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Preface

IBM® SPSS® Modeler is the IBM Corp. enterprise-strength data mining workbench. SPSS
Modeler helps organizations to improve customer and citizen relationships through an in-depth
understanding of data. Organizations use the insight gained from SPSS Modeler to retain
profitable customers, identify cross-selling opportunities, attract new customers, detect fraud,
reduce risk, and improve government service delivery.

SPSS Modeler’s visual interface invites users to apply their specific business expertise, which
leads to more powerful predictive models and shortens time-to-solution. SPSS Modeler offers
many modeling techniques, such as prediction, classification, segmentation, and association
detection algorithms. Once models are created, IBM® SPSS® Modeler Solution Publisher
enables their delivery enterprise-wide to decision makers or to a database.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises — able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit
http://www.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.
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Adjusted Propensities Algorithms

Adjusted propensity scores are calculated as part of the process of building the model, and will
not be available otherwise. Once the model is built, it is then scored using data from the test or
validation partition, and a new model to deliver adjusted propensity scores is constructed by
analyzing the original model’s performance on that partition. Depending on the type of model,
one of two methods may be used to calculate the adjusted propensity scores.

Model-Dependent Method

For rule set and tree models, the following method is used:
1. Score the model on the test or validation partition.

2. Tree models. Calculate the frequency of each category at each tree node using the test/validation
partition, reflecting the distribution of the target value in the records scored to that node.

Rule set models. Calculate the support and confidence of each rule using the test/validation
partition, reflecting the model performance on the test/validation partition.

This results in a new rule set or tree model which is stored with the original model. Each time
the original model is applied to new data, the new model can subsequently be applied to the raw
propensity scores to generate the adjusted scores.

General Purpose Method

For other models, the following method is used:

1. Score the model on the test or validation partition to compute predicted values and predicted
raw propensities.

Remove all records which have a missing value for the predicted or observed value.
Calculate the observed propensities as 1 for true observed values and 0 otherwise.
Bin records according to predicted raw propensity using 100 equal-count tiles.

Compute the mean predicted raw propensity and mean observed propensity for each bin.

S

Build a neural network with mean observed propensity as the target and predicted raw propensity
as a predictor. For the neural network settings:

Use a random seed, value 0
Use the "quick” training method
Stop after 250 cycles
Do not use prevent overtaining option
Use expert mode
Quick Method Expert Options:
Use one hidden layer with 3 neurons and persistence set to 200
Learning Rates Expert Options:
Alpha 0.9

© Copyright IBM Corporation 1994, 2015. 1
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Adjusted Propensities Algorithms

Initial Eta 0.3
High Eta 0.1

Eta decay 50
Low Eta 0.01

The result is a neural network model that attempts to map raw propensity to a more accurate
estimate which takes into account the original model’s performance on the testing or validation
partition. To calculate adjusted propensities at score time, this neural network is applied to the raw
propensities obtained from scoring the original model.



Anomaly Detection Algorithm

Overview

The Anomaly Detection procedure searches for unusual cases based on deviations from the
norms of their cluster groups. The procedure is designed to quickly detect unusual cases for
data-auditing purposes in the exploratory data analysis step, prior to any inferential data analysis.
This algorithm is designed for generic anomaly detection; that is, the definition of an anomalous
case is not specific to any particular application, such as detection of unusual payment patterns
in the healthcare industry or detection of money laundering in the finance industry, in which the
definition of an anomaly can be well-defined.

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

ID The identity variable of each case in the data file.

n The number of cases in the training data Xqip, -

Xok k=1,...,K The set of input variables in the training data.

My, ke {1,...,K} If X,k is a continuous variable, My represents the grand mean, or average of
the variable across the entire training data.

SD, k € {1, ...,K} If X,k is a continuous variable, SDy represents the grand standard deviation,
or standard deviation of the variable across the entire training data.

XK+1 A continuous variable created in the analysis. It represents the percentage of
variables (k =1, ..., K) that have missing values in each case.

Xwk=1,..,K The set of processed input variables after the missing value handling is

applied. For more information, see the topic “Modeling Stage ” on p. 4.

H, or the boundaries of H:  H is the pre-specified number of cluster groups to create. Alternatively, the
[Himin, Hmax] bounds [Hyyjn, Hpax] can be used to specify the minimum and maximum
numbers of cluster groups.

np,h=1,..,H The number of cases in cluster h, h =1, ..., H, based on the training data.

pn,h=1,...,H The proportion of cases in cluster h, h =1, ..., H, based on the training
data. For each h, pp = ny/n.

Mp, k=1, ..., K+1,h=1, If Xy is a continuous variable, My represents the cluster mean, or average

..., H of the variable in cluster h based on the training data. If Xy is a categorical

variable, it represents the cluster mode, or most popular categorical value of
the variable in cluster h based on the training data.

SDpk, k € {1, ..., K+1}, h  If Xy is a continuous variable, SDy, represents the cluster standard deviation,
=1,...,H or standard deviation of the variable in cluster h based on the training data.

{nhkj}, k € {1, ..., K}, h = The frequency set {np;} is defined only when Xy is a categorical variable.
L..,Hj=1,..., ) If Xy has Jy categories, then ny; is the number of cases in cluster h that fall
into category j.

m An adjustment weight used to balance the influence between continuous and
categorical variables. It is a positive value with a default of 6.

VDI, k=1, ..., K+l The variable deviation index of a case is a measure of the deviation of
variable value X} from its cluster norm.

© Copyright IBM Corporation 1994, 2015. 3
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Anomaly Detection Algorithm

GDI The group deviation index GDI of a case is the log-likelihood distance d(h,
s), which is the sum of all of the variable deviation indices {VDIy, k =1,
ooy K+1}

anomaly index The anomaly index of a case is the ratio of the GDI to that of the average
GDI for the cluster group to which the case belongs.

variable contribution The variable contribution measure of variable Xy for a case is the ratio of

measure the VDI, to the case’s corresponding GDI.

PCtanomaly OF Danomaly A pre-specified value PCtanomaly determines the percentage of cases to be

considered as anomalies. Alternatively, a pre-specified positive integer value
Nanomaly determines the number of cases to be considered as anomalies.

cutpointanomaly A pre-specified cutpoint; cases with anomaly index values greater than
cutpointanomaly are considered anomalous.

Kanomaly A pre-specified integer threshold 1<kanomaly<K+1 determines the number of
variables considered as the reasons that the case is identified as an anomaly.

Algorithm Steps
This algorithm is divided into three stages:

Modeling. Cases are placed into cluster groups based on their similarities on a set of input
variables. The clustering model used to determine the cluster group of a case and the sufficient
statistics used to calculate the norms of the cluster groups are stored.

Scoring. The model is applied to each case to identify its cluster group and some indices are
created for each case to measure the unusualness of the case with respect to its cluster group.
All cases are sorted by the values of the anomaly indices. The top portion of the case list is
identified as the set of anomalies.

Reasoning. For each anomalous case, the variables are sorted by its corresponding variable
deviation indices. The top variables, their values, and the corresponding norm values are presented
as the reasons why a case is identified as an anomaly.

Modeling Stage

This stage performs the following tasks:

1. Training Set Formation. Starting with the specified variables and cases, remove any case with
extremely large values (greater than 1.0E+150) on any continuous variable. If missing value
handling is not in effect, also remove cases with a missing value on any variable. Remove variables
with all constant nonmissing values or all missing values. The remaining cases and variables are
used to create the anomaly detection model. Statistics output to pivot table by the procedure are
based on this training set, but variables saved to the dataset are computed for all cases.

2. Missing Value Handling (Optional). For each input variable Xy, k=1, ..., K, if X is a continuous
variable, use all valid values of that variable to compute the grand mean My, and grand standard
deviation SDy. Replace the missing values of the variable by its grand mean. If Xy is a
categorical variable, combine all missing values into a “missing value” category. This category is
treated as a valid category. Denote the processed form of {Xi} by {Xi}.



5

Anomaly Detection Algorithm

3. Creation of Missing Value Pct Variable (Optional). A new continuous variable, X1, is created that
represents the percentage of variables (both continuous and categorical) with missing values in
each case.

4. Cluster Group ldentification. The processed input variables {Xy, k=1, ..., K+1} are used to create
a clustering model. The two-step clustering algorithm is used with noise handling turned on (see
the TwoStep Cluster algorithm document for more information).

5. Sufficient Statistics Storage. The cluster model and the sufficient statistics for the variables by
cluster are stored for the Scoring stage:

B The grand mean My and standard deviation SDy of each continuous variable are stored,
ke {l,.., K+1}.

m  For each cluster h=1, ..., H, store the size ny,. If Xy is a continuous variable, store the cluster
mean My and standard deviation SDy of the variable based on the cases in cluster h. If Xy is
a categorical variable, store the frequency np; of each category j of the variable based on the
cases in cluster h. Also store the modal category Myy. These sufficient statistics will be used
in calculating the log-likelihood distance d(h, s) between a cluster h and a given case s.

Scoring Stage

This stage performs the following tasks on scoring (testing or training) data:

1. New Valid Category Screening. The scoring data should contain the input variables {Xo, k=1, ...,
K} in the training data. Moreover, the format of the variables in the scoring data should be the
same as those in the training data file during the Modeling Stage.

Cases in the scoring data are screened out if they contain a categorical variable with a valid
category that does not appear in the training data. For example, if Region is a categorical variable
with categories IL, MA and CA in the training data, a case in the scoring data that has a valid
category FL for Region will be excluded from the analysis.

2. Missing Value Handling (Optional). For each input variable Xy, if X, is a continuous variable, use
all valid values of that variable to compute the grand mean My and grand standard deviation SDy.
Replace the missing values of the variable by its grand mean. If Xy is a categorical variable,
combine all missing values and put together a missing value category. This category is treated
as a valid category.

3. Creation of Missing Value Pct Variable (Optional depending on Modeling Stage). If Xy | is created in
the Modeling Stage, it is also computed for the scoring data.

4. Assign Each Case to its Closest Non-Noise Cluster. The clustering model from the Modeling Stage
is applied to the processed variables of the scoring data file to create a cluster ID for each case.
Cases belonging to the noise cluster are reassigned to their closest non-noise cluster. See the
TwoStep Cluster algorithm document for more information on the noise cluster.

5. Calculate Variable Deviation Indices. Given a case s, the closest cluster h is found. The variable
deviation index VDI of variable Xy is defined as the contribution dy(h, s) of the variable to its
log-likelihood distance d(h, s). The corresponding norm value is My, which is the cluster sample
mean of Xy if Xy is continuous, or the cluster mode of X if X is categorical.
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6. Calculate Group Deviation Index. The group deviation index GDI of a case is the log-likelihood

distance d(h, s), which is the sum of all the variable deviation indices {VDIy, k=1, ..., K+1}.

Calculate Anomaly Index and Variable Contribution Measures. Two additional indices are calculated
that are easier to interpret than the group deviation index and the variable deviation index.

The anomaly index of a case is an alternative to the GDI, which is computed as the ratio of the
case’s GDI to the average GDI of the cluster to which the case belongs. Increasing values of this
index correspond to greater deviations from the average and indicate better anomaly candidates.

A variable’s variable contribution measure of a case is an alternative to the VDI, which is
computed as the ratio of the variable’s VDI to the case’s GDI. This is the proportional contribution
of the variable to the deviation of the case. The larger the value of this measure, the greater

the variable’s contribution to the deviation.

0dd Situations

Zero Divided by Zero

The situation in which the GDI of a case is zero and the average GDI of the cluster that the case
belongs to is also zero is possible if the cluster is a singleton or is made up of identical cases and
the case in question is the same as the identical cases. Whether this case is considered as an
anomaly or not depends on whether the number of identical cases that make up the cluster is large
or small. For example, suppose that there is a total of 10 cases in the training and two clusters are
resulted in which one cluster is a singleton; that is, made up of one case, and the other has nine
cases. In this situation, the case in the singleton cluster should be considered as an anomaly as it
does not belong to the larger cluster. One way to calculate the anomaly index in this situation is to
set it as the ratio of average cluster size to the size of the cluster /4, which is:

n/H
np

Following the 10 cases example, the anomaly index for the case belonging to the singleton cluster
would be (10/2)/1 = 5, which should be large enough for the algorithm to catch it as an anomaly.
In this situation, the variable contribution measure is set to 1/(K+1), where (K+1) is the number of
processed variables in the analysis.

Nonzero Divided by Zero

The situation in which the GDI of a case is nonzero but the average GDI of the cluster that the case
belongs to is 0 is possible if the corresponding cluster is a singleton or is made up of identical cases
and the case in question is not the same as the identical cases. Suppose that case i belongs to cluster
h, which has a zero average GDI; that is, average(GDI);, = 0, but the GDI between case i and
cluster £ is nonzero; that is, GDI(i, h) # 0. One choice for the anomaly index calculation of case i
could be to set the denominator as the weighted average GDI over all other clusters if this value is
not 0; else set the calculation as the ratio of average cluster size to the size of cluster 4. That is,
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H
GDI(ih) if L ns - average(GDI) # 0
7 - if oy Z ns - average( ) #
(n_l—nh)zszl,ihns average(GDI), ’ Lt
n/H otherwise

np

This situation triggers a warning that the case is assigned to a cluster that is made up of identical
cases.

Reasoning Stage

Every case now has a group deviation index and anomaly index and a set of variable deviation
indices and variable contribution measures. The purpose of this stage is to rank the likely
anomalous cases and provide the reasons to suspect them of being anomalous.

1. Identify the Most Anomalous Cases. Sort the cases in descending order on the values of the anomaly
index. The top pctanomaly %o (or alternatively, the top napomaty) gives the anomaly list, subject
to the restriction that cases with an anomaly index less than or equal to cutpointanomaly are not
considered anomalous.

2. Provide Reasons for Considering a Case Anomalous. For each anomalous case, sort the variables by
their corresponding VDI values in descending order. The top kapomaly Variable names, its value
(of the corresponding original variable Xy), and the norm values are displayed as reasoning.

Blank Handling

Blanks and missing values are handled in model building as described in “Algorithm Steps ” on p.
4, based on user settings.

Generated Model/Scoring
The Anomaly Detection generated model can be used to detect anomalous records in new data

based on patterns found in the original training data. For each record scored, an anomaly score is
generated and a flag indicating anomaly status and/or the anomaly score are appended as new fields

Predicted Values
For each record, the anomaly score is calculated as described in “Scoring Stage ” on p. 5, based on

the cluster model created when the model was built. If anomaly flags were requested, they are
determined as described in “Reasoning Stage ” on p. 7.

Blank Handling

In the generated model, blanks are handled according to the setting used in building the model.
For more information, see the topic “Scoring Stage ” on p. 5.






Apriori Algorithms

Overview

Apriori is an algorithm for extracting association rules from data. It constrains the search space
for rules by discovering frequent itemsets and only examining rules that are made up of frequent
itemsets (Agrawal and Srikant, 1994).

Apriori deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

IBM® SPSS® Modeler uses Christian Borgelt’s Apriori implementation. Full details on this
implementation can be obtained at

http://fuzzy.cs.uni-magdeburg.de/~borgelt/doc/apriori/apriori.html.

Deriving Rules

Apriori proceeds in two stages. First it identifies frequent itemsets in the data, and then it
generates rules from the table of frequent itemsets.

Frequent Itemsets

The first step in Apriori is to identify frequent itemsets. A frequent itemset is defined as an
itemset with support greater than or equal to the user-specified minimum support threshold syi,-
The support of an itemset is the number of records in which the itemset is found divided by

the total number of records.

The algorithm begins by scanning the data and identifying the single-item itemsets (i.e.
individual items, or itemsets of length 1) that satisfy this criterion. Any single items that do
not satisfy the criterion are not be considered further, because adding an infrequent item to an
itemset will always result in an infrequent itemset.

Apriori then generates larger itemsets recursively using the following steps:

» Generate a candidate set of itemsets of length & (containing k items) by combining existing
itemsets of length (k — 1):

For every possible pair of frequent itemsets p and q with length (k& — 1), compare the

first (k — 2) items (in lexicographic order); if they are the same, and the last item in q is
(lexicographically) greater than the last item in p, add the last item in q to the end of p to create a
new candidate itemset with length £.

» Prune the candidate set by checking every (k — 1) length subset of each candidate itemset; all
subsets must be frequent itemsets, or the candidate itemset is infrequent and is removed from
further consideration.

» Calculate the support of each itemset in the candidate set, as

support = il

N
© Copyright IBM Corporation 1994, 2015. 9
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where N; is the number of records that match the itemset and N is the number of records in the
training data. (Note that this definition of itemset support is different from the definition used for
rule support. )

» Itemsets with support > syi, are added to the list of frequent itemsets.

» If any frequent itemsets of length k£ were found, and £ is less than the user-specified maximum rule
size kmax, repeat the process to find frequent itemsets of length (k + 1).

Generating Rules

When all frequent itemsets have been identified, the algorithm extracts rules from the frequent
itemsets. For each frequent itemset L with length £ > 1, the following procedure is applied:

» Calculate all subsets A of length (k — 1) of the itemset such that all the fields in A are input fields
and all the other fields in the itemset (those that are not in A) are output fields. Call the latter
subset A. (In the first iteration this is just one field, but in later iterations it can be multiple fields.)

