IBM 10D 2011 9/8/2011

DB2 10 Customer Experiences H
Part 1 — What’s New for the
Developer
Session Number 1179

Suresh Sane
DST Systems, Inc.

IBM Software

Information OnDemand2011

This presentation provides an early look at some DB2 10 features which will be
important to you as the Application Developer or DBA. We will start with the basics
and demonstrate how they can be an integral part of a good design strategy. This

will allow you to start the planning process early and see if/how they fit in your
organization.

Unlike other DB2 10 Overview sessions, we will focus exclusively on those which
impact application development.

We were a QPP customer and | will share some early customer experiences which will
add value.

Suresh Sane.ppt

October 23-27

N — -]
®. » Information On Demand 2011 a -
| ®

Session Outline

1. Temporal tables

2. Hash access

3. New SQL features

4. Access path optimization
5. Currently committed data
—

Temporal tables
eBusiness driver
eSet up
eAccess
ePerformance
eRecommendations
Hash access
eBusiness driver
eSet up
eAccess
ePerformance
eRecommendations
New SQL features
eRecap of ROW_NUMBEER, RANK and DENSE_RANK
*Moving sum
*Moving average
eGeneric insert/update (extended indicator variables)
eImplicit casting
eGreater precision for timestamp
Access path optimization
eliteral replacement
oPTC for IN lists
eScrolling
eSafe query optimization (Dealing with uncertainty, RID List failures)
eExplaining dynamic SQL
Currently committed data
eBusiness driver
eAccess
eComparison and recommendations

N - () A
' » Information On Demand 2011 - .
O October 23-27 (=
o éc O

About DST Systems

DS T

SYSTEMS

http:/lIwww.dstsystems.com

+ Leading provider of computer software solutions and
services, NYSE listed — “DST”

* Revenue $2.3 billion

* 115 million+ shareowner accounts

+ 32,000 MIPS

- 150 TB DASD

» 220,000 workstations

» 752,000 DB2 objects

» Non-mainframe: 600 servers (DB2, Oracle, Sybase)
with 3 million objects

If you have ever invested in a mutual fund, have had a prescription filled, or
are a cable or satellite television subscriber, you may have already had

dealings with our company.

DST Systemes, Inc. is a publicly traded company (NYSE: DST) with headquarters
in Kansas City, MO. Founded in 1969, it employs about 10,000 associates

domestically and internationally.

The three operating segments - Financial Services, Output Solutions and
Customer Management - are further enhanced by DST’s advanced technology

and e-commerce solutions.

.O —— r— ..—
9, » Information On Demand 201 % .
e -ilips e

b = . ‘é‘

Where Are We?

=)

Temporal tables

Hash access

New SQL features
Access path optimization
Currently committed data

i o A

In this section, we will discuss how temporal tables can simplify very complex
business logic in use today.

' u e o, a '
- Information On Demand 2011 /4 ..
o) T .@& 0

Business driver & Overview

« Externalizes error-prone business logic and embed
into DBMS
« Temporal Tables with System Time (a.k.a. “versioning”)
Useful for auditing and compliance
« Temporal Tables with Business Time
Useful for tracking of business events over time
« Bi-temporal tables — those with both Business Time
and versioning added

+ Special clauses for select and all update processing
affected

While the name “temporal table” applies to both types of tables, they deal
with different business problems — system-time simplifies versioning and
consists of two tables while business time consists of only one table with start
and end.

e = A
o > Information On Demand 2011 . .
O October 23-27 & O
-

- P - @

Temporal tables with System Time

« Useful for auditing and compliance
« Two tables — main and history

« Each row on the main table has a pair of timestamps
set by DB2 - start time & end time — must be
TIMESTAMP(12)

* Main table defines a PERIOD SYSTEM_ TIME with
these columns

+ History table identical in structure, connected to main
table via the ADD VERSIONING USE HISTORY
TABLE clause

o '. oty = o._
> Information On Demand 2011 - .
® October 23-27 .‘@ O

[) ™ - ®
System T|me SQL CREATE TABLE EMP

(EMPNO SMALLINT NOT NULL

, SALARY DEC(9,2) NOT NULL

, REASON CHAR(10) NOT NULL

,START_TS TIMESTAMP(12) NOT NULL
GENERATED ALWAYS AS ROW BEGIN

,END_TS TIMESTAMP(12) NOT NULL
GENERATED ALWAYS AS ROW END

, WHEN_CREATED TIMESTAMP(12) GENERATED

ALWAYS AS TRANSACTION START ID

, PERIOD SYSTEM_TIME (START_TS,END_TS))

CREATE TABLE HIST

(EMPNO SMALLINT NOT NULL

. SALARY DEC(9,2) NOTNULL | |ALTER TABLE EMP

, REASON CHAR(10) NOTNULL || |APD VERSIONING
START_TS TIMESTAMP(12) NOT NULL | [YSEHISTORY TABLE HIST
END_TS TIMESTAMP(12) NOT NULL

WHEN_CREATED TIMESTAMP(12))

Sample DDL for creating the base table and its associated history table. They
are linked via the “ADD VERSIONING USE HISTORY TABLE” clause.

The column transaction start id is required (SQLCODE -20490, SQLSTATE
428HM when absent) but null is permissible. ‘with default’ is not permitted.
If defined as nullable, the column will contain null values. If defined as NOT
NULL, the value will be equal to the value of the ROW_BEGIN column. The
value will be a TIMESTAMP(12) value that is unique per transaction and per
data sharing member. The last 3 digits of the column value will contain the
data sharing member number.

Any system time tables can be defined as implicitly hidden.

ALTER table can convert an existing table to a system temporal table (see Info
Center).

