
CICS Transaction Gateway

Programming Guide

Version 7.1

SC34-6758-02

���

CICS Transaction Gateway

Programming Guide

Version 7.1

SC34-6758-02

���

Note!

Before using this information and the product it supports, be sure to read the general information under

“Notices” on page 239.

Third Edition (July 2008)

This edition applies to Version 7.1 of CICS Transaction Gateway, program number 5724-I81, 5655-R25 and 5724-J09. It

will also apply to all subsequent versions, releases, and modifications until otherwise indicated in new editions.

This edition replaces SC34-6673. Technical changes to the text are indicated by a vertical line to the left of the change.

© Copyright International Business Machines Corporation 2002, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Installation path vii

Directory delimiters vii

Information specific to your operating system vii

What’s new in programming ix

Chapter 1. Overview 1

Application Programming Interfaces 1

External Call Interface (ECI) 1

External Presentation Interface (EPI) . . . 1

External Security Interface (ESI) 1

Statistical data API 2

Ancillary functions 2

List CICS systems 2

Code page information 2

RACF user ID certificate mapping 2

BMS map conversion utilities 2

User applications 3

Common capabilities 3

Client applications 3

Java Client applications 4

J2EE Connector Architecture (JCA)

applications 6

Supported programming languages 7

Chapter 2. External Call Interface (ECI) . . 9

The ECI request 9

External calls to CICS 9

Input and output information for external

calls to CICS 9

Program link calls 10

Status information calls 12

Retrieving replies from asynchronous ECI

requests 12

ECI and CICS transaction IDs 13

Timeout of the ECI request 14

Request timeout 14

Response timeout 14

Security in the ECI 15

Chapter 3. External Presentation Interface

(EPI) 17

EPI concepts 17

Adding and deleting terminals 17

Starting transactions 17

Sending and receiving data 18

Managing CICS conversations 18

Terminal characteristics 19

Timeout of the EPI request 20

Security in the EPI 21

Specifying terminal Sign-on Capability . . 21

Automatic transaction initiation (ATI) . . . 23

Restrictions on application design when using

EPI 23

3270 data streams for the EPI 24

Chapter 4. External Security Interface (ESI) 25

ESI functions 25

Input and output information for ESI

functions 25

Using ESI to manage passwords 26

Chapter 5. Statistics API 27

Statistical data overview 27

Calling the API 27

API and protocol version control 28

Statistics API components 29

Runtime components for z/OS 29

Runtime components for multiplatforms 30

Statistics API program structure 31

API data types 32

Gateway tokens 32

Query strings 32

Result set tokens 33

ID data 35

Statistical data 35

Statistics API Trace Levels 36

API functions 36

Gateway daemon connection functions . . 36

ID functions 39

Retrieving statistical data functions . . . 40

Result set functions 41

Utility functions 43

Correlating results and error checking . . . 45

Chapter 6. Programming in Java 47

Overview of the programming interface for

Java 47

© Copyright IBM Corp. 2002, 2008 iii

Creating a JavaGateway 47

Java Client application suite select feature 48

Writing Java Client applications 49

JavaGateway security 49

Making External Call Interface calls from a

Java Client program 50

Linking to a CICS server program . . . 50

Creating channels and containers for ECI

calls 51

Managing a LUW 51

Retrieving replies from asynchronous

requests 52

ECI timeouts 53

Performance considerations when

transmitting data in a COMMAREA . . . 53

ECI security 54

ECI return codes and server errors on

z/OS 56

EXCI support on z/OS 56

IPIC support for ECI 57

Making External Presentation Interface Calls

from a Java Client Program 57

EPI support classes 58

EPIRequest 70

EPI and z/OS 71

EPI security 71

Making External Security Interface Calls from

a Java Client program 71

Verifying a password using ESI 72

Changing a password using ESI 72

Compiling and running a Java Client

application 72

Performance issues 72

Setting up the CLASSPATH 72

Using a browser and CICS Transaction

Gateway on the same workstation . . . 73

Problem determination for Java Client

programs 73

Tracing in Java client programs 73

Security for Java Client programs 76

CICS Transaction Gateway security classes 76

Using a Java 2 Security Manager 77

Chapter 7. Programming using the J2EE

Connector Architecture 79

Overview of the programming interface of the

J2EE Connector Architecture 79

The Common Client Interface (CCI) . . . 79

The programming interface model . . . 80

Record objects 81

The ECI resource adapters 81

The EPI resource adapter 81

Managed and non-managed environments 81

The Common Client Interface 82

Generic CCI Classes 82

CICS-specific classes 82

Using the ECI resource adapters 83

Introduction to channels and containers . . 84

Using the ECI resource adapters with

channels and containers 85

Connecting to a CICS server using the ECI

resource adapter 86

Linking to a program on a CICS server . . 87

ECI resource adapter CICS-specific records

using the streamable interface 88

Transaction management 89

Samples 92

Using the EPI resource adapter 92

Connecting to a CICS server using the EPI

resource adapter CCI 93

Starting a transaction 93

Sending and receiving data 94

Writing LogonLogoff classes 97

Samples 98

Using the J2EE CICS resource adapters in a

nonmanaged environment 98

Creating the appropriate

ConnectionFactory object 98

Storing ConnectionFactory objects 99

Running the J2EE CICS resource adapters

in a nonmanaged environment 100

Compiling applications 101

Compiling and running J2EE components 101

Security credentials and the CICS resource

adapters 101

J2EE tracing 101

Issues with tracing if ConnectionFactory

serialized 102

Resource adapter samples 102

ECI COMMAREA sample 102

EPI sample 104

Assistance in coding CCI applications . . . 106

Connector specification API Javadoc . . 106

J2EE Connector Specification API . . . 106

Chapter 8. Programming in C and COBOL 107

Overview of the programming interface for

C and COBOL 107

Making External Call Interface calls from C

and COBOL programs 107

iv CICS Transaction Gateway: Programming Guide

||

|
||

||

 | |
 |
 | |

CICS_ExternalCall 108

Program link calls 108

Reply solicitation calls 110

Security in the ECI 110

Making External Presentation Interface calls

from C and COBOL programs 111

EPI versions 112

EPI Initialization and termination . . . 112

Adding a terminal to CICS 112

Deleting a terminal 113

Starting transactions 113

Sending and receiving data 113

Managing pseudoconversations 114

Events and callbacks 114

Processing events 115

Automatic transaction initiation (ATI) . . 115

3270 data streams for the EPI 116

Making External Security Interface calls from

C and COBOL programs 119

Verifying a password using ESI 120

Changing a password using ESI 120

Setting default security using ESI . . . 120

Compiling and linking C and COBOL

applications 120

Windows 121

AIX 122

Solaris 122

Linux 122

HP-UX 123

Chapter 9. Programming in C++ 125

Overview of the programming interface for

C++ 125

Writing C++ Client applications 125

Making External Call Interface calls from a

C++ Client program 126

Linking to a CICS server program . . . 126

Managing logical units of work 128

Retrieving replies from synchronous

requests 129

Retrieving replies from asynchronous

requests 130

Reply solicitation calls 131

ECI security 132

Finding potential servers 133

Monitoring server availability 134

C++ ECI classes 135

Making External Presentation Interface Calls

from a C++ Client Program 136

Adding a terminal to CICS 136

EPI call synchronization types 137

Sending and receiving data 140

Converting BMS maps and using the Map

class 141

Support for Automatic Transaction

Initiation (ATI) 145

EPI Security 146

C++ EPI classes 147

Compiling and running a C++ Client

application 148

Problem determination for C++ Client

programs 149

Handling Exceptions 149

Chapter 10. Programming in COM . . . 153

Overview of the programming interface for

COM 153

Writing COM Client applications . . . 153

Making External Call Interface calls from a

COM Client program 156

Linking to a CICS server program using

Visual Basic 156

Linking to a CICS server program using

VBScript 158

Managing a LUW 158

Retrieving replies from asynchronous

requests 159

ECI security 160

ECI CICS Server Information and

Connection Status 161

ECI COM classes 162

Making External Presentation Interface Calls

from a COM Client Program 163

Adding a terminal to CICS 163

Sending and receiving data 164

EPI call synchronization types 165

Converting BMS maps and using the Map

class 166

Support for Automatic Transaction

Initiation (ATI) 167

EPI Security 168

EPI CICS Server Information 169

EPI COM classes 169

Problem determination for COM Client

programs 170

Handling Exceptions 170

Chapter 11. Request monitoring user

exits 173

Correlation points available in the exits . . 177

Contents v

Data available by FlowType and

RequestEvent 178

Chapter 12. ECI and EPI C exits 183

Loading the exits 183

Sample exits and interface definitions . . . 183

Writing your own user exits 184

Diagnostic information 186

EPI user exits 186

Java request monitoring exits 189

Appendix A. ECI extensions that are

environment-dependent 191

Call type extensions 191

Asynchronous program link call, with

notification by message

(ECI_ASYNC_NOTIFY_MSG) 191

Asynchronous program link call, with

notification by semaphore

(ECI_ASYNC_NOTIFY_SEM) 192

Asynchronous status call, with

notification by message

(ECI_STATE_ASYNC_MSG) 192

Asynchronous status call, with

notification by semaphore

(ECI_STATE_ASYNC_SEM) 192

Fields to support ECI extensions 193

Reply message formats 194

ECI return notification 194

Summary of input parameter requirements 194

Appendix B. Sample programs 197

Appendix C. Return codes from the

ctgadmin command 199

The product library and related literature 201

CICS Transaction Gateway books 201

Sample configuration documents 202

Redbooks 202

Other Useful Books 202

CICS Transaction Server publications . . 202

Microsoft Windows publications 203

APPC-related publications 203

Obtaining books from IBM 204

Accessibility features for CICS

Transaction Gateway 205

Documentation 205

Starting the Gateway daemon 205

Setting EPITerminal properties

programmatically 205

cicsterm 206

The cicsterm -? command 207

Glossary 209

Index 231

Notices 239

Trademarks 241

Sending your comments to IBM 243

vi CICS Transaction Gateway: Programming Guide

|
||

 | |

About this book

This information is an introduction to programming for the CICS® Transaction

Gateway and the CICS Universal Client. It provides the information that you

need to enable your user applications to interact with CICS server

applications.

The CICS Universal Client and CICS Transaction Gateway provide secure,

easy access to multiple CICS servers and support user applications developed

in C++, C, COBOL and COM based programming languages.

In addition the CICS Transaction Gateway supports remote access to CICS

servers from user applications developed in Java™. It also provides support

for the J2EE Connector Architecture (JCA) allowing user applications to be

deployed into WebSphere® Application Server.

This book starts by describing the application programming interfaces (APIs)

in a way that is independent of programming languages. It then gives

guidance on programming in the supported languages.

Installation path

The term <install_path> is used in file paths to represent the directory where

you installed the product. See the CICS Transaction Gateway: Administration

book for your operating system, for the default installation locations.

Directory delimiters

References to directory path names in this book use the Microsoft® Windows®

convention of a backslash (\) as delimiter, instead of the forward slash (/)

delimiter used on UNIX® and Linux® operating systems.

Information specific to your operating system

Unless otherwise specified, the term Windows refers to Windows 2000,

Windows 2003, Windows XP, and Windows Vista.

The term Windows Terminal Server means a server with the Terminal Services

feature enabled.

© Copyright IBM Corp. 2002, 2008 vii

viii CICS Transaction Gateway: Programming Guide

What’s new in programming

v CICS Transaction Gateway V7.1 introduces IP interconnectivity (IPIC) which

provides enhanced TCP/IP support for the J2EE Connector Architecture

(JCA). This means that JCA now supports channels and containers, using a

MappedRecord structure to hold your data. When the MappedRecord is

passed to the execute() method of ECIInteraction, the method uses the

MappedRecord itself to create a channel and converts the entries inside the

MappedRecord into containers before passing them to CICS. For more

information on channels and containers, see “Introduction to channels and

containers” on page 84.

v CICS Transaction Gateway enables users and third party vendors to write

tools to access request specific information. User exit points are provided at

key points in the product to allow user code to be run within the context of

each individual transaction. For further information see, Chapter 11,

“Request monitoring user exits,” on page 173.

v On distributed platforms, you can use ctgadmin to control request

monitoring user exits dynamically. The eventFired() method can now be

called with a new RequestEvent of “Command”.

v You can use the statistics API in remote mode.

© Copyright IBM Corp. 2002, 2008 ix

|
|
|
|
|
|
|
|
|

|
|
|

|

x CICS Transaction Gateway: Programming Guide

Chapter 1. Overview

This information gives an overview of programming for the CICS Transaction

Gateway. Topics covered include APIs, ancillary functions, user applications,

and supported programming languages.

Application Programming Interfaces

The CICS Transaction Gateway and CICS Universal Client support the

integration of CICS systems and client systems. They have a standard set of

functions to allow user applications to call CICS programs or initiate CICS

3270 transactions.

Three Application Programming Interfaces (APIs) are available to enable user

applications to access and update CICS facilities and data. These are the

External Call Interface (ECI), the External Presentation Interface (EPI) and the

External Security Interface (ESI).

External Call Interface (ECI)

A user application can call a CICS program in a CICS server by using an ECI

request. The user application can connect to several CICS servers at the same

time and have several called CICS programs running concurrently. The CICS

programs must be COMMAREA-based programs that can be called using the

CICS command

CICS programs that are invoked by an ECI request must follow the rules for

distributed program link (DPL) requests. For information on DPL requests see

the CICS Application Programming Guide. For information on the API restriction

for DPL requests refer to Appendix G of the CICS Application Programming

Reference.

External Presentation Interface (EPI)

A user application can install and delete virtual IBM® 3270 terminals in CICS

servers by using the EPI. The 3270 terminal definitions used by the EPI are

treated by CICS servers as remote 3270 terminal definitions and therefore

support automatic transaction initiation requests (ATI). For more information

on ATI see CICS Application Programming Guide.

External Security Interface (ESI)

A user application can perform certain security functions by using an ESI

request. This includes accessing the information about user IDs held in the

CICS External Security Manager (ESM), and setting the default security

credentials to be used for a server connection.

© Copyright IBM Corp. 2002, 2008 1

Statistical data API

A user application can collect statistical information about a running CICS

Transaction Gateway.

Ancillary functions

Several ancillary functions are provided with the CICS Transaction Gateway

and CICS Universal Client:

List CICS systems

To determine which CICS servers ECI and EPI requests can be directed to,

user applications can query the CICS Transaction Gateway or CICS Universal

Client for a list of CICS systems. The query returns a list of the CICS servers

that have been defined within the CICS Transaction Gateway or CICS

Universal Client. There is no guarantee that communication links exist

between the CICS servers and the CICS Transaction Gateway or CICS

Universal Client, or that any of the CICS servers are actually available.

Code page information

When using the application programming interfaces of the CICS Transaction

Gateway or CICS Universal Client to invoke CICS programs, data conversion

is an important consideration.

If the code page of the user application is different from the code page of the

CICS server, or the byte order of binary data is in a different format, you

might need to convert the data in a COMMAREA or container. You can do

this conversion by making use of CICS supplied data conversion capabilities

on the CICS server, provided by the DFHCCNV program and controlled by

the DFHCNV macro definitions. In this case all data conversion is performed

on the CICS server. Alternatively, you can make use of data marshalling

utilities provided within your user application development environment.

If you are using Java you can determine the code page of the Client daemon

from the user application. For more information about this utility refer to the

Javadoc supplied with the product.

RACF user ID certificate mapping

The CICS Transaction Gateway for z/OS® provides a java class that can be

used to map an X.509 certificate to a RACF® user ID. For more information

about this utility refer to “CICS Transaction Gateway security classes” on page

76.

BMS map conversion utilities

The CICS Transaction Gateway provides utilities to allow CICS BMS map

definitions to be imported, and the resulting information used by EPI-based

2 CICS Transaction Gateway: Programming Guide

|

user applications to access BMS map data as named fields. Two separate

utilities are provided, one for use with the Java EPI support classes and the

other for the C++ classes.

User applications

The CICS Transaction Gateway for z/OS supports only Java Client

applications. On other platforms the CICS Transaction Gateway supports both

Client applications and Java Client applications. The CICS Universal Client

supports only Client applications.

Common capabilities

Client applications and Java Client applications have the following capabilities

in common:

v They can be written to access one or more CICS servers.

v They can connect to several CICS servers at the same time.

v They can have several program calls running concurrently.

v The same user application can be written to include any combination of

ECI, EPI or ESI requests.

Client applications

Client applications run locally on the machine where the CICS Transaction

Gateway or CICS Universal Client has been installed. They enable access to

CICS server transactions and programs from the host machine, as shown in

Figure 1 below and Figure 2 on page 5 of the Java Client applications.

Client applications communicate with CICS servers using the Client API. The

Client daemon processes any ECI, EPI and ESI requests, sending and receiving

the appropriate flows to and from the CICS servers to satisfy these Client

application requests.

Chapter 1. Overview 3

Java Client applications

Java Client applications are written in Java and include servlets, enterprise

beans and applets. They use the Gateway classes to communicate with CICS

servers. Java Client applications run in local or remote mode. The Gateway

classes provide access to CICS server transactions and programs for large

numbers of concurrent users.

Figure 2 on page 5 shows Java Client applications running in both local and

remote mode on a UNIX, Linux or Windows System.

Note: Java applet support is provided for compatibility with previous

versions of the CICS Transaction Gateway but it is recommended that

users migrate to a JCA based solution. Java applet support may be

removed in a future release of CICS Transaction Gateway.

Figure 1. CICS Universal Client for Linux or Windows

4 CICS Transaction Gateway: Programming Guide

Figure 3 on page 6 shows Java Client applications running in both local and

remote mode on a z/OS system.

Figure 2. CICS Transaction Gateway for UNIX, Linux, or Windows

Chapter 1. Overview 5

J2EE Connector Architecture (JCA) applications

The CICS Transaction Gateway implements the JCA by providing J2EE CICS

resource adapters. These resource adapters support the J2EE Common Client

Interface (CCI) defined by the JCA and are a middle-tier between JCA

compliant applications and the CICS Transaction Gateway. The J2EE

application server can be run locally on the same machine as the CICS

Transaction Gateway, or remotely as shown in Figure 4 on page 7.

JCA compliant applications can be developed and deployed in a managed or

nonmanaged environment. In a managed environment, JCA applications can

exploit the quality of service provided by the J2EE application server.

Figure 3. CICS Transaction Gateway for z/OS

6 CICS Transaction Gateway: Programming Guide

Supported programming languages

Table 1 shows which programming languages are supported by the CICS

Universal Client for each platform and application programming interface

(API).

 Table 1. Supported programming languages of the CICS Universal Client

Platform and API C C++ COBOL COM

ECI for Windows * * * *

EPI for Windows * * * *

ESI for Windows * * * *

ECI for Linux * * V V

EPI for Linux * * V V

ESI for Linux * * V V

 ECI — External Call Interface

EPI — External Presentation Interface

ESI — External Security Interface

* — supported V — not supported

Note: ESI requests are currently only available when the server connections

have been configured to use the SNA network protocol, and the

configured CICS server supports Password Expiration Management

(PEM).

Figure 4. CICS Transaction Gateway with WebSphere Application Server in remote mode

Chapter 1. Overview 7

For information on supported compilers and application development tools

see the CICS Transaction Gateway: Administration book for your operating

system.

Table 2 shows which programming languages are supported by the CICS

Transaction Gateway for each platform and application programming interface

(API).

 Table 2. Supported programming languages of the CICS Transaction Gateway

Platform and

API

C C++ COBOL COM

Java

Support

Classes

Java

Base

Classes

JCA

ECI for

Windows

* * * * V * *

EPI for

Windows

* * * * * * *

ESI for

Windows

* * * * V * V

ECI for UNIX

and Linux

* * V V V * *

EPI for UNIX

and Linux

* * V V * * *

ESI for UNIX

and Linux

* * V V V * V

ECI for z/OS V V V V V * *

EPI for z/OS V V V V V V V

ESI for z/OS V V V V V V V

 ECI — External Call Interface

EPI — External Presentation Interface

ESI — External Security Interface

* — supported V — not supported

Note: ESI requests are currently only available when the server connections

have been configured to use the SNA network protocol, and the

configured CICS server supports Password Expiration Management

(PEM).

8 CICS Transaction Gateway: Programming Guide

Chapter 2. External Call Interface (ECI)

This information describes the basic functions of the External Call Interface

(ECI).

The ECI request

External calls to CICS

An ECI request calls a CICS program on a CICS server. This is known as

making an external call to CICS and is the primary purpose of the ECI

request. If no CICS server is selected, the default CICS server is used.

The ECI request can make four different types of call:

v Program link calls

v Status information calls

v Reply solicitation calls

v Callbacks

The following sections describe these external calls to CICS.

Input and output information for external calls to CICS

The following input parameters can be passed to the CICS server with an ECI

call:

CHANNEL

A communication area used for passing containers to a server

program.

COMMAREA

A communication area used for passing input to a server program.

ECI timeout

The maximum wait time for a response to an ECI request.

LUW control

The way in which a Logical Unit of Work (LUW) is started, continued

and ended.

LUW identifier

A token which identifies the ECI call as part of a LUW.

Password

The password provided for security checking on an ECI call.

Program name

The name of a program to be run on a CICS server.

Server name

The name of the CICS server that the ECI call is directed to.

© Copyright IBM Corp. 2002, 2008 9

|
|
|

TPNName

The transaction ID of the CICS mirror program.

TranName

The transaction ID seen in the exec interface block (EIB) by the CICS

mirror program.

Userid

The user ID provided for security checking on an ECI call.

 The following output can be returned to the user application following an ECI

call.

Abend code

The code returned when a server program has ended abnormally.

CHANNEL

A communication area that holds containers passed from a server

program.

COMMAREA

The communication area that contains output from a server program.

LUW identifier

A token which identifies the ECI call as part of a LUW.

Program link calls

Program link calls cause the CICS mirror transaction to be attached to run a

server program on the CICS server.

ECI request program link calls can be synchronous or asynchronous:

Synchronous

Synchronous calls are blocking calls. The user application is

suspended until the called server program has finished and a reply is

received from CICS. The received reply is immediately available.

Asynchronous

Asynchronous calls are nonblocking calls. The user application gets

control back without waiting for the called server program to finish.

The reply from CICS can be retrieved later using one of the reply

solicitation calls or a callback. See “Retrieving replies from

asynchronous ECI requests” on page 12. An asynchronous program

link call is outstanding until a reply solicitation call, or the callback,

has retrieved the reply.

 Synchronous and asynchronous program link calls can be nonextended or

extended:

Nonextended

The CICS server program, not the user application, controls whether

recoverable resources are committed or backed out. Each program link

call corresponds to one CICS transaction.

10 CICS Transaction Gateway: Programming Guide

|
|
|

Extended

The user application controls whether recoverable resources are

committed or rolled back. Multiple calls are possible, allowing a LUW

to be extended across successive ECI requests to the same CICS

server. This is known as an extended logical unit of work (extended

LUW).

 CICS user applications are often concerned with updating recoverable

resources. A LUW is the processing that a CICS server program

performs between syncpoints. A syncpoint is the point at which all

changes to recoverable resources that were made by a task since its

last syncpoint are committed. LUW management is performed by the

user application, using the commit and rollback functions:

Commit

Ends the current LUW and any changes made to recoverable

resources are committed.

Rollback

Terminates the current LUW and backs out (rolls back) any

changes made to recoverable resources since the previous

syncpoint.

 ECI-based communications between the CICS server and the CICS Transaction

Gateway or CICS Universal Client are known as conversations. A

nonextended program link ECI call is one conversation. A series of extended

ECI calls followed by a commit or rollback is one conversation.

On platforms other than z/OS, a given logical unit of work can include ECI

requests to only one server. Only one transaction can be active at a time in a

logical unit of work, so care must be taken with non-synchronous requests.

Managing Logical Units of Work

On a successful return from the first of a sequence of extended ECI calls for a

LUW, the user application is returned a LUW identifier corresponding to an

instance of a CICS mirror transaction. Specifying this LUW identifier in

subsequent ECI calls means that these calls will be processed by the same

CICS mirror transaction. All program link calls for the same LUW are sent to

the same server.

When the user application makes an ECI commit or rollback call, the CICS

server attempts to commit or back out changes to recoverable resources. The

user application is advised whether or not the attempt was successful. If a

LUW is outstanding (incomplete), the user application should issue an

extended ECI commit or rollback call to the CICS server. If the execution of a

Chapter 2. External Call Interface (ECI) 11

user application completes without committing or rolling back an outstanding

LUW, the CICS Transaction Gateway or CICS Universal Client attempts to

back out the LUW.

If an extended ECI call fails, the user application must check if a nonzero

LUW identifier was returned. If so, this indicates that the LUW is still

outstanding and should be committed or rolled back. If not, the problem is a

lost communications link with the CICS server.

An ECI user application using an extended LUW might cause other user

applications to be suspended waiting for CICS resources, which are held for

the duration of the LUW.

Status information calls

Status information calls retrieve status information about the connection

between the client and server systems.

The status of connected servers is updated as a result of requests being

flowed and protocol specific events. The status returned is the last known

state of connected servers, which might not be the same as the current state.

ECI request status link calls can be synchronous or asynchronous.

There are three types of status information call:

Immediate

Requests status information to be sent to the user application

immediately it becomes available.

Change

Requests status information to be sent to the user application when

the status changes from some specified value. Change calls are always

asynchronous.

Cancel

Cancels an earlier change call.

Retrieving replies from asynchronous ECI requests

Callbacks

Callbacks enable the CICS server to drive specific function provided by the

user application when an asynchronous program link call completes. This is

the recommended way of handling replies from ECI requests.

Reply solicitation calls

Reply solicitation calls retrieve the reply for an asynchronous call. A user

application that issues asynchronous calls can have several ECI requests

outstanding at any time. It is the responsibility of the calling application to

12 CICS Transaction Gateway: Programming Guide

solicit the reply for an ECI request. If no reply is available, reply solicitation

calls can either wait for a reply or return control directly to the user

application. There are two types of reply solicitation call:

General

Retrieves any reply for any outstanding ECI request.

Specific

Retrieves a reply for a specific ECI request. A unique message

qualifier is used to identify the reply for that request. It is the

responsibility of the programmer to assign different message qualifiers

to different asynchronous calls within a single application.

ECI and CICS transaction IDs

For ECI calls the transaction ID of the mirror transaction can be controlled via

two different parameters:

v TPNName

v TranName

Specify TPNName to change the name of the CICS mirror transaction that the

called program will run under. For example, you can specify TPNName if you

need a transaction definition with different attributes from those defined for

the default mirror transaction. This option is like the TRANSID option on an

EXEC CICS LINK command. The transaction ID is available to the server

program in the exec interface block (EIB). You must define a transaction on

the CICS server for this transaction ID that points to the DFHMIRS program.

Note that TPNName takes precedence if both TranName and TPNName are

specified. If neither TPNName nor TranName is specified, the ECI Program

Link call is attached to the default mirror transaction on the server. The

default mirror transaction is CSMI if the CICS Transaction Gateway is on

z/OS and CPMI in all other cases.

If TranName is specified, the called program runs under the default mirror

transaction, but is linked to under the TranName transaction ID. This name is

available to the called program in the (EIB) for querying the transaction ID.

Table 3 shows the name of the CICS mirror transaction and the name stored in

EIBTRNID according to whether or not TPNName and TranName are

specified.

 Table 3. Specifying TPNName and TranName

TPNName

specified

TranName

specified

Mirror transaction

name

Name in

EIBTRNID

Y Y TPNName TPNName

Y N TPNName TPNName

Chapter 2. External Call Interface (ECI) 13

Table 3. Specifying TPNName and TranName (continued)

N Y default TranName

N N default default

Timeout of the ECI request

An ECI timeout can occur either before or after the ECI request has been sent

to the CICS server. An ECI timeout is the time the Client daemon will wait for

a response to an ECI request sent to a CICS server. The ECI request has two

timeout conditions, request timeout and response timeout.

The ECI timeout value is specified in seconds. Because the Client daemon

rounds values under a second, some ECI requests might time out before the

period specified in eci_timeout. For example if eci_timeout is set to 2, some

ECI requests might time out in less than 2 seconds. If the ECI requests always

have to wait for at least 2 seconds, set the timeout to 3.

Request timeout

A request timeout occurs before the request has been forwarded to the CICS

server. The requested program was not called, and no server resources have

been updated.

This can happen for the following reasons:

v The call was intended to start, or be the whole of, a new LUW. The LUW is

not started, and no recoverable resources are updated.

v The call was intended to continue an existing LUW. The LUW continues,

but no recoverable resources are updated, and the LUW is still

uncommitted.

v The call was intended to end an existing LUW. The LUW continues, no

recoverable resources are updated, and the LUW is still uncommitted.

Response timeout

A response timeout occurs after the request has been forwarded to the CICS

server. It can happen to a synchronous call, an asynchronous call, or to the

reply solicitation call that retrieves the reply from an asynchronous call.

This can happen for the following reasons:

v The call was intended to be the only call of a new LUW. The LUW was

started, but the user application cannot determine whether updates were

performed, and whether they were committed or backed out.

v The call was intended to end an existing LUW. The LUW has ended, but

the user application cannot determine whether updates were performed,

and whether they were committed or backed out.

14 CICS Transaction Gateway: Programming Guide

v The call was intended to continue or to end an existing LUW. The LUW

persists, and changes to recoverable resources are still pending.

Security in the ECI

The ECI uses conversation-level security based on the SNA LU 6.2 model.

ECI security involves:

Authentication

Checking that the user ID and password information associated with

an ECI call is valid.

Authorization

Checking that the authenticated user is allowed access to the

requested resource. This check is performed on the CICS server.

 The user application can set the user ID and password on an ECI request for a

conversation with a specific CICS server. These values override any default

values set for the server connection. For information about how to set the

connection userid and password, refer to the CICS Transaction Gateway or CICS

Universal Client: Administration book for your operating system.

Chapter 2. External Call Interface (ECI) 15

16 CICS Transaction Gateway: Programming Guide

Chapter 3. External Presentation Interface (EPI)

This information describes the External Presentation Interface (EPI).

EPI concepts

EPI allows a user application program to access 3270–based transactions on

one or more CICS servers. The user application can establish one or more

resources and act as the operator, starting 3270-based CICS transactions and

sending and receiving data associated with those transactions.

Adding and deleting terminals

EPI functions can be used to add terminals to CICS and delete them when

they are no longer required. The user application that installs a terminal has

exclusive use of that terminal until the terminal is deleted.

Adding a basic terminal to CICS is a synchronous operation. Adding an

extended terminal can be synchronous or asynchronous. If the operation is

synchronous, control is not returned to the user application until the install

request has completed. If the operation is asynchronous, control is returned to

the user application as soon as any parameters have been validated. Basic and

extended terminals are described in “Terminal characteristics” on page 19.

Starting transactions

When a user application has added a terminal to a CICS server, the

application can start a transaction from that terminal. To the CICS server it

appears as if an operator has entered a transaction name at a terminal.

There are four ways in which you can start a transaction and associate data

with it:

1. By supplying the transaction identifier and any transaction data.

2. By combining a transaction identifier and transaction data into a 3270 data

stream, and supplying the data stream.

3. By using Automatic Transaction Initiation (ATI) to start a transaction.

Some programming languages do not support ATI.

4. By specifying the TRANSID option on the EXEC CICS RETURN

command in the CICS server program to indicate the next transaction to

run. If you also specify the IMMEDIATE option, the next transaction is

started without any intervention from the user application and regardless

of any outstanding ATI requests for that terminal.

© Copyright IBM Corp. 2002, 2008 17

Sending and receiving data

When a transaction is running on CICS, data is passed between CICS and the

user application. This might be data produced by the transaction or one or

more messages from the CICS server, for example terminal error messages. If

the data is in the form of BMS map data, CICS also supplies the map name

and map set name. If the map is to be returned to CICS for further

processing, the user application must also return the map name and map set

name.

Some programming languages have APIs that provide functions to help

process the data stream.

There are two different programming models for EPI-based applications:

v The screen model allows the user application to handle the 3270 data based

on the structure of the fields in the 3270 data stream. In some languages it

is also possible to import BMS map data to help with this process.

v With the 3270 model, the user application reads the 3270 data stream as a

simple data record and is responsible for parsing the information that it

contains.

The user application is responsible for presenting the data received. The

application can present the data by emulating a 3270 terminal, or it might

present a different view. For example:

v A Windows application might use the Windows graphical user interface.

v A Solaris application might use Open Look.

Managing CICS conversations

A conversational transaction is one which processes several sets of input from a

terminal before returning control to CICS. The length of time required for a

response from a terminal is much longer than the time taken to process it,

therefore a conversational transaction lasts much longer than a

nonconversational transaction, which processes one set of input before

relinquishing control. While a transaction is running it is using storage and

resources which might be needed by other transactions. For this reason many

CICS transactions operate in pseudoconversational mode.

A pseudoconversational transaction is one in which the conversation between a

terminal and a server is broken up into a number of segments, each of which

is a nonconversational transaction. As each transaction ends, it provides the

name of the transaction to be run to process the next input from the terminal.

When a transaction that has just ended specifies the name of a transaction to

process the next input, this name is passed to the user application. The

application must not attempt to start a different transaction, but must use the

returned information to start the specified transaction and send the data it is

expecting.

18 CICS Transaction Gateway: Programming Guide

Terminal characteristics

Most terminal attributes are supplied by the CICS server but some can

optionally be determined by the user application. Terminals can be either

basic or extended. Extended terminals have more attributes than basic

terminals. An extended terminal can be purged while a transaction is running

but basic terminals can only be deleted when they are in the idle state.

You can specify the following attributes as input parameters for both basic

and extended terminals:

Model For autoinstalled terminals this is the name of an existing terminal

definition on the CICS server which is to serve as a model for this

terminal.

Server name

The name of the CICS server where the terminal is to be installed.

Netname

The network name of the terminal. .

The following additional attributes can be specified for extended terminals:

Code page

The code page used by the user application for data passed between

the terminal resource and CICS transactions.

Install timeout

The maximum length of time that the CICS Transaction Gateway or

CICS Universal Client will wait for a terminal to be installed on the

selected CICS server. If not specified there is no limit to the wait time.

Refer to “Timeout of the EPI request” on page 20 for more

information.

Password

The password that is to be associated with the terminal for security

checking.

Read timeout

The maximum length of time that the CICS Transaction Gateway or

CICS Universal Client will wait for a response from the user

application. If not specified there is no limit to the wait time. Refer to

“Timeout of the EPI request” on page 20 for more information.

Sign-on capability

Whether the terminal is capable of running a CICS sign-on

transaction. If not specified, the terminal has the default sign-on

capability of the CICS server type. Sign-on capability and sign-on

incapability are described in more detail in “Specifying terminal

Sign-on Capability” on page 21.

Userid

The userid that is to be associated with the terminal for security

checking.

Chapter 3. External Presentation Interface (EPI) 19

The following attributes are returned to the user application by the CICS

server when a terminal is added:

Color Whether the terminal supports color.

Columns

The number of columns supported by the terminal.

Error last line

Whether error messages are displayed on the last line of the terminal.

Error message color

The color used to display error messages on the terminal.

Error message highlight

The highlight value used to display error messages on the terminal.

Error message intensity

The intensity with which error messages are displayed on the

terminal.

Extended highlight

Whether the terminal supports extended highlighting.

Maximum data

The maximum length of data that can be sent from and received by

the terminal.

Netname

The network name of the terminal.

Rows The number of rows supported by the terminal.

Server name

The name of the CICS server where the terminal is installed.

Sign-on capability

The sign-on capability assigned to the terminal by the server.

Terminal ID

The terminal ID generated by CICS.

Timeout of the EPI request

There are two EPI timeout conditions, install timeout and read timeout.

Install timeout

Install timeout is the maximum length of time that the CICS

Transaction Gateway or CICS Universal Client will wait for a terminal

to be installed on a CICS server. If a response is not received from the

server within the specified time, control is returned to the user

application with an appropriate return code. If the Client daemon is

subsequently notified that the terminal has been installed in the

server, the Client daemon deletes the terminal. If no install timeout

value is specified, there is no limit to the wait time.

Read timeout

Read timeout is the maximum length of time that the CICS

Transaction Gateway or CICS Universal Client will wait for a response

from the user application. This period of time starts when a user

20 CICS Transaction Gateway: Programming Guide

application has received an EXEC CICS RECEIVE or CONVERSE

command issued by CICS. A read timeout occurs if no data is

returned before the period specified has elapsed. If no read timeout

value is specified, there is no limit to the wait time. When a read

timeout occurs, the transaction on the CICS server is terminated

abnormally.

Security in the EPI

A userid and password might be required for each conversation that takes

place between the CICS Transaction Gateway or CICS Universal Client and

the CICS server, depending on how the CICS Transaction Gateway or CICS

Universal Client and the CICS server have been configured.

EPI security involves:

Authentication

The CICS server checks that the userid and password information

associated with a terminal is valid. The frequency with which the

userid and password are authenticated by the CICS server depends on

whether the terminal is sign-on capable or sign-on incapable.

Authorization

The CICS server checks that the terminal is allowed access to the

requested resource.

The userid and password can be set at terminal or connection level. Both

types can be set by the user application. If there are no userid and password

values for the terminal, the values for the connection are used. For

information about how to set the connection userid and password, refer to the

CICS Transaction Gateway: Administration book for your operating system. The

requirement for a userid and password depends on the CICS server

configuration.

Specifying terminal Sign-on Capability

Sign-on capability is one of the attributes that can be specified for extended

terminals. A request to change sign-on capability is effective only for z/OS

CICS servers. For other server types and for basic terminals, sign-on capability

depends on the default for the CICS server type. The sign-on capability of a

terminal is returned to the user application in the sign-on capability field of

the terminal details. Table 4 on page 22 shows the results of a request to

override the default sign-on capability for different CICS servers.

Chapter 3. External Presentation Interface (EPI) 21

Table 4. Specifying the sign-on capability attribute for different servers

Request Resulting sign-on capability of terminal Value of sign-on capability in terminal

details

CICS

Transaction

Server for

z/OS

CICS

Transaction

Server for

iSeries®

TXSeries®

and CICS

Transaction

Server for

Windows

CICS

Transaction

Server for

z/OS

CICS

Transaction

Server for

iSeries

TXSeries

and CICS

Transaction

Server for

Windows

sign-on

capable

sign-on

capable

sign-on

incapable

sign-on

capable

sign-on

capable

sign-on

unknown

sign-on

unknown

sign-on

incapable

sign-on

incapable

sign-on

incapable

sign-on

capable

sign-on

incapable

sign-on

unknown

sign-on

unknown

The following sections describe sign-on incapable and sign-on capable

terminals.

Sign-on incapable terminals

Sign-on incapable terminals do not allow sign-on transactions to be run. When

a terminal is sign-on incapable, the userid and password must be passed to

the CICS server if the connection is configured with ATTACHSEC=IDENTIFY,

and are then authenticated for every transaction started against that terminal.

The transaction is executed in the server with the authorities assigned to the

authenticated userid.

The userid and password for an extended terminal can be specified by a user

application when a terminal is added.

The user application can change the security settings of an extended terminal

at any time. The new settings will be used when further transactions are

started for the terminal.

The user application can also set a default userid and password to be used

with a particular CICS server. For details, refer to the CICS Transaction Gateway

or CICS Universal Client: Administration guide for the operating system that

you are using.

Sign-on capable terminals

Sign-on capable terminals allow CICS-supplied (CESN), or user-written

sign-on transactions to be run. When a terminal is sign-on capable it is the

responsibility of the user application to start the sign-on transaction. The

userid and password are determined by the user application and are

embedded in the 3270 data. If the userid is authenticated, subsequent

transactions started at the terminal are executed in the CICS server with the

authorities assigned to the authenticated userid. Transactions started before a

22 CICS Transaction Gateway: Programming Guide

sign-on transaction has completed have the authorities granted to the default

userid defined for the CICS server. A check is also done against the userid

associated with the connection to see whether the CICS Transaction Gateway

or CICS Universal Client has authority to execute the transaction.

The user application can start a signoff transaction at the terminal. The user

can also be signed off by the server following a predefined period of

inactivity. The user application should allow for this possibility. In either case,

subsequent transactions started at the terminal are executed with the

authorities assigned to the CICS server default userid.

For transactions attempting to access resources, security checking is done

against the userid associated with the connection and the signed-on user’s

userid.

Automatic transaction initiation (ATI)

ATI is the CICS process that allows a transaction to be scheduled against a

specified terminal.

An ATI request from an EPI user application can cause the scheduled

initiation of a transaction in a CICS server against any EPI installed terminal.

Either the user application or the CICS systems administrator can enable or

disable automatic initiation of transactions for a terminal . The default state is

disabled. If ATI requests are enabled and an ATI request is issued in the CICS

server, the request is started when the terminal is idle. Any ATI requests

issued while ATI requests are disabled are queued, and started when ATI

requests are next enabled. ATI requests for a terminal are queued while a

transaction is in progress on that terminal.

Restrictions on application design when using EPI

A CICS transaction that sends data to an EPI user application cannot:

v Use 14- and 16- bit addresses and structured fields, as the CICS Transaction

Gateway and CICS Universal Client support only the ASCII-7 subset of the

3270 data stream architecture. Only 12-bit SBA addressing is supported.

Consequently, the maximum screen size for EPI terminals is 27 rows by 132

columns.

v Use the purge function to cancel ATI requests queued against the terminal.

If a CICS transaction uses EXEC CICS START with the DELAY option to

schedule transactions to a terminal resource autoinstalled by a user

application, the user application should ensure that delayed ATI requests

are not lost when the terminal resource is deleted. See your server

Chapter 3. External Presentation Interface (EPI) 23

documentation to determine the effects of deleting a terminal resource

when delayed ATI requests are outstanding.

An EPI user application cannot:

v Use basic mapping support (BMS) paging.

v Determine the alternate screen size of the terminal resource definition,

although it can determine the default screen size.

An EPI user application communicating with CICS Transaction Server for

iSeries cannot:

v Support languages that use DBCS.

v Support sign-on capable terminals.

v Start the CEDA transaction from a client terminal.

v Use PF1 to get CICS online help from a client terminal.

3270 data streams for the EPI

The data streams implemented for the EPI follow those defined in the 3270

Data Stream Programmer’s Reference. All data flows for the EPI are in ASCII

format, and structured fields are not supported. Data flows are defined under

the following topics in the 3270 Data Stream Programmer’s Reference:

v Introduction to the 3270 data stream (excluding structured fields)

v 3270 data stream commands

v Character sets, orders and attributes

v Keyboard and printer operations.

Be aware that the contents of the data buffer may be code-page converted if

the buffer is passed between CICS systems, in which case the data should be

limited to ASCII and EBCDIC characters.

If a CICS transaction issues EXEC CICS SEND MAP and EXEC CICS

RECEIVE MAP commands, CICS converts the data from the BMS structure to

a 3270 data stream. In this case, the application receives 3270 data from CICS

and should return valid 3270 data to be converted for the transaction.

24 CICS Transaction Gateway: Programming Guide

Chapter 4. External Security Interface (ESI)

This information describes the External Security Interface (ESI).

ESI functions

The ESI allows a user application to invoke password management functions

on an attached CICS server.

Input and output information for ESI functions

The following input parameters can be specified for an ESI function:

New password

The new password for the specified user.

Current password

The current password for the specified user.

Password

The password to be set or verified for the specified user

System

The name of a CICS server containing the user whose password is to

be set, changed, or verified. If this value is not specified the default

server is selected.

User ID

The ID of the user whose password is to be set, changed, or verified.

 The following output parameters can be returned from an ESI function:

Expiry date

The date on which the password will expire.

Expiry time

The time at which the password will expire.

Invalid count

The number of times an invalid password has been entered for the

specified user.

Last access date

The date on which the userid was last accessed.

Last access time

The time at which the userid was last accessed.

Last verify date

The date on which the password was last verified.

© Copyright IBM Corp. 2002, 2008 25

Last verify time

The time at which the password was last verified.

Using ESI to manage passwords

ESI provides a security management API which can be used to manage the

user IDs and passwords that the ECI and EPI use.

The user application can perform the following functions:

v Verify that a password matches the password recorded by the CICS

External Security Manager (ESM) for a specified user ID.

v Change the password recorded by the CICS ESM for a specified user ID.

v Determine if a user ID is revoked, or a password has expired.

v Obtain additional information about a verified user such as:

– When the password is due to expire

– When the user ID was last accessed

– The date and time of the current verification

– How many unauthorized attempts there have been for this user since the

last valid access
v Specify a default userid and password to be used for communication over a

CICS server connection.

To use the ESI interface, the CICS Universal Client or CICS Transaction

Gateway must be connected to the CICS server with SNA. An ESM, such as

Resource Access Control Facility (RACF), which is part of the z/OS Security

Server, or an equivalent ESM, must also be available to the CICS server.

26 CICS Transaction Gateway: Programming Guide

Chapter 5. Statistics API

This information describes the statistics API, which is provided only for the

CICS Transaction Gateway.

If you want to use the statistics API in remote mode, you need to set up a

statistics API protocol handler. See the CICS Transaction Gateway Administration

Guide for your platform for information about how to do this.

Statistical data overview

The statistics API allows a single-threaded or multithreaded user application

to access statistical data from one or more running Gateway daemons.

API functions

The API provides functions to:

v Connect to specific Gateway daemons, using gateway tokens.

v Disconnect from specific Gateway daemons, using gateway tokens.

v Obtain a set of statistical group IDs from a specific Gateway daemon.

v Obtain statistical IDs associated with one or more statistical group IDs from

a specific Gateway daemon.

v Obtain data for statistical IDs from a particular Gateway daemon.

The functions are grouped into five categories:

v Connection functions

v ID data retrieval functions

v Statistical data retrieval functions

v Result set manipulation functions

v Utility functions

Calling the API

This section explains how applications invoke API functions.

Applications invoke API functions defined in “C-language header files” on

page 29, and a dynamic link library (DLL). Each function call returns an

integer result code, defined in the ctgstdat.h header file. A function that

completes normally returns the code CTG_STAT_OK. A function that needs to

report a problem returns a negative code, detailed in the ctgstdat.h header

file.

© Copyright IBM Corp. 2002, 2008 27

|
|
|

The statistics API does not provide logging messages. Runtime operation of

the API functions can be monitored using trace facilities. Statistics API tracing

can be enabled programatically with data written to stderr, or a specified file.

API errors are reported to the calling application using an integer result code.

API and protocol version control

A statistics API application, and the Gateway daemon providing the statistics,

might be from different versions of the CICS Transaction Gateway.

API and protocol version control helps ensure that a statistics API application

can issue meaningful requests to a CICS Transaction Gateway daemon, and

get meaningful responses in return. API and protocol versions have a format

of four digits, separated by the underscore character. For example: 1_0_0_0

Note: The API and protocol versions might look like the product version, but

they are not related. The statistics API can only be used to collect

statistical data from Gateway daemons at version 7.0 or higher.

A statistics API application can:

v Find the protocol version that it was compiled with by using the

compile-time string CTG_STAT_PROTOCOL_VER, defined in ctgstdat.h.

v Find the API version that it was compiled with by using the compile-time

string CTG_STAT_API_VERSION, defined in ctgstats.h.

v Find which protocol version is used by a CICS Transaction Gateway

daemon, by using the “openGatewayConnection” on page 37 or

“openRemoteGatewayConnection” on page 37 function.

v Find which API version is provided by a CICS Transaction Gateway

daemon, by using the “getStatsAPIVersion” on page 43 function.