» For each subset A, calculate the evaluation measure (rule confidence by default) for the rule
A = A as described below.

» If the evaluation measure is greater than the user-specified threshold, add the rule to the rule table,
and, if the length &’ of A is greater than 1, test all possible subsets of A with length (k' — 1)

Evaluation Measures

Apriori offers several evaluation measures for determining which rules to retain. The different
measures will emphasize different aspects of the rules, as detailed in the /IBM® SPSS® Modeler
Users Guide. Values are calculated based on the prior confidence and the posterior confidence,
defined as

C
Cprim’ - 7
N
and
T
Cposterior = -
a

where c is the support of the consequent, a is the support of the antecedent, r is the support of
the conjunction of the antecedent and the consequent, and N is the number of records in the
training data.

Rule Confidence. The default evaluation measure for rules is simply the posterior confidence
of the rule,

€= Cposterior

Confidence Difference (Absolute Confidence Difference to Prior). This measure is based on the
simple difference of the posterior and prior confidence values,



il

Apriori Algorithms

€= ‘Cposterior - Cp?’i(w‘

Confidence Ratio (Difference of Confidence Quotient to 1). This measure is based on the ratio of
posterior confidence to prior confidence,

. C osterior C rior
e=1—min ( L L

b
Cprior Opostem’or

Information Difference (Information Difference to Prior). This measure is based on the information
gain criterion, similar to that used in building C5.0 trees. The calculation is

_r.log(1“)+(a—r)log(%)+(c—r)log(ﬂ)+(1_a_c+7a)1og(1fa_;_c+r)

e = ac a-c a-C
log (2)

where r is the rule support, a is the antecedent support, ¢ is the consequent support, @ = 1 — a is
the complement of antecedent support, and ¢ = 1 — ¢ is the complement of consequent support.

Normalized Chi-square (Normalized Chi-squared Measure). This measure is based on the chi-squared
statistical test for independence of categorical data, and is calculated as

2
G
a-a-c-c

Blank Handling

Blanks are ignored by the Apriori algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum number of antecedents. This determines the maximum number of antecedents that will
be examined for any rule. When the number of conditions in the antecedent part of the rule equals
the specified value, the rule will not be specialized further.

Only true values for flags. If this option is selected, rules with values of false will not be considered
for either input or output fields.

Optimize Speed/Memory. This option controls the trade-off between speed of processing and
memory usage. Selecting Speed will cause Apriori to use condition values directly in the frequent
itemset table, and to load the transactions into memory, if possible. Selecting Memory will

cause Apriori to use pointers into a value table in the frequent itemset table. Using pointers in
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the frequent itemset table reduces the amount of memory required by the algorithm for large
problems, but it also involves some additional work to reference and dereference the pointers
during model building. The Memory option also causes Apriori to process transactions from
the file rather than loading them into memory.

Generated Model/Scoring

The Apriori algorithm generates an unrefined rule node. To create a model for scoring new
data, the unrefined rule node must be refined to generate a ruleset node. Details of scoring for
generated ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.

m Voting. This method attempts to combine the predictions of all of the rules that apply to the
record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

m  First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.

m  Voting. The confidence for the final prediction is the sum of the confidence values for rules
triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

m  First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.

Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.



Automated Data Preparation
Algorithms

The goal of automated data preparation is to prepare a dataset so as to generally improve the
training speed, predictive power, and robustness of models fit to the prepared data.

These algorithms do not assume which models will be trained post-data preparation. At the end
of automated data preparation, we output the predictive power of each recommended predictor,
which is computed from a linear regression or naive Bayes model, depending upon whether the
target is continuous or categorical.

Notation

The following notation is used throughout this chapter unless otherwise stated:

X A continuous or categorical variable
Ti Value of the variable X for case i.
fi Frequency weight for case i. Non-integer positive values are rounded to the nearest

integer. If there is no frequency weight variable, then all f; = 1. If the frequency
weight of a case is zero, negative or missing, then this case will be ignored.

wi Analysis weight for case i. If there is no analysis weight variable, then all w, = 1. If
the analysis weight of a case is zero, negative or missing, then this case will be ignored.

n Number of cases in the dataset

Nx > f (i is not missing), where I (expression) is the indicator function taking
value 1 when the expression is true, 0 otherwise.

Wx Yo, fiwid (@; is not missing)

Nxy

n
Z fil (2; and y; are not missing)
i=1
Wxy " ‘
Z fiw; I (z; and y; are not missing)

i=1

E n
The mean of variable X, WL’(Z fiwz, I (z; is not missing)
=1
M "
> fawi(x —3)"
i=1
Ty L .
Wy Z fiwszi I (2; and y; are not missing)
=1
Mxyy

> fowi (i — Ty) (i — 9,)

i=1

A note on missing values

Listwise deletion is used in the following sections:

m  “Univariate Statistics Collection ” on p. 15

© Copyright IBM Corporation 1994, 2015. 13
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“Basic Variable Screening ” on p. 17
“Measurement Level Recasting ” on p. 17
“Missing Value Handling ” on p. 19

“Outlier Identification and Handling ” on p. 18
“Continuous Predictor Transformations ” on p. 20
“Target Handling ” on p. 21

“Reordering Categories ” on p. 25

“Unsupervised Merge ” on p. 30

Pairwise deletion is used in the following sections:
B “Bivariate Statistics Collection ” on p. 22
“Supervised Merge ” on p. 26

“Supervised Binning ” on p. 32

“Feature Selection and Construction ” on p. 32

“Predictive Power ” on p. 35

A note on frequency weight and analysis weight

The frequency weight variable is treated as a case replication weight. For example if a case has
a frequency weight of 2, then this case will count as 2 cases.

The analysis weight would adjust the variance of cases. For example if a case z; of a variable X
has an analysis weight w;, then we assume that z; ~ N (,u, 2—2)

Frequency weights and analysis weights are used in automated preparation of other variables, but
are themselves left unchanged in the dataset.

Date/Time Handling

Date Handling

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables.
If requested, we also calculate the number of elapsed days/months/years since the user-specified
reference date (default is the current date). Unless specified by the user, the “best” unit of duration
is chosen as follows:

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit.

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use
months as the best unit. The number of months between two dates is calculated based on average
number of days in a month (30.4375): months = days / 30.4375.

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best
unit. The number of years between two dates is calculated based on average number of days in a
year (365.25): years = days / 365.25.
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Once the date elements are extracted and the duration is obtained, then the original date variable
will be excluded from the rest of the analysis.

Time Handling

If there is a time variable, we extract the time elements (second, minute and hour) as ordinal
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since
the user-specified reference time (default is the current time). Unless specified by the user, the
“best” unit of duration is chosen as follows:

1. If the minimum number of elapsed seconds is less than 60, then we use seconds as the best unit.

2. If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we
use minutes as the best unit.

3. If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the
best unit.

Once the elements of time are extracted and time duration is obtained, then original time predictor
will be excluded.

Univariate Statistics Collection

Continuous Variables

For each continuous variable, we calculate the following statistics:
Number of missing values: N3***™ =S [, T (x; is missing)
Number of valid values: Ny

Minimum value: min; z;

Maximum value: max; z;

Mean, standard deviation, skewness. (see below)

The number of distinct values /.

The number of cases for each distinct value s;: ¢; = 37, fil (2; = 5;)

Median: If the distinct values of X are sorted in ascending order, 81 < 82 < - -+ < s, then the

median can be computed by Median (X) = min {Si : % > 0.5}, where cc; = Z Ci.
j=1

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating
the number of distinct values and the number of cases for each distinct value. Also we do not
calculate the median.

Categorical Numeric Variables

For each categorical numeric variable, we calculate the following statistics:

) . missing __ n .z : il
B Number of missing values: Ny = >, fil (z; is missing)
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Number of valid values: Nx

Minimum value: min; z; (only for ordinal variables)
Maximum value: max; z; (only for ordinal variables)
The number of categories.

The counts of each category.

Mean, Standard deviation, Skewness (only for ordinal variables). (see below)

Mode (only for nominal variables). If several values share the greatest frequency of
occurrence, then the mode with the smallest value is used.
®  Median (only for ordinal variables): If the distinct values of X are sorted in ascending order,

81 < 83 < -+ < 81, then the median can be computed by Median (X) = min {si : ifx > 0.5},

2
where cc; =375, ¢
Notes:

1. If an ordinal predictor has more categories than a specified threshold (default 10), we stop
updating the number of categories and the number of cases for each category. Also we do not
calculate mode and median.

2. If a nominal predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the variable had more than threshold
categories.

Categorical String Variables

For each string variable, we calculate the following statistics:

®  Number of missing values: N3***" = """ | ;T (; is missing)

B Number of valid values: Nx

®  The number of categories.

m  Counts of each category.

m  Mode: If several values share the greatest frequency of occurrence, then the mode with the

smallest value is used.

Note: If a string predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the predictor had more than threshold
categories.

Mean, Standard Deviation, Skewness

We calculate mean, standard deviation and skewness by updating moments.

1. Start with N = W =z©@ = M¥% = y¥® = 0.

2. For j=1,..,n compute:

N)(Cj) =] )(g’l) + f;I (x; is not missing)
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W)((j) = W)((jfl) + f;w;I (z; is not missing)

_ fiwj —=(j-1)
v; = = X — X
J W)((J) ( 7 )

W) = zU-1) ¢ v;

(Dypd-1)
Wx Wy w2
fiwg 7

MED — 26D

; : N (D i-1) ;
MY = M3 3 M0 4 R (W) — 25w,

3. After the last case has been processed, compute:

Mean: = =z

.. M2
Standard deviation: sd = {/ 52—
Nx —
Nx 1 e
Skewness: skew — (¥x—2) Wx 1) X

sd>

If Ny < 2or sd> < 10729, then skewness is not calculated.

Basic Variable Screening

1.

If the percent of missing values is greater than a threshold (default is 50%), then exclude the
variable from subsequent analysis.

For continuous variables, if the maximum value is equal to minimum value, then exclude the
variable from subsequent analysis.

For categorical variables, if the mode contains more cases than a specified percentage (default
is 95%), then exclude the variable from subsequent analysis.

If a string variable has more categories than a specified threshold (default is 100), then exclude the
variable from subsequent analysis.

Checkpoint 1: Exit?

This checkpoint determines whether the algorithm should be terminated. If, after the screening
step:

The target (if specified) has been removed from subsequent analysis, or

All predictors have been removed from subsequent analysis,

then terminate the algorithm and generate an error.

Measurement Level Recasting

For each continuous variable, if the number of distinct values is less than a threshold (default
is 5), then it is recast as an ordinal variable.



18

Automated Data Preparation Algorithms

For each numeric ordinal variable, if the number of categories is greater than a threshold (default
is 10), then it is recast as a continuous variable.

Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold.

Outlier Identification and Handling

In this section, we identify outliers in continuous variables and then set the outlying values to a
cutoff or to a missing value. The identification is based on the robust mean and robust standard
deviation which are estimated by supposing that the percentage of outliers is no more than 5%.

Identification

1. Compute the mean and standard deviation from the raw data. Split the continuous variable into

non-intersecting intervals: I; = (T + (i — 1) X 8dy, T+ 1 X sdy], i = —3, — 2,---,2,3,4, where
I 3= (—00,% —3sdy], Is = (T + 3sdy, + 0] and sdy, = sd x [ FA=T.

2. Calculate univariate statistics in each interval:
Ni, =30 Fil (x5 € L), Wy, = 30, fiwil (x5 € I;)

N Fwyag I €L : v T
i=1 79 v:/,j AN ME =300 fjwi(zg — 7)1 (@ € 1)

3. Letl=-3,r=4,andp=0.

T, =

4. Between two tail intervals I; and I,., find one interval with the least number of cases.

If JVIZ S NI7~) then Peurrent = A;_I)é . Check lfp + Peurrent is less than a threshold Pthreshold (default
is 0.05). If it does, then p = p + peurrent and I =1+ 1, go to step 4; otherwise, go to step 6.

Else pourrent = x’; . Check if p + peyrrens 18 less than a threshold, pipresnota. I it is, then

P =P+ Peyrrens and r = r — 1, go to step 4; otherwise, go to step 6.

6. Compute the robust mean Z.,.p.s+ and robust standard deviation sd,,p,s: Within the range
(4 ({—1)x sd,Z+r x sd]. See below for details.

7. 1If z; satisfies the conditions:
VWi (lz - f‘robust) < *CUtOff X Sdrobust or /w; (11 - frobust) > CUtOff X Sdrobust

where cutoffis positive number (default is 3), then z; is detected as an outlier.

Handling

Outliers will be handled using one of following methods:

B Trim outliers to cutoff values. If \/w; (2; — Trobust) < —cutof f X sdyopust then replace x; by
Trobust — CUfOff X Sdrobust/\/ Wi, and if VWi (xz - f7'ol7ust) > CUtOff X Sdrobust then replace
Z; by f7‘obust + CUtOff X Sd'l‘obust/\/ w;.

m  Set outliers to missing values.
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Update Univariate Statistics

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous
variable, including the number of missing values, minimum, maximum, mean, standard deviation,
skewness, and number of outliers.

Robust Mean and Standard Deviation

Robust mean and standard deviation within the range (Z + (I — 1) X sd, T + r x sd] are calculated
as follows:

T Y7 =
Trobust = Zi:l w’I,-i'fL-
roous ZZ’:Z ‘VIL

and
sd bust = ‘]w'z?obust
TOOUST '
YN -1
where M7, ., =37 Ay, and Ay, = M} + Wi, (Trobust — 7).

Missing Value Handling

Continuous variables. Missing values are replaced by the mean, and the following statistics are
updated:

m Standard deviation: sd x %fll, where N = Nx 4+ N9,

< ol s L1 _ N Nx—2 B Nx 1
m  Skewness: skew X 7+, where L = (—N72> <—NX ) and Ly = 4/ 5
®m  The number of missing values: Ny***"™ =0

B The number of valid values: Nx = N

Ordinal variables. Missing values are replaced by the median, and the following statistics are
updated:

m  The number of cases in the median category: epmedian + Ny o 7, Where cpmedian is the
original number of cases in the median category.

m  The number of missing values: Ny """ = (

B The number of valid values: Ny = N

Nominal variables. Missing values are replaced by the mode, and the following statistics are
updated:

B The number of cases in the modal category: ¢,,oqe + N;?”Sing , where ¢,,04¢ 1S the original
number of cases in the modal category.

®  The number of missing values: Ny***"™ =0

B  The number of valid values: Ny = N
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Continuous Predictor Transformations

We transform a continuous predictor so that it has the user-specified mean z, ., (default
0) and standard deviation sd,, .., (default 1) using the z-score transformation, or minimum
min, .., (default 0) and maximum max, ., (default 100) value using the min-max transformation.

Z-score Transformation

Suppose a continuous variable has mean = and standard deviation sd. The z-score transformation is

: 5dyser —_ _
X, = od X (»Uz - -77) + Tyser

. . . .
where z; is the transformed value of continuous variable X for case i.

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values
i .. . sd?
x; follow a normal distribution N (fum«, Hser

wq
Update univariate statistics

After a z-score transformation, the following univariate statistics are updated:
®  Number of missing values: Ng/*"" = N**™
B Number of valid values: Ny = Nx
. . - ’ - —_ —_—
B Minimum value: min (J,Z) = Sd;‘% X (mina@; — T) + Tuser

sd.

. ! — —
B  Maximum value: max (:r,) = 2futer x (Max x; — T) + Tuser

1
B Mean: T = Tyeer

m  Standard deviation: sd (:L') = 5dyser

m  Skewness: skew (11) = skew ()

Min-Max Transformation

Suppose a continuous variable has a minimum value min z; and a minimum value max ;. The
min-max transformation is

' mMaXyger — Milyger . .
r; = _ X (x; — min x;) + min
maxx; —mine; user

[ . . .
where z; is the transformed value of continuous variable X for case i.

Update univariate statistics

After a min-max transformation, the following univariate statistics are updated:

B The number of missing values: Ng/**""9 = N>
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B The number of valid values: Ny = Nx
. . - ’ -
B Minimum value: min (1‘,) = ming,ser
. !
B Maximum value: max {z; ) = max,ser

/ — i g— . .
B Mean: 7 = Buser Mluser » (F — min ;) 4+ minggser

max 2; —min x;

max z; —min z;

. . ’ _ .
m  Standard deviation: sd (:r ) = MXuser “MMMuser 3w g

B Skwness: skew (atl> = skew (x)

Target Handling

Nominal Target

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values.

Continuous Target

The transformation proposed by Box and Cox (1964) transforms a continuous variable into one
that is more normally distributed. We apply the Box-Cox transformation followed by the z score
transformation so that the rescaled target has the user-specified mean and standard deviation.

Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed
variable:

((yi*C)Afl)
N =g\ =4 ——x—— AFO
gi (A) = g (v, A) ln(y;\—c) -

where y;,i = 1,2,-- -, n are observations of variable Y, and c is a constant such that all values
y; — c are positive. Here, we choose ¢ = min (Y} — 1.

The parameter A is selected to maximize the log-likelihood function:

Ny . [Ny —1

L) = | P s )R]+ O DY Al )
=1

where (sd (9 (\))* = w33 oIy fiwilgi () =9 (V)" and g () = - X0, fawigi(V).

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=-3,
b=3, and s=0.5.

