

The Reality Of Rehosting

Learning Objectives

- zEnterprise Workloads Are Already Optimized
- Customers Have An Inflated View Of Mainframe Cost
- Rehosting Costs More
- Rehosting Introduces Risk and Delay
- Rehosting Freezes The Business From Innovation

Different Workloads have Different Characteristics

- High volumeOLTPworkload
- High I/O bandwidth
- High quality of service requirements

- High processing intensity
- Integer or floating point

- Light to moderate processing
- Modest quality of service requirements

zEnterprise Environments Are Optimized For Different Workload Types

What Is System z Optimized For?

- Optimized for transaction processing and master data base
 - Linear scalability with Parallel Sysplex and streamlined middleware
- Optimized for high I/O bandwidth workloads (e.g. batch)
 - Dedicated I/O processing plus DS8000 and Easy Tier
- Optimized for managing mission-critical data
 - Built-in DFSMS capability automates efficient data management
- Optimized for ultra high availability
 - Multi-layered strategy for reliability and serviceability
- Optimized for business critical workloads
 - Centralized data mirroring and systematic disaster recovery
- Optimized for easy growth in processing capacity
 - Elastic scaling through Capacity On Demand
- Optimized to achieve full use of processing resources
 - Intelligent prioritization of multiple workloads/ensembles to service objectives

Most Workloads on System z are Already Best-Fit

IBM Eagle Studies are TCO analyses for customers

- ▶ Cost and risk analysis of mainframe vs. alternative
- ▶ Tailored to individual customer workloads
 - Cost factors unique to each enterprise
 - Costs evaluated over five-year period

63 out of 67 IBM Eagle studies concluded that System z offered a better solution than the distributed alternative

- ▶ System z is 52% the cost of distributed when offloading from z/OS
- System z is 60% the cost of distributed when consolidating Linux applications
- Contact Craig Bender (csbender@us.ibm.com)

Moving Transaction Processing Off System z Rarely Reduces Cost

Typical Eagle TCO Study For A Financial Services Customer

4 HP Proliant DL 980 G7 servers

256 cores total

Total (5yr TCO)	\$150,270,688
Parallel Mainframe costs	\$31,474,052
Migration Labor	\$24,000,000
Disaster Recovery	\$4,210,728
Space	\$79,385
Power and cooling	\$43,756
Labor (additional)	\$8,250,000
Software	\$80,617,966
Hardware	\$1,594,801

System z z/OS Sysplex

2760 MIPS

\$1,250,000
¢4 250 000
\$79,385
\$31,339
Baseline
\$49,687,845
\$1,408,185

65% less

Why Do People Think Distributed Computing Is Cheaper?

Inaccurate charge back!

Charge Back Practices Were Improved Over Time at a Large Financial Institution

Eagle Studies Can Correct Misperceptions of Relative Costs

Re-hosting Dynamics

- Competitors team up to promise substantial cost savings by offloading
 - Oracle, HP, Micro Focus, Clerity, TmaxSoft, Microsoft...
 - Projections of cost savings and benefits are unproven
 - Benefits of successful projects often glorified
- Clients likely to be approached for re-hosting
 - Outdated hardware and software (less cost-effective)
 - Smaller footprints
 - Poor understanding of mainframe cost and value
 - Inaccurate charge backs
 - High mainframe costs due to high cost ISV software, failure to exploit price concessions...

What Happens When You Try To Move A Best Fit Workload On System z To Another Platform?

- 1. Core Proliferation
 - Long-term costs go up
- Missing Function & Processes
 - Long-term costs go up
- 3. Sub-optimized Performance
 - Long-term costs go up
- 4. Risks Failure, Delay, Degraded Qualities Of Service
 - Business case does not close

Bottom line – you spend MORE, not less

1. Why Core Proliferation Happens

De-consolidation of applications to dedicated servers

- Dedicated servers for functional roles application, database, security, batch, systems management
- Separate servers for production, development, quality assurance test
- Low utilization due to provisioning for the peak on each server and preprovisioning for growth