The API version of the statistics API application must have the same major

version number as the CICS Transaction Gateway daemon. If the major

version numbers differ, API calls might fail. The minor version number of the

CICS Transaction Gateway API version must be the same or greater than the

API version of the statistics API application, otherwise some new API

functions might not be available.

The protocol version of the statistics API application must have the same

major version number as the CICS Transaction Gateway daemon. The minor

protocol version number of the statistics API application must be the same or

greater than the minor protocol version number of the CICS Transaction

Gateway daemon. Otherwise, the statistics API application might be unable to

interpret responses from function calls.

28 CICS Transaction Gateway: Programming Guide

|
|
|

Statistics API components

The statistics API is made available to user applications by two C-language

header files and a dynamic link library (DLL).

C-language header files

Two platform-independent C-language header files are provided for

developing user applications.

ctgstats.h defines the API function calls and datatypes required to use the

API functions.

ctgstdat.h defines the set of query return codes that might be seen by a

statistical user application. The set of query return codes can vary according

to the statistics protocol version provided by the CICS Transaction Gateway

daemon.

Runtime DLL

The statistics API runtime DLL is provided for each of the supported CICS

Transaction Gateway hardware platforms. It is supplied as a platform-specific

DLL binary. It must be available during the runtime of the statistical user

application.

Sample code

A sample file ctgstat1.c is supplied. This provides a simple example for

using the statistics API. Further details of the ctgstat1.c sample are provided

in the samples.txt file.

Runtime components for z/OS

This section describes the runtime components for z/OS.

Dataset names and SMP/E types

On z/OS, the runtime DLL and header file are delivered by SMP/E. The

details are provided in Table 5.

 Table 5. Dataset names and SMP/E types

Deliverable Distribution Target Member Type

DLL hlq.ACTGMOD hlq.SCTGDLL CTGSTATS ++MOD

C Header hlq.ACTGINCL hlq.SCTGINCL CTGSTATS ++SRC

C Header hlq.ACTGINCL hlq.SCTGINCL CTGSTDAT ++SRC

C Sample hlq.ACTGSAMP hlq.SCTGSAMP CTGSTAT1 ++SRC

Chapter 5. Statistics API 29

Table 5. Dataset names and SMP/E types (continued)

Deliverable Distribution Target Member Type

Sample JCL hlq.ACTGSAMP hlq.SCTGSAMP CTGSTJOB ++SRC

Sidedeck SMP/E

generated

hlq.SCTGSID CTGSTATS Not applicable

The DLL load module is link-edited during installation. When the SCTGDLL

library is added to the STEPLIB concatenation, user applications can use the

statistics API. If the application uses implicit DLL loading, the sidedeck might

be required to complete the link-edit cycle.

Runtime components for multiplatforms

This section describes the runtime components for multiplatforms.

File names and locations

The runtime DLL and header files are installed by the multiplatform installer.

The details of the files are provided in Table 6.

 Table 6. File names and locations

Platform Deliverable File name

Installation

directory

All C Header ctgstats.h include

All C Header ctgstdat.h include

All C Sample ctgstat1.c samples/c/stats

AIX® DLL libctgstats.so lib

HP-UX DLL libctgstats.sl lib

Linux on Intel® DLL libctgstats.so lib

Linux on POWER™ DLL libctgstats.so lib

Linux on zSeries® DLL libctgstats.so lib

Solaris DLL libctgstats.so lib

UNIX and Linux Sample Makefile samp.mak samples/c/stats

Windows DLL ctgstats.dll bin

Windows Export symbols ctgstats.lib lib

Windows Sample Makefile ctgstat1mak.cmd samples/c/stats

For information on supported compilers, see the CICS Transaction Gateway:

Administration book for your operating system.

30 CICS Transaction Gateway: Programming Guide

Windows platform

At compile time, applications that use the statistics API need access to

the API DLL external symbols provided in the ctgstats.lib file.

UNIX and Linux platforms

If you change the sample makefile, you might also have to update the

samples/c/env_c.def file.

Statistics API program structure

Outline of a basic statistics API program.

A basic statistics API program typically has an outline similar to the example

later in this section.

Example

This pseudo-code program connects to a CICS Transaction Gateway daemon,

obtains the statistics IDs related to the ″GD″ resource group, obtains the

current values for the given ″GD″ related statistical IDs and finally iterates

through the returned values, writing out the details.

/* Create a connection to a local Gateway daemon */

openGatewayConnection(&gwyToken,port,&gwyProtocolVersPtr)

verify connected Gateway protocol level

/* Set the resource group id of interest */

queryString1="GD"

/* Obtain the list of associated statistical IDs */

getStatIdsByStatGroupId(gwyToken, queryString1, &resultSetToken)

/* Extract the returned IDs as a query string */

getIdQuery(resultSetToken,&queryString2)

/* Obtain the live statistical values for the given set IDs */

getStatsByStatId(gwyToken, queryString2, &resultSetToken)

/* Iterate over the result set, outputting */

/* the details of each result set element */

/* Obtain the first statistical result set element */

getFirstStat(resultSetToken, &statDataItem)

do

 if statDataItem.queryElementRC == CTGSTATS_SUCCESSFUL_QUERY

 /* output details of statDataItem */

 endif

 /* Obtain the next statistical result set element */

 getNextStat(resultSetToken, &statDataItem)

until end-of-resultset

Chapter 5. Statistics API 31

API data types

Data types defined and used by the statistics API.

This information describes the main data types used by the statistics API.

Gateway tokens

A Gateway token represents a single connection to a specific Gateway

daemon.

When a connection to a Gateway daemon is made, all subsequent API calls

that retrieve statistical data must include the Gateway token as a parameter.

The statistics API handler in a Gateway daemon is restricted to five

connection threads. This means that a single Gateway daemon can only deal

with five connected statistics API programs, or threads, at the same time.

A statistical API program should avoid holding more than one connection to

the same Gateway daemon at the same time.

A statistical API program can hold multiple Gateway tokens, but can only use

them on the thread that called the “openGatewayConnection” on page 37 or

“openRemoteGatewayConnection” on page 37 in order to retrieve the token.

A Gateway token type (CTG_GatewayToken_t) is defined in the “C-language

header files” on page 29.

Query strings

A query string is an input parameter, specifying the statistical data to be

retrieved.

A query string is an input parameter to statistical API functions which

provide a result set token pointer. The string is a null-terminated,

colon-separated list of IDs. The IDs can be statistical group IDs, or statistical

IDs. An empty query string ″″ is interpreted as matching all IDs appropriate

to the function call.

Query strings are of type (char *), and contain character data in the native

encoding. The null terminator is added implicitly when creating strings in C

using the ″″ characters.

The user application creates and manages the query string character buffer.

Where an API function produces a data result set, the function “getIdQuery”

on page 41 can be used to obtain a query string suitable for input to another

API call.

32 CICS Transaction Gateway: Programming Guide

|
|
|

Example

A pseudo-code example showing the query string used to retrieve the

Gateway daemon status and all Connection Manager statistics is:

result = getStatsByStatId(gwyTok, "GD_CSTATUS:CM", &rsToken1);

Result set tokens

A result set token is a reference to a set of results from a single statistics API

function call.

If a statistics API function calculates a set of data, the function provides a

reference to the result set. This reference is called a result set token. The result

set may contain either:

v ID data, including statistical group IDs or statistical IDs

or:

v Statistical data

A result set token is used to work with result set data. For example, a result

set token enables a user application to browse through the result set, or

extract specific details. The application can use functions such as “getFirstId”

on page 41 or “getNextStat” on page 42 to manipulate the result set data.

An “ID data” on page 35 type is populated by the “getFirstId” on page 41

and “getNextId” on page 41 functions. A “Statistical data” on page 35 type is

populated by the “getFirstStat” on page 42 and “getNextStat” on page 42

functions. The data types are used to access the data in the result sets, as

described in “Correlating results and error checking” on page 45.

Note: All ID data and statistical data is in character format, using the default

native string encoding.

Result set tokens returned by a statistics API function are ’owned’ by the API.

The token is freed when either:

v The associated Gateway daemon connection is closed using the

“closeGatewayConnection” on page 38 function.

or

v The function “closeAllGatewayConnections” on page 38 is called.

The result set token returned by the “copyResultSet” on page 42 function is

not ’owned’ by the API. The token can only be freed using the “freeResultSet”

on page 43 function.

Chapter 5. Statistics API 33

Result set tokens ’owned’ by the API cannot be ’freed’ using the

“freeResultSet” on page 43 function. The tokens must be freed using the

“closeGatewayConnection” on page 38 or “closeAllGatewayConnections” on

page 38 functions.

Result sets which are API-owned can only be manipulated on the thread

which obtained them. Result sets that were not created by API calls can be

manipulated by any thread.

Working with multiple result sets

Working with multiple result sets requires special attention.

Calling a statistics API function produces a result set token. This token

identifies a result set owned by the statistics API. The result set is also

associated with the Gateway identified by the gateway token used during the

function call. This means that each result set owned by the statistics API is

associated with a specific Gateway connection. It is helpful to think of the

gateway token and the corresponding result set token as a pair.

Tokens referring to API-owned result sets may only be used by the thread

which created them. To create a result set token usable by any thread, call the

“copyResultSet” on page 42 function.

For example, an application using the same gateway token to make two

separate API function calls will be given two logically different result set

tokens. Since the same gateway token was used for both calls, the different

result set tokens will iterate over the same result set. The result set will be the

one returned by the last API function call.

This means that the result set identified by an result set token is only valid

until another API call is made, specifying the same gateway token. The most

recent API call overwrites the existing result set.

Use the “copyResultSet” on page 42 function to make a copy of a result set

before it is overwritten by another API call. When the application finishes

using the copied result set, free the storage using the “freeResultSet” on page

43 function.

Example

In the following example code, two statistics API calls are made. The same

Gateway token is used for both calls. Two separate addresses are supplied for

the result set tokens.

34 CICS Transaction Gateway: Programming Guide

getStatsByStatGroupId(gwyTok, "", &rsTok1);

/* Tasks after getStatsByStatGroupId function call. */

getStatsByStatId(gwyTok, "", &rsTok2);

/* Tasks after getStatsByStatId function call. */

Using the same Gateway token both calls means that the result set pointed to

by &rsTok1 will be overwritten when the second API call is made. The two

separate result set tokens &rsTok1 and &rsTok2 will iterate over the same

result set.

If the result set obtained from the first API call is still required later in the

application, take a copy of the result set by calling the “copyResultSet” on

page 42 function.

ID data

An ID data structure maps an individual result returned from an ID API

function.

The data type CTG_IdData_t is defined in the “C-language header files” on

page 29. The data provides a name for individual results within statistical

groups or statistics.

Individual results can be accessed using the “getFirstId” on page 41 and

“getNextId” on page 41 functions.

CTG_IdData_t provides two fields, a character pointer and length, to enable

access to individual elements of an ID result set, as described in “Correlating

results and error checking” on page 45.

Statistical data

A statistical data structure maps an individual result returned from a statistics

API function.

The data type CTG_StatData_t is defined in the “C-language header files” on

page 29. The statistical data represents individual statistics, or name-value

pairs.

Individual results can be accessed using the “getFirstStat” on page 42 and

“getNextStat” on page 42 functions.

CTG_StatData_t provides two fields, a character pointer and length, to enable

access to individual elements of a statistical result set. These elements are the

statistical ID and statistical value data, as described in “Correlating results

and error checking” on page 45.

Chapter 5. Statistics API 35

Statistics API Trace Levels

The CICS Transaction Gateway statistics API provides several levels of

diagnostic trace information.

Trace Levels

The CICS Transaction Gateway statistics API can produce diagnostic trace

information, depending on the trace level setting.

Each level automatically includes all the detail provided by the lower levels.

For example, CTG_STAT_TRACE_LEVEL2 indicates that all events and exceptions

will be traced.

 Table 7. Statistics API Trace Levels

Trace level Output details

CTG_STAT_TRACE_LEVEL0 No trace output.

CTG_STAT_TRACE_LEVEL1 Exceptions only.

CTG_STAT_TRACE_LEVEL2 Events.

CTG_STAT_TRACE_LEVEL3 Entries and exits.

CTG_STAT_TRACE_LEVEL4 Debug information.

The default trace destination is stderr. Use the function “setAPITraceFile” on

page 44 to choose a different trace destination.

API functions

The statistics API functions.

This information describes the functions provided in the statistics API.

Many ID functions create a result set. A result set is over-written the next time

an ID function call is made using the same gateway token. This means an

application working with several result sets from the same Gateway

connection at the same time must take a local copy of each result set. To take

a local copy of a result set, use the “copyResultSet” on page 42 function.

For details of the return codes provided by the API functions, see ctgstats.h

in the “C-language header files” on page 29, or refer to the CICS Transaction

Gateway: Programming Reference.

Gateway daemon connection functions

This information describes the main functions provided in the statistics API

for connections to a Gateway daemon.

36 CICS Transaction Gateway: Programming Guide

openGatewayConnection

This function establishes a connection to a local Gateway daemon statistics

protocol handler, using the specified port number, a pointer to a gateway

token, and the address of a char pointer for the statistics API protocol version.

Detail

This function is called with an integer for the target port number, a pointer to

a gateway token, and the address of a char pointer to hold a string describing

the version of the statistics API protocol provided by the target gateway

daemon.

The function creates a connection to a local Gateway daemon statistics

protocol handler using the specified port number.

When the call returns, the gateway token represents the connection to the

specified Gateway daemon. The token is required to interact with that

Gateway daemon in subsequent API calls.

The char pointer points to a null-terminated character string. The API owns

the storage for the protocol version character array, and the API program

should not free this storage.

The user application must check that the version of the statistics API protocol

provided by the target Gateway daemon is at least the same as major version

number in the compile-time string CTG_STAT_PROTOCOL_VER. This compile-time

string is defined in ctgstdat.h, described in the “C-language header files” on

page 29 section. The major version number is the first digit in the

compile-time string.

openRemoteGatewayConnection

This function establishes a connection to a remote Gateway daemon statistics

protocol handler, using the specified host name, port number, a pointer to a

gateway token, and the address of a char pointer for the statistics API

protocol version.

Detail

This function is called with:

v A character pointer for the hostname. This is a null terminated string

containing the IP address or hostname of the machine running the Gateway

daemon.

v An integer for the target port number.

v A pointer to a gateway token.

Chapter 5. Statistics API 37

|
|
|
|
|

|

|

|
|
|

|

|

v The address of a char pointer to hold a string describing the version of the

statistics API protocol provided by the target gateway daemon.

The function creates a connection to a remote Gateway daemon statistics

protocol handler using the specified port number.

When the call returns, the gateway token represents the connection to the

specified Gateway daemon. The token is required to interact with that

Gateway daemon in subsequent API calls.

The char pointer points to a null-terminated character string. The API owns

the storage for the protocol version character array, and the API program

should not free this storage.

The user application must check that the version of the statistics API protocol

provided by the target Gateway daemon is at least the same as major version

number in the compile-time string CTG_STAT_PROTOCOL_VER. This compile-time

string is defined in ctgstdat.h, described in the “C-language header files” on

page 29 section. The major version number is the first digit in the

compile-time string.

closeGatewayConnection

This function closes a connection to a Gateway daemon statistics protocol

handler, using the gateway token provided.

Detail

This function is called with a pointer to a gateway token. The function closes

the connection to the local or remote Gateway daemon statistics protocol

handler identified by the gateway token. Any resources associated with the

connection, including result sets, are freed, and result set tokens obtained with

the specified gateway token are no longer valid.

When the call returns, the gateway token pointer is set to null, showing that it

is no longer valid.

closeAllGatewayConnections

This function releases all resources owned by the statistics API, including any

open Gateway daemon connections.

38 CICS Transaction Gateway: Programming Guide

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

Detail

An application can use this function as part of a normal shutdown. The

function can also be used in the event of a severe error, for example where

some form of controlled shutdown is required but references to gateway

tokens have been lost.

Copied result sets are not be freed by this function, because the API does not

own or maintain a record of copied result sets.

ID functions

This information describes the ID functions provided in the statistics API.

getResourceGroupIds

This function returns a result set token, representing the set of resource group

IDs currently available for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer.

The result set returned can be parsed with functions “getFirstId” on page 41

and “getNextId” on page 41, or used to generate a query string with

“getIdQuery” on page 41.

For the z/OS platform, depending upon when “getResourceGroupIds” is

called, dynamic resource groups for a specific CICS server might not be

returned in the list. The dynamic list of server resource group IDs can be

obtained directly via the appropriate resource group statistical ID.

getStatIds

This function returns a result set token, representing the set of all statistical

IDs currently available for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer.

The result set created may be parsed with functions “getFirstId” on page 41

and “getNextId” on page 41, or used to generate a query string with

“getIdQuery” on page 41.

getStatIdsByStatGroupId

This function returns a set of statistical IDs associated with the statistical

group IDs supplied in the query string, for the specified Gateway daemon.

Chapter 5. Statistics API 39

Detail

This function is called with a gateway token, a query string of statistical

group IDs, and a result set token pointer. The result set created may be parsed

with functions “getFirstId” on page 41 and “getNextId” on page 41, or used

to generate a query string with “getIdQuery” on page 41.

Retrieving statistical data functions

This information describes the data retrieval functions provided in the

statistics API.

getStats

This function creates a result set token representing the set of all available

statistical name-value pairs for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer.

The result set created may be parsed with functions “getFirstStat” on page 42

and “getNextStat” on page 42, or used to generate a query string with

“getIdQuery” on page 41.

getStatsByStatId

This function creates a result set token. The token represents the set of

name-value pairs that is generated when a query string of statistical IDs is

applied to the specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical IDs,

and a result set token pointer. The result set created can be parsed with

functions “getFirstId” on page 41 and “getNextId” on page 41, or used to

generate a query string with “getIdQuery” on page 41.

getStatsByStatGroupId

This function creates a result set token. The token represents the set of

name-value pairs that is generated when a query string containing statistical

group IDs is applied to the specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical

group IDs, and a result set token pointer. The result set returned can be

parsed with functions “getFirstStat” on page 42 and “getNextStat” on page 42,

or used to generate a query string with “getIdQuery” on page 41.

40 CICS Transaction Gateway: Programming Guide

Result set functions

This information describes the result set functions provided in the statistics

API.

getIdQuery

This function provides a pointer to a character array, containing the ID result

set.

Detail

This function is called with a result set token pointer, and the address of a

character pointer. The function sets the pointer to point to a character array.

This character array contains the ID result set, formatted for direct use as a

query string.

The storage for the character array is created by the API. The API owns the

storage for the character array, and the API program should not free this

storage.

getFirstId

This function populates a CTG_IdData_t variable with details of the first ID in

a result set.

Detail

This function is called with an ID result set token. The function populates a

CTG_IdData_t variable with details of the first ID in the result set. If there are

no further IDs in the result set, the CTG_IdData_t variable is unchanged.

For more information on the CTG_IdData_t data type, see “ID data” on page

35

getNextId

This function populates a CTG_IdData_t variable with details of the next ID in

a result set.

Detail

This function is called with an ID result set token. The function populates a

CTG_IdData_t variable with details of the next ID in the result set. If there are

no further IDs in the result set, the CTG_IdData_t variable is unchanged.

For more information on the CTG_IdData_t data type, see “ID data” on page

35

Chapter 5. Statistics API 41

getFirstStat

This function populates a CTG_StatData_t variable with details of the first ID

in a result set.

Detail

This function is called with a statistical result set token. The function

populates a CTG_StatData_t variable with details of the first ID in the result

set. If there are no further IDs in the result set, the CTG_StatData_t variable is

unchanged.

For more information on the CTG_StatData_t data type, see “Statistical data”

on page 35.

getNextStat

This function populates a CTG_StatData_t variable with details of the next ID

in a result set.

Detail

This function is called with a statistical result set token. The function

populates a CTG_StatData_t variable with details of the next ID in the result

set. If there are no further IDs in the result set, the CTG_StatData_t variable is

unchanged.

For more information on the CTG_StatData_t data type, see “Statistical data”

on page 35.

copyResultSet

This function creates a copy of a result set. The copy is owned by the calling

application.

Detail

An application might need to make several API calls on a result set. This is

useful because some API calls overwrite an existing result set with new

results. A local copy of the result set is created using this function.

The copyResultSet function takes two result set tokens. The source token

refers to the original result set. The target token refers to a copy of the result

set. The copy is created by this function. The calling application owns the

target result set.

There is no structural difference between the original and the target result

sets. “Result set functions” on page 41 work with API-owned result sets or

application-owned result sets.

42 CICS Transaction Gateway: Programming Guide

When the application finishes using the copied result set, free the storage

using the “freeResultSet” function.

freeResultSet

This function frees the storage used by an application-owned result set.

Detail

When an application finishes using a result set, the storage must be freed.

This function takes a pointer to a result set token, frees the storage, and sets

the pointer to null.

This function should only be used for result sets created using the

“copyResultSet” on page 42 function. If the result set is owned by the

statistics API, an attempt to free the result set returns an error.

Utility functions

This information describes the utility functions provided in the statistics API.

getStatsAPIVersion

This function provides version information about the statistics API.

Detail

This function takes the address of a character pointer to be modified. The

function modifies the character pointer to point to a null-terminated character

array. The string represents the version of the active statistics DLL. Version

information is described in “API and protocol version control” on page 28.

The API owns the storage for the character array, and the API program should

not free this storage.

getAPITraceLevel

This function provides information about the current trace status of the

statistics API.

Detail

This function takes a pointer to a local int variable. The function sets the

variable to the current trace level of the statistics API.

The levels are defined in the “C-language header files” on page 29. Valid

values are:

v CTG_STAT_TRACE_LEVEL0

v CTG_STAT_TRACE_LEVEL1

v CTG_STAT_TRACE_LEVEL2

Chapter 5. Statistics API 43

v CTG_STAT_TRACE_LEVEL3

v CTG_STAT_TRACE_LEVEL4

For further information on trace levels, see “Statistics API Trace Levels” on

page 36.

setAPITraceLevel

This function sets the trace level of the statistics API.

Detail

This function takes an int value. The function sets the trace level of the API

to this value.

The default trace destination is stderr. Use the function “setAPITraceFile” to

choose a different trace destination.

The status values are defined in the “C-language header files” on page 29.

Valid values are:

v CTG_STAT_TRACE_LEVEL0

v CTG_STAT_TRACE_LEVEL1

v CTG_STAT_TRACE_LEVEL2

v CTG_STAT_TRACE_LEVEL3

v CTG_STAT_TRACE_LEVEL4

For further information on trace levels, see “Statistics API Trace Levels” on

page 36.

setAPITraceFile

This function sets the destination for statistics API trace details.

Detail

This function takes a character pointer to a null-terminated string. The string

is the file name of the intended trace destination.

If the file name already exists, trace data is appended to the file.

If the file name cannot be opened for writing, trace data is sent to stderr.

Passing a null pointer to this function sets the trace destination back to

stderr.

44 CICS Transaction Gateway: Programming Guide

dumpResultSet

This function outputs a result set in a printable form.

Detail

This function takes a result set token. The function writes the contents of the

result set to the trace destination, regardless of the current trace level. The

contents are written using printable characters.

This function is normally used for debug purposes.

 Related reference

 “Statistics API Trace Levels” on page 36
The CICS Transaction Gateway statistics API provides several levels of

diagnostic trace information.

dumpState

This function outputs internal information about the API.

Detail

This function writes internal information about the API to the trace

destination.

This function is normally used for debug purposes.

Correlating results and error checking

Individual results within a result set from a statistics API function call can be

correlated back to the original query string data.

ID or statistical results within a result set from an API call can be correlated

back to the original query string data using the struct elements

queryElementPtr and queryElementLen. The status of the result is given by

queryElementRC. These return codes are defined in the ctgstdat.h header file.

After a call to “getFirstId” on page 41 or “getNextId” on page 41, the

CTG_IdData_t elements query and queryLen represent the specific ID in the

query string associated with the result.

After a call to “getFirstStat” on page 42 or “getNextStat” on page 42, the

CTG_StatData_t elements query and queryLen represent the specific statistic in

the query string associated with the result.

Chapter 5. Statistics API 45

If the specific ID in the query string is in error, the struct element

queryElementRC will have a non-zero value, defined in the ctgstdat.h header

file.

46 CICS Transaction Gateway: Programming Guide

Chapter 6. Programming in Java

This information provides an introduction to writing Java Client programs for

the CICS Transaction Gateway.

Overview of the programming interface for Java

The CICS Transaction Gateway enables Java Client applications to

communicate with programs on a CICS server by providing base classes for

the External Call Interface (ECI) and the External Security Interface (ESI), and

EPI support classes for the External Presentation Interface (EPI). The classes

listed below are the basic classes provided with the CICS Transaction

Gateway. For a full description of all the classes and methods referred to in

this chapter, refer to the Javadoc supplied with the CICS Transaction Gateway.

Note that the EPI classes are not available with the CICS Transaction Gateway

for z/OS.

com.ibm.ctg.client.JavaGateway

This class is the logical connection between a program and a CICS

Transaction Gateway. You need a JavaGateway object for each CICS

Transaction Gateway that you want to talk to.

com.ibm.ctg.client.ECIRequest

This class contains the details of an ECI request to the CICS

Transaction Gateway.

com.ibm.ctg.epi.Terminal

This class controls a 3270 terminal connection to CICS. The Terminal

class handles CICS conversational, pseudoconversational, and ATI

transactions. A single application can create many Terminal objects.

com.ibm.ctg.client.ESIRequest

This class contains the details of an ESI request to the CICS

Transaction Gateway.

Note: The com.ibm.ctg.client.EPIRequest base class is supported only for

compatibility with earlier releases of the product. New programs

should use the EPI support classes.

Creating a JavaGateway

The JavaGateway object is a logical connection between your application and

the Gateway daemon when the application is running in remote mode. If a

© Copyright IBM Corp. 2002, 2008 47

Java Client application is running in local mode, the JavaGateway is a

connection between the application and the CICS server, bypassing the

Gateway daemon.

Use one of the constructors provided to create a JavaGateway. You must

specify the protocol you are using, and the network address and port number

of the remote Gateway daemon. You can specify this information either by

using the setAddress, setProtocol and setPort methods, of the JavaGateway

class, or by providing all the information in URL form: Protocol://
Address:Port. If you specify a local connection, you must specify a URL of

local: You can use the setURL method or pass the URL into one of the

JavaGateway constructors.

Note: The IP address can be in IPv6 format. If you are using a Java Client

application on an HP-UX system, and the application calls a Gateway

that binds to an IPv6 address, specify

-Djava.net.preferIPv4Stack=false explicitly.

The JavaGateway supports the following protocols :

v TCP/IP

v SSL

v Local

There are several constructors available for creating a JavaGateway. The

default constructor creates a JavaGateway with no properties. You must then

use the set methods to set the required properties and the open method to

open the Gateway. There are other constructors which set different

combinations of properties and open the Gateway for you.

Java Client application suite select feature

Cipher suites define the key exchange, data encryption, and hash algorithms

used for an SSL session between a client and server. During the SSL

handshake, both sides present the cipher suites that they are able to support

and the strongest one common to both sides is selected. In this way, you can

restrict the cipher suites that a Java Client application presents.

Restricting cipher suites for a Java Client application

To restrict the cipher suites used by a JavaGateway object, use the

setProtocolProperties() method to add the property

(JavaGateway.SSL_PROP_CIPHER_SUITES) to the properties object passed to

it. The value of the property must contain a comma-separated list of the

cipher suites that the application is restricted to using.

For example:

48 CICS Transaction Gateway: Programming Guide

|

|
|
|
|
|

|

|
|
|
|
|

|

Properties sslProps = new Properties();

 sslProps.setProperty(JavaGateway.SSL_PROP_KEYRING_CLASS, strSSLKeyring);

 sslProps.setProperty(JavaGateway.SSL_PROP_KEYRING_PW, strSSLPassword);

 sslProps.setProperty(JavaGateway.SSL_PROP_CIPHER_SUITES,

 "SSL_RSA_WITH_NULL_SHA");

 javaGatewayObject = new JavaGateway(strUrl, iPort, sslProps);

Writing Java Client applications

Before a Java Client application can send a request to the CICS server, it must

create and open a JavaGateway object.

When the JavaGateway is open, the Java Client application can flow requests

to the CICS server using the flow method of the JavaGateway. The request is

sent to the Gateway daemon if you have a remote JavaGateway or direct to

CICS if you are using a local JavaGateway on z/OS or direct to the Client

daemon if you are using a local JavaGateway on multiplatforms.

When there are no more requests for the CICS Transaction Gateway, the Java

Client application closes the JavaGateway object.

Deploying remote Java Client applications

You are licensed to copy the following files to the computer that is running

the Java Client application:

Non-J2EE applications

File ctgclient.jar

J2EE applications in a managed environment

The resource adapters (RAR files) in the <install_path>\deployable

directory.

J2EE applications in a non-managed environment

The following files in the <install_path>\classes directory:

cicsj2ee.jar

ctgclient.jar

ccf2.jar

connector.jar

screenable.jar

Ensure that any JAR files that you copy are listed on the class path of the

remote computer.

JavaGateway security

When you connect to a remote CICS Transaction Gateway, resources allocated

to a particular connection, and identifiers specified on the request objects on a

particular connection, are available only to that connection. If you specify the

Chapter 6. Programming in Java 49

|
|
|
|
|
|

|

local: protocol, all JavaGateways that are created in the same JVM, that is, the

same process, have access to each other’s allocated resources or specified

identifiers.

Making External Call Interface calls from a Java Client program

This section describes how to run a program on a CICS server using ECI calls

from a Java Client application. Use the com.ibm.ctg.client.ECIRequest base

class and the JavaGateway flow method to pass details of an ECI request to

the CICS Transaction Gateway. Table 8 shows Java objects corresponding to

the ECI terms described in “Input and output information for external calls to

CICS” on page 9.

 Table 8. ECI terms and corresponding Java objects

ECI term Java object.field or object.method()

Abend code ECIRequest.Abend_Code

Channel setChannel(Channel)

COMMAREA ECIRequest.Commarea

ECI timeout ECIRequest.setECITimeout(short)

LUW control ECIRequest.extend_mode

LUW identifier ECIRequest.Luw_Token

Password ECIRequest.Password

Program name ECIRequest.Program

Server name ECIRequest.Server

SocketConnectTimeout ECIRequest:SocketConnectTimeout

TPNName ECIRequest.Call_Type = ECI_SYNC_TPN

or ECI_ASYNC_TPN

TranName ECIRequest.Call_Type = ECI_SYNC or

ECI_ASYNC

User ID ECIRequest.Userid

Linking to a CICS server program

Use one of the ECIRequest constructors provided to set the required

parameters for the ECI call. You can either use the default constructor which

sets all parameters to their default values, or one of the other constructors

which allow you to set different combinations of parameters. Place any data

to be passed to the server program in a COMMAREA or container.

You can create ECI requests for synchronous and asynchronous program link

calls by setting the value of Call_Type to ECI_SYNC or ECI_ASYNC.

50 CICS Transaction Gateway: Programming Guide

||

|

If you use the ECI_ASYNC call type with CICS Transaction Gateway for

z/OS, you must use the Callbackable interface.

Creating channels and containers for ECI calls

You can use channels and containers when you use connect to CICS using the

IPIC protocol. You must construct a channel and add containers to the channel

before it can be used in an ECIRequest.

1. Add the following code to your application program, to construct a

channel to hold the containers:

Channel myChannel = new Channel("CHANNELNAME")

2. You can add containers with a data type of BIT or CHAR to your channel.

Here is a sample BIT container:

byte[] custNumber = new byte[]{0,1,2,3,4,5};

myChannel.createContainer("CUSTNO", custNumber);

and a sample CHAR container:

String company = "IBM";

myChannel.createContainer("COMPANY", company);

3. The channel and containers can now be used in an ECIRequest, as the

example shows:

ECIRequest eciReq = new ECIRequest("CICSA", "USERNAME", "PASSWORD",

 "CHANPROG",channel, ECIRequest.ECI_NO_EXTEND, 0); eciReq.flow();

4. When the request is complete, you can retrieve the current state of the

containers in the channel, as the example shows:

Channel myChannel = eciReq.getChannel();

for(Container container: myChannel.getContainers()){

 System.out.println(container.getName());

 if (container.getType() == ContainerType.BIT){

 byte[] data = container.getBITData();

 }

 if (container.getType() == ContainerType.CHAR){

 String data = container.getCHARData();

 }

}

If you are using this channel in an extended request, you must use the

same channel object in subsequent flows.

Managing a LUW

Set the call type to ECI_EXTEND if the ECI call is part of an extended LUW.

If the call is the last, or only call for the LUW, the call type must be

ECI_NOEXTEND, ECI_COMMIT or ECI_BACKOUT.

Chapter 6. Programming in Java 51

|

|
|
|

|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

Retrieving replies from asynchronous requests

Callbacks

ECIRequest supports callback objects. A callback object, which must

implement the Callbackable interface, receives the results of the flow via the

setResults method. When the results have been applied, a new thread is

started to execute the run method.

If you specify a callback object for a synchronous call the results are passed to

your Callbackable object as well as to your ECIRequest object in the flow

request.

Reply solicitation calls

Use the automatic message qualifier generator feature of ECIRequest to

ensure that the message qualifiers that you assign are unique within the CICS

Transaction Gateway. Turn the feature on by invoking the method

setAutoMsgQual(true) on your ECIRequest object. This will assign a message

qualifier that is unique on all asynchronous requests (ECI_ASYNC,

ECI_ASYNC_TPN, ECI_STATE_ASYNC, ECI_STATE_ASYNC_JAVA), when

the request is flowed. Use this message qualifier to retrieve replies when you

use the ECI_GET_SPECIFIC_REPLY and ECI_GET_SPECIFIC_REPLY_WAIT

call types.

For remote connections you cannot get replies on a different connection to the

one that flowed the original request with a message qualifier; see “ECI

security” on page 54.

If you use ASYNC calls with message qualifiers, you might have to pass a

user ID and password when you retrieve the reply with one of the various

GET_REPLY call types. The user ID and password are not used to validate

whether the reply can be retrieved; they are passed to the Gateway to hold in

case security is required to clean up (BACKOUT) an LUW if the connection is

lost while the server program is still running.

For a local connection, the message qualifier should be unique for each

request, although this is not enforced. Provided the JavaGateways are within

the same JVM, any connection can get a message using a message qualifier,

even if the request was flowed over a different connection. However, it is

recommended that you use automatic message qualifier generation:

v To avoid problems resulting from reusing the same message qualifier

v To allow you to switch your application between local and remote

connection

If you are using the CICS Transaction Gateway for z/OS, the following

considerations apply:

52 CICS Transaction Gateway: Programming Guide

v You cannot use the variable Message_Qualifier, or the methods

isAutoMsgQual(), setAutoMsgQual(), setMessageQualifier(), or

setMessageQualifier()

v You cannot use reply solicitation call types such as GET_REPLY,

GET_REPLY_WAIT, GET_SPECIFIC_REPLY, or

GET_SPECIFIC_REPLY_WAIT

ECI timeouts

If you are not using z/OS, use the ECIRequest.setECITimeout() method to set

the value of ECI timeout.

If you are using z/OS, you cannot use the methods getECITimeout(), or

setECITimeout(). You have the following options available, depending on

whether you are using EXCI or IPIC:

v If you are using EXCI, you can set the TIMEOUT parameter in the EXCI

options table DFHXCOPT.

v If you are using IPIC in remote mode, you can set the CONNECTTIMEOUT

parameter in the configuration file.

v If you are using IPIC in local mode, you can set this in the

JavaGateway.setSocketConnectTimeout() method.

For more information on ECI timeouts, see the CICS External Interfaces Guide,

SC34-6006.

See “Timeout of the ECI request” on page 14

Performance considerations when transmitting data in a COMMAREA

The length of data transmitted between the user application and the server

program can be much smaller than the size of the COMMAREA. You can use

one of the methods listed below to prevent null values or other unwanted

data from being transmitted over the network:

v The setCommareaOutboundLength method ensures that you send only the

required data in the outbound flow to CICS, not the full

Commarea_Length.

v The getInboundDataLength method shows the amount of non-null data

returned.

v The setCommareaInboundLength method can be used if the unwanted

data in the COMMAREA contains something other than nulls.

In order to reduce network traffic, the CICS Transaction Gateway truncates

COMMAREAs by removing trailing null values. This process is called null

stripping.

You can use the setCommareaOutboundLength method to ensure that only

the data required by the server program is transmitted.

Chapter 6. Programming in Java 53

|
|

|
|

|
|

You can use the setCommareaInboundLength method to restrict the length of

the data that the Java Client application receives back from CICS. If you use

setCommareaInboundLength, the CICS Transaction Gateway does not remove

trailing nulls from the inbound data.

The CICS server adds trailing nulls to the data received to extend it to the

length specified in Commarea_Length so that the server program always

receives a full COMMAREA.

The server program only returns the data required by the Java Client

application. The Client daemon adds trailing nulls to the data received so that

the CICS Transaction Gateway receives a full COMMAREA.

The CICS Transaction Gateway strips the trailing nulls from the COMMAREA

before transmitting the data to the Java Client application.

The Java Client application must add nulls to the data to bring it up to the

full size of the COMMAREA.

If the Java Client application is running locally on z/OS, a similar procedure

takes place, but the improvement in performance is not as great.

ECI security

Logical unit of work (LUW) IDs and message qualifiers can only be used on

the JavaGateway that created or assigned them. This is a security feature. It

stops programs that are connected to the same CICS Transaction Gateway

from using LUW IDs belonging to another application, or from using its

message qualifier to request messages. For example, attempts to get a specific

reply to a message from a different JavaGateway will result in an

ECI_ERR_NO_REPLY return code.

EXCI security for ECI requests on z/OS

If you are using the EXCI protocol on CICS Transaction Gateway for z/OS,

there are a number of settings and security checks in place to validate your

user ID and password.

v The user ID and password coded on the ECI request object can be validated

in the CICS Transaction Gateway through RACF for every EXCI call. This is

controlled through the setting of the AUTH_USERID_PASSWORD

environment variable. See the CICS Transaction Gateway: z/OS Administration,

for more information.

v The ECI user ID will then be subject to EXCI surrogate security checks,

before it can be flowed on the EXCI request; for more details, see the CICS

External Interfaces Guide. Note that any password supplied on an ECI

request is not flowed on to CICS from the CICS Transaction Gateway for

z/OS.

54 CICS Transaction Gateway: Programming Guide

v The flowed user ID is subject to CICS authorization checks, for more

details, see theCICS Transaction Server for z/OS RACF Security Guide.

See also Configuring CICS Transaction Gateway for use with RACF, in the

CICS Transaction Gateway: z/OS Administration.

IPIC security

IPIC connections enforce link security to control user activity over a

connection, and flowed security to allow you to specify a username and

password before communicating with a secured CICS region.

To set up user security, you need to define an IPCONN definition in CICS,

that relates to the APPLID defined by theCICS Transaction Gateway or

resource adapter.

The USERAUTH setting in the IPICONN definition is comparable to the

ATTACHSEC setting. USERAUTH=IDENTIFY allows only SSL client

authentication and communication between programs within a sysplex. All

other communications require USERAUTH=VERIFY.

IPIC link security

There are two ways that you can specify the link user for IPIC connections.

You can use the SECURITYNAME option, or an SSL certificate. You can use

an SSL certificate if you have a client authenticated SSL (this is where both the

client and server have certificates). The client’s certificate is mapped by RACF

to a specific user ID, which is defined as the link user. This means that you

can specify different link users, depending on which certificate you are using.

To specify a link user, you must do the following:

1. Define an IPCONN definition in CICS, that relates to the APPLID defined

by theCICS Transaction Gateway or resource adapter.

2. Set LINKAUTH to either:

a. SECUSER if you want to use SECURITYNAME

b. CERTUSER if you want to use the SSL certificate
3. If you specify SECUSER, specify the SECURITYNAME option.

4. If you specify CERTUSER, define your mappings in RACF to your chosen

user ID. Ensure you are using a TCPIPSERVICE definition that is set up

for SSL (not TCP) and is also enabled for client authentication.

When you specify CERTUSER, RACF maps the client certificate to a user ID.

CICS defines this user ID as the link user. This process is called Certificate

name filtering. For more information on Certificate name filtering, see the IBM

Redpaper J2C Security on z/OS (redp4202.pdf) at the IBM Redbooks® Web site.

Chapter 6. Programming in Java 55

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|

|

|

|

|

|
|
|

|
|
|
|

IPIC flowed security

You can specify a user ID and password before setting up a connection to a

secured CICS region, either by using the ECIRequest base class, or by setting

variables on the object.

To set custom properties for the ECI resource adapter:

v Set the flowed username in the UserName property

v Set the password in the Password property

To override ECIConnectionSpec settings:

v Create an ECIConnectionSpec object with the required username and

password.

v Use this object for requests on the selected connection and in the

getConnection() method of your ECI ConnectionFactory.

ECI return codes and server errors on z/OS

This section describes how the return codes from the EXCI are returned to the

user of the ECIRequest object.

Table 9 shows how EXCI return codes map to ECI return codes. The EXCI

return codes are documented in the CICS External Interfaces Guide.

 Table 9. EXCI return codes and ECI return codes

EXCI return codes ECI symbolic names/return codes rc

201, 203 ECI_ERR_NO_CICS –3

202 ECI_ERR_RESOURCE_SHORTAGE –16

401, 402, 403, 404, 410, 411,

412, 413, 418, 419, 421

ECI_ERR_SYSTEM_ERROR –9

422 ECI_ERR_TRANSACTION_ABEND –7

423 ECI_ERR_SECURITY_ERROR –27

601, 602, 603, 604, 605, 606,

607, 608, 621, 622, 623, 627,

628

ECI_ERR_SYSTEM_ERROR –9

609 ECI_ERR_SECURITY_ERROR –27

624 ECI_ERR_REQUEST_TIMEOUT –5

EXCI support on z/OS

Version 2 of the EXCI is supported, and it provides support for eci_transid

and resolves previous problems with ASCII/EBCDIC conversion.

56 CICS Transaction Gateway: Programming Guide

|

|
|
|

|

|

|

|

|
|

|
|

|

If you use EXCI Version 2 and eci_tpn is specified on the ECI request, then

the definition of the user mirror transaction must now specify

PROGRAM(DFHMIRS), regardless of whether the transaction is defined as

local or remote.

IPIC support for ECI

IPIC connections do not support ECI State calls or asynchronous ECI calls that

use message qualifiers. If you are using local mode, IPIC connections are not

displayed in the CICS_ECIListSystems call.

IPIC does not support the following ECI calls:

v ECI_ASYNC, with a message qualifier (Callbackable objects are supported)

v ECI_ASYNC_TPN, with a message qualifier (Callbackable objects are

supported)

v ECI_GET_REPLY

v ECI_GET_REPLY_WAIT

v ECI_GET_SPECIFIC_REPLY

v ECI_GET_SPECIFIC_REPLY_WAIT

v ECI_STATE_ASYNC

v ECI_STATE_ASYNC_JAVA

v ECI_STATE_CANCEL

v ECI_STATE_CHANGED

v ECI_STATE_IMMEDIATE

v ECI_STATE_SYNC

v ECI_STATE_SYNC_JAVA

If you are using local mode, IPIC servers are not displayed in a

CICS_EciListSystems call. This is because the IPIC information is passed using

a URL and is not known in advance of the connection. However, if you are

using remote mode, you define your IPIC servers in the configuration file (the

URL function is not available for remote mode), and the servers are displayed

in the CICS_EciListSystems call.

Making External Presentation Interface Calls from a Java Client Program

This section describes how to run a 3270–based program on a CICS server

using EPI calls from a Java Client application. To do this you can use either

the EPI support classes, which is the recommended method, or the

EPIRequest base class. Neither of these methods is available for the CICS

Transaction Gateway for z/OS. Table 10 on page 58 shows Java objects

corresponding to the EPI terms described in “Terminal characteristics” on

page 19.

Chapter 6. Programming in Java 57

|

|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

Table 10. EPI terms and corresponding Java objects

EPI term Terminal object:property EpiRequest object.field

Code page Terminal:CCSid EPIRequest.CCSid

Color no equivalent EPIRequest.color

Columns Screen:Width EPIRequest.numColumns

Device type Terminal:Device type EPIRequest.deviceType

Error last line no equivalent EPIRequest.errLastLine

Error message color no equivalent EPIRequest.errColor

Error message highlight no equivalent EPIRequest.errHighlight

Error message intensity no equivalent EPIRequest.errIntensity

Extended highlight no equivalent EPIRequest.highlight

Install timeout Terminal:InstallTimeout EPIRequest.installTimeout

Map name Screen:MapName EPIRequest.mapName

Mapset name Screen:MapsetName EPIRequest.mapSetName

Maximum data no equivalent EPIRequest.maxData

Netname Terminal:Netname EPIRequest.netName

Password Terminal:Password EPIRequest.password

Read timeout Terminal:ReadTimeout EPIRequest.readTimeout

Rows Screen:Depth EPIRequest.numLines

Server name Terminal:ServerName EPIRequest.Server

Sign-on capability Terminal:SignonCapability EPIRequest.signoncapability

SocketConnectTimeout No equivalent EPIRequest:SocketConnectTimeout

Terminal ID Terminal:Termid EPIRequest.termID

Userid Terminal:Userid EPIRequest.userid

EPI support classes

This section:

v Explains how to use the EPI support classes

v Describes how to handle exceptions

v Describes the encoding of 3270 data streams

v Explains how to convert BMS maps and use the Map class

v Describes how to use the EPIRequest class

The CICS Transaction Gateway EPI support classes make it simpler for a Java

programmer to access the facilities that the EPI provides:

v Adding and deleting terminals

58 CICS Transaction Gateway: Programming Guide

v Starting CICS transactions

v Sending and receiving 3270 data streams

You do not need a detailed knowledge of 3270 data streams. EPI support

classes provide higher-level constructs for handling 3270 data streams:

v General purpose Java classes are provided for handling screens, terminal

attributes, and transaction data.

v Java classes for specific CICS applications can be generated from BMS map

source files. These classes allow Java Client applications to access data on

3270 panels, using the same map field names used in the CICS program.

Note: These classes do not contain any specific support for 3270 data streams

that contain DBCS fields. Data streams with a mixture of DBCS and

SBCS fields are not supported.

The BMS conversion utility is a tool for statically producing Java class source

code from a CICS BMS map set. See “Converting BMS maps and using the

Map class” on page 68.

The EPI support classes are similar to the C++ EPI classes in that the objects

required and the methods to manipulate them are similar.

In the examples in this chapter, statements similar to the following are

assumed:

 import com.ibm.ctg.epi.*; import java.io.*;

Adding a terminal to CICS

This section describes how to install a terminal on a CICS server. For more

information about EPI and terminal properties, such as Sign-on capability and

Read timeout, see Chapter 3, “External Presentation Interface (EPI),” on page

17.

EPIGateway: Create a JavaGateway object to start a connection to the CICS

Transaction Gateway before attempting to connect a terminal to CICS. The

EPIGateway class provides methods to access information about CICS servers

that are accessible from the CICS Transaction Gateway, and it can be used

instead of the JavaGateway class.

