
© 2003 IBM Corporation

ITSO iSeries Technical Forum

International Technical Support Organization

ibm.com

Larry Youngren

Striving for Optimal Journal Performance

BP03

F03BP03Striving.PRZ 1

23

150

Original Batch With Journal
0

50

100

150

200

M
in

ut
es

?

Tuning Batch Jobs (Case Study)

F03BP03Striving.PRZ 2

© 2003 IBM Corporation

We conducted journal performance studies

The results are documented in a resulting Redbook:
 Striving for Optimal Journal Performance

 Order number
SG24-6286-00.

 Web Site:
http://www.redbooks.ibm.com

New Journal Performance Redbook

Published: May of 2002

F03BP03Striving.PRZ 3

© 2003 IBM Corporation

Hardware selection/configuration choices

Journal tuning

Application tuning { Make 'em Journal Friendly }

Three approaches

F03BP03Striving.PRZ 4

© 2003 IBM Corporation

Receiver

Journal

The Objects

F03BP03Striving.PRZ 5

© 2003 IBM Corporation

Journal

Super-size them !

Default
size

2 Gig

Receiver

*MaxOpt1
*MaxOpt2

*MaxOpt3

1
TB

Wider

More Seq #'s

F03BP03Striving.PRZ 6

Jrn Rcvr
 arms

Machine
Interface

AP

Main Memory

Write Cache

IOP1

ODP

SMAPP

PF
RAID
Parity

10 5

Journal

System ASP

Screens

SLIC
(Microcode)

DocumentationCmdsApi's

User ASP

Error
Msgs

Jrn Rcvr

IOA

OS/400

The Journal environment

F03BP03Striving.PRZ 7

Hardware & Configurations

F03BP03Striving.PRZ 8

Sizing the IOA write cache
(Does it matter ?)

F03BP03Striving.PRZ 9

Receiver

Journal

Write Cache

. . .

IOP / IOA

Write cache comes in a variety of
sizes. How much difference
does write cache make to Jrn

Perf ?

How much IOA write cache do I need ?

F03BP03Striving.PRZ 10

0

200

400

600

800

1000

1200

M
in

ut
es

Jrn: No write cache
Jrn w/ write cache

 Elapsed Time
Batch Job

Ques: Does write cache really help ?

Conclusion:
Supplying sufficient IOA write cache is probably the most influential hardware decision you can make
in order to reduce journal overhead. It's more important than RAID vs. Mirroring, more important than
User ASP vs. Sys ASP, more important than number of disk arms, more important than 7.2k RPM vs. 10k
RPM disk drive speed.

Elapsed batch job time cut by
90% when IOA write cache is

present
Journal
Penalty

w/o any
Write

Cache

IOA Write cache performance benefit

F03BP03Striving.PRZ 11

Receiver

Journal

Need enough Arms

Write Cache

(Mirrored or RAIDed ?). . .

IOP 26 Meg of Write Cache
(older vintage IOPs

have less)

Don't skimp on the write cache
Model Write Cache

(older)
2763

10 Meg

NEW !! 2782 40 Meg

(older)
2778

26 (104) Meg

NEW !! 2757 235 (757) Meg

Feb '03

 New

F03BP03Striving.PRZ 12

Get your hands on the maximum amount of IOA write
cache you can afford.

 26 Meg is often adequate, 4 Meg generally is not.

At rates approaching 1 Million Jrn Entries/Minute:
 You need even more ! (The 757 Meg IOA helps !)

If you perform lots of journaling, avoid configuring the
maximum (15) allowable drives per IOA
(because journal can swamp the write cache).
 Limit yourself to 4 disks per IOA if you've got only 4 Meg
 and 10 disks per IOA if you've got 26 Meg.

Rule of thumb:

F03BP03Striving.PRZ 13

© 2003 IBM Corporation

Spread User ASP disks over multiple IOPs

The extra write cache helps

Install faster disk arms (10K RPM)
Tends to reduce elapsed batch time by upwards of 30%

Install larger IOP write cache (Model 2748 or newer)

Add sufficient disk arms to the Journal ASP (up to 15)
Don't just focus on disk capacity, think about bandwidth and parallelism

Specify *MaxOpt1 to get the broadest arm usage

Summary of Configuration Choices

F03BP03Striving.PRZ 14

Faster spinning disk drives definitely make a noticeable difference
in disk-write intensive environments. Journaling activity (especially

under a batch job) can clearly be such an environment.

