
1

DB2 Developers’ Guide to
Optimum SQL Performance

Session Number 1708

Tom Beavin, IBM

2

Please Note:

IBM’s statements regarding its plans, directions, and intent are subject to
change or withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our

general product direction and it should not be relied on in making a

purchasing decision.

The information mentioned regarding potential future products is not a

commitment, promise, or legal obligation to deliver any material, code or

functionality. Information about potential future products may not be

incorporated into any contract. The development, release, and timing of any

future features or functionality described for our products remains at our
sole discretion.

Performance is based on measurements and projections using standard

IBM benchmarks in a controlled environment. The actual throughput or

performance that any user will experience will vary depending upon many

factors, including considerations such as the amount of multiprogramming
in the user's job stream, the I/O configuration, the storage configuration,

and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.

3

Outline

Write efficient predicates

Minimize SQL traffic

Use multi-row operations

Avoid sorting whenever possible

Only touch columns and rows you need

Literals vs. variables – know the difference

Subqueries vs Joins

OPTIMIZE FOR n ROWS

+++

4

Traits of a well-performing SQL query

Written in an efficient form

Accurate statistics

Optimal optimizer settings

Adequate system resources

5

Query Optimization

SQL QUERY
SELECT N_NAME, COUNT(*)

FROM ORDER, CUSTOMER, NATION

WHERE C_NATIONKEY = N_NATIONKEY

AND C_CUSTKEY = O_CUSTKEY

AND N_REGIONKEY = 4

AND O_ORDERDATE BETWEEN ? AND ?

GROUP BY N_NAME;

Statistics:

of rows in tables

of distinct column

values

...

Database Objects:

Tables

Indexes

Views

MQTs

...

Optimizer

Configuration:

Buffer pools

Sort pool

RID pool

...

6

Predicates, predicates, predicates
... A prime influence on access paths

Predicates

Found inside WHERE, ON, HAVING clauses

Have a huge impact on query performance!

Can be:

Extremely filtering (qualify very few rows) = good!

Poorly filtering (qualify a ton of rows)

SELECT ... FROM EMP E, DEPT D

WHERE

E.GENDER = ‘F’

AND E.AGE BETWEEN 25 AND 65

AND E.DEPTID = D.DEPTID

AND E.SAL = (SELECT MAX(SAL)

FROM EMP WHERE ...)

AND E.EDU IN (‘BA, ‘BS’, ‘MA’, ‘MS’)

equal

range

subquery

Join pred

Local pred

Local pred

In list

equal

7

Predicates: Indexable or Not?

Indexable Predicates

Can match index entries

May or may not become index matching
predicates depending on available indexes and
access path selected

The best kind of predicates

Not Indexable Predicates

Cannot match index entries

WHERE LASTNAME = 'SMITH'

AND FIRSTNAME <> 'JOHN'

Indexable

Not Indexable

8

Predicate Processing

Index Matching

• Restrict the range of data that is retrieved

• Index Matching defines START and STOP keys on the index
• All other predicates will reject rows based upon this retrieved range of data

Index on EMPLOYEE(LASTNAME, FIRSTNAME, AGE)

SELECT COUNT(*)

FROM EMPLOYEES

WHERE LASTNAME = ‘SPADE’

AND FIRSTNAME = ‘SAM’

AND SALARY > ?

9

Predicate Processing

Index Screening
• Applied on the index after matching predicates, but before data access
• Column needs to exists in the chosen index

• Screening predicates do not limit the number of index entries read

• But can limit the number of data rows retrieved

Index on

EMPLOYEE(LASTNAME, FIRSTNAME, AGE)

SELECT COUNT(*)

FROM EMPLOYEES

WHERE LASTNAME = ‘SPADE’

AND SALARY > ?

AND AGE > ?

10

Predicate Processing

Relational

Data

Service

(RDS)

Data
Manager

Index
Manager

Database

index page

data page

join

Iscan (e)Rscan (d)

fetch

fixPg

fetch

find key

fixPg

Residual Predicates

Others

Index Matching

Index Screening

SELECT ... FROM EMP
WHERE TYPE = ‘ENGINEER’
AND SAL > 125000
AND GRADE <> ‘X’
AND UPPER(PROJ) LIKE ‘%DEV%’

TYPE = ‘ENGINEER’

SAL > 125000

GRADE <> ‘X’

UPPER(PROJ) LIKE ‘%DEV%’

Index on

(TYPE, DEPT, SAL)

S
ta

g
e

1
S

ta
g
e

2

11

Predicate Processing (contd.)
Stage 1

Evaluated by the Data/Index Manager with relatively little expense
Some Stage 1 predicates are “Indexable” (i.e. use indexes)

Stage 2
Much more expensive for DB2 to resolve due to additional
processing and code path.
Cannot make effective use of indexes.