Adding a basic terminal: There are two ways to construct a basic terminal:

v Using the default constructor

v Using the basic terminal constructor

Default terminal constructor

Chapter 6. Programming in Java 59

To create a terminal using the default constructor, first instantiate a

terminal, and then use the appropriate setter methods to set the required

properties. Use only the setters that apply to a basic terminal. These

methods are:

v setGateway

v setServerName

v setDeviceType

v setNetName

v setSession

All the set methods, with the exception of setGateway, are optional and

have a default setting of null. After you have defined your terminal,

install it on the CICS server using the connect() method. Use only this

version of the connect() method. The connect(installTimeout) and

connect(Session, InstallTimeout) methods are allowed only for extended

terminals. See “Installing a terminal on CICS” on page 62 and

“Synchronization and sessions” on page 64 for further information.

try {

 EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);

 Terminal term = new Terminal();

 term.setGateway(eGate);

 term.setServerName("CICS1");

 term.connect();

}

catch (IOException ioEx) {

 ioEx.printStackTrace();

}

catch (EPIException epiEx) {

 epiEx.printStackTrace();

}

Basic terminal constructor

 The second way is to use the basic terminal constructor. This sets all the

required properties and automatically connects you to the CICS Server.

try {

 EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);

 Terminal term = new Terminal(eGate, "CICS1", null, null);

}

catch (IOException ioEx) {

 ioEx.printStackTrace();

}

catch (EPIException epiEx) {

 epiEx.printStackTrace();

}

Exceptions: As the examples show, you must catch exceptions,

irrespective of which method you use to construct a basic

terminal.

60 CICS Transaction Gateway: Programming Guide

Adding an terminal: There are two ways to construct an extended terminal:

v Using the default constructor

v Using the extended terminal constructor

Default terminal constructor

 To create a terminal using the default constructor, first instantiate a

terminal, and then use the appropriate set methods on that object. As with

the basic terminal, only the setGateway method is mandatory. The

setDeviceType, setNetName, setSession and setServer methods are

optional as are the methods that set the extended terminal properties. The

following setters define the properties for the extended terminal. Using

any of these setters implies that you are creating an extended terminal:

v setSignonCapability (Default = sign-on capable, but see “Specifying

terminal Sign-on Capability” on page 21)

v setUserid (Default = null)

v setPassword (Default = null)

v setReadTimeout (Default = 0)

v setEncoding (Default = null)

v setInstallTimeout (Default = 0)
try {

 EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);

 Terminal term = new Terminal();

 term.setGateway(eGate);

 term.setServerName("CICS1");

 term.setSignonCapability(Terminal.EPI_SIGNON_INCAPABLE);

 term.setUserid(userid);

 term.setPassword(password);

 term.connect();

}

catch (IOException ioEx) {

 ioEx.printStackTrace();

}

catch (EPIException epiEx) {

 epiEx.printStackTrace();

}

After you have defined your terminal, you can use the connect method to

install it on CICS (see “Installing a terminal on CICS” on page 62).

Extended terminal constructor

 The extended terminal constructor sets all required properties at

construction time:

try {

 EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);

 Terminal term = new Terminal(eGate, "CICS1", null, null,

 Terminal.EPI_SIGNON_INCAPABLE, userid,

 password,0, null);

Chapter 6. Programming in Java 61

term.connect();

}

catch (IOException ioEx) {

 ioEx.printStackTrace();

}

catch (EPIException epiEx) {

 epiEx.printStackTrace();

}

Unlike the basic terminal constructor the extended terminal constructor

does not automatically install the terminal on CICS. This must be done

explicitly using one of the connect methods described below.

Installing a terminal on CICS: The connect methods that can be used are as

follows:

Connect()

This method installs a terminal on CICS using the session property

and install timeout property.

Connect(installTimeout)

This method installs the terminal on CICS using the session property,

but updates the install timeout property to that supplied.

Connect(Session, installTimeout)

This method installs the terminal on CICS, updating the current

session property with the supplied session object, and updating the

install timeout property with that supplied. Sessions are discussed in

“Synchronization and sessions” on page 64.

Deleting terminals

Use the disconnect method to delete terminals from CICS. Ensure that all

terminals are deleted without errors before your application ends. To purge a

terminal while a transaction is still running, set the PurgeOnDisconnect

property to true.

term.setPurgeOnDisconnect(true);

term.disconnect();

After you have deleted the terminal from CICS, you can install it again by

issuing one of the connect() methods:

term.disconnect();

.....

term.connect();

The Session parameter does not apply to a disconnect call. Deleting a terminal

is a synchronous operation.

62 CICS Transaction Gateway: Programming Guide

Starting a transaction

After you have added a terminal to CICS, you can use on of the send

methods to start a new transaction.

try {

 term.send("EP01",null);

}

catch (EPIException ex) {

 ex.printStackTrace();

}

You can also start a transaction by building a screen and sending it to CICS.

Screen manipulation and fields are discussed in “Accessing fields on CICS

3270 screens.” The following example shows how to start a transaction using

the Screen and Field objects:

try {

 Screen scr = term.getScreen();

 Field fld = scr.field(1);

 fld.setText("EP01");

 term.send();

}

catch (EPIException ex) {

 ex.printStackTrace();

}

Sending and receiving data

Accessing fields on CICS 3270 screens: When a terminal connection to CICS

has been established, the Terminal, Screen and Field objects are used to

navigate through the screens presented by the CICS server application,

reading and updating screen data as required.

The Screen object is created by the Terminal object and is obtained via the

getScreen method on the Terminal object. It provides methods for obtaining

general information about the 3270 screen, for example, cursor position, and

for accessing individual fields by row and column, screen position, or index.

The following example prints out field contents, ends the CICS transaction by

returning PF3, and disconnects the terminal:

 // Get access to the Screen object

 Screen screen = terminal.getScreen();

 for (int i=1; i <= screen.fieldCount(); i++) {

 Field field = screen.field(i); // get field by index

 if (field.textLength() > 0)

 System.out.println("Field " + i + ": " + field.getText());

 }

 // Return PF3 to CICS

 screen.setAID(AID.PF3);

Chapter 6. Programming in Java 63

terminal.send();

 // Disconnect the terminal from CICS

 terminal.disconnect();

The Field class provides access to the text and attributes of an individual 3270

field. You can use these in a variety of ways to locate and manipulate

information on a 3270 screen:

 for (int i=1; i <= screen.fieldCount(); i++) {

 Field field = screen.field(i); // get field by index

 // Find unprotected (i.e. input) fields

 if (field.inputProt() == Field.unprotect)

 ...

 // Find fields the same as a specific text string

 if (field.getText().equals("CICS Sign-on"))

 ...

 // Find red fields

 if (field.foregroundColor() == Field.red)

 ...

 }

Synchronization and sessions: The Terminal class supports both

synchronous and asynchronous sends to the CICS Server. In the case of an

asynchronous send, the Screen object is updated while information is being

received from the server.

To select synchronous mode, you can either specify null for the session using

the setSession method, or specify a null session when invoking send.

Alternatively, you can implement the session interface and specify that it is a

synchronous session.

To select asynchronous mode, implement the session interface and specify that

it is an asynchronous session.

Implementing the session interface: You can set the session on a terminal by

either using the setSession method, or by passing the session object as part of

a send or connect method. “null” is also accepted as a session, meaning that

you have no listening object in place for replies and exceptions, and that all

calls are synchronous.

The session interface defines two methods that must be implemented:

getSyncType and handleReply. The following code shows a sample

implementation:

import com.ibm.ctg.epi.*;

public class myASession implements Session {

 public int getSyncType() {

 return Session.async;

 }

64 CICS Transaction Gateway: Programming Guide

public void handleReply(TerminalInterface term) {

 System.out.println(

 "Reply received Terminal state = " + term.getState());

 }

 public void handleException(TerminalInterface a, Exception e) {

 System.out.println("Exception received:" + e.getMessage());

 }

}

This example defines the session as an asynchronous session, because it

returns Session.async on the getSyncType call. To make the session a

synchronous session, you return Session.sync.

The example shows the handleReply and handleException methods:

handleReply

 You must implement the handleReply method. It is called for each

transmission received from CICS. Depending on the design of the

CICS server program, a Terminal send call can result in one or more

replies. The Terminal state property indicates whether the server has

finished sending replies:

Terminal.server

Indicates that the CICS server program is still running and

has further data to send. The client application can process the

current screen contents immediately, or simply wait for

further replies. The application cannot delete the terminal, or

send the screen to CICS, or start a new transaction.

Terminal.client

Indicates that the CICS server program is now waiting for a

response. The client application should process the screen

contents and send a reply. The application cannot delete the

terminal or start a new transaction.

Terminal.idle

Indicates that the CICS server program has completed. The

client application should process the screen contents and

either delete the terminal or start a further transaction.

Terminal.failed

Indicates that the transaction has failed to start or complete

for some reason, for example, a conversion transaction has

timed-out waiting for a response from the application. Invoke

the endReason and endReasonString methods for more

information.

Chapter 6. Programming in Java 65

Terminal.discon

Indicates that the terminal has been deleted. Invoke the

endReason and endReasonString methods for more

information.

Terminal.error

Indicates that the terminal is in error state and cannot be

used. Try to delete the terminal to ensure that all terminal

resources are cleaned up.

Most Java Client applications wait until the CICS server program has

finished sending data (that is, the Terminal state is client or idle)

before processing the screen. However, some long-running server

programs might send intermediate results or progress information that

can usefully be accessed while the Terminal state is still server.

 The implementation of the handleReply method can read and process

data from the Screen object, update fields as required, set the cursor

position and AID key in preparation for the return transmission to

CICS, and then use the Terminal send method to drive the server

application.

In synchronous mode, handleReply executes on the same thread that

invoked the send. In asynchronous mode, handleReply executes on a

separate thread.

Note: The handleReply method should never attempt to delete a

terminal. The disconnect call might make the application hang

if called from handleReply.

handleException

 The handleException method is not specified as part of the session

interface and is optional unless you are using asynchronous mode

sends, when it must be implemented. The compiler does not force

implementation of the method. The Terminal class invokes this

method if it is present in the Session object.

It is recommended that you also implement the handleException

method for synchronous mode sends with Automatic Transaction

Initiation (ATI) enabled.

For the handleReply method, the Terminal state property shows

information about the terminal connection.

Exceptions are passed in the Exception object. See “Exception

handling” on page 67, for a list of the exceptions that can occur.

ATIs and Read Timeouts: ATI events and Read Timeout events are

asynchronous and can occur at any time during the execution of an

66 CICS Transaction Gateway: Programming Guide

application, providing ATIs are enabled and a Read Timeout value was

specified when creating an extended terminal. If you plan to use these

features, it is recommended that you use an asynchronous session. However,

these features can be used on a synchronous session; in this case, if any events

occur while blocked, handleReply runs on the thread that invoked send or

disconnect. If your application is not within a send or disconnect invocation,

handleReply executes on a separate thread.

Exception handling

EPI exceptions can occur when a user application interacts with a terminal.

The exception hierarchy is shown in Figure 5.

 A description of each of these exceptions is given in the Javadoc supplied

with the product.

The other type of exception that can occur is IOException.

Use the getErrorCode method to retrieve the exception-specific error code

which identifies the exceptions.

Figure 5. Exception hierarchy

Chapter 6. Programming in Java 67

If you are using either a null session or a synchronous session, and you have

not enabled ATIs and are not using Read Timeouts, all exceptions are thrown

on the application thread. When trying to invoke methods such as connect,

send, or disconnect, wrap the call in a try/catch/finally block.

When using asynchronous sessions, a problem arises if you have ATIs, or

Read Timeouts, or both, enabled. In this case, exceptions can occur while

within connect, send, and disconnect method invocations but also outside

these calls.

If you use asynchronous sessions, exceptions cannot be thrown on any of the

application threads. If you enable ATIs, or Read Timeouts, or both, it is

recommended that you use asynchronous sessions.

To know when an exception has occurred when you are not invoking a

terminal method, you can implement the handleException method on the

session. See “Synchronization and sessions” on page 64, for an example of

this. You can implement it for both synchronous and asynchronous sessions. If

the terminal is unable to throw the exception on the application thread (that

is, it is not blocked on a synchronous call or it is an asynchronous session),

this method is invoked on a separate thread and the exception is passed to it.

terminal encoding property

You can specify the encoding in which the resulting 3270 data stream is to be

constructed. When the terminal is installed, the CICS server (providing it

supports EPI Version 2) is informed of the encoding applied to the 3270 data

stream. If you specify null, the encoding used by the CICS Transaction

Gateway server is used (or the default encoding of the application if the local

gateway is being used).

Basic terminals always work in the encoding used by the CICS Transaction

Gateway server (or the default encoding of the application if the local

gateway is being used).

Refer to your CICS Server document for more information on supported code

pages.

Converting BMS maps and using the Map class

A large proportion of existing CICS applications use BMS maps for 3270

screen output. This means that the server application can use data structures

corresponding to named fields in the BMS map rather than handling 3270

data streams directly. The EPI BMS conversion utility uses the information in

the BMS map source to generate classes specific to individual maps, which

allow fields to be accessed by their names.

68 CICS Transaction Gateway: Programming Guide

The utility generates Java classes that applications can use to access the map

data as named fields within a map object. A class is defined for each map,

allowing field names and lengths to be known at compile time. The generated

classes extend the class Map, which provides general functions required by all

map classes.

Run the BMS map converter utility on the BMS source as follows:

java com.ibm.ctg.epi.BMSMapConvert -p package filename.BMS

The utility generates .java files containing the source for the map classes. Use

the -p parameter to specify the package to put the new files into. This saves

you having to edit the files to add the ″package″ statement.

After you have used the EPI BMS utility to generate the map class, use the

base EPI classes to reach the required 3270 screens in the usual way. Then use

the map classes to access fields by their names in the BMS map. The map

classes are validated against the data in the current Screen object.

Using Map classes: The classes generated by the BMS Conversion Utility

have the following features:

v The class name is derived from the map name in the BMS source.

v The class extends Map.

v Two constructors are provided. One constructor takes a Screen parameter

and throws an EPIException, if the screen has not been produced by the

relevant BMS map. The no argument constructor creates a Map that can be

validated against a screen later by using the setScreen method.

v The method field provides access to fields in the map, using the BMS

source field names (provided as constants within the class).

To use the generated Map class, create a Terminal and start a transaction as

usual:

 try {

 EPIGateway epi = new EPIGateway("jgate", 2006);

 // Connect to CICS server

 Terminal terminal = new Terminal(epi, "CICS1234", null, null);

 // Start transaction on CICS server

 terminal.send(null, "EPIC", null);

 MAPINQ1Map map = new MAPINQ1Map(terminal.getScreen());

 Field field;

 // Output text from "PRODNAM" field

 field = map.field(MAPINQ1Map.PRODNAM);

 System.out.println("Product Name: " + field.getText());

 // Output text from "APPLID" field

 field = map.field(MAPINQ1Map.APPLID);

Chapter 6. Programming in Java 69

System.out.println("Applid : " + field.getText());

 } catch (Exception exception) {

 exception.printStackTrace();

 }

In this example the server program uses a BMS map for its first panel, for

which a map class ″MAPINQ1Map″ has been generated. When the map object

is created, the constructor validates the screen contents with the fields defined

in the map. If validation is successful, fields can then be accessed using their

BMS field names instead of by index or position from the Screen object:

BMS Map objects can also be used within the Session handleReply method.

For validation to succeed, the entire BMS map must be available on the

current screen. A map class cannot therefore be used when some or all of the

BMS map has been overlaid by another map or by individual 3270 fields.

EPIRequest

To make EPI type calls to CICS you need to create EPIRequest objects. For

more information on these objects, refer to the Javadoc supplied with the

CICS Transaction Gateway. Note that CICS Transaction Gateway for z/OS

does not support EPIRequest objects.

Using the EPIRequest class

It is recommended that you use the EPI support classes or the J2EE EPI

resource adapter if you are writing programs to interface with CICS 3270

transactions, because support for the EPIRequest class might be removed in a

future release of the CICS Transaction Gateway. However, read this section if

you intend to use the EPIRequest class.

When a Java Client application connects to CICS using EPI, the application

appears to CICS as a 3270 terminal. It is, therefore, important to be aware of

the 3270 data streams that might flow in both directions. After an event has

been returned to a Java application, the size field of the EPIRequest object

indicates the size of the data array returned.

It is also important to be aware of the principles and restrictions governing

EPI programming, and to be aware that there might be minor differences in

the working of the EPI code on different operating systems. For example, if

you are running a CICS Transaction Gateway on Windows, you will probably

need to send Transaction identifiers in the data array of the EPIRequest object,

rather than in the EPIRequest object’s Transid field.

When getting events from CICS it is recommended that you use the

EPI_WAIT option, and ensure that the size field of the EPIRequest object is set

to the maximum size of the 3270 data stream that CICS might return.

70 CICS Transaction Gateway: Programming Guide

Parameter lengths: When using the EPIRequest class it is important to note

that the parameters have maximum lengths. Any

parameters passed exceeding these lengths will be

truncated.

Generally, EPI programs written using the CICS Transaction Gateway should:

1. Open a connection to the Gateway.

2. Add a terminal.

3. Start a transaction.

4. Get an event until one of the following happens:

v the event received is an end transaction or a converse

v a severe error is received
5. If the event received is a converse, send the reply and return to the get

event loop.

6. If the event received is an end transaction, delete the terminal and do a

last get event to obtain the end terminal event.

7. Close the connection to the Gateway.

Terminal Indexes

For remote connections, terminal indexes can only be used on the connection

to which they were assigned. See “EPI security” for more information. For

local connections, all local JavaGateways can access terminal indexes on other

local JavaGateways, provided they are in the same JVM.

EPI null stripping

EPI null stripping is an internal optimization of the CICS Transaction Gateway

that reduces the amount of data flowed from the Gateway daemon to the

Gateway classes. If you run Java Client applications in remote mode, use the

latest version of the Gateway classes and the Gateway daemon to benefit from

EPI null stripping.

EPI and z/OS

The EPI classes are not available for z/OS. If you want to run transactions in

the manner of the EPI, you should use the ECI and set up a request for

DFHWBTTA. This is described in the CICS Internet guide.

EPI security

Terminal ids can only be used on the same JavaGateway that created the

terminal. Again, this is a security feature to stop other programs that connect

to the same CICS Transaction Gateway from manipulating that terminal.

Making External Security Interface Calls from a Java Client program

Use the ESIRequest base class for password management.

Chapter 6. Programming in Java 71

Table 11 shows Java objects corresponding to the ESI terms listed in “Input

and output information for ESI functions” on page 25.

The ESIRequest class is not available for z/OS.

 Table 11. ESI terms and corresponding Java objects

ESI term Java object

Current password ESIRequest.setCurrentPassword()

New password ESIRequest.setNewPassword()

Server name ESIRequest.setServer()

User ID ESIRequest.setUserid()

Verifying a password using ESI

Use the verifyPassword method, passing the current password, user ID and

server name to verify a password.

Changing a password using ESI

Use the changePassword method, passing the current password, new

password, user ID and server name to change a password.

Compiling and running a Java Client application

Performance issues

There are several performance issues to consider when you run Java client

applications. The Java Virtual Machine (JVM) allocates a fixed size of stack

space for each running thread in an application. You can usually control the

amount of space that Java allocates by setting limits on the following sizes:

v The native stack size, allocated when running native JIT (Just-In-Time)

compiled code.

v The Java stack size, allocated when running Java Bytecode.

v The initial Java heap size.

v The maximum Java heap size.

How you set these limits depends on your JVM. Refer to your Java

documentation for more information.

Setting up the CLASSPATH

Before you write any Java client programs, update the CLASSPATH

environment variable to include the jar files supplied with CICS Transaction

Gateway. For example, on Windows:

CLASSPATH = <install_path>\classes\ctgclient.jar;

 <install_path>\classes\ctgserver.jar

72 CICS Transaction Gateway: Programming Guide

The ctgserver.jar file is required in CLASSPATH only for JavaGateways using

the local URL.

For more information on setting CLASSPATH, see the CICS Transaction

Gateway: Administration book for your operating system.

Using a browser and CICS Transaction Gateway on the same workstation

If you intend to use a browser and CICS Transaction Gateway on the same

workstation, remove ctgclient.jar and ctgserver.jar from the CLASSPATH

setting. If you do not remove them, you are likely to receive the following

error when running applications:

ERROR: java.io.IOException:

CTG6664E: Unable to load relevant class to support the tcp protocol

The reason for the error is that Java searches the CLASSPATH environment

variable before downloading classes across the network. If the required class

is local, Java attempts to use it. However, using class files from the local file

system breaks Java application security rules; therefore an exception is raised.

Problem determination for Java Client programs

Tracing in Java client programs

You can control tracing in Java client programs using:

v calls to the com.ibm.ctg.client.T class

For example, from within a user application:

if (getParameter("trace") != null)

 {

 T.setOn(true);

 }

where trace is a startup parameter that can be set on the user program.

v Gateway.T system properties

For example:

java -Dgateway.T=on com.usr.smp.test.testprog1

which specifies full debug for testprog1.

For more information on the use of system properties, refer to your Java

documentation.

It is recommended that applications implement an option to turn trace on.

The following is an explanation of the various trace levels available. The

names of calls and properties are case sensitive.

Chapter 6. Programming in Java 73

Trace level

Standard

com.ibm.ctg.client.T call

T.setOn (true/false)

System property

gateway.T.trace=on

Definition

The standard option for application tracing.

 By default, it displays only the first 128 bytes of any data blocks (for

example the commarea, or network flows).

This trace level is equivalent to the Gateway trace set by the ctgstart

–trace option.

Trace level

Full Debug

com.ibm.ctg.client.T call

T.setDebugOn (true/false)

System property

gateway.T=on

Definition

The debugging option for application tracing.

 By default, it traces out the whole of any data blocks. The trace

contains more information about the CICS Transaction Gateway than

the standard trace level.

This trace level is equivalent to the Gateway debug trace set by the

ctgstart –x option.

Trace level

Exception Stacks

com.ibm.ctg.client.T call

T.setStackOn (true/false)

System property

gateway.T.stack=on

Definition

The exception stack option for application tracing.

 It traces most Java exceptions, including exceptions which are

expected during normal operation of the CICS Transaction Gateway.

No other tracing is written.

74 CICS Transaction Gateway: Programming Guide

This trace level is equivalent to the Gateway stack trace set by the

ctgstart –stack option.

You can further configure the tracing by using the following options:

com.ibm.ctg.client.T call

T.setTFile(true,filename)

System property

gateway.T.setTFile=filename

Option usage

The value filename specifies a file location for writing of trace output.

This is as an alternative to the default output on stderr. Long file

names must be surrounded by quotation marks, for example:

″trace output file.log″

com.ibm.ctg.client.T call

T.setTruncationSize(number)

System property

gateway.T.setTruncationSize=number

Option usage

The value number specifies the maximum size of any data blocks that

will be written in the trace. Any positive integer is valid. If you

specify a value of 0, then no data blocks will be written in the trace. If

a negative value is assigned to this option the exception

java.lang.IllegalArgumentException will be raised.

com.ibm.ctg.client.T call

T.setDumpOffset(number)

System property

gateway.T.setDumpOffset=number

Option usage

The value number specifies the offset from which displays of any data

blocks will start. If the offset is greater than the total length of data to

be displayed, an offset of 0 will be used. If a negative value is

assigned to this option the exception

java.lang.IllegalArgumentException will be raised.

com.ibm.ctg.client.T call

T.setTimingOn (true/false)

System property

gateway.T.timing=on

Option usage

Specifies whether or not to display time-stamps in the trace.

Chapter 6. Programming in Java 75

Use the options in addition to one of the directives to switch tracing on.

For example, the following switches standard tracing on, and sets the

maximum size of any data blocks to be dumped to 20 000 bytes:

java -Dgateway.T.trace=on -Dgateway.T.setTruncationSize=20000

Security for Java Client programs

CICS Transaction Gateway security classes

The CICS Transaction Gateway provides the following classes (security exits)

for implementing security:

com.ibm.ctg.security.JSSEServerSecurity

Use this interface to allow the exposure of of X.509 Client Certificates

when using the JSSE protocol.

 Refer to your JSSE, or Java, documentation for information on using

X.509 certificates.

com.ibm.ctg.security.ServerSecurity

Use this interface for server-side security classes that do not require

the exposure of SSL Client Certificates.

com.ibm.ctg.security.ClientSecurity

Use this interface for all client-side security classes.

com.ibm.ctg.util.RACFUserid

This class tries to map an X.509 Client Certificate to a RACF userid.

The certificate must already be associated with a valid RACF userid.

The JSSEServerSecurity and ServerSecurity interfaces and partner

ClientSecurity interface define a simple yet flexible model for providing

security when using CICS Transaction Gateway. Implementations of the

interfaces can be as simple, or as robust, as necessary; from simple XOR

(exclusive-OR) scrambling to use of the Java Cryptography Architecture.

The JSSEServerSecurity interface has been designed to work in conjunction

with the Secure Sockets Layer (SSL) protocol. The interface allows server-side

security objects access to a Client Certificate passed during the initial SSL

handshake. The exposure of the Client Certificate depends on the the CICS

Transaction Gateway being configured to support Client Authentication.

An individual JavaGateway instance has an instance of a ClientSecurity class

associated with it, until the JavaGateway is closed. Similarly, an instance of

the partner JSSEServerSecurity or ServerSecurity class is associated with the

connected Java client, until the connection is closed.

The basic model consists of:

76 CICS Transaction Gateway: Programming Guide

v An initial handshake to exchange pertinent information. For example, this

handshake could involve the exchange of public keys. However, at the

interface level, the flow consists of a simple byte-array, therefore an

implementation has complete control over the contents of its handshake

flows.

v The relevant ClientSecurity instance being called to encode outbound

requests, and decode inbound replies.

v The partner JSSEServerSecurity or ServerSecurity instance, being called to

decode inbound requests and to encode outbound replies.

The inbound request, and Client Certificate, is exposed via the

afterDecode() method. For JSSE, the afterDecode() method exposes the

GatewayRequest object, along with the javax.security.cert.X509Certificate[]

certificate chain object.

ClientSecurity, JSSEServerSecurity, or ServerSecurity class instances should

maintain as data members sufficient information from the initial handshake to

correctly encode and decode the flows. At the server, each connected client

has its own instance of the ServerSecurity implementation class.

Using a Java 2 Security Manager

Java 2 provides a Security Manager system that controls access to Java

resources. It restricts access to Java resources by using a security policy.

Examples of protected resources are: reading a file, and opening a network

socket. When a program tries to access a protected resource, the Java Security

Manager verifies that both the code trying to access the resource, and,

possibly, the caller of that code, have appropriate permissions. Without these

permissions, the program cannot run.

If you are using any of the CICS Transaction Gateway Java APIs under a Java

2 security environment (such as a J2EE server), your application needs Java

permissions to execute correctly. The only exception to this is if you are using

the J2EE APIs in a managed environment.

Figure 6 on page 78 shows the minimum permissions that your application

needs to use Gateway Java APIs. It might need additional permissions to

execute correctly.

Chapter 6. Programming in Java 77

Permissions to access the file system

Depending on the functions performed by your program, the CICS

Transaction Gateway Java APIs might require access to the file system, for

example to write trace files. The following permission gives permission for the

CICS Transaction Gateway classes to access the file system on UNIX and

Linux systems:

permission java.io.FilePermission "${user.home}${file.separator}ibm

${file.separator}ctg${file.separator}-","read,write,delete";

The format of the permission might vary depending on the installation, and

you can specify alternative locations, or none at all. CICS Transaction Gateway

classes require access to the file system in the following cases:

v For writing trace information to a file

v For accessing key rings, if you are using JSSE for your SSL protocol

implementation

See Network security, in the CICS Transaction Gateway: Administration book

for your operating system, for information on how JSSE is selected as the

implementation.

For example, on Windows, you can specify the permission:

permission java.io.FilePermission "c:\trace\-",

 "read,write,delete";

to allow access to the directory c:\trace and all subdirectories.

Or, for example, on UNIX and Linux systems, you can specify the permission:

permission java.io.FilePermission "/tmp/ibm/",

 "read,write,delete";

to allow access to the directory /tmp/ibm and all subdirectories.

java.net.SocketPermission "*", "resolve";

java.util.PropertyPermission "*", "read";

java.io.FilePermission "${user.home}${file.separator}ibm${file.separator}ctg${file.separator}-",

 "read,write,delete";

java.lang.RuntimePermission "loadLibrary.*", "";

java.lang.RuntimePermission "shutdownHooks", "";

java.lang.RuntimePermission "modifyThread", "";

java.lang.RuntimePermission "modifyThreadGroup", "";

java.lang.RuntimePermission "readFileDescriptor", "";

java.lang.RuntimePermission "writeFileDescriptor", "";

java.security.SecurityPermission "putProviderProperty.IBMJSSE", "";

java.security.SecurityPermission "insertProvider.IBMJSSE", "";

java.security.SecurityPermission "putProviderProperty.IBMJCE", "";

java.security.SecurityPermission "insertProvider.IBMJCE", "";

javax.security.auth.PrivateCredentialPermission "* * \"*\"","read";

java.lang.RuntimePermission "accessClassInPackage.sun.io", "";

Figure 6. Required Java 2 Security Manager permissions

78 CICS Transaction Gateway: Programming Guide

Chapter 7. Programming using the J2EE Connector

Architecture

This information describes how to program using the ECI and EPI resource

adapters provided by the CICS Transaction Gateway.

Overview of the programming interface of the J2EE Connector Architecture

The purpose of the J2EE Connector Architecture (JCA) is to connect Enterprise

Information Systems (EISs), such as CICS, into the J2EE platform. The JCA

offers a number of qualities of service which can be provided by a J2EE

application server. These qualities of service include security credential

management, connection pooling and transaction management.

These qualities of service are provided by means of system level contracts

between a resource adapter provided by the CICS Transaction Gateway, and

the J2EE application server. There is no need for any extra program code to be

provided by the user. Thus the programmer is free to concentrate on writing

the business code and need not be concerned with providing quality of

service.

The JCA defines a programming interface called the Common Client Interface

(CCI). This interface can be used, with minor changes, to communicate with

any EIS. The CICS Transaction Gateway provides resource adapters which

implement the CCI for interactions with CICS.

The Common Client Interface (CCI)

The CCI is a high level interface defined by the JCA and is available to J2EE

developers using the External Call Interface (ECI) and the External

Presentation Interface (EPI) to communicate with programs running on a CICS

server. There is no resource adapter CCI for the External Security Interface

(ESI).

The CCI has two distinct class types:

Generic CCI classes

Generic CCI classes are used to request a connection to an EIS such as

CICS, and execute commands on that EIS, passing input and

retrieving output. These classes are generic in that they do not pass

information that is specific to a particular EIS. Connection and

ConnectionFactory are examples of generic CCI classes.

CICS-specific CCI classes

CICS-specific classes are used to pass specific information between the

© Copyright IBM Corp. 2002, 2008 79

Java Client application and CICS. ECIInteractionSpec and

ECIConnectionSpec are examples of CICS-specific classes.

The programming interface model

Applications using the CCI have a common structure, independent of the EIS

that is being used. The JCA defines Connections and ConnectionFactories

which represent the connection to the EIS. These objects allow a J2EE

application server to manage security, transaction context, and connection

pools for the resource adapter.

An application must start by obtaining a ConnectionFactory from which a

Connection can be obtained. The properties of this Connection can be

overridden by a ConnectionSpec object. The ConnectionSpec class is

CICS-specific, so may be either an ECIConnectionSpec or an

EPIConnectionSpec.

After an connection has been obtained, an Interaction can be created from the

Connection in order to make a particular request. As with the Connection,

Interactions can have custom properties set by the CICS-specific

InteractionSpec class (ECIInteractionSpec or EPIInteractionSpec). To perform

the Interaction, call the execute() method and use CICS-specific Record objects

to hold the data. For example:

 Obtain a ConnectionFactory

 Connection c = cf.getConnection(ConnectionSpec)

 Interaction i = c.createInteraction()

 InteractionSpec is = newInteractionSpec();

 i.execute(spec, input, output)

The ConnectionFactory can be obtained in two ways:

v If you are using a J2EE application server, the ConnectionFactory is

normally created from the resource adapter by means of an administration

interface. This ConnectionFactory has custom properties set for it, for

example the Gateway to be used would be set as a ConnectionURL. When

the ConnectionFactory has been created, it can be made available for use by

any enterprise applications through JNDI. This type of environment is

called a managed environment. A managed environment allows a J2EE

application server to manage the qualities of service of the connections.

Refer to the Administration Guide for a description of deployment into a

managed environment.

v If you are not using a J2EE application server, you must create a

ManagedConnectionFactory and set its custom properties. You can then

create a ConnectionFactory from the ManagedConnectionFactory. This type

of environment is called a non-managed environment. A non-managed

environment does not allow a J2EE application server to manage

connections.

80 CICS Transaction Gateway: Programming Guide

Record objects

Record objects are used to represent data passing to and from the EIS. In the

case of the ECI, this is a representation of a COMMAREA or channels and

containers. In the case of the EPI, it is a terminal screen. A sample Record is

provided for the ECI and a Screenable interface is provided for the EPI to

access the screen data. It is recommended that application development tools

are used to generate these Records.

The ECI resource adapters

The ECI resource adapters provide a high level CCI interface to the ECI that

can be used to link to CICS server programs and pass data in COMMAREAs

or channels and containers without having to issue ECI requests. The resource

adapters can be deployed into a J2EE application server to allow J2EE

enterprise applications to access CICS. When the JCA is used, connection

pooling, security, and transaction context are managed by the J2EE application

server instead of the application.

Two resource adapters are supplied:

CICS Transaction Gateway on z/OS

Adapter cicseciXA.rar supports both XA and local transactions.

CICS Transaction Gateway on z/OS and multiplatforms

Adapter cicseci.rar supports the LocalTransaction interface, and global

transactions in local mode under WebSphere.

 The cicseciXA.rar resource adapter should be used for two-phase commit

functionality with IPIC. For one-phase commit functionality the

cicseciXA.rar resource adapter can be used, however performance might

be improved by using cicseci.rar resource adapter.

See “Transaction management” on page 89 for details of the transaction

management models that each resource adapter supports.

The EPI resource adapter

The EPI resource adapter provides a high level CCI interface to the EPI which

can be used to install terminals and run 3270-based transactions on a CICS

server. There is no support for Automatic Transaction Initiation (ATI). The

resource adapter can be deployed into a J2EE application server to allow J2EE

enterprise applications to access CICS. When the JCA is used, connection

pooling, security, and transaction context are managed by the J2EE application

server instead of the application.

Managed and non-managed environments

A Java Client application using J2EE can run in one of two different

environments:

v Managed environment

Chapter 7. Programming using the J2EE Connector Architecture 81

|
|

|

A managed environment is one in which a J2EE application server such as

theWebSphere Application Server performs management of connections,

transactions, and security, thus relieving the application developer of the

necessity to produce code for this.

v Non-managed environment

A non-managed environment is one in which the application uses the

resource adapters directly without the intervention of a J2EE application

server. In this case the application must contain code to handle

management of connections, transactions and security.

The Common Client Interface

The Common Client Interface (CCI) of the J2EE Connector Architecture

provides a standard interface that allows developers to communicate with any

number of Enterprise Information Systems (EISs) through their specific

resource adapters, using a generic programming style. The CCI is closely

modeled on the client interface used by Java Database Connectivity (JDBC),

and is similar in its idea of Connections and Interactions.

Generic CCI Classes

The generic CCI classes define the environment in which a J2EE component

can send and receive data from an EIS. When you are developing a J2EE

component you must implement the following steps:

1. Use the ConnectionFactory object to create a Connection object.

2. Use the Connection object to create an Interaction object.

3. Use the Interaction object to execute commands on the EIS.

4. Close the Interaction and Connection.

The following example shows the use of the J2EE CCI interfaces to execute a

command on an EIS.

ConnectionFactory cf = <Lookup from JNDI namespace>

Connection conn = cf.getConnection();

Interaction interaction = conn.createInteraction();

interaction.execute(<Input output data>);

interaction.close();

conn.close();

CICS-specific classes

TheCICS Transaction Gateway resource adapters provide additional classes

specific to CICS. The following object types are used to define the ECI- and

EPI-specific properties:

v InteractionSpec objects

v ConnectionSpec objects

82 CICS Transaction Gateway: Programming Guide

Spec objects define the action that a resource adapter carries out, for example

by specifying the name of a program which is to be executed on CICS.

Record objects store the input/output data that is used during an interaction

with an EIS, for example a byte array representing an ECI COMMAREA.

The following example shows a complete interaction with an EIS. In this

example input and output Record objects and Spec objects are used to define

the specific attributes of both the interaction and the connection. The example

uses setters to define any component-specific properties on the Spec objects

before they are used.

ConnectionFactory cf = <Lookup from JNDI namespace>

ECIConnectionSpec cs = new ECIConnectionSpec();

cs.setXXX(); //Set any connection specific properties

Connection conn = cf.getConnection(cs);

Interaction interaction = conn.createInteraction();

ECIInteractionSpec is = new ECIInteractionSpec();

is.setXXX(); //Set any interaction specific properties

RecordImpl in = new RecordImpl();

RecordImpl out = new RecordImpl();

interaction.execute(is, in, out);

interaction.close();

conn.close();

The following sections cover the ECI and EPI implementations of the CCI

classes in detail.

Using the ECI resource adapters

The details in this topic apply to both resource adapters (cicseci.rar and

cicseciXA.rar).

The ECI resource adapters allow a J2EE developer to access CICS programs,

using COMMAREAs and channels to pass information to and from the server.

Table 12 shows the JCA objects corresponding to the ECI terms listed in

“Input and output information for external calls to CICS” on page 9. The CCI

interfaces for CICS are in the com.ibm.connector2.cics package.

 Table 12. ECI terms and corresponding JCA objects

ECI term JCA object: property

Abend code CICSTxnAbendException

COMMAREA Record

Channel ECIChannelRecord or MappedRecord

Chapter 7. Programming using the J2EE Connector Architecture 83

|
|

|
|

||

Table 12. ECI terms and corresponding JCA objects (continued)

ECI term JCA object: property

Container with a data type of BIT byte[]

Container with a data type of CHAR String

ECI timeout ECIInteractionSpec:ExecuteTimeout

LUW identifier J2EE transaction

Password ECIConnectionSpec:Password

Program name ECIInteractionSpec:FunctionName

Server name ECIConnectionFactory:ServerName

SocketConnectTimeout ECIConnection:SocketConnectTimeout

TPNName ECIInteractionSpec:TPNName

TranName ECIInteractionSpec:TranName

User ID ECIConnectionSpec:UserName

Introduction to channels and containers

Channels and containers provide a method of transferring data between CICS

programs, in amounts that far exceed the 32KB limit that applies to

communication areas (COMMAREAs).

Each container is a ″named COMMAREA″ that is not limited to 32KB.

Containers are grouped together in sets called channels.

The channel/container model has several advantages over the communication

areas (COMMAREAs) used by CICS programs to exchange data:

v Unlike COMMAREAs, channels are not limited in size. There is no limit to

the number of containers that can be added to a channel, and the size of

individual containers is limited only by the amount of storage that you

have available. Consider the amount of storage available to other

applications when you create large containers.

v Because a channel can comprise multiple containers, it can be used to pass

data in a more structured way, allowing you to partition your data into

logical entities. In contrast, a COMMAREA is a monolithic block of data.

v Unlike COMMAREAs, channels do not require the programs that use them

to know the exact size of the data returned.

v Channels can be used by CICS application programs written in any of the

CICS-supported languages. For example, a Java client program on one CICS

region can use a channel to exchange data with a COBOL server program

on a back-end AOR.

v CICS automatically destroys containers (and their storage) when they go

out of scope.

84 CICS Transaction Gateway: Programming Guide

||

||

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

There are also implications when using channels and containers in preference

to COMMAREAs:

v A channel can use more storage than a COMMAREA designed to pass the

same data. This is because:

1. Container data can be held in more than one place.

2. COMMAREAs are accessed by pointer, whereas the data in containers is

copied between programs.

For more information on using channels and containers within the JCA

framework, see “Using the ECI resource adapters with channels and

containers.”

For more information on using channels and containers with ECI calls, see

“Creating channels and containers for ECI calls” on page 51.

For more information on channels and containers, see the CICS Transaction

Server for z/OS Channels learning path.

Using the ECI resource adapters with channels and containers

To use channels and containers in the J2EE Connector Architecture (JCA), use

a MappedRecord structure (ECIChannelRecord) to hold your data. When the

MappedRecord is passed to the execute() method of ECIInteraction, the

method uses the MappedRecord itself to create a channel and converts the

entries inside the MappedRecord into containers before passing them to CICS.

The MappedRecord allows multiple data records to pass over the same

interface to and from the execute() method of ECIInteraction. A container is

created for each entry within the channel. There are two data types of

container and you can have a combination of container types in one channel.

The containers are the following types:

v A container with a data type of BIT. This type of container is created when

the entry is a byte[], or implements the javax.resource.cci.Streamable

interface. No code page conversion takes place.

v A container with a data type of CHAR. This type of container is created

when you use a String to create the entry.

You can create your own data records, which must conform to existing JCA

rules (they must implement the javax.resource.cci.Streamable and

javax.resource.cci.Record interfaces). Any data records you create are

treated as containers with a data type of BIT.

You can also use an existing Record type, for example, JavaStringRecord, to

create a container with a data type of BIT.

Chapter 7. Programming using the J2EE Connector Architecture 85

|
|

|
|

|

|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

The MappedRecord.getRecordName method gets the name of the channel.

When creating your Record, you must make sure that the name is not an

empty string. The record.getRecordName method retrieves the name of the

containers.

The JCA resource adapter handles MappedRecords and Records differently,

when it receives the data in the execute() method of ECIInteraction.

v When a MappedRecord is received, the resource adapter uses a channel to

send the data.

v When a Record (that is not a MappedRecord) is received, the resource

adapter uses a COMMAREA to send the data.

Connecting to a CICS server using the ECI resource adapter

Use the ConnectionFactory and Connection interfaces to establish a connection

with a CICS server. The ECI resource adapter provides implementations of the

Figure 7. Data conversion by the execute() method of ECIInteraction, depending on whether it receives a Record or

MappedRecord

86 CICS Transaction Gateway: Programming Guide

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|

connection interfaces but you should not work directly with the ECI

implementations. Use the ECIConnectionSpec class directly to define the

properties of the connection.

The ECIConnectionSpec class allows the J2EE component to override the

userid and password set at deployment time. So to obtain a connection you

code something like this:

ConnectionFactory cf = <Lookup from JNDI namespace>

ECIConnectionSpec cs = new ECIConnectionSpec();

cs.setUserName("myuser");

cs.setPassword("mypass");

Connection conn = cf.getConnection(cs);

Linking to a program on a CICS server

Use the Interaction interface to link to a server program. The ECI resource

adapter provides an implementation of the Interaction interface but you

should not use this directly. You should use the ECIInteractionSpec class

directly, to define the properties of the interaction:

v Set the FunctionName property to the name of the CICS server program.

v Set the InteractionVerb to SYNC_SEND for an asynchronous call or

SYNC_SEND_RECEIVE for a synchronous call. Use SYNC_RECEIVE to

retrieve a reply from a asynchronous call.

Note:

1. When a SYNC_SEND call has been issued with the execute()

method of a particular ECIInteraction object, that instance of

ECIInteraction cannot execute another SYNC_SEND, or

SYNC_SEND_RECEIVE, until a SYNC_RECEIVE has been

executed.

2. Simultaneous asynchronous calls to the same connection are

permitted, provided this does not result in two asynchronous

calls being outstanding within the same transaction scope. If this

happens an exception is thrown.

3. If you are using the adapter in local mode with IBM WebSphere

Application Server for z/OS, and you require transactional

support, specify the SYNC_SEND_RECEIVE interaction type. If

you use SYNC_SEND and SYNC_RECEIVE to issue asynchronous

requests, the ECI requests will be issued with sync on return, and

will be outside the scope of the current global transaction. In

remote mode, asynchronous calls work normally.
v If you are using channels and containers, the program receiving the data

does not need to know the exact size of the data returned. If you are using

COMMAREAs, set the CommareaLength property to the length of the

COMMAREA being passed to CICS. If this is not supplied a default is used:

Chapter 7. Programming using the J2EE Connector Architecture 87

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

SYNC_SEND, SYNC_SEND_RECEIVE

Length of input record data

SYNC_RECEIVE

The value of ReplyLength
v Set the ReplyLength property to the length of the data stream to be

returned from the Gateway daemon to the JCA application. This can reduce

the data transmitted over the network if the data returned by CICS is less

than the full COMMAREA size, and you know the size of the data in

advance.

The JCA application still receives a full COMMAREA of the size specified

in CommareaLength, only the amount of data sent over the network is

reduced. This method is equivalent to the setCommareaInboundLength()

method available for the ECIRequest class.

If you do not set ReplyLength, the CICS Transaction Gateway automatically

strips trailing zeros from the COMMAREA sent from the Gateway daemon

to the JCA application, without needing to know the size of the data in

advance.

For more information on COMMAREA stripping, see “Performance

considerations when transmitting data in a COMMAREA” on page 53.

As with ECIConnectionSpec, you can set properties on the ECIInteractionSpec

class at either construction time or by using setters. Unlike

ECIConnectionSpec, the ECIInteractionSpec class has been designed as a Java

bean. So in a managed environment, your server may provide tools to allow

you to define these properties using a GUI without writing any code.

v To specify a value for ECI timeout, set the ExecuteTimeout property of the

ECIInteractionSpec class to the ECI Timeout value. Allowable values are:

0 No timeout. This is the default value.

A positive integer

Time in milliseconds.

If you are using a CICS Transaction Gateway on z/OS, you cannot specify a

value for ECI timeout. As an alternative, you can set the TIMEOUT parameter

in the EXCI options table DFHXCOPT. For more information see the CICS

External Interfaces Guide.

See “Timeout of the ECI request” on page 14 for more information on ECI

timeouts.

ECI resource adapter CICS-specific records using the streamable

interface

For input and output, the ECI resource adapter supports only records that

implement the javax.resource.cci.Streamable interface. MappedRecords that

88 CICS Transaction Gateway: Programming Guide

|

are used to make up channels and containers also conform to this interface.

The javax.resource.cci.Streamable interface allows the ECI resource adapter

to read streams of bytes that make up the CICS COMMAREAs or channels

and containers directly from, and write them to, the Record objects supplied

to the execute() method of ECIInteraction. The following example shows how

to build a record for use as input by the ECI resource adapter, using the

method supplied in the javax.resource.cci.Streamable interface.

Byte commarea[] = new byte[10];

ByteArrayInputStream stream = new ByteArrayInputStream(commarea);

Record in = new RecordImpl();

in.read(stream);

int.execute(..., in, ...);

To retrieve a byte array from the output record, the reverse of the process

shown in the above example can be achieved by using the output records

write() method using a ByteArrayOutputStream object as the parameter. The

streams toByteArray() method will then provide the CICS COMMAREA or

channel and container output in the form of a byte array. In the above

example a class called RecordImpl is used as the concrete implementation

class of the javax.resource.cci.Record interface. To provide more

functionality for your specific J2EE components, you can write

implementations of the Record interface that allow you to set the contents of

the record using the constructor. This avoids the use of the

ByteArrayInputStream used in the above example. A managed environment

may provide tools that allow you to build implementations of the Record

interface that are customized for your J2EE components needs without writing

any code.

Transaction management

Two resource adapters are supplied.

cicseci.rar

This resource adapter provides LocalTransaction support when deployed

on any supported J2EE application server. Local transactions are not

supported when using WebSphere Application Server for z/OS with CICS

TG on z/OS in local mode, as the resource adapter provides global

transaction support in conjunction with MVS™ RRS.

cicseciXA.rar

This provides both XATransaction and LocalTransaction support when

deployed on any supported J2EE application server connecting to a

remote CICS TG for z/OS. It also provides global transaction support

when using WebSphere Application Server for z/OS with a CICS TG on

z/OS in local mode.

