IBM SPSS Modeler 16 Scripting and
Automation Guide

<||IH

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 323

Product Information

This edition applies to version 16, release 0, modification 0 of IBM(r) SPSS(r) Modeler and to all subsequent releases
and modifications until otherwise indicated in new editions.

Contents

Chapter 1. About IBM SPSS Modeler

IBM SPSS Modeler Products .
IBM SPSS Modeler
IBM SPSS Modeler Server .

IBM SPSS Modeler Administration Console .

IBM SPSS Modeler Batch .
IBM SPSS Modeler Solution Pubhsher

IBM SPSS Modeler Server Adapters for IBM SPSS

Collaboration and Deployment Services
IBM SPSS Modeler Editions .
IBM SPSS Modeler Documentation .
SPSS Modeler Professional Documentatlon
SPSS Modeler Premium Documentation .
Application Examples
Demos Folder .

Chapter 2. Scripting and the Scrlptlng

Language .
Scripting Overview .
Types of Scripts
Stream Scripts .

Stream Script Example: Tralmng a Neural Net .

Standalone Scripts

Standalone Script Example Savmg and Loadmg a

Model

Standalone Script Example Generatmg a Feature

Selection Model
SuperNode Scripts .
SuperNode Script Example
Executing and Interrupting Scripts .
Find and Replace

Chapter 3. Scripting Language
Scripting Language Overview .
Scripting Syntax .

Referencing Nodes .

Working with models .

Retrieving Objects .

Setting the Current Object .
Opening Streams and Other Objects .
Working with Multiple Streams.

Local Script Variables . .

Stream, Session, and SuperNode Parameters
Controlling Script Execution .

Operators in Scripts

CLEM Expressions in Scripts .
Inserting Comments and Continuations .
Blocks of Literal Text .

Chapter 4. Scripting Commands .
General Scripting Commands

execute_all.

execute_script

exit . .

for...endfor.

—

\l\lmmmu'l

N

[« BN INeRNe o]

.13
.13
.14
.15
.15
.15
. 16
. 16
.17
.18
. 19
. 19
.19
. 20
. 20

. 23
.23
.23
.23
.23
.23

if...then...else...
set Command
var Command

Node Objects .

create NODE .

connect NODE

delete NODE .

disable NODE

disconnect NODE

duplicate NODE.

enable NODE.

execute NODE

export NODE as FILE .

flush NODE .

get node NODE .

load node FILENAME.

position NODE . .

rename NODE as NEWNAME
retrieve node REPOSITORY_PATH
save node NODE as FILENAME
store node NODE as REPOSITORY _ PATH

Model Objects

Model Nugget Names

Avoiding Duplicate Model Names
delete model MODEL .

export model MODEL as FILE .
import model MODEL.

insert model MODEL .

load model FILENAME -
retrieve model REPOSITORY_PATH .
save model MODEL as FILENAME

store model MODEL as REPOSITORY_PATH .
Stream Objects

create stream DEFAULT FILENAME
close STREAM

clear stream .

get stream STREAM

load stream FILENAME .

open stream FILENAME . .o
retrieve stream REPOSITORY_PATH .
save STREAM as FILENAME .
store stream as REPOSITORY_PATH .
with stream STREAM .

Project Objects

execute_project . .

load project FILENAME . ..
retrieve project REPOSITORY_PATH .
save project as FILENAME . .
store project as REPOSITORY_PATH .

State Objects .

load state FILENAME

Result Objects

value RESULT

File Objects

close FILE .
open FILE .

. 25
. 25
.27
. 28
. 28
. 29
. 29
.29
.29
. 29
. 29
. 30
. 30
. 30
.31
.31
.31
.31
.31
.32
. 32
.32
.32
. 34
. 35
. 35
. 35
. 36
. 36
. 36
. 36
. 36
. 36
. 37
. 37
. 37
. 37
. 37
. 38
. 38
. 38
. 39
. 39
. 39
. 40
. 40
. 40
. 40
. 40
. 40
. 40
. 40
.41
.41
.41
.41

iii

write FILE.42
print <expression>42
Output Objects42
Output Type Names42
delete output OUTPUT43
export output OUTPUT43
get output OUTPUT43
load output FILENAME A
retrieve output REPOSITORY _ PATH P 7
save output OUTPUT as FILENAME. 44

store output OUTPUT as REPOSITORY_PATH . 44

Chapter 5. Scripting Tips. 45

Modifying Stream Execution.45
Looping through Nodes45
Accessing Objects in the IBM SPSS Collaboratron

and Deployment Services Repository45
Generating an Encoded Password47
Script Checking . . . B V4
Scripting from the Command L1ne48
Compatibility with Previous Releases.48

Chapter 6. Scripting Examples - L
Type Node Report ()
Stream Report52

Chapter 7. Command Line Arguments 55

Invoking the Software. . .)

Using Command Line Arguments55
System Arguments56
Parameter Arguments57
Server Connection Arguments 057
IBM SPSS Collaboration and Deployment
Services Repository Connection Arguments. . . 58
Combining Multiple Arguments59

Chapter 8. CLEM Language Reference 61

CLEM Reference Overview61
CLEM Datatypes6l
Integers.6l
Reals6l
Characters.62
Strings62
Lists.62
Fields62
Dates63
Time. . . P o .
CLEM Operators e
Functions Reference66
Conventions in Function Descrlptlons N V4
Information Functions.67
Conversion Functions68
Comparison Functions.68
Logical Functions70
Numeric Functions.71
Trigonometric Functions72
Probability Functions72
Bitwise Integer Operations73
Random Functions74
String Functions.74
iv IBM SPSS Modeler 16 Scripting and Automation Guide

SoundEx Functions .

Date and Time Functions .

Sequence Functions.

Global Functions

Functions Handling Blanks and Null Values
Special Fields. .o

Chapter 9. Properties Reference.
Properties Reference Overview .

Syntax for Properties .

Node and Stream Property Examples
Node Properties Overview .

Common Node Properties

Chapter 10. Stream Properties
Chapter 11. Project Properties.

Chapter 12. Source Node Properties
Source Node Common Properties
asimport Properties

cognosimport Node Propertres
databasenode Properties.
datacollectionimportnode Propertles
excelimportnode Properties.
evimportnode Properties
fixedfilenode Properties .
sasimportnode Properties
simgennode Properties
statisticsimportnode Properties
userinputnode Properties
variablefilenode Properties .
xmlimportnode Properties .

Chapter 13. Record Operations Node

Properties.

appendnode Properties .
aggregatenode Properties
balancenode Properties .
derive_stb Node Properties.
distinctnode Properties .
mergenode Properties .
rfmaggregatenode Properties .
Rprocessnode Properties.
samplenode Properties
selectnode Properties .
sortnode Properties
streamingts Properties

Chapter 14. Field Operations Node
Properties. .

anonymizenode Properties .
autodataprepnode Properties .
binningnode Properties .

derivenode Properties

ensemblenode Properties

fillernode Properties .

filternode Properties .

historynode Properties

.79
.79
. 82
. 87
. 88
. 88

. 91

.91
.91
.92
. 93
.93

. 95

. 99

101

. 101
. 103
. 104
. 105
. 107
. 109
. 110
. 110
. 113
. 113
. 116
. 116
. 117
. 120

. 123
. 123
. 123
. 124
. 125
. 126
. 128
. 129
. 130
. 131
. 133
. 133
. 133

. 137
. 137
. 137
. 140
. 143
. 144
. 145
. 146
. 147

partitionnode Properties.
reclassifynode Properties
reordernode Properties .
restructurenode Properties .
rfmanalysisnode Properties.
settoflagnode Properties .
statisticstransformnode Propertles
timeintervalsnode Properties
transposenode Properties
typenode Properties .

Chapter 15. Graph Node Propertles
Graph Node Common Properties.
collectionnode Properties
distributionnode Properties.
evaluationnode Properties .
graphboardnode Properties.
histogramnode Properties
multiplotnode Properties
plotnode Properties
timeplotnode Properties .
webnode Properties

. 147
. 148
. 149
. 150
. 151
. 152
. 153
. 153
. 157
. 158

163

. 163
. 164
. 165
. 165
. 167
. 169
. 170
. 171
. 173
. 174

Chapter 16. Modeling Node Propertles 177

Common Modeling Node Properties
anomalydetectionnode Properties.
apriorinode Properties
autoclassifiernode Properties
Setting Algorithm Properties
autoclusternode Properties .
autonumericnode Properties
bayesnetnode Properties.
buildr Properties
c50node Properties
carmanode Properties
cartnode Properties
chaidnode Properties .
coxregnode Properties
decisionlistnode Properties .
discriminantnode Properties
factornode Properties.
featureselectionnode Propertles
genlinnode Properties
glmmnode Properties.
kmeansnode Properties .
knnnode Properties
kohonennode Properties.
linearnode Properties.
logregnode Properties
neuralnetnode Properties
questnode Properties .
regressionnode Properties
sequencenode Properties
slrmnode Properties . .
statisticsmodelnode Properties.
svmnode Properties
timeseriesnode Properties
twostepnode Properties .
logregnode Properties
neuralnetnode Properties

. 177

. 177
. 179
. 180
. 181
. 182
. 183
. 185
. 186
. 187
. 188
. 189
. 191
. 193
. 194
. 196
. 197
. 199
. 200
. 204
. 207
. 208
. 209
. 210
. 212
. 216
. 218
. 220
. 221
. 222
. 223
. 223
. 224
. 226
. 227
. 231

neuralnetworknode Properties.233
questnode Properties.235
regressionnode Properties 236
sequencenode Properties238
slrmnode Properties239
statisticsmodelnode Properties. 240
svmnode Properties240
timeseriesnode Properties241
twostepnode Properties243

questnode Properties.244

regressionnode Properties246

sequencenode Properties248

slrmnode Propertieso 249

statisticsmodelnode Propertles 0250

svmnode Properties250

timeseriesnode Properties251

twostepnode Properties253

Chapter 17. Model Nugget Node

Properties. 255
applyanomalydetectlonnode Propertles.25
applyapriorinode Properties255
applyautoclassifiernode Properties 256
applyautoclusternode Properties 256
applyautonumericnode Properties 256
applybayesnetnode Properties.256
applyc50node Properties.257
applycarmanode Properties.257
applycartnode Properties257
applychaidnode Properties258
applycoxregnode Properties258
applydecisionlistnode Properties 258
applydiscriminantnode Properties 259
applyfactornode Properties . . . oo . 259
applyfeatureselectionnode Propertles ... 259
applygeneralizedlinearnode Properties 259
applyglmmnode Properties.260
applykmeansnode Properties260
applyknnnode Properties260
applykohonennode Properties. 260
applylinearnode Properties.261
applylogregnode Properties26l
applyneuralnetnode Properties 261
applyneuralnetworknode Properties. 262
applyquestnode Properties 262
applyr Properties 262
applyregressionnode Propertles 263
applyselflearningnode Properties. 263
applysequencenode Properties. 263
applysvmnode Properties 263
applytimeseriesnode Properties 263
applytwostepnode Properties 264

Chapter 18. Database Modeling Node

Properties. 265
Node Properties for Mlcrosoft Modehng265
Microsoft Modeling Node Properties 265
Microsoft Model Nugget Properties 267
Node Properties for Oracle Modeling 269
Oracle Modeling Node Properties 269

Contents V

Oracle Model Nugget Properties 274 asexport Properties307

Node Properties for IBM DB2 Modeling 275 cognosexportnode Properties307
IBM DB2 Modeling Node Properties. 275 databaseexportnode Properties 308
IBM DB2 Model Nugget Properties 280 datacollectionexportnode Properties. 312

Node Properties for IBM Netezza Analytics excelexportnode Properties.313

Modeling. . . .o.o..o.281 outputfilenode Properties314
Netezza Modehng Node Propert1es .o.o...281 sasexportnode Properties314
Netezza Model Nugget Properties 290 statisticsexportnode Properties. 315

xmlexportnode Properties315

Chapter 19. Output Node Propertles 293

analysisnode Properties 293 Chapter 21. IBM SPSS Statistics Node

dataauditnode Properties294 Properties. . . . I) I 4

matrixnode Properties29 statisticsimportnode Propert1es G 1 V4

meansnode Properties297 statisticstransformnode Properties 317

reportnode Properties298 statisticsmodelnode Properties. 318

Routputnode Properties299 statisticsoutputnode Properties 318

setglobalsnode Properties300 statisticsexportnode Properties. 319

simevalnode Properties300

51m.f1tr.10de Propertles: G (0) Chapter 22. SuperNode Properties 321

statisticsnode Properties.301

statisticsoutputnode Properties 303 .

tablenode Properties303 Notices323

transformnode Properties305 Trademarks324

Chapter 20. Export Node Propertles 307 Index.37
Common Export Node Properties 307

vi IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 1. About IBM SPSS Modeler

IBM® SPSS® Modeler is a set of data mining tools that enable you to quickly develop predictive models
using business expertise and deploy them into business operations to improve decision making. Designed
around the industry-standard CRISP-DM model, IBM SPSS Modeler supports the entire data mining
process, from data to better business results.

IBM SPSS Modeler offers a variety of modeling methods taken from machine learning, artificial
intelligence, and statistics. The methods available on the Modeling palette allow you to derive new
information from your data and to develop predictive models. Each method has certain strengths and is
best suited for particular types of problems.

SPSS Modeler can be purchased as a standalone product, or used as a client in combination with SPSS
Modeler Server. A number of additional options are also available, as summarized in the following
sections. For more information, see fhttp://www.ibm.com/software/analytics /spss/products/modeler/|

IBM SPSS Modeler Products

The IBM SPSS Modeler family of products and associated software comprises the following.
* IBM SPSS Modeler

* IBM SPSS Modeler Server

* IBM SPSS Modeler Administration Console

* IBM SPSS Modeler Batch

* IBM SPSS Modeler Solution Publisher

* IBM SPSS Modeler Server adapters for IBM SPSS Collaboration and Deployment Services

IBM SPSS Modeler

SPSS Modeler is a functionally complete version of the product that you install and run on your personal
computer. You can run SPSS Modeler in local mode as a standalone product, or use it in distributed
mode along with IBM SPSS Modeler Server for improved performance on large data sets.

With SPSS Modeler, you can build accurate predictive models quickly and intuitively, without
programming. Using the unique visual interface, you can easily visualize the data mining process. With
the support of the advanced analytics embedded in the product, you can discover previously hidden
patterns and trends in your data. You can model outcomes and understand the factors that influence
them, enabling you to take advantage of business opportunities and mitigate risks.

SPSS Modeler is available in two editions: SPSS Modeler Professional and SPSS Modeler Premium. See
the topic|“IBM SPSS Modeler Editions” on page 2|for more information.

IBM SPSS Modeler Server

SPSS Modeler uses a client/server architecture to distribute requests for resource-intensive operations to
powerful server software, resulting in faster performance on larger data sets.

SPSS Modeler Server is a separately-licensed product that runs continually in distributed analysis mode
on a server host in conjunction with one or more IBM SPSS Modeler installations. In this way, SPSS
Modeler Server provides superior performance on large data sets because memory-intensive operations
can be done on the server without downloading data to the client computer. IBM SPSS Modeler Server
also provides support for SQL optimization and in-database modeling capabilities, delivering further
benefits in performance and automation.

© Copyright IBM Corporation 1994, 2013 1

http://www.ibm.com/software/analytics/spss/products/modeler/

IBM SPSS Modeler Administration Console

The Modeler Administration Console is a graphical application for managing many of the SPSS Modeler
Server configuration options, which are also configurable by means of an options file. The application
provides a console user interface to monitor and configure your SPSS Modeler Server installations, and is
available free-of-charge to current SPSS Modeler Server customers. The application can be installed only
on Windows computers; however, it can administer a server installed on any supported platform.

IBM SPSS Modeler Batch

While data mining is usually an interactive process, it is also possible to run SPSS Modeler from a
command line, without the need for the graphical user interface. For example, you might have
long-running or repetitive tasks that you want to perform with no user intervention. SPSS Modeler Batch
is a special version of the product that provides support for the complete analytical capabilities of SPSS
Modeler without access to the regular user interface. SPSS Modeler Server is required to use SPSS
Modeler Batch.

IBM SPSS Modeler Solution Publisher

SPSS Modeler Solution Publisher is a tool that enables you to create a packaged version of an SPSS
Modeler stream that can be run by an external runtime engine or embedded in an external application. In
this way, you can publish and deploy complete SPSS Modeler streams for use in environments that do
not have SPSS Modeler installed. SPSS Modeler Solution Publisher is distributed as part of the IBM SPSS
Collaboration and Deployment Services - Scoring service, for which a separate license is required. With
this license, you receive SPSS Modeler Solution Publisher Runtime, which enables you to execute the
published streams.

IBM SPSS Modeler Server Adapters for IBM SPSS Collaboration and
Deployment Services

A number of adapters for IBM SPSS Collaboration and Deployment Services are available that enable
SPSS Modeler and SPSS Modeler Server to interact with an IBM SPSS Collaboration and Deployment
Services repository. In this way, an SPSS Modeler stream deployed to the repository can be shared by
multiple users, or accessed from the thin-client application IBM SPSS Modeler Advantage. You install the
adapter on the system that hosts the repository.

IBM SPSS Modeler Editions

SPSS Modeler is available in the following editions.
SPSS Modeler Professional

SPSS Modeler Professional provides all the tools you need to work with most types of structured data,
such as behaviors and interactions tracked in CRM systems, demographics, purchasing behavior and
sales data.

SPSS Modeler Premium

SPSS Modeler Premium is a separately-licensed product that extends SPSS Modeler Professional to work
with specialized data such as that used for entity analytics or social networking, and with unstructured
text data. SPSS Modeler Premium comprises the following components.

IBM SPSS Modeler Entity Analytics adds an extra dimension to IBM SPSS Modeler predictive analytics.
Whereas predictive analytics attempts to predict future behavior from past data, entity analytics focuses
on improving the coherence and consistency of current data by resolving identity conflicts within the
records themselves. An identity can be that of an individual, an organization, an object, or any other

2 IBM SPSS Modeler 16 Scripting and Automation Guide

entity for which ambiguity might exist. Identity resolution can be vital in a number of fields, including
customer relationship management, fraud detection, anti-money laundering, and national and
international security.

IBM SPSS Modeler Social Network Analysis transforms information about relationships into fields that
characterize the social behavior of individuals and groups. Using data describing the relationships
underlying social networks, IBM SPSS Modeler Social Network Analysis identifies social leaders who
influence the behavior of others in the network. In addition, you can determine which people are most
affected by other network participants. By combining these results with other measures, you can create
comprehensive profiles of individuals on which to base your predictive models. Models that include this
social information will perform better than models that do not.

IBM SPSS Modeler Text Analytics uses advanced linguistic technologies and Natural Language
Processing (NLP) to rapidly process a large variety of unstructured text data, extract and organize the key
concepts, and group these concepts into categories. Extracted concepts and categories can be combined
with existing structured data, such as demographics, and applied to modeling using the full suite of IBM
SPSS Modeler data mining tools to yield better and more focused decisions.

IBM SPSS Modeler Documentation

Documentation in online help format is available from the Help menu of SPSS Modeler. This includes
documentation for SPSS Modeler, SPSS Modeler Server, and SPSS Modeler Solution Publisher, as well as
the Applications Guide and other supporting materials.

Complete documentation for each product (including installation instructions) is available in PDF format
under the \Documentation folder on each product DVD. Installation documents can also be downloaded
from the web at |http:/ /www-01.ibm.com /support/docview.wss?uid=swg27038316}

Documentation in both formats is also available from the SPSS Modeler Information Center at
lhttp:/ /publib.boulder.ibm.com /infocenter/spssmodl/v16r0m0/|

SPSS Modeler Professional Documentation
The SPSS Modeler Professional documentation suite (excluding installation instructions) is as follows.

* IBM SPSS Modeler User's Guide. General introduction to using SPSS Modeler, including how to
build data streams, handle missing values, build CLEM expressions, work with projects and reports,
and package streams for deployment to IBM SPSS Collaboration and Deployment Services, Predictive
Applications, or IBM SPSS Modeler Advantage.

* IBM SPSS Modeler Source, Process, and Output Nodes. Descriptions of all the nodes used to read,
process, and output data in different formats. Effectively this means all nodes other than modeling
nodes.

* IBM SPSS Modeler Modeling Nodes. Descriptions of all the nodes used to create data mining
models. IBM SPSS Modeler offers a variety of modeling methods taken from machine learning,
artificial intelligence, and statistics.

e IBM SPSS Modeler Algorithms Guide. Descriptions of the mathematical foundations of the modeling
methods used in IBM SPSS Modeler. This guide is available in PDF format only.

* IBM SPSS Modeler Applications Guide. The examples in this guide provide brief, targeted
introductions to specific modeling methods and techniques. An online version of this guide is also
available from the Help menu. See the topic [‘Application Examples” on page 4| for more information.

e IBM SPSS Modeler Python Scripting and Automation. Information on automating the system
through Python scripting, including the properties that can be used to manipulate nodes and streams.

* IBM SPSS Modeler Deployment Guide. Information on running IBM SPSS Modeler streams and
scenarios as steps in processing jobs under IBM SPSS Collaboration and Deployment Services
Deployment Manager.

Chapter 1. About IBM SPSS Modeler 3

http://www-01.ibm.com/support/docview.wss?uid=swg27038316
http://publib.boulder.ibm.com/infocenter/spssmodl/v16r0m0/

IBM SPSS Modeler CLEF Developer's Guide. CLEF provides the ability to integrate third-party
programs such as data processing routines or modeling algorithms as nodes in IBM SPSS Modeler.

¢ IBM SPSS Modeler In-Database Mining Guide. Information on how to use the power of your
database to improve performance and extend the range of analytical capabilities through third-party
algorithms.

* IBM SPSS Modeler Server Administration and Performance Guide. Information on how to configure
and administer IBM SPSS Modeler Server.

* IBM SPSS Modeler Administration Console User Guide. Information on installing and using the
console user interface for monitoring and configuring IBM SPSS Modeler Server. The console is
implemented as a plug-in to the Deployment Manager application.

e IBM SPSS Modeler CRISP-DM Guide. Step-by-step guide to using the CRISP-DM methodology for
data mining with SPSS Modeler.

* IBM SPSS Modeler Batch User's Guide. Complete guide to using IBM SPSS Modeler in batch mode,

including details of batch mode execution and command-line arguments. This guide is available in

PDF format only.

SPSS Modeler Premium Documentation
The SPSS Modeler Premium documentation suite (excluding installation instructions) is as follows.

* IBM SPSS Modeler Entity Analytics User Guide. Information on using entity analytics with SPSS
Modeler, covering repository installation and configuration, entity analytics nodes, and administrative
tasks.

e IBM SPSS Modeler Social Network Analysis User Guide. A guide to performing social network
analysis with SPSS Modeler, including group analysis and diffusion analysis.

¢ SPSS Modeler Text Analytics User's Guide. Information on using text analytics with SPSS Modeler,
covering the text mining nodes, interactive workbench, templates, and other resources.

Application Examples

While the data mining tools in SPSS Modeler can help solve a wide variety of business and
organizational problems, the application examples provide brief, targeted introductions to specific
modeling methods and techniques. The data sets used here are much smaller than the enormous data
stores managed by some data miners, but the concepts and methods involved should be scalable to
real-world applications.

You can access the examples by clicking Application Examples on the Help menu in SPSS Modeler. The
data files and sample streams are installed in the Demos folder under the product installation directory.
See the topic|“Demos Folder”| for more information.

Database modeling examples. See the examples in the IBM SPSS Modeler In-Database Mining Guide.

Scripting examples. See the examples in the IBM SPSS Modeler Scripting and Automation Guide.

Demos Folder

The data files and sample streams used with the application examples are installed in the Demos folder
under the product installation directory. This folder can also be accessed from the IBM SPSS

Modeler program group on the Windows Start menu, or by clicking Demos on the list of recent
directories in the File Open dialog box.

4 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 2. Scripting and the Scripting Language

Scripting Overview

Scripting in IBM SPSS Modeler is a powerful tool for automating processes in the user interface. Scripts
can perform the same types of actions that you perform with a mouse or a keyboard, and you can use
them to automate tasks that would be highly repetitive or time consuming to perform manually.

You can use scripts to:
* Impose a specific order for node executions in a stream.

* Set properties for a node as well as perform derivations using a subset of CLEM (Control Language for
Expression Manipulation).

* Specify an automatic sequence of actions that normally involves user interaction--for example, you can
build a model and then test it.

¢ Set up complex processes that require substantial user interaction--for example, cross-validation
procedures that require repeated model generation and testing.

* Set up processes that manipulate streams—for example, you can take a model training stream, run it,
and produce the corresponding model-testing stream automatically.

This chapter provides high-level descriptions and examples of stream-level scripts, standalone scripts, and
scripts within SuperNodes in the IBM SPSS Modeler interface. More information on scripting language,

syntax, and commands is provided in the chapters that follow.

Note: You cannot import and run scripts created in IBM SPSS Statistics within IBM SPSS Modeler.

Types of Scripts

IBM SPSS Modeler uses three types of scripts:

* Stream scripts are stored as a stream property and are therefore saved and loaded with a specific
stream. For example, you can write a stream script that automates the process of training and applying
a model nugget. You can also specify that whenever a particular stream is executed, the script should
be run instead of the stream's canvas content.

* Standalone scripts are not associated with any particular stream and are saved in external text files.
You might use a standalone script, for example, to manipulate multiple streams together.

* SuperNode scripts are stored as a SuperNode stream property. SuperNode scripts are only available
in terminal SuperNodes. You might use a SuperNode script to control the execution sequence of the
SuperNode contents. For nonterminal (source or process) SuperNodes, you can define properties for
the SuperNode or the nodes it contains in your stream script directly.

Stream Scripts

Scripts can be used to customize operations within a particular stream, and they are saved with that
stream. Stream scripts can be used to specify a particular execution order for the terminal nodes within a
stream. You use the stream script dialog box to edit the script that is saved with the current stream.

To access the stream script tab in the Stream Properties dialog box:
1. From the Tools menu, choose:
Stream Properties > Execution
2. Click the Execution tab to work with scripts for the current stream.

© Copyright IBM Corporation 1994, 2013 5

The toolbar icons at the top of the stream script dialog box let you perform the following operations:
* Import the contents of a preexisting standalone script into the window.

e Save a script as a text file.

* Print a script.

* Append default script.

 Edit a script (undo, cut, copy, paste, and other common edit functions).

* Execute the entire current script.

* Execute selected lines from a script.

* Stop a script during execution. (This icon is only enabled when a script is running.)

¢ Check the syntax of the script and, if any errors are found, display them for review in the lower panel
of the dialog box.

From version 16.0 onwards, SPSS Modeler uses the Python scripting language. All versions before this
used a scripting language unique to SPSS Modeler, now referred to as Legacy scripting. Depending on
the type of script you are working with, on the Execution tab select theDefault (optional script)
execution mode and then select either Python or Legacy.

Additionally, you can specify whether this script should or should not be run when the stream is
executed. You can select Run this script to run the script each time the stream is executed, respecting the
execution order of the script. This setting provides automation at the stream level for quicker model
building. However, the default setting is to ignore this script during stream execution. Even if you select
the option Ignore this script, you can always run the script directly from this dialog box.

The script editor includes the following features that help with script authoring:

* Syntax highlighting; keywords, literal values (such as strings and numbers), and comments are
highlighted.

* Line numbering.

* Block matching; when the cursor is placed by the start of a program block, the corresponding end
block is also highlighted.

¢ Suggested auto-completion.

The colors and text styles used by the syntax highlighter can be customized using the IBM SPSS Modeler
display preferences. You can access the display preferences by choosing Tools > Options > User Options
and clicking the Syntax tab.

A list of suggested syntax completions can be accessed by selecting Auto-Suggest from the context menu,
or pressing Ctrl + Space. Use the cursor keys to move up and down the list, then press Enter to insert the
selected text. Press Esc to exit from auto-suggest mode without modifying the existing text.

The Debug tab displays debugging messages and can be used to evaluate script state once the script has
been executed. The Debug tab consists of a read-only text area and a single line input text field. The text
area displays text that is sent to either standard output or standard error by the scripts, for example
through error message text. The input text field takes input from the user. This input is then evaluated
within the context of the script that was most recently executed within the dialog (known as the scripting
context). The text area contains the command and resulting output so that the user can see a trace of
commands. The input text field always contains the command prompt (--> for legacy scripting).

A new scripting context is created in the following circumstances:
* A script is executed using the “Run this script” button or the “Run selected lines” button.
* The scripting language is changed.

If a new scripting context is created, the text area is cleared.

6 IBM SPSS Modeler 16 Scripting and Automation Guide

Note: Executing a stream outside of the script panel will not modify the script context of the script panel.
The values of any variables created as part of that execution will not be visible within the script dialog.

Stream Script Example: Training a Neural Net

A stream can be used to train a neural network model when executed. Normally, to test the model, you
might run the modeling node to add the model to the stream, make the appropriate connections, and
execute an Analysis node.

Using an IBM SPSS Modeler script, you can automate the process of testing the model nugget after you
have created it. For example, the following stream script to test the demo stream druglearn.str (available
in the /Demos/streams/ folder under your IBM SPSS Modeler installation) could be run from the Stream
Properties dialog (Tools > Stream Properties > Script):

execute Drug:neuralnetworknode

create analysisnode at 700 200

set DRUGLn:variablefilenode.full_filename = "$CLEO_DEMOS/DRUG2n"
connect :applyneuralnetworknode to :analysisnode

execute :analysisnode

The following bullets describe each line in this script example.

* The first line executes the Neural Net node called Drug already found in the demo stream so as to
create a model nugget and place it on the stream canvas, connected to the Type node already in the
stream.

* In line 2, the script creates an Analysis node and places it at the canvas position 700 x 200.
* In line 3, the original data source used in the stream is switched to a test dataset called DRUG2n.

¢ In line 4, the Neural Net model nugget is connected to the Analysis node. Note that no names are used
to denote the Neural Net model nugget or the Analysis node since no other similar nodes exist in the
stream.

* Finally, the Analysis node is executed to produce the Analysis report.

This script was designed to work with an existing stream, since it assumes that a Neural Net node
named Drug already exists. However, it is also possible to use a script to build and run a stream from
scratch, starting with a blank canvas. To learn more about scripting language in general, see |Chapter 3,
“Scripting Language,” on page 13] To learn more about scripting commands specifically, see [Chapter 4
“Scripting Commands,” on page 23

Standalone Scripts

The Standalone Script dialog box is used to create or edit a script that is saved as a text file. It displays
the name of the file and provides facilities for loading, saving, importing, and executing scripts.

To access the standalone script dialog box:
From the main menu, choose:
Tools > Standalone Script

The same toolbar and script syntax-checking options are available for standalone scripts as for stream
scripts. See the topic [“Stream Scripts” on page 5| for more information.

Standalone Script Example: Saving and Loading a Model

Standalone scripts are useful for stream manipulation. Suppose that you have two streams—one that
creates a model and another that uses graphs to explore the generated rule set from the first stream with
existing data fields. A standalone script for this scenario might look something like this:

Chapter 2. Scripting and the Scripting Language 7

open stream "$CLEO_DEMOS/streams/druglearn.str"
execute :ch0node

save model Drug as rule.gm

clear generated palette

open stream "$CLEO_DEMOS/streams/drugplot.str"

load model rule.gm

disconnect :plotnode

insert model Drug connected between :derive and :plot
set :plotnode.color_field = '$§C-Drug'

execute :plotnode

Note: To learn more about scripting language in general, see [“Scripting Language Overview” on page 13.|
To learn more about scripting commands specifically, see [Chapter 4, “Scripting Commands,” on page 23

Standalone Script Example: Generating a Feature Selection Model

Starting with a blank canvas, this example builds a stream that generates a Feature Selection model,
applies the model, and creates a table that lists the 15 most important fields relative to the specified
target.

var s
set s = create stream 'featureselection'

set ~s.create_model _applier_for new models = true

create statisticsimportnode

position :statisticsimportnode at 50 50

set :statisticsimportnode.full filename = "$CLEO _DEMOS/customer dbase.sav"

create typenode

position :typenode at 150 50

set :typenode.direction.'response 01' = Target

connect "customer dbase.sav":statisticsimportnode to :typenode

create featureselectionnode

position :featureselectionnode at 250 50

set :featureselectionnode.screen missing values=true

set :featureselectionnode.max missing values=80

set :featureselectionnode.criteria = Likelihood

set :featureselectionnode.important_label = "Check Me Out!"
set :featureselectionnode.selection _mode = TopN

set :featureselectionnode.top n = 15

connect :typenode to :featureselectionnode

execute :featureselectionnode

create tablenode

position :tablenode at 250 250

connect response 0l:applyfeatureselectionnode to :tablenode
execute :tablenode

The script creates a source node to read in the data, uses a Type node to set the role (direction) for the
response_01 field to Target, and then creates and executes a Feature Selection node. The script also
connects the nodes and positions each on the stream canvas to produce a readable layout. The resulting
model nugget is then connected to a Table node, which lists the 15 most important fields as determined
by the selection_mode and top_n properties. See the topic [‘featureselectionnode Properties” on page 199
for more information.

Note: This script will not work if you are using IBM SPSS Modeler Batch version 15. You must modify
the script to explicitly add the model applier.

8 IBM SPSS Modeler 16 Scripting and Automation Guide

SuperNode Scripts

You can create and save scripts within any terminal SuperNodes using IBM SPSS Modeler's scripting
language. These scripts are only available for terminal SuperNodes and are often used when creating
template streams or to impose a special execution order for the SuperNode contents. SuperNode scripts
also enable you to have more than one script running within a stream.

For example, let's say you needed to specify the order of execution for a complex stream, and your
SuperNode contains several nodes including a SetGlobals node, which needs to be executed before
deriving a new field used in a Plot node. In this case, you can create a SuperNode script that executes the
SetGlobals node first. Values calculated by this node, such as the average or standard deviation, can then
be used when the Plot node is executed.

Within a SuperNode script, you can specify node properties in the same manner as other scripts.

Alternatively, you can change and define the properties for any SuperNode or its encapsulated nodes
directly from a stream script. See the topic [Chapter 22, “SuperNode Properties,” on page 321| for more
information. This method works for source and process SuperNodes as well as terminal SuperNodes.

Note: Since only terminal SuperNodes can execute their own scripts, the Scripts tab of the SuperNode
dialog box is available only for terminal SuperNodes.

To open the SuperNode script dialog box from the main canvas:

Select a terminal SuperNode on the stream canvas and, from the SuperNode menu, choose:
SuperNode Script...

To open the SuperNode script dialog box from the zoomed-in SuperNode canvas:
Right-click on the SuperNode canvas, and from the context menu, choose:

SuperNode Script...

SuperNode Script Example

The following SuperNode script declares the order in which the terminal nodes inside the SuperNode
should be executed. This order ensures that the Set Globals node is executed first so that the values
calculated by this node can then be used when another node is executed.

execute 'Set Globals'
execute 'gains'

execute 'profit'

execute 'age v. $CC-pep'
execute 'Table'

Executing and Interrupting Scripts

A number of ways of executing scripts are available. For example, on the stream script or standalone
script dialog, the "Run this script" button executes the complete script:

b

Figure 1. Run This Script button

Chapter 2. Scripting and the Scripting Language 9

The "Run selected lines" button executes a single line, or a block of adjacent lines, that you have selected
in the script:

Figure 2. Run Selected Lines button

You can execute a script using any of the following methods:

* Click the "Run this script” or "Run selected lines" button within a stream script or standalone script
dialog box.

* Run a stream where Run this script is set as the default execution method.

* Use the -execute flag on startup in interactive mode. See the topic|“Using Command Line Arguments”|

on page 55|for more information.

Note: A SuperNode script is executed when the SuperNode is executed as long as you have selected Run
this script within the SuperNode script dialog box.

Interrupting Script Execution

Within the stream script dialog box, the red stop button is activated during script execution. Using this
button, you can abandon the execution of the script and any current stream.

Find and Replace

The Find/Replace dialog box is available in places where you edit script or expression text, including the
script editor, CLEM expression builder, or when defining a template in the Report node. When editing
text in any of these areas, press Ctr1+F to access the dialog box, making sure cursor has focus in a text
area. If working in a Filler node, for example, you can access the dialog box from any of the text areas on
the Settings tab, or from the text field in the Expression Builder.

With the cursor in a text area, press Ctrl+F to access the Find/Replace dialog box.

Enter the text you want to search for, or choose from the drop-down list of recently searched items.
Enter the replacement text, if any.

Click Find Next to start the search.

Click Replace to replace the current selection, or Replace All to update all or selected instances.

o0k whd =

The dialog box closes after each operation. Press F3 from any text area to repeat the last find
operation, or press Ctrl+F to access the dialog box again.

Search Options

Match case. Specifies whether the find operation is case-sensitive; for example, whether myvar matches
myVar. Replacement text is always inserted exactly as entered, regardless of this setting.

Whole words only. Specifies whether the find operation matches text embedded within words. If
selected, for example, a search on spider will not match spiderman or spider-man.

Regular expressions. Specifies whether regular expression syntax is used (see next section). When
selected, the Whole words only option is disabled and its value is ignored.

Selected text only. Controls the scope of the search when using the Replace All option.

Regular Expression Syntax

10 IBM SPSS Modeler 16 Scripting and Automation Guide

Regular expressions allow you to search on special characters such as tabs or newline characters, classes
or ranges of characters such as a through d, any digit or non-digit, and boundaries such as the beginning
or end of a line. The following types of expressions are supported.

Table 1. Character matches.

Characters Matches

X The character x

N\ The backslash character

\On The character with octal value On (0 <= n <=7)
\Onn The character with octal value Onn (0 <= n <= 7)
\Omnn The character with octal value Omnn (0 <= m <=3, 0 <=n <=7)
\xhh The character with hexadecimal value Oxhh
\uhhhh The character with hexadecimal value Oxhhhh
\t The tab character ('"\u0009")

\n The newline (line feed) character ('\uO00A")

\r The carriage-return character ('\u000D')

\f The form-feed character ('\u000C')

\a The alert (bell) character ('"\u0007")

\e The escape character ("\u001B')

\ex The control character corresponding to x

Table 2. Matching character classes.

Character classes Matches

[abc] a, b, or ¢ (simple class)

[~abc] Any character except a, b, or ¢ (subtraction)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p (union). Alternatively this could be specified as

[a-dm-p]

[a-z&&[def]]

a through z, and d, e, or f (intersection)

[a-z&&["bc]]

a through z, except for b and ¢ (subtraction). Alternatively this could be
specified as [ad-z]

[a-z&&[m-p]]

a through z, and not m through p (subtraction). Alternatively this could be
specified as [a-1g-z]

Table 3. Predefined character classes.

Predefined character classes Matches
Any character (may or may not match line terminators)
\d Any digit: [0-9]
\D A non-digit: [*0-9]
\s A white space character: [\t\n\x0B\f\r]
\S A non-white space character: [\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [*\w]

Chapter 2. Scripting and the Scripting Language

11

Table 4. Boundary matches.

Boundary matchers

Matches

N

The beginning of a line

$ The end of a line

\b A word boundary

\B A non-word boundary

\A The beginning of the input

\Z The end of the input but for the final terminator, if any
\z The end of the input

12 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 3. Scripting Language

Scripting Language Overview

The IBM SPSS Modeler scripting language consists of:

* A format for referencing nodes, streams, projects, output, and other IBM SPSS Modeler objects.

* A set of scripting statements or commands that can be used to manipulate these objects.

* A scripting expression language for setting the values of variables, parameters, and other objects.
* Support for comments, continuations, and blocks of literal text.

This section describes the basic syntax for using the scripting language. Information about specific
properties and commands is provided in the sections that follow.

Scripting Syntax

To improve clarity during parsing, the following rules should be followed when working with scripts in
IBM SPSS Modeler:

* Variable names, such as income or referrerID, must be unquoted.

* Variable names, such as “mystream, are preceded with a caret () symbol when referencing an existing
variable whose value has already been set. The caret is not used when declaring or setting the value of
the variable. See the topic [‘Referencing Nodes” on page 14| for more information.

* References to session, stream, and SuperNode parameters, such as '$P-Maxvalue', should be
single-quoted.

* If double quotes are used, an expression is treated as a string literal—for example, "Web graph of BP
and Drug". This can lead to unexpected results if single and double quotes are not used with care—for
example, "$P-Maxvalue" will be a string rather than a reference to the value stored in a parameter.

* Filenames, such as "druglearn.str", should be double-quoted.

* DPaths to directories and files should be specified using a single forward slash or a double backslash, for
example c:/demos/druglearn.str or c:\\demos\\druglearn.str.

* Node names, such as databasenode or Na_to_K, can be unquoted or single-quoted. Note: Names must
be quoted if they include spaces or special characters. You cannot, however, use a node name in a
script if the name starts with a number, such as '2a_referrerID'.

* Flag properties should be read or set by using values of true and false (written in lowercase as
shown). Variations including 0ff, OFF, off, No, NO, no, n, N, f, F, False, FALSE, or 0 are also recognized
when setting values but may cause errors when reading property values in some cases. All other
values are regarded as true. Using lowercase true and false consistently will avoid any confusion.

e Literal strings or blocks that include line breaks, spaces, or single or double quotes within the block
can be wrapped in triple quotes. See the topic [“Blocks of Literal Text” on page 20| for more
information.

¢ CLEM expressions, such as "Age >= 55", should be double-quoted—for example:
set :derivenode.flag_expr = "Age >= 55"

* If you use quotation marks within a CLEM expression, make sure that each quotation mark is
preceded by a backslash (\)—for example:

set :node.parameter = "BP = \"HIGH\""

While not strictly required in all instances, these guidelines are recommended for improved clarity. The
script checker available in all scripting dialog boxes flags ambiguous syntax.

13

Referencing Nodes

There are a number of ways to reference nodes in scripts:

* You can specify nodes by name--for example, DRUG1n. You can qualify the name by type--for example,
Drug:neuralnetworknode refers to a Neural Net node named Drug and not to any other kind of node.

* You can specify nodes by type only—for example, :neuralnetworknode refers to all Neural Net nodes.
Any valid node type can be used—for example, samplenode, neuralnetworknode, and kmeansnode. The
node suffix is optional and can be omitted, but including it is recommended because it makes
identifying errors in scripts easier.

* You can reference each node by its unique ID as displayed on the Annotations tab for each node. Use
an "@" symbol followed by the ID; for example, @1d5E5GJK23L.custom_name = "My Node".

Generated models. The same rules apply to generated model nodes. You can use the name of the node as
displayed on the generated models palette in the managers window, or you can reference generated
model nodes by type. Note that the names used to reference generated models in the manager are
distinct from those used for models that have been added to a stream for purposes of scoring (the latter
use an "apply" prefix). See the topic[‘Model Nugget Names” on page 32| for more information.

Referencing Nodes Using Variables

You can supply node names and types as the values of local script variables by using the caret (*) syntax.
For example, where a node name is required, “n means the node whose name is stored in the variable n,
and Drug:~t means the node named Drug whose type is stored in the variable t.

Node references can be stored in local script variables (declared using a var statement) but not in stream,
session, or SuperNode parameters. To guarantee unambiguous references to nodes, assign a unique node
ID to a variable as you create the node.

var x

set x = create typenode

set ”“x.custom_name = "My Node"

* The first line creates a variable named x.

* The second line creates a new Type node and stores a reference to the node in x. Note that x stores a
reference to the node itself, not the node name.

* The third line sets the value of the custom_name property for the node to "My Node". The caret is used
to indicate that x is the name of a variable rather than a node. (Without the caret, the system would
look for a node named x. The caret is not needed when declaring or setting the variable because the
object of a var command, for example, can only be a variable. But in the third line, x could logically be
a node name rather than a variable, so the caret is needed to distinguish the two.)

A common pitfall is to try to store a reference to a node in a variable without first declaring it.

set x = create typenode
set ~x.custom_name = "My Node"

In this case, the SET command attempts to create x as a stream, session, or SuperNode parameter, rather
than as a variable, and returns an error because a reference to a node cannot be stored in a parameter.

Referencing Nodes by ID

You can also store a unique node ID in a variable. For example:

var n
set n = "1d5E5GJK23L"
set @™n.custom_name = "My Node"

14 1BM SPSS Modeler 16 Scripting and Automation Guide

Looping through nodes in a stream. You can also use the stream.nodes property to return a list of all
nodes in a stream, and then iterate through that list to access individual nodes. See the topic
[Report” on page 52| for more information.

Examples
NAME:TYPE

NAME is the name of a node, and TYPE is its type. At a minimum, you must include either NAME or TYPE.
You can omit one, but you cannot omit both. For example, the following command creates a new Derive
node between an existing Variable File node named drugln and an existing Plot node (new nodes do not
use the colon):

create derivenode connected between drugln and :plotnode

You can also precede either NAME or TYPE by a caret (*) symbol to indicate the presence of a
parameter—for example:

Drug:~t

This reference means a node named Drug, where t is a parameter that specifies the type of node. For
example, if the value of ~t is c50node, the above reference can be translated as:

Drug:c50node

Similarly, a parameter can be used for the node name. For example, the following can both be used in a
context where a node name is required:

“n:derivenode
“n

Working with models

If automatic model replacement is enabled in IBM SPSS Modeler, and a model builder node is executed
through the IBM SPSS Modeler user interface, an existing model nugget that is linked to the model
builder node is replaced with the new model nugget. If the model builder node is executed using a
script, the existing linked model nugget is not replaced. To replace the existing model nugget, you must
explicitly specify the replacement of the nugget in your script.

Retrieving Objects

The get command returns a reference to a stream, node, or output object, making it possible to
manipulate these objects using scripts. For example:
var mynode

set mynode = get node flagl:derivenode
position “mynode at 400 400

var mytable = get output :tableoutput
export output “mytable as c:/mytable.htm format html

set stream = get stream 'Streaml’
set ~stream.execute method = "Script"

Setting the Current Object

The following special variables can be used to reference current objects:

* node

* stream
* output
* project

Chapter 3. Scripting Language 15

With the exception of project, they can also be reset in order to change the current context. Unlike other
scripting variables, they don't need to be declared first with the var command because they are
predefined.

set node = create typenode
rename “node as "mytypenode"

set output = get output :statisticsoutput
export output “output as c:/myoutput.htm format html

Because these special variables match the names of the objects they reference, the distinction between
variable and object may be obscured in some cases, resulting in subtle distinctions in usage. See the topic
[“set Command” on page 25| for more information.

Comments

Assigning a value of the wrong type to a special variable (such as setting a node object to the variable
stream) causes a run-time error.

In cases where the special variable can be used, any variable can also be used. For example, saving the
current stream can be carried out with:

save stream as 'C:/My Streams/Churn.str'

It is also valid to say:
save my _stream as 'C:/My Streams/Churn.str'

where my_stream has previously been assigned a stream value.

Opening Streams and Other Objects

In a stand-alone script, you can open a stream by specifying the filename and location of the file—for
example:

open stream "c:/demos/druglearn.str"

Other types of objects can be opened using the Toad command—for example:
load node c:/mynode.nod
load model c:/mymodel.gm

The double backslash (\\) can be used instead of a single forward slash when specifying directories and
filenames.

Open stream versus load stream. The Toad stream command adds the specified stream to the canvas
without clearing the nodes from the current stream. This command was used more extensively in earlier
releases and has largely been superseded by the ability to open, manage, and copy nodes between
multiple streams.

Working with Multiple Streams

Aside from the commands used to access streams from the file system or from the IBM SPSS
Collaboration and Deployment Services Repository (open, 1oad, and retrieve), most scripting commands
automatically apply to the current stream. In stand-alone scripts, however, you may want to open and
manipulate multiple streams from the same script. You can do this by setting a reference to any open
stream, or by using the with... endwith command to temporarily reassign the current stream.

For example, to close a stream other than the current one, the get stream command can be used to
reference the desired stream:

16 IBM SPSS Modeler 16 Scripting and Automation Guide

set stream = get stream "druglearn"
close stream

This script reassigns the special variable stream to the stream druglearn (essentially making it the current
stream) and then closes the stream.

Alternatively, the current stream can be temporarily reassigned using the with stream statement—for
example:

with stream 'druglearn’
create typenode
execute_script
endwith

The statements above execute the create action and execute the stream's script with the specified stream
set as the current stream. The original current stream is restored once each statement has been executed.
Conditional statements and loop constructs can also be included—for example:

with stream 'druglearn'’
create tablenode at 500 400
create selectnode connected between :typenode and :tablenode
for I from 1 to 5
set :selectnode.condition = 'Age > ' >< (I = 10)
execute :selectnode
endfor
endwith

The statements above will set the current stream to STREAM for all expressions within the loop and restore
the original value when the loop has completed.

Local Script Variables

Local script variables are declared with the var command and are set for the current script only. Variables
are distinct from parameters, which can be set for a session, stream, or SuperNode and can contain only
strings or numbers.

var my_node
set my node = create distributionnode
rename “my node as "Distribution of Flag"

When referring to existing variables, be sure to use the caret (*) symbol preceding the parameter name.
For example, given the above script:

e The first line declares the variable.
e The second line sets its value.

* The third line renames the node referenced by the variable (not the variable itself). The caret indicates
that “my_node is the name of a variable rather than the literal name of the node. (Without the caret, the
rename command would look for a node named my_node. The caret is not needed in the first or second
line because the object of a var command can only be a variable. The caret is used only when
referencing a variable that has already been set, in which case its removal would result in an
ambiguous reference.)

* When resolving variable references, the local variable list is searched before the list of session, stream,
or SuperNode parameters. For example, if a variable x existed as a local variable and as a session
parameter, using the syntax '$P-X' in a scripting statement would ensure that the session parameter is
used rather than the local variable.

Note: In practical terms, if you set a variable without first declaring it using a var command, a stream,

session, or SuperNode parameter is created, depending on the context of the current script. For example,
the following code creates a local script variable named z and sets its value to [1 2 3]:

Chapter 3. Scripting Language 17

var z
set z = [1 2 3]

If the var command is omitted (and assuming a variable or node of that name doesn't already exist), then
z is created as a parameter rather than a variable.

Stream, Session, and SuperNode Parameters

Parameters can be defined for use in CLEM expressions and in scripting. They are, in effect, user-defined
variables that are saved and persisted with the current stream, session, or SuperNode and can be
accessed from the user interface as well as through scripting. If you save a stream, for example, any
parameters set for that stream are also saved. (This distinguishes them from local script variables, which
can be used only in the script in which they are declared.) Parameters are often used in scripting to
control the behavior of the script, by providing information about fields and values that do not need to
be hard coded in the script.

The scope of a parameter depends on where it is set:

* Stream parameters can be set in a stream script or in the stream properties dialog box, and they are
available to all nodes in the stream. They are displayed on the Parameters list in the Expression
Builder.

* Session parameters can be set in a stand-alone script or in the session parameters dialog box. They are
available to all streams used in the current session (all streams listed on the Streams tab in the
managers pane).

Parameters can also be set for SuperNodes, in which case they are visible only to nodes encapsulated
within that SuperNode.

Setting Parameters in Scripts

You can set parameters in scripts using the set command and the following syntax:
set foodtype = pizza

If there are no nodes or variables named foodtype declared in the current script, this command creates a
parameter named foodtype, with a default value of pizza.

User interface. Alternatively, parameters can be set or viewed through the user interface by choosing
Stream Properties or Set Session Parameters from the Tools menu. These dialog boxes also allow you to
specify additional options, such as storage type, that are not available through scripting.

Command line. You can also set parameters from the command line, in which case they are created as
session parameters.

Referring to Parameters in Scripts

You can refer to previously created parameters by encapsulating them in single quotes, prefaced with the
string $P—for example, '$P-minvalue'. You can also refer simply to the parameter name, such as
minvalue. The value for a parameter is always a string or a number. For example, you can refer to the
foodtype parameter and set a new value using the following syntax:

set foodtype = pasta

You can also refer to parameters within the context of a CLEM expression used in a script. The following
script is an example. It sets the properties for a Select node to include records in which the value for Age
is greater than that specified by the stream parameter named cutoff. The parameter is used in a CLEM
expression with the proper syntax for CLEM—'§P-cutoff':

18 IBM SPSS Modeler 16 Scripting and Automation Guide

set :selectnode {

mode = "Include"

condition = "Age >= '§P-cutoff"'"
}

The script above uses the default value for the stream parameter named cutoff. You can specify a new
parameter value by adding the following syntax above the Select node specifications:

set cutoff = 50

The resulting script selects all records in which the value of Age is greater than 50.

Controlling Script Execution

Script execution normally processes one statement after another. However, you can override this
execution order by using a conditional if statement and several varieties of for loops—for example:

if s.maxsize > 10000 then
s.maxsize = 10000

connect s to :derive
endif

The for loop has a variety of forms—for example:

for PARAMETER in LIST
STATEMENTS
endfor

The script above executes STATEMENTS once for each value in LIST assigned to PARAMETER, using the order
of the list. The list has no surrounding brackets, and its contents are constants. A number of other forms
are also available. See the topic [’General Scripting Commands” on page 23| for more information.

Operators in Scripts

In addition to the usual CLEM operators, you can manipulate local scripting variables (declared using a
var command) using the "+" and "-" operators. The + operator adds an element to the list, and the -
operator removes an item. Following is an example:

var z # create a new local variable

set z = [12 3] # set it to the list containing 1, 2, and 3
set z = z + 4 # add an element; z now equals [1 2 3 4]

These operators cannot be used with stream, SuperNode, or session parameters (defined in scripts using
the set command) or outside of scripts in general CLEM expressions (such as a formula in a Derive
node).

CLEM Expressions in Scripts

You can use CLEM expressions, functions, and operators within IBM SPSS Modeler scripts; however,
your scripting expression cannot contain calls to any @ functions, date/time functions, and bitwise
operations. Additionally, the following rules apply to CLEM expressions in scripting:

» Parameters must be specified in single quotes and with the $P- prefix.

* CLEM expressions must be enclosed in quotes. If the CLEM expression itself contains quoted strings
or quoted field names, the embedded quotes must be preceded by a backslash (\). See the topic
[“Scripting Syntax” on page 13 for more information.

You can use global values, such as GLOBAL_MEAN(Age), in scripting; however, you cannot use the @GLOBAL
function itself within the scripting environment.

Chapter 3. Scripting Language 19

Examples of CLEM expressions used in scripting are:

set :balancenode.directives = [{1.3 "Age > 60"}]

set :fillernode.condition = "(Age > 60) and (BP = \"High\")"
set :derivenode.formula_expr = "substring(5, 1, Drug)"

set Flag:derivenode.flag_expr = "Drug = X"

set :selectnode.condition = "Age >= '$P-cutoff'"

set :derivenode.formula_expr = "Age - GLOBAL_MEAN(Age)"

Inserting Comments and Continuations

The following characters are used in scripting to denote comments and continuations.

Table 5. Characters used in scripting.

Character Usage Example

The hash sign is a comment. The rest of the line |#This is a single-line comment.
is ignored.

\ A line ending with a backslash indicates that the |See example below.

statement continues onto the next line.

/* The sequence /* indicates the beginning of a See example below.
comment. Everything is ignored until a */ end
comment marker is found.

e Literal strings or blocks that include line breaks,

spaces, or single or double quotes within the
block can be wrapped in triple quotes. See the
topic [“Blocks of Literal Text”| for more
information.

Examples

/* This is a

multi Tine

comment

*/

#following is a multi-line statement

set :fixedfilenode.fields = [{"Age" 1 3}\
{"Sex" 5 7} {"BP" 9 10} {"Cholesterol" 12 22}\
{"Na" 24 25} {"K" 27 27} {"Drug" 29 32}]

Blocks of Literal Text

Literal text blocks that include spaces, tabs, and line breaks can be included in scripts by setting them off
in triple quotes. Any text within the quoted block is preserved as literal text, including spaces, line
breaks, and embedded single and double quotes. No line continuation or escape characters are needed.

For example, you can use this technique to embed a set of tree-growing directives in a script, as follows:

set :cartnode.tree_directives =
Create Root_Node
Grow Node Index O Children 1 2 SplitOn ("DRUG",
Group ("drugA", "drugB", "drugC")
Group ("drugY", "drugX"))
End Tree

This is also useful for paths and annotations—for example:

20 IBM SPSS Modeler 16 Scripting and Automation Guide

set :node.annotation = """This node was built to help identify which of the following indicators
Dairy

Fish

Vegetable

Meat

Pastries

Confectionary

is showing unusual sales behaviour

IBM SPSS Modeler ignores a line break following the opening literal marker. For example, the following
is equivalent to the preceding example:

set :node.annotation =
This node was built to help identify which of the following indicators
Etc...

Chapter 3. Scripting Language 21

22 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 4. Scripting Commands

This section summarizes the commands that can be used in IBM SPSS Modeler scripts, organized by
object type. For more information on the scripting language, see

13 For more information about node, stream, project, and SuperNode properties, see
“Properties Reference,” on page 91| through [Chapter 22, “SuperNode Properties,” on page 321.

General Scripting Commands

Unless otherwise indicated, the following commands are available in all standalone, stream, and
SuperNode scripts.

execute_all
execute_all

Executes all terminal nodes in the current stream.

open stream "c:/demos/druglearn.str"
execute all

execute_script
execute_script

Standalone scripts only. Executes the stream script associated with the current stream. (Restricted to
standalone scripts since it would otherwise result in the stream script calling itself.)

open stream "c:/demos/mysample.str"
execute script

exit
exit CODE

Exits the current script. The exit code can be used to evaluate the script or condition of a stream or
node—for example:

create tablenode
create variablefilenode
connect :variablefilenode to :tablenode

set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUG1n"
execute 'Table'

set param = value :tablenode.output at 11

if ~param = 23 then
create derivenode
else exit 2

endif

for...endfor

The for...endfor command loops through a set of statements based on a condition. The command can
take a number of forms, all of which follow the same general structure.

23

for PARAMETER in LIST
STATEMENTS
endfor

for PARAMETER in LIST. Executes STATEMENTS once for each value in LIST assigned to PARAMETER, using
the order of the list. For example, the Filter.include property could be set to true for multiple fields as
follows:

for f in Age Sex
set Filter.include.”f=true
endfor

for PARAMETER from N to M. Executes STATEMENTS once for each integer between N and M,
inclusive—for example:
for I from 1 to 5
set :selectnode.condition = 'Age > ' >< (I * 10)
execute :selectnode
endfor

for PARAMETER in_fields_to NODE. Executes STATEMENTS once for each field on the upstream side of
NODE. For example, the following sets the include property to true for all fields including those
previously set to false:

for f in_fields_to Filter
set Filter.include.”f = "true"
endfor

Note: In cases where a node can have multiple input fields with the same name -- such as a Merge or
Append -- this method returns the list of downstream fields rather than upstream, in order to avoid any
conflicts that might otherwise result.

for PARAMETER in_fields_at NODE. Execute STATEMENTS once for each field coming out of (or
downstream from) the specified NODE. Thus if the node is a Filter, then only fields that are passed through
are included, and the node should not be a terminal node as no fields would be returned. For example,
in contrast to the above, the following script would have no effect because the loop would only execute
for those fields already set to true:
for f in_fields_at Filter

set Filter.include.”f = "true"
endfor

for PARAMETER in_models. Executes STATEMENTS once for each model nugget in the Models palette. For
example, the following script inserts each model from the palette into the current stream. (The xpos
variable is used to avoid stacking the nodes on top of one another on the stream canvas.)

var Xxpos
set xpos = 100

for m in_models

set xpos = xpos + 100

insert model “m at “xpos 100
endfor

for PARAMETER in_streams. Standalone scripts only. Executes STATEMENTS once for each loaded stream (as

listed in the Streams palette). If PARAMETER is the special variable stream, the current stream is set for
STATEMENTS in the loop. The original value of stream is restored when the loop terminates.

24 IBM SPSS Modeler 16 Scripting and Automation Guide

if...then...else...

if EXPR then
STATEMENTS 1
else
STATEMENTS 2
endif

Executes STATEMENTS 1 if the specified expression is true and STATEMENTS 2 if the expression is false. The
else clause is optional.

if :samplenode.use max_size = true then
set x = "yes"
else
set x = "no
endif

set Command

set VARIABLE = EXPRESSION
set PARAMETER = EXPRESSION
set PROPERTY = EXPRESSION

Sets the value of a local script variable, special variable, parameter, or property.
Setting Variables

To set the value of a local script variable, first declare the variable using the var command—for example:

var Xxpos
var ypos

set xpos = 100
set ypos = 100

The value of the variable can be a CLEM expression valid in scripting, a script command that returns a
value (such as load, create, or get), or a literal value.

set xpos = “xpos + 50

var x
set x = create typenode

var s
set s

get stream 'Druglearn’
Setting Special Variables to Reference Objects

The special variables node, stream, output, and project are used to reference the "current”" object in each
context. With the exception of project, they can also be reset in order to change the current context.
Unlike other scripting variables, they don't need to be declared first with the var command since they are
predefined.

set node = create typenode
rename “node as "mytypenode"

set output = get output :statisticsoutput
export output “output as c:/myoutput.htm format html

While useful, these variables exhibit some subtle distinctions in usage, as demonstrated by the following
sample:

Chapter 4. Scripting Commands 25

set stream = get stream 'Stream7'

set ~stream.execute_method = "Script"
save stream as c:/sample7.str

close stream

* The first line resets the current stream, or more literally sets the value of the special variable stream. (In
other words, stream is a variable rather than part of the command.)

* The second line uses this variable to set a property for the current stream (see below for more on
properties). The caret is used to indicate that “stream is the name of a variable rather than the name of
an object such as a node. (Without the caret, the set command would look for a node named strearm.)

e The last two lines save and close the current stream. As before, stream is a variable, but in this case no
caret is used because the save and close commands as used in this example can only apply to a
stream. (The caret is generally only used in cases where its removal would result in an ambiguous
reference.)

Referencing the current project. The special variable project can be used to reference the current project
(see example of setting project properties below). The value of project cannot be reset because only one
project can be open (and thus current) at any one time.

Setting Parameters

Stream, session, and SuperNode parameters can be set in the same manner as variables but without using
the var command.

set p=1

set minvalue = 21

Note: In practical terms, if the object of a set command does not match the name of a declared variable, a
special variable, or an existing object such as a node, then a parameter is created. See the topic
[Session, and SuperNode Parameters” on page 18|for more information.

Setting Node, Stream, and Project Properties

Properties for nodes, streams, and projects can also be set—for example:
set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUGIn"
set "“stream.execute_method = "Script"

Toad project "C:/myproject.cpj"
set "project.structure = Phase

For a complete list of the properties available for nodes, streams, and projects, see [Chapter 9, “Properties|
[Reference,” on page 91/

Setting multiple properties. You can assign multiple expressions to properties for nodes or other objects
in a single operation. This method is used when multiple changes need to be made to a node before the
data model is determined. The format used to set multiple properties is:

set NODE {
NODEPROPERTY1 = EXPRESSION1
NODEPROPERTY2 = EXPRESSION2

}

For example:

set :samplenode {
max_size = 200
mode = "Include"
sample_type = "First"
}

26 IBM SPSS Modeler 16 Scripting and Automation Guide

set “project {
summary = "Initial modeling work on the latest data"
ordering = NameAddedType

}

Setting flag values (true and false). When reading or writing flag-type properties, the values true and
false should be in lower case—for example:

set :variablefilenode.read_field_names = true

Note: Variations, including 0ff, OFF, off, No, NO, no, n, N, f, F, false, False, FALSE, or 0, are also recognized
when setting values but may cause errors when reading property values in some cases. All other values
are regarded as true. Using lowercase true and false consistently will avoid any confusion.

Example: Setting Node Properties

There are many node-specific properties (sometimes called slot parameters) used to set options found in
the user-interface dialog boxes for each node. For example, to create a stream and specify options for
each node, you could use a script similar to the one shown here. For more information about node,
stream, project, and SuperNode properties, see |Chapter 9, “Properties Reference,” on page 91| through
[Chapter 22, “SuperNode Properties,” on page 321/

create variablefilenode at 100 100
set :variablefilenode {

full _filename = "demos/drugln"
read_field_names = true

}

create tablenode at 400 100

create samplenode connected between :variablefilenode and :tablenode
set :samplenode {

max_size = 200

mode = "Include"

sample_type = "First"

create plotnode at 300 300

create derivenode connected between drugln and :plotnode
set :derivenode {

new_name = "Ratio of Na to K"

formula_expr = "'Na' / 'K'"

set :plotnode {

x_field = 'Ratio of Na to K'
y_field = 'Age'

color_field = 'BP'

}

var Command
var VARNAME

Declares a local script variable.
var my_node

set my node = create distributionnode
rename “my_node as "Distribution of Flag"

Variables are distinct from parameters, which can be set for a session, stream, or SuperNode and can
contain only strings or numbers. In practical terms, if you set a variable without first declaring it using a
VAR command, a stream, session, or SuperNode parameter is created, depending on the context of the
current script. See the topic [“Local Script Variables” on page 17|for more information.

Chapter 4. Scripting Commands 27

Node Objects

The following scripting commands are available for node objects.

create NODE

create NODE

create NODE at X Y

create NODE between NODE1 and NODE2

create NODE connected between NODE1 and NODE2

Creates a node of the specified type—for example:
create statisticsimportnode

Optionally, position and connection options can also be specified:
create featureselectionnode at 400 100

create typenode between :statisticsimportnode and :featureselectionnode

create selectnode connected between :typenode and :featureselectionnode

You can also create a node using variables to avoid ambiguity. For instance, in the example below, a Type
node is created and the reference variable x is set to contain a reference to that Type node. You can then
use the variable x to return the object referenced by x (in this case, the Type node) and perform
additional operations, such as renaming, positioning, or connecting the new node.

var x
set x = create typenode

rename ~x as "mytypenode"
position *x at 200 200

var y

set y = create variablefilenode
rename "y as "mydatasource"
position "y at 100 200

connect "y to "x

The example above creates two nodes, renames each, positions them, and finally connects them on the
stream canvas.

Alternatively, the special (predefined) variable node can be used in a similar manner to the x and y
variables in the above example. In this case, the variable need not be declared using the var command
(since it is predefined), and the resulting script may be a bit easier to read.

set node = create typenode

rename “node as "mytypenode"
position “node at 200 200

set node = create variablefilenode
rename “node as "mydatasource"
position “node at 100 200

connect mydatasource to mytypenode

Note: Special variables, such as node, can be reused to reference multiple nodes. Simply use the set
command to reset the object referenced by the variable. See the topic[“Setting the Current Object” on|

for more information.

Duplicating nodes. You can also use the duplicate command to duplicate an existing node. See the topic
[“duplicate NODE” on page 29| for more information.

28 IBM SPSS Modeler 16 Scripting and Automation Guide

connect NODE

connect NODE1 to NODE2
connect NODE1 between NODE2 and NODE3

Connects NODE1 to other nodes as specified.
connect :statisticsimportnode to :typenode

connect :selectnode between :typenode and :featureselectionnode

delete NODE
delete NODE

Deletes the specified node from the current stream.
delete :statisticsimportnode

delete DRUGIN:variablefilenode

disable NODE
disable NODE

Disables the specified node from the current stream, with the result that the node is ignored during
execution of the stream. This saves you from having to remove or bypass the node and means you can
leave it connected to the remaining nodes. You can still edit the node settings; however, any changes will
not take effect until you enable the node again.

disable :statisticsimportnode
disable DRUGIN:variablefilenode

disconnect NODE

disconnect NODE
disconnect NODE1 from NODE?2
disconnect NODE1 between NODE2 and NODE3

Disconnects the specified node from all other nodes (the default) or from specific nodes as indicated.
disconnect :typenode

disconnect :typenode from :selectnode

duplicate NODE
duplicate NODE as NEWNAME

Creates a new node as a duplicate of the specified node. Optionally, the position can also be specified in
absolute or relative terms.

duplicate :derivenode as flagl at 100 400

duplicate flagl as flag2 connected between flagl and flag3

enable NODE
enable NODE

Chapter 4. Scripting Commands 29

Enables a previously disabled node in the current stream, with the result that the node is included during
execution of the stream. If you have edited the node settings whilst it was disabled, the changes will now
take effect.

enable :statisticsimportnode
enable DRUGIN:variablefilenode

execute NODE

execute NODE

Executes the specified node—for example:
execute :neuralnetworknode

If the node is not a terminal node, execution is equivalent to the Run From Here pop-up menu option.