If you have multiple vintages of disk drives in your shop, give the
journal the best of the best -- he needs them.

Notes:

F03BP03Striving.PRZ 15

Mirroring vs. RAID
Which is most Journal friendly ?

F03BP03Striving.PRZ 16

Receiver

Journal

Multiple Arms

Write Cache

User ASP
. . .

IOP / IOA

Given today's huge write cache
sizes, am I better off with

mirrored or RAID protection ?

(Mirrored vs. RAID)

Are Mirrored drives still the best performance choice ?

F03BP03Striving.PRZ 17

Write Cache
IOA2

Mirrored

OS/400 OS/400

Journal Entry

Write Cache

IOA1

RAID Manager

Parity

{sed

Frame of main
memory

Duplicate Mirror image

Writes Required for Mirror vs. RAID

IOP

F03BP03Striving.PRZ 18

Main
Memory

Journal

Write Cache

User ASP

(Provided you have enough
Write Cache, RAID5 drives
may actually perform better
for journaling than Mirrored
drives)

. . .

IOP

Receiver

Use of write cache -- Extra Mirrored writes

F03BP03Striving.PRZ 19

Although former in-house tests on machines with limited quantities
of write cache had demonstrated that mirrored disk drives can
absorb heavy write-intensive journal traffic faster than RAID5

protected disk drives, the presence of the newest IOPs with 26 Meg
(or more) of write cache has reversed that distinction.

Yes, I'd still prefer mirrored disk drives if you can afford them, but if
that's not practical at least strive for use of IOPs with large

quantities of write cache associated with the disk drives housing
your journal receivers.

From a journal perspective the speed of your disk drives (10k RPM)
and the size of your write cache may be the most important

hardware choices you can make if you're striving for optimal
performance.

Notes:

F03BP03Striving.PRZ 20

© 2003 IBM Corporation

RAID parity

New Journal entries

Old-style RAID imposes up to a 2.2 fold
performance penalty

on Journal if you don't have enough
write cache.

The dreaded arm sweep

Old Style
(Pre Feb '03)

Keep it rather full !

F03BP03Striving.PRZ 21

Disbursed
RAID parity

New Journal entries

The NEW RAID/ Controller story...

New Style
(Feb '03)

Model 2757

Better
performance

V5R2!

 New

F03BP03Striving.PRZ 22

0

50

100

150

200

250

300

M
in

ut
es No Jrn

User ASP RAID5
User ASP Mirroring

 Elapsed time: Untuned Batch
Journal intensive environment

Conclusion: Extra overhead and CPU pathlength to write second copy of each main memory page frame
on behalf of mirrored User ASP vs. RAID-5 User ASP slowed this batch job by 53%.
RAID-5 puts less pressure on the write cache (slows batch by only 30%).
Clearly this is an environment in which use of Jrn Caching ought to be used to further reduce journal
overhead.

W/o Caching,
Journaling slows batch by 30%

MirroredJrn

w/ RAID

Mirroring impact on elapsed time to Journal

F03BP03Striving.PRZ 23

© 2003 IBM Corporation

Likely to improve performance when journaling

Provided you configure enough disk arms (1 is rarely enough !)

Place your journal receiver in a user ASP
CRTJRNRCV JRNRCV(RECV0001) ASP(2)

Try to avoid placing multiple "active" receivers in the same user ASP
 (Unless you've got LOTS of disk arms in this ASP)

User ASP

Jrn Rcvr
 arms

What About Auxiliary Storage Pools?

F03BP03Striving.PRZ 24

Auxiliary Storage Pools (ASPs) represent an excellent opportunity to give the journal
receiver a set of private disk arms for his sole use.

Given enough disk arms in such a pool, your journal receiver will spread itself across the
arms and achieve efficiency by writing to multiple disk arms in parallel. The more arms
the higher the bandwidth available to the journal receiver and hence the higher the disk

traffic he can service without slowing you down.