 The cicseciXA.rar resource adapter should be used for two-phase commit

functionality with IPIC. For one-phase commit functionality the

Chapter 7. Programming using the J2EE Connector Architecture 89

|

|
|

|
|

cicseciXA.rar resource adapter can be used, however performance might

be improved by using cicseci.rar resource adapter.

 In order to provide for different transactional qualities of service for J2EE

applications, it is possible to deploy both CICS resource adapters into the

same J2EE application server. When multiple resource adapters are used in the

same J2EE application server, they must all be at the same version.

See CICS Transaction Gateway: z/OS Administration for information about

installing the resource adapters. See the Migration section for support for

resource adapters.

When carrying out multiple interactions with CICS using the ECI resource

adapter you might wish to group all actions together to ensure that they

either all succeed or all fail. The preferred way is to let the J2EE application

server manage this; such transactions are known as container-managed

transactions. However, to do this yourself use the LocalTransaction or

UserTransaction interface. Such transactions are known as bean-managed

transactions. Bean-managed transactions that use the LocalTransaction interface

can group work performed only through the resource adapter; the

UserTransaction interface allows all transactional resources within the

application to be grouped.

cicseciXA.rar with bean-managed transactions

Supports the UserTransaction and LocalTransaction interfaces.

cicseci.rar with bean-managed transactions

Supports the LocalTransaction interface.

XA overview

A global transaction is a recoverable unit or work performed by one or more

resource managers in a distributed transaction processing environment,

coordinated by an external transaction manager.

The resources which are updated by the transaction can take many forms such

as a database table, a messaging queue or the resources updated by the

execution of a CICS transaction. Each of these resources is managed by a

resource manager. Where the recoverable resources updated by the global

transaction are all managed by the same resource manager, a

one-phase-commit protocol is adequate to ensure that all resources are

updated in an atomic manner.

However, where the resources updated by a global transaction are managed

by multiple resource managers, a two-phase-commit protocol is required. This

protocol ensures the atomic nature of the transaction is maintained by

ensuring that all resource managers update their resources in a consistent

90 CICS Transaction Gateway: Programming Guide

manner. The cicseciXA.rar supports the two-phase-commit XA protocol and

enables J2EE applications to include CICS resources in such global

transactions.

In both the one-phase-commit and XA scenarios a transaction manager is

responsible for controlling the execution of the transaction and coordinating

the resource managers to ensure that the transaction executes in an atomic

manner.

An example of where this behavior would be required is an online flight

booking, which uses one resource manager to debit a customer’s bank account

and another to reserve the customer a flight. The customer’s account must be

updated if - and only if - the flight is booked; and vice-versa.

For information on using XA transactions with J2EE applications, see Redpaper:

Transactions in J2EE, REDP-2659-00.

WebSphere optimizations: The following optimizations are supported:

v Last participant support

v Only-agent optimization

See the documentation supplied with WebSphere Application Server for more

details.

MVS image restrictions: When extended mode base Java requests, or J2EE

requests are being issued, the CICS Transaction Gateway must be on the same

MVS image as the CICS region it is sending requests to. The same restriction

also applies to applications that use the local protocol. These applications

must be running on the same MVS image as the CICS region they are sending

requests to.

Certain restrictions affect where the Gateway daemon and local applications

can run:

v When J2EE transactions or extended LUW requests are being issued using

EXCI connections, the CICS® Transaction Gateway instance must execute on

the same MVS™ image as the CICS region that it is sending requests to.

v Each Gateway daemon that is configured as part of a Gateway group must

be run on the same MVS image.

v In a Gateway group, the ctgmaster process and all Gateway daemon

instances must use the same HFS installation.

v A maximum of 255 Gateway groups is allowed in an MVS image.

Restrictions on WebSphere Application Server for z/OS

On WebSphere Application Server for z/OS it is not possible to use the local

transaction interface if you have configured the ECI resource adapter to run in

Chapter 7. Programming using the J2EE Connector Architecture 91

local mode. In this environment if you plan to connect to CICS using the local

protocol, do not attempt to get a LocalTransaction object from the connection

(in other words do not invoke the method getLocalTransaction() on your

connection object). In managed mode, attempts to invoke

getLocalTransaction() will result in a NotSupportedException being thrown. In

non managed mode, the results are unpredictable.

Samples

J2EE ECI sample programs are provided in the <install_path>\samples

subdirectory and as a deployable EAR file in the <install_path>\deployable

subdirectory. Refer to “Resource adapter samples” on page 102, for more

information.

Using the EPI resource adapter

The CICS EPI resource adapter allows a J2EE component to communicate

with CICS transactions that use 3270 data streams for input and output. The

resource adapter makes each EPIConnection object appear to CICS as a 3270

terminal, thus providing access to the CICS 3270 interface. Table 13 shows the

J2EE objects corresponding to the EPI terms listed in“Terminal characteristics”

on page 19. The CCI interfaces for CICS are in the com.ibm.connector2.cics

package.

Note: ATIs are not supported.

 Table 13. Terminal attributes and corresponding J2EE objects

EPI term JCA object:property

Code page EPIConnectionFactory:Encoding

Columns EPIInteractionSpec:ScreenWidth

Model EPIInteractionSpec:DeviceType

Install timeout EPIConnectionFactory:InstallTimeout

Map name EPIInteractionSpec:MapName

Map set name EPIInteractionSpec:MapSetName

Netname EPIConnectionFactory:NetName

Password EPIConnectionFactory:Password

Read timeout EPIConnectionFactory:ReadTimeout

Rows EPIInteractionSpec:ScreenDepth

Server name EPIConnectionFactory:ServerName

Sign-on capability EPIConnectionFactory:SignonType

SocketConnectTimeout EPIConnection:SocketConnectTimeout

Terminal ID EPIInteractionSpec:TermID

92 CICS Transaction Gateway: Programming Guide

Table 13. Terminal attributes and corresponding J2EE objects (continued)

EPI term JCA object:property

User ID EPIConnectionFactory:Userid

Connecting to a CICS server using the EPI resource adapter CCI

Use the ConnectionFactory and Connection interfaces to establish a connection

with a CICS server. The EPI resource adapter provides implementations of the

connection interfaces but you should not work directly with the EPI

implementations. Use the EPIConnectionSpec class directly to define the

properties of the connection.

Setting terminal attributes

With J2EE you do not have to add and delete terminals explicitly. You can use

the EPIConnectionSpec class to set the following properties:

v User ID

v Password

v Netname

v Model

Starting a transaction

Use the Interaction interface to start a transaction on a CICS server. The EPI

resource adapter provides an implementation of the Interaction interface but

you should not use this directly. Each Interaction.execute() call must have an

EPIInteractionSpec instance associated with it. Use the EPIInteractionSpec

class directly, to define the properties of the interaction:

v Set the FunctionName property to the name of the CICS transaction.

v Set the InteractionVerb to one of the following:

– SYNC_SEND - A synchronous call. It does not unblock until the EPI

transaction has sent all the information that would appear on a screen.

– SYNC_RECEIVE - A synchronous receive. Used to retrieve the current

contents of the screen.

– SYNC_SEND_RECEIVE - A synchronous call.

The EPIInteractionSpec class also allows you to set the following properties:

v The AID key to be sent to CICS. The default value is enter.

v The position of the cursor.

v The output attribute type. This allows you to control what will be held in

the attribute byte for the field on a returned screen. It applies only to the

streamable interface (see “Sending and receiving data” on page 94).

The EPIInteractionSpec class returns the following properties which can be

used by the J2EE component:

Chapter 7. Programming using the J2EE Connector Architecture 93

v Cursor position

v Screen size

v Terminal ID

v Map name

v Mapset name

Closing an EPIInteraction does not affect the state of the connection; the

terminal remains connected.

Sending and receiving data

Use records to pass information to the EPI resource adapter and to retrieve

information from the resource adapter. Although the EPI resource adapter

supports the Streamable interface as defined in the Connector Architecture, if

you wish to use the Streamable interface you must write your own records,

parsing the input stream and generating the output stream correctly. For

information about the Stream format see “Stream Format” on page 96.

The EPI resource adapter provides a more efficient way to access information

in the form of a record that is ready to use. This is the recommended way to

access and send information to a resource adapter.

The Screen model

The EPI resource adapter provides a record that you can use with the EPI

resource adapter to retrieve and send information to CICS through the EPI.

Like the EPI Support classes, it allows you to address fields on a screen. Use

the Screen container to get a reference to a field, and then use methods to

query and manipulate the field text.

The record is found in the com.ibm.connector2.cics package. It is an

implementation of the screenable interface, which transfers information

between the EPI resource adapter and the record.

The EPIScreenRecord: When you create an EPIScreenRecord:

EPIScreenRecord screen = new EPIScreenRecordImpl();

you instantiate an EPIScreenRecordImpl.

You start a new transaction by passing this record, for example:

EPIInteractionSpec epiSpec = new EPIInteractionSpec();

epiSpec.setFunctionName(“CESN”);

epiSpec.setAID(AIDKey.enter);

epiSpec.setInteractionVerb(EPIInteractionSpec.SYNC_SEND_RECEIVE);

// epiInter is an interaction created elsewhere

epiInter.execute(epiSpec, null, screen);

Note the use of null as the input record.

94 CICS Transaction Gateway: Programming Guide

The screen information is in the screen object. Other screen information, such

as cursor position, is returned to your defined EPIInteractionSpec object. You

can then request a specific field by index number, which is a number in the

range from 1 to the total number of fields on the screen, or you can use an

iterator to request all the fields. The fields are indexed in order starting from

the top left of the screen proceeding from left to right to the bottom right of

the screen. The iterator returns each field in ascending index order.

So for example you can obtain a field using the index number by coding:

EPIFieldRecord field = screen.getField(7);

To use the iterator, code the following:

java.util.Iterator it = screen.getFields();

while (it.hasNext()) {

 EPIFieldRecord field = (EPIFieldRecord)it.next();

}

The following is an example of a function that takes a screen record and

prints out the screen in a layout suitable for a terminal:

public void printScreen(EPIScreenRecord inscr) {

 int col = 1;

 int row = 1;

 System.out.println(“——————————————————————————————————————”);

 for (int i = 1; i <= inscr.getFieldCount(); i++) {

 try {

 EPIFieldRecord f = inscr.getField(i);

 while (f.getTextRow() > row) {

 System.out.print(“\n”);

 row++;

 col = 1;

 }

 while (f.getTextCol() > col) {

 System.out.print(“ ”);

 col++;

 }

 if (f.isDisplay()) {

 System.out.print(f.getText());

 col += f.getText().length();

 }

 }

 catch (ScreenException se) {

 }

 }

 System.out.print(“\n”);

 System.out.println(“——————————————————————————————————————”);

}

Chapter 7. Programming using the J2EE Connector Architecture 95

After you have accessed and updated the fields, pass the record back as the

input record. If you wish, you can use it again as the output record. For

example:

epiSpec.setAID(AIDKey.enter);

epiInter.execute(epiSpec, screen, screen);

The EPIFieldRecord: Access EPIFieldRecords from an EPIScreenRecord

instance rather than creating them directly. The EPIFieldRecord has methods

to access the attributes of a field, for example whether it is protected or which

colors are available. You can also retrieve and modify text. See CICS

Transaction Gateway: Programming Reference, for more information about these

interfaces in the com.ibm.connector2.cics package. The EPIFieldRecord

contains the static final variables that define names for color attributes,

highlighting and transparency.

The ScreenException: An EPIScreenRecord and EPIFieldRecord can throw

exceptions. They are checked exceptions, inherited from the base class

ScreenException. See CICS Transaction Gateway: Programming Reference, for

more information on these exceptions.

Stream Format

The stream is a byte representation of the screen. The number of bytes that are

sent to the application, and received from the application, should be the same

as the number of bytes on the screen. That is, the number of bytes should

equal the product of screen depth and screen width. For example, if the terminal

to which you are connected has a 24 by 80 character screen, the number of

bytes that should be flowed to and from the resource adapter is: 24x80 = 1920

bytes.

When providing an input record, you must flow the exact number of bytes on

the stream, otherwise the record will be rejected. The byte stream must

represent exactly what the screen looks like as seen by the resource adapter. If

it does not the record will be rejected.

For each field on the screen, there is a byte preceding the field that represents

the attribute byte on a 3270 terminal. On a 3270 screen this byte is displayed

as a blank. However, in the byte stream it can contain information about the

field. You can select what is placed in this field by specifying an appropriate

value in the EPIInteractionSpec setOutputAttributeType method. For

example, this byte could contain a blank, which is the base attribute, or it

could contain a value which represents the color attribute for that field.

A special option is EPIInteractionSpec.ATTRIBUTE_MARKER. This stores the

value EPIInteractionSpec.MARKER_BYTE in that location. This enables a record

to locate a field dynamically, without needing prior knowledge of the screen

format, for example a BMS map.

96 CICS Transaction Gateway: Programming Guide

Writing LogonLogoff classes

LogonLogoff classes are specified at deployment and used to logon to sign-on

capable terminals, or to terminals that install as sign-on unknown.

It is recommended that you use sign-on incapable terminals, in which case

you do not need the LogonLogoff classes.

If you choose to use the classes, implement the

com.ibm.connector2.cci.LogonLogoff interface which has the following

interface definition:

public interface LogonLogoff {

 public void logoff(javax.resource.cci.Connection conn);

 public void logon(javax.resource.cci.Connection conn,

 javax.security.auth.Subject security);

}

This class is only required for the EPI resource adapter. You do not need to

implement the logoff method because this is never called. However, you must

provide a dummy implementation so that the class can be compiled. You are

passed a connection and a security subject with the logon method signature.

The logon is driven in the same way as for applications that communicate

with CICS using the EPI resource adapter. You create interactions using this

connection and, when finished, you close the interaction. For example:

Interaction epiInt = (Interaction)(conn.createInteraction());

EPIInteractionSpec spec = new EPIInteractionSpec();

//--

// configure the spec to perform a CESN, and execute the call

//--

spec.setAID(AIDKey.enter);

spec.setFunctionName("CESN");

spec.setInteractionVerb(EPIInteractionSpec.SYNC_SEND_RECEIVE);

EPIScreenRecord screen = new EPIScreenRecordImpl();

epiInt.execute(spec,null,screen);

Close the interaction when you have finished with it. For example:

epiInt.close();

Note: Do not close the connection within the LogonLogoff class.

The credentials with which you logon are held as Subject object. To retrieve

this information you need to get an iterator from the private credentials. There

is a single entry within the private credentials of type PasswordCredential. You

can obtain the userid and password from this entry as follows:

Iterator it = security.getPrivateCredentials().iterator();

PasswordCredential pc = null;

if (it.hasNext()) {

 pc = (PasswordCredential)it.next();

Chapter 7. Programming using the J2EE Connector Architecture 97

}

if (pc == null) {

 throw new javax.resource.spi.SecurityException("

 Unable to logon, No Security Information Provided");

}

String user = pc.getUserName();

String pass = new String(pc.getPassword());

If there are any problems, throw a javax.resource.spi.SecurityException.

Java security

You might need to grant your LogonLogoff class the Java security permission,

to enable it to retrieve the credential information from the subject passed to it:

Samples

JCA EPI sample programs are provided in the samples subdirectory of your

CICS Transaction Gateway installation or as a deployable EAR in the

<install_path> deployable subdirectory. These are documented in “Resource

adapter samples” on page 102.

Using the J2EE CICS resource adapters in a nonmanaged environment

You can use the resource adapters in a nonmanaged environment. In this

environment, you are responsible for:

v Defining the EIS connection

v Creating the ConnectionFactory object

v Providing your own connection pooling

v Supplying your log writer

v Managing transactions

Your nonmanaged environment can be either inside, or outside, a J2EE server

environment. The resource adapters provide a default connection manager to

support execution within the nonmanaged environment.

Transaction management applies only to the ECI resource adapter. See

“Transaction management” on page 89 for information on managing

transactions in a nonmanaged environment.

Creating the appropriate ConnectionFactory object

Your application needs to get an appropriate ConnectionFactory object. In the

managed environment, the server or application does this for you, and you

can reference it using JNDI (see “Storing ConnectionFactory objects” on page

99). In the nonmanaged environment, unless you have previously registered

permission javax.security.auth.PrivateCredentialPermission

"javax.resource.spi.security.PasswordCredential * \"*\"", "read";

98 CICS Transaction Gateway: Programming Guide

one that you can access, you must create a ConnectionFactory object with the

appropriate EIS connection information.

Creating an ECI ConnectionFactory

You must first create an ECIManagedConnectionFactory and set the

appropriate properties on this object. The properties are the same as the

deployment parameters described in J2EE setup and configuration, in the CICS

Transaction Gateway: Administration book for your operating system. These are

accessible using setter and getter methods. The J2EE Programming Reference

documentation lists the setter and getter methods for the

ECIManagedConnectionFactory and shows the relationship between

deployment parameters and properties. The following example shows how to

create a ConnectionFactory for ECI:

ECIManagedConnectionFactory eciMgdCf = new ECIManagedConnectionFactory();

eciMgdCf.setConnectionURL("local:");

eciMgdCf.setPortNumber(new Integer(0));

eciMgdCf.setServerName("tp600");

eciMgdCf.setLogWriter(new java.io.PrintWriter(System.err));

eciMgdCf.setUserName("myUser");

eciMgdCf.setPassword("myPass");

eciMgdCf.setTraceLevel(new

 Integer(ECIManagedConnectionFactory.RAS_TRACE_ENTRY_EXIT));

ConnectionFactory cxf = (ConnectionFactory)eciMgdCf.createConnectionFactory();

Creating an EPI ConnectionFactory

You must first create an EPIManagedConnectionFactory and set the

appropriate properties on this object. The properties are the same as the

deployment parameters described in J2EE setup and configuration, in the CICS

Transaction Gateway: Administration book for your operating system. This

process is similar to that for creating an ECI ConnectionFactory. The following

example shows how to create a ConnectionFactory for EPI:

EPIManagedConnectionFactory epiMgdCf = new EPIManagedConnectionFactory();

epiMgdCf.setConnectionURL("local:");

epiMgdCf.setPortNumber(new Integer(0));

epiMgdCf.setServerName("tp600");

epiMgdCf.setLogWriter(new java.io.PrintWriter(System.err));

epiMgdCf.setUserName("myUser");

epiMgdCf.setPassword("myPass");

epiMgdCf.setSignonType(new Integer(0)); // sign-on capable terminal

epiMgdCf.setLogonLogoffClass("com.acme.companyApp.ourCICSLogon");

epiMgdCf.setTraceLevel(new

 Integer(EPIManagedConnectionFactory.RAS_TRACE_ERROR_EXCEPTION));

ConnectionFactory cxf = (ConnectionFactory)epiMgdCf.createConnectionFactory();

Storing ConnectionFactory objects

You can store ConnectionFactory objects for later reuse, so that your

application doesn’t need to rebuild them. Inside a J2EE server environment,

IBM recommends that you register your ConnectionFactory object, which has

links to your EIS connection information, in the J2EE Java Naming and

Chapter 7. Programming using the J2EE Connector Architecture 99

Directory Interface (JNDI) service. This makes migration from nonmanaged to

managed Java environments easier because applications can get

ConnectionFactory objects in the same manner. However, this may not be

possible outside a JNDI environment unless either an LDAP server, or an

appropriate JNDI Service Provider, is available within your environment.

The resource adapter ConnectionFactory objects support both the serializable

and referenceable Java interfaces. This means that you can choose how to

register them in the JNDI. For more information, refer to the J2EE Connector

Architecture Specification.

If you plan to use serializable interfaces, refer to J2EE Tracing, in the CICS

Transaction Gateway: Administration book for your operating system. This gives

information on how serialization and deserialization of ConnectionFactory

objects affects the setting of the LogWriter property.

Running the J2EE CICS resource adapters in a nonmanaged environment

In a J2EE environment, all of the required Java libraries should be available.

You might need to ensure that your J2EE server adds the following delivered

jar files to your class path. These files are in the <install_path>\classes

subdirectory:

v cicsj2ee.jar

v ctgclient.jar

v ctgserver.jar (required only for local: protocol)

v ccf2.jar

v connector.jar

v screenable.jar (required for the EPIScreenRecord)

Outside a J2EE enviroment, you must ensure that, as well as the above

libraries being listed in the class path, the following Java extensions are also

available:

v JAAS (required for EPI resource adapter)

v JTA (required for the ECI resource adapter)

JAAS is included with IBM JREs and JDKs by default. The JTA library is

available from the Sun Java website.

All of the above libraries and extensions should be available from the J2EE

server libraries.

100 CICS Transaction Gateway: Programming Guide

Compiling applications

To compile supplied applications in both managed and nonmanaged

environments, include the following in the CLASSPATH:

v cicsj2ee.jar (required for access to Connection and Interaction Specs)

v ctgclient.jar (required for AIDkey objects)

v ccf2.jar (required for creating LogonLogoff classes)

v connector.jar (required for all resource adapter applications)

v screenable.jar (required if using the EPI Screen Record)

Compiling and running J2EE components

If you develop a J2EE component that passes back the EPI Screen Record as a

return parameter, your deployment tool needs the following jar files:

v cicsj2ee.jar

v screenable.jar

An EJB client that receives an EPI Screen Record also needs these jar files on

the class path.

Security credentials and the CICS resource adapters

Security Credentials for accessing CICS can come from three different places.

These are the ConnectionSpec properties, the deployed security credentials, or

the server itself (for nonmanaged environments, the third option does not

apply). The precedence for these credentials is:

1. The Server Supplied Credentials (highest precedence)

2. The ConnectionSpec Supplied Credentials

3. The Deployed Security Credentials.

Managed enterprise applications can be deployed with ″container″ or

″application″ as a security choice. If ″container″ is specified, the J2EE

application server will provide the credentials by means of a user interface. If

″application″ is specified, security is determined from the deployment

properties and can be overridden by the ConnectionSpec.

J2EE tracing

In a nonmanaged environment where the DefaultConnectionManager is used

the application can set the LogWriter property on the class to define where

trace messages are sent. It is important to note however that in a nonmanaged

environment, if the ConnectionFactory is serialized for storage the LogWriter

Chapter 7. Programming using the J2EE Connector Architecture 101

must be set after deserialization in order for it to be used, as it is not restored

automatically after deserialization. This process is shown in the following

example:

ECIManagedConnectionFactory MCF = new ECIManagedConnectionFactory();

MCF.setLogWriter(myLogWriter);

ECIConnectionFactory cf = MCF.createConnectionFactory();

objOutStream.write(cf);

ECIConnectionFactory cf2 = (ECIConnectionFactory) objInStream.read();

DefaultConnectionManager.setLogWriter(myLogWriter);

Issues with tracing if ConnectionFactory serialized

As described above, if you use the serializable interface to store your

ConnectionFactory then you lose the reference to your LogWriter. This is

because LogWriters are not serializable and cannot be stored. When you

deserialize your ConnectionFactory it will not contain a reference to the

LogWriter. To ensure that your LogWriters are stored on any connections

created from this ConnectionFactory you must do the following. This only

applies in a nonmanaged environment.

DefaultConnectionManager.setLogWriter(new java.io.PrintWriter(System.err));

Connection Conn = (Connection)cxf.getConnection();

The setLogWriter method on the DefaultConnectionManager, which is

supplied with the resource adapters, is a static method. The example above

shows how to set the log to output the System.err. The trace level applied to

the ManagedConnectionFactory remains.

Resource adapter samples

The samples consist of an ECI COMMAREA sample and an EPI sample. They

show how to use the CICS resource adapters as well as demonstrating how to

write custom records that implement the javax.resource.cci.Streamable

interface. For information on how to deploy the ECI and EPI resource

adapters, see J2EE setup and configuration, in the CICS Transaction Gateway:

Administration guide for your operating system.

ECI COMMAREA sample

The ECI COMMAREA sample consists of a stateless session bean, a client

application, and a custom record that demonstrates using the Streamable

interface. The following files are part of the sample:

ECIDateTime.java

Enterprise bean remote interface

ECIDateTimeHome.java

Enterprise bean home interface

102 CICS Transaction Gateway: Programming Guide

|

ECIDateTimeBean.java

Enterprise bean implementation

ECIDateTimeClient.java

Enterprise bean client program

JavaStringRecord.java

Custom Record

Ejb-jar-eci-1.1.xml

Example of a deployment descriptor

The deployment descriptor is an example of an EJB 1.1–compliant deployment

descriptor for this Enterprise Bean. If you wish to package it up into a jar file,

rename it to Ejb-jar.xml and store it in the META-INF directory of the jar

file. It may require further entries if it is to be deployed into an EJB

2.0–compliant environment.

See your J2EE Server documentation for information on how to compile and

deploy the bean within your environment. However, you need to ensure that

the following jar files are also available on the CLASSPATH:

v cicsj2ee.jar

v connector.jar

v ctgclient.jar

v ccf2.jar

The enterprise bean looks for an ECI connection factory named

java:comp/env/ECI. The bean must refer to this resource when deployed.

Refer to your J2EE Server documentation on how to deploy the resource

adapter with an entry in the JNDI with this name. The client program looks

for the ECIDateTime bean with a name of ECIDateTimeBean1. See your J2EE

Server document for details of how to setup the bean with this JNDI name.

You will need to install the sever sample program EC01 on your CICS Server.

This file can be found in the samples\server subdirectory of your CICS

Transaction Gateway installation. Further details of this sample can be found

in the samples.txt file in the samples folder.

The bean is a simple bean that outputs the date and time as known to the

CICS Server, and can be deployed as a bean-managed transaction. The

Custom record takes a COMMAREA and converts it to a string. Ensure that

the EC01 sample program, which you installed on your CICS server, sends its

results in ASCII, as the COMMAREA is expected in ASCII. The

JavaStringRecord does however allow for the selection of other encodings,

and is commented using JavaDoc. The Client program takes no parameters. If

your CICS server is running on z/OS, the EC01 sample program will return

Chapter 7. Programming using the J2EE Connector Architecture 103

its results in EBCDIC rather than ASCII. To resolve this, update the DFHCNV

table by adding lines similar to the following:

*

* CTG Sample conversion

*

*

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=EC01,USREXIT=NO, *

 SRVERCP=037,CLINTCP=8859-1

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=18, *

 LAST=YES

EPI sample

The EPI Sample consists of a stateful session bean, a client application, a

custom record which demonstrates the use of the Screenable interface, and a

custom LogonLogoff class.The following files are part of the EPI Sample:

EPIPlayScript.java

Enterprise bean remote interface

EPIPlayScriptHome.java

Enterprise bean home interface

EPIPlayScriptBean.java

Enterprise bean implementation

EPIPlayScriptClient.java

Enterprise bean client program

CICSCESNLogon.java

A LogonLogoff class

Ejb-jar-epi-1.1.xml

Example of a deployment descriptor

The deployment descriptor is an example of an EJB 1.1-compliant deployment

descriptor for this Enterprise Bean. If you wish to package it up into a jar file,

rename it to Ejb-jar.xml and store it in the META-INF directory of the jar

file. It may require further entries if it is to be deployed into an EJB

2.0-compliant environment.

Your J2EE Server documentation describes how to compile and deploy the

bean within your environment. However, you need to ensure that the

following jar files are also available on the CLASSPATH:

v cicsj2ee.jar

v connector.jar

v ctgclient.jar

v ccf2.jar

v screenable.jar

104 CICS Transaction Gateway: Programming Guide

The Enterprise Bean looks for an EPI connection factory named

java:comp/env/EPI. See your J2EE Server’s documentation for details of how

deploy the resource adapter under this reference in the JNDI. When deploying

the bean into your environment you need to supply this reference for the bean

to find the resource. The client program looks for the EPIPlayScript bean with

a name of EPIPlayScript1. Refer to your J2EE Server documentation for

details of how to setup the bean with this name in the JNDI namespace. The

bean can be deployed as a bean-managed transaction.

The bean is designed to take a series of commands and drive a 3270

interaction. Once the commands are complete, the field text is returned as a

string array based on fields requested to be returned by the script. The client

can then look at these field texts and send more commands to drive that

interaction if necessary. The commands that drive the 3270 screen are as

follows:

S(txn) Start transaction “txn”

F(x)=“Text”

Set field number x to “Text”. Field numbers start at 1.

P(aid) Press key ’aid’

C(row, col)

place cursor at row, col (row and col start at 1)

R(x) Adds the text of the field at the given field number to the string array

that will be returned. Field numbers start at 1.

So an example of a script might be:

S(CESN)F(7)="myuser"F(10)="mypass"P(enter)R(1)

The EPIPlayScriptClient program takes no parameters; it has a default

command sequence coded into it. Experiment by changing this command

sequence or enhancing the sample.

The CICSCESNLogon.java sample contains example code on how to logon to a

CICS Transaction Server for z/OS system. The code is designed to work for

English systems and might have to be tailored for other versions of CICS and

languages. In order to use this class, deploy it as part of the sample bean and

reference it when you deploy the EPI resource adapter. For more information

about how to deploy the EPI resource adapter see J2EE setup and configuration,

in the CICS Transaction Gateway: Administration book for your operating

system.

Chapter 7. Programming using the J2EE Connector Architecture 105

Assistance in coding CCI applications

Connector specification API Javadoc

You can obtain the connector architecture API Javadoc from the Sun Web site,

this will assist in the coding of your CCI applications and provides

information such as the exceptions used by CCI implementations.

J2EE Connector Specification API

IBM recommends that you get the J2EE Connector Specification document from

Sun’s Web site at java.sun.com/j2ee/download.html, to help in coding your

CCI applications. It contains information such as the exceptions used in CCI

applications.

106 CICS Transaction Gateway: Programming Guide

http://java.sun.com/j2ee/download.html

Chapter 8. Programming in C and COBOL

This information contains information about the external access interfaces

specific to C and COBOL. It does not deal with testing or debugging ECI, EPI,

and ESI applications; refer instead to the programming documentation for the

environment in which you are working.

Overview of the programming interface for C and COBOL

The interfaces provided for the C and COBOL programming languages are

similar. Parameter blocks are used to pass data between the Client application

and the ECI, EPI and ESI.

A user application must be constructed as a single process, though in

environments in which a process can generate several threads, the user

application can be multi-threaded.

Note that the COBOL programming language is only available for Windows.

Because the COBOL and C field names are similar, most of the examples in

this chapter only use the C names. Refer to Table 14, Table 16 on page 111, and

Table 18 on page 119 for a comparison.

Making External Call Interface calls from C and COBOL programs

This section describes how to make ECI calls to a CICS server from a COBOL

or C Client application. Table 14 shows the field names in C and COBOL data

structures that correspond to the ECI terms described in “Input and output

information for external calls to CICS” on page 9

 Table 14. ECI terms and corresponding fields in C and COBOL

ECI term C structure.field COBOL structure.field

Abend code ECI_PARMS.eci_abend_Code ECI-PARMS.ECI-ABEND-CODE

COMMAREA ECI_PARMS.eci_commarea ECI-PARMS.ECI-COMMAREA

ECI timeout ECI_PARMS.eci_timeout ECI-PARMS.ECI-TIMEOUT

LUW control ECI_PARMS.eci_extend_mode ECI-PARMS.ECI-EXTENDED

LUW identifier ECI_PARMS.eci_luw_token ECI-PARMS.ECI-LUW-TOKEN

Password ECI_PARMS.eci_password

ECI_PARMS.eci_password2

ECI-PARMS.ECI-PASSWORD

ECI-PARMS.ECI-PASSWORD2

Program name ECI_PARMS.eci_program_name ECI-PARMS.ECI-PROGRAM-
NAME

© Copyright IBM Corp. 2002, 2008 107

Table 14. ECI terms and corresponding fields in C and COBOL (continued)

ECI term C structure.field COBOL structure.field

Server name ECI_PARMS.eci_system_name ECI-PARMS.ECI-SYSTEM-NAME

TPNName ECI_PARMS.eci_tpn ECI-PARMS.ECI-TPN

TranName ECI_PARMS.eci_transid ECI-PARMS.ECI-TRANSID

User ID ECI_PARMS.eci_userid ECI-PARMS.ECI-USERID

CICS_ExternalCall

Use CICS_ExternalCall for making program link calls, status information calls,

and reply solicitation calls. Use the ECI parameter block (ECI_PARMS for C

and ECI-PARMS for COBOL) for passing parameters to the ECI. The

eci_call_type parameter in the ECI parameter block indicates the type of

CICS_ExternalCall. The following examples show the format of the request

and associated declarations:

For C programs:

 ECI_PARMS EciBlock;

 cics_sshort_t Response;

 .

 .

 .

 Response = CICS_ExternalCall(&EciBlock);

For COBOL programs:

CALL CICSEXTERNALCALL

USING BY REFERENCE ECI-PARMS

RETURNING ECI_ERROR_ID.

Program link calls

Fill in the required fields in the ECI parameter block. Pass any data required

by the program you are linking to in the COMMAREA.

Use eci_call_type to define an ECI request as either synchronous or

asynchronous:

v ECI_SYNC for a synchronous program link call

v ECI_ASYNC for an asynchronous program link call

Managing logical units of work

To start a logical unit of work, set the eci_extend_mode parameter to

ECI_EXTENDED and the eci_luw_token parameter to zero, when making a

program link call. The Client daemon generates a LUW identifier which is

returned in the eci_luw_token field. This identifier must be input to all

subsequent calls for the same unit of work. To call the last program in a LUW,

set the eci_extend_mode parameter to ECI_NO_EXTEND. To end a LUW

108 CICS Transaction Gateway: Programming Guide

without linking to a program, set the eci_extend_mode parameter to

ECI_COMMIT or ECI_BACKOUT to commit or back out changes to

recoverable resources.

Table 15 shows how you can use combinations of eci_extend_mode,

eci_program_name, and eci_luw_token parameter values to perform tasks

associated with managing logical units of work through ECI. In each case you

must also store appropriate values in other fields for the call type you have

chosen.

 Table 15. Logical units of work in ECI

Task to perform Parameters to use

Call a program that is to be the only program of a

logical unit of work.

One request flows from client to server and a

reply is sent to the client only after all the changes

made by the specified program have been

committed.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: zero

Call a program that is to start an extended logical

unit of work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: zero

Afterwards, save the token from eci_luw_token.

Call a program that is to continue an existing

logical unit of work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: provide it

Call a program that is to be the last program of an

existing logical unit of work, and commit the

changes.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: provide it

End an existing logical unit of work, without

calling another program, and commit changes to

recoverable resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_COMMIT

v eci_program_name: null

v eci_luw_token: provide it

End an existing logical unit of work, without

calling another program, and back out changes to

recoverable resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_BACKOUT

v eci_program_name: null

v eci_luw_token: provide it

Chapter 8. Programming in C and COBOL 109

If an error occurs in one of the calls of an extended logical unit of work, you

can use the eci_luw_token field to see if the changes made so far have been

backed out, or are still pending. See the description of the eci_luw_token field

in CICS Transaction Gateway: Programming Reference for more information. If the

changes are still pending, end the logical unit of work with another program

link call, either committing or backing out the changes.

ECI timeouts

Use the eci_timeout field in the ECI parameter block to specify the timeout

value. If a timeout occurs either the ECI_ERR_RESPONSE_TIMEOUT code or

the ECI_ERR_REQUEST_TIMEOUT code is returned.

See “Timeout of the ECI request” on page 14 for more information on ECI

timeouts.

Reply solicitation calls

Use one of the following call types to solicit replies for an asynchronous

program link call. Unique message qualifiers for specific replies must be

created by the Client application.

ECI_GET_REPLY

For a reply solicitation call that gets any outstanding reply for any

asynchronous call, if any reply is available.

ECI_GET_REPLY_WAIT

For a reply solicitation call that gets any outstanding reply for any

asynchronous call, waiting if no replies are available.

ECI_GET_SPECIFIC_REPLY

For a reply solicitation call that gets any outstanding reply for a given

asynchronous call, if any reply is available.

ECI_GET_SPECIFIC_REPLY_WAIT

For a reply solicitation call that gets any outstanding reply for a given

asynchronous call, waiting if no replies are available.

Security in the ECI

The Client application can specify the user ID and password by setting

eci_userid and eci_password or eci_userid2 and eci_password2 in the ECI

parameter block. Use eci_userid and eci_password if the user ID and

password names are 8 characters or less in length, or eci_userid2 and

eci_password2 if the names can be more than 8 characters in length.

You can set a default user ID and password for the connection. See “Making

External Security Interface calls from C and COBOL programs” on page 119

for more information.

110 CICS Transaction Gateway: Programming Guide

Making External Presentation Interface calls from C and COBOL programs

This section describes how to run a 3270-based program on a CICS server

using EPI calls from a C or COBOL application. Table 16 shows the field

names in C and COBOL data structures that correspond to the terminal

attributes described in “Terminal characteristics” on page 19.

 Table 16. C and COBOL field names corresponding to terminal attributes

EPI term C structure.field COBOL structure.field

Code page CICS_EpiAttributes_t.CCSId CICS-EPIATTRIBUTES.CCSID

Color CICS_EpiDetails_t.Color CICS-EPIDETAILS.COLOR

Columns CICS_EpiDetails_t.NumColumns CICS-EPIDETAILS.NUMCOLUMNS

Device type CICS_EpiAddTerminal(,,,DevType,,,,) CICSEPIADDTERMINAL.(,,,DEVTYPE,,,,)

Error last line CICS_EpiDetails_t.ErrLastLine CICS-EPIDETAILS.ERRLASTLINE

Error message

color

CICS_EpiDetails_t.ErrColor CICS-EPIDETAILS.ERRCOLOR

Error message

highlight

CICS_EpiDetails_t.ErrHilight CICS-EPIDETAILS.ERRHILIGHT

Error message

intensity

CICS_EpiDetails_t.ErrIntensity CICS-EPIDETAILS.ERRINTENSITY

Extended

highlight

CICS_EpiDetails_t.Hilight CICS-EPIDETAILS.HILIGHT

Install timeout CICS_EpiAttributes_t.InstallTimeOut CICS-EPIATTRIBUTES.INSTALLTIMEOUT

Map name CICS_EpiEventData_t.MapName CICS-EPIEVENTDATA.MAPNAME

Map set name CICS_EpiEventData_t.MapSetName CICS-EPIEVENTDATA.MAPSETNAME

Maximum data CICS_EpiDetails_t.MaxData CICS-EPIDETAILS.MAXDATA

Netname CICS_EpiDetails_t.NetName CICS-EPIDETAILS.NETNAME

Password CICS_EpiAttributes_t.Password CICS-EPIATTRIBUTES.EPI-PASSWORD

Read timeout CICS_EpiAttributes_t.ReadTimeOut CICS-EPIATTRIBUTES.READTIMEOUT

Rows CICS_EpiDetails_t.NumLines CICS-EPIDETAILS.NUMLINES

Server name CICS_EpiDetails_t.System CICS-EPIDETAILS.SYSTEM

Sign-on

capability

CICS_EpiAttributes_t.SignonCapability CICS-EPIATTRIBUTES.SIGNONCAP

Terminal ID CICS_EpiDetails_t.Termid CICS-EPIDETAILS.TERMID

Userid CICS_EpiAttributes_t.Userid CICS-EPIATTRIBUTES.EPI-USERID

Chapter 8. Programming in C and COBOL 111

EPI versions

Only version 2 of the EPI is supported for new applications. Existing

applications that use EPI version 1 are supported for compatibility with

earlier versions.

EPI Initialization and termination

Any application that needs to use EPI must call the CICS_EpiInitialize

function to initialize EPI. Until this call is made, no other EPI function is

allowed. The CICS_EpiInitialize function takes a parameter indicating the

version of the EPI for which the application was coded. This is to ensure that

existing applications continue to run without change if the EPI is extended.

Before an EPI application ends, it must call the CICS_EpiTerminate function to

terminate EPI cleanly.

If the Client Daemon is restarted while an application is active, the application

must reissue CICS_EpiInitialize and reinstall all the terminals. Restarting the

Client Daemon while an application is active is not recommended.

Adding a terminal to CICS

Use the CICS_EpiAddTerminal function or the CICS_EpiAddExTerminal

function to add terminals to CICS.

Terminal indexes

The CICS_EpiAddTerminal and CICS_EpiAddExTerminal functions return a

terminal index, which must be passed on subsequent EPI function calls to

indicate the terminal to which the function is to apply. Each index identifies a

combination of server name and terminal ID. The terminal index supplied is

the first available integer starting from 0.

Terminal indexes are unique within a Client application, but not across

applications, so each application gets terminal index zero for the first terminal

it installs, and so on.

When the terminal has been deleted, the terminal index value becomes free

and can be reused when another terminal is added. The server deletes the

terminal if it was autoinstalled.

Install timeout

The length of time that an application will wait for a terminal to be installed

is specified in the InstallTimeOut field in the CICS_EpiAttributes_t structure

passed to the CICS_EpiAddExTerminal function.

If no response is received from the server within the specified interval, control

is returned to the invoking application with the return code set to

CICS_EPI_ERR_RESPONSE_TIMEOUT.

112 CICS Transaction Gateway: Programming Guide

Deleting a terminal

If a terminal is no longer required, it can be deleted by invoking either the

CICS_EpiDelTerminal or CICS_EpiPurgeTerminal function.

Use the CICS_EpiDelTerminal if no transaction is running against the

terminal and there are no unprocessed events outstanding.

Use the CICS_EpiPurgeTerminal function if the terminal is to be deleted

without regard to any transaction that may be running against the terminal or

unprocessed events for that terminal.

Starting transactions

To start a transaction, call the CICS_EpiStartTran function. There are two

ways of specifying the transaction to be started and the data to be associated

with it:

1. Supply the transaction identifier as a parameter to the call (TransId), and

supply any transaction data in the Data parameter.

2. Combine a transaction identifier and transaction data into a 3270 data

stream, and supply the data stream as a parameter to the call (Data).

The server might have to:

v Authenticate the userid and password for the terminal ″operator″.

v Grant authority, based on the authenticated userid, to access the resources

required for the execution of each transaction.

The frequency with which the userid and password are authenticated by the

server depends on whether the terminal has been defined as sign-on capable

or sign-on incapable; see “Security in the EPI” on page 21.

Sending and receiving data

When a transaction sends data to a terminal, the EPI generates either a

CICS_EPI_EVENT_SEND event or a CICS_EPI_EVENT_CONVERSE event.

The CICS_EPI_EVENT_SEND event indicates that data was sent but that no

reply is required. Typically this would result from an EXEC CICS SEND

command, but in some servers it would result from an EXEC CICS

CONVERSE command. (In the latter case, a CICS_EPI_EVENT_CONVERSE

event occurs later to tell the application to send a data stream back to the

transaction in the server.)

The CICS_EPI_EVENT_CONVERSE event indicates that a reply is required,

and would typically result from an EXEC CICS RECEIVE or EXEC CICS

CONVERSE command. The application must respond to this event by issuing

a CICS_EpiReply call to provide the response data. The CICS_EpiReply

Chapter 8. Programming in C and COBOL 113

function should be issued only to respond to a

CICS_EPI_EVENT_CONVERSE event; if it is issued at any other time, an

error is returned.

Managing pseudoconversations

The CICS_EPI_EVENT_END_TRAN event tells the application whether the

transaction just ended has specified a transaction to process the next input,

and which transaction has been specified. The application must not attempt to

start a different transaction, but must use CICS_EpiStartTran to start the

transaction specified by the CICS_EPI_EVENT_END_TRAN event.

Events and callbacks

Use the CICS_EpiGetEvent function to collect events.The EPI puts

information in a CICS_EpiEventData_t structure to indicate the event that

occurred and any associated data. It also indicates whether there are more

events still waiting in the queue.

The application can synchronize the processing of these events with its other

activities in one of three ways:

v Polling.

v Blocking.

v Callback notification. Callback is a way for another thread to notify your

application thread that an event has happened.

Polling

The CICS_EpiGetEvent call can be made in a polling mode by specifying

CICS_EPI_NOWAIT for the Wait parameter. If no event is waiting to be

collected, the function returns immediately with an error code. This is the

mechanism that you would have to adopt in a single-user single-threaded

environment, where the application might alternately poll the keyboard for

user activity and poll the EPI for event activity. This mechanism is not

recommended.

Blocking

The CICS_EpiGetEvent call can be made in a blocking mode by specifying

CICS_EPI_WAIT for the Wait parameter. If no event is waiting to be collected,

the function waits and does not return until an event becomes available. You

could use this mechanism in a multithreaded environment, where a secondary

thread could be dedicated to event processing. It could also be used after a

notification by callback, because the event information is known to be

available.

Callback notification

Callback routines can be used in C but are not available in Cobol.

114 CICS Transaction Gateway: Programming Guide

When you define a terminal, you can use the optional parameter NotifyFn to

provide the address of a callback routine that the EPI is to call whenever an

event occurs against that terminal.

Note: Some compilers do not support the use of callback routines. Consult

your compiler documentation for more information.

An application should carry out the minimum of processing in its callback

routine, and never block in the specified routine before returning to the EPI.

The routine itself cannot make EPI calls. You decide what it should do when

the notification is received. For example, in a multithreaded environment, it

might post a semaphore to signal another thread that an event has occurred.

In a Windows environment, it might post a message to a window to indicate

to the window procedure that an event has occurred. Other actions will be

appropriate for other environments.

When the callback routine is called, it is passed a single parameter—the

terminal index of the terminal against which the event occurred. This allows

the same callback routine to be used for more than one terminal.

Processing events

The CICS_EpiGetEvent function returns information about an event in the

CICS_EpiEventData_t structure. The Event field in this structure contains the

name of the event:

v CICS_EPI_EVENT_SEND

v CICS_EPI_EVENT_CONVERSE

v CICS_EPI_EVENT_END_TRAN

v CICS_EPI_EVENT_START_ATI

v CICS_EPI_EVENT_ADD_TERM

v CICS_EPI_EVENT_END_TERM

The application should process events as quickly as possible.

When a Client application is driven with an event or callback, it must issue a

CICS_EpiGetEvent to get the associated event. In certain timing conditions,

the CICS_EPI_EVENT_START_ATI may already have been notified from a

previous CICS_EpiGetEvent. The CICS_EpiGetEvent issued after the callback

can receive CICS_EPI_ERR_NO_EVENT (if CICS_EPI_NOWAIT is specified

for the Wait parameter) or wait until a subsequent event is received (if

CICS_EPI_WAIT is specified for the Wait parameter). Note that this can

happen after a CICS_EPI_EVENT_START_ATI is received.

Automatic transaction initiation (ATI)

The CICS server API call EXEC CICS START allows a server program to start

a transaction on a particular terminal. This mechanism, called Automatic

Chapter 8. Programming in C and COBOL 115

Transaction Initiation (ATI), requires additional programming at the client side

to handle the interaction between these transactions and normal

client-initiated transactions.

ATIs are queued for a terminal while a transaction is in progress. By default

ATI requests are held, and not started against a terminal. The

CICS_EPIATIState function enables and disables ATI requests. If ATIs are

enabled, they are run only when the terminal is in an idle state (no

transaction is currently running against the terminal). The ATI is started when

the CICS_EPI_EVENT_START_ATI event is retrieved.

3270 data streams for the EPI

The supplied C header file, cics3270.h, and the COBOL copybook cics3270.cbl,

contain constants and conversion tables that you will find useful in handling

3270 data streams.

