
Best Practices for Partitioning 
Data in InfoSphere Warehouse 

Environment 
Session IDW-1820B

Adriana Carvajal, IBM



2

DB2 Partitioning Features
• DATABASE PARTITIONING (DPF)

– DISTRIBUTE BY HASH

– Suitable for: Large tables such as Fact tables, they often contain hundreds of millions or 
billions of rows.

– Benefit: Hardware Parallelism for best performance and scalability

• TABLE PARTITIONING (Sometimes called “Range Partitioning”)
– PARTITION BY RANGE

– Suitable for: Tables where large volumes of rows are added or removed periodically.  In Fact 
tables, new data are often added daily and obsolete data removed usually monthly or quarterly. 

– Benefit: High performance during Roll in / Roll out while keeping table online.

• MULTI-DIMENSIONAL CLUSTERING (MDC)
– ORGANIZE BY DIMENSION

– Suitable for: Optimal physical clustering for prefetch queries whose result sets returns rows with 
similar values along multiple dimensions (BI/OLAP)

– Benefit: Significant query performance over traditional INDEX based optimization. No REORG 
requirement.

All these partitioning features can be used simultaneously on the same table and 
are three significant technologies for managing warehousing databases.



3

DB2 Database Partitioning Feature (DPF)
• Enables to evenly distribute rows 

across database partitions 
(nodes).

• Why Partition? 
– Scale Out, Performance, …

• Benefits
– Transparent to users and 

applications

– Parallelism (divide and rule)

• Workload is divided among all 
nodes

• Asynchronous I/O Parallel I/O

• Dynamic throttling based on load

– Near linear scalability
• As the table grows, add more processing 

power in form of additional database 
partitions.

                ApplicationApplication

HI-Speed HI-Speed 
CommunicationsCommunications

• DB2 core Scale-Out architecture based 
on Parallelism aka Shared Nothing 
architecture
– Ability to spread all data across multiple server, 

each database partition has its own set of 
computing resources, including CPUs, 
memory, disk controllers and disks. 



4

Single Partition (one database partition) 

DisksDisks

MemoryMemory

CPUCPU

Database Database 
partitionpartition

Uniprocessor Uniprocessor 
environmentenvironment

Disks
DisksDisks

MemoryMemory

CPUCPU

Database Database 
partitionpartition

Symmetric multiprocessor Symmetric multiprocessor 
(SMP) environment(SMP) environment

Disks

Allow single 
operations run 

in parallel

Non-parallel 
environment

Additional disks 
can be added to 

increase capacity



5

Logical Partitions (multiple partitions per machine)

DisksDisks

CPUCPU

Database Database 
partition 1partition 1

Big SMP environmentBig SMP environment

Disks
DisksDisks

Database Database 
partition 2partition 2

Disks

Communications Communications 
facilityfacility

MemoryMemory MemoryMemory

• More than one database 
partition on a server

• Processors are shared
• Memory and disks are not 

shared



6

Several SMPs loosely coupled using a network
High Speed High Speed 

NetworkNetwork

DisksDisks

CPUCPU

Database Database 
partition 1partition 1

Big SMP environmentBig SMP environment

Disks
DisksDisks

Database Database 
partition 2partition 2

Disks

Communications Communications 
facilityfacility

MemoryMemory MemoryMemory

DisksDisks

CPUCPU

Database Database 
partition 1partition 1

Big SMP environmentBig SMP environment

Disks
DisksDisks

Database Database 
partition 2partition 2

Disks

Communications Communications 
facilityfacility

MemoryMemory MemoryMemory

SMP Cluster



7

Multiple DB Partition (one partition per machine)

High Speed NetworkHigh Speed Network

DisksDisks

MemoryMemory

CPUCPU

Database Database 
partitionpartition

   Disks
DisksDisks

MemoryMemory

CPUCPU

Database Database 
partitionpartition

   Disks
DisksDisks

MemoryMemory

CPUCPU

Database Database 
partitionpartition

   Disks

MPP (Massively Parallel Processing) The scalability of this design can 
approach near linear scaleout for many 
complex query workloads