The algorithm can be described as follows:

1. Compute \; = a+ (j — 1) * s where j is an integer such that a < \; < b.
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2. For each );, compute the following statistics:

Mean: g(X;) = w Siey fiwigi(Aj)

Standard deviation: sd (g (\;)) = \/ﬁ S fiwi(g (\) — g (A)°

Ny 1 L a 3
ey o ) . fiwi(gi (M) —g(X5))
Skewness: skew (g (A\;)) = (Ny —2) (Ny -1) szcl:(;};j))s d d

Sum of logarithm transformation: >~ ; f;In (y; — ¢)

3. For each A;, compute the log-likelihood function L (A;). Find the value of j with the largest
log-likelihood function, breaking ties by selecting the smallest value of A;. Also find the
corresponding statistics g (A*), sd (g (A\*)) and skew (g (\*)).

4. Transform target to reflect user’s mean y,,.., (default is 0) and standard deviation sd,,.. (default
is 1):

’ Sdyser

Y = W X (gi ()‘*) —g()‘*)) + Yuser

where 5 (A) = g S, faigs() and sd (g (A%) = /ey S0y fowls () — 3 (A0))%.

Update univariate statistics. After Box-Cox and Z-score transformations, the following univariate
statistics are updated:

B Minimum value: % X (g (min (y;) — ¢, \) — G(OA)) + Uyser

Maximum value: Sj(dg”(sg)) x (g (max (y;) — ¢, A*) = G (A*)) + Uyser
Mean: 7,,...,
Standard deviation: sd,, e,

Skewness: skew (g (A*))

Bivariate Statistics Collection

For each target/predictor pair, the following statistics are collected according to the measurement
levels of the target and predictor.

Continuous target or no target and all continuous predictors

If there is a continuous target and some continuous predictors, then we need to calculate the
covariance and correlations between all pairs of continuous variables. If there is no continuous
target, then we only calculate the covariance and correlations between all pairs of continuous
predictors. We suppose there are there are m continuous variables, and denote the covariance
matrix as Cp, xm, With element ¢;;, and the correlation matrix as R, xn, with element r;;.

We define the covariance between two continuous variables X and Y as
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1 n _ 3
Xy = m; fiwi (2 —Ty) (Yi — V)

n

where T, = W;xy > iy i1 (z; and y; are not missing) and
Vo = W 2iz1 ¥il (27 and y; are not missing).

The covariance can be computed by a provisional means algorithm:
Start with N, = W) =z, =5, = M) = 0.
For j=1,..,n compute:
N)@ = Ng;” + f;I (x; and y; are not missing)
W)((J))/ = W)((j;l) + fjw;I (x; and y; are not missing)
fiw; —

Vi = =G X, —CL'?

v T W) (z; y)
fy = fy + ’ij

fiw;
Vyyq = ——F= (y
Y7 [€}) J
Wiy

~,)

Vo = Ts + v

MY = MG + (25— 7)) (y; — 7.) (fjwj - M)
i

After the last case has been processed, we obtain:

Myy = My = 3" fiw; (2 — 7,) (4 — 7,)

Compute bivariate statistics between X and Y-

Number of valid cases: Nxy

1 . _ J\lxy
Covariance: cxy — g
Correlation: rxy il Y

Note: If there are no valid cases when pairwise deletion is used, then we let cxy = 0 and rxy = 0.

Categorical target and all continuous predictors

For a categorical target Y with values i = 1,2, -- -, J and a continuous predictor X with values
a1, - x,, the bivariate statistics are:

Mean of X for each Y=i, i=1,....J:

> i fiwsaiI (y; = 1)
>y fjwgI (y; = 4)
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Sum of squared errors of X for each Y=i, i=1,...,J:

mn
M3 =" fjwile; —7.0)"1 (y; = i)
j=1

Sum of frequency weight for each Y=i, i=1,....J:

T
Ny = Z fiI (yj = ¢ A x; is not missing)
j=1
Number of invalid cases
J
Nxy = Z N,;
=1

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,....J:

n
W, = Z fjwil (y; =i A z; is not missing)
j=1

Continuous target and all categorical predictors

For a continuous target Y and a categorical predictor X with values i=1,....J, the bivariate statistics
include:

Mean of Y conditional upon X:

I .

o Zi:l Z;'L:1 f]u']yjl <1,‘J — Z)
1 ' -

D izt 2= Fjwil (xj =)

=

Sum of squared errors of Y:

mn

— \2

My, =" fjwilyj —s)
1=1

Mean of Y for each X =1, i=1,...J:

Yoo fwyil (= 9)

Yi. = .
! Z?:l fiw;I (x5 =1)
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Sum of squared errors of Y for each X = ¢, i=1,...,.J:
T
ME =" fiwily; —9:)"1 (x5 = )
j=1
Sum of frequency weights for X =i, i=1,....J:
7
N;. = Z fjl (z; =i A y; is not missing)
j=1

Sum of weights (frequency weight times analysis weight) for X = i, i=1,....J:

n
W;. = Z fjw;I (z; =i A yj is not missing)
j=1

Categorical target and all categorical predictors

For a categorical target Y with values j=1,....J and a categorical predictor X with values i=1,...,/,
then bivariate statistics are:

Sum of frequency weights for each combination of z; = i and y;, = j:
n
Nij = > ful (z; =i Ayp = j)
k=1

Sum of weights (frequency weight times analysis weight) for each combination of 23, = i and
Y =J:
n
Wij = > frwrd (g =i Ay = j)
kel

Categorical Variable Handling

In this step, we use univariate or bivariate statistics to handle categorical predictors.

Reordering Categories

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field
values start with 0 as the least frequent category. Note that the new field will be numeric even if
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”,
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2.
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Identify Highly Associated Categorical Features

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger
than an alpha-level @ erection (default is 0.05). See “P-value Calculations ” on p. 27 for details of
computing these p-values.

Since we use pairwise deletion to handle missing values when we collect bivariate statistics,
we may have some categories with zero cases; that is, V;. = 0 for a category i of a categorical
predictor. When we calculate p-values, these categories will be excluded.

If there is only one category or no category after excluding categories with zero cases, we set the
p-value to be 1 and this predictor will not be selected.

Supervised Merge

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a
Chaid Tree with one level of depth.

Exclude all categories with zero case count.
If X has 0 categories, merge all excluded categories into one category, then stop.
If X has 1 category, go to step 7.

Else, find the allowable pair of categories of X that is most similar. This is the pair whose test
statistic gives the largest p-value with respect to the target. An allowable pair of categories for an
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note
that for an ordinal predictor, if categories between the ith category and jth categories are excluded
because of zero cases, then the ith category and jth categories are two adjacent categories. See
“P-value Calculations ” on p. 27 for details of computing these p-values.

For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level
Qselection (default is 0.05). If it does, this pair is merged into a single compound category and
at the same time we calculate the bivariate statistics of this new category. Then a new set of
categories of X is formed. If it does not, then go to step 6.

Go to step 3.

For an ordinal predictor, find the maximum value in each new category. Sort these maximum
values in ascending order. Suppose we have r new categories, and the maximum values are:

i1 <id2 < -+ <1, then we get the merge rule as: the first new category will contain all original
categories such that X < i;, the second new category will contain all original categories such that
i1 < X < a,..., and the last new category will contain all original categories such that X > i, _5.

For a nominal predictor, all categories excluded at step 1 will be merged into the new category
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken
by selecting the category with the smallest value by ascending sort or lexical order of the original
category values which formed the new categories with the lowest counts.
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Bivariate statistics calculation of new category

When two categories are merged into a new category, we need to calculate the bivariate statistics
of this new category.

Scale target. If the categories i and i' can be merged based on p-value, then the bivariate statistics
should be calculated as:

Niir .= Ni .+ Ny
VVZ';L" .= ”YZ .+ Wi' .

Yii' . =Y.+ Wi @y . — ;)
_ _ 2 _ _ 2
M2y = MPAME AW (T~ Ti) W (i~ Ur )

Categorical target. If the categories i and i’ can be merged based on p-value, then the bivariate
statistics should be calculated as:

VVi,'i'j — WU + m’z'_’

Update univariate and bivariate statistics

At the end of the supervised merge step, we calculate the bivariate statistics for each new category.
For univariate statistics, the counts for each new category will be sum of the counts of each
original categories which formed the new category. Then we update other statistics according to
the formulas in “Univariate Statistics Collection ” on p. 15, though note that the statistics only
need to be updated based on the new categories and the numbers of cases in these categories.

P-value Calculations

Each p-value calculation is based on the appropriate statistical test of association between the
predictor and target.

Scale target
We calculate an F statistic:
S Wi@ -7 (- 1)
Zgzl ME/ <Zf:1 Ni. — I)




28

Automated Data Preparation Algorithms

25:1 Wiy,
Ele Wi

Based on F statistics, the p-value can be derived as

where 3, =

I
p=Pr{F({I-1) N.—I|>F
=1

where F (I -1, Zle N, =1 ) is a random variable following a F distribution with I — 1 and
Zfil N;. — I degrees of freedom.
At the merge step we calculate the F statistic and p-value between two categories i and i’ of X as
W (. — ?m)Q + Wi (Y. — @m)g
(M2 +A32) /(N + Ny —2)
p=Pr(F(1,N;. +Ny. —2)>F)

where g, . is the mean of Y for a new category ¢, i merged by i and i :

_ Wy

Vii. = Vi + o Yy — Ui,
yl,’L yl Wl + V[/ril. (yl y’L )

and F' (I —1,N; + N, —2)is a random variable following a F' distribution with 1 and
N;. + N,». — 2 degrees of freedom.

Nominal target

The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value:

J 1
=y Bl

j=11i=1

2

where Ni; = >, . p fad (zx = i Ayg = j) is the observed cell frequency and 772;; is the estimated

expected cell frequency for cell (z = i,y = j) following the independence model. If 7;; = 0,
S 2

then W = 0. How to estimate 7i2;; is described below.

The corresponding p-value is given by p = Pr (x2 > X?), where x5 follows a chi-squared
distribution with d = (J — 1) (I — 1) degrees of freedom.

When we investigate whether two categories i and i of X can be merged, the Pearson chi-squared
statistic is revised as
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N N 2
2=y (Nij — 1hij)” N (Nij = ij)

=\ Ty

and the p-value is given by p = Pr (x3 ; > X?).

Ordinal target

Suppose there are [ categories of X, and J ordinal categories of Y. Then the null hypothesis of
the independence of X and Y is tested against the row effects model (with the rows being the
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected
cell frequencies, /71;; (under the hypothesis of independence) and i ; (under the hypothesis that
the data follow a row effects model), are both estimated. The likelihood ratio statistic is

I J
EONW

i=1 j=1

where

HZQJ _ mi; In (mu/m”) mij/mij >0
0 else

The p-value is given by p = Pr (x3_, > H?).

Estimated expected cell frequencies (independence assumption)

If analysis weights are specified, the expected cell frequency under the null hypothesis of
independence is of the form

—1

mi; = wij O.’iﬁj

where a; and 3; are parameters to be estimated, and w;; = % if N;; > 0, otherwise w;; = 1.
ij

Parameter estimates é;, 3]-, and hence 77;;, are obtained from the following iterative procedure.

k=0, ago) = ﬁ;o) =1, mgg) = E;jl

QD Ny, —a® N
i - —1gm Y e
' Zj w5 By ' Zj Mg
B(k+1) _ N
D Y G
(k4+1) _ ——1 (k41) p(k+1)
m;; =W o ﬂj
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If max; m‘l(;frl) (A)

threshold (default is 100), stop and output aEHl), ,B;Hl) and mi y ™) as the final estimates
&;, Bj, ;. Otherwise, k = k 4 1 and go to step 2.

< ¢ (default is 0.001) or the number of iterations is larger than a

Estimated expected cell frequencies (row effects model)

In the row effects model, scores for classes of ¥ are needed. By default, s} (the order of a
class of ) is used as the class score. These orders will be standardized via the following linear
transformation such that the largest score is 100 and the lowest score is 0.

* S * *
85 = 100 (Sj o Smin) / (Smax o Smin)
Where s, and s}, .. are the smallest and largest order, respectively.

The expected cell frequency under the row effects model is given by
ms; = W, azﬁ]%

where 5 = Z}I:1 Wij/Z;':l W ;, in which W.; = X;W;;, and «;, 3;, and +; are unknown
parameters to be estimated.

Parameter estimates &i, B J» fyi and hence rﬁ.ij are obtained from the following iterative procedure.

1. ]{JIO, Oé(o /3(0 =7, )_1 m(o) _wwl

2. (k+1) _ N; (k)
T ey
3. /3(’“’1) _ N
‘ - 3w ta (L+1)< (k))(* =)
4. (s5—73) Z (5'73)(Ni-7m*f.)
v =1 {k+1) p(k+1) [ (k) ; i—mi
my; = W, B i ,G =14+ =4 —5
ij ij (’Y ) Zj (ijs)z'mij
S N {%HG G; >0
* {®) otherwise
6. (Sj*g)
ng;sﬂ) W; (k+1)ﬂ(k+1) (/yi(kJrl))

(k+1)
ij

If max; ; ’m
threshold (default is 100) stop and output a (k+1) B3, (k1) v(kH) and m(lngl as the final estimates

’ < ¢ (default is 0.001) or the number of iterations is larger than a
a;, B], 'yl, mm. Otherwise, ¥ = k£ + 1 and go to step 2.

Unsupervised Merge

If there is no target, we merge categories based on counts. Suppose that X has 7 categories which
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while
for nominal predictor we rearrange categories from lowest to highest count, with ties broken
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by ascending sort or lexical order of the data values. Let ¢; be the number of cases for the ith
category, and Nx be the total number of cases for X. Then we use the equal frequency method
to merge sparse categories.

1. Start with j; = j» = 1 and g=1.
2. Ifj1 > 1, gotostep 5.

300fF Zfijl ¢; < [b% x Nx], then j; = ja + 1; otherwise the original categories ji,j1 + 1,- -, ja will
be merged into the new category g and let j; = jo + 1, j» = j1 and ¢ = ¢ + 1, then go to step 2.

4. If j, > I, then merge categories using one of the following rules:

i) If g = 1, then categories 1,2, ---,I — 1 will be merged into category g and / will be left
unmerged.

i) If g=2, then j;, 51 + 1,-- -, I will be merged into category g=2.
iii) If g>2, then jq, 51 + 1, -, 1 will be merged into category g — 1.
If j2 < I, then go to step 3.

5. Output the merge rule and merged predictor.

After merging, one of the following rules holds:

m Neither the original category nor any category created during merging has fewer than
[b% x Nx]| cases, where b is a user-specified parameter satisfying 1 < b < 100 (default is
10) and [x] denotes the nearest integer of x.

B The merged predictor has only two categories.

Update univariate statistics. When original categories ji,j1 + 1, - -, j2 are merged into one new
category, then the number of cases in this new category will be fi i, ¢j- At the end of the
merge step, we get new categories and the number of cases in each category. Then we update
other statistics according to the formulas in “Univariate Statistics Collection ” on p. 15, though
note that the statistics only need to be updated based on the new categories and the numbers
of cases in these categories.

Continuous Predictor Handling

Continuous predictor handling includes supervised binning when the target is categorical,
predictor selection when the target is continuous and predictor construction when the target is
continuous or there is no target in the dataset.

After handling continuous predictors, we collect univariate statistics for derived or constructed
predictors according to the formulas in “Univariate Statistics Collection ” on p. 15. Any derived
predictors that are constant, or have all missing values, are excluded from further analysis.
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Supervised Binning

If there is a categorical target, then we will transform each continuous predictor to an ordinal
predictor using supervised binning. Suppose that we have already collected the bivariate statistics
between the categorical target and a continuous predictor. Using the notations introduced in
“Bivariate Statistics Collection ” on p. 22, the homogeneous subset will be identified by the
Scheffe method as follows:

If |Z; — T.;] < Coriticar then T.; and Z.; will be a homogeneous subset, where
Ceritical = Max (T.;) — min (Z.;) if Nxy = J; otherwiseceriticas = B * C, where

(S ) J 2
R= \/2 (J — 1) Flfa (J — LNXY - J) and C = M S x _Zi:lJl_/‘Vi s MS = 721':1 M

Nxy —J °
The supervised algorithm follows:
Sort the means z.; in ascending order, denote as Z.(1) < Z.2) < -+ < Ty

Start with i=1 and ¢=J.

If |E.(q) — E.(l-)l < Ceritical, then {E,(i), - ,E,(q)} can be considered a homogeneous subset. At the
same time we compute the mean and standard deviation of this subset: Z.(; 4) = % and
ik
M2i.q ; — _ 2
SdA(i‘q) = W, where ]M(Qi,q) = z:i AA(]C) and AA(k) = ]\IQ(,C) + I’V.(k) ($-(i,q) - :BA(k)) ,

then seti = ¢+ 1 and g = J; Otherwise ¢ = ¢ — 1.
Ifi < J, go to step 3.

Else compute the cut point of bins. Suppose we have r < J homogeneous subsets and we
assume that the means of these subsets are If(l), If*(z), - ,ff*(,,,), and standard deviations are

sdq), 5d75y, -+, sdl,, then the cut points between the ith and (i+1)th homogeneous subsets are
sd;..+e
computed as cut; = T}, + ———— (E*, -7 )
@ (Sd(* )+Sdfz‘+1)+25) () @

Output the binning rules. Category 1: X < cut;; Category 2: cut; < X < cuty;...; Category
Deut, 1 < X.