EPI to CICS (Inbound data streams)

EPI applications send 3270 data to CICS on calls to the following functions:

v CICS_EpiStartTran

v CICS_EpiReply.

The format in both cases is the same. The data stream must be a minimum of

3 non-null bytes, representing the AID and cursor address; the sole exception

to this is if the AID represents the CLEAR key or a PA key, when the data

stream may consist of the AID only. These fields are passed to the CICS

transaction in the EIBAID and EIBCPOSN fields of the EIB.

 AID

(1 byte)

 Cursor address

(2 bytes)

 Data buffer

(variable length)

The contents of the data buffer consist of:

v ASCII displayable characters with embedded 3270 control characters, when

it is passed to an EXEC CICS RECEIVE MAP command.

v User-specified data, when it is passed to an EXEC CICS RECEIVE

command.

On starting a transaction, the transaction ID is extracted from the start of the

data buffer as follows:

v If a set buffer address (SBA) order is present at the start of the data buffer,

the transaction ID is extracted from the 4th through 7th bytes of the buffer.

v If an SBA is not present at the start of the data buffer, the transaction ID is

extracted from the 1st through 4th bytes of the buffer.

116 CICS Transaction Gateway: Programming Guide

In either case, the transaction ID may be shorter than 4 bytes, being delimited

by either another SBA, an ASCII space, or the end of the string.

The contents of the data buffer passed on the start of a CICS transaction are

available to the transaction in response to an initial EXEC CICS RECEIVE

command.

When the application replies, the contents of the data buffer are available in

an unconverted form in response to an EXEC CICS RECEIVE command or

converted to a BMS structure in response to an EXEC CICS RECEIVE MAP

command.

Note: It is the EPI programmer’s responsibility in the latter case to ensure that

the data is formatted correctly so that the conversion succeeds.

CICS to EPI (Outbound data streams)

The 3270 commands are either write or read commands, instructing the EPI to

process the data or to reply with data respectively.

On a CICS_EPI_EVENT_SEND event, the command is one of the following

3270 write commands:

v Write

v Erase/Write

v Erase/Write Alternate

v Erase All Unprotected.

The first three commands are followed by a write control character (WCC)

and data. An Erase All Unprotected command has neither WCC nor data. The

Write Structured Field command is not generated by CICS and is therefore not

supported for the EPI.

 Command

(1 byte)

 Write control

character

(1 byte)

 Data buffer

(variable length)

The contents of the data buffer consist of:

v ASCII displayable characters with embedded 3270 control characters, when

it is passed from an EXEC CICS SEND MAP command.

v User-specified data, when it is passed from an EXEC CICS SEND

command.

A CICS_EPI_EVENT_CONVERSE event specifies a read command. The

contents of the data stream vary with the source of the event, as follows:

Chapter 8. Programming in C and COBOL 117

v If the event is the result of an EXEC CICS RECEIVE command, the data

buffer might contain data sent by the transaction, or it might be empty. The

EPI program should reply when the data to be sent is available.

v If the event is the result of an EXEC CICS RECEIVE BUFFER command, the

data buffer contains the 3270 Read Buffer command. This should be

processed as described in the 3270 Data Stream Programmer’s Reference.

3270 order codes provide additional control function

3270 orders are included in both inbound and outbound data streams to

provide additional control function. Table 17 lists the order codes that may

occur in 3270 data streams, and shows whether they relate to inbound or

outbound data streams, or both.

 Table 17. Order codes occurring in 3270 data streams

Order code Inbound Outbound

Start field (SF) Yes Yes

Start field extended (SFE) Yes Yes

Set buffer address (SBA) Yes Yes

Set attribute (SA) Yes Yes

Modify field (MF) No Yes

Insert cursor (IC) No Yes

Program tab (TB) No Yes

Repeat to address (RA) No Yes

Erase unprotected to address (EUA) No Yes

Graphic escape (GE) No No

Note: The 3270 Data Stream Programmer’s Reference states that the SFE, SA, and

MF orders are not supported in ASCII. However, they do occur in 3270

data streams for the EPI, where they take the following values:

SFE X’10’

SA X’1F’

MF X’1A’

Each of these orders is followed by one or more attribute type-value

pairs. The count of attribute pairs and the attribute type are both binary

values, and are thus as defined in the 3270 Data Stream Programmer’s

Reference. However, the contents of the attribute value field may vary

from those defined in the 3270 Data Stream Programmer’s Reference as

follows:

v If the attribute type is less than or equal to X’C0’ (for example, a

color), the attribute value is defined as an EBCDIC value in the 3270

118 CICS Transaction Gateway: Programming Guide

Data Stream Programmer’s Reference. The EPI uses the ASCII

equivalent of the EBCDIC value; for example, red is defined as X’F2’

in the 3270 Data Stream Programmer’s Reference, and should be defined

as X’32’ in the EPI data stream.

v If the attribute type is greater than X’C0’ (for example, field

outlining), the attribute value is a binary value. The EPI uses the

values defined in the 3270 Data Stream Programmer’s Reference.

Further details of 3270 orders and other control characters are supplied in the

files named in the following table.

 Supplied file

COBOL copybook cics3270.cbl

C header file cics3270.h

Making External Security Interface calls from C and COBOL programs

You can make ESI calls from a C or COBOL Client application to verify or

change passwords for a user ID known to an external security manager on a

CICS server. Table 18 shows C and COBOL names that correspond to the ESI

terms described in “Input and output information for ESI functions” on page

25.

 Table 18. C and COBOL names corresponding to ESI terms

ESI

terms

C structure.field COBOL structure.field

Expiry

date

CICS_EsiDetails_t.ExpiryDate CICS-ESIDETAILS.EXPIRYDATE

Expiry

time

CICS_EsiDetails_t.ExpiryTime CICS-ESIDETAILS.EXPIRYTIME

Invalid

count

CICS_EsiDetails_t.InvalidCount CICS-ESIDETAILS.INVALIDCOUNT

Last

access

date

CICS_EsiDetails_t.LastAccessDate CICS-ESIDETAILS.LASTACCESSDATE

Last

access

time

CICS_EsiDetails_t.LastAccessTime CICS-ESIDETAILS.LASTACCESSTIME.

Last

verify

date

CICS_EsiDetails_t.LastVerifiedDate CICS-ESIDETAILS.LASTVERIFIEDDATE

Chapter 8. Programming in C and COBOL 119

Table 18. C and COBOL names corresponding to ESI terms (continued)

ESI

terms

C structure.field COBOL structure.field

Last

verify

time

CICS_EsiDetails_t.LastVerified.Time CICS-ESIDETAILS.LASTVERIFIEDTIME

New

password

CICS_ChangePassword(,,NewPassword,,,)

 CICSCHANGEPASSWORD

(,,NEWPASSWORD,,,)

Old

password

CICS_ChangePassword(,OldPassword,,,,)

 CICSCHANGEPASSWORD

(,OLDPASSWORD,,,,)

Password CICS_VerifyPassword(,Password,,,,) CICSVERIFYPASSWORD(,PASSWORD,,,,)

System CICS_ChangePassword(,,,System,,) CICSCHANGEPASSWORD(,,,SYSTEM,,)

User ID CICS_ChangePassword(Userid,,,,,) CICSCHANGEPASSWORD(USERID,,,,,)

Verifying a password using ESI

Use the CICS_VerifyPassword function, passing the user ID, password, and

system name as input parameters. If the call is successful, the information is

returned in the CICS_EsiDetails_t structure.

Changing a password using ESI

Use the CICS_ChangePassword function, passing the user ID, current

password, new password, and system name as input parameters. If the call is

successful, any information is returned in the CICS_EsiDetails_t structure.

Setting default security using ESI

Use the CICS_SetDefaultSecurity function, passing the user ID, password, and

system name as input parameters to set the default security on a connection

to a CICS server.

Compiling and linking C and COBOL applications

This section gives some examples showing how to compile and link typical

ECI, EPI, and ESI applications in the various client environments. These are

examples only, and may refer to specific compilers and linkers.

Refer to the samples supplied with your environment (see Appendix B,

“Sample programs,” on page 197) for more information about compiling and

linking programs.

For details of supported compilers, see the CICS Transaction Gateway:

Administration book for your operating system.

120 CICS Transaction Gateway: Programming Guide

Table 19 shows the header files for C required for your programs:

 Table 19. C header files

Use File

ECI cics_eci.h

EPI cics_epi.h

ESI cics_esi.h

Type definitions cicstype.h

Table 20 shows the copybook files for COBOL required for your programs:

 Table 20. COBOL copybooks

Use File

ECI cicseci.cbl

EPI cicsepi.cbl

ESI cicsesi.cbl

The files contain the entry points, type definitions, data structures, and

constants needed for writing programs using the ECI, EPI, and ESI interfaces.

When compiling C programs, you might need to pass structures to the

external CICS interfaces in packed format. If this is the case, the C header files

will contain the #pragma pack directive, which should not be changed.

For Micro Focus COBOL, you must use call-convention 8 for every program

call, or use the default call-convention 0 and compile using the LITLINK

compiler directive.

Windows

For C Programs:

v The compiler options /DWIN32, /D_WIN32, and /D_X86_=1 are used to

select the correct Windows function and are standard Win32 options. These

options are not specific to the CICS Transaction Gateway.

v The compiler option /DCICS_W32 must be used to define the symbol

CICS_W32 to the compiler to ensure that the CICS header files are

processed correctly.

v The application must be linked with the cclwin32.lib library in addition to

the standard C runtime and Windows libraries.

v Callback functions must be declared using the CICSEXIT calling

convention—see samples for details.

Chapter 8. Programming in C and COBOL 121

For COBOL Programs:

v It is important to use the correct calling convention when invoking the ECI

or EPI from COBOL. The sample programs use the ″SPECIAL-NAMES.

CALL CONVENTION 8 IS CICS.″ statements to achieve this.

v The application must be linked with the CCLWIN32.LIB library, in addition

to the standard COBOL libraries, because a 32-bit Windows application is

being generated.

v ECI or EPI callback functions are not supported in COBOL applications.

AIX

v The constant CICS_AIX must be defined to the compiler using the

-DCICS_AIX option.

v The application must be linked with the standard AIX libpthreads.a and

libc_r.a libraries, as well as the libcclaix.a library.

For COBOL Programs:

v It is important to use the correct calling convention when invoking the ECI

or EPI from COBOL. When using MicroFocus COBOL the sample programs

use the ″SPECIAL-NAMES CALL CONVENTION 8 IS CICS.″ statements to

achieve the correct calling convention.

v To build an application, object files must be linked with the libcclaix.a

library file. Only 32-bit applications are supported by the API.

v ECI or EPI callback functions are not supported in COBOL applications.

Solaris

v The constant CICS_SOL must be defined to the compiler using the

-DCICS_SOL option.

v The application must be linked with the standard Solaris libpthread.so and

libc.so libraries, as well as the libcclsol.so library.

Linux

General

v The constant CICS_LNX must be defined to the compiler using the

–DCICS_LNX option.

v The application must be linked with the standard Linux

libpthread.so and libc.so libraries, as well as the libccllnx.so library.

Linux on zSeries

The compiler option –m31 and the link option –melf_S390 must be

used to build a 31-bit application. The CICS Transaction Gateway is

built on a 31-bit system, so when compiling and linking applications

on a 64-bit system, you must define them as 31-bit. You cannot mix

64-bit and 31-bit objects; at link stage you get incompatibility failure.

When a 31-bit binary is built on a 64-bit system, all libraries must be

122 CICS Transaction Gateway: Programming Guide

31-bit versions, the default pthread library is 64-bit. Typically, 31-bit

libraries are installed in /lib or /usr/lib (as opposed to /lib64 and

/usr/lib64, where the 64-bit versions reside).

Linux on POWER

The CICS Transaction Gateway is built on a 32-bit system, so when

compiling and linking applications on a 64-bit system, you must

define them as 32-bit. You cannot mix 64-bit and 32-bit objects; at link

stage you get incompatibility failure. When a 32-bit binary is built on

a 64-bit system, all libraries must be 32-bit versions. Typically, 32-bit

libraries are installed in /lib or /usr/lib (as opposed to /lib64 and

/usr/lib64, where the 64-bit versions reside).

HP-UX

v The constant CICS_HPUX must be defined to the compiler using the

–DCICS_HPUX option.

v The application must be linked with the standard HPUX libpthread.sl and

libc.sl libraries as well as the libcclhpux.so library.

Chapter 8. Programming in C and COBOL 123

124 CICS Transaction Gateway: Programming Guide

Chapter 9. Programming in C++

This information contains information about the external access interfaces

specific to C++.

Overview of the programming interface for C++

The C++ API is not supported on Windows Vista.

Writing C++ Client applications

Establishing the working environment

You are provided with C++ (OO) support on AIX, HP-UX, Linux, Solaris and

Windows operating systems. This includes the class library, C++ header files,

the BMS map utility, and sample code. Note that the BMS map utility is not

supported for Linux.

For full details of supported CICS servers, follow the Support link at the

appropriate Web page:

v www.ibm.com/software/cics/ctg

v www.ibm.com/software/cics/cuc

Windows environment variables: CICS Transaction Gateway and CICS

Universal Client append directories to the LIB and INCLUDE variables only

in the system set, to ensure that these are used you should add ;%LIB% to the

end of your user LIB environment variable and ;%INCLUDE% to the end of your

user INCLUDE environment variable. The CICS Transaction Gateway appends

;%CLASSPATH% to your user CLASSPATH environment variable. When you select

OK on the Edit user variable window to make this change, the variable is

displayed with the system paths appended.

Multi-threading

The CICS Transaction Gateway C++ libraries are not completely thread-safe.

That is, they do not have critical sections, or semaphores, to prevent two

threads from updating the same instance of an object. However, the classes do

not share data, so they can be used in a well designed, multi-threaded, Client

application. The normal technique is for each thread to have its own instance

of lightweight objects, such as CclConn, CclFlow, CclBuf.

© Copyright IBM Corp. 2002, 2008 125

|

http://www.ibm.com/software/cics/ctg
http://www.ibm.com/software/cics/cuc

Making External Call Interface calls from a C++ Client program

The ECI is one of two interfaces through which a Client application can

interact with a CICS server. The ECI object model consists of a set of classes

which give access to the features of the ECI and supports an object-oriented

approach to CICS Transaction Gateway programming with the ECI.

Linking to a CICS server program

A Client application requires one connection object, CclConn, for each CICS

server with which it will interact. When a connection object is created,

optional data can be specified which includes:

v The name of the server to be connected. This must be one of the server

names defined in the configuration file ctg.ini. If this name is omitted, the

default server will be used.

v A user ID. Some servers might require that a client application provides a

user ID and password before they permit specific interactions.

v A password.

In this example, a connection object is created with a server name, user ID

and password:

Creating a connection object does not, in itself, cause any interaction with the

server. The information in the connection object is used when one of the

following server request calls is issued:

v link—to request the execution of a server program.

v status—to request the status (availability) of the server.

v changed—to request the notification of any change in this status.

v cancel—to request the cancellation of a changed request.

These are methods of the connection class. There are two other server request

calls; the backout and commit methods of the unit of work class. More

information on the use of all these methods can be found in following

sections.

Passing data to a server program

A buffer object—CclBuf is used in the Client application to encapsulate the

communication area that is used for passing data to and from a server

program. The use of buffer objects is not limited to communication areas; they

offer considerable flexibility for general-purpose data marshaling.

The following code constructs a buffer object and dynamically extends it as

text strings are assigned, inserted and appended to its data area:

CclConn serv2("Server2","sysad","sysad");

126 CICS Transaction Gateway: Programming Guide

Output produced:

Some inserted text at the end

In the next example, an existing memory structure is used. This could, for

example, correspond to a record used in the server program. In this case, the

buffer object knows the record is fixed-length, externally-defined, and ensures

it can not be extended in any subsequent processing. The link call requests

execution of the program QVALUE on the CICS server defined by the serv2

connection object and passes data via the structure on which the buffer object

comma2 is overlaid.

The communications area returned from a server is also contained in a buffer

object.

Using COMMAREAs

A COMMAREA is a block of storage allocated by the program. The Client

application uses the COMMAREA to send data to the server and the server

uses the same storage to return data to the client. Therefore, you must create a

COMMAREA that is large enough to contain all the information to be sent to

the server and large enough to contain all the information that can be

returned from the server.

For example, you need to send a 12 byte serial number to the server, but you

may receive 20 Kb back from the server. You must create a COMMAREA of

size 20 Kb. Your code would look like this:

CclBuf comma1;

comma1 = "Some text";

comma1.insert(9,"inserted ",5) += " at the end";

cout << (char*)comma1.dataArea() << endl;

 ...

struct rec{

 short key;

 char name[8];

 char retval[70];

 };

rec record1 = { 1234,"Hilary" };

CclBuf comma2(sizeof(rec),&record1);

serv2.link(sflow,"QVALUE",&comma2);

 ...

 // serialNo is a Null terminated string

CclBuf Commarea; // create extensible buffer object

Commarea.assign(strlen(serialNo),serialNo); // Won’t include the Null

Commarea.setDataLength(20480); // stores Nulls in the unused area

Chapter 9. Programming in C++ 127

In the example, the serial number is stored in the new Commarea which is then

increased in size to 20480. The extra bytes are filled with nulls. This is

important as it ensures that the information transmitted to the server is kept

to a minimum. The CICS Transaction Gateway software strips off the excess

nulls and transmits 12 bytes to the server.

Controlling server interactions

A flow object—CclFlow—controls each interaction between the Client

application and a server and determines the synchronization of reply

processing; synchronous, deferred synchronous or asynchronous. This

example creates a synchronous flow object:

A flow object is referenced when a server request call is first issued and

remains active from that time until all client processing of the corresponding

reply from the server has been completed. At that point it is set inactive and

becomes available for reuse or deletion. During its active lifespan, a flow

object maintains the state of the client/server interaction it is controlling.

The flow class should be subclassed to provide the implementation of a reply

handler which will be called when a reply is received; this happens regardless

of the synchronization type. The reply handler is passed a buffer object which

contains the communication area returned by the server. A default reply

handler is provided; it just returns to the caller without doing anything.

Separate flow subclasses could be needed to cater for different client/server

communication area protocols. Many flows may be active at the same time.

Many servers may be used simultaneously by the same CICS Transaction

Gateway or CICS Universal Client.

Managing logical units of work

A Client application uses a unit of work object, CclUOW, for each logical unit

of work that it needs to manage. This code creates a unit of work object:

CclUOW uow;

Any server link request which participates in a unit of work references the

corresponding unit of work object. When all the links participating in a unit

of work have successfully completed, the unit of work can be committed by

the commit method of the unit of work object or backed out by backout:

CclFlow sflow(Ccl::sync);

serv1.link(sflow, "ECITSQ", &(comma1="1st link in UOW"), &uow);

serv1.link(sflow, "ECITSQ", &(comma1="2nd link in UOW"), &uow);

 ...

uow.backout(sflow);

128 CICS Transaction Gateway: Programming Guide

If no UOW object is used, each link call becomes a complete unit of work

(equivalent to LINK SYNCONRETURN in the CICS server).

Whenever using logical units of work, you must ensure that you backout or

commit active units of work, especially at program termination. You can check

to see if a logical unit of work is still active by checking the uowId method of

the CclUOW class for a non zero value.

Retrieving replies from synchronous requests

In the synchronous model, the client remains blocked at the server request call

until a reply is eventually received from the server.

The example at Figure 8 calls a server program using parameters supplied on

the command line. It does no subclassing to handle exceptions or to handle

the reply from the server.

The Client application gains access to the ECI object and constructs a

connection object using the supplied server name, password and user ID.

Then a buffer object is constructed using text from the command line and a

synchronous flow object is created.

The link call requests execution of the CICS ECIWTO sample program on the

server and passes text to it in the buffer. Processing is then blocked until a

reply is received from the server. ECIWTO just writes the communication area

to the operator console on the server and returns it, unchanged, to the client.

After the reply is received, the Client application reports the most recent

exception code and prints the returned communication area:

If you call the program in Figure 8 like this:

 ECICPO1 DEVTSERV sysad sysad "Hello World"

the following output is expected on successful completion:

 ...

CclECI* pECI = CclECI::instance();

CclConn server1(argv[1],argv[2],argv[3]);

CclBuf comma1(argv[4]);

CclFlow sflow(Ccl::sync);

server1.link(sflow,"ECIWTO",&comma1);

Figure 8. Synchronous request to call a server program

cout << "Link returned with \""

 << pECI-> exCodeText() << "\"" << endl;

cout << "Reply from CICS server: "

 << (char*)comma1.dataArea() << endl;

Chapter 9. Programming in C++ 129

Link returned with "no error"

Reply from CICS server: Hello World

If the flow object controlling the interaction is an instance of a subclass which

has implemented a reply handler, this is called and executed before processing

continues with the statement following the original server request call. For

example, the flow subclass defined in the asynchronous example which

follows could have been used.

Retrieving replies from asynchronous requests

In the asynchronous model, the Client application issues a server request call

and then continues immediately with the next statement without waiting for a

reply. As soon as the reply is received from the server it is immediately

passed to the reply handler of the flow object controlling the interaction; in

parallel with whatever else the client happens to be doing.

The example in Figure 9 on page 131 calls a server program using parameters

supplied on the command line. It subclasses the ECI class to handle

exceptions and subclasses the flow class to handle the reply from the server.

Here is a simple subclass of the flow class with a reply handler

implementation which just prints the reply received:

A subclassed ECI object is constructed; then a connection object using the

supplied server name, password and user ID. A buffer object is constructed

using text from the command line and an asynchronous subclassed flow

object.

The link call requests execution of the ECIWTO sample program on the server

and passes text to it in the buffer object. Processing then continues with the

statement following the link call:

class MyCclFlow : public CclFlow {

public:

 MyCclFlow(Ccl::Sync sync) : CclFlow(sync) {}

 void handleReply(CclBuf* pcomm){

 cout << "Reply from CICS server: "

 << (char*)pcomm-> dataArea() << endl;

 }

 };

130 CICS Transaction Gateway: Programming Guide

In the example, there is nothing else for the main Client application to do, so

to avoid premature termination, it is made to wait for user input:

Meanwhile, when the reply does come back from the server, the reply handler

is called and, assuming there are no exceptions, prints the returned

communication area. Note that in the asynchronous model, the buffer object

to hold the returned communication area is allocated internally within the

flow object, and is deleted after the reply handler has run. The buffer object

supplied on the original link call is not used for the reply, and can be deleted

as soon as the link call returns.

If you call the program in Figure 9 like this:

 ecicpo2 DEVTSERV sysad sysad "Hello World"

the following output is expected on successful completion:

Server call in progress. Enter q to quit...

Reply from CICS server: Hello World

q

If the Client application decides at some point that it really can do no more

until a reply is received from the server, it can use the wait method on the

appropriate flow object. This effectively makes the interaction synchronous,

blocking the client:

Reply solicitation calls

Deferred synchronous reply handling

In the deferred synchronous model, the Client application issues a server

request call and then continues immediately with the next statement without

waiting for a reply. Unlike the asynchronous case, where a server reply is

handled immediately it arrives, the client decides when it wants to poll for a

reply.

 ...

MyCclECI myeci;

CclConn server1(argv[1],argv[2],argv[3]);

CclBuf comma1(argv[4]);

MyCclFlow asflow(Ccl::async);

server1.link(asflow,"ECIWTO",&comma1);

 ...

Figure 9. Asynchronous request to call a server program

cout << "Server call in progress. Enter q to quit..." << endl;

char input;

cin >> input;

asflow.wait();

Chapter 9. Programming in C++ 131

When a poll is issued, the flow object checks whether there is, in fact, a reply

from the original server request. If there is, the flow object’s reply handler is

called synchronously and is passed the returned communication area in a

buffer object. Poll returns a value to its caller indicating whether the reply

was received or not; if not it can try again later.

The same simple subclass of the flow class described above is used. There are

some small changes to the main Client application to indicate deferred

synchronous reply handling:

For demonstration purposes, the Client application is now made to loop with

a delay until poll indicates the reply has been received from the server. Note

that in the deferred synchronous model, a buffer object to hold the returned

communication area can be supplied as a parameter to the poll method. If, as

in the example below, no buffer object is supplied on the poll method, one is

allocated internally within the flow object, and is deleted after the reply

handler has run.

Typical output on successful completion would look like this:

DSync polling...

DSync polling...

DSync polling...

Reply from CICS server: Hello World

As in the asynchronous model, the wait method can be used to make a

deferred synchronous flow synchronous, blocking the client.

ECI security

You can perform security management on servers that support Password

Expiry Management (PEM). See Supported software in the CICS Transaction

Gateway: Administration book for your operating system, for more information

on supported servers and protocols.

 ...

MyCclECI myeci;

CclConn server1(argv[1],argv[2],argv[3]);

CclBuf comma1(argv[4]);

MyCclFlow dsflow(Ccl::dsync);

server1.link(dsflow,"ECIWTO",&comma1);

 ...

 ...

Ccl::Bool reply = Ccl::no;

while (reply == Ccl::no) {

 cout << "DSync polling..." << endl;

 reply = dsflow.poll();

 if (reply == Ccl::no) DosSleep(msecs);

 }

 ...

132 CICS Transaction Gateway: Programming Guide

To use these features you first must have constructed a Connection object. The

two methods available are verifyPassword which checks the userid and

password within the connection object with the Server Security System, and

changePassword which allows you to change the password at the server. If

successful the connection object password is updated accordingly.

If either call is successful, you are returned a pointer to an internal object

which provides information about the security, a CclSecAttr object. This object

provides access to information such as last verified Date and Time, Expiry

Date and Time and Last access Date and Time. If you query for example last

verified Date, you get back a pointer to an object which allows you to get the

information in various formats. The following is a sample of code to show the

use of these various objects:

Note that the security attributes and date/time memory are all handled by the

connection object. If you destroy the connection object, you destroy the

security information being held by that object.

Finding potential servers

Information about the CICS servers that can be used by a Client application is

defined in the CICS Transaction Gateway configuration file. See Configuration

in the CICS Transaction Gateway: Administration book for your operating

system, for more information. The existence of such a definition doesn’t

guarantee availability of a server.

// Connection object already created called conn

CclSecAttr *pAttrblock; // pointer to security attributes

CclSecTime *pDTinfo; // pointer to Date/Time information

try {

 pAttrblock = conn->verifyPassword();

 pDTinfo = pAttrblock->lastVerifiedTime();

 cout << "last verified year :" <<pDTinfo->year() << endl;

 cout << "last verified month :" <<pDTinfo->month() << endl;

 cout << "last verified day :" <<pDTinfo->day() << endl;

 cout << "last verified hours :" <<pDTinfo->hours() << endl;

 cout << "last verified mins :" <<pDTinfo->minutes() << endl;

 cout << "last verified secs :" <<pDTinfo->seconds() << endl;

 cout << "last verified 100ths:" <<pDTinfo->hundredths() << endl;

// Use a tm structure to produce a single line text of information

 tm mytime;

 mytime = pDTinfo->get_tm();

 cout << "full info:" << asctime(&mytime) << endl;

}

catch (CclException &ex)

{

// Could check for expired password error and handle if required

 cout << "Exception occurred: " <<ex.diagnose()<< endl;

}

Chapter 9. Programming in C++ 133

The ECI object CclECI provides access to this server information through its

serverCount, serverDesc, and serverName methods.

Unless the ECI class has been subclassed, its unique instance is found using

the class method instance as in the following example:

Typical output produced:

Server Count = 2

Server1 Name = DEVTSERV

Monitoring server availability

The connection object CclConn has three methods which can be used to

determine the availability of the server connection that it represents:

status requests the status (that is, the availability) of the server.

changed

requests notification of any change in this status.

cancel

requests cancellation of a changed request.

The example described below shows how server availability can be monitored

in a Client application that is busy doing something else.

Here is a subclass of the flow class designed for use with server status calls.

The reply handler implementation prints the server name and its

newly-changed status; it ignores the returned communication area. Next, it

issues a changed server request so that the next server status change will be

received. The reply handler will be called every time the availability of the

server changes.

CclECI* pECI = CclECI::instance();

printf("Server Count = %d\n", pECI-> serverCount());

printf("Server1 Name = %s\n", pECI-> serverName(1));

 ...

class ChgFlow : public CclFlow {

public:

 ChgFlow(Ccl::Sync stype) : CclFlow(stype) {}

 void handleReply(CclBuf*) {

 CclConn* ccon = connection();

 cout << ccon-> serverName() << " is "

 << ccon-> serverStatusText() << endl;

 ChgFlow* sflow = new ChgFlow(Ccl::async);

 ccon-> changed(*sflow);

 }

 };

134 CICS Transaction Gateway: Programming Guide

The main Client application iterates through all the servers listed in the CICS

Transaction Gateway Initialization file. For each one, an asynchronous status

request call is issued. The Client application continues with whatever else it

has to do.

The output produced could look something like this:

PROD1 is unavailable

DEVTSERV is unavailable

PROD1 is available

Initially, both servers are unavailable because the ECI Client application is not

running. It starts, and after a while makes contact with one of the servers.

C++ ECI classes

Table 21summarizes the classes provided for programming using the C++

interface:

 Table 21. C++ ECI classes.

Object Classname Description

Global Ccl Contains global enumerations

Buffer CclBuf Used for exchanging data with a server

Connection CclConn Models the connection to a server

ECI CclECI Controls and lists access to CICS servers

Exception CclException Encapsulates exception information

Flow CclFlow Handles a single client/server interaction

SecAttr CclSecAttr Provides information about security

attributes (passwords)

SecTime CclSecTime Provides date and time information

UOW CclUOW Corresponds with a Unit of Work in the

server—used for managing updates to

recoverable resources.

int numservs = myeci.serverCount();

CclConn* pcon;

ChgFlow* pflo;

for (int i = 1; i <= numservs ; i++) {

 pcon = new CclConn(myeci.serverName(i));

 pflo = new ChgFlow(Ccl::async);

 pcon-> status(*pflo);

 }

 ...

Chapter 9. Programming in C++ 135

Making External Presentation Interface Calls from a C++ Client Program

In procedural programming, the External Presentation Interface (EPI) provides

a mechanism for clients to communicate with transactions on a server and to

handle 3270 data streams.

The classes provided to support the EPI make it simpler for a programmer

using OO techniques to access the facilities that EPI provides:

v Connection of 3270 sessions to CICS servers

v Starting CICS transactions

v Sending and receiving 3270 data streams

The classes also enhance the procedural CICS EPI support by providing

higher level constructs for handling 3270 data streams:

1. General purpose C++ classes for handling 3270 data stream, such as fields

and attributes, and CICS transaction routing data, such as transaction ID.

2. Generation of C++ classes for specific CICS applications from BMS map

source files. These classes allow client applications to access data on 3270

panels, using the same field names as used in the CICS server BMS

application.

Note: These classes do not contain any specific support for 3270 data streams

that contain DBCS fields. Data streams with a mixture of DBCS and

SBCS fields are not supported.

The BMS utility is a tool for statically producing C++ class source code

definitions and implementations from a CICS BMS mapset.

Note: CICSBMSC is not provided with CICS Transaction Gateway for the

Linux operating system.

Adding a terminal to CICS

The EPI must be initialized, by creating a CclEPI object, before a terminal

connection can be made to CICS. The CclEPI object, like the CclECI object,

also provides access to information about CICS servers which have been

configured in the CICS Transaction Gateway configuration file. The following

C++ sample shows the use of the CclEPI object:

 #include <cicsepi.hpp> // CICS Transaction Gateway EPI headers

 ...

 CclEPI epi; // Initialize CICS Transaction Gateway EPI

 // List all CICS servers in Gateway initialization file

 for (int i=1; i<= EPI.serverCount(); i++)

 cout << EPI.serverName(i) << " "

 << EPI.serverDesc(i) << endl;

136 CICS Transaction Gateway: Programming Guide

To add a 3270 terminal to CICS, a CclTerminal object is created. The CICS

server name used must be configured in the CICS Transaction Gateway

initialization file. To start a transaction on the CICS server a CclSession object

is required to control the session. The required transaction (in this example

the CICS-supplied sign-on transaction CESN) can then be started using the

send method on the CclTerminal object:

Note the use of try and catch blocks to handle any exceptions thrown by the

CICS classes.

EPI call synchronization types

The EPI C++ classes support synchronous (“blocking”), and deferred

synchronous (“polling”) and asynchronous (“callback”) protocols.

In the example above the CclSession object is created with the synchronization

type of Ccl::sync. When this CclSession object is passed as the first parameter

on a CclTerminal send method, a synchronous call is made to CICS. The C++

Client application is then blocked until the reply was received from CICS.

When the reply is received, updates are made to the CclScreen object

according to the 3270 data stream received, then control is returned to the

C++ program.

To make asynchronous calls the CclSession object used on the CclTerminal

send method is created with a synchronization type of Ccl::async. The call is

made to CICS using the CclTerminal send method, but control returns

immediately to the Client application without waiting for a reply from CICS.

The CclTerminal object starts a separate thread which waits for the reply from

CICS. When a reply is received, the handleReply method on the CclSession

object is invoked. To process the reply, the handleReply method should be

overridden in a CclSession subclass:

 try {

 // Connect to CICS server

 CclTerminal terminal("CICS1234");

 // Start CESN transaction on CICS server

 CclSession session(Ccl::sync);

 terminal.send(&session, "CESN");

 ...

 } catch (CclException &exception) {

 cout << "CclClass exception: " << exception.diagnose() << endl;

 }

Chapter 9. Programming in C++ 137

The implementation of the handleReply method can process the screen data

available in the CclScreen object, which will have been updated in line with

the 3270 data stream sent from CICS:

The handleReply method is called for each transmission received from CICS.

Depending on the design of the CICS server program, a CclTerminal send call

may result in one or more replies. The state parameter on the handleReply

method indicates whether the server has finished sending replies:

CclSession::server

indicates that the CICS server program is still running and has further

data to send. The Client application can process the current screen

contents immediately, or simply wait for further replies.

CclSession::client

indicates that the CICS server program is now waiting for a response.

The Client application should process the screen contents and send a

reply.

CclSession::idle

indicates that the CICS server program has completed. The Client

application should process the screen contents and either disconnect

the terminal, or start a further transaction.

Most Client application will want to wait until the CICS server program has

finished sending data (that is, the CclSession/CclTerminal state is client or

idle) before processing the screen. However, some long-running server

programs may send intermediate results or progress information that can

usefully be accessed while the state is still server.

 class MySession : public CclSession {

 public:

 MySession(Ccl::Sync protocol) : CclSession(protocol) {}

 // Override reply handler method

 void handleReply(State state, CclScreen* screen);

 };

 void MySession::handleReply(State state, CclScreen* screen) {

 // Check the state of the session

 switch(state) {

 case CclSession::client:

 case CclSession::idle:

 // Output data from the screen

 for (int i=1; i < screen->fieldCount(); i++) {

 cout << "Field " << i << ": " << screen->field->text();

 screen->setAID(CclScreen::PF3);

 ...

 } // end switch

 }

138 CICS Transaction Gateway: Programming Guide

The implementation of the handleReply method can read and process data

from the CclScreen object, update fields as required, and set the cursor

position and AID key in preparation for the return transmission to CICS. The

Client application main program should invoke further methods (send or

disconnect) on the CclTerminal object to drive the server application:

Note that the handleReply method is run on a separate thread. If the main

Client application program needs to know when the reply has been received,

a message or semaphore could be used to communicate between the

handleReply method and the main program.

To make deferred synchronous calls the CclSession object used on the

CclTerminal send method is created with a synchronization type of

Ccl::dsync. As in the asynchronous case, a call is made to CICS using the

CclTerminal send method and control returns immediately to the Client

application without waiting for a reply from CICS. 3270 screen updates from

CICS must be retrieved later using the poll() method on the Terminal object:

A CICS server transaction may send more than one reply in response to a

CclTerminal send call. More than one CclTerminal poll call may therefore be

 try {

 // Connect to CICS server

 CclTerminal terminal("CICS1234");

 // Create asynchronous session

 MySession session(Ccl::async);

 // Start CESN transaction on CICS server

 terminal.send(&session, "CESN");

 // Replies processed asynchronously in overridden

 // handleReply method

 ...

 } catch (CclException &exception) {

 cout << "CclClass exception: " << exception.diagnose() << endl;

 }

 try {

 // Connect to CICS server

 CclTerminal terminal("CICS1234");

 // Create deferred synchronous session

 MySession session(Ccl::dsync);

 // Start CESN transaction on CICS server

 terminal.send(&session, "CESN");

 ...

 if (terminal.poll())

 // reply processed in handleReply method

 else

 // no reply received yet

 } catch (CclException &exception) {

 cout << "CclClass exception: " << exception.diagnose() << endl;

 }

Chapter 9. Programming in C++ 139

needed to collect all the replies. Use the CclTerminal state method to find out

if further replies are expected. If there are, the value returned will be server.

As in the synchronous and asynchronous cases, the handleReply method can

conveniently be used to encapsulate the code processing the 3270 data

returned from CICS from one or more transmissions.

Sending and receiving data

Accessing fields on CICS 3270 screens

Once a terminal connection to CICS has been established, the CclTerminal,

CclSession, CclScreen and CclField objects are used to navigate through the

screens presented by the CICS server application, reading and updating screen

data as required.

The CclScreen object is created by the CclTerminal object and is obtained via

the screen method on the CclTerminal object. It provides methods for

obtaining general information about the 3270 screen (e.g. cursor position) and

for accessing individual fields (by row/column screen position or by index).

The following example prints out field contents, then ends the CESN

transaction (started above) by returning PF3:

The CclField class provides access to the text and attributes of an individual

3270 field. These can be used in a variety of ways to locate and manipulate

information on a 3270 screen:

 // Get access to the CclScreen object

 CclScreen* screen = terminal.screen();

 for (int i=1; i ≤ screen->fieldCount(); i++) {

 CclField* field = screen->field(i); // get field by index

 if (field->textLength > 0)

 cout << "Field " << i << ": " << field->text();

 }

 // Return PF3 to CICS

 screen->setAID(CclScreen::PF3);

 terminal.send(&session);

 // Disconnect the terminal from CICS

 terminal.disconnect();

140 CICS Transaction Gateway: Programming Guide

Note that the string “Sign-on” in the above sample may need to be changed

to meet local conventions. For example, an AIX server may use the string

“SIGNON”.

Converting BMS maps and using the Map class

A large proportion of existing CICS applications use BMS maps for 3270

screen output. This means that the server application can use data structures

corresponding to named fields in the BMS map rather than handling 3270

data stream directly. The EPI BMS conversion utility uses the information in

the BMS map source to generate classes specific to individual maps, that

allow fields to be accessed by their names, and allow field lengths and

attributes to be known at compile time.

 for (int i=1; i ≤ screen->fieldCount(); i++) {

 CclField* field = screen->field(i); // get field by index

 // Find unprotected (i.e. input) fields

 if (field->inputProt() == CclField::unprotect)

 ...

 // Find fields containing a specific text string

 if (strstr(field->text(), "CICS Sign-on"))

 ...

 // Find red fields

 if (field->foregroundColor() == CclField::red)

 ...

 }

Chapter 9. Programming in C++ 141

The utility generates C++ class definitions and implementations that

applications can use to access the map data as named fields within a map

object. A class is defined for each map, allowing field names and lengths to be

known at compile time. The C++ classes use the CICS EPI base classes to

handle the inbound and outbound 3270 data streams. The generated classes

inherit a base class CclMap that provides general functions required by all

map classes.

Run the CICSBMSC utility on the BMS source as follows:

CICSBMSC <filename>.BMS

See the note at “Making External Presentation Interface Calls from a C++

Client Program” on page 136 for BMS support on Linux.

The utility generates .HPP and .CPP files containing the definition and

implementation of the map classes.

Having used the EPI BMS utility to generate the map class, use the base EPI

classes to reach the required 3270 screens in the usual way. Then use the map

Figure 10. Use of BMS map classes

142 CICS Transaction Gateway: Programming Guide

classes to access fields by their names in the BMS map. The map classes are

validated against the data in the current CclScreen object.

Mapset containing a single map

The mapset listed in Figure 11 contains a simple map, MAPINQ1.

The BMS Conversion Utility generates the C++ class definition (shown in

Figure 12 on page 144) from this mapset. The class name “MAPINQ1Map” is

derived from the map name in the BMS source. The class inherits the CclMap

class.

The class provides these main operations:

1. The constructor MAPINQ1Map invokes the parent constructor, that

validates the map object against the current screen.

2. The method field provides access to fields in the map, using the BMS

source field names (provided as an enumeration within the class).

* cicssda MAPINQ1 -- Wed 2 Aug 14:14:02 1995

MAPINQ1 DFHMSD TYPE=&SYSPARM,MODE=INOUT,LANG=C,STORAGE=AUTO,TIOAPFX=YES

MAPINQ1 DFHMDI SIZE=(24,80),MAPATTS=(COLOR,HILIGHT,VALIDN),LINE=1, X

 COLUMN=1,COLOR=NEUTRAL,HILIGHT=OFF

DTITLE DFHMDF POS=(2,2),LENGTH=5,ATTRB=(PROT,NORM),COLOR=TURQUOISE, X

 CASE=MIXED,INITIAL=’Date:’

DATE DFHMDF POS=(2,9),LENGTH=8,ATTRB=(PROT,BRT),CASE=MIXED

...

PRODNAM DFHMDF POS=(5,24),LENGTH=40,ATTRB=(PROT,BRT),CASE=MIXED

...

APPLID DFHMDF POS=(15,15),LENGTH=8,ATTRB=(PROT,BRT),CASE=MIXED

...

MAPINQ1 DFHMSD TYPE=FINAL

Figure 11. Sample Map Class—BMS Source

Chapter 9. Programming in C++ 143

Using EPI BMS Map Classes

The map classes generated using CICSBMSC can be compiled and built into a

Client application. Note that when building Windows applications using

pre-compiled headers, add #include stdafx.h to the .cpp file generated by

CICSBMSC.

CclEPI, CclTerminal and CclSession objects are used in the normal way to

start a CICS transaction:

//************* CICS Transaction Gateway Classes *************************************

//

// FILE NAME: epiinq.hpp

//

// DESCRIPTION: C++ header for epiinq.bms

// Generated by CICS BMS Conversion Utility - Version 1.0

//

//***

#include <cicsepi.hpp> // CICS Transaction Gateway EPI classes

//---

// MAPINQ1Map class declaration

//---

class MAPINQ1Map : public CclMap {

public:

 enum FieldName {

 DTITLE,

 DATE,

 ...

 PRODNAM,

 ...

 APPLID,

 ...

 };

//-------------- Constructors/Destructors -------------------------------

 MAPINQ1Map(CclScreen* screen);

 ~MAPINQ1Map();

//-------------- Actions --

 CclField* field(FieldName name); // access field by name

...

}; // end class

Figure 12. Sample Map Class—Generated C++ Header

 try {

 // Initialize CICS Transaction Gateway EPI

 CclEPI epi;

 // Connect to CICS server

 CclTerminal terminal("CICS1234");

 // Start transaction on CICS server

 CclSession session(Ccl::sync);

 terminal.send(&session, "EPIC");

144 CICS Transaction Gateway: Programming Guide

In this example the server program uses a BMS map for its first panel, for

which a map class “MAPINQ1Map” has been generated. When the map

object is created, the constructor validates the screen contents with the fields

defined in the map. If validation is successful, fields can then be accessed

using their BMS field names instead of by index or position from the

CclScreen object:

BMS Map objects can also be used within the handleReply method for

asynchronous and deferred synchronous calls.

For validation to succeed, the entire BMS map must be available on the

current screen. A map class cannot therefore be used when some or all of the

BMS map has been overlayed by another map or by individual 3270 fields.

Support for Automatic Transaction Initiation (ATI)

Client applications can control whether ATI transactions are allowed by using

the setATI() and queryATI() methods on the CclTerminal class. The default

setting is for ATIs to be disabled. The following code fragment shows how to

enabled ATIs for a particular terminal:

// Create terminal connection to CICS server

CclTerminal terminal("myserver");

// Enable ATIs

terminal.setATI(CclTerminal::enabled);

The CclTerminal class performs one or more of the following

v Run any outstanding ATIs as soon as a transaction ends

v Call additional programming needed to handle the ATI replies

v Run ATIs before or between client-initiated transactions

depending on whether the call synchronization type is Synchronous,

Asynchronous or Deferred synchronous.

Synchronous

When you call the CclTerminal send() method, any outstanding ATIs

will be run after the client-initiated transaction has completed. The

CclTerminal class will wait for the ATI replies then update the

CclScreen contents as part of the synchronous send() call. If you

 MAPINQ1Map map(terminal.screen());

 CclField* field;

 // Output text from "PRODNAM" field

 field = map.field(MAPINQ1Map::PRODNAM);

 cout << "Product Name: " << field->text() << endl;

 // Output text from "APPLID" field

 field = map.field(MAPINQ1Map::APPLID);

 cout << "Product Name: " << field->text() << endl;

 } catch (CclException &exception) {

 cout << exception.diagnose()<<endl;

 }

Chapter 9. Programming in C++ 145

expect an ATI to occur before or between client-initiated transactions,

you can call the CclTerminal receiveATI() method to wait

synchronously for the ATI.

Asynchronous

When the client application calls the CclTerminal send() method for

an async session, the CclTerminal class starts a separate thread to

handle replies. If ATIs are disabled, this thread finishes when the

CICS transaction is complete. If ATIs are enabled, the reply thread

continues to run between transactions. When the CclTerminal state

becomes idle, any outstanding ATIs are run and ATIs received

subsequently are run immediately. The reply thread is not started

until the first CclTerminal::send() call, so if you expect ATIs to occur

before any client-initiated transactions, you can call the receiveATI()

method to start the reply thread.

Deferred synchronous

After the CclTerminal send() method is called for a dsync session, the

poll() method is used to receive the replies. Outstanding ATIs are

started when the last reply has been received (i.e. on the final poll()

call). You can also call the poll() method to start and receive replies

for ATIs between client-initiated transactions. As the poll() method can

be called before or between client-initiated transactions, the

receiveATI() method is not needed (and is invalid) for deferred

synchronous sessions. For any of the synchronization types you can

provide a handleReply() method by subclassing the CclSession class.

As for client-initiated transactions, this method will be called when

the ATI 3270 data has been received and the CclScreen object updated.

The transID() method on the CclTerminal or CclSession can be called

to identify the ATI.

EPI Security

You can perform security management on servers that support Password

Expiry Management (PEM). See Supported software in the CICS Transaction

Gateway: Administration book for your operating system, for more information

on supported servers and protocols.

To use these features you first must have constructed a CclTerminal object

which is sign-on incapable, in other words it must have a userid and

password (even if they are null). The two methods available are

verifyPassword which checks the userid and password within the terminal

object with the Server Security System, and changePassword which allows

you to change the password at the server. If successful the connection object

password is updated accordingly.

If either call is successful, you are returned a pointer to an internal object

which provides information about the security, a CclSecAttr object. This object

146 CICS Transaction Gateway: Programming Guide

provides access to information such as last verified Date and Time, Expiry

Date and Time and Last access Date and Time. If you query for example last

verified Date, you get back a pointer to an object which allows you to get the

information in various formats. The following is sample code to show the use

of these various objects.

