
DB2 for z/OS Data Sharing
– Then and Now

Session Number 1306

Robert Catterall, IBM

Information Management
Communities
• On-line communities, User Groups, Technical Forums,

Blogs, Social networks, and more
– Find the community that interests you…

• World of DB2 for z/OS http://db2forzos.ning.com/
• Information Management ibm.com/software/data/community

• Business Analytics ibm.com/software/analytics/community

• International DB2 User Group www.idug.org

• IBM Champions
– Recognizing individuals who have made the most outstanding

contributions to Information Management, Business Analytics, and
Enterprise Content Management communities

• ibm.com/champion

http://db2forzos.ning.com/
http://www.ibm.com/software/data/community
http://www.ibm.com/software/data/community
http://www.ibm.com/software/analytics/community
http://www.ibm.com/software/analytics/community
http://www.idug.org/
http://www.ibm.com/software/data/champion
http://www.ibm.com/software/data/champion

Agenda
• A quick overview of DB2 data sharing

• Motivation for deployment – then and now

• DB2 data sharing / Parallel Sysplex configuration
– then and now

• Data sharing locking – then and now

• Data sharing performance – then and now

4

A quick overview of DB2
data sharing

The basics of data sharing

• Multiple DB2 subsystems share read/write access to a
database

– The different subsystems are members of the data sharing group
• The architecture allows for up to 32 members in one group (the biggest

group I know of has 16 members – some might be larger than that)

– DB2 data sharing runs on a Parallel Sysplex mainframe cluster

• Data sharing was introduced with DB2 V4 (mid-1990s)
– Very robust technology, proven in all kinds of industries, all over the

world

– The most highly scalable, highly available data-serving platform on
the planet

The big picture

Mainframe Mainframe

Coupling facilities

z/OS

DB2

z/OS

DB2

Primary group
buffer pools (GBPs)

•Secondary GBPs
•Lock structure
•Shared comm. area

•Catalog/directory
•User tables, indexes

Log Log

Work
files

Work
files

Sysplex
Timers

 XCF XES XES XCF

Motivation for deployment
– then and now

Then: scalability

• IBM had just introduced the first CMOS-based mainframes,
replacing systems based on more expensive (and faster)
bipolar chip sets

– Initial models had a whopping 5 MIPS per engine, with a max of (I
think) 10 engines on one server

– To migrate large workloads off the bipolar systems (ES/9000) to the
CMOS systems (9672), you had to lash several of the latter together

• Parallel Sysplex was the means of doing that, and data sharing enabled
the multiple mainframes in a cluster to operate (and appear to application
programs) as a single-image DB2 system

+ + + + =

Now: availability is #1 motivation

• Scalability is still a motivator, but given advances in IBM
mainframe technology, there are fewer application
workloads that won’t fit on one System z server

– Now: more engines per mainframe (up to 96 for zEnterprise)

– More MIPS per engine (over 1000 for zEnterprise)

• Used to be a lot of Parallel Sysplexes with > 2 mainframes
– Now, lots of 2-mainframe clusters (though number of DB2 data

sharing members can be significantly larger than number of System
z servers in the Parallel Sysplex)

 Need any help
with that?

Nah.

Availability: unplanned outages (1)

• As System z hardware, software continue to become more
and more reliable, these failures are becoming less common

– HOWEVER, as importance of 24x7 operations becomes ever more
critical, business cost of downtime continues to go up

• Plants are idled

• Products don’t ship

• Customers are lost (“competition is only a click away”)

Time

Likelihood of
unplanned outage

Lower

Higher

Business cost of
unplanned outage

Higher

Lower

Availability: unplanned outages (2)

• Parallel Sysplex / DB2 data sharing advantage: reduce scope of
unplanned outages:

– Probably only a small portion of the DB2 database will be unavailable if
a DB2 member (or a z/OS LPAR or a System z server) fails

• The pages (or rows) that were X-locked by processes running on a DB2
member at the time of the member’s failure

– Unavailable pages/rows freed up when failed DB2 member restarted,
and DB2 restart is FASTER in a data sharing environment than in a
standalone DB2 environment (often less than 2 minutes)

• Faster restart: changed pages are externalized (to the group buffer pools in
the coupling facilities) at commit time (as opposed to being written to disk
when buffer pool deferred write threshold hit or at DB2 checkpoint time)