8

DB2 Node Configuration on a DPF Environment

Database Database 
partition 1partition 1

ServerAServerA

MemoryMemory

CPUCPU

Database Database 
partition 2partition 2

Communications facilityCommunications facility

Port0 Port1

Database Database 
partition 1partition 1

ServerBServerB

MemoryMemory

CPUCPU

Database Database 
partition 2partition 2

Communications facilityCommunications facility

Port0 Port1

Database Database 
partition 1partition 1

ServerCServerC

MemoryMemory

CPUCPU

Database Database 
partition 2partition 2

Communications facilityCommunications facility

Port0 Port1

DB partition DB partition 
numnum

Host Host 
NameName

Logical PortLogical Port

0 ServerA 0

1 ServerA 1

2 ServerB 0

3 ServerB 1

4 ServerC 0

5 ServerC 1

00 11 22 33 44 55

Defined in the db2nodes.cfg file
• Necessary parameters:

– dbpartitionnum: Unique database partition ID
– hostname: Machine’s name or IP address
– logical-port: Logical partition ID within a machine

• db2nodes.cfg must be located:
– SQLLIB directory (Linux and UNIX)
– SQLLIB\instance_name directory (Windows)

• On Windows, only can use db2ncrt and db2ndrop 
commands to create and drop database partitions; the 
db2nodes.cfg file should not be edited directly.



9

How DB2 Environment is split on DPF

Instance myinst
Instance Level Profile 

Registry 

Database Manager 
Configuration File

System db Directory
Node Directory
DCS Directory

Environment variables
Global Level-Profile Registry

Database MYDB1
Database Configuration File (db cfg)

Logs

Table space tbs1
Table1

Table2

Bufferpool(s)

Table space USERSPACE1

Table space TEMPSPACE1

Table space 
SYSCATSPACE 

Index1

Local db Directory

Linux Server 1 Linux Server 2 Linux Server 3

Port

Visualize how a DB2 
environment is split in a DPF 
system 

• All partitions share
– Instance level profile 

registry
– Database manager 

config file (dbm.cfg)
– System db directory
– Node directory
– DCS directory

• Each server can have its own
– Environment variables
– Global-level profile 

registry variable
– Database configuration 

file
– Local database directory
– Log files

(NFS source Server)



10

Instance on a DPF Environment
Partition a database, not an instance.
• In a DPF environment an instance is created once on an NFS source server. The instance 

owner's home directory is then exported to all servers where DB2 is to be run.
• Make sure the passwords for the instances are the same on each of the servers in a DPF 

Environment, otherwise the partitions are will not be able to communicate

Local Disk
Shared File System
/home/myinst/sqlib ...

Local Disk
/home/dasusr1

Local Disk
/home/dasusr1

Instance myinst has 
home directory
/home/myinst

Instance myinst has 
home directory
/home/myinst

Linux Server 1

Local Disk

Local Disk
/home/dasusr1

Instance myinst has 
home directory
/home/myinst

Linux Server 2 Linux Server 3

DB2 instance-
owning server



11

A Database in a DPF Environment

Local Disk
Local Disk

/data
    /myinst
      /NODE0001
         /SQL0001

Instance myinst has 
home directory
/home/myinst

Linux Server 2

To partition a database in a DPF environment, we recommend that you create a directory with 
the same name, locally in each of the servers.
• Then make sure to include this path in your command
• Or to simply issue the                                            be sure to change the value of dbm cfg 

parameter, DFDBPATH, to include this path. 

Local DiskShared File System
/home/myinst/sqlib ...

Local Disk
/data
    /myinst
      /NODE0000
         /SQL0001

Instance myinst has 
home directory
/home/myinst

Instance myinst has 
home directory
/home/myinst

Linux Server 1 Linux Server 3

DB2 instance-
owning server

Local Disk
/data
    /myinst
      /NODE0002
         /SQL0001

CREATE DATABASE mydb on /data
CREATE DATABASE mydb



12

Logs in a DPF Environment

Local Disk

Instance myinst has 
home directory
/home/myinst

Linux Server 2

The Logs on each partition should be kept in a separate filesystem different than the database 
location.

• The database configuration parameter LOGPATH on each partition should point to a local file 
system, not a shared file system. 