// Terminal object already created called term

CclSecAttr *pAttrblock; // pointer to security attributes

CclSecTime *pDTinfo; // pointer to Date/Time information

try {

 pAttrblock = term->verifyPassword();

 pDTinfo = pAttrblock->lastVerifiedTime();

 cout << "last verified year :" <<pDTinfo->year() << endl;

 cout << "last verified month :" <<pDTinfo->month() << endl;

 cout << "last verified day :" <<pDTinfo->day() << endl;

 cout << "last verified hours :" <<pDTinfo->hours() << endl;

 cout << "last verified mins :" <<pDTinfo->minutes() << endl;

 cout << "last verified secs :" <<pDTinfo->seconds() << endl;

 cout << "last verified 100ths:" <<pDTinfo->hundredths() << endl;

// Use a tm structure to produce a single line text of information

 tm mytime;

 mytime = pDTinfo->get_tm();

 cout << "full info:" << asctime(&mytime) << endl;

}

catch (CclException &ex)

{

// Could check for expired password error and handle if required

 cout << "Exception occurred: " <<ex.diagnose()<< endl;

}

Note that the security attributes and date/time memory are all handled by the

terminal object. If you destroy the terminal object, you destroy the security

information being held by that object.

C++ EPI classes

Table 22 summarizes the C++ EPI classes. For full details of the methods each

class provides, refer to the C++ chapter, in CICS Transaction Gateway:

Programming Reference.

 Table 22. C++ EPI classes.

Object Classname Description

Global Ccl Contains global enumerations.

EPI CclEPI Initializes the EPI. This class also has

methods that obtain information on CICS

servers accessible to the CICS Transaction

Gateway or CICS Universal Client.

Exception CclException Encapsulates error information.

Chapter 9. Programming in C++ 147

Table 22. C++ EPI classes. (continued)

Object Classname Description

Field CclField Supports a single field on a virtual screen

and provides access to field text and

attributes.

Map CclMap

This class provides access to CclField

objects, using BMS map information. The

CICSBMSC utility generates classes derived

from CclMap.

See the note at “Making External

Presentation Interface Calls from a C++

Client Program” on page 136 for BMS

support on Linux.

Screen CclScreen Each terminal (CclTerminal object) has a

virtual screen associated with it. The

CclScreen class contains a collection of

CclField objects and methods to access these

objects. It also has methods for general

screen handling.

SecAttr CclSecAttr Provides information about security

attributes (passwords)

SecTime CclSecTime Provides date and time information

Session CclSession Controls communication with the server in

synchronous, asynchronous and deferred

synchronous modes.

Applications can use CclSession to derive

their own classes to encapsulate specific

CICS transactions.

Terminal CclTerminal Controls a 3270 terminal connection to CICS.

The CclTerminal class handles CICS

conversational, pseudo-conversational, and

ATI transactions. One application can create

many CclTerminal objects.

Compiling and running a C++ Client application

Refer to the sample programs for more information about compiling and

linking programs; see Appendix B, “Sample programs,” on page 197.

Your C++ program source needs #include statements to include either

cicseci.hpp, for the ECI classes, or cicsepi.hpp, for the EPI classes. These files

148 CICS Transaction Gateway: Programming Guide

are in the <install_path>\include subdirectory on Windows or the

<install_path>/ include subdirectory on UNIX and Linux.

Define the following macros on UNIX and Linux operating systems, when

compiling C++ applications that use the CICS C++ libraries.

 Operating system Macro

AIX CICS_AIX

HP-UX CICS_HPUX

Linux CICS_LNX

Solaris CICS_SOL

On HP-UX Itanium® hardware all C++ applications must be compiled with

the -AP flag in order to run successfully with the CICS Transaction Gateway,

for example:

aCC -AP -DCICS_HPUX file.cpp

On Windows operating systems, the CICS Transaction Gateway API DLL is

built using the synchronous model of C++ exception handling which assumes

that external C functions do not throw exceptions. This support is true for

both Microsoft Visual C++ .NET 2003 and Microsoft Visual C++ 2005

compilers.

Problem determination for C++ Client programs

Handling Exceptions

Most class methods could generate an exception. The default exception

handler is found in the handleException method in the CclECI and CclEPI

classes. It is a simple routine which does a C++ throw of a CclException

object. It does not perform any action if an exception occurs within the

destruction of an object. You must not do a throw within a destructor as this

causes unpredictable results.

This routine is suitable for most needs when using synchronization modes of

dsync and sync. For example:

Chapter 9. Programming in C++ 149

|
|
|

|

|
|
|
|
|

You might want to implement your own exception handler, by subclassing the

CclECI or CclEPI class, if you want to handle object destruction exceptions

explicitly.

void CclECI::handleException(CclException except) {

 if (*(except.methodName()) != ’~’) {

 throw(except);

 } else {

// Handle a destructor exception, but ensure that this

// routine just returns

 }

};

Async Exception Handling

You must override the ECI handleException routine by subclassing CclECI if

you are using the async synchronization mode. With async mode a separate

thread controlled by the class library dll is created and an exception can occur

on that thread. If an exception does occur on that thread, the default exception

handler would throw the exception but there is no code in the class library to

trap the throw. For unhandled exceptions, the default action of most

compilers’ runtimes is to terminate the application.

To create a new exception handler you do the following

class MyCclECI : public CclECI {

public:

 void handleException(CclException ex) {

#include <iostream.h>

#include <cicseci.hpp>

void main(void) {

 CclECI *eci;

 eci = CclECI::instance();

 CclFlow flow(Ccl::sync);

 CclBuf buf;

 CclConn conn("CICSOS2","SYSAD","SYSAD");

 buf.setDataLength(80);

 try {

 conn.link(flow,"EC01",&buf);

 cout << (char *)buf.dataArea() << endl;

 }

 catch(CclException &exc) {

 cout << "link failed" << endl;

 cout << "diagnose:" << exc.diagnose() << endl;

 cout << "abend code:" << exc.abendCode() << endl;

 }

};

150 CICS Transaction Gateway: Programming Guide

// Place whatever code you want here, for example set a

 // semaphore, or generate a Window Message

 }

 };

Once you have subclassed the ECI Class, you still can only create one object

of this class for your application, however do not use the instance method,

you must create the object either explicitly e.g.

MyCclECI myeci;

or by using the new operator

MyCclECI *pmyeci;

pmyeci = new MyCclECI;

Chapter 9. Programming in C++ 151

152 CICS Transaction Gateway: Programming Guide

Chapter 10. Programming in COM

This contains information about the external access interfaces specific to COM.

Overview of the programming interface for COM

COM classes are provided for the CICS ECI, EPI, and ESI functions on

Windows. These COM classes are supported only for use with Visual Basic

and VBScript.

Writing COM Client applications

Establishing the working environment

You are provided with Component Object Model (COM) Object Oriented (OO)

support for Client applications in the Windows environment. This includes

the COM runtimes, type libraries, the BMS map utility, and sample code.

The COM libraries: The COM libraries are automation compatible.

Servers:

 The libraries are provided as in-process servers (cclieci.dll and ccliepi.dll).

Registration:

 The COM libraries are registered at installation time. This includes the COM

classes, associated ProgIDs and the type libraries.

Visual Basic will only use the type libraries if you register them to each Visual

Basic Project. It is recommended that you do this to make full use of the

features and performance enhancements of these type libraries. See “Enabling

the use of the COM libraries” on page 154 for details about project

enablement.

VBScript does not use type libraries.

All the COM libraries support automatic registration and de-registration.

Use the Microsoft supplied program REGSVR32 to register or de-register a

server.

For example to register or reregister the ECI COM libraries issue the

command:

REGSVR32 CCLIECI.DLL

© Copyright IBM Corp. 2002, 2008 153

to de-register issue the command

REGSVR32 /U CCLIECI.DLL

Enabling the use of the COM libraries: To set up Visual Basic to use the type

libraries, go to the Visual Basic Project/References... dialog and select either

EPI or ECI depending on your application needs.

If the type libraries are not listed then the COM libraries probably have not

been registered. Refer to the previous section for information on registering

the COM libraries.

COM Libraries: Objects and Apartments: The design of the Client COM

Libraries requires the passing of a COM object to another COM object. For

this to work the relevant COM objects need to be created in the same

apartment. For example, in ECI, to make a link method call on the Connect

COM object a Flow, Buffer and UOW object need to be passed. These must all

be created in the same apartment in order to function properly.

Again with EPI it is important to ensure that the Terminal Session and Map

COM Objects are created in the same apartment. The Terminal is responsible

for creating the Screen object and it will create it in the same apartment as

itself. This Screen object is then responsible for creating field objects and also

creates them in the same apartment as itself. The programmer has control of

the apartment where COM objects are created.

In most cases in Visual Basic you do not need to worry about apartments as

you will be creating single threaded applications.

Object Creation and Interfaces

To talk to COM objects you have to use interfaces. The ECI and EPI COM

libraries provide two interfaces per COM class.

The first interface is called IDispatch and is provided to support old Visual

Basic applications and VBScript. A second interface, a Custom interface, is also

provided for use by Visual Basic. This interface is faster than the IDispatch

interface and it is recommended that you use this interface with Visual Basic.

Each COM class provides an IDispatch interface and a Custom interface.

Visual Basic provides more than one way to create a COM object and select

the interface to talk to that object. To create an object there are the

CreateObject function and the New function. It is recommended that you use

the New function to create objects in Visual Basic.

VBScript is simpler. It provides only one way to create an object, the

CreateObject function, and you must use the IDispatch interface.

154 CICS Transaction Gateway: Programming Guide

The following are some examples of creating COM objects

Set eci = CreateObject("Ccl.ECI")

Set eci = New CcloECI

Set connection = CreateObject("Ccl.Connect")

Set connection = New CcloConn

Note the two ways you can request the object class. When using CreateObject

you specify a string called the Programmatic ID or ProgID for short. When

using the New function you specify the Class name that is registered in the

type library.

When using Visual Basic you have the choice of which interface you want to

use. If you DIM your variable as Object, then you select the IDispatch

interface. If you DIM your variable as the Class name then you will select the

custom interface. To create a terminal object in Visual Basic you would use the

code:

 or you can combine the above into a single statement if you wish

Dim Terminal as New CclOTerminal

When using VBScript, VBScript will automatically select the IDispatch

interface for you. For example to create a terminal Object in VBScript you

would use the code

It is recommended that you:

v choose one interface type or the other.

v do not mix the object interface types in your program. This type of

environment is not supported.

v select the custom interface because it should provide performance

improvements.

No matter which interface you select or how the object is created, you use the

objects identically in your program.

Dim Terminal as CclOTerminal

Set Terminal = New CclOTerminal

Figure 13. Creating a terminal object in Visual Basic

Dim Terminal

Set Terminal = CreateObject("Ccl.Terminal")

Figure 14. Creating a terminal Object in VBScript

Chapter 10. Programming in COM 155

Type Libraries and Visual Basic Intellisense

Type libraries add many useful features to the COM libraries. One of these is

Visual Basic Intellisense. The type libraries provide Visual Basic with

information so that it can help you with code completion. It prompts you

with the format of the method and, where applicable, constants which might

be relevant to method parameters or return values you can test for. For

example if you create a terminal object for Visual Basic as shown in Figure 13

on page 155, when you want to select a method on the terminal object, press

the ’.’ key and you are presented with a list of available methods. Select the

method and press space or open bracket and you are shown the required

parameters. You can also browse the type libraries for reference information

on the ECI and EPI classes by using the Visual Basic Object Browser. Select

either CclECILib for ECI classes reference or CclEPILib for EPI classes

reference information. The type libraries are embedded within the in-process

library files cclieci.dll and ccliepi.dll.

Making External Call Interface calls from a COM Client program

Linking to a CICS server program using Visual Basic

The first step is to declare object variables for the ECI interfaces to be used.

See the COM chapter of CICS Transaction Gateway: Programming Reference for

details of the available interfaces. Declarations are usually made in the

General Declarations section of a Visual Basic program:

The required ECI objects are then instantiated using the Visual Basic New

function. This can be done in the Form_Load subroutine or at some later stage

in response to some user action. Note that a CclOECI object must be created

first.

Details of the CICS server to be used – server name (as configured in the

Gateway initialization file) , userid and password – are supplied via the

Details method on the Connect object. The Buffer object is initialized with

some data to be sent to CICS:

 Dim ECI As CclOECI

 Dim Connect As CclOConn

 Dim Flow As CclOFlow

 Dim Buffer As CclOBuf

 Dim UOW As CclOUOW

 Sub ECILink_Click()

 Set ECI = New CclOECI

 Set Connect = New CclOConn

 Set Flow = New CclOFlow

 Set Buffer = New CclOBuf

156 CICS Transaction Gateway: Programming Guide

Now we are ready to make the call to CICS. The Link method takes as

parameters the Flow object, the name of the CICS server program to be

invoked, the Buffer object and a UOW object. In this example a null variable

is supplied for the UOW parameter, so this call will not be part of a

recoverable Unit Of Work. The contents of the Buffer returned from CICS are

output to a Visual Basic text box “Text1”:

Finally the CICS COM objects are deleted:

This example sends and receives a simple text string. In practice, the Buffer

object would contain more complex data (for example C data structure). For

binary data the Buffer.SetData and Buffer.Data methods are provided to

allow the contents to be accessed as a Byte array.

A typical client application could access CICS through one or more

Connect.Link calls and construct a ’business object’ for use in end-user Basic

programs. One approach to this would be to implement the ’business object’

as a separate COM automation server containing the logic to process the

contents of the CclOBuffer objects.

Handling COMMAREAs in Visual Basic

A CommArea is a block of storage that contains all the information you send

to and receive from the server. Because of this, you must create a CommArea

that is big enough for this information. For example, you might need to send

a 12 byte serial number to the server, but receive a maximum of 20 Kb back

from the server; this means you must create a Commarea of size 20 Kb. To do

this you could code

In the above example, Commarea is given the serial number and the buffer is

increased to the required amount, but the extra area is filled with nulls. This

is important as it ensures that the information transmitted to the server is

kept to a minimum. The Client daemon strips off the excess nulls and only

transmits the 12 bytes to the server.

 Connect.Details "CICSNAME", "sysad", "sysad"

 Buffer.SetString "Hello"

 Connect.Link Flow, "ECIWTO", Buffer, UOW

 Text1.Text = Buffer.String

 Set Connect = Nothing

 Set Flow = Nothing

 Set Buffer = Nothing

 End Sub

Set Buf = new CclOBuf ’ create extensible buffer object

Buf.SetString(serialNo)

Buf.setLength(20480) ’ stores Nulls in the unused area

Chapter 10. Programming in COM 157

Linking to a CICS server program using VBScript

This is similar to the previous section visual basic but the creating of the

objects is different.

It is not necessary to DIM any variables with VBScript but it would be good

programming practice to do so.

To create the objects you use the code:

 If you are not going to use a UOW, you must explicitly set it to ’Nothing’ in

VBScript.

Managing a LUW

ECI Link Calls within a Unit Of Work

Using the UOW COM class, a number of link calls can be made to a CICS

server within a single Unit of Work. Updates to recoverable resources in the

CICS server can then be committed or backed out by the client program as

necessary.

In this example a UOW object is created, and is used as a parameter to the

Connect.Link calls:

 Dim ECI, Connect, Flow, Buffer, UOW

 Set ECI = CreateObject("Ccl.ECI")

 Set Connect = CreateObject("Ccl.Connect")

 Set Flow = CreateObject("Ccl.Flow")

 Set Buffer = CreateObject("Ccl.Buffer")

 Set UOW = Nothing

 Sub ECIStartUOW_Click()

 ’Instantiate CICS ECI objects

 Set Connect = New CclOConn

 Set Flow = New CclOFlow

 Set UOW = New CclOUOW

 Set Buffer = New CclOBuf

 Connect.Details "CICSNAME", "sysad", "sysad"

 End Sub

 Sub ECILink_Click()

 ’Set up the commarea buffer

 Buffer.SetString Text1.Text

 Buffer.SetLength 80

 ’Make the link call as part of a Unit of Work

 Connect.link Flow, "ECITSQ", Buffer, UOW

 End Sub

158 CICS Transaction Gateway: Programming Guide

After a number of link calls have been made, the Commit or Backout

methods on the Ccl UOW interface can be used:

If no UOW object is used (a NULL value is supplied on the Connect.Link

call), each link call becomes a complete unit of work (equivalent to LINK

SYNCONRETURN in the CICS server).

When you use Logical units of work, you must ensure that you backout or

commit active units of work, this is particularly important at program

termination. You can check if a logical unit of work is still active by checking

the uowId method for a non-zero value.

In Visual Basic, if you Dim a UOW variable but never create the object, it is

assumed to a be of value Nothing and the Link call will therefore not

associate a unit of work with the call. In VBScript, however, it is necessary to

ensure explicitly that the variable is set to nothing. To do this code

Set UOW=Nothing

before making your link call.

Retrieving replies from asynchronous requests

The Client daemon ECI COM classes support synchronous (“blocking”) and

deferred synchronous (“polling”) protocols. These classes do not support the

asynchronous calls that are available in the C++ classes.

Reply solicitation calls

Deferred synchronous reply handling: In the examples in section “Linking

to a CICS server program using Visual Basic” on page 156 a Flow object was

used with the default synchronization type of cclSync. When this Flow object

was used as the first parameter on Connect.Link, a synchronous link call was

made to CICS. The Visual Basic program was then blocked until the reply was

received from CICS. When the link call returned the reply from CICS was

immediately available in the Buffer object.

To make a deferred synchronous call you use the SetSyncType method on the

Flow object to set the Flow to cclDSync. When this Flow object is used on a

Connect.Link call, the ECI call is made to CICS, but control returns

immediately to the Visual Basic Program, and the reply from CICS must be

 Sub Commit_Click()

 ’Commit the CICS updates

 UOW.Commit Flow

 End Sub

 Sub Backout_Click()

 ’Backout the CICS updates

 UOW.Backout Flow

 End Sub

Chapter 10. Programming in COM 159

retrieved later using the Poll method on the Flow object:

The call to CICS is now in progress. At a later stage (in response to a user

action, or perhaps when the Visual Basic program has completed some other

task) the Poll method is used on the Flow object to collect the reply from

CICS. Note that the Poll method requires a Buffer object as parameter if reply

data is expected from CICS

ECI security

You can perform security management on servers that support Password

Expiry Management. Refer to the CICS Transaction Gateway: Administration

book for your operating system, for more information on supported servers

and protocols.

To use these features you must first create a connection object and invoke the

Details method to associate a userid and password with the object. The two

methods available are Verify Password that checks the userid and password

within the connection object with the Server Security System, and

ChangePassword that allows you to change the password at the server. If

successful the connection object password is updated accordingly.

If either call is successful, you are returned a CclOSecAttr object. This object

provides access to information such as last verified time, expiry time and last

access time. If, for example, you query the last verified time, you are returned

a CclOSecTime object and you may use the SecTime COM class methods to

obtain the information in various formats. The following code shows the use

of these various objects.

 Sub ECIDsync_Click()

 Set Connect = New CclOConn

 Set Flow = New CclOFlow

 Set Buffer = New CclOBuf

 Connect.Details "CICSNAME", "sysad", "sysad"

 Flow.SetSyncType cclDSync

 Buffer.SetString "Hello"

 Connect.Link Flow, "ECIWTO", Buffer, UOW

 End Sub

 Sub ECIReply_Click()

 If Flow.Poll(Buffer) Then

 Text1.Text = Buffer.String

 Else

 Text1.Text = "No reply from CICS yet"

 End If

 End Sub

160 CICS Transaction Gateway: Programming Guide

ECI CICS Server Information and Connection Status

The ECI COM class provides the names and descriptions of CICS servers

configured in the Gateway initialization file. The Connect COM class provides

methods for querying the availability of a particular CICS server.

Object variables are declared as before, this time we use ECI, Connect and

Flow COM classes:

On user request, the objects are created, and a list of CICS server names and

their descriptions is constructed:

 ’ Connection object already created called conn

on error goto pemhandler

Dim SecAttr as CclOSecAttr

Dim LastVerified as CclOSecTime

Dim lvdate as Date

Set SecAttr = conn.VerifySecurity

Set LastVerified = SecAttr.LastVerifiedTime

lvdate = LastVerified.GetDate

strout = Format(lvdate, "hh:mm:ss, dddd, mmm d yyyy")

Text1.Text = strout

exit sub

pemhandler:

’ handle a expired password here maybe

end sub

 ’Declare object variables

 Dim ECI As CclOECI

 Dim Connect As CclOConn

 Dim Flow As CclOFlow

Chapter 10. Programming in COM 161

A synchronous status call to the first server is made, and the results of the call

displayed in a text field:

ECI COM classes

Table 23 lists the ECI COM classes that the CICS COM servers provide.

Details of the methods these provide are in CICS Transaction Gateway:

Programming Reference.

 Table 23. ECI COM classes

COM class Description

Buffer Buffer used for passing data to and from a CICS server

Connection Controls a connection to a CICS server

ECI Provides access to a list of CICS servers configured in the

Client daemon

Flow Controls a single interaction with CICS server program

SecAttr Provides information about security attributes (passwords)

SecTime Provides date and time information

UOW Coordinates a recoverable set of calls to a CICS server

 Sub ECIServers_Click()

 Dim I as Integer

 ’Instantiate CICS ECI objects

 Set ECI = New CclOECI

 Set Connect = New CclOConn

 Set Flow = New CclOFlow

 ’List CICS server information

 For I = 1 To ECI.ServerCount

 List1.AddItem ECI.ServerName(I)

 List1.AddItem ECI.ServerDesc(I)

 Next

 End Sub

 Connect.Details ECI.ServerName(1)

 Connect.Status Flow

 Text1.Text = Connect.ServerStatusText

162 CICS Transaction Gateway: Programming Guide

Making External Presentation Interface Calls from a COM Client Program

Adding a terminal to CICS

Adding a terminal to CICS using Visual Basic

Note: These classes do not contain any specific support for 3270 data streams

that contain DBCS fields. Data streams with a mixture of DBCS and

SBCS fields are not supported.

The first step is to declare object variables for the EPI interfaces to be used,

usually in the General Declarations section of a Visual Basic program:

The required EPI objects are then instantiated using the Visual Basic New

function. This can be done in the Form_Load subroutine or at a later stage in

response to a user action.

The CclOEPI object must be created first to initialize the Client daemon EPI. A

CclOTerminal object can then be created, and a connection established to a

specific CICS server using the Terminal.Connect method. The first parameter

to this method is the CICS server name (as configured in the Gateway

initialization file), the other parameters specify additional connection details.

See CICS Transaction Gateway: Programming Reference for additional

information.

Adding a terminal to CICS using VBScript

This is again very similar to Visual Basic but differs in how you create the

objects. You do not need to have to Dim your variables but it is good coding

practice to do so. As with Visual basic COM objects do not support DBCS

fields in the 3270 data streams. To create objects you must use the

CreateObject function, for example:

 Dim EPI As CclOEPI

 Dim Terminal As CclOTerminal

 Dim Session As CclOSession

 Dim Screen As CclOScreen

 Dim Field As CclOField

 Sub EPIConnect_Click()

 ’Create Ccl.EPI first to initialize EPI

 Set EPI = New CclOEPI

 ’Create a terminal object and connect to CICS

 Set Terminal = New CclOTerminal

 Terminal.Connect "CICSNAME","",""

 ’Create a session object (defaults to synchronous)

 Set Session = New CclOSession

 End Sub

Chapter 10. Programming in COM 163

In a similar manner, to create a Map object you issue

 Screen objects and Fields Objects are created for you.

Sending and receiving data

Having connected a CclOTerminal object to the required CICS server the

Terminal, Session, Screen and Field COM classes are used to start a

transaction on CICS and navigate through 3270 panels, accessing 3270 fields

as required by the application.

The required CICS transaction is started using its four character transaction

code. Initial transaction data can also be supplied on the Terminal.Start

method, in this example no data is required. To access the 3270 data returned

by CICS, a screen object is obtained from the terminal object, and a variety of

methods can be used to obtain fields from the screen and read and update

text and attributes in the fields:

The CESN transaction is waiting for input from the user, the program could

enter text into some fields and continue the transaction, in this example we

simply end the transaction by sending PF3 to CICS.

 ’Send PF3 back to CICS to end CESN

 Screen.SetAID cclPF3

 Terminal.Send Session

 ’Output the text from a 3270 field

 Set Field = Screen.FieldByIndex(1)

 List1.AddItem Field.Text

 End Sub

Sub EPIConnect_Click()

 ’ Create Ccl.EPI first to initialise EPI

 Set EPI = CreateObject("Ccl.EPI")

 ’ Create a terminal object and connect to CICS

 Set Terminal = CreateObject("Ccl.Terminal")

 Terminal.Connect "CICSNAME","",""

 ’ Create a session object (defaults to synchronous)

 Set Session = CreateObject("Ccl.Session")

 End Sub

Set Map = CreateObject("Ccl.MAP")

 Sub EPIStart_Click()

 ’Start CESN transaction

 Terminal.Start Session, "CESN", ""

 ’Get the screen object

 Set Screen = Terminal.Screen

 ’Output the text from some 3270 fields

 Set Field = Screen.FieldByIndex(5)

 List1.AddItem Field.Text

 Set Field = Screen.FieldByIndex(6)

 List1.AddItem Field.Text

164 CICS Transaction Gateway: Programming Guide

Finally, disconnect the terminal, and then terminate the EPI. After you have

disconnected the terminal it is recommended that you set Session, Terminal

and EPI to Nothing. Disconnect the terminal before setting these objects; you

cannot disconnect a terminal that you have set to Nothing.

EPI call synchronization types

The EPI COM classes support synchronous (“blocking”) and deferred

synchronous (“polling”) protocols. The Visual Basic environment does not

support the asynchronous calls that are available in the C++ classes.

In the previous example a Session object was used with the default

synchronization type of cclSync. When this Session object was used as the first

parameter on Terminal.Start or Terminal.Send, a synchronous link call was

made to CICS. The Visual Basic program was then blocked until the reply was

received from CICS. When the call returned updated screen data from CICS

was immediately available in the Screen object.

To make a deferred synchronous call you use the Session.SetSyncType

method to set the Session to cclDSync. When this Session object is used on a

Terminal.Start or Terminal.Send call, the screen contents are transmitted to

CICS as 3270 data stream, but the method returns immediately. This allows

the Visual Basic program to continue other tasks, including user interactions,

while the CICS server transaction is running. Further 3270 screen updates

from CICS must be retrieved later using the Poll method on the Terminal

object:

The transaction is now in progress in the CICS server. At a later stage (in

response to a user action, or when the Visual Basic program has completed

some other task) the Terminal.PollForReply method is used to collect the

reply from CICS:

 Sub EPIDone_Click()

 Terminal.Disconnect

 ’Delete the EPI COM objects

 Set Field = Nothing

 Set Screen = Nothing

 Set Session = Nothing

 Set Terminal = Nothing

 Set EPI = Nothing

 End Sub

 Sub EPIDSync_Click()

 ’Create a session object (deferred synchronous)

 Set Session = New CclOSession

 Session.SetSyncType cclDSync

 Terminal.Start Session, "CESN", ""

 End Sub

Chapter 10. Programming in COM 165

A CICS server transaction may send more than one reply in response to a

Terminal.Start or Terminal.Send call. More than one Terminal.PollForReply

call may therefore be needed to collect all the replies. Use the Terminal.State

method to find out if further replies are expected. If there are, the value

returned will be cclServer.

Converting BMS maps and using the Map class

Many CICS server programs use Basic Mapping Support (BMS) to implement

their 3270 screen designs. The server programs can then use symbolic names

for the individual screen maps and for the 3270 fields on those maps. If the

BMS source files are available, they can be copied to the Client daemon

development environment and used in the implementation of a Visual Basic

EPI program.

The CICS BMS Conversion Utility (CICSBMSC.EXE) that is provided produces a

Visual Basic definitions file (a .BAS file) from the source BMS file (.BMS file).

This definitions file can then be included in a Visual Basic program, and the

same symbolic names used to identify maps and their fields in the server

program can be used in the client program with the EPI Map COM class.

The /B option should be specified when running the conversion utility to

produce Visual Basic definitions:

 CICSBMSC /B <filename>.BMS

The following example shows how to use the Map COM class to access fields

by their BMS symbolic names:

Sub EPIReply_Click()

 If terminal.State <> cclDiscon And terminal.State <> cclError Then

 If terminal.PollForReply Then

 ’Screen has been updated, output some fields

 Set Screen = Terminal.Screen

 Set Field = Screen.FieldByIndex(1)

 List1.AddItem Field.Text

 Else

 List1.AddItem "No Reply from CICS yet"

 End If

 End If

End Sub

 Dim EPI As CclOEPI

 Dim Terminal As CclOTerminal

 Dim Session As CclOSession

 Dim Screen As CclOScreen

 Dim Map as CclOMap

 Dim Field As CclOField

166 CICS Transaction Gateway: Programming Guide

First the EPI is initialized and a 3270 terminal connection to CICS is started as

in the earlier example:

Then the BMS application is started. This example uses a transaction code

“EPIC” which runs the CICS supplied server program EPIINQ:

At this point the CICS server program has returned the first screen to the

client. This is expected to be a known map “MAPINQ1” so we create a Map

object, and use the Map.Validate method to initialize it and to verify that we

received the expected 3270 screen. Fields can then be accessed using the

Map.FieldByName method:

A more complex application would then enter data into selected fields, set the

required AID key (Enter, Clear, PF or PA key) and navigate through further

screens as required. The client application can mix the use of the Screen COM

class (and its FieldByIndex and FieldByPosition methods) with the use of the

Map COM class.

Support for Automatic Transaction Initiation (ATI)

Client applications can control whether ATI transactions are allowed by using

the setATI and queryATI methods on the Terminal COM class. The default

setting is for ATIs to be disabled. The following code fragment shows how to

enable ATIs for a particular terminal:

 Sub EPIConnect_Click()

 ’Create Ccl.EPI first to initialize EPI

 Set EPI = New CclOEPI

 ’Create a terminal object and connect to CICS

 Set Terminal = New CclOTerminal

 Terminal.Connect "CICSNAME","",""

 ’Create a session object (defaults to synchronous)

 Set Session = New CclOSession

 End Sub

 Sub EPIRunBMS_Click()

 Terminal.Start Session, "EPIC", ""

 Set Screen = Terminal.Screen

 Set Map = New CclOMap

 If (Map.Validate(Screen,MAPINQ1)) Then

 Set Field = Map.FieldByName(MAPINQ1_PRODNAM)

 List1.AddItem Field.Text

 Set Field = Map.FieldByName(MAPINQ1_TIME)

 List1.AddItem Field.Text

 Else

 List1.Text= "Unexpected screen data"

 End If

Chapter 10. Programming in COM 167

The Ccl Terminal class runs any outstanding ATIs as soon as a transaction

ends, and calls Additional programming needed to handle the ATI replies,

and to run ATIs before or between client-initiated transactions, depending on

the call synchronization type used:

Synchronous

When you call the Terminal send method, any outstanding ATIs are

run after the client-initiated transaction has completed. The Terminal

class waits for the ATI replies then updates the CclOScreen object

contents as part of the synchronous send call. If you expect an ATI to

occur before or between client-initiated transactions, call the Ccl

Terminal receiveATI method to wait synchronously for the ATI.

Deferred synchronous

 After the CclTerminal Start or Send method is called for a deferred

synchronous session, the Poll or PollForReply method is used to

receive the replies. Outstanding ATIs are started when the last reply is

received (that is on the final Poll or PollForReply method). You can

also call the Poll or PollForReply method to start and receive replies

for ATIs between client-initiated transactions.

As the Poll or PollForReply methods can be called before or between

client-initiated transactions, the receiveATI method is not needed (and

is invalid) for deferred synchronous sessions.

EPI Security

You can perform security management on servers that support Password

Expiry Management. Refer to the CICS Transaction Gateway: Administration

book for your operating system, for more information on supported servers

and protocols.

To use these features you first must have created a Terminal object and

invoked the SetTerminalDefinition method to associate a userid and

password with the object. The two methods available are VerifyPassword

which checks the userid and password within the terminal object with the

Server Security System, and ChangePassword which allows you to change the

password at the server. If successful, the terminal object password is updated

accordingly.

If either call is successful, you are returned a CclOSecAttr object. This object

provides access to information such as last verified Date and Time, Expiry

Date and Time and Last access Date and Time. If you query for example last

// Create terminal connection to CICS server

Dim terminal as CclOTerminal

Set terminal = new CclOTerminal

terminal.details "MYSERVER","",""

terminal.setATI CclATIEnabled

168 CICS Transaction Gateway: Programming Guide

verified Date, you are returned a CclOSecTime object which allows you to get

the information in various formats. The following shows the use of these

various objects.

EPI CICS Server Information

The EPI COM class provides the names and descriptions of CICS servers

configured in the Gateway initialization file.

An EPI object is created as in the previous examples, and a list of CICS server

names and their descriptions is output to a listbox “List1”:

EPI COM classes

Table 24 on page 170 lists the EPI COM classes that the CICS COM servers

provide. Details of the methods these provide are in CICS Transaction Gateway:

Programming Reference.

 ’ Terminal object already created called term

 on error goto pemhandler

 dim SecAttr as CclOSecAttr

 dim LastVerified as CclOSecTime

 dim lvdate as Date

 set SecAttr = term.VerifyPassword

 set LastVerified = SecAttr.LastVerifiedTime

 lvdate = LastVerified.GetDate

 strout = Format(lvdate, "hh:mm:ss, dddd, mmm d yyyy")

 Text1.Text = strout

 exit sub

 pemhandler:

 ’ handle a expired password here maybe

 end sub

 Sub EPIServers_Click()

 Dim I

 ’Instantiate CICS EPI object

 Set EPI = New CclOEPI

 ’List CICS server information

 For I = 1 To EPI.ServerCount

 List1.AddItem EPI.ServerName(I)

 List1.AddItem EPI.ServerDesc(I)

 Next

Chapter 10. Programming in COM 169

Table 24. EPI COM classes

COM class Description

EPI Initializes and terminates the CICS EPI and provides access to

a list of CICS servers configured in the Client daemon

Field Provides access to a single 3270 field on a screen.

Map Provides access to 3270 fields defined by a CICS server BMS

map

Screen Provides access to a 3270 terminal screen

Session Controls a sequence of 3270 terminal interactions with a CICS

server

Terminal Controls a 3270 terminal connection

Problem determination for COM Client programs

Handling Exceptions

With the ECI and EPI classes there appear to be two ways to check for

problems when invoking methods.

One way could be to use the ErrorWindow method and set it to false, then

check the ExCode and ExCodeText methods after a call to see what the return

codes are. This is not the recommended way to do it and only exists now to

support compatibility with earlier versions for old applications.

The recommended way is to use the Err objects which Visual Basic and

VBScript provide. An Err object contains the information about an error.

Visual Basic supports On Error Goto and On Error Resume features to detect

that an error has occurred. VBScript only supports the On Error Resume Next

feature. If you use On Error Resume Next either in Visual Basic or VBScript,

you must always enter this line before any COM object call that you expect

could return an error. Visual Basic/VBScript might not reset the Err variable

unless you do this.

The type of interface you have selected (you DIM’ed a variable as either

Object or classname) will affect the value contained in the Err.number

property. It is possible to write a generic routine that handles all values in

Err.Number and converts them to the documented ExCode error codes

available. The example code following shows how to achieve this.

To get full advantage of this technique, ensure that you get full information in

the Err object. Issue the following call after creating the ECI or EPI object:

ECI.SetErrorFormat 1

170 CICS Transaction Gateway: Programming Guide

or, for EPI:

EPI.SetErrorFormat 1

Figure 15 shows how to handle errors in Visual Basic.

 Figure 16 on page 172 shows error handling code for VBScript.

Private Sub Command1_Click()

’

’ The following code assumes you have created the

’ required objects first, ECI, Connect, Flow, UOW,

’ Buffer

’

On Error GoTo ErrorHandler

conn.Link flow, "EC01", buf, uow

Exit Sub

ErrorHandler:

’

’ Ok, the Connect call failed

’ Parse the Error Number, this will work regardless of

’ how the ECI objects were Dimmed

’

Dim RealError As CclECIExceptionCodes

RealError = (Err.Number And 65535) - eci.ErrorOffset

If RealError = cclTransaction Then

’

’ Transaction abend, so query the Abend code

’

 AbendCode = flow.AbendCode

 If AbendCode = "AEY7" Then

 MsgBox "Invalid Userid/Password to execute CICS Program", , "CICS ECI Error"

 Else

 MsgBox "Unable to execute EC01, transaction abend:" + AbendCode, , "CICS ECI Error"

 End If

Else

 MsgBox Err.Description, , "CICS ECI Error"

End If

End Sub

Figure 15. Visual Basic exception handling sample

Chapter 10. Programming in COM 171

On Error Resume Next

con.Link flow, "EC01", buf, uow

if Err.Number <> 0 then

’

’ Ok, the Connect call failed

’ Parse the Error Number, this will work regardless of

’ how the ECI objects were Dimmed

’

 RealError = Err.Number And 65535 - eci.ErrorOffset

’

’ 13 = CclTransaction, a transaction abend.

’

 If RealError = 13 Then

’

’ Transaction abend, so query the Abend code

’

 AbendCode = flow.AbendCode

 If AbendCode = "AEY7" Then

 Wscript.Echo "Invalid Userid/Password to execute CICS Program"

 Else

 Wscript.Echo "Unable to execute EC01, transaction abend:", AbendCode

 End If

 Else

 Wscript.Echo Err.Description

 End If

 End If

Figure 16. VBScript exception handling sample

172 CICS Transaction Gateway: Programming Guide

Chapter 11. Request monitoring user exits

Request level monitoring allows a third party application to be called at

significant points in the request flow through the Gateway daemon and

Gateway classes.

The following diagrams show where the request monitoring user exits are

driven depending on the CICS Transaction Gateway configuration. In each

diagram points E1 and E2 show where the exits are driven, and points T1, T2,

T3 and T4 show where time stamps are collected for each request.

© Copyright IBM Corp. 2002, 2008 173

174 CICS Transaction Gateway: Programming Guide

The following set of rules apply when writing request monitoring user exits:

v Exits can be configured to run on the Gateway classes and on the Gateway

daemon independently.

v Multiple exits can be configured to be active at the same time. There is no

defined order in which multiple exits are called.

v Configured exits are loaded on start up and remain active for the life of the

JavaGateway object or Gateway daemon.

v Exits run in-line, so should be coded to have minimum impact on

performance.

v Exits that throw any exceptions or run-time errors are disabled.

v Exits are called for each ECI flow at request entry and response exit.

v Exits are called at shutdown to allow them to release resources and to end

cleanly.

v At call time, exits are aware which exit point is driving the request. Data is

provided to the exit to aid monitoring of the requests.

Chapter 11. Request monitoring user exits 175

v All implementations of CICS Transaction Gateway RequestExit monitoring

classes must implement the RequestExit interface.

v The default constructor can be used to set up any external resources

required by the exits. For example, the sample class

com.ibm.ctg.samples.requestexit.ThreadedMonitor creates a background

thread to reduce the overhead for each monitored request.

Writing a monitoring application to use the exits

A RequestExit object is defined by a class that implements the RequestExit

interface. At runtime a single RequestExit object is created for each configured

request level monitor. Each object receives eventFired() method calls at the

start of the request (E1) and at the end of the reply (E2) for each flow. These

are shown by E1 and E2 on the diagrams. Timestamps are taken during the

flow at T1, T2, T3 and T4 on the diagrams.

v Timestamp T1 (RequestReceived) is generated as a request arrives at the

Gateway daemon or Gateway classes. This data is available when the

request event type is RequestEntry or ResponseExit.

v Timestamp T2 (RequestSent) is generated as the request leaves the Gateway

daemon or Gateway classes. This data is available when the request event

type is ResponseExit.

v Timestamp T3 (ResponseReceived) is generated when the reply arrives back

in the Gateway daemon or Gateway classes. This data is available when the

request event type is ResponseExit.

v Timestamp T4 (ResponseSent) is generated when the reply leaves the

Gateway daemon or Gateway classes. This data is available when the

request event type is ResponseExit.

The RequestExit object exists for the lifetime of the Gateway daemon or

Gateway classes, or until it throws an exception or run-time error. When the

exit is triggered the eventFired() method is called and runs on the same

thread as the caller. When the eventFired() method returns, the thread

continues running as before. Processing performed by the exit on this thread

will impact performance and should be kept to a minimum. An example exit

(com.ibm.ctg.samples.requestexit.ThreadedMonitor.java) is provided to show

how to transfer this processing to a separate thread to reduce the impact on

performance.

Controlling request monitoring user exits dynamically

On distributed platforms, you can use ctgadmin action “rmexit” with option

“command” to send systems management commands to your request

monitoring user exits. This enables you to interact with the request

monitoring user exits to perform tasks like dynamically starting or stopping a

particular user exit.

176 CICS Transaction Gateway: Programming Guide

|

|
|
|
|
|

When you issue a systems management command with a RequestEvent of

“Command”, the eventFired() method is driven for all request monitoring

user exits that are active on the Gateway daemon. The input data is formed of

a single entry in the map, with RequestData key ″CommandData″. The value

associated with this key is a string representing the data provided via the

systems management command.

Sample request monitoring user exits

A simple request monitoring user exit implementation of the RequestExit

interface is in the com.ibm.ctg.samples.requestexit.StdoutMonitor class. The

source code for request monitoring user exits samples is located in

\samples\java\com\ibm\ctg\samples\requestexit.

 Related information

 Request monitoring user exit API information

Correlation points available in the exits

Correlation points are available to tie the flow data available in the exits

between the exits and between flows.

For all flows, the FlowType enumeration is available. The enumeration defines

the type of flow and has methods to determine other key qualities about this

flow. FlowTopology can be used to distinguish between Gateway daemon

flows and flows in the Gateway classes, in both local and remote mode. There

is no access to the underlying ECIRequest object from the exits.

Flow correlators

Individual flows through the Gateway daemon or Gateway classes have a

CtgCorrelator. This correlator is a Java int, increments for each flow, available

at all RequestEvents: RequestEntry to ResponseExit, and wrapped from

Integer.MaxValue (values from -2,147,483,648 to 2,147,483,647). Each Gateway

daemon or JavaGateway object uses independent correlators.

The Gateway daemon or Client application’s JavaGateway object can be

identified if the APPLID and APPLID Qualifier are defined and are available

as CtgApplid and CtgApplidQualifier. These are Java Strings containing 1 to 8

characters.

In three tier (or remote mode) topologies, the CtgCorrelator, CtgApplid and

CtgApplidQualifier of the Client application flow are available in the exits in

the Gateway daemon as ClientCtgCorrelator, ClientCtgApplid and

ClientCtgApplidQualifier respectively.

Chapter 11. Request monitoring user exits 177

|
|
|
|
|
|

For IPIC transactions the origin data is available to associate the flow from a

Java application through to a CICS region.

For EXCI synconreturn flows from the Gateway daemon the CtgCorrelator,

CtgApplid and CtgApplidQualifier is passed to CICS as a LU6.2 style

UOWID. The format of this is a byte array.

CICS Network UOWID is a byte array used by CICS to uniquely identify a

unit of work. The encoding is binary for the integers and EBCDIC for the

characters. The format is shown in the following table.

 Table 25. Format of CICS Network UOWID

Offset Length Description

0 1 Length of UOWID

1 1 Length of Network ID

2 n = 3 to 17 Network ID

2 q = 1 to 8 Network qualifier

2+q 1 Dot = ″.″

3+q u = 1 to 8 UOWID

3+q+u 6 Instance integer

3+q+u 4 CICS Transaction Gateway

Correlator

7+q+u 2 0

9+q+u 2 Sync point count (set to 0)

Access to any user correlation data in the COMMAREA is through the

PayLoad object, which is read only, and only available during the eventFired()

method.

Transaction correlators

For XA transactions, the XID is available, and for EXCI transactions, where the

XID is unknown to CICS, the RRMS URID is also available as the Urid object.

For extended mode ECI transactions the LUW token is available after it has

been set. For example, on all exits except the RequestEntry of the first request

of the transaction.

Data available by FlowType and RequestEvent

For RequestEvent types of RequestEntry and ResponseExit, data is available

from several fields.

178 CICS Transaction Gateway: Programming Guide

|

|
|

The following tables cover the data available for each FlowType. In each table,

Y indicates that the field data is available for a specific flow type, N indicates

that the field data is not available for the specific flow type.

 Table 26. Data for non XA flows at RequestEvent = RequestEntry

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

RequestReceived Y Y Y Y Y

RequestSent

4 N N N N N

ResponseReceived

4 N N N N N

ResponseSent N N N N N

WorkerWaitTime

2 N N N N N

Program N Y Y N N

TranName TpnName

5 N Y Y Y Y

Userid N Y Y Y Y

Server Y Y Y Y Y

GatewayUr l6 Y Y Y Y Y

ClientLocation

2 Y Y Y Y Y

Location

7 Y Y Y Y Y

LUW Token N N Y Y Y

FlowTopology Y Y Y Y Y

OriginData

3 N N N N N

PayLoad N Y Y Y Y

WireSize

2 Y Y Y Y Y

Urid

1 N N N N N

CtgCorrelator Y Y Y Y Y

FlowType Y Y Y Y Y

CtgApplid Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y

ClientCtgCorrelator

8 Y Y Y Y Y

ClientCtgApplid

8 Y Y Y Y Y

ClientCtgApplidQualifier

8 Y Y Y Y Y

CtgReturnCode N N N N N

CicsReturnCode Y N N N N

CicsAbendCode N N N N N

 Table 27. Data for non XA flows at RequestEvent = ResponseExit

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

RequestReceived Y Y Y Y Y

RequestSent

4 Y Y Y Y Y

ResponseReceived

4 Y Y Y Y Y

ResponseSent Y Y Y Y Y

WorkerWaitTime

2 Y Y Y Y Y

Program N Y Y N N

TranName TpnName

5 N Y Y Y Y

Userid N Y Y Y Y

Server Y Y Y Y Y

GatewayUrl

6 Y Y Y Y Y

ClientLocation

2 Y Y Y Y Y

Location

7 Y Y Y Y Y

LUW Token N N Y Y Y

FlowTopology Y Y Y Y Y

OriginData

3 N Y Y Y Y

PayLoad Y Y Y N N

WireSize

2 Y Y Y Y Y

Urid

1 N N N N N

CtgCorrelator Y Y Y Y Y

FlowType Y Y Y Y Y

CtgApplid Y Y Y Y Y

Chapter 11. Request monitoring user exits 179

|
|
|

||

||

Table 27. Data for non XA flows at RequestEvent = ResponseExit (continued)

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

CtgApplidQualifier Y Y Y Y Y

ClientCtgCorrelator

8 Y Y Y Y Y

ClientCtgApplid

8 Y Y Y Y Y

ClientCtgApplidQualifier

8 Y Y Y Y Y

CtgReturnCode Y Y Y Y Y

CicsReturnCode N Y Y N N

CicsAbendCode N Y Y N N

 Table 28. Data for XA flows at RequestEvent = RequestEntry

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

RequestReceived Y Y Y Y Y Y Y Y

RequestSent

4 N N N N N N N N

ResponseReceived

4 N N N N N N N N

ResponseSent N N N N N N N N

WorkerWaitTime

2 N N N N N N N N

Program N N N N N N N N

TranName TpnName

5 N Y N N N N N N

Userid Y Y Y Y Y Y Y Y

Server Y Y Y Y Y Y Y Y

GatewayUr l6 Y Y Y Y Y Y Y Y

ClientLocation

2 Y Y Y Y Y Y Y Y

Location

7 Y Y Y Y Y Y Y Y

LUW Token N N N N N N N N

FlowTopology Y Y Y Y Y Y Y Y

OriginData

3 N N N N N N N N

PayLoad N Y N N N N N N

WireSize

2 Y Y Y Y Y Y Y Y

Xid Y Y Y Y Y Y Y N

Urid

1 N N N N N N N N

CtgCorrelator Y Y Y Y Y Y Y Y

FlowType Y Y Y Y Y Y Y Y

CtgApplid Y Y Y Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y Y Y Y

ClientCtgCorrelator

8 Y Y Y Y Y Y Y Y

ClientCtgApplid

8 Y Y Y Y Y Y Y Y

ClientCtgApplidQualifier

8

Y Y Y Y Y Y Y Y

CtgReturnCode N N N N N N N N

CicsReturnCode N N N N N N N N

CicsAbendCode N N N N N N N N

XaReturnCode N N N N N N N N

 Table 29. Data for XA flows at RequestEvent = ResponseExit

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

RequestReceived Y Y Y Y Y Y Y Y

RequestSent

4 Y Y Y Y Y Y Y Y

ResponseReceived

4 Y Y Y Y Y Y Y Y

ResponseSent Y Y Y Y Y Y Y Y

WorkerWaitTime

2 Y Y Y Y Y Y Y Y

Program N Y N N N N N N

TranName TpnName

5 N Y N N N N N N

Userid Y Y Y Y Y Y Y Y

Server Y Y Y Y Y Y Y Y

GatewayUr l6 Y Y Y Y Y Y Y Y

ClientLocation

2 Y Y Y Y Y Y Y Y

Location

7 Y Y Y Y Y Y Y Y

180 CICS Transaction Gateway: Programming Guide

|

||

||

Table 29. Data for XA flows at RequestEvent = ResponseExit (continued)

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

LUW Token N N N N N N N N

FlowTopology Y Y Y Y Y Y Y Y

OriginData

3 Y Y Y Y Y Y Y Y

PayLoad N Y N N N N N N

WireSize

2 Y Y Y Y Y Y Y Y

Xid Y Y Y Y Y Y Y N

Urid

1 Y N N N N N N N

CtgCorrelator Y Y Y Y Y Y Y Y

FlowType Y Y Y Y Y Y Y Y

CtgApplid Y Y Y Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y Y Y Y

ClientCtgCorrelato

8 Y Y Y Y Y Y Y Y

ClientCtgApplid

8 Y Y Y Y Y Y Y Y

ClientCtgApplidQualifier

8 Y Y Y Y Y Y Y Y

CtgReturnCode Y Y Y Y Y Y Y Y

CicsReturnCode N Y N N N N N N

CicsAbendCode N Y N N N N N N

XaReturnCode Y N Y Y Y Y Y Y

Note:

1 Urid is only available on non-IPIC flows.

Note:

2 ClientLocation, WorkerWaitTime and WireSize are only available

when FlowTopology=Gateway.