& = [Rl
» Information On Demand 2011 - .
O October 23-27 .@ O

@ P - ®
System Time example EMP
EMPNO | SALARY | REASON START_TS END_TS
1 1006~ | _HIRE | -2040-05-6+-69:66:00:000000° | 9999-12-31-24-00.00.000000

2000 PROMO 2010-09-30-09.00.00.000000 Not inclusive
1 HIST

EMPNO | SALARY | REASON START_TS END_TS

1 1000 HIRE 2010-05-01-09.00.00.000000 2010-06-15-09-00.00.000000

1 1200 RAISE | 2010-06-15-09.00.00.000000 | 5010.09.30-09.00.00.000000

May 1: Hired, $1,000 INSERT INTO EMP VALUES (1.1000."HIRE")

June 15: Raise, $1.200 UPDATE EMP SET SALARY = 1200. REASON="RAISE’
WHERE EMPNO = 1

Sept 30: Promo, $2.000 UPDATE EMP SET SALARY = 2000. REASON="PROMO’
WHERE EMPNO = 1

For simplicity, we assume all changes occur at 9 am on the specified
dates and show only 6 of the 12 digits of fractional seconds of timestamp. 7

Let’s explore how this works in practice.

Note that the end time is NOT inclusive — for example June 15 is not included
in the row ending on June 15 (but start time is).

For simplicity, we assume all changes occur at 9 am on the specified dates and
show only 6 of the 12 digits of fractional seconds of timestamp.

Any SQL (e.g. delete or update) on history is permitted. A delete on the main
table causes the deleted row to be written to the history table (not shown in
this example).

& _ N T [Rl
» Information On Demand 2011 - .
O October 23-27 .@ O

@ =P - ®

System Time example

SELECT* FROM EMP = PROMO 2,000
WHERE EMPNO = 1

SELECT* FROM EMP
FOR SYSTEM_TIME AS OF
‘2010-07-01-09.00.00.000000’
WHERE EMPNO = 1

=) RAISE 1,200

SELECT* FROM EMP
FOR SYSTEM_TIME AS OF = PROMO 2.000
2010-10-10-09.00.00.000000"

WHERE EMPNO = 1

The logic to determine “AS OF” condition is now built into the DB2 engine
itself.

Syntax which uses SYSTEM_TIME FROM... TO.. or SYSTEM_TIME BETWEEN ...
AND ... is also supported.

2%

_ N o - a |
» Information On Demand 2011 - .
October 23-27 @&
™| !O

Versioning (tables w/ SYSTEM_TIME) restrictions

No alter of schema (data type, add column, etc.) allowed on
both tables -i.e. DROP VERSIONING required!

Cannot drop the history table or its tablespace (dropping
main drops it)

Cannot define a clone table to either of the tables

Each table must be the only table in tablespace

Cannot RENAME column or table

For point-in-time recovery, both must be recovered as a set
(individual recovery disallowed unless overridden with
VERIFYSET NO)

REPORT TABLESPACESET recognizes the set

9

Some restrictions. Most important at this time is probably the tool support.

An attempt to drop the history table results in SQCODE -478 (EMP is
dependent on it).

- - ol
F » Information On Demand 2011 - .'
O Gototes: 23-27 .&3 O
L) ™| 0]

Versioning (tables w/ SYSTEM_TIME) restrictions

* No TRUNCATE or utility operation allowed that will delete
data from the system period temporal table
LOAD REPLACE
REORG DISCARD
CHECK DATA DELETE YES
* While it is possible to modify (typically purge) rows from
history, | suggest that “normal” users NOT be granted

access to history — they do not need it, since access to the
history table is made on behalf of DB2. %ﬁ

« Third-party tool support?

Some restrictions. Most important at this time is probably the tool support.

An attempt to drop the history table results in SQCODE -478 (EMP is
dependent on it).

2

Temporal tables with Business Time

Useful for tracking of business events over time
Only 1 table (no history table as in System Time)

Each row has a pair of dates set by application -
start date and end date (can be future dates) — must
be TIMESTAMP(6) NOT NULL or DATE NOT NULL
(not null with default is OK for both)

The table defines a PERIOD BUSINESS TIME with
these columns

Unique index possible on period to prevent overlaps —
while optional, | view this as required! (else possible
errors — more than 1 row)

» Information On Demand 2011 -
Gototes: 23-27 &
™ 0]

|
LI

& _ N T [Rl
» Information On Demand 2011 - .
O October 23-27 .@ O

[] - - ®
Business Time SQL

CREATE TABLE PRICES

(ITEMNO SMALLINT NOT NULL
_PRICE DEC(9,2) NOT NULL
,REASON CHAR(10) NOT NULL
, START DT DATE NOT NULL
JEND DT DATE NOT NULL
, PERIOD BUSINESS_TIME
(START_DT,END_DT))

CREATE UNIQUE INDEX PRICESKO
ON PRICES

(ITEMNO, BUSINESS_TIME WITHOUT
OVERLAPS)

DDL to create a table with business time.

ALTER table can convert an existing table to a system temporal table (see Info
Center).

A d O — S A
» Information On Demand 2011 - .
® October 23-27 .¢ O

@ =P - ®
Business Time example PRICES
ITEMNO | PRICE REASON START_DT END_DT

1 100 REG 2010-04-01 2010-05-31

1 90 SALE 2010-05-31 2010-06-15

1 100 REG 2010-04-01 2010-05-25

1 80 MEM 2010-05-25 2010-05-31

1 80 MEM 2010-05-31 2010-06-05

1 90 SALE 2010-06-05 2010-06-15

INSERT INTO PRICES VALUES (1.100."REG’,"2010-04-01","2010-05-31")

INSERT INTO PRICES VALUES (1.90."SALE","2010-05-31"."2010-06-15")

ERROR|
=

INSERT INTO PRICES VALUES (1.80."REG’."2010-05-25"."2010-06-05") 803

UPDATE PRICES FOR PORTION OF BUSINESS TIME FROM ‘2010-05-25°
TO “2010-06-05" SET PRICE = 80, REASON = ‘MEM’ WHERE ITEMNO = 1

An example of how this would work in practice. Notice all the activity which is
automatically generated by the update.

Also note that the end-date is NOT included as part of the interval (but start
date is).

S — = A
> Information On Demand 2011 . .
0 -éo ’
October 23-27
@ ™| !o

Update

Data affected by update/delete FOR PORTION OF

Delete

True superset
FOR PORTION OF

OLD

NEW

|

Empty

Partial overlap
FOR PORTION OF

OLD

NEW

=
=]

True subset
FOR PORTION OF

OLD

NEW

-

ol]l

Examples of what data is affected.