If you give him too few disks arms, however (and one arm is rarely enough) the use of
User ASPs can be counterproductive. I prefer to see at least three disk arms in each

User ASP.

Notes:

F03BP03Striving.PRZ 25

© 2003 IBM Corporation

One arm per User ASP is rarely enough for best performance

Formerly

 Used up to 10 primary (fastest) arms per receiver

 Plus 5 additional arms if RcvSizOpt (*RmvIntEnt)

A round robin algorithm is employed

You can increase this maximum to 100 arms
Provided you specify CHGJRN ... RcvSizOpt(*MaxOpt1)

How Many Disk Arms Are Enough?

F03BP03Striving.PRZ 26

Journal tuning parameters

F03BP03Striving.PRZ 27

© 2003 IBM Corporation

How often should I change receivers ?

Consider use of a threshold

CRTJRNRCV ... THRESHOLD(1800000) { Means 1.8 Gig }
Note: Threshold is in units of Kilobytes
Higher your threshold:

 More disk arms we use
 More bandwidth you achieve

If your applications produce a Gig or more of journal traffic per hour you'll
probably want to step up to a *MAXOPT1 setting for your journal.

Capacity = *MaxOpt1

Threshold

Journal Receiver thresholds

F03BP03Striving.PRZ 28

You get to select both the maximum journal receiver size and a
corresponding threshold value which alerts you when the receiver

is approaching its maximum size. Make these choices wisely!

You can elect to move away from the traditional 2 Gig maximum
journal receiver size and can step up, instead, to the new 1 TB
receiver size. Be sure to remember to similarly increase your

threshold to a comparable value if you want to shoot for some total
journal receiver capacity greater than 2 Gig.

By increasing both the threshold and capacity you're decreasing
the frequency with which journal receivers need to be swapped --

and hence reducing the instances of any performance spike
associated with the Flush which accompanies such a swap.

Notes:

F03BP03Striving.PRZ 29

© 2003 IBM Corporation

Larger receiver capacity
Default 2 Gig receiver capacity can be increased to 1 TB
Requires *maxopt1 option on CHGJRN or CRTJRN
2 Billion Sequence Numbers climbs to nearly 10 billion

May want to select larger journal receiver threshold when you create the receiver
To employ a threshold larger than 2 Gig you must also request a larger max jrn
size

Example:
CRTJRNRCV JrnRcv(MyLib/Rcv2) Threshold(70000000) { 70 Gig }
CRTJRN Jrn(MyLib/Jrn2) JrnRcv(MyLib/Rcv2) RcvSizOpt(*MaxOpt1)
{ Rqsts 1 TB max }

Increased Journal Capacity

F03BP03Striving.PRZ 30

The larger capacity (1TB) journal receiver size is designated by
specifying RcvSizOpt(*MaxOpt1) on your CHGJRN command.

You can step up to *MaxOpt2 (which not only gives you the full 1 TB
size limit but also allows individual journal entries to be wider when

necessary -- a need you may face if you elect to store large BLOBs in
your database files or SQL tables).

Besides the 1 TB capacity, both *MaxOpt1 and *MaxOpt2 bump the
maximum number of journal sequence numbers allowed by nearly

5-fold.

Notes:

F03BP03Striving.PRZ 31

Minimizing Qty of Jrn Data

F03BP03Striving.PRZ 32

Jrn
Rcvr

File B

File A Changed
record image
File B Changed
record image

 Journal
 Receiver's
 content

Record 1

Record 2

Record 3

:
:
Record N Field1

Mary

Field 2

Parker

Field 3

555-9181

Field n

Ohio
...

File's content

Field1

Mary

Field 2

Parker

Field 3

333-0717

Field n

Ohio
...

Old
record

New record

Minimized Journal Entry
Journal
Entry
Prefix

Field 3

555-9181

Record
#
2

 Field 3
changed

Minimized-Data Journal entry content

F03BP03Striving.PRZ 33

Journal Minimal Data is an option affecting how much space updated
Database records/rows consume in your journal receivers.

With Journal Minimal Data enabled only the essential changed bytes
are written to the journal (not the whole record image).

