

en
ce

Ve

rs
io

n
7.1

	Contents
	About this book
	Who should read this book
	Installation path
	Directory delimiters
	Information specific to your operating system

	Changes to programming reference information
	Chapter 1. COM
	Buffer COM class
	Interface Selection
	Object Creation
	Methods
	AppendString
	Data
	ExtractString
	InsertString
	Length
	Overlay
	SetData
	SetLength
	SetString
	String

	Connect COM class
	Interface Selection
	Object Creation
	Methods
	AlterSecurity
	Cancel
	Changed
	ChangePassword
	Details
	Link
	MakeSecurityDefault
	Password
	ServerName
	ServerStatus
	ServerStatusText
	Status
	TranDetails
	UnpaddedPassword
	UnpaddedServerName
	UnpaddedUserid
	UserId
	VerifyPassword

	ECI COM class
	Interface Selection
	Object Creation
	Methods
	ErrorFormat
	ErrorOffset
	ErrorWindow
	ExCode
	ExCodeText
	ServerCount
	ServerDesc
	ServerName
	SetErrorFormat

	EPI COM class
	Interface Selection
	Object Creation
	Methods
	Diagnose
	ErrorFormat
	ErrorOffset
	ErrorWindow
	ExCode
	ExCodeText
	ServerCount
	ServerDesc
	ServerName
	SetErrorFormat
	State
	Terminate

	Field COM class
	Interface Selection
	Methods
	AppendText
	BackgroundColor
	BaseAttribute
	Column
	DataTag
	ForegroundColor
	Highlight
	InputProt
	InputType
	Intensity
	Length
	Position
	ResetDataTag
	Row
	SetBaseAttribute
	SetExtAttribute
	SetText
	Text
	TextLength
	Transparency

	Flow COM class
	Interface Selection
	Object Creation
	Methods
	AbendCode
	CallType
	CallTypeText
	Diagnose
	Flowid
	ForceReset
	Poll
	SetSyncType
	SetTimeout
	SyncType
	Timeout
	Wait

	Map COM class
	Interface Selection
	Object Creation
	Methods
	ExCode
	FieldByName
	Validate

	Screen COM class
	Interface Selection
	Methods
	CursorCol
	CursorRow
	Depth
	FieldByIndex
	FieldByPosition
	FieldCount
	MapName
	MapSetName
	SetAID
	SetCursor
	Width

	SecAttr COM class
	Interface Selection
	Methods
	ExpiryTime
	InvalidCount
	LastAccessTime
	LastVerifiedTime

	SecTime COM class
	Interface Selection
	Methods
	Day
	GetDate
	Hours
	Hundredths
	Minutes
	Month
	Seconds
	Year

	Session COM class
	Interface Selection
	Object Creation
	Methods
	Diagnose
	SetSyncType
	State
	TransId

	Terminal COM class
	Interface Selection
	Object Creation
	Methods
	AlterSecurity
	CCSId
	ChangePassword
	Connect
	Devtype
	Diagnose
	Disconnect
	DisconnectWithPurge
	DiscReason
	ExCode
	ExCodeText
	Install
	MakeSecurityDefault
	NetName
	Password
	Poll
	PollForReply
	QueryATI
	ReadTimeout
	ReceiveATI
	Screen
	Send
	ServerName
	SetATI
	SetTermDefns
	SignonCapability
	Start
	State
	TermId
	TransId
	Userid
	VerifyPassword

	UOW COM class
	Interface Selection
	Object Creation
	Methods
	BackOut
	Commit
	ForceReset
	UowId

	Chapter 2. Java
	Class/interface page
	Use page
	Tree (Class Hierarchy)
	Index page

	Chapter 3. C++
	Ccl class
	Enumerations
	Bool
	Sync
	ExCode

	CclBuf class
	CclBuf constructors
	CclBuf (1)
	CclBuf (2)
	CclBuf (3)
	CclBuf (4)