Feature Selection and Construction

If there is a continuous target, we perform predictor selection using p-values derived from the
correlation or partial correlation between the predictors and the target. The selected predictors are
grouped if they are highly correlated. In each group, we will derive a new predictor using principal
component analysis. However, if there is no target, we will do not implement predictor selection.

To identify highly correlated predictors, we compute the correlation between a scale and a group as
follows: suppose that X is a continuous predictor and continuous predictors X7, X2, - -, X,,, form
a group G. Then the correlation between X and group G is defined as:

rxg =min{|rxyx,|,X; € G}

where rx x, is correlation between X and X;.
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Let agy0up be the correlation level at which the predictors are identified as groups. The predictor
selection and predictor construction algorithm is as follows:

1. (Target is continuous and predictor selection is in effect ) If the p-value between a continuous
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor from
the correlation matrix and covariance matrix. See “Correlation and Partial Correlation ” on p.

34 for details on computing these p-values.

2. Start with agyoup = 0.9 and i=1.

3. Ifagroup < 0.1, stop and output all the derived predictors, their source predictors and coefficient
of each source predictor. In addition, output the remaining predictors in the correlation matrix.

4. Find the two most correlated predictors such that their correlation in absolute value is larger than
Qgroup, and put them in group i. If there are no predictors to be chosen, then go to step 9.

5. Add one predictor to group i such that the predictor is most correlated with group 7 and the
correlation is larger than o g..up. Repeat this step until the number of predictors in group i is
greater than a threshold (default is 5) or there is no predictor to be chosen.

6. Derive a new predictor from the group i using principal component analysis. For more
information, see the topic “Principal Component Analysis ” on p. 33.

7. (Both predictor selection and predictor construction are in effect) Compute partial correlations
between the other continuous predictors and the target, controlling for values of the new predictor.
Also compute the p-values based on partial correlation. See “Correlation and Partial Correlation ”
on p. 34 for details on computing these p-values. If the p-value based on partial correlation
between a continuous predictor and continuous target is larger than a threshold (default is 0.05),
then remove this predictor from the correlation and covariance matrices.

8. Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to
step 4.

9. agreup = Qgroup — 0.1, then go to step 3.

Notes:

m If only predictor selection is needed, then only step 1 is implemented. If only predictor
construction is needed, then we implement all steps except step 1 and step 7. If both predictor
selection and predictor construction are needed, then all steps are implemented.

m [f there are ties on correlations when we identify highly correlated predictors, the ties will be
broken by selecting the predictor with the smallest index in dataset.

Principal Component Analysis

Let Xy, X5, -+, X, be m continuous predictors. Principal component analysis can be described
as follows:
1. Input C,, «m, the covariance matrix of Xy, X, -+, X,,.

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and
corresponding eigenvectors) in descending order, Ay > Ay > -+ > A,
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3. Derive new predictors. Suppose the elements of the first component vy are v11, v12, -« -, U1m, then

the new derived predictor is \U/%XH + ”1/\1’1 Xo+ -+ “1;\"1 X

Correlation and Partial Correlation

Correlation and P-value

Let rxy be the correlation between continuous predictor X and continuous target Y, then the
p-value is derived form the ¢ test:

p=Pr(t(Nxy —2)| >1)

where ¢ (Nxy — 2) is a random variable with a ¢ distribution with Nxy- — 2 degrees of freedom,
and t = rxvy, /%. Ifrg(y = 1, then set p=0; If Nxy < 2, then set p=1.
XY

Partial correlation and P-value

For two continuous variables, X and Y, we can calculate the partial correlation between them
controlling for the values of a new continuous variable Z:

Xy —Trxz'vz
Txv|z = 5 5
\/l—rXZ\/l—rYZ

Since the new variable Z is always a linear combination of several continuous variables, we
compute the correlation of Z and a continuous variable using a property of the covariance rather
than the original dataset. Suppose the new derived predictor Z is a linear combination of original
predictors X, Xa, -+, X,:

Z=aX1+aXo+ 4+ anXy

Then for any a continuous variable X (continuous predictor or continuous target), the correlation
between X and Z is
czx

VCZZCX X
2

m m
where CzxX — Zi:l aiCx,;X, and Czz = Zi:l a;Cx, x; +2 Zi#j a,'ajqu.xj.

Tzx =

If1—r%, or1—r{, isless than 107'%, let rxy |z = 0. If rxy |7 is larger than 1, then set it to
I; If rxy|z is less than —1, then set it to —1. (This may occur with pairwise deletion). Based on
partial correlation, the p-value is derived from the 7 test

p="Pr(t(Nxy —3)[ > 1)

where ¢ (Nxy — 3) is a random variable with a ¢ distribution with Nxy — 3 degrees of freedom,
andt = rxy |z, /55— If 7%y z = 1, then set p=0; if Nxy < 3, then set p=1.
XY|Z
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Discretization of Continuous Predictors

Discretization is used for calculating predictive power and creating histograms.

Discretization for calculating predictive power

If the transformed target is categorical, we use the equal width bins method to discretize a
continuous predictor into a number of bins equal to the number of categories of the target.
Variables considered for discretization include:

B Scale predictors which have been recommended.

®  Original continuous variables of recommended predictors.

Discretization for creating histograms

We use the equal width bins method to discretize a continuous predictor into a maximum of 400
bins. Variables considered for discretization include:

B  Recommended continuous variables.

m  Excluded continuous variables which have not been used to derive a new variable.
m  Original continuous variables of recommended variables.
(]

Original continuous variables of excluded variables which have not been used to derive a
new variable.

m  Scale variables used to construct new variables. If their original variables are also continuous,
then the original variables will be discretized.

m Date/time variables.
After discretization, the number of cases and mean in each bin are collected to create histograms.

Note: If an original predictor has been recast, then this recast version will be regarded as the
“original” predictor.

Predictive Power

Collect bivariate statistics for predictive power

We collect bivariate statistics between recommended predictors and the (transformed) target. If
an original predictor of a recommended predictor exists, then we also collect bivariate statistics
between this original predictor and the target; if an original predictor has a recast version, then

we use the recast version.

If the target is categorical, but a recommended predictor or its original predictor/recast version is
continuous, then we discretize the continuous predictor using the method in “Discretization of
Continuous Predictors ” on p. 35 and collect bivariate statistics between the categorical target and
the categorical predictors.
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Bivariate statistics between the predictors and target are same as those described in “Bivariate
Statistics Collection ” on p. 22.

Computing predictive power

Predictive power is used to measure the usefulness of a predictor and is computed with respect
to the (transformed) target. If an original predictor of a recommended predictor exists, then we
also compute predictive power for this original predictor; if an original predictor has a recast
version, then we use the recast version.

Scale target. When the target is continuous, we fit a linear regression model and predictive power
is computed as follows.

2
m  Scale predictor: 7%, = (ﬁ)

1
m Categorical predictor: 1 — g; , where S, = Z MEand Sy =1 fiwi(y; — 7.)°.
i=1

Categorical target. If the (transformed) target is categorical, then we fit a naive Bayes model and
the classification accuracy will serve as predictive power. We discretize continuous predictors
as described in “Discretization of Continuous Predictors ” on p. 35, so we only consider the
predictive power of categorical predictors.

If N;; is the of number cases where X =iand Y = j, N; = Z;Ll Nij,and N ; = Zle Nij,
then the chi-square statistic is calculated as

LRI D

N 2
L <Nij*Nz‘j>
Y
i=1 j=1 ij

N;. N.sy
Nxvy

where N;; =

and Cramer’s V is defined as

"= (NXY (milﬁﬂ J) - 1)) )
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Bayesian Networks Algorithm Overview

A Bayesian network provides a succinct way of describing the joint probability distribution
for a given set of random variables.

Let V be a set of categorical random variables and G = (V, E) be a directed acyclic graph with
nodes V and a set of directed edges E. A Bayesian network model consists of the graph G together
with a conditional probability table for each node given values of its parent nodes. Given the value
of its parents, each node is assumed to be independent of all the nodes that are not its descendents.
The joint probability distribution for variables V can then be computed as a product of conditional
probabilities for all nodes, given the values of each node’s parents.

Given set of variables V and a corresponding sample dataset, we are presented with the task of
fitting an appropriate Bayesian network model. The task of determining the appropriate edges in
the graph G is called structure learning, while the task of estimating the conditional probability
tables given parents for each node is called parameter learning.

Primary Calculations

IBM® SPSS® Modeler offers two different methods for building Bayesian network models:

m Tree Augmented Naive Bayes. This algorithm is used mainly for classification. It efficiently
creates a simple Bayesian network model. The model is an improvement over the naive
Bayes model as it allows for each predictor to depend on another predictor in addition to the
target variable. Its main advantages are its classification accuracy and favorable performance
compared with general Bayesian network models. Its disadvantage is also due to its simplicity;
it imposes much restriction on the dependency structure uncovered among its nodes.

m  Markov Blanket estimation. The Markov blanket for the target variable node in a Bayesian
network is the set of nodes containing target’s parents, its children, and its children’s parents.
Markov blanket identifies all the variables in the network that are needed to predict the target
variable. This can produce more complex networks, but also takes longer to produce. Using
feature selection preprocessing can significantly improve performance of this algorithm.

Notation

The following notation is used throughout this algorithm description:

G A directed acyclic graph representing the Bayesian Network model

D A dataset

Y Categorical target variable

Xi The ith predictor

yr The parent set of the ith predictor besides target Y. For TAN models, its size is <I.
N The number of cases in D

© Copyright IBM Corporation 1994, 2015. 37
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n The number of predictors

Nijk Denote the number of records in D for which (w;, Y') take its jth value and for which
X takes its kth value.

Nij Denote the number of records in D for which (r;,Y') takes its jth value.

Oiji Pr (Xi = J:ﬂ (m;, Y) = (m,Y)j>

Ov, Pr(Y =Y))

K The number of non-redundant parameters of TAN

MB The Markov blanket boundary about target Y

S A subset of X

Sx;x; A subset of X \ X;, X;, such that variables X; and X are conditionally independent

with respect to Sx, x;

Xi—X; An undirected arc between variables X;, X; in G. X;and X; are adjacent to each
other.

X > X; A directed arc from X; to X; in G. X is a parent of X, and X is a child of X;.

ADJx, A variable set which represents all the adjacent variables of variable X; in G,
ignoring the edge directions.

I{) The conditional independence (CI) test function which returns the p-value of the test.

o The significance level for CI tests between two variables. If the p-value of the test is
larger than « then they are independent, and vice-versa.

T The cardinality of X;, r; = | Xj|

i The cardinality of the parent set w; of X .

Handling of Continuous Predictors

BN models in IBM® SPSS® Modeler can only accommodate discrete variables. Target variables
must be discrete (flag or set type). Numeric predictors are discretized into 5 equal-width bins
before the BN model is built. If any of the constructed bins is empty (there are no records with a
value in the bin’s range), that bin is merged to an adjacent non-empty bin.

Feature Selection via Breadth-First Search

Feature selection preprocessing works as follows:

» It begins by searching for the direct neighbors of a given target Y, based on statistical tests of
independence. For more information, see the topic “Markov Blanket Conditional Independence
Test” on p. 43. These variables are known as the parents or children of ¥, denoted by PC (V).

» Foreach X € PC (YY), we look for PC (X), or the parents and children of .X.

» Foreach Z € PC(X), we add it to M By if it is not independent of Y.

The explicit algorithm is given below.
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RecognizeMB
(
D : Dataset, eps : threshold
)
{

// Recognize Y's parents/children
CanADJ_Y =X \{Y}

PC = RecognizePC(Y,CanADJ_Y,D,eps);
MB = PC;

// Collect spouse candidates, and remove false
// positives from PC
for (each X_iin PCH
CanADJ_X_i=X\X_i;
CanSP_X_i = RecognizePC(X_i,CanADJ_X_i,D,eps);
if (Y notin CanSP_X_i) // Filter out false positive
MB = MB\ X_i;
}
// Discover true positives among candidates
for (each X_iin MB)
for (each Z_iin CanSP_X_i and Z_i notin MB)
if (Y,Z_i|{S_Y.Z_i + X_i}) < eps) then
MB=MB +Z_j;
return MB;
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RecognizePC (
T :target to scan,
ADJ_T :Candidate adjacency setto search,
D : Dataset,
eps : threshold,
maxSetSize : )
{
NonPC = {empty set},
cutSetSize = (;
repeat
for (each X_iin ADJ_TN
for (each subset S of {ADJ_T \ X_i} with |S| = cutSetSize}{
if (1IX_i,T|S) > eps)
NonPC = NonPC + X_i;
S_TX_i=S;
break;
}
}
}
if ((NonPC| > O}
ADJ_T =ADJ_T\ NonPC;
cutSetSize +=1;
NonPC = {empty set};
}else
break;
until ((ADJ_T| < cutSetSize) or (cutSetSize > maxSetSize)
return ADJ_T;
}

Tree Augmented Naive Bayes Method

The Bayesian network classifier is a simple classification method, which classifies a case

d; = (:cjl, 2,1l ) by determining the probability of it belonging to the ith target category Y;.
These probabilities are calculated as

Pr <Y;|X1 —al Xo =), Xn = xil)
_ Pr(V) Pr(X,=a] Xo=z},... X, =z |V})
- Pr(Xlzm'{,ng.r?z',...,Xn:fo)

n
x Pr(Y;) H Pr (Xk = mi,|7ri,Y};)
k=1

where 7y, is the parent set of X}, besides Y, and it maybe empty. Pr (X} |7k, Y') is the conditional
probability table (CPT) associated with each node X}.. If there are n independent predictors,
then the probability is proportional to
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T
Pr(v;) [ Pr (Xk - mim)
k=1

When this dependence assumption (conditional independence between the predictors given the
class) is made, the classifier is called naive Bayes (NB). Naive Bayes has been shown to be
competitive with more complex, state-of-the-art classifiers. In recent years, a lot of work has
focused on improving the naive Bayes classifier. One important method is to relax independence
assumption. We use a tree augmented naive Bayesian (TAN) classifier (Friedman, Geiger, and
Goldszmidt, 1997), and it is defined by the following conditions:

m  Each predictor has the target as a parent.

m Predictors may have one other predictor as a parent.

An example of this structure is shown below.

Figure 5-1
Structure of an simple tree augmented naive Bayes model.

TAN (y)
TAN Classifier Learning Procedure

Let X = (X3, X3,...,X,) represent a categorical predictor vector. The algorithm for the TAN
classifier first learns a tree structure over X using mutual information conditioned on Y. Then it
adds a link (or arc) from the target node to each predictor node.

The TAN learning procedure is:
1. Take the training data D, X and Y as input.

2. Learn a tree-like network structure over X by using the Structure Learning algorithm outlined
below.

3. AddY asaparent of every X; where 1 < i <n.

4. Learning the parameters of TAN network.
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TAN Structure Learning

We use a maximum weighted spanning tree (MWST) method to construct a tree Bayesian network
from data (Chow and Liu, 1968). This method associates a weight to each edge corresponding to
the mutual information between the two variables. When the weight matrix is created, the MWST
algorithm (Prim, 1957) gives an undirected tree that can be oriented with the choice of a root.

The mutual information of two nodes X;, X; is defined as

Pr(z;, z;) )

I X X P 1
0 X5) = D Prinia; Og(Pr(anr(x])

L &5

We replace the mutual information between two predictors with the conditional mutual
information between two predictors given the target (Friedman et al., 1997). It is defined as

Y)= > Prie,zj,u)log (Pr(Pr(‘ri’xj\yk) )

T Tj,Yn $z|yk) Pr (I]|yk)

1(Xi, X;

The network over can be constructed using the following steps:
Compute I (X;, X,;|Y),i=1,...,n,j =1,...,n,i # j between each pair of variables.

Use Prim’s algorithm (Prim et al., 1957) to construct a maximum weighted spanning tree with
the weight of an edge connecting X; to X; by I (X;, X;|Y).

This algorithm works as follows: it begins with a tree with no edges and marks a variable at a
random as input. Then it finds an unmarked variable whose weight with one of the marked
variables is maximal, then marks this variable and adds the edge to the tree. This process is
repeated until all variables are marked.

Transform the resulting undirected tree to directed one by choosing X; as a root node and setting
the direction of all edges to be outward from it.

TAN Parameter Learning

Let r; be the cardinality of X;. Let g; denote the cardinality of the parent set (7;,Y") of X;, that
is, the number of different values to which the parent of X; can be instantiated. So it can be
calculated as ¢; = r,, x |Y|. Note 7; = ( implies ¢; = |Y'|. We use NV;; to denote the number of
records in D for which (;, Y") takes its jth value. We use N;;; to denote the number of records in
D for which (;,Y") take its jth value and for which X takes its kth value.

Maximum Likelihood Estimation

The closed form solution for the parameters 8y, (1 <4 < |Y|) and
Oiix (1 <i<n,1<j<g;,1 <k <r;)that maximize the log likelihood score is

A N-
by, =
é _ N
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where Ny, denotes the number of cases with Y = Y} in the training data.
Note that if N;; = 0, then 6, = 0.