To execute all terminal nodes in the current stream:
execute_all

Standalone scripts only. To execute the stream script associated with the current stream:
execute_script

Note: Scripts associated with different streams can be executed by setting the stream as the current stream
or by using the with command. See the topic [“Working with Multiple Streams” on page 16| for more
information.

export NODE as FILE

export node NODE in DIRECTORY format FORMAT
export node NODE as FILE format FORMAT

PMML export. To export a generated model in PMML format:
export Drug as c:/mymodel.txt format pmml

SQL export. To export a generated model in SQL format:
export Drug in c:/mymodels format sql

export Drug as c:/mymodel.txt format sql

Node details. To export node details in HTML or text format:
export Drug as c:\mymodel.htm format htmI

export Drug as c:\mymodel.txt format text

Node summary. To export the node summary in HTML or text format:
export Drug summary in c:/mymodels format html

export Drug summary as c:/mymodel.txt format text

export 'assocapriori' as 'C:/temp/assoc_apriori' format html

flush NODE
flush NODE

30 IBM SPSS Modeler 16 Scripting and Automation Guide

Flushes the cache on the specified node or on all nodes in the stream. If the cache is not enabled or is not
full for a given node, this operation does nothing.

flush :mergenode

To flush all nodes in the current stream:
flush_all

get node NODE
get node NODE

Gets a reference to an existing node. This can be a useful way to ensure non-ambiguous references to
nodes.

var mynode
set mynode = get node flagl:derivenode
position “mynode at 400 400

load node FILENAME
load node FILENAME

Loads a saved node into the current stream.
Toad node c:/mynode.nod

position NODE

Positioning nodes on the stream canvas uses an invisible x-y grid.

position NODE at X Y
position NODE between NODEl and NODE2
position NODE connected between NODE1 and NODE2

Positions a node in the stream canvas in absolute or relative terms. Optionally, connection options can
also be specified:

position DRUGIn:variablefilenode at 100 100
position Drug:net between DRUGZn and analysis
position :typenode connected between :variablefilenode and :tablenode

rename NODE as NEWNAME
rename NODE as NEWNAME

Renames the specified node.
rename :derivenode as 'Flagl'

rename :variablefilenode as 'testdata'

retrieve node REPOSITORY_PATH
retrieve node REPOSITORY PATH {label LABEL | version VERSION}

Retrieves the specified node from the IBM SPSS Collaboration and Deployment Services Repository. See
the topic|“Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” o
|Eage 45 for more information.

retrieve node "/samples/drugtypenode"

Chapter 4. Scripting Commands 31

save nhode NODE as FILENAME
save node NODE as FILENAME

Saves the specified node.
save node :statisticsimportnode as c:/mynode.nod

store node NODE as REPOSITORY_PATH
store node NODE as REPOSITORY_ PATH {1abel LABEL}

Stores a node in the IBM SPSS Collaboration and Deployment Services Repository. See the topic
[“Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on page 45| for
more information.

store node DRUGIn as "/samples/druglntypenode"
store node :typenode as "/samples/drugtypenode"

Model Objects

The following scripting commands are available for model objects.

Model Nugget Names

Model nuggets (also known as generated models) can be referenced by type, just like node and output
objects. The following tables list the model object reference names.

Note these names are used specifically to reference model nuggets in the Models palette (in the upper
right corner of the IBM SPSS Modeler window). To reference model nodes that have been added to a
stream for purposes of scoring, a different set of names prefixed with apply... are used. See the topic
[Chapter 17, “Model Nugget Node Properties,” on page 255 for more information.

For example, the following script adds a model nugget to the current stream, connects it to a Type node,
and creates and executes a Table node. Note the different name used to insert the model from the palette
as distinct from the name used to reference the "apply” model node once added to the stream
(:featureselection versus :applyfeatureselectionnode).

insert model :featureselection at 150 250
connect Type to :applyfeatureselectionnode
create tablenode at 250 250

connect :applyfeatureselectionnode to :tablenode
execute :tablenode

Note: This is an example only. Under normal circumstances, referencing models by both name and type is
recommended to avoid confusion (for example, response_01:featureselection).

Table 6. Model Nugget Names (Modeling Palette).

Model name Model
anomalydetection Anomaly

apriori Apriori
autoclassifier Auto Classifier
autocluster Auto Cluster
autonumeric Auto Numeric
bayesnet Bayesian network
c50 C5.0

carma Carma

32 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 6. Model Nugget Names (Modeling Palette) (continued).

Model name Model

cart C&R Tree

chaid CHAID

coxreg Cox regression
decisionlist Decision List
discriminant Discriminant

factor PCA /Factor
featureselection Feature Selection

genlin Generalized linear regression
glmm GLMM

kmeans K-Means

knn k-nearest neighbor
kohonen Kohonen

linear Linear

logreg Logistic regression
neuralnetwork Neural Net

quest QUEST

regression Linear regression
sequence Sequence

slrm Self-learning response model
statisticsmodel IBM SPSS Statistics model
svm Support vector machine
timeseries Time Series

twostep TwoStep

Table 7. Model Nugget Names (Database Modeling Palette).

Model name Model

db2imcluster IBM ISW Clustering
db2imlog IBM ISW Logistic Regression
db2imnb IBM ISW Naive Bayes
db2imreg IBM ISW Regression
db2imtree IBM ISW Decision Tree
msassoc MS Association Rules
msbayes MS Naive Bayes
mscluster MS Clustering
mslogistic MS Logistic Regression
msneuralnetwork MS Neural Network
msregression MS Linear Regression
mssequencecluster MS Sequence Clustering
mstimeseries MS Time Series

mstree MS Decision Tree

Chapter 4. Scripting Commands

33

Table 7. Model Nugget Names (Database Modeling Palette) (continued).

Model name

Model

netezzabayes Netezza Bayes Net
netezzadectree Netezza Decision Tree
netezzadivcluster Netezza Divisive Clustering
netezzaglm Netezza Generalized Linear
netezzakmeans Netezza K-Means
netezzaknn Netezza KNN

netezzalineregression

Netezza Linear Regression

netezzanaivebayes Netezza Naive Bayes
netezzapca Netezza PCA
netezzaregtree Netezza Regression Tree
netezzatimeseries Netezza Time Series
oraabn Oracle Adaptive Bayes
oraai Oracle Al
oradecisiontree Oracle Decision Tree
oraglm Oracle GLM
orakmeans Oracle k-Means

oranb Oracle Naive Bayes
oranmf Oracle NMF
oraocluster Oracle O-Cluster
orasvm Oracle SVM

Avoiding Duplicate Model Names

When using scripts to manipulate generated models, be aware that allowing duplicate model names can
result in ambiguous references. To avoid this, it is a good idea to require unique names for generated
models when scripting.

To set options for duplicate model names:
1. From the menus choose:
Tools > User Options
2. Click the Notifications tab.
3. Select Replace previous model to restrict duplicate naming for generated models.

The behavior of script execution can vary between SPSS Modeler and IBM SPSS Collaboration and
Deployment Services when there are ambiguous model references. The SPSS Modeler client includes the
option "Replace previous model’, which automatically replaces models that have the same name (for
example, where a script iterates through a loop to produce a different model each time). However, this
option is not available when the same script is run in IBM SPSS Collaboration and Deployment Services.
You can avoid this situation either by renaming the model generated in each iteration to avoid
ambiguous references to models, or by clearing the current model (for example, adding a clear
generated palette statement) before the end of the loop.

34 1BM SPSS Modeler 16 Scripting and Automation Guide

delete model MODEL
delete model MODEL

Deletes a specified model (or clears all models) from the model nuggets palette.

delete model Drug

delete model Drug:c50

To delete the last model inserted by the current script:
delete last model

For this last statement to function, the insert model statement must have been executed at least once

within the current script execution.

To clear all model nuggets from the Models palette:
clear generated palette

export model MODEL as FILE

export model MODEL in DIRECTORY format FORMAT
export model MODEL as FILE format FORMAT

PMML export. To export the generated model in PMML format:

export model Drug in c:/mymodels format pmmI

export model Drug as c:/mymodel.xml format pmml

SQL export. To export a generated model in SQL format:
export Drug in c:/mymodels format sql

export Drug as c:/mymodel.txt format sql

Note: SQL export is only available for certain model types.

Model details. To export model details (as displayed on the Model tab when browsing the model nugget)

in HTML or text format:
export model Drug as c:\mymodel.htm format html

export model Drug as c:\mymodel.txt format text

Note: These formats are unavailable for models that do not have a Model tab.

Model summary. To export the model summary (Summary tab when browsing the model nugget) in

HTML or text format:
export model Drug summary in c:/mymodels format html

export model Drug summary as c:/mymodel.txt format text

export model 'assocapriori' as 'C:/temp/assoc_apriori' format html

import model MODEL
import model MODEL

PMML import. To import a generated model in PMML format:

Chapter 4. Scripting Commands

35

import model 'C:\mymodel.xml'

Doing so creates a model nugget in the Models palette.

insert model MODEL

insert model MODEL

insert model MODEL at X Y

insert model MODEL between NODE1 and NODE2

insert model MODEL connected between NODE1 and NODE?2

Adds the model to the current stream. Optionally, position and connection options can also be specified.
insert model Kohonen between :typenode and :analysisnode

insert model Drug:neuralnetwork connected between 'Define Types' and 'Analysis'

load model FILENAME
load model FILENAME

Loads a saved model into the Models palette.
load model c:/mymodel.gm

retrieve model REPOSITORY_PATH
retrieve model REPOSITORY_PATH {label LABEL | version VERSION}

Retrieves a saved model from the IBM SPSS Collaboration and Deployment Services Repository. See the
topic|“Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on page 45
for more information.

retrieve model "/my folder/Kohonen.gm"

save model MODEL as FILENAME
save model MODEL as FILENAME

Saves the specified model as a generated model file.
save model Drug as c:/mymodel.gm

store model MODEL as REPOSITORY_PATH
store model MODEL as REPOSITORY_PATH {Tabel LABEL}

Stores the specified model in the IBM SPSS Collaboration and Deployment Services Repository. See the
topic [“Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on page 45
for more information.

store model Kohonen as "/my folder/Kohonen.gm"

The extension (*.gm) is optional but must be used consistently when storing and retrieving the model. For
example, if stored simply as "Kohenen," the model would then need to be retrieved by the same name.
(To put it another way, the extension, if used, is simply part of the model name.)

Stream Objects

The following scripting commands are available for stream objects.

36 IBM SPSS Modeler 16 Scripting and Automation Guide

create stream DEFAULT_FILENAME
create stream DEFAULT_FILENAME

Standalone scripts only. Creates a new stream in memory with the specified name. The stream is not
automatically saved.

create stream 'Druglearn’

close STREAM
close STREAM

Standalone scripts only. Closes the specified stream.

To close the current stream, type the command using all lowercase characters, as follows:
close stream

Standalone Scripts

If working with multiple streams, be aware that stream (in lower case as shown) is actually a special
variable used to reference the current stream. To close a different stream, the value of this variable can be
reset:

set stream = get stream 'Stream5'
close stream

Alternatively, any declared variable that references a stream can be specified—for example:

var s
set s = open stream "$CLEO_DEMOS/streams/goodsplot.str"
execute @id7TIMPB8EVI6

close s

Finally, the current stream can be temporarily reassigned using the with stream command:

with stream 'Streaml’
close stream
endwith

clear stream

clear stream

Removes all nodes from the current stream.

get stream STREAM
get stream STREAM

Standalone scripts only. Used to get a reference to the specified stream, which can be assigned to a local
variable (or the special variable stream). The specified stream must already be open.

var s
set s = get stream 'Druglearn’
close s

load stream FILENAME
load stream FILENAME

Chapter 4. Scripting Commands 37

Standalone scripts only. Adds the specified stream to the canvas without clearing the nodes from the
current stream.

load stream "c:/demos/druglearn.str"

Open stream versus load stream. The Toad stream command adds the specified stream to the canvas
without clearing the nodes from the current stream. This command was used more extensively in earlier
releases of IBM SPSS Modeler and has largely been superseded in newer releases by the ability to open,
manage, and copy nodes between multiple streams.

open stream FILENAME
open stream FILENAME

Standalone scripts only. Opens the specified stream.
open stream "c:/demos/druglearn.str"

retrieve stream REPOSITORY_ PATH

retrieve stream REPOSITORY_PATH {label LABEL | version VERSION}
retrieve stream URI [(#m.marker | #1.label)]

Retrieves the specified stream from the IBM SPSS Collaboration and Deployment Services Repository. See
the topic|“Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on|
|Eage 45 for more information.

retrieve stream "/myfolder/druglearn.str"

retrieve stream "spsscr:///models/drug%20model.gm#m.0:2005-10-12%2014:15:41.281"

save STREAM as FILENAME

save STREAM
save STREAM as FILENAME

To save changes to the current stream (assuming it has been saved previously), type the command using
all lowercase characters, as follows:

save stream

To save a stream for the first time under a new filename:

create stream nifty
create featureselectionnode
save stream as c:/nifty.str

Standalone Scripts

If working with multiple streams in a standalone script, be aware that stream (when in lower case as
above) is actually a special variable used to reference the current stream. To save a different stream, the
value of this variable can be reset:

set stream = get stream 'Stream5'
save stream

Alternatively, any declared variable that references a stream can be specified—for example:

var s
set s = get stream 'Stream2’
save s as c:/stream2.str
close s

38 IBM SPSS Modeler 16 Scripting and Automation Guide

Finally, the current stream can be temporarily reassigned using the with stream command:

with stream 'Streaml'’
save stream
endwith

See the topic|“Working with Multiple Streams” on page 16| for more information.

store stream as REPOSITORY_PATH

store stream as REPOSITORY_PATH {label LABEL}
store stream as URI [#1.label]

store stream as "/folder 1/folder 2/mystream.str"

Stores the current stream in the IBM SPSS Collaboration and Deployment Services Repository. See the
topic [“Accessing Obijects in the IBM SPSS Collaboration and Deployment Services Repository” on page 45
for more information.

store stream as "/folder_l/folder_2/druglearn.str"
store stream as "spsscr:///folder_1/folder 2/mystream.str"

Standalone Scripts

If working with multiple streams in a standalone script, be aware that stream (when in lower case as
above) is actually a special variable used to reference the current stream. To store a different stream, the
value of this variable can be reset:

set stream = get stream 'Stream5'
store stream as "/folder 1/mystream.str"

Alternatively, any declared variable that references a stream can be specified, or the current stream can be
temporarily reassigned using the with stream command:

with stream 'Streamé6'
store stream as "/folder_1/mystream.str"
endwith

with stream STREAM

with stream STREAM
STATEMENTS
endwith

Standalone scripts only. Executes STATEMENTS with the specified STREAM set as the current stream. The
original current stream is restored once the statements have been executed.

with stream 'druglearn’
create typenode
execute_script
endwith

Project Objects

The following scripting commands are available for project objects.

The extension (*.cpj) is optional but must be used consistently when storing and retrieving a given
project.

Chapter 4. Scripting Commands 39

execute_project
execute project

Generates the current project's default report.

load project FILENAME
load project FILENAME

Opens the specified project.

load project "C:/clemdata/DrugData.cpj"

set "project.summary="Initial modeling work on the Tatest data."
set "“project.ordering=NameAddedType

execute_project

retrieve project REPOSITORY_PATH
retrieve project REPOSITORY PATH {label LABEL | version VERSION}

Retrieves a project from the IBM SPSS Collaboration and Deployment Services Repository. See the topic
[“Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on page 45| for
more information.

retrieve project "/CRISPDM/DrugExample.cpj"

save project as FILENAME

save project
save project as FILENAME

Saves the current project.

store project as REPOSITORY_PATH
store project as REPOSITORY PATH {label LABEL}

Stores the current project in the IBM SPSS Collaboration and Deployment Services Repository. See the
topic [“ Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on page 45
for more information.

store project as "/CRISPDM/DrugExample.cpj"

State Objects

A saved state can be loaded using the load state command.

load state FILENAME
load state FILENAME

Loads the specified state.
Toad state "c:/data/myproject.cst"

Result Objects

Results can be accessed using the value command.

40 1BM SPSS Modeler 16 Scripting and Automation Guide

value RESULT
value RESULT at ROW COLUMN

Terminal nodes include a read-only parameter called output that allows access to the most recently
generated object. For nodes that produce tabular output in rows and columns, this makes it possible to
access the value for a specified cell—for example:

execute :tablenode

set last row = :tablenode.output.row _count

set last_column = :tablenode.output.column_count

set Tast_value = value :tablenode.output at ~last_row ~Tast_column

var myresults

set myresults = open create 'C:/myresults.txt’

write myresults 'The value in the last cell is ' >< "last value

Row and column are offset from 1. If the output object does not exist, an error is returned.
Result Object Properties

The following properties are common to result objects (such as Table and Matrix results) that include data
in rows and columns.

Table 8. Result Object - Common Properties.

Property Description
row_count Returns the number of rows in the data.
column_count Returns the number of columns in the data.

File Objects

The following scripting commands are available for file objects.

close FILE

close FILE

The statement above closes the specified file.

open FILE

open create FILENAME
open append FILENAME

The statements above open the specified file.
¢ create. Creates the file if it doesn't exist or overwrites if it does.
* append. Appends to an existing file. Generates an error if the file doesn't exist.

This returns the file handle for the opened file.

var file
set file = open create 'C:/script.out’
for I from 1 to 3
write file 'Stream ' >< I
endfor
close file

Chapter 4. Scripting Commands 41

write FILE

write FILE TEXT_EXPRESSION
writeln FILE TEXT_EXPRESSION

The expressions above write the text expression to the file. The first statement writes the text as is, while
the second also writes a new line after the expression has been written. It generates an error if FILE is not
an open file object.

var file

set file = open create 'C:/hello.txt’
writeln file 'Hello'

writeln file 'World'

write file 'Would you Tike to play a game?'
close file

print <expression>

print {out|err} <expression>
printin {out|err} <expression>

Writes the expression parameter to standard output. The first statement writes the expression as is, while
the second also writes a new line after the expression has been written. Optionally, the out or err
modifier can be added to the command to print the output to a specific channel, for example:

println "Hello"
println out "Hello"

Both of these lines of script print Hello to the current output stream. The following example prints Hello
to the current error stream:

printin err "Hello"

The expression iarameter can be any expression that is valid for the write and writeln commands. See

the topic|“write FILE”| for more information.

Output Objects

The following scripting commands are available for output objects.

Output Type Names

The following table lists all output object types and the nodes that create them. For a complete list of the
export formats available for each type of output object, see the properties description for the node that
creates the output type, available in [‘Graph Node Common Properties” on page 163 and [Chapter 19}
[“Output Node Properties,” on page 293]

Table 9. Output object types and the nodes that create them.

Output object type Node
analysisoutput Analysis
collectionoutput Collection
dataauditoutput Data Audit
distributionoutput Distribution
evaluationoutput Evaluation
histogramoutput Histogram
matrixoutput Matrix
meansoutput Means

42 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 9. Output object types and the nodes that create them (continued).

Output object type Node
multiplotoutput Multiplot
plotoutput Plot
qualityoutput Quality

reportdocumentoutput

This object type is not from a node; it's the output created by a
project report

reportoutput Report
statisticsprocedureoutput Statistics Output
statisticsoutput Statistics
tableoutput Table
timeplotoutput Time Plot
weboutput Web

delete output OUTPUT
delete output OUTPUT

Deletes the specified output from the manager palette. For example:
delete output :statisticsoutput

To delete all output items from the manager palette:
clear outputs

export output OUTPUT
export output OUTPUT as FILE format FORMAT

Exports output in the specified format. Note the available formats depend on the output type but should
mirror those available on the Export menu when browsing the specified output.

export output :statisticsoutput as "C:/output/statistics.html" format htmi
export output :matrixoutput as "C:/output/matrix.csv" format delimited
export output :tableoutput as "C:/output/table.tab" format transposed formatted

get output OUTPUT

get output OUTPUT

Gets a reference to the specified output. For example, a loop could be used to get a series of output
objects and export each in turn.
execute_all
for item in statisticsoutput matrixoutput tableoutput
var theoutput
set theoutput = get output :~item
set filename = 'c:/'><"item ><'.htm'
export output “theoutput as ~filename format htm]l
endfor

load output FILENAME
load output FILENAME

Loads the specified output.

Chapter 4. Scripting Commands 43

Toad output 'c:/matrix.cou’

retrieve output REPOSITORY_PATH
retrieve output REPOSITORY PATH {label LABEL | version VERSION}

Retrieves the specified output from the IBM SPSS Collaboration and Deployment Services Repository. See
the topic |”Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on|
|Eage 45 for more information.

retrieve output "/results/mytable"

save output OUTPUT as FILENAME
save output as FILENAME

Saves the specified output.
save output :matrixoutput as 'c:/matrix.cou’

store output OUTPUT as REPOSITORY_PATH
store output OUTPUT as REPOSITORY_ PATH {label LABEL}

Stores the specified output in the IBM SPSS Collaboration and Deployment Services Repository. See the
topic [“ Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository” on page 45
for more information.

store output "Data Audit of [6 fields]" as "/my folder/My Audit"
store output :tableoutput as "/results/mytable"

44 1BM SPSS Modeler 16 Scripting and Automation Guide

Chapter 5. Scripting Tips

This section provides an overview of tips and techniques for using scripts, including modifying stream
execution, using an encoded password in a script, and accessing objects in the IBM SPSS Collaboration
and Deployment Services Repository.

Modifying Stream Execution

When a stream is run, its terminal nodes are executed in an order optimized for the default situation. In
some cases, you may prefer a different execution order. To modify the execution order of a stream,
complete the following steps from the Execution tab of the stream properties dialog box:

1. Begin with an empty script.
2. Click the Append default script button on the toolbar to add the default stream script.

3. Change the order of statements in the default stream script to the order in which you want statements
to be executed.

Looping through Nodes

You can use a for loop in combination with the “stream.nodes property to loop through all of the nodes
in a stream. For example, the following script loops through all nodes and changes field names in any
Filter nodes to upper case.

This script can be used in any stream that has a Filter node, even if no fields are actually filtered. Simply
add a Filter node that passes all fields in order to change field names to upper case across the board.

var my_node
var loop_me
var var_name

for my_node in “stream.nodes
if “my_node.node_type = filternode then
for Toop_me in_fields_to “my_node:filternode
set var_name = Towertoupper(”“my_node:filternode.new_name.”loop_me)
set “my _node:filternode.new _name.”loop me = “var_name
endfor
else
endif
endfor

The script loops through all nodes in the current stream, as returned by the “stream.nodes property, and
checks whether each node is a Filter. If so, the script loops through each field in the node and uses the

Towertoupper() function to change the name to upper case.

Tip: To change field names to lower case, use the uppertolower() function instead.

Accessing Objects in the IBM SPSS Collaboration and Deployment
Services Repository

If you have licensed the IBM SPSS Collaboration and Deployment Services Repository, you can store,
retrieve, lock and unlock objects from the repository using script commands. The repository allows you to
manage the life cycle of data mining models and related predictive objects in the context of enterprise
applications, tools, and solutions.

45

Connecting to the IBM SPSS Collaboration and Deployment Services Repository

In order to access the repository, you must first set up a valid connection to it, either through the Tools
menu of the IBM SPSS Modeler user interface or through the command line. (See the topic ['TBM SPSY
[Collaboration and Deployment Services Repository Connection Arguments” on page 58 for more
information.)

Storing and Retrieving Objects

Within a script, the retrieve and store commands allow you to access various objects, including streams,
models, output, nodes, and projects. The syntax is as follows:

store object as REPOSITORY_PATH {label LABEL}
store object as URI [#1.label]

retrieve object REPOSITORY PATH {label LABEL | version VERSION}
retrieve object URI [(#m.marker | #1.label)]

The REPOSITORY_PATH gives the location of the object in the repository. The path must be enclosed in
quotation marks and use forward slashes as delimiters. It is not case sensitive.

store stream as "/folder_1/folder_2/mystream.str"

store model Drug as "/myfolder/drugmodel"

store model Drug as "/myfolder/drugmodel.gm" label "final"

store node DRUGln as "/samples/druglntypenode"

store project as "/CRISPDM/DrugExample.cpj"

store output "Data Audit of [6 fields]" as "/my folder/My Audit"

Optionally, an extension such as .str or .gm can be included in the object name, but this is not required as
long as the name is consistent. For example, if a model is stored without an extension, it must be
retrieved by the same name:

store model "/myfolder/drugmodel"
retrieve model "/myfolder/drugmodel"

versus:

store model "/myfolder/drugmodel.gm"
retrieve model "/myfolder/drugmodel.gm" version "0:2005-10-12 14:15:41.281"

Note that when you are retrieving objects, the most recent version of the object is always returned unless
you specify a version or label. When retrieving a node object, the node is automatically inserted into the

current stream. When retrieving a stream object, you must use a standalone script. You cannot retrieve a

stream object from within a stream script.

Locking and Unlocking Objects

From a script, you can lock an object to prevent other users from updating any of its existing versions or
creating new versions. You can also unlock an object that you have locked.

The syntax to lock and unlock an object is:

Tock REPOSITORY_PATH
lTock URI

unTock REPOSITORY_ PATH
unlock URI

As with storing and retrieving objects, the REPOSITORY_PATH gives the location of the object in the

repository. The path must be enclosed in quotation marks and use forward slashes as delimiters. It is not
case sensitive.

46 1BM SPSS Modeler 16 Scripting and Automation Guide

Tock "/myfolder/Streaml.str"

unlock "/myfolder/Streaml.str"

Alternatively, you can use a Uniform Resource Identifier (URI) rather than a repository path to give the
location of the object. The URI must include the prefix spsscr: and must be fully enclosed in quotation
marks. Only forward slashes are allowed as path delimiters, and spaces must be encoded. That is, use %20
instead of a space in the path. The URI is not case sensitive. Here are some examples:

Tock "spsscr:///myfolder/Streaml.str"

unlock "spsscr:///myfolder/Streaml.str"

Note that object locking applies to all versions of an object - you cannot lock or unlock individual
versions.

Generating an Encoded Password

In certain cases, you may need to include a password in a script; for example, you may want to access a
password-protected data source. Encoded passwords can be used in:

* Node properties for Database Source and Output nodes
* Command line arguments for logging into the server

* Database connection properties stored in a .par file (the parameter file generated from the Publish tab
of an export node)

Through the user interface, a tool is available to generate encoded passwords based on the Blowfish
algorithm (see http://wwuw.schneier.com/blowfish.html for more information). Once encoded, you can copy
and store the password to script files and command line arguments. The node property epassword used
for databasenode and databaseexportnode stores the encoded password.

1. To generate an encoded password, from the Tools menu choose:
Encode Password...

Specify a password in the Password text box.

Click Encode to generate a random encoding of your password.

Click the Copy button to copy the encoded password to the Clipboard.

ok 0N

Paste the password to the desired script or parameter.

Script Checking

You can quickly check the syntax of all types of scripts by clicking the red check button on the toolbar of
the Standalone Script dialog box.

ek e

Figure 3. Stream script toolbar icons

Script checking alerts you to any errors in your code and makes recommendations for improvement. To
view the line with errors, click on the feedback in the lower half of the dialog box. This highlights the
error in red.

Chapter 5. Scripting Tips 47

Scripting from the Command Line

Scripting enables you to run operations typically performed in the user interface. Simply specify and run
a standalone stream on the command line when launching IBM SPSS Modeler. For example:

client -script scores.txt -execute

The -script flag loads the specified script, while the -execute flag executes all commands in the script
file.

Compatibility with Previous Releases

Scripts created in previous releases of IBM SPSS Modeler should generally work unchanged in the
current release. However, model nuggets may now be inserted in the stream automatically (this is the
default setting), and may either replace or supplement an existing nugget of that type in the stream.
Whether this actually happens depends on the settings of the Add model to stream and Replace
previous model options (Tools > Options > User Options > Notifications). You may, for example, need
to modify a script from a previous release in which nugget replacement is handled by deleting the
existing nugget and inserting the new one.

Scripts created in the current release may not work in earlier releases.
If a script created in an older release uses a command that has since been replaced (or deprecated), the
old form will still be supported, but a warning message will be displayed. For example, the old

generated keyword has been replaced by model, and clear generated has been replaced by clear
generated palette. Scripts that use the old forms will still run, but a warning will be displayed.

48 1BM SPSS Modeler 16 Scripting and Automation Guide

Chapter 6. Scripting Examples

This section provides a number of examples that demonstrate how scripts can be used in IBM SPSS
Modeler.

Type Node Report

This script creates an HTML report listing information about the fields in the current stream. The script
can be used with any stream that has an instantiated Type node, and it could easily be extended to cover
additional properties or nodes.

 Standard HTML tags are used to format the results for display in a standard browser.

e An IBM SPSS Modeler Type node is used to access properties for each field. The script could easily be
extended to list additional properties exposed through the Type node, such as missing values or the
field role. See the topic [“typenode Properties” on page 158| for more information.

* IBM SPSS Modeler scripting commands are used to write the output to a file and to loop through
fields in order to access properties of each. See the topic [Chapter 4, “Scripting Commands,” on page 23|
for more information.

© Copyright IBM Corporation 1994, 2013 49

This script creates an HTML file and adds data from the Type node.
var myreport
set myreport = open create "C:/typenodereport.html"

set up the HTML page

writeln myreport "<html>"

writeln myreport "<header>Type node information from SPSS Modeler</header>"
writeln myreport "<body>

"

#create the table and write out the headers

writeln myreport "<table border=\"1\">"

writeln myreport "<tr bgcolor=\"COCOCO\">"

writeln myreport "<td>Field</td><td>Type</td><td>Values</td>"
writeln myreport "</tr>"

loop through fields and add a row for each
var current_field
for current_field in_fields_at Type
writeln myreport "<tr>"
write myreport "<td>" >< ~current_field >< "</td>"
write myreport "<td>" >< Type:typenode.type.”current_field >< "</td>"

add values for numeric fields
if Type:typenode.type.”current field = Range then

writeln myreport "<td>" >< Type:typenode.values.”current_field >< "</td>"
endif

add values for flag fields
if Type:typenode.type.”current field = Flag then

writeln myreport "<td>" >< Type:typenode.values.”current_field >< "</td>"
endif

add values for nominal fields
if Type:typenode.type.”current_field = Set then
writeln myreport "<td>"
var current_value
for current_value in Type:typenode.values.”current_field
writeln myreport “current value >< "
"
endfor
writeln myreport "</td>"
endif

writeln myreport "</tr>"
endfor
writeln myreport "</table>"
writeln myreport "</body>"
writeln myreport "</htmi>"
close myreport

Figure 4. Type node report sample script

Creating the Output File

The script begins by creating a new HTML file and adds the tags needed to create a table with a heading
row listing the column titles Field, Type, and Values. (Each <td> </td> tag pair creates a cell within a table
row.) These columns will be populated for each field based on properties from the Type node.

This script creates an HTML file and adds data from the Type node.
var myreport
set myreport = open create "C:/typenodereport.html"”

set up the HTML page

writeln myreport "<html>"

writeln myreport "<header>Type node information from SPSS Modeler</header>"
writeln myreport "<body>

"

50 IBM SPSS Modeler 16 Scripting and Automation Guide

#create the table and write out the headers

writeln myreport "<table border=\"1\">"

writeln myreport "<tr bgcolor=\"COCOCO\">"

writeln myreport "<td>Field</td><td>Type</td><td>Values</td>"
writeln myreport "</tr>"

Looping through Fields

Next, the script loops through all fields in the Type node and adds a row for each field, listing the field
name and type.

loop through fields and add a row for each
var current_field
for current field in _fields at Type
writeln myreport "<tr>"
write myreport "<td>" >< ~current_field >< "</td>"
write myreport "<td>" >< Type:typenode.type.”current field >< "</td>"

Values for Continuous and Flag Fields

For continuous (numeric range) fields, the typenode.values property returns the low and high values in
the format [0.500517, 0.899774], which is displayed in the table. For flag fields, the true/false values are
displayed in a similar format.

add values for numeric fields
if Type:typenode.type.”current_field = Range then
writeln myreport "<td>" >< Type:typenode.values.”current field >< "</td>"
endif

add values for flag fields
if Type:typenode.type.”current field = Flag then

writeln myreport "<td>" >< Type:typenode.values.”current field >< "</td>"
endif

Values for Nominal Fields

For nominal fields, the typenode.values property returns the complete list of defined values. The script
loops through this list for each field to insert each value in turn, with a line break (
 tag) between
each.

add values for nominal fields
if Type:typenode.type.”current field = Set then
writeln myreport "<td>"
var current_value
for current_value in Type:typenode.values.”current field
writeln myreport “current_value >< "
"
endfor
writeln myreport "</td>"
endif

Closing the File

Finally, the script closes the row, closes the <table>, <body>, and <htm1> tags, and closes the output file.

writeln myreport "</tr>"
endfor

writeln myreport "</table>"
writeln myreport "</body>"
writeln myreport "</html>"
close myreport

Chapter 6. Scripting Examples 51

Stream Report

This script creates an HTML report listing the name, type, and annotation for each node in the current
stream. In addition to the basics of creating an HTML file and accessing node and stream properties, it
demonstrates how to create a loop that executes a specific set of statements for each node within a
stream. It can be used with any stream.

Create the HTML page with heading

var myfile

set myfile = open create "c:\stream_report.html"

writeln myfile "<HTML>"

writeln myfile " <BODY>"

writeln myfile " <HEAD>Report for stream " >< “stream.name >< ".str</HEAD>"
writeln myfile " <p>" >< ~stream.annotation >< "</p>"

#Create the table with header row
writeln myfile "<TABLE border=\"1\" width=\"90%\">"
writeln myfile " <tr bgcolor=\"Tightgrey\" colspan=\"3\">"

writeln myfile " <th>Node Name</th>"
writeln myfile " <th>Type</th>"
writeln myfile " <th>Annotation</th>"

writeln myfile " </tr>"

Loop through nodes and add name, type, and annotation for each
The “stream.nodes property returns the Tist of nodes
var current_node

for current_node in “stream.nodes

writeln myfile "<tr>"

writeln myfile " <td>"

writeln myfile “~current_node.name

writeln myfile </td>"

writeln myfile <td>"

writeln myfile ~current_node.node_type

writeln myfile </td>"

writeln myfile <td>"

writeln myfile ~current_node.annotation >< " "
writeln myfile " </td>"

writeln myfile "</tr>"

endfor

writeln myfile "</TABLE>"
writeln myfile "</BODY>"
writeln myfile "</HTML>"
close myfile

Figure 5. Stream report sample script

Creating the Report

The script begins by creating a new HTML file with <BODY> and <HEAD> elements. The ~stream.name
property returns the name of the current stream, which is inserted into the heading. The >< operator is
used to concatenate strings together.

Create the HTML page with heading

var myfile

set myfile = open create "c:\stream_report.html"

writeln myfile "<HTML>"

writeln myfile " <BODY>"

writeln myfile " <HEAD>Report for stream " >< “~stream.name >< ".str</HEAD>"
writeln myfile " <p>" >< ~stream.annotation >< "</p>"

Next, the script creates an HTML table with a heading row listing the column titles Node Name, Type, and
Annotation. (Each <td></td> tag pair creates a cell within a table row.)

52 IBM SPSS Modeler 16 Scripting and Automation Guide

#Create the table with header row

writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile

"<TABLE border=\"I\" width=\"90%\">"

" <tr bgcolor=\"lightgrey\" colspan=\"3\">"
" <th>Node Name</th>"

" <th>Type</th>"

" <th>Annotation</th>"

" </tr>"

Next, the script loops through all nodes in the current stream. A row is added to the table for each node,

listing the name,

type, and annotation. An invisible nonbreaking space () is inserted following the

annotation to avoid creating an empty cell in cases where no annotation is specified for a given node.
(Empty cells may result in unexpected formatting when displaying the table.)

Loop through nodes and add name, type, and annotation for each
The "stream.nodes property returns the Tist of nodes

var current_node

for current_node in “stream.nodes

writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
writeln myfile
endfor

Il<tr>ll

n <td>H
“~current_node.name

n </td>ll

n <td>ll
“~current_node.node_type

n </td>"

n <td>H
“~current_node.annotation >< " "

n </td>ll

II</tY‘>II

Finally, the script adds the HTML tags necessary to close the document and closes the file.

writeln myfile
writeln myfile
writeln myfile
close myfile

"</TABLE>"
|I</BODY>|I
"</HTML>"

Chapter 6. Scripting Examples 53

54 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 7. Command Line Arguments

Invoking the Software

You can use the command line of your operating system to launch IBM SPSS Modeler as follows:

1.

On a computer where IBM SPSS Modeler is installed, open a DOS, or command-prompt, window.

2. To launch the IBM SPSS Modeler interface in interactive mode, type the modelerclient command

followed by the required arguments; for example:
modelerclient -stream report.str -execute

The available arguments (flags) allow you to connect
other parameters as needed.

to a server, load streams, run scripts, or specify

Using Command Line Arguments

You can append command line arguments (also referred to as flags) to the initial modelerclient
command to alter the invocation of IBM SPSS Modeler.

Several types of command line arguments are available, and are described later in this section.

Table 10. Types of command line arguments.

Argument type

Where described

System arguments

See the topic [“System Arguments” on page 56 for more
information.

Parameter arguments

See the topic [“Parameter Arguments” on page 57| for
more information.

Server connection arguments

See the topic [“Server Connection Arguments” on page 57|
for more information.

IBM SPSS Collaboration and Deployment Services
Repository connection arguments

See the topic [“IBM SPSS Collaboration and Deployment
[Services Repository Connection Arguments” on page 58
for more information.

For example, you can use the -server, -stream and -

and run a stream, as follows:

execute flags to connect to a server and then load

modelerclient -server -hostname myserver -port 80 -username dminer

-password 1234 -stream mystream.str -execute

Note that when running against a local client installation, the server connection arguments are not

required.

Parameter values that contain spaces can be enclosed in double quotes—for example:

modelerclient -stream mystream.str -Pusername="Joe User" -execute

You can also execute IBM SPSS Modeler states and scripts in this manner, using the -state and -script

flags, respectively.

Note: If you use a structured parameter in a command, you must precede quotation marks with a
backslash. This prevents the quotation marks being removed during interpretation of the string.

Debugging Command Line Arguments

55

To debug a command line, use the modelerclient command to launch IBM SPSS Modeler with the
desired arguments. This enables you to verify that commands will execute as expected. You can also
confirm the values of any parameters passed from the command line in the Session Parameters dialog
box (Tools menu, Set Session Parameters).

System Arguments

The following table describes system arguments available for command line invocation of the user

interface.

Table 11. System arguments

Argument

Behavior/Description

@ <commandFile>

The @ character followed by a filename specifies a command list. When
modelerclient encounters an argument beginning with @, it operates on the
commands in that file as if they had been on the command line. See the topic
[“Combining Multiple Arguments” on page 59 for more information.

-directory <dir>

Sets the default working directory. In local mode, this directory is used for both data
and output. Example: -directory c:/ or -directory c:\\

-server_directory <dir>

Sets the default server directory for data. The working directory, specified by using
the -directory flag, is used for output.

-execute

After starting, execute any stream, state, or script loaded at startup. If a script is
loaded in addition to a stream or state, the script alone will be executed.

-stream <stream>

At startup, load the stream specified. Multiple streams can be specified, but the last
stream specified will be set as the current stream.

-script <script>

At startup, load the standalone script specified. This can be specified in addition to a
stream or state as described below, but only one script can be loaded at startup.

-model <model>

At startup, load the generated model (.grm format file) specified.

-state <state>

At startup, load the saved state specified.

-project <project>

Load the specified project. Only one project can be loaded at startup.

-output <output>

At startup, load the saved output object (.cou format file).

-help

Display a list of command line arguments. When this option is specified, all other
arguments are ignored and the Help screen is displayed.

-P <name>=<value>

Used to set a startup parameter. Can also be used to set node properties (slot
parameters).

Note: Default directories can also be set in the user interface. To access the options, from the File menu,
choose Set Working Directory or Set Server Directory.

Loading Multiple Files

From the command line, you can load multiple streams, states, and outputs at startup by repeating the
relevant argument for each object loaded. For example, to load and run two streams called report.str and
train.str, you would use the following command:

modelerclient -stream report.str -stream train.str -execute

Loading Objects from the IBM SPSS Collaboration and Deployment Services Repository

Because you can load certain objects from a file or from the IBM SPSS Collaboration and Deployment
Services Repository (if licensed), the filename prefix spsscr: and, optionally, file: (for objects on disk)
tells IBM SPSS Modeler where to look for the object. The prefix works with the following flags:

e -stream
e -script

56 IBM SPSS Modeler 16 Scripting and Automation Guide

e -output
* -model
e -project

You use the prefix to create a URI that specifies the location of the object—for example, -stream
"spsscr:///folder_1/scoring_stream.str". The presence of the spsscr: prefix requires that a valid
connection to the IBM SPSS Collaboration and Deployment Services Repository has been specified in the
same command. So, for example, the full command would look like this:

modelerclient -spsscr_hostname myhost -spsscr_port 8080
-SpssCr_username myusername -spsscr_password mypassword
-stream "spsscr:///folder 1/scoring stream.str" -execute

Note that from the command line, you must use a URL The simpler REPOSITORY_PATH is not supported. (It
works only within scripts.) For more details about URIs for objects in the IBM SPSS Collaboration and
Deployment Services Repository, see the topic |”Accessing Objects in the IBM SPSS Collaboration andl
IDeployment Services Repository” on page 45.|

Parameter Arguments

Parameters can be used as flags during command line execution of IBM SPSS Modeler. In command line
arguments, the -P flag is used to denote a parameter of the form -P <name>=<value>.

Parameters can be any of the following:
* Simple parameters (or parameters used directly in CLEM expressions).

* Slot parameters, also referred to as node properties. These parameters are used to modify the settings
of nodes in the stream. See the topic [“Node Properties Overview” on page 93|for more information.

* Command line parameters, used to alter the invocation of IBM SPSS Modeler.

For example, you can supply data source user names and passwords as a command line flag, as follows:
modelerclient -stream response.str -P:databasenode.datasource={"ORA 10gR2", userl, mypsw, true}

The format is the same as that of the datasource parameter of the databasenode node property. See the
topic [“databasenode Properties” on page 105/ for more information.

Server Connection Arguments

The -server flag tells IBM SPSS Modeler that it should connect to a public server, and the flags
-hostname, -use_ss1, -port, -username, -password, and -domain are used to tell IBM SPSS Modeler how to
connect to the public server. If no -server argument is specified, the default or local server is used.

Examples

To connect to a public server:

modelerclient -server -hostname myserver -port 80 -username dminer
-password 1234 -stream mystream.str -execute

To connect to a server cluster:

modelerclient -server -cluster "QA Machines" \
-spsscr_hostname pes_host -spsscr_port 8080 \
-spsscr_username asmith -spsscr_epassword xyz

Note that connecting to a server cluster requires the Coordinator of Processes through IBM SPSS
Collaboration and Deployment Services, so the -cluster argument must be used in combination with the
repository connection options (spsscr_*). See the topic [“IBM SPSS Collaboration and Deployment]
[Services Repository Connection Arguments” on page 58| for more information.

Chapter 7. Command Line Arguments 57

Table 12. Server connection arguments.

Argument

Behavior/Description

-server

Runs IBM SPSS Modeler in server mode, connecting to a public server using the
flags -hostname, -port, -username, -password, and -domain.

-hostname <name>

The hostname of the server machine. Available in server mode only.

-use_ssl

Specifies that the connection should use SSL (secure socket layer). This flag is
optional; the default setting is not to use SSL.

-port <number>

The port number of the specified server. Available in server mode only.

-cluster <name>

Specifies a connection to a server cluster rather than a named server; this argument
is an alternative to the hostname, port and use_ss1 arguments. The name is the
cluster name, or a unique URI which identifies the cluster in the IBM SPSS
Collaboration and Deployment Services Repository. The server cluster is managed
by the Coordinator of Processes through IBM SPSS Collaboration and Deployment
Services. See the topic|“IBM SPSS Collaboration and Deployment Services|
[Repository Connection Arguments”| for more information.

-username <name>

The user name with which to log on to the server. Available in server mode only.

-password <password>

The password with which to log on to the server. Available in server mode only.
Note: If the -password argument is not used, you will be prompted for a password.

-epassword
<encodedpasswordstring>

The encoded password with which to log on to the server. Available in server
mode only. Note: An encoded password can be generated from the Tools menu of
the IBM SPSS Modeler application.

-domain <name>

The domain used to log on to the server. Available in server mode only.

-P <name>=<value>

Used to set a startup parameter. Can also be used to set node properties (slot
parameters).

IBM SPSS Collaboration and Deployment Services Repository
Connection Arguments

If you want to store or retrieve objects from IBM SPSS Collaboration and Deployment Services via the
command line, you must specify a valid connection to the IBM SPSS Collaboration and Deployment
Services Repository. For example:

modelerclient -spsscr_hostname myhost -spsscr_port 8080
-spsscr_username myusername -spsscr_password mypassword
-stream "spsscr:///folder_1/scoring stream.str" -execute

The following table lists the arguments that can be used to set up the connection.

Table 13. IBM SPSS Collaboration and Deployment Services Repository connection arguments

Argument

Behavior/Description

address>

-spsscr_hostname <hostname or IP

The hostname or IP address of the server on which the IBM SPSS
Collaboration and Deployment Services Repository is installed.

-spsscr_port <number>

The port number on which the IBM SPSS Collaboration and Deployment
Services Repository accepts connections (typically, 8080 by default).

-spsscr_use_ssl

Specifies that the connection should use SSL (secure socket layer). This
flag is optional; the default setting is not to use SSL.

-SpSsCr_username <name>

The user name with which to log on to the IBM SPSS Collaboration and
Deployment Services Repository.

-spsscr_password <password>

The password with which to log on to the IBM SPSS Collaboration and
Deployment Services Repository.

-spsscr_epassword <encoded password> | The encoded password with which to log on to the IBM SPSS

Collaboration and Deployment Services Repository.

58 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 13. IBM SPSS Collaboration and Deployment Services Repository connection arguments (continued)

Argument Behavior/Description

-spsscr_domain <name> The domain used to log on to the IBM SPSS Collaboration and
Deployment Services Repository. This flag is optional—do not use it
unless you log on by using LDAP or Active Directory.

Combining Multiple Arguments

Multiple arguments can be combined in a single command file specified at invocation by using the @
symbol followed by the filename. This enables you to shorten the command line invocation and
overcome any operating system limitations on command length. For example, the following startup
command uses the arguments specified in the file referenced by <commandFiTleName>.

modelerclient @<commandFileName>

Enclose the filename and path to the command file in quotation marks if spaces are required, as follows:

modelerclient @ "C:\Program Files\IBM\SPSS\Modeler\nn\scripts\my command file.txt"

The command file can contain all arguments previously specified individually at startup, with one
argument per line. For example:

-stream report.str
-Porder.full_filename=APR_orders.dat
-Preport.filename=APR _report.txt
-execute

When writing and referencing command files, be sure to follow these constraints:
* Use only one command per line.
* Do not embed an @CommandFile argument within a command file.

Chapter 7. Command Line Arguments

59

60 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 8. CLEM Language Reference

CLEM Reference Overview

This section describes the Control Language for Expression Manipulation (CLEM), which is a powerful
tool used to analyze and manipulate the data used in IBM SPSS Modeler streams. You can use CLEM
within nodes to perform tasks ranging from evaluating conditions or deriving values to inserting data
into reports.

CLEM expressions consist of values, field names, operators, and functions. Using the correct syntax, you
can create a wide variety of powerful data operations.

CLEM Datatypes

CLEM datatypes can be made up of any of the following:
* Integers

* Reals

¢ Characters

* Strings

* Lists

* Fields

e Date/Time

Rules for Quoting

Although IBM SPSS Modeler is flexible when you are determining the fields, values, parameters, and
strings used in a CLEM expression, the following general rules provide a list of "good practices" to use in
creating expressions:

* Strings—Always use double quotes when writing strings, such as "Type 2". Single quotes can be used
instead but at the risk of confusion with quoted fields.

* Fields—Use single quotes only where necessary to enclose spaces or other special characters, such as
'‘Order Number'. Fields that are quoted but undefined in the data set will be misread as strings.

* Parameters—Always use single quotes when using parameters, such as '$P-threshold'.
* Characters—Always use single backquotes (), such as stripchar(d~, "drugA").

These rules are covered in more detail in the following topics.

Integers

Integers are represented as a sequence of decimal digits. Optionally, you can place a minus sign (-)
before the integer to denote a negative number—for example, 1234, 999, —77.

The CLEM language handles integers of arbitrary precision. The maximum integer size depends on your
platform. If the values are too large to be displayed in an integer field, changing the field type to Real
usually restores the value.

Reals

Real refers to a floating-point number. Reals are represented by one or more digits followed by a decimal
point followed by one or more digits. CLEM reals are held in double precision.

61

Optionally, you can place a minus sign (—) before the real to denote a negative number—for example,
1.234,0.999, -77.001. Use the form <number> e <exponent> to express a real number in exponential
notation—for example, 1234.0e5, 1.7e-2. When the IBM SPSS Modeler application reads number strings
from files and converts them automatically to numbers, numbers with no leading digit before the decimal
point or with no digit after the point are accepted—for example, 999. or .11. However, these forms are
illegal in CLEM expressions.

Note: When referencing real numbers in CLEM expressions, a period must be used as the decimal
separator, regardless of any settings for the current stream or locale. For example, specify

Na > 0.6

rather than
Na > 0,6

This applies even if a comma is selected as the decimal symbol in the stream properties dialog box and is
consistent with the general guideline that code syntax should be independent of any specific locale or
convention.

Characters

Characters (usually shown as CHAR) are typically used within a CLEM expression to perform tests on
strings. For example, you can use the function isuppercode to determine whether the first character of a
string is upper case. The following CLEM expression uses a character to indicate that the test should be
performed on the first character of the string:

isuppercode(subscrs(1, "MyString"))

To express the code (in contrast to the location) of a particular character in a CLEM expression, use single
backquotes of the form ~<character>"—for example, "A~, “Z".

Note: There is no CHAR storage type for a field, so if a field is derived or filled with an expression that
results in a CHAR, then that result will be converted to a string.

Strings

Generally, you should enclose strings in double quotation marks. Examples of strings are "c35product2"
and "referrerID". To indicate special characters in a string, use a backslash—for example, "\$65443". (To
indicate a backslash character, use a double backslash, \\.) You can use single quotes around a string, but

the result is indistinguishable from a quoted field ('referrerID'). See the topic|“String Functions” on|
for more information.

Lists

A list is an ordered sequence of elements, which may be of mixed type. Lists are enclosed in square
brackets ([]). Examples of lists are [1 2 4 16] and ["abc" "def"]. Lists are not used as the value of IBM
SPSS Modeler fields. They are used to provide arguments to functions, such as member and oneof.

Fields

Names in CLEM expressions that are not names of functions are assumed to be field names. You can
write these simply as Power, val27, state_flag, and so on, but if the name begins with a digit or includes
non-alphabetic characters, such as spaces (with the exception of the underscore), place the name within
single quotation marks—for example, 'Power Increase', '2nd answer', '#101', '$P-NextField'.

Note: Fields that are quoted but undefined in the data set will be misread as strings.

62 IBM SPSS Modeler 16 Scripting and Automation Guide

Dates

Date calculations are based on a "baseline" date, which is specified in the stream properties dialog box.

The default baseline date is 1 January 1900.

The CLEM language supports the following date formats.

Table 14. CLEM language date formats

Format Examples

DDMMYY 150163

MMDDYY 011563

YYMMDD 630115

YYYYMMDD 19630115

YYYYDDD Four-digit year followed by a three-digit number representing
the day of the year—for example, 2000032 represents the 32nd
day of 2000, or 1 February 2000.

DAY Day of the week in the current locale—for example, Monday,
Tuesday, ..., in English.

MONTH Month in the current locale—for example, January, February, ...

DD/MM/YY 15/01/63

DD/MM/YYYY 15/01/1963

MM/DD/YY 01/15/63

MM/DD/YYYY 01/15/1963

DD-MM-YY 15-01-63

DD-MM-YYYY 15-01-1963

MM-DD-YY 01-15-63

MM-DD-YYYY 01-15-1963

DD.MM.YY 15.01.63

DD.MM.YYYY 15.01.1963

MM.DD.YY 01.15.63

MM.DD.YYYY 01.15.1963

DD-MON-YY 15-JAN-63, 15-jan-63, 15-Jan-63

DD/MON/YY 15/JAN/63, 15/jan/63, 15/Jan/63

DD.MON.YY 15.JAN.63, 15.jan.63, 15.Jan.63

DD-MON-YYYY 15-JAN-1963, 15-jan-1963, 15-Jan-1963

DD/MON/YYYY 15/JAN/1963, 15/jan/1963, 15/Jan/1963

DD.MON.YYYY 15.JAN.1963, 15.jan.1963, 15.Jan.1963

MON YYYY Jan 2004

q Q YYYY Date represented as a digit (1-4) representing the quarter
followed by the letter Q and a four-digit year—for example, 25
December 2004 would be represented as 4 Q 2004.

ww WK YYYY Two-digit number representing the week of the year followed by
the letters WK and then a four-digit year. The week of the year
is calculated assuming that the first day of the week is Monday
and there is at least one day in the first week.

Chapter 8. CLEM Language Reference 63

Time

The CLEM language supports the following time formats.

Table 15. CLEM language time formats

Format Examples

HHMMSS 120112, 010101, 221212

HHMM 1223, 0745, 2207

MMSS 5558, 0100

HH:MM:SS 12:01:12, 01:01:01, 22:12:12
HH:MM 12:23, 07:45, 22:07

MM:SS 55:58, 01:00

(H)H: (M)M: (S)S 12:1:12, 1:1:1, 22:12:12
(H)H: (M)M 12:23, 7:45, 22:7

(M)M: (S)S 55:58, 1:0

HH.MM. SS 12.01.12, 01.01.01, 22.12.12
HH .MM 12.23, 07.45, 22.07

MM.SS 55.58, 01.00

(H)H. (M)M.(S)S 12.1.12, 1.1.1, 22.12.12
(H)H. (M)M 12.23, 7.45, 22.7

(M)M. (S)S 55.58, 1.0

CLEM Operators

The following operators are available.

Table 16. CLEM language operators.

Operation Comments Precedence (see next section)

or Used between two CLEM expressions. Returns |10
a value of true if either is true or if both are
true.

and Used between two CLEM expressions. Returns |9
a value of true if both are true.

= Used between any two comparable items. 7
Returns true if ITEM1 is equal to ITEM2.

== Identical to =. 7

/= Used between any two comparable items. 7
Returns true if ITEM1 is not equal to ITEM2.

/== Identical to /=. 7

> Used between any two comparable items. 6
Returns true if ITEML is strictly greater than
ITEM2.

>= Used between any two comparable items. 6
Returns true if ITEM1 is greater than or equal
to ITEM2.

< Used between any two comparable items. 6
Returns true if ITEM1 is strictly less than
ITEM2

64 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 16. CLEM language operators (continued).

Operation Comments Precedence (see next section)
<= Used between any two comparable items. 6
Returns true if ITEM1 is less than or equal to
ITEM2.
8&=_0 Used between two integers. Equivalent to the |6
Boolean expression INT1 && INT2 = 0.
8&/=_0 Used between two integers. Equivalent to the |6
Boolean expression INT1 && INT2 /= 0.
+ Adds two numbers: NUM1 + NUM?2. 5
>< Concatenates two strings; for example, 5
STRING1 >< STRING2.
- Subtracts one number from another: NUMI1 - 5
NUMZ2. Can also be used in front of a number:
- NUM.

* Used to multiply two numbers: NUM1 * 4
NUM2.

&8 Used between two integers. The result is the 4
bitwise 'and' of the integers INT1 and INT2.

&~ Used between two integers. The result is the 4
bitwise 'and' of INT1 and the bitwise
complement of INT2.

[Used between two integers. The result is the 4
bitwise 'inclusive or' of INT1 and INT2.

Y Used in front of an integer. Produces the 4
bitwise complement of INT.

|]/8& Used between two integers. The result is the 4
bitwise 'exclusive or' of INT1 and INT2.

INT1 << N Used between two integers. Produces the bit 4
pattern of INT shifted left by N positions.

INTL1 >> N Used between two integers. Produces the bit 4
pattern of INT shifted right by N positions.

/ Used to divide one number by another: NUM1 |4
/ NUM2.

*k Used between two numbers: BASE ** POWER. |3
Returns BASE raised to the power POWER.

rem Used between two integers: INT1 rem INT2. 2
Returns the remainder, INT1 - (INT1 div INT2)
* INT2.

div Used between two integers: INT1 div INT2. 2
Performs integer division.

Operator Precedence

Precedences determine the parsing of complex expressions, especially unbracketed expressions with more

than one infix operator. For example,
3+4 %5

Chapter 8. CLEM Language Reference

65

parses as 3 + (4 * 5) rather than (3 + 4) * 5 because the relative precedences dictate that * is to be
parsed before +. Every operator in the CLEM language has a precedence value associated with it; the
lower this value, the more important it is on the parsing list, meaning that it will be processed sooner
than other operators with higher precedence values.

Table 17. CLEM functions for use with IBM SPSS Modeler data

Description

nformatio

Used to gain insight into field values. For example, the function is_string
returns true for all records whose type is a string.

onversio

Used to construct new fields or convert storage type. For example, the
function to_timestamp converts the selected field to a timestamp.

omparison

Used to compare field values to each other or to a specified string. For
example, <= is used to compare whether the values of two fields are lesser
or equal.

)

Used to perform logical operations, such as if, then, else operations.

3

Zi : | E |2

c =

e}]

0

2| |z g

o =}
o
sl
[¢]

Used to perform numeric calculations, such as the natural log of field
values.

[=]

rigonometric

Used to perform trigonometric calculations, such as the arccosine of a
specified angle.

robability]

Return probabilities based on various distributions, such as probability that
a value from Student's ¢ distribution will be less than a specific value.

Used to manipulate integers as bit patterns.

Used to randomly select items or generate numbers.

Used to perform a wide variety of operations on strings, such as
stripchar, which allows you to remove a specified character.

Used to find strings when the precise spelling is not known; based on
phonetic assumptions about how certain letters are pronounced.

Used to perform a variety of operations on date, time, and timestamp
fields.

[92) [V [92) =l = =g
2B ELENEIE
[® =] 5 a.
1) o . Do olll@
2 5 55 o
2 a X

.

3

)

Used to gain insight into the record sequence of a data set or perform
operations based on that sequence.

Q
o
Sy
=

Used to access global values created by a Set Globals node. For example,
@MEAN is used to refer to the mean average of all values for a field across
the entire data set.

lanks and nul

Used to access, flag, and frequently fill user-specified blanks or
system-missing values. For example, @BLANK(FIELD) is used to raise a true
flag for records where blanks are present.

pecial field

i i

Used to denote the specific fields under examination. For example, @FIELD
is used when deriving multiple fields.

66 IBM SPSS Modeler 16 Scripting and Automation Guide

Conventions in Function Descriptions

The following conventions are used throughout this guide when referring to items in a function.

Table 18. Conventions in function descriptions.

Convention Description

BOOL A Boolean, or flag, such as true or false.

NUM, NUM1, NUM2 Any number.

REAL, REAL1, REAL2 Any real number, such as 1.234 or -77.01.

INT, INT1, INT2 Any integer, such as 1 or -77.

CHAR A character code, such as “A”.

STRING A string, such as "referrerID".

LIST A list of items, such as ["abc" "def"].

ITEM A field, such as Customer or extract_concept.

DATE A date field, such as start_date, where values are in a format such
as DD-MON-YYYY.

TIME A time field, such as power_flux, where values are in a format such
as HHMMSS.

Functions in this guide are listed with the function in one column, the result type (integer, string, and so
on) in another, and a description (where available) in a third column. For example, the following is the
description of the rem function.

Table 19. rem function description.

Function Result Description

Returns the remainder of INT1 divided by INT2. For
example, INT1 — (INT1 div INT2) * INT2.

INT1 rem INT2 Number

Details on usage conventions, such as how to list items or specify characters in a function, are described
elsewhere. See the topic [“CLEM Datatypes” on page 61| for more information.

Information Functions

Information functions are used to gain insight into the values of a particular field. They are typically used
to derive flag fields. For example, you can use the @BLANK function to create a flag field indicating records
whose values are blank for the selected field. Similarly, you can check the storage type for a field using
any of the storage type functions, such as is_string.

Table 20. CLEM information functions.

Function Result Description

Returns true for all records whose values are blank according
@BLANK(FIELD) Boolean to the blank-handling rules set in an upstream Type node or
source node (Types tab).

Returns true for all records whose values are undefined.

ONULL(ITEM) Boolean Undefined values are system null values, displayed in IBM
SPSS Modeler as $null$.

is_date(ITEM) Boolean Returns true for all records whose type is a date.

is_datetime (ITEM) Boolean Returns true for all records whose type is a date, time, or
timestamp.

is_integer(ITEM) Boolean Returns true for all records whose type is an integer.

Chapter 8. CLEM Language Reference 67

Table 20. CLEM information functions (continued).

Function Result Description

is_number (ITEM) Boolean Returns true for all records whose type is a number.
is_real (ITEM) Boolean Returns true for all records whose type is a real.
is_string (ITEM) Boolean Returns true for all records whose type is a string.
is_time(ITEM) Boolean Returns true for all records whose type is a time.
is_timestamp (ITEM) Boolean Returns true for all records whose type is a timestamp.

Conversion Functions

Conversion functions allow you to construct new fields and convert the storage type of existing files. For
example, you can form new strings by joining strings together or by taking strings apart. To join two
strings, use the operator ><. For example, if the field Site has the value "BRAMLEY", then "xx" >< Site
returns "xxBRAMLEY". The result of >< is always a string, even if the arguments are not strings. Thus, if
field V1 is 3 and field V2 is 5, then V1 >< V2 returns "35" (a string, not a number).

Conversion functions (and any other functions that require a specific type of input, such as a date or time
value) depend on the current formats specified in the Stream Options dialog box. For example, if you
want to convert a string field with values Jan 2003, Feb 2003, and so on, select the matching date format
MON YYYY as the default date format for the stream.

Table 21. CLEM conversion functions

Function Result Description
ITEM1 >< ITEM2 String Concatenates values for two fields and returns the resulting
string as ITEM1ITEM2.
to_integer(ITEM) Integer Converts the storage of the specified field to an integer.
to_real (ITEM) Real Converts the storage of the specified field to a real.
to_number (ITEM) Number Converts the storage of the specified field to a number.
to_string (ITEM) String Converts the storage of the specified field to a string.
to_time(ITEM) Time Converts the storage of the specified field to a time.
to_date(ITEM) Date Converts the storage of the specified field to a date.
to_timestamp (ITEM) Timestamp Converts the storage of the specified field to a timestamp.
to_datetime(ITEM) Datetime Converts the storage of the specified field to a date, time, or

timestamp value.

Returns the date value for a number, string, or timestamp. Note
this is the only function that allows you to convert a number (in
seconds) back to a date. If ITEM is a string, creates a date by
parsing a string in the current date format. The date format
specified in the stream properties dialog box must be correct for
this function to be successful. If ITEM is a number, it is
interpreted as a number of seconds since the base date (or
epoch). Fractions of a day are truncated. If ITEM is a timestamp,
the date part of the timestamp is returned. If ITEM is a date, it is
returned unchanged.

datetime_date(ITEM) Date

Comparison Functions

Comparison functions are used to compare field values to each other or to a specified string. For
example, you can check strings for equality using =. An example of string equality verification is: Class =
"class 1"

68 IBM SPSS Modeler 16 Scripting and Automation Guide

For purposes of numeric comparison, greater means closer to positive infinity, and lesser means closer to
negative infinity. That is, all negative numbers are less than any positive number.

Table 22. CLEM comparison functions

Function Result Description
Returns the number of values from a list of fields that are equal
count_equal (ITEM1, LIST) Infeger to ITEM or null if ITEMI is null.
count_greater_than(ITEMI, Inteoer Returns the number of values from a list of fields that are
LIST) 3 greater than ITEM1 or null if ITEM1 is null.
count_less_than(ITEMI, Intecer Returns the number of values from a list of fields that are less
LIST) 8 than ITEM1 or null if ITEM1 is null.
count_not_equal (ITEMI1, Intecer Returns the number of values from a list of fields that are not
LIST) 3 equal to ITEM1 or null if ITEM1 is null.
count_nulls(LIST) Integer Returns the number of null values from a list of fields.
count_non_nul1s(LIST) Integer Returns the number of non-null values from a list of fields.
Used to check the ordering of date values. Returns a true value
date_before(DATE1, DATE2) Boolean \f DATEI is before DATE?.
Returns the index of the first field containing ITEM from a LIST
first_index(ITEM, LIST) Integer of fields or 0 if the value is not found. Supported for string,
integer, and real types only.
First non null(LIST) Any Returns the first non-null value in the supplied list of fields. All
- - storage types supported.
Returns the index of the first field in the specified LIST
first_non_null_index(LIST) |Integer containing a non-null value or 0 if all values are null. All
storage types are supported.
ITEM1L = ITEM2 Boolean Returns true for records where ITEM] is equal to ITEM?2.
ITEML /= ITEM? Boolean Retur.ns true if the two strings are not identical or 0 if they are
identical.
ITEM1 < ITEM2 Boolean Returns true for records where ITEM1 is less than ITEM2.
ITEML <= ITEM? Boolean Returns true for records where ITEMI is less than or equal to
ITEM2.
ITEM1 > ITEM2 Boolean Returns true for records where ITEM1 is greater than ITEM2.
ITEML >= ITEM? Boolean Returns true for records where ITEM1 is greater than or equal to
ITEM?2.
Returns the index of the last field containing ITEM from a LIST
Tast_index(ITEM, LIST) Integer of fields or 0 if the value is not found. Supported for string,
integer, and real types only.
last non null(LIST) Any Returns the last non-null value in the supplied list of fields. All
- - storage types supported.
Returns the index of the last field in the specified LIST
Tast_non_nul1_index (LIST) Integer containing a non-null value or 0 if all values are null. All
storage types are supported.
max (ITEM1, ITEM2) Any Returns the greater of the two items--ITEM1 or ITEM2.
Returns the index of the field containing the maximum value
from a list of numeric fields or 0 if all values are null. For
max_index (LIST) Integer example, if the third field listed contains the maximum, the
index value 3 is returned. If multiple fields contain the
maximum value, the one listed first (leftmost) is returned.
max_n(LIST) Number Returns the maximum value from a list of numeric fields or null

if all of the field values are null.

Chapter 8. CLEM Language Reference 69

Table 22. CLEM comparison functions (continued)

Function Result Description
Returns true if ITEM is a member of the specified LIST.

member (ITEM, LIST) Boolean Otherwise, a false value is returned. A list of field names can
also be specified.

min(ITEM1, ITEM2) Any Returns the lesser of the two items--ITEM1 or ITEM?2.
Returns the index of the field containing the minimum value
from a list of numeric fields or 0 if all values are null. For

min_index (LIST) Integer example, if the third field listed contains the minimum, the
index value 3 is returned. If multiple fields contain the
minimum value, the one listed first (leftmost) is returned.

min n(LIST) Number Returns the minimum value from a list of numeric fields or null

- if all of the field values are null.
time before(TIMEL, TIME2) |Boolean Used to check the ordering of time values. Returns a true value

if TIMET] is before TIME2.

value_at(INT, LIST)

Returns the value of each listed field at offset INT or NULL if
the offset is outside the range of valid values (that is, less than 1
or greater than the number of listed fields). All storage types
supported.

Logical Functions

CLEM expressions can be used to perform logical operations.

Table 23. CLEM logical functions

Function Result Description
This operation is a logical conjunction and returns a true value
if both COND1 and COND?2 are true. If COND1 is false, then
COND? is not evaluated; this makes it possible to have
COND1 ‘and COND2 Boolean conjunctions where COND1 first tests that an operation in
COND2 is legal. For example, Tength(Label) >=6 and Label (6)
= 1 X 1)
This operation is a logical (inclusive) disjunction and returns a
COND1 or COND2 Boolean true value if either COND1 or COND?2 is true or if both are
true. If COND1 is true, COND?2 is not evaluated.
This operation is a logical negation and returns a true value if
not (COND) Boolean COND is false. Otherwise, this operation returns a value of 0.
. This operation is a conditional evaluation. If COND is true, this
;: d?gND then EXPRL else EXPR2 Any operation returns the result of EXPR1. Otherwise, the result of
evaluating EXPR2 is returned.
This operation is a multibranch conditional evaluation. If
if COND1 then EXPR1 elseif CONDL1 is true, this operation returns the result of EXPRI.
COND2 then EXPR2 else EXPR_N |Any Otherwise, if COND?2 is true, this operation returns the result
endif of evaluating EXPR2. Otherwise, the result of evaluating
EXPR_N is returned.

70 IBM SPSS Modeler 16 Scripting and Automation Guide

Numeric Functions

CLEM contains a number of commonly used numeric functions.

Table 24. CLEM numeric functions.

Function Result Description

_NUM Number Used to negate NUM. Returns the corresponding number with the
opposite sign.

NUM1 + NUM2 Number Returns the sum of NUM1 and NUM?2.

NUM1 —NUM2 Number Returns the value of NUM?2 subtracted from NUMI.