Disaster Recovery

▶ 100% coverage doubles the number of cores required

Processing comparisons

- Language expansion (CICS/COBOL path lengths are highly optimized)
- Zero network on mainframe reduces computation (and latency)
- Mainframe has dedicated processors for I/O operations, distributed does not
- ▶ Converting IMS hierarchical database to relational results in a 3x expansion

Core Proliferation for a Mid-sized Offload Project

6x 8-way Production / Dev 2x 64-way Production / Dev Application/MQ/DB2/Dev partitions

2x z900 3-way Production / Dev / QA / Test

\$25.4M TCO (5yr)

6 processors (1,660 MIPS)

176 distributed processors (800,072 Performance units)

\$17.9M TCO (5yr)

482 Performance Units per MIPS

Core Proliferation for a Small Offload Project

2x 16-way Production / Dev / Test / EducationApp, DB, Security, Print and Monitoring4x 1-way Admin / Provisioning / Batch Scheduling

z890 2-way Production / Dev / Test / Education App, DB, Security, Print, Admin & Monitoring

Processor
Processor

\$4.9M TCO (4yr)

\$17.9M TCO (4yr)

Plus: 2x HP SAN Servers (existing) Many (existing) Windows servers

670 Performance Units per MIPS

No Disaster Recovery

(222,292 Performance Units)

Core Proliferation for a Smaller Offload Project

4x p550 (1ch/2co) Application and DB 1x z890 (production + test)

0.24 processors (88 MIPS)

Processor

8 Unix processors (43,884 Performance Units)

\$8.1M TCO (5yr)

\$4.7M TCO (5yr)

499 Performance Units per MIPS

Migration duration 3 years

2. Missing Function

- No distributed alternatives to handle large transactional workloads against a single-image database
- Systematic error and disaster recovery is not wellsupported in distributed environments
- Storage capabilities of DFSMS and DS8000 may be missing
- Replacement technologies aren't always available
 - Languages, batch environments, JCL, JES, 3270-style user interfaces, BMS maps, APIs, File structures, Print, Tape, VSAM, Encryption, Sysplex, ASM, PL/I ...

Missing Systems Management Function

- Case Study (US retailer):
 - 200 system management products used on the mainframe
 - Only 15 of them had equivalent distributed replacements (7.5% coverage)
 - Cost of those 15 products was \$8.4M OTC plus \$1.8M annual
 - Distributed system management pricing is generally based on the number of cores to be managed
- Case Study (another US retailer):
 - 261 system management products used on the mainframe
 - Only 37 of them had equivalent distributed replacements (14% coverage)
- If replacement product unavailable:
 - Need to re-write applications to not need it
 - Or write code to perform the function from scratch
 - Or add operations labor to do the function manually

3. Sub-Optimized Performance

- Offload project to move State of Montana
 Department of Motor Vehicles license
 registration system (MERLIN) from CICS to Microsoft
- Performed by Microsoft and Bearing Point
- CICS solid sub-second response times
- Microsoft 30 second response times
- Cost of project \$28.3M, 3 years late

"Transferring titles is taking two to three hours instead 15 minutes," Anderson said. One employee told him she had never heard so many "fourletter words" from customers.

COBOL Recompiled With Micro Focus Had Inferior Performance

- Offloads require a different COBOL compiler
- IBM Enterprise COBOL on z/OS performed best in customer benchmarks
- Micro Focus COBOL is a COBOL interpreter, so code is over 4.5 times less efficient
- ACUCOBOL, a compiler acquired by Micro Focus, was 12 times less efficient
- Micro Focus functional differences required additional debugging

Some Applications Originally Designed With Co-located Data

- A large insurance company rehosted a portion of an application as a Proof Of Concept
 - "When folks wrote screen-based transactions many years ago, they wrote it at a business function viewpoint..." = very 'chatty' (and no separation of presentation, business logic, data logic)
 - ▶ SQL suboptimized for networking (comms performance wasn't originally an issue)
- Various tuning/tweaking done for several months, but ultimately the POC was stopped
- TCP/IP stack consumes considerable CPU overhead/resource AND introduces security considerations (firewalls ...) and latency (network delay)

Single z/OS LPAR

Distributed architecture

Some transactions are not easily moved

4. Risk of Migration Failure

Lombard Canada Ltd., one of the oldest property and casualty insurance operations in Canada, partnered with Micro Focus to replace old mainframe

200 MIPS S/390

CICS, COBOL, VSAM, DB2

"We estimate this project will save us in excess of \$1 million a year, but more importantly, it will enable us to become more competitive in our industry both today and in the future."