– Result: roll-forward part of restart processing is accelerated)

(restart is usually automated via z/OS Automatic Restart Manager policy)

Availability: planned outages

• With unplanned outages becoming more rare, focus has
shifted to avoidance of planned outages

– Usually scheduled for hardware or software maintenance

– With a DB2 data sharing group, almost any maintenance activity can
be performed without the need for a maintenance window

– Example: upgrade DB2 maintenance:
1. Apply fixes to DB2 load library

2. Quiesce one member of the DB2 data sharing group (work continues to
flow to other members)

3. Stop and restart the quiesced member to activate the DB2 maintenance,
and resume flow of work to that member

4. Repeat steps 2 and 3 for other members until maintenance updated for all

– Same basic “round-robin” approach can be used for server and z/OS
maintenance, and for DB2 version migration

Outage-less DB2 migration (1)

• Old conventional wisdom: do not run CATMAINT (which
makes catalog and directory changes needed for new DB2
release) concurrently with application workload

– For standalone DB2 systems, this was not such a big deal, as you
have to stop and restart DB2 anyway to activate new release

– For data sharing systems, stop and restart doesn’t require workload
outage, as members can be stopped/started in round-robin fashion,
and different DB2 versions can coexist in same data sharing group

• But you still need to stop workload for CATMAINT, right?

• WRONG: CATMAINT (and CATENFM) can run concurrently with
applications

Outage-less DB2 migration (2)

• If you run CATMAINT concurrently with a DB2-accessing
application workload (and this applies to CATENFM, too)…

– Possible that some programs that access DB2 catalog/directory
objects might fail with a timeout or a “resource unavailable” code

– Also possible that CATMAINT itself might fail due to contention with
application programs

• If that happens, it’s NOT a disaster

• Terminate the job with -TERM UTILITY, and re-execute from the beginning
(actually, resubmit migration job DSNTIJTC, which executes CATMAINT)

– To minimize contention between CATMAINT, application programs:
• Run CATMAINT during a period of relatively low application activity

• Avoid executing DDL statements while CATMAINT is running

• Avoid package bind and rebind activity while CATMAINT is running

Data sharing and availability and $$

• Some think, “Data sharing is too expensive – we can’t afford it”
– Their assumption: you need multiple mainframe server “boxes” in order

to implement Parallel Sysplex and data sharing

– In fact: while having three “boxes” (more on this to come) optimizes
availability by eliminating single points of failure, you CAN get MAJOR
availability benefits by implementing a “1-box” data sharing group

• 2 z/OS LPARs, 2 DB2 members, 2 internal CFs in one System z server

• Yes, failure of whole box will fail entire group, but box failure is very rare

• Still get benefit of software maintenance without the maintenance window

• Still get benefit of reduced scope of DB2 or z/OS LPAR failure (failure
impact: some data unavailable until retained locks cleared)

• If you do lose entire box, DR will likely take a little longer versus standalone
DB2, due to recovery of objects in group buffer pool recover pending status

Availability and DVIPAs (1)

• Terminology:
– VIPA (Virtual IP Address) – a means of disassociating

an IP address on a z/OS system from a physical
adapter

– DVIPA (Dynamic VIPA) – a VIPA that can move from
one TCP/IP stack in a Sysplex to another

– Distributed DVIPA – a special type of DVIPA that can
distribute connections within a Sysplex

• This is the DVIPA of the Sysplex Distributor

• It’s also the DVIPA for the data sharing group

– Sysplex Distributor – a z/OS component that leverages
DVIPA and WLM to maximize server availability in a
client/server environment

Availability and DVIPAs (2)

• If data sharing group used for DRDA client/server computing:
– Assign a DVIPA to each DB2 member

• That way, if a member fails and is restarted on another z/OS LPAR in the
Parallel Sysplex, requesters utilizing DRDA 2-phase commit protocol will be
able to find it (important for resolving in-doubt DBATs)

• NOTE: prior to DB2 10, “restart light” (used to free up retained locks, then
shut down) does NOT resolve in-doubt DBATs, because DDF isn’t started for
a restart light (so, normal restart needed to resolve in-doubt DBATs)

• DB2 10 implements DDF restart light to enable resolution of in-doubt DBATs

– Assign a DVIPA (called a distributed DVIPA) to the Sysplex Distributor
• That way, an initial client request to connect to the data sharing group will

succeed, as long as at least one DB2 member is active

• After that initial connection request, distribution of subsequent from the client
is managed by DB2 members and WLM