For update, rows in the red section are updated. For delete, the deleted rows

are shown as missing.

A

v Information On Demand 2011

Business

Time example

SELECT

2010-04-15’
WHERE

FOR BUSINE.éS_TIME AS OF =

ITEMNO = 1

SELECT

WHERE

FOR BUSINESS_TIME AS OF
2010-05-30

ITEMNO = 1

100

80

REG

MEM

Example of how “AS OF” queries are supported. The specified date is such
that it is >= START_DT and < END_DT.

Syntax which uses BUSINESS_TIME FROM... TO.. or BUSINESS TIME BETWEEN
... AND ... is also supported.

= [S]

®. » Information On Demand 2011 -

] o o -
| ®

October 23

Business time restrictions

* ALTER INDEX does not support ADD
BUSINESS_TIME WITHOUT OVERLAPS

* No SELECT FROM DELETE or SELECT FROM
UPDATE when UPDATE or DELETE with FOR
PORTION OF specified

+ SQLERRD(3) does not show rows affected due to
temporal update or delete (just like RI or triggers)

- P - @

|
LI

Some restrictions.

: B :
> » v Information On Demand 2011 ? ..r
i CREATE TABLE EMP
B tem poral SQL (EMPNO SMALLINT NOT NULL
, SALARYDEC(9,2) NOT NULL
, REASON CHAR(10) NOT NULL
, START_TS TIMESTAMP(12) NOT NULL
GENERATED ALWAYS AS ROW BEGIN
, END_TSTIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW END
, WHEN_CREATED TIMESTAMP(12) GENERATED

ALWAYS AS TRANSACTION START ID
, PERIOD SYSTEM_TIME (START_TS,END_TS)
START_DT DATE NOT NULL
END_DT DATE NOT NULL
,PERIOD BUSINESS_TIME (START_DT,END_DT))

CREATE TABLE HIST LB e

(EMPNO SMALLINT NOT NULL ikl o oind

» SALARYDEC(9,2) NOT NULL USE HISTORY TABLE HIST

, REASON CHAR(10) NOT NULL

, START_TS TIMESTAMP(12) NOT NULL

, END_TSTIMESTAMP(12) NOT NULL

, WHEN_CREATED TIMESTAMP(12)

, START_DT DATE NOT NULL

,END_DT DATE NOT NULL) 17

Sample DDL for creating the base table and its associated history table. They
are linked via the “ADD VERSIONING USE HISTORY TABLE” clause. In this case,
each table also has the business times.

o R =) » |

. > Information On Demand 2011 . .
O October 23-27 (=
o éc O

Considerations

L]

RI| — need to version all related code tables?
+ Lack of declarative temporal Rl (range vs. value based)

Temporal Rl is a lot harder (must account for “is contained in”
construct) — not any time soon?

+ Single table OK but versioning for a group — more
complex?

« Bi-temporal may have limited use (my opinion only)

« For SYSTEM_TIME, increased storage for the table

(depending on update/delete activity) — same as
application maintained

* For BUSINESS_ TIME, understanding the functionality
of UPDATE and DELETE FOR PORTION OF.

A few considerations and my preliminary recommendations (but | do reserve
the right to change my mind as we get more experience!!).

.O —— r— ..—
9, » Information On Demand 201 % .
e -ilips e

b = . ‘é‘

Where Are We?

Temporal tables
Hash access

New SQL features
Access path optimization
Currently committed data

=)

S Lo =

19

In this section we will discuss how hash access works and when it might be
appropriate.

:. . Information On Demand 2011 ? 'r
E:O e -.ﬁ . o
Business driver
Root
_______________________ fp//“_l__k\‘____________________________.
\ Non-leaf
_____ 4/i\/I\L
Non-leaf
%:.

B-triee] Leaf
For 5-level
Index
Data Pages
20

A typical B-tree structure for a large index consisting of 5 levels.

October 23-27

®. » Information On Demand 2011 a -
| ®

Overview

* Good for

Tables with a unique key, whose index is many levels (>= 57)

Applications (such as OLTP) needing single row access via the
unique key

Known approximate table size
Equal predicate on all hash key columns (or IN-List)
* Not good for
Sequential processing
Using range predicates e.g. BETWEEN or > and <
+ Substantial CPU savings possible (20-35% - even for 3-
level index!) — see ref #5
May depend on BP size, nlevels, locality of leaf pages etc.

21

General guideline on when you should consider hash access.

iD.ARTITION BY RANGE...
PARTITION 1 ...

PARTITION 5HASH SPACE 1G
ORGANIZE BY HASH UNIQUE

(account_number)
HASH SPACE 2G

B.' ... ’ Information On Demand 2011 ? .'-_
.O October 23-27 -.?b.c O
Syntax
CREATE TABLE...

DDL to create a hash table.

Hash space usage

Collision

Fixed hash space n Overflow space

ZTN

Unique Number of O‘;ezlﬂow
Key anchors per o
Value data page (a)
Number of Data nges
pages (p)

S — = A
> Information On Demand 2011 . .

4

.O Gototes: 23-27 & " O

b = . -é-

23

How hashing works and how collisions are handled.

The steps involved are:

1. The key value is scrambled to produce a 64 bit hash value — good for all
data types

2. The 64 bit hash value modulo p gives the relative page number-pis a
prime number calculated from the size of the table

3. The relative page number is converted to the physical page number in the

table space

4. The 64 bit hash value modulo a gives the hash anchor —a is a prime
number from 17 to 53 calculated from page size and average number of

rows on the page

= [S]
®. » Information On Demand 2011 -

Monitoring

Important Real Time Statistics (RTS) values are:

- SYSTABLESPACESTATS.TOTALROWS - actual number of
rows in the table

+ SYSTABLESPACESTATS.DATASIZE - total number of bytes
used for rows

- SYSINDEXSPACESTATS.TOTALENTRIES - number of
overflow records with keys in the overflow index
 ldeally, HASH SPACE (in DDL) should be close to
DATASIZE (in RTS)
+ TOTALENTRIES as a percentage of TOTALROWS
should be (ideally zero) less than 10%

- ALTER HASH SPACE and REORG or let DB2 decide
during REORG

|
LI

- P - @

24

Key parameters to watch.

