
Cool Features for Enterprise
Applications in DB2 10 for z/OS

Session Number 1044

Namik Hrle, IBM

2	

Objectives

•  Learn why DB2 10 represents a major step forward in
serving enterprise applications workload

•  Learn how DB2 10 addresses some of common
database administration challenges

•  Learn creative ways of addressing the same challenges
in earlier DB2 versions

•  Understand customer value of selected DB2 10 features

•  Get most from migrating to DB2 10 for z/OS

3	

DB2 10 - A Gold Mine for Enterprise Applications
  Full 64-bit support
  Reducing various latch contentions
  Internal performance enhancements
  Large buffer pools optimization
  Improving query parallelism
  I/O parallelism for index updates
  Inline LOBs
  Non-key columns in index
  Workfiles enhancements
  UTS support for MEMBER CLUSTER
  PBG tablespace enhancements
  No LOB/XML materialization within DB2
  Hash access to data
  Fine granularity DBA privileges
  Row and Column Access Control
  Bi-temporal support
  SQL PL in the engine
  Moving aggregate functions for OLAP
  Timestamp with Timezone
  Greater timestamp precision
  Special ‘null’ indicator
  Automatic SPs management
  Support for IBM Smart Analytics Optimizer

  Enhanced monitoring support
  DB2 catalog enhancements
  Automatic checkpoint, Pre-emptable backout
  Rotating ‘n to last’ partitions
  Instance-based hints
  Plan stability
  Safe query optimization
  Dynamic Statements Cache enhancements
  SQL pagination
  IN-list predicate performance
  UTSERIAL elimination
  Automatic Statistics
  Online schema evolution
  Currently committed data access
  Adding active log
  XML enhancements
  DEFINE NO for LOBs and XML
  Compressing at insert
  Reducing need for reorganization
  REORG enhancements
  Support for EAV
  FlashCopy enhancements
  ...

4	

Insert Performance Bottlenecks - Part 1

What is the largest, often unavoidable, contributor to insert elapsed time?

•  Locating page to insert?
•  Contention, e.g. on space map page, particularly in data sharing?
•  Logging?
•  Writing inserted pages?
•  Read I/O?

Each index is inserted into consecutively, without any overlap of operations.

index
page in

BP?

Wait for
I/O initiate I/O

update index
page

index
page in

BP?

Wait for
I/O initiate I/O

update index
page

index
page in

BP?

Wait for
I/O initiate I/O

update index
page

Insert into index 1 Insert into index 2 Insert into index 3

Y Y Y

N N N

DB2 9

☞

5	

Index Read I/O Parallelism at Insert

index
page in

BP?

initiate I/O

update index
page

index
page in

BP?

initiate I/O

update index
page

index
page in

BP?

initiate I/O

update index
page

Insert into index 1 Insert into index 2 Insert into index 3

N

Y

•  There is still one processing task, but the index read I/Os are overlapped.
•  It applies to LOAD SHRLEVEL CHANGE as well
•  Conditions under which index read I/O parallelism is used:

•  DB2 10 compatibility mode or higher
•  Typically, three or more indexes defined on the table
•  Partitioned or Universal table space
•  zparm INDEX_IO_PARALLELISM set to its default value (YES)

DB2 10

6	

Insert Performance Bottlenecks - Part 2

By default, which of the following characteristics DB2 prefers when inserting rows?
a)  Speed of insert
b)  Space usage efficiency
c)  Speed of subsequent queries with range predicates

The default preference can be changed by specifying:

•  APPEND tables
•  ... which entirely ignores clustering and space reuse

•  MEMBER CLUSTER tablespaces
•  ... which ignores clustering only,
•  ... but also provides the lowest space map page contention in data sharing,
•  ... and enables a kind of ‘space efficient APPEND’ behavior, also known

as the MC00 algorithm triggered by table space settings:
•  MEMBER CLUSTER
•  FREEPAGE = 0
•  PCTFREE = 0

So ... what’s the problem?
In DB2 9, MEMBER CLUSTER cannot be defined for UTS.

DB2 9

2
3

1

7	

MEMBER CLUSTER Enhancements

In DB2 10 MEMBER CLUSTER can be defined for UTS as well.

•  For both, Partitioned by Growth and Partitioned by Range UTS
•  Each space map covers 10 segments
•  A new column MEMBER_CLUSTER is added to the SYSTABLESPACE catalog

table.
•  The values ‘I’ and ‘K’ in the TYPE column of SYSTABLESPACE are no longer

used.