DB2 data sharing / Parallel
Sysplex configuration –
then and now

Then: coupling facility structure sizes

• A “then and now” look at DB2-related CF structures is
relevant to group buffer pools (these are usually much larger
than lock structure and shared communications area)

• Then, coupling facility control code (like OS/390) operated in
31-bit addressing mode

• Max size of a group buffer pool was 10 GB (2 GB for
directory entries, 8 GB for data entries)

Now: coupling facility structure sizes

• Starting with coupling facility control code level 12
(current level is 17) CFCC had 64-bit addressing
capability

• 64 bits enables addressing of exabytes of memory,
but the size of a coupling facility structure is limited
to 99,999,999 KB (just under 100 GB)

– This is a limit of the coupling facility resource manager
(CFRM), through which CF structures are defined

– Still, that’s way bigger than before, and way bigger than
any coupling facility structure I’ve seen

Then: external coupling facilities

• Physically separate boxes that ran only coupling facility
control code (CFCC)

– Initially, that was your only choice

– Same microprocessors as found in the mainframe servers

– Attached to the mainframe servers via coupling facility links

Mainframe Mainframe

z/OS

DB2A

z/OS

DB2B

Coupling facility

Coupling facility

Structures

Structures

CF links CF links

Now: internal coupling facilities

• Just another LPAR on a mainframe in the Parallel Sysplex
– Recall that external CFs used regular System z microprocessors

– Even on external CF, coupling facility control code ran in LPAR mode

• Primary motivation: cost (considerably less expensive than
external CF)

– Secondary benefit: memory-to-memory data transfer with z/OS LPAR
on same mainframe box reduces service times, boosts performance

Mainframe
z/OS
DB2A

ICF
Structures

Mainframe
z/OS

DB2B

ICF
Structures

Physical
CF links

Virtual CF links
(memory-to-
memory)

ICF issue: “double failure” scenario

• If members lose connectivity to lock structure or shared
communications area (SCA), structure has to be rebuilt

• Successful rebuild requires information from all members of
the data sharing group

• If one mainframe box has an ICF with the lock structure and
SCA, and also has a z/OS LPAR with a DB2 member that uses
those structures, and that box goes down…

– You’ve simultaneously lost lock structure and SCA and a member of
the associated DB2 data sharing group

– Information from the failed DB2 member that is needed for lock
structure / SCA rebuild is not available, so rebuild fails

– Because data sharing requires lock structure and SCA, the group fails

Then: what to do about double failure
• One option: have at least 3 physical server boxes

– Put lock structure and SCA (and secondary GBPs) in external CF, or in
an ICF on a mainframe on which you DO NOT run a member of the
associated data sharing group

Mainframe
z/OS
DB2A

ICF
Group buffer
pools (GBPs)

External CF
Lock
structure

SCA

-or-

Mainframe

Lock structure

Secondary GBPs
ICF

z/OS
Could have DB2
here that is not
part of data
sharing group

Mainframe
z/OS
DB2B

1
2

3
Secondary
GBPs

SCA

Then: what to do about double failure

• Another option:
– Duplex the lock structure and the SCA

• Every write to either one goes synchronously to both primary and
secondary structures in two different CFs

Mainframe
z/OS
DB2A

ICF
Primary lock

Primary SCA

Write
here

Mainframe
z/OS
DB2B

ICF
Primary lock

Primary SCA

Write
there

Now: what to do about double failure

• Increasingly, organizations are not worrying about it

• These organizations don’t want to pay the cost of double failure
protection

– Don’t want to pay the cost of an external CF, may not have an “extra”
mainframe in which they can put an ICF and in which they do not run a
member of the DB2 data sharing group

– Don’t want to pay cost of lock structure and SCA duplexing (cost comes
in form of significantly higher CPU overhead for DB2 data sharing, due
to many more synchronous CF requests and much higher service times)

• Average service time for lock structure requests can be 2 to 4 times higher
when lock structure is duplexed versus not duplexed

Not worrying about double failure

• One reason cost of double failure protection looks high to many
organizations: risk of scenario occurring is exceedingly low

– You’d have to lose entire mainframe box (not “just” a DB2 or z/OS or
ICF), and it would have to be a particular box (the one with the ICF
holding the lock structure and SCA)

• And, if the double failure scenario actually occurs?
– Data sharing group fails, and you initiate a group restart that should

complete in minutes

– No loss of committed DB2 data changes

As for group buffer pool duplexing…

• KEEP DOING THAT!