VP of IT Lombard Canada Ltd., 2005

Project abandoned in 2006:

- System Integrator and Micro Focus did not have the skills
- Lombard spent millions on conversion with no results
- VP lost his position
- Installed a new z890 platform and re-architected front end to access CICS
- New VP stated Disaster Recovery capability of System z as a key benefit

Project Delay Can Be Greater Than Anticipated

US County Government Offload Project Delayed By Complexity

Degraded Quality Of Service

DB2 for z/OS Security

Less than 10 security-related patches in the last 10 years

Oracle's Security Exposures

- Oracle.com October 2011
 57 security patches, including 5 for the database
- Oracle.com July 2011
 78 security patches, including 13 for the database
- Oracle.com April 2011
 73 security patches, including 6 for the database
- Oracle.com January 2011
 66 security patches, including 6 for the database

In the last year Oracle has issued 274 security patches, 30 for the database

Source: http://www.oracle.com/technetwork/topics/security

Bottom Line: Actual Costs Go Up

- Core proliferation is underestimated
 - Distributed solutions require far more cores than suggested by simple benchmarks
 - Drives up hardware and software costs (priced per core)
- Equivalent system management costs can be significantly more
 - Multiple products needed to achieve equivalent function
 - Also priced per core
- Re-architecture may require to work-arounds for missing function
 - E.g. to contain "batch window"
- Repurchase distributed servers after 4-5 years
 - No credit for existing processing capacity when upgrading
- Operational labor costs increase

Case Study – A Recent "Success" Story

Let's see how all these problems come to light in a recent "Success" story

IBM

Customer Feedback Confirms Our Analysis

- 6:1 Core Proliferation
 - ▶ 900 MIPS rehosted by 6 z10 EC IFLs, utilization rate dropped (100% to 75%)
- Missing Function
 - 2,500 COBOL lines changed in 50 programs AND all Assembler rewritten
 - Micro Focus COBOL integrating/debugging problems
- 3. Sub-optimized performance
 - Micro Focus COBOL compiler less efficient and required more hardware
- Risk Of Failure
 - Qualities of Service (Non Functional Requirements) compromised
 - Very costly extensive testing by professionals to protect against subsequent customer problems
 - 1st attempt failed using different COBOL compiler
 - Migration to UniKix on zLinux had never been done before

Delays Greater Than Anticipated

- Project delay upon discovery of missing 2-phase commit support
- 3+ months to switch compilers (estimated \$1M labor)
- Change-management issues

Bottom Line: Actual Costs Increased

Project History

2004 2006 2007 2008 2009 2010

Mandated cost reductions of 10%

- 170 person years @ \$100K/PY \$17M to migrate, \$19.6M with hw/sw
- Best-case estimate savings on operating cost \$0.77M per year
- Payback > 29 years
- After 10 Years NPV = -\$13.15M, IRR = -25%
- Mainframe was NOT removed (kept DB2 and batch on z/OS to lessen risk)

Conclusions

- Offloading existing System z workloads rarely saves money, increases risk, and freezes innovation
- Instead, zEnterprise enables a new strategy for cost reduction
 - Consolidate peripheral workloads using fit for purpose assignments to reduce cost of acquisition
 - Multiple virtualized architectures managed as one system reduces operational costs
 - No other vendor offers this choice

Related Learning For Growth Modules

- zEnterprise Economics
- Why zBX is better than Do-It-Yourself
- Improving Service Delivery With A Private Cloud
- Business Analytics and zEnterprise
- End-to-end Application Development for zEnterprise