And the added bonus:

•  MEMBER CLUSTER attribute can be ALTERed
•  Pending ALTER

•  Tablespace placed in Advisory Reorg Pending status
•  REORG materializes the change

DB2 10

8	

Single Row Retrieval
What is the fastest way to retrieve a single row in DB2?

Equal-unique index access path!
Selected by DB2 when predicate consists of equality conditions connected
by AND operator, e.g.

SELECT * FROM ... WHERE COL1=? AND COL2=? AND COL3=?
and there is a unique index on (COL1, COL2, COL3).

For fastest performance of dynamic SELECT, additionally use FETCH
FIRST 1 ROW ONLY

But, even the equal-unique access path might not be good enough:

.

.

.

.

•  Large indexes result in increased
number of getpages:
•  number of getpages = n + 1, where n

is the index depth
•  Likelihood of read I/Os increases
•  Disorganized indexes exacerbate the

problem

DB2 9

9	

Hash Access to Data

DB2 10 introduces a new, specialized, access path
that results in a single getpage (most of the time)

.

•  Applicable to a subset of cases where a unique index could be used
•  Single, unique row retrievals with equality or IN predicates

•  Results in less getpages, lower CPU, less I/O
•  Rows in a hash-organized table reside in fixed hash space and, optionally, in

an overflow space
•  More than one getpage per retrieved row can happen if the row is relocated to the

overflow space due to shortage of the fixed hash space
•  To minimize getpages the fixed hash space should be typically 1.2 to 2 times

larger than a tablespace without hash organization
•  RTS is enhanced to include indicators assisting in detecting over-allocation or under-

allocation of space (too many collisions)
•  Overall space usage might not increase as much if the corresponding index can

be dropped (use RTS to check)

CREATE TABLE ... HASH KEY (key columns) HASH SPACE(number of bytes)
ALTER TABLE ... ADD HASH KEY (key columns) HASH SPACE(number of bytes)
ALTER TABLE ... DROP HASH ORGANIZATION

DB2 10

10	

Index-only Access Path

‘Overloading’ index with non-key columns, i.e. columns that are not
necessarily used for locating data pages, is a common tuning technique

•  Resulting index-only access path is very often a great trade-off to negative
ramifications of enlarged redundancy

•  However, in one specific case, the negative effects are particularly large

Unique index!

Unique indexes do not allow ‘overloading’ with non-key columns:
•  It compromises the unique constraint they are enforcing
•  Creating another index that includes all the key and non-key columns, but

without the UNIQUE constraint comes with well-known drawbacks

DB2 9

11	

Non-key Index Columns
DB2 10 supports adding non-key columns, also known as ‘include
columns’, to unique index without affecting the unique constraint.

•  INCLUDE (column name, ...) clause added to CREATE/ALTER INDEX
•  The include columns have different characteristics than the key columns

•  Can be added only to unique indexes
•  Do not participate in ordering of the key (they are just appended to the key)
•  Cannot be used to enforce referential integrity constraints
•  Cannot be converted to key columns (nor vice versa) without recreating the index
•  Cannot be used in:

Benefits:
•  Improved performance of DB2 statements and utilities that result in index

maintenance
•  Disk space savings - by dropping otherwise redundant index

•  Indexes on expression
•  System-defined catalog indexes
•  Auxiliary indexes

•  XML indexes
•  Partitioning indexes with explicitly

specified limit key values

DB2 10

12	

Delayed Compression

Unlike index compression, data compression is dictionary based.
•  Data cannot be compressed before the compression dictionary has been built
•  The compression dictionary is built only by:

•  LOAD
•  REORG

What is the main deficiency of this restriction?

Excessive space usage if tables are initially populated by INSERTs!

What is the remedy for this challenge?
1.  Stop inserting after 1000 or so inserted rows
2.  Reorganize tablespace
3.  Resume inserting

Remaining problem? Operational complexity!

DB2 9

13	

Early Compression

DB2 10 enables early compression of inserted rows by ‘just in time’
building compression dictionary during:

•  INSERT
•  MERGE
•  LOAD SHRLEVEL CHANGE RESUME YES

No changes to the applications are needed.
•  Applies to all COMPRESS YES tablespaces and partitions
•  DB2 transparently builds compression dictionary

•  The triggering operation and following operations do not wait
•  After the dictionary is built, the subsequent inserted rows are compressed
•  Compression dictionary built this way is spread over the whole tablespace

What to do, if for some reason, the old behavior is needed:
1.  Create tablespace with COMPRESS NO
2.  Populate table by INSERTs
3.  Alter tablespace to COMPRESS YES
4.  Reorganize tablespace

DB2 10

14	

SLOBs - ‘Small’ Large Objects
What is the largest inhibitor for more intensive use of LOBs?