What determines stage 1 vs stage 2?
Predicate syntax
Type and length of constants or columns in the predicate
Whether the predicate is applied before or after a join
Table join sequence
Read the official books for your particular release

Well written queries
Filter as much as needed/possible within the query itself

Favor Stage 1 Indexable -> Stage 1 Others -> Stage 2

12

GENDER = 'M'GENDER <> 'F'

DCOL < '9999-12-31'DCOL <> '9999-
12-31'

DCOL < CURRENT DATE - 10

YEARS

DCOL + 10 YEARS <

CURRENT DATE

:hv >= C1 AND :hv <= C2:hv BETWEEN C1 AND C2

DCOL

BETWEEN '2008-01-01'
AND '2008-12-31'

YEAR(DCOL) = 2008

QTY = :hv / 2QTY * 2 = :hv

IndexableStage 1Stage 2

Promote predicates to earlier stage

Watch out for functions or arithmetic against columns

13

Minimize SQL traffic

Don’t issue SQL if you can avoid it

E.g., Consider caching read-only constants on
client

Avoid generic “I/O boxes”

E.g., Consider customizing your SQL to suit your
true need

Avoid joins in applications

Let DB2 do what it does best

14

Avoid touching unnecessary data

Only touch the columns you really need

Extra columns can be a drag on performance

Access path may not be the best

E.g., INDEXONLY not available

Data is carried all the way from disk to the client

Increased CPU costs

Avoid “SELECT *” unless really needed

15

Don’t return unnecessary rows

Don’t filter rows in the application that DB2 can filter

Use predicates

Consider FETCH FIRST n ROWS only

When the client will only see a limited # of rows

DB2 optimizes the access path accordingly

Can be used in subselects

SELECT PNAME, PCOST, SALARY

FROM PRODUCTS

ORDER BY PNAME

FETCH FIRST 20 ROWS ONLY

16

Minimize SQL traffic

Use Multi-row FETCH

Returns up to 32,767 rows in a single API call

Significant CPU performance improvements

Works for static or dynamic SQL

Works for scrollable or non-scrollable cursors

Support for positioned UPDATEs and DELETEs

Sample program DSNTEP4 = DSNTEP2 with multi-
row fetch)

17

Minimize SQL traffic

Use Multi-row FETCH
Coding multi-row fetch

“WITH ROWSET POSITIONING” on cursor declaration

“NEXT ROWSET” and “FOR n ROWS” on the FETCH

Define host variable arrays

Fetch loop to process the rows

When using multi-row fetch

Avoid GET DIAGNOSTICS due to high CPU overhead

Use the SQLCODE field of the SQLCA

Fetch was successful (SQLCODE 000)

Fetch failed (negative SQLCODE)

End of file (SQLCODE 100)

18

Minimize SQL traffic

MERGE statement
Combine UPDATE and INSERT into a single statement via the SQL MERGE statement

MERGE INTO PRODUCT AS OLDPROD

USING (VALUES (:PID, :COST, :DISCOUNT)

FOR :ROWCNT ROWS)

AS NEWPROD(PID, COST, DISCOUNT)

ON OLDPROD.PID = NEWPROD.PID

WHEN MATCHED THEN

UPDATE SET COST = NEWPROD.COST

, DISCOUNT = NEWPROD.DISCOUNT

WHEN NOT MATCHED THEN

INSERT (PID, COST, DISCOUNT)

VALUES (NEWPROD.PID,

NEWPROD.COST,

NEWPROD.DISCOUNT)

19

Minimize SQL traffic

Select from Insert / Update / Delete
Benefits

Select what was just changed
Save multiple calls to DB2

Common Use Cases
Identity columns or sequence values that get automatically assigned by DB2
User-defined defaults and expressions that are not known to the developer
Columns modified by triggers that can vary from insert to insert depending on
values
ROWIDs, CURRENT TIMESTAMP that are assigned automatically

Example:
/* Generate a unique id for the next customer */
SELECT CUSTID

FROM FINAL TABLE

(INSERT INTO CUSTOMERS (CUSTID, CUSTNAME)

VALUES

(NEXT VALUE FOR CUSTSEQ, ‘John Roberts’))

20

Avoid Unnecessary Sorts

DB2 may perform a sort to support
ORDER BY
GROUP BY
Duplicate removal (DISTINCT, UNION, ...)
Join processing
Subquery processing

But ...
Sorts can be expensive
An SQL statement may have multiple sorts

Action items:
Examine DB2 explain information to check for sorts
Try to take advantage of ways in which DB2 can avoid a sort
If you must sort, only sort what’s needed

21

Avoid Unnecessary Sorts (contd.)