This can lead to:
Reduction in the size of journal receivers

Reduction in the frequency for journal housekeeping (i.e. swapping receivers).

Reduced comm line traffic in a remote replication environment utilizing Rmt Jrn
support since minimized journal entries consume less bandwidth enroute to the
remote machine

Journaling Minimal Data

F03BP03Striving.PRZ 34

© 2003 IBM Corporation

Ordinary Jrn_Min Difference

Size Jrn Ent 637 bytes 411 bytes 35% less

Disk writes 55/sec 36/sec 34% less

Write width 16k/write 12k 25% less

CPU busy 61.5% 60.6% 1.5% less

ERP Environment

CHGJRN ... MINENTDTA(*FILE)

Customer experience with Journal Minimal Data

F03BP03Striving.PRZ 35

Beat SMAPP to the punch

F03BP03Striving.PRZ 36

Jrn Rcvr
 arms

Active

SMAPP

System ASP

AP

128K
Buffer

Write Cache

IOP1

ODP

SMAPP

PF
RAID
Parity

10 5

If only your PF
is journaled
(not the AP's),
SMAPP traffic
switches to the
PF's journal

Journal

*RMVINTENT

Mirrored

AP

PF

User ASP

If your PF isn't
journaled all
SMAPP traffic
for your AP's
heads to the
system ASP

The best choice
is to
EXPLICITLY
journal the large
Access paths
so that SMAPP
doesn't waste
cycles trying to
do it for you

Explicitly journal your large Access paths (STRJRNAP)

F03BP03Striving.PRZ 37

© 2003 IBM Corporation

How does SMAPP affect performance?
SLIC provides background SMAPP jobs

Some evaluate the eligibility of Access Paths for protection
Some re-tune the protection
Some start and stop implicit journaling for the selected access paths
Some sweep changed pages from memory
All consume CPU cycles

SMAPP becomes even more aggressive
 150 -> 120 -> 90 -> 70
You may want to tone it down on your target/back-up system (EDTRCYAP)

What can you do about it?
Explicitly journal large, frequently modified access paths

Moves disk traffic from system ASP disk arms to user ASP disk arms
Cuts down on the costs of reevaluation decisions in the background

CHGJRN RCVSIZOPT (*RMVINTENT)
Overlaps access path journal disk writes with PF journal disk writes
Reduces amount of communication line traffic for Remote Journal

Throttling the SMAPP Overhead

F03BP03Striving.PRZ 38

SMAPP (System Managed Access Path protection) is always running in the
background trying to identify and protect (i.e. implicitly journal) your largest
access paths so that your abnormal IPL time doesn't go through the roof.

That's a darn good thing.

But... it takes some CPU cycles to keep making this decision on your behalf.
If you know with certainty which particular access paths are both huge and

important to your business, you can reduce some of this background
performance penalty by making the decision for us instead of forcing the

operating system to make the decision day after day after day each time you
open or close a file.

Net: Employ STRJRNAP to identify the specific access paths which you know
you'll want access to quickly if the machine were to crash. By doing so, we'll

burn fewer cycles trying to make that decision in the background on your
behalf.

Notes:

F03BP03Striving.PRZ 39

Putting a fork in the road

F03BP03Striving.PRZ 40

SMAPP-induced
 traffic

Journal Entry

AP

Journal Entry

PF

Write Cache

IOP2

Write Cache

IOP1

4 Meg d 26 Meg

. . .
JOE

PF

JOE

AP

4-5 Arms User ASP

Main Memory

Overlapped Writes With *RMVINTENT

F03BP03Striving.PRZ 41

The RcvSizOpt(*RmvIntEnt) option on the CHGJRN command is a winner. Use it.

It gives the operating system permission to put a fork in the road and write your
application-generated journal entries on behalf of database changes to one set of
disk arms while writing the system-generated hidden journal entries (useful only to

IPL processing) to a separate set of disk drives.

When SMAPP is enabled, this means your PF journal images go to one set of disk
arms, and your AP journal images go to another -- but don't worry, IPL knows how to

find and use both.