The number of parameters K is

n
K=) (n—-1)-q+|Y|-1
i=1

TAN Posterior Estimation

Assume that Dirichlet prior distributions are specified for the set of parameters 6y, (1 < i < |Y|) as
well as for each of the sets 0, (1 <k <r;),1 <i<n,and1 < j < g; (Heckerman, 1999). Let
N%» and N?j . denote corresponding Dirichlet distribution parameters such that N° = Z N% and

NZ% = Z Ninj - Upon observing the dataset D, we obtain Dirichlet posterior distributions with the

k
following sets of parameters:

éP . Nyi"f‘N;O/i
Y, — N+No
éP _ Nijk+N£jk
ijk = N +N?

The posterior estimation is always used for model updating.

Adjustment for small cell counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated
as posterior parameters 61, (1 <i <|Y]) and Hf;k (1<k<r),1<i<n,1<j<g using

. . .o . . TO _ l TO _
uninformative Dirichlet priors Ny = vd and N7, =

Markov Blanket Algorithms

The Markov blanket algorithm learns the BN structure by identifying the conditional independence
relationships among the variables. Using statistical tests (such as chi-squared test or G test),

this algorithm finds the conditional independence relationships among the nodes and uses these
relationships as constraints to construct a BN structure. This algorithm is referred to as a
dependency-analysis-based or constraint-based algorithm.

Markov Blanket Conditional Independence Test

The conditional independence (CI) test tests whether two variables are conditionally independent
with respect to a conditional variable set. There are two familiar methods to compute the CI test:
x? (Pearson chi-square) test and G? (log likelihood ratio) test.



44

Bayesian Networks Algorithms

Suppose X, Y are two variables for testing and S is a conditional variable set such that X, Y ¢ S.
Let O (2, y;) be the observed count of cases that have X = #; and Y = y;, and F (25, ;) is

the expect number of cases that have X = «; and Y = y; under the hypothesis that X, Y are
independent.

Chi-square Test

We assume the null hypothesis is that X, Y are independent. The x? test statistic for this
hypothesis is

2
X2 (X,Y) :Z (O (.r“ij,) E('rlay]))
Suppose that N is the total number of cases in D, N (z;) is the number of cases in D where
X, takes its ith category, and N (y;) and N (s) are the corresponding numbers for ¥ and S. So
N (z;,y;) is the number of cases in D where X takes its ith category and Y; takes its jth category.
N (i, 1), N (y;,sr) and N (2, y;, si) are defined similarly. We have:

(XY = Z (N (zi,y5) — N () N (y;) /N)? _ Z (N - N (zi,55) — N (2:) N ()’

N () N (y;) /N N (zi) N (y;) - N

i,j 1,J

Because x? (X,Y) ~ x? where v = (| X| — 1) (]Y| — 1) is the degrees of freedom for the
x? distribution, we get the p-value for x? (X, Y") as follows:

P (U > ¥*(X,Y))

As we know, the larger p-value, the less likely we are to reject the null hypothesis. For a given
significance level «, if the p-value is greater than o we can not reject the hypothesis that X, Y are
independent.

We can easily generalize this independence test into a conditional independence test:

(X Y[S) = > X (XY[S = 51)
k

-y (N (21,95, 58) N (s5) = N (i, s1) N (y1,5%))°
N (@i, sx) N (yj, 56) N (k)

i,J.k
The degree of freedom for x? ~ x2 is:

v=(X-1D(Y-1)-15|

Likelihood Ratio Test

We assume the null hypothesis is that X, Y are independent. The G? test statistic for this
hypothesis is
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O (zi,y;)
G?(X,Y)=2Y O(ziy;)n (—7]
or equivalently,

&y = ooy n (Y iU N
(XY)fé;N(3W1<N@wN@ﬁ)

The conditional version of the G? independence test is

6* (X, Y[S) = 230 (s S = s)ln (e 22200 )

Iy E (x4,9]S = sp)
N(fiayj75k)N('9k)>
=2Y N(zivyi, sk ln(
Z (73, yj» 1) N (24, s6) N (yj, sk)

i,k

The G? test is asymptotically distributed as a x? distribution, where degrees of freedom are the
same as in the x? test. So the p-value for the G? test is

PU>G*(X,Y))

In the following parts of this document, we use I () to uniformly represent the p-value of
whichever test is applied. If 7 (X,Y) > a, we say variable X and Y are independent, and if
I(X,Y]S) > «, we say variable X and Y are conditionally independent given variable set S.

Markov Blanket Structure Learning

This algorithm aims at learning a Bayesian networks structure from a dataset. It starts with a
complete graph G. Let X;, X; € X, and compute I (X;, X;) for each variable pair in G. If
I(X;,X,) > a,remove the arc between X;, X;. Then for each arc X; — X; perform an exhaustive
searchin ADJy, \ {X;} to find the smallest conditional variable set S such that I (X;, X;|5) > a.
If such § exist, delete arc X; — X;. After this, orientation rules are applied to orient the arcs in G.

Markov Blanket Arc Orientation Rules

Arcs in the derived structure are oriented based on the following rules:

1. All patterns of the of the form X; — X; — X, or X; — X; — X, are updated to X; = X; + X if
Xj ¢ SXin

2. Patterns of the form X; — X; — X, are updated so that X; — X,
3. Patterns of the form X; — X; are updated to X; — X;

4. Patterns of the form
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N\ v

X

X; — X, — X
|

are updated so that X; — X,

After the last step, if there are still undirected arcs in the graph, return to step 2 and repeat until
all arcs are oriented.

Deriving the Markov Blanket Structure

The Markov Blanket is a local structure of a Bayesian Network. Given a Bayesian Network G
and a target variable Y, to derive the Markov Blanket of ¥, we should select all the directed
parents of ¥ in G denoted as wy, all the directed children of Y in G denoted as X, and all the
directed parents of Xy, in G denoted as . my UY U Xy, U w and their arcs inherited from G
define the Markov Blanket A By-.

Markov Blanket Parameter Learning

Maximum Likelihood Estimation

The closed form solution for the parametersf;jx (1 < i < n,1 < j < g;, 1 <k <r;) that maximize
the log likelihood score is

5 Nijk

ik =
N;;
Note that if =; = @, then éijk = %

The number of parameters K is
n

K=> (ri—1)-g
i=1

Posterior Estimation

Assume that Dirichlet prior distributions are specified for each of the sets
O (1 <k <r;),1 <i<n,1<j<g; (Heckerman etal., 1999). Let Nl.ojk denote corresponding
Dirichlet distributed parameters such that Nioj = ZJ ioj x- Upon observing the dataset D, we

k
obtain Dirichlet posterior distributions with the following sets of parameters:

0
P _ Nijk + Nijy,
VRN + N

The posterior estimate is always used for model updating.
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Adjustment for Small Cell Counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated as
posterior parameters ;1 (1 <k <r;),1 <i <n,1 < j < g, using uninformative Dirichlet priors
specified by N7, = -2

riqi’

Blank Handling

By default, records with missing values for any of the input or output fields are excluded from
model building. If the Use only complete records option is deselected, then for each pairwise
comparison between fields, all records containing valid values for the two fields in question
are used.

Model Nugget/Scoring

The Bayesian Network Model Nugget produces predicted values and probabilities for scored
records.

Tree Augmented Naive Bayes Models

Using the estimated model from training data, for a new case x = (1, ..., z,), the probability of
it belonging to the ith target category Y; is calculated as Pr (Y = Y;|X = x). The target category
with the highest posterior probability is the predicted category for this case, Y (x), is predicted by

Y (x) = argmax; {Pr (Y = ¥;|X = x)}
=argmax; {Pr(X =x|Y =Y;) Pr(Y =Y;)}

n
argmax; {Pr Y =Y;) HPr (Xi = zi|lm =m, Y = YZ)}
=1

Markov Blanket Models

The scoring function uses the estimated model to compute the probabilities of ¥ belongs to
each category for a new case Xp. Suppose 7y is the parent set of ¥, and 7wy |p denotes the
configuration of 7y given case Xp, Xopn = (X1,. .., X;n) denotes the direct children set of 7,
m; denotes the parent set (excluding Y) of the ith variable in Xy,. The score for each category
of Y is computed by:

_ PriY =y, Xp=2p)
Zyl Pr (Y =y, Xp = ‘ij)

Pr (Y = yl‘Xp = .I?P)

where the joint probability that Y = y; and Xp = zp is:

m
Pr(Y =y, Xp=2xp)=c - Pr(Y =ylry = 7Ty|P) HPr (X; = zi|mi = mip, Y = Y1)
=1
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where

m

c¢c="Pr (7ry = Wy‘P) H Pr (m = 7ri|p)
i=1

Note that ¢ is never actually computed during scoring because its value cancels from the numerator
and denominator of the scoring equation given above.



Binary Classifier Comparison Metrics

The Binary Classifier node generates multiple models for a flag output field. For details on how
each model type is built, see the appropriate algorithm documentation for the model type.

The node also reports several comparison metrics for each model, to help you select the optimal
model for your application. The following metrics are available:

Maximum Profit

This gives the maximum amount of profit, based on the model and the profit and cost settings. It
is calculated as

J
Profityax = Z (h(x;) -r—c¢)
i=1

where h(z;) is defined as

N _ )1 ifz;isahit
h(w) = {0 othérwise

r is the user-specified revenue amount per hit, and c is the user-specified cost per record. The sum
is calculated for the j records with the highest p;, such that (p;41 - (r —¢)) — (1 = p;21) -¢) <0

Maximum Profit Occurs in %

This gives the percentage of the training records that provide positive profit based on the
predictions of the model,

Profity, = 2 - 100%
n

where 7 is the overall number of records included in building the model.
Lift

This indicates the response rate for the top ¢% of records (sorted by predicted probability), as a
ratio relative to the overall response rate,

k.
Lift = i1 Pi/k
S0y k()

where k is ¢% of n, the number of training records used to build the model. The default value of ¢
is 30, but this value can be modified in the binary classifier node options.

Overall Accuracy

This is the percentage of records for which the outcome is correctly predicted,
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n 0 otherwise

a = M . 100%’.,”(2') - { 1 if(i"i = l"z)

where #; is the predicted outcome value for record i and x; is the observed value.

Area Under the Curve (AUC)

This represents the area under the Receiver Operating Characteristic (ROC) curve for the model.
The ROC curve plots the true positive rate (where the model predicts the target response and the
response is observed) against the false positive rate (where the model predicts the target response
but a nonresponse is observed). For a good model, the curve will rise sharply near the left axis and
cut across near the top, so that nearly all the area in the unit square falls below the curve. For an
uninformative model, the curve will approximate a diagonal line from the lower left to the upper
right corner of the graph. Thus, the closer the AUC is to 1.0, the better the model.

Figure 6-1
ROC curves for a good model (left) and an uninformative model (right)
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The AUC is computed by identifying segments as unique combinations of predictor values that
determine subsets of records which all have the same predicted probability of the target value.
The s segments defined by a given model’s predictors are sorted in descending order of predicted
probability, and the AUC is calculated as

® ti 4 ti_
AUC =) Ifi = fimal- Tl
1=1

where f; is the cumulative number of false positives for segment i, that is, false positives for
segment i and all preceding segments j < i, ; is the cumulative number of true positives, and
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The code for training C5.0 models is licensed from RuleQuest Research Ltd Pty, and the algorithms
are proprietary. For more information, see the RuleQuest website at http://www.rulequest.com/.

Note: Modeler 13 upgraded the C5.0 version from 2.04 to 2.06. See the RuleQuest website
for more information.

Scoring
A record is scored with the class and confidence of the rule that fires for that record.

If a rule set is directly generated from the C5.0 node, then the confidence for the rule is calculated
as

(number correct in leaf + 1)

(total number of records in leaf + 2)

If a rule set is generated from a decision tree generated from the C5.0 node, then the confidence
is calculated as

(number correct in leaf + 1)

(total number of records in leaf + number of categories in the target)

Scores with rule set voting

When voting occurs between rules within a rule set the final scores assigned to a record are
calculated in the following way. For each record, all rules are examined and each rule that applies
to the record is used to generate a prediction and an associated confidence. The sum of confidence
figures for each output value is computed, and the value with the greatest confidence sum is
chosen as the final prediction. The confidence for the final prediction is the confidence sum for
that value divided by the number of rules that fired for that record.

Scores with boosted C5.0 classifiers (decision trees and rule sets)

When scoring with a boosted C5.0 rule set the # rule sets that make up the boosted rule set (one
rule set for each boosting trial) vote using their individual scores (as obtained above) to arrive
at the final score assigned to the case by the boosted rule set.

The voting for boosted C5 classifiers is as follows. For each record, each composite classifier
(rule set or decision tree) assigns a prediction and a confidence. The sum of confidence figures for
each output value is computed, and the value with the greatest confidence sum is chosen as the
final prediction. The confidence for the final prediction by the boosted classifier is the confidence
sum for that value divided by confidence sum for all values.
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Overview

The continuous association rule mining algorithm (Carma) is an alternative to Apriori that
reduces I/O costs, time, and space requirements (Hidber, 1999). It uses only two data passes and
delivers results for much lower support levels than Apriori. In addition, it allows changes in
the support level during execution.

Carma deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

Deriving Rules

Carma proceeds in two stages. First it identifies frequent itemsets in the data, and then it generates
rules from the lattice of frequent itemsets.

Frequent Itemsets

Carma uses a two-phase method of identifying frequent itemsets.

Phase I: Estimation

In the estimation phase, Carma uses a single data pass to identify frequent itemset candidates.
A lattice is used to store information on itemsets. Each node in the lattice stores the items
comprising the itemset, and three values for the associated itemset:

B count: number of transactions containing the itemset since the itemset was added to the lattice
m  firstTrans: the record index of the transaction for which the itemset was added to the lattice

B maxMissed: upper bound on the number of occurrences of the itemset before it was added to
the lattice

The lattice also encodes information on relationships between itemsets, which are determined
by the items in the itemset. An itemset Y is an ancestor of itemset X if X contains every item in
Y. More specifically, Y is a parent of X if X contains every item in Y plus one additional item.
Conversely, Yis a descendant of X if Y contains every item in X, and Y is a child of X if ¥ contains
every item in X plus one additional item.

For example, if X = {milk, cheese, bread}, then Y = {milk, cheese} is a parent of X, and Z =
{milk, cheese, bread, sugar} is a child of X.

Initially the lattice contains no itemsets. As each transaction is read, the lattice is updated in
three steps:

» Increment statistics. For each itemset in the lattice that exists in the current transaction, increment
the count value.
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» Insert new itemsets. For each itemset v in the transaction that is not already in the lattice, check all
subsets of the itemset in the lattice. If all possible subsets of the itemset are in the lattice with
mazSupport > o;, then add the itemset to the lattice and set its values:

B countis setto 1
B firstTrans is set to the record index of the current transaction

B maxMissed is defined as
maxMissed(v) = mcin {(LG — Vavg([al;,_1)] + |v| = 1), (mazMissed(w) + count(w) — 1)}

where w is a subset of itemset v, [o];_ is the ceiling of ¢ up to transaction i for varying
support (or simply o for constant support), and |v| is the number of items in itemset v.

» Prune the lattice. Every £ transactions (where £ is the pruning value, set to 500 by default), the
lattice is examined and small itemsets are removed. A small itemset is defined as an itemset for
which maxSupport < i, where maxSupport = (maxMissed + count)/i.

Phase II: Validation

After the frequent itemset candidates have been identified, a second data pass is made to compute
exact frequencies for the candidates, and the final list of frequent itemsets is determined based
on these frequencies.

The first step in Phase II is to remove infrequent itemsets from the lattice. The lattice is pruned
using the same method described under Phase I, with o, as the user-specified support level for
the model.

After initial pruning, the training data are processed again and each itemset v in the lattice is
checked and updated for each transaction record with index i:

» If firstTrans(v) < i, v is marked as exact and is no longer considered for any updates. (When all
nodes in the lattice are marked as exact, phase II terminates.)

» If v appears in the current transaction, v is updated as follows:
® Increment count(v)
B Decrement maxMissed(v)

B If firstTrans(v) = i, set maxMissed(v) = 0, and adjust maxMissed for every superset w of v in
the lattice for which maxSupport(w) > maxSupport(v). For such supersets, set maxMissed(w)
= count(v) - count(w).

B If maxSupport(v) < o, remove v from the lattice.

Generating Rules

Carma uses a common rule-generating algorithm for extracting rules from the lattice of itemsets
that tends to eliminate redundant rules (Aggarwal and Yu, 1998). Rules are generated from the
lattice of itemsets (see “Frequent Itemsets” on p. 53) as follows:

» For each itemset in the lattice, get the set of maximal ancestor itemsets. An itemset Y is a maximal

ancestor of itemset X if j;”m’i"“y) < 1 where c is the specified confidence threshold for rules.
pport(X) c
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» Prune the list of maximal ancestors by removing maximal ancestors of all of X’s child itemsets.

» For each itemset in the pruned maximal ancestor list, generate a rule Y = X — Y, where X—Y is
the itemset X with the items in itemset ¥ removed.

For example, if X the itemset {milk, cheese, bread} and Y is the itemset {milk, bread}, then the
resulting rule would be milk, bread = cheese

Blank Handling

Blanks are ignored by the Carma algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum rule size. Sets the limit on the number of items that will be considered as an itemset.