NUM1 * NUM2 Number Returns the value of NUM1 multiplied by NUM?2.

NUM1 / NUM2 Number Returns the value of NUM1 divided by NUM2.

. Used to perform integer division. Returns the value of INT1

INT1 div INT2 Number divided by INT2.

Returns the remainder of INT1 divided by INT2. For example, INT1

INT1 rem INT2 Number _ (INTL div INT2) * INT2.

INT1 mod INT2 Number This function has been deprecated. Use the rem function instead.
Returns BASE raised to the power POWER, where either may be
any number (except that BASE must not be zero if POWER is zero
of any type other than integer 0). If POWER is an integer, the
computation is performed by successively multiplying powers of

BASE *+ POWER Number BASE. Thus, if BASE is an integer, the result will be an integer. If
POWER is integer 0, the result is always a 1 of the same type as
BASE. Otherwise, if POWER is not an integer, the result is
computed as exp(POWER * Tog(BASE)).

abs (NUM) Number Returns the absolute value of NUM, which is always a number of
the same type.

exp (NUM) Real Retur.ns e raised to the power NUM, where ¢ is the base of natural
logarithms.

fracof (NUM) Real Returns the fractional part of NUM, defined as NUM—intof (NUM).
Truncates its argument to an integer. It returns the integer of the

intof (NUM) Integer same sign as NUM and with the largest magnitude such that
abs (INT) <= abs(NUM).

Tog (NUM) Real Returns the nat}lral (base e) logarithm of NUM, which must not be
a zero of any kind.

Returns the base 10 logarithm of NUM, which must not be a zero

Tog10(NUM) Real .) . .
of any kind. This function is defined as 1og(NUM) / 10g(10).

negate (NUM) Number Used to negate NUM. Returns the corresponding number with the
opposite sign.

Used to round NUM to an integer by taking intof (NUM+0.5) if
round (NUM) Integer NUM is positive or intof (NUM-0.5) if NUM is negative.

Used to determine the sign of NUM. This operation returns -1, 0,
sign (NUM) Number or 1if NUM is an integer. If NUM is a real, it returns -1.0, 0.0, or

1.0, depending on whether NUM is negative, zero, or positive.

sqrt (NUM) Real Returns the square root of NUM. NUM must be positive.

Returns the sum of values from a list of numeric fields or null if all

sum_n(LIST) Number .
of the field values are null.

Returns the mean value from a list of numeric fields or null if all of

mean n(LIST) Number .

- the field values are null.
sdev_n(LIST) Number Returns the standard deviation from a list of numeric fields or null

if all of the field values are null.

Chapter 8. CLEM Language Reference 71

Trigonometric Functions

All of the functions in this section either take an angle as an argument or return one as a result. In both
cases, the units of the angle (radians or degrees) are controlled by the setting of the relevant stream

option.

Table 25. CLEM trigonometric functions

Function Result Description
arccos (NUM) Real Computes the arccosine of the specified angle.
arccosh (NUM) Real Computes the hyperbolic arccosine of the specified angle.
arcsin(NUM) Real Computes the arcsine of the specified angle.
arcsinh (NUM) Real Computes the hyperbolic arcsine of the specified angle.
arctan(NUM) Real Computes the arctangent of the specified angle.
Computes the arctangent of NUM_Y / NUM_X and uses the signs of the
etz y, W) | o mumbers o deve quadrnt nermaion, he sl s s
(degrees)
arctanh (NUM) Real Computes the hyperbolic arctangent of the specified angle.
cos (NUM) Real Computes the cosine of the specified angle.
cosh (NUM) Real Computes the hyperbolic cosine of the specified angle.
pi Real This constant is the best real approximation to pi.
sin(NUM) Real Computes the sine of the specified angle.
sinh(NUM) Real Computes the hyperbolic sine of the specified angle.
tan (NUM) Real Computes the tangent of the specified angle.
tanh (NUM) Real Computes the hyperbolic tangent of the specified angle.

Probability Functions

Probability functions return probabilities based on various distributions, such as the probability that a
value from Student's t distribution will be less than a specific value.

Table 26. CLEM probability functions

Function

Result

Description

cdf_chisq(NUM, DF)

Real

Returns the probability that a value from the chi-square
distribution with the specified degrees of freedom will be
less than the specified number.

cdf_f(NUM, DF1, DF2)

Real

Returns the probability that a value from the F distribution,
with degrees of freedom DF1 and DF2, will be less than the
specified number.

cdf_normal (NUM, MEAN, STDDEV)

Real

Returns the probability that a value from the normal
distribution with the specified mean and standard deviation
will be less than the specified number.

cdf_t(NUM, DF)

Real

Returns the probability that a value from Student's ¢
distribution with the specified degrees of freedom will be
less than the specified number.

72 IBM SPSS Modeler 16 Scripting and Automation Guide

Bitwise Integer Operations

These functions enable integers to be manipulated as bit patterns representing two's-complement values,
where bit position N has weight 2+*N. Bits are numbered from 0 upward. These operations act as though
the sign bit of an integer is extended indefinitely to the left. Thus, everywhere above its most significant
bit, a positive integer has 0 bits and a negative integer has 1 bit.

Table 27. CLEM bitwise integer operations.

Function

Result

Description

~¥ INT1

Integer

Produces the bitwise complement of the integer INT1. That
is, there is a 1 in the result for each bit position for which
INTI has 0. It is always true that ™~ INT = —(INT + 1).

INT1 || INT2

Integer

The result of this operation is the bitwise "inclusive or" of
INT1 and INT2. That is, there is a 1 in the result for each bit
position for which there is a 1 in either INT1 or INT2 or
both.

INTL ||/& INT2

Integer

The result of this operation is the bitwise "exclusive or" of
INT1 and INT?2. That is, there is a 1 in the result for each bit
position for which there is a 1 in either INT1 or INT2 but
not in both.

INT1 && INT2

Integer

Produces the bitwise "and" of the integers INT1 and INT2.
That is, there is a 1 in the result for each bit position for
which there is a 1 in both INT1 and INT2.

INT1 &&™ INT2

Integer

Produces the bitwise "and" of INT1 and the bitwise
complement of INT2. That is, there is a 1 in the result for
each bit position for which there is a 1 in INT1 and a 0 in
INT?2. This is the same as INT1 && (~™INT2) and is useful for
clearing bits of INT1 set in INT2.

INT << N

Integer

Produces the bit pattern of INT1 shifted left by N positions.
A negative value for N produces a right shift.

INT >> N

Integer

Produces the bit pattern of INT1 shifted right by N
positions. A negative value for N produces a left shift.

INTL &&= 0 INT2

Boolean

Equivalent to the Boolean expression INT1 && INT2 /==
but is more efficient.

INTL 8&/=_0 INT2

Boolean

Equivalent to the Boolean expression INT1 && INT2 == 0 but
is more efficient.

integer_bitcount (INT)

Integer

Counts the number of 1 or 0 bits in the two's-complement
representation of INT. If INT is non-negative, N is the
number of 1 bits. If INT is negative, it is the number of 0
bits. Owing to the sign extension, there are an infinite
number of 0 bits in a non-negative integer or 1 bits in a
negative integer. It is always the case that
integer_bitcount(INT) = integer bitcount(-(INT+1)).

integer_leastbit(INT)

Integer

Returns the bit position N of the least-significant bit set in
the integer INT. N is the highest power of 2 by which INT
divides exactly.

integer_length(INT)

Integer

Returns the length in bits of INT as a two's-complement
integer. That is, N is the smallest integer such that INT < (1
<< N) if INT >= 0 INT >= (=1 << N) if INT < 0. If INT is
non-negative, then the representation of INT as an unsigned
integer requires a field of at least N bits. Alternatively, a
minimum of N+1 bits is required to represent INT as a
signed integer, regardless of its sign.

Chapter 8. CLEM Language Reference 73

Table 27. CLEM bitwise integer operations (continued).

Function Result Description
Tests the bit at position N in the integer INT and returns the
testbit (INT, N) Boolean state of bit N as a Boolean value, which is true for 1 and

false for 0.

Random Functions

The following functions are used to randomly select items or randomly generate numbers.

Table 28. CLEM random functions.

Function

Result

Description

oneof (LIST)

Any

Returns a randomly chosen element of LIST. List items should be
entered as [ITEM1,ITEM2,...,ITEM N]. Note that a list of field names
can also be specified.

random (NUM)

Number

Returns a uniformly distributed random number of the same type
(INT or REAL), starting from 1 to NUM. If you use an integer, then
only integers are returned. If you use a real (decimal) number, then
real numbers are returned (decimal precision determined by the
stream options). The largest random number returned by the function
could equal NUM.

random@ (NUM)

Number

This has the same properties as random(NUM), but starting from 0. The
largest random number returned by the function will never equal
NUM.

String Functions

In CLEM, you can perform the following operations with strings:

* Compare strings
* Create strings
* Access characters

In CLEM, a string is any sequence of characters between matching double quotation marks ("string
quotes"). Characters (CHAR) can be any single alphanumeric character. They are declared in CLEM
expressions using single backquotes in the form of ~<character>~, such as “z~, A, or “2". Characters that
are out-of-bounds or negative indices to a string will result in undefined behavior.

Note. Comparisons between strings that do and do not use SQL pushback may generate different results
where trailing spaces exist.

Table 29. CLEM string functions.

Function

Result Description

Returns a string, which is STRING with the first

allbutfirst(N, STRING) String N characters removed.
allbutlast(N, STRING) String Returns a string, which is STRING with the last
characters removed.
Used to check the alphabetical ordering of
alphabefore(STRING1, STRING2) Boolean strings. Returns true if STRINGI precedes

STRING2.

endstring (LENGTH, STRING)

Extracts the last N characters from the specified
String string. If the string length is less than or equal to
the specified length, then it is unchanged.

74 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 29. CLEM string functions (continued).

Function

Result

Description

hasendstring (STRING, SUBSTRING)

Integer

This function is the same as
isendstring (SUBSTRING, STRING).

hasmidstring(STRING, SUBSTRING)

Integer

This function is the same as
ismidstring (SUBSTRING, STRING) (embedded
substring).

hasstartstring (STRING, SUBSTRING)

Integer

This function is the same as
isstartstring(SUBSTRING, STRING).

hassubstring(STRING, N, SUBSTRING)

Integer

This function is the same as
issubstring (SUBSTRING, N, STRING), where N
defaults to 1.

count_substring (STRING, SUBSTRING)

Integer

Returns the number of times the specified
substring occurs within the string. For example,
count_substring("foooo.txt", "00") returns 3.

hassubstring(STRING, SUBSTRING)

Integer

This function is the same as
issubstring (SUBSTRING, 1, STRING), where N
defaults to 1.

isalphacode (CHAR)

Boolean

Returns a value of true if CHAR is a character in
the specified string (often a field name) whose
character code is a letter. Otherwise, this function
returns a value of 0. For example,
isalphacode(produce_num(1)).

isendstring (SUBSTRING, STRING)

Integer

If the string STRING ends with the substring
SUBSTRING, then this function returns the

integer subscript of SUBSTRING in STRING.
Otherwise, this function returns a value of 0.

isTowercode (CHAR)

Boolean

Returns a value of true if CHAR is a lowercase
letter character for the specified string (often a
field name). Otherwise, this function returns a
value of 0. For example, both islowercode(™")
and islowercode(country name(2)) are valid
expressions.

ismidstring (SUBSTRING, STRING)

Integer

If SUBSTRING is a substring of STRING but does
not start on the first character of STRING or end
on the last, then this function returns the
subscript at which the substring starts.
Otherwise, this function returns a value of 0.

isnumbercode (CHAR)

Boolean

Returns a value of true if CHAR for the specified
string (often a field name) is a character whose
character code is a digit. Otherwise, this function
returns a value of 0. For example,

isnumbercode (product_id(2)).

isstartstring(SUBSTRING, STRING)

Integer

If the string STRING starts with the substring
SUBSTRING, then this function returns the
subscript 1. Otherwise, this function returns a
value of 0.

issubstring (SUBSTRING, N, STRING)

Integer

Searches the string STRING, starting from its Nth
character, for a substring equal to the string
SUBSTRING. If found, this function returns the
integer subscript at which the matching substring
begins. Otherwise, this function returns a value
of 0. If N is not given, this function defaults to 1.

Chapter 8. CLEM Language Reference 75

Table 29. CLEM string functions (continued).

Function

Result

Description

issubstring (SUBSTRING, STRING)

Integer

Searches the string STRING, starting from its Nth
character, for a substring equal to the string
SUBSTRING. If found, this function returns the
integer subscript at which the matching substring
begins. Otherwise, this function returns a value
of 0. If N is not given, this function defaults to 1.

issubstring_count (SUBSTRING, N, STRING):

Integer

Returns the index of the Nth occurrence of
SUBSTRING within the specified STRING. If
there are fewer than N occurrences of
SUBSTRING, 0 is returned.

issubstring_Tim(SUBSTRING, N, STARTLIM,
ENDLIM, STRING)

Integer

This function is the same as issubstring, but the
match is constrained to start on or before the
subscript STARTLIM and to end on or before the
subscript ENDLIM. The STARTLIM or ENDLIM
constraints may be disabled by supplying a value
of false for either argument—for example,
issubstring_1im(SUBSTRING, N, false, false,
STRING) is the same as issubstring.

isuppercode (CHAR)

Boolean

Returns a value of true if CHAR is an uppercase
letter character. Otherwise, this function returns a
value of 0. For example, both isuppercode(™~)
and isuppercode(country name(2)) are valid
expressions.

Tast (CHAR)

String

Returns the last character CHAR of STRING
(which must be at least one character long).

Tength (STRING)

Integer

Returns the length of the string STRING--that is,
the number of characters in it.

locchar(CHAR, N, STRING)

Integer

Used to identify the location of characters in
symbolic fields. The function searches the string
STRING for the character CHAR, starting the
search at the Nth character of STRING. This
function returns a value indicating the location
(starting at N) where the character is found. If
the character is not found, this function returns a
value of 0. If the function has an invalid offset
(N) (for example, an offset that is beyond the
length of the string), this function returns $null$.

For example, Tocchar("n~, 2, web_page)
searches the field called web_page for the "n~
character beginning at the second character in the
field value.

Note: Be sure to use single backquotes to
encapsulate the specified character.

76 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 29. CLEM string functions (continued).

Function

Result

Description

Tocchar_back (CHAR, N, STRING)

Integer

Similar to Tocchar, except that the search is
performed backward starting from the Nth
character. For example, Tocchar_back(™n~, 9,
web_page) searches the field web_page starting
from the ninth character and moving backward
toward the start of the string. If the function has
an invalid offset (for example, an offset that is
beyond the length of the string), this function
returns $nul1$. Ideally, you should use
Tocchar_back in conjunction with the function
Tength(<field>) to dynamically use the length of
the current value of the field. For example,
Tocchar_back("n™, (length(web_page)),
web_page).

Towertoupper (CHAR)
Towertoupper (STRING)

CHAR or
String

Input can be either a string or character, which is
used in this function to return a new item of the
same type, with any lowercase characters
converted to their uppercase equivalents. For
example, Towertoupper(~a~), Towertoupper("My
string"), and Towertoupper(field_name(2)) are
all valid expressions.

matches

Boolean

Returns true if a string matches a specified
pattern. The pattern must be a string literal; it
cannot be a field name containing a pattern. A
question mark (?) can be included in the pattern
to match exactly one character; an asterisk (*)
matches zero or more characters. To match a
literal question mark or asterisk (rather than
using these as wildcards), a backslash (\) can be
used as an escape character.

replace(SUBSTRING, NEWSUBSTRING, STRING)

String

Within the specified STRING, replace all
instances of SUBSTRING with NEWSUBSTRING.

replicate(COUNT, STRING)

String

Returns a string that consists of the original
string copied the specified number of times.

stripchar(CHAR,STRING)

String

Enables you to remove specified characters from
a string or field. You can use this function, for
example, to remove extra symbols, such as
currency notations, from data to achieve a simple
number or name. For example, using the syntax
stripchar(~$~, 'Cost') returns a new field with
the dollar sign removed from all values.

Note: Be sure to use single backquotes to
encapsulate the specified character.

Chapter 8. CLEM Language Reference 77

Table 29. CLEM string functions (continued).

Function

Result

Description

skipchar(CHAR, N, STRING)

Integer

Searches the string STRING for any character
other than CHAR, starting at the Nth character.
This function returns an integer substring
indicating the point at which one is found or 0 if
every character from the Nth onward is a CHAR.
If the function has an invalid offset (for example,
an offset that is beyond the length of the string),
this function returns $null$.

Tocchar is often used in conjunction with the
skipchar functions to determine the value of N
(the point at which to start searching the string).
For example, skipchar(“s™, (Tocchar(’s™, 1,
"MyString")), "MyString").

skipchar_back(CHAR, N, STRING)

Integer

Similar to skipchar, except that the search is
performed backward, starting from the Nth
character.

startstring (LENGTH, STRING)

String

Extracts the first N characters from the specified
string. If the string length is less than or equal to
the specified length, then it is unchanged.

strmember (CHAR, STRING)

Integer

Equivalent to Tocchar(CHAR, 1, STRING). It
returns an integer substring indicating the point
at which CHAR first occurs, or 0. If the function
has an invalid offset (for example, an offset that
is beyond the length of the string), this function
returns $null$§.

subscrs(N, STRING)

CHAR

Returns the Nth character CHAR of the input
string STRING. This function can also be written
in a shorthand form as STRING(N). For example,
Towertoupper("name" (1)) is a valid expression.

substring(N, LEN, STRING)

String

Returns a string SUBSTRING, which consists of
the LEN characters of the string STRING, starting
from the character at subscript N.

substring_between(N1, N2, STRING)

String

Returns the substring of STRING, which begins
at subscript N1 and ends at subscript N2.

trim(STRING)

String

Removes leading and trailing white space
characters from the specified string.

trim_start(STRING)

String

Removes leading white space characters from the
specified string.

trimend (STRING)

String

Removes trailing white space characters from the
specified string.

unicode_char (NUM)

CHAR

Input must be decimal, not hexadecimal values.
Returns the character with Unicode value NUM.

unicode_value(CHAR)

NUM

Returns the Unicode value of CHAR

uppertolower (CHAR)
uppertolower (STRING)

CHAR or
String

Input can be either a string or character and is
used in this function to return a new item of the
same type with any uppercase characters
converted to their lowercase equivalents.

Note: Remember to specify strings with double
quotes and characters with single backquotes.
Simple field names should be specified without
quotes.

78 IBM SPSS Modeler 16 Scripting and Automation Guide

SoundEXx Functions

SoundEx is a method used to find strings when the sound is known but the precise spelling is not.
Developed in 1918, it searches out words with similar sounds based on phonetic assumptions about how
certain letters are pronounced. It can be used to search names in a database, for example, where spellings
and pronunciations for similar names may vary. The basic SoundEx algorithm is documented in a
number of sources and, despite known limitations (for example, leading letter combinations such as ph
and f will not match even though they sound the same), is supported in some form by most databases.

Table 30. CLEM soundex functions

Function Result Description

Returns the four-character SoundEx code for the
soundex (STRING) Integer specified STRING.

Returns an integer between 0 and 4 that indicates

the number of characters that are the same in the
soundex_difference(STRINGL, STRING2) Integer SoundEx encoding for the two strings, where 0

indicates no similarity and 4 indicates strong
similarity or identical strings.

Date and Time Functions

CLEM includes a family of functions for handling fields with datetime storage of string variables
representing dates and times. The formats of date and time used are specific to each stream and are
specified in the stream properties dialog box. The date and time functions parse date and time strings
according to the currently selected format.

When you specify a year in a date that uses only two digits (that is, the century is not specified), IBM
SPSS Modeler uses the default century that is specified in the stream properties dialog box.

Table 31. CLEM date and time functions.

Function

Result

Description

@TODAY

String

If you select Rollover days/mins in the stream properties
dialog box, this function returns the current date as a string
in the current date format. If you use a two-digit date
format and do not select Rollover days/mins, this function
returns $nul1$ on the current server.

to_time (ITEM)

Time

Converts the storage of the specified field to a time.

to_date(ITEM)

Date

Converts the storage of the specified field to a date.

to_timestamp (ITEM)

Timestamp

Converts the storage of the specified field to a timestamp.

to_datetime(ITEM)

Datetime

Converts the storage of the specified field to a date, time,
or timestamp value.

datetime_date(ITEM)

Date

Returns the date value for a number, string, or timestamp.
Note this is the only function that allows you to convert a
number (in seconds) back to a date. If ITEM is a string,
creates a date by parsing a string in the current date
format. The date format specified in the stream properties
dialog box must be correct for this function to be
successful. If ITEM is a number, it is interpreted as a number
of seconds since the base date (or epoch). Fractions of a day
are truncated. If ITEM is timestamp, the date part of the
timestamp is returned. If ITEM is a date, it is returned
unchanged.

date_before(DATE1, DATE2)

Boolean

Returns a value of true if DATE1 represents a date or
timestamp before that represented by DATE2. Otherwise,
this function returns a value of 0.

Chapter 8. CLEM Language Reference 79

Table 31. CLEM date and time functions (continued).

Function

Result

Description

date_days_difference(DATEL,
DATE?2)

Integer

Returns the time in days from the date or timestamp
represented by DATET to that represented by DATE2, as an
integer. If DATE?2 is before DATEI, this function returns a
negative number.

date_in_days (DATE)

Integer

Returns the time in days from the baseline date to the date
or timestamp represented by DATE, as an integer. If DATE
is before the baseline date, this function returns a negative
number. You must include a valid date for the calculation
to work appropriately. For example, you should not specify
29 February 2001 as the date. Because 2001 is a not a leap
year, this date does not exist.

date_in_months (DATE)

Real

Returns the time in months from the baseline date to the
date or timestamp represented by DATE, as a real number.
This is an approximate figure based on a month of 30.4375
days. If DATE is before the baseline date, this function
returns a negative number. You must include a valid date
for the calculation to work appropriately. For example, you
should not specify 29 February 2001 as the date. Because
2001 is a not a leap year, this date does not exist.

date_in_weeks (DATE)

Real

Returns the time in weeks from the baseline date to the
date or timestamp represented by DATE, as a real number.
This is based on a week of 7.0 days. If DATE is before the
baseline date, this function returns a negative number. You
must include a valid date for the calculation to work
appropriately. For example, you should not specify 29
February 2001 as the date. Because 2001 is a not a leap
year, this date does not exist.

date_in_years(DATE)

Real

Returns the time in years from the baseline date to the date
or timestamp represented by DATE, as a real number. This
is an approximate figure based on a year of 365.25 days. If
DATE is before the baseline date, this function returns a
negative number. You must include a valid date for the
calculation to work appropriately. For example, you should
not specify 29 February 2001 as the date. Because 2001 is a
not a leap year, this date does not exist.

date_months_difference (DATEL,
DATE?2)

Real

Returns the time in months from the date or timestamp
represented by DATET to that represented by DATE2, as a
real number. This is an approximate figure based on a
month of 30.4375 days. If DATE? is before DATEI, this
function returns a negative number.

datetime_date(YEAR, MONTH, DAY)

Date

Creates a date value for the given YEAR, MONTH, and
DAY. The arguments must be integers.

datetime_day (DATE)

Integer

Returns the day of the month from a given DATE or
timestamp. The result is an integer in the range 1 to 31.

datetime_day name (DAY)

String

Returns the full name of the given DAY. The argument
must be an integer in the range 1 (Sunday) to 7 (Saturday).

datetime_hour(TIME)

Integer

Returns the hour from a TIME or timestamp. The result is
an integer in the range 0 to 23.

datetime_in_seconds(TIME)

Real

Returns the seconds portion stored in TIME.

datetime_in_seconds (DATE),
datetime_in_seconds (DATETIME)

Real

Returns the accumulated number, converted into seconds,
from the difference between the current DATE or
DATETIME and the baseline date (1900-01-01).

80 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 31. CLEM date and time functions (continued).

Function Result Description
datetime_minute (TIME) Integer 'Retur'ns the mmute from a TIME or timestamp. The result
is an integer in the range 0 to 59.
datetime month (DATE) Integer 'Retur.ns the month from a DATE or timestamp. The result
- is an integer in the range 1 to 12.
datetime month name (MONTH) String Returns the .full narpe of the given MONTH. The argument
- - must be an integer in the range 1 to 12.
datetime_now Timestamp Returns the current time as a timestamp.
datetime second (TIME) Integer 'Retur.ns the sgcond from a TIME or timestamp. The result
- is an integer in the range 0 to 59.
Returns the abbreviated name of the given DAY. The
datetime_day_short_name (DAY) String argument must be an integer in the range 1 (Sunday) to 7
(Saturday).
datetime_month_short_name (MONTH) | String Returns the abbrev1ate.d name. of the given MONTH. The
- - - argument must be an integer in the range 1 to 12.
datetime_time(HOUR, MINUTE, Time Returns the time value for the specified HOUR, MINUTE,
SECOND) and SECOND. The arguments must be integers.
datetime_time(ITEM) Time Returns the time value of the given ITEM.
datetime_timestamp(YEAR, MONTH, Timestam Returns the timestamp value for the given YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND) P DAY, HOUR, MINUTE, and SECOND.
datetime timestamp(DATE, TIME) Timestamp Returns the timestamp value for the given DATE and
- TIME.
datetime_timestamp (NUMBER) Timestamp Returns the timestamp value of the given number of
seconds.
datetime_weekday (DATE) Integer Returns the day of the week from the given DATE or
timestamp.
datetime year(DATE) Integer Ret}lrns the year from a DATE or timestamp. The result is
- an integer such as 2002.
Returns the time in weeks from the date or timestamp
date_weeks_difference (DATE1, Real represented by DATE] to that represented by DATE?2, as a
DATE2) real number. This is based on a week of 7.0 days. If DATE2
is before DATE], this function returns a negative number.
Returns the time in years from the date or timestamp
date_years_difference (DATEI, represented by DATEI to that ?eprese'nted by DATE2, as a
DATEZ) Real real number. This is an approximate figure based on a year
of 365.25 days. If DATE? is before DATE], this function
returns a negative number.
Returns a value of true if TIMEI represents a time or
time_before(TIMEL, TIME2) Boolean timestamp before that represented by TIME2. Otherwise,
this function returns a value of 0.
Returns the time difference in hours between the times or
timestamps represented by TIME1 and TIME?2, as a real
. . number. If you select Rollover days/mins in the stream
time_hours_difference (TINEL, Real properties dialog box, a higher value of TIME1 is taken to

TIME?)

refer to the previous day. If you do not select the rollover
option, a higher value of TIME1 causes the returned value
to be negative.

Chapter 8. CLEM Language Reference 81

Table 31. CLEM date and time functions (continued).

Function Result Description

Returns the time in hours represented by TIME, as a real
number. For example, under time format HHMM, the

time_in_hours (TIME) Real expression time_in_hours('0130"') evaluates to 1.5. TIME
can represent a time or a timestamp.
time in mins(TIME) Real Returns the time in minutes rep}'esented l?y TIME, as a real
- - number. TIME can represent a time or a timestamp.
time_in_secs (TIME) Integer Returns the time in seconds represented by TIME, as an

integer. TIME can represent a time or a timestamp.

Returns the time difference in minutes between the times or
timestamps represented by TIME1 and TIME?2, as a real
number. If you select Rollover days/mins in the stream
time_mins_difference(TIMEL, Real properties dialog box, a higher value of TIMET is taken to
TIME2) refer to the previous day (or the previous hour, if only
minutes and seconds are specified in the current format). If
you do not select the rollover option, a higher value of
TIME1 will cause the returned value to be negative.

Returns the time difference in seconds between the times or
timestamps represented by TIME1 and TIME2, as an
integer. If you select Rollover days/mins in the stream
properties dialog box, a higher value of TIME1 is taken to
refer to the previous day (or the previous hour, if only
minutes and seconds are specified in the current format). If
you do not select the rollover option, a higher value of
TIMET causes the returned value to be negative.

time_secs_difference(TIMEL,

TIMEZ) Integer

Converting Date and Time Values

Note that conversion functions (and any other functions that require a specific type of input, such as a
date or time value) depend on the current formats specified in the Stream Options dialog box. For
example, if you have a field named DATE that is stored as a string with values Jan 2003, Feb 2003, and so
on, you could convert it to date storage as follows:

to_date(DATE)

For this conversion to work, select the matching date format MON YYYY as the default date format for
the stream.

For an example that converts string values to dates using a Filler node, see the stream
broadband_create_models.str, installed in the \Demos folder under the streams subfolder.

Dates stored as numbers. Note that DATE in the previous example is the name of a field, while to_date
is a CLEM function. If you have dates stored as numbers, you can convert them using the datetime_date
function, where the number is interpreted as a number of seconds since the base date (or epoch).

datetime_date(DATE)

By converting a date to a number of seconds (and back), you can perform calculations such as computing
the current date plus or minus a fixed number of days, for example:

datetime_date((date_in_days(DATE)-7)+*60+60+24)

Sequence Functions

For some operations, the sequence of events is important. The application allows you to work with the
following record sequences:

* Sequences and time series

82 IBM SPSS Modeler 16 Scripting and Automation Guide

* Sequence functions

* Record indexing

* Averaging, summing, and comparing values
* Monitoring change--differentiation

* OSINCE

* Offset values

 Additional sequence facilities

For many applications, each record passing through a stream can be considered as an individual case,
independent of all others. In such situations, the order of records is usually unimportant.

For some classes of problems, however, the record sequence is very important. These are typically time
series situations, in which the sequence of records represents an ordered sequence of events or
occurrences. Each record represents a snapshot at a particular instant in time; much of the richest
information, however, might be contained not in instantaneous values but in the way in which such
values are changing and behaving over time.

Of course, the relevant parameter may be something other than time. For example, the records could
represent analyses performed at distances along a line, but the same principles would apply.

Sequence and special functions are immediately recognizable by the following characteristics:
¢ They are all prefixed by @.
* Their names are given in upper case.

Sequence functions can refer to the record currently being processed by a node, the records that have
already passed through a node, and even, in one case, records that have yet to pass through a node.
Sequence functions can be mixed freely with other components of CLEM expressions, although some
have restrictions on what can be used as their arguments.

Examples

You may find it useful to know how long it has been since a certain event occurred or a condition was
true. Use the function @SINCE to do this—for example:

@SINCE(Income > Qutgoings)

This function returns the offset of the last record where this condition was true--that is, the number of
records before this one in which the condition was true. If the condition has never been true, @SINCE
returns @INDEX + 1.

Sometimes you may want to refer to a value of the current record in the expression used by @SINCE. You
can do this using the function @THIS, which specifies that a field name always applies to the current
record. To find the offset of the last record that had a Concentration field value more than twice that of
the current record, you could use:

@SINCE(Concentration > 2 * @THIS(Concentration))

In some cases the condition given to @SINCE is true of the current record by definition—for example:
@SINCE(ID == @THIS(ID))

For this reason, @SINCE does not evaluate its condition for the current record. Use a similar function,

@SINCEO, if you want to evaluate the condition for the current record as well as previous ones; if the
condition is true in the current record, @SINCE® returns 0.

Chapter 8. CLEM Language Reference 83

Table 32. CLEM sequence functions.

Function

Result

Description

MEAN (FIELD)

Real

Returns the mean average of values for the specified
FIELD or FIELDS.

@MEAN(FIELD, EXPR)

Real

Returns the mean average of values for FIELD over the
last EXPR records received by the current node, including
the current record. FIELD must be the name of a numeric
field. EXPR may be any expression evaluating to an
integer greater than 0. If EXPR is omitted or if it exceeds
the number of records received so far, the average over all
of the records received so far is returned.

GMEAN(FIELD, EXPR, INT)

Real

Returns the mean average of values for FIELD over the
last EXPR records received by the current node, including
the current record. FIELD must be the name of a numeric
field. EXPR may be any expression evaluating to an
integer greater than 0. If EXPR is omitted or if it exceeds
the number of records received so far, the average over all
of the records received so far is returned. INT specifies the
maximum number of values to look back. This is far more
efficient than using just two arguments.

@DIFF1(FIELD)

Real

Returns the first differential of FIELD1. The
single-argument form thus simply returns the difference
between the current value and the previous value of the
field. Returns 0 if the relevant previous records do not
exist.

@DIFF1(FIELD1, FIELD2)

Real

The two-argument form gives the first differential of
FIELD1 with respect to FIELD2. Returns 0 if the relevant
previous records do not exist.

@DIFF2(FIELD)

Real

Returns the second differential of FIELD1. The
single-argument form thus simply returns the difference
between the current value and the previous value of the
field. Returns 0 if the relevant previous records do not
exist

@DIFF2(FIELD1, FIELD2)

Real

The two-argument form gives the first differential of
FIELD1 with respect to FIELD2. Returns 0 if the relevant
previous records do not exist.

O@INDEX

Integer

Returns the index of the current record. Indices are
allocated to records as they arrive at the current node. The
first record is given index 1, and the index is incremented
by 1 for each subsequent record.

GLAST NON_BLANK(FIELD)

Any

Returns the last value for FIELD that was not blank, as
defined in an upstream source or Type node. If there are
no nonblank values for FIELD in the records read so far,
$nul1$ is returned. Note that blank values, also called
user-missing values, can be defined separately for each
field.

@MAX (FIELD)

Number

Returns the maximum value for the specified FIELD.

@MAX (FIELD, EXPR)

Number

Returns the maximum value for FIELD over the last EXPR
records received so far, including the current record. FIELD
must be the name of a numeric field. EXPR may be any
expression evaluating to an integer greater than 0.

84 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 32. CLEM sequence functions (continued).

Function

Result

Description

@MAX (FIELD, EXPR, INT)

Number

Returns the maximum value for FIELD over the last EXPR
records received so far, including the current record. FIELD
must be the name of a numeric field. EXPR may be any
expression evaluating to an integer greater than 0. If EXPR
is omitted, or if it exceeds the number of records received
so far, the maximum value over all of the records received
so far is returned. INT specifies the maximum number of
values to look back. This is far more efficient than using
just two arguments.

@MIN(FIELD)

Number

Returns the minimum value for the specified FIELD.

@MIN(FIELD, EXPR)

Number

Returns the minimum value for FIELD over the last EXPR
records received so far, including the current record. FIELD
must be the name of a numeric field. EXPR may be any
expression evaluating to an integer greater than 0.

@MIN(FIELD, EXPR, INT)

Number

Returns the minimum value for FIELD over the last EXPR
records received so far, including the current record. FIELD
must be the name of a numeric field. EXPR may be any
expression evaluating to an integer greater than 0. If EXPR
is omitted, or if it exceeds the number of records received
so far, the minimum value over all of the records received
so far is returned. INT specifies the maximum number of
values to look back. This is far more efficient than using
just two arguments.

@OFFSET(FIELD, EXPR)

Any

Returns the value of FIELD in the record offset from the
current record by the value of EXPR. A positive offset
refers to a record that has already passed (a "lookback"),
while a negative one specifies a "lookahead" to a record
that has yet to arrive. For example, @OFFSET(Status, 1)
returns the value of the Status field in the previous record,
while @OFFSET(Status, —4) "looks ahead" four records in
the sequence (that is, to records that have not yet passed
through this node) to obtain the value. Note that a negative
(look ahead) offset must be specified as a constant. For positive
offsets only, EXPR may also be an arbitrary CLEM
expression, which is evaluated for the current record to
give the offset. In this case, the three-argument version of
this function should improve performance (see next
function). If the expression returns anything other than a
non-negative integer, this causes an error—that is, it is not
legal to have calculated lookahead offsets.

Note: A self-referential @OFFSET function cannot use literal
lookahead. For example, in a Filler node, you cannot
replace the value of fieldl using an expression such as
@OFFSET(fieldl,-2).

Note: Using both "lookahead" and "lookback" within one
node is not supported.

Chapter 8. CLEM Language Reference 85

Table 32. CLEM sequence functions (continued).

Function Result Description

Performs the same operation as the @OFFSET function with
the addition of a third argument, INT, which specifies the
maximum number of values to look back. In cases where
the offset is computed from an expression, this third
argument should improve performance.

For example, in an expression such as@0FFSET(Foo, Month,
12), the system knows to keep only the last twelve values
@OFFSET(FIELD, EXPR, INT) Any of Foo; otherwise, it has to store every value just in case. In
cases where the offset value is a constant—including
negative "lookahead" offsets, which must be constant—the
third argument is pointless and the two-argument version
of this function should be used. See also the note about
self-referential functions in the two-argument version
described earlier.

Note: Using both "lookahead" and "lookback" within one
node is not supported.

Returns the standard deviation of values for the specified

@SDEV(FIELD) Real FIELD or FIELDS.

Returns the standard deviation of values for FIELD over
the last EXPR records received by the current node,
including the current record. FIELD must be the name of a
numeric field. EXPR may be any expression evaluating to
an integer greater than 0. If EXPR is omitted, or if it
exceeds the number of records received so far, the
standard deviation over all of the records received so far is
returned.

@SDEV(FIELD, EXPR) Real

Returns the standard deviation of values for FIELD over
the last EXPR records received by the current node,
including the current record. FIELD must be the name of a
numeric field. EXPR may be any expression evaluating to
an integer greater than 0. If EXPR is omitted, or if it
exceeds the number of records received so far, the
standard deviation over all of the records received so far is
returned. INT specifies the maximum number of values to
look back. This is far more efficient than using just two
arguments.

@SDEV(FIELD, EXPR, INT) Real

Returns the number of records that have passed since

@SINCE (EXPR) Any EXPR, an arbitrary CLEM expression, was true.

Adding the second argument, INT, specifies the maximum
O@SINCE(EXPR, INT) Any number of records to look back. If EXPR has never been
true, INT is @INDEX+1.

Considers the current record, while @SINCE does not;

GSINCEO(EXPR) Any @SINCEO returns 0 if EXPR is true for the current record.
Adding the second argument, INT specifies the maximum

GSINCEO(EXPR, INT) Any number of records to look back.

@SUM(FIELD) Number Returns the sum of values for the specified FIELD or

FIELDS.

86 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 32. CLEM sequence functions (continued).

Description

Returns the sum of values for FIELD over the last EXPR
records received by the current node, including the current
record. FIELD must be the name of a numeric field. EXPR
may be any expression evaluating to an integer greater
than 0. If EXPR is omitted, or if it exceeds the number of
records received so far, the sum over all of the records
received so far is returned.

Returns the sum of values for FIELD over the last EXPR
records received by the current node, including the current
record. FIELD must be the name of a numeric field. EXPR
may be any expression evaluating to an integer greater
than 0. If EXPR is omitted, or if it exceeds the number of
records received so far, the sum over all of the records
received so far is returned. INT specifies the maximum
number of values to look back. This is far more efficient
than using just two arguments.

Function Result
@SUM(FIELD, EXPR) Number
OSUM(FIELD, EXPR, INT) Number
@THIS(FIELD) Any

Returns the value of the field named FIELD in the current
record. Used only in @SINCE expressions.

Global Functions

The functions @MEAN, @SUM, GMIN, @MAX, and @SDEV work on, at most, all of the records read up to and
including the current one. In some cases, however, it is useful to be able to work out how values in the
current record compare with values seen in the entire data set. Using a Set Globals node to generate
values across the entire data set, you can access these values in a CLEM expression using the global

functions.

For example,
@GLOBAL_MAX(Age)

returns the highest value of Age in the data set, while the expression
(Value - @GLOBAL MEAN(Value)) / @GLOBAL SDEV(Value)

expresses the difference between this record's Value and the global mean as a number of standard
deviations. You can use global values only after they have been calculated by a Set Globals node. All
current global values can be canceled by clicking the Clear Global Values button on the Globals tab in

the stream properties dialog box.

Table 33. CLEM global functions.

Function Result

Description

@GLOBAL_MAX (FIELD) Number

Returns the maximum value for FIELD over the whole data
set, as previously generated by a Set Globals node. FIELD
must be the name of a numeric field. If the corresponding
global value has not been set, an error occurs.

@GLOBAL_MIN(FIELD) Number

Returns the minimum value for FIELD over the whole data
set, as previously generated by a Set Globals node. FIELD
must be the name of a numeric field. If the corresponding
global value has not been set, an error occurs.

@GLOBAL_SDEV (FIELD) Number

Returns the standard deviation of values for FIELD over the
whole data set, as previously generated by a Set Globals node.
FIELD must be the name of a numeric field. If the
corresponding global value has not been set, an error occurs.

Chapter 8. CLEM Language Reference 87

Table 33. CLEM global functions (continued).

Function

Result

Description

@GLOBAL_MEAN(FIELD)

Number

Returns the mean average of values for FIELD over the whole
data set, as previously generated by a Set Globals node. FIELD
must be the name of a numeric field. If the corresponding
global value has not been set, an error occurs.

@GLOBAL_SUM(FIELD)

Number

Returns the sum of values for FIELD over the whole data set,
as previously generated by a Set Globals node. FIELD must be
the name of a numeric field. If the corresponding global value
has not been set, an error occurs.

Functions Handling Blanks and Null Values

Using CLEM, you can specify that certain values in a field are to be regarded as "blanks," or missing
values. The following functions work with blanks.

Table 34. CLEM blank and null value functions.

Function

Result

Description

OBLANK(FIELD)

Boolean

Returns true for all records whose values are blank
according to the blank-handling rules set in an upstream
Type node or source node (Types tab).

@LAST_NON_BLANK(FIELD)

Any

Returns the last value for FIELD that was not blank, as
defined in an upstream source or Type node. If there are
no nonblank values for FIELD in the records read so far,
$nul1$ is returned. Note that blank values, also called
user-missing values, can be defined separately for each
field.

@NULL (FIELD)

Boolean

Returns true if the value of FIELD is the system-missing
$nul1$. Returns false for all other values, including
user-defined blanks. If you want to check for both, use
@BLANK (FIELD) and@NULL (FIELD).

undef

Any

Used generally in CLEM to enter a $nul11$ value—for
example, to fill blank values with nulls in the Filler node.

Blank fields may be "filled in" with the Filler node. In both Filler and Derive nodes (multiple mode only),
the special CLEM function @FIELD refers to the current field(s) being examined.

Special Fields

Special functions are used to denote the specific fields under examination, or to generate a list of fields as
input. For example, when deriving multiple fields at once, you should use @FIELD to denote "perform this
derive action on the selected fields." Using the expression 10g(@FIELD) derives a new log field for each

selected field.
Table 35. CLEM special fields.

Function Result Description
FIELD Any Perf(.)r.ms an action on 3}11 fields
specified in the expression context.

88 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 35. CLEM special fields (continued).

Function

Result

Description

OTARGET

Any

When a CLEM expression is used in
a user-defined analysis function,
@TARGET represents the target field or
"correct value" for the
target/predicted pair being analyzed.
This function is commonly used in an
Analysis node.

@OPREDICTED

Any

When a CLEM expression is used in
a user-defined analysis function,
@PREDICTED represents the predicted
value for the target/predicted pair
being analyzed. This function is
commonly used in an Analysis node.

OPARTITION_FIELD

Any

Substitutes the name of the current
partition field.

OTRAINING_PARTITION

Any

Returns the value of the current
training partition. For example, to
select training records using a Select
node, use the CLEM expression:
OPARTITION_FIELD =
@TRAINING_PARTITION This ensures
that the Select node will always work
regardless of which values are used
to represent each partition in the
data.

@TESTING_PARTITION

Any

Returns the value of the current
testing partition.

@VALIDATION_PARTITION

Any

Returns the value of the current
validation partition.

@FIELDS BETWEEN(start, end)

Any

Returns the list of field names
between the specified start and end
fields (inclusive) based on the natural
(that is, insert) order of the fields in
the data.

@FIELDS_MATCHING(pattern)

Any

Returns a list a field names matching
a specified pattern. A question mark
(?) can be included in the pattern to
match exactly one character; an
asterisk (*) matches zero or more
characters. To match a literal question
mark or asterisk (rather than using
these as wildcards), a backslash (\)
can be used as an escape character.

@MULTI_RESPONSE_SET

Any

Returns the list of fields in the named
multiple response set.

Chapter 8. CLEM Language Reference 89

90 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 9. Properties Reference

Properties Reference Overview

You can specify a number of different properties for nodes, streams, SuperNodes, and projects. Some
properties are common to all nodes, such as name, annotation, and ToolTip, while others are specific to
certain types of nodes. Other properties refer to high-level stream operations, such as caching or
SuperNode behavior. Properties can be accessed through the standard user interface (for example, when
you open a dialog box to edit options for a node) and can also be used in a number of other ways.

* Properties can be modified through scripts, as described in this section. For more information, see
[“Syntax for Properties.”|

* Node properties can be used in SuperNode parameters.

* Node properties can also be used as part of a command line option (using the -P flag) when starting
IBM SPSS Modeler.

In the context of scripting within IBM SPSS Modeler, node and stream properties are often called slot
parameters. In this guide, they are referred to as node or stream properties.

For more information on the scripting language, see [Chapter 3, “Scripting Language,” on page 13)

Syntax for Properties
Properties must use the following syntax structure:
NAME:TYPE.PROPERTY

where NAME is the name of a node, and TYPE is its type (for example, multiplotnode or derivenode). You
can omit either NAME or TYPE, but you must include at least one of them. PROPERTY is the name of the node
or stream parameter that your expression refers to. For example, the following syntax is used to filter the
Age field from downstream data:

set mynode:filternode.include.Age = false

To use a custom value for any of the parameters (NAME, TYPE, or PROPERTY), first set the value in a
statement, such as set derive.new_name = mynewfield. From that point on, you can use the value,
mynewfield, as the parameter by preceding it with the ~ symbol. For example, you can set the type for the
Derive node named above by using the following syntax:

set “mynewfield.result_type = "Conditional"

All nodes used in IBM SPSS Modeler can be specified in the TYPE parameter of the syntax
NAME : TYPE . PROPERTY.

Structured Properties
There are two ways in which scripting uses structured properties for increased clarity when parsing;:

* To give structure to the names of properties for complex nodes, such as Type, Filter, or Balance nodes.
* To provide a format for specifying multiple properties at once.

Structuring for Complex Interfaces

The scripts for nodes with tables and other complex interfaces (for example, the Type, Filter, and Balance
nodes) must follow a particular structure in order to parse correctly. These structured properties need a
name that is more complex than the name for a single identifier. For example, within a Filter node, each
available field (on its upstream side) is switched on or off. In order to refer to this information, the Filter
node stores one item of information per field (whether each field is true or false), and these multiple

91

items are accessed and updated by a single property called field. This property may have (or be given)
the value true or false. Suppose that a Filter node named mynode has (on its upstream side) a field called
Age. To switch this to off, set the property mynode.include.Age to the value false, as follows:

set mynode.include.Age = false
Structuring to Set Multiple Properties

For many nodes, you can assign more than one node or stream property at a time. This is referred to as
the multiset command or set block. See the topic [“set Command” on page 25| for more information.

In some cases, a structured property can be quite complex. The backslash (\) character can be used as a
line continuation character to help you line up the arguments for clarity. An example is as follows:
mynode:sortnode.keys = [{ 'K' Descending} \

{ 'Age' Ascending}\

{ 'Na' Descending }]

Another advantage that structured properties have is their ability to set several properties on a node
before the node is stable. By default, a multiset sets all properties in the block before taking any action
based on an individual property setting. For example, when defining a Fixed File node, using two steps
to set field properties would result in errors because the node is not consistent until both settings are
valid. Defining properties as a multiset circumvents this problem by setting both properties before
updating the data model.

Abbreviations
Standard abbreviations are used throughout the syntax for node properties. Learning the abbreviations is
helpful in constructing scripts.

Table 36. Standard abbreviations used throughout the syntax

Abbreviation Meaning

abs Absolute value

len Length

min Minimum

max Maximum

correl Correlation

covar Covariance

num Number or numeric
pct Percent or percentage
transp Transparency

xval Cross-validation

var Variance or variable (in source nodes)

Node and Stream Property Examples

Node and stream properties can be used in a variety of ways with IBM SPSS Modeler. They are most
commonly used as part of a script, either a standalone script, used to automate multiple streams or
operations, or a stream script, used to automate processes within a single stream. You can also specify
node parameters by using the node properties within the SuperNode. At the most basic level, properties
can also be used as a command line option for starting IBM SPSS Modeler. Using the -p argument as part
of command line invocation, you can use a stream property to change a setting in the stream.

92 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 37. Node and stream property examples

Property Meaning

s.max_size Refers to the property max_size of the node named s.

Refers to the property max_size of the node named s,

: . ize .
s:samplenode.max_siz which must be a Sample node.

Refers to the property max_size of the Sample node in
:samplenode.max_size the current stream (there must be only one Sample
node).

Refers to the property max_size of the node named s,

sisample.max_size which must be a Sample node.

t.direction.Age Refers to the role of the field Age in the Type node t.

*** NOT LEGAL *** You must specify either the node
name or the node type.

r.max_size

The example s:sample.max_size illustrates that you do not need to spell out node types in full.

The example t.direction.Age illustrates that some slot names can themselves be structured—in cases
where the attributes of a node are more complex than simply individual slots with individual values.
Such slots are called structured or complex properties.

Node Properties Overview

Each type of node has its own set of legal properties, and each property has a type. This type may be a
general type—number, flag, or string—in which case settings for the property are coerced to the correct
type. An error is raised if they cannot be coerced. Alternatively, the property reference may specify the
range of legal values, such as Discard, PairAndDiscard, and IncludeAsText, in which case an error is
raised if any other value is used. Flag properties should be read or set by using values of true and false.
(Variations including 0ff, OFF, off, No, NO, no, n, N, f, F, false, False, FALSE, or 0 are also recognized when
setting values but may cause errors when reading property values in some cases. All other values are
regarded as true. Using true and false consistently will avoid any confusion.) In this guide's reference
tables, the structured properties are indicated as such in the Property description column, and their usage
formats are given.

Common Node Properties
A number of properties are common to all nodes (including SuperNodes) in IBM SPSS Modeler.

Table 38. Common node properties.

Property name Data type Property description
use_custom_name flag
name string Read-only property that reads the

name (either auto or custom) for a
node on the canvas.

custom_name string Specifies a custom name for the
node.

tooltip string

annotation string

keywords string Structured slot that specifies a list of

keywords associated with the object
(for example, ["Keywordl"
"Keyword2"]).

Chapter 9. Properties Reference 93

Table 38. Common node properties (continued).

Property name

Data type

Property description

cache_enabled

flag

node_type

source_supernode
process_supernode
terminal_supernode

all node names as specified for
scripting

Read-only property used to refer to a
node by type. For example, instead of
referring to a node only by name,
such as real_income, you can also
specify the type, such as
userinputnode or filternode.

SuperNode-specific properties are discussed separately, as with all other nodes. See the topic|Chapter 22

[“SuperNode Properties,” on page 321|for more information.

94 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 10. Stream Properties

A variety of stream properties can be controlled by scripting. To reference stream properties, you must
use a special stream variable, denoted with a ~ preceding the stream:

set "stream.execute method = Script

Example

The nodes property is used to refer to the nodes in the current stream. The following stream script

provides an example:

var listofnodes
var thenode
set lTistofnodes = ~stream.nodes

set ~stream.annotation = “stream.annotation >< "\n\nThis stream is called \"" >< “~stream.name >
< "\" and contains/ the following nodes\n"

for thenode in listofnodes

set ~stream.annotation = ~stream.annotation >< "\n" >< ~thenode.node_type

endfor

The above example uses the nodes property to create a list of all nodes in the stream and write that list
in the stream annotations. The annotation produced looks like this:

This stream is called "druglearn" and contains the following nodes

derivenode
neuralnetworknode
variablefilenode
typenode

c50node
filternode

Stream properties are described in the following table.

Table 39. Stream properties.

Property name Data type Property description
execute_method Normal
Script

© Copyright IBM Corporation 1994, 2013

95

Table 39. Stream properties (continued).

Property name

Data type

Property description

date_format

"DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"

DAY

MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD. YYYY"
"DD.MON. YY"
“DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
“DD/MON/YY"
"DD/MON/YYYY"
MON YYYY

q Q YYYY

ww WK YYYY

date_baseline

number

date 2digit_baseline

number

time_format

"HHMMSS"

n HHMMII

IIMMSS n
"HH:MM:SS"
"HH:MM"

"MM:SS"

"(H)H: (M)M: (S)S"
"(H)H: (M)M"
"(M)M: (S)S"
"HH.MM.SS"
"HH.MM"

"MM.SS"

"(H)H. (M)M. (S)S"
"(H)H. (M)M"
"(M)M. (S)S"

time_rollover

flag

import_datetime_as_string

flag

decimal_places

number

decimal_symbol

Default
Period
Comma

angles_in_radians

flag

use_max_set_size

flag

max_set_size

number

ruleset_evaluation

Voting
FirstHit

96 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 39. Stream properties (continued).

Property name Data type Property description
refresh_source_nodes flag Use to refresh source nodes
automatically upon stream execution.
script string
annotation string Example:
set “stream.annotation =
"something interesting"
name string Example:
set x = “stream.name
Note: This property is read-only. If
you want to change the name of a
stream, you should save it with a
different name.
parameters Use this property to update stream
parameters from within a stand-
alone script.
Example:
set “stream.parameters.height = 23
nodes See detailed information below.
encoding SystemDefault
IIUTF_SII
stream_rewriting boolean
stream_rewriting_maximise_sql boolean
stream_rewriting_optimise_clem_ boolean
execution
stream_rewriting optimise syntax_ |boolean
execution
enable_parallelism boolean
sql_generation boolean
database_caching boolean
sql_logging boolean
sql_generation_logging boolean
sql_Tlog_native boolean
sql_Tlog_prettyprint boolean
record_count_suppress_input boolean
record_count_feedback_interval integer
use_stream auto_create node_ boolean If true, then stream-specific settings
settings are used, otherwise user preferences
are used.
create_model_applier_for_new_ boolean If true, when a model builder creates

models

a new model, and it has no active
update links, a new model applier is
added.

Note: If you are using IBM SPSS
Modeler Batch version 15 you must
explicitly add the model applier
within your script.

Chapter 10. Stream Properties 97

Table 39. Stream properties (continued).

Property name

Data type

Property description

create_model_applier_update Tinks

createEnabled

Defines the type of link created when

createDisabled a model applier node is added
doNotCreate automatically.
create_source_node_from_builders boolean If true, when a source builder creates
a new source output, and it has no
active update links, a new source
node is added.
create_source_node_update_links createEnabled Defines the type of link created when
createDisabled a source node is added automatically.
doNotCreate

98 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 11. Project Properties

A number of properties are available for scripting with projects.

Example

load project "C:/clemdata/DrugData.cpj"
set "“project.summary="Initial modeling work on the latest drug data."
set ~project.ordering=NameAddedType

execute_project

Table 40. Project properties.

Property name Data type Property description
summary string The project summary—typically an
abbreviated version of the annotation.
title string The report title.
author string The report author.
structure Phase Determines how the project is
Class organized—by data mining phase or

by object type (class).

include_mode

IncludedItems
ExcludedItems

Determines which items to include in
the project report.

AllItems
select_mode AllItems Determines (by age) which items to
RecentItems include in the report.
OldItems
recent_item_limit integer Used when select_mode is
RecentItems.
old_item_ limit integer Used when select_mode is O1dItems.
ordering TypeNameAdded Determines the order in which items
TypeAddedName are listed in the report.
NameAddedType
AddedNameType

99

100 1BM SPSS Modeler 16 Scripting and Automation Guide

Chapter 12. Source Node Properties

Source Node Common Properties

Properties that are common to all source nodes are listed below, with information on specific nodes in the

topics that follow.

Example

create variablefilenode
set :variablefilenode.
set :variablefilenode.
set :variablefilenode.
set :variablefilenode.

#storage is read only

set :variablefilenode.
set :variablefilenode.

full_filename = "$CLEO_DEMOS/DRUG4n"
use_custom_values.Age = True
direction.Age = Input
type.Age = Range

check.Age = None
values.Age = [1 100]

Table 41. Source node common properties.

Property name Data type Property description
direction Input Keyed property for field roles.
Target
Both Usage format:
None NODE.direction.FIELDNAME
Partition Note: The values In and Out are now deprecated.
Split Support for them may be withdrawn in a future release.
Frequency
RecordID
type Range Type of field. Setting this property to Default will clear
Flag any values property setting, and if value_mode is set to
Set Specify, it will be reset to Read. If value_mode is already
Typeless set to Pass or Read, it will be unaffected by the type
Discrete setting.
Ordered Set
Default Usage format:
NODE. type.FIELDNAME
storage Unknown Read-only keyed property for field storage type.
String
Integer Usage format:
Real NODE.storage. FIELDNAME
Time
Date
Timestamp
check None Keyed property for field type and range checking.
Nullify
Coerce Usage format:
Discard NODE. check.FIELDNAME
Warn
Abort

101

Table 41. Source node common properties (continued).

Property name

Data type

Property description

values

[value value]

For a continuous (range) field, the first value is the
minimum, and the last value is the maximum. For
nominal (set) fields, specify all values. For flag fields, the
first value represents false, and the last value represents
true. Setting this property automatically sets the
value_mode property to Specify.

Usage format:
NODE.values.FIELDNAME

value_mode

Read
Pass
Read+
Current
Specify

Determines how values are set for a field on the next
data pass.

Usage format:

NODE.value_mode.FIELDNAME

Note that you cannot set this property to Specify directly;
to use specific values, set the values property.

default_value_mode

Read
Pass

Specifies the default method for setting values for all
fields.

Usage format:
NODE.default_value_mode

Example:
set mynode.default_value mode = Pass

This setting can be overridden for specific fields by
using the value_mode property.

extend_values

Applies when value_mode is set to Read. Set to T to add
newly read values to any existing values for the field.
Set to F to discard existing values in favor of the newly
read values.

Usage format:
NODE.extend_values.FIELDNAME

value_Tabels

string

Used to specify a value label. Example:
set :variablefilenode.value_labels.Age = [{3
three} {5 five}]

Note that values must be specified first.

enable_missing

flag

When set to T, activates tracking of missing values for
the field.

Usage format:
NODE.enable_missing.FIELDNAME

missing_values

[value value ...]

Specifies data values that denote missing data.

Usage format:
NODE.missing_values.FIELDNAME

range_missing

When this property is set to T, specifies whether a
missing-value (blank) range is defined for a field.

Usage format:
NODE.range_missing.FIELDNAME

102 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 41. Source node common properties (continued).

Property name Data type

Property description

missing_Tower string

When range_missing is true, specifies the lower bound
of the missing-value range.

Usage format:
NODE.missing_lower.FIELDNAME

missing_upper string

When range_missing is true, specifies the upper bound
of the missing-value range.

Usage format:
NODE.missing_upper.FIELDNAME

null_missing flag

When this property is set to T, nulls (undefined values
that are displayed as $nul11$ in the software) are
considered missing values.

Usage format:
NODE.nul1_missing.FIELDNAME

whitespace_missing flag

When this property is set to T, values containing only
white space (spaces, tabs, and new lines) are considered
missing values.

Usage format:
NODE.whitespace_missing.FIELDNAME

description string

Used to specify a field label or description.

default_include flag

Keyed property to specify whether the default behavior
is to pass or filter fields:
NODE.default_include

Example:
set mynode:filternode.default_include = false

include flag

Keyed property used to determine whether individual
fields are included or filtered:
NODE.include.FIELDNAME.

Example:
set mynode:filternode.include.Age = true

new_name string

Example:
set mynode:filternode.new_name.'Age' = "years"

asimport Properties

The Analytic Server source enables you to run a stream on Hadoop Distributed File System (HDFS).

Example

create asimport
set :asimport.data_source = "Drug4n"

Table 42. asimport properties.

asimport properties Data type

Property description

data_source string

The name of the data source.

Chapter 12. Source Node Properties 103

cognosimport Node Properties

"

Example

create cognosimport

C:] The IBM Cognos BI source node imports data from Cognos BI databases.

set :cognosimport.cognos_connection = {'http://mycogsrv1:9300/p2pd/serviet/dispatch', true, "", "", ""}

set :cognosimport.cognos_package_name = '/Public Folders/GOSALES'

set :cognosimport.cognos_items = {"[GreatOutdoors].[BRANCH].[BRANCH_CODE]",

"[GreatOutdoors] . [BRANCH] . [COUNTRY_CODE]"}

Table 43. cognosimport node properties.

cognosimport node properties Data type Property description
mode Data Specifies whether to import Cognos Bl data
Report (default) or reports.

cognos_connection

{"string” flag,"string”,
"string” ,"string”}

A list property containing the connection details for
the Cognos server. The format is:

{"Cognos_server_URL", login_mode, "namespace",

"username", "password"}

where:

Cognos_server_URL is the URL of the Cognos server
containing the source

login_mode indicates whether anonymous login is
used, and is either true or false; if set to true, the
following fields should be set to ""

namespace specifies the security authentication
provider used to log on to the server

username and password are those used to log on to
the Cognos server

cognos_package_name string The path and name of the Cognos package from
which you are importing data objects, for example:
/Public Folders/GOSALES
Note: Only forward slashes are valid.
cognos_items {"field”,"field”, ... The name of one or more data objects to be
,"field"} imported. The format of field is

[namespace].[query_subject].[query_item]

Example:
set :cognosimport.cognos_items = {"[Inventory
(query)].[Inventory].[Opening inventory]",
"[Inventory
(query)].[Inventory].[Quantity shipped]",
"[Inventory (query)].[Inventory].[Additions]",
"[Inventory (query)].[Inventory].[Unit
cost]", "[Inventory
(query)].[Inventory].[Closing inventory]",
"[Inventory (query)].[Inventory].[Average unit
cost]"}

104 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 43. cognosimport node properties (continued).

cognosimport node properties Data type Property description

cognos_filters field The name of one or more filters to apply before
importing data.

Example:
set :cognosimport.cognos_filters =
{"[Inventory].[Filter].[MyFilter]"}

cognos_data_parameters list Values for prompt parameters for data.
Name-and-value pairs are enclosed in braces, and
multiple pairs are separated by commas and the
whole string enclosed in square brackets.

Format:

"non

[{"param1", "value"},...{"paramN", "value"}]

Example:
set :cognosimport.cognos_data_parameters =
[{Ilsexva'luell,llFll}’{Ilall,lllll}’{Ilbll’lllll}]

cognos_report_directory field The Cognos path of a folder or package from
which to import reports, for example:
/Public Folders/GOSALES

Note: Only forward slashes are valid.

cognos_report_name field The path and name within the report location of a
report to import, for example:

set :cognosimport.cognos_report_name =
/Jimmy/Package/Drug4nPackage/3columns

cognos_report_parameters list Values for report parameters. Name-and-value
pairs are enclosed in braces, and multiple pairs are
separated by commas and the whole string
enclosed in square brackets.

Format:
[{"param1", "value"},...{"paramN", "value"}]

Example:
set :cognosimport.cognos_report_parameters =
[{Ilsexva'luell’llFll}’{Ilall’lllll}’{Ilbllglllll}]

databasenode Properties

e The Database node can be used to import data from a variety of other packages using ODBC
(@\) (Open Database Connectivity), including Microsoft SQL Server, DB2, Oracle, and others.
iy

Example

create databasenode

set :databasenode.mode = Table

set :databasenode.query = "SELECT * FROM drug4n"
set :databasenode.datasource = "Drug4n_db"

set :databasenode.username = "spss"

set :databasenode.password = "spss"

var test_e

set test_e = :databasenode.epassword
set :databasenode.tablename = ".Drugé4n"

Chapter 12. Source Node Properties 105

Table 44. databasenode properties.

databasenode properties Data type Property description
mode Table Specify Table to connect to a database table by
Query using dialog box controls, or specify Query to
query the selected database by using SQL.
datasource string Database name (see also note below).
username string Database connection details (see also note
below).
password string
epassword string Specifies an encoded password as an
alternative to hard-coding a password in a
script.
See the topic|“Generating an Encoded)|
[Password” on page 47| for more information.
This property is read-only during execution.
tablename string Name of the table you want to access.
strip_spaces None Options for discarding leading and trailing
Left spaces in strings.
Right
Both
use_quotes AsNeeded Specify whether table and column names are
Always enclosed in quotation marks when queries are
Never sent to the database (for example, if they
contain spaces or punctuation).
query string Specifies the SQL code for the query you want
to submit.

Note: If the database name (in the datasource property) contains one or more spaces, periods (also
known as a "full stop"), or underscores, you can use the "backslash double quote" format to treat it as
string. For example: \"db2v9.7.6_1inux\" or: "\"TDATA 131\"".

Note: If the database name (in the datasource property) contains spaces, then instead of individual
properties for datasource, username and password, you can also use a single datasource property in the

following format:

Table 45. databasenode properties - datasource specific.

databasenode properties Data type

Property description

datasource string

Format:
{database_name,username,password[,true |
false]}

The last parameter is for use with encrypted
passwords. If this is set to true, the password
will be decrypted before use.

Example

create databasenode
set :databasenode.mode = Table
set :databasenode.query = "SELECT * FROM drug4n"

set :databasenode.datasource = {"ORA 10gR2", userl, mypsw, true}
var test_e

set test_e = :databasenode.epassword

set :databasenode.tablename = ".Drug4n"

106 1BM SPSS Modeler 16 Scripting and Automation Guide

Use this format also if you are changing the data source; however, if you just want to change the
username or password, you can use the username or password properties.

datacollectionimportnode Properties

Data Collection Data Model used by IBM Corp. market research products. The IBM SPSS

('\ The IBM SPSS Data Collection Data Import node imports survey data based on the IBM SPSS
@
> Data Collection Data Library must be installed to use this node.

Figure 6. Dimensions
Data Import node

Example

create datacollectionimportnode

set :datacollectionimportnode.metadata_name="mrQvDsc"

set :datacollectionimportnode.metadata_file="C:/Program Files/IBM/SPSS/DataCollection/DDL/Data/
Quanvert/Museum/museum. pkd"

set :datacollectionimportnode.casedata_name="mrQvDsc"

set :datacollectionimportnode.casedata_source_type=File

set :datacollectionimportnode.casedata_file="C:/Program Files/IBM/SPSS/DataCollection/DDL/Data/
Quanvert/Museum/museum. pkd"

set :datacollectionimportnode.import_system variables = Common

set :datacollectionimportnode.import multi_response = MultipleFlags

Table 46. datacollectionimportnode properties.

datacollectionimportnode properties |Data type Property description

metadata_name string The name of the MDSC. The special value
DimensionsMDD indicates that the standard IBM
SPSS Data Collection metadata document
should be used. Other possible values include:
mrADODsc

mrI2dDsc

mrLogDsc

mrQdiDrsDsc

mrQvDsc

mrSampleReportingMDSC

mrSavDsc

mrSCDsc

mrScriptMDSC

The special value none indicates that there is
no MDSC.

metadata_file string Name of the file where the metadata is stored.

casedata_name string The name of the CDSC. Possible values
include:
mrADODsc
mrI2dDsc
mrLogDsc
mrPunchDSC
mrQdiDrsDsc
mrQvDsc
mrRdbDsc2
mrSavDsc
mrScDSC
mrXm1Dsc

The special value none indicates that there is
no CDSC.

Chapter 12. Source Node Properties 107

Table 46. datacollectionimportnode properties (continued).

datacollectionimportnode properties |Data type Property description
casedata_source_type Unknown Indicates the source type of the CDSC.
File
Folder
ubL
DSN
casedata_file string When casedata_source_type is File, specifies
the file containing the case data.
casedata_folder string When casedata_source_type is Folder, specifies
the folder containing the case data.
casedata_udl_string string When casedata_source_type is UDL, specifies
the OLD-DB connection string for the data
source containing the case data.
casedata_dsn_string string When casedata_source_type is DSN, specifies
the ODBC connection string for the data
source.
casedata_project string When reading case data from a IBM SPSS Data
Collection database, you can enter the name of
the project. For all other case data types, this
setting should be left blank.
version_import_mode ATl Defines how versions should be handled.
Latest
Specify
specific_version string When version_import_mode is Specify, defines
the version of the case data to be imported.
use_language string Defines whether labels of a specific language
should be used.
language string If use_language is true, defines the language
code to use on import. The language code
should be one of those available in the case
data.
use_context string Defines whether a specific context should be
imported. Contexts are used to vary the
description associated with responses.
context string If use_context is true, defines the context to
import. The context should be one of those
available in the case data.
use_label_type string Defines whether a specific type of label should
be imported.
label _type string If use_label_type is true, defines the label
type to import. The label type should be one
of those available in the case data.
user_id string For databases requiring an explicit login, you
can provide a user ID and password to access
the data source.
password string
import_system_variables Common Specifies which system variables are imported.
None
A1l
import_codes_variables flag

108 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 46. datacollectionimportnode properties (continued).

datacollectionimportnode properties |Data type Property description
import_sourcefile_variables flag
import_multi_response MultipleFTlags

Single

excelimportnode Properties

source is not required.