E y [<]
.0, » Information On Demand 2011 %
| ® oéa

Usage notes

* A hash access table must be the only table in the table
space (dictated by UTS rules)

« Hash access cannot support clustering indexes
and member cluster

* Cloned tables cannot be altered to add Hash
organization

* LOAD performance may be slower because the data
will not be sorted in page order

* Hash key column values cannot be updated - the row
must be deleted and re-inserted with the new key value

« If the fixed hash space is too small then performance
may suffer

- P - @

» |
o

Some considerations and restrictions.

_ N o - a |
E- > Information On Demand 2011 . ./
_.O Sctober 23-27 _..b:‘ ~ O
Catalog impact
Table Column Description
SYSCOLUMNS HASHKEYCOLSEQ Numeric position of column in table’s hash
key
SYSCOPY STYPE H = Hash organization altered
TTYPE For reorg, and stype=H, prev. value of
HASHDATAPAGES
SYSINDEXES HASH Y = index is hash overflow index for the table
SYSINDEXSPACESTATS REORGINDEXACCESS | (# of times index was used) — for hash
(RTS) overflow indexes - # of overflow uses
SYSTABLEPART HASHSPACE For PBR, space (KB) override for table level
HASHDATAPAGES For PBR, space (pages) for part
SYSTABLES HASHKEYCOLUMNS # of columns in hash key
SYSTABLESPACE ORGANIZATIONTYPE | H=hash
HASHSPACE Space (KB)
HASHDATAPAGES Space (pages)
SYSTABLESPACESTATS REORGHASHACCESS | # of times hash access was used
(RTS)
HASHLASTUSED Date when hash access was last used 2%

The relevant columns in the catalog for hash access.

.O ons som < ..—
9, » Information On Demand 201 % .
e -ilips e

b _— . .é-

Where Are We?

Temporal tables

Hash access

. New SQL features
Access path optimization
Currently committed data

SIS SEPS

27

In this section we will cover some of the new SQL features offered in DB2 10.

October 23-27

Rownum, rank and dense rank — SQL example

SELECT ID, FIRSTNAME, LASTNAME, SALARY,
RANK() OVER
(ORDER BY SALARY DESC) AS SAL_RANK

FROM Y999
ORDER BY SAL_RANK
o VLUK
) | .
[[0 Lk
;)
SELECT ID, FIRSTNAME, LASTNAME, SALARY,
DENSE_RANK() OVER
(ORDER BY SALARY DESC) AS SAL_DRANK

FROM Y999
ORDER BY SAL_DRANK

SELECT ID, FIRSTNAME, LASTNAME, SALARY,
ROW_NUMBER() OVER

(ORDER BY SALARY DESC)AS SAL_ROWNUM
FROM Y999

ORDER BY SAL_ROWNUM

& = - & ¥ |
¢ » Information On Demand 2011 ﬁ - .

28

This is not new, but covered here for completeness only.

ROW_NUMBER returns the physical row number, RANK() skips a number

when duplicates exist (“Olympic”) and DENSE_RANK() does not skip a number

when duplicates exist (“Non-Olympic”).

Information On Demand 201

October 23-27

— O e e
Rownum, rank and dense rank - result

ID |FIRSTNAME |LASTNAME |SALARY |SAL_ SAL_ SAL_
RNUMB | RANK DRANK

101 | TERENCE REESE 1,000 n

123 | BENITO GAROZZO | 2,000 |4 4 El

257 | DOROTHY HAYDEN 3,000 n B H

420 BORIS SCHAPIRO 2,000 H n n

654 OMAR SHARIF 4,000 n n n

666 HUGH KELSEY 2,000 ﬂ n B

712 KATHY WEI 4,000 E n n

29

How these 3 features work — an example.

New OLAP functions — “window”

« Partitioning
+ Specified as PARTITION BY clause
Similar to grouping via GROUP BY
Indicates where to break
* Ordering
Specified as ORDER BY clause
« Aggregation group
Indication of where to start and where to end

Empty result when from-boundary > to-boundary (no error, just
like BETWEEN)

3 N ont Somv &) .._
@, » Information On Demand 2011 /5 .
— -’-——99

30

_ - [|
» Information On Demand 2011 - .
i -
October 23-27
=P " a8 !O

Supported aggregation group boundaries

To> UNBOUNDED n CURRENT n UNBOUNDED
From PRECEDING | PRECEDING ROW FOLLOWING | FOLLOWING
PRECEDING. X v v v v
n PRECEDING x (‘ V‘ Y. Y‘
CURRENT ROW x x Y. Y- Y‘

n FOLLOWING x x x (¥‘
FOLLOWING. X X | X X X

Reference material only

31

o '. oty = o._
> Information On Demand 2011 % .
® October 23-27 .@ O

@ " ®

Moving sum — SQL example

SELECT CITY, YEAR, MONTH, RAINFALL,
SUM(RAINFALL)
OVER
(PARTITION BY CITY
ORDER BY YEAR ASC, MONTH ASC
ROWS UNBOUNDED PRECEDING)
AS SUM_RAIN
FROM RAIN
ORDER BY CITY, YEAR, MONTH

32

We will cover moving sum and moving average only, but other aggregate
functions (e.g. CORRELATION, STDDEV etc. can also be used).

Choices include where to start (UNBOUNDED PRECEDING, n PRECEDING or
CURRENT ROW) and where to stop (UNBOUNDED FOLLOWING or n
FOLLOWING).