•  Operations on LOB columns always require access to additional pages which drives
higher CPU, memory and I/O utilization

•  LOB column, no matter how small the value might be, is stored in a separate tablespace

Performance and space utilization for LOBs with relatively smaller size.

Base table pages

Auxiliary table pages

integer char lob

 lob value

integer char lob

 lob value

DB2 9

15	

LOBs Inlining
DB2 10 supports collocating the entire LOB column or a
part of it with other columns within the base row.

Base table pages

Auxiliary table pages

integer char lob value

 remaining lob value

integer char lob value

free page

•  Improved elapsed and CPU time through fewer getpages and I/Os
•  Improved space use (both disk and memory)

•  Completely inlined LOB values do not require pages in LOB tablespace (one per LOB!)
•  Inlined LOB values are subject to regular data compression

•  LOB tablespace cannot be compressed!

•  Index key on a substring of the inlined part is allowed

prior to DB2 10

DB2 10

16	

LOBs Inlining - How to Control It?
•  LOB Inlining requires UTS

•  LOB_INLINE_LENGTH zparm

•  Specifies the default inline length for any new LOB column
•  Valid values: 0 (default) to 32680 bytes

•  INLINE LENGHT clause on CREATE DISTINCT TYPE

•  INLINE LENGHT clause on CREATE TABLE
•  Overrides the value specified in zparm or distinct type definition

•  INLINE LENGTH clause on ALTER TABLE

•  When adding new LOB column
•  When changing the inline length of the existing LOB column
•  REORG materializes change for existing rows

•  REORG SHRLEVEL REFERENCE is required
•  SHRLEVEL CHANGE likely improvement

•  Full support for DEFAULT values on LOB’s inline part

DB2 10

17	

Difficulties at Influencing Optimizer Decisions

•  Providing appropriate indexes
•  Collecting the latest statistics and refreshing the catalog
•  Using appropriate reoptimization option
•  Correctly setting relevant zparms STARJOIN, MAX_PAR_DEGREE …)
•  Assess use of VOLATILE
•  Read again relevant sections from the Managing Performance guide

What do you do if the access path is suboptimal despite applying all
the conventional tuning techniques:

Update catalog statistics or Use optimization hints
•  In any case, please report the incident to the IBM Service
•  Updating catalog statistics (lying to the Optimizer) is risky and not recommended

•  It typically has broader (and often negative) effects than needed and intended
•  It’s challenging and unpredictable
•  It creates administrative overhead

•  Using optimization hints is preferred, but …
•  Difficult to correlate the statement with its hints specification: QUERYNO can change
•  Particularly difficult for dynamic SQL

DB2 9

Additional challenge: zparms and bind options affecting the access
path selection have too broad scope

18	

Statement-level Optimization Hints

•  SYSQUERY, SYSQUERYPLAN, SYSQUERYOPTS
•  Using query text to match statement with its hint specification

•  No need to change application
•  Applies to any statement in the system with the same statement text
•  Scope can be either system or package

•  How to specify statement-level hints
•  Insert a row into DSN_USERQUERY_TABLE user table containing QUERYNO,

query text and optional data such as user, collection, package etc.
•  Populate PLAN_TABLE with desired hints – use the same QUERYNO from
•  Issue BIND QUERY command
•  You can also delete specified hints by issuing FREE QUERY command

•  The same mechanism can be used to limit the scope of selected optimizer
relevant parameters to individual statements
•  zparms: STARJOIN, SJTABLES, MAX_PAR_DEGREE
•  Package bind options: REOPT, DEF_CURR_DEGREE

 DB2 10 introduces Access Path Repository, i.e. a set of tables in the
SYSIBM schema that influence access path selection:

DB2 10

19	

Literals Reduce Dynamic Statements Cache Efficiency

•  Intentionally
•  To force new access path selection for each set of different values
•  Always the case in SAP applications

•  Unintentionally
•  Bad coding practice
•  Forced by the development tooling

Applications programmers use literals in the statement text :

Unintentional use results in dynamic statements cache inefficiency
•  A short (cost efficient) prepare is possible only if the new statement matches

a cached statement character-for-character
•  Any difference in literal values results in a full (expensive) prepare
•  This is why SAP in most cases uses parameter markers

•  New copies of statements that could have shared already cached statement
‘thrash’ dynamic statement cache

DB2 9

Is it possible to avoid the thrashing?
Yes, by using REOPT ALWAYS, but at the cost of not having statements caching at all!