Example

#To use a named range:

create excelimportnode

set :excelimportnode.excel_file_type = Excel2007
set :excelimportnode.full_filename = "C:/drug.x1s"
set :excelimportnode.use_named_range = True

set :excelimportnode.named_range = "DRUG"

set :excelimportnode.read_field_names = True

#To use an explicit range:

create excelimportnode

set :excelimportnode.excel_file_type = Excel2007
set :excelimportnode.full_filename = "C:/drug.x1s"
set :excelimportnode.worksheet_mode = Name

set :excelimportnode.worksheet_name = "Drug"

set :excelimportnode.explicit_range start = Al

set :excelimportnode.explicit_range_end = F300

Table 47. excelimportnode properties.

The Excel Import node imports data from any version of Microsoft Excel. An ODBC data

excelimportnode properties Data type Property description
excel_file_type Excel2003
Excel2007
full_filename string The complete filename, including path.
use_named_range Boolean Whether to use a named range. If true, the
named_range property is used to specify the
range to read, and other worksheet and data
range settings are ignored.
named_range string
worksheet_mode Index Specifies whether the worksheet is defined by
Name index or name.
worksheet_index integer Index of the worksheet to be read, beginning
with 0 for the first worksheet, 1 for the second,
and so on.
worksheet_name string Name of the worksheet to be read.
data_range_mode FirstNonBlank Specifies how the range should be determined.
ExpTicitRange
blank_rows StopReading When data_range_mode is FirstNonBlank,
ReturnBlankRows specifies how blank rows should be treated.
explicit_range_start string When data_range_mode is ExplicitRange,
specifies the starting point of the range to
read.
explicit_range_end string

Chapter 12. Source Node Properties 109

Table 47. excelimportnode properties (continued).

excelimportnode properties Data type Property description
read_field_names Boolean Specifies whether the first row in the specified
range should be used as field (column) names.

evimportnode Properties

Deployment Services Repository, enabling you to read Enterprise View data into a stream and

"\j The Enterprise View node creates a connection to an IBM SPSS Collaboration and
<@ to package a model in a scenario that can be accessed from the repository by other users.

Example

create evimportnode

set :evimportnode.connection = ['Training data','/Application views/Marketing','LATEST', 'Analytic',
'/Data Providers/Marketing']

set :evimportnode.tablename = "custl"

Table 48. evimportnode properties.

evimportnode properties Data type Property description

connection list Structured property--list of
parameters making up an Enterprise
View connection.

Usage format:

evimportnode.connection =
[description,app_view_path,
app_view_version_label,
environment,DPD_path]

tablename string The name of a table in the
Application View.

fixedfilenode Properties

delimited but start at the same position and are of a fixed length. Machine-generated or
legacy data are frequently stored in fixed-field format.

f‘"\j The Fixed File node imports data from fixed-field text files—that is, files whose fields are not

Example

create fixedfilenode

set :fixedfilenode.full_filename = "$CLEO_DEMOS/DRUG4n"

set :fixedfilenode.record_len = 32

set :fixedfilenode.skip_header = 1

set :fixedfilenode.fields = [{'Age' 1 3} {'Sex' 57} {'BP' 9 10} {'Cholesterol' 12 22} {'Na' 24 25} {'K' 27 27} {'Drug' 29 32}]
set :fixedfilenode.decimal_symbol = Period

set :fixedfilenode.lines_to_scan = 30

Table 49. fixedfilenode properties.

fixedfilenode properties Data type Property description

record_len number Specifies the number of characters in each
record.

line_oriented flag Skips the new-line character at the end of each
record.

110 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 49. fixedfilenode properties (continued).

fixedfilenode properties Data type Property description
decimal_symbol Default The type of decimal separator used in your
Comma data source. Example:
Period set :fixedfilenode.decimal_symbol = Period
skip_header number Specifies the number of lines to ignore at the
beginning of the first record. Useful for
ignoring column headers.
auto_recognize_datetime flag Specifies whether dates or times are
automatically identified in the source data.
Tines_to_scan number Example:
set :fixedfilenode.lines_to_scan = 50.
fields list Structured property.
Usage format:
fixedfilenode.fields = [{field start
length} {field start Tength}]
full_filename string Full name of file to read, including directory.
strip_spaces None Discards leading and trailing spaces in strings
Left on import.
Right
Both
invalid_char_mode Discard Removes invalid characters (null, 0, or any
Replace character non-existent in current encoding)
from the data input or replaces invalid
characters with the specified one-character
symbol.
invalid_char_replacement string
use_custom_values flag Keyed slot in the form:
set
:variablefilenode.use_custom_values.Age =
true
custom_storage Unknown Keyed slot in the form:
String set :variablefilenode.custom_storage.'Age’
Integer = "Real"
Real
Time
Date
Timestamp

Chapter 12. Source Node Properties 111

Table 49. fixedfilenode properties (continued).

fixedfilenode properties

Data type

Property description

custom_date_format

"DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"

DAY

MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
“MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD. YY"
“MM.DD. YYYY"
"DD.MON.YY"
“DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
“MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY

g Q YYYY

ww WK YYYY

This property is applicable only if a custom
storage has been specified.

Example:
set:variablefilenode.custom

Keyed slot in the form:

set :variablefilenode.custom date_
format. 'LaunchDate' = "DDMMYY"

custom_time_format

"HHMMSS"

"HHMM"

"MMSS"
"HH:MM:SS"
"HH:MM"

"MM:SS"

"(H)H: (M)M: (S)S"
"(H)H: (M)M"
"(M)M: (S)S"
"HH.MM.SS"
"HH.MM"

"MM.SS"

"(H)H. (M)M. (S)S"
"(H)H. (M)m"
"(M)M. (S)S"

This property is applicable only if a custom
storage has been specified.

Keyed slot in the form:
set :variablefilenode.custom time format.
'Initialize' = "HHMM"

custom_decimal_symbol

field

Applicable only if a custom storage has been
specified.

Keyed slot in the form: set
:variablefilenode.custom_decimal_
symbol. 'Revenue' = "Comma"

encoding

StreamDefault
SystemDefault
"UTF-8"

Specifies the text-encoding method.

112 I1BM SPSS Modeler 16 Scripting and Automation Guide

sasimportnode Properties

Example

create sasimportnode
set :sasimportnode.format = Windows

set :sasimportnode.full_filename = "C:/data/retail.sas7bdat"

set :sasimportnode.member_name = "Test"
set :sasimportnode.read_formats = False

The SAS Import node imports SAS data into IBM SPSS Modeler.

set :sasimportnode.full_format_filename = "Test"
set :sasimportnode.import_names = True
Table 50. sasimportnode properties.
sasimportnode properties Data type Property description
format Windows Format of the file to be imported.
UNIX
Transport
SAS7
SAS8
SAS9
full_filename string The complete filename that you enter,
including its path.
member_name string Specify the member to import from the
specified SAS transport file.
read_formats flag Reads data formats (such as variable labels)
from the specified format file.
full_format_filename string
import_names NamesAndLabels Specifies the method for mapping variable
LabelsasNames names and labels on import.

simgennode Properties

The Simulation Generate node provides an easy way to generate simulated data—either from
scratch using user specified statistical distributions or automatically using the distributions
obtained from running a Simulation Fitting node on existing historical data. This is useful

when you want to evaluate the outcome of a predictive model in the presence of uncertainty
in the model inputs.

Table 51. simgennode properties.

simgennode properties

Data type

Property description

Fields

Structured property

See example

correlations

Structured property

See example

max_cases integer Minimum value is 1000, maximum
value is 2,147,483,647

create_iteration_field boolean

iteration_field_name string

replicate_results boolean

Chapter 12. Source Node Properties 113

Table 51. simgennode properties (continued).

simgennode properties

Data type

Property description

random_seed

integer

overwrite_when_refitting

boolean

parameter xml

string

Returns the parameter Xml as a
string

distribution

BernoulTli

Beta

Binomial

Categorical
Exponential

Fixed

Gamma

Lognormal
NegativeBinomialFailure
NegativeBinomialTrials
Normal

Example

= "Gamma"

Poisson
Range
Triangular
Uniform
Weibull
bernoulli_prob number 0 = bernoulli_prob =1
beta_shapel number Must be = 0
beta_shape2 number Must be = 0
beta_min number Optional. Must be less than
beta_max.
beta_max number Optional. Must be greater than
beta_min.
binomial_n integer Must be > 0
binomial_prob number 0 = binomial_prob =1
binomial_min number Optional. Must be less than
binomial_max.
binomial_max number Optional. Must be greater than
binomial_min.
exponential_scale number Must be > 0
exponential_min number Optional. Must be less than
exponential_max.
exponential_max number Optional. Must be greater than
exponential_min.
fixed_value string
gamma_shape number Must be =z 0
gamma_scale number Must be =z 0
gamma_min number Optional. Must be less than
gamma_max.
gamma_max number Optional. Must be greater than
gamma_min.
Tognormal_shapel number Must be = 0
lognormal_shape2 number Must be =z 0

114 1BM SPSS Modeler 16 Scripting and Automation Guide

set :simgennode.distribution.Age

Table 51. simgennode properties (continued).

simgennode properties Data type Property description

Tognormal_min number Optional. Must be less than
lognormal_max.

Tognormal_max number Optional. Must be greater than
lTognormal_min.

negative_bin_failures_threshold number Must be = 0

negative bin _failures_prob number 0 = negative_bin_failures_prob =
1

negative_bin_failures_min number Optional. Must be less than
negative_bin_failures_max.

negative_bin_failures_max number Optional. Must be greater than
negative_bin_failures_min.

negative_bin_trials_threshold number Must be = 0

negative_bin_trials_prob number 0 = negative_bin_trials_prob =1

negative_bin_trials_min number Optional. Must be less than
negative_bin_trials_max.

negative bin_trials_max number Optional. Must be less than
negative_bin_trials_min.

normal_mean number

normal_sd number Must be > 0

normal_min number Optional. Must be less than
normal_max.

normal_max number Optional. Must be greater than
normal_min.

poisson_mean number Must be = 0

poisson_min number Optional. Must be less than
poisson_max.

poisson_max number Optional. Must be greater than
poisson_min.

triangular_mode number triangular_min = triangular_mode
< triangular_max

triangular_min number Must be less than triangular_mode

triangular_max number Must be greater than
triangular_mode

uniform_min number Must be less than uniform_max

uniform_max number Must be greater than uniform_min

weibull_rate number Must be =z 0

weibull_scale number Must be = 0

weibull_Tocation number Must be = 0

weibull_min number Optional. Must be less than
weibull_max.

weibull_max number Optional. Must be greater than

weibull_min.

fields example

Chapter 12. Source Node Properties 115

This is a structured slot parameter with the following syntax:

set :simgennode.fields = [
{fieldl storage locked [distributionl] min max}
{field2 storage locked [distribution2] min max}
{field3 storage locked [distribution3] min max}

]

Each distribution is defined in the following way:
[distributionname, [{parl}{par2}{par3}]]

correlations example

This is a structured slot parameter with the following syntax:

set :simgennode.correlations = [
{fieldl field2 correlation}
{fieldl field3 correlation}
{field2 field3 correlation}
]

Correlation can be any number between +1 and -1. You can specify as many or as few correlations as you
like. Any unspecified correlations are set to zero. If any fields are unknown, the correlation value should
be set on the correlation matrix (or table) and is shown in red text. When there are unknown fields, it is
not possible to execute the node.

Note: 2000 more lines (per iteration) are always generated than what are requested.

statisticsimportnode Properties

P The IBM SPSS Statistics File node reads data from the .sav file format used by IBM SPSS
,’r \ Statistics, as well as cache files saved in IBM SPSS Modeler, which also use the same format.

The properties for this node are described under |“statisticsimportnode Properties” on page 317

userinputnode Properties

The User Input node provides an easy way to create synthetic data—either from scratch or by

Vi
("| altering existing data. This is useful, for example, when you want to create a test dataset for
e modeling.
Example

create userinputnode

set :userinputnode.data.testl = "2, 4, 8"

set :userinputnode.names = [testl test2]

set :userinputnode.custom_storage.testl = Integer
set :userinputnode.data_mode = "Ordered"

116 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 52. userinputnode properties.

userinputnode properties Data type Property description

data Keyed property of the form:

set :userinputnode.data.Age = "1 2 3 4"
Alternatively, the string can specify low, high,
and step size values separated by commas.
Example:

set :userinputnode.data.Age = "10, 70, 5"
The data for each field can be of different
lengths but must be consistent with the field’s
storage. Setting values for a field that isn't
present creates that field. Additionally, setting
the values for a field to an empty string (" ")
removes the specified field.
Note: The values that are entered for this
property must be strings, not numbers.

names Structured slot that sets or returns a list of
field names generated by the node.

Example:

['Fieldl' 'Field2']

custom_storage Unknown Keyed slot that sets or returns the storage for a
String field.

Integer
Real Example:

Time set :userinputnode.custom_storage.'Age' =
Date "Real"

Timestamp

data_mode Combined If Combined is specified, records are generated
Ordered for each combination of set values and
min/max values. The number of records
generated is equal to the product of the
number of values in each field. If Ordered is
specified, one value is taken from each column
for each record in order to generate a row of
data. The number of records generated is equal
to the largest number values associated with a
field. Any fields with fewer data values will be
padded with null values.

values This property has been deprecated in favor of
userinputnode.data and should no longer be
used.

variablefilenode Properties

P iy The Variable File node reads data from free-field text files—that is, files whose records contain
H a constant number of fields but a varied number of characters. This node is also useful for
files with fixed-length header text and certain types of annotations.

Example

create variablefilenode

set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUG4n"
set :variablefilenode.read_field_names = True

set :variablefilenode.delimit_other = True

set :variablefilenode.other = ',

Chapter 12. Source Node Properties 117

set
set
set
set
set
set
set
set

:variablefilenode.quotes_1 = Discard
:variablefilenode.decimal_symbol = Comma
:variablefilenode.invalid_char_mode = "Replace"
:variablefilenode.invalid_char_replacement = "|"
:variablefilenode.use_custom values.Age = True
:variablefilenode.direction.Age = Input
:variablefilenode.type.Age = Range
:variablefilenode.values.Age = [1 100]

Table 53. variablefilenode properties.

variablefilenode properties Data type Property description
skip_header number Specifies the number of characters to ignore at
the beginning of the first record.
Usage format:
variablefilenode:skip_header = 3
num_fields_auto flag Determines the number of fields in each
record automatically. Records must be
terminated with a new-line character.
Usage format:
variablefilenode:num_fields_auto
num_fields number Manually specifies the number of fields in
each record.
delimit_space flag Specifies the character used to delimit field
boundaries in the file.
delimit_tab flag
delimit_new_line flag
delimit_non_printing flag
delimit_comma flag In cases where the comma is both the field
delimiter and the decimal separator for
streams, set delimit_other to frue, and specify
a comma as the delimiter by using the other
property.
delimit_other flag Allows you to specify a custom delimiter
using the other property.
other string Specifies the delimiter used when
delimit_other is true.
decimal_symbol Default Specifies the decimal separator used in the
Comma data source.
Period
multi_blank flag Treats multiple adjacent blank delimiter
characters as a single delimiter.
read_field_names flag Treats the first row in the data file as labels for
the column.
strip_spaces None Discards leading and trailing spaces in strings
Left on import.
Right
Both
invalid_char_mode Discard Removes invalid characters (null, 0, or any
Replace character non-existent in current encoding)
from the data input or replaces invalid
characters with the specified one-character
symbol.
invalid_char_replacement string
118 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 53. variablefilenode properties (continued).

variablefilenode properties Data type Property description
break_case_by_newline flag Specifies that the line delimiter is the newline
character.
Tines_to_scan number Specifies how many lines to scan for specified
data types.
auto_recognize_datetime flag Specifies whether dates or times are
automatically identified in the source data.
quotes_1 Discard Specifies how single quotation marks are
PairAndDiscard treated upon import.
IncludeAsText
quotes_2 Discard Specifies how double quotation marks are
PairAndDiscard treated upon import.
IncludeAsText
full_filename string Full name of file to be read, including
directory.
use_custom_values flag Keyed slot in the form:
set :variablefilenode.use_custom_
values.Age = true
custom_storage Unknown Keyed slot in the form:
String set :variablefilenode.custom storage.
Integer 'Age' = "Real"
Real
Time
Date
Timestamp
custom date_format "DDMMYY" Applicable only if a custom storage has been
"MMDDYY" specified.
"YYMMDD"
"YYYYMMDD" Examp]e;
"YYYYDDD" set:variablefilenode.custom
DAY
MONTH Keyed slot in the form:
"DD-MM-YY" set
"DD-MM-YYYY" :variablefilenode.custom _date format.
"MM-DD-YY" 'LaunchDate' = "DDMMYY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

Chapter 12. Source Node Properties 119

Table 53. variablefilenode properties (continued).

variablefilenode properties Data type Property description
custom_time_format "HHMMSS " Applicable only if a custom storage has been
"HHMM" specified.
"MMSS" Keyed slot in the form:
"HH:MM:SS" set
"HH:MM" :variablefilenode.custom time_format.
"MM:SS" 'Initialize' = "HHMM"
"(H)H: (M)M: (S)S"
"(H)H: (M)M"
"(M)M: (S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H. (M)M. (S)S"
"(H)H. (M)M"
"(M)M. (S)S"
custom_decimal_symbol field Applicable only if a custom storage has been
specified.
Keyed slot in the form:
set :variablefilenode.custom_decimal_
symbol.'Revenue' = "Comma"
encoding StreamDefault Specifies the text-encoding method.
SystemDefault
"UTF-8"

xmlimportnode Properties

file, or all files in a directory. You can optionally specify a schema file from which to read the

O The XML source node imports data in XML format into the stream. You can import a single
<KML>

XML structure.

Example

create xmlimportnode
set :xmlimportnode.full_filename = "c:\import\ebooks.xml"
set :xmlimportnode.records = "/author/name"

Table 54. xmlimportnode properties.

xmlimportnode properties Data type Property description
read single Reads a single data file (default), or all XML
directory files in a directory.

recurse flag Specifies whether to additionally read XML
files from all the subdirectories of the specified
directory.

full_filename string (required) Full path and file name of XML file
to import (if read = single).

directory_name string (required) Full path and name of directory
from which to import XML files (if read =
directory).

120 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 54. xmlimportnode properties (continued).

xmlimportnode properties Data type

Property description

full_schema_filename string

Full path and file name of XSD or DTD file
from which to read the XML structure. If you
omit this parameter, structure is read from the
XML source file.

records string

XPath expression (e.g. /author/name) to
define the record boundary. Each time this
element is encountered in the source file, a
new record is created.

mode read
specify

Read all data (default), or specify which items
to read.

fields

List of items (elements and attributes) to
import. Each item in the list is an XPath
expression.

Chapter 12. Source Node Properties 121

122 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 13. Record Operations Node Properties

appendnode Properties

{,f_\\ The Append node concatenates sets of records. It is useful for combining datasets with similar
\}B*r" structures but different data.
Example

create appendnode

set :appendnode.match_by = Name

set :appendnode.match_case = True

set :appendnode.include_fields_from = A1l

set :appendnode.create_tag_field = True

set :appendnode.tag_field_name = "Append_Flag"

Table 55. appendnode properties.

appendnode properties Data type Property description
match_by Position You can append datasets based on the position of
Name fields in the main data source or the name of

fields in the input datasets.

match_case flag Enables case sensitivity when matching field
names.
include_fields_from Main
ATl
create_tag_field flag
tag_field_name string

aggregatenode Properties

The Aggregate node replaces a sequence of input records with summarized, aggregated

=
':'H g;:" output records.
“-L_I _._."

Example

create aggregatenode

connect :databasenode to :aggregatenode

set :aggregatenode.contiguous = True

set :aggregatenode.keys = ['Drug']

set :aggregatenode.aggregates.Age = [Sum Mean]
set :aggregatenode.inc_record_count = True
set :aggregatenode.count_field = "index"

set :aggregatenode.extension = "Aggregated_"
set :aggregatenode.add_as = Prefix

123

Table 56. aggregatenode properties.

aggregatenode properties Data type Property description

keys [field field ... field] Lists fields that can be used as keys for
aggregation. For example, if Sex and Region are
your key fields, each unique combination of M
and F with regions N and S (four unique
combinations) will have an aggregated record.

contiguous flag Select this option if you know that all records
with the same key values are grouped together
in the input (for example, if the input is sorted
on the key fields). Doing so can improve
performance.

aggregates Structured property listing the numeric fields
whose values will be aggregated, as well as the
selected modes of aggregation. Example:

set :aggregatenode.

aggregates.Age = [Sum Mean Min Max SDev
Median Count Variance Firstquartile
Thirdquartile], where the desired aggregation
methods are included in the list.

extension string Specify a prefix or suffix for duplicate aggregated
fields (sample below).

add_as Suffix

Prefix

inc_record_count flag Creates an extra field that specifies how many
input records were aggregated to form each
aggregate record.

count_field string Specifies the name of the record count field.

balancenode Properties

The Balance node corrects imbalances in a dataset, so it conforms to a specified condition. The
@ balancing directive adjusts the proportion of records where a condition is true by the factor
y specified.

Example

create balancenode
set :balancenode.training_data_only = true
set :balancenode.directives = \

[{1.3 "Age > 60"}{1.5 "Na > 0.5"}]

Table 57. balancenode properties.

balancenode properties Data type Property description

directives Structured property to balance proportion of
field values based on number specified (see
example below).

training_data_only flag Specifies that only training data should be
balanced. If no partition field is present in the
stream, then this option is ignored.

Example

124 1BM SPSS Modeler 16 Scripting and Automation Guide

create balancenode
set :balancenode.directives = \
[{1.3 "Age > 60"}{1.5 "Na > 0.5"}]

This node property uses the format:
[{ number string } \ { number string} \ ... { number string }].
Note: If strings (using double quotation marks) are embedded in the expression, they need to be preceded

by the escape character " \ ". The " \ " character is also the line continuation character, allowing you to
line up the arguments for clarity.

derive_stb Node Properties

The Space-Time-Boxes node derives Space-Time-Boxes from latitude, longitude and timestamp
(0} fields. You can also identify frequent Space-Time-Boxes as hangouts.

Table 58. derive_stb node properties.

derive_stb node properties Data type Property description
mode IndividualRecords
Hangouts
latitude_field field
Tongitude_field field
timestamp_field field
hangout_density density A single density. See densities for valid density
values.
densities [density,density,..., density] Each density is a string, for example

STB_GH8_1DAY.

Note: There are limits to which densities are
valid. For the geohash, values from GH1 to GH15
can be used. For the temporal part, the following
values can be used:

EVER
1YEAR
IMONTH
1DAY
12HOURS
8HOURS
6HOURS
4HOURS
3HOURS
2HOURS
1HOUR
30MINS
15MINS
1OMINS
5MINS
2MINS
IMIN
30SECS
15SECS
10SECS
5SECS
2SECS
1SEC

id_field field

Chapter 13. Record Operations Node Properties 125

Table 58. derive_stb node properties (continued).

derive_stb node properties Data type

Property description

qualifying_duration 1DAY
12HOURS
8HOURS
6HOURS
4HOURS
3HOURS
2Hours
1HOUR
30MIN
15MIN
10MIN
5MIN
2MIN
1IMIN
30SECS
15SECS
10SECS
5SECS
2SECS
1SECS

Must be a string.

min_events integer

Minimum valid integer value is 2.

qualifying pct integer

Must be in the range of 1 and 100.

add_extension_as Prefix
Suffix

name_extension string

distinctnode Properties

The Distinct node removes duplicate records, either by passing the first distinct record to the
=i data stream or by discarding the first record and passing any duplicates to the data stream

B3

instead.

Example

create distinctnode

set :distinctnode.mode = Include

set :distinctnode.fields = ['Age' 'Sex']
set :distinctnode.keys_pre_sorted = True

Table 59. distinctnode properties.

distinctnode properties Data type Property description
mode Include You can include the first distinct record in the
Discard data stream, or discard the first distinct record

and pass any duplicate records to the data
stream instead.

grouping_fields [field field field] Lists fields used to determine whether records
are identical.
Note: This property is deprecated from IBM
SPSS Modeler 16 onwards.

composite_value Structured slot See example below.

composite_values Structured slot See example below.

126 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 59. distinctnode properties (continued).

distinctnode properties Data type Property description

inc_record_count flag Creates an extra field that specifies how many
input records were aggregated to form each
aggregate record.

count_field string Specifies the name of the record count field.

sort_keys

Structured slot.

Example:

set :distinctnode.sort_keys = [{Age,
Ascending }, {Gender, Descending}]

SPSS Modeler 16 onwards.

Note: This property is deprecated from IBM

default_ascending flag

Tow_distinct_key_count flag Specifies that you have only a small number of
records and/or a small number of unique values
of the key field(s).

keys_pre_sorted flag Specifies that all records with the same key
values are grouped together in the input.

disable_sql_generation flag

Example for composite_value property

The composite_value property has the following general form:
set :distinctnode.composite_value.FIELD= FILLOPTION

FILLOPTION has the form [FillType, Optionl, Option2, ...].

Examples:

set :distinctnode.composite_value.Age = [First]
set :distinctnode.composite_value.Age= [last]

set :distinctnode.composite_value.Age= [Total]

set :distinctnode.composite _value.Age= [Average]
set :distinctnode.composite_value.Age= [Min]

set :distinctnode.composite value.Age= [Max]

set :distinctnode.composite_value.Date= [Earliest]
set :distinctnode.composite_value.Date= [Latest]
set :distinctnode.composite_value.Code= [FirstAlpha]
set :distinctnode.composite_value.Code= [LastAlpha]

The custom options require more

set
set
set
set
set
set
set
set

:distinctnode.
:distinctnode.
:distinctnode.
:distinctnode
:distinctnode.
:distinctnode.
:distinctnode.
:distinctnode.

composite_value.
composite_value.
composite_value.

.composite _value.

composite_value.
composite_value.
composite_value.
composite_value.

than one argument, these are added as a list, for example:

Name= [MostFrequent,FirstRecord]

Date= [LeastFrequent, LastRecord]

Pending= [IncludesValue, "T", "F"]

Marital= [FirstMatch, "Married", "Divorced", "Separated"]
Code= [Concatenate]

Code= [Concatenate, Space]

Code= [Concatenate, Comma]

Code= [Concatenate, UnderScore]

Example for composite_values property

The composite_values property has the following general form:

set :distinctnode.composite_values

- [

(FIELD1, [FILLOPTION1] }
{(FILED, [FILLOPTION2] }

Chapter 13. Record Operations Node Properties

127

Example:

set :distinctnode.composite_values = [
{Age, [First] }

{Name, [MostFrequent, First] }
{Pending, [IncludesValue, "T"]}
{

Marital, [FirstMatch, "Married", "Divorced", "Separated"] }

{ Code= [Concatenate, Comma]}

mergenode Properties

some or all of the input fields. It is useful for merging data from different sources, such as

<_‘~. The Merge node takes multiple input records and creates a single output record containing

internal customer data and purchased demographic data.

Example

create mergenode
connect customerdata to :mergenode
connect salesdata to :mergenode

set :mergenode.
set :mergenode.
set :mergenode.
set :mergenode.
set :mergenode.
set :mergenode.
set :mergenode.
set :mergenode.
set :mergenode.
set :mergenode.

method = Keys

key_fields = ['id']

common_keys = true

join = PartialOuter

outer_join_tag.2 = true
outer_join_tag.4 = true
single_large_input = true
single_large_input_tag = '2'
use_existing_sort_keys = true
existing_sort_keys = [{'id' Ascending}]

Table 60. mergenode properties.

mergenode properties Data type Property description
method Order Specify whether records are merged in the order
Keys they are listed in the data files, if one or more
Condition key fields will be used to merge records with
the same value in the key fields, or if records
will be merged if a specified condition is
satisfied.
condition string If method is set to Condition, specifies the
condition for including or discarding records.
key fields [field field field]
common_keys flag
join Inner An example is as follows:
FullQuter set :merge.join = FullQuter
PartialOuter
Anti
outer_join_tag.n flag In this property, n is the tag name as displayed

in the Select Dataset dialog box. Note that
multiple tag names may be specified, as any
number of datasets could contribute incomplete
records.

128 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 60. mergenode properties (continued).

mergenode properties Data type Property description

single_large_input flag Specifies whether optimization for having one
input relatively large compared to the other
inputs will be used.

single_large_input_tag string Specifies the tag name as displayed in the Select
Large Dataset dialog box. Note that the usage of
this property differs slightly from the
outer_join_tag property (flag versus string)
because only one input dataset can be specified.

use_existing_sort_keys flag Specifies whether the inputs are already sorted
by one or more key fields.

existing_sort_keys [{string Ascending} \ {string |Specifies the fields that are already sorted and

Descending}] the direction in which they are sorted.

rfmaggregatenode Properties

historical transactional data, strip away any unused data, and combine all of their remaining

The Recency, Frequency, Monetary (RFM) Aggregate node enables you to take customers'
e

transaction data into a single row that lists when they last dealt with you, how many
transactions they have made, and the total monetary value of those transactions.

Example

create rfmaggregatenode

connect :fillernode to :rfmaggregatenode

set :rfmaggregatenode.relative_to = Fixed

set :rfmaggregatenode.reference_date = "2007-10-12"
set :rfmaggregatenode.id_field = "CardID"

set :rfmaggregatenode.date field = "Date"

set :rfmaggregatenode.value_field = "Amount"

set :rfmaggregatenode.only_recent_transactions = True

set :rfmaggregatenode.transaction_date after = "2000-10-01"

Table 61. rfmaggregatenode properties.

rfmaggregatenode properties Data type Property description
relative_to Fixed Specify the date from which the recency of
Today transactions will be calculated.
reference_date date Only available if Fixed is chosen in relative_to.
contiguous flag If your data are presorted so that all records with
the same ID appear together in the data stream,
selecting this option speeds up processing.
id_field field Specify the field to be used to identify the
customer and their transactions.
date_field field Specify the date field to be used to calculate
recency against.
value_field field Specify the field to be used to calculate the
monetary value.
extension string Specify a prefix or suffix for duplicate aggregated
fields.
add_as Suffix Specify if the extension should be added as a
Prefix suffix or a prefix.
discard_low_value_records flag Enable use of the discard_records_below setting.

Chapter 13. Record Operations Node Properties 129

Table 61. rfmaggregatenode properties (continued).

rfmaggregatenode properties Data type Property description
discard_records_below number Specify a minimum value below which any
transaction details are not used when calculating
the RFM totals. The units of value relate to the
value field selected.
only recent_transactions flag Enable use of either the
specify_transaction_date or
transaction_within_last settings.
specify_transaction_date flag
transaction_date_after date Only available if specify_transaction_date is
selected. Specify the transaction date after which
records will be included in your analysis.
transaction_within_last number Only available if transaction_within_last is
selected. Specify the number and type of periods
(days, weeks, months, or years) back from the
Calculate Recency relative to date after which
records will be included in your analysis.
transaction_scale Days Only available if transaction_within_last is
Weeks selected. Specify the number and type of periods
Months (days, weeks, months, or years) back from the
Years Calculate Recency relative to date after which
records will be included in your analysis.
save_r2 flag Displays the date of the second most recent
transaction for each customer.
save_r3 flag Only available if save_r2 is selected. Displays the
date of the third most recent transaction for each
customer.

Rprocessnode Properties
R

Example
set : rprocessnode.custom_name = "my_node"

The R Process node enables you to take data from an
IBM(r) SPSS(r) Modeler stream and modify the data using
your own custom R script. After the data is modified it is
returned to the stream.

set my node.syntax = """day of birth<-as.character(weekdays(modelerData$dob))

modelerData<-cbind(modelerData,day_of birth)

varl<-c(fieldName="weekday",fieldLabel="",fieldStorage="string",fieldFormat="",fieldMeasure="",

fieldRole="")

modelerDataModel<-data.frame(modelerDataModel,varl)"""

set my node.convert datetime = "POSIXct"

Table 62. Rprocessnode properties.

LogicalValues

Rprocessnode properties Data type Property description
syntax string
convert_flags StringsAndDoubles

convert_datetime flag

130 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 62. Rprocessnode properties (continued).

Rprocessnode properties Data type Property description
convert_datetime_class POSIXct

POSIX1t
convert_missing flag

samplenode Properties

The Sample node selects a subset of records. A variety of sample types are supported,
@ including stratified, clustered, and nonrandom (structured) samples. Sampling can be useful
i to improve performance, and to select groups of related records or transactions for analysis.

Example

/* Create two Sample nodes to extract
different samples from the same data */

create variablefilenode
set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUGIn"

set node = create samplenode at 300 100

rename “node as 'First 500'

connect :variablefilenode to 'First 500'

set 'First 500':samplenode.method = Simple

set 'First 500':samplenode.mode = Include

set 'First 500':samplenode.sample_type = First
set 'First 500':samplenode.first_n = 500

set node = create samplenode at 300 200
rename “node as 'Custom Strata'
connect :variablefilenode to 'Custom Strata'
set 'Custom Strata':samplenode.method = Complex
set 'Custom Strata':samplenode.stratify by = ['Sex' 'Cholesterol']
set 'Custom Strata':samplenode.sample_units = Proportions
set 'Custom Strata':samplenode.sample_size proportions = Custom
set 'Custom Strata':samplenode.sizes_proportions= \
[{"M" "High" "Default"}{"M" "Normal" "Default"} \
{uFu “H1'gh“ ||0.3||}{||F|| "Normal" 110.311}]

Table 63. samplenode properties.

samplenode properties Data type Property description
method Simple
Complex
mode Include Include or discard records that meet the specified
Discard condition.
sample_type First Specifies the sampling method. An example is as
OneInN follows:
RandomPct set :samplenode.sample_type = First
set :samplenode.first_n = 100
first_n integer Records up to the specified cutoff point will be
included or discarded.
one_in_n number Include or discard every nth record.
rand_pct number Specify the percentage of records to include or
discard.
use_max_size flag Enable use of the maximum_size setting.

Chapter 13. Record Operations Node Properties 131

Table 63. samplenode properties (continued).

samplenode properties Data type Property description
maximum_size integer Specify the largest sample to be included or
discarded from the data stream. This option is
redundant and therefore disabled when First
and Include are specified.
set_random_seed flag Enables use of the random seed setting.
random_seed integer Specify the value used as a random seed.
complex_sample_type Random
Systematic
sample_units Proportions
Counts
sample_size_proportions Fixed
Custom
Variable
sample_size_counts Fixed
Custom
Variable
fixed_proportions number
fixed_counts integer
variable_proportions field
variable_counts field
use_min_stratum_size flag
minimum_stratum_size integer This option only applies when a Complex
sample is taken with Sample units=Proportions.
use_max_stratum_ size flag
maximum_stratum_size integer This option only applies when a Complex
sample is taken with Sample units=Proportions.
clusters field
stratify by [field1 ... fieldN]
specify_input_weight flag
input_weight field
new_output_weight string

sizes_proportions

[{string string value}{string
string value}...]

If sample_units=proportions and
sample_size_proportions=Custom, specifies a
value for each possible combination of values of
stratification fields.

default_proportion

number

sizes_counts

[{string string value}{string
string value}...]

Specifies a value for each possible combination of
values of stratification fields. Usage is similar to
sizes_proportions but specifying an integer
rather than a proportion.

default_count

number

132 IBM SPSS Modeler 16 Scripting and Automation Guide

selectnode Properties

@

Example

create selectnode

set :selectnode.mode = Include

set :selectnode.condition

"Age < 18"

Table 64. selectnode properties.

The Select node selects or discards a subset of records from the data stream based on a
specific condition. For example, you might select the records that pertain to a particular sales
region.

selectnode properties Data type Property description

mode Include Specifies whether to include or discard selected
Discard records.

condition string Condition for including or discarding records.

sortnode Properties

®

Example

create sortnode

set :sortnode.keys = [{'Age' Ascending}{'Sex' Descending}]
set :sortnode.default_ascending = False

set :sortnode.use_existing_keys = True

set :sortnode.existing_keys = [{'Age' Ascending}]

Table 65. sortnode properties.

The Sort node sorts records into ascending or descending order based on the values of one or
more fields.

sortnode properties

Data type

Property description

keys

[{string Ascending} \ {string

Specifies the fields you want to sort against

Descending}] (example below). If no direction is specified, the
default is used.
default_ascending flag Specifies the default sort order.
use_existing_keys flag Specifies whether sorting is optimized by using

the previous sort order for fields that are already
sorted.

existing_keys

Specifies the fields that are already sorted and
the direction in which they are sorted. Uses the
same format as the keys property.

streamingts Properties

©

The Streaming TS node builds and scores time series models in one step, without the need for

a Time Intervals node.

Chapter 13. Record Operations Node Properties 133

Example
create streamingts

set :streamingts.depTloyment_force_rebuild=true

set :streamingts.deployment rebui
set :streamingts.deployment rebui
set :streamingts.deployment_rebui

1d_mode=Count
1d_count=3
1d_pct=11

set :streamingts.deployment rebuild field=Year

Table 66. streamingts properties.

streamingts properties Data type Property description
custom_fields flag If custom_fields=false, the settings from an
upstream Type node are used. If
custom_fields=true, targets and inputs must be
specified.
targets [field1...fieldN]
inputs [field1...fieldN]
method ExpertModeler
Exsmooth
Arima
calculate_conf flag
conf_limit_pct real
use_time_intervals_node flag If use_time_intervals_node=true, then the
settings from an upstream Time Intervals node
are used. If use_time_intervals_node=false,
interval_offset_position, interval_offset, and
interval_type must be specified.
interval_offset_position LastObservation LastObservation refers to Last valid observation.
LastRecord LastRecord refers to Count back from last
record.
interval_offset number
interval_type Periods
Years
Quarters
Months
WeeksNonPeriodic
DaysNonPeriodic
HoursNonPeriodic
MinutesNonPeriodic
SecondsNonPeriodic
events fields
expert_modeler_method AT1Models
Exsmooth
Arima
consider_seasonal flag
detect_outliers flag
expert_outlier_additive flag
expert_outlier_level shift flag
expert_outlier_innovational flag
expert_outlier_transient flag
expert_outlier_seasonal_additiveflag
expert_outlier_Tlocal_trend flag
expert_outlier_additive_patch |flag

134 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 66. streamingts properties (continued).

streamingts properties Data type Property description
exsmooth_model type Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicative
exsmooth_transformation_type None
SquareRoot
NaturalLlog
arima_p integer Same property as for Time Series modeling node
arima_d integer Same property as for Time Series modeling node
arima_g integer Same property as for Time Series modeling node
arima_sp integer Same property as for Time Series modeling node
arima_sd integer Same property as for Time Series modeling node
arima_sq integer Same property as for Time Series modeling node
arima_transformation_type None Same property as for Time Series modeling node
SquareRoot
Naturallog
arima_include_constant flag Same property as for Time Series modeling node
tf_arima_p.fieldname integer Same property as for Time Series modeling node.
For transfer functions.
tf_arima_d.fieldname integer Same property as for Time Series modeling node.
For transfer functions.
tf_arima_q.fieldname integer Same property as for Time Series modeling node.
For transfer functions.
tf_arima_sp.fieldname integer Same property as for Time Series modeling node.
For transfer functions.
tf_arima_sd.fieldname integer Same property as for Time Series modeling node.
For transfer functions.
tf_arima_sq.fieldname integer Same property as for Time Series modeling node.
For transfer functions.
tf_arima_delay.fieldname integer Same property as for Time Series modeling node.
For transfer functions.
tf_arima_transformation_type. |None
fieldname SquareRoot
Naturallog
arima_detect_outlier_mode None
Automatic
arima_outlier_additive flag
arima_outlier_level shift flag
arima_outlier_innovational flag
arima_outlier_transient flag
arima_outlier_seasonal_additive |flag
arima_outlier_local_trend flag
arima_outlier_additive_patch flag
deployment_force_rebuild flag

Chapter 13. Record Operations Node Properties 135

Table 66. streamingts properties (continued).

streamingts properties Data type Property description
deployment_rebuild _mode Count
Percent
depToyment_rebuild_count number
deployment_rebuild_pct number
depToyment_rebuild_field <field>

136 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 14. Field Operations Node Properties

anonymizenode Properties

(o)
N/

Example

The Anonymize node transforms the way field names and values are represented
downstream, thus disguising the original data. This can be useful if you want to allow other
users to build models using sensitive data, such as customer names or other details.

create anonymizenode

set:
set:
set:
set:
set:
set:

anonymizenode.
anonymizenode.
anonymizenode.
anonymizenode.
anonymizenode.
anonymizenode.

enable_anonymize = age
use_prefix = true
prefix = "myprefix"
transformation = Random
set_random_seed = true
random_seed = "123"

Table 67. anonymizenode properties

anonymizenode properties Data type Property description

enable_anonymize flag When set to T, activates anonymization of field values
(equivalent to selecting Yes for that field in the Anonymize
Values column).

use_prefix flag When set to T, a custom prefix will be used if one has been
specified. Applies to fields that will be anonymized by the
Hash method and is equivalent to choosing the Custom radio
button in the Replace Values dialog box for that field.

prefix string Equivalent to typing a prefix into the text box in the Replace
Values dialog box. The default prefix is the default value if
nothing else has been specified.

transformation Random Determines whether the transformation parameters for a field

Fixed anonymized by the Transform method will be random or fixed.
set_random_seed flag When set to T, the specified seed value will be used (if

transformation is also set to Random).

random_seed integer When set_random_seed is set to T, this is the seed for the
random number.

scale number When transformation is set to Fixed, this value is used for
"scale by." The maximum scale value is normally 10 but may be
reduced to avoid overflow.

translate number When transformation is set to Fixed, this value is used for

"translate." The maximum translate value is normally 1000 but
may be reduced to avoid overflow.

autodataprepnode Properties

(@)

N

The Automated Data Preparation (ADP) node can analyze your data and identify fixes, screen
out fields that are problematic or not likely to be useful, derive new attributes when
appropriate, and improve performance through intelligent screening and sampling techniques.
You can use the node in fully automated fashion, allowing the node to choose and apply
fixes, or you can preview the changes before they are made and accept, reject, or amend them

as desired.

137

Example

create autodataprepnode

set: autodataprepnode.objective = Balanced

set: autodataprepnode.excluded_fields = Filter

set: autodataprepnode.prepare_dates_and_times = true

set: autodataprepnode.compute_time_until_date = true

set: autodataprepnode.reference_date = Today

set: autodataprepnode.units_for_date_durations = Automatic

Table 68. autodataprepnode properties

autodataprepnode properties Data type Property description
objective Balanced
Speed
Accuracy
Custom
custom_fields flag If true, allows you to specify target, input,
and other fields for the current node. If false,
the current settings from an upstream Type
node are used.
target field Specifies a single target field.
inputs [field1 ... fieldN] Input or predictor fields used by the model.
use_frequency flag
frequency_field field
use_weight flag
weight_field field
excluded_fields Filter
None
if_fields_do_not_match StopExecution
ClearAnalysis
prepare_dates_and_times flag Control access to all the date and time fields
compute_time_until_date flag
reference_date Today
Fixed
fixed _date date
units_for_date_durations Automatic
Fixed
fixed_date_units Years
Months
Days
compute_time_until_time flag
reference_time CurrentTime
Fixed
fixed_time time
units_for_time durations Automatic
Fixed
fixed_date_units Hours
Minutes
Seconds
extract_year_from_date flag
extract_month_from_date flag
extract_day from date flag

138 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 68. autodataprepnode properties (continued)

autodataprepnode properties Data type Property description
extract_hour_from_time flag
extract_minute_from_time flag
extract_second_from_time flag
exclude_low_quality_inputs flag
exclude_too_many missing flag
maximum_percentage_missing number
exclude_too_many_categories flag
maximum_number_categories number
exclude_if_large_category flag
maximum_percentage_category number
prepare_inputs_and_target flag
adjust_type_inputs flag
adjust_type_target flag
reorder_nominal_inputs flag
reorder_nominal_target flag
replace_outliers_inputs flag
replace_outliers_target flag
replace_missing_continuous_inputs |flag
replace_missing_continuous_target |flag
replace_missing_nominal_inputs flag
replace_missing_nominal_target flag
replace_missing_ordinal_inputs flag
replace_missing_ordinal_target flag
maximum_values_for_ordinal number
minimum_values_for_continuous number
outlier_cutoff_value number
outTier_method Replace
Delete
rescale_continuous_inputs flag
rescaling_method MinMax
ZScore
min_max_minimum number
min_max_maximum number
z_score_final_mean number
z_score_final_sd number
rescale_continuous_target flag
target_final_mean number
target_final_sd number
transform_select_input_fields flag
maximize_association_with_target flag

Chapter 14. Field Operations Node Properties

139

Table 68. autodataprepnode properties (continued)

autodataprepnode properties Data type Property description
p_value_for_merging number

merge_ordinal_features flag

merge_nominal_features flag

minimum_cases_in_category number

bin_continuous_fields flag

p_value_for_binning number

perform_feature_selection flag

p_value_for_selection number

perform_feature_construction flag

transformed_target_name_extension |string

transformed_inputs_name_extension |string

constructed_features_root_name string
years_duration_ name_extension string
months_duration_ name_extension string
days_duration_ name_extension string
hours_duration_ name_extension string
minutes_duration_ name_extension string
seconds_duration_ name_extension string
year_cyclical_name_extension string
month_cyclical_name_extension string
day_cyclical_name_extension string
hour_cyclical_name_extension string
minute_cyclical_name_extension string
second_cyclical_name_extension string

binningnode Properties

The Binning node automatically creates new nominal (set) fields based on the values of one
anllllnz or more existing continuous (numeric range) fields. For example, you can transform a
il continuous income field into a new categorical field containing groups of income as
deviations from the mean. Once you have created bins for the new field, you can generate a
Derive node based on the cut points.

Example

create binningnode

set :binningnode.fields = [Na K]

set :binningnode.method = Rank

set :binningnode.fixed_width_name_extension = "_binned"
set :binningnode.fixed_width_add_as = Suffix

set :binningnode.fixed_bin_method = Count

set :binningnode.fixed_bin_count = 10

set :binningnode.fixed_bin_width = 3.5

set :binningnode.tilel® = true

140 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 69. binningnode properties

binningnode properties

Data type

Property description

fields [field1 field?2 ... fieldn] Continuous (numeric range) fields pending
transformation. You can bin multiple fields
simultaneously.
method FixedWidth Method used for determining cut points for
EqualCount new field bins (categories).
Rank
SDev
Optimal
rcalculate_bins Always Specifies whether the bins are recalculated
IfNecessary and the data placed in the relevant bin every
time the node is executed, or that data is
added only to existing bins and any new bins
that have been added.
fixed_width_name_extension string The default extension is _BIN.
fixed_width_add_as Suffix Specifies whether the extension is added to
Prefix the end (suffix) of the field name or to the
start (prefix). The default extension is
income_BIN.
fixed_bin_method Width
Count
fixed_bin_count integer Specifies an integer used to determine the
number of fixed-width bins (categories) for
the new field(s).
fixed_bin_width real Value (integer or real) for calculating width of
the bin.
equal_count_name_ string The default extension is _TILE.
extension
equal_count_add_as Suffix Specifies an extension, either suffix or prefix,
Prefix used for the field name generated by using
standard p-tiles. The default extension is
_TILE plus N, where N is the tile number.
tiled flag Generates four quantile bins, each containing
25% of cases.
tileb flag Generates five quintile bins.
tilel0 flag Generates 10 decile bins.
tile20 flag Generates 20 vingtile bins.
tilel00 flag Generates 100 percentile bins.
use_custom_tile flag
custom_tile_name_extension string The default extension is _TILEN.
custom_tile_add_as Suffix
Prefix
custom_tile integer
equal_count_method RecordCount The RecordCount method seeks to assign an
ValueSum equal number of records to each bin, while

ValueSum assigns records so that the sum of
the values in each bin is equal.

Chapter 14. Field Operations Node Properties 141

Table 69. binningnode properties (continued)

binningnode properties Data type Property description
tied_values_method Next Specifies which bin tied value data is to be
Current put in.
Random
rank_order Ascending This property includes Ascending (lowest
Descending value is marked 1) or Descending (highest
value is marked 1).
rank_add_as Suffix This option applies to rank, fractional rank,
Prefix and percentage rank.
rank flag
rank_name_extension string The default extension is _RANK.
rank_fractional flag Ranks cases where the value of the new field
equals rank divided by the sum of the
weights of the nonmissing cases. Fractional
ranks fall in the range of 0-1.
rank_fractional_name_ string The default extension is _F_RANK.
extension
rank_pct flag Each rank is divided by the number of
records with valid values and multiplied by
100. Percentage fractional ranks fall in the
range of 1-100.
rank_pct_name_extension string The default extension is _P_RANK.
sdev_name_extension string
sdev_add_as Suffix
Prefix
sdev_count One
Two
Three
optimal_name_extension string The default extension is _OPTIMAL.
optimal_add_as Suffix
Prefix
optimal_supervisor_field field Field chosen as the supervisory field to which
the fields selected for binning are related.
optimal_merge_bins flag Specifies that any bins with small case counts
will be added to a larger, neighboring bin.
optimal_small_bin_threshold integer
optimal_pre_bin flag Indicates that prebinning of dataset is to take
place.
optimal_max_bins integer Specifies an upper limit to avoid creating an
inordinately large number of bins.
optimal_lower_end_point Inclusive
Exclusive
optimal_first_bin Unbounded
Bounded
optimal_last_bin Unbounded
Bounded

142 1BM SPSS Modeler 16 Scripting and Automation Guide

derivenode Properties

The Derive node modifies data values or creates new fields from one or more existing fields.
— It creates fields of type formula, flag, nominal, state, count, and conditional.

Example

Create and configure a Flag Derive field node

create derivenode

rename derive:derivenode as "Flag"

set Flag:derivenode.new_name = "DrugX_Flag"

set Flag:derivenode.result_type = Flag

set Flag:derivenode.flag_true = 1

set Flag:derivenode.flag_false = 0

set Flag:derivenode.flag_expr = "Drug = X"

Create and configure a Conditional Derive field node

create derivenode

rename derive:derivenode as "Conditional"

set Conditional:derivenode.result_type = Conditional

set Conditional:derivenode.cond_if_cond = "@OFFSET(\'Age\', 1) = \'Age\'"
set Conditional:derivenode.cond_then_expr = "(@OFFSET(\'Age\', 1) = \'Age\') >< @INDEX"

set Conditional:derivenode.cond_else_expr = "\'Age\'"
Table 70. derivenode properties
derivenode properties Data type Property description
new_name string Name of new field.
mode Single Specifies single or multiple fields.
Multiple
fields [field field field] Used in Multiple mode only to select multiple
fields.
name_extension string Specifies the extension for the new field
name(s).
add_as Suffix Adds the extension as a prefix (at the
Prefix beginning) or as a suffix (at the end) of the
field name.
result_type FormuTla The six types of new fields that you can
Flag create.
Set
State
Count

Conditional

formula_expr string Expression for calculating a new field value in
a Derive node.

flag_expr string

flag_true string

flag_false string

set_default string

set_value_cond string Structured to supply the condition associated

with a given value.

Usage format:
set :derivenode.
set_value_cond.

Retired = 'age > 65'

Chapter 14. Field Operations Node Properties 143

Table 70. derivenode properties (continued)

derivenode properties Data type Property description

state_on_val string Specifies the value for the new field when the
On condition is met.

state_off_val string Specifies the value for the new field when the
Off condition is met.

state_on_expression string

state off_expression string

state_initial On Assigns each record of the new field an initial

off value of On or 0ff. This value can change as
each condition is met.

count_initial_val string
count_inc_condition string
count_inc_expression string
count_reset_condition string
cond_if_cond string
cond_then_expr string
cond_else_expr string

ensemblenode Properties

Example

The Ensemble node combines two or more model nuggets to obtain more accurate predictions
than can be gained from any one model.

Create and configure an Ensemble node

Use this node with the models in demos\streams\pm_binaryclassifier.str
create ensemblenode

set :ensemblenode.ensemble_target_field = response

set :ensemblenode.filter_individual_model_output = false

set :ensemblenode.flag_ensemble_method = ConfidenceWeightedVoting

set :ensemblenode.flag_voting_tie_selection = HighestConfidence

Table 71. ensemblenode properties.

ConfidencelWeightedVoting
RawPropensityWeightedVoting
AdjustedPropensityWeightedVoting
HighestConfidence
AverageRawPropensity
AverageAdjustedPropensity

ensemblenode properties Data type Property description
ensemble_target_field field Specifies the target field for all
models used in the ensemble.
filter_individual_model_output flag Specifies whether scoring results
from individual models should be
suppressed.
flag_ensemble_method Voting Specifies the method used to

determine the ensemble score. This
setting applies only if the selected
target is a flag field.

144 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 71. ensemblenode properties (continued).

ensemblenode properties Data type Property description
set_ensemble_method Voting Specifies the method used to
ConfidencelWeightedVoting determine the ensemble score. This
HighestConfidence setting applies only if the selected
target is a nominal field.
flag_voting_tie_selection Random If a voting method is selected,
HighestConfidence specifies how ties are resolved. This
RawPropensity setting applies only if the selected
AdjustedPropensity target is a flag field.
set_voting_tie_selection Random If a voting method is selected,
HighestConfidence specifies how ties are resolved. This
setting applies only if the selected
target is a nominal field.
calculate_standard_error flag If the target field is continuous, a
standard error calculation is run by
default to calculate the difference
between the measured or estimated
values and the true values; and to
show how close those estimates
matched.
fillernode Properties
The Filler node replaces field values and changes storage. You can choose to replace values
@ based on a CLEM condition, such as @BLANK(@FIELD). Alternatively, you can choose to replace
o all blanks or null values with a specific value. A Filler node is often used together with a

Type node to replace missing values.

Example

create fillernode
set :fillernode.fields = ['Age']
set :fillernode.replace_mode = Always

set :fillernode.condition = "(\'Age\' > 60) and (\'Sex\' = \'M\')"

set :fillernode.replace_with = "\'old man\'"

Table 72. fillernode properties

fillernode properties Data type Property description
fields [field field field] Fields from the dataset whose values will be
examined and replaced.

replace_mode Always You can replace all values, blank values, or
Conditional null values, or replace based on a specified
Blank condition.
NuTl
BlankAndNull

condition string

replace_with string

Chapter 14. Field Operations Node Properties 145

filternode Properties

.I'II.. »
| e
L

h The Filter node filters (discards) fields, renames fields, and maps fields from one source node
H' to another.

!

Example

create filternode

set :filternode.default_include = True

set :filternode.new_name.'Drug' = 'Chemical’

set :filternode.include.'Drug' = off

Using the default_include property. Note that setting the value of the default_include property does
not automatically include or exclude all fields; it simply determines the default for the current selection.
This is functionally equivalent to clicking the Include fields by default button in the Filter node dialog
box. For example, suppose you run the following script:

set Filter.default_include=False
Include only fields in the Tist
for f in Age Sex

set Filter.include.”f=True
endfor

This will cause the node to pass the fields Age and Sex and discard all others. Now suppose you run the
same script again but name two different fields:

set Filter.default_include=False
Include only fields in the list

for f in BP Na
set Filter.include.~f=True
endfor

This will add two more fields to the filter so that a total of four fields are passed (Age, Sex, BP, Na). In
other words, resetting the value of default_include to False doesn't automatically reset all fields.

Alternatively, if you now change default_include to True, either using a script or in the Filter node
dialog box, this would flip the behavior so the four fields listed above would be discarded rather than
included. When in doubt, experimenting with the controls in the Filter node dialog box may be helpful in
understanding this interaction.

Table 73. filternode properties

filternode properties Data type Property description

default_include flag Keyed property to specify whether the default
behavior is to pass or filter fields:
NODE.include.FIELDNAME

An example is as follows:
set mynode:filternode.default_include =
false

Note that setting this property does not
automatically include or exclude all fields; it
simply determines whether selected fields are
included or excluded by default. See example
below for additional comments.

146 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 73. filternode properties (continued)

filternode properties

Data type

Property description

include

flag

Keyed property for field inclusion and
removal.

Usage format:
NODE.include.FIELDNAME

An example is as follows:
set mynode:
filternode.include.Age = false

new_name

string

An example is as follows:
set mynode:
filternode.new_name.
Age = "age"

historynode Properties

nodes are most often used for sequential data, such as time series data. Before using a History

Q The History node creates new fields containing data from fields in previous records. History

node, you may want to sort the data using a Sort node.

Example

create historynode

set :historynode.fields
set :historynode.offset
set :historynode.span =
set :historynode.unavailable = Discard
set :historynode.fill_with = "undef"

['Drug']
1

w

Table 74. historynode properties

historynode properties Data type Property description
fields [field field field] Fields for which you want a history.
offset number Specifies the latest record (prior to the current
record) from which you want to extract
historical field values.
span number Specifies the number of prior records from
which you want to extract values.
unavailable Discard For handling records that have no history
Leave values, usually referring to the first several
Fill records (at the top of the dataset) for which
there are no previous records to use as a
history.
fill_with String Specifies a value or string to be used for
Number records where no history value is available.
partitionnode Properties
The Partition node generates a partition field, which splits the data into separate subsets for
@ the training, testing, and validation stages of model building.
i

Chapter 14. Field Operations Node Properties 147

Example

create partitionnode

set :partitionnode.create_validation = True

set :partitionnode.training_size = 33
set :partitionnode.testing_size = 33

set :partitionnode.validation_size = 33

set :partitionnode.set_random_seed = True

set :partitionnode.random_seed = "123"
set :partitionnode.value_mode = System

Table 75. partitionnode properties

partitionnode properties Data type Property description

new_name string Name of the partition field generated by the
node.

create_validation flag Specifies whether a validation partition should
be created.

training_size integer Percentage of records (0-100) to be allocated to
the training partition.

testing_size integer Percentage of records (0-100) to be allocated to
the testing partition.

validation_size integer Percentage of records (0-100) to be allocated to
the validation partition. Ignored if a validation
partition is not created.

training_label string Label for the training partition.

testing_label string Label for the testing partition.

validation_label string Label for the validation partition. Ignored if a
validation partition is not created.

value_mode System Specifies the values used to represent each

SystemAndLabel partition in the data. For example, the training
Label sample can be represented by the system integer

1, the label Training, or a combination of the
two, 1 _Training.

set_random_seed Boolean Specifies whether a user-specified random seed
should be used.

random_seed integer A user-specified random seed value. For this
value to be used, set_random_seed must be set to
True.

enable_sql_generation Boolean Specifies whether to use SQL pushback to assign

records to partitions.

unique_field

Specifies the input field used to ensure that
records are assigned to partitions in a random
but repeatable way. For this value to be used,
enable_sql_generation must be set to True.

reclassifynode Properties

useful for collapsing categories or regrouping data for analysis.

<_> The Reclassify node transforms one set of categorical values to another. Reclassification is
&5

Example

148 1BM SPSS Modeler 16 Scripting and Automation Guide

create reclassifynode

set
set
set
set
set
set
set
set
set
set
set

:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.
:reclassifynode.

mode = Multiple
replace_field = true

field = "Drug"
new_name = "Chemical"
fields = [Drug, BP]

name_extension = "reclassified"
add_as = Prefix
reclassify.'drugA' =
use_default = True
default = "BrandX"

pick_1ist = [BrandX, Placebo, Generic]

'Yes'

Table 76. reclassifynode properties

reclassifynode properties Data type Property description
mode Single Single reclassifies the categories for one field.
Multiple Multiple activates options enabling the
transformation of more than one field at a
time.
replace_field flag
field string Used only in Single mode.
new_name string Used only in Single mode.
fields [field1 field?2 ... fieldn] Used only in Multiple mode.
name_extension string Used only in Multiple mode.
add_as Suffix Used only in Multiple mode.
Prefix
reclassify string Structured property for field values.
Usage format:
NODE.reclassify.
OLD_VALUE
An example is as follows:
set :reclassifynode.reclassify.'drugB' =
'Yes'
use_default flag Use the default value.
default string Specify a default value.
pick_Tist [string string ... string] | Allows a user to import a list of known new
values to populate the drop-down list in the
table.
An example is as follows:
set :reclassify.pick Tist = [fruit dairy
cereals]

reordernode Properties

i

Example

The Field Reorder node defines the natural order used to display fields downstream. This
order affects the display of fields in a variety of places, such as tables, lists, and the Field
Chooser. This operation is useful when working with wide datasets to make fields of interest

more visible.

Chapter 14. Field Operations Node Properties 149

create reordernode

set :reordernode.mode = Custom

set :reordernode.sort_by = Storage

set :reordernode.ascending = "false"

set :reordernode.start_fields = [Age Cholesterol]
set :reordernode.end_fields = [Drug]

Table 77. reordernode properties

reordernode properties Data type Property description
mode Custom You can sort values automatically or specify a
Auto custom order.
sort_by Name
Type
Storage
ascending flag
start_fields [field1 field?2 ... fieldn] New fields are inserted after these fields.
end_fields [field1 field?2 ... fieldn] New fields are inserted before these fields.

restructurenode Properties

@&

The Restructure node converts a nominal or flag field into a group of fields that can be
populated with the values of yet another field. For example, given a field named payment
type, with values of credit, cash, and debit, three new fields would be created (credit, cash, debit),

each of which might contain the value of the actual payment made.

Example

create restructurenode
connect :typenode to :restructurenode

set :restructurenode.fields_from.Drug = ["drugA" "drugX"]

set :restructurenode.include_field_name = "True"
set :restructurenode.value_mode = "OtherFields"
set :restructurenode.value_fields = ["Age" "BP"]

Table 78. restructurenode properties

restructurenode properties

Data type

Property description

fields_from

[category category
category]
all

For example,

set :restructurenode.fields_from.Drug =
[drugA drugB] creates fields called Drug_drugA
and Drug_drugB.

To use all categories of the specified field:
set :restructurenode.fields_from.Drug =
all

include_field _name

flag

Indicates whether to use the field name in the
restructured field name.

value_mode

OtherFields
Flags

Indicates the mode for specifying the values
for the restructured fields. With OtherFields,
you must specify which fields to use (see
below). With Flags, the values are numeric
flags.

value_fields

[field field field]

Required if value_mode is OtherFields.
Specifies which fields to use as value fields.

150

IBM SPSS Modeler 16 Scripting and Automation Guide

rfmanalysisnode Properties

Example

The Recency, Frequency, Monetary (RFM) Analysis node enables you to determine
quantitatively which customers are likely to be the best ones by examining how recently they
last purchased from you (recency), how often they purchased (frequency), and how much

they spent over all transactions (monetary).

create rfmanalysisnode
connect :rfmaggregatenode to :rfmanalysisnode

set
set
set
set
set
set

:rfmanalysisnode.
:rfmanalysisnode.
:rfmanalysisnode.
:rfmanalysisnode.
:rfmanalysisnode.
:rfmanalysisnode.

recency = Recency
frequency = Frequency
monetary = Monetary
tied_values_method = Next

recalculate_bins = IfNecessary
recency_thresholds = [1, 500, 800, 1500, 2000, 2500]

Table 79. rfmanalysisnode properties

rfmanalysisnode properties Data type Property description
recency field Specify the recency field. This may be a date,
timestamp, or simple number.
frequency field Specify the frequency field.
monetary field Specify the monetary field.
recency_bins integer Specify the number of recency bins to be
generated.
recency_weight number Specify the weighting to be applied to recency
data. The default is 100.
frequency_bins integer Specify the number of frequency bins to be
generated.
frequency_weight number Specify the weighting to be applied to frequency
data. The default is 10.
monetary_bins integer Specify the number of monetary bins to be
generated.
monetary_weight number Specify the weighting to be applied to monetary
data. The default is 1.
tied_values_method Next Specify which bin tied value data is to be put in.
Current
recalculate_bins Always
IfNecessary
add_outliers flag Available only if recalculate_bins is set to
IfNecessary. If set, records that lie below the
lower bin will be added to the lower bin, and
records above the highest bin will be added to
the highest bin.
binned_field Recency
Frequency
Monetary

Chapter 14. Field Operations Node Properties 151

Table 79. rfmanalysisnode properties (continued)

rfmanalysisnode properties

Data type

Property description

recency thresholds

value value

Available only if recalculate_bins is set to
Always. Specify the upper and lower thresholds
for the recency bins. The upper threshold of one
bin is used as the lower threshold of the
next—for example, [10 30 60] would define two
bins, the first bin with upper and lower
thresholds of 10 and 30, with the second bin
thresholds of 30 and 60.

frequency_thresholds

value value

Available only if recalculate_bins is set to
Always.

monetary_thresholds

value value

Available only if recalculate_bins is set to
Always.

settoflagnode Properties

®

Example

The Set to Flag node derives multiple flag fields based on the categorical values defined for

one or more nominal fields.

create settoflagnode
connect :typenode to :settoflag

set :settoflagnode.
set :settoflagnode.
set :settoflagnode.
set :settoflagnode.
set :settoflagnode.
set :settoflagnode.
set :settoflagnode.
set :settoflagnode.

fields_from.Drug = ["drugA" "drugX"]
true_value = "1"

false_value = "0"

use_extension = "True"

extension = "Drug_Flag"

add_as = Suffix

aggregate = True

keys = ['Cholesterol']

Table 80. settoflagnode properties

settoflagnode properties Data type Property description
fields_from [category category For example,
category] set :settoflagnode.fields_from.Drug =
all [drugA drugB] creates flag fields called
Drug_drugA and Drug_drugB.
To use all categories of the specified field:
set :settoflagnode.fields_from.Drug = all
true_value string Specifies the true value used by the node
when setting a flag. The default is T.
false_value string Specifies the false value used by the node
when setting a flag. The default is F.
use_extension flag Use an extension as a suffix or prefix to the
new flag field.
extension string
add_as Suffix Specifies whether the extension is added as a
Prefix suffix or prefix.
aggregate flag Groups records together based on key fields.
All flag fields in a group are enabled if any
record is set to true.
152 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 80. settoflagnode properties (continued)

settoflagnode properties

Data type

Property description

keys

[field field field]

Key fields.

statisticstransformnode Properties

i N
x"'"'r"ll

The Statistics Transform node runs a selection of IBM SPSS Statistics syntax commands
against data sources in IBM SPSS Modeler. This node requires a licensed copy of IBM SPSS

Statistics.

The properties for this node are described under |[“statisticstransformnode Properties” on page 317

timeintervalsnode Properties

©

Example

The Time Intervals node specifies intervals and creates labels (if needed) for modeling time
series data. If values are not evenly spaced, the node can pad or aggregate values as needed

to generate a uniform interval between records.

create timeintervalsnode

set
set
set
set
set
set
set
set
set
set
set
set
set
set

:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.
:timeintervalsnode.

interval_type=SecondsPerDay
days_per_week=4
week_begins_on=Tuesday
hours_per_day=10
day_begins_hour=7
day_begins_minute=5
day_begins_second=17
mode=Label

year_start=2005
month_start=January
day_start=4
pad.AGE=MeanOfRecentPoints
agg_mode=Specify
agg_set_default=Last

Table 81. timeintervalsnode properties.

timeintervalsnode properties

Data type

Property description

interval_type

None

Periods
CyclicPeriods
Years

Quarters

Months
DaysPerWeek
DaysNonPeriodic
HoursPerDay
HoursNonPeriodic
MinutesPerDay

MinutesNonPeriodic
SecondsPerDay
SecondsNonPeriodic
mode Label Specifies whether you want to label records
Create consecutively or build the series based on a

specified date, timestamp, or time field.

Chapter 14. Field Operations Node Properties

153

Table 81. timeintervalsnode properties (continued).

timeintervalsnode properties

Data type

Property description

field

field

When building the series from the data,
specifies the field that indicates the date or
time for each record.

period_start

integer

Specifies the starting interval for periods or
cyclic periods

cycle_start

integer

Starting cycle for cyclic periods.

year_start

integer

For interval types where applicable, year in
which the first interval falls.

quarter_start

integer

For interval types where applicable, quarter
in which the first interval falls.

month_start

January
February
March
April
May

June
July
August
September
October
November
December

day_start

integer

hour_start

integer

minute_start

integer

second_start

integer

periods_per_cycle

integer

For cyclic periods, number within each
cycle.

fiscal_year_begins

January
February
March
April
May

June
July
August
September
October
November
December

For quarterly intervals, specifies the month
when the fiscal year begins.

week_begins_on

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

For periodic intervals (days per week, hours
per day, minutes per day, and seconds per
day), specifies the day on which the week
begins.

154 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 81. timeintervalsnode properties (continued).

timeintervalsnode properties Data type Property description

day_begins_hour integer For periodic intervals (hours per day,
minutes per day, seconds per day), specifies
the hour when the day begins. Can be used
in combination with day_begins_minute and
day_begins_second to specify an exact time
such as 8:05:01. See usage example below.

day_begins_minute integer For periodic intervals (hours per day,
minutes per day, seconds per day), specifies
the minute when the day begins (for
example, the 5 in 8:05).

day_begins_second integer For periodic intervals (hours per day,
minutes per day, seconds per day), specifies
the second when the day begins (for
example, the 17 in 8:05:17).

days_per_week integer For periodic intervals (days per week, hours
per day, minutes per day, and seconds per
day), specifies the number of days per week.

hours_per_day integer For periodic intervals (hours per day,
minutes per day, and seconds per day),
specifies the number of hours in the day.

interval_increment For minutes per day and seconds per day,
specifies the number of minutes or seconds

to increment for each record.