This physical separation of journal entries is generally a wise choice. The one
instance in which you'd be better off letting them commingle to the same set of disk
arms is when you have only one disk arm configured in your User ASP. If you've
got only one disk arm, ignore this option. If you've got three or more disk arms in

the User ASP and lots of large access paths, it's probably a winner.

Notes:

F03BP03Striving.PRZ 42

Customizing the Chaff

F03BP03Striving.PRZ 43

 Change Journal (CHGJRN)

Type choices, press Enter.

Journal > JRN1 Name
 Library > JRNLIB Name, *LIBL, *CURLIB
Journal receiver:
 Journal receiver > *GEN Name, *SAME, *GEN
 Library Name, *LIBL, *CURLIB
Receiver size options *SAME *SAME, *NONE, *RMVINTENT...
 + for more values
Minimize entry specific data . . *SAME *SAME, *NONE, *FILE, *DTAARA
Journal caching *SAME *SAME, *NO, *YES
Fixed length data > *JOB *JOBUSRPGM, *JOB, *USR...
 > *USR
 > *PGM _
 > *SYSSEQ
 + for more values > *THD
Text 'description' *SAME

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

CHGJRN command with new FIXLENDTA parm

Customizing what we collect

F03BP03Striving.PRZ 44

 Specify Value for Parameter FIXLENDTA

Type choice, press Enter.

Fixed length data *JOBUSRPGM

Single Values
 *JOBUSRPGM

Other Values
 *JOB
 *USR
 *PGM
 *PGMLIB
 *SYSSEQ
 *RMTADR
 *THD
 *LUW
 *XID

F3=Exit F5=Refresh F12=Cancel F13=How to use this display F24=More keys

All options displayed for FIXLENDTA Parameter

CHGJRN . . . FIXLENDTA(*RMTADR)

Old Default

New
V5R2 choices

F03BP03Striving.PRZ 45

© 2003 IBM Corporation

Be Selective

 Advise us to collect only what you truly need,
 no more and no less

F03BP03Striving.PRZ 46

© 2003 IBM Corporation

Which Journaling Parameters Can Help?

CHGJRN . . .
Use of MINENTDTA

Reduces quantity of bytes written to the journal receiver (only changed bytes written)

Reduced size of Jrn Receiver 35% in one shop

RcvSizOpt (*RmvIntEnt)
Routes hidden/implicit internal journal entries to a separate set of disk arms
Recycles disk space

RcvSizOpt (*MinFixLen)
Reduces quantity of bytes written and CPU consumed per journal entry
Saved 5% time and space in one shop

Summary

F03BP03Striving.PRZ 47

These are tuning choices you face regarding your journal itself.

Employing *MinFixLen is a useful way to reduce both CPU
consumption and disk space by weeding out the pure auditing

information which otherwise accompanies each and every journal
entry. If your auditors don't need it, why collect it ?

MINENTDTA can be an excellent choice if you have applications
which update only a few fields in each record. (Why make the

journal capture the WHOLE record image if only a few fields change
?)

Notes:

F03BP03Striving.PRZ 48

Aggressive Journal Cache PRPQ
(OS/400 option in V5R2)

V5R2!

F03BP03Striving.PRZ 49

This is a new journal performance offering.
It's especially effective for speeding up batch jobs.

Notes:

F03BP03Striving.PRZ 50

Jrn Rcvr
 arms

EmptyFull

Active

System ASP

Threshold

AP

Write Cache

128K
Buffer

Write Cache

IOP1 IOP2

ODP

SMAPP

PF
RAID
Parity

10 5

Journal

*RMVINTENT

AP PF

S
E

TO
B

JA
C

C

User ASP

The Journal environment - - Caching at three levels

 New

F03BP03Striving.PRZ 51

This is the "big picture". It summarizes much of what we'll talk about,
 from your opportunity and responsibility to tune the use of the ODP

 buffer all the way down to the selection of the proper write cache size in the
IOPs.

Spreading your disk arms within a User ASP across sufficient IOPs so as to
maximize use of write cache is an important configuration choice you can make.
My rule-of-thumb is that disk write intensive operations like journaling perform

best when old-style IOPs (those housing 4 Meg of write cache or less) service no
more than 5 disk arms. The newer vintage IOPs (those with 26 Meg or more of

write cache) can easily handle up to 10 disk arms apiece.
Above 15 arms gets dicey since high volume journal environments may eventually

get starved for sufficient write cache.