• CPU overhead cost of GBP duplexing is MUCH lower than
that of lock structure / SCA duplexing:

– Volume of requests to secondary GBPs is far lower than volume of
requests directed to primary GBPs (only changed pages – no page
registration activity)

– Requests to secondary GBPs are asynchronous (so mainframe
engine driving a request doesn’t “dwell” until CF responds)

• Benefit of GBP duplexing is significant
– Without it, if members lose connectivity to GBPs, you could have

thousands of DB2 data sets in GBP recover pending status (GRECP)
• Getting those data sets out of GRECP could take a while

Then: client/server configuration

• DRDA requesters connected to a DB2 data sharing group
as a whole or to a single member subsystem

• Some people wanted DRDA clients to be able to
communicate with a subset of a group’s members

– More than one, for better availability (if DB2A and DB2B are in
subset, connection successful if at least one is active)

– Not all, because of desire to keep DDF traffic (for certain
applications, at least) off of some members

• Some DDF applications are very dynamic, and some group members
may be tuned “just so” for high-volume OLTP and/or batch work

• With DB2 lacking this capability, people had to make the
“one or all” DDF choice (if they didn’t have the option of
setting ZPARM parameter MAXDBAT to 0 for a member)

Now: client/server configuration

• DB2 V8: data sharing member subsetting (location aliases)
– A way to define a new location name, for an existing data sharing group,

that maps to a subset of the group’s members

– When DRDA requesters use that location alias, only members in the
associated subset process the requests

– Implementation: update BSDS using DSNJU003 (change log inventory)
• On member DBP1 of group LOCDBGP:
DDF LOCATION=LOCDBGP,PORT=1237,RESPORT=1238,ALIAS=DBPA:8002
• On member DBP2 of group LOCDBGP:
DDF LOCATION=LOCDBGP,PORT=1237,RESPORT=1239,ALIAS=DBPA:8002
• -DISPLAY DDF on member DBP1 (portion of output):
DSNL087I ALIAS PORT
DSNL088I DBPA 8002

Data sharing locking
– then and now

Then and now: biggest change

• Locking protocol 2

• First, a little background:
– What we just call “locks” in a standalone DB2 environment are called

logical locks (or L-locks) in a data sharing system

– L-locks are divided into two categories:
• Parent (generally speaking, these are table space- or partition-level locks)

• Child (these are page- or row-level locks)

– The most common parent L-locks are intent locks (IX for data-changing
processes, and IS for read-only processes)

• The system lock manager (a z/OS component that handles global locking)
knows two lock state: S and X

• How do IS and IX parent L-locks get propagated to the lock structure?

Then: parent L-lock propagation

Parent L-lock type Propagated to lock structure as:

X X

IS S

IX X

S S

• Problem: if process on DB2A has IS lock on table space XYZ,
and process on DB2B has IX lock on same table space, system
lock manager will think that there is global lock contention

– In reality, there isn’t, because the actual lock states are IS and IX, and these
states are compatible; however, system lock manager knows only S and X

– This type of “false positive” global lock contention is called XES contention – it
gets resolved (with IRLM’s help), but it drives up CPU cost of data sharing

Sources of XES
contention

Now: parent L-lock propagation

Parent L-lock type Propagated to lock structure as:

X X

IS S

IX S

S X

• Thanks to the change implemented via locking protocol 2 (DB2
V8 NFM), IX table space lock will be propagated as S lock, and
S table space lock will be propagated as an X lock

– Result: no more perceived global lock contention when processes on two
different DB2 members have IS and IX (or IX and IX) locks on same table space

• When the two lock states are IS and S (or S and S), “false positive” will still occur, but
S locks on table spaces are quite rare, so overall effect of locking protocol 2 tends to
be a significant reduction in data sharing lock contention

Sources of XES
contention

Then: row-level locking

• There used to be a widely-held belief that row-level locking
could not be used in a DB2 data sharing environment

– Concern had to do with effect on CPU cost of data sharing

NO
RLL

Now: row-level locking

• Unfortunately, there is still a widely-held belief that row-level
locking cannot be used in a DB2 data sharing environment