OB W N =

15
20
30

field_name_extension string

field _name_extension_as prefix flag

Chapter 14. Field Operations Node Properties 155

Table 81. timeintervalsnode properties (continued).

timeintervalsnode properties

Data type

Property description

date_format

"DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"

DAY

MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD. YYYY"
"DD.MON. YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY

q Q YYYY

ww WK YYYY

time_format

"HHMMSS"

n HHMM n

IIMMSS n
"HH:MM:SS*"
"HH:MM"

"MM:SS"

"(H)H: (M)M: (S)S"
"(H)H: (M)M"
"(M)M: (S)S"
"HH.MM.SS"
"HH.MM"

"MM.SS"

"(H)H. (M)M. (S)S"
"(H)H. (M)M"
"(M)M. (S)S"

aggregate

Mean

Sum

Mode

Min

Max

First

Last
TrueIfAnyTrue

Specifies the aggregation method for a field
(for example,
aggregate.AGE=Mean).

pad

Blank
MeanOfRecentPoints
True

False

Specifies the padding method for a field (for
example,
pad.AGE=MeanOfRecentPoints).

agg_mode

A1l
Specify

Specifies whether to aggregate or pad all
fields with default functions as needed or
specify the fields and functions to use.

156 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 81. timeintervalsnode properties (continued).

timeintervalsnode properties Data type Property description
agg_range_default Mean Specifies the default function to use when
Sum aggregating continuous fields.
Mode
Min
Max
agg_set_default Mode Specifies the default function to use when
First aggregating nominal fields.
Last
agg_flag_default TrueIfAnyTrue
Mode
First
Last
pad_range_default Blank Specifies the default function to use when
MeanOfRecentPoints padding continuous fields.
pad_set_default Blank
MostRecentValue
pad_flag_default Blank
True
False
max_records_to_create integer Specifies the maximum number of records to
create when padding the series.
estimation_from_beginning flag
estimation_to_end flag
estimation_start offset integer
estimation_num_holdouts integer
create_future_records flag
num_future_records integer
create_future_field flag
future_field_name string

transposenode Properties

The Transpose node swaps the data in rows and columns so that records become fields and
fields become records.

Example

create transposenode
set :transposenode.transposed_names=Read

set :transposenode.read_from field="TimeLabel"

set :transposenode.max_num_fields="1000"
set :transposenode.id_field_name="ID"

Table 82. transposenode properties

transposenode properties Data type Property description
transposed_names Prefix New field names can be generated automatically
Read based on a specified prefix, or they can be read
from an existing field in the data.

Chapter 14. Field Operations Node Properties

157

Table 82. transposenode properties (continued)

transposenode properties Data type Property description
prefix string
num_new_fields integer When using a prefix, specifies the maximum

number of new fields to create.

read_from_field field Field from which names are read. This must be
an instantiated field or an error will occur when
the node is executed.

max_num_fields integer When reading names from a field, specifies an
upper limit to avoid creating an inordinately
large number of fields.

transpose_type Numeric By default, only continuous (numeric range)
String fields are transposed, but you can choose a
Custom custom subset of numeric fields or transpose all

string fields instead.

transpose_fields [field field field] Specifies the fields to transpose when the Custom
option is used.

id_field_name field

typenode Properties

The Type node specifies field metadata and properties. For example, you can specify a
@3
(...;. measurement level (continuous, nominal, ordinal, or flag) for each field, set options for
s handling missing values and system nulls, set the role of a field for modeling purposes,
specify field and value labels, and specify values for a field.

Example

create typenode

connect :variablefilenode to :typenode

set :typenode.check.'Cholesterol' = Coerce

set :typenode.direction.'Drug' = Input

set :typenode.type.K = Range

set :typenode.values.Drug = [drugA drugB drugC drugD drugX drugY drugZ]
set :typenode.null_missing.BP = false

set :typenode.whitespace missing.BP = "false"

set :typenode.description.BP = "Blood Pressure"

set :typenode.value_labels.BP = [{HIGH 'High Blood Pressure'}{NORMAL 'normal blood pressure'}]
set :typenode.display _places.K = 5

set :typenode.export_places.K = 2

set :typenode.grouping_symbol.Drug = None

set :typenode.column_width.Cholesterol = 25

set :typenode.justify.Cholesterol = Right

Note that in some cases you may need to fully instantiate the Type node in order for other nodes to work
correctly, such as the fields from property of the Set to Flag node. You can simply connect a Table node
and execute it to instantiate the fields:

create tablenode

connect :typenode to :tablenode
execute :tablenode

delete :tablenode

158 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 83. typenode properties.

typenode properties Data type Property description
direction Input Keyed property for field roles.
Target
Both Usage format:
None NODE.direction.FIELDNAME
Partition Note: The values In and Out are now
Split deprecated. Support for them may be
Frequency withdrawn in a future release.
RecordID
type Range Measurement level of the field (previously
Flag called the "type" of field). Setting type to
Set Default will clear any values parameter
Typeless setting, and if value_mode has the value
Discrete Specify, it will be reset to Read.
OrderedSet If value_mode is set to Pass or Read,
Default setting type will not affect value_mode.
Usage format:
NODE.type. FIELDNAME
Note: The data types used internally differ
from those visible in the type node. The
correspondence is as follows:
Range -> Continuous
Set - > Nominal
OrderedSet -> Ordinal
Discrete- > Categorical
As an example to set a field to Ordinal
you would use the following syntax:
set Type:typenode.type.MyField =
OrderedSet
storage Unknown Read-only keyed property for field storage
String type.
Integer
Real Usage format:
Time NODE.storage.FIELDNAME
Date
Timestamp
check None Keyed property for field type and range
Nullify checking.
Coerce
Discard Usage format:
Warn NODE.check.FIELDNAME
Abort
values [value value] For continuous fields, the first value is the

minimum, and the last value is the maximum.
For nominal fields, specify all values. For flag
fields, the first value represents false, and the
last value represents true. Setting this property
automatically sets the value_mode property to
Specify.

Usage format:
NODE.values.FIELDNAME

Chapter 14. Field Operations Node Properties 159

Table 83. typenode properties (continued).

typenode properties Data type Property description
value_mode Read Determines how values are set. Note that you
Pass cannot set this property to Specify directly; to
Read+ use specific values, set the values property.
Current
Specify Usage format:
NODE.value_mode.FIELDNAME
extend_values flag Applies when value_mode is set to Read. Set to
T to add newly read values to any existing
values for the field. Set to F to discard existing
values in favor of the newly read values.
Usage format:
NODE.extend_values.FIELDNAME
enable_missing flag When set to T, activates tracking of missing

values for the field.

Usage format:
NODE.enable_missing.FIELDNAME

missing_values

[value value ...]

Specifies data values that denote missing data.

Usage format:
NODE.missing_values.FIELDNAME

range_missing

flag

Specifies whether a missing-value (blank)
range is defined for a field.

missing_Tower

string

When range_missing is true, specifies the
lower bound of the missing-value range.

missing_upper

string

When range_missing is true, specifies the
upper bound of the missing-value range.

null_missing

flag

When set to T, nulls (undefined values that are
displayed as $nu11$ in the software) are
considered missing values.

Usage format:
NODE.nul1_missing.FIELDNAME

whitespace _missing

flag

When set to T, values containing only white
space (spaces, tabs, and new lines) are
considered missing values.

Usage format:
NODE.whitespace _missing.
FIELDNAME

description

string

Specifies the description for a field.

value_Tabels

[{Value LabelString} {
Value LabelString} ...]

Used to specify labels for value pairs.

An example is as follows:

set :typenode.value_labels.'Drug'=[{drugA
Tabell} {drugB label2}]

160 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 83. typenode properties (continued).

typenode properties Data type Property description
display_places integer Sets the number of decimal places for the field
when displayed (applies only to fields with
REAL storage). A value of -1 will use the
stream default.
Usage format:
NODE.display_places.FIELDNAME
export_places integer Sets the number of decimal places for the field
when exported (applies only to fields with
REAL storage). A value of -1 will use the
stream default.
Usage format:
NODE.export_places.FIELDNAME
decimal_separator DEFAULT Sets the decimal separator for the field
PERIOD (applies only to fields with REAL storage).
COMMA
Usage format:
NODE.decimal_separator.FIELDNAME
date_format "DDMMYY" Sets the date format for the field (applies only
"MMDDYY" to fields with DATE or TIMESTAMP storage).
"YYMMDD"
“YYYYMMDD" Usage format:
"YYYYDDD" NODE.date_format.FIELDNAME
DAY
wgquM—YY" An example is as follows:
"DD-MM=YYYY" set :tablenode.date_format.'LaunchDate' =
MM=DD-YY" "DDMMYY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

Chapter 14. Field Operations Node Properties 161

Table 83. typenode properties (continued).

typenode properties Data type Property description
time_format "HHMMSS " Sets the time format for the field (applies only
"HHMM" to fields with TIME or TIMESTAMP storage).
IIMMSSII
"HH:MM:SS" Usage format:
"HH:MM" NODE.time_format.FIELDNAME
"MM:SS"
" E:g: Emm,, (s)s An example is as follows:
" . " set :tablenode.time format.'BOF enter' =
(M)M: (S)S ; . - -
"HH.MM. SS" HHMMSS
"HH.MM"
"MM.SS"
"(H)H. (M)M. (S)S"
"(H)H. (M)M"
"(M)M. (S)S"
number_format DEFAULT Sets the number display format for the field.
STANDARD
SCIENTIFIC Usage format:
CURRENCY NODE.number_format.FIELDNAME
standard_places integer Sets the number of decimal places for the field
when displayed in standard format. A value
of =1 will use the stream default. Note that
the existing display_places slot will also
change this but is now deprecated.
Usage format:
NODE.standard_pTlaces.FIELDNAME
scientific_places integer Sets the number of decimal places for the field
when displayed in scientific format. A value
of -1 will use the stream default.
Usage format:
NODE.scientific_places.FIELDNAME
currency places integer Sets the number of decimal places for the field
when displayed in currency format. A value
of -1 will use the stream default.
Usage format:
NODE.currency_places.FIELDNAME
grouping_symbol DEFAULT Sets the grouping symbol for the field.
NONE
LOCALE Usage format:
PERIOD NODE.grouping_symbol.FIELDNAME
COMMA
SPACE
column_width integer Sets the column width for the field. A value of
-1 will set column width to Auto.
Usage format:
NODE.column_width.FIELDNAME
justify AUTO Sets the column justification for the field.
CENTER
LEFT Usage format:
RIGHT NODE. justify.FIELDNAME

162 1BM SPSS Modeler 16 Scripting and Automation Guide

Chapter 15. Graph Node Properties

Graph Node Common Properties

This section describes the properties available for graph nodes, including common properties and
properties that are specific to each node type.

Table 84. Common graph node properties

Common graph node properties | Data type Property description

title string Specifies the title. Example: "This is a title."
caption string Specifies the caption. Example: "This is a caption."
output_mode Screen Specifies whether output from the graph node is
File displayed or written to a file.
output_format BMP Specifies the type of output. The exact type of output
JPEG allowed for each node varies.
PNG
HTML

output (.cou)

full_filename string Specifies the target path and filename for output
generated from the graph node.

use_graph_size flag Controls whether the graph is sized explicitly, using
the width and height properties below. Affects only
graphs that are output to screen. Not available for the
Distribution node.

graph_width number When use_graph_size is True, sets the graph width in
pixels.

graph_height number When use_graph_size is True, sets the graph height
in pixels.

Notes

Turning off optional fields. Optional fields, such as an overlay field for plots, can be turned off by
setting the property value to " " (empty string), as shown in the following example:

set :plotnode.color_field = ""

Specifying colors. The colors for titles, captions, backgrounds, and labels can be specified by using the
hexadecimal strings starting with the hash (#) symbol. For example, to set the graph background to sky
blue, you would use the following statement:

set mygraph.graph_background="#87CEEB"

Here, the first two digits, 87, specify the red content; the middle two digits, CE, specify the green content;
and the last two digits, EB, specify the blue content. Each digit can take a value in the range 0-9 or A-F.
Together, these values can specify a red-green-blue, or RGB, color.

Note: When specifying colors in RGB, you can use the Field Chooser in the user interface to determine the
correct color code. Simply hover over the color to activate a ToolTip with the desired information.

163

collectionnode Properties

The Collection node shows the distribution of values for one numeric field relative to the
values of another. (It creates graphs that are similar to histograms.) It is useful for illustrating
a variable or field whose values change over time. Using 3-D graphing, you can also include
a symbolic axis displaying distributions by category.

Example

create collectionnode

position :collectionnode at “posX “posY

"Plot" tab

set :collectionnode.three D = True

set :collectionnode.collect_field = 'Drug’
set :collectionnode.over field = 'Age’

set :collectionnode.by field = 'BP'

set :collectionnode.operation = Sum

"Overlay" section

set :collectionnode.color_field
set :collectionnode.panel_field
set :collectionnode.animation_field =
"Options" tab

set :collectionnode.range_mode = Automatic
set :collectionnode.range_min = 1
set :collectionnode.range_max = 100
set :collectionnode.bins = ByNumber
set :collectionnode.num _bins = 10
set :collectionnode.bin_width = 5

'Drug"
'Sex'

Table 85. collectionnode properties

collectionnode properties Data type Property description
over_field field
over_label_auto flag
over_label string
collect_field field
collect_label_auto flag
collect_label string
three_D flag
by _field field
by_label_auto flag
by label string
operation Sum

Mean

Min

Max

SDev
color_field string
panel_field string
animation_field string
range_mode Automatic

UserDefined
range_min number
range_max number
bins ByNumber

ByWidth
num_bins number

164 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 85. collectionnode properties (continued)

collectionnode properties Data type Property description

bin_width number

use_grid flag

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the

beginning of this section.

distributionnode Properties

Example

The Distribution node shows the occurrence of symbolic (categorical) values, such as
mortgage type or gender. Typically, you might use the Distribution node to show imbalances
in the data, which you could then rectify using a Balance node before creating a model.

create distributionnode

"Plot" tab

set :distributionnode.
set :distributionnode.
set :distributionnode.
set :distributionnode.
set :distributionnode.

set :distributionnode

plot = Flags

x_field = 'Age'
color_field = 'Drug’
normalize = True
sort_mode = ByOccurence

.use_proportional_scale = True

Table 86. distributionnode properties

distributionnode properties Data type Property description
plot SelectedFields
Flags
x_field field
color_field field Overlay field.
normalize flag
sort_mode ByOccurence
Alphabetic
use_proportional_scale flag

evaluationnode Properties

s

Example

create evaluationnode

The Evaluation node helps to evaluate and compare predictive models. The evaluation chart
shows how well models predict particular outcomes. It sorts records based on the predicted
value and confidence of the prediction. It splits the records into groups of equal size
(quantiles) and then plots the value of the business criterion for each quantile from highest to
lowest. Multiple models are shown as separate lines in the plot.

position :evaluationnode at “posX ~posY

"Plot" tab

set :evaluationnode.chart_type = Gains

set :evaluationnode.cumulative = False

set :evaluationnode.field_detection_method = Name
set :evaluationnode.inc_baseline = True

Chapter 15. Graph Node Properties 165

set
set
set
set
set
set
set
set
set
set
set
set

:evaluationnode
:evaluationnode.
revaluationnode.
:evaluationnode.
:evaluationnode.
revaluationnode.
:evaluationnode.
:evaluationnode.
revaluationnode.
:evaluationnode.
:evaluationnode.
revaluationnode.

.n_tile = Deciles

style = Point
point_type = Dot
use_fixed_cost = True
cost_value = 5.0
cost_field = 'Na'
use_fixed_revenue = True
revenue_value = 30.0
revenue_field = 'Age'
use_fixed_weight = True
weight_value = 2.0
weight_field = 'K'

Table 87. evaluationnode properties.

evaluationnode properties Data type Property description
chart_type Gains
Response
Lift
Profit
ROI
ROC
inc_baseline flag
field_detection_method Metadata
Name
use_fixed_cost flag
cost_value number
cost_field string
use_fixed_revenue flag
revenue_value number
revenue_field string
use_fixed_weight flag
weight_value number
weight_field field
n_tile Quartiles
Quintles
Deciles
Vingtiles
Percentiles
1000-tiles
cumulative flag
style Line
Point

166 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 87. evaluationnode properties (continued).

evaluationnode properties Data type Property description
point_type Rectangle

Dot

Triangle

Hexagon

Plus

Pentagon

Star

BowTie

HorizontalDash

VerticalDash

IronCross

Factory

House

Cathedral

OnionDome

ConcaveTriangle

ObTateGlobe

CatEye

FourSidedPillow

RoundRectangle

Fan
export_data flag
data_filename string
delimiter string
new_line flag
inc_field_names flag
inc_best_line flag
inc_business_rule flag
business_rule_condition string
plot_score fields flag
score_fields [field1 ... fieldN]
target_field field
use_hit_condition flag
hit_condition string
use_score_expression flag
score_expression string
caption_auto flag

graphboardnode Properties

YN

The Graphboard node offers many different types of graphs in one single node. Using this
node, you can choose the data fields you want to explore and then select a graph from those
available for the selected data. The node automatically filters out any graph types that would
not work with the field choices.

Note: If you set a property that is not valid for the graph type (for example, specifying y_field for a
histogram), that property is ignored.

Example

Chapter 15. Graph Node Properties 167

create graphboardnode

connect DRUG4n to :graphboardnode
set :graphboardnode.graph_type="Line"
set :graphboardnode.x_field = "K"

set :graphboardnode.y field

execute :graphboardnode

"Na"

Table 88. graphboardnode properties

graphboard properties

Data type

Property description

graph_type

2DDotplot

3DArea

3DBar

3DDensity

3DHistogram

3DPie

3DScatterplot

Area

ArrowMap

Bar

BarCounts

BarCountsMap

BarMap

BinnedScatter

Boxplot

Bubble

ChoroplethMeans
ChoroplethMedians
ChoroplethSums
ChoropTlethValues
ChoroplethCounts
CoordinateMap
CoordinateChoroplethMeans
CoordinateChoroplethMedians
CoordinateChoroplethSums
CoordinateChoroplethValues
CoordinateChoroplethCounts
Dotplot

Heatmap

HexBinScatter

Histogram

Line

LineChartMap
LineOverlayMap

Parallel

Path

Pie

PieCountMap

PieCounts

PieMap

PointOverlayMap
PolygonOverlayMap

Ribbon

Scatterplot

SPLOM

Surface

Identifies the graph type.

x_field

field

Specifies a custom label for the x axis.
Available only for labels.

y_field

field

Specifies a custom label for the y axis.
Available only for labels.

z_field

field

Used in some 3-D graphs.

168 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 88. graphboardnode properties (continued)

graphboard properties | Data type Property description

color_field field Used in heat maps.

size_field field Used in bubble plots.
categories_field field

values_field field

rows_field field

columns_field field

fields field

start_longitude_field |field Used with arrows on a reference map.

end_longitude_field field
start_latitude_field |field
end_latitude_field field

data_key field field Used in various maps.
panelrow_field string

panelcol_field string

animation_field string

Tongitude_field field Used with co-ordinates on maps.
latitude_field field

map_color_field field

histogramnode Properties

The Histogram node shows the occurrence of values for numeric fields. It is often used to
explore the data before manipulations and model building. Similar to the Distribution node,
the Histogram node frequently reveals imbalances in the data.

Example

create histogramnode

position :histogramnode at ~posX ~posY

"Plot" tab

set :histogramnode.field = 'Drug’

set :histogramnode.color_field = 'Drug’
set :histogramnode.panel_field = 'Sex'
set :histogramnode.animation_field = ''

"Options" tab

set :histogramnode.range_mode = Automatic
set :histogramnode.range min = 1.0

set :histogramnode.range max = 100.0

set :histogramnode.num_bins = 10

set :histogramnode.bin_width = 10

set :histogramnode.normalize = True

set :histogramnode.separate_bands = False

Table 89. histogramnode properties

histogramnode properties Data type Property description
field field
color_field field
panel_field field
animation_field field

Chapter 15. Graph Node Properties 169

Table 89. histogramnode properties (continued)

histogramnode properties Data type Property description
range_mode Automatic

UserDefined
range_min number
range_max number
bins ByNumber

ByWidth
num_bins number
bin_width number
normalize flag
separate_bands flag
x_label_auto flag
x_label string
y_label_auto flag
y_label string
use_grid flag
graph_background color Standard graph colors are described at the

beginning of this section.
page_background color Standard graph colors are described at the
beginning of this section.

normal_curve flag Indicates whether the normal distribution curve

should be shown on the output.

multiplotnode Properties

e

variables over time.

Example

create multiplotnode
"Plot" tab
set :multiplotnode.x_field = 'Age'

set :multiplotnode.y_fields = ['Drug' 'BP']

set :multiplotnode.panel_field = 'Sex'
"Overlay" section

set :multiplotnode.animation_field = '

set :multiplotnode.tooltip = "test"

set :multiplotnode.normalize = True

set :multiplotnode.use_overlay_expr = False
set :multiplotnode.overlay_expression = "test"
set :multiplotnode.records_limit = 500

set :multiplotnode.if_over_limit = PlotSample

Table 90. multiplotnode properties

The Multiplot node creates a plot that displays multiple Y fields over a single X field. The Y
fields are plotted as colored lines; each is equivalent to a Plot node with Style set to Line and
X Mode set to Sort. Multiplots are useful when you want to explore the fluctuation of several

multiplotnode properties Data type Property description
x_field field

y_fields [field field field]

panel_field field

170

IBM SPSS Modeler 16 Scripting and Automation Guide

Table 90. multiplotnode properties (continued)

multiplotnode properties Data type Property description
animation_field field
normalize flag
use_overlay_expr flag
overlay_expression string
records_limit number
if_over_limit PlotBins
PlotSample
PTotAll
x_Tlabel_auto flag
x_Tabel string
y_label_auto flag
y_Tlabel string
use_grid flag
graph_background color Standard graph colors are described at the
beginning of this section.
page_background color Standard graph colors are described at the
beginning of this section.
plotnode Properties
The Plot node shows the relationship between numeric fields. You can create a plot by using
points (a scatterplot) or lines.
e

Example

create plotnode
"Plot" tab

set :plotnode.three D = True

set :plotnode.x_field = 'BP'

set :plotnode.y field = 'Cholesterol’
set :plotnode.z_field = 'Drug’

"Overlay" section

set :plotnode.color_field = 'Drug'
set :plotnode.size field = 'Age'

set :plotnode.shape_field
set :plotnode.panel_field

set :plotnode.transp_field =
set :plotnode.style = Point
"Output" tab

set :plotnode.output_mode =
set :plotnode.output_format
set :plotnode.full_filename

'Sex'
set :plotnode.animation_field = 'BP'

JPEG

"C:/Temp/Graph_Output/plot_output.jpeg"

Table 91. plotnode properties.

plotnode properties Data type Property description

x_field field Specifies a custom label for the x axis. Available
only for labels.

y_field field Specifies a custom label for the y axis. Available
only for labels.

Chapter 15. Graph Node Properties

171

Table 91. plotnode properties (continued).

plotnode properties

Data type

Property description

three D

flag

Specifies a custom label for the y axis. Available
only for labels in 3-D graphs.

z_field

field

color_field

field

Overlay field.

size_field

field

shape_field

field

panel_field

field

Specifies a nominal or flag field for use in making
a separate chart for each category. Charts are
paneled together in one output window.

animation_field

field

Specifies a nominal or flag field for illustrating data
value categories by creating a series of charts
displayed in sequence using animation.

transp_field

field

Specifies a field for illustrating data value
categories by using a different level of transparency
for each category. Not available for line plots.

overlay_type

None
Smoother
Function

Specifies whether an overlay function or LOESS
smoother is displayed.

overlay_expression

string

Specifies the expression used when overlay_type is
set to Function.

style

Point
Line

point_type

Rectangle

Dot

Triangle
Hexagon

Plus

Pentagon

Star

BowTie
HorizontalDash
VerticalDash
IronCross
Factory

House
Cathedral
OnionDome
ConcaveTriangle
OblateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

x_mode

Sort
Overlay
AsRead

X_range_mode

Automatic
UserDefined

X_range_min

number

X_range_max

number

y_range_mode

Automatic
UserDefined

172 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 91. plotnode properties (continued).

plotnode properties Data type Property description
y_range_min number
y_range_max number
z_range_mode Automatic
UserDefined
z_range_min number
z_range_max number
jitter flag
records_limit number
if_over_Timit PlotBins
PlotSample
P1otAT1
x_label_auto flag
x_label string
y_label_auto flag
y_Tlabel string
z_label_auto flag
z_label string
use_grid flag
graph_background color Standard graph colors are described at the
beginning of this section.
page_background color Standard graph colors are described at the
beginning of this section.
use_overlay_expr flag Deprecated in favor of overlay_type.

timeplotnode Properties

_:@’f.

Example

The Time Plot node displays one or more sets of time series data. Typically, you would first
use a Time Intervals node to create a TimeLabel field, which would be used to label the x axis.

create timeplotnode

set :timeplotnode

set :timeplotnode.
set :timeplotnode.
set :timeplotnode.
set :timeplotnode.
set :timeplotnode.
set :timeplotnode.

.y_fields = ['sales
panel = True
normalize = True
line = True
smoother = True

Appearance settings

set :timeplotnode

Table 92. timeplotnode properties.

.symbol_size = 2.0

use_records_limit = True
records_limit = 2000

women']

timeplotnode properties

Data type

Property description

plot_series

Series
Models

use_custom x_field

flag

Chapter 15. Graph Node Properties

173

Table 92. timeplotnode properties (continued).

timeplotnode properties Data type Property description
x_field field
y_fields [field field field]
panel flag
normalize flag
Tine flag
points flag
point_type Rectangle
Dot
Triangle
Hexagon
Plus
Pentagon
Star
BowTie

HorizontalDash
VerticalDash
IronCross
Factory

House

Cathedral
OnionDome
ConcaveTriangle
ObTateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

smoother

flag You can add smoothers to the plot only if you set
panel to True.

use_records_Timit

flag

records_limit

integer

symbol_size

number Specifies a symbol size.

For example,
set :webnode.symbol_size = 5.5

creates a symbol size larger than the default.

panel_Tayout

Horizontal
Vertical

webnode Properties

/8

Example

create webnode
"Plot" tab

The Web node illustrates the strength of the relationship between values of two or more
symbolic (categorical) fields. The graph uses lines of various widths to indicate connection
strength. You might use a Web node, for example, to explore the relationship between the
purchase of a set of items at an e-commerce site.

set :webnode.use directed_web = True
set :webnode.to_field = 'Drug’

174

IBM SPSS Modeler 16 Scripting and Automation Guide

set :webnode
set :webnode
set :webnode
set :webnode
set :webnode

.fields = ['BP' 'Cholesterol' 'Sex' 'Drug']
.from_fields = ['BP' 'Cholesterol' 'Sex']

.true_flags_only = False
.line_values = Absolute
.strong_links_heavier = True

"Options" tab

set :webnode.
set :webnode.
set :webnode.
set :webnode.
set :webnode.
set :webnode.
set :webnode.
set :webnode.
set :webnode.
set :webnode.

max_num_Tinks = 300
1inks_above = 10
num_Tlinks = ShowAll
discard_links_min = True
Tinks_min_records = 5
discard_Tlinks_max = True
weak_below = 10
strong_above = 19
link_size_continuous = True
web_display = Circular

Table 93. webnode properties

webnode properties Data type Property description
use_directed_web flag
fields [field field field]
to_field field
from_fields [field field field]
true_flags_only flag
line_values Absolute
OverallPct
PctLarger
PctSmaller
strong_links_heavier flag
num_Tinks ShowMaximum
ShowLinksAbove
ShowA11
max_num_T1inks number
1inks_above number
discard_links_min flag
links_min_records number
discard_links_max flag
1inks_max_records number
weak_below number
strong_above number
1ink_size_continuous flag
web_display Circular
Network
Directed
Grid
graph_background color Standard graph colors are described at the
beginning of this section.
symbol_size number Specifies a symbol size.

For example,

set :webnode.symbol size

5.5

creates a symbol size larger than the default.

Chapter 15. Graph Node Properties

175

176 1BM SPSS Modeler 16 Scripting and Automation Guide

Chapter 16. Modeling Node Properties

Common Modeling Node Properties

The following properties are common to some or all modeling nodes. Any exceptions are noted in the

documentation for individual modeling nodes as appropriate.

Table 94. Common modeling node properties

Property Values Property description

custom_fields flag If true, allows you to specify target, input,
and other fields for the current node. If
false, the current settings from an upstream
Type node are used.

target field Specifies a single target field or multiple

or target fields depending on the model type.

targets or

[fieldl ... fieldN]

inputs [fieldl ... fieldN] Input or predictor fields used by the model.

partition field

use_partitioned_data flag If a partition field is defined, this option
ensures that only data from the training
partition is used to build the model.

use_split_data flag

splits [field1 ... fieldN] Specifies the field or fields to use for split
modeling. Effective only if use_split_data
is set to True.

use_frequency flag Weight and frequency fields are used by
specific models as noted for each model
type.

frequency_field field

use_weight flag

weight_field field

use_model_name flag

model_name string Custom name for new model.

mode Simple

Expert

anomalydetectionnode Properties

!_,,f\“ The Anomaly Detection node identifies unusual cases, or outliers, that do not conform to
-.J.- patterns of “normal” data. With this node, it is possible to identify outliers even if they do

looking for.

Example

create anomalydetectionnode
set :anomalydetectionnode.anomaly_method=PerRecords
set :anomalydetectionnode.percent_records=95

not fit any previously known patterns and even if you are not exactly sure what you are

177

set
set
set
set

:anomalydetectionnode.mode=Expert
:anomalydetectionnode.peer_group_num_auto=true
:anomalydetectionnode.min_num_peer_groups=3
:anomalydetectionnode.max_num_peer_groups=10

Table 95. anomalydetectionnode properties

anomalydetectionnode Properties Values Property description
inputs [field] ... fieldN] Anomaly Detection models screen
records based on the specified input
fields. They do not use a target field.
Weight and frequency fields are also not
used. See the topic[“Common Modeling|
[Node Properties” on page 177|for more
information.
mode Expert
Simple
anomaly_method IndexLevel Specifies the method used to determine
PerRecords the cutoff value for flagging records as
NumRecords anomalous.
index_level number Specifies the minimum cutoff value for
flagging anomalies.
percent_records number Sets the threshold for flagging records
based on the percentage of records in the
training data.
num_records number Sets the threshold for flagging records
based on the number of records in the
training data.
num_fields integer The number of fields to report for each
anomalous record.
impute_missing_values flag
adjustment_coeff number Value used to balance the relative weight
given to continuous and categorical
fields in calculating the distance.
peer_group_num_auto flag Automatically calculates the number of
peer groups.
min_num_peer_groups integer Specifies the minimum number of peer
groups used when peer_group_num_auto
is set to True.
max_num_per_groups integer Specifies the maximum number of peer
groups.
num_peer_groups integer Specifies the number of peer groups
used when peer_group_num_auto is set to
False.
noise_level number Determines how outliers are treated
during clustering. Specify a value
between 0 and 0.5.
noise_ratio number Specifies the portion of memory
allocated for the component that should
be used for noise buffering. Specify a
value between 0 and 0.5.
178 IBM SPSS Modeler 16 Scripting and Automation Guide

apriorinode Properties

%“3

Example

The Apriori node extracts a set of rules from the data, pulling out the rules with the highest

information content. Apriori offers five different methods of selecting rules and uses a
sophisticated indexing scheme to process large data sets efficiently. For large problems,

Apriori is generally faster to train; it has no arbitrary limit on the number of rules that can be
retained, and it can handle rules with up to 32 preconditions. Apriori requires that input and
output fields all be categorical but delivers better performance because it is optimized for this

type of data.

create apriorinode

"Fields" tab

set :apriorinode.
set :apriorinode.
set :apriorinode.
set :apriorinode.
set :apriorinode.

custom_fields = True
use_transactional_data = True
id_field = 'Age'

contiguous = True
content_field = 'Drug’

These seem to have changed, used to be:

#help set :apriorinode.consequents
#help set :apriorinode.antecedents

['Age']

now it seems we have;
#help set :apriorinode.content = ['Age']

set :apriorinode.
"Model" tab

set :apriorinode.
set :apriorinode.
set :apriorinode.
set :apriorinode.
set :apriorinode.
set :apriorinode.
set :apriorinode.
"Expert" tab

set :apriorinode.
set :apriorinode.
set :apriorinode.

partition = Test

use_model_name = False

model_name = "Apriori_bp_choles_drug"
min_supp = 7.0

min_conf = 30.0

max_antecedents = 7

true_flags = False

optimize = Memory

mode = Expert
evaluation = ConfidenceRatio
Tower_bound = 7

['BP' 'Cholesterol' 'Drug']

Table 96. apriorinode properties

apriorinode Properties Values Property description

consequents field Apriori models use Consequents and
Antecedents in place of the standard target and
input fields. Weight and frequency fields are
not used. See the topic|’Common Modeling|
[Node Properties” on page 177| for more
information.

antecedents [fieldl ... fieldN]

min_supp number

min_conf number

max_antecedents number

true_flags flag

optimize Speed

Memory

use_transactional_data flag

contiguous flag

id_field string

content_field string

mode Simple

Expert

Chapter 16. Modeling Node Properties

179

Table 96. apriorinode properties (continued)

apriorinode Properties

Values

Property description

evaluation

RuleConfidence
DifferenceToPrior
ConfidenceRatio
InformationDifference
NormalizedChiSquare

Tower_bound number
optimize Speed Use to specify whether model building should
Memory be optimized for speed or for memory.

autoclassifiernode Properties

%

The Auto Classifier node creates and compares a number of different models for binary
outcomes (yes or no, churn or do not churn, and so on), allowing you to choose the best
approach for a given analysis. A number of modeling algorithms are supported, making it

possible to select the methods you want to use, the specific options for each, and the criteria
for comparing the results. The node generates a set of models based on the specified options
and ranks the best candidates according to the criteria you specify.

Example

create autoclassifiernode

set
set
set
set
set
set
set

:autoclassifiernode.
:autoclassifiernode.
:autoclassifiernode.
:autoclassifiernode.
:autoclassifiernode.
:autoclassifiernode.
:autoclassifiernode.

ranking_measure=Accuracy
ranking_dataset=Training
enable_accuracy_limit=true
accuracy_1imit=0.9
calculate_variable_importance=true
use_costs=true

svm=false

Table 97. autoclassifiernode properties

autoclassifiernode Properties

Values

Property description

target

field

For flag targets, the Auto Classifier node
requires a single target and one or more
input fields. Weight and frequency fields
can also be specified. See the topic
‘Common Modeling Node Properties” on|
page 172] for more information.

ranking_measure

Accuracy
Area_under_curve
Profit

Lift
Num_variables

ranking_dataset Training
Test

number_of_models integer Number of models to include in the model
nugget. Specify an integer between 1 and
100.

calculate_variable_importance flag

enable_accuracy_limit flag

accuracy_limit integer Integer between 0 and 100.

enable_ area_under_curve _limit |flag

area_under_curve_limit number Real number between 0.0 and 1.0.

180 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 97. autoclassifiernode properties (continued)

autoclassifiernode Properties Values Property description
enable_profit_Tlimit flag

profit_limit number Integer greater than 0.

enable 1ift_Timit flag

1ift_limit number Real number greater than 1.0.

enable_number_of_variables_limit |flag

number_of_variables_limit number Integer greater than 0.
use_fixed_cost flag

fixed_cost number Real number greater than 0.0.
variable_cost field

use_fixed_revenue flag

fixed_revenue number Real number greater than 0.0.
variable_revenue field

use_fixed_weight flag

fixed_weight number Real number greater than 0.0
variable_weight field

1ift_percentile number Integer between 0 and 100.
enable_model _build_time_limit flag

model_build_time_Timit number Integer set to the number of minutes to

limit the time taken to build each
individual model.

enable_stop_after_time_limit flag

stop_after_time_Timit number Real number set to the number of hours to
limit the overall elapsed time for an auto
classifier run.

enable_stop_after_valid_model_prodyted

use_costs flag
<algorithm> flag Enables or disables the use of a specific
algorithm, for example:
set :autoclassifiernode.chaid=true
<algorithm>.<property> string Sets a property value for a specific

algorithm. See the topic [‘Setting Algorithm|
for more information.

Setting Algorithm Properties

For the Auto Classifier, Auto Numeric, and Auto Cluster nodes, properties for specific algorithms used by
the node can be set using the general form:

set :autoclassifiernode.<algorithm>.<property> = <value>

set :autonumericnode.<algorithm>.<property> = <value>

set :autoclusternode.<algorithm>.<property> = <value>

For example:

set :autoclassifiernode.neuralnetwork.method = MultilayerPerceptron

Algorithm names for the Auto Classifier node are cart, chaid, quest, c50, Togreg, decisionlist,
bayesnet, discriminant, svm and knn.

Chapter 16. Modeling Node Properties 181

Algorithm names for the Auto Numeric node are cart, chaid, neuralnetwork, genlin, svm, regression,
Tinear and knn.

Algorithm names for the Auto Cluster node are twostep, k-means, and kohonen.
Property names are standard as documented for each algorithm node.

Algorithm properties that contain periods or other punctuation must be wrapped in single quotes, for
example:

set :autoclassifiernode.logreg.tolerance = '1.0E-5'

Multiple values can also be assigned for property, for example:

set :autoclassifiernode.decisionlist.search_direction = [Up Down]

To enable or disable the use of a specific algorithm:

set :autoclassifiernode.chaid=true

Notes:
* Lowercase must be used when setting true and false values (rather than False).

* In cases where certain algorithm options are not available in the Auto Classifier node, or when only a
single value can be specified rather than a range of values, the same limits apply with scripting as
when accessing the node in the standard manner.

autoclusternode Properties

- The Auto Cluster node estimates and compares clustering models, which identify groups of

\ élj records that have similar characteristics. The node works in the same manner as other

| i automated modeling nodes, allowing you to experiment with multiple combinations of
options in a single modeling pass. Models can be compared using basic measures with which
to attempt to filter and rank the usefulness of the cluster models, and provide a measure
based on the importance of particular fields.

Example

create autoclusternode

set :autoclusternode.ranking_measure=Silhouette
set :autoclusternode.ranking_dataset=Training

set :autoclusternode.enable_silhouette_Timit=true
set :autoclusternode.silhouette_limit=5

Table 98. autoclusternode properties

autoclusternode Properties Values Property description

evaluation field Note: Auto Cluster node only. Identifies the
field for which an importance value will be
calculated. Alternatively, can be used to
identify how well the cluster differentiates
the value of this field and, therefore; how
well the model will predict this field.

ranking_measure SiThouette
Num_cTusters
Size_smallest_cluster
Size_Tlargest_cluster
Smallest_to_largest
Importance

ranking_dataset Training
Test

182 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 98. autoclusternode properties (continued)

autoclusternode Properties Values Property description
summary_limit integer Number of models to list in the report.
Specify an integer between 1 and 100.
enable_silhouette 1imit flag
silhouette_Tlimit integer Integer between 0 and 100.
enable_number_less limit flag
number_less_Timit number Real number between 0.0 and 1.0.
enable_number_greater_limit flag
number_greater_limit number Integer greater than 0.
enable_smallest_cluster_Timit flag
smallest_cluster_units Percentage
Counts
smallest_cluster_1imit_percentage |number
smallest_cluster_Timit_count integer Integer greater than 0.
enable_largest_cluster_Timit flag
largest_cluster_units Percentage
Counts
largest _cluster_Timit_percentage |number
largest_cluster_Timit_count integer
enable_smallest Targest Timit flag
smallest_largest_limit number
enable_importance_limit flag
importance_limit_condition Greater_than
Less_than
importance_limit_greater_than number Integer between 0 and 100.
importance_limit_Tess_than number Integer between 0 and 100.
<algorithm> flag Enables or disables the use of a specific
algorithm, for example:
set :autoclusternode.kohonen=true
<algorithm>.<property> string Sets a property value for a specific

algorithm. See the topic [‘Setting Algorithm|
[Properties” on page 181| for more
information.

autonumericnode Properties

The Auto Numeric node estimates and compares models for continuous numeric range
outcomes using a number of different methods. The node works in the same manner as the

Auto Classifier node, allowing you to choose the algorithms to use and to experiment with

multiple combinations of options in a single modeling pass. Supported algorithms include

neural networks, C&R Tree, CHAID, linear regression, generalized linear regression, and
support vector machines (SVM). Models can be compared based on correlation, relative error,

or number of variables used.

Example

Chapter 16. Modeling Node Properties 183

create autonumericnode

set
set
set
set
set
set
set

:autonumericnode.
rautonumericnode.
:autonumericnode.
:autonumericnode.
:autonumericnode.
:autonumericnode.
:autonumericnode.

ranking_measure=Correlation
ranking_dataset=Training
enable_correlation_limit=true
correlation_1imit=0.8
calculate_variable_importance=true
neuralnetwork=true

chaid=false

Table 99. autonumericnode properties

autonumericnode Properties Values Property description
custom_fields flag If True, custom field settings will be used
instead of type node settings.
target field The Auto Numeric node requires a single
target and one or more input fields. Weight
and frequency fields can also be specified.
See the topic|“Common Modeling Node|
[Properties” on page 177|for more
information.
inputs [fieldl ... field2]
partition field
use_frequency flag
frequency_field field
use_weight flag
weight_field field
use_partitioned_data flag If a partition field is defined, only the

training data are used for model building.

ranking_measure

Correlation

NumberOfFields
ranking_dataset Test
Training
number_of_models integer Number of models to include in the model
nugget. Specify an integer between 1 and
100.
calculate_variable_importance flag
enable_correlation_limit flag
correlation_limit integer
enable_number_of fields_Timit flag
number_of_fields_limit integer
enable_relative_error_limit flag
relative_error_limit integer
enable_model_build_time_limit flag
model _build time Timit integer
enable_stop_after_time_Timit flag
stop_after_time_Timit integer
stop_if_valid_model flag
<algorithm> flag Enables or disables the use of a specific

algorithm, for example:
set :autonumericnode.chaid=true

184 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 99. autonumericnode properties (continued)

autonumericnode Properties Values

Property description

<algorithm>.<property> string

Sets a property value for a specific
algorithm. See the topic |[’Setting Algorithm|

[Properties” on page 181for more

information.

bayesnetnode Properties

an

Example

The Bayesian Network node enables you to build a probability model by combining observed
and recorded evidence with real-world knowledge to establish the likelihood of occurrences.
The node focuses on Tree Augmented Naive Bayes (TAN) and Markov Blanket networks that

are primarily used for classification.

create bayesnetnode

set :bayesnetnode.
set :bayesnetnode.
set :bayesnetnode.

Expert tab

set :bayesnetnode.
set :bayesnetnode.
set :bayesnetnode.

continue_training_existing_model = True
structure_type = MarkovBlanket
use_feature_selection = True

mode = Expert
all_probabilities = True
independence = Pearson

Table 100. bayesnetnode properties

bayesnetnode Properties Values

Property description

inputs

[field1 ... fieldN]

Bayesian network models use a single
target field, and one or more input fields.
Continuous fields are automatically
binned. See the topic |”Comm05|
[Modeling Node Properties” on page 177
for more information.

continue_training_existing model flag
structure_type TAN Select the structure to be used when
MarkovBlanket building the Bayesian network.
use_feature_selection flag
parameter_learning_method Likelihood Specifies the method used to estimate the
Bayes conditional probability tables between
nodes where the values of the parents
are known.
mode Expert
Simple
missing_values flag
all_probabilities flag
independence Likelihood Specifies the method used to determine
Pearson whether paired observations on two
variables are independent of each other.
significance_level number Specifies the cutoff value for determining
independence.
maximal_conditioning_set number Sets the maximal number of conditioning

variables to be used for independence
testing.

Chapter 16. Modeling Node Properties 185

Table 100. bayesnetnode properties (continued)

bayesnetnode Properties

Values

Property description

inputs_always_selected

[field1 ... fieldN]

Specifies which fields from the dataset
are always to be used when building the
Bayesian network.

Note: The target field is always selected.

maximum_number_inputs number Specifies the maximum number of input
fields to be used in building the Bayesian
network.

calculate_variable_importance flag

calculate_raw_propensities flag

calculate_adjusted_propensities flag

adjusted_propensity partition Test

Validation

buildr Properties

R

Example

set :buildr.score_syntax =

result <- predict(modelerModel, newdata= modelerData)

modelerData <- chind(modelerData, result)
varl<-c(fieldName="test", fieldLabel="",

modelerDataModel<-data.frame(modelerDataModel, varl) """

Table 101. buildr properties.

The R Building node enables you to enter custom R script
to perform model building and model scoring deployed
in IBM SPSS Modeler.

fieldStorage="real", fieldFormat="", fieldMeasure="",fieldRole="")

buildr Properties Values Property description
build_syntax string R scripting syntax for model building.
score_syntax string R scripting syntax for model scoring.
convert_flags StringsAndDoubles Option to convert flag fields.
LogicalValues
convert_datetime flag Option to convert variables with date or
datetime formats to R date/time formats.
convert_datetime_class POSIXct Options to specify to what format variables
POSIXTt with date or datetime formats are
converted.
convert_missing flag Option to convert missing values to R NA
value.
output_html flag Option to display graphs on a tab in the R
model nugget.
output_text flag Option to write R console text output to a

tab in the R model nugget.

186 IBM SPSS Modeler 16 Scripting and Automation Guide

c50node Properties

sample based on the field that provides the maximum information gain at each level. The

E The C5.0 node builds either a decision tree or a rule set. The model works by splitting the

target field must be categorical. Multiple splits into more than two subgroups are allowed.

Example

create cb0node
"Model" tab
set :c50node.use_model_name = False
set :cb0node.model_name = "C5_Drug"

set :c50node.use_partitioned_data = True

set :c50node.output_type = DecisionTree
set :chb0Onode.use_xval = True

set :c50node.xval_num_folds = 3

set :c50node.mode = Expert

set :ch0node.favor = Generality

set :c50node.min_child_records = 3

"Costs" tab

set :ch0node.use_costs = True

set :c50node.costs = [{"drugA" "drugX" 2}]

Table 102. c50node properties

c50node Properties

Values

Property description

target

field

C50 models use a single target field and
one or more input fields. A weight field can
also be specified. See the topic |”Common|
[Modeling Node Properties” on page 177 for
more information.

output_type

DecisionTree

RuleSet
group_symbolics flag
use_boost flag
boost_num_trials number
use_xval flag
xval_num_folds number
mode Simple
Expert
favor Accuracy Favor accuracy or generality.

Generality

expected noise number

min_child_records number

pruning_severity number

use_costs flag

costs structured This is a structured property.
use_winnowing flag

use_global_pruning flag On (True) by default.
calculate_variable_importance flag

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

adjusted_propensity partition Test

Validation

Chapter 16. Modeling Node Properties 187

carmanode Properties

f,f\,_\‘ The CARMA model extracts a set of rules from the data without requiring you to specify

\ @ input or target fields. In contrast to Apriori the CARMA node offers build settings for rule
support (support for both antecedent and consequent) rather than just antecedent support.
This means that the rules generated can be used for a wider variety of applications—for
example, to find a list of products or services (antecedents) whose consequent is the item that
you want to promote this holiday season.

Example

create carmanode

"Fields" tab

set :carmanode.custom_fields = True

set :carmanode.use_transactional_data = True
set :carmanode.inputs = ['BP' 'Cholesterol' 'Drug']
set :carmanode.partition = Test

"Model" tab

set :carmanode.use_model name = False

set :carmanode.model_name = "age_bp_drug"
set :carmanode.use_partitioned_data = False
set :carmanode.min_supp = 10.0

set :carmanode.min_conf = 30.0

set :carmanode.max_size = 5

Expert Options

set :carmanode.mode = Expert

#help set :carmanode.exclude_simple = True
set :carmanode.use_pruning = True

set :carmanode.pruning_value = 300

set :carmanode.vary_support = True

set :carmanode.estimated_transactions = 30
set :carmanode.rules_without_antecedents = True

Table 103. carmanode properties

carmanode Properties Values Property description

inputs [field1 ... fieldn] CARMA models use a list of input fields,
but no target. Weight and frequency fields
are not used. See the topic FCommor]
[Modeling Node Properties” on page 177] for
more information.

id_field field Field used as the ID field for model
building.
contiguous flag Used to specify whether IDs in the ID field
are contiguous.
use_transactional_data flag
content_field field
min_supp number(percent) Relates to rule support rather than
antecedent support. The default is 20%.
min_conf number(percent) The default is 20%.
max_size number The default is 10.
mode Simple The default is SimpTe.
Expert
exclude_multiple flag Excludes rules with multiple consequents.
The default is False.
use_pruning flag The default is False.
pruning_value number The default is 500.
vary_support flag

188 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 103. carmanode properties (continued)

carmanode Properties Values Property description
estimated_transactions integer
rules_without_antecedents flag

cartnode Properties

=N The Classification and Regression (C&R) Tree node generates a decision tree that allows you
'ﬁ)c;f:[H to predict or classify future observations. The method uses recursive partitioning to split the
=y training records into segments by minimizing the impurity at each step, where a node in the

tree is considered “pure” if 100% of cases in the node fall into a specific category of the target
field. Target and input fields can be numeric ranges or categorical (nominal, ordinal, or flags);

all splits are binary (only two subgroups).

Example

create cartnode at 200 100
create variablefilenode at 100 100
connect :variablefilenode to :cartnode

set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUGIn"

"Fields" tab

set :cartnode.custom_fields = True

set :cartnode.target 'Drug’

set :cartnode.inputs = ['Age' 'BP' 'Cholesterol']

"Build Options" tab, 'Objective' panel

set :cartnode.model_output_type = InteractiveBuilder
set :cartnode.use_tree_directives = True

set :cartnode.tree_directives = """Grow Node Index O Children 1 2

Grow Node Index 2 Children 3 4"""

"Build Options" tab, 'Basics' panel
set :cartnode.prune_tree = False

set :cartnode.use_std_err_rule = True
set :cartnode.std_err_multiplier = 3.0
set :cartnode.max_surrogates = 7

"Build Options" tab, 'Stopping Rules' panel
set :cartnode.use_percentage = True

set :cartnode.min_parent_records_pc = 5
set :cartnode.min_child_records_pc = 3
"Build Options" tab, 'Advanced' panel
set :cartnode.min_impurity = 0.0003

set :cartnode.impurity measure = Twoing
"Model Options" tab

set :cartnode.use_model_name = False
set :cartnode.model_name = "Cart_Drug"

Table 104. cartnode properties

cartnode Properties Values

Property description

target field

C&R Tree models require a single target
and one or more input fields. A frequency
field can also be specified. See the topic

‘Common Modeling Node Properties” on|

page 172] for more information.

continue_training_existing_model |flag

Bagging
psm

objective Standard
Boosting

psm is used for very large datasets, and
requires a Server connection.

model_output_type Single

InteractiveBuilder

use_tree_directives flag

Chapter 16. Modeling Node Properties 189

Table 104. cartnode properties (continued)

HighestMeanProbability

cartnode Properties Values Property description
tree_directives string Specify directives for growing the tree.
Directives can be wrapped in triple quotes
to avoid escaping newlines or quotes. Note
that directives may be highly sensitive to
minor changes in data or modeling options
and may not generalize to other datasets.
use_max_depth Default
Custom
max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.
prune_tree flag Prune tree to avoid overfitting.
use_std_err flag Use maximum difference in risk (in
Standard Errors).
std_err_multiplier number Maximum difference.
max_surrogates number Maximum surrogates.
use_percentage flag
min_parent_records_pc number
min_child_records_pc number
min_parent_records_abs number
min_child_records_abs number
use_costs flag
costs structured Structured property using the form:
[{drugA drugB 1.5} {drugA drugC 2.1}]
where the arguments within braces ({}) are
actual predicted costs.
priors Data
Equal
Custom
custom_priors structured Structured property using the form:
set :cartnode.
custom_priors =
[{ drugA 0.3 } { drugB 0.6 }]
adjust_priors flag
trails number Number of component models for boosting
or bagging.
set_ensemble_method Voting Default combining rule for categorical
HighestProbability targets.

range_ensemble_method Mean Default combining rule for continuous
Median targets.
large_boost flag Apply boosting to very large data sets.
min_impurity number
impurity_measure Gini
Twoing
Ordered

190 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 104. cartnode properties (continued)

cartnode Properties Values Property description
train_pct number Overfit prevention set.
set_random_seed flag Replicate results option.
seed number

calculate_variable_importance flag

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

adjusted_propensity partition Test

Validation

chaidnode Properties

Unlike the C&R Tree and QUEST nodes, CHAID can generate nonbinary trees, meaning that

@h‘\ The CHAID node generates decision trees using chi-square statistics to identify optimal splits.
L :.l

some splits have more than two branches. Target and input fields can be numeric range
(continuous) or categorical. Exhaustive CHAID is a modification of CHAID that does a more
thorough job of examining all possible splits but takes longer to compute.

Example

create chaidnode at 200 100
create variablefilenode at 100 100
connect :variablefilenode to :chaidnode

set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUGIn"

set :chaidnode.custom_fields = True
set :chaidnode.target = Drug

set :chaidnode.inputs = [Age Na K Cholesterol BP]

set :chaidnode.use_model_name = true
set :chaidnode.model_name = "CHAID"
set :chaidnode.method = Chaid

set :chaidnode.model_output_type = InteractiveBuilder

set :chaidnode.use_tree_directives = True

set :chaidnode.tree_directives = "Test"
set :chaidnode.split_alpha = 0.03

set :chaidnode.merge_alpha = 0.04

set :chaidnode.chi_square = Pearson

set :chaidnode.use_percentage = false

set :chaidnode.min_parent_records_abs = 40
set :chaidnode.min_child_records_abs = 30

set :chaidnode.epsilon = 0.003
set :chaidnode.max_iterations = 75
set :chaidnode.split_merged_categories =

Table 105. chaidnode properties

true
set :chaidnode.bonferroni_adjustment = true

chaidnode Properties Values Property description
target field CHAID models require a single target and
one or more input fields. A frequency field
can also be specified. See the topic
‘Common Modeling Node Properties” on|
page 172] for more information.
continue_training_existing_model |flag
objective Standard psm is used for very large datasets, and
Boosting requires a Server connection.
Bagging
psm

Chapter 16. Modeling Node Properties 191

Table 105. chaidnode properties (continued)

chaidnode Properties Values Property description
model_output_type Single
InteractiveBuilder
use_tree_directives flag
tree_directives string
method Chaid
ExhaustiveChaid
use_max_depth Default
Custom
max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.
use_percentage flag
min_parent_records_pc number
min_child_records_pc number
min_parent_records_abs number
min_child_records_abs number
use_costs flag
costs structured Structured property using the form:
[{drugA drugB 1.5} {drugA drugC 2.1}]
where the arguments within braces ({}) are
actual predicted costs.
trails number Number of component models for boosting
or bagging.
set_ensemble_method Voting Default combining rule for categorical
HighestProbability targets.

HighestMeanProbability

range_ensemble _method Mean Default combining rule for continuous
Median targets.
large_boost flag Apply boosting to very large data sets.
split_alpha number Significance level for splitting.
merge_alpha number Significance level for merging.
bonferroni_adjustment flag Adjust significance values using Bonferroni
method.
split_merged_categories flag Allow resplitting of merged categories.
chi_square Pearson Method used to calculate the chi-square
LR statistic: Pearson or Likelihood Ratio
epsilon number Minimum change in expected cell
frequencies..
max_iterations number Maximum iterations for convergence.
set_random_seed integer
seed number
calculate_variable_importance flag
calculate_raw_propensities flag
calculate_adjusted_propensities |flag

192 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 105. chaidnode properties (continued)

chaidnode Properties Values Property description

adjusted_propensity partition Test
Validation

maximum_number_of_models integer

coxregnode Properties

The Cox regression node enables you to build a survival model for time-to-event data in the
presence of censored records. The model produces a survival function that predicts the
probability that the event of interest has occurred at a given time (¢) for given values of the
input variables.

Example

create coxregnode

set :coxregnode.survival_time = tenure

set :coxregnode.method = BackwardsStepwise

Expert tab

set :coxregnode.mode = Expert

set :coxregnode.removal_criterion = Conditional
set :coxregnode.survival = True

Table 106. coxregnode properties

coxregnode Properties Values Property description
survival_time field Cox regression models require a single
field containing the survival times.
target field Cox regression models require a single
target field, and one or more input fields.
See the topic|“Common Modeling Node|
[Properties” on page 177|for more
information.
method Enter
Stepwise
BackwardsStepwise
groups field
model_type MainEffects
Custom
custom_terms ["BP*Sex” "BP*Age”] Example:
set :coxregnode. custom_terms =
[“BP*SeX" ||BP|| IIAgeII]
mode Expert
Simple
max_iterations number
p_converge 1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0

Chapter 16. Modeling Node Properties 193

Table 106. coxregnode properties (continued)

coxregnode Properties Values Property description
p_converge 1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0
1_converge 1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
0
removal_criterion LR
Wald
Conditional
probability entry number
probability_removal number
output_display EachStep
LastStep
ci_enable flag
ci_value 90
95
99
correlation flag
display_baseline flag
survival flag
hazard flag
Tog_minus_1log flag
one_minus_survival flag
separate_line field
value number or string If no value is specified for a field, the
default option "Mean" will be used for
that field.
Usage for a numeric field: coxnode.value
= [{Ilagell II35.8II}]
Usage for a categorical field:
coxnode.value = [{"color" "pink"}]

decisionlistnode Properties

Y

The Decision List node identifies subgroups, or segments, that show a higher or lower
likelihood of a given binary outcome relative to the overall population. For example, you
might look for customers who are unlikely to churn or are most likely to respond favorably
to a campaign. You can incorporate your business knowledge into the model by adding your
own custom segments and previewing alternative models side by side to compare the results.
Decision List models consist of a list of rules in which each rule has a condition and an
outcome. Rules are applied in order, and the first rule that matches determines the outcome.

194 1BM SPSS Modeler 16 Scripting and Automation Guide

Example

create decisionlistnode

set :decisionlistnode.search_direction=Down

set :decisionlistnode.target_value=1
set :decisionlistnode.max_rules=4

set :decisionlistnode.min_group_size_pct = 15

Table 107. decisionlistnode properties

decisionlistnode Properties Values Property description
target field Decision List models use a single target
and one or more input fields. A frequency
field can also be specified. See the topic
“Common Modeling Node Properties” on|
page 177|for more information.
model _output_type Model
InteractiveBuilder
search_direction Up Relates to finding segments; where Up is
Down the equivalent of High Probability, and
Down is the equivalent of Low Probability..
target_value string If not specified, will assume true value for
flags.
max_rules integer The maximum number of segments
excluding the remainder.
min_group_size integer Minimum segment size.
min_group_size_pct number Minimum segment size as a percentage.
confidence_level number Minimum threshold that an input field has
to improve the likelihood of response (give
lift), to make it worth adding to a segment
definition.
max_segments_per_rule integer
mode Simple
Expert
bin_method EqualWidth
EqualCount
bin_count number
max_models_per_cycle integer Search width for lists.
max_rules_per_cycle integer Search width for segment rules.
segment_growth number
include_missing flag
final_results_only flag
reuse_fields flag Allows attributes (input fields which
appear in rules) to be re-used.
max_alternatives integer
calculate_raw_propensities flag
calculate_adjusted_propensities |flag
adjusted_propensity partition Test

Validation

Chapter 16. Modeling Node Properties 195

discriminantnode Properties

valuable alternative or supplement to a logistic regression analysis when those assumptions

@ Discriminant analysis makes more stringent assumptions than logistic regression but can be a
are met.

Example

create discriminantnode

set :discriminantnode.target = custcat

set :discriminantnode.use_partitioned_data = False
set :discriminantnode.method = Stepwise

Table 108. discriminantnode properties

discriminantnode Properties Values Property description
target field Discriminant models require a single target
field and one or more input fields. Weight
and frequency fields are not used. See the
topic[“Common Modeling Node|
[Properties” on page 177 for more
information.
method Enter
Stepwise
mode Simple
Expert
prior_probabilities Al1Equal
ComputeFromSizes
covariance_matrix WithinGroups
SeparateGroups
means flag Statistics options in the Advanced Output
dialog box.
univariate_anovas flag
box_m flag
within_group_covariance flag
within_groups_correlation flag
separate_groups_covariance flag
total_covariance flag
fishers flag
unstandardized flag
casewise_results flag Classification options in the Advanced
Output dialog box.
limit_to_first number Default value is 10.
summary_table flag
leave_one_classification flag
combined_groups flag
separate_groups_covariance flag Matrices option Separate-groups
covariance.
territorial_map flag
combined_groups flag Plot option Combined-groups.

196 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 108. discriminantnode properties (continued)

UnexplainedVariance
MahalanobisDistance

discriminantnode Properties Values Property description
separate_groups flag Plot option Separate-groups.
summary_of_steps flag

F_pairwise flag

stepwise_method WilksLambda

Validation

SmallestF

RaosV
V_to_enter number
criteria UseValue

UseProbability
F_value_entry number Default value is 3.84.
F_value_removal number Default value is 2.71.
probability entry number Default value is 0.05.
probability_removal number Default value is 0.10.
calculate_variable_importance flag
calculate_raw_propensities flag
calculate_adjusted_propensities |flag
adjusted_propensity partition Test

factornode Properties

o

Ill'\g_’/ fields that do the best job of capturing the variance in the entire set of fields, where the
components are orthogonal (perpendicular) to each other. Factor analysis attempts to identify
underlying factors that explain the pattern of correlations within a set of observed fields. For
both approaches, the goal is to find a small number of derived fields that effectively
summarizes the information in the original set of fields.

Example

create factornode

"Fields" tab

set :factornode.custom fields = True
set :factornode.inputs = ['BP' 'Na' 'K']
set :factornode.partition = Test

"Model" tab

set :factornode.use_model_name = True

set :factornode.model_name = "Factor_Age"

set :factornode.use partitioned_data = False

set :factornode.method = GLS

Expert options

set :factornode.mode = Expert

set :factornode.complete_records = true
set :factornode.matrix = Covariance

set :factornode.max_iterations = 30

set :factornode.extract_factors = ByFactors

set :factornode.min_eigenvalue = 3.0
set :factornode.max_factor = 7

set :factornode.sort_values = True
set :factornode.hide_values = True
set :factornode.hide below = 0.7

Chapter 16. Modeling Node Properties

The PCA /Factor node provides powerful data-reduction techniques to reduce the complexity
of your data. Principal components analysis (PCA) finds linear combinations of the input

197

"Rotation" section
set :factornode.rotation = DirectOblimin
set :factornode.delta = 0.3
set :factornode.kappa = 7.0

Table 109. factornode properties

factornode Properties

Values

Property description

Covariance

inputs [fieldl ... fieldN] PCA /Factor models use a list of input
fields, but no target. Weight and frequenc
fields are not used. See the topicl”CommoI;]
[Modeling Node Properties” on page 177] for
more information.
method PC
ULS
GLS
ML
PAF
Alpha
Image
mode Simple
Expert
max_iterations number
complete_records flag
matrix Correlation

extract_factors

ByEigenvalues

ByFactors
min_eigenvalue number
max_factor number
rotation None
Varimax
DirectOblimin
Equamax
Quartimax
Promax
delta number If you select DirectOblimin as your rotation
data type, you can specify a value for
delta.
If you do not specify a value, the default
value for delta is used.
kappa number If you select Promax as your rotation data
type, you can specify a value for kappa.
If you do not specify a value, the default
value for kappa is used.
sort_values flag
hide_values flag
hide_beTow number

198 1BM SPSS Modeler 16 Scripting and Automation Guide

featureselectionnode Properties

\ J

Example

The Feature Selection node screens input fields for removal based on a set of criteria (such as
the percentage of missing values); it then ranks the importance of remaining inputs relative to
a specified target. For example, given a data set with hundreds of potential inputs, which are
most likely to be useful in modeling patient outcomes?

create featureselectionnode

set
set
set
set
set
set
set
set
set
set

:featureselectionnode.
:featureselectionnode.
:featureselectionnode.
:featureselectionnode.
:featureselectionnode.
:featureselectionnode.
:featureselectionnode.
:featureselectionnode.
:featureselectionnode.
:featureselectionnode.

screen_single_category=true
max_single_category=95
screen_missing_values=true
max_missing_values=80

criteria = Likelihood
unimportant_below = 0.8
important_above = 0.9
important_label = "Check Me Qut!"
selection_mode = TopN

top_n = 15

For a more detailed example that creates and applies a Feature Selection model, see

Table 110. featureselectionnode properties

featureselectionnode Properties Values Property description

target

field Feature Selection models rank predictors
relative to the specified target. Weight
and frequency fields are not used. See
the topic [’Common Modeling Nodé¢
[Properties” on page 177[for more
information.

screen_single_category flag

If True, screens fields that have too many
records falling into the same category
relative to the total number of records.

max_single_category

number Specifies the threshold used when
screen_single_category is True.

screen_missing_values flag If True, screens fields with too many

missing values, expressed as a
percentage of the total number of

records.
max_missing_values number
screen_num_categories flag If True, screens fields with too many
categories relative to the total number of
records.
max_num_categories number
screen_std_dev flag If True, screens fields with a standard
deviation of less than or equal to the
specified minimum.
min_std_dev number
screen_coeff_of_var flag If True, screens fields with a coefficient
of variance less than or equal to the
specified minimum.
min_coeff_of_var number
criteria Pearson When ranking categorical predictors
Likelihood against a categorical target, specifies the
CramersV measure on which the importance value
Lambda is based.

Chapter 16. Modeling Node Properties 199

Table 110. featureselectionnode properties (continued)

ImportanceValue
TopN

featureselectionnode Properties Values Property description

unimportant_below number Specifies the threshold p values used to
rank variables as important, marginal, or
unimportant. Accepts values from 0.0 to
1.0.

important_above number Accepts values from 0.0 to 1.0.

unimportant_Tabel string Specifies the label for the unimportant
ranking.

marginal_label string

important_Tlabel string

selection_mode Importancelevel

select_important

flag

When selection_mode is set to
Importancelevel, specifies whether to
select important fields.

select_marginal

flag

When selection_mode is set to
Importancelevel, specifies whether to
select marginal fields.

select_unimportant

flag

When selection_mode is set to
Importancelevel, specifies whether to
select unimportant fields.

importance_value

number

When selection_mode is set to
ImportanceValue, specifies the cutoff
value to use. Accepts values from 0 to
100.

top_n

integer

When selection_mode is set to TopN,
specifies the cutoff value to use. Accepts
values from 0 to 1000.

genlinnode Properties

/f'\ The Generalized Linear model expands the general linear model so that the dependent

\ %W variable is linearly related to the factors and covariates through a specified link function.

I'_J"r Moreover, the model allows for the dependent variable to have a non-normal distribution. It
covers the functionality of a wide number of statistical models, including linear regression,
logistic regression, loglinear models for count data, and interval-censored survival models.