	Public methods
	assign
	cut
	dataArea
	dataAreaLength
	dataAreaOwner
	dataAreaType
	dataLength
	insert
	listState
	operator= (1)
	operator= (2)
	operator+= (1)
	operator+= (2)
	operator==
	operator!=
	replace
	setDataLength

	Enumerations
	DataAreaOwner
	DataAreaType

	CclConn class
	CclConn constructor
	Public methods
	alterSecurity
	cancel
	changed
	changePassword
	link
	listState
	makeSecurityDefault
	password (1)
	password (2)
	serverName (1)
	serverName (2)
	status
	serverStatus
	serverStatusText
	userId (1)
	userId (2)
	verifyPassword

	Enumerations
	ServerStatus

	CclECI class
	CclECI constructor (protected)
	Public methods
	exCode
	exCodeText
	handleException
	instance
	listState
	serverCount
	serverDesc
	serverName

	CclEPI class
	CclEPI constructor
	Public methods
	diagnose
	exCode
	exCodeText
	handleException
	serverCount
	serverDesc
	serverName
	state
	terminate

	Enumerations
	State

	CclException class
	Public methods
	abendCode
	className
	diagnose
	exCode
	exCodeText
	exObject
	methodName

	CclField class
	Public methods
	appendText (1)
	appendText (2)
	backgroundColor
	baseAttribute
	column
	dataTag
	foregroundColor
	highlight
	inputProt
	inputType
	intensity
	length
	position
	resetDataTag
	row
	setBaseAttribute
	setExtAttribute
	setText (1)
	setText (2)
	text
	textLength
	transparency

	Enumerations
	BaseInts
	BaseMDT
	BaseProt
	BaseType
	Color
	Highlight
	Transparency

	CclFlow class
	CclFlow constructor
	CclFlow (1)
	CclFlow (2)

	Public methods
	abendCode
	callType
	callTypeText
	connection
	diagnose
	flowId
	forceReset
	handleReply
	listState
	poll
	setTimeout
	syncType
	timeout
	uow
	wait

	Enumerations
	CallType

	CclMap class
	CclMap constructor
	Public methods
	exCode
	exCodeText
	field (1)
	field (2)

	Protected methods
	namedField
	validate

	CclScreen class
	Public methods
	cursorCol
	cursorRow
	depth
	field (1)
	field (2)
	fieldCount
	mapName
	mapSetName
	setAID
	setCursor
	width

	Enumerations
	AID

	CclSecAttr
	Public Methods
	expiryTime
	invalidCount
	lastAccessTime
	lastVerifiedTime

	CclSecTime
	Public Methods
	day
	get_time_t
	get_tm
	hours
	hundredths
	minutes
	month
	seconds
	year

	CclSession class
	CclSession constructor
	Public methods
	diagnose
	handleReply
	state
	terminal
	transID

	Enumerations
	State

	CclTerminal class
	CclTerminal constructor
	CclTerminal (1)
	CclTerminal (2)

	Public methods
	alterSecurity
	changePassword
	CCSid
	diagnose
	disconnect (1)
	disconnect (2)
	discReason
	exCode
	exCodeText
	install
	makeSecurityDefault
	netName
	password
	poll
	queryATI
	readTimeout
	receiveATI
	screen
	send (1)
	send (2)
	setATI
	signonCapability
	state
	serverName
	termID
	transID
	userId
	verifyPassword

	Enumerations
	ATIState
	signonType
	State
	EndTerminalReason

	CclUOW class
	CclUOW constructor
	Public methods
	backout
	commit
	forceReset
	listState
	uowId

	Chapter 4. C and COBOL
	External Call Interface
	CICS_ExternalCall ECI_Parms
	Purpose
	Parameters
	Return Codes