• To change the path for the logs, update the database configuration parameter NEWLOGPATH

Local DiskShared File System
/home/myinst/sqlib ...

Instance myinst has 
home directory
/home/myinst

Instance myinst has 
home directory
/home/myinst

Linux Server 1 Linux Server 3

DB2 instance-
owning server

Local Disk
/datalogs
    /myinst
      /NODE0001
         /SQL0001
           /SQLOGDIR

Local Disk
/datalogs
    /myinst
      /NODE0002
         /SQL0001
           /SQLOGDIR

Local Disk
/datalogs
    /myinst
      /NODE0000
         /SQL0001
           /SQLOGDIR



13

Database Partition Groups in a DPF environment
A Logical Layer that:
• Allows the grouping of one or more database partitions.

• Allows table spaces to span on different partitions

Database manager instance

Database

         Partition 1Partition 1
         Partition 2Partition 2

        Partition 3Partition 3

        Partition 4Partition 4

Partition Group pg123Partition Group pg123

Partition Group pg23Partition Group pg23

Partition Group pg3Partition Group pg3

Table space1

Table space2

Table space3

db2 CREATE DATABASE PARTITION GROUP pgrpall ON ALL DBPARTITIONNUMS
 db2 CREATE DATABASE PARTITION GROUP pg123 ON DBPARTITIONNUMS (1,2,3)



14

Bufferpools in a DPF environment
The data cached in the bufferpools is not partitioned
• Each bufferpool in DPF holds data only from the database partition where the bufferpool is located
• You can have the flexibility to define a buffer pool on the specific partitions defined in the partition group
• Bufferpools can also be associated to several partition groups

Database manager instance

Database

         Partition 1Partition 1
         Partition 2Partition 2

        Partition 3Partition 3

        Partition 4Partition 4

Partition Group pg123

Partition Group pg12

Partition Group pg4Bufferpool bp1
1000

Bufferpool bp2

db2 CREATE BUFFERPOOL bp1 DATABASE PARTITION GROUP pg123 SIZE 1000
    EXCEPT ON DBPARTITONNUM (2 to 3) SIZE 5000

Bufferpool bp1
5000

Bufferpool bp1
5000

Bufferpool bp2

Bufferpool bp2



15

Creating the Database in a DPF Environment

db2 CREATE DATABASE db1 ON drive(s)/path(s)

Database DB1

Partition 2Partition 1Partition 0

Partition Group IBMTEMPGROUPPartition Group IBMTEMPGROUP

Partition Group IBMDEFAULTGROUPPartition Group IBMDEFAULTGROUP

Table space TEMPSPACE1

Table space USERSPACE1

Partition Group IBMCATGROUPPartition Group IBMCATGROUP

Table space 
SYSCATSPACE

• The CREATE DATABASE command in a multipartition environment automatically takes the contents of 
the partition configuration file (db2nodes.cfg) into consideration.

• If you don't explicitly connect to a database partition or server, the database will be created with the 
system catalogs on the first partition in the db2nodes.cfg

Bufferpool IBMDEFAULTBP

Database Objects created by default



16

The Coordinator Partition  

• The coordinator partition of a 
given application is the partition 
where the coordinator agent 
exists. Any partition can 
potentially be a coordinator

• Use the SET CLIENT 
CONNECT_NODE command to 
set the partition that is to be 
coordinator partition

• Single system view 
management

– Administrative commands 
and application code are 
transparently propagated 
to all partitions

• Each database connection has a corresponding DB2 agent handling the 
application connection. The coordinator agent, communicates with the 
application, receiving requests and sending replies. It can either satisfy 
the request itself or delegate the work to multiple subagents to work on 
the request

       
         

ApplicationApplication

Coordinator Coordinator 
NodeNode

HI-Speed HI-Speed 
CommunicationsCommunications

The partition where the application connects



17

How Data is Distributed on a DPF Environment

• The Distribution Map is an internally generated array used for deciding where 
data will be stored within the partitions

– Partition numbers are specified in a round-robin fashion in the array
– New to DB2 9.7: Grown from 4096 (4 KB) entries to 32 768 (32 KB) 

entries

• The Distribution Key is a column(s) that determines the partition on which a 
particular row of data is physically stored

– Define key using CREATE TABLE statement with the DISTRIBUTE BY 
clause

– Design Advisor can be used to suggest an optimal distribution key

• The Hashing Algorithm generates a value between 0 and 32 767 based on the 
distribution key



18

Hashing FunctionHashing Function

How does DPF distribute rows? 
Distribution maps and distribution keys

• When a database partition group is created, 
a distribution map is generated.

