
IBM IOD 2011 9/8/2011

Suresh Sane.ppt

This presentation provides an early look at some DB2 10 features which will be
important to you as the Application Developer or DBA. We will start with the basics
and demonstrate how they can be an integral part of a good design strategy. This
will allow you to start the planning process early and see if/how they fit in your
organization.

Unlike other DB2 10 Overview sessions, we will focus exclusively on those which
impact application development.

We were a QPP customer and I will share some early customer experiences which will
add value.

Temporal tables

•Business driver

•Set up

•Access

•Performance

•Recommendations

Hash access

•Business driver

•Set up

•Access

•Performance

•Recommendations

New SQL features

•Recap of ROW_NUMBEER, RANK and DENSE_RANK

•Moving sum

•Moving average

•Generic insert/update (extended indicator variables)

•Implicit casting

•Greater precision for timestamp

Access path optimization

•Literal replacement

•PTC for IN lists

•Scrolling

•Safe query optimization (Dealing with uncertainty, RID List failures)

•Explaining dynamic SQL

Currently committed data

•Business driver

•Access

•Comparison and recommendations

If you have ever invested in a mutual fund, have had a prescription filled, or
are a cable or satellite television subscriber, you may have already had
dealings with our company.

DST Systems, Inc. is a publicly traded company (NYSE: DST) with headquarters
in Kansas City, MO. Founded in 1969, it employs about 10,000 associates
domestically and internationally.

The three operating segments - Financial Services, Output Solutions and
Customer Management - are further enhanced by DST’s advanced technology
and e-commerce solutions.

In this section, we will discuss how temporal tables can simplify very complex
business logic in use today.

While the name “temporal table” applies to both types of tables, they deal
with different business problems – system-time simplifies versioning and
consists of two tables while business time consists of only one table with start
and end.

Sample DDL for creating the base table and its associated history table. They
are linked via the “ADD VERSIONING USE HISTORY TABLE” clause.

The column transaction start id is required (SQLCODE -20490, SQLSTATE
428HM when absent) but null is permissible. ‘with default’ is not permitted.
If defined as nullable, the column will contain null values. If defined as NOT
NULL, the value will be equal to the value of the ROW_BEGIN column. The
value will be a TIMESTAMP(12) value that is unique per transaction and per
data sharing member. The last 3 digits of the column value will contain the
data sharing member number.

Any system time tables can be defined as implicitly hidden.

ALTER table can convert an existing table to a system temporal table (see Info
Center).

Let’s explore how this works in practice.

Note that the end time is NOT inclusive – for example June 15th is not included
in the row ending on June 15th (but start time is).

For simplicity, we assume all changes occur at 9 am on the specified dates and
show only 6 of the 12 digits of fractional seconds of timestamp.

Any SQL (e.g. delete or update) on history is permitted. A delete on the main
table causes the deleted row to be written to the history table (not shown in
this example).

The logic to determine “AS OF” condition is now built into the DB2 engine
itself.

Syntax which uses SYSTEM_TIME FROM… TO.. or SYSTEM_TIME BETWEEN …
AND … is also supported.

Some restrictions. Most important at this time is probably the tool support.

An attempt to drop the history table results in SQCODE -478 (EMP is
dependent on it).

Some restrictions. Most important at this time is probably the tool support.

An attempt to drop the history table results in SQCODE -478 (EMP is
dependent on it).

DDL to create a table with business time.

ALTER table can convert an existing table to a system temporal table (see Info
Center).

An example of how this would work in practice. Notice all the activity which is
automatically generated by the update.

Also note that the end-date is NOT included as part of the interval (but start
date is).

Examples of what data is affected.

For update, rows in the red section are updated. For delete, the deleted rows
are shown as missing.

Example of how “AS OF” queries are supported. The specified date is such
that it is >= START_DT and < END_DT.

Syntax which uses BUSINESS_TIME FROM… TO.. or BUSINESS_TIME BETWEEN
… AND … is also supported.

Some restrictions.

Sample DDL for creating the base table and its associated history table. They
are linked via the “ADD VERSIONING USE HISTORY TABLE” clause. In this case,
each table also has the business times.

A few considerations and my preliminary recommendations (but I do reserve
the right to change my mind as we get more experience!!).

In this section we will discuss how hash access works and when it might be
appropriate.

A typical B-tree structure for a large index consisting of 5 levels.

General guideline on when you should consider hash access.

DDL to create a hash table.

How hashing works and how collisions are handled.

The steps involved are:

1. The key value is scrambled to produce a 64 bit hash value – good for all
data types

2. The 64 bit hash value modulo p gives the relative page number - p is a
prime number calculated from the size of the table

3. The relative page number is converted to the physical page number in the
table space

4. The 64 bit hash value modulo a gives the hash anchor – a is a prime
number from 17 to 53 calculated from page size and average number of

rows on the page

Key parameters to watch.