E- ,.. Information On Demand 2011 ? .'r
_.O October 23-27 -.ﬁ O
Moving sum - result
CITY YEAR MONTH RAINFALL SUM_RAIN

KANSAS CITY 2010 1 2 2

KANSAS CITY 2010 2 6 8

KANSAS CITY 2010 & 1 9

KANSAS CITY 2010 4 5 14

KANSAS CITY 2010 5 9 23

SEATTLE 2010 1 8 8

SEATTLE 2010 2 10 18

SEATTLE 2010 = 12 30

SEATTLE 2010 4 32

SEATTLE 2010 5 39

An example of how it works.

m N — (<] Rl
> Information On Demand 2011 - .
® October 23-27 .@ O

[) ™ - ®

Moving average — SQL example

SELECT CITY, YEAR, MONTH, RAINFALL,
AVG(RAINFALL)
OVER
(PARTITION BY CITY
ORDER BY YEAR ASC, MONTH ASC
ROWS 2 PRECEDING)
ASAVG_RAIN
FROM RAIN
ORDER BY CITY, YEAR, MONTH

34

Choices include where to start (UNBOUNDED PRECEDING, n PRECEDING or
CURRENT ROW) and where to stop (UNBOUNDED FOLLOWING or n
FOLLOWING).

| ';' >
) .- Information On Demand 2011 %
L L)

Moving average - result

CITY YEAR MONTH RAINFALL AVG_RAIN
KANSAS CITY 2010 1 2 2
KANSAS CITY 2010 2 6 4
KANSAS CITY 2010 3 1 3
KANSAS CITY 2010 4 5 4
KANSAS CITY 2010 5 9 5

SEATTLE 2010 1 8 8
SEATTLE 2010 2 10 9
SEATTLE 2010 3 12 10
SEATTLE 2010 4 8
SEATTLE 2010 5

35

An example of how it works.

. ° [&]

b Information On Demand 2011 %, "
A
Gototes: 23-27 .* O
-

A

Generic update (extended indicator variables)

/ Employee id: 12345 \

First name: John
Last name: Smith
Dept: DBA
Salary: 912.87

KLocation: Kansas City /

Any or all fields may be updated

36

A typical problem scenario, especially for an update screen.

e = A
o > Information On Demand 2011 . .
O October 23-27 & O
-

Business challenges

+ For handling a “generic” insert/update (see previous
slide), a user has three main choices:

+ Always update all columns — even when not changed
« “Lazy” programmer’s choice — perhaps most common
« DB2 resources wasted

+ Create static SQL for each combination
« Efficient
« Number of combinations grows exponentially
* No practical

+ Use dynamic SQL
« Complex

» Dynamic SQL cache reuse may be limited (even with parameter
markers, if large number of combinations)

37

Choices which exist today.

= [S]
®. » Information On Demand 2011 -

Extended NULL indicators to the rescue!

+ Enabled as a bind option for static SQL
(EXTENDEDINDICATOR(YES)) or by PREPARE for
dynamic SQL — default is NO!

+ -5 means:

+ For insert/merge insert: use the default value for the column
+ For update/merge update: use the default value for the column

* -7 means:

- Forinsert/merge insert: use the default value for the column
+ For update/merge update: no-op (column did not change)

+ Application logic sets the indicator variable for each

host variable appropriately (see next slide)

+ One generic insert/update/merge statement can now
be used safely

b = . ‘é‘

38

A new choice now available in DB2 10.

& = [Rl
» Information On Demand 2011 - .
O October 23-27 .@ O

@ =P - ®

Extended NULL indicators - Insert

If name-entered
Application :ws-name-l_nd B
:ws-name = new value
Else
:ws-name-ind = -5
... same for salary...
INSERT INTO EMP
VALUES
SQL (:WS-EMPNO
, :\WS-NAME:WS-NAME-IND
, ‘WS-SALARY:WS-SALARY-IND)

39

A coding example of how the indicators will be set by the application and used
in an insert statement.

o '. oty = o._
> Information On Demand 2011 % .
® October 23-27 .@ O

@ " ®

Extended NULL indicators - Update

If name-changed
Application :ws-name—l_nd oy
‘ws-name = new value
Else
:ws-name-ind = -7
... same for salary...

EXEC SQL UPDATE EMP

SET

SQL NAME = WS-NAME:WS-NAME-IND,
SALARY = :WS-SALARY:WS-SALARY-IND

WHERE EMPNO = :WS-EMPNO

END-EXEC.

40

A coding example of how the indicators will be set by the application and used
in an update statement.

Note that an attempt to use the CASE statement within the update e.g.

CASE WHEN :WS-OLD-NAME = :WS-NEW-NAME
THEN :WS-NEW-NAME:WS-NULL-7
ELSE :WS-NEW-NAME-:WS-NUILL-0
END

does not appear to work (SQLCODE -365, SQLSTATE 22539) — “An expression
that involves more than 1 host variable is invalid”.

e = A
o > Information On Demand 2011 . .
O October 23-27 & O
-

- P - @

Implicit casting

+ DB2 9 implicitly casts in many cases - e.g. INTEGER to
DECIMAL

« DB2 10 extends this to casting between a character or
graphic string type and a numeric type

« Allows index access

41

.O ons som < ..—
9, » Information On Demand 201 % .
e -ilips e

b = . -é-

Implicit casting from numeric to string

Source data type Target data type

SMALLINT VARCHAR(6)

INTEGER VARCHAR(11)

BIGINT VARCHAR(20)
NUMERIC/DECIMAL VARCHAR(precision+2)
REAL VARCHAR(24)

FLOAT VARCHAR(24)

DOUBLE VARCHAR(24)

DECFLOAT VARCHAR(42)

Relerence material onl

42

- o ; <
0, » Information On Demand 2011 %
[)

Implicit casting from string to numeric

b = . -é-

Source data type Target data type
CHAR DECFLOAT(34)
VARCHAR DECFLOAT(34)
GRAPHIC DECFLOAT(34)
VARGRAPHIC DECFLOAT(34)

Relerence material on

L)

43

.O —— r— ..—
9, » Information On Demand 201 % .
e -ilips e

Ry v @
Casting from string to numeric —- DECFLOAT usage

* When DB2 implicitly casts a string to a numeric value, the target
data type is DECFLOAT(34), which is then compatible with other
numeric data types - it is a superset of the others.

* An invalid string e.g. "12AB34° (embedded blanks) will cause an
SQLCODE -420. The message may be confusing since you may
be attempting to covert to DECIMAL or INTEGER.