…………………421421421421Partitions
3276732766……………11109876543210Index

…………………421421421421Partitions
3276732766……………11109876543210Index

EMPNO
000120 9

Partition1 Partition2 Partition3 Partition4

. 

The distribution key value is 
hashed to generate the 

partition map index value. 
The hash value ranges from 

0 to 32767

A distribution key is a column 
(or a group of columns) that 

is used to determine the 
partition in which a particular 

row of data is stored. 

A distribution map is an array 
of 32768 entries, each of 
which maps to one of the 

database partitions 
associated with the database 

partition group 

DB2 uses a round-robin 
algorithm to specify the partition 

numbers.

Distribution Map

4096 entries (with 8 repeats) if 
DB2_PMAP_COMPATIBILITY=ON



19

Selecting Distribution Keys

• The primary decision choice is determining which columns to use to hash 
partition each table. To choose a good distribution key candidate, 
consider the following rules:

– Columns that have a large number of different values (high cardinality) to 
ensure an even distribution of rows across all database partitions in the 
database partition group.

– Unique keys are good candidates

– Integer columns are more efficient than character columns, which are more 
efficient than decimal.

– Use the smallest number of columns possible.

– No long fields or XML columns allowed

• Having an inappropriate distribution key can cause uneven data 
distribution. This can cause the database manager to ship large amounts 
of rows between partitions



Collocated JOIN
SELECT Customer_Name, Product_Num
 FROM Order, Items
WHERE Order.OrderKey = Items.OrderKey
  AND Qty > 1000;

Partition 2Partition 1

101 – John L.
605 – Laura S.

211 – Linda G.
314 – Arthur K.Order

101 - P123

605 - P890
605 - P458

211 - P469
211 - P458
314 - P111
314 - P326

Items

Collocated Join
Orders and Items on Same Partition

All Joins are Local

OrderKey - Product_Num

OrderKey - Customer_Name

OrderKey - Product_Num

OrderKey - Customer_Name



Directed OUTER (or INNER) JOIN
SELECT Product_Num, Product_desc
 FROM Items, Products
 WHERE Items.Product_Num = Products.Product_Num
  AND Items.Qty > 1000;

Partition 2Partition 1

P123  Soda
P458  Chips
P469  Diapers

P890  Apple
P326  Juice
P111  Lemon

Products

P123
P890
P458

P469
P458
P111
P326

Items

Directed Outer (or Inner) Join
Re-Hash Items to Widgets Partitions

Repartitions Items Table on
Distribution Key of Products Table

Product_Num

Product_Num - Product_desc Product_Num - Product_desc

Product_Num



Broadcast OUTER (or INNER) JOIN
SELECT Item_Nbr, Qty, Category_descr

to all Partitions of other Table

  FROM Items, Category
 WHERE Items.Category_code = Category.Category_Code
   AND Category_descr LIKE 'E%'

Broadcast Outer (or Inner) Join
All Resultant Rows of one Table sent

Partition 1 Partition 2 Partition 3 Partition 4

Items11   ABC
02   D01
89   D01

98   D01
55   123

77   ABC
80   123

96   A48
41   A48

ABC   Engr
123   Entr
A48   Elef
D01   Erk
Category



Selecting distribution keys (cont)
• Having an inappropriate distribution key can cause uneven data 

distribution. This can cause the database manager to ship large amounts 
of rows between partitions:

– Avoid choosing a partitioning key with a column that is updated frequently; 
this could incur additional overhead on the update to repartition the row to 
another partition.

– Frequently joined columns

– Equijoin columns. An equijoin is a join operation in which the join condition 
has the form expression = expression.

– Collocation of rows being joined will occur (avoiding movement) if the 
partitioning key is included in the WHERE clause.