Net: Your hardware configuration does matter!

Notes:

F03BP03Striving.PRZ 52

DB Updates during Batch

1442

475

Journal Alone Without Journal
0

500

1000

1500
S

ec
on

ds

493

Jrn Caching

In-house Test

Impact of the Jrn Caching

F03BP03Striving.PRZ 53

While there are lots of software things you can tinker with in an
effort to reduce journal performance overhead, this one is head and

shoulders above the rest.

If you've got the Journal Caching option installed, use it. If you
don't, get your hands on a copy.

It single-handedly can do in minutes what some folks struggle
weeks or months to accomplish when attempting to coax good

performance out of their journaling environment.

If you get nothing else from this talk, make yourself a mental note to
search out and investigate this option.

Notes:

F03BP03Striving.PRZ 54

User ASP

10

PF 3

IOP

Write Cache

128K Buffer

Batch
Job #1

Batch
Job #2

Batch
Job #3

PF 1

PF 2

Journal
Receiver

Journal

Main
Memory
Buffer

How can I maximixe
use of this buffer ?

Journal Bundling

F03BP03Striving.PRZ 55

The SLIC layer of the journal microcode support gathers together journal
entries provided by simultaneously operating jobs into a single main memory

buffer.

The resulting set of journal entries are treated as a single string and are known
as a bundle. This bundle is sent from main memory to the write cache of the

IOA and ultimately to the disk surface in unison in a single disk rotation.

Such bundling behavior occurs naturally across jobs as the rate of journal
entry creation speeds up. It can be further enhanced by installing and enabling

the Journal Caching. With Journal Caching present, not only does such
bundling behavior occur across jobs but also within a single batch job such
that multiple separately updated SQL rows are bundled into a single journal

string.

Such bundling brings about improved journal performance.

Notes:

F03BP03Striving.PRZ 56

Batch
Application

Cache-enabled

SMAPP

AP

Write Cache

IOP

PF
RAID
Parity

10 5

Receiver

*RMVINTENT

AP

PF

CHGJRN ...
JrnCache(*Yes)

SLIC

System ASP

Active

Journal

User ASP

128K Buffer

Main memory
cache

ODP Buffer

One per disk
arm

26 Meg

New

128K Buffer

Only Adds and Reads can be
cached here

Journal Caching

F03BP03Striving.PRZ 57

The new aggressive optimal caching behavior is initiated by
enabling JrnCache(*Yes).

You need to enable this caching behavior individually for each
journal you want to speed up.

The performance advantage stems from the fact that the caching
option manages a set of main memory buffers, one for each disk

arm across which your journal receiver is spread. Each buffer can
be up to 128k in size, they come and go as needed, dynamically.

Notes:

F03BP03Striving.PRZ 58

© 2003 IBM Corporation

Primarily aimed at reducing journal overhead for long-running
batch jobs which don't already employ commitment control

 Increases main memory caching efficiency and effectiveness

 Journal entries linger in main memory buffer until optimal size is
achieved (128K)

 Corresponding database records also linger in main memory

Buffers only Database "Adds", "Updates", "Deletes"

The first commit, or close operation flushes the buffer

Journal Caching

F03BP03Striving.PRZ 59

© 2003 IBM Corporation

(Batch Job Without Benefit of Commitment Control

5 Million DB operations (10% Adds, 90% Updates)
9 Million resulting Journal entries

 (captured both before and after images)

Elapsed Time

Original Batch run, no Journaling 1118 Sec Base Run
Ordinary Journaling enabled 9773 Sec
With commitment control 1593 Sec

Using the new Journal cache
option

1433 Sec

May also help target machine keep-up if files are journaled on the target side

Performance Benefits of Journal Caching

F03BP03Striving.PRZ 60

These are measured results for a batch job we ran in the lab. The
batch job was provided by a customer who enlisted our assistance

in speeding up their overnight batch runs.