*« DECIMAL(*1.9°, 3, 0) =1 (truncate always)

* An implicit cast from “1.9" to DECIMAL(3.0) =
DECIMAL(DECFLOAT(*1.9%), 3. 0) depends on value of

CURRENT DECFLOAT ROUNDING MODE
ROUND HALF EVEN 1.9<92and 1.5 or 2.5 =»2(default, ties to even)
ROUND_HALF DOWN 1.9<1and2.5 22
ROUND HALF UP 1.9°>1 and 2.5 =23

ROUND DOWN 1.9=» 1 and 2.5=»2(recommended)
44

Beware of the possibly confusing message and the fact that
RIUND_HLAF_EVEN is the default which behaves contrary to what a COBOL
programmer would expect.

Greater precision for timestamp

* Number of digits for the fractional second in a
timestamp extended
« Range supported in DB2 10 is 0 to 12 digits
Maximum of TIMESTAMP(12)
String representation: yyyy-mm-dd- hh.mm.ss.nnnnnnpppppp
« Greater precision may be useful when timestamp is
used as a unique key
Reduces chance of duplicate
Still need logic to handle duplicates in application
+ The DB2 9 default of 6 digits remains
TIMESTAMP is the same as TIMESTAMP(6)
String representation: yyyy-mm-dd- hh.mm.ss.nnnnnn

N - () A
®. » Information On Demand 2011 - .
(®) ———— .éa O
| ®

45

Also available is “timestamp with timezone” but | see limited use for this
feature and | will not cover it here.

.O ons som < ..—
9, » Information On Demand 201 % .
e -ilips e

Where Are We?

Temporal tables
Hash access

New SQL features
Access path optimization
Currently committed data

el e B LY

46

This section will cover the huge improvements made in access path selection.

.O —— r— ..—
9, » Information On Demand 201 % .
e -ilips e

- P - @

Review of Dynamic Statement Caching

Program A Thread A M{]% Global Cache
> Prepare
; | "

PREPARE S SOLCODE=0

EXECUTES || " !
SEREOPER T | SKDS
EXECUTE $ - I-SOLCODE=0" [N 7 IR P S
Program B Thread B :
PREPARES

SQLCODE=0"]

N Prepared statement S

EXECUTE S SUWLCOUDE=U -

,No effect on
CONMMIF- ~SOLCODE=g1T--" """ prepared

statements i
EXECUTE-§--5qteopgsg- - ﬁ\/\%

Local Cache

47

Full caching combines the two benefits (ability to issue an EXECUTE without
PREPARE — small impact) + (the ability to reuse the statement prepared by
another thread — big impact).

Activated by KEEPDYNAMIC(YES) bind parameter and zparm MAXKEEPD >0
and zparm CACHEDYN=YES.

e = A
o > Information On Demand 2011 . .
O October 23-27 & O
-

Literal replacement

« Advantages of dynamic statement cache
+ Avoids Full PREPARE
+ Requires the user id and statement to be identical

* Overcoming the problem with literals
+ WHERE EMPNO = 123 different from WHERE EMPNO = 456
« Parameter markers preferred e.g. WHERE EMPNO = ?
+ Literals replaced with & (like ? but different)
- Enables cache re-use

+ Performance impact
- Biggest gain for complex SQL (high PREPARE time) with
literals which now has a cache hit

- Beware of NUD/Correlation: REOPT will be needed - else
worse performance! 48

How literal replacement can provide better performance (in most cases).

F- :. Information On Demand 2011 ? .'r
_.O Sctones 23-27 -.ﬁ O
Literal replacement — How does it work?

Enablement (either one of..)

+ Put CONCENTRATE STATEMENTS WITH LITERALS in the
ATTRSTRING in the PREPARE - (yes, but code change!)

+ Set LITERALREPLACEMENT in the ODBC initialization file
+ Set the keyword enableLiteralReplacement="YES’ in the JCC
Driver
* Lookup sequence
+ Original SQL with literals is searched in the cache
+ If not found, literals replaced and searched again
» Must have same attribute —i.e. ? does not match &
+ If not found, new SQL is prepared and stored in the cache
* No literal replacement if a mixture of literals and
parameter markers

- EXPLAIN STATEMENT CACHE ALL populates the
LITERAL_REPL column 40

Details on how the replacement can be specified. The choice requiring code
change seems the least attractive to me.

N - () A
®. » Information On Demand 2011 - .
(®) ———— .éa O
| ®

- P - @
Predicate Transitive Closure for IN lists

« Optimizer generates and applies predicates which can
be derived from other predicates specified

« Thru DB2 9, possible for equal and range predicates
only (=,<>><,<=>= BETWEEN, NOT BETWEEN) -
now for IN also

+ Example:
T1.C1=T2.C1 AND T1.C1 = :hvl -) T2.C1 = :hvl

» Similar closure will now occur for IN list in DB2 10

T1.C1=T2.C1 AND T1.C1IN (1.2,3) | m | T2.C1 =1IN (1,2,3)

* More access path choices result due to the closure
(e.g. T2 could now be accessed first, unlikely w/o PTC) 30

Simple example of how transitive closure works.

= [S]
' » Information On Demand 2011 -

Direct table access for IN lists

* DB2 builds in-memory tables to process multiple IN lists
as matching predicates

* New access type of IN (instead of N) for direct tables

access
+ Example: (Table EMP has index EMPKO by (dept and job)
WHERE DEPT IN (?,2,2,?)
AND JOB IN(?2,2,?)
* results in:
PL | MT TAB AC INDEX MC PF
1 0 DSNxxx.. IN 0
1 DSNxxx.. IN 0
3 1 EMP | EMPKO 2 |

|
LI

- P - @

51

An example of multiple IN lists can now be processed faster.

& = [Rl
» Information On Demand 2011 - .
O October 23-27 .@ O

@ =P - ®

Scrolling/Re-positioning issues

* Reposition— in normal cursors (not scrollable cursors!)

* Most scrolling predicates provide no filtering at all and
easily mislead the optimizer — example:

WHERE (FUND > :WS-FUND
OR (FUND = “WS-FUNDAND | Index on: FUND
ACCT > ‘WS-ACCT) AT
OR
(FUND = :WS-FUND AND DATE
ACCT = “WS-ACCT AND
DATE > :‘WS-DATE))

AND FUND >= :WS-FUND
ORDER BY FUND, ACCT, DATE

Redundant predicate
Needed in DB2 9
For matching index access 52

A common problem that haunts all restartable cursors! DB2 can match on at
most 1 column due to the OR logic.