– Collocate the largest dimension-table's key as the partition key for the fact 
table, considering the number of distinct values and skew within the 
corresponding fact-table column

– Replicate small dimensions, depending on the storage available



Table Partitioning

• Allows a single logical table to be broken up into multiple separate 
physical storage objects (up to 32K range partitions)

– Each storage object corresponds to a ‘partition’ of the table
– Ranges of value are used to specify each partition
– A partition will only contain rows that match its range of values

Table Partitioning

Payments
<< very large table >>

payments

sales

Table space

pay_1
Table space 1

pay_2
Table space 1

pay_3
Table space 1

pay_4 sales_1 sales_2

Payments

Jan
Feb
Mar

Apr
May
Jun

Jul
Aug
Sep

Oct
Nov
Dec

Partition 1 Partition 2 Partition 3 Partition 4

Applications see a single table

Non-partitioned table Partitioned table

■ Allows a single logical table to be broken up into multiple separate physical storage 
objects (a.k.a. Partitions)

–  Up to 32K range partitions
–  Each partition defines a range of values
–  A partition will only contain rows that match its range of values 



Long Form
CREATE TABLE t1(c1 INT) 
   PARTITION BY RANGE (c1)
   (PARTITION p1 STARTING(1) ENDING(33) IN 
tbsp1,
       PART p2 ENDING(66)    IN tbsp2,
       PART p3 ENDING(99)    IN tbsp3)

Short Form
CREATE TABLE t1(c1 INT) IN tbsp1, tbsp2, tbsp3
   PARTITION BY RANGE (c1)
   (STARTING (1) ENDING (99) EVERY (33))

Creating a Range Partitioned Table
Overview

• Partitioning column(s)
– Must be base types (e.g. No 

LOBS, LONG VARCHARS)
– Can specify multiple columns
– Can specify generated columns
– Can specify tablespace using 

IN clause

• SQL0327N : The row cannot be 
inserted because it is outside the 
bounds

• Special values, MINVALUE, 
MAXVALUE can be used to 
specify open ended ranges.tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

- or – 

1 <= c1 <= 33 34 <= c1 <= 66 67 <= c1 <= 99

CREATE TABLE t1 … 
( PARTITION p1 STARTING(MINVALUE)
   ENDING(MAXVALUE))



Data Partition Elimination 
Table Scans

• Ability to determine that only a 
subset of the data partitions in a 
table are necessary to answer a 
query. 

• Will only access data in tbsp1 and 
tbsp2

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

0<=A<100 100<=A<200 200<=A<300

scan

SELECT * FROM t1 
WHERE A>50 AND A<150



• Roll-Out: ALTER TABLE … DETACH
– An existing range is split off as a stand alone table

– Data instantly becomes invisible

– Minimal interruption to other queries accessing table

• Roll-In: ALTER TABLE … ATTACH
– Incorporates an existing table as a new range

– Follow with SET INTEGRITY to validate data and maintain indexes

– Data becomes visible all at once after COMMIT

– Minimal interruption to other queries accessing table

• Key points
– No data movement

– Nearly instantaneous

– SET INTEGRITY is now online

Operations for Roll-Out and Roll-In



CREATE TABLE sales_old …
INSERT INTO sales_old (SELECT * FROM sales WHERE …);
DELETE FROM sales WHERE ….

Typical Roll-Out Scenario (before)

• What is wrong with this?

– Slow, error prone

– What will queries show while DELETE is in progress?

• Different sets of results, possibility of deadlocks

– Also possible to use UNION ALL views



Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2

Tablespace C

Big_Table.p3

Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2

Tablespace C

OldMonthSales

DETACH

ALTER TABLE Big_Table 
DETACH PARTITION p3 
INTO TABLE 
OldMonthSales

COMMIT
SET INTEGRITY FOR 
Mqt1,Mqt2 FULL ACCESS

EXPORT OldMonthSales; 
DROP OldMonthSales

• Detached data now invisible
• Detached partition ignored in 

index scans
• Rest of Big_Table available
• Index maintenance is kicked 

off

• (Optional) this becomes a 
stand-alone table that you 
can do whatever you want 
with • (Optional) maintains MQTs 

on Big_Table

• Queries are drained and 
table locked

• Very fast operation 
• No data movement required 
• Index maintenance done 

later (asynchronously in 
background) 