Exclude rules with multiple consequents. This option restricts rules in the final rule list to those
with a single item as consequent.

Set pruning value. Sets the number of transactions to process between pruning passes. For more
information, see the topic “Frequent Itemsets” on p. 53.

Vary support. Allows support to vary in order to enhance training during the early transactions in
the training data. For more information, see “Varying support” below.

Allow rules without antecedents. Allows rules that are consequent only, which are simple
statements of co-occuring items, along with traditional if-then rules.

Varying support

If the vary support option is selected, the target support value changes as transactions are
processed to provide more efficient training. The support value starts large and decreases in four
steps as transactions are processed. The first support value s applies to the first 9 transactions,
the second value s, applies to the next 90 transactions, the third value s3 applies to transactions
100-4999, and the fourth value s4 applies to all remaining transactions. If we call the final
support value s, and the estimated number of transactions ¢, then the following constraints are
used to determine the support values:

» Ifs>02o0rt <19, set sy = sy = 83 = 4.
» If19 <t < 190, set s1 = 589, 83 = 84 = $2, such that w =s.

> 1190 < ¢ < 7000, set 51 = sy, 52 = 283, 54 = &3, such that (22172052 (-99)5s) _
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» If¢ > 7000, set s, = 5s2, 50 = 253, 83 = Hsy, such that (951+9052+490253+(t74999)s4) =s

In all cases, if solving the equation yields s; > 0.5, s is set to 0.5, and the other values adjusted
accordingly to preserve the relation M = s, where s(i) is the target support (one of the
values s1, 57, 53, or s4) for the ith transaction.

Generated Model/Scoring

The Carma algorithm generates an unrefined rule node. To create a model for scoring new data,
the unrefined rule node must be refined to generate a ruleset node. Details of scoring for generated
ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.

m  Voting. This method attempts to combine the predictions of all of the rules that apply to the
record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

m  First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.

m  Voting. The confidence for the final prediction is the sum of the confidence values for rules

triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

m  First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.
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Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.

There is an exception to this: when a numeric field is examined based on a split point,
user-defined missing values are included in the comparison. For example, if you define -999 as a
missing value for a field, Carma will still compare it to the split point for that field, and may return
a match if the rule is of the form (X < 50). You may need to preprocess specially coded numeric
missing values (replacing them with $null$, for example) before scoring data with Carma.






C&RT Algorithms

Overview of C&RT

C&RT stands for Classification and Regression Trees, originally described in the book by the
same name (Breiman, Friedman, Olshen, and Stone, 1984). C&RT partitions the data into two
subsets so that the records within each subset are more homogeneous than in the previous subset.
It is a recursive process—each of those two subsets is then split again, and the process repeats
until the homogeneity criterion is reached or until some other stopping criterion is satisfied (as do
all of the tree-growing methods). The same predictor field may be used several times at different
levels in the tree. It uses surrogate splitting to make the best use of data with missing values.

C&RT is quite flexible. It allows unequal misclassification costs to be considered in the tree
growing process. It also allows you to specify the prior probability distribution in a classification
problem. You can apply automatic cost-complexity pruning to a C&RT tree to obtain a more
generalizable tree.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 9-1
Dataset with frequency field

Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
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Sex Employment Response Frequency
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in

a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Model Parameters

C&RT works by choosing a split at each node such that each child node created by the split is
more pure than its parent node. Here purity refers to similarity of values of the target field. In a
completely pure node, all of the records have the same value for the target field. C&RT measures
the impurity of a split at a node by defining an impurity measure. For more information, see the
topic “Impurity Measures” on p. 62.

The following steps are used to build a C&RT tree (starting with the root node containing all
records):

Find each predictor's best split. For each predictor field, find the best possible split for that field,
as follows:

®  Range (numeric) fields. Sort the field values for records in the node from smallest to largest.
Choose each point in turn as a split point, and compute the impurity statistic for the resulting
child nodes of the split. Select the best split point for the field as the one that yields the largest
decrease in impurity relative to the impurity of the node being split.

m  Symbolic (categorical) fields. Examine each possible combination of values as two subsets.
For each combination, calculate the impurity of the child nodes for the split based on that
combination. Select the best split point for the field as the one that yields the largest decrease
in impurity relative to the impurity of the node being split.

Find the best split for the node. Identify the field whose best split gives the greatest decrease in
impurity for the node, and select that field’s best split as the best overall split for the node.

Check stopping rules, and recurse. If no stopping rules are triggered by the split or by the parent
node, apply the split to create two child nodes. (For more information, see the topic “Stopping
Rules” on p. 64.) Apply the algorithm again to each child node.
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Blank Handling

Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

For example, suppose that X* is the predictor field that defines the best split s* at node ¢. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node ¢ (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node ¢, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as
N £, (l‘)

Ny(t)

where Ngj(7) is the sum of frequency weights for records in category j for node 7, and N(?) is the
sum of frequency weights for all records in node ¢.

If the model was built using equal or user-specified priors, the priors are incorporated into the
calculation:

m(J)  Nri()
pe(t)  Ng(t)

where 7(j) is the prior probability for category j, and pg(¢) is the weighted probability of a record
being assigned to the node,

3 m(J)Ny,i()

pf(t) = N,
5]

J

where Ng () is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node 7 belonging to category j, and Ng;j is the sum of frequency weights
for records belonging to category in the entire training sample.

Predictive measure of association

Let hx+nx (resp. hx:nx (t)) be the set of learning cases (resp. learning cases in node ) that has
non-missing values of both X* and X. Let p (s* ~ sx/|t) be the probability of sending a case in
fix=nx (t) to the same child by both s* and sx, and 3x be the split with maximized probability
p(s* = ix|t) = max,, (p(s* =~ sx|t)).
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The predictive measure of association \ (s* ~ §x|t) between s* and §x at node ¢ is

min (pr,pr) — (1 — p(s* = 3x|t))

As* =~ 5x|t) =
(57~ Bxlf) min (pr, pr)

where py, (resp. pr) is the relative probability that the best split s* at node ¢ sends a case with
non-missing value of X* to the left (resp. right) child node. And where

ifY'is categorical

Z 7 (j) Nyj (5" = sx,1)

. *
P maxl) = ¢ G Nes (X0 X)
ZX;’(SXT%}? ifY'is continuous
with
Nw (X*QX): Z wnfn’Nw(X*ﬁX7t): Z wnfn
n€hx=nx n€hx+nx (1)

N, (8" ~ sx,1) = Z w, [, ] (n:s* 2 sx)

n€hxxnx (t)
Nw:j (X*OX): Z wnerI(yn:j)’NwJ (X*QX): Z wnfnl(yn:j)

n€hx*nx n€hx*nx(t)
Nuj(s"msx, )= D waful (o =01 (n:s" = sx)

nEhxxrx(t)

and T (n : s* ~ sx) being the indicator function taking value 1 when both splits s* and sx send
the case n to the same child, 0 otherwise.

Effect of Options

Impurity Measures

There are three different impurity measures used to find splits for C&RT models, depending on the
type of the target field. For symbolic target fields, you can choose Gini or twoing. For continuous
targets, the least-squared deviation (LSD) method is automatically selected.

Gini
The Gini index g(¢) at a node ¢ in a C&RT tree, is defined as

g(t) = p(ilt)plilt)
i

where i and j are categories of the target field, and
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()
. ()N (t)
p(jt) = ij
p(t) =3 p(j.1)
J

where 7(j) is the prior probability value for category j, Nj(?) is the number of records in category
J of node 7, and Nj is the number of records of category j in the root node. Note that when the
Gini index is used to find the improvement for a split during tree growth, only those records in
node 7 and the root node with valid values for the split-predictor are used to compute Nj(#) and
Nj, respectively.

The equation for the Gini index can also be written as

g(t) = 1= p*(jl1)
J

Thus, when the records in a node are evenly distributed across the categories, the Gini index takes
its maximum value of 1 - 1/, where k is the number of categories for the target field. When all
records in the node belong to the same category, the Gini index equals 0.

The Gini criterion function @(s, f) for split s at node ¢ is defined as

@ (s,t) = g(t) — pry(tr) — pry(tr)

where py is the proportion of records in ¢ sent to the left child node, and pg is the proportion sent
to the right child node. The proportions py, and pr are defined as

_ p(tr)
p(t)

and
_ pltr)
PR =)

The split s is chosen to maximize the value of @(s, f).

Twoing
The twoing index is based on splitting the target categories into two superclasses, and then

finding the best split on the predictor field based on those two superclasses. The superclasses
C1 and C; are defined as

Cy =17 :p(jltr) = p(jltr)}
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and
Co=C—-C1

where C is the set of categories of the target field, and p(j|tr) and p(j|tr) are p(j|¢), as defined as
in the Gini formulas, for the right and left child nodes, respectively. For more information, see
the topic “Gini” on p. 62.

The twoing criterion function for split s at node 7 is defined as

2

o (s,8) = puwr | S Ip(ltn) — p(ltn))
J

where 71 and tg are the nodes created by the split s. The split s is chosen as the split that
maximizes this criterion.

Least Squared Deviation

For continuous target fields, the least squared deviation (LSD) impurity measure is used. The
LSD measure R(f) is simply the weighted within-node variance for node ¢, and it is equal to the
resubstitution estimate of risk for the node. It is defined as

1 _
Nl Zt wifi(yi — y(1))*

R(t) =

where Ny (?) is the weighted number of records in node #, wj is the value of the weighting field for
record i (if any), f; is the value of the frequency field (if any), y; is the value of the target field, and
() is the (weighted) mean for node ¢#. The LSD criterion function for split s at node ¢ is defined as

® (s,t) = R(t) — prR(tL) — prR(tR)

The split s is chosen to maximize the value of @(s,?).

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:

B The node is pure (all records have the same value for the target field)
®  All records in the node have the same value for all predictor fields used by the model

m  The tree depth for the current node (the number of recursive node splits defining the current
node) is the maximum tree depth (default or user-specified).

B The number of records in the node is less than the minumum parent node size (default or
user-specified)
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B The number of records in any of the child nodes resulting from the node’s best split is less
than the minimum child node size (default or user-specified)

m  The best split for the node yields a decrease in impurity that is less than the minimum change
in impurity (default or user-specified).

Profits
Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value

of the target field. Values are used in computing gains but not in tree growing.
Profit for each node in the tree is calculated as

> Fi0)P;
j

where j is the target field category, f;(#) is the sum of frequency field values for all records in node
¢ with category j for the target field, and P; is the user-defined profit value for category ;.

Priors
Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the

target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors

By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

Ny, j

W(J):N—w

In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,

") =5
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User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform

to the constraint, using the formula

N 77(3)
TG

where 7’(j) is the adjusted prior for category j, and z(j) is the original user-specified prior for
category j.

Costs

Gini. If costs are specified, the Gini index is computed as

g(t) =Y _ C(ilj)p(ilt)p(ilt)
J#
where C(i]j) specifies the cost of misclassifying a category j record as category i.
Twoing. Costs, if specified, are not taken into account in splitting nodes using the twoing criterion.
However, costs will be incorporated into node assignment and risk estimation, as described in

Predicted Values and Risk Estimates, below.

LSD. Costs do not apply to regression trees.

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).

It uses an index that measures both the misclassification risk and the complexity of the tree,
since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

R, (T)=R(T)+a|T

R(T) is the misclassification risk of tree 7, and ‘T ‘ is the number of terminal nodes for tree 7. The
term o represents the complexity cost per terminal node for the tree. (Note that the value of a is
calculated by the algorithm during pruning.)
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Any tree you might generate has a maximum size (75x), in which each terminal node contains
only one record. With no complexity cost (a = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of a, the fewer the number of
terminal nodes in 7{a), where 7(a) is the tree with the lowest complexity cost for the given a. As
o increases from 0, it produces a finite sequence of subtrees (77, T2, T3), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {¢}, which is any single node, and
for T, the subbranch of {¢}.

Ro({t) = R() + o
Ra(Ty) = R(Ty) + a ‘T})

If R, (T;) is less than R,,({t}), then the branch Tt has a smaller cost complexity than the single
node {¢}.

The tree-growing process ensures that R, ({t}) > R.(T}) for (a =0). As a increases from 0,
both R, ({t}) and R, (T;) grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold o, such that R, ({¢}) < R,(T:) for all @ > @’. This means that when a
grows larger than a’, the cost complexity of the tree can be reduced if we cut the subbranch T}
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,
R, ({t}) = R, (T}), to find the largest value of o for which the inequality holds, which is also
represented by g(7). You end up with

R(t) — R(T})

T, — 1

a<g(t)=

You can define the weakest link (7) in tree T as the node that has the smallest value of g(#):

t) = min g(t
9(f) = min g(?)
Therefore, as o increases, ¢ is the first node for which R, ({¢}) = R.(I}). At that point, {}
becomes preferable to T3, and the subbranch is pruned.
With that background established, the pruning algorithm follows these steps:

» Set oy =0 and start with the tree 71 = 7(0), the fully grown tree.

» Increase o until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate

of the pruned tree.

» Repeat the previous step until only the root node is left, yielding a series of trees, 77, 7, ... Tk.

» If the standard error rule option is selected, choose the smallest tree T for which

R(Topt) < n%in R(T}) + m x SE(R(T))

If the standard error rule option is not selected, then the tree with the smallest risk estimate R(7)
is selected.
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Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate #(¢) of a node ¢ is computed
as

()= 5 SN )
J

where C(7*(?)|j) is the misclassification cost of classifying a record with target value j as j*(?),
Ngj(?) is the sum of the frequency weights for records in node 7 in category j (or the number of
records if no frequency weights are defined), and Nr is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

> Ele )

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate 7(¢) of a node ¢ is computed as

r(t) = ﬁ %fxyi ()

where f; is the frequency weight for record i (a record assigned to node ¢), y; is the value of the
target field for record i, and 7(¢) is the weighted mean of the target field for all records in node z.
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Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(7) for the tree (7) is
calculated by taking the sum of the risk estimates for the terminal nodes #(z):

tel”

where T is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the
target value for each terminal node,

g(t) = > wifix;
ict

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

> ice Jizilj)
Ziet fl

where x;(j) = 1 if record x; is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

g(t) =Y fiP(x:)

i€t

gt j)=

where P(x;) is the profit value assigned to the target value observed in record x;.

Generated Model/Scoring

Calculations done by the C&RT generated model are described below

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as
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miin Z C(ilg)p(J[t)
J

where C(i]y) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|f) is the conditional weighted probability of a record being in
category j given that it is in node ¢, defined as

p{,1) 3 Nw,j(t)

p(jlt) = m,p(ja t) =m(j) Nu

where 7(j) is the prior probability for category j, Ny j(7) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

Nuj(t) = wifij(i)

1€L
and Ny j is the weighted number records in category j (any node),

Nuj =Y wifij(i)

€T

Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

_ 1
y(t) = N (@) %wifiyi

where Ny(?) is defined as

Nw(t) = Z wifi

119

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.
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Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the

Laplace correction:
Nyj(t) +1
N f(t) +k

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling” on p. 61.
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Overview of CHAID

CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of
a statistical test as a criterion, CHAID evaluates all of the values of a potential predictor field. It
merges values that are judged to be statistically homogeneous (similar) with respect to the target
variable and maintains all other values that are heterogeneous (dissimilar).

It then selects the best predictor to form the first branch in the decision tree, such that each
child node is made of a group of homogeneous values of the selected field. This process continues
recursively until the tree is fully grown. The statistical test used depends upon the measurement
level of the target field. If the target field is continuous, an F test is used. If the target field is
categorical, a chi-squared test is used.

CHAID is not a binary tree method; that is, it can produce more than two categories at any
particular level in the tree. Therefore, it tends to create a wider tree than do the binary growing
methods. It works for all types of variables, and it accepts both case weights and frequency
variables. It handles missing values by treating them all as a single valid category.

Exhaustive CHAID

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses
of the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may
not find the optimal split for a variable, since it stops merging categories as soon as it finds
that all remaining categories are statistically different. Exhaustive CHAID remedies this by
continuing to merge categories of the predictor variable until only two supercategories are left.
It then examines the series of merges for the predictor and finds the set of categories that gives
the strongest association with the target variable, and computes an adjusted p-value for that
association. Thus, Exhaustive CHAID can find the best split for each predictor, and then choose
which predictor to split on by comparing the adjusted p-values.

Exhaustive CHAID is identical to CHAID in the statistical tests it uses and in the way it treats
missing values. Because its method of combining categories of variables is more thorough than
that of CHAID, it takes longer to compute. However, if you have the time to spare, Exhaustive
CHAID is generally safer to use than CHAID. It often finds more useful splits, though depending
on your data, you may find no difference between Exhaustive CHAID and CHAID results.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

© Copyright IBM Corporation 1994, 2015. 73
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For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 10-1
Dataset with frequency field

Sex Employment Response Frequency
10
17
12
21
11
15
15
19

T Z L
Z Z << ZZ <<
Z <K Z <K Z K Z

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in

a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Binning of Scale-Level Predictors

1.

Scale level (continuous) predictor fields are automatically discretized or binned into a set of
ordinal categories. This process is performed once for each scale-level predictor in the model,
prior to applying the CHAID (or Exhaustive CHAID) algorithm. The binned categories are
determined as follows:

The data values y; are sorted.
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2. For each unique value, starting with the smallest, calculate the relative (weighted) frequency of
values less than or equal to the current value yj:

him 3w

Yru<Vi

where wy is the weight for record & (or 1.0 if no weights are defined).