Information On Demand 201

October 23-27

Scrolling/Re-positioning in DB2 10

* Matching index access possible in DB2 10
« 3 probes — access type NR
+ QBLOCKNO order not relevant!

A d
.gﬁ_a .’Io

FUND FUND FUND
ACCT ACCT mc=1
DATE me=2 —
me=3 Huge gain when
probe # 3 fetches
sufficient rows!!
1
Probe # 1 Probe # 2 Probe # 3
53
This feature spells R-E-L-I-E-F !!! | am expecting a huge performance gain for

cursors accessing large tables (but returning few rows) in CICS programs which

use such restartable cursors.

My original request was for a new SQL clause “SCROLL ON” (just like the ON
clause vs. WHERE clause), to create such probes but the end result is identical
to what is provided in DB2 10.

o R =) » |
o > Information On Demand 2011 . .
O October 23-27 & O
-

Safe query optimization

+ Common reasons for bad access paths

Host variables or parameter markers with non uniform
distribution of data — most common in our environment

Missing stats or stats not current
Unpredictable runtime resource availability — especially, RID
pool usage
* Access path based purely on cost-based optimization
needs a “reality check” (just like degree of parallelism)
Dealing with reality at run time
Dealing with uncertainty at bind time

54

Features of the “safe optimization” initiative.

.. ans somca < .’—
@, > Information On Demand 2011 %. .
e 5 e

- | [0

Dealing with RID pool failures

« If a RID limit is reached
Overflow RIDs to workfile and continue processing
Avoids fallback to table space scan as happens DB2 9
+ Default RIDPOOL size increased from 8 MB to 400 MB
Zparm MAXTEMPS_RID limits workfile usage for each
list
« Work-file usage may increase - need to monitor (but
not expected to increase due to larger RIDPOOL size)

Some implications of what safe optimization means at run time.

= [S]
®. » Information On Demand 2011 -

Dealing with uncertainty

* Optimizer evaluates the “risk” associated with each
predicate

« Compare access paths with close cost and chooses
lowest risk plan

» Full details of “uncertainty” are NOT externalized!

« A good first step but not there yet (my opinion) — see
next slide

b = . ‘é‘

|
LI

56

Some implications of what safe optimization means at bind time.

_ - [v |
» Information On Demand 2011 - '

.,

.O Gotote 23-27 .* " O

Dealing with uncertainty

Query 1 Query 2
o Aggresswe E Defensive

2

Elapsed time 10

S— ——
—

Safe optimization attempts to cater to the “worst-case” as well as the “average case”. With
defensive optimization, an access path with avg = 2 sec and worst case = 4 sec would be
preferred over one with avg = 1 sec and worst case = 10 sec 57

You want minimum cost, but what cost? Average or worst-case?

o R =) » |
. > Information On Demand 2011 . .
O October 23-27 @& O
0

How uncertainty should be dealt with

« “.arobust query optimizer is one that generates plans that
work reasonably well even when optimizer assumptions fail
to hold.”

Yes, DB2 10 attempts to do so.

« “Because robustness sometimes comes at the cost of
performance, users should be allowed to prioritize these
competing objectives.”

No, this is hidden within DB2 and user has no choice.

58

This tradeoff between performance and predictability has been discussed in
various papers, most notably by Brian Babcock and Surajit Chaudhuri (see ref
#3).

= [S]
®. » Information On Demand 2011 -

Obtaining EXPLAIN information
for dynamic SQL

* For host-based languages (e.g. COBOL), modify the
source to add the following prior to PREPARE:
EXEC SQL SET CURRENT EXPLAIN MODE = YES END-EXEC.
« For JDBC and SQLJ
Set currentExplainmode connection property

« For ODBC and CLI

file
For specific application: set SQL-ATTR-DB2EXPLAIN using
SQLSetConnectAttr() function

* Compatible with DB2 LUW

For system-wide setting: Set keyword DB2EXPLAIN in DSNAOQINI

- P - @

Automatically sets the CURRENT EXPLAIN MODE special register

59

New options to obtain EXPLAIN information.

J » |
®. » Information On Demand 2011 - .
(®) ———— .éa O
| ®

CURRENT EXPLAIN MODE Values

NO
Default
No Explain performed

YES
Explain performed
Prepared statements written to cache
Execution permitted

EXPLAIN
Explain performed
Prepared statements written to cache
Execution prohibited (SQLCODE +217)

60

The choices.

A couple of things to be aware of.

First, the user must have “explain monitored statements” privilege — not
typically granted to developers.

Second, if you place an explainable statement and then select from the
PLAN_TABLE, DB2 runs (and explains the selects also) — beware of the extra

rows!

E- :. Information On Demand 2011 ? .'/’_
_.o et _..éa‘ bo (e
Where Are We?
1. Temporal tables
2. Hash access
3. New SQL features
4. Access path optimization
W 5. Currently committed data
OION
N
61
In this final section, we will present a new option to provide more
concurrency. It comes at a price and we will discuss all the “gotcha’s” also.

= [S]
®. » Information On Demand 2011 -

Why and How?

« |solation UR avoids contention, but does not return
committed data

« Applications ported from other DBMSs (e.g. Oracle)
particularly prone to timeouts

* Returns currently committed data without waiting for
locks

« Supported for uncommitted inserts or deletes
* No support for uncommitted updates

b = . ‘é‘

|
LI

62

To me, the primary business driver for this feature appears to be easy
migration from other databases to DB2.

» N n sommn r=] .._
@, » Information On Demand 2011 /5 .
= - P - !0

Simple example (assumes row-level locking)

User A 10 User B
Insert 50 and) | 20 | G—— Delete 20 and

Not committed 30 Not committed
40
User C: SELECT *
FROM..
Default (wait for outcome): B8 (10) and wait/timeout on 20
Skip locked data: =) 10, 30.40
With UR: m) 10, 30, 40, 50
Currently committed: m) 10, 20, 30, 40

Note: UPDATE not supported - causes wait for outcome

63

A simple example of how each option works.

o R =) » |
. > Information On Demand 2011 . .
O October 23-27 @& O
-

How does it work?