– This is NOT true

– Use of row-level locking does increase the volume of what are called
page physical locks (or page P-locks)

• You’ll have page P-lock activity anyway, for space map pages and index
pages (pages that are not L-locked) – row-level locking adds to this activity

– A small increase in data sharing overhead is probably preferable to a
lot of lock timeouts and deadlocks

• My advice: in a data-sharing system, use row-level locking
where you need it, but only where you need it

– Probably need it for just a few table spaces, if you need it at all

Data sharing performance
– then and now

Then: higher data sharing overhead

• Largely determined by volume of coupling facility requests
and average service time for those requests

– Especially the synchronous requests, as mainframe engine driving
such a request will “dwell” until receiving response from CF

• Most group buffer pool requests, and virtually all lock structure requests,
are synchronous (volume of requests to SCA usually quite low)

– In an environment characterized by a high degree of “inter-DB2
write/write interest” (meaning, concurrent data-change activity on
multiple members targeting common database objects):

• Overhead of DB2 data sharing expected to be between 10 and 20%

• Meaning: increase in CPU cost of executing an SQL statement in a data
sharing system as compared to the cost of executing the same statement
in a standalone DB2 environment

Now: lower data sharing overhead

• Overhead in a high inter-DB2 write/write interest
environment generally around 10%

• Reasons for reduced overhead:
– Fewer coupling facility requests (various DB2, z/OS, and CFCC

enhancements, such as improved efficiency of index page split
processing)

– MUCH faster servicing of synchronous CF requests:
• Late 1990s: < 150 microseconds for lock structure, < 250

microseconds for GBP

• Now: 9 microseconds for lock structure, 20 microseconds for GBP

– Actually HAD to get these requests serviced faster, because
faster mainframe engines meant increased cost of “dwell” time

What hasn’t changed

• For my money, DB2 for z/OS data sharing on the Parallel
Sysplex mainframe cluster is the most highly available,
highly scalable data-serving platform on the market

– Proven over 15 yeas in ultra-demanding application environments,
across industries, all over the world

– No longer “exotic” technology – if you aren’t using DB2 data
sharing at your organization, perhaps you should

Acknowledgements and Disclaimers:

 © Copyright IBM Corporation 2011. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

IBM, the IBM logo, ibm.com, DB2, DRDA, ES/9000, Parallel Sysplex, Sysplex Timer, System z, zEnterprise, and z/OS are trademarks or
registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other
IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be
registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

 Availability. References in this presentation to IBM products, programs, or services do not imply that they will be available
in all countries in which IBM operates.

 The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are
provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice
to any participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it
is provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the
applicable license agreement governing the use of IBM software.

 All customer examples described are presented as illustrations of how those customers have used IBM products and the results they
may have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these
materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific
sales, revenue growth or other results.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Thank You!
Your Feedback is Important to Us
• Access your personal session survey list and complete via SmartSite

– Your smart phone or web browser at: iodsmartsite.com

– Any SmartSite kiosk onsite

– Each completed session survey increases your chance to win an Apple iPod
Touch with daily drawing sponsored by Alliance Tech

• Visit Us at

www.ibm.com/software/data/db2/db210

	Slide 1
	Slide 2
	Agenda
	Slide 4
	The basics of data sharing
	The big picture
	Slide 7
	Then: scalability
	Now: availability is #1 motivation
	Availability: unplanned outages (1)
	Availability: unplanned outages (2)
	Availability: planned outages
	Outage-less DB2 migration (1)
	Outage-less DB2 migration (2)
	Data sharing and availability and $$
	Availability and DVIPAs (1)
	Availability and DVIPAs (2)
	Slide 18
	Then: coupling facility structure sizes
	Now: coupling facility structure sizes
	Then: external coupling facilities
	Now: internal coupling facilities
	ICF issue: “double failure” scenario
	Then: what to do about double failure
	Slide 25
	Now: what to do about double failure
	Not worrying about double failure
	As for group buffer pool duplexing…
	Then: client/server configuration
	Now: client/server configuration
	Slide 31
	Then and now: biggest change
	Then: parent L-lock propagation
	Now: parent L-lock propagation
	Then: row-level locking
	Now: row-level locking
	Slide 37
	Then: higher data sharing overhead
	Now: lower data sharing overhead
	What hasn’t changed
	Slide 41
	Slide 42