Example

create genlinnode

set :genlinnode.model_type = MainAndA11TwolWayEffects

set :genlinnode.offset_type = Variable
set :genlinnode.offset_field = Claimant

200 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 111. genlinnode properties

genlinnode Properties Values Property description
target field Generalized Linear models require a single
target field which must be a nominal or
flag field, and one or more input fields. A
weight field can also be specified. See the
topic [“Common Modeling Node|
[Properties” on page 177|for more
information.
use_weight flag
weight_field field Field type is only continuous.
target_represents_trials flag
trials_type Variable
FixedValue
trials_field field Field type is continuous, flag, or ordinal.
trials_number number Default value is 10.
model_type MainEffects
MainAndAT1TwoWayEffects
offset_type Variable
FixedValue
offset_field field Field type is only continuous.
offset_value number Must be a real number.
base_category Last
First
include_intercept flag
mode Simple
Expert
distribution BINOMIAL IGAUSS: Inverse Gaussian.
GAMMA NEGBIN: Negative binomial.
IGAUSS
NEGBIN
NORMAL
POISSON
TWEEDIE
MULTINOMIAL
negbin_para_type Specify
Estimate
negbin_parameter number Default value is 1. Must contain a
non-negative real number.
tweedie_parameter number

Chapter 16. Modeling Node Properties

201

Table 111. genlinnode properties (continued)

genlinnode Properties Values Property description
Tink_function IDENTITY CLOGLOG: Complementary log-log.
CLOGLOG LOGC: log complement.
LOG NEGBIN: Negative binomial.
LOGC NLOGLOG: Negative log-log.
LOGIT CUMCAUCHIT: Cumulative cauchit.
NEGBIN CUMCLOGLOG: Cumulative complementary
NLOGLOG log-log.
ODDSPOWER CUMLOGIT: Cumulative logit.
PROBIT CUMNLOGLOG: Cumulative negative log-log.
POWER CUMPROBIT: Cumulative probit.
CUMCAUCHIT
CUMCLOGLOG
CUMLOGIT
CUMNLOGLOG
CUMPROBIT
power number Value must be real, nonzero number.
method Hybrid
Fisher
NewtonRaphson
max_fisher_iterations number Default value is 1; only positive integers

allowed.

scale_method

MaxLikelihoodEstimate
Deviance
PearsonChiSquare
FixedValue

scale_value

number

Default value is 1; must be greater than 0.

covariance_matrix

ModelEstimator

RobustEstimator
max_iterations number Default value is 100; non-negative integers
only.
max_step_halving number Default value is 5; positive integers only.
check_separation flag
start_iteration number Default value is 20; only positive integers
allowed.
estimates_change flag
estimates_change_min number Default value is 1E-006; only positive
numbers allowed.
estimates_change_type Absolute
Relative
loglikelihood_change flag
Toglikelihood_change_min number Only positive numbers allowed.
logTikelihood_change_type Absolute
Relative
hessian_convergence flag
hessian_convergence_min number Only positive numbers allowed.
hessian_convergence_type Absolute
Relative
case_summary flag

202 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 111. genlinnode properties (continued)

genlinnode Properties Values Property description
contrast_matrices flag
descriptive_statistics flag
estimable_functions flag
model_info flag
iteration_history flag
goodness_of_fit flag
print_interval number Default value is 1; must be positive integer.
model_summary flag
lagrange_multiplier flag
parameter_estimates flag
include_exponential flag
covariance_estimates flag
correlation_estimates flag
analysis_type Typel
Typelll
TypeIAndTypelll
statistics Wald
LR
citype Wald
Profile
tolerancelevel number Default value is 0.0001.
confidence_interval number Default value is 95.
Toglikelihood_function Full
Kernel
singularity_tolerance 1E-007
1E-008
1E-009
1E-010
1E-011
1E-012
value_order Ascending
Descending
DataOrder
calculate_variable_importance flag
calculate_raw_propensities flag
calculate_adjusted_propensities |flag
adjusted_propensity partition Test

Validation

Chapter 16. Modeling Node Properties

203

glmmnode Properties

have a non-normal distribution, is linearly related to the factors and covariates via a specified
link function, and so that the observations can be correlated. Generalized linear mixed models
cover a wide variety of models, from simple linear regression to complex multilevel models
for non-normal longitudinal data.

i A generalized linear mixed model (GLMM) extends the linear model so that the target can

Table 112. glmmnode properties.

glmmnode Properties Values Property description

residual_subject_spec structured The combination of values of the specified
categorical fields that uniquely define
subjects within the data set

repeated_measures structured Fields used to identify repeated
observations.
residual_group_spec [field1 ... fieldN] Fields that define independent sets of
repeated effects covariance parameters.
residual_covariance_type Diagonal Specifies covariance structure for residuals.
AR1
ARMA11
COMPOUND_SYMMETRY
IDENTITY
TOEPLITZ
UNSTRUCTURED

VARIANCE_COMPONENTS

custom_target flag Indicates whether to use target defined in
upstream node (false) or custom target
specified by target_field (true).

target_field field Field to use as target if custom_target is
true.
use_trials flag Indicates whether additional field or value

specifying number of trials is to be used
when target response is a number of events
occurring in a set of trials. Default is false.

use_field_or_value Field Indicates whether field (default) or value is
Value used to specify number of trials.

trials_field field Field to use to specify number of trials.

trials_value integer Value to use to specify number of trials. If

specified, minimum value is 1.

use_custom_target_reference flag Indicates whether custom reference
category is to be used for a categorical
target. Default is false.

target_reference_value string Reference category to use if
use_custom_target_reference is true.
dist_1ink_combination Nominal Common models for distribution of values
Logit for target. Choose Custom to specify a
GammalLog distribution from the list provided
Binomiallogit bytarget_distribution.

PoissonlLog
BinomialProbit
NegbinLog
BinomiallogC
Custom

204 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 112. glmmnode properties (continued).

glmmnode Properties Values Property description
target_distribution Normal Distribution of values for target when
Binomial dist_link_combination is Custom.

Multinomial
Gamma

Inverse
NegativeBinomial
Poisson
Tink_function_type Identity Link function to relate target
LogC values to predictors.
Log If target_distribution is
CLOGLOG Binomial you can use any
Logit of the listed link functions.
NLOGLOG If target_distribution is
PROBIT Multinomial you can use
POWER CLOGLOG, CAUCHIT, LOGIT,
CAUCHIT NLOGLOG, or PROBIT.
If target_distribution is
anything other than Binomial or
Multinomial you can use
IDENTITY, LOG, or POWER.
Tink_function_param number Link function parameter value to use. Only
applicable if normal_Tink_function or
Tink_function_type is POWER.
use_predefined_inputs flag Indicates whether fixed effect fields are to
be those defined upstream as input fields
(true) or those from fixed_effects_list
(false). Default is false.
fixed_effects_list structured If use_predefined_inputs is false, specifies
the input fields to use as fixed effect fields.
use_intercept flag If true (default), includes the intercept in
the model.
random_effects_list structured List of fields to specify as random effects.
regression_weight_field field Field to use as analysis weight field.
use_offset None Indicates how offset is specified. Value None

offset_value
offset_field

means no offset is used.

offset_value number Value to use for offset if use_offset is set
to offset_value.
offset_field field Field to use for offset value if use_offset is
set to offset_field.
target_category_order Ascending Sorting order for categorical targets. Value
Descending Data specifies using the sort order found in
Data the data. Default is Ascending.
inputs_category_order Ascending Sorting order for categorical predictors.

Descending
Data

Value Data specifies using the sort order
found in the data. Default is Ascending.

max_iterations

integer

Maximum number of iterations the
algorithm will perform. A non-negative
integer; default is 100.

Chapter 16. Modeling Node Properties 205

Table 112. glmmnode properties (continued).

onlncrease

glmmnode Properties Values Property description
confidence_level integer Confidence level used to compute interval
estimates of the model coefficients. A
non-negative integer; maximum is 100,
default is 95.
degrees_of_freedom_method Fixed Specifies how degrees of freedom are
Varied computed for significance test.
test_fixed_effects_coeffecients |Model Method for computing the parameter
Robust estimates covariance matrix.
use_p_converge flag Option for parameter convergence.
p_converge number Blank, or any positive value.
p_converge_type Absolute
Relative
use_1_converge flag Option for log-likelihood convergence.
1_converge number Blank, or any positive value.
1_converge_type AbsoTlute
Relative
use_h_converge flag Option for Hessian convergence.
h_converge number Blank, or any positive value.
h_converge_type Absolute
Relative
max_fisher_steps integer
singularity_tolerance number
use_model_name flag Indicates whether to specify a custom name
for the model (true) or to use the
system-generated name (false). Default is
false.
model_name string If use_model_name is true, specifies the
model name to use.
confidence onProbability Basis for computing scoring confidence

value: highest predicted probability, or
difference between highest and second
highest predicted probabilities.

score_category_probabilities

flag

If true, produces predicted probabilities for
categorical targets. Default is false.

max_categories

integer

If score_category probabilities is true,
specifies maximum number of categories to
save.

score_propensity

flag

If true, produces propensity scores for flag
target fields that indicate likelihood of
"true" outcome for field.

emeans

structure

For each categorical field from the fixed
effects list, specifies whether to produce
estimated marginal means.

covariance_list

structure

For each continuous field from the fixed
effects list, specifies whether to use the
mean or a custom value when computing
estimated marginal means.

206 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 112. glmmnode properties (continued).

glmmnode Properties Values Property description
mean_scale Original Specifies whether to compute estimated
Transformed marginal means based on the original scale
of the target (default) or on the link
function transformation.
comparison_adjustment_method LSD Adjustment method to use when
SEQBONFERRONI performing hypothesis tests with multiple
SEQSIDAK contrasts.

kmeansnode Properties

The K-Means node clusters the data set into distinct groups (or clusters). The method defines

@\ a fixed number of clusters, iteratively assigns records to clusters, and adjusts the cluster
centers until further refinement can no longer improve the model. Instead of trying to predict

an outcome, k-means uses a process known as unsupervised learning to uncover patterns in
the set of input fields.

Example

create kmeansnode
"Fields" tab
set :kmeansnode.custom_fields = True

set :kmeansnode.inputs = ['Cholesterol' 'BP' 'Drug' 'Na' 'K' 'Age']

"Model" tab
set :kmeansnode.use_model_name = False

set :kmeansnode.model_name = "Kmeans_allinputs"

set :kmeansnode.num_clusters = 9
set :kmeansnode.gen_distance = True
set :kmeansnode.cluster_label = "Number"

set :kmeansnode.label_prefix = "Kmeans_
set :kmeansnode.optimize = Speed

"Expert" tab

set :kmeansnode.mode = Expert

set :kmeansnode.stop_on = Custom

set :kmeansnode.max_iterations = 10

set :kmeansnode.tolerance = 3.0

set :kmeansnode.encoding_value = 0.3

Table 113. kmeansnode properties

kmeansnode Properties

Values

Property description

inputs

[field1 ... fieldN]

K-means models perform cluster analysis
on a set of input fields but do not use a
target field. Weight and frequency fields are
not used. See the topic [‘Common Modeling|
[Node Properties” on page 177 for more
information.

num_clusters number
gen_distance flag
cluster_label String
Number
label_prefix string
mode Simple
Expert
stop_on Default
Custom
max_iterations number

Chapter 16. Modeling Node Properties 207

Table 113. kmeansnode properties (continued)

kmeansnode Properties Values Property description
tolerance number
encoding_value number
optimize Speed Use to specify whether model building
Memory should be optimized for speed or for
memory.

knnnode Properties

objects nearest to it in the predictor space, where k is an integer. Similar cases are near each

@ The k-Nearest Neighbor (KNN) node associates a new case with the category or value of the k
other and dissimilar cases are distant from each other.

Example

create knnnode

Objectives tab

set: knnnode.objective = Custom

Settings tab - Neighbors panel

set: knnnode.automatic_k_selection = false
set: knnnode.fixed_k = 2

set: knnnode.weight_by_ importance = True

Settings tab - Analyze panel

set: knnnode.save_distances = True

Table 114. knnnode properties

knnnode Properties Values Property description
analysis PredictTarget
IdentifyNeighbors
objective Balance
Speed
Accuracy
Custom
normalize_ranges flag
use_case_labels flag Check box to enable next option.
case_labels_field field
identify_focal_cases flag Check box to enable next option.
focal_cases_field field
automatic_k_selection flag
fixed_k integer Enabled only if automatic_k_selectio is
False.
minimum_k integer Enabled only if automatic_k_selectio is
True.
maximum_k integer
distance_computation Euclidean
CityBlock
weight_by importance flag
range_predictions Mean
Median
perform_feature_selection flag

208 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 114. knnnode properties (continued)

knnnode Properties

Values

Property description

forced_entry_inputs

[field1 ... fieldN]

stop_on_error_ratio

flag

Validation

number_to_select integer

minimum_change number

validation_fold_assign_by field |flag

number_of_folds integer Enabled only if
validation_fold_assign_by field is False

set_random_seed flag

random_seed number

folds_field field Enabled only if
validation_fold_assign_by_field is True

all_probabilities flag

save_distances flag

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

adjusted_propensity partition Test

kohonennode Properties

b

= The Kohonen node generates a type of neural network that can be used to cluster the data set
ﬂh:' into distinct groups. When the network is fully trained, records that are similar should be

LR close together on the output map, while records that are different will be far apart. You can
look at the number of observations captured by each unit in the model nugget to identify the
strong units. This may give you a sense of the appropriate number of clusters.

Example

create kohonennode
"Model" tab
set :kohonennode.use_model_name = False

set :kohonennode.model_name = "Symbolic Cluster"

set :kohonennode.stop_on = Time

set :kohonennode.time = 1

set :kohonennode.set_random_seed = True
set :kohonennode.random_seed = 12345
set :kohonennode.optimize = Speed

"Expert" tab

set :kohonennode.mode = Expert

set :kohonennode.width = 3

set :kohonennode.length = 3

set :kohonennode.decay style = Exponential

set :kohonennode.phasel_neighborhood = 3
set :kohonennode.phasel_eta = 0.5

set :kohonennode.phasel cycles = 10

set :kohonennode.phase2_neighborhood = 1
set :kohonennode.phase2_eta = 0.2

set :kohonennode.phase2_cycles = 75

Chapter 16. Modeling Node Properties

209

Table 115. kohonennode properties

kohonennode Properties Values Property description
inputs [field1 ... fieldN] Kohonen models use a list of input fields,
but no target. Frequency and weight fields
are not used. See the topic f’Commor_ll
[Modeling Node Properties” on page 177 for
more information.
continue flag
show_feedback flag
stop_on Default
Time
time number
optimize Speed Use to specify whether model building
Memory should be optimized for speed or for
memory.
cluster_label flag
mode Simple
Expert
width number
length number
decay style Linear
Exponential
phasel_neighborhood number
phasel _eta number
phasel_cycles number
phase2_neighborhood number
phase2_eta number
phase2_cycles number

linearnode Properties

&

Example

create Tinearnod
Build Options
set :linearnode.
Build Options
set :linearnode.
set :linearnode.
Build Options
set :linearnode.

Linear regression models predict a continuous target based on linear relationships between

the target and one or more predictors.

e
tab - Objectives panel

objective = Standard

tab - Model Selection panel

model_selection = BestSubsets

criteria_best_subsets = ASE

tab - Ensembles panel

combining_rule_categorical = HighestMeanProbability

210 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 116. linearnode properties.

linearnode Properties Values Property description
target field Specifies a single target field.
inputs [field1 ... fieldN] Predictor fields used by the model.
continue_training_existing_model |flag
objective Standard psm is used for very large datasets, and
Bagging requires a Server connection.
Boosting
psm
use_auto_data_preparation flag
confidence_level number
model_selection ForwardStepwise
BestSubsets
None
criteria_forward_stepwise AICC
Fstatistics
AdjustedRSquare
ASE
probability_entry number
probability_removal number
use_max_effects flag
max_effects number
use_max_steps flag
max_steps number
criteria_best_subsets AICC
AdjustedRSquare
ASE
combining_rule_continuous Mean
Median
component_models n number
use_random_seed flag
random_seed number
use_custom_model_name flag
custom_model_name string
use_custom_name flag
custom_name string
tooltip string
keywords string
annotation string

Chapter 16. Modeling Node Properties

211

logregnode Properties

oy Logistic regression is a statistical technique for classifying records based on values of input
\ L£ / fields. It is analogous to linear regression but takes a categorical target field instead of a
f numeric range.

Multinomial Example

create Togregnode

"Fields" tab

set :logregnode.custom_fields = True

set :logregnode.target = 'Drug’

set :logregnode.inputs = ['BP' 'Cholesterol' 'Age']
set :logregnode.partition = Test

"Model" tab

set :logregnode.use_model_name = False

set :logregnode.model_name = "Log_reg Drug"
set :logregnode.use_partitioned_data = True
set :logregnode.method = Stepwise

set :logregnode.logistic_procedure = Multinomial
set :logregnode.multinomial_base_category = BP
set :logregnode.model_type = FullFactorial
set :Togregnode.custom terms = [{BP Sex}{Age}{Na K}]
set :logregnode.include_constant = False

"Expert" tab

set :logregnode.mode = Expert

set :logregnode.scale = Pearson

set :logregnode.scale value = 3.0

set :logregnode.all_probabilities = True

set :logregnode.tolerance = "1.0E-7"

"Convergence..." section

set :logregnode.max_iterations = 50

set :logregnode.max_steps = 3

set :logregnode.l_converge = "1.0E-3"

set :logregnode.p_converge = "1.0E-7"

set :logregnode.delta = 0.03

"Output..." section

set :logregnode.summary = True

set :logregnode.likelihood_ratio = True

set :logregnode.asymptotic_correlation = True
set :logregnode.goodness_fit = True

set :logregnode.iteration_history = True

set :logregnode.history steps = 3

set :logregnode.parameters = True

set :logregnode.confidence_interval = 90

set :logregnode.asymptotic_covariance = True
set :logregnode.classification_table = True

"Stepping" options

set :logregnode.min_terms = 7

set :logregnode.use_max_terms = true

set :logregnode.max_terms = 10

set :logregnode.probability entry = 3

set :logregnode.probability_removal = 5

set :logregnode.requirements = Containment

Binomial Example

create Togregnode

"Fields" tab

set :logregnode.custom_fields = True

set :logregnode.target = 'Cholesterol’

set :logregnode.inputs = ['BP' 'Drug' 'Age']
set :logregnode.partition = Test

"Model" tab
set :logregnode.use_model_name = False
set :logregnode.model_name = "Log_reg Cholesterol"

set :logregnode.multinomial_base category = BP

set :logregnode.use_partitioned_data = True

set :logregnode.binomial_method = Forwards

set :logregnode.logistic_procedure = Binomial

set :logregnode.binomial_categorical_input = Sex
set :Togregnode.binomial_input_contrast.Sex = Simple
set :logregnode.binomial_input_category.Sex = Last
set :logregnode.include_constant = False

"Expert" tab

set :logregnode.mode = Expert

set :logregnode.scale = Pearson

set :logregnode.scale_value = 3.0

212 IBM SPSS Modeler 16 Scripting and Automation Guide

set :logregnode.all_probabilities = True
set :logregnode.tolerance = "1.0E-7"

"Convergence..." section

set :logregnode.max_iterations = 50

set :logregnode.l_converge = "1.0E-3"
set :logregnode.p_converge = "1.0E-7"

"Output..." section

set :logregnode.binomial_output_display = at_each_step
set :logregnode.binomial_goodness_fit = True

set :logregnode.binomial_iteration_history = True

set :logregnode.binomial_parameters = True

set :logregnode.binomial_ci_enable = True

set :logregnode.binomial_ci = 85

"Stepping" options

set :logregnode.binomial_removal_criterion = LR

set :logregnode.binomial_probability removal 0.2
Table 117. logregnode properties.
Togregnode Properties Values Property description
target field Logistic regression models require a single
target field and one or more input fields.
Frequency and weight fields are not used.
See the topic [‘Common Modeling Node|
[Properties” on page 177] for more
information.
logistic_procedure Binomial
Multinomial
include_constant flag
mode Simple
Expert
method Enter
Stepwise
Forwards
Backwards

BackwardsStepwise

binomial_method Enter
Forwards
Backwards
model_type MainEffects When FullFactorial is specified as the
FullFactorial model type, stepping methods will not be
Custom run, even if specified. Instead, Enter will
be the method used.
If the model type is set to Custom but no
custom fields are specified, a main-effects
model will be built.
custom_terms [{BP Sex}{BP}{Age}] Example:
set :logregnode. custom_terms =
[{Na} {K} {Na K}]
multinomial_base_category string Specifies how the reference category is
determined.
binomial_categorical_input string

Chapter 16. Modeling Node Properties 213

Table 117. logregnode properties (continued).

logregnode Properties Values Property description
binomial_input_contrast Indicator Keyed property for categorical input that
Simple specifies how the contrast is determined.
Difference
Helmert Usage format:
Repeateq NODE.binomial_input_contrast.
Polynomial FIELDNAME
Deviation
binomial_input_category First Keyed property for categorical input that
Last specifies how the reference category is
determined.
Usage format:
NODE.binomial_input_category.
FIELDNAME
scale None
UserDefined
Pearson
Deviance
scale value number
all_probabilities flag
tolerance 1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9
1.0E-10
min_terms number
use_max_terms flag
max_terms number
entry _criterion Score
LR
removal_criterion LR
Wald
probability entry number
probability_removal number
binomial_probability_entry number
binomial_probability_removal number

requirements

HierarchyDiscrete HierarchyAll
Containment

None
max_iterations number
max_steps number

214 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 117. logregnode properties (continued).

logregnode Properties Values Property description
p_converge 1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0
1_converge 1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
0
delta number
iteration_history flag
history_steps number
summary flag
Tikelihood_ratio flag
asymptotic_correlation flag
goodness_fit flag
parameters flag
confidence_interval number
asymptotic_covariance flag
classification_table flag
stepwise_summary flag
info_criteria flag
monotonicity_measures flag

binomial_output_display

at_each_step
at_Tlast_step

binomial_goodness of fit flag
binomial_parameters flag
binomial_iteration_history flag
binomial_classification_plots flag
binomial_ci_enable flag
binomial_ci number
binomial_residual outTiers

all
binomial_residual_enable flag
binomial _outlier_threshold number
binomial_classification_cutoff number
binomial_removal criterion LR

Wald

Conditional
calculate_variable_importance flag
calculate_raw_propensities flag

Chapter 16. Modeling Node Properties

215

neuralnetnode Properties

Caution: A newer version of the Neural Net modeling node, with enhanced features, is available in this
release and is described in the next section (neuralnetwork). Although you can still build and score a
model with the previous version, we recommend updating your scripts to use the new version. Details of
the previous version are retained here for reference.

Example

create neuralnetnode

"Fields" tab

set :neuralnetnode.custom_fields = True

set :neuralnetnode.targets = ['Drug']

set :neuralnetnode.inputs = ['Age' 'Na' 'K' 'Cholesterol' 'BP']
"Model" tab

set :neuralnetnode.use_partitioned_data = True

set :neuralnetnode.method = Dynamic

set :neuralnetnode.train_pct = 30

set :neuralnetnode.set_random_seed = True

set :neuralnetnode.random seed = 12345

set :neuralnetnode.stop_on = Time

set :neuralnetnode.accuracy = 95

set :neuralnetnode.cycles = 200

set :neuralnetnode.time = 3

set :neuralnetnode.optimize = Speed

"Multiple Method Expert Options" section

set :neuralnetnode.m_topologies = "5 30 5; 2 20 3, 1 10 1"
set :neuralnetnode.m_non_pyramids = False

set :neuralnetnode.m persistence = 100

Table 118. neuralnetnode properties

neuralnetnode Properties Values Property description
targets [field1 ... fieldN] The Neural Net node expects one or more
target fields and one or more input fields.
Frequency and weight fields are ignored.
See the topic [“Common Modeling Node|
[Properties” on page 177| for more
information.
method Quick
Dynamic
Multiple
Prune
ExhaustivePrune
RBFN
prevent_overtrain flag
train_pct number
set_random_seed flag
random_seed number
mode Simple
Expert
stop_on Default Stopping mode.
Accuracy
Cycles
Time
accuracy number Stopping accuracy.
cycles number Cycles to train.
time number Time to train (minutes).
continue flag
show_feedback flag
binary_encode flag

216 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 118. neuralnetnode properties (continued)

neuralnetnode Properties Values Property description
use_last_model flag
gen_logfile flag
Togfile_name string
alpha number
initial_eta number
high_eta number
Tow_eta number
eta_decay_cycles number
hid_layers One
Two
Three
h1_units_one number
h1_units_two number
h1_units_three number
persistence number
m_topologies string
m_non_pyramids flag
m_persistence number
p_hid_Tayers One
Two
Three
p_hl_units_one number
p_hl_units_two number
p_h1_units_three number
p_persistence number
p_hid_rate number
p_hid_pers number
p_inp_rate number
p_inp_pers number
p_overall pers number
r_persistence number
r_num_clusters number
r_eta_auto flag
r_alpha number
r_eta number
optimize Speed Use to specify whether model building
Memory should be optimized for speed or for

memory.

Chapter 16. Modeling Node Properties

217

Table 118. neuralnetnode properties (continued)

neuralnetnode Properties Values Property description

calculate_variable_importance flag Note: The sensitivity_analysis property
used in previous releases is deprecated in
favor of this property. The old property is
still supported, but
calculate_variable_importance is
recommended.

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

adjusted_propensity partition Test

Validation

questnode Properties

P The QUEST node provides a binary classification method for building decision trees, designed
\] to reduce the processing time required for large C&R Tree analyses while also reducing the
ey tendency found in classification tree methods to favor inputs that allow more splits. Input

fields can be numeric ranges (continuous), but the target field must be categorical. All splits

are binary.

Example

create questnode at 200 100
create variablefilenode at 100 100
connect :variablefilenode to :questnode

set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUG1n"

set :questnode.custom_fields = True
set :questnode.target = Drug

set :questnode.inputs = [Age Na K Cholesterol BP]
set :questnode.model_output_type = InteractiveBuilder

set :questnode.use_tree_directives = True

set :questnode.max_surrogates = 5
set :questnode.split_alpha = 0.03
set :questnode.use_percentage = False

set :questnode.min_parent_records_abs = 40
set :questnode.min_child_records_abs = 30

set :questnode.prune_tree = True
set :questnode.use_std_err = True
set :questnode.std_err_multiplier = 3

Table 119. questnode properties

questnode Properties Values Property description
target field QUEST models require a single target and
one or more input fields. A frequency field
can also be specified. See the topic
‘Common Modeling Node Properties” on|
page 172] for more information.
continue_training_existing_model |flag
objective Standard psm is used for very large datasets, and
Boosting requires a Server connection.
Bagging
psm
model_output_type Single
InteractiveBuilder
use_tree_directives flag
tree_directives string

218 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 119. questnode properties (continued)

questnode Properties Values Property description
use_max_depth Default
Custom
max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.
prune_tree flag Prune tree to avoid overfitting.
use_std_err flag Use maximum difference in risk (in
Standard Errors).
std_err_multiplier number Maximum difference.
max_surrogates number Maximum surrogates.
use_percentage flag
min_parent_records_pc number
min_child_records_pc number
min_parent_records_abs number
min_child_records_abs number
use_costs flag
costs structured Structured property using the form:
[{drugA drugB 1.5} {drugA drugC 2.1}]
where the arguments within braces ({}) are
actual predicted costs.
priors Data
Equal
Custom
custom_priors structured Structured property using the form:
set :cartnode.
custom_priors =
[{ drugA 0.3 } { drugB 0.6 }]
adjust_priors flag
trails number Number of component models for boosting
or bagging.
set_ensemble_method Voting Default combining rule for categorical
HighestProbability targets.

HighestMeanProbability

range_ensemble_method Mean Default combining rule for continuous
Median targets.

large_boost flag Apply boosting to very large data sets.

split_alpha number Significance level for splitting.

train_pct number Overfit prevention set.

set_random_seed flag Replicate results option.

seed number

calculate_variable_importance flag

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

adjusted_propensity partition Test

Validation

Chapter 16. Modeling Node Properties 219

regressionnode Properties

H,/*«.\\ Linear regression is a common statistical technique for summarizing data and making
\
'

predictions by fitting a straight line or surface that minimizes the discrepancies between
predicted and actual output values.

Note: The Regression node is due to be replaced by the Linear node in a future release. We recommend

using Linear models for linear regression from now on.

Example

create regressionnode
"Fields" tab

set :regressionnode.custom_fields
set :regressionnode.target = 'Age’
set :regressionnode.inputs = ['Na' 'K']
set :regressionnode.partition = Test

set :regressionnode.use_weight = True
set :regressionnode.weight_field = 'Drug’

"Model" tab

set :regressionnode.use_model_name
"Regression Age"
True

set :regressionnode.model_name

set :regressionnode.use_partitioned_data
set :regressionnode.method = Stepwise

set :regressionnode.include_constant = False

"Expert" tab

set :regressionnode.mode = Expert
set :regressionnode.complete_records
set :regressionnode.tolerance =

"Stepping..." section

False

set :regressionnode.stepping_method = Probability
set :regressionnode.probability entry = 0.77
set :regressionnode.probability_removal = 0.88

set :regressionnode.F_value_entry = 7.0
set :regressionnode.F_value_removal = 8.0

"Output..." section

set :regressionnode.model_fit = True

set :regressionnode.r_squared_change = True
set :regressionnode.selection_criteria
set :regressionnode.descriptives
set :regressionnode.p_correlations

True

set :regressionnode.collinearity_diagnostics = True
set :regressionnode.confidence_interval = True

set :regressionnode.covariance_matrix
set :regressionnode.durbin_watson

Table 120. regressionnode properties

True

regressionnode Properties Values Property description
target field Regression models require a single target
field and one or more input fields. A
weight field can also be specified. See the
topic|“Common Modeling Node]
IProperties" on page 177| for more
information.
method Enter
Stepwise
Backwards
Forwards

include_constant

flag

use_weight flag

weight_field field

mode Simple
Expert

complete_records

flag

220 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 120. regressionnode properties (continued)

regressionnode Properties Values Property description
tolerance 1.0E-1 Use double quotes for arguments.
1.0E-2
1.0E-3
1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9
1.0E-10
1.0E-11
1.0E-12
stepping_method useP useP : use probability of F
usef usef: use F value
probability entry number
probability_removal number
F_value_entry number
F_value_removal number
selection_criteria flag
confidence_interval flag
covariance_matrix flag
collinearity_diagnostics flag
regression_coefficients flag
exclude_fields flag
durbin_watson flag
model_fit flag
r_squared_change flag
p_correlations flag
descriptives flag
calculate_variable_importance flag

sequencenode Properties

Example

The Sequence node discovers association rules in sequential or time-oriented data. A sequence
is a list of item sets that tends to occur in a predictable order. For example, a customer who
purchases a razor and aftershave lotion may purchase shaving cream the next time he shops.
The Sequence node is based on the CARMA association rules algorithm, which uses an
efficient two-pass method for finding sequences.

create sequencenode
connect :databasenode to :sequencenode
"Fields" tab

set
set
set
set
set
set

:sequencenode.
:sequencenode.
:sequencenode.
:sequencenode.
:sequencenode.
:sequencenode.

"Model" tab

id_field = 'Age'

contiguous = True
use_time_field = True
time_field = 'Datel’
content_fields = ['Drug' 'BP']
partition = Test

Chapter 16. Modeling Node Properties 221

set :sequencenode.use_model_name = Tru

e

set :sequencenode.model_name = "Sequence_test"
= False

set :sequencenode.use_partitioned_data
set :sequencenode.min_supp = 15.0

set :sequencenode.min_conf = 14.0

set :sequencenode.max_size = 7

set :sequencenode.max_predictions = 5
"Expert" tab

set :sequencenode.mode = Expert

set :sequencenode.use_max_duration = T
set :sequencenode.max_duration = 3.0
set :sequencenode.use_pruning = True
set :sequencenode.pruning_value = 4.
set :sequencenode.set_mem_sequences
set :sequencenode.mem_sequences = 5.
set :sequencenode.use_gaps = True
set :sequencenode.min_item_gap = 20.0
set :sequencenode.max_item_gap = 30.0

o o

rue

True

Table 121. sequencenode properties

sequencenode Properties Values Property description
id_field field To create a Sequence model, you need to
specify an ID field, an optional time field,
and one or more content fields. Weight and
frequency fields are not used. See the topic
‘Common Modeling Node Properties” on|
page 172] for more information.
time_field field
use_time_field flag
content_fields [field1 ... fieldn]
contiguous flag
min_supp number
min_conf number
max_size number
max_predictions number
mode Simple
Expert
use_max_duration flag
max_duration number
use_gaps flag
min_item gap number
max_item_gap number
use_pruning flag
pruning_value number
set_mem_sequences flag
mem_sequences integer
slrmnode Properties
The Self-Learning Response Model (SLRM) node enables you to build a model in which a
@ single new case, or small number of new cases, can be used to reestimate the model without

having to retrain the model using all data.

Example

222 IBM SPSS Modeler 16 Scripting and Automation Guide

create slrmnode
set :slrmnode.target = Offer
set :slrmnode.target_response = Response

set :slrmnode.inputs = ['Cust_ID' 'Age' 'Ave_Bal']

Table 122. sirmnode properties

slrmnode Properties Values Property description

target field The target field must be a nominal or flag
field. A frequency field can also be
specified. See the topic |”C0mm0;|
[Modeling Node Properties” on page 177
for more information.

target_response field Type must be flag.

continue_training_existing_model |flag

target_field_values flag Use all: Use all values from source.

Specify: Select values required.

target_field_values_specify

[field] ... fieldN]

include_model_assessment flag

model_assessment_random_seed number Must be a real number.
model_assessment_sample_size number Must be a real number.
model_assessment_iterations number Number of iterations.
display_model_evaluation flag

max_predictions number

randomization number

scoring_random_seed number

sort Ascending Specifies whether the offers with the

Descending

highest or lowest scores will be displayed
first.

model_reliability

flag

calculate _variable_importance

flag

statisticsmodelnode Properties

The Statistics Model node enables you to analyze and work with your data by running IBM
i@;} SPSS Statistics procedures that produce PMML. This node requires a licensed copy of IBM

SPSS Statistics.

The properties for this node are described under |“statisticsmodelnode Properties” on page 318)

svmnode Properties

o The Support Vector Machine (SVM) node enables you to classify data into one of two groups
! si:\t:ﬁ without overfitting. SVM works well with wide data sets, such as those with a very large
| number of input fields.

Example

Chapter 16. Modeling Node Properties 223

create svmnode

Expert tab

set :svmnode.mode=Expert

set :svmnode.all_probabilities=True
set :svmnode.kernel=Polynomial

set :svmnode.gamma=1.5

Table 123. svmnode properties.

svmnode Properties Values Property description
all_probabilities flag
stopping_criteria 1.0E-1 Determines when to stop the
1.0E-2 optimization algorithm.
1.0E-3 (default)
1.0E-4
1.0E-5
1.0E-6
regularization number Also known as the C parameter.
precision number Used only if measurement level of
target field is Continuous.
kernel RBF(default) Type of kernel function used for the
Polynomial transformation.
Sigmoid
Linear
rbf_gamma number Used only if kernel is RBF.
gamma number Used only if kernel is Polynomial or
Sigmoid.
bias number
degree number Used only if kernel is Polynomial.
calculate_variable_importance |flag
calculate_raw_propensities flag
calculate_adjusted_ flag
propensities
adjusted_propensity partition |Test
Validation

timeseriesnode Properties

- The Time Series node estimates exponential smoothing, univariate Autoregressive Integrated

\ :] Moving Average (ARIMA), and multivariate ARIMA (or transfer function) models for time
series data and produces forecasts of future performance. A Time Series node must always be
preceded by a Time Intervals node.

Example

create timeseriesnode

set :timeseriesnode.method = Exsmooth

set :timeseriesnode.exsmooth_model_type = HoltsLinearTrend
set :timeseriesnode.exsmooth_transformation_type = None

224 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 124. timeseriesnode properties

timeseriesnode Properties Values Property description
targets field The Time Series node
forecasts one or more
targets, optionally using one
or more input fields as
predictors. Frequency and
weight fields are not used.
See the topic ['Common]
[Modeling Node Properties”|
on page 17Z| for more
information.
continue flag
method ExpertModeler
Exsmooth
Arima
Reuse
expert_modeler_method flag
consider_seasonal flag
detect_outliers flag
expert_outlier_additive flag
expert_outlier_level shift flag
expert_outlier_innovational flag
expert_outlier_level shift flag
expert_outlier_transient flag
expert_outlier_seasonal_additive flag
expert_outlier_local trend flag
expert_outlier_additive_patch flag
exsmooth_model_type Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicative
exsmooth_transformation_type None
SquareRoot
Naturallog
arima_p integer
arima_d integer
arima_q integer
arima_sp integer
arima_sd integer
arima_sq integer
arima_transformation_type None
SquareRoot
NaturallLog
arima_include_constant flag
tf_arima_p. fieldname integer For transfer functions.

Chapter 16. Modeling Node Properties 225

Table 124. timeseriesnode properties (continued)

timeseriesnode Properties Values Property description
tf_arima_d. fieldname integer For transfer functions.
tf_arima_q. fieldname integer For transfer functions.
tf_arima_sp. fieldname integer For transfer functions.
tf_arima_sd. fieldname integer For transfer functions.
tf_arima_sq. fieldname integer For transfer functions.
tf_arima_delay. fieldname integer For transfer functions.
tf_arima_transformation_type. fieldname None For transfer functions.
SquareRoot
Naturallog
arima_detect_outlier_mode None
Automatic
arima_outlier_additive flag
arima_outlier_level shift flag
arima_outlier_innovational flag
arima_outlier_transient flag
arima_outlier_seasonal_additive flag
arima_outlier_local_trend flag
arima_outlier_additive_patch flag
conf_Timit_pct real
max_lags integer
events fields
scoring_model_only flag Use for models with very

large numbers (tens of
thousands) of time series.

twostepnode Properties

‘J/‘"u The TwoStep node uses a two-step clustering method. The first step makes a single pass

-@1 through the data to compress the raw input data into a manageable set of subclusters. The
second step uses a hierarchical clustering method to progressively merge the subclusters into
larger and larger clusters. TwoStep has the advantage of automatically estimating the optimal
number of clusters for the training data. It can handle mixed field types and large data sets
efficiently.

Example

create twostep

set :twostep.custom_fields = True

set :twostep.inputs = ['Age' 'K' 'Na' 'BP']
set :twostep.partition = Test

set :twostep.use_model_name = False

set :twostep.model_name = "TwoStep_Drug"
set :twostep.use_partitioned_data = True
set :twostep.exclude outliers = True

set :twostep.cluster_label = "String"
set :twostep.label_prefix = "TwoStep "
set :twostep.cluster_num_ auto = False
set :twostep.max_num_clusters = 9

set :twostep.min_num_clusters = 3

set :twostep.num_clusters = 7

226 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 125. twostepnode properties

twostepnode Properties Values Property description
inputs [field1 ... fieldN] TwoStep models use a list of input fields,
but no target. Weight and frequency fields
are not recognized. See the topic[*Common]
[Modeling Node Properties” on page 177 for
more information.
standardize flag
exclude_outliers flag
percentage number
cluster_num_auto flag
min_num_clusters number
max_num_clusters number
num_clusters number
cluster_label String
Number
label_prefix string
distance_measure Euclidean
Loglikelihood
clustering criterion AIC
BIC

logregnode Properties

- Logistic regression is a statistical technique for classifying records based on values of input
\ L;_"H:' fields. It is analogous to linear regression but takes a categorical target field instead of a
= numeric range.

Multinomial Example

create Togregnode

"Fields" tab

set :logregnode.custom_fields = True

set :logregnode.target = 'Drug’

set :logregnode.inputs = ['BP' 'Cholesterol' 'Age']
set :logregnode.partition = Test

"Model" tab

set :logregnode.use _model name = False

set :logregnode.model_name = "Log_reg Drug"

set :logregnode.use_partitioned_data = True

set :logregnode.method = Stepwise

set :logregnode.logistic_procedure = Multinomial
set :logregnode.multinomial_base_category = BP
set :logregnode.model_type = FullFactorial

set :Togregnode.custom terms = [{BP Sex}{Age}{Na K}]
set :logregnode.include_constant = False

"Expert" tab

set :logregnode.mode = Expert

set :logregnode.scale = Pearson

set :logregnode.scale value = 3.0

set :logregnode.all_probabilities = True

set :logregnode.tolerance = "1.0E-7"

"Convergence..." section

set :logregnode.max_iterations = 50

set :logregnode.max_steps = 3

set :logregnode.l_converge = "1.0E-3"

set :logregnode.p_converge = "1.0E-7"

set :logregnode.delta = 0.03

"Output..." section

set :logregnode.summary = True

Chapter 16. Modeling Node Properties 227

set :logregnode.
set :logregnode.
set :Togregnode.
set :logregnode.
set :logregnode.
set :logregnode.
set :logregnode.
set :logregnode.
set :Togregnode.

likelihood_ratio = True
asymptotic_correlation = True
goodness_fit = True
iteration_history = True
history_steps = 3

parameters = True
confidence_interval = 90
asymptotic_covariance = True
classification_table = True

"Stepping" options

set :logregnode.
set :Togregnode.
set :logregnode.
set :logregnode.
set :Togregnode.
set :logregnode.

min_terms = 7
use_max_terms = true
max_terms = 10
probability_entry = 3
probability_removal = 5
requirements = Containment

Binomial Example

create Togregnode

"Fields" tab

set :logregnode.
set :Togregnode.
set :logregnode.
set :logregnode.
"Model" tab

set :logregnode.
set :logregnode.
set :Togregnode.
set :logregnode.
set :logregnode.
set :Togregnode.
set :logregnode.
set :logregnode.
set :Togregnode.
set :logregnode.
"Expert" tab

set :Togregnode.
set :logregnode.
set :logregnode.
set :Togregnode.
set :logregnode.
"Convergence..
set :Togregnode.
set :logregnode.
set :logregnode.

custom_fields = True

target = 'Cholesterol’
inputs = ['BP' 'Drug' 'Age']
partition = Test

use_model_name = False

model_name = "Log_reg Cholesterol"
multinomial_base_category = BP
use_partitioned_data = True
binomial_method = Forwards
logistic_procedure = Binomial
binomial_categorical_input = Sex
binomial_input_contrast.Sex = Simple
binomial_input_category.Sex = Last
include_constant = False

mode = Expert

scale = Pearson
scale_value = 3.0
all_probabilities = True
tolerance = "1.0E-7"

" section
max_iterations = 50
1_converge = "1.0E-3"
p_converge = "1.0E-7"

"Qutput..." section

set :logregnode.
set :logregnode.
set :Togregnode.

binomial_output_display = at_each_step
binomial_goodness_fit = True
binomial_iteration_history = True

set
set
set

:Togregnode
:Togregnode
:Togregnode

.binomial_parameters = True
.binomial_ci_enable = True
.binomial_ci = 85

"Stepping" options

set :logregnode.
set :Togregnode.

binomial_removal_criterion = LR
binomial_probability_removal = 0.2

Table 126. logregnode properties.

logregnode Properties Values Property description
target field Logistic regression models require a single
target field and one or more input fields.
Frequency and weight fields are not used.
See the topic [‘Common Modeling Node|
[Properties” on page 177] for more
information.
logistic_procedure Binomial
MuTtinomial
include_constant flag
mode Simple
Expert

228 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 126. logregnode properties (continued).

Togregnode Properties Values Property description
method Enter
Stepwise
Forwards
Backwards
BackwardsStepwise
binomial_method Enter
Forwards
Backwards
model_type MainEffects When FullFactorial is specified as the
FulTlFactorial model type, stepping methods will not be
Custom run, even if specified. Instead, Enter will
be the method used.
If the model type is set to Custom but no
custom fields are specified, a main-effects
model will be built.
custom_terms [{BP Sex}{BP}{Agel] Example:
set :logregnode. custom terms =
[{Na} {K} {Na K}]
multinomial_base_category string Specifies how the reference category is
determined.
binomial_categorical_input string
binomial_input_contrast Indicator Keyed property for categorical input that
Simple specifies how the contrast is determined.
Difference
Helmert Usage format:
Repeateq NODE.binomial_input_contrast.
Polynomial FIELDNAME
Deviation
binomial_input_category First Keyed property for categorical input that
Last specifies how the reference category is
determined.
Usage format:
NODE.binomial_input_category.
FIELDNAME
scale None
UserDefined
Pearson
Deviance
scale_value number
all_probabilities flag
tolerance 1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9
1.0E-10

Chapter 16. Modeling Node Properties 229

Table 126. logregnode properties (continued).

logregnode Properties Values Property description
min_terms number
use_max_terms flag
max_terms number
entry criterion Score
LR
removal_criterion LR
Wald
probability entry number
probability_removal number
binomial_probability entry number
binomial_probability_removal number

requirements

HierarchyDiscrete HierarchyAll
Containment

None
max_iterations number
max_steps number
p_converge 1.0E-4

1.0E-5

1.0E-6
1.0E-7
1.0E-8

0
1_converge 1.0E-1

1.0E-2

1.0E-3
1.0E-4
1.0E-5

0
delta number
iteration_history flag
history_steps number
summary flag
Tikelihood_ratio flag
asymptotic_correlation flag
goodness_fit flag
parameters flag
confidence_interval number
asymptotic_covariance flag
classification_table flag
stepwise_summary flag
info_criteria flag
monotonicity_measures flag

binomial_output_display

at_each_step
at_last_step

230 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 126. logregnode properties (continued).

Togregnode Properties Values Property description
binomial_goodness of fit flag
binomial_parameters flag
binomial_iteration_history flag
binomial_classification_plots flag
binomial_ci_enable flag
binomial_ci number
binomial_residual outTiers

all
binomial_residual_enable flag
binomial _outlier_threshold number
binomial_classification_cutoff number
binomial_removal criterion LR

Wald

Conditional
calculate_variable_importance flag
calculate_raw_propensities flag

neuralnetnode Properties

Caution: A newer version of the Neural Net modeling node, with enhanced features, is available in this
release and is described in the next section (neuralnetwork). Although you can still build and score a
model with the previous version, we recommend updating your scripts to use the new version. Details of

the previous version are retained here for reference.

Example

create neuralnetnode

"Fields" tab

set :neuralnetnode.custom_fields = True
set :neuralnetnode.targets = ['Drug']

set :neuralnetnode.inputs = ['Age' 'Na' 'K' 'Cholesterol' 'BP']

"Model" tab

set :neuralnetnode.use_partitioned_data =
set :neuralnetnode.method = Dynamic

set :neuralnetnode.train_pct = 30

set :neuralnetnode.set_random_seed = True
set :neuralnetnode.random_seed = 12345
set :neuralnetnode.stop_on = Time

set :neuralnetnode.accuracy = 95

set :neuralnetnode.cycles = 200

set :neuralnetnode.time = 3

True

set :neuralnetnode.

"Multiple Method
set :neuralnetnode
set :neuralnetnode
set :neuralnetnode

optimize = Speed

Expert Options" section

.m_topologies = "5 30 5; 2 20 3, 1 10 1"
.m_non_pyramids = False

.m_persistence = 100

Table 127. neuralnetnode properties

neuralnetnode Properties Values

Property description

targets

[field1 ... fieldN]

The Neural Net node expects one or more
target fields and one or more input fields.
Frequency and weight fields are ignored.

See the topic ["Common Modeling Node]

[Properties” on page 177] for more
information.

Chapter 16. Modeling Node Properties

231

Table 127. neuralnetnode properties (continued)

ExhaustivePrune
RBFN

neuralnetnode Properties Values Property description
method Quick

Dynamic

Multiple

Prune

prevent_overtrain flag
train_pct number
set_random_seed flag
random_seed number
mode Simple
Expert
stop_on Default Stopping mode.
Accuracy
Cycles
Time
accuracy number Stopping accuracy.
cycles number Cycles to train.
time number Time to train (minutes).
continue flag
show_feedback flag
binary_encode flag
use_last_model flag
gen_logfile flag
Togfile_name string
alpha number
initial_eta number
high_eta number
Tow_eta number
eta_decay cycles number
hid_Tlayers One
Two
Three
h1_units_one number
h1_units_two number
h1_units_three number
persistence number
m_topologies string
m_non_pyramids flag
m_persistence number
p_hid_layers One
Two
Three
p_hl_units_one number

232 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 127. neuralnetnode properties (continued)

neuralnetnode Properties Values Property description

p_h1_units_two number

p_hl_units_three number

p_persistence number

p_hid_rate number

p_hid_pers number

p_inp_rate number

p_inp_pers number

p_overall_pers number

r_persistence number

r_num_clusters number

r_eta_auto flag

r_alpha number

r_eta number

optimize Speed Use to specify whether model building

Memory should be optimized for speed or for

memory.

calculate_variable_importance flag Note: The sensitivity_analysis property
used in previous releases is deprecated in
favor of this property. The old property is
still supported, but
calculate_variable_importance is
recommended.

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

adjusted_propensity partition Test

Validation

neuralnetworknode Properties

information. It works by simulating a large number of interconnected simple processing units

\;| The Neural Net node uses a simplified model of the way the human brain processes
&

that resemble abstract versions of neurons. Neural networks are powerful general function
estimators and require minimal statistical or mathematical knowledge to train or apply.

Example

create neuralnetworknode

Build Options tab - Objectives panel

set: neuralnetworknode.objective = Standard

Build Options tab - Stopping Rules panel

set: neuralnetworknode.model_selection = BestSubsets

set: neuralnetworknode.criteria_best_subsets = ASE

Build Options tab - Ensembles panel

set: neuralnetworknode.combining rule _categorical = HighestMeanProbability

Table 128. neuralnetworknode properties

neuralnetworknode Properties Values Property description
targets [fieldl ... fieldN] Specifies target fields.
inputs [fieldl ... fieldN] Predictor fields used by the model.

Chapter 16. Modeling Node Properties 233

Table 128. neuralnetworknode properties (continued)

neuralnetworknode Properties

Values

Property description

splits

[field1 ... fieldN

Specifies the field or fields to use for split
modeling.

use_partition flag If a partition field is defined, this option
ensures that only data from the training
partition is used to build the model.
continue flag Continue training existing model.
objective Standard psm is used for very large datasets, and
Bagging requires a Server connection.
Boosting
psm
method MultilayerPerceptron
RadialBasisFunction
use_custom_layers flag
first_layer_units number
second_layer_units number
use_max_time flag
max_time number
use_max_cycles flag
max_cycles number
use_min_accuracy flag
min_accuracy number
combining_rule_categorical Voting
HighestProbability
HighestMeanProbability
combining_rule_continuous Mean
Median
component_models_n number
overfit_prevention_pct number
use_random_seed flag
random_seed number

missing_values

listwiseDeletion
missingValueImputation

use_custom_model_name flag
custom_model name string
confidence onProbability
onlncrease
score_category_probabilities flag
max_categories number
score_propensity flag
use_custom_name flag
custom_name string
tooltip string

234 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 128. neuralnetworknode properties (continued)

neuralnetworknode Properties Values Property description
keywords string
annotation string

questnode Properties

L2

The QUEST node provides a binary classification method for building decision trees, designed
to reduce the processing time required for large C&R Tree analyses while also reducing the
tendency found in classification tree methods to favor inputs that allow more splits. Input

fields can be numeric ranges (continuous), but the target field must be categorical. All splits

are binary.

Example

create questnode at 200 100
create variablefilenode at 100 100
connect :variablefilenode to :questnode

set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUGIn"

set :questnode.custom_fields = True
set :questnode.target = Drug

set :questnode.inputs = [Age Na K Cholesterol BP]
set :questnode.model_output_type = InteractiveBuilder

set :questnode.use_tree_directives = True
set :questnode.max_surrogates = 5

set :questnode.split_alpha = 0.03

set :questnode.use_percentage = False

set :questnode.min_parent_records_abs = 40
set :questnode.min_child_records_abs = 30
set :questnode.prune_tree = True

set :questnode.use_std_err = True

set :questnode.std_err_multiplier = 3

Table 129. questnode properties

questnode Properties Values Property description
target field QUEST models require a single target and
one or more input fields. A frequency field
can also be specified. See the topic
‘Common Modeling Node Properties” on|
page 1721 for more information.
continue_training_existing_model |flag
objective Standard psm is used for very large datasets, and
Boosting requires a Server connection.
Bagging
psm
model_output_type Single
InteractiveBuilder
use_tree_directives flag
tree_directives string
use_max_depth Default
Custom
max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.
prune_tree flag Prune tree to avoid overfitting.
use_std_err flag Use maximum difference in risk (in

Standard Errors).

Chapter 16. Modeling Node Properties 235

Table 129. questnode properties (continued)

HighestMeanProbability

questnode Properties Values Property description
std_err_multiplier number Maximum difference.
max_surrogates number Maximum surrogates.
use_percentage flag
min_parent_records_pc number
min_child_records_pc number
min_parent_records_abs number
min_child_records_abs number
use_costs flag
costs structured Structured property using the form:
[{drugA drugB 1.5} {drugA drugC 2.1}]
where the arguments within braces ({}) are
actual predicted costs.
priors Data
Equal
Custom
custom_priors structured Structured property using the form:
set :cartnode.
custom_priors =
[{ drugA 0.3 } { drugB 0.6 }]
adjust_priors flag
trails number Number of component models for boosting
or bagging.
set_ensemble_method Voting Default combining rule for categorical
HighestProbability targets.

Validation

range_ensemble_method Mean Default combining rule for continuous
Median targets.

large_boost flag Apply boosting to very large data sets.

split_alpha number Significance level for splitting.

train_pct number Overfit prevention set.

set_random_seed flag Replicate results option.

seed number

calculate_variable_importance flag

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

adjusted_propensity partition Test

regressionnode Properties

Linear regression is a common statistical technique for summarizing data and making
@ predictions by fitting a straight line or surface that minimizes the discrepancies between

predicted and actual output values.

236 IBM SPSS Modeler 16 Scripting and Automation Guide

Note: The Regression node is due to be replaced by the Linear node in a future release. We recommend

using Linear models for linear regression from now on.

Example

create regressionnode
"Fields" tab

set :regressionnode.custom_fields
set :regressionnode.target = 'Age’
set :regressionnode.inputs = ['Na’
set :regressionnode.partition = Test

set :regressionnode.use weight = True
set :regressionnode.weight_field = 'Drug'

"Model" tab

set :regressionnode.use_model_name
"Regression Age"
set :regressionnode.use_partitioned_data
set :regressionnode.method = Stepwise

set :regressionnode.model_name

True

set :regressionnode.include_constant = False

"Expert" tab

set :regressionnode.mode = Expert

set :regressionnode.complete_records = False

set :regressionnode.tolerance =

"Stepping..." section

set :regressionnode.stepping_method = Probability
set :regressionnode.probability_entry = 0.77
set :regressionnode.probability removal = 0.88

set :regressionnode.F_value_entry = 7.0
set :regressionnode.F_value_removal = 8.0

"Output..." section

set :regressionnode.model_fit = True
set :regressionnode.r_squared_change
set :regressionnode.selection_criteria
set :regressionnode.descriptives
set :regressionnode.p_correlations

True

set :regressionnode.collinearity diagnostics = True
set :regressionnode.confidence_interval = True

set :regressionnode.covariance_matrix
set :regressionnode.durbin_watson

Table 130. regressionnode properties

True

regressionnode Properties Values Property description
target field Regression models require a single target
field and one or more input fields. A
weight field can also be specified. See the
topic|“Common Modeling Node]
[Properties” on page 177] for more
information.
method Enter
Stepwise
Backwards
Forwards

include_constant

flag

use_weight flag

weight_field field

mode Simple
Expert

complete_records

flag

Chapter 16. Modeling Node Properties 237

Table 130. regressionnode properties (continued)

regressionnode Properties Values Property description
tolerance 1.0E-1 Use double quotes for arguments.
1.0E-2
1.0E-3
1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9
1.0E-10
1.0E-11
1.0E-12
stepping_method useP useP : use probability of F
usef usef: use F value
probability entry number
probability_removal number
F_value_entry number
F_value_removal number
selection_criteria flag
confidence_interval flag
covariance_matrix flag
collinearity_diagnostics flag
regression_coefficients flag
exclude_fields flag
durbin_watson flag
model_fit flag
r_squared_change flag
p_correlations flag
descriptives flag
calculate_variable_importance flag

sequencenode Properties

is a list of item sets that tends to occur in a predictable order. For example, a customer who
purchases a razor and aftershave lotion may purchase shaving cream the next time he shops.
The Sequence node is based on the CARMA association rules algorithm, which uses an
efficient two-pass method for finding sequences.

The Sequence node discovers association rules in sequential or time-oriented data. A sequence
L 2=1 J
o

Example

create sequencenode

connect :databasenode to :sequencenode

"Fields" tab

set :sequencenode.id_field = 'Age'

set :sequencenode.contiguous = True

set :sequencenode.use_time_field = True

set :sequencenode.time_field = 'Datel’

set :sequencenode.content_fields = ['Drug' 'BP']
set :sequencenode.partition = Test

"Model" tab

238 IBM SPSS Modeler 16 Scripting and Automation Guide

set :sequencenode.use_model_name = True

set :sequencenode.model_name = "Sequence_test"

set :sequencenode.use_partitioned_data
set :sequencenode.min_supp = 15.0

set :sequencenode.min_conf = 14.0

set :sequencenode.max_size = 7

set :sequencenode.max_predictions = 5
"Expert" tab

set :sequencenode.mode = Expert

set :sequencenode.use_max_duration = True

set :sequencenode.max_duration = 3.0
set :sequencenode.use_pruning = True
set :sequencenode.pruning_value = 4.
set :sequencenode.set_mem_sequences
set :sequencenode.mem_sequences = 5.
set :sequencenode.use_gaps = True
set :sequencenode.min_item_gap = 20.0
set :sequencenode.max_item_gap = 30.0

o 1o

Table 131. sequencenode properties

True

False

sequencenode Properties Values Property description
id_field field To create a Sequence model, you need to
specify an ID field, an optional time field,
and one or more content fields. Weight and
frequency fields are not used. See the topic
‘Common Modeling Node Properties” on|
page 1721 for more information.
time_field field
use_time_field flag
content_fields [fieldl ... fieldn]
contiguous flag
min_supp number
min_conf number
max_size number
max_predictions number
mode Simple
Expert
use_max_duration flag
max_duration number
use_gaps flag
min_item gap number
max_item_gap number
use_pruning flag
pruning_value number
set_mem_sequences flag
mem_sequences integer
slrmnode Properties
The Self-Learning Response Model (SLRM) node enables you to build a model in which a
@ single new case, or small number of new cases, can be used to reestimate the model without

having to retrain the model using all data.

Example

Chapter 16. Modeling Node Properties 239

create slrmnode

set :slrmnode.target = Offer

set :slrmnode.target_response = Response

set :slrmnode.inputs = ['Cust_ID' 'Age' 'Ave_Bal']

Table 132. sirmnode properties

slrmnode Properties Values Property description

target field The target field must be a nominal or flag
field. A frequency field can also be
specified. See the topic |“C0mmo;|
[Modeling Node Properties” on page 177|
for more information.

target_response field Type must be flag.

continue_training_existing_model |flag

target_field_values flag Use all: Use all values from source.

Specify: Select values required.

target_field values_specify [field1 ... fieldN]

include_model_assessment flag

model_assessment_random_seed number Must be a real number.

model_assessment_sample_size number Must be a real number.

model_assessment_iterations number Number of iterations.

display_model_evaluation flag

max_predictions number

randomization number

scoring_random_seed number

sort Ascending Specifies whether the offers with the
Descending highest or lowest scores will be displayed

first.
model_reliability flag
calculate_variable_importance flag

statisticsmodelnode Properties

The Statistics Model node enables you to analyze and work with your data by running IBM
@ SPSS Statistics procedures that produce PMML. This node requires a licensed copy of IBM
SPSS Statistics.

The properties for this node are described under |“statisticsmodelnode Properties” on page 318)

svmnode Properties

o The Support Vector Machine (SVM) node enables you to classify data into one of two groups
! si:\n\';\] without overfitting. SVM works well with wide data sets, such as those with a very large
| number of input fields.

Example

240 IBM SPSS Modeler 16 Scripting and Automation Guide

create svmnode

Expert tab

set :svmnode.mode=Expert

set :svmnode.all_probabilities=True
set :svmnode.kernel=Polynomial

set :svmnode.gamma=1.5

Table 133. svmnode properties.

svmnode Properties Values Property description
all_probabilities flag
stopping_criteria 1.0E-1 Determines when to stop the
1.0E-2 optimization algorithm.
1.0E-3 (default)
1.0E-4
1.0E-5
1.0E-6
regularization number Also known as the C parameter.
precision number Used only if measurement level of
target field is Continuous.
kernel RBF(default) Type of kernel function used for the
Polynomial transformation.
Sigmoid
Linear
rbf_gamma number Used only if kernel is RBF.
gamma number Used only if kernel is Polynomial or
Sigmoid.
bias number
degree number Used only if kernel is Polynomial.
calculate_variable_importance |flag
calculate_raw_propensities flag
calculate_adjusted_ flag
propensities
adjusted_propensity partition |Test

Validation

timeseriesnode Properties

- The Time Series node estimates exponential smoothing, univariate Autoregressive Integrated
\ ‘}' Moving Average (ARIMA), and multivariate ARIMA (or transfer function) models for time
series data and produces forecasts of future performance. A Time Series node must always be

preceded by a Time Intervals node.

Example

create timeseriesnode
set :timeseriesnode.method = Exsmooth

set :timeseriesnode.exsmooth_model_type = HoltsLinearTrend

set :timeseriesnode.exsmooth_transformation_type = None

Chapter 16. Modeling Node Properties 241

Table 134. timeseriesnode properties

timeseriesnode Properties Values Property description
targets field The Time Series node
forecasts one or more
targets, optionally using one
or more input fields as
predictors. Frequency and
weight fields are not used.
See the topic ['Common]
[Modeling Node Properties”|
on page 17Z| for more
information.
continue flag
method ExpertModeler
Exsmooth
Arima
Reuse
expert_modeler_method flag
consider_seasonal flag
detect_outliers flag
expert_outlier_additive flag
expert_outlier_level shift flag
expert_outlier_innovational flag
expert_outlier_level shift flag
expert_outlier_transient flag
expert_outlier_seasonal_additive flag
expert_outlier_local trend flag
expert_outlier_additive_patch flag
exsmooth_model_type Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicative
exsmooth_transformation_type None
SquareRoot
Naturallog
arima_p integer
arima_d integer
arima_q integer
arima_sp integer
arima_sd integer
arima_sq integer
arima_transformation_type None
SquareRoot
Naturallog
arima_include_constant flag
tf_arima_p. fieldname integer For transfer functions.

242

IBM SPSS Modeler 16 Scripting and Automation Guide

Table 134. timeseriesnode properties (continued)

timeseriesnode Properties Values Property description
tf_arima_d. fieldname integer For transfer functions.
tf_arima_q. fieldname integer For transfer functions.
tf_arima_sp. fieldname integer For transfer functions.
tf_arima_sd. fieldname integer For transfer functions.
tf_arima_sq. fieldname integer For transfer functions.
tf_arima_delay. fieldname integer For transfer functions.
tf_arima_transformation_type. fieldname None For transfer functions.
SquareRoot
Naturallog
arima_detect_outlier_mode None
Automatic
arima_outlier_additive flag
arima_outlier_level shift flag
arima_outlier_innovational flag
arima_outlier_transient flag
arima_outlier_seasonal_additive flag
arima_outlier_local_trend flag
arima_outlier_additive_patch flag
conf_Timit_pct real
max_lags integer
events fields
scoring_model_only flag Use for models with very

large numbers (tens of
thousands) of time series.

twostepnode Properties

‘J/“m The TwoStep node uses a two-step clustering method. The first step makes a single pass

-ﬁg@l through the data to compress the raw input data into a manageable set of subclusters. The
second step uses a hierarchical clustering method to progressively merge the subclusters into
larger and larger clusters. TwoStep has the advantage of automatically estimating the optimal
number of clusters for the training data. It can handle mixed field types and large data sets

efficiently.

Example

create twostep
set :twostep.custom_fields = True

set :twostep.inputs = ['Age' 'K' 'Na' 'BP']

set :twostep.partition = Test

set :twostep.use_model_name = False

set :twostep.model_name = "TwoStep_Drug"
set :twostep.use_partitioned_data = True
set :twostep.exclude outliers = True

set :twostep.cluster_label = "String"
set :twostep.label_prefix = "TwoStep "
set :twostep.cluster_num_auto = False
set :twostep.max_num_clusters = 9

set :twostep.min_num_clusters = 3

set :twostep.num_clusters = 7

Chapter 16. Modeling Node Properties

243

Table 135. twostepnode properties

twostepnode Properties Values Property description
inputs [field1 ... fieldN] TwoStep models use a list of input fields,
but no target. Weight and frequency fields
are not recognized. See the topic[*Common]
[Modeling Node Properties” on page 177 for
more information.
standardize flag
exclude_outliers flag
percentage number
cluster_num_auto flag
min_num_clusters number
max_num_clusters number
num_clusters number
cluster_label String
Number
label_prefix string
distance_measure Euclidean
Loglikelihood
clustering criterion AIC
BIC

questnode Properties

The QUEST node provides a binary classification method for building decision trees, designed
to reduce the processing time required for large C&R Tree analyses while also reducing the
tendency found in classification tree methods to favor inputs that allow more splits. Input
fields can be numeric ranges (continuous), but the target field must be categorical. All splits
are binary.

B

Example

create questnode at 200 100

create variablefilenode at 100 100

connect :variablefilenode to :questnode

set :variablefilenode.full_filename = "$CLEO_DEMOS/DRUG1n"

set :questnode.custom_fields = True

set :questnode.target = Drug

set :questnode.inputs = [Age Na K Cholesterol BP]
set :questnode.model_output_type = InteractiveBuilder
set :questnode.use_tree_directives = True

set :questnode.max_surrogates = 5

set :questnode.split_alpha = 0.03

set :questnode.use_percentage = False

set :questnode.min_parent_records_abs = 40

set :questnode.min_child_records_abs = 30

set :questnode.prune_tree = True

set :questnode.use_std_err = True

set :questnode.std_err multiplier = 3

244 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 136. questnode properties

questnode Properties Values Property description
target field QUEST models require a single target and
one or more input fields. A frequency field
can also be specified. See the topic
‘Common Modeling Node Properties” on|
page 177] for more information.
continue_training_existing_model |flag
objective Standard psm is used for very large datasets, and
Boosting requires a Server connection.
Bagging
psm
model_output_type Single
InteractiveBuilder
use_tree_directives flag
tree_directives string
use_max_depth Default
Custom
max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.
prune_tree flag Prune tree to avoid overfitting.
use_std_err flag Use maximum difference in risk (in
Standard Errors).
std_err_multiplier number Maximum difference.
max_surrogates number Maximum surrogates.
use_percentage flag
min_parent_records_pc number
min_child_records_pc number
min_parent_records_abs number
min_child_records_abs number
use_costs flag
costs structured Structured property using the form:
[{drugA drugB 1.5} {drugA drugC 2.1}]
where the arguments within braces ({}) are
actual predicted costs.
priors Data
Equal
Custom
custom_priors structured Structured property using the form:
set :cartnode.
custom_priors =
[{ drugA 0.3 } { drugB 0.6 }]
adjust_priors flag
trails number Number of component models for boosting
or bagging.
set_ensemble_method Voting Default combining rule for categorical
HighestProbability targets.

HighestMeanProbability

Chapter 16. Modeling Node Properties 245

Table 136. questnode properties (continued)

questnode Properties Values Property description
range_ensemble_method Mean Default combining rule for continuous
Median targets.
large_boost flag Apply boosting to very large data sets.
split_alpha number Significance level for splitting.
train_pct number Overfit prevention set.
set_random_seed flag Replicate results option.
seed number
calculate_variable_importance flag
calculate_raw_propensities flag
calculate_adjusted_propensities |flag
adjusted_propensity partition Test
Validation

regressionnode Properties

Linear regression is a common statistical technique for summarizing data and making
predictions by fitting a straight line or surface that minimizes the discrepancies between
predicted and actual output values.

Note: The Regression node is due to be replaced by the Linear node in a future release. We recommend
using Linear models for linear regression from now on.

Example

create regressionnode

"Fields" tab

set :regressionnode.custom_fields = True

set :regressionnode.target = 'Age'

set :regressionnode.inputs = ['Na' 'K']

set :regressionnode.partition = Test

set :regressionnode.use_weight = True

set :regressionnode.weight_field = 'Drug’

"Model" tab

set :regressionnode.use_model_name = False

set :regressionnode.model_name = "Regression Age"
set :regressionnode.use_partitioned_data = True
set :regressionnode.method = Stepwise

set :regressionnode.include_constant = False

"Expert" tab

set :regressionnode.mode = Expert

set :regressionnode.complete _records = False
set :regressionnode.tolerance = "1.0E-3"

"Stepping..." section

set :regressionnode.stepping_method = Probability
set :regressionnode.probability_entry = 0.77
set :regressionnode.probability_removal = 0.88
set :regressionnode.F_value_entry = 7.0

set :regressionnode.F_value_removal = 8.0

"Output..." section

set :regressionnode.model_fit = True

set :regressionnode.r_squared_change = True

set :regressionnode.selection_criteria = True
set :regressionnode.descriptives = True

set :regressionnode.p_correlations = True

set :regressionnode.collinearity_diagnostics = True
set :regressionnode.confidence_interval = True
set :regressionnode.covariance_matrix = True
set :regressionnode.durbin_watson = True

246 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 137. regressionnode properties

regressionnode Properties Values Property description
target field Regression models require a single target
field and one or more input fields. A
weight field can also be specified. See the
topic|“Common Modeling Node]
[Properties” on page 177] for more
information.
method Enter
Stepwise
Backwards
Forwards
include_constant flag
use_weight flag
weight_field field
mode Simple
Expert
complete_records flag
tolerance 1.0E-1 Use double quotes for arguments.
1.0E-2
1.0E-3
1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9
1.0E-10
1.0E-11
1.0E-12
stepping_method useP useP : use probability of F
useF useF: use F value
probability_entry number
probability_removal number
F_value_entry number
F_value_removal number
selection_criteria flag
confidence_interval flag
covariance_matrix flag
collinearity_diagnostics flag
regression_coefficients flag
exclude_fields flag
durbin_watson flag
model_fit flag
r_squared_change flag
p_correlations flag
descriptives flag
calculate_variable_importance flag

Chapter 16. Modeling Node Properties

247

sequencenode Properties

The Sequence node discovers association rules in sequential or time-oriented data. A sequence
ﬁ'\:i:'-:j is a list of item sets that tends to occur in a predictable order. For example, a customer who
L = purchases a razor and aftershave lotion may purchase shaving cream the next time he shops.
The Sequence node is based on the CARMA association rules algorithm, which uses an

efficient two-pass method for finding sequences.