« Applies only when accessing UTS on DB2 10 NFM

« If contention is with uncommitted insert, it applies to
Isolation CS or RS only

 If contention is with uncommitted delete, it applies to
Isolation CS with CURRENTDATA(NO) only

« Statement level overrides package level which
overrides plan level which overrides system level

+ If lock not available & held by inserter — skip row
« If lock not available & held by deleter — return row

64

Some considerations and restrictions.

N - () A
®. » Information On Demand 2011 - .
(®) ———— .éa O
[)

b = . ‘é‘

Syntax

» Default is “wait for outcome” behavior (no change)

* New BIND Option
CONCURRENTACCESSRESOLUTION(USECURRENTLYCOMM
ITTED | WAITFOROUTCOME)

* New PREPARE Attribute
PREPARE ... USE CURRENTLY COMMITTED | WAIT FOR
OUTCOME

* New bind option in CREATE/ALTER of PROCEDURE,

FUNCTION

CONCURRENT ACCESS RESOLUTION U[SE CURRENTLY
COMMITTED] / WIAIT FOR OUTCOME]

Syntax rules.

e = A
o > Information On Demand 2011 . .
O October 23-27 & O
-

When does it apply?

« Applies to row and page locking
- Page locking
* |IRLM tracks up to 8 rows on a page
+ Page lock request for insert/delete specifies row
+ Page lock request for read specifies row
« If IRLM knows about it then returns to say deleter/inserter

« If IRLM doesn’t know about it, then reader will wait for lock to be
released

* Does not apply to table, partition or table space locks
» Not applicable when LOCK TABLE IN EXCLUSIVE used
+ Not applicable when lock holder is performing mass delete
+ Not applicable if lock holder has escalated

66

Cases when it applies and when it does not.

e = A
o > Information On Demand 2011 . .
O October 23-27 & O
-

How do | track how often it happens?

* New counter QISTRCCI (part of Data Manager
Statistics) - (IFCID 002)

Shows the number of rows skipped by read transactions using
currently committed option which finds uncommitted inserts

« Similarly, new counter QISTRCCD

Shows the number of rows skipped by read transactions using
currently committed option which finds uncommitted deletes

67

New counter to see how often the feature is activated.

o R =) » |
. > Information On Demand 2011 . .
O October 23-27 @& O
-

Gotcha’s

« Currently committed may allow committed data to be
returned without waiting

« BUT - does not guarantee that DB2 will do so - in
some cases DB2 may revert to unconditional locking
(e.g. more than 8 rows locked on a page)

« Updates are NOT supported (where it is needed most!)

68

Some things to watch out for. In my opinion, the most troublesome area is
update logic on control tables (e.g. next account number) — this is where DB2
10 does NOT support it...oh well, there will be DB2 11...

& = @ Al
» Information On Demand 2011 - .
O October 23-27 .@ O

Conclusions and key take-aways

* How Temporal tables can simplify your code

* How Hash access can speed up queries against large
tables

* How new SQL features can help
* How Access path determination is now smarter

* How concurrency can be improved without sacrificing
integrity (not fully yet..)

69

| trust this session has empowered you with the knowledge to exploit the new
application features of DB2 10. Good Luck!

N - () A
®. » Information On Demand 2011 - .
(®) ———— .éa O
| ®

- P - @

References %

1. DB2 10 for z/OS SQL Reference

2. DB2 10 for z/OS Application Programming and SQL
Guide

3. “Towards a Robust Query Optimizer: A Principled and
Practical Approach” - Brian Babcock and Surajit
Chaudhuri - Proceedings of the 2005 ACM SIGMOD
international conference on Management of data

4. |IBM Redbook — DB2 10 Technical Overview — SG24-
7892

5. IBM Redbook — DB2 10 Performance Topics — SG24-
7942

70

Some of the useful references.

o R =) » |
o > Information On Demand 2011 . .
O October 23-27 .& O
0

b _— . ‘é‘

Squeezing the Most
Out of Dynamic SQL

About the Instructor |wwwimvias

—— DBZ for 2/0S Stored Procedures:
= Thaﬂ:g;lull?: CALL
ani
Suresh Sane (="
= === A L
— Data Integrity with
DB2 for z/0S

DB29forz/0S:
Packages Revisited

« Co-author-IBM Redbooks
« S5G24-6418, May 2002
« 8G24-7083, March 2004
+ SG24-7111, July 2006
« S5G24-7688, January 2009

« Seminars, courses and presentations in USA, Canada,
Europe, Australia, Thailand and Israel

;__.. LI h_g._

sl et = Lpqarbdatorf [

rize ezl
{1 e — G 4 5=
0, 2011) IBM Information Champion (2009, 201

71

Suresh Sane is an IDUG Hall of Fame speaker with three Best User Speaker
awards and numerous top 10 finishes. He has lectured worldwide and co-
authored 4 IBM Redbooks (Dynamic SQL, Stored Procedures, Data Integrity
and DB2 Packages). He was recognized as an IBM Information Champion in
2009 - 2011.

He served on the NA Conference Planning Committee 2004-2008 (Conference

Chair for IDUG NA 2008) and on the IDUG Board of Directors 2009-2011.

Contact Information:

sssane@dstsystems.com or sureshsane@hotmail.com

Suresh Sane

DST Systems, Inc.

1055 Broadway

Kansas City, MO 64105 USA
(816) 435-3803

s — [=] ..
> Information On Demand 2011 - .
7
_.O October 23-27 # ' @

Suresh Sane
DST Systems, Inc.
sssane@dstsystems.com or sureshsane@hotmail.com

Thank you and good luck with DB2 10!

72

S — < |
> Information On Demand 2011 - .

7

.O October 23 # 4 o

Thank You!
Your Feedback is Important to
Us

* Access your personal session survey list and complete
via SmartSite
Your smart phone or web browser at: iodsmartsite.com
Any SmartSite kiosk onsite

Each completed session survey increases your chance to win
an Apple iPod Touch with daily drawing sponsored by Alliance
Tech

73