Some considerations and restrictions.

The relevant columns in the catalog for hash access.

In this section we will cover some of the new SQL features offered in DB2 10.

This is not new, but covered here for completeness only.

ROW_NUMBER returns the physical row number, RANK() skips a number
when duplicates exist (“Olympic”) and DENSE_RANK() does not skip a number
when duplicates exist (“Non-Olympic”).

How these 3 features work – an example.

We will cover moving sum and moving average only, but other aggregate
functions (e.g. CORRELATION, STDDEV etc. can also be used).

Choices include where to start (UNBOUNDED PRECEDING, n PRECEDING or
CURRENT ROW) and where to stop (UNBOUNDED FOLLOWING or n
FOLLOWING).

An example of how it works.

Choices include where to start (UNBOUNDED PRECEDING, n PRECEDING or
CURRENT ROW) and where to stop (UNBOUNDED FOLLOWING or n
FOLLOWING).

An example of how it works.

A typical problem scenario, especially for an update screen.

Choices which exist today.

A new choice now available in DB2 10.

A coding example of how the indicators will be set by the application and used
in an insert statement.

A coding example of how the indicators will be set by the application and used
in an update statement.

Note that an attempt to use the CASE statement within the update e.g.

CASE WHEN :WS-OLD-NAME = :WS-NEW-NAME

 THEN :WS-NEW-NAME:WS-NULL-7

 ELSE :WS-NEW-NAME-:WS-NUILL-0

END

does not appear to work (SQLCODE -365, SQLSTATE 22539) – “An expression
that involves more than 1 host variable is invalid”.

Beware of the possibly confusing message and the fact that
RIUND_HLAF_EVEN is the default which behaves contrary to what a COBOL
programmer would expect.

 Also available is “timestamp with timezone” but I see limited use for this
feature and I will not cover it here.

This section will cover the huge improvements made in access path selection.

Full caching combines the two benefits (ability to issue an EXECUTE without
PREPARE – small impact) + (the ability to reuse the statement prepared by
another thread – big impact).

Activated by KEEPDYNAMIC(YES) bind parameter and zparm MAXKEEPD > 0
and zparm CACHEDYN=YES.

How literal replacement can provide better performance (in most cases).

Details on how the replacement can be specified. The choice requiring code
change seems the least attractive to me.

Simple example of how transitive closure works.

An example of multiple IN lists can now be processed faster.

A common problem that haunts all restartable cursors! DB2 can match on at
most 1 column due to the OR logic.

This feature spells R-E-L-I-E-F !!! I am expecting a huge performance gain for
cursors accessing large tables (but returning few rows) in CICS programs which
use such restartable cursors.

My original request was for a new SQL clause “SCROLL ON” (just like the ON
clause vs. WHERE clause), to create such probes but the end result is identical
to what is provided in DB2 10.

 Features of the “safe optimization” initiative.

 Some implications of what safe optimization means at run time.

 Some implications of what safe optimization means at bind time.

You want minimum cost, but what cost? Average or worst-case?

This tradeoff between performance and predictability has been discussed in
various papers, most notably by Brian Babcock and Surajit Chaudhuri (see ref
#3).

 New options to obtain EXPLAIN information.

 The choices.

 A couple of things to be aware of.

 First, the user must have “explain monitored statements” privilege – not
typically granted to developers.

 Second, if you place an explainable statement and then select from the
PLAN_TABLE, DB2 runs (and explains the selects also) – beware of the extra
rows!

In this final section, we will present a new option to provide more
concurrency. It comes at a price and we will discuss all the “gotcha’s” also.

To me, the primary business driver for this feature appears to be easy

migration from other databases to DB2.

A simple example of how each option works.

Some considerations and restrictions.

Syntax rules.

Cases when it applies and when it does not.

New counter to see how often the feature is activated.

Some things to watch out for. In my opinion, the most troublesome area is
update logic on control tables (e.g. next account number) – this is where DB2
10 does NOT support it…oh well, there will be DB2 11…

I trust this session has empowered you with the knowledge to exploit the new
application features of DB2 10. Good Luck!

Some of the useful references.

Suresh Sane is an IDUG Hall of Fame speaker with three Best User Speaker
awards and numerous top 10 finishes. He has lectured worldwide and co-
authored 4 IBM Redbooks (Dynamic SQL, Stored Procedures, Data Integrity
and DB2 Packages). He was recognized as an IBM Information Champion in
2009 - 2011.

He served on the NA Conference Planning Committee 2004-2008 (Conference
Chair for IDUG NA 2008) and on the IDUG Board of Directors 2009-2011.

Contact Information:

sssane@dstsystems.com or sureshsane@hotmail.com

Suresh Sane

DST Systems, Inc.

1055 Broadway

Kansas City, MO 64105 USA

(816) 435-3803

Thank you and good luck with DB2 10!

72

73