20	

Concentrating Cached Statements

•  CONCENTRATE STATEMENTS WITH LITERALS
•  New option for ATTRIBUTES on PREPARE
•  CONCENTRATE STATEMENTS OFF (default) causes pre-V10 behavior

•  Before a prepared statement is cached each literal is replaced by a single ‘&’
•  Additionally, DB2 removes the trailing blacks that follow the statement
•  ‘&’s are shown instead of literals in instrumentation (e.g. IFCID 317)

•  Subsequent prepares of the same statement with different literals can result
in short prepares
•  The exact match has a precedence over matching with ‘&’
•  The literals must be ‘reusable’ in the prepare context
•  Mixture of parameter markers ‘?’ and literals results in the pre-V10 behavior

•  Monitoring support
•  Values ‘R’, ‘D’ or ‘ ‘

•  for new column LITERAL_REPL in DSN_STATEMENT_CACHE_TABLE
•  for new field in IFCID 316

•  New statistics counters

 DB2 10 introduces an option to reuse a cached, previously prepared
statement irrespective of literal values

DB2 10

21	

How To Drop Partition in DB2?

•  A partition can be emptied by DELETE or LOAD REPLACE
•  ... but it stays around forever

Strictly speaking, it cannot be done.
DB2 9

There is a special case when a partition can be effectively dropped.

•  If the partition to be dropped is the very first logical partition, ROTATE
effectively drops that partition and creates a new one in its place.

In all other cases you are faced with a growing number of partitions
•  Only exceptionally the growth can be slowed down by redistributing data

after changing key ranges
•  Associated with significant operational complexity

ALTER TABLE ROTATE PARTITION
 FIRST TO LAST
 ENDING AT constant | MAXVALUE | MINVALUE

22	

ROTATE n to LAST as Means to Drop the nth Partition

DB2 10 extends the ROTATE PARTITION scope
DB2 10

ALTER TABLE ROTATE PARTITION
 FIRST | integer TO LAST
 ENDING AT constant | MAXVALUE | MINVALUE

integer specifies the physical partition that will be:
•  reset, i.e. emptied
•  it’s limit key set to value specified at ENDING AT
•  FIRST continues to refer to the first logical partition

DB2 10 also improves availability by not requiring reorganization for a
number of partition altering operations if the involved partition is
empty.

23	

Lock Suspension Wait Indicators Overload
DB2 9

Most available and reliable indicators of performance inhibitors
caused by concurrency problems are provided by DB2 Accounting
trace Class 3 switch.
•  It’s a switch because it does not create new trace records: it rather controls

what details are included in other traces such as IFCID 3, 148, 316, …
•  It provides frequency of occurring and accumulated time spent waiting for

resuming processing after any of the following suspensions:
•  IRLM lock/latch and DB2 internal latch
•  Page latch
•  Drain lock
•  Claim release
•  Numerous data sharing specific serialization events

So, what’s the problem?
The most common suspension type: waiting for lock request includes

waits for entirely unrelated events: DB2 internal latches
•  One can use Statistics trace to assess the number of DB2 internal latch

suspensions
•  But, the scope of reporting (system vs. thread or statement) does not match

☞

24	

New Class 3 Waits Indicators: DB2 Internal Latches

•  Accumulated time spent waiting for DB2 internal latch suspensions
•  Number of times DB2 internal latch suspensions occurred
•  The existing wait indicators are used for IRLM lock and latch suspensions only

DB2 10 separates waits for DB2 internal latches into dedicated
Class 3 indicators.

DB2 10

Statistics trace is still needed to assess which type of internal latch
suspensions occurred, e.g.

Latch Class Description

LC06 Index tree P-lock latch contention caused most likely by splits of GBP-dependent index pages

LC07 Dependency Manager Hash Table

LC11 Generating Identity Column

LC14 BP LRU chain

LC19 Logging

LC24 BP LRU chain

LC25 EDM Pool hash chain

LC32 Storage Manager Pool Header

RoT: more than 10000 per sec is considered high.