ORDER BY
Index on (PTYPE, PNAME, PCOST)

Matches all index columns
SELECT ...
FROM PROD
ORDER BY PTYPE, PNAME, PCOST

Matching leading index column(s)
SELECT ...
FROM PROD
ORDER BY PTYPE

Matching some index column(s), but others column(s) constrained
SELECT ...
FROM PROD
WHERE PTYPE = ‘X05’
ORDER BY PNAME

22

Avoid Unnecessary Sorts (contd.)

GROUP BY
Index on (PTYPE, PNAME, PCOST)

Matches leading index columns
SELECT PTYPE, PNAME, COUNT(*)
FROM PROD
GROUP BY PTYPE, PNAME;

Matching leading index column(s) but in different order
SELECT PNAME, PTYPE, AVG(SALARY)
FROM PROD
GROUP BY PNAME, PTYPE
// Watch out: results will not be in “GROUP BY order”

Matching some index column(s), but others column(s) constrained
SELECT TYPE, COUNT(*)
FROM PROD
WHERE PTYPE = ‘X05’
GROUP BY PNAME;

23

Avoid Unnecessary Sorts (contd.)

DISTINCT
DB2’s DISTINCT processing has evolved

Prior to V9, DISTINCT usually involved a sort unless a
unique index was available

GROUP BY could be used as a workaround

With DB2 9, DB2 may take better advantage of indexes

Use DISTINCT only when needed

DISTINCT may involve expensive sorting

DISTINCTs inside subselects may involve materializations

Don’t use DISTINCT just to be safe

Make sure duplicate rows are actually possible

24

Avoid Unnecessary Sorts (contd.)

DISTINCT
If duplicates are to be removed:

Try rewriting the query using an IN or EXISTS subquery.
EXISTS is a faster alternative because DB2 can do “early out”

Example
SELECT DISTINCT d.deptno, d.dname deptname

FROM dept d, emp e

WHERE d.deptno = e.deptno;

Rewritten query
SELECT d.deptno, d.dname deptname

FROM dept d

WHERE EXISTS (SELECT 1 FROM emp e

WHERE e.deptno = d.deptno);

25

OPTIMIZE FOR clause

When # of rows needed is significantly < # of rows returned?

Tell the optimizer!

DB2 will try to eliminate “dams” such as “RID List Prefetch
sort”

SELECT EMPNO, PNAME, DEPTNO, SALARY

FROM EMPLOYEE

WHERE DEPTNO > ?

OPTIMIZE FOR 14 ROWS

This is not the same as ‘FETCH FIRST 14 ROWS ONLY’

26

Parameterize Dynamic SQL, unless, ...

SELECT ... FROM ORDERS WHERE CUSTID = 1331

SELECT ... FROM ORDERS WHERE CUSTID = 78

SELECT ... FROM ORDERS WHERE CUSTID = 3633

SELECT ... FROM ORDERS WHERE CUSTID = 26631

SELECT ... FROM ORDERS WHERE CUSTID = 12

...

VS.

SELECT ... FROM ORDERS WHERE CUSTID = ?

27

Parameterize Dynamic SQL, unless, ...

Embedded Literals
+ Optimizer can produce best access path a specific value
+ Useful when you want to beat skew

- But you need the right frequency/histogram stats
- Dynamic SQL cache may not be effectively used

+ V10 Statement Concentration can help

Markers or Host Variables

+ For dynamic SQL, full dynamic SQL cache exploitation
- Suboptimal access paths for skewed data

- What if ‘M’ = 1%, ‘F’ = 99%?
+ REOPT(ONCE / AUTO / ALWAYS) can help

28

Think joins before subqueries

Joins

Allow DB2 to pick the best table access sequence

Can outperform subqueries

Subqueries

Force a specific sequence onto DB2

Think of joining as a first resort, and subquerying as
a last resort.

DB2 can rewrite some subqueries -> joins

29

Think joins before subqueries (contd.)

Unique index on (DIVISION, DEPTNO)

Original query:

SELECT ... FROM EMP

WHERE DEPTNO IN

(SELECT DEPTNO FROM DEPT

WHERE LOCATION IN ('SAN JOSE', 'SAN FRANCISCO')

AND DIVISION = 'MARKETING');

Rewritten query:

SELECT ... FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO

AND DEPT.LOCATION IN ('SAN JOSE', 'SAN FRANCISCO')

AND DEPT.DIVISION = 'MARKETING';

30

Subqueries
Correlated vs Non-Correlated

SELECT * FROM EMP X

WHERE JOB = 'DESIGNER'

AND EXISTS (SELECT 1

FROM PROJ

WHERE DEPTNO = X.WORKDEPT

AND MAJPROJ = 'MA2100');

SELECT * FROM EMP

WHERE JOB = 'DESIGNER'

AND WORKDEPT IN (SELECT DEPTNO

FROM PROJ

WHERE MAJPROJ = 'MA2100');

Correlated

Performed for

each outer query

Non-Correlated

Processed upfront

31

Subqueries: To correlate or not?
Answer: It depends!