Note:

3 OriginData is only available for IPIC flows to CICS servers when

FlowTopology=Gateway.

Note:

4 The timestamps from and to another system are only set if the flow

goes to another system. For EciStatus and for non-IPIC XA flows,

except XaEci, this will only be when FlowTopology=RemoteClient.

Note:

5 TranName and TpnName are mutually exclusive. Either might be set,

but not both.

Note:

6 GatewayUrl is only available when FlowTopology=RemoteClient or

FlowTopology=LocalClient.

Note:

7 Location is only available for FlowTopology=Gateway and

FlowTopology=RemoteClient.

Note:

8 For requests originating from the Java client using classes from CICS

TG V 7.1 or higher and FlowTopology=Gateway.

Chapter 11. Request monitoring user exits 181

|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

182 CICS Transaction Gateway: Programming Guide

Chapter 12. ECI and EPI C exits

This information describes exits you can add to the ECI, EPI, and cicsterm

when using the Client daemon. The exits allow you to influence the

processing of certain application requests and can be used for monitoring

purposes.

The exits must be coded in the C programming language.

Loading the exits

During ECI, EPI, cicsterm, and cicsprnt initialization, CICS Transaction

Gateway attempts to load the objects described in Table 30 from the

<install_path>\bin subdirectory, and to call the corresponding entry points.

 Table 30. ECI and EPI exits

Object name Entry point name

ECI cicsecix CICS_ECIEXITINIT

EPI cicsepix CICS_EPIEXITINIT

cicsterm cicsepix CICS_EPIEXITINIT

cicsprnt cicsepix CICS_EPIEXITINIT

Each entry point is passed a single parameter, a pointer to a structure that

contains a list of addresses. The initialization code of the program puts the

addresses of all the exits into the structure, and then the exits are called at

appropriate points in ECI, EPI, cicsterm, and cicsprnt processing. Because the

exits are entered by using the addresses supplied, you may give the exits any

valid names. In this book, conventional names are used for the exits.

For migration purposes, the CICS Transaction Gateway or CICS Universal

Client first looks for a lower case named object, and then for an upper case

named object. If the objects are not found, no exit processing occurs.

Sample exits and interface definitions

Sample user exit files are supplied in:

v <install_path>\samples\c\exits

See file <install_path>\samples\samples.txt for more details about the

samples, and how to edit them for your system. To install the samples:

1. Make any required changes to the details of servers and aliases

© Copyright IBM Corp. 2002, 2008 183

2. to make files cicsecix and cicsepix:

v On Windows, run ecix1mak.cmd and epix1mak.cmd

v On UNIX and Linux operating systems, run samp.mak
3. copy cicsecix and cicsepix to the <install_path>\bin subdirectory

The following files are also supplied to help with programming the exits.

Unless otherwise specified, the path to the files is <install_path>\samples\c\
exits.

cicsecix.h

A header file in the <install_path>\include directory that defines:

v inputs and outputs for each ECI exit

v the format of the list of addresses for calling ECI exits

v data structures used by ECI exits

v return code values for ECI exits.

cicsepix.h

A header file in the <install_path>\include directory that defines:

v inputs and outputs for each EPI exit

v the format of the list of addresses for calling EPI exits

v data structures used by EPI exits

v return code values for EPI exits.

ecix1.c A template that you can use to write your own ECI user exits. It does

not perform any actions if you compile it.

epix1.c

A template that you can use to write your own EPI user exits. It does

not perform any actions if you compile it.

Writing your own user exits

Follow these rules:

v Do not make EPI or ECI calls from the exit.

v To minimize the impact on performance, keep executable code to a

minimum.

v Ensure that all your exit code is re-entrant and thread-safe.

v Name the primary entry points as follows:

ECI

CICS_ECIEXITINIT

EPI, cicsterm, and cicsprnt

CICS_EPIEXITINIT

184 CICS Transaction Gateway: Programming Guide

You may change the names of the actual exits; do not change the parameter

lists.

v Ensure that your user exit programs contain valid entry points for all of the

user exit functions, apart from the following:

– CICS_EciSetProgramAlias is optional.

– Include either CICS_EpiTermIdExit or CICS_EpiTermIdInfoExit. New

DLLs should use CICS_EpiTermIdInfoExit.

– Include either CICS_EPIStartTranExit or

CICS_EPIStartTranExtendedExit. New DLLs should use

CICS_EPIStartTranExtendedExit.

If a required exit is not included, the exits will not load.

To use the ECI exits, you supply a CICS_ECIEXITINIT function in a DLL

called cicsecix .dll (cicsecix.a on UNIX and Linux operating systems).

To use the EPI exits, you supply a CICS_EPIEXITINIT function in a DLL

called cicsepix.dll (cicsepix.a on UNIX and Linux operating systems).

The CICS_ECIEXITINIT and CICS_EPIEXITINIT functions each set an ExitList

structure to point to the addresses of all the exit functions contained in the

exit object. For example, the sample CICS_EPIEXITINIT is as follows:

void CICSEXIT CICS_EPIEXITINIT(CICS_EpiExitList_t *ExitList)

{

 ExitList->InitializeExit = &CICS_EpiInitializeExit;

 ExitList->TerminateExit = &CICS_EpiTerminateExit;

 ExitList->AddTerminalExit = &CICS_EpiAddTerminalExit;

 ExitList->StartTranExit = &CICS_EpiStartTranExit;

 ExitList->ReplyExit = &CICS_EpiReplyExit;

 ExitList->DelTerminalExit = &CICS_EpiDelTerminalExit;

 ExitList->GetEventExit = &CICS_EpiGetEventExit;

 ExitList->TranFailedExit = &CICS_EpiTranFailedExit;

 ExitList->SystemIdExit = &CICS_EpiSystemIdExit;

 ExitList->TermIdExit = &CICS_EpiTermIdExit;

 ExitList->TermIdInfoExit = &CICS_EpiTermIdInfoExit;

 ExitList->StartTranExtendedExit = &CICS_EpiStartTranExtendedExit;

}

As the exits are entered by using the addresses supplied, you can give them

any name you want, as long as their function signature is exactly the same as

the CICS_Eci* or CICS_Epi* functions.

InitializeExit is passed a version number of X’FF000000’ when driven by

cicsterm or cicsprnt. This enables user programs to be able to differentiate

between cicsterm and cicsprnt user exits, and EPI user exits if they wish to do

so.

Chapter 12. ECI and EPI C exits 185

Diagnostic information

The Client API trace shows the input parameters to the exits immediately

before they are called, and the output of the exit when the exit returns. A user

exit active flag of 0 in the trace means that the exits have failed to activate,

due to a missing required exit. This information is also shown in a log

message. See “Writing your own user exits” on page 184 for information

about required exits.

CICS tracing is not available for use within the exit.

EPI user exits

The following describes the EPI exits that are available and how they affect

the EPI, cicsterm, and cicsprnt behavior is described.

CICS_EpiInitializeExit

EPI: This EPI exit does not affect the running of the calling EPI program,

but it does allow the user to switch the user exits on or off for the

process that calls it. It is called once per process that uses the EPI. It is

called before any other EPI calls take place, and is called at the end of

a successful CICS_EpiInitialize.

cicsterm:

This exit is called once only for each cicsterm session that is created,

because each cicsterm runs in a separate process. The version number

passed is X’FF000000’.

CICS_EpiTerminateExit

EPI: Called by CICS_EpiTerminate, this is always the last EPI call in a

particular process. It does not affect the running of the calling EPI

program. It is called after checking that the EPI was initialized, and

that there is not an active notify thread, but just before EPI is actually

terminated. The EPI exit DLL is unloaded immediately following the

user exit call.

cicsterm:

Only called once during cicsterm termination.

CICS_EpiAddTerminalExit

EPI: Allows the user to select a server, change the server parameters

passed to the EPI call, and refuse to add a terminal to a server. This

all happens from within the EPI call. The EPI program subsequently

refers to the server by an index number, therefore the program does

not need to know what server it is actually connected to. If the user

exit refuses to connect a server, then CICS_EpiSystemIDExit is not

called (see below for further details). CICS_EpiAddTerminalExit is

186 CICS Transaction Gateway: Programming Guide

called after CICS_EpiAddTerminal or CICS_EpiAddExTerminal has

verified that the EPI has been successfully initialized, and that there is

a free terminal index. It is called before the CICS_EpiAddTerminal or

CICS_EpiAddExTerminal call actually sends the terminal definition to

the server.

cicsterm:

The /s or /r parameters of cicsterm allow the user to specify that the

CICS Transaction Gateway can connect to:

v The first server defined in the CICS Transaction Gateway

configuration file.

v A server chosen by the user from a list of available servers

v A server specified by the /s or /r parameter.

CICS_EpiAddTerminalExit receives the system name as a parameter,

and can specify a different server if required, or reject the server and

cause the terminal emulator to terminate. If AddTerminalExit rejects

the install, cicsterm displays an error to the effect that the server is

unavailable.

CICS_EpiSystemIdExit

EPI: Allows the user to re-select a server if a CICS_EpiAddTerminal or

CICS_EpiAddExTerminal call fails. This user exit is not called if the

exit itself causes the failure. If the exit returns CICS_EXIT_OK,

CICS_EpiAddTerminal or CICS_EpiAddExTerminal tries to add the

terminal again. The server parameters can be changed by this exit

between retries.

 CICS_EpiSystemIdExit can be called asynchronously or

synchronously by EPI programs. CICS_EpiSystemIdExit can be

presented with any of the following:

v A CICS_EPI_ERR_SYSTEM error, meaning the server is unknown

v A CICS_EPI_ERR_SERVER_DOWN error, meaning the server has

failed

v A CICS_EPI_ERR_SECURITY error, for a security failure

v A CICS_EPI_ERR_FAILED error for any other type of failure.

It is also passed a parameter that is the same as the cics_syserr_t data

structure cause field. This value further specifies the error and is a

value specific to the operating environment

cicsterm:

If a cicsterm terminal add call fails due to the Client daemon not

having enough sessions free, SystemIdExit is called with

CICS_EPI_ERR_FAILED as the primary reason code and 7046 as the

Chapter 12. ECI and EPI C exits 187

secondary reason code indicating a resource shortage. In all other

cases of CICS_EPI_ERR_FAILED, cicsterm passes a secondary reason

code of 0.

 If no user exits are active, then cicsterm retries a terminal install if it

fails due to there not being enough available sessions. (This allows

terminals to wait for free sessions before being installed.) If there are

user exits active, any retry behavior is controlled completely by the

exit.

CICS_EpiTermIdExit

EPI: Allows the user to know what EPI Termid an added terminal is given.

This is only called after a terminal has been successfully installed on a

server. It does not affect the running of the EPI program. EPI Termid

numbers are local to each process the EPI program runs under.

cicsterm:

As only one cicsterm runs per process, the Termid number is always

set to 1.

CICS_EpiTermIdInfoExit

EPI: Allows the user to know details about a terminal. This is called after a

terminal has been successfully installed on a server.

cicsterm:

As only one cicsterm runs per process, the Termid number is always

set to 1.

CICS_EpiDelTerminalExit

EPI: Is called when CICS_EpiDelTerminal is issued. It does not affect the

running of the EPI program.

cicsterm:

As only one cicsterm runs per process, the Termid number is always

set to 1. It is called just before the CICS_EpiTerminateExit when the

terminal is ended. When the server fails the

CICS_EpiAddTerminalExit is called again when it is restarted.

However the CICS_EpiDelTerminalExit is not called when the server

fails.

CICS_EpiStartTranExtendedExit/CICS_EpiStartTranExit

EPI: Allows a user to see that a transaction has been started, and to see the

Transid, 3270 data, and Termid (CICS_EpiStartTranExtendedExit

only) sent to it. It does not affect the running of the EPI program.

CICS_EpiStartTranExtendedExit/CICS_EpiStartTranExit is called after

the EPI state has been verified, and just before the request to start the

transaction is sent to the Client daemon.

188 CICS Transaction Gateway: Programming Guide

Note that a pseudo-conversational transaction causes the exit to be

called for each actual transaction.

cicsterm:

If a non-ATI transaction is being started, the exit is called, sending a

blank in the Transid field and the TIOA (terminal input output area)

for the Data field. As only one cicsterm runs per process, the Termid

number is always set to 1. The Transid is either the first four

characters of the TIOA data, or follows a 3270 Set Buffer Address

(SBA) command (which begins X’11’). In the latter case, it starts on the

4th byte of the TIOA (as a SBA command takes up a total of three

bytes).

 CICS_EpiStartTranExtendedExit/CICS_EpiStartTranExit is not driven

for ATI transactions. However pseudo-conversational transactions

drive the exit. In the case of pseudo-conversational transactions, the

transaction id is put in the transid parameter block and the TIOA

passed in the data block does not contain the transaction id.

StartTranExtendedExit is not called as a result of an EXEC CICS

RETURN TRANSIDname IMMEDIATE command issued by an

application from a cicsterm session.

CICS_EpiReplyExit

EPI: Allows the user to see when an application sends a data reply to

CICS. It does not affect the running of the EPI program.

cicsterm:

Activated when the cicsterm is sending data to CICS and a transaction

is currently active. The Termid number is always set to 1. The

terminal TIOA is passed to ReplyExit.

 ReplyExit is not called as a result of an EXEC CICS RETURN

TRANSIDname IMMEDIATE command issued by an application from

a cicsterm session.

The CICS_EpiGetEventExit and CICS_EpiTranFailedExit exits are called only

for the EPI and not for cicsterm and cicsprnt.

Java request monitoring exits

These exits are only available on the CICS Transaction Gateway.

Online programming reference information is provided for the Java classes

and interfaces provided with CICS Transaction Gateway.

The reference information is in HTML format and is generated using the

Javadoc tool provided with the JDK.

Chapter 12. ECI and EPI C exits 189

No CICS TG API calls must be made from the exit program.

See the README file for the latest information on using the programming

reference information.

 Related information

 Request monitoring user exit API information

190 CICS Transaction Gateway: Programming Guide

Appendix A. ECI extensions that are environment-
dependent

This information describes extensions to the ECI that are supported only in

certain environments.

Call type extensions

The following call types are for asynchronous calls.

For more information about the program link calls, see Table 31 on page 194,

and ECI_ASYNC call type in the C and Cobol chapter of CICS Transaction

Gateway: Programming Reference.

For more information about the status information calls, see Table 31 on page

194, and ECI_STATE_ASYNC call type in CICS Transaction Gateway:

Programming Reference.

Asynchronous program link call, with notification by message

(ECI_ASYNC_NOTIFY_MSG)

This call type is available only for programs running on Windows.

The calling application gets control back when the ECI accepts the request.

Note that this does not indicate that the program has started to run, merely

that the parameters have been validated. The request might be queued for

later processing.

The ECI sends a notification message to the specified window when the

response is available. (For details of the message format, see “Reply message

formats” on page 194.) On receipt of this notification, the calling application

should use ECI_GET_SPECIFIC_REPLY to receive the actual response. The

ECI_GET_REPLY call type is deprecated.

The following fields are required parameters for notification by message:

v eci_async_notify.window_handle

v eci_message_id indicates the message type to be used in the notification

process.

eci_message_qualifier can be used as an input to provide a user-defined

name for the call. It is returned as part of the notification message for the

Windows environment.

© Copyright IBM Corp. 2002, 2008 191

Asynchronous program link call, with notification by semaphore

(ECI_ASYNC_NOTIFY_SEM)

This call type is available only for programs running on Windows.

The calling application gets control back when the ECI accepts the request.

Note that this does not indicate that the program has started to run, merely

that the parameters have been validated. The request might be queued for

later processing.

The ECI posts the specified semaphore when the response is available. On

receipt of this notification, the calling application should use

ECI_GET_SPECIFIC_REPLY to receive the actual response.

eci_message_qualifier can be used as an input to provide a user-defined

name for the call.

The following field is a required parameter for notification by semaphore:

v eci_async_notify.sem_handle refers to the semaphore.

Asynchronous status call, with notification by message

(ECI_STATE_ASYNC_MSG)

This call type is available only for programs running on Windows.

eci_message_qualifier can be used as an input to provide a user-defined

name for the call.

The ECI sends a notification message to the specified window when the

response is available. (For details of the message format, see “Reply message

formats” on page 194.) On receipt of this notification, the calling application

should use ECI_GET_SPECIFIC_REPLY to receive the actual response.

For details of the additional parameters relating to notification by message,

see the description of the ECI_ASYNC_NOTIFY_MSG call type.

Asynchronous status call, with notification by semaphore

(ECI_STATE_ASYNC_SEM)

This call type is available only for programs running on Windows.

eci_message_qualifier can be used as an input to provide a user-defined

name for the call.

The ECI posts the specified semaphore when the response is available. On

receipt of this notification, the calling application should use

ECI_GET_SPECIFIC_REPLY to receive the actual response.

The following field is a required parameter for notification by semaphore:

192 CICS Transaction Gateway: Programming Guide

v eci_async_notify.sem_handle refers to the semaphore.

Fields to support ECI extensions

The following fields in the ECI parameter block are to support

environment-dependent extensions.

eci_async_notify.window_handle

(Windows environment, ECI_ASYNC_NOTIFY_MSG and

ECI_STATE_ASYNC_MSG call types)

 The handle of the window to which the reply message will be posted.

The ECI uses this field as input only.

Note: eci_window_handle is a synonym for this parameter.

eci_async_notify.sem_handle

(Windows environment, ECI_ASYNC_NOTIFY_SEM and

ECI_STATE_ASYNC_SEM call types)

 Windows applications should pass an event object handle.

The ECI uses this field as input only.

eci_async_notify.win_fields.hwnd

 The handle of the Windows window to which the reply message will

be posted.

The ECI uses this field as input only.

eci_async_notify.win_fields.hinstance

 The Windows hInstance of the calling program as supplied during

program initialization.

The ECI uses this field as input only.

eci_sync_wait.hwnd

 The handle of the window that is to be disabled during the

synchronous call.

The ECI uses this field as input only.

eci_message_id

(Windows environment, ECI_ASYNC_NOTIFY_MSG and

ECI_STATE_ASYNC_MSG call types)

 The message identifier to be used for posting the reply message to the

window specified in the relevant window handle.

The ECI uses this field as input only.

Appendix A. ECI extensions that are environment-dependent 193

Reply message formats

When an application makes an asynchronous call requesting notification by

message, the ECI returns the result in a message to a window using the

specified window handle and message identifier.

The message is divided into two parameters, as follows:

wParam

High-order 16 bits

Specified message qualifier

Low-order 16 bits

Return code

lParam

4-character abend code, if applicable

ECI return notification

 Table 31. CICS_ExternalCall return codes — environment-dependent extensions

Return code Meaning

ECI_ERR_NULL_WIN_HANDLE An asynchronous call was specified with

the window handle set to 0.

ECI_ERR_NULL_MESSAGE_ID An asynchronous call was specified with

the message identifier set to 0.

ECI_ERR_NULL_SEM_HANDLE A null semaphore handle was passed

when a valid handle was required.

Summary of input parameter requirements

Table 32 on page 195 shows the input parameters for an ECI call, and, for

each call type, whether the parameters are required (R), optional (O), or not

applicable (-). Where a parameter is shown as optional or not-applicable an

initial field setting of nulls is recommended. An asterisk (*) immediately

following an R means that further details regarding applicability are given

under the description of the parameter.

The following abbreviations are used in the Parameter column:

AN async_notify

WF win_fields

SW sync_wait

194 CICS Transaction Gateway: Programming Guide

Also, all named parameters have an eci_ prefix. Thus AN.WF.hwnd represents

the eci_async_notify.win_fields.hwnd parameter.

The following 3-character abbreviations are used for the call types in the

column headings of the table:

ANM ECI_ASYNC_NOTIFY_MSG

ANS ECI_ASYNC_NOTIFY_SEM

SAM ECI_STATE_ASYNC_MSG

SAS ECI_STATE_ASYNC_SEM

SYN ECI_SYNC

SSN ECI_STATE_SYNC

 Table 32. Input parameters for CICS_ExternalCall — environment-dependent

extensions

Parameter, eci_ ANM ANS SAM SAS SYN SSN

call_type R R R R R R

program_name R* R* - - R* -

userid R R - - R -

password R R - - R -

transid O O - - O -

commarea O O R* R* O R*

commarea_length O O R* R* O R*

timeout O O O O O O

extend_mode R R R R R R

AN.window_handle R* - R* - - -

AN.sem_handle - R - R - -

AN.WF.hwnd R* - R* - - -

AN.WF.hinstance R* - R* - - -

SW.hwnd - - - - R* R*

message_id R - R - - -

message_qualifier O O O O O O

luw_token R R R* R* R R*

version O O O O O O

system_name O O O O O O

Appendix A. ECI extensions that are environment-dependent 195

196 CICS Transaction Gateway: Programming Guide

Appendix B. Sample programs

Samples are supplied in subdirectories of the <install_path>\samples

directory. See file samples.txt, in the <install_path>\samples directory, for

details, including compilation instructions and information on compiler

considerations.

Different levels of sample are provided. These include

v A simple sample to allow you to test that the CICS Transaction Gateway is

functioning and to give you a feel for the basic requirements of a Client

application.

v More complex samples that demonstrate advanced API features, and

provide a more realistic example of a Client application.

As far as possible the sample code adheres to the language standards, for

example, ANSI C. The samples are all driven from the command line to avoid

any dependence on platform-specific GUI code.

© Copyright IBM Corp. 2002, 2008 197

198 CICS Transaction Gateway: Programming Guide

Appendix C. Return codes from the ctgadmin command

The ctgadmin command can be invoked through a script. The return codes

listed in this information are for errors that can be dealt with by the user.

Return codes not listed below indicate an internal processing error, and are

used by the service organization in the event of a persistent problem.

0 The command completed successfully, or help was requested

1 The product is not correctly installed

2 Failure reading registry key

3 Failure writing registry key

4 Java not found on system

11 Java Version not supported

13 The product is not correctly installed; ctgadmin.jar cannot be located

14 Operating system not supported

100 Command failed due to bad parameter specification

101 Failure communicating with the CICS Transaction Gateway

102 Attempt to connect on non admin port

104 Failure to locate messages file

© Copyright IBM Corp. 2002, 2008 199

200 CICS Transaction Gateway: Programming Guide

The product library and related literature

This information lists books on the CICS Transaction Gateway, and related

topics.

CICS Transaction Gateway books

v CICS Transaction Gateway: Windows Administration, SC34-6960-00

This book describes the administration of the CICS Transaction Gateway for

Windows.

v CICS Transaction Gateway: UNIX and Linux Administration, SC34-6959-00

This book describes the administration of the CICS Transaction Gateway for

UNIX and Linux.

v CICS Universal Client: Windows Administration, SC34-6963-00

This book describes the administration of the CICS Transaction Gateway for

Windows.

v CICS Universal Client: UNIX and Linux Administration, SC34-6962-00

This book describes the administration of the CICS Transaction Gateway for

the Linux operating system.

v CICS Transaction Gateway: z/OS Administration, SC34-6961-00

This book describes the administration of the CICS Transaction Gateway for

z/OS.

v CICS Transaction Gateway: Messages, SC34-6964-00

This online book lists and explains the error messages that can be generated

by the CICS Transaction Gateway.

v CICS Transaction Gateway: Programming Reference, SC34-6966-00

This book provides information on the APIs of the programming languages

supported by the CICS Transaction Gateway.

Additional HTML pages contain JAVA programming reference information.

v CICS Transaction Gateway: Programming Guide, SC34-6965-00

This introduction to programming for the CICS Transaction Gateway

provides the information that you need to allow user applications to use

CICS facilities in a client/server environment.

© Copyright IBM Corp. 2002, 2008 201

Sample configuration documents

Several sample configuration documents are available in portable document

format (PDF). These documents give step-by-step guidance for configuring

CICS Transaction Gateway for communication with CICS servers, using

various protocols. They provide detailed instructions that extend the

information in the CICS Transaction Gateway library.

Visit the following Web site:

www.ibm.com/software/cics/ctg

and follow the Library link.

Redbooks

The following International Technical Support Organization (ITSO) Redbook

publication contains many examples of client/server configurations:

v CICS Transaction Gateway V5 - The WebSphere Connector for CICS, SG24-6133

v Revealed! Architecting Web Access to CICS, SG24-5466

v Enterprise JavaBeans for z/OS and OS/390® CICS Transaction Server V2.2,

SG24-6284

v Java Connectors for CICS: Featuring the J2EE Connector Architecture, SG24-6401.

This book provides information on developing J2EE applications.

v Systems Programmer’s Guide to Resource Recovery Services (RRS),

SG24-6980-00. This book provides information on using RRS in various

scenarios.

v Communications Server for z/OS V1R2 TCP/IP Implementation Guide,

SG24-6517-00. This book provides information on using Communications

Server for z/OS V1R2, including load balancing.

v Redpaper: Transactions in J2EE, REDP-3659-00. This redpaper provides a

discussion of transactions in the J2EE environment, including one- and XA

transactions.

You can obtain ITSO Redbooks from a number of sources. For the latest

information, see:

www.ibm.com/redbooks/

Other Useful Books

CICS Transaction Server publications

CICS Transaction Server for z/OS RACF Security Guide, SC34-6249

202 CICS Transaction Gateway: Programming Guide

http://www.ibm.com/software/cics/ctg
http://www.ibm.com/redbooks/

CICS interproduct communication

The following books describe the intercommunication facilities of the CICS

server products:

v CICS Family: Interproduct Communication, SC34-6267

v CICS Transaction Server for Windows V5.0 Intercommunication, SC34-6209

v CICS Transaction Server for z/OS CICS External Interfaces Guide, SC34-6449

v CICS Transaction Server for z/OS: Intercommunication Guide, SC34-6448

v CICS/VSE 2.3: Intercommunication Guide, SC33-0701

v CICS Transaction Server for iSeries V5R2: Intercommunication, SC41-5456

v TXSeries 5.1: CICS Intercommunication Guide, SC09-4462

The first book above is a CICS family book containing a platform-independent

overview of CICS interproduct communication.

CICS problem determination books

The following books describe the problem determination facilities of the CICS

server products:

v Transaction Server for Windows V5.0: Problem Determination, GC34-6210

v CICS Transaction Server for z/OS V3.1 CICS Problem Determination Guide,

SC34-6441

v CICS/VSE 2.3 Problem Determination Guide, SC33-0716

v CICS Transaction Server for iSeries V5R2: Problem Determination, SC41-5453

v TXSeries V5.1: CICS Problem Determination Guide, SC09-4465

You can find information on CICS products at the following Web site:

www.ibm.com/software/cics/ctg

Microsoft Windows publications

See this Web site:

www.microsoft.com/windows

APPC-related publications

IBM products

IBM Communications Server

See this Web page:

www.ibm.com/software/network/commserver/library

IBM Personal Communications

See this Web page:

www.ibm.com/software/network/pcomm/library

The product library and related literature 203

http://www.ibm.com/software/cics/ctg
http://www.microsoft.com/windows
http://www.ibm.com/software/network/commserver/library
http://www.ibm.com/software/network/pcomm/library

Microsoft products

See this page Web:

http://www.microsoft.com/hiserver/techinfo/productdoc/default.mspx

Systems Network Architecture (SNA)

v SNA Formats, GA27-3136

v Systems Network Architecture Technical Overview, GC30-3073

v Guide to SNA over TCP/IP, SC31-6527

Obtaining books from IBM

For information on books you can download, visit our Web site at:

www.ibm.com/software/cics/ctg

and follow the Library link.

204 CICS Transaction Gateway: Programming Guide

http://www.microsoft.com/hiserver/techinfo/productdoc/default.mspx
http://www.ibm.com/software/cics/ctg

Accessibility features for CICS Transaction Gateway

Accessibility features help users who have a physical disability, such as

restricted mobility or limited vision, to use information technology products

successfully. The CICS Transaction Gateway supports keyboard-only

operation. Topics on the following pages give details of accessibility features.

Visit the IBM Accessibility Center for more information about IBM’s

commitment to accessibility.

Documentation

See the Eclipse information center for an HTML version of the documentation.

Starting the Gateway daemon

You can start the Gateway daemon from a command prompt using a screen

reader.

In some Telnet sessions, the screen reader might reread CICS Transaction

Gateway log output or the command prompt after the CICS Transaction

Gateway has started. This behavior is expected, and does not mean that the

CICS Transaction Gateway has failed to start.

To determine if the CICS Transaction Gateway started correctly, check for the

message:

 ’CTG6512I CICS Transaction Gateway initialization complete’.

If the CICS Transaction Gateway did not start successfully, this message is

produced:

 ’CTG6513E CICS Transaction Gateway failed to initialize’.

Setting EPITerminal properties programmatically

The EPITerminal terminal properties sheet is not accessible. To set properties

programmatically, use the getTerminal() method of the EPITerminal object and

cast it to a Terminal object. For example, if epiTerm is an EPITerminal object,

code something like the following:

Terminal term = (Terminal)epiTerm.getTerminal();

You can then use methods on the Terminal object to set these properties. To

set the name for a CICS server named YOURSERV, code the following:

© Copyright IBM Corp. 2002, 2008 205

|

|
|

|
|
|
|

|
|

|

|
|

|

|

http://www.ibm.com/able

term.setServerName("YOURSERV");

See the Javadoc supplied with the product for full details of these setter

methods.

cicsterm

Although cicsterm is accessible, it relies on the application that is being

processed to define an accessible 3270 screen.

The bottom row of cicsterm contains status information. The following list

shows this information, as it appears from left to right:

Status For example, 1B is displayed while cicsterm is connecting to a server.

Displayed at columns 1 – 3.

Terminal name

Also referred to as LU Name. Columns 4 – 7.

Action

For example, X-System, indicating that you cannot enter text in the

terminal window because cicsterm is waiting for a response from the

server. Columns 9 – 16.

Error number

Errors in the form CCLNNNN, relating to the CICS Transaction

Gateway. Columns 17 – 24.

Server name

The server to which cicsterm is connected. Columns 27 – 35.

Upper case

An up arrow is displayed when the Shift key is pressed. Column 42.

Caps Lock

A capital A is displayed when Caps Lock is on. Column 43.

Insert on

The caret symbol (^) is displayed if text will be inserted, rather than

overwriting existing text. If you have difficulty seeing the caret,

change the font face and size, or use a screen magnifier to increase the

size of the status line. Column 52.

Cursor position

The cursor position, in the form ROW/COLUMN, where ROW is a

two-digit number, and COLUMN a three-digit number. The top left of

the screen is 01/001. Column 75–80.

Note: You might need to change the default behavior of your screen

reader if it reads only the last digit of the cursor position.

Customize your screen reader to specify that columns 75–80 of

206 CICS Transaction Gateway: Programming Guide

the status row are to be treated as one field. This will cause the

full area to be read when any digit changes.

The cicsterm -? command

After issuing the cicsterm -? command, use the up arrow key to move from

the OK button to the list of messages. Use the up and down arrow keys to

move through the messages. Press Tab and then Enter when done.

Accessibility features for CICS Transaction Gateway 207

208 CICS Transaction Gateway: Programming Guide

Glossary

This glossary defines special terms used in the CICS Transaction Gateway

library.

3270 emulation

The use of software that enables a client to emulate an IBM 3270

display station or printer, and to use the functions of an IBM host

system.

abnormal end of task (abend)

The termination of a task, job, or subsystem because of an error

condition that recovery facilities cannot resolve.

Advanced program-to-program communication (APPC)

An implementation of the SNA/SDLC LU 6.2 protocol that allows

interconnected systems to communicate and share the processing of

programs. The Client daemon uses APPC to communicate with CICS

server systems.

APAR See Authorized program analysis report.

API Application programming interface.

applet A small application program that performs a specific task and is

usually portable between operating systems. Often written in Java,

applets can be downloaded from the Internet and run in a Web

browser.

application identifier

The name by which a CICS system is known in a network of

interconnected CICS systems. CICS Transaction Gateway application

identifiers do not need to be defined in SYS1.VTAMLST. The CICS

APPLID is specified in the APPLID system initialization parameter.

application programming interface (API)

A functional interface that allows an application program that is

written in a high-level language to use specific data or functions of

the operating system or another program.

APPLID

See application identifier.

ARM See automatic restart management.

Authorized program analysis report (APAR)

A request for correction of a defect in a current release of an

IBM-supplied program.

© Copyright IBM Corp. 2002, 2008 209

ATI See automatic transaction initiation.

attach In SNA, the request unit that flows on a session to initiate a

conversation.

Attach Manager

The component of APPC that matches attaches received from remote

computers to accepts issued by local programs.

autoinstall

A method of creating and installing resources dynamically as

terminals log on, and deleting them at logoff.

automatic restart manager

A z/OS recovery function that can improve the availability of specific

batch jobs or started tasks, and therefore result in faster resumption of

productive work. Acronym: ARM.

automatic transaction initiation (ATI)

The initiation of a CICS transaction by an internally generated request,

for example, the issue of an EXEC CICS START command or the

reaching of a transient data trigger level. CICS resource definition can

associate a trigger level and a transaction with a transient data

destination. When the number of records written to the destination

reaches the trigger level, the specified transaction is automatically

initiated.

bean A definition or instance of a JavaBeans™ component. See also

JavaBeans.

bean-managed transaction

A transaction where the J2EE bean itself is responsible for

administering transaction tasks such as committal or rollback. See also

container-managed transaction.

BIND command

In SNA, a request to activate a session between two logical units

(LUs).

business logic

The part of a distributed application that is concerned with the

application logic rather than the user interface of the application.

Compare with presentation logic.

CA See certificate authority.

callback

A way for one thread to notify another application thread that an

event has happened.

certificate authority

In computer security, an organization that issues certificates. The

210 CICS Transaction Gateway: Programming Guide

certificate authority authenticates the certificate owner’s identity and

the services that the owner is authorized to use. It issues new

certificates and revokes certificates from users who are no longer

authorized to use them.

change-number-of-sessions (CNOS)

An internal transaction program that regulates the number of parallel

sessions between the partner LUs with specific characteristics.

channel

A channel is a set of containers, grouped together to pass data to

CICS. There is no limit to the number of containers that can be added

to a channel, and the size of individual containers is limited only by

the amount of storage that you have available.

CICS connectivity components

A generic reference to the Client daemon, EXCI, and the IPIC protocol.

CICS on System/390®

A generic reference to the products CICS Transaction Server for z/OS,

CICS for MVS/ESA™, CICS Transaction Server for VSE/ESA™, and

CICS/VSE®.

CICS TS

Abbreviation of CICS Transaction Server.

class In object-oriented programming, a model or template that can be

instantiated to create objects with a common definition and therefore,

common properties, operations, and behavior. An object is an instance

of a class.

classpath

In the execution environment, an environment variable keyword that

specifies the directories in which to look for class and resource files.

Client API

The Client API is the interface used by Client applications to invoke

services in CICS using the Client daemon. See External Call Interface,

External Presentation Interface, and External Security Interface.

Client application

The client application is a user application written in a supported

programming language, other than Java, that uses the Client API.

Client daemon

The Client daemon, process cclclnt, exists only on UNIX, Windows,

and Linux. It manages network connections to CICS servers. It

processes ECI, EPI, and ESI requests, sending and receiving the

appropriate flows from the CICS server to satisfy the application

requests. It uses the CLIENT section of ctg.ini for its configuration.

Glossary 211

|
|
|
|
|

|
|

client/server

Pertaining to the model of interaction in distributed data processing in

which a program on one computer sends a request to a program on

another computer and awaits a response. The requesting program is

called a client; the answering program is called a server.

CNOS See Change-Number-of-Sessions.

code page

An assignment of hexadecimal identifiers (code points) to graphic

characters. Within a given code page, a code point can have only one

meaning.

color mapping file

A file that is used to customize the 3270 screen color attributes on

client workstations.

commit phase

The second phase in a XA process. If all participants acknowledge that

they are prepared to commit , the transaction manager issues the

commit request. If any participant is not prepared to commit the

transaction manager issues a back-out request to all participants.

communication area (COMMAREA)

A communication area that is used for passing data both between

programs within a transaction and between transactions.

configuration file

A file that specifies the characteristics of a program, system device,

server or network.

connection

In data communication, an association established between functional

units for conveying information.

 In Open Systems Interconnection architecture, an association

established by a given layer between two or more entities of the next

higher layer for the purpose of data transfer.

In TCP/IP, the path between two protocol application that provides

reliable data stream delivery service.

In Internet, a connection extends from a TCP application on one

system to a TCP application on another system.

container

A container is a named block of data designed for passing information

between programs. A container is a ″named COMMAREA″ that is not

limited to 32KB. Containers are grouped together in sets called

channels.

212 CICS Transaction Gateway: Programming Guide

container-managed transaction

A transaction where the EJB container is responsible for

administration of tasks such as committal or rollback. See also

bean-managed transaction.

control table

In CICS, a storage area used to describe or define the configuration or

operation of the system.

conversation

A connection between two programs over a session that allows them

to communicate with each other while processing a transaction.

conversation security

In APPC, a process that allows validation of a user ID or group ID

and password before establishing a connection.

daemon

A program that runs unattended to perform continuous or periodic

systemwide functions, such as network control. A daemon may be

launched automatically, such as when the operating system is started,

or manually.

data link control (DLC)

A set of rules used by nodes on a data link (such as an SDLC link or a

token ring) to accomplish an orderly exchange of information.

DBCS See double-byte character set.

dependent logical unit

A logical unit that requires assistance from a system services control

point (SSCP) to instantiate an LU-to-LU session.

deprecated

Pertaining to an entity, such as a programming element or feature,

that is supported but no longer recommended, and that might become

obsolete.

digital certificate

An electronic document used to identify an individual, server,

company, or some other entity, and to associate a public key with the

entity. A digital certificate is issued by a certificate authority and is

digitally signed by that authority.

digital signature

Information that is encrypted with an entity’s private key and is

appended to a message to assure the recipient of the authenticity and

integrity of the message. The digital signature proves that the message

was signed by the entity that owns, or has access to, the private key

or shared secret symmetric key.

Glossary 213

distributed application

An application for which the component application programs are

distributed between two or more interconnected processors.

distributed processing

The processing of different parts of the same application in different

systems, on one or more processors.

distributed program link (DPL)

A link that enables an application program running on one CICS

system to link to another application program running in another

CICS system.

DLL See dynamic link library.

domain

In the Internet, a part of a naming hierarchy in which the domain

name consists of a sequence of names (labels) separated by periods

(dots).

domain name

In TCP/IP, a name of a host system in a network.

domain name server

In TCP/IP, a server program that supplies name-to-address translation

by mapping domain names to internet addresses. Synonymous with

name server.

dotted decimal notation

The syntactical representation for a 32-bit integer that consists of four

8-bit numbers written in base 10 with periods (dots) separating them.

It is used to represent IP addresses.

double-byte character set (DBCS)

A set of characters in which each character is represented by 2 bytes.

Languages such as Japanese, Chinese and Korean, which contain more

symbols than can be represented by 256 code points, require

double-byte character sets. Because each character requires 2 bytes, the

typing, display, and printing of DBCS characters requires hardware

and programs that support DBCS. Contrast with single-byte character

set.

DPL See distributed program link.

dynamic link library (DLL)

A collection of runtime routines made available to applications as

required.

EBCDIC

See Extended binary-coded decimal interchange code.

ECI See external call interface.

214 CICS Transaction Gateway: Programming Guide

EJB See Enterprise JavaBeans.

emulation program

A program that allows a host system to communicate with a

workstation in the same way as it would with the emulated terminal.

emulator

A program that causes a computer to act as a workstation attached to

another system.

encryption

The process of transforming data into an unintelligible form in such a

way that the original data can be obtained only by using a decryption

process.

enterprise bean

A Java component that can be combined with other resources to create

J2EE applications. There are three types of enterprise beans: entity

beans, session beans, and message-driven beans.

Enterprise JavaBeans

A component architecture defined by Sun Microsystems for the

development and deployment of object-oriented, distributed,

enterprise-level applications (J2EE).

environment variable

A variable that specifies the operating environment for a process. For

example, environment variables can describe the home directory, the

command search path, the terminal in use, and the current time zone.

EPI See external presentation interface.

ESI See external security interface.

Ethernet

A local area network that allows multiple stations to access the

transmission medium at will without prior coordination, avoids

contention by using carrier sense and deference, and resolves

contention by using collision detection and transmission. Ethernet

uses carrier sense multiple access with collision detection

(CSMA/CD).

EXCI See External CICS Interface.

external call interface (ECI)

A facility that allows a non-CICS program to run a CICS program.

Data is exchanged in a COMMAREA as for normal CICS

interprogram communication.

Extended binary-coded decimal interchange code (EBCDIC)

A coded character set of 256 8-bit characters developed for the

representation of textual data.

Glossary 215

extended logical unit of work (extended LUW)

A logical unit of work that is extended across successive ECI requests

to the same CICS server.

External CICS Interface (EXCI)

The EXCI is an MVS application programming interface provided by

CICS Transaction Server for z/OS that enables a non-CICS program to

call a CICS program and to pass and receive data using a

COMMAREA or container. The CICS application program is invoked

as if linked-to by another CICS application program.

external presentation interface (EPI)

A facility that allows a non-CICS program to appear to CICS as one or

more standard 3270 terminals. 3270 data can be presented to the user

by emulating a 3270 terminal or by using a graphical user interface.

external security interface (ESI)

A facility that enables client applications to verify and change

passwords for user IDs on CICS servers.

firewall

A configuration of software that prevents unauthorized traffic between

a trusted network and an untrusted network.

gateway

A device or program used to connect two systems or networks.

gateway classes

The Gateway Classes are the Java class library used by Java Client

applications to invoke services in CICS.

Gateway daemon

The Gateway daemon is a long-running Java process used only in

remote mode. The Gateway daemon listens for network requests from

remote Java Client applications. It issues these requests to CICS using

the CICS connectivity components. These are the Client daemon on

UNIX, Windows, and Linux platforms, and EXCI or IPIC on z/OS.

The Gateway daemon runs the protocol listener threads, the

connection manager threads, and the worker threads. It uses the

GATEWAY section of ctg.ini (and on z/OS the STDENV file or the

ctgenvvar script) for its configuration.

Gateway group

A collection of Gateway daemon instances, that uses the services of a

single ctgmaster. The group provides a TCP/IP load balancing

capability for XA transactions.

216 CICS Transaction Gateway: Programming Guide

gateway token

Gateway tokens are used in the statistical data API. A token represents

a specific Gateway daemon, once a connection is established

successfully.

global transaction

A recoverable unit of work performed by one or more resource

managers in a distributed transaction processing environment and

coordinated by an external transaction manager.

host A computer that is connected to a network (such as the Internet or an

SNA network) and provides an access point to that network. The host

can be any system; it does not have to be a mainframe.

host address

An IP address that is used to identify a host on a network.

host ID

In TCP/IP, that part of the Internet address that defines the host on

the network. The length of the host ID depends on the type of

network or network class (A, B, or C).

host name

In the Internet suite of protocols, the name given to a computer.

Sometimes, host name is used to mean the fully qualified domain

name; other times, it is used to mean the most specific subname of a

fully qualified domain name. For example, if

mycomputer.city.company.com is the fully qualified domain name,

either of the following may be considered the host name:

mycomputer.city.company.com, mycomputer.

hover help

Information that can be viewed by holding a mouse over an item such

as an icon in the user interface.

HTTP See Hypertext Transfer Protocol.

HTTPS

See Hypertext Transfer Protocol Secure.

Hypertext Transfer Protocol

In the Internet suite of protocols, the protocol that is used to transfer

and display hypertext and XML documents.

Hypertext Transfer Protocol Secure

A TCP/IP protocol that is used by World Wide Web servers and Web

browsers to transfer and display hypermedia documents securely

across the Internet.

Glossary 217

ID data

An ID data structure holds an individual result from a statistical API

function.

iKeyman

A tool for maintaining digital certificates for JSSE.

independent logical unit

A logical unit (LU) that can both send and receive a BIND, and which

supports single, parallel, and multiple sessions. See BIND.

Internet Architecture Board

The technical body that oversees the development of the internet suite

of protocols known as TCP/IP.

Internet Protocol (IP)

In TCP/IP, a protocol that routes data from its source to its

destination in an Internet environment.

interoperability

The capability to communicate, execute programs, or transfer data

among various functional units in a way that requires the user to have

little or no knowledge of the unique characteristics of those units.

IP Internet Protocol.

IPIC See IP interconnectivity (IPIC).

IP address

A unique address for a device or logical unit on a network that uses

the IP standard.

IP interconnectivity (IPIC)

The IPIC protocol enables Distributed Program Link (DPL) access

from a non-CICS program to a CICS program over TCP/IP, using the

External Call Interface (ECI). IPIC passes and receives data using

COMMAREAs, or containers.

J2EE See Java 2 Platform Enterprise Edition

J2EE Connector architecture (JCA)

A standard architecture for connecting the J2EE platform to

heterogeneous enterprise information systems (EIS).

Java An object-oriented programming language for portable interpretive

code that supports interaction among remote objects.