Notes:

F03BP03Striving.PRZ 61

Impact becomes broader
It's not just for DB any more

Becomes a priced feature of the Operating System
Appears on CHGJRN command
CHGJRN JRN(MYLIB/MYJRN) JRNCACHE(*YES)

For V5R2: The former Journal Caching PRPQ grows up !

V5R2!

F03BP03Striving.PRZ 62

Notice that it's the high volume database operations such as ADD, UPDATE,
and DELETE of records/rows which get buffered in the cache.

Both the database records themselves and the matching journal entries
emitted on their behalf linger in main memory longer -- until the cache is full

or until something ensues which requires us to flush the buffer to disk
(closing the file initiates such a flush, so does issuing a commit verb).

The longer they linger, the more the buffer fills and thus the fewer total disk
writes on behalf of journal entries ensues -- and that's the primary reason the

performance improves so dramatically.

When is it probably OK to let such changes linger longer in main memory ?
Ans: Probably during the execution of a batch job.

Notes:

F03BP03Striving.PRZ 63

(For Target Machine's Keep-up Mode)

Keep up rate on Target machine

W/o Caching 600,000 transactions/Hr

With Caching on target 2,400,000 transactions/Hr

Source System Target System

Performance Benefits of Journal Caching

Journal

F03BP03Striving.PRZ 64

While Journal caching is an effective tool in many scenarios on a
production machine, the same journal caching behavior can also be
mighty helpful in most instances on a target machine in an HA 24x7

environment.

If you employ HA Vendor software and would like to help the HA BP
"apply/replay" jobs keep up on the target machine when you've got a
journal intensive batch job running on the source machine, consider

installing the Journal Caching on the target side as well.

Notes:

F03BP03Striving.PRZ 65

batch runs made on an 840
extra time extra cpu cpu/JOE (us) cpu/bundle (us) extra writes

No Journaling 100% 100% 100%
Journaling with defaults 133% 102% 9.27 22.78 367%
user asp, RAID 5 10k rpm 130% 104% 15.06 37.08 367%
user asp, RAID 5 7200 rpm 133% 104% 14.76 36.75 364%
disk level mirroring 154% 108% 29.96 74.38 648%
*MAXOPT2 130% 104% 15.06 37.02 371%
*AFTER and omit *OPNCLO 131% 103% 17.26 29.09 371%
omit *OPNCLO 130% 103% 10.97 23.51 364%
RMVINTENT 133% 104% 15.36 37.70 366%
MINENTDTA 130% 104% 14.41 35.37 369%
*MINFIXLEN 133% 105% 17.61 43.17 369%
all options 128% 103% 22.30 30.65 366%
w/PRPQ 100% 99% -3.14 -287.46 83%
w/PRPQ all options 96% 100% -1.76 -133.76 80%

Normal Experience

Opportunity

Journal Overhead guidelines/trends

F03BP03Striving.PRZ 66

Appendix:
Summary of additional goodies

found in the Redbook

Also see:

Jrn Performance articles
Jan & Feb issues: iSeries News

F03BP03Striving.PRZ 67

1.Chose wisely between mirrored or RAID protected disk drives

2.Configure up to 15 arms per user ASP

The more arms the better for journal intensive environments

Increases max bandwidth the journal receiver can support

3.Use modern/fast disk arms and an IOP with wider write cache

Model 2748 has 26 Meg vs. 4 Meg for older models

4.Spread User ASP across multiple IOPs

Helps reduce risk of IOP write cache overflow

Unless you have model 2748 IOPs or newer, configure no more than 5
busy Journal arms per IOP

Summary of Best Performance Practices

F03BP03Striving.PRZ 68

 5. Issue OVRDBF for batch (helps adds, not updates)
SEQONLY (*YES)
Use a separate ODP (view) to perform the adds
Specify NBRRCDS - - use large enough value

Make buffer size approach 128K

 6. If your batch job performs update operations (not pure adds)
Issue commit verb every 1,000 batch updates (or 128k bytes)
Alternatively, surround batch job with single commit cycle
or... employ Batch Journal Caching PRPQ