Example

create sequencenode

connect :databasenode to :sequencenode

"Fields" tab

set :sequencenode.id_field = 'Age’

set :sequencenode.contiguous = True

set :sequencenode.use_time_field = True
set :sequencenode.time_field = 'Datel’

set :sequencenode.content_fields = ['Drug' 'BP']

set :sequencenode.partition = Test
"Model" tab
set :sequencenode.use_model_name = True

set :sequencenode.model_name = "Sequence_test"

set :sequencenode.use_partitioned_data =
set :sequencenode.min_supp = 15.0

set :sequencenode.min_conf = 14.0

set :sequencenode.max_size = 7

set :sequencenode.max_predictions = 5

"Expert" tab

set :sequencenode.mode = Expert

set :sequencenode.use_max_duration = True

set :sequencenode.max_duration = 3.0
set :sequencenode.use_pruning = True
set :sequencenode.pruning_value = 4.
set :sequencenode.set_mem_sequences
set :sequencenode.mem_sequences = 5.
set :sequencenode.use_gaps = True
set :sequencenode.min_item gap = 20.
set :sequencenode.max_item gap = 30.0

oI o

o

Table 138. sequencenode properties

True

False

sequencenode Properties Values Property description

id_field field To create a Sequence model, you need to
specify an ID field, an optional time field,
and one or more content fields. Weight and
frequency fields are not used. See the topic
‘Common Modeling Node Properties” on|
page 177] for more information.

time_field field

use_time_field flag

content_fields [field1 ... fieldn]

contiguous flag

min_supp number

min_conf number

max_size number

max_predictions number

mode Simple

Expert

use_max_duration flag

max_duration number

use_gaps flag

248 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 138. sequencenode properties (continued)

sequencenode Properties Values Property description
min_item gap number

max_item_gap number

use_pruning flag

pruning_value number

set_mem_sequences flag

mem_sequences integer

slrmnode Properties

single new case, or small number of new cases, can be used to reestimate the model without

The Self-Learning Response Model (SLRM) node enables you to build a model in which a

having to retrain the model using all data.

Example

create slrmnode

set :slrmnode.target = Offer

set :slrmnode.target_response = Response

set :slrmnode.inputs = ['Cust_ID' 'Age' 'Ave_Bal']

Table 139. sirmnode properties

slrmnode Properties Values Property description

target field The target field must be a nominal or flag
field. A frequency field can also be
specified. See the topic[*Common]
[Modeling Node Properties” on page 177
for more information.

target_response field Type must be flag.

continue_training_existing_model |flag

target_field_values flag Use all: Use all values from source.
Specify: Select values required.

target_field_values_specify [fieldl ... fieldN]

include_model_assessment flag

model_assessment_random_seed number Must be a real number.

model_assessment_sample_size number Must be a real number.

model_assessment_iterations number Number of iterations.

display_model_evaluation flag

max_predictions number

randomization number

scoring_random_seed number

sort Ascending Specifies whether the offers with the

Descending highest or lowest scores will be displayed

first.

model_reliability flag

calculate_variable_importance flag

Chapter 16. Modeling Node Properties 249

statisticsmodelnode Properties

The Statistics Model node enables you to analyze and work with your data by running IBM
@ SPSS Statistics procedures that produce PMML. This node requires a licensed copy of IBM
SPSS Statistics.

The properties for this node are described under |“statisticsmodelnode Properties” on page 318)

svmnode Properties

=, The Support Vector Machine (SVM) node enables you to classify data into one of two groups
! +::t:ﬁ without overfitting. SVM works well with wide data sets, such as those with a very large
wy number of input fields.
Example

create svmnode

Expert tab

set :svmnode.mode=Expert

set :svmnode.all_probabilities=True
set :svmnode.kernel=Polynomial

set :svmnode.gamma=1.5

Table 140. svmnode propetrties.

propensities

svmnode Properties Values Property description
all_probabilities flag
stopping_criteria 1.0E-1 Determines when to stop the
1.0E-2 optimization algorithm.
1.0E-3 (default)
1.0E-4
1.0E-5
1.0E-6
regularization number Also known as the C parameter.
precision number Used only if measurement level of
target field is Continuous.
kernel RBF(default) Type of kernel function used for the
Polynomial transformation.
Sigmoid
Linear
rbf_gamma number Used only if kernel is RBF.
gamma number Used only if kernel is Polynomial or
Sigmoid.
bias number
degree number Used only if kernel is Polynomial.
calculate variable_importance |flag
calculate_raw_propensities flag
calculate_adjusted_ flag

250 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 140. svmnode properties (continued).

svmnode Properties Values

Property description

adjusted propensity partition |[Test
Validation

timeseriesnode Properties

Moving Average (ARIMA), and multivariate ARIMA (or transfer function) models for time

i} The Time Series node estimates exponential smoothing, univariate Autoregressive Integrated

series data and produces forecasts of future performance. A Time Series node must always be

preceded by a Time Intervals node.

Example

create timeseriesnode

set :timeseriesnode.method = Exsmooth

set :timeseriesnode.exsmooth_model_type = HoltsLinearTrend
set :timeseriesnode.exsmooth_transformation_type = None

Table 141. timeseriesnode properties

timeseriesnode Properties Values Property description
targets field The Time Series node
forecasts one or more
targets, optionally using one
or more input fields as
predictors. Frequency and
weight fields are not used.
See the topic [FCommon]
Modeling Node Properties”|
on page 17Z| for more
information.
continue flag
method ExpertModeler
Exsmooth
Arima
Reuse
expert_modeler_method flag
consider_seasonal flag
detect_outliers flag
expert_outlier_additive flag
expert_outlier_level shift flag
expert_outlier_innovational flag
expert_outlier_level shift flag
expert_outlier_transient flag
expert_outlier_seasonal_additive flag
expert_outlier _Tocal_trend flag
expert_outlier_additive_patch flag

Chapter 16. Modeling Node Properties 251

Table 141. timeseriesnode properties (continued)

timeseriesnode Properties Values Property description
exsmooth_model_type Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicative
exsmooth_transformation_type None
SquareRoot
Naturallog
arima_p integer
arima_d integer
arima_q integer
arima_sp integer
arima_sd integer
arima_sq integer
arima_transformation_type None
SquareRoot
Naturallog
arima_include_constant flag
tf_arima_p. fieldname integer For transfer functions.
tf_arima_d. fieldname integer For transfer functions.
tf_arima_q. fieldname integer For transfer functions.
tf_arima_sp. fieldname integer For transfer functions.
tf_arima_sd. fieldname integer For transfer functions.
tf_arima_sq. fieldname integer For transfer functions.
tf_arima_delay. fieldname integer For transfer functions.
tf_arima_transformation_type. fieldname None For transfer functions.
SquareRoot
Naturallog
arima_detect_outlier_mode None
Automatic
arima_outlier_additive flag
arima_outlier_level shift flag
arima_outlier_innovational flag
arima_outlier_transient flag
arima_outlier_seasonal_additive flag
arima_outlier_local_trend flag
arima_outlier_additive_patch flag
conf_Timit_pct real
max_lags integer
events fields

252 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 141. timeseriesnode properties (continued)

timeseriesnode Properties Values Property description
scoring_model_only flag Use for models with very
large numbers (tens of
thousands) of time series.
twostepnode Properties
'r/“-n The TwoStep node uses a two-step clustering method. The first step makes a single pass
-@J through the data to compress the raw input data into a manageable set of subclusters. The
second step uses a hierarchical clustering method to progressively merge the subclusters into

larger and larger clusters. TwoStep has the advantage of automatically estimating the optimal
number of clusters for the training data. It can handle mixed field types and large data sets

efficiently.

Example

create twostep
set :twostep.custom_fields = True

set :twostep.inputs = ['Age' 'K' 'Na' 'BP']

set :twostep.partition = Test
set :twostep.use_model_name = False

set :twostep.model_name = "TwoStep_Drug"
set :twostep.use_partitioned_data = True

set :twostep.exclude_outliers = True
set :twostep.cluster_label = "String"
set :twostep.label_prefix = "TwoStep "
set :twostep.cluster_num_auto = False
set :twostep.max_num_clusters = 9

set :twostep.min_num_clusters = 3

set :twostep.num_clusters =7

Table 142. twostepnode properties

twostepnode Properties

Values

Property description

inputs [fieldl ... fieldN] TwoStep models use a list of input fields,
but no target. Weight and frequency fields
are not recognized. See the topic |”Comm0n|
[Modeling Node Properties” on page 177 for
more information.
standardize flag
exclude_outliers flag
percentage number
cluster_num_auto flag
min_num_clusters number
max_num_clusters number
num_clusters number
cluster_label String
Number
label_prefix string
distance_measure Euclidean
Loglikelihood
clustering_criterion AIC
BIC

Chapter 16. Modeling Node Properties 253

254 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 17. Model Nugget Node Properties

Model nugget nodes share the same common properties as other nodes. See the topic|“Common Node|

t[’roperties" on page 93| for more information.

applyanomalydetectionnode Properties

Anomaly Detection modeling nodes can be used to generate an Anomaly Detection model nugget. The
scripting name of this model nugget is applyanomalydetectionnode. For more information on scripting the

modeling node itself, [“anomalydetectionnode Properties” on page 177

Table 143. applyanomalydetectionnode properties.

applyanomalydetectionnode Properties Values Property description
anomaly_score_method FlagAndScore Determines which outputs are created for
FlagOnly scoring.
ScoreOnly
num_fields integer Fields to report.
discard_records flag Indicates whether records are discarded from the
output or not.
discard_anomalous_records flag Indicator of whether to discard the anomalous or
non-anomalous records. The default is off,
meaning that non-anomalous records are
discarded. Otherwise, if on, anomalous records
will be discarded. This property is enabled only
if the discard_records property is enabled.

applyapriorinode Properties

Apriori modeling nodes can be used to generate an Apriori model nugget. The scripting name of this
model nugget is applyapriorinode. For more information on scripting the modeling node itself,

[“apriorinode Properties” on page 179

Table 144. applyapriorinode properties.

applyapriorinode Properties Values Property description
max_predictions number (integer)
ignore_unmatached flag
allow_repeats flag
check_basket NoPredictions
Predictions
NoCheck
criterion Confidence
Support
RuTeSupport
Lift
Deployability

255

applyautoclassifiernode Properties

Auto Classifier modeling nodes can be used to generate an Auto Classifier model nugget. The scripting
name of this model nugget is applyautoclassifiernode.For more information on scripting the modeling node
itself, [“autoclassifiernode Properties” on page 18(|

Table 145. applyautoclassifiernode properties.

applyautoclassifiernode Properties | Values Property description
flag_ensemble_method Voting Specifies the method used to
ConfidenceWeightedVoting determine the ensemble score. This
RawPropensityWeightedVoting setting applies only if the selected
HighestConfidence target is a flag field.
AverageRawPropensity
flag_voting tie_selection Random If a voting method is selected,
HighestConfidence specifies how ties are resolved. This
RawPropensity setting applies only if the selected
target is a flag field.
set_ensemble_method Voting Specifies the method used to
ConfidenceWeightedVoting determine the ensemble score. This
HighestConfidence setting applies only if the selected
target is a set field.
set_voting_tie_selection Random If a voting method is selected,
HighestConfidence specifies how ties are resolved. This

setting applies only if the selected
target is a nominal field.

applyautoclusternode Properties

Auto Cluster modeling nodes can be used to generate an Auto Cluster model nugget. The scripting name
of this model nugget is applyautoclusternode. No other properties exist for this model nugget. For more
information on scripting the modeling node itself, |“autoclusternode Properties” on page 182

applyautonumericnode Properties

Auto Numeric modeling nodes can be used to generate an Auto Numeric model nugget. The scripting
name of this model nugget is applyautonumericnode.For more information on scripting the modeling node
itself, [“autonumericnode Properties” on page 183

Table 146. applyautonumericnode properties.

applyautonumericnode Properties Values Property description

calculate_standard_error flag

applybayesnetnode Properties

Bayesian network modeling nodes can be used to generate a Bayesian network model nugget. The
scripting name of this model nugget is applybayesnetnode. For more information on scripting the modeling
node itself, ['bayesnetnode Properties” on page 185

Table 147. applybayesnetnode properties.

applybayesnetnode Properties Values Property description
all_probabilities flag
raw_propensity flag

256 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 147. applybayesnetnode properties (continued).

applybayesnetnode Properties Values Property description
adjusted_propensity flag
calculate_raw_propensities flag
calculate_adjusted_propensities |flag

applyc50node Properties

(5.0 modeling nodes can be used to generate a C5.0 model nugget. The scripting name of this model
nugget is applyc50node. For more information on scripting the modeling node itself, |“c50node Properties”]|

Table 148. applyc50node properties.

applyc50node Properties Values Property description

sql_generate Never Used to set SQL generation options during
NoMissingValues rule set execution.

calculate_conf flag Available when SQL generation is enabled;

this property includes confidence
calculations in the generated tree.

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

applycarmanode Properties

CARMA modeling nodes can be used to generate a CARMA model nugget. The scripting name of this
model nugget is applycarmanode. No other properties exist for this model nugget. For more information on
scripting the modeling node itself, [‘carmanode Properties” on page 188

applycartnode Properties

C&R Tree modeling nodes can be used to generate a C&R Tree model nugget. The scripting name of this
model nugget is applycartnode. For more information on scripting the modeling node itself,

roperties” on page 189.
P pag

Table 149. applycartnode properties.

applycartnode Properties Values Property description
sql_generate Never Used to set SQL generation options during
MissingValues rule set execution.

NoMissingValues

calculate_conf flag Available when SQL generation is enabled;
this property includes confidence
calculations in the generated tree.

display_rule_id flag Adds a field in the scoring output that
indicates the ID for the terminal node to
which each record is assigned.

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

Chapter 17. Model Nugget Node Properties 257

applychaidnode Properties

CHAID modeling nodes can be used to generate a CHAID model nugget. The scripting name of this
model nugget is applychaidnode. For more information on scripting the modeling node itself,

[Properties” on page 191

Table 150. applychaidnode properties.

applychaidnode Properties Values Property description
sql_generate Never
MissingValues
calculate_conf flag
display_rule_id flag Adds a field in the scoring output that

indicates the ID for the terminal node to
which each record is assigned.

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

applycoxregnode Properties

Cox modeling nodes can be used to generate a Cox model nugget. The scripting name of this model
nugget is applycoxregnode. For more information on scripting the modeling node itself,

roperties” on page 193

Table 151. applycoxregnode properties.

applycoxregnode Properties Values Property description
future_time_as Intervals
Fields
time_interval number
num_future_times integer
time_field field
past_survival_time field
all_probabilities flag
cumulative_hazard flag

applydecisionlistnode Properties

Decision List modeling nodes can be used to generate a Decision List model nugget. The scripting name
of this model nugget is applydecisionlistnode. For more information on scripting the modeling node itself,

[“decisionlistnode Properties” on page 194]

Table 152. applydecisionlistnode properties.
Values Property description

flag When true, IBM SPSS Modeler will try to
push back the Decision List model to SQL.

applydecisionlistnode Properties

enable_sql_generation

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

258 IBM SPSS Modeler 16 Scripting and Automation Guide

applydiscriminantnode Properties

Discriminant modeling nodes can be used to generate a Discriminant model nugget. The scripting name
of this model nugget is applydiscriminantnode. For more information on scripting the modeling node itself,
[“discriminantnode Properties” on page 196)

Table 153. applydiscriminantnode properties.

applydiscriminantnode Properties | Values Property description

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

applyfactornode Properties

PCA /Factor modeling nodes can be used to generate a PCA /Factor model nugget. The scripting name of
this model nugget is applyfactornode. No other properties exist for this model nugget. For more
information on scripting the modeling node itself, |[“factornode Properties” on page 197

applyfeatureselectionnode Properties

Feature Selection modeling nodes can be used to generate a Feature Selection model nugget. The
scripting name of this model nugget is applyfeatureselectionnode. For more information on scripting the
modeling node itself, |“featureselectionnode Properties” on page 199

Table 154. applyfeatureselectionnode properties.

applyfeatureselectionnode
Properties Values Property description

selected_ranked_fields Specifies which ranked fields are checked
in the model browser.

selected_screened_fields Specifies which screened fields are checked
in the model browser.

applygeneralizedlinearnode Properties

Generalized Linear (genlin) modeling nodes can be used to generate a Generalized Linear model nugget.
The scripting name of this model nugget is applygeneralizedlinearnode. For more information on scripting
the modeling node itself, |“genlinnode Properties” on page 200.|

Table 155. applygeneralizedlinearnode properties.

applygeneralizedlinearnode
Properties Values Property description

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

Chapter 17. Model Nugget Node Properties 259

applygilmmnode Properties

GLMM modeling nodes can be used to generate a GLMM model nugget. The scripting name of this
model nugget is applyglmmnode. For more information on scripting the modeling node itself,
[Properties” on page 204

Table 156. applyglmmnode properties.

applygimmnode Properties Values Property description
confidence onProbability Basis for computing scoring confidence
onlncrease value: highest predicted probability, or

difference between highest and second
highest predicted probabilities.

score_category_probabilities flag If set to True, produces the predicted
probabilities for categorical targets. A field
is created for each category. Default is
False.

max_categories integer Maximum number of categories for which
to predict probabilities. Used only if
score_category_probabilities is True.

score_propensity flag If set to True, produces raw propensity
scores (likelihood of "True" outcome) for
models with flag targets. If partitions are in
effect, also produces adjusted propensity
scores based on the testing partition.
Default is False.

applykmeansnode Properties

K-Means modeling nodes can be used to generate a K-Means model nugget. The scripting name of this
model nugget is applykmeansnode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, [“kmeansnode Properties” on page 207

applyknnnode Properties

KNN modeling nodes can be used to generate a KNN model nugget. The scripting name of this model
nugget is applyknnnode. For more information on scripting the modeling node itself, [’knnnode Properties’]

Table 157. applyknnnode properties.

applyknnnode Properties Values Property description
all_probabilities flag
save_distances flag

applykohonennode Properties

Kohonen modeling nodes can be used to generate a Kohonen model nugget. The scripting name of this
model nugget is applykohonennode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, [“c50node Properties” on page 187

260 IBM SPSS Modeler 16 Scripting and Automation Guide

applylinearnode Properties

Linear modeling nodes can be used to generate a Linear model nugget. The scripting name of this model
nugget is applylinearnode. For more information on scripting the modeling node itself,

[Properties” on page 210

Table 158. applylinearnode Properties.

linear Properties Values Property description
use_custom_name flag

custom_name string

enable_sql_generation flag

applylogregnode Properties
Logistic Regression modeling nodes can be used to generate a Logistic Regression model nugget. The
scripting name of this model nugget is applylogregnode. For more information on scripting the modeling

node itself, [“logregnode Properties” on page 212

Table 159. applylogregnode propetrties.

applylogregnode Properties Values Property description
calculate_raw_propensities flag
calculate_conf flag
enable_sql_generation flag

applyneuralnetnode Properties
Neural Net modeling nodes can be used to generate a Neural Net model nugget. The scripting name of
this model nugget is applyneuralnetnode. For more information on scripting the modeling node itself,

[“‘neuralnetnode Properties” on page 216

Caution: A newer version of the Neural Net nugget, with enhanced features, is available in this release
and is described in the next section (applyneuralnetwork). Although the previous version is still available,
we recommend updating your scripts to use the new version. Details of the previous version are retained
here for reference, but support for it will be removed in a future release.

Table 160. applyneuralnetnode properties.

applyneuralnetnode Properties Values Property description

flag Available when SQL generation is enabled; this
property includes confidence calculations in
the generated tree.

calculate_conf

enable_sql_generation flag

nn_score_method Difference
SoftMax

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

Chapter 17. Model Nugget Node Properties 261

applyneuralnetworknode Properties

Neural Network modeling nodes can be used to generate a Neural Network model nugget. The scripting
name of this model nugget is applyneuralnetworknode. For more information on scripting the modeling

node itself,

Table 161. applyneuralnetworknode properties

applyneuralnetworknode Properties | Values Property description
use_custom_name flag
custom_name string
confidence onProbability
onlncrease
score_category_probabilities flag
max_categories number
score_propensity flag

applyquestnode Properties

QUEST modeling nodes can be used to generate a QUEST model nugget. The scripting name of this
model nugget is applyquestnode. For more information on scripting the modeling node itself,

[Properties” on page 218

Table 162. applyquestnode propetrties.
applyquestnode Properties Values Property description

sql_generate Never
MissingValues

NoMissingValues

calculate_conf flag
flag Adds a field in the scoring output that
indicates the ID for the terminal node to
which each record is assigned.

display_rule_id

calculate_raw_propensities flag

calculate_adjusted_propensities |flag

applyr Properties
R Building nodes can be used to generate an R model nugget. The scripting name of this model nugget is
applyr. For more information on scripting the modeling node itself, [“buildr Properties” on page 186/

Table 163. applyr properties

applyr Properties Values Property Description
score_syntax string R scripting syntax for model scoring.
convert_flags StringsAndDoubles Option to convert flag fields.

LogicalValues

convert_datetime flag Option to convert variables with date
or datetime formats to R date/time
formats.

convert_datetime_class POSIXct Options to specify to what format

POSIX1t variables with date or datetime
formats are converted.

262 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 163. applyr properties (continued)

applyr Properties Values Property Description
convert_missing flag Option to convert missing values to
R NA value.

applyregressionnode Properties

Linear Regression modeling nodes can be used to generate a Linear Regression model nugget. The
scripting name of this model nugget is applyregressionnode. No other properties exist for this model
nugget. For more information on scripting the modeling node itself, [“regressionnode Properties” on page]
i

applyselflearningnode Properties

Self-Learning Response Model (SLRM) modeling nodes can be used to generate a SLRM model nugget.
The scripting name of this model nugget is applyselflearningnode. For more information on scripting the
modeling node itself, [“slrmnode Properties” on page 222 |

Table 164. applyselflearningnode properties.

applyselflearningnode Properties Values Property description

max_predictions number

randomization number

scoring_random_seed number

sort ascending Specifies whether the offers with the highest

descending or lowest scores will be displayed first.
model_reliability flag Takes account of model reliability option on
Settings tab.

applysequencenode Properties
Sequence modeling nodes can be used to generate a Sequence model nugget. The scripting name of this

model nugget is applysequencenode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, [“sequencenode Properties” on page 221/

applysvmnode Properties

SVM modeling nodes can be used to generate an SVM model nugget. The scripting name of this model
nugget is applysvmnode. For more information on scripting the modeling node itself,
[Properties” on page 223

Table 165. applysvmnode properties.

applysvmnode Properties Values Property description
all_probabilities flag
calculate_raw_propensities flag
calculate_adjusted_propensities flag

applytimeseriesnode Properties

Time Series modeling nodes can be used to generate a Time Series model nugget. The scripting name of
this model nugget is applytimeseriesnode. For more information on scripting the modeling node itself,
[“timeseriesnode Properties” on page 224

Chapter 17. Model Nugget Node Properties 263

Table 166. applytimeseriesnode properties.
applytimeseriesnode Properties Values Property description
calculate_conf flag

calculate_residuals flag

applytwostepnode Properties

TwoStep modeling nodes can be used to generate a TwoStep model nugget. The scripting name of this
model nugget is applytwostepnode. No other properties exist for this model nugget. For more information
on scripting the modeling node itself, [“twostepnode Properties” on page 226,

264 1BM SPSS Modeler 16 Scripting and Automation Guide

Chapter 18. Database Modeling Node Properties

IBM SPSS Modeler supports integration with data mining and modeling tools available from database
vendors, including Microsoft SQL Server Analysis Services, Oracle Data Mining, IBM

Warehouse, and IBM Netezza Analytics. You can build and score models using native database
algorithms, all from within the IBM SPSS Modeler application. Database models can also be created and
manipulated through scripting using the properties described in this section.

DB2 InfoSphere

For example, the following script excerpt illustrates the creation of a Microsoft Decision Trees model by
using IBM SPSS Modeler's scripting interface:

create mstreenode
rename :mstreenode as msbuilder

set msbuilder.analysis_server_name = 'localhost’
set mshuilder.analysis_database_name = 'TESTDB'

set mshuilder.mode = 'Expert'

set mshuilder.datasource = 'LocalServer'
set mshuilder.target = 'Drug’

set msbuilder.inputs = ['Age' 'Sex']

set mshuilder.unique_field = 'IDX'

set mshuilder.custom_fields = true

set msbuilder.model_name = 'MSDRUG'

connect :typenode to msbuilder
execute msbuilder

insert model MSDRUG connected between :typenode and :tablenode

set MSDRUG.sql_generate = true
execute :tablenode

Node Properties for Microsoft Modeling

Microsoft Modeling Node Properties

Common Properties

The following properties are common to the Microsoft database modeling nodes.

Table 167. Common Microsoft node properties

Common Microsoft Node

Properties Values Property Description

analysis_database_name string Name of the Analysis Services database.

analysis_server_name string Name of the Analysis Services host.

use_transactional_data flag Specifies whether input data is in tabular or
transactional format.

inputs [field field field] Input fields for tabular data.

target field Predicted field (not applicable to MS Clustering or
Sequence Clustering nodes).

unique_field field Key field.

msas_parameters structured Algorithm parameters. See the topic
[Parameters” on page 267 for more information.

with_drillthrough flag With Drillthrough option.

MS Decision Tree

© Copyright IBM Corporation 1994, 2013

265

There are no specific properties defined for nodes of type mstreenode. See the common Microsoft
properties at the start of this section.

MS Clustering

There are no specific properties defined for nodes of type msclusternode. See the common Microsoft
properties at the start of this section.

MS Association Rules

The following specific properties are available for nodes of type msassocnode:

Table 168. msassocnode properties

msassocnode Properties Values Property Description

id_field field Identifies each transaction in the data.
trans_inputs [field field field] Input fields for transactional data.
transactional_target field Predicted field (transactional data).

MS Naive Bayes

There are no specific properties defined for nodes of type mshayesnode. See the common Microsoft
properties at the start of this section.

MS Linear Regression

There are no specific properties defined for nodes of type msregressionnode. See the common Microsoft
properties at the start of this section.

MS Neural Network

There are no specific properties defined for nodes of type msneuralnetworknode. See the common
Microsoft properties at the start of this section.

MS Logistic Regression

There are no specific properties defined for nodes of type mslogisticnode. See the common Microsoft
properties at the start of this section.

MS Time Series

There are no specific properties defined for nodes of type mstimeseriesnode. See the common Microsoft
properties at the start of this section.

MS Sequence Clustering

The following specific properties are available for nodes of type mssequenceclusternode:

Table 169. mssequenceclusternode properties

mssequenceclusternode Properties Values Property Description

id_field field Identifies each transaction in the data.
input_fields [field field field] Input fields for transactional data.
sequence_field field Sequence identifier.

target_field field Predicted field (tabular data).

266 IBM SPSS Modeler 16 Scripting and Automation Guide

Algorithm Parameters

Each Microsoft database model type has specific parameters that can be set using the msas_parameters

property--for example:

set :msregressionnode.msas_parameters =

[{"MAXIMUM_INPUT_ATTRIBUTE§" 255} {"MAXIMUM_OUTPUT_ATTRIBUTES" 255}]

These parameters are derived from SQL Server. To see the relevant parameters for each node:

Open the database source node.

© N o o~ Db~

Select the Expert tab.

Place a database source node on the canvas.

Select a valid table from the Table name list.
Click OK to close the database source node.

Open the database modeling node.

Select a valid source from the Data source drop-down list.

Attach the Microsoft database modeling node whose properties you want to list.

The available msas_parameters properties for this node are displayed.

Microsoft Model Nugget Properties

The following properties are for the model nuggets created using the Microsoft database modeling nodes.

MS Decision Tree

Table 170. MS Decision Tree properties.

applymstreenode Properties Values Description

analysis_database_name string This node can be scored directly in a stream.
This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

datasource string Name of the SQL Server ODBC data source name
(DSN).

sql_generate flag Enables SQL generation.

MS Linear Regression

Table 171. MS Linear Regression properties.

applymsregressionnode Properties Values Description

analysis_database_name string This node can be scored directly in a stream.
This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

MS Neural Network

Chapter 18. Database Modeling Node Properties

267

Table 172. MS Neural Network properties.

applymsneuralnetworknode Properties | Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

MS Logistic Regression
Table 173. MS Logistic Regression properties.

applymslogisticnode Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

MS Time Series
Table 174. MS Time Series properties.

applymstimeseriesnode Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.
start_from new_prediction Specifies whether to make future predictions or
historical historical predictions.
prediction
new_step number Defines starting time period for future predictions.
historical_step number Defines starting time period for historical predictions.
end_step number Defines ending time period for predictions.

MS Sequence Clustering
Table 175. MS Sequence Clustering properties.

applymssequenceclusternode
Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

268 IBM SPSS Modeler 16 Scripting and Automation Guide

Node Properties for Oracle Modeling

Oracle Modeling Node Properties

The following properties are common to Oracle database modeling nodes.

Table 176. Common Oracle node properties.

Common Oracle Node Properties Values Property Description

target field

inputs List of fields

partition field Field used to partition the data into separate samples
for the training, testing, and validation stages of
model building.

datasource

username

password

epassword

use_model_name flag

model_name string Custom name for new model.

use_partitioned_data flag If a partition field is defined, this option ensures that
only data from the training partition is used to build
the model.

unique_field field

auto_data_prep flag Enables or disables the Oracle automatic data
preparation feature (11g databases only).

costs structured Structured property in the form:
[{drugA drugB 1.5} {drugA drugC 2.1}], where the
arguments in {} are actual predicted costs.

mode Simple Causes certain properties to be ignored if set to

Expert Simple, as noted in the individual node properties.

use_prediction_probability flag

prediction_probability string

use_prediction_set flag

Oracle Naive Bayes

The following properties are available for nodes of type oranbnode.

Table 177. oranbnode properties.

oranbnode Properties Values Property Description
singleton_threshold number 0.0-1.0.%
pairwise_threshold number 0.0-1.0.%
priors Data
Equal
Custom
custom_priors structured Structured property in the form:

set :oranbnode.custom_priors = [{drugA 1}{drugB
2}{drugC 3}{drugX 4}{drugY 5}]

Chapter 18. Database Modeling Node Properties 269

* Property ignored if mode is set to Simple.

Oracle Adaptive Bayes

The following properties are available for nodes of type oraabnnode.

Table 178. oraabnnode properties.

oraabnnode Properties Values Property Description
model_type SingleFeature
MultiFeature
NaiveBayes
use_execution_time_limit flag *
execution_time_limit integer Value must be greater than 0.*
max_naive_bayes_predictors integer Value must be greater than 0.*
max_predictors integer Value must be greater than 0.*
priors Data
Equal
Custom
custom_priors structured Structured property in the form:
set :oraabnnode.custom priors = [{drugA 1}{drugB
2}{drugC 3}{drugX 4}{drugY 5}]

* Property ignored if mode is set to Simple.

Oracle Support Vector Machines

The following properties are available for nodes of type orasvmnode.

Table 179. orasvmnode properties.

orasvmnode Properties Values Property Description
active_learning Enable

Disable
kernel_function Linear

Gaussian

System
normalization_method zscore

minmax

none
kernel_cache_size integer Gaussian kernel only. Value must be

greater than 0.*

convergence_tolerance number Value must be greater than 0.*
use_standard_deviation flag Gaussian kernel only.*
standard_deviation number Value must be greater than 0.*
use_epsilon flag Regression models only.*
epsilon number Value must be greater than 0.*
use_complexity_factor flag *
complexity factor number *
use_outlier_rate flag One-Class variant only.*
outlier_rate number One-Class variant only. 0.0-1.0.*

270 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 179. orasvmnode properties (continued).

orasvmnode Properties Values Property Description
weights Data
Equal
Custom
custom weights structured Structured property in the form:

set :orasvmnode.custom_weights =
[{drugA 1}{drugB 2}{drugC 3}{drugX
4} {drugY 5}]

* Property ignored if mode is set to SimpTe.

Oracle Generalized Linear Models

The following properties are available for nodes of type oragimnode.

Table 180. oragimnode properties.

oraglmnode Properties Values Property Description
normalization_method zscore

minmax

none
missing_value_handling ReplacelithMean

UseCompleteRecords
use_row_weights flag *
row_weights field field *
save_row_diagnostics flag *
row_diagnostics_table string *
coefficient_confidence number *
use_reference_category flag *
reference_category string *
ridge_regression Auto *

off

On
parameter_value number *
vif_for_ridge flag *

* Property ignored if mode is set to Simple.

Oracle Decision Tree

The following properties are available for nodes of type oradecisiontreenode.

Table 181. oradecisiontreenode properties.

oradecisiontreenode Properties Values Property Description
use_costs flag
impurity metric Entropy
Gini
term_max_depth integer 2-20.%

Chapter 18. Database Modeling Node Properties 271

Table 181. oradecisiontreenode properties (continued).

oradecisiontreenode Properties Values Property Description
term_minpct_node number 0.0-10.0.*

term_minpct_split number 0.0-20.0.*

term_minrec_node integer Value must be greater than 0.*
term_minrec_split integer Value must be greater than 0.*
display_rule_ids flag *

* Property ignored if mode is set to SimpTe.

Oracle O-Cluster

The following properties are available for nodes of type oraoclusternode.

Table 182. oraoclusternode properties.

oraoclusternode Properties Values Property Description
max_num_clusters integer Value must be greater than 0.
max_buffer integer Value must be greater than 0.*
sensitivity number 0.0-1.0.*

* Property ignored if mode is set to SimpTe.

Oracle KMeans

The following properties are available for nodes of type orakmeansnode.

Table 183. orakmeansnode properties.

orakmeansnode Properties Values Property Description
num_clusters integer Value must be greater than 0.
normalization_method zscore
minmax
none
distance_function Euclidean
Cosine
iterations integer 0-20.%
conv_tolerance number 0.0-0.5.%
split_criterion Variance Default is Variance.*
Size
num_bins integer Value must be greater than 0.*
block_growth integer 1-5.*
min_pct_attr_support number 0.0-1.0.*
* Property ignored if mode is set to Simple.

Oracle NMF

272 IBM SPSS Modeler 16 Scripting and Automation Guide

The following properties are available for nodes of type oranmfnode.

Table 184. oranmfnode properties.

oranmfnode Properties Values Property Description
normalization_method minmax
none
use_num_features flag *
num_features integer 0-1. Default value is estimated from the data by the
algorithm.*
random_seed number *
num_iterations integer 0-500.%
conv_tolerance number 0.0-0.5.%
display_all_features flag *

* Property ignored if mode is set to Simple.

Oracle Apriori

The following properties are available for nodes of type oraapriorinode.

Table 185. oraapriorinode properties.

oraapriorinode Properties Values Property Description
content_field field

id_field field

max_rule_length integer 2-20.

min_confidence number 0.0-1.0.

min_support number 0.0-1.0.
use_transactional_data flag

Oracle Minimum Description Length (MDL)

There are no specific properties defined for nodes of type oramdInode. See the common Oracle properties

at the start of this section.

Oracle Attribute Importance (Al)

The following properties are available for nodes of type oraainode.

Table 186. oraainode properties.

oraainode Properties Values Property Description

custom_fields flag If true, allows you to specify target, input, and other
fields for the current node. If false, the current
settings from an upstream Type node are used.

selection_mode Importancelevel

ImportanceValue
TopN

select_important flag When selection_mode is set to Importancelevel,
specifies whether to select important fields.
important_label string Specifies the label for the "important" ranking.

Chapter 18. Database Modeling Node Properties 273

Table 186. oraainode properties (continued).

oraainode Properties Values Property Description

select_marginal flag When selection_mode is set to Importancelevel,
specifies whether to select marginal fields.

marginal_label string Specifies the label for the "marginal” ranking.

important_above number 0.0-1.0.

select_unimportant flag When selection_mode is set to Importancelevel,
specifies whether to select unimportant fields.

unimportant_label string Specifies the label for the "unimportant" ranking.

unimportant_below number 0.0-1.0.

importance_value number When selection_mode is set to ImportanceValue,
specifies the cutoff value to use. Accepts values from
0 to 100.

top_n number When selection_mode is set to TopN, specifies the

cutoff value to use. Accepts values from 0 to 1000.

Oracle Model Nugget Properties

The following properties are for the model nuggets created using the Oracle models.
Oracle Naive Bayes

There are no specific properties defined for nodes of type applyoranbnode.

Oracle Adaptive Bayes

There are no specific properties defined for nodes of type applyoraabnnode.

Oracle Support Vector Machines

There are no specific properties defined for nodes of type applyorasvmnode.

Oracle Decision Tree

The following properties are available for nodes of type applyoradecisiontreenode.

Table 187. applyoradecisiontreenode properties

applyoradecisiontreenode Properties Values Property Description
use_costs flag
display_rule_ids flag

Oracle O-Cluster

There are no specific properties defined for nodes of type applyoraoclusternode.
Oracle KMeans

There are no specific properties defined for nodes of type applyorakmeansnode.

Oracle NMF

274 1BM SPSS Modeler 16 Scripting and Automation Guide

The following property is available for nodes of type applyoranmfnode:
Table 188. applyoranmfnode properties

applyoranmfnode Properties Values Property Description

display_all_features flag

Oracle Apriori
This model nugget cannot be applied in scripting.
Oracle MDL

This model nugget cannot be applied in scripting.

Node Properties for IBM DB2 Modeling
IBM DB2 Modeling Node Properties

The following properties are common to IBM InfoSphere Warehouse (ISW) database modeling nodes.

Table 189. Common ISW node properties.

Common ISW node Properties Values Property Description
inputs List of fields

datasource

username

password

epassword

enable_power_options flag

power_options_max_memory integer Value must be greater than 32.
power_options_cmdline string

mining_data_custom_sql string

logical_data_custom_sql string

mining_settings_custom_sql

ISW Decision Tree

The following properties are available for nodes of type db2imtreenode.

Table 190. db2imtreenode properties.

db2imtreenode Properties Values Property Description
target field

perform_test_run flag

use_max_tree_depth flag

max_tree_depth integer Value greater than 0.
use_maximum_purity flag

maximum_purity number Number between 0 and 100.
use_minimum_internal_cases flag

Chapter 18. Database Modeling Node Properties 275

Table 190. db2imtreenode properties (continued).

db2imtreenode Properties Values Property Description
minimum_internal_cases integer Value greater than 1.

use_costs flag

costs structured Structured property in the form:

[{drugA drugB 1.5} {drugA drugC 2.1}], where the
arguments in {} are actual predicted costs.

ISW Association

The following properties are available for nodes of type db2imassocnode.

Table 191. db2imassocnode properties.

limited_Tength

db2imassocnode Properties Values Property Description
use_transactional_data flag

id_field field

content_field field

data_table_layout basic

max_rule_size integer Value must be greater than 2.

min_rule_support number 0-100%

min_rule_confidence number 0-100%

use_item_constraints flag

item_constraints_type Include

Exclude

use_taxonomy flag

taxonomy_table_name string The name of the DB2 table to store taxonomy details.

taxonomy child_column_name string The name of the child column in the taxonomy table.
The child column contains the item names or category
names.

taxonomy_parent_column_name string The name of the parent column in the taxonomy table.
The parent column contains the category names.

Toad_taxonomy_to_table flag Controls if taxonomy information stored in IBM SPSS

Modeler should be uploaded to the taxonomy table at
model build time. Note that the taxonomy table is
dropped if it already exists. Taxonomy information is
stored with the model build node and can be edited
using the Edit Categories and Edit Taxonomy buttons.

ISW Sequence

The following properties are available for nodes of type db2imsequencenode.

Table 192. db2imsequencenode properties.

db2imsequencenode Properties Values Property Description
id_field field
group_field field
content_field field

276 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 192. db2imsequencenode properties (continued).

db2imsequencenode Properties Values Property Description

max_rule_size integer Value must be greater than 2.

min_rule_support number 0-100%

min_rule_confidence number 0-100%

use_item_constraints flag

item_constraints_type Include

Exclude

use_taxonomy flag

taxonomy_table_name string The name of the DB2 table to store taxonomy details.

taxonomy_child_column_name string The name of the child column in the taxonomy table.
The child column contains the item names or category
names.

taxonomy_parent_column_name string The name of the parent column in the taxonomy table.
The parent column contains the category names.

Toad_taxonomy_to_table flag Controls if taxonomy information stored in IBM SPSS

Modeler should be uploaded to the taxonomy table at
model build time. Note that the taxonomy table is
dropped if it already exists. Taxonomy information is
stored with the model build node and can be edited
using the Edit Categories and Edit Taxonomy buttons.

ISW Regression

The following properties are available for nodes of type db2imregnode.

Table 193. db2imregnode properties.

polynomial
rbf

db2imregnode Properties Values Property Description

target field

regression_method transform See next table for properties that apply only if
linear regression_method is set to rbf.

perform_test_run field
1imit_rsquared_value flag
max_rsquared_value number Value between 0.0 and 1.0.
use_execution_time_limit flag
execution_time_limit_mins integer Value greater than 0.
use_max_degree_polynomial flag
max_degree_polynomial integer
use_intercept flag
use_auto_feature_selection_method |flag
auto_feature_selection_method normal
adjusted
use_min_significance_level flag
min_significance Tevel number
use_min_significance_level flag

Chapter 18. Database Modeling Node Properties

277

The following properties apply only if regression_method is set to rbf.

Table 194. db2imregnode properties if regression_method is set to rbf.

db2imregnode Properties Values Property Description
use_output_sample_size flag If true, auto-set the value to the default.
output_sample_size integer Default is 2.

Minimum is 1.
use_input_sample_size flag If true, auto-set the value to the default.
input_sample_size integer Default is 2.

Minimum is 1.
use_max_num_centers flag If true, auto-set the value to the default.
max_num_centers integer Default is 20.

Minimum is 1.
use_min_region_size flag If true, auto-set the value to the default.
min_region_size integer Default is 15.

Minimum is 1.
use_max_data_passes flag If true, auto-set the value to the default.
max_data_passes integer Default is 5.

Minimum is 2.
use_min_data_passes flag If true, auto-set the value to the default.
min_data_passes integer Default is 5.

Minimum is 2.

ISW Clustering

The following properties are available for nodes of type db2imcTusternode.

Table 195. db2imclusternode properties.

db2imclusternode Properties Values Property Description
cluster_method demographic
kohonen
birch
kohonen_num_rows integer
kohonen_num_columns integer
kohonen_passes integer
use_num_passes_limit flag
use_num_clusters_limit flag
max_num_clusters integer Value greater than 1.

birch_dist_measure

log_likelihood

Default is Tog_likelihood.

euclidean
birch_num_cfleaves integer Default is 1000.
birch_num_refine_passes integer Default is 3; minimum is 1.

278 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 195. db2imclusternode properties (continued).

db2imclusternode Properties Values Property Description
use_execution_time limit flag

execution_time_limit_mins integer Value greater than 0.
min_data_percentage number 0-100%
use_similarity_threshold flag

similarity_threshold number Value between 0.0 and 1.0.

ISW Naive Bayes

The following properties are available for nodes of type db2imnbsnode.

Table 196. db2imnbnode properties.

db2imnbnode Properties Values Property Description
perform_test_run flag
probability threshold number Default is 0.001.
Minimum value is 0; maximum value is 1.000
use_costs flag
costs structured Structured property in the form:
[{drugA drugB 1.5} {drugA drugC 2.1}], where the
arguments in {} are actual predicted costs.

ISW Logistic Regression

The following properties are available for nodes of type db2imlognode.

Table 197. db2imlognode properties.

db2imlognode Properties Values Property Description

perform_test_run flag

use_costs flag

costs structured Structured property in the form:
[{drugA drugB 1.5} {drugA drugC 2.1}], where the
arguments in {} are actual predicted costs.

ISW Time Series

Note: The input fields parameter is not used for this node. If the input fields parameter is found in the
script a warning is displayed to say that the node has time and targets as incoming fields, but no input

fields.

The following properties are available for nodes of type db2imtimeseriesnode.

Table 198. db2imtimeseriesnode properties.

db2imtimeseriesnode Properties Values Property Description
time field Integer, time, or date allowed.
targets list of fields

Chapter 18. Database Modeling Node Properties

279

Table 198. db2imtimeseriesnode properties (continued).

db2imtimeseriesnode Properties Values Property Description
forecasting_algorithm arima

exponential_

smoothing

seasonal_trend_

decomposition
forecasting_end_time auto

integer

date

time
use_records_all boolean If false, use_records_start and

use_records_end must be set.

use_records_start integer / time / date Depends on type of time field
use_records_end integer / time / date Depends on type of time field
interpolation_method none

Tinear

exponential_splines
cubic_splines

IBM DB2 Model Nugget Properties
The following properties are for the model nuggets created using the IBM DB2 ISW models.

ISW Decision Tree

There are no specific properties defined for nodes of type applydb2imtreenode.
ISW Association

This model nugget cannot be applied in scripting.

ISW Sequence

This model nugget cannot be applied in scripting.

ISW Regression

There are no specific properties defined for nodes of type applydb2imregnode.
ISW Clustering

There are no specific properties defined for nodes of type applydb2imclusternode.
ISW Naive Bayes

There are no specific properties defined for nodes of type applydb2imnbnode.
ISW Logistic Regression

There are no specific properties defined for nodes of type applydb2imlognode.

ISW Time Series

280 IBM SPSS Modeler 16 Scripting and Automation Guide

This model nugget cannot be applied in scripting.

Node Properties for IBM Netezza Analytics Modeling

Netezza Modeling Node Properties

The following properties are common to IBM Netezza database modeling nodes.

Table 199. Common Netezza node properties.

Common Netezza Node Properties

Values

Property Description

custom_fields

flag

If true, allows you to specify target, input, and other
fields for the current node. If false, the current settings
from an upstream Type node are used.

inputs [field1 ... fieldN] Input or predictor fields used by the model.

target field Target field (continuous or categorical).

record_id field Field to be used as unique record identifier.

use_upstream_connection flag If true (default), the connection details specified in an
upstream node. Not used if move_data_to_connection is
specified.

move_data_connection flag If true, moves the data to the database specified by
connection. Not used if use_upstream_connection is
specified.

connection structured The connection string for the Netezza database where
the model is stored. Structured property in the form:
['odbc' '<dsn>' '<username>' '<psw>' '<catname>'
'<conn_attribs>' {true|false}]
where:
<dsn> is the data source name
<username> and <psw> are the username and password
for the database
<catname> is the catalog name
<conn_attribs> are the connection attributes
true | false indicates whether the password is needed.

table_name string Name of database table where model is to be stored.

use_model_name flag If true, uses the name specified by model_name as the
name of the model, otherwise model name is created by
the system.

model_name string Custom name for new model.

include_input_fields flag If true, passes all input fields downstream, otherwise

passes only record_id and fields generated by model.

Netezza Decision Tree

The following properties are available for nodes of type netezzadectreenode.

Table 200. netezzadectreenode properties.

netezzadectreenode Properties Values Property Description
impurity_measure Entropy The measurement of impurity, used
Gini to evaluate the best place to split the
tree.

Chapter 18. Database Modeling Node Properties 281

Table 200. netezzadectreenode properties (continued).

netezzadectreenode Properties

Values

Property Description

max_tree_depth

integer

Maximum number of levels to which
tree can grow. Default is 62 (the
maximum possible).

min_improvement splits

number

Minimum improvement in impurity
for split to occur. Default is 0.01.

min_instances_split

integer

Minimum number of unsplit records
remaining before split can occur.
Default is 2 (the minimum possible).

weights

structured

Relative weightings for classes.
Structured property in the form:
set :netezza_dectree.weights =
[{drugA 0.3}{drugB 0.6}]

Default is weight of 1 for all classes.

pruning_measure

Acc
wAcc

Default is Acc (accuracy). Alternative
wAcc (weighted accuracy) takes class
weights into account while applying
pruning.

prune_tree_options

allTrainingData

partitionTrainingData
useOtherTable

Default is to use al1TrainingData to
estimate model accuracy. Use
partitionTrainingData to specify a
percentage of training data to use, or
useOtherTable to use a training data
set from a specified database table.

perc_training_data

number

If prune_tree_options is set to
partitionTrainingData, specifies
percentage of data to use for training.

prune_seed

integer

Random seed to be used for
replicating analysis results when
prune_tree_options is set to
partitionTrainingData; default is 1.

pruning_table

string

Table name of a separate pruning
dataset for estimating model
accuracy.

compute_probabilities

flag

If true, produces a confidence level
(probability) field as well as the
prediction field.

Netezza K-Means

The following properties are available for nodes of type netezzakmeansnode.

Table 201. netezzakmeansnode properties.

netezzakmeansnode Properties Values Property Description
distance_measure Euclidean Method to be used for measuring distance between data
Manhattan points.
Canberra
maximum
num_clusters integer Number of clusters to be created; default is 3.
max_iterations integer Number of algorithm iterations after which to stop
model training; default is 5.

282 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 201. netezzakmeansnode properties (continued).

netezzakmeansnode Properties Values

Property Description

rand_seed integer

Random seed to be used for replicating analysis results;
default is 12345.

Netezza Bayes Net

The following properties are available for nodes of type netezzabayesnode.

Table 202. netezzabayesnode properties.

netezzabayesnode Properties Values Property Description

base_index integer Numeric identifier assigned to first input field for
internal management; default is 777.

sample_size integer Size of sample to take if number of attributes is very

large; default is 10,000.

display_additional_information flag

If true, displays additional progress information in a
message dialog box.

type_of_prediction best
neighbors
nn-neighbors

Type of prediction algorithm to use: best (most
correlated neighbor), neighbors (weighted prediction of
neighbors), or nn-neighbors (non null-neighbors).

Netezza Naive Bayes

The following properties are available for nodes of type netezzanaivebayesnode.

Table 203. netezzanaivebayesnode properties.

netezzanaivebayesnode Properties Values Property Description

compute_probabilities flag If true, produces a confidence level (probability) field as
well as the prediction field.

use_m_estimation flag If true, uses m-estimation technique for avoiding zero
probabilities during estimation.

Netezza KNN

The following properties are available for nodes of type netezzaknnnode.

Table 204. netezzaknnnode properties.

netezzaknnnode Properties Values Property Description
weights structured Structured property used to assign weights to individual
classes. Example:
set :netezzaknnnode.weights = [{drugA 0.3}{drugB
0.6}]
distance_measure Euclidean Method to be used for measuring the distance between
Manhattan data points.
Canberra
Maximum
num_nearest_neighbors integer Number of nearest neighbors for a particular case;
default is 3.
standardize_measurements flag If true, standardizes measurements for continuous input
fields before calculating distance values.

Chapter 18. Database Modeling Node Properties 283

Table 204. netezzaknnnode properties (continued).

netezzaknnnode Properties Values Property Description

use_coresets flag If true, uses core set sampling to speed up calculation
for large data sets.

Netezza Divisive Clustering

The following properties are available for nodes of type netezzadivclusternode.

Table 205. netezzadivclusternode properties.

netezzadivclusternode Properties | Values Property Description
distance_measure Euclidean Method to be used for measuring the distance between
Manhattan data points.
Canberra
Maximum
max_iterations integer Maximum number of algorithm iterations to perform
before model training stops; default is 5.
max_tree_depth integer Maximum number of levels to which data set can be
subdivided; default is 3.
rand_seed integer Random seed, used to replicate analyses; default is
12345.
min_instances_split integer Minimum number of records that can be split, default is
5.
Tevel integer Hierarchy level to which records are to be scored;

default is -1.

Netezza PCA

The following properties are available for nodes of type netezzapcanode.

Table 206. netezzapcanode properties.

netezzapcanode Properties Values Property Description

center_data flag If true (default), performs data centering (also known as
"mean subtraction") before the analysis.

perform data_scaling flag If true, performs data scaling before the analysis. Doing
so can make the analysis less arbitrary when different
variables are measured in different units.

force_eigensolve flag If true, uses less accurate but faster method of finding
principal components.

pc_number integer Number of principal components to which data set is to
be reduced; default is 1.

Netezza Regression Tree

The following properties are available for nodes of type netezzaregtreenode.

284 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 207. netezzaregtreenode properties.

netezzaregtreenode Properties Values Property Description
max_tree_depth integer Maximum number of levels to which
the tree can grow below the root
node; default is 10.
split_evaluation_measure Variance Class impurity measure, used to
evaluate the best place to split the
tree; default (and currently only
option) is Variance.
min_improvement_splits number Minimum amount to reduce impurity
before new split is created in tree.
min_instances_split integer Minimum number of records that can
be split.
pruning_measure mse Method to be used for pruning.
r2
pearson
spearman

prune_tree_options

allTrainingData
partitionTrainingData
useOtherTable

Default is to use al1TrainingData to
estimate model accuracy. Use
partitionTrainingData to specify a
percentage of training data to use, or
useOtherTable to use a training data
set from a specified database table.

perc_training data

number

If prune_tree_options is set to
PercTrainingData, specifies
percentage of data to use for training.

prune_seed

integer

Random seed to be used for
replicating analysis results when
prune_tree_options is set to
PercTrainingData; default is 1.

pruning_table

string

Table name of a separate pruning
dataset for estimating model
accuracy.

compute_probabilities

flag

If true, specifies that variances of
assigned classes should be included
in output.

Netezza Linear Regression

The following properties are available for nodes of type netezzalineregressionnode.

Table 208. netezzalineregressionnode properties.

netezzalineregressionnode
Properties

Values Property Description

use_svd

flag If true, uses Singular Value Decomposition matrix
instead of original matrix, for increased speed and
numerical accuracy.

include_intercept

flag If true (default), increases overall accuracy of solution.

calculate_model_diagnostics

flag If true, calculates diagnostics on the model.

Netezza Time Series

Chapter 18. Database Modeling Node Properties 285

The following properties are available for nodes of type netezzatimeseriesnode.

Table 209. netezzatimeseriesnode properties.

netezzatimeseriesnode Properties Values Property Description

time_points field Input field containing the date or
time values for the time series.

time_series_ids field Input field containing time series IDs;
used if input contains more than one
time series.

model_table field Name of database table where
Netezza time series model will be
stored.

description_table field Name of input table that contains
time series names and descriptions.

seasonal_adjustment_table field Name of output table where

seasonally adjusted values computed
by exponential smoothing or seasonal
trend decomposition algorithms will
be stored.

algorithm_name

SpectralAnalysis or spectral
ExponentialSmoothing or esmoothing
ARIMA

SeasonalTrendDecomposition or std

Algorithm to be used for time series
modeling.

cubicspline
exponentialspline

trend_name N Trend type for exponential
A smoothing;:
DA N - none
M A - additive
DM DA - damped additive
M - multiplicative
DM - damped multiplicative
seasonality_type N Seasonality type for exponential
A smoothing;:
M N - none
A - additive
M - multiplicative
interpolation_method Tinear Interpolation method to be used.

timerange_setting

SD
SP

Setting for time range to use:

SD - system-determined (uses full
range of time series data)

SP - user-specified via earliest_time
and latest_time

286

IBM SPSS Modeler 16 Scripting and Automation Guide

Table 209. netezzatimeseriesnode properties (continued).

netezzatimeseriesnode Properties Values Property Description
earliest_time integer Start and end values, if
latest time dgte timerange_setting is SP.
- time
timestamp Format should follow time_points
value.

For example, if the time_points field
contains a date, this should also be a
date.

Example:

set NZ_DT1l.timerange_setting =
ISPI

set NZ DTl.earliest time =
'1921-01-01"

set NZ_DT1.latest_time =
'2121-01-01"

arima_setting SD Setting for the ARIMA algorithm

SP (used only if algorithm_name is set to
ARIMA):

SD - system-determined

SP - user-specified

If arima_setting = SP, use the
following parameters to set the
seasonal and non-seasonal values.
Example (non-seasonal only):

set NZ_DT1l.algorithm_name =
"arima’

set NZ_DTl.arima_setting = 'SP’
set NZ_DT1l.p_symbol = 'lesseq'
set NZ_ DTl.p = '4'

set NZ_DT1.d_symbol = 'lesseq'
set NZ DT1.d = '2'

set NZ_DT1l.q_symbol = 'lesseq'
set NZ_DTl.q = '4'

p_symbol less ARIMA - operator for parameters p,
eq d, q, sp, sd, and sq:
d bol
—Symbo lesseq less - less than

q_symbol eq - equals

sp_symbo] lesseq - less than or equal to

sd_symbol

sq_symbo]l

p integer ARIMA - non-seasonal degrees of
autocorrelation.

q integer ARIMA - non-seasonal derivation
value.

d integer ARIMA - non-seasonal number of
moving average orders in the model.

sp integer ARIMA - seasonal degrees of
autocorrelation.

sq integer ARIMA - seasonal derivation value.

Chapter 18. Database Modeling Node Properties 287

Table 209. netezzatimeseriesnode properties (continued).

netezzatimeseriesnode Properties Values Property Description
sd integer ARIMA - seasonal number of moving
average orders in the model.
advanced_setting SD Determines how advanced settings
SP are to be handled:
SD - system-determined
SP - user-specified via period ,
units_period and forecast_setting.
Example:
set NZ_DTl.advanced_setting = 'SP’
set NZ_DTl.period = 5
set NZ_DTl.units_period = 'd'
period integer Length of seasonal cycle, specified in
conjunction with units_period. Not
applicable for spectral analysis.
units_period ms Units in which period is expressed:
s ms - milliseconds
min s - seconds
h min - minutes
d h - hours
wk d - days
q wk - weeks
y g - quarters
y - years

For example, for a weekly time series
use 1 for period and wk for
units_period.

forecast_setting

forecasthorizon

Specifies how forecasts are to be

forecasttimes made.
forecast_horizon integer If forecast_setting =
date forecasthorizon, specifies end point
time value for forecasting.
timestamp
Format should follow time_points
value.
For example, if the time_points field
contains a date, this should also be a
date.
forecast_times integer If forecast_setting =
date forecasttimes, specifies values to use
time for making forecasts.
timestamp
Format should follow time_points
value.
For example, if the time_points field
contains a date, this should also be a
date.
include_history flag Indicates if historical values are to be

included in output.

288 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 209. netezzatimeseriesnode properties (continued).

netezzatimeseriesnode Properties

Values

Property Description

include_interpolated values

flag

Indicates if interpolated values are to
be included in output. Not applicable
if include_history is false.

Netezza Generalized Linear

The following properties are available for nodes of type netezzagimnode.

Table 210. netezzagimnode properties.

netezzaglmnode Properties Values Property Description
dist_family bernoulli Distribution type; default is
gaussian bernoulli.
poisson

negativebinomial
wald
gamma

dist_params

number

Distribution parameter value to use.
Only applicable if distribution is
Negativebinomial.

trials

integer

Only applicable if distribution is
Binomial. When target response is a
number of events occurring in a set
of trials, target field contains
number of events, and trials field
contains number of trials.

model_table

field

Name of database table where
Netezza generalized linear model
will be stored.

maxit

integer

Maximum number of iterations the
algorithm should perform; default is
20.

eps

number

Maximum error value (in scientific
notation) at which algorithm should
stop finding best fit model. Default is
-3, meaning 1E-3, or 0.001.

tol

number

Value (in scientific notation) below
which errors are treated as having a
value of zero. Default is -7, meaning
that error values below 1E-7 (or
0.0000001) are counted as
insignificant.

Chapter 18. Database Modeling Node Properties 289

Table 210. netezzaglmnode properties (continued).

netezzaglmnode Properties

Values

Property Description

Tink_func

identity
inverse
invnegative
invsquare
sqrt

power
oddspower
Tog

clog

loglog
cloglog
logit
probit
gaussit
cauchit
canbinom
cangeom
cannegbinom

Link function to use; default is Togit.

link_params

number

Link function parameter value to use.
Only applicable if Tink_function is
power or oddspower.

interaction

[{[colnames1],[levels1]},
{[colnames2],[levels2]},
...{[colnamesN],[levelsN1},]

Specifies interactions between fields.
colnames is a list of input fields, and
level is always 0 for each field.

Example:

[{ ["K","BP","SGX","K"] s [0’0’0’0] } s
{["Age","Na"] s [0’0] }]

intercept

flag

If true, includes the intercept in the
model.

Netezza Model Nugget Properties

The following properties are common to Netezza database model nuggets.

Table 211. Common Netezza model nugget properties

Common Netezza Model Nugget Properties Values Property Description

connection string The connection string for the Netezza database
where the model is stored.

table_name string Name of database table where model is stored.

Other model nugget properties are the same as those for the corresponding modeling node.

The script names of the model nuggets are as follows.

Table 212. Script names of Netezza model nuggets

Model Nugget

Script Name

Decision Tree

applynetezzadectreenode

K-Means

applynetezzakmeansnode

Bayes Net

applynetezzabayesnode

Naive Bayes

applynetezzanaivebayesnode

290 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 212. Script names of Netezza model nuggets (continued)

Model Nugget

Script Name

KNN

applynetezzaknnnode

Divisive Clustering

applynetezzadivclusternode

PCA

applynetezzapcanode

Regression Tree

applynetezzaregtreenode

Linear Regression

applynetezzalineregressionnode

Time Series

applynetezzatimeseriesnode

Generalized Linear

applynetezzaglmnode

Chapter 18. Database Modeling Node Properties

291

292 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 19. Output Node Properties

Output node properties differ slightly from those of other node types. Rather than referring to a
particular node option, output node properties store a reference to the output object. This is useful in

taking a value from a table and then setting it as a stream parameter.

This section describes the scripting properties available for output nodes.

analysisnode Properties

Analysis nodes perform various comparisons between predicted values and actual values for

F7 The Analysis node evaluates predictive models' ability to generate accurate predictions.

one or more model nuggets. They can also compare predictive models to each other.

Example

create analysisnode

"Analysis" tab

set :analysisnode.coincidence = True
set :analysisnode.performance = True
set :analysisnode.confidence = True
set :analysisnode.threshold = 75

set :analysisnode.improve_accuracy

3

set :analysisnode.inc_user_measure = True

"Define User Measure..."

set :analysisnode.user_if = "@TARGET = GPREDICTED"

set :analysisnode.user_then = "101"
set :analysisnode.user_else = "1"

set :analysisnode.user_compute = [Mean Sum]

set :analysisnode.by fields = ['Drug']
"Output" tab

set :analysisnode.output_format
set :analysisnode.full_filename

HTML

Table 213. analysisnode properties.

"C:/output/analysis_out.html"

analysisnode properties Data type Property description
output_mode Screen Used to specify target location for
File output generated from the output

node.

use_output_name flag Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

output_format Text (.txt) Used to specify the type of output.

HTML (hitml)
Qutput (.cou)

by_fields [field field field]

full_filename string If disk, data, or HTML output, the
name of the output file.

coincidence flag

performance flag

evaluation_binary flag

confidence flag

threshold number

293

Table 213. analysisnode properties (continued).

analysisnode properties Data type Property description
improve_accuracy number

inc_user_measure flag

user_if expr

user_then expr

user_else expr

user_compute

[Mean Sum Min Max
SDev]

dataauditnode Properties

The Data Audit node provides a comprehensive first look at the data, including summary
statistics, histograms and distribution for each field, as well as information on outliers,
missing values, and extremes. Results are displayed in an easy-to-read matrix that can be

sorted and used to generate full-size graphs and data preparation nodes.

Example

create dataauditnode

connect :variablefilenode to :dataauditnode

set :dataauditnode.custom_fields = True

set :dataauditnode.fields = [Age Na K]

set :dataauditnode.display_graphs = True

set :dataauditnode.basic_stats = True

set :dataauditnode.advanced_stats = True

set :dataauditnode.median_stats = False

set :dataauditnode.calculate = [Count Breakdown]
set :dataauditnode.outlier_detection_method = std
set :dataauditnode.outlier_detection_std_outlier
set :dataauditnode.outlier_detection_std_extreme
set :dataauditnode.output_mode = Screen

(SO
oo

Table 214. dataauditnode properties.

dataauditnode properties Data type Property description
custom_fields flag
fields [field] ... fieldN]
overlay field
display_graphs flag Used to turn the display of graphs
in the output matrix on or off.
basic_stats flag
advanced_stats flag
median_stats flag
calculate Count Used to calculate missing values.
Breakdown Select either, both, or neither
calculation method.
outlier_detection_method std Used to specify the detection
iqr method for outliers and extreme
values.
outlier_detection_std outlier number If outlier_detection_method is std,

specifies the number to use to
define outliers.

294 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 214. dataauditnode properties (continued).

dataauditnode properties Data type Property description

outlier_detection_std extreme number If outlier_detection_method is std,
specifies the number to use to
define extreme values.

outlier_detection_iqr_outlier number If outlier_detection_method is igr,
specifies the number to use to
define outliers.

outlier_detection_iqr_extreme number If outlier_detection_method is igr,
specifies the number to use to
define extreme values.

use_output_name flag Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

output_mode Screen Used to specify target location for

File output generated from the output

node.

output_format

Formatted (.tab)
Delimited (.csv)
HTML (hitml)
Output (.cou)

Used to specify the type of output.

paginate _output

flag

When the output_format is HTML,
causes the output to be separated
into pages.

lines_per_page number When used with paginate_output,
specifies the lines per page of
output.

full_filename string

matrixnode Properties

Example

create matrixnode

"Settings" tab

set :matrixnode.fields = Numerics

set :matrixnode.row = 'K'

set :matrixnode.column = 'Na'

set :matrixnode.cell_contents = Function
set :matrixnode.function_field = 'Age'
set :matrixnode.function = Sum

"Appearance" tab

set :matrixnode.sort_mode = Ascending
set :matrixnode.highlight_top =1

set :matrixnode.highlight_bottom = 5

set :matrixnode.display = [Counts Expected Residuals]

set :matrixnode.include_totals = True
"Output" tab

set :matrixnode.full_filename
set :matrixnode.output_format = HTML
set :matrixnode.paginate_output = true
set :matrixnode.lines_per_page = 50

"C:/output/matrix_output.html"

The Matrix node creates a table that shows relationships between fields. It is most commonly
used to show the relationship between two symbolic fields, but it can also show relationships
between flag fields or numeric fields.

Chapter 19. Output Node Properties 295

Table 215. matrixnode properties.

Descending

matrixnode properties Data type Property description
fields Selected
Flags
Numerics
row field
column field
include_missing_values flag Specifies whether user-missing
(blank) and system missing (null)
values are included in the row and
column output.
cell_contents CrossTabs
Function
function_field string
function Sum
Mean
Min
Max
SDev
sort_mode Unsorted
Ascending

highlight_top number If non-zero, then true.
highlight_bottom number If non-zero, then true.
display [Counts
Expected
Residuals
RowPct
ColumnPct
TotalPct]
include_totals flag
use_output_name flag Specifies whether a custom output
name is used.
output_name string If use_output_name is true, specifies
the name to use.
output_mode Screen Used to specify target location for
File output generated from the output

node.

output_format

Formatted (.tab)
Delimited (.csv)
HTML (.html)
Output (.cou)

Used to specify the type of output.
Both the Formatted and Delimited
formats can take the modifier
transposed, which transposes the
rows and columns in the table; for
example:
NODE.output_format=transposed
Delimited

paginate_output flag When the output_format is HTML,
causes the output to be separated
into pages.

lines_per_page number When used with paginate_output,

specifies the lines per page of
output.

296 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 215. matrixnode properties (continued).

matrixnode properties

Data type

Property description

full_filename

string

meansnode Properties

related fields to test whether a significant difference exists. For example, you could compare

The Means node compares the means between independent groups or between pairs of
‘St,‘, F

mean revenues before and after running a promotion or compare revenues from customers

who did not receive the promotion with those who did.

Example

create meansnode
set :meansnode.means_mode = BetweenFields

set :meansnode.paired_fields = [{'OPEN_BAL' 'CURR_BAL'}]

set :meansnode.label_correlations = true
set :meansnode.output_view = Advanced
set :meansnode.output_mode = File

set :meansnode.output_format = HTML

set :meansnode.full_filename = "C:/output/means_output.html"

Table 216. meansnode properties.

meansnode properties

Data type

Property description

means_mode

BetweenGroups
BetweenFields

Specifies the type of means statistic
to be executed on the data.

test _fields

[fieldl ... fieldn]

Specifies the test field when
means_mode is set to BetweenGroups.

grouping_field

field

Specifies the grouping field.

paired_fields

[{fieldl field2}
{field3 field4}
..]