Java 2 Platform Enterprise Edition (J2EE)

An environment for developing and deploying enterprise applications,

defined by Sun Microsystems Inc. The J2EE platform consists of a set

of services, application programming interfaces (APIs), and protocols

that allow multitiered, Web-based applications to be developed.

218 CICS Transaction Gateway: Programming Guide

||

|
|
|
|
|

JavaBeans

As defined for Java by Sun Microsystems, a portable,

platform-independent, reusable component model.

Java Client application

The Java client application is a user application written in Java,

including servlets and enterprise beans, that uses the Gateway classes.

Java Development Kit (JDK)

The name of the software development kit that Sun Microsystems

provided for the Java platform, up to and including v 1.1.x.

Sometimes used erroneously to mean the Java platform or as a generic

term for any software developer kits for Java.

JavaGateway

The URL of the CICS Transaction Gateway with which the Java Client

application will communicate. The JavaGateway takes the form

protocol://address:port. These protocols are supported: tcp://,

ssl://, and local:. The CICS Transaction Gateway runs with the

default port value of 2006. This parameter is not relevant if you are

using the protocol local:. For example, you might specify a

JavaGateway of tcp://ctg.business.com:2006. If you specify the

protocol as local: you will connect directly to the CICS server,

bypassing any CICS Transaction Gateway servers.

Java Native Interface (JNI)

A programming interface that allows Java code running in a Java

virtual machine to work with functions that are written in other

programming languages.

Java Runtime Environment (JRE)

A subset of the Java Software Development Kit (SDK) that supports

the execution, but not the development, of Java applications. The JRE

comprises the Java Virtual Machine (JVM), the core classes, and

supporting files.

Java Secure Socket Extension (JSSE)

A Java package that enables secure Internet communications. It

implements a Java version of the Secure Sockets Layer (SSL) and

Transport Layer Security (TSL) protocols and supports data

encryption, server authentication, message integrity, and optionally

client authentication.

Java virtual machine (JVM)

A software implementation of a processor that runs compiled Java

code (applets and applications).

JDK See Java development kit (JDK).

JCA See J2EE Connector Architecture (JCA).

Glossary 219

JNI See Java Native Interface (JNI).

JRE See Java Runtime Environment

JSSE See Java Secure Socket Extension (JSSE).

JVM See Java Virtual Machine (JVM).

keyboard mapping

A list that establishes a correspondence between keys on the keyboard

and characters displayed on a display screen, or action taken by a

program, when that key is pressed.

key ring

In the JSSE protocol, a file that contains public keys, private keys,

trusted roots, and certificates.

local mode

“Local mode” describes the use of the CICS Transaction Gateway local

protocol. The Gateway daemon is not used in local mode.

local transaction

A recoverable unit of work managed by a resource manager and not

coordinated by an external transaction manager

logical unit (LU)

In SNA, a port through which an end user accesses the SNA network

in order to communicate with another end user and through which

the end user accesses the functions provided by system services

control points (SSCP). An LU can support at least two sessions, one

with an SSCP and one with another LU, and may be capable of

supporting many sessions with other logical units. See network

addressable unit, primary logical unit, secondary logical unit.

logical unit 6.2 (LU 6.2)

A type of logical unit that supports general communications between

programs in a distributed processing environment.

 The LU type that supports sessions between two applications using

APPC.

logical unit of work (LUW)

A recoverable unit of work performed within CICS.

LU-LU session

In SNA, a session between two logical units (LUs) in an SNA

network. It provides communication between two end users, or

between an end user and an LU services component.

LU-LU session type 6.2

In SNA, a type of session for communication between peer systems.

Synonymous with APPC protocol.

220 CICS Transaction Gateway: Programming Guide

LUW See logical unit of work.

managed mode

Describes an environment in which connections are obtained from

connection factories that the J2EE server has set up. Such connections

are owned by the J2EE server.

medium access control (MAC) sublayer

One of two sublayers of the ISO Open Systems Interconnection data

link layer proposed for local area networks by the IEEE Project 802

Committee on Local Area Networks and the European Computer

Manufacturers Association (ECMA). It provides functions that depend

on the topology of the network and uses services of the physical layer

to provide services to the logical link control (LLC) sublayer. The OSI

data link layer corresponds to the SNA data link control layer.

method

In object-oriented programming, an operation that an object can

perform. An object can have many methods.

mode In SNA, a set of parameters that defines the characteristics of a

session between two LUs.

name server

In TCP/IP, synonym for Domain Name Server. In Internet

communications, a host that translates symbolic names assigned to

networks and hosts into Internet addresses.

network address

In SNA, an address, consisting of subarea and element fields, that

identifies a link, link station, or network addressable unit (NAU).

Subarea nodes use network addresses; peripheral nodes use local

addresses. The boundary function in the subarea node to which a

peripheral node is attached transforms local addresses to network

addresses and vice versa. See also network name.

network addressable unit (NAU)

In SNA, a logical unit, a physical unit, or a system services control

point. The NAU is the origin or the destination of information

transmitted by the path control network. See also logical unit, network

address, network name.

network name

In SNA, the symbolic identifier by which end users refer to a network

addressable unit (NAU), link station, or link. See also network address.

node type

In SNA, a designation of a node according to the protocols it supports

and the network addressable units (NAUs) it can contain. Four types

Glossary 221

are defined: 1, 2, 4, and 5. Type 1 and type 2 nodes are peripheral

nodes; type 4 and type 5 nodes are subarea nodes.

nonmanaged mode

An environment in which the application is responsible for generating

and configuring connection factories. The J2EE server does not own or

know about these connection factories and therefore provides no

Quality of Service facilities.

object In object-oriented programming, a concrete realization of a class that

consists of data and the operations associated with that data.

object-oriented (OO)

Describing a computer system or programming language that

supports objects.

one-phase commit

A protocol with a single commit phase, that is used for the

coordination of changes to recoverable resources when a single

resource manager is involved.

pacing

A technique by which a receiving station controls the rate of

transmission of a sending station to prevent overrun.

parallel session

In SNA, two or more concurrently active sessions between the same

two LUs using different pairs of network addresses. Each session can

have independent session parameters.

PING In Internet communications, a program used in TCP/IP networks to

test the ability to reach destinations by sending the destinations an

Internet Control Message Protocol (ICMP) echo request and waiting

for a reply.

partner logical unit (PLU)

In SNA, the remote participant in a session.

partner transaction program

The transaction program engaged in an APPC conversation with a

local transaction program.

PLU See primary logical unit and partner logical unit.

port An endpoint for communication between devices, generally referring

to a logical connection. A 16-bit number identifying a particular

Transmission Control Protocol (TCP) or User Datagram Protocol

(UDP) resource within a given TCP/IP node.

prepare phase

The first phase of a XA process in which all participants are requested

to confirm readiness to commit.

222 CICS Transaction Gateway: Programming Guide

presentation logic

The part of a distributed application that is concerned with the user

interface of the application. Compare with business logic.

primary logical unit (PLU)

In SNA, the logical unit that contains the primary half-session for a

particular logical unit-to-logical unit (LU-to-LU) session. See also

secondary logical unit.

protocol boundary

The signals and rules governing interactions between two components

within a node.

Query strings

Query strings are used in the statistical data API. A query string is an

input parameter, specifying the statistical data to be retrieved.

Resource Access Control Facility (RACF)

An IBM licensed program that provides access control by identifying

users to the system; verifying users of the system; authorizing access

to protected resources; logging detected unauthorized attempts to

enter the system; and logging detected accesses to protected resources.

region In workload management on CICS Transaction Gateway for Windows,

an instance of a CICS server.

remote mode

“Remote mode” describes the use of one of the supported CICS

Transaction Gateway network protocols to connect to the Gateway

daemon.

remote procedure call (RPC)

A protocol that allows a program on a client computer to run a

program on a server.

request unit (RU)

In SNA, a message unit that contains control information such as a

request code, or function management (FM) headers, end-user data, or

both.

request/response unit

A generic term for a request unit or a response unit. See also request

unit and response unit.

response file

A file that contains predefined values that is used instead of someone

having to enter those values one at a time. See CID methodology.

response unit (RU)

A message unit that acknowledges a request unit; it may contain

prefix information received in a request unit.

Glossary 223

resource group ID

A resource group ID is a logical grouping of resources, grouped for

statistical purposes. A resource group ID is associated with a number

of resource group statistics, each identified by a statistic ID.

resource ID

A resource ID refers to a specific resource. Information about the

resource is included in resource-specific statistics. Each statistic is

identified by a statistic ID.

resource manager

The participant in a transaction responsible for controlling access to

recoverable resources. In terms of the CICS resource adapters this is

represented by an instance of a ConnectionFactory.

Resource Recovery Services (RRS)

A z/OS facility that provides two-phase sync point support across

participating resource managers.

Result set

A result set is a set of data calculated or recorded by a statistical API

function.

Result set token

A result set token is a reference to the set of results returned by a

statistical API function.

rollback

An operation in a transaction that reverses all the changes made

during the unit of work. After the operation is complete, the unit of

work is finished. Also known as a backout.

RU Request unit. Response unit.

RPC See remote procedure call.

SBCS See single-byte character set.

secondary logical unit (SLU)

In SNA, the logical unit (LU) that contains the secondary half-session

for a particular LU-LU session. Contrast with primary logical unit. See

also logical unit.

Secure Sockets Layer (SSL)

A security protocol that provides communication privacy. SSL enables

client/server applications to communicate in a way that is designed to

prevent eavesdropping, tampering, and message forgery. SSL applies

only to internet protocols, and is not applicable to SNA.

servlet

A Java program that runs on a Web server and extends the server’s

224 CICS Transaction Gateway: Programming Guide

functionality by generating dynamic content in response to Web client

requests. Servlets are commonly used to connect databases to the Web.

session limit

In SNA, the maximum number of concurrently active logical unit to

logical unit (LU-to-LU) sessions that a particular logical unit (LU) can

support.

single-byte character set (SBCS)

A character set in which each character is represented by 1 byte.

Contrast with double-byte character set.

sign-on capable terminal

A sign-on capable terminal allows sign-on transactions, either

CICS-supplied (CESN) or user-written, to be run. Contrast with

sign-on incapable terminal.

SIT See system initialization table.

SNA sense data

An SNA-defined encoding of error information In SNA, the data sent

with a negative response, indicating the reason for the response.

SNASVCMG mode name

The SNA service manager mode name. This is the

architecturally-defined mode name identifying sessions on which

CNOS is exchanged. Most APPC-providing products predefine

SNASVCMG sessions.

socket A network communication concept, typically representing a point of

connection between a client and a server. A TCP/IP socket will

normally combine a host name or IP address, and a port number.

SSL See Secure Sockets Layer (SSL).

SSLight

An implementation of SSL, written in Java, and no longer supported

by CICS Transaction Gateway.

statistic data

A statistic data structure holds individual statistical result returned

after calling a statistical API function.

statistic group

A statistic group is a generic term for a collection of statistic IDs.

statistic ID

A statistic ID is a label refering to a specific statistic. A statistic ID is

used to retrieve specific statistical data, and always has a direct

relationship with a statistic group.

Glossary 225

system initialization table

A table containing parameters used to start a CICS control region.

System Management Interface Tool (SMIT)

An interface tool of the AIX operating system for installing,

maintaining, configuring, and diagnosing tasks.

standard error

In many workstation-based operating systems, the output stream to

which error messages or diagnostic messages are sent.

subnet

An interconnected, but independent segment of a network that is

identified by its Internet Protocol (IP) address.

subnet address

In Internet communications, an extension to the basic IP addressing

scheme where a portion of the host address is interpreted as the local

network address.

sync point

A logical point in the execution of program where the changes made

by the program are consistent and complete, and can be committed.

The output, which has been held up to that point, is sent to its

destination, the input is removed from the message queues, and

updates are made available to other applications. When a program

terminates abnormally, CICS recovery and restart facilities do not

backout updates prior to the last completed sync point.

Systems Network Architecture (SNA)

An architecture that describes the logical structure, formats, protocols,

and operational sequences for transmitting information units through

the networks and also the operational sequences for controlling the

configuration and operation of networks.

System SSL

An implementation of SSL, no longer supported by CICS Transaction

Gateway on z/OS.

TCP62 SNA logical unit type 62 (LU62) protocol encapsulated in TCP/IP.

This allows APPC applications to communicate over a TCP/IP

Network without changes to the applications.

TCP/IP

See Transmission Control Protocol/Internet Protocol.

TCP/IP load balancing

The ability to distribute TCP/IP connections across target servers.

terminal emulation

The capability of a microcomputer or personal computer to operate as

226 CICS Transaction Gateway: Programming Guide

if it were a particular type of terminal linked to a processing unit and

to access data. See also emulator, emulation program.

thread A stream of computer instructions that is in control of a process. In

some operating systems, a thread is the smallest unit of operation in a

process. Several threads can run concurrently, performing different

jobs.

timeout

A time interval that is allotted for an event to occur or complete

before operation is interrupted.

TLS See Transport Layer Security (TLS).

token-ring network

A local area network that connects devices in a ring topology and

allows unidirectional data transmission between devices by a

token-passing procedure. A device must receive a token before it can

transmit data.

trace A record of the processing of a computer program. It exhibits the

sequences in which the instructions were processed.

transaction manager

A software unit that coordinates the activities of resource managers by

managing global transactions and coordinating the decision to commit

them or roll them back.

transaction program

A program that uses the Advanced Program-to-Program

Communications (APPC) application programming interface (API) to

communicate with a partner application program on a remote system.

Transmission Control Protocol/Internet Protocol (TCP/IP)

An industry-standard, nonproprietary set of communications protocols

that provide reliable end-to-end connections between applications

over interconnected networks of different types.

Transport Layer Security (TLS)

A security protocol that provides communication privacy. TLS enables

client/server applications to communicate in a way that is designed to

prevent eavesdropping, tampering, and message forgery. TLS applies

only to internet protocols, and is not applicable to SNA. TLS is also

known as SSL 3.1.

two-phase commit

A protocol with both a prepare and a commit phase, that is used for

the coordination of changes to recoverable resources when more than

one resource manager is used by a single transaction.

Glossary 227

type 2.0 node

A node that attaches to a subarea network as a peripheral node and

provides a range of end-user services but no intermediate routing

services.

type 2.1 node

An SNA node that can be configured as an endpoint or intermediate

routing node in a network, or as a peripheral node attached to a

subarea network.

Uniform Resource Locator (URL)

A sequence of characters that represent information resources on a

computer or in a network such as the Internet. This sequence of

characters includes (a) the abbreviated name of the protocol used to

access the information resource and (b) the information used by the

protocol to locate the information resource.

unit of recovery (UR)

A defined package of work to be performed by the RRS.

unit of work (UOW)

A recoverable sequence of operations performed by an application

between two points of consistency. A unit of work begins when a

transaction starts or at a user-requested sync point. It ends either at a

user-requested sync point or at the end of a transaction.

user session

Any APPC session other than a SNASVCMG session.

verb A reserved word that expresses an action to be taken by an

application programming interface (API), a compiler, or an object

program.

 In SNA, the general name for a transaction program’s request for

communication services.

version string

A character string containing version information about the statistical

data API.

Web browser

A software program that sends requests to a Web server and displays

the information that the server returns.

Web server

A software program that responds to information requests generated

by Web browsers.

wide area network (WAN)

A network that provides communication services to a geographic area

228 CICS Transaction Gateway: Programming Guide

larger than that served by a local area network or a metropolitan area

network, and that may use or provide public communication facilities.

wrapping trace

A configuration in which the Maximum Client wrap size setting is

greater than 0. The total size of Client daemon binary trace files is

limited to the value specified in the Maximum Client wrap size

setting. With standard I/O tracing, two files, called cicscli.bin and

cicscli.wrp, are used; each can be up to half the size of the

Maximum Client wrap size.

XA requests

An XA request is any request sent or received by the CICS Transaction

Gateway in support of an XA transaction. These requests include the

XA commands commit, complete, end, forget, prepare, recover,

rollback, and start.

XA transaction

A global transaction that adheres to the X/Open standard for

distributed transaction processing (DTP.)

Glossary 229

|
|
|
|
|

230 CICS Transaction Gateway: Programming Guide

Index

Special characters
<install_path> vii

Numerics
3270 data streams 163

A
accessibility 205

accessing fields on 3270 screens 63

Accessing fields on CICS 3270 screens
in C++ External presentation interface 140

Using the C++ classes 140

Apartments
Creating COM Objects 154

Async Exception Handling 150

Asynchronous call synchronization
in ATI 146

Asynchronous reply handling
in Controlling server interactions 130

in External call interface 130

asynchronous sends 64

ATI 167

Automatic Transaction Initiation 115, 167

automation compatible 153

B
backout

in Managing logical units of work 128

in Server connection 126

Backout
in ECI Link Calls within a Unit Of Work 159

bean-managed transaction 90

BMS
map source files 136

utility 136

BMS Map Conversion utility 68

BMS paging 24

books 201

business object 157

C
C++ External presentation interface

Accessing fields on CICS 3270 screens 140

EPI BMS conversion utility 141

EPI call synchronization types 137

Mapset containing a single map 143

Starting a 3270 terminal connection to CICS 136

Using EPI BMS Map Classes 144

Using the C++ classes 136

callback routine
EPI 115

cancel
in Monitoring server availability 134

in Server connection 126

ccf2.jar 101

CCI
CICS-specific classes 82

generic classes 82

Ccl Field
in Running a CICS 3270 session 164

Ccl Map
Using BMS Map data with EPI COM classes 167

Ccl::async
in EPI call synchronization types 137

Ccl::dsync
in EPI call synchronization types 139

Ccl::sync
in EPI call synchronization types 137

CclBuf
in Passing data to a server program 126

CclConn
in Monitoring server availability 134

in Server connection 126

cclDSync
in ECI Call Synchronization Types 160

in EPI call synchronization types 165

CclECI
Finding potential servers 134

CclField
in Accessing fields on CICS 3270 screens 140

in C++ External presentation interface 136

CclFlow
in Controlling server interactions 128

CclMap
in C++ External presentation interface 136

in EPI BMS conversion utility 142

in Mapset containing a single map 143

CclScreen 146

in C++ External presentation interface 136

in EPI BMS conversion utility 143

CclSecAttr 133, 146

CclSession 146

in C++ External presentation interface 136

in EPI call synchronization types 137

CclSession::client
in EPI call synchronization types 138

CclSession::idle
in EPI call synchronization types 138

© Copyright IBM Corp. 2002, 2008 231

CclSession::server
in EPI call synchronization types 138

cclSync
in ECI Call Synchronization Types 159

in EPI call synchronization types 165

CclTerminal 145, 146

in C++ External presentation interface 136

CclUOW
in Managing logical units of work 128

changed
in Monitoring server availability 134

in Server connection 126

changePassword 133, 146

Channels and containers for ECI 51

CICS RECEIVE MAP 24

CICS SEND MAP 24

CICS Server Information
in Connecting to CICS 3270 applications using the

EPI
in Using the COM classes 169

CICS Server Information and Connection Status
in Making an ECI link call to CICS

in Using the COM classes 161

CICS START
DELAY option 24

CICS_EciExitInit entry point 183

CICS_EPI_EVENT_ADD_TERM event
use 115

CICS_EPI_EVENT_CONVERSE event
use 113, 114, 115, 117

CICS_EPI_EVENT_END_TERM event
use 115

CICS_EPI_EVENT_END_TRAN event
use 115

CICS_EPI_EVENT_SEND event
use 113, 115, 117

CICS_EPI_EVENT_START_ATI event
use 115

CICS_EPI_NOWAIT 114

CICS_EPI_WAIT 114

CICS_EpiAddExTerminal function
use 112

CICS_EpiAddTerminal function
use 112

CICS_EpiDelTerminal function
use 113

CICS_EpiEventData_t data structure
use 114, 115

CICS_EpiExitInit entry point 183

CICS_EpiGetEvent function
use 114, 115

CICS_EpiInitialize function
use 112

CICS_EpiPurgeTerminal function
use 113

CICS_EpiReply function
use 113, 114, 116

CICS_EpiStartTran function
use 113, 114, 116

CICS_EpiTerminate function
use 112

CICS_ExternalCall 108

CICS-specific classes 82

CICS3270.INC include file 116

CICSCLI
in Starting a 3270 terminal connection to CICS 137

cicseci.hpp
Using the classes 149

CICSECIEXITINIT function 185

cicsecix 183

cicsepi.hpp
Using the classes 149

CICSEPIEXITINIT function 185

cicsepix 183

cicsepix.dll 185

cicsj2ee.jar 101

CLASSPATH environment variable 72, 73

client
in EPI call synchronization types 138

closeAllGatewayConnections
Statistics API function 39

closeGatewayConnection
Statistics API function 38

com.ibm.ctg.client.T class 73

COMMAREA 127

null stripping 53

CommareaLength 87

commit
in Managing logical units of work 128

in Server connection 126

Commit
in ECI Link Calls within a Unit Of Work 159

Common Client Interface 82

Common Client Interface (CCI) 82

class types 79

communication, synchronous 129

compiling applications 101

Component Object Model
Establishing the working environment 153

Connect
in CICS Server Information and Connection

Status 161

Connect.Link
in ECI Call Synchronization Types 159, 160

in ECI Link Calls within a Unit Of Work 158

Connecting to CICS 3270 applications using the EPI
CICS Server Information 169

EPI call synchronization types 165

in Using the COM classes 163

Running a CICS 3270 session 164

232 CICS Transaction Gateway: Programming Guide

Connecting to CICS 3270 applications using the EPI

(continued)
Using BMS Map data with EPI COM classes 166

Connection 86

Connection object 133

ConnectionFactory 86

connector.jar 101

Controlling server interactions
Asynchronous reply handling 130

Deferred synchronous reply handling 131

in External call interface 128

Synchronous reply handling 129

Using the classes 128

copyResultSet
multithreading 42

Statistics API function 42

CreateObject
in Connecting to CICS 3270 applications using the

EPI 163

in Making an ECI link call to CICS using

VBScript 158

ctgclient.jar 72, 73, 101

ctgserver.jar 72, 73

D
Data parameter

CICS_EpiStartTran function 113

DBCS 24, 163

default exception handler 150

default installation location vii

Deferred synchronous
in ATI support 168

Deferred synchronous call synchronization
in ATI 146

Deferred synchronous reply handling
in Controlling server interactions 131

in External call interface 131

deleting terminals 62

Delphi 153

Details
in Making an ECI link call to CICS 156

disability 205

disconnect
in EPI call synchronization types 139

documentation 201

dumpResultSet
Statistics API function 45

dumpState
Statistical data API function 45

E
ECI 9

in CICS Server Information and Connection

Status 161

ECI (External Call Interface) 1

ECI Call Synchronization Types
in Making an ECI link call to CICS

in Using the COM interfaces 159

ECI connection interfaces 86, 93

ECI interaction interfaces 87

ECI Link Calls within a Unit Of Work
in Making an ECI link call to CICS

in Using the COM interfaces 158

ECI parameter block 108, 193

ECI resource adapters 81

CCI 83

ECI security for Java 54

ECI_ASYNC_NOTIFY_MSG call type
definition 191

use 193

ECI_ASYNC_NOTIFY_SEM call type
definition 192

use 193

eci_async_notify.sem_handle 192, 193

eci_async_notify.window_handle 191

eci_call_type 108

ECI_ERR_NULL_MESSAGE_ID 194

ECI_ERR_NULL_SEM_HANDLE 194

ECI_ERR_NULL_WIN_HANDLE 194

eci_extend_mode 109

ECI_GET_REPLY call type
use 191

ECI_GET_SPECIFIC_REPLY call type
use 191, 192

eci_luw_token 109

eci_message_id 191, 193

eci_message_qualifier
with ECI_ASYNC_NOTIFY_MSG call type 191

with ECI_ASYNC_NOTIFY_SEM call type 192

with ECI_STATE_ASYNC_MSG call type 192

with ECI_STATE_ASYNC_SEM call type 192

eci_program_name 109

ECI_STATE_ASYNC_MSG call type
definition 192

use 193

ECI_STATE_ASYNC_SEM call type
definition 192

use 193

eci_window_handle 193

ECIConnectionSpec 86

environment variables 125

EPI 17

3270 data streams 116

3270 order codes 118

in CICS Server Information 169

EPI (External Presentation Interface) 1

EPI BMS conversion utility
in C++ External presentation interface 141

Mapset containing a single map 143

using the C++ classes 141

Index 233

EPI call synchronization types
in C++ External presentation interface 137

in Connecting to CICS 3270 applications using the

EPI
in Using the COM classes 165

Using the CICS Transaction Gateway C++

classes 137

EPI interaction interfaces 93

EPI resource adapter 81

CCI 92

EPI Screen Record 94

EPI support classes 58

accessing fields 63

adding terminals 59

asynchronous sends 64

disconnect method 62

exception handling 67

handleException method 66

handleReply method 65

overview 58

sessions 64

synchronous sends 64

terminal encoding 68

using send 63

EPIConnectionSpec 93

EPIFieldRecord 96

EPIGateway class 59

EPIRequest class 70

Err objects 170

Error checking
Statistics API 45

ErrorWindow 170

ESI
overview 25

ESI (External Security Interface) 1, 25

exception handler, default 150

Exception Handling, Async 150

exceptions 67

exceptions, handling 149

EXCI programming considerations 56

EXCI security for ECI
CICS security 54

ExCode 170

ExCodeText 170

EXEC CICS CONVERSE 113

EXEC CICS RECEIVE 113, 117, 118

EXEC CICS RECEIVE BUFFER 118

EXEC CICS RECEIVE MAP 117

EXEC CICS RETURN
TRANSID option 114

EXEC CICS SEND 113

extended LUW 11

External call interface
Asynchronous reply handling 130

Controlling server interactions 128

External call interface (continued)
Deferred synchronous reply handling 131

Finding potential servers 133

Managing logical units of work 128

Monitoring server availability 134

Passing data to a server program 126

Server connection 126

Synchronous reply handling 129

External Call Interface (ECI) 1

External Presentation Interface (EPI) 1

External Security Interface (ESI) 1, 25

F
field

in Mapset containing a single map 143

field()
in Mapset containing a single map 143

FieldByIndex
Using BMS Map data with EPI COM classes 167

FieldByPosition
Using BMS Map data with EPI COM classes 167

Finding potential servers
in External call interface 133

Using the classes 133

Flow
in CICS Server Information and Connection

Status 161

Form_Load
in Connecting to CICS 3270 applications using the

EPI 163

in Making an ECI link call to CICS 156

freeResultSet
Statistics API function 43

G
generic classes 82

getAPITraceLevel
Statistics API function 43

getFirstId
Statistics API function 41

getFirstStat
Statistics API function 42

getIdQuery
Statistics API function 41

getNextId
Statistics API function 41

getNextStat
Statistics API function 42

getResourceGroupIds
Statistics API function 39

getStatIds
Statistics API function 39

getStatIdsByStatGroupId
Statistics API function 40

234 CICS Transaction Gateway: Programming Guide

getStats
Statistics API function 40

getStatsAPIVersion
Statistics API function 43

getStatsByStatId
Statistics API function 40

glossary of terms and abbreviations 209

H
handleException 150

handleException method 66

handleReply 146

in EPI call synchronization types 137, 138, 139, 140

using EPI BMS Map Classes 145

handleReply method 65

handling exceptions 149

heap size 72

I
idle

in EPI call synchronization types 138

initialization file
in Finding potential servers 133

in Starting a 3270 terminal connection to CICS 136

Initiation, Automatic Transaction 115

input records 94

input/output records 88

install_path vii

installation
default location vii

path vii

installation path vii

instance
in Finding potential servers 134

IPIC
IPIC flowed security 56

IPIC link security 55

IPIC security for ECI
CICS security 55

IPIC support for ECI 57

J
J2EE

applications 6

J2EE Connector Architecture (JCA) 79

ConnectionFactory 80

J2EE Tracing 101

Java
client programs 47

heap size 72

stack size 72

Java 2 Security Manager 77

Java permissions 77

Javadoc 189

JavaGateway
security 49

JCA
Managed environment 81

Non-managed environment 82

JNDI 99

JSSE 76, 77

L
link

in Server connection 126

Link
in Making an ECI link call to CICS 157

load balancing 185

logical unit of work 108

LogonLogoff classes 97

M
Making an ECI link call to CICS

CICS Server Information and Connection

Status 161

ECI Call Synchronization Types 159

ECI Link Calls within a Unit Of Work 158

in Using the COM classes 156

managed environment 90

Managing logical units of work
in External call interface 128

Using the classes 128

Map
in Using BMS Map data with EPI COM classes 166

Map.FieldByName
in Using BMS Map data with EPI COM classes 167

Map.Validate
in Using BMS Map data with EPI COM classes 167

MAPINQ1Map
in Mapset containing a single map 143

Mapset containing a single map
in C++ External presentation interface 143

in EPI BMS conversion utility 143

migration vii

Monitoring server availability
in External call interface 134

Using the classes 134

multi-threading 125

multithreading 27, 32, 33, 34, 42

N
New

in Making an ECI link call to CICS 156

nonmanaged environment 90

using J2EE CICS resource adapters in 98

NotifyFn parameter
CICS_EpiAddTerminal function 115

O
On Error Goto 170

On Error Resume 170

Index 235

openGatewayConnection
Statistics API function 37

openRemoteGatewayConnection
Statistics API function 37

output records 94

P
Passing data to a server program

in External call interface 126

Using the classes 126

password 133

Password Expiry Management 160, 168

Password Expiry Management (PEM) 146

PF3
Accessing fields on CICS 3270 screens 140

PICTG 1

poll
in Deferred synchronous reply handling 131, 132

in EPI call synchronization types 140

Poll
in ECI Call Synchronization Types 160

in EPI call synchronization types 165

poll method 146

in ATI support 168

pollForReply method
in ATI support 168

program link calls 10, 50, 108

programming
EPI programming 58

Java client programs 47

reference 189

Programming Overview
Using the COM interfaces 153

publications 201

Q
queryATI 145, 167

R
receiveATI 146

receiveATI method
in ATI support 168

Registration 153

reply handling, asynchronous 130

ReplyLength 88

resource adapter samples 102

Running a CICS 3270 session
in Connecting to CICS 3270 applications using the

EPI
in Using the COM classes 164

S
sample programs 197

samples.txt 197

screen
Accessing fields on CICS 3270 screens 140

Screen
in Running a CICS 3270 session 164

Using BMS Map data with EPI COM classes 167

screen size 24

screenable.jar 101

Security
Java security permissions 77

security classes 76

security considerations
ECI 110

security credentials 101

security exits 76

Security Management
EPI 146

semaphore 192

send
in EPI call synchronization types 137, 138, 139, 140

in Starting a 3270 terminal connection to CICS 137

send method
in ATI 145

in ATI support 168

server
in EPI call synchronization types 138, 140

Server connection
in External call interface 126

Using the classes 126

serverCount
Finding potential servers 134

serverDesc
Finding potential servers 134

serverName
Finding potential servers 134

Servers 153

Session
in Running a CICS 3270 session 164

Session.SetSyncType
in EPI call synchronization types 165

setAPITraceFile
Statistics API function 44

setAPITraceLevel
Statistics API function 44

setATI 145, 167

SetErrorFormat 171

SetSyncType
in ECI Call Synchronization Types 160

stack size 72

start method
in ATI support 168

Starting a 3270 terminal connection to CICS
in C++ External presentation interface 136

Using the C++ classes 136

state
in EPI call synchronization types 140

state (parameter)
in EPI call synchronization types 138

236 CICS Transaction Gateway: Programming Guide

Statistical API
multithreading 33

Result set tokens 33

Statistical data API 2

dumpState 45

Statistics API 27

C-language header files 29

ctgstats.h 29

ctgstdat.h 29

Calling the API 27

closeAllGatewayConnections 39

closeGatewayConnection 38

copyResultSet 42

Correlating results 45

ctgstats.h 29

ctgstdat.h 29

data types 32

dumpResultSet 45

Error checking 45

Example API program structure 31

freeResultSet 43

Gateway token 32

Gateway token type 32

CTG_GatewayToken_t 32

getAPITraceLevel 43

getFirstId 41

getFirstStat 42

getIdQuery 41

getNextId 41

getNextStat 42

getResourceGroupIds 39

getStatIds 39

getStatIdsByStatGroupId 40

getStats 40

getStatsAPIVersion 43

getStatsByStatId 40

ID data 35

CTG_IdData_t 35

ID functions 39

multithreading 27, 32, 34

openGatewayConnection 37

openRemoteGatewayConnection 37

Overview 27

Query strings 32

Result set functions 41

Result set tokens
Ownership by API 33

Relationship with gateway token 34

Retrieving statistical data functions 40

Runtime DLL 29

Multiplatforms 30

z/OS 29

Sample code 29

setAPITraceFile 44

setAPITraceLevel 44

Statistics API (continued)
Statistical data 35

threads 32

Trace Levels 36

Utility functions 43

version control 28

Statistics API components 29

Statistics API functions 36

status
in Monitoring server availability 134

in Server connection 126

stream format 96

streamable interface 88

Synchronous
in ATI support 168

Synchronous call synchronization
in ATI 145

Synchronous reply handling
in Controlling server interactions 129

in External call interface 129

synchronous sends 64

synchronous, Deferred 146

system properties, Java 73

T
Terminal

in Running a CICS 3270 session 164

Terminal class 167

terminal index 71, 112

Terminal.Poll
in EPI call synchronization types 165

Terminal.Send
in EPI call synchronization types 165

Terminal.Start
in EPI call synchronization types 165

in Running a CICS 3270 session 164

terminals
adding to CICS 59

basic 59

deleting 62

encoding 68

extended 61

threads, multiple 125

time-out 110

TPNName
using 13

tracing 73

Tracing
J2EE 101

TranName
using 13

Transaction Initiation, Automatic 115, 167

transID 146

TransId parameter
CICS_EpiStartTran function 113

Index 237

U
UOW

in ECI Link Calls within a Unit Of Work 158, 159

uowId 129

Using BMS Map data with EPI COM classes
in Connecting to CICS 3270 applications using the

EPI
in Using the COM classes 166

Using EPI BMS Map Classes
in C++ External presentation interface 144

Using the C++ classes 144

Using the C++ classes
Accessing fields on CICS 3270 screens 140

EPI BMS conversion utility 141

Starting a 3270 terminal connection to CICS 136

Using EPI BMS Map Classes 144

Using the CICS Transaction Gateway C++ classes
EPI call synchronization types 137

Using the classes
Controlling server interactions 128

Finding potential servers 133

Managing logical units of work 128

Monitoring server availability 134

Passing data to a server program 126

Server connection 126

Using the COM classes
Connecting to CICS 3270 applications using the EPI

CICS Server Information 169

EPI call synchronization types 165

Running a CICS 3270 session 164

Using BMS Map data with EPI COM

classes 166

Making an ECI link call to CICS
CICS Server Information and Connection

Status 161

ECI Call Synchronization Types 159

ECI Link Calls within a Unit Of Work 158

V
VBScript 153

verifyPassword 133, 146

Visual Basic 153

W
wait

in Asynchronous reply handling 131

in Deferred synchronous reply handling 132

Wait parameter
CICS_EpiGetEvent 114

Windows
environment variables 125

writing input and output records 94

X
XA

overview 90

238 CICS Transaction Gateway: Programming Guide

Notices

This information was developed for products and services offered in the

U.S.A. IBM may not offer the products, services, or features discussed in this

document in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any

other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,

OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore

this statement may not apply to you.

© Copyright IBM Corp. 2002, 2008 239

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s)

described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact IBM United

Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire,

England, SO21 2JN. Such information may be available, subject to appropriate

terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Programming License Agreement, or any

equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application

programming interfaces for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under

all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

240 CICS Transaction Gateway: Programming Guide

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

AIX

AnyNet

AS/400

CICS

CICS/400

CICS/ESA

CICS/VSE

DB2

Domino

Hummingbird

IBM

IBM

IBMLink

IMS

iSeries

MQSeries

MVS

MVS/ESA

Notes

OS/2

OS/390

POWER

pSeries

RACF

Redbooks

RETAIN

RMF

RS/6000

SAA

SP2

System/390

Tivoli

TXSeries

VisualAge

VSE/ESA

VTAM

WebSphere

z/OS

zSeries

Notices 241

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and

other countries.

Intel, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries,

or both.

Other company, product or service names may be trademarks or service

marks of others.

242 CICS Transaction Gateway: Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and

on the accuracy, organization, subject matter, or completeness of this book.

Limit your comments to the information in this book and the way in which

the information is presented.

To ask questions, make comments about the functions of IBM products or

systems, or to request additional publications, contact your IBM representative

or your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use

or distribute your comments in any way it believes appropriate, without

incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom
v By fax:

– +44 1962 842327 (if you are outside the UK)

– 01962 842327 (if you are in the UK)
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2002, 2008 243

244 CICS Transaction Gateway: Programming Guide

���

Program Number: 5724-I81, 5655-R25 and 5724-J09

SC34-6758-02

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

C
IC

S
Tr

an
sa

ct
io

n
G

at
ew

ay

Pr
og

ra
m

m
in

g
G

ui
de

Ve

rs
io

n
7.1

	Contents
	About this book
	Installation path
	Directory delimiters
	Information specific to your operating system

	What's new in programming
	Chapter 1. Overview
	Application Programming Interfaces
	External Call Interface (ECI)
	External Presentation Interface (EPI)
	External Security Interface (ESI)
	Statistical data API

	Ancillary functions
	List CICS systems
	Code page information
	RACF user ID certificate mapping
	BMS map conversion utilities

	User applications
	Common capabilities
	Client applications
	Java Client applications
	J2EE Connector Architecture (JCA) applications

	Supported programming languages

	Chapter 2. External Call Interface (ECI)
	The ECI request
	External calls to CICS
	Input and output information for external calls to CICS
	Program link calls
	Managing Logical Units of Work

	Status information calls
	Retrieving replies from asynchronous ECI requests
	Callbacks
	Reply solicitation calls

	ECI and CICS transaction IDs
	Timeout of the ECI request
	Request timeout
	Response timeout

	Security in the ECI

	Chapter 3. External Presentation Interface (EPI)
	EPI concepts
	Adding and deleting terminals
	Starting transactions
	Sending and receiving data
	Managing CICS conversations

	Terminal characteristics
	Timeout of the EPI request
	Security in the EPI
	Specifying terminal Sign-on Capability
	Sign-on incapable terminals
	Sign-on capable terminals

	Automatic transaction initiation (ATI)
	Restrictions on application design when using EPI
	3270 data streams for the EPI

	Chapter 4. External Security Interface (ESI)
	ESI functions
	Input and output information for ESI functions
	Using ESI to manage passwords

	Chapter 5. Statistics API
	Statistical data overview
	Calling the API
	API and protocol version control

	Statistics API components
	Runtime components for z/OS
	Runtime components for multiplatforms

	Statistics API program structure
	API data types
	Gateway tokens
	Query strings
	Result set tokens
	Working with multiple result sets

	ID data
	Statistical data

	Statistics API Trace Levels
	API functions
	Gateway daemon connection functions
	openGatewayConnection
	openRemoteGatewayConnection
	closeGatewayConnection
	closeAllGatewayConnections

	ID functions
	getResourceGroupIds
	getStatIds
	getStatIdsByStatGroupId

	Retrieving statistical data functions
	getStats
	getStatsByStatId
	getStatsByStatGroupId

	Result set functions
	getIdQuery
	getFirstId
	getNextId
	getFirstStat
	getNextStat
	copyResultSet
	freeResultSet

	Utility functions
	getStatsAPIVersion
	getAPITraceLevel
	setAPITraceLevel
	setAPITraceFile
	dumpResultSet
	dumpState

	Correlating results and error checking

	Chapter 6. Programming in Java
	Overview of the programming interface for Java
	Creating a JavaGateway
	Java Client application suite select feature
	Writing Java Client applications
	Deploying remote Java Client applications

	JavaGateway security

	Making External Call Interface calls from a Java Client program
	Linking to a CICS server program
	Creating channels and containers for ECI calls
	Managing a LUW
	Retrieving replies from asynchronous requests
	Callbacks
	Reply solicitation calls

	ECI timeouts
	Performance considerations when transmitting data in a COMMAREA
	ECI security
	EXCI security for ECI requests on z/OS
	IPIC security

	ECI return codes and server errors on z/OS
	EXCI support on z/OS
	IPIC support for ECI

	Making External Presentation Interface Calls from a Java Client Program
	EPI support classes
	Adding a terminal to CICS
	Deleting terminals
	Starting a transaction
	Sending and receiving data
	Exception handling
	terminal encoding property
	Converting BMS maps and using the Map class

	EPIRequest
	Using the EPIRequest class
	Terminal Indexes
	EPI null stripping

	EPI and z/OS
	EPI security

	Making External Security Interface Calls from a Java Client program
	Verifying a password using ESI
	Changing a password using ESI

	Compiling and running a Java Client application
	Performance issues
	Setting up the CLASSPATH
	Using a browser and CICS Transaction Gateway on the same workstation

	Problem determination for Java Client programs
	Tracing in Java client programs

	Security for Java Client programs
	CICS Transaction Gateway security classes
	Using a Java 2 Security Manager
	Permissions to access the file system

	Chapter 7. Programming using the J2EE Connector Architecture
	Overview of the programming interface of the J2EE Connector Architecture
	The Common Client Interface (CCI)
	The programming interface model
	Record objects
	The ECI resource adapters
	The EPI resource adapter
	Managed and non-managed environments

	The Common Client Interface
	Generic CCI Classes
	CICS-specific classes

	Using the ECI resource adapters
	Introduction to channels and containers
	Using the ECI resource adapters with channels and containers
	Connecting to a CICS server using the ECI resource adapter
	Linking to a program on a CICS server
	ECI resource adapter CICS-specific records using the streamable interface
	Transaction management
	XA overview
	Restrictions on WebSphere Application Server for z/OS

	Samples

	Using the EPI resource adapter
	Connecting to a CICS server using the EPI resource adapter CCI
	Setting terminal attributes

	Starting a transaction
	Sending and receiving data
	The Screen model
	Stream Format

	Writing LogonLogoff classes
	Java security

	Samples

	Using the J2EE CICS resource adapters in a nonmanaged environment
	Creating the appropriate ConnectionFactory object
	Creating an ECI ConnectionFactory
	Creating an EPI ConnectionFactory

	Storing ConnectionFactory objects
	Running the J2EE CICS resource adapters in a nonmanaged environment

	Compiling applications
	Compiling and running J2EE components
	Security credentials and the CICS resource adapters
	J2EE tracing
	Issues with tracing if ConnectionFactory serialized

	Resource adapter samples
	ECI COMMAREA sample
	EPI sample

	Assistance in coding CCI applications
	Connector specification API Javadoc
	J2EE Connector Specification API

	Chapter 8. Programming in C and COBOL
	Overview of the programming interface for C and COBOL
	Making External Call Interface calls from C and COBOL programs
	CICS_ExternalCall
	Program link calls
	Managing logical units of work
	ECI timeouts

	Reply solicitation calls
	Security in the ECI

	Making External Presentation Interface calls from C and COBOL programs
	EPI versions
	EPI Initialization and termination
	Adding a terminal to CICS
	Terminal indexes
	Install timeout

	Deleting a terminal
	Starting transactions
	Sending and receiving data
	Managing pseudoconversations
	Events and callbacks
	Polling
	Blocking
	Callback notification

	Processing events
	Automatic transaction initiation (ATI)
	3270 data streams for the EPI
	EPI to CICS (Inbound data streams)
	CICS to EPI (Outbound data streams)
	3270 order codes provide additional control function

	Making External Security Interface calls from C and COBOL programs
	Verifying a password using ESI
	Changing a password using ESI
	Setting default security using ESI

	Compiling and linking C and COBOL applications
	Windows
	For C Programs:
	For COBOL Programs:

	AIX
	Solaris
	Linux
	HP-UX

	Chapter 9. Programming in C++
	Overview of the programming interface for C++
	Writing C++ Client applications
	Establishing the working environment
	Multi-threading

	Making External Call Interface calls from a C++ Client program
	Linking to a CICS server program
	Passing data to a server program
	Using COMMAREAs
	Controlling server interactions

	Managing logical units of work
	Retrieving replies from synchronous requests
	Retrieving replies from asynchronous requests
	Reply solicitation calls
	Deferred synchronous reply handling

	ECI security
	Finding potential servers
	Monitoring server availability
	C++ ECI classes

	Making External Presentation Interface Calls from a C++ Client Program
	Adding a terminal to CICS
	EPI call synchronization types
	Sending and receiving data
	Accessing fields on CICS 3270 screens

	Converting BMS maps and using the Map class
	Mapset containing a single map
	Using EPI BMS Map Classes

	Support for Automatic Transaction Initiation (ATI)
	EPI Security
	C++ EPI classes

	Compiling and running a C++ Client application
	Problem determination for C++ Client programs
	Handling Exceptions
	Async Exception Handling

	Chapter 10. Programming in COM
	Overview of the programming interface for COM
	Writing COM Client applications
	Establishing the working environment
	Object Creation and Interfaces
	Type Libraries and Visual Basic Intellisense

	Making External Call Interface calls from a COM Client program
	Linking to a CICS server program using Visual Basic
	Handling COMMAREAs in Visual Basic

	Linking to a CICS server program using VBScript
	Managing a LUW
	ECI Link Calls within a Unit Of Work

	Retrieving replies from asynchronous requests
	Reply solicitation calls

	ECI security
	ECI CICS Server Information and Connection Status
	ECI COM classes

	Making External Presentation Interface Calls from a COM Client Program
	Adding a terminal to CICS
	Adding a terminal to CICS using Visual Basic
	Adding a terminal to CICS using VBScript

	Sending and receiving data
	EPI call synchronization types
	Converting BMS maps and using the Map class
	Support for Automatic Transaction Initiation (ATI)
	EPI Security
	EPI CICS Server Information
	EPI COM classes

	Problem determination for COM Client programs
	Handling Exceptions

	Chapter 11. Request monitoring user exits
	Correlation points available in the exits
	Data available by FlowType and RequestEvent

	Chapter 12. ECI and EPI C exits
	Loading the exits
	Sample exits and interface definitions
	Writing your own user exits
	Diagnostic information
	EPI user exits
	Java request monitoring exits

	Appendix A. ECI extensions that are environment-dependent
	Call type extensions
	Asynchronous program link call, with notification by message (ECI_ASYNC_NOTIFY_MSG)
	Asynchronous program link call, with notification by semaphore (ECI_ASYNC_NOTIFY_SEM)
	Asynchronous status call, with notification by message (ECI_STATE_ASYNC_MSG)
	Asynchronous status call, with notification by semaphore (ECI_STATE_ASYNC_SEM)

	Fields to support ECI extensions
	Reply message formats
	ECI return notification
	Summary of input parameter requirements

	Appendix B. Sample programs
	Appendix C. Return codes from the ctgadmin command
	The product library and related literature
	CICS Transaction Gateway books
	Sample configuration documents
	Redbooks
	Other Useful Books
	CICS Transaction Server publications
	CICS interproduct communication
	CICS problem determination books

	Microsoft Windows publications
	APPC-related publications
	IBM products
	Microsoft products
	Systems Network Architecture (SNA)

	Obtaining books from IBM

	Accessibility features for CICS Transaction Gateway
	Documentation
	Starting the Gateway daemon
	Setting EPITerminal properties programmatically
	cicsterm
	The cicsterm -? command

	Glossary
	Index
	Notices
	Trademarks

	Sending your comments to IBM