	Call types for the CICS_ExternalCall
	ECI_SYNC call type
	ECI_ASYNC call type
	ECI_STATE_SYNC call type
	ECI_STATE_ASYNC call type
	ECI_GET_REPLY call type
	ECI_GET_REPLY_WAIT call type
	ECI_GET_SPECIFIC_REPLY call type
	ECI_GET_SPECIFIC_REPLY_WAIT call type

	ECI status block
	CICS_EciListSystems NameSpace Systems List
	Purpose
	Parameters
	Return Codes

	External Presentation Interface
	EPI constants and data structures
	EPI constants
	EPI data structures

	EPI functions
	CICS_EpiInitialize
	CICS_EpiTerminate
	CICS_EpiListSystems
	CICS_EpiAddTerminal
	CICS_EpiAddExTerminal
	CICS_EpiInquireSystem
	CICS_EpiDelTerminal
	CICS_EpiPurgeTerminal
	CICS_EpiSetSecurity
	CICS_EpiStartTran
	CICS_EpiReply
	CICS_EpiATIState
	CICS_EpiGetEvent

	EPI events
	CICS_EPI_EVENT_ADD_TERM
	CICS_EPI_EVENT_SEND
	CICS_EPI_EVENT_CONVERSE
	CICS_EPI_EVENT_END_TRAN
	CICS_EPI_EVENT_START_ATI
	CICS_EPI_EVENT_END_TERM

	External Security Interface
	ESI constants and data structures
	ESI constants
	ESI data structures

	ESI functions
	CICS_VerifyPassword
	CICS_ChangePassword
	CICS_SetDefaultSecurity

	Chapter 5. Java request monitoring, C ECI and C EPI exits
	Java request monitoring exits
	C ECI exits reference
	Identification token
	Process model implementation
	CICS_EciInitializeExit
	CICS_EciTerminateExit
	CICS_EciExternalCallExit1
	CICS_EciExternalCallExit2
	CICS_EciSystemIdExit
	CICS_EciDataSendExit
	CICS_EciDataReturnExit
	CICS_EciSetProgramAliasExit

	C EPI exits reference
	CICS_EpiInitializeExit
	CICS_EpiTerminateExit
	CICS_EpiAddTerminalExit
	CICS_EpiTermIdExit
	CICS_EpiTermIdInfoExit
	CICS_EpiStartTranExtendedExit
	CICS_EpiStartTranExit
	CICS_EpiReplyExit
	CICS_EpiDelTerminalExit
	CICS_EpiGetEventExit
	CICS_EpiSystemIdExit
	CICS_EpiTranFailedExit

	Chapter 6. Statistical API reference
	Appendix A. COM Global Constants
	Appendix B. COM EPI Specific Constants
	Synchronization Types
	CclEPI States
	CclSession States
	CclTerminal States
	CclTerminal ATI States
	CclTerminal EndTermReasons
	CclTerminal Sign-on Types
	CclScreen AID key codes
	CclField Protected State Attributes
	CclField Numeric Attributes
	CclField Intensity Attributes
	CclField Modified Attributes
	CclField Highlight Attributes
	CclField Transparency Attributes
	CclField Color Attributes

	Appendix C. COM ECI Constants
	Synchronization Types
	Flow status types
	Connection Status Codes

	Appendix D. COM Error Code References
	Appendix E. Java encodings
	Appendix F. C++ Exception Objects
	The product library and related literature
	CICS Transaction Gateway books
	Sample configuration documents
	Redbooks
	Other Useful Books
	CICS Transaction Server publications
	CICS interproduct communication
	CICS problem determination books

	Microsoft Windows publications
	APPC-related publications
	IBM products
	Microsoft products
	Systems Network Architecture (SNA)

	Obtaining books from IBM

	Accessibility features for CICS Transaction Gateway
	Documentation
	Starting the Gateway daemon
	Setting EPITerminal properties programmatically
	cicsterm
	The cicsterm -? command

	Glossary
	Index
	Notices
	Trademarks

	Sending your comments to IBM