 7. Keep PF open for update in a secondary job
Especially if your job often opens/closes same file repeatedly

 8. Don't journal nonessential files

 9. Suppress open/close journal entries
STRJRNPF . . . OMTJRNE(*OPNCLO)

(Continuation) of Best Performance Practices

F03BP03Striving.PRZ 69

10. Employ CHGJRN . . . RcvSizOpt(*RmvIntEnt)
And add extra disk arms to the user ASP

11. Employ CHGJRN . . . RcvSizOpt(*MinFixLen)
Practical only if you don't need the extra information

12. Employ CHGJRN . . . MNGRCV(*SYSTEM)
Speeds up subsequent CHGJRN operations

13. Place no more than one active journal receiver per user ASP

14. Split long running batch job into parallel streams

15. Use SETOBJACC on both source and Target machines
Keeps modest sized keyed logical files resident

16. Don't save a journal receiver while still attached and filling
(Use the save/restore omit support: OMITOBJ parameter)

(Continuation) of Best Performance Practices

F03BP03Striving.PRZ 70

17. Capitalize on SMP feature to speed up Access Path maintenance

Use job-specific scoping via CHGQRYA
Most effective for batch jobs adding records to a physical file covered by
dozens of access paths
Yields parallel index maintenance for blocked "Adds"
Speeds up "Adds" by servicing Access Path page faults in parallel
Some customers have seen up to a 30% performance improvement

Only helps in concert with SEQONLY(*YES)
CHGQRYA . . . DEGREE(*OPTIMIZE)
CHGQRYA . . . DEGREE(*MAX)

18. Consider increase of SMAPP recovery value on Target machine

 In a High Availability environment
 Keep it high until role swap ensues
Helps reduce overhead incurred by the apply jobs

(Continuation) of Best Performance Practices

F03BP03Striving.PRZ 71

19. Start explicit journaling (STRJRNAP) on your largest access paths
Especially if you've not been journaling the underlying PF
If you don't journal it, SMAPP will
Gives you control over placement of the journal receiver employed for SMAPP entries
Reduces disk arm contention and arm skew in the system ASP
Reduces CPU overhead by background SMAPP "Tuning" tasks

20. Set Journal Receiver threshold appropriately

21. Pre-allocate space via CHGPF ALLOCATE(*YES)
Reduces idle time and seize conflicts
Useful if your batch job creates/populates a new file

22. Reduce contention within popular Keyed-logicals
CHGLF ACCPTHSIZ(*MAX1TB) instead of *MAX4GB
Especially if your added key values have high locality of reference

(Continuation) of Best Performance Practices

F03BP03Striving.PRZ 72

23. Employ extra-wide Stream IO for the files you read
CHGQRYA DEGREE(*IO) or DEGREE(*MAX)
Then either:

 A) Read via OPNQRYF
 B) Override to employ an SQL view

24. CALL QDBENCWT '1'
 and then IPL to enable "holey" blocked adds

Reduces contention among concurrent batch jobs performing SEQONLY blocked "Adds" to the
same PF
Helpful if you've broken up batch job into multiple threads
Also requires REUSEDLT(*YES) on CHGPF

25. Order and install PRPQ 5799-BJC (Aggressive Batch Journal Caching)
Speeds up batch jobs performing update operations
Is less helpful if you employ commitment control

26. Always allocate space for VarChar columns
Without allocated space, Journal caching is less effective

(Continuation) of Best Performance Practices

F03BP03Striving.PRZ 73

27. If you run purge programs to toss outdated records from your
database files and empty out any of the history or work files, use the
native CLRPFM rather than the SQL equivalent: Delete *

CLRPFM emits only one journal entry and is quick
DELETE * emits a separate journal entry for each row discarded

(Continuation) of Best Performance Practices

F03BP03Striving.PRZ 74

8 IBM Corporation 1994-2002. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them available in every country.
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and
does not constitute an endorsement of such products by IBM. Sources for non-IBM performance numbers are taken from publicly available information, including vendor announcements
and vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any other claims related to non-IBM products.
Questions on the capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local IBM office or IBM
authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of
performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here to
communicate IBM's current investment and development activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience
will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

AS/400 IBM(logo)
AS/400e iSeries
e (logo) business OS/400
IBM

Trademarks and Disclaimers

F03BP03Striving.PRZ 75