• Dependent MQT’s go offline

• Partition 3 becomes 
stand-alone 
OldMonthSales table

Roll-Out Scenario (with Table Partitioning)



• Data in a single table
– Extract data from operational data store

– Do data cleansing/transformation

– Load into table

– Use SET INTEGRITY to check RI constraints, maintain MQTs

• Using UNION ALL view
– Extract/transform/load into a new table

– Drop and recreate the view to incorporate new data

– SET INTEGRITY for constraints, MQTs

Typical Roll-In Scenario (before)



CREATE TABLE NewMonth
LOAD/Insert into NewMonthSales

ALTER TABLE Big_Table ATTACH 
PARTITION STARTING ’03/01/2005
’ENDING ’03/31/2005’FROM TABLE 
NewMonthSales
COMMIT
SET INTEGRITY FOR Bit_Table

COMMIT

Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2

Tablespace C

Big_Table.p3

Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2 Tablespace C

NewMonthSales

LOAD

ATTACH

• Very fast operation
• No data movement 
   required
• Index maintenance done 
later

• New data still not visible

• New data is now visible

• Create empty staging
  table

• Perform ETL on 
  NewMonthSales

• Potentially long running
  operation
• Validates data
• Maintains global indexes, 
  MQTs
• Existing data available 
  while it runs
• Used to complete the roll-
in

• NewMonthSales 
becomes Partition 3 in 
Big_Table

Roll-In Scenario (with Table Partitioning)



Multidimensional Clustering Tables (MDCs)

• MDCs are a unique object in DB2 LUW that provide many advantages 
over other indexes

– Particularly regular clustered indexes

• Provide continuous, flexible and automatic clustering of data on disk

• Yield significant improvements in 
– Query performance

– Disk space efficiency

– Data management overhead

• “Dimensional” and great for warehousing / BI
– Great for OLTP too



Before MDCs – Traditional Clustered Indexes

• Data physically clustered according to the 
cluster column

• Efficient access on one dimension, but….

• Can only cluster on one column
– RID-based indexing on other columns 

doesn’t benefit from ordering

• Heavy maintenance load
– Inefficient disk clustering over time

– Monitor and re-org to reclaim lost space

• Large RID-based index overhead
– Excessive index space requirements

Clustered index on
REGION

Table

Index on 
YEAR



34

Multi-Dimensional Clustering (MDC)

• Allows for clustering of the physical data 
pages in multiple dimensions

• Guarantees clustering over time even if 
there are frequent INSERT operations 
performed

• Blocks
– DB2 places records that have the            

   same column values in physical            
      locations that are close together

• Block Indexes 
– Indexes that point to an entire block        

    of pages

• Cells
– Blocks that have the same dimension 

values are group together 



Benefits of MDCs
• Efficient I/O == Performance

– 3-4X average query performance improvement, 10X+ for some queries

• Automated dimensional index creation & management
– DB2 automatically creates and manages dimensional indexes

• Never REORG an MDC table for re-clustering
– Only reorganize an MDC table to perform space reclamation

• Up to 64 Clustered Indexes per table (Not just the one) 

• 90+% dimension index compression because of the on-disk nature of a MDC table and its 
associated block pointers

– You can mix MDC indexes with traditional RID indexes

• Administration-free rolling ranges
– No manual ATTACH or DETACH for range cycling: just load the data and MDC automatically 

provides the clustering



36

How do MDC work?
Rows clustered by Dimension values

0-3

4-7
8-11

12-15

Blocks of 
Storage

2004, SOUTH

2004, SOUTH

2004, WEST

YEARYEAR STATEREGION

2004, NORTH

CREATE TABLE MDCTABLE (
       YEAR INT,
       REGION CHAR (8),
       SALES INT,
...)
ORGANIZE BY (YEAR, REGION) 

Dimension
Block Index
on YEAR

Dimension
Block Index
on REGION

Page #s



Multidimensional Clustering with Table Partitioning and 
DPF

CREATE TABLE my_hybrid
    (A INT, B INT, C Date, D INT …)
    IN Tablespace A, Tablespace B, Tablespace C …
    INDEX IN Tablespace B
    DISTRIBUTE BY HASH (A)
    PARTITION BY RANGE (B) (STARTING FROM (100) ENDING (300) EVERY (100))
    ORGANIZE BY DIMENSIONS (A,B,C)

6272

8352

1751

3972

DCBA

Data blocks without MDC Data blocks with MDC

3972
6272

8352

1751
DCBA



How Does DB2 Technology Help BI?