DB2 10

25	

Monitoring of Static SQL Statements

DB2 9
Prior to DB2 10 there is no straightforward way to monitor individual
statements that are statically bound

As of DB10, the per-statement performance details are extended to
statically bound statements as well.
•  Performance Class 29

•  IFCID 400 as analogue to 318 and IFCID 401 as analogue to 316
•  Available for statements currently in EDM Pool (via READS) and statements that got

purged from EDM Pool (READA or SMF/GTF)
•  Request can be filtered by:

•  exceeding a given threshold, e.g. number of executions, number of getpages, …
•  belonging to a top list by a given performance indicator, e.g. elapsed time, CPU, time, …
•  matching a given statement ID (single statement retrieval)
•  executed for a given end-user ID, transaction/application ID, workstation name
•  refer to a specific table
•  bound after specific time or re-executed after specific time

•  DB2 provides rich performance details, but aggregated by package or plan
•  Individual statements can only be traced by costly performance traces that are

complicated to format and monitor
•  On the contrary, for dynamically prepared statements that use statement cache, DB2

provides easily obtained detailed performance data

DB2 10

26	

Special Register CURRENT EXPLAIN MODE

DB2 9
Prior to DB2 10 performance monitoring and tuning of dynamic SQL
statements was not ideally suited for application programmers

DB10 addresses these challenges
•  Application programmers can turn on/off collection of access path details and

performance data for dynamic SQL statements
•  SET CURRENT EXPLAIN MODE = NO | YES | EXPLAIN
•  JCC connection property: currentExplainMode
•  ODBC/CLI:

•  keyword DB2Explain in db2cli.ini file, or
•  Setting SQL_ATTR_DB2EXPLAIN with SQLSetConnectAttr() function

•  For YES and EXPLAIN, access path details are written in standard explain tables
•  This also applies to CACHEDYN=NO and REOPT(ALWAYS) cases

•  For YES, performance data are written in DSN_STATEMENTS_CACHE_TABLE

•  There is no equivalent of EXPLAIN bind option that is provided for static SQL
•  Each monitored statement needs to be changed (adding STMTTOKEN)
•  Alternatively, time consuming and complex analysis of performance traces or

DSN_STATEMENT_CACHE_TABLE is needed
•  Statement could be purged from the cache before having a chance to retrieve its

performance characteristics

DB2 10 to Support IBM Smart Analytics Optimizer

27	

B
I A

pplication

DB2
for

z/OS

DB2 Optimizer
decision for
acceleration

Smart Analytic
Optimizer

DW query
execution

Offload DW query
workload to

high performance
query

accelerator

Workload Optimized

Seamlessly plugs into the existing stack of
software and hardware

Integrates DB2 for z/OS
with high-performance
Data Warehouse query

technology

System z

Netezza
Technology

inside

IBM Smart Analytics Optimizer key enhancements:

•  Powerful query engine based on Netezza
•  Significantly broadened query acceleration applicability
•  10-20 times increased data capacity
•  Improved concurrent query execution
•  Partition scope update option
•  Unicode support

Communities
• On-line communities, User Groups, Technical Forums, Blogs,

Social networks, and more
–  Find the community that interests you …

•  Information Management ibm.com/software/data/community

•  Business Analytics ibm.com/software/analytics/community

•  Enterprise Content Management
ibm.com/software/data/content-management/usernet.html

•  IBM Champions
–  Recognizing individuals who have made the most outstanding

contributions to Information Management, Business Analytics, and
Enterprise Content Management communities
•  ibm.com/champion

29

Thank You!
Your Feedback is Important to Us
• Access your personal session survey list and complete via SmartSite

–  Your smart phone or web browser at: iodsmartsite.com

–  Any SmartSite kiosk onsite

–  Each completed session survey increases your chance to win
an Apple iPod Touch with daily drawing sponsored by Alliance
Tech

 Acknowledgements and Disclaimers:

 © Copyright IBM Corporation 2011. All rights reserved.

–  U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

–  Please update paragraph below for the particular product or family brand trademarks you mention such as WebSphere, DB2,
Maximo, Clearcase, Lotus, etc

 IBM, the IBM logo, ibm.com, [IBM Brand, if trademarked], and [IBM Product, if trademarked] are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms
are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml
 f you have mentioned trademarks that are not from IBM, please update and add the following lines:
 [Insert any special 3rd party trademark names/attributions here]
 Other company, product, or service names may be trademarks or service marks of others.

 Availability. References in this presentation to IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates.

 The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are

provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice
to any participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it
is provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the
applicable license agreement governing the use of IBM software.

 All customer examples described are presented as illustrations of how those customers have used IBM products and the results they
may have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these
materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific
sales, revenue growth or other results.