SELECT EMPID, EDLEVEL

FROM EMP E

WHERE

JOBTYPE = ?

AND EDLEVEL >=

(SELECT AVG(EDLEVEL)

FROM EMP

WHERE DEPTID = E.DEPTID)

Average computed for each

employee’s department,

over and over again

Works best for few employees

selected.

SELECT EMPID, NAME, EDLEVEL

FROM EMP E,

(SELECT DEPTID,

AVG(EDLEVEL) AVGED

FROM EMP

GROUP BY DEPTID) A

WHERE

JOBTYPE = ?

AND E.DEPTID = A.DEPTID

AND EDLEVEL >= AVGED

Average-per-department,

computed once for all

departments

Works best when many

employees selected.

32

Subquery evaluation order

Non-correlated subqueries are executed before
correlated

Multiple non-correlated subqueries are executed
in the sequence they are coded

Next are correlated subqueries

Multiple correlated subqueries are executed in
the sequence they are coded

Correlated subqueries cannot be executed
however until all correlation predicates are

available

Code subqueries in order of restrictiveness

33

Order of Subquery Predicate Order of Subquery Predicate
EvaluationEvaluation

WHERE NOT EXISTS

(SELECT 1 FROM DSN8710.PROJ P1

WHERE P1.RESPEMP = E.EMPNO)

AND NOT EXISTS

(SELECT 1 FROM DSN8710.PROJ P2

WHERE P2.DEPTNO = E.WORKDEPT)

WHERE NOT EXISTS

(SELECT 1 FROM DSN8710.PROJ P2

WHERE P2.DEPTNO = E.WORKDEPT)

AND NOT EXISTS

(SELECT 1 FROM DSN8710.PROJ P1

WHERE P1.RESPEMP = E.EMPNO)

42 executions

25 rows
qualify

25 executions

4 rows qualify

42 executions

5 rows qualify

5 executions

4 rows qualify

Reverse the subqueries

34

What did we discuss?

Write efficient predicates

Minimize SQL traffic

Use multi-row operations

Avoid sorting whenever possible

Only touch columns and rows you need

Literals vs. variables – know the difference

Subqueries vs Joins

OPTIMIZE FOR n ROWS

+++

35

Acknowledgements and Disclaimers:

© Copyright IBM Corporation 2011. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

IBM, the IBM logo, ibm.com and DB2 are trademarks or registered trademarks of International Business Machines Corporation in the

United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information

with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM

trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Availability. References in this presentation to IBM products, programs, or services do not imply that they will be available in all

countries in which IBM operates.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are

provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice

to any participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is

provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of,

or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the

effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the

applicable license agreement governing the use of IBM software.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may

have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these

materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific

sales, revenue growth or other results.

36

Information Management Communities

• On-line communities, User Groups, Technical Forums, Blogs,

Social networks, and more

– Find the community that interests you…

• World of DB2 for z/OS http://db2forzos.ning.com/

• Information Management ibm.com/software/data/community

• Business Analytics ibm.com/software/analytics/community

• International DB2 User Group www.idug.org

• IBM Champions

– Recognizing individuals who have made the most outstanding

contributions to Information Management, Business Analytics, and

Enterprise Content Management communities

• ibm.com/champion

Top DB2 for z/OS e-Communities

�World of DB2 for z/OS - 1700+ members

�DB2 10 LinkedIn - 1000+ members

�DB2 for z/OS What’s On LinkedIn – 2000+ members

�DB2 for z/OS YouTube

�WW IDUG LinkedIn Group - 2000 +members

� IBM DeveloperWorks

http://db2forzos.ning.com/

http://linkd.in/kd05LH

http://linkd.in/IDUGLinkedIn

http://www.youtube.com/user/IBMDB2forzOS

http://www.ibm.com/developerworks/data/community/

http://linkd.in/IBMDB210

3838

Thank You!
Your Feedback is Important

to Us
• Access your personal session survey list and complete via SmartSite

– Your smart phone or web browser at: iodsmartsite.com

– Any SmartSite kiosk onsite

– Each completed session survey increases your chance to win an Apple iPod

Touch with daily drawing sponsored by Alliance Tech

• Visit Us at

www.ibm.com/software/data/db2/db210