Specifies the field pairs to use
when means_mode is set to
BetweenFields.

label_correlations flag Specifies whether correlation labels
are shown in output. This setting
applies only when means_mode is
set to BetweenFields.

correlation_mode ProbabiTity Specifies whether to label

Absolute correlations by probability or

absolute value.

weak_Tabel string

medium_Tabel string

strong_label string

weak_below_probability number When correlation_mode is set to
Probability, specifies the cutoff
value for weak correlations. This
must be a value between 0 and
1—for example, 0.90.

strong_above_probability number Cutoff value for strong correlations.

weak_below_absolute number When correlation_mode is set to

Absolute, specifies the cutoff value
for weak correlations. This must be
a value between 0 and 1—for
example, 0.90.

Chapter 19. Output Node Properties 297

Table 216. meansnode properties (continued).

meansnode properties Data type Property description

strong_above_absolute number Cutoff value for strong correlations.

unimportant_label string

marginal_label string

important_Tlabel string

unimportant_below number Cutoff value for low field
importance. This must be a value
between 0 and 1—for example,
0.90.

important_above number

use_output_name flag Specifies whether a custom output
name is used.

output_name string Name to use.

output_mode Screen Specifies the target location for

File output generated from the output

node.

output_format

Formatted (.tab)
Delimited (.csv)
HTML (html)
Qutput (.cou)

Specifies the type of output.

full_filename string
output_view Simple Specifies whether the simple or
Advanced advanced view is displayed in the
output.
reportnode Properties
The Report node creates formatted reports containing fixed text as well as data and other
expressions derived from the data. You specify the format of the report using text templates
to define the fixed text and data output constructions. You can provide custom text

formatting by using HTML tags in the template and by setting options on the Output tab.
You can include data values and other conditional output by using CLEM expressions in the

template.

Example

create reportnode

set :reportnode.output_format = HTML

set :reportnode.full_filename = "C:/report_output.html"
set :reportnode.lines_per _page = 50

set :reportnode.title = "Report node created by a script"
set :reportnode.highlights = False

Table 217. reportnode properties.

reportnode properties Data type Property description
output_mode Screen Used to specify target location for
File output generated from the output

node.

output_format

HTML (html)
Text (.txt)
Output (.cou)

Used to specify the type of output.

298 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 217. reportnode properties (continued).

reportnode properties Data type Property description

use_output_name flag Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

text string

full_filename string

highlights flag

title string

lines_per_page number

Routputnode Properties
The R Output node enables you to analyze data and the
results of model scoring using your own custom R script.
The output of the analysis can be text or graphical. The
output is added to the Output tab of the manager pane;
alternatively, the output can be redirected to a file.

Example

Example needed*

Table 218. Routputnode properties.

Routputnode properties Data type Property description
syntax string
convert_flags StringsAndDoubles

LogicalValues
convert_datetime flag
convert_datetime_class POSIXct

POSIXTt
convert_missing flag
output_name Auto

Custom
custom_name string
output_to Screen

File
output_type Graph

Text
full_filename string
graph_file_type HTML

cou
text_file_type HTML

TXT

cou

Chapter 19. Output Node Properties 299

setglobalsnode Properties

Example

The Set Globals node scans the data and computes summary values that can be used in
CLEM expressions. For example, you can use this node to compute statistics for a field called
age and then use the overall mean of age in CLEM expressions by inserting the function
@GLOBAL_MEAN (age).

create setglobalsnode
connect :typenode to :setglobalsnode

.globals.Na = [Max Sum Mean]
.globals.K = [Max Sum Mean]

set
set
set
set
set

:setglobalsnode
:setglobalsnode
:setglobalsnode
:setglobalsnode
:setglobalsnode

.globals.Age
.clear_first

[Max Sum Mean SDev]
False

.show_preview = True

Table 219. setglobalsnode properties.

setglobalsnode properties Data type Property description
globals [Sum Mean Min Max Structured property where fields to
SDev] be set must be referenced with the
following syntax:
set

:setglobalsnode.globals.Age =
[Sum Mean Min Max SDev]

clear_first flag

show_preview flag

simevalnode Properties

&

The Simulation Evaluation node evaluates a specified predicted target field, and presents
distribution and correlation information about the target field.

Table 220. simevalnode properties.

simevalnode properties Data type Property description
target field
iteration field
presorted_by iteration boolean
max_iterations number
tornado_fields [field1...fieldN]
plot_pdf boolean
plot_cdf boolean
show_ref_mean boolean
show_ref_median boolean
show_ref_sigma boolean
num_ref_sigma number
show_ref_pct boolean
ref_pct_bottom number

300

IBM SPSS Modeler 16 Scripting and Automation Guide

Table 220. simevalnode properties (continued).

simevalnode properties Data type Property description
ref _pct_top number
show_ref_custom boolean

ref _custom values

[numberl...numberN]

category_values Category
Probabilities
Both
category_groups Categories
Iterations
create_pct_table boolean
pct_table Quartiles
Intervals
Custom
pct_intervals_num number

pct_custom values

[numberl...numberN]

simfitnode Properties

Table 221. simfitnode properties.

The Simulation Fitting node examines the statistical distribution of the data in each field and
generates (or updates) a Simulation Generate node, with the best fitting distribution assigned
to each field. The Simulation Generate node can then be used to generate simulated data.

simfitnode properties Data type Property description
build Node
XMLExport
Both
use_source_node_name boolean
source_node_name string The custom name of the source
node that is either being generated
or updated.
use_cases ATl
LimitFirstN
use_case_limit integer

fit_criterion

AndersonDarling
KoTmogorovSmirnov

num_bins integer
parameter_xml_filename string
generate_parameter_import boolean

statisticsnode Properties

ey

The Statistics node provides basic summary information about numeric fields. It calculates
summary statistics for individual fields and correlations between fields.

Chapter 19. Output Node Properties 301

Example

create statisticsnode
"Settings" tab

set :statisticsnode.examine = ['Age' 'BP' 'Drug']
set :statisticsnode.statistics = [Mean Sum SDev]
set :statisticsnode.correlate = ['BP' 'Drug']

"Correlation Labels..." section

set
set
set
set
set
set :statisticsnode.strong_label
"Output" tab

set :statisticsnode.full_filename
set :statisticsnode.output_format

:statisticsnode.weak_label =

:statisticsnode.label_correlations = True
:statisticsnode.weak_below_absolute =

0.25

"lower quartile"
:statisticsnode.strong_above_absolute =
:statisticsnode.medium_label = "middle quartiles"

0.75
"upper quartile"

"c:/output/statistics_output.html"
HTML

Table 222. statisticsnode properties.

HTML (.html)
Qutput (.cou)

statisticsnode properties Data type Property description

use_output_name flag Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

output_mode Screen Used to specify target location for

File output generated from the output

node.

output_format Text (.txt) Used to specify the type of output.

full_filename string

examine [field field field]
correlate [field field field]
statistics [Count Mean Sum Min

Max Range Variance
SDev SErr Median Mode]

correlation_mode Probability Specifies whether to label
Absolute correlations by probability or

absolute value.

label_correlations flag

weak_Tabel string

medium_Tabel string

strong_label string

weak_below_probability number When correlation_mode is set to
Probability, specifies the cutoff
value for weak correlations. This
must be a value between 0 and
1—for example, 0.90.

strong_above_probability number Cutoff value for strong correlations.

weak_below_absolute number When correlation_mode is set to
Absolute, specifies the cutoff value
for weak correlations. This must be
a value between 0 and 1—for
example, 0.90.

strong_above_absolute number Cutoff value for strong correlations.

302

IBM SPSS Modeler 16 Scripting and Automation Guide

statisticsoutputnode Properties

The Statistics Output node allows you to call an IBM SPSS Statistics procedure to analyze
@ your IBM SPSS Modeler data. A wide variety of IBM SPSS Statistics analytical procedures is
i===] available. This node requires a licensed copy of IBM SPSS Statistics.

The properties for this node are described under |“statisticsoutputnode Properties” on page 318)

tablenode Properties

The Table node displays the data in table format, which can also be written to a file. This is

FEEE useful anytime that you need to inspect your data values or export them in an easily readable

form

Example

create tablenode

set :tablenode.highlight_expr = "Age > 30"

set :tablenode.output_format = HTML
set :tablenode.transpose_data = true

set :tablenode.full_filename = "C:/output/table_output.htm"

set :tablenode.paginate_output = true

set :tablenode.lines_per_page = 50

Table 223. tablenode properties.

tablenode properties Data type Property description

full_filename string If disk, data, or HTML output, the name
of the output file.

use_output_name flag Specifies whether a custom output name
is used.

output_name string If use_output_name is true, specifies the
name to use.

output_mode Screen Used to specify target location for output

File generated from the output node.

output_format

Formatted (.tab)
Delimited (.csv)
HTML (.html)
Qutput (.cou)

Used to specify the type of output.

transpose_data

flag

Transposes the data before export so that
rows represent fields and columns
represent records.

paginate_output flag When the output_format is HTML, causes
the output to be separated into pages.

lines_per_page number When used with paginate_output,
specifies the lines per page of output.

highlight_expr string

output string A read-only property that holds a

reference to the last table built by the
node.

Chapter 19. Output Node Properties 303

Table 223. tablenode properties (continued).

tablenode properties

Data type

Property description

value_Tabels

[{Value LabelString}

{Value LabelString} ...

Used to specify labels for value pairs.

For example,

set :typenode.value_Tlabels.
'Drug'=[{drugA labell} {drugB
label2}]

display_places integer Sets the number of decimal places for the
field when displayed (applies only to
fields with REAL storage). A value of -1
will use the stream default.
Usage format:
NODE.display_places.FIELDNAME
export_places integer Sets the number of decimal places for the
field when exported (applies only to
fields with REAL storage). A value of -1
will use the stream default.
Usage format:
NODE.export_places.FIELDNAME
decimal_separator DEFAULT Sets the decimal separator for the field
PERIOD (applies only to fields with REAL
COMMA storage).
Usage format:
NODE.decimal_separator.
FIELDNAME
date_format "DDMMYY " Sets the date format for the field (applies
"MMDDYY" only to fields with DATE or TIMESTAMP
"YYMMDD" storage).
"YYYYMMDD"
"YYYYDDD" Usage format:
DAY NODE.date_format . FIELDNAME
MONTH -
"DD-MM-YY"
"DD-MM=YYYY" For example,
"MM-DD-YY" set
"MM-DD-YYYY" :tablenode.date_format.
"DD-MON-YY" '"LaunchDate' = "DDMMYY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YYYY"
“DD.MON.YY"
“DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

304 1BM SPSS Modeler 16 Scripting and Automation Guide

Table 223. tablenode properties (continued).

tablenode properties Data type Property description
time_format "HHMMSS" Sets the time format for the field (applies
"HHMM" only to fields with TIME or TIMESTAMP
"MMSS" storage).
"HH:MM:SS"
"HH:MM" Usage format:
"MM:SS" NODE.time_format.FIELDNAME
"(H)H: (M)M: (S)S"
"(H)H: (M)m" For example,
"(M)M: (S)S" set
"HH.MM.SS" :tablenode.time format.
"HH.MM" set 'BOF_enter' = "HHMMSS"
"MM.SS"
"(H)H. (M)M. (S)S"
"(H)H. (M)M"
"(M)M. (S)S"
column_width integer Sets the column width for the field. A
value of -1 will set column width to
Auto.
Usage format:
NODE.column_width.FIELDNAME
justify AUTO Sets the column justification for the field.
CENTER
LEFT Usage format:
RIGHT NODE. justify.FIELDNAME

transformnode Properties

A The Transform node allows you to select and visually preview the results of transformations
before applying them to selected fields.
Example

create transformnodeset :transformnode.fields = [AGE INCOME]set :transformnode.formula = Select

set :transformnode.formula_log_n = true
set :transformnode.formula_log_n_offset = 1

Table 224. transformnode properties.

transformnode properties Data type Property description

fields [fieldl... fieldn] The fields to be used in the
transformation.

formula ATl Indicates whether all or selected

Select transformations should be

calculated.

formula_inverse flag Indicates if the inverse
transformation should be used.

formula_inverse_offset number Indicates a data offset to be used
for the formula. Set as 0 by default,
unless specified by user.

formula_Tog n flag Indicates if the log, transformation
should be used.

Chapter 19. Output Node Properties 305

Table 224. transformnode properties (continued).

transformnode properties Data type Property description

formula_log n offset number

formula_log_10 flag Indicates if the log,, transformation
should be used.

formula_log 10 _offset number

formula_exponential flag Indicates if the exponential
transformation (e*) should be used.

formula_square_root flag Indicates if the square root
transformation should be used.

use_output_name flag Specifies whether a custom output
name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_mode Screen Used to specify target location for

File output generated from the output

node.

output_format

HTML (hitml)
Qutput (.cou)

Used to specify the type of output.

paginate_output

flag

When the output_format is HTML,
causes the output to be separated
into pages.

lines_per_page number When used with paginate_output,
specifies the lines per page of
output.

full_filename string Indicates the file name to be used

for the file output.

306 1BM SPSS Modeler 16 Scripting and Automation Guide

Chapter 20. Export Node Properties

Common Export Node Properties

The following properties are common to all export nodes.

Table 225. Common export node properties

Property Values Property description

publish_path string Enter the rootname name to be used for the
published image and parameter files.

publish_metadata flag Specifies if a metadata file is produced that

describes the inputs and outputs of the
image and their data models.

publish_use_parameters flag Specifies if stream parameters are included
in the *.par file.
publish_parameters string list Specify the parameters to be included.
execute_mode export_data Specifies whether the node executes
publish without publishing the stream, or if the

stream is automatically published when the
node is executed.

asexport Properties

The Analytic Server export enables you to run a stream on Hadoop Distributed File System (HDES).

Example

Ccreate asexport
set :asexport.data_source = "Drug4n"
set :asexport.export mode = overwrite

Table 226. asexport properties.

asexport properties Data type Property description

data_source string The name of the data source.

export_mode string Specifies whether to append exported
data to the existing data source, or to
overurite the existing data source.

cognosexportnode Properties

- The IBM Cognos BI Export node exports data in a format that can be read by Cognos BI
@ | databases.
[)

Note: For this node, you must define a Cognos connection and an ODBC connection.

Cognos connection

307

The properties for the Cognos connection are as follows.

Table 227. cognosexportnode properties

cognosexportnode properties Data type Property description
cognos_connection {"field"”,"field", .. A list property containing the connection details
,"field”} for the Cognos server. The format is:

{"Cognos_server_URL", login_mode, "namespace",

non

"username", "password"}

where:

Cognos_server_URL is the URL of the Cognos
server to which you are exporting

login_mode indicates whether anonymous login
is used, and is either true or false; if set to
true, the following fields should be set to ""
namespace specifies the security authentication
provider used to log on to the server

username and password are those used to log on
to the Cognos server

cognos_package_name string The path and name of the Cognos package to
which you are exporting data, for example:
/Public Folders/MyPackage

cognos_datasource string

cognos_export_mode Publish
ExportFile

cognos_filename string

ODBC connection

The properties for the ODBC connection are identical to those listed for databaseexportnode in the next
section, with the exception that the datasource property is not valid.

databaseexportnode Properties

The Database export node writes data to an ODBC-compliant relational data source. In order
to write to an ODBC data source, the data source must exist and you must have write
J permission for it.

Example

/*

Use this sample with fraud.str from demo folder

Assumes a datasource named "MyDatasource" has been configured
*

/

create databaseexport

connect claimvalue:applyneuralnetwork to :databaseexport
Export tab

set :databaseexport.username = "user"

set :databaseexport.datasource = "MyDatasource"

set :databaseexport.password = "password"

set :databaseexport.table_name = "predictions"

set :databaseexport.write_mode = Create

set :databaseexport.generate_import = true

set :databaseexport.drop_existing_table = true

set :databaseexport.delete_existing_rows = true

set :databaseexport.default_string_size = 32

Schema dialog
set :databaseexport.type.region = "VARCHAR(10)"

308 1BM SPSS Modeler 16 Scripting and Automation Guide

set :databaseexport.export_db _primarykey.id = true
set :databaseexportnode.use_custom_create_table_command = true
set :databaseexportnode.custom_create_table_command = "My SQL Code"

Indexes dialog
set :databaseexport.use_custom_create_index_command = true
set :databaseexport.custom create_index_command = \
"CREATE BITMAP INDEX <index-name> ON <table-name> <(index-columns)>"
set :databaseexport.indexes.MYINDEX.fields = [id region]

Table 228. databaseexportnode properties.

databaseexportnode properties Data type Property description
datasource string
username string
password string
epassword string This slot is read-only during
execution. To generate an encoded
password, use the Password Tool
available from the Tools menu. See
the topic [’Generating an Encoded|
[Password” on page 47| for more
information.
table_name string
write_mode Create
Append
Merge
map string Maps a stream field name to a
database column name (valid only if
write_mode is Merge).
Example:
set
:databaseexportnode.map.streamBP =
'databaseBP'
Multiple mapping is supported,
according to the field position, for
example:
set :databaseexportnode.map=
[{streamfieldl fieldl}
{streamfield2 field2}
{streamfield3 field3}]
For a merge, all fields must be
mapped in order to be exported.
Field names that do not exist in the
database are added as new columns.
key fields [field field ... field] Specifies the stream field that is used
for key; map property shows what
this corresponds to in the database.
join Database Example:
Add set : databaseexportnode.join =
Database
drop_existing_table flag
delete_existing_rows flag
default_string_size integer

Chapter 20. Export Node Properties 309

Table 228. databaseexportnode properties (continued).

databaseexportnode properties Data type Property description
type Structured property used to set the
schema type.
Usage format:
set :databaseexportnode.Otype.BP =
'"VARCHAR(10) '
generate_import flag
use_custom_create_table_command flag Use the custom_create_table slot to
modify the standard CREATE TABLE
SQL command.
custom_create_table_command string Specifies a string command to use in
place of the standard CREATE TABLE
SQL command.
use_batch flag The following properties are
advanced options for database
bulk-loading. A true value for
Use_batch turns off row-by-row
commits to the database.
batch_size number Specifies the number of records to
send to the database before
committing to memory.
bulk_Toading off Specifies the type of bulk-loading.
0DBC Additional options for 0DBC and
External External are listed below.
not_logged flag
odbc_binding Row Specify row-wise or column-wise
Column binding for bulk-loading via ODBC.
loader_delimit_mode Tab For bulk-loading via an external
Space program, specify type of delimiter.
Other Select Other in conjunction with the
loader_other_delimiter
property to specify delimiters, such
as the comma (,).
loader_other _delimiter string
specify_data_file flag A true flag activates the data_file
property below, where you can
specify the filename and path to
write to when bulk-loading to the
database.
data_file string
specify_loader_program flag A true flag activates the
loader_program property below,
where you can specify the name and
location of an external loader script
or program.
Toader_program string
gen_logfile flag A true flag activates the Togfile_name
below, where you can specify the
name of a file on the server to
generate an error log.
logfile_name string

310 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 228. databaseexportnode properties (continued).

databaseexportnode properties Data type Property description

check_table_size flag A true flag allows table checking to
ensure that the increase in database
table size corresponds to the number
of rows exported from IBM SPSS
Modeler.

loader_options string Specify additional arguments, such as
-comment and -specialdir, to the
loader program.

export_db_primarykey flag Specifies whether a given field is a
primary key.

use_custom_create_index_command flag If true, enables custom SQL for all
indexes.

custom_create_index_command string Specifies the SQL command used to
create indexes when custom SQL is
enabled. (This value can be
overridden for specific indexes as
indicated below.)

indexes.INDEXNAME. fields Creates the specified index if
necessary and lists field names to be
included in that index.

indexes . INDEXNAME . use_custom_ flag Used to enable or disable custom

create_Nindex_command SQL for a specific index.

indexes.INDEXNAME.custom create Specifies the custom SQL used for the

command - - specified index.

indexes.INDEXNAME. remove flag If true, removes the specified index
from the set of indexes.

table_space string Specifies the table space that will be
created.

use_partition flag Specifies that the distribute hash field
will be used.

partition_field string Specifies the contents of the

distribute hash field.

Note: For some databases, you can specify that database tables are created for export with compression
(for example, the equivalent of CREATE TABLE MYTABLE (...) COMPRESS YES; in SQL). The properties
use_compression and compression_mode are provided to support this feature, as follows.

Table 229. databaseexportnode properties using compression features.

databaseexportnode properties

Data type

Property description

USE_COITIpY‘ESS'i on

Boolean

If set to true, creates tables for export with
compression.

Chapter 20. Export Node Properties 311

Table 229. databaseexportnode properties using compression features (continued).

Direct_Load Operations
A11_Operations

Basic

OLTP

Query High

Query_Low

Archive_High
Archive_Low

databaseexportnode properties Data type Property description

compression_mode Row Sets the level of compression for SQL Server
Page databases.
Default Sets the level of compression for Oracle

databases. Note that the values OLTP,
Query_High, Query_Low, Archive_High, and
Archive_Low require a minimum of Oracle
11gR2.

Example - SQL Server

var DBSource

set DBSource = get node TestCompressionSQL
set ~DBSource.use_compression = true

set ~DBSource.compression_mode = Page

execute DBSource

Example - Oracle 11gR1

var DBSource

set DBSource = get node TestCompressionOraclellgRl

set ~DBSource.use_compression = true

set ~DBSource.compression_mode = Direct_Load_Operations

execute DBSource

Example - Oracle 11gR2

var DBSource

set DBSource = get node TestCompressionOraclellgR2

set ~DBSource.use_compression = true
set ~DBSource.compression_mode = Basic

execute DBSource

datacollectionexportnode Properties

Example

create datacollectionexportnode

set :datacollectionexportnode.metadata_file = "c:\museums.mdd"
set :datacollectionexportnode.merge_metadata = Overwrite

set :datacollectionexportnode.casedata_file = "c:\museumdata.sav"

set :datacollectionexportnode.generate_import = true
set :datacollectionexportnode.enable_system variables

Table 230. datacollectionexportnode properties

The IBM SPSS Data Collection export node outputs data in the format used by IBM SPSS
Data Collection market research software. The IBM SPSS Data Collection Data Library must
be installed to use this node.

datacollectionexportnode properties Data type Property description
metadata_file string The name of the metadata file to
export.
merge_metadata Overwrite
MergeCurrent

312

IBM SPSS Modeler 16 Scripting and Automation Guide

Table 230. datacollectionexportnode properties (continued)

datacollectionexportnode properties Data type Property description
enable_system_variables flag Specifies whether the exported
.mdd file should include IBM SPSS
Data Collection system variables.
casedata_file string The name of the .sav file to which
case data is exported.
generate_import flag

excelexportnode Properties

The Excel export node outputs data in Microsoft Excel format (.xIs). Optionally, you can
EXCELT choose to launch Excel automatically and open the exported file when the node is executed.

Example

create excelexportnode

set :excelexportnode.full_filename = "C:/output/myexport.x1s"

set :excelexportnode.excel_file_type = Excel2007

set :excelexportnode.inc_field_names = True

set :excelexportnode.inc_labels_as_cell_notes = False
set :excelexportnode.launch_application = True

set :excelexportnode.generate_import = True

Table 231. excelexportnode properties

excelexportnode properties Data type Property description
full_filename string
excel file type Excel2003
Excel2007
export_mode Create
Append
inc_field_names flag Specifies whether field names
should be included in the first row
of the worksheet.
start_cell string Specifies starting cell for export.
worksheet_name string Name of the worksheet to be
written.
launch_application flag Specifies whether Excel should be
invoked on the resulting file. Note
that the path for launching Excel
must be specified in the Helper
Applications dialog box (Tools
menu, Helper Applications).
generate_import flag Specifies whether an Excel Import

node should be generated that will
read the exported data file.

Chapter 20. Export Node Properties 313

outputfilenode Properties

The Flat File export node outputs data to a delimited text file. It is useful for exporting data
that can be read by other analysis or spreadsheet software.

Example

create outputfile

set :outputfile.full_filename = "c:/output/flatfile_output.txt"
set :outputfile.write_mode = Append

set :outputfile.inc_field_names = False

set :outputfile.use_newline_after_records = False
set :outputfile.delimit_mode = Tab

set :outputfile.other_delimiter = ","

set :outputfile.quote_mode = Double

set :outputfile.other_quote = "x"

set :outputfile.decimal_symbol = Period

set :outputfile.generate_import = True

Table 232. outputfilenode properties

outputfilenode properties Data type Property description
full_filename string Name of output file.
write_mode Overwrite
Append
inc_field_names flag
use_newline_after_records flag
delimit_mode Comma
Tab
Space
Other
other_delimiter char
quote_mode None
Single
DoubTe
Other
other_quote flag
generate_import flag
encoding StreamDefault
SystemDefault
"UTF-8"

sasexportnode Properties

The SAS export node outputs data in SAS format, to be read into SAS or a SAS-compatible
@ software package. Three SAS file formats are available: SAS for Windows /OS2, SAS for
UNIX, or SAS Version 7/8.

Example

314 1BM SPSS Modeler 16 Scripting and Automation Guide

create sasexportnode

set :sasexportnode.full_filename = "c:/output/SAS_output.sas7bdat"

set :sasexportnode.format = SAS8

set :sasexportnode.export_names = NamesAndLabels

set :sasexportnode.generate_import = True

Table 233. sasexportnode properties

sasexportnode properties Data type Property description

format Windows Variant property label fields.
UNIX
SAS7
SAS8

full_filename string

export_names

NamesAndLabels

Used to map field names from IBM

NamesAsLabels SPSS Modeler upon export to IBM
SPSS Statistics or SAS variable
names.
generate_import flag

statisticsexportnode Properties

The Statistics Export node outputs data in IBM SPSS Statistics .sav or .zsav format. The .sav or
.zsav files can be read by IBM SPSS Statistics Base and other products. This is also the format
used for cache files in IBM SPSS Modeler.

The properties for this node are described under |“statisticsexportnode Properties” on page 319

xmlexportnode Properties

I-’—~| The XML export node outputs data to a file in XML format. You can optionally create an
ZXML> XML source node to read the exported data back into the stream.

Example

create xmlexportnode

set :xmlexportnode.full_filename = "c:\export\data.xml"

set :xmlexportnode.map = [{"/catalog/book/genre" genre}{"/catalog/book/title" title}]

Table 234. xmlexportnode properties

xmlexportnode properties Data type Property description

full_filename string (required) Full path and file name of XML
export file.

use_xml_schema flag Specifies whether to use an XML schema (XSD
or DTD file) to control the structure of the
exported data.

full_schema_filename string Full path and file name of XSD or DTD file to
use. Required if use_xml_schema is set to true.

generate_import flag Generates an XML source node that will read

the exported data file back into the stream.

Chapter 20. Export Node Properties 315

Table 234. xmlexportnode properties (continued)

xmlexportnode properties Data type Property description

records string XPath expression denoting the record
boundary.

map string Maps field name to XML structure.

Example:
set :xmlexportnode.map = [{"/top/nodel"
fieldl}{"/top/node2" field2}]

This maps the stream field fieldl to the XML
element /top/nodel, and so on.

316 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 21. IBM SPSS Statistics Node Properties

statisticsimportnode Properties

P The Statistics File node reads data from the .sav or .zsav file format used by IBM SPSS
(:] Statistics, as well as cache files saved in IBM SPSS Modeler, which also use the same format.
I___._J'
Example

create statisticsimportnode

set :statisticsimportnode.full_filename = "C:/data/drugln.sav"
set :statisticsimportnode.import_names = true

set :statisticsimportnode.import_data = true

Table 235. statisticsimportnode properties.

statisticsimportnode properties Data type Property description

full_filename string The complete filename, including path.

password string The password. The password parameter must
be set before the file_encrypted parameter.

file_encrypted flag Whether or not the file is password protected.

NamesAndLabels
LabelsAsNames

import_names

Method for handling variable names and
labels.

import_data DataAndLabels Method for handling values and labels.
LabelsAsData
use_field_format_for_storage Boolean Specifies whether to use IBM SPSS Statistics

field format information when importing.

statisticstransformnode Properties

The Statistics Transform node runs a selection of IBM SPSS Statistics syntax commands
Y
(@ :‘l. against data sources in IBM SPSS Modeler. This node requires a licensed copy of IBM SPSS

x"' >

Statistics.

Example

create statisticstransformnode

set :statisticstransformnode.syntax = "COMPUTE NewVar = Na + K."
set :statisticstransformnode.new_name.NewVar = "Mixed Drugs"

set :statisticstransformnode.check_before_saving = true

Table 236. statisticstransformnode properties

statisticstransformnode properties Data type Property description
syntax string
check_before_saving flag Validates the entered syntax before

saving the entries. Displays an
error message if the syntax is
invalid.

317

Table 236. statisticstransformnode properties (continued)

statisticstransformnode properties Data type Property description

default_include flag See the topic [“filternodd

[Properties” on page 146| for more
information.

include flag See the topic [filternodd

[Properties” on page 146| for more
information.

new_name string See the topic [filternodd
[Properties” on page 146 for more

information.

statisticsmodelnode Properties

The Statistics Model node enables you to analyze and work with your data by running IBM
@ SPSS Statistics procedures that produce PMML. This node requires a licensed copy of IBM
| SPSS Statistics.

Example

create statisticsmodelnode
set :statisticsmodelnode.syntax = "COMPUTE NewVar = Na + K."
set :statisticsmodelnode.new_name.NewVar = "Mixed Drugs"

statisticsmodelnode properties Data type Property description

syntax string

default_include flag See the topic [“filternode]
[Properties” on page 146| for more
information.

include flag See the topic [“filternode]
[Properties” on page 146| for more
information.

new_name string See the topic [“filternodé]
[Properties” on page 146| for more
information.

statisticsoutputnode Properties

The Statistics Output node allows you to call an IBM SPSS Statistics procedure to analyze

@ your IBM SPSS Modeler data. A wide variety of IBM SPSS Statistics analytical procedures is
=== available. This node requires a licensed copy of IBM SPSS Statistics.
Example

create statisticsoutputnode

set :statisticsoutputnode.syntax = "SORT CASES BY Age(A) Sex(A) BP(A) Cholesterol(A)"
set :statisticsoutputnode.use_output_name = False

set :statisticsoutputnode.output_mode = File

set :statisticsoutputnode.full_filename = "Cases by Age, Sex and Medical History"

set :statisticsoutputnode.file_type = HTML

318 IBM SPSS Modeler 16 Scripting and Automation Guide

Table 237. statisticsoutputnode properties

statisticsoutputnode properties Data type Property description
mode Dialog Selects "IBM SPSS Statistics dialog”
Syntax option or Syntax Editor
syntax string
use_output_name flag
output_name string
output_mode Screen
File
full_filename string
file_type HTML
SPV
SPW

statisticsexportnode Properties

The Statistics Export node outputs data in IBM SPSS Statistics .sav or .zsav format. The .sav or

used for cache files in IBM SPSS Modeler.

.zsav files can be read by IBM SPSS Statistics Base and other products. This is also the format

Example

create statisticsexportnode

set :statisticsexportnode.full_filename = "c:/output/SPSS_Statistics_out.sav"

set :statisticsexportnode.field_names = Names
set :statisticsexportnode.launch_application = True
set :statisticsexportnode.generate_import = True

Table 238. statisticsexportnode properties.

statisticsexportnode properties Data type Property description

full_filename string

file_type Standard Save file in sav or zsav format.
Compressed

encrypt_file flag Whether or not the file is password

protected.
password string The password.
Taunch_application flag

export_names

NamesAndLabels
NamesAsLabels

Used to map field names from IBM
SPSS Modeler upon export to IBM
SPSS Statistics or SAS variable
names.

generate_import

flag

Chapter 21. IBM SPSS Statistics Node Properties 319

320 IBM SPSS Modeler 16 Scripting and Automation Guide

Chapter 22. SuperNode Properties

Properties that are specific to SuperNodes are described in the following tables. Note that common node
properties also apply to SuperNodes.

Table 239. Source supernode properties

Property name Property type/List of values Property description

parameters any Use this property to create and access
parameters specified in a
SuperNode's parameter table. See
details below.

Table 240. Process supernode properties

Property name Property type/List of values Property description

parameters any Use this property to create and access
parameters specified in a
SuperNode's parameter table. See
details below.

Table 241. Terminal supernode properties

Property name Property type/List of values Property description

parameters any Use this property to create and access
parameters specified in a
SuperNode's parameter table. See
details below.

execute_method Script
Normal
script string

SuperNode Parameters

You can use scripts to create or set SuperNode parameters using the general format:

set mySuperNode.parameters.minvalue = 30

Alternatively, you can specify the type of SuperNode in addition to (or instead of) the name:
set :process_supernode.parameters.minvalue = 30

set mySuperNode:process_supernode.parameters.minvalue = 30

You can also set the parameter value using a CLEM expression:

set :process_supernode.parameters.minvalue = "<expression>"
Setting Properties for Encapsulated Nodes

You can set properties for specific nodes encapsulated within a SuperNode by creating a SuperNode
parameter to match the literal name of the node and property you want to set. For example, suppose you
have a source SuperNode with an encapsulated Variable File node to read in the data. You can pass the
name of the file to read (specified using the full_filename property) as follows:

set :source_supernode.parameters.':variablefilenode.full_filename' = "c:/mydata.txt"

321

This creates a SuperNode parameter named :variablefilenode.full_filename with a value of
c:/mydata.txt. Assuming a node of the specified type exists in the SuperNode, its value for the named
property will be set accordingly. Note that this is done in the stream script—that is, the script for the
stream that includes the SuperNode—rather than the SuperNode script. Be sure to use single quotation
marks to specify the parameter name.

This approach can be used with any encapsulated node, as long as a valid node and property reference
results. For example, to set the rand_pct property for an encapsulated Sample node, any of the following
could be used:

set mySuperNode.parameters.':samplenode.rand_pct' = 50

or

set mySuperNode.parameters.'Sample.rand_pct'= 50

or

set mySuperNode.parameters.'Sample:samplenode.rand_pct'= 50

The first reference above assumes that there is only one Sample node in the stream; the second, that there
is only one node named "Sample" regardless of type. The third reference is the most explicit in that it
specifies both the name and type for the node.

Limitations of SuperNode scripts. SuperNodes cannot manipulate other streams and cannot change the

current stream. Therefore, commands that apply to streams, such as open stream, get stream,
execute_script, and so on, cannot be used in SuperNode scripts.

322 IBM SPSS Modeler 16 Scripting and Automation Guide

Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

323

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
ATTN: Licensing
200 W. Madison St.
Chicago, IL; 60606
US.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ICopyright and trademark information|” at www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

324 IBM SPSS Modeler 16 Scripting and Automation Guide

http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other product and service names might be trademarks of IBM or other companies.

Notices 325

326 IBM SPSS Modeler 16 Scripting and Automation Guide

Index

Special characters

@BLANK function 67, 88
@DIFF function 82
@FIELD function 88
@FIELDS_BETWEEN function 88
@FIELDS_MATCHING function 88
@INDEX function 82
@LAST_NON_BLANK function 82, 88
@MAX function 82
@MEAN function 82
@MIN function 82
@MULTI_RESPONSE_SET function 88
@NULL function 67, 88
@OFFSET function 82
@PARTITION_FIELD function 88
@PREDICTED function 88
@SDEV function 82
@SINCE function 82
@SUM function 82
@TARGET function 88
@TESTING_PARTITION function 88
@THIS function 82
@TODAY function 79
@TRAINING_PARTITION function 88
@VALIDATION_PARTITION

function 88

A

abs function 71
Aggregate node

properties 123
aggregatenode properties 123
allbutfirst function 74
allbutlast function 74
alphabefore function 74
Analysis node

properties 293
analysisnode properties 293
Analytic Server source node

properties 103
and operator 70
annotations

accessing in scripts 52
anomaly detection models

node scripting properties
anomalydetectionnode properties
Anonymize node

properties 137

177, 255
177

anonymizenode properties 137
Append node

properties 123
appendnode properties 123

application examples 3
applyanomalydetectionnode
properties 255

applyapriorinode properties 255

applyautoclassifiernode properties 256
applyautoclusternode properties 256
applyautonumericnode properties 256

applybayesnetnode properties 256
applyc50node properties 257
applycarmanode properties 257
applycartnode properties 257
applychaidnode properties 258
applycoxregnode properties 258
applydb2imclusternode properties 280
applydb2imlognode properties 280
applydb2imnbnode properties 280

applydb2imregnode properties 280
applydb2imtreenode properties 280
applydecisionlistnode properties 258

applydiscriminantnode properties 259
applyfactornode properties 259
applyfeatureselectionnode
properties 259
applygeneralizedlinearnode
properties 259
applyglmmnode properties 260
applykmeansnode properties 260
applyknnnode properties 260
applykohonennode properties 260
applylinearnode properties 261
applylogregnode properties 261
applymslogisticnode properties
applymsneuralnetworknode
properties 267
applymsregressionnode properties 267
applymssequenceclusternode
properties 267
applymstimeseriesnode properties
applymstreenode properties 267
applynetezzabayesnode properties 290
applynetezzadectreenode properties 290
applynetezzadivclusternode
properties 290
applynetezzakmeansnode properties
applynetezzaknnnode properties 290
applynetezzalineregressionnode
properties 290
applynetezzanaivebayesnode
properties 290
applynetezzapcanode properties 290
applynetezzaregtreenode properties
applyneuralnetnode properties 261
applyneuralnetworknode properties
applyoraabnnode properties 274
applyoradecisiontreenode properties
applyorakmeansnode properties 274
applyoranbnode properties 274
applyoranmfnode properties 274
applyoraoclusternode properties 274
applyorasvmnode properties 274
applyquestnode properties 262
applyr properties 262
applyregressionnode properties 263
applyselflearningnode properties 263
applysequencenode properties 263
applysvmnode properties 263
applytimeseriesnode properties 263
applytwostepnode properties 264

267

267

290

290

262

274

apriori models

node scripting properties
apriorinode properties 179
arccos function 72
arccosh function 72
arcsin function 72
arcsinh function 72
arctan function 72
arctan2 function 72
arctanh function 72
arguments

command file 59

IBM SPSS Collaboration and

Deployment Services Repository
connection 58

server connection 57

system 56
asexport properties 307
asimport properties 103
Auto Classifier models

node scripting properties 256
Auto Classifier node

node scripting properties 180
Auto Cluster models

node scripting properties 256

Auto Cluster node

node scripting properties 182
auto numeric models

node scripting properties
Auto Numeric models

node scripting properties
autoclassifiernode properties
autoclusternode properties
autodataprepnode properties
automatic data preparation

properties 137
autonumericnode properties

183

256
180
182
137

183

B

backslash character in CLEM
expressions 62
Balance node
properties 124
balancenode properties
bayesian network models
node scripting properties
Bayesian Network models
node scripting properties 256
bayesnet properties 185
Binning node
properties 140
binningnode properties 140
bitwise functions 73
blank handling
CLEM functions 88
buildr properties 186

124

185

179, 255

327

C

C&R tree models

node scripting properties
C5.0 models

node scripting properties
c50node properties 187
caret syntax

variable references
CARMA models

node scripting properties
carmanode properties 188
cartnode properties 189
cdf_chisq function 72
cdf_f function 72
cdf_normal function 72
cdf_t function 72
CHAID models

node scripting properties 191, 258
chaidnode properties 191
characters 61, 62
chi-square distribution

probability functions 72
clear generated palette command 35, 48
clear stream command 37
CLEM

datatypes 61, 62

expressions 61

language 61

scripting 5, 13
CLEM expressions

scripting 19, 25
CLEM functions

bitwise 73

blanks and nulls 88

comparison 68

conversion 68

datetime 79

global 87

information 67

list of available 66

logical 70

numeric 71

probability 72

random 74

sequence 82

special functions 88

string 74

trigonometric 72
close FILE command 41
close STREAM command 37
cognosimport node properties 104
Collection node

properties 164
collectionnode properties 164
column_count property 41
command line

list of arguments 56, 57, 58

multiple arguments 59

parameters 57

running IBM SPSS Modeler 55

scripting 48
comments

scripting 20
comparison functions 68
concatenating strings 68
connect NODE command 29

189, 257

187, 257

14, 17

188, 257

328

continuations

scripting 20
continuous fields

values property 49
conventions 67
conversion functions 68
cos function 72
cosh function 72
count_equal function 68
count_greater_than function 68
count_less_than function 68
count_non_nulls function 68
count_not_equal function 68
count_nulls function 68
count_substring function 74
Cox regression models

node scripting properties
coxregnode properties 193
create NODE command 28
create stream command 37
current object

referencing in scripts 15

193, 258

D

Data Audit node
properties 294
dataauditnode properties 294
Database export node
properties 308
database modeling 265
Database node
properties 105
databaseexportnode properties 308
databasenode properties 105
datacollectionexportnode properties 312
datacollectionimportnode properties 107
date formats 63, 64
date functions 63, 64
@TODAY function 79
date_before 68, 79
date_days_difference 79
date_in_days 79
date_in_months 79
date_in_weeks 79
date_in_years 79
date_months_difference 79
date_weeks_difference 79
date_years_difference 79
date_before function 68
dates
converting 82
manipulating 82
datetime functions
datetime_date 79
datetime_day 79
datetime_day_name 79
datetime_day_short_name 79
datetime_hour 79
datetime_in_seconds 79
datetime_minute 79
datetime_month 79
datetime_month_name 79
datetime_month_short_name 79
datetime_now datetime_second 79
datetime_time 79
datetime_timestamp 79

IBM SPSS Modeler 16 Scripting and Automation Guide

datetime functions (continued)

datetime_weekday 79

datetime_year 79
datetime_date function 68
db2imassocnode properties 275
db2imclusternode properties 275
db2imlognode properties 275
db2imnbnode properties 275
db2imregnode properties 275
db2imsequencenode properties 275
db2imtimeseriesnode properties 275
db2imtreenode properties 275
decision list models

node scripting properties
decisionlist properties 194
delete model command 35
delete NODE command 29
delete output command 43
Derive node

properties 143
derive_stb node properties 125
derivenode properties 143
DIFF function 82
Directed Web node

properties 174
directedwebnode properties 174
disable NODE command 29
disconnect NODE command 29
discriminant models

node scripting properties 196, 259
discriminantnode properties 196
Distinct node

properties 126
distinctnode properties 126
distribution functions 72
Distribution node

properties 165
distributionnode properties 165
div function 71
documentation 3
duplicate NODE command 29

194, 258

E

enable NODE command 29
encoded passwords

adding to scripts 47
endstring function 74
Ensemble node

properties 144
ensemblenode properties 144
Enterprise View node

properties 110
equals operator 68
error checking

scripting 47
Evaluation node

properties 165
evaluationnode properties 165
evimportnode properties 110
examples

Applications Guide 3

overview 4
Excel export node

properties 313
Excel source node

properties 109

excelexportnode properties 313
excelimportnode properties 109
execute NODE command 30
execute_all command 23
execute_project command 40
execute_script command 23
executing scripts 9
execution order

changing with scripts 45
exit command 19, 23
exponential function 71
export model command 35
export NODE command 30
export nodes

node scripting properties 307
export output command 43
exporting

models 35

nodes 30

PMML 30, 35

SQL 30, 35
expressions 61

F

f distribution

probability functions 72
factornode properties 197
feature selection models

node scripting properties 199, 259
Feature Selection models

applying 8

scripting 8
featureselectionnode properties 8, 199
field names

changing case 45
Field Reorder node

properties 149
fields 61, 62

turning off in scripting 163
file objects

scripting commands 41
Filler node

properties 145
fillernode properties 145
Filter node

properties 146
filternode properties 146
first_index function 68
first_non_null function 68
first non_null_index function 68
Fixed File node

properties 110
fixedfilenode properties 110
flag fields

values property 49
flags

combining multiple flags 59

command line arguments 55
Flat File node

properties 314
flatfilenode properties 314
flush NODE command 30
for command 16, 19, 45, 49, 52
for...endfor command 23
fracof function 71
functions 63, 64, 67, 82

functions (continued)
@FIELD 88
@GLOBAL_MAX 87
@GLOBAL_MEAN 87
@GLOBAL_MIN 87
@GLOBAL_SDEV 87
@GLOBAL_SUM 87
@PARTITION 88
@PREDICTED 88
@TARGET 88

G

generalized linear models

node scripting properties 200, 259
generated keyword 48
generated models

scripting names 32, 34
genlinnode properties 200
get command 15
get node command 31
get output command 43
get stream command 37
GLMM models

node scripting properties 204, 260
glmmnode properties 204
global functions 87
graph nodes

scripting properties 163
Graphboard node

properties 167
graphboardnode properties 167
greater than operator 68

H

hasendstring function 74
hasmidstring function 74
hasstartstring function 74
hassubstring function 74
Histogram node

properties 169
histogramnode properties 169
History node

properties 147
historynode properties 147
HTML format

exporting models 35

exporting nodes 30
HTML output

creating using scripts 49, 52

IBM Cognos BI source node

properties 104
IBM DB2 models

node scripting properties 275
IBM ISW Association models

node scripting properties 275, 280
IBM ISW Clustering models

node scripting properties 275, 280
IBM ISW Decision Tree models

node scripting properties 275, 280
IBM ISW Logistic Regression models

node scripting properties 275, 280

IBM ISW Naive Bayes models
node scripting properties 275, 280
IBM ISW Regression models
node scripting properties 275, 280
IBM ISW Sequence models
node scripting properties 275, 280
IBM ISW Time Series models
node scripting properties 275
IBM SPSS Collaboration and Deployment
Services Repository
command line arguments 58
scripting 45
IBM SPSS Data Collection export node
properties 312
IBM SPSS Data Collection source node
properties 107
IBM SPSS Modeler 1
documentation 3
running from command line 55
IBM SPSS Modeler Server 1
IBM SPSS Statistics export node
properties 319
IBM SPSS Statistics models
node scripting properties 318
IBM SPSS Statistics Output node
properties 318
IBM SPSS Statistics source node
properties 317
IBM SPSS Statistics Transform node
properties 317
if command 19, 49
if, then, else functions 70
if...then...else command 25
import model command 35

importing
models 35
PMML 35

INDEX function 82
information functions 67
insert model command 36
integer_bitcount function 73
integer_leastbit function 73
integer_length function 73
integers 61

interrupting scripts 9
intof function 71
introduction 61

is_date function 67
is_datetime function 67
is_integer function 67
is_number function 67
is_real function 67
is_string function 67
is_time function 67
is_timestamp function 67
isalphacode function 74
isendstring function 74
islowercode function 74
ismidstring function 74
isnumbercode function 74
isstartstring function 74
issubstring function 74
issubstring_count function 74
issubstring_lim function 74
isuppercode function 74

Index 329

K

K-Means models

node scripting properties 207, 260
kmeansnode properties 207
KNN models

node scripting properties 260
knnnode properties 208
kohonen models

node scripting properties 209
Kohonen models

node scripting properties 260
kohonennode properties 209

L

last_index function 68
LAST_NON_BLANK function 82
last_non_null function 68
last_non_null_index function 68
length function 74
less than operator 68
linear models
node scripting properties 210, 261
linear properties 210
linear regression models
node scripting properties 220, 236,
246, 262, 263
list parameters
modifying in scripts 19
lists 61, 62
literal strings
embedding in scripts 20
literals
scripting 13, 20
load model command 36
load node command 31
load output command 43
load project command 40
load state command 40
load stream command 37
local variables 17, 25
locchar function 74
locchar_back function 74
log function 71
log10 function 71
logical functions 70
logistic regression models
node scripting properties 212, 227,
261
logregnode properties 212, 227
loops
using in scripts 45, 49, 52
lowertoupper function 45, 74

M

matches function 74
Matrix node

properties 295
matrixnode properties 295
max function 68
MAX function 82
max_index function 68
max_n function 68
MEAN function 82
mean_n function 71

Means node

properties 297
meansnode properties 297
member function 68
Merge node

properties 128
mergenode properties 128
Microsoft models

node scripting properties 265, 267
min function 68
MIN function 82
min_index function 68
min_n function 68
mod function 71
model nuggets

node scripting properties 255

scripting names 32, 34
model objects

scripting commands 32

scripting names 32, 34
modeling nodes

node scripting properties 177
models

exporting 35

importing 35

scripting 35

scripting names 32, 34
MS Decision Tree

node scripting properties 265, 267
MS Linear Regression

node scripting properties 265, 267
MS Logistic Regression

node scripting properties 265, 267
MS Neural Network

node scripting properties 265, 267
MS Sequence Clustering

node scripting properties 267
MS Time Series

node scripting properties 267
msassocnode properties 265
msbayesnode properties 265
msclusternode properties 265
mslogisticnode properties 265
msneuralnetworknode properties 265
msregressionnode properties 265
mssequenceclusternode properties 265
mstimeseriesnode properties 265
mstreenode properties 265
Multiplot node

properties 170
multiplotnode properties 170
multiset command 91

N

nearest neighbor models
node scripting properties 208
negate function 71
Netezza Bayes Net models
node scripting properties 281, 290
Netezza Decision Tree models
node scripting properties 281, 290
Netezza Divisive Clustering models
node scripting properties 281, 290
Netezza Generalized Linear models
node scripting properties 281

330 1BM SPSS Modeler 16 Scripting and Automation Guide

Netezza K-Means models

node scripting properties 281, 290
Netezza KNN models

node scripting properties 281, 290
Netezza Linear Regression models

node scripting properties 281, 290
Netezza models

node scripting properties 281
Netezza Naive Bayes models

node scripting properties 281
Netezza Naive Bayesmodels

node scripting properties 290
Netezza PCA models

node scripting properties 281, 290
Netezza Regression Tree models

node scripting properties 281, 290
Netezza Time Series models

node scripting properties 281
netezzabayesnode properties 281
netezzadectreenode properties 281
netezzadivclusternode properties 281
netezzaglmnode properties 281
netezzakmeansnode properties 281
netezzaknnnode properties 281
netezzalineregressionnode

properties 281

netezzanaivebayesnode properties 281
netezzapcanode properties 281
netezzaregtreenode properties 281
netezzatimeseriesnode properties 281
neural network models

node scripting properties 216, 231,

261

neural networks

node scripting properties 233, 262
neuralnetnode properties 216, 231
neuralnetworknode properties 233
node IDs

referencing in scripts 14
node objects

scripting 14

scripting commands 28
node properties

accessing in scripts 52
node scripting properties 265

export nodes 307

model nuggets 255

modeling nodes 177
nodes

looping through in scripts 45
nominal fields

values property 49
normal distribution

probability functions 72
not equal operator 68
not operator 70
nuggets

node scripting properties 255
numbers 61
numeric functions 71
numericpredictornode properties 183

O

OFFSET function 82
oneof function 74
open FILE command 41

open stream command 16, 38
operator precedence 64
operators

joining strings 52, 68

scripting 19
or operator 70
oraabnnode properties 269
oraainode properties 269
oraapriorinode properties 269
Oracle Adaptive Bayes models

node scripting properties 269, 274
Oracle Al models

node scripting properties 269
Oracle Apriori models

node scripting properties 269, 274
Oracle Decision Tree models

node scripting properties 269, 274
Oracle Generalized Linear models

node scripting properties 269
Oracle KMeans models

node scripting properties 269, 274
Oracle MDL models

node scripting properties 269, 274
Oracle models

node scripting properties 269
Oracle Naive Bayes models

node scripting properties 269, 274
Oracle NMF models

node scripting properties 269, 274
Oracle O-Cluster

node scripting properties 269, 274
Oracle Support Vector Machines models

node scripting properties 269, 274
oradecisiontreenode properties 269
oraglmnode properties 269
orakmeansnode properties 269
oramdlnode properties 269
oranbnode properties 269
oranmfnode properties 269
oraoclusternode properties 269
orasvmnode properties 269
output nodes

scripting properties 293
output objects

scripting commands 42

scripting names 42
outputfilenode properties 314

P

parameters 9, 25, 91, 92, 95

scripting 13, 19

SuperNodes 321
Partition node

properties 147
partitionnode properties 147
passwords

adding to scripts 47

encoded 57
PCA models

node scripting properties 197, 259
PCA /Factor models

node scripting properties 197, 259
pi function 72
Plot node

properties 171
plotnode properties 171

PMML format
exporting models 35
exporting nodes 30
importing models 35
position NODE command 31
power (exponential) function 71
precedence 64
print command 42
printin command 42
probability functions 72
projects
properties 99
properties 25
common scripting 93
database modeling nodes 265
filter nodes 91
projects 99
scripting 91, 92, 93, 177, 255, 307
stream 95
SuperNodes 321

Q

QUEST models
node scripting properties 218, 235,
244, 262
questnode properties 218, 235, 244

R

R Build node

node scripting properties 186
R Output node

properties 299
R Process node

properties 130
random function 74
random0O function 74
reals 61
Reclassify node

properties 148
reclassifynode properties 148
regressionnode properties 220, 236, 246
rem function 71
rename NODE command 17, 31
Reorder node

properties 149
reordernode properties 149
replace function 74
replicate function 74
Report node 49, 52

properties 298
reportnode properties 298
reports

creating using scripts 49, 52
Restructure node

properties 150
restructurenode properties 150
result objects

scripting command 40
retrieve command 45
retrieve model command 36
retrieve node command 31
retrieve output command 44
retrieve project command 40
retrieve stream command 38

RFM Aggregate node

properties 129
RFM Analysis node

properties 151
rfmaggregatenode properties 129
rfmanalysisnode properties 151
round function 71
Routputnode properties 299
row_count property 41
Rprocessnode properties 130

S

Sample node
properties 131
samplenode properties 131
SAS export node
properties 314
SAS source node
properties 113
sasexportnode properties 314
sasimportnode properties 113
save command 15
save model command 36
save node command 32
save output command 44
save project command 40
save STREAM command 38
scripting
abbreviations used 92
CLEM expressions 19
comments 20
common properties 93
compatibility with earlier versions 48
continuations 20
current object 15
error checking 47
examples 49, 52
executing 9
executing scripts 19
Feature Selection models 8
from the command line 48
graph nodes 163
in SuperNodes 9
interrupting 9
model replacement 15
modeling node execution 15
nodes 14
operators 19
output nodes 293
overview 5,13
standalone scripts 5
stream execution order 45
streams 5
SuperNode scripts 5
syntax 13
user interface 5,7, 9
scripts
importing from text files 5
saving 5
SDEV function 82
sdev_n function 71
security
encoded passwords 47, 57
Select node
properties 133
selectnode properties 133

Index 331

Self-Learning Response models
node scripting properties 222, 239,
249, 263
sequence functions 82
sequence models
node scripting properties 221, 238,
248, 263
sequencenode properties 221, 238, 248
server
command line arguments 57
session parameters 25
set command 14, 16, 17, 25
Set Globals node
properties 300
Set to Flag node
properties 152
setglobalsnode properties 300
settoflagnode properties 152
sign function 71
Sim Eval node
properties 300
Sim Fit node
properties 301
Sim Gen node
properties 113
simevalnode properties 300
simfitnode properties 301
simgennode properties 113
Simulation Evaluation node
properties 300
Simulation Fit node
properties 301
Simulation Generate node
properties 113
sin function 72
SINCE function 82
sinh function 72
skipchar function 74
skipchar_back function 74
slot parameters 9, 25, 91, 93
SLRM models
node scripting properties 222, 239,
249, 263
slrmnode properties 222, 239, 249
Sort node
properties 133
sortnode properties 133
soundex function 79
soundex_difference function 79
source nodes
properties 101
Space-Time-Boxes node
properties 125
spaces
removing from strings 74
special functions 88
special variables 15
SQL format
exporting nodes 30, 35
sqrt function 71
standalone scripts 5, 7
startstring function 74
state objects
scripting commands 40
Statistics node
properties 301
statisticsexportnode properties 319

statisticsimportnode properties 8, 317
statisticsmodelnode properties 318
statisticsnode properties 301
statisticsoutputnode properties 318
statisticstransformnode properties 317
store command 45
store model command 36
store node command 32
store output command 44
store project command 40
store stream command 39
stream execution order
changing with scripts 45
stream names
accessing in scripts 52
stream objects
opening 16
referencing 16
scripting commands 36
stream parameters 25
stream properties 52
stream.nodes property 45
Streaming Time Series node
properties 133
streamingts properties 133
streams
multiset command 91
properties 95
scripting 5
string functions 45, 74
strings 61, 62
changing case 45
scripting 14
stripchar function 74
strmember function 74
structured properties 91
subscrs function 74
substring function 74
substring_between function 74
SUM function 82
sum_n function 71
supernode 91
SuperNode
parameters 25
SuperNodes
parameters 321
properties 321
scripting 321
scripts 5,9
setting properties within 321
support vector machine models
node scripting properties 263
Support vector machine models
node scripting properties 223, 240,
250
SVM models
node scripting properties 223, 240,
250
svmnode properties 223, 240, 250
system
command line arguments 56

T

t distribution
probability functions 72

332 IBM SPSS Modeler 16 Scripting and Automation Guide

Table node
properties 303
tablenode properties 303
tan function 72
tanh function 72
testbit function 73
text format
exporting models 35
exporting nodes 30
text strings
embedding in scripts 20
THIS function 82
time and date functions 63, 64
time fields
converting 82
time formats 63, 64
time functions 63, 64
time_before 68, 79
time_hours_difference 79
time_in_hours 79
time_in_mins 79
time_in_secs 79
time_mins_difference 79
time_secs_difference 79
Time Intervals node
properties 153
Time Plot node
properties 173
time series models
node scripting properties 224, 241,
251, 263
time_before function 68
timeintervalsnode properties 153
timeplotnode properties 173
timeseriesnode properties 224, 241, 251
to_date function 68, 79
to_dateline function 79
to_datetime function 68
to_integer function 68
to_number function 68
to_real function 68
to_string function 68
to_time function 68, 79
to_timestamp function 68, 79
Transform node
properties 305
transformnode properties 305
Transpose node
properties 157
transposenode properties 157
tree-growing directives
embedding in scripts 20
trigonometric functions 72
trim function 74
trim_start function 74
trimend function 74
TwoStep models
node scripting properties 226, 243,
253, 264
twostepnode properties 226, 243, 253
Type node
properties 158
typenode properties 8, 49, 158

U

undef function 88
unicode_char function 74
unicode_value function 74
uppertolower function 74
User Input node

properties 116
userinputnode properties 116

\'}

value command 41

value_at function 68

values property 49

var command 14, 17, 27

Variable File node
properties 117

variablefilenode properties 117

variables 17, 25
node references 14
scripting 13, 15

W

Web node

properties 174
webnode properties 174
white space

removing from strings 74
with stream command 16, 39
write FILE command 42

writeln FILE command 42, 49, 52

X

XML export node

properties 315
XML source node

properties 120
xmlexportnode properties 315
xmlimportnode properties 120

Index

333

334 IBM SPSS Modeler 16 Scripting and Automation Guide

Printed in USA

	Contents
	Chapter 1. About IBM SPSS Modeler
	IBM SPSS Modeler Products
	IBM SPSS Modeler
	IBM SPSS Modeler Server
	IBM SPSS Modeler Administration Console
	IBM SPSS Modeler Batch
	IBM SPSS Modeler Solution Publisher
	IBM SPSS Modeler Server Adapters for IBM SPSS Collaboration and Deployment Services

	IBM SPSS Modeler Editions
	IBM SPSS Modeler Documentation
	SPSS Modeler Professional Documentation
	SPSS Modeler Premium Documentation

	Application Examples
	Demos Folder

	Chapter 2. Scripting and the Scripting Language
	Scripting Overview
	Types of Scripts
	Stream Scripts
	Stream Script Example: Training a Neural Net

	Standalone Scripts
	Standalone Script Example: Saving and Loading a Model
	Standalone Script Example: Generating a Feature Selection Model

	SuperNode Scripts
	SuperNode Script Example

	Executing and Interrupting Scripts
	Find and Replace

	Chapter 3. Scripting Language
	Scripting Language Overview
	Scripting Syntax
	Referencing Nodes
	Working with models
	Retrieving Objects
	Setting the Current Object
	Opening Streams and Other Objects
	Working with Multiple Streams
	Local Script Variables
	Stream, Session, and SuperNode Parameters
	Controlling Script Execution
	Operators in Scripts
	CLEM Expressions in Scripts
	Inserting Comments and Continuations
	Blocks of Literal Text

	Chapter 4. Scripting Commands
	General Scripting Commands
	execute_all
	execute_script
	exit
	for...endfor
	if...then...else...
	set Command
	var Command

	Node Objects
	create NODE
	connect NODE
	delete NODE
	disable NODE
	disconnect NODE
	duplicate NODE
	enable NODE
	execute NODE
	export NODE as FILE
	flush NODE
	get node NODE
	load node FILENAME
	position NODE
	rename NODE as NEWNAME
	retrieve node REPOSITORY_PATH
	save node NODE as FILENAME
	store node NODE as REPOSITORY_PATH

	Model Objects
	Model Nugget Names
	Avoiding Duplicate Model Names
	delete model MODEL
	export model MODEL as FILE
	import model MODEL
	insert model MODEL
	load model FILENAME
	retrieve model REPOSITORY_PATH
	save model MODEL as FILENAME
	store model MODEL as REPOSITORY_PATH

	Stream Objects
	create stream DEFAULT_FILENAME
	close STREAM
	clear stream
	get stream STREAM
	load stream FILENAME
	open stream FILENAME
	retrieve stream REPOSITORY_PATH
	save STREAM as FILENAME
	store stream as REPOSITORY_PATH
	with stream STREAM

	Project Objects
	execute_project
	load project FILENAME
	retrieve project REPOSITORY_PATH
	save project as FILENAME
	store project as REPOSITORY_PATH

	State Objects
	load state FILENAME

	Result Objects
	value RESULT

	File Objects
	close FILE
	open FILE
	write FILE
	print <expression>

	Output Objects
	Output Type Names
	delete output OUTPUT
	export output OUTPUT
	get output OUTPUT
	load output FILENAME
	retrieve output REPOSITORY_PATH
	save output OUTPUT as FILENAME
	store output OUTPUT as REPOSITORY_PATH

	Chapter 5. Scripting Tips
	Modifying Stream Execution
	Looping through Nodes
	Accessing Objects in the IBM SPSS Collaboration and Deployment Services Repository
	Generating an Encoded Password
	Script Checking
	Scripting from the Command Line
	Compatibility with Previous Releases

	Chapter 6. Scripting Examples
	Type Node Report
	Stream Report

	Chapter 7. Command Line Arguments
	Invoking the Software
	Using Command Line Arguments
	System Arguments
	Parameter Arguments
	Server Connection Arguments
	IBM SPSS Collaboration and Deployment Services Repository Connection Arguments
	Combining Multiple Arguments

	Chapter 8. CLEM Language Reference
	CLEM Reference Overview
	CLEM Datatypes
	Integers
	Reals
	Characters
	Strings
	Lists
	Fields
	Dates
	Time

	CLEM Operators
	Functions Reference
	Conventions in Function Descriptions
	Information Functions
	Conversion Functions
	Comparison Functions
	Logical Functions
	Numeric Functions
	Trigonometric Functions
	Probability Functions
	Bitwise Integer Operations
	Random Functions
	String Functions
	SoundEx Functions
	Date and Time Functions
	Converting Date and Time Values

	Sequence Functions
	Global Functions
	Functions Handling Blanks and Null Values
	Special Fields

	Chapter 9. Properties Reference
	Properties Reference Overview
	Syntax for Properties
	Structured Properties
	Abbreviations

	Node and Stream Property Examples

	Node Properties Overview
	Common Node Properties

	Chapter 10. Stream Properties
	Chapter 11. Project Properties
	Chapter 12. Source Node Properties
	Source Node Common Properties
	asimport Properties
	cognosimport Node Properties
	databasenode Properties
	datacollectionimportnode Properties
	excelimportnode Properties
	evimportnode Properties
	fixedfilenode Properties
	sasimportnode Properties
	simgennode Properties
	statisticsimportnode Properties
	userinputnode Properties
	variablefilenode Properties
	xmlimportnode Properties

	Chapter 13. Record Operations Node Properties
	appendnode Properties
	aggregatenode Properties
	balancenode Properties
	derive_stb Node Properties
	distinctnode Properties
	mergenode Properties
	rfmaggregatenode Properties
	Rprocessnode Properties
	samplenode Properties
	selectnode Properties
	sortnode Properties
	streamingts Properties

	Chapter 14. Field Operations Node Properties
	anonymizenode Properties
	autodataprepnode Properties
	binningnode Properties
	derivenode Properties
	ensemblenode Properties
	fillernode Properties
	filternode Properties
	historynode Properties
	partitionnode Properties
	reclassifynode Properties
	reordernode Properties
	restructurenode Properties
	rfmanalysisnode Properties
	settoflagnode Properties
	statisticstransformnode Properties
	timeintervalsnode Properties
	transposenode Properties
	typenode Properties

	Chapter 15. Graph Node Properties
	Graph Node Common Properties
	collectionnode Properties
	distributionnode Properties
	evaluationnode Properties
	graphboardnode Properties
	histogramnode Properties
	multiplotnode Properties
	plotnode Properties
	timeplotnode Properties
	webnode Properties

	Chapter 16. Modeling Node Properties
	Common Modeling Node Properties
	anomalydetectionnode Properties
	apriorinode Properties
	autoclassifiernode Properties
	Setting Algorithm Properties

	autoclusternode Properties
	autonumericnode Properties
	bayesnetnode Properties
	buildr Properties
	c50node Properties
	carmanode Properties
	cartnode Properties
	chaidnode Properties
	coxregnode Properties
	decisionlistnode Properties
	discriminantnode Properties
	factornode Properties
	featureselectionnode Properties
	genlinnode Properties
	glmmnode Properties
	kmeansnode Properties
	knnnode Properties
	kohonennode Properties
	linearnode Properties
	logregnode Properties
	neuralnetnode Properties
	questnode Properties
	regressionnode Properties
	sequencenode Properties
	slrmnode Properties
	statisticsmodelnode Properties
	svmnode Properties
	timeseriesnode Properties
	twostepnode Properties

	logregnode Properties
	neuralnetnode Properties
	neuralnetworknode Properties
	questnode Properties
	regressionnode Properties
	sequencenode Properties
	slrmnode Properties
	statisticsmodelnode Properties
	svmnode Properties
	timeseriesnode Properties
	twostepnode Properties

	questnode Properties
	regressionnode Properties
	sequencenode Properties
	slrmnode Properties
	statisticsmodelnode Properties
	svmnode Properties
	timeseriesnode Properties
	twostepnode Properties

	Chapter 17. Model Nugget Node Properties
	applyanomalydetectionnode Properties
	applyapriorinode Properties
	applyautoclassifiernode Properties
	applyautoclusternode Properties
	applyautonumericnode Properties
	applybayesnetnode Properties
	applyc50node Properties
	applycarmanode Properties
	applycartnode Properties
	applychaidnode Properties
	applycoxregnode Properties
	applydecisionlistnode Properties
	applydiscriminantnode Properties
	applyfactornode Properties
	applyfeatureselectionnode Properties
	applygeneralizedlinearnode Properties
	applyglmmnode Properties
	applykmeansnode Properties
	applyknnnode Properties
	applykohonennode Properties
	applylinearnode Properties
	applylogregnode Properties
	applyneuralnetnode Properties

	applyneuralnetworknode Properties
	applyquestnode Properties
	applyr Properties
	applyregressionnode Properties
	applyselflearningnode Properties
	applysequencenode Properties
	applysvmnode Properties
	applytimeseriesnode Properties
	applytwostepnode Properties

	Chapter 18. Database Modeling Node Properties
	Node Properties for Microsoft Modeling
	Microsoft Modeling Node Properties
	Algorithm Parameters

	Microsoft Model Nugget Properties

	Node Properties for Oracle Modeling
	Oracle Modeling Node Properties
	Oracle Model Nugget Properties

	Node Properties for IBM DB2 Modeling
	IBM DB2 Modeling Node Properties
	IBM DB2 Model Nugget Properties

	Node Properties for IBM Netezza Analytics Modeling
	Netezza Modeling Node Properties
	Netezza Model Nugget Properties

	Chapter 19. Output Node Properties
	analysisnode Properties
	dataauditnode Properties
	matrixnode Properties
	meansnode Properties
	reportnode Properties
	Routputnode Properties
	setglobalsnode Properties
	simevalnode Properties
	simfitnode Properties
	statisticsnode Properties
	statisticsoutputnode Properties
	tablenode Properties
	transformnode Properties

	Chapter 20. Export Node Properties
	Common Export Node Properties
	asexport Properties
	cognosexportnode Properties
	databaseexportnode Properties
	datacollectionexportnode Properties
	excelexportnode Properties
	outputfilenode Properties
	sasexportnode Properties
	statisticsexportnode Properties
	xmlexportnode Properties

	Chapter 21. IBM SPSS Statistics Node Properties
	statisticsimportnode Properties
	statisticstransformnode Properties
	statisticsmodelnode Properties
	statisticsoutputnode Properties
	statisticsexportnode Properties

	Chapter 22. SuperNode Properties
	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