• DB2 has proven technology to break the I/O barrier

• Parallelize I/O with Database Partitioning Feature (DPF)

• Reduce I/O with Range Partitioning

• Compact I/O with Multidimensional Clustering Tables (MDC)

• The following will illustrate…..



CASE OF STUDY: Single large table without partitioning



CASE OF STUDY: Using Database Partitioning



CASE OF STUDY: Using Database Partitioning and Table 
Partitioning



CASE OF STUDY: Using database partitioning, table 
partitioning, and MDC
Combine them all 



http://www.ibm.com/software/data/infosphere/warehouse/



 
 Acknowledgements and Disclaimers: 

   © Copyright IBM Corporation 2011. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract 
with IBM Corp.

IBM, the IBM logo, ibm.com,and DB2 are trademarks or registered trademarks of International Business Machines Corporation in the 
United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information 
with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this 
information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM 
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

 Availability.  References in this presentation to IBM products, programs, or services do not imply that they will be available in all 
countries in which IBM operates. 

         The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views.  They are 
provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice 
to any participant.  While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it 
is provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use 
of, or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have 
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the 
applicable license agreement governing the use of IBM software.

      All customer examples described are presented as illustrations of how those customers have used IBM products and the results they 
may have achieved.  Actual environmental costs and performance characteristics may vary by customer.  Nothing contained in these 
materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific 
sales, revenue growth or other results.

http://www.ibm.com/legal/copytrade.shtml


• On-line communities, User Groups, Technical Forums, Blogs, 
Social networks, and more             

– Find the community that interests you…

• Information Management ibm.com/software/data/community

• Business Analytics ibm.com/software/analytics/community

• Enterprise Content Management ibm.com/software/data/content-
management/usernet.html

• IBM Champions                                      

– Recognizing individuals who have made the most outstanding 
contributions to Information Management, Business Analytics, and 
Enterprise Content Management communities

• ibm.com/champion

Communities

http://www.ibm.com/software/data/community
http://www.ibm.com/software/data/community
http://www.ibm.com/software/analytics/community
http://www.ibm.com/software/analytics/community
http://www.ibm.com/software/data/content-management/usernet.html
http://www.ibm.com/software/data/content-management/usernet.html
http://www.ibm.com/software/data/content-management/usernet.html
http://www.ibm.com/software/data/champion
http://www.ibm.com/software/data/champion


46

Thank You!
Your Feedback is Important to Us

• Access your personal session survey list and complete via SmartSite 

– Your smart phone or web browser at: iodsmartsite.com  

– Any SmartSite kiosk onsite

– Each completed session survey increases your chance to win 
an Apple iPod Touch with daily drawing sponsored by Alliance 
Tech


	Presentation Title Session Number 1234
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Collocated join
	Directed outer (or inner) join
	Broadcast outer (or inner) join
	Collocated tables
	Slide 24
	Creating a Range Partitioned Table : Overview
	Data Partition Elimination : Table Scans
	Operations for Roll-Out and Roll-In
	Typical Roll-Out Scenario (before)
	Roll-Out Scenario (with Table Partitioning)
	Typical Roll-In Scenario (before)
	Roll-In Scenario (with Table Partitioning)
	Multidimensional Clustering Tables (MDCs)
	Before MDCs – Traditional Clustered Indexes
	Multi-Dimensional Clustering (MDC)
	Benefits of MDCs
	MDC – Rows clustered by Dimension values
	Multidimensional Clustering with Table Partitioning and DPF
	How Does DB2 Technology Help BI?
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	     Acknowledgements and Disclaimers: 
	Slide 45
	Thank You! Your Feedback is Important to Us