3. Determine the bin to which the value belongs by comparing the relative frequency with the ideal
bin percentile cutpoints of 0.10, 0.20, 0.30, etc.

g
W+1

binindex = x 10

where W is the total weighted frequency for all records in the training data, ), w;, and

g= cfin+25E, wi>1
cfii+%, w <l

m  [f the bin index for this value is different from the bin index for the previous data value, add a
new bin to the bin list and set its cutpoint to the current data value.

m  [f the bin index is the same as the bin index for the previous value, update the cut point for
that bin to the current data value.

Normally, CHAID will try to create k£ = 10 bins by default. However, when the number of records
having a single value is large (or a set of records with the same value has a large combined
weighted frequency), the binning may result in fewer bins. This will happen if the weighted
frequency for records with the same value is greater than the expected weighted frequency in a bin
(1/kth of the total weighted frequency). This will also happen if there are fewer than k distinct
values for the binned field for records in the training data.

Model Parameters

CHAID works with all types of continuous or categorical fields. However, continuous predictor
fields are automatically categorized for the purpose of the analysis.For more information, see the
topic “Binning of Scale-Level Predictors” on p. 74.

Note that you can set some of the options mentioned below using the Expert Options for
CHAID. These include the choice of the Pearson chi-squared or likelihood-ratio test, the level of
Omerges the level of agpjjt, score values, and details of stopping rules.
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The CHAID algorithm proceeds as follows:

Merging Categories for Predictors (CHAID)

To determine each split, all predictor fields are merged to combine categories that are not
statistically different with respect to the target field. Each final category of a predictor field X
will represent a child node if X is used to split the node. The following steps are applied to each
predictor field X:

If X has one or two categories, no more categories are merged, so proceed to node splitting below.

Find the eligible pair of categories of X that is least significantly different (most similar) as
determined by the p-value of the appropriate statistical test of association with the target field. For
more information, see the topic “Statistical Tests Used” on p. 77.

For ordinal fields, only adjacent categories are eligible for merging; for nominal fields, all pairs
are eligible.

For the pair having the largest p-value, if the p-value is greater than oyyerge, then merge the pair
of categories into a single category. Otherwise, skip to step 6.

If the user has selected the Allow splitting of merged categories option, and the newly formed
compound category contains three or more original categories, then find the best binary split
within the compound category (that for which the p-value of the statistical test is smallest). If that
p-value is less than or equal to op|it-merge, Perform the split to create two categories from the
compound category.

Continue merging categories from step 1 for this predictor field.

Any category with fewer than the user-specified minimum segment size records is merged
with the most similar other category (that which gives the largest p-value when compared with
the small category).

Merging Categories for Predictors (Exhaustive CHAID)

Exhaustive CHAID works much the same as CHAID, except that the category merging is more
thoroughly tested to find the ideal set of categories for each predictor field. As with regular
CHALID, each final category of a predictor field X will represent a child node if X is used to split
the node. The following steps are applied to each predictor field X:

For each predictor variable X, find the pair of categories of X that is least significantly different
(that is, has the largest p-value) with respect to the target variable Y. The method used to
calculate the p-value depends on the measurement level of Y. For more information, see the
topic “Statistical Tests Used” on p. 77.

Merge into a compound category the pair that gives the largest p-value.

Calculate the p-value based on the new set of categories of X. This represents one set of categories
for X. Remember the p-value and its corresponding set of categories.
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4. Repeat steps 1, 2, and 3 until only two categories remain. Then, compare the sets of categories
of X generated during each step of the merge sequence, and find the one for which the p-value
in step 3 is the smallest. That set is the set of merged categories for X to be used in determining
the split at the current node.

Splitting Nodes

When categories have been merged for all predictor fields, each field is evaluated for its
association with the target field, based on the adjusted p-value of the statistical test of association,
as described below.

The predictor with the strongest association, indicated by the smallest adjusted p-value, is
compared to the split threshold, ogpji¢. If the p-value is less than or equal to ogpjjt, that field is
selected as the split field for the current node. Each of the merged categories of the split field
defines a child node of the split.

After the split is applied to the current node, the child nodes are examined to see if they warrant
splitting by applying the merge/split process to each in turn. Processing proceeds recursively until
one or more stopping rules are triggered for every unsplit node, and no further splits can be made.

Statistical Tests Used

Calculations of the unadjusted p-values depend on the type of the target field. During the merge
step, categories are compared pairwise, that is, one (possibly compound) category is compared
against another (possibly compound) category. For such comparisons, only records belonging to
one of the comparison categories in the current node are considered. During the split step, all
categories are considered in calculating the p-value, thus all records in the current node are used.

Scale Target Field (F Test).

For models with a scale-level target field, the p-value is calculated based on a standard
ANOVA F-test comparing the target field means across categories of the predictor field under
consideration. The F statistic is calculated as

I
Z Z wnnt («Un — Z) (yz - g)Q/(I - 1>
F= i=1 neD
I
Z Z wy fnl (In = 2) (yn - gZ)Q/(Nf B I)
i=1 neD

and the p-value is

p=Pr(F(I-1,N;~1I)>F)

where
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= ZnGD Wy frynd (In Z) g= ZTLGD Wy fnYn N, = Z f
C ep wnfal (e =) Snepwnfn 7 "

neD

and F(I — 1, Ny — I) is a random variable following an F-distribution with (/ — 1) and (Nf— 1)
degrees of freedom.

Nominal Target Field (Chi-Squared Test)

If the target field Y is a set (categorical) field, the null hypothesis of independence of X and Y is
tested. To do the test, a contingency (count) table is formed using classes of Y as columns and
categories of the predictor X as rows. The expected cell frequencies under the null hypothesis of
independence are estimated. The observed cell frequencies and the expected cell frequencies are
used to calculate the chi-squared statistic, and the p-value is based on the calculated statistic.

Pearson Chi-squared test
The Pearson chi-square statistic is calculated as
J T 2
2 _ Z Z ’l@] 7”]@]
j=1i=1
where n;; = > fol(x, =i Ay, = j) is the observed cell frequency and 1i2;; is the expected
cell frequency for cell (x, = i, y, =) from the independence model as described below. The

corresponding p value is calculated as p = Pr (x5 > X?), where x3 follows a chi-square
distribution with d = (J — 1)(/ — 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

Likelihood-ratio Chi-squared test

The likelihood-ratio chi-square is calculated based on the expected and observed frequencies, as
described above. The likelihood ratio chi-square is calculated as

J 1
2=2 Z Z nij In (nij /mi;)
=1 i=1
and the p-value is calculated as p = Pr (x3 > G?)

Expected frequencies for chi-squared tests

For models with no case weights, expected frequencies are calculated as
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where

J I
ni = E Nij, Nj = E Nij, M. = E E ngj.
j=1 i=1 j

J=1:=1

If case weights are specified, the expected cell frequency under the null hypothesis of
independence takes the form

——1
mi; = lwij Oziﬁ]’

where o; and fj are parameters to be estimated, and
_ Wi ) .
Wij = ——, Wi = § wnfnj(x:@/\yn:])-
Mij ,
neD

The parameter estimates &;, 3]‘, and hence 1725, are calculated based on the following iterative
procedure:

L itially, k=0, 0" = 87 =1, m{? =w".

% 17 tj
2 (k+1) n; (k) _ n,
Can = i = q; b,
i =10k} i (%)
E,z W B Zj i

3. B("“Fl) _ n.g

j - ——1 (k+1)

J ZL Wi ai

k—+1 P k+1 k+1
4. m§j+):wij1a’g+)ﬂ;+)'

(k+1)
ij
&i, 35, and 1;;. Otherwise, increment k and repeat from step 2.

k+1)

k)
J 7

- mg (k1) /8§k+1

If max; ; |m < ¢, stop and output a; ) and mz(- as the final estimates of

Ordinal Target Field (Row Effects Model)

If the target field Y is ordinal, the null hypothesis of independence of X and Y is tested against
the row effects model, with the rows being the categories of X and the columns the categories
of ¥Y(Goodman, 1979). Two sets of expected cell frequencies, 7;; (under the hypothesis of
independence and ﬁz.ij (under the hypothesis that the data follow the row effects model), are both
estimated. The likelihood ratio statistic is computed as

I J
i=1 j=1

and the p-value is calculated as

p=Pr (X%—l > H2)
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Expected Cell Frequencies for the Row Effects Model

For the row effects model, scores for categories of Y are needed. By default, the order of each
category is used as the category score. Users can specify their own set of scores. The expected
cell frequency under the row effects model is

-3)

1 (s;
mij = W5 i
where sj is the score for category j of ¥, and

J
Zj:l W.jS;j

s =
J
Zj:l w.j

in which w ; = >, wij, o;, v and v are unknown parameters to be estimated.

Parameter estimates &;, B > %,i, and hence ﬁtij are calculated using the following iterative
procedure:

k= 0,a§0) = 59('0) = %-(0) = 1,m(q) —w !

RS . k) ny

g Z m_—_lﬂ(_k) (7_(k))(5j*5) =% ZJ_ mif)
; Wig 75 i

5(k+1) _ .
’ Z oo lat (,y(k))(.sjfg)
3 , AN (85-3) Z‘(S'*E)(n,‘.,mf)
=W (k+1) (k+1) (k) 7 o P 2 i
M = Wy & B; ('Yz' ) , Gi=1+4 Zj(sj‘g)gm;‘j

’Y'(k+1) _ {’yi(k)Gi G; >0
’ ~F - otherwise

(5-5)
) = ol g ()

(k+1)

iy m§§>‘ < ¢, stop and set alk Ty, ﬂ](-k+1), (k1 (k1)

i Y; ), and m;; as the final

If max; ; ’m i ;

estimates of &;, Bj, %/i, and 'rfnl-j. Otherwise, increment & and repeat from step 2.

Bonferroni Adjustment

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni
multiplier controls the overall p-value across multiple statistical tests.

Suppose that a predictor field originally has I categories, and it is reduced to » categories after
the merging step. The Bonferroni multiplier B is the number of possible ways that I categories
can be merged into r categories. Forr=1, B=1. For2 <r </,
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(7{ B % ) Ordinal predictor
B={ Y| (—1)”% Nominal predictor
I-2 I—: . . .
\ (r _ 2) +r ( r—1 > Ordinal with a missing value

Blank Handling

If the target field for a record is blank, or all the predictor fields are blank, the record is ignored in
model building. If case weights are specified and the case weight for a record is blank, zero, or
negative, the record is ignored, and likewise for frequency weights.

For other records, blanks in predictor fields are treated as an additional category for the field.

Ordinal Predictors

The algorithm first generates the best set of categories using all non-blank information. Then the
algorithm identifies the category that is most similar to the blank category. Finally, two p-values
are calculated: one for the set of categories formed by merging the blank category with its most

similar category, and the other for the set of categories formed by adding the blank category as a
separate category. The set of categories with the smallest p-value is used.

Nominal Predictors

The missing category is treated the same as other categories in the analysis.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:

®  The node is pure (all records have the same value for the target field)
m  All records in the node have the same value for all predictor fields used by the model

m  The tree depth for the current node (the number of recursive node splits defining the current
node) is the maximum tree depth (default or user-specified).

B The number of records in the node is less than the minumum parent node size (default or
user-specified)

B The number of records in any of the child nodes resulting from the node’s best split is less
than the minimum child node size (default or user-specified)

®  The best split for the node yields a p-value that is greater than the ogpjt (default or
user-specified).
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Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

> P,
i

where j is the target field category, f;(#) is the sum of frequency field values for all records in node
¢ with category j for the target field, and P; is the user-defined profit value for category ;.

Score Values

Scores are available in CHAID and Exhaustive CHAID. They define the order and distance
between categories of an ordinal categorical target field. In other words, the scores define the
field’s scale. Values of scores are involved in tree growing.

If user-specified scores are provided, they are used in calculation of expected cell frequencies,
as described above.

Costs
Costs, if specified, are not taken into account in growing a CHAID tree. However, costs will be

incorporated into node assignment and risk estimation, as described in Predicted Values and
Risk Estimates, below.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate #(¢) of a node ¢ is computed
as
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where C(7*(?)|j) is the misclassification cost of classifying a record with target value j as j*(?),
Ngj(?) is the sum of the frequency weights for records in node 7 in category j (or the number of
records if no frequency weights are defined), and Ny is the sum of frequency weights for all
records in the training data.

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate 7(¢) of a node ¢ is computed as
1 2
r(t) = = 2 fili —7(1))
Ny(t) ;

where f; is the frequency weight for record 7 (a record assigned to node ¢), y; is the value of the
target field for record i, and 7(¢) is the weighted mean of the target field for all records in node 7.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(7) for the tree (7) is
calculated by taking the sum of the risk estimates for the terminal nodes r(z):

tel”

where T is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the
target value for each terminal node,

g(t) = > wifi;
ict

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

dier Jizi(G)
Ziet fi

where x;(j) = 1 if record x; is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

g(t) =) fiP(:)

1ct

g(t,j)=
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where P(x;) is the profit value assigned to the target value observed in record x;.

Generated Model/Scoring

Calculations done by the CHAID generated model are described below

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

miin Z C'(il7)p(4[t)

where C(i]y) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|f) is the conditional weighted probability of a record being in
category j given that it is in node ¢, defined as

waj (ZL)

; N

ij(jvt)’p /

where 7(j) is the prior probability for category j, Ny j() is the weighted number of records in node
¢t with category j (or the number of records if no frequency or case weights are defined),

Ny j(t) = Z w; f37(7)

ict

p(ilt) = = 7(j)

and Ny j is the weighted number records in category j (any node),

Ny,j = Zwifz'j(i)

€T
Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

y(t) = N:(t) > wifiyi

1=

where Ny(?) is defined as
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Nu(t) =Y wifi

i€t

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Ny () +1
Nf(t) + k

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, being treated as
an additional category (possibly merged with other non-blank categories). For more information,
see the topic “Blank Handling” on p. 81.

For nodes where there were no blanks in the training data, a blank category will not exist for
the split of that node. In that case, records with a blank value for the split field are assigned a
null value.






Cluster Evaluation Algorithms

This document describes measures used for evaluating clustering models.

m  The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which
contain tightly cohesive clusters) and cluster separation (favoring models which contain
highly separated clusters). It can be used to evaluate individual objects, clusters, and models.

B The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of
squares between (SSB) is a measure of prototype-based separation.

B Predictor importance indicates how well the variable can differentiate different clusters. For
both range (numeric) and discrete variables, the higher the importance measure, the less
likely the variation for a variable between clusters is due to chance and more likely due to
some underlying difference.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Tik Continuous variable k in case i (standardized).

Tiks The sth category of variable k in case 7 (one-of-c coding).

N Total number of valid cases.

N; The number of cases in cluster j.

Y Variable with J cluster labels.

Hik The centroid of cluster j for variable k.

D, The distance between case i and the centroid of cluster ;.

D The distance between the overall mean » and the centroid of cluster ;.

Goodness Measures

The average Silhouette coefficient is simply the average over all cases of the following calculation
for each individual case:

(B— A)/max (A, B)

where 4 is the average distance from the case to every other case assigned to the same cluster and
B is the minimal average distance from the case to cases of a different cluster across all clusters.

Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use
the following definitions of 4 and B:

B A is the distance from the case to the centroid of the cluster which the case belongs to;

B B is the minimal distance from the case to the centroid of every other cluster.

© Copyright IBM Corporation 1994, 2015. 87
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Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average
range between —1, indicating a very poor model, and 1, indicating an excellent model. As found
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure.

Data Preparation

Before calculating Silhouette coefficient, we need to transform cases as follows:

Recode categorical variables using one-of-c coding. If a variable has ¢ categories, then it is stored
as ¢ vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the
final category (0,0,...,0,1). The order of the categories is based on the ascending sort or lexical
order of the data values.

Rescale continuous variables. Continuous variables are normalized to the interval [—1, 1] using the
transformation [2*(x—min)/(max—min)]—1. This normalization tries to equalize the contributions
of continuous and categorical features to the distance computations.

Basic Statistics

The following statistics are collected in order to compute the goodness measures: the centroid
;1 of variable k for cluster j, the distance between a case and the centroid, and the overall mean u.

For 15, with an ordinal or continuous variable &, we average all standardized values of variable
k within cluster j. For nominal variables, p; is a vector {4, } of probabilities of occurrence
for each state s of variable £ for cluster j. Note that in counting , we do not consider cases with
missing values in variable k. If the value of variable % is missing for all cases within cluster j,
i% 1s marked as missing.

The distance D, between case i and the centroid of cluster j can be calculated in terms of the

ij
weighted sum of the distance components d?;, across all variables; that is

ik
Y pw;ipde
2 _ ZkTiikGk
" Ypw;jik

where w;;;, denotes a weight. At this point, we do not consider differential weights, thus
w; ;1 equals 1 if the variable & in case i is valid, 0 if not. If all w;;;, equal 0, set ij =0.

The distance component d7;,, is calculated as follows for ordinal and continuous variables
) 2
digr, = (i — pn)

For binary or nominal variables, it is

S
1
dzgjk = S—kZ (ms - @jks)Q
s=1
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where variable k uses one-of-c coding, and Sj, is the number of its states.

The calculation of D; is the same as that of D;;, but the overall mean u is used in place of 1, and

5% 1s used in place of x;.
Silhouette Coefficient

The Silhouette coefficient of case i is

min {Dzj;j & C—z} — Dici
max (min {D;;,j € C_;}, Dic,)

where C_; denotes cluster labels which do not include case i as a member, while ¢; is the cluster
label which includes case i. If max (min{D;;,j € C_;},D;.,) equals 0, the Silhouette of case i is

not used in the average operations.
Based on these individual data, the total average Silhouette coefficient is:

SO — iz min {.Dijyj € .C—i} — D,
N £~ max (min {Dy;,j € C_;}, Dj,)

=

Sum of Squares Error (SSE)

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order
to compare between models, we will use the averaged form, defined as:

1 2
Average SSE = WZ Z Dy;
jeC icj

Sum of Squares Between (SSB)

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In
order to compare between models, we will use the averaged form, defined as:

1
Average SSB = NZ NjDJz
jel

Predictor Importance

The importance of field i is defined as

—logyg (sigi)
maxeq (—logy (sig)))

VI =
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where 2 denotes the set of predictor and evaluation fields, sig; is the significance or
p-value computed from applying a certain test, as described below. If sig; equals zero, set
sig; = MinDouble, where MinDouble is the minimal double value.

Across Clusters
The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by
p-value = Prob(y? > X?),

where

I
Xr=3 >, <Nij - Nz‘j)z/Ni'
=1

J
j=1
where Nij = NLNJ/N (X)

m If NV (X) =0, the importance is set to be undefined or unknown;
m If N, =0, subtract one from / for each such category to obtain I ;
B If N ; = 0, subtract one from J for each such cluster to obtain J "
|

IfJ <1lorlI <1,the importance is set to be undefined or unknown.
The degrees of freedom are (I' — 1) (J' — 1).
The p-value for continuous fields is based on an F test. It is calculated by
p-value = Prob{F (J — Ll,N — J) > F},

where

J

SNNi@E -B) T - 1)
j—1

J

> (Nj—1)s;/(N=)

j=1

F=

If N=0, the importance is set to be undefined or unknown;
If N; = 0, subtract one from J for each such cluster to obtain J "

IfJ <lorN<J ', the importance is set to be undefined or unknown;

If the denominator in the formula for the F statistic is zero, the importance is set to be
undefined or unknown;

m  [f the numerator in the formula for the F statistic is zero, set p-value = 1;

The degrees of freedom are (J' —1,N— J').
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Within Clusters

The null hypothesis for categorical fields is that the proportion of cases in the categories in
cluster j is the same as the overall proportion.

The chi-square statistic for cluster j is computed as follows

I 2
X2 — Z (Nij — iji)

i1 Njpi

If N; = 0, the importance is set to be undefined or unknown;

If p; = 0, subtract one from 7 for each such category to obtain I';
IfI' <1, the importance is set to be undefined or unknown.

The degrees of freedom are d = I' — 1.

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall
mean.

The Student’s ¢ statistic for cluster j is computed as follows

,_ (@ -7)

5/VN;

with d = N; — 1 degrees of freedom.

If N; <1 or s; =0, the importance is set to be undefined or unknown;
If the numerator is zero, set p-value = 1;

Here, the p-value based on Student’s ¢ distribution is calculated as

p-value =1 — Prob{|T (d)| < |¢|}.
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Cox Regression Algorithms

Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative
effect on the hazard function. These models are called proportional hazards models. Under the
proportional hazards assumption, the hazard function % of 7 given X is of the form

h(t|x) = ho(t)ex ?

where x is a known vector of regressor variables associated with the individual, 3 is a vector of
unknown parameters, and kg (¢) is the baseline hazard function for an individual with x = 0.
Hence, for any two covariates sets x; and x», the log hazard functions %(¢/x;) and h(t|x2) should
be parallel across time.

When a factor does not affect the hazard function multiplicatively, stratification may be useful in
model building. Suppose that individuals can be assigned to one of m different strata, defined
by the levels of one or more factors. The hazard function for an individual in the jth stratum is
defined as

7

hy(L1x) = ho;(t)e* ©

There are two unknown components in the model: the regression parameter 3 and the baseline
hazard function hg,;(¢). The estimation for the parameters is described below.

Estimation

We begin by considering a nonnegative random variable 7 representing the lifetimes of individuals
in some population. Let f(¢|x) denote the probability density function (pdf) of 7 given a regressor
x and let S(¢|x) be the survivor function (the probability of an individual surviving until time

t). Hence

S(tlx) = / S (u|x)du
t
The hazard h(¢|x) is then defined by
— fGx)
h{thx) = st

Another useful expression for S(¢|x) in terms of h(t|x) is

S(tlx) = exp (— /O th(ulx)du)

Thus,

In S(t]x) = —/0 (ulx)du

For some purposes, it is also useful to define the cumulative hazard function

© Copyright IBM Corporation 1994, 2015. 93
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H(t|x) = /Oth(u,|x)d,u = —InS(¢|x)
Under the proportional hazard assumption, the survivor function can be written as
S(tx) = [So(0] > %)
where S5, () is the baseline survivor function defined by
So(t) = exp (—Ho(t))
and
t
mm:lmwm
Some relationships between S(t|x), H(t|x) and Hy(t), Sy(t) and hy(t) which will be used later are
In S(t/x) = —H(t|x) = — exp (x’,@)HO(t)

In (—1lnS(t|x)) = x B + In Hy(t)

To estimate the survivor function S(¢|x), we can see from the equation for the survivor function
that there are two components, 3 and Sy (¢), which need to be estimated. The approach we use
here is to estimate 5 from the partial likelihood function and then to maximize the full likelihood
for So (t) .

Estimation of Beta

Assume that
m  There are m levels for the stratification variable.
® Individuals in the same stratum have proportional hazard functions.

m  The relative effect of the regressor variables is the same in each stratum.

Lett;; < .-+ < t;, be the observed uncensored failure time of the n; individuals in the jth
stratum and x;1, .. ., x;, be the corresponding covariates. Then the partial likelihood function is
defined by

k_ i/
4 S jif

= [T
Z wlex’“’q

j=14i=1
ICR;;

where d;; is the sum of case weights of individuals whose lifetime is equal to ¢;; and S;; is
the weighted sum of the regression vector x for those d;; individuals, w; is the case weight of
individual /, and R;; is the set of individuals alive and uncensored just prior to ¢;; in the jth
stratum. Thus the log-likelihood arising from the partial likelihood function is
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m  kj ke

=) =33 855 3 S dyln | 37w

j=1i=1 j=1i=1 lER;;

and the first derivatives of / are

7
E wyz e P

ZGRJL
=5 = ZZ S or=1.p
j=11i=1 UJ[@

lERJ’L

Sii (") is the rth component of §; i = (Sj(tl), s S e )) The maximum partial likelihood estimate
(MPLE) of /3 is obtained by settmg equal to zero for r=1,...,p, where p is the number of
independent variables in the model. The equations a ﬂ =0 (r =1,...,p) can usually be
solved by using the Newton-Raphson method.

Note that from its equation that the partial likelihood function L(#) is invariant under
translation. All the covariates are centered by their corresponding overall mean. The overall mean
of a covariate is defined as the sum of the product of weight and covariate for all the censored and
uncensored cases in each stratum. For notational simplicity, x; used in the Estimation Section
denotes centered covariates.

Three convergence criteria for the Newton-Raphson method are available:

B Absolute value of the largest difference in parameter estimates between iterations () divided
by the value of the parameter estimate for the previous iteration; that is,

BCON = - d - -
parameter estimate for previous iteration

B Absolute difference of the log-likelihood function between iterations divided by the
log-likelihood function for previous iteration.

B  Maximum number of iterations.

The asymptotic covariance matrix for the MPLE 8= (31, - Bp is estimated by IT~! where I
is the information matrix containing minus the second partial derivatives of In L. The (r, s)-th
element of I is defined by

I. = Eaﬁ a7, lnL
1 1
§ > wia e > wwpe P Y wae* P
I
B ? IERy; 1€R; IR,

7 ﬁ 2
=1 i=1 E wye* ! »
X
IER;; E wre™ !

lI€ER;;

We can also write I in a matrix form as

kj

M§

dj; ( ) I (t:) (2 (t5:))

1i=1

J
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where x(¢;;) is a n;; x p matrix which represents the p covariate variables in the model evaluated
at time ¢;;, nj; is the number of distinct individuals in R;;, and V (¢,;) is a nj; X n;; matrix with
the /th diagonal element v;;(t;;) defined by

2
vu(tsi) = putgi)wn — (wipi(ti))

o (' 18)

B Z Wp exXp (x’hﬁ>

heR;;

pilts)

and the (/, k) element vy (t;;) defined by

vi(tji) = wipi(tji) ¥ wrpk(t;s)

Estimation of the Baseline Function

After the MPLE $ of 3 is found, the baseline survivor function S, (t) is estimated separately for
each stratum. Assume that, for a stratum, #; < --- < t;, are observed lifetimes in the sample.
There are n; at risk and d; deaths at ¢;, and in the interval [¢;_1,¢;) there are A; censored times.
Since Sy(¢) is a survivor function, it is non-increasing and left continuous, and thus S;(#) must be
constant except for jumps at the observed lifetimes ¢4, ..., %.

Further, it follows that

So(t1) =1

and

So(ti+) = So(tis1)

Writing go(ti—&-) =pi(i = 1,...,k), the observed likelihood function is of the form

s ()= ) () g ()

i=1 e, 1€Ck+1

where D; is the set of individuals dying at ¢; and C; is the set of individuals with censored times in
[ti—1,;). (Note that if the last observation is uncensored, C41 is empty and p, = 0)

If we let o; = p;/p;—1(i = 1,...,k), Ly can be written as

k ’ w ’
Ll:HH (1_G§XP(XJ,6)>I H a;ﬂzBXP(Xzﬁ)

i=1leD; leR;—D;

Differentiating ln L; with respect to «, . . ., oy and setting the equations equal to zero, we get
W] exp (x'lﬁ) ,

Z —exp(x'lﬁ) = Zwlexp (X lﬁ) Z:l,...,k

len; 1 —a; IER;

We then plug the MPLE 3 of 3 into this equation and solve these k equations separately.
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There are two things worth noting:
m Ifany |D;| = 1, &; can be solved explicitly.
oxp (~x'15)

)
. w; exXp (x B
Q; = 1 S

X

Z wy exp ( 13)
lER;
m If |D;| > 1, the equation for the cumulative hazard function must be solved iteratively for
&;. A good initial value for &; is

~ —di

&; = €XpP ”
Z wy exp (x gﬂ)
lER;

where d; = Z wy 1s the weight sum for set D;. (See Lawless, 1982, p. 361.)
leD;

Once the &;, ¢ = 1,. ..,k are found, Sy(¢) is estimated by
S’(] (t) = H &;
i:(t; <)

Since the above estimate of .5,(¢) requires some iterative calculations when ties exist, Breslow
(1974) suggests using the equation for «; when |D;| > 1 as an estimate; however, we will use
this as an initial estimate.

The asymptotic variance for — In S, (t) can be found in Chapter 4 of Kalbfleisch and Prentice
(1980). At a specified time ¢, it is consistently estimated by

var(— In S()(t)) = Z | D;] (Z w; exp (X’ZB)> - +allg

t;<t leR;

where a is a px1 vector with the jth element defined by

Z wWixyj exp (XlzB)
> IDi|- = 2
foct (Z Wy exp (x'lB)>

leR;

and I is the information matrix. The asymptotic variance of 5(¢|x) is estimated by

eX'B (S(tlx)) 2Uanr (— In S, (t)>

Selection Statistics for Stepwise Methods

The same methods for variable selection are offered as in binary logistic regression. For more
information, see the topic “Stepwise Variable Selection ” on p. 253. Here we will only define the
three removal statistics—Wald, LR, and Conditional—and the Score entry statistic.
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Score Statistic

The score statistic is calculated for every variable not in the model to decide which variable should
be added to the model. First we compute the information matrix I for all eligible variables based
on the parameter estimates for the variables in the model and zero parameter estimates for the
variables not in the model. Then we partition the resulting I into four submatrices as follows:

|:A11 A12:|
A21 A22

where A;; and A,; are square matrices for variables in the model and variables not in the model,
respectively, and A5 is the cross-product matrix for variables in and out. The score statistic
for variable x; is defined by

D', Bus,Dy,
where D, is the first derivative of the log-likelihood with respect to all the parameters associated

. . —1 .
with x; and Baa; is equal to (Azs; — AglﬁiAﬁlAm,,;) ,and Ay ; and A;,; are the submatrices
in A,; and A, associated with variable x;.

Wald Statistic

The Wald statistic is calculated for the variables in the model to select variables for removal.
The Wald statistic for variable x; is defined by

B;Bll,jﬁj

where 5’3- is the parameter estimate associated with x; and By ; is the submatrix of Afll associated
with X .

LR (Likelihood Ratio) Statistic

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models
evaluated at their own MPLES. Assume that » variables are in the current model and let us call the
current model the full model. Based on the MPLES of parameters for the full model, /(fu/l) is
defined in “Estimation of Beta . For each of r variables deleted from the full model, MPLES

are found and the reduced log-likelihood function, /(reduced), is calculated. Then LR statistic is
defined as

=2(l(reduced) — I(full))

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for
conditional statistic is the same as LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as



99

COXREG Algorithms

follows. Let 3 = (Bl, e 3,) be the MPLES for the r variables (blocks) and C be the asymptotic

covariance for the parameters left in the model given j; is

3 5 i D) '

By = By — €% (Cg )) Bi

where 3; is the MPLE for the parameter(s) associated with x; and B(i) is A without 3, ng is

the covariance between the parameter estimates left in the model 3(2-) and j3;, and cg’; is the
covariance of §;. Then the conditional statistic for variable x; is defined by

—2(U(bey) — 1(full))
where l(/S’(,»)> is the log-likelihood function evaluated at B(,»).

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to
the number of parameters the corresponding model has.

Statistics

The following output statistics are available.

Initial Model Information

The initial model for the first method is for a model that does not include covariates. The
log-likelihood function / is equal to

m  kj
10) = =) djiln(nf;)

j=1i=1

where nj; is the sum of weights of individuals in set Rj;.

Model Information
When a stepwise method is requested, at each step, the —2 log-likelihood function and three

chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their
corresponding degrees of freedom and significance are printed.

-2 Log-Likelihood

m  kj
—22 Z Sljij — dji In Z w; exXp (XIIIB)

j=1i=1 l€R;;

where 3 is the MPLE of 3 for the current model.
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Improvement Chi-Square
(-2 log-likelihood function for previous model) — ( -2 log-likelihood function for current model).

The previous model is the model from the last step. The degrees of freedom are equal to the
absolute value of the difference between the number of parameters estimated in these two models.

Model Chi-Square
(-2 log-likelihood function for initial model) — ( -2 log-likelihood function for current model).
The initial model is the final model from the previous method. The degrees of freedom are equal
to the absolute value of the difference between the number of parameters estimated in these

two model.

Note: The values of the model chi-square and improvement chi-square can be less than or equal to
zero. If the degrees of freedom are equal to zero, the chi-square is not printed.

Overall Chi-Square

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables
in the model are identically zero. This statistic is defined as

u' (0)I1u(0)

where u(0) represents the vector of first derivatives of the partial log-likelihood function evaluated
at 8 = 0. The elements of u and I are defined in “Estimation of Beta .

Information for Variables in the Equation

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its
corresponding df, significance, and partial R are given. For a single variable, R is defined by

1/2
— Wald-—2 .
k= [_2 Tog-Tikelihood for the intial model] x sign of MPLE

if Wald > 2. Otherwise R is set to zero. For a multiple category variable, only the Wald statistic,
df, significance, and partial R are printed, where R is defined by

172
R= _ Wald-2.df /
-2 log-likelihood for the intial model

if Wald > 2df. Otherwise R is set to zero.
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Information for the Variables Not in the Equation

For each of the variables not in the equation, the Score statistic is calculated and its corresponding
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the
equation is defined similarly to the R for the variables in the equation by changing the Wald
statistic to the Score statistic.

There is one overall statistic called the residual chi-square. This statistic tests if all regression
coefficients for the variables not in the equation are zero. It is defined by

i ()pan(s)

where u(ﬁ) is the vector of first derivatives of the partial log-likelihood function with

respect to all the paramleters not in the equation evaluated at MPLE /3 and By, is equal to
(A2 — A1 Aj'Apb) 7 and A is defined in “Score Statistic 7.

Survival Table

Plots

For each stratum, the estimates of the baseline cumulative survival (S,) and hazard (H,) function
and their standard errors are computed. Hy(t) is estimated by

Hy(t) = —1In 5y(2)

and the asymptotic variance of Hy(t) is defined in “Estimation of the Baseline Function . Finally,
the cumulative hazard function H (¢|x) and survival function S(¢|x) are estimated by

ﬁ(t|x) = exp (xﬁ) ﬁg(t)

and, for a given x,

St = [sofe] ™ )

The asymptotic variances are

var (ﬁ(tlx)) = exp (QX,B) var (ffo (t))

and

W(S(t\x)) = exp (2x' B) (5(t|x))2var (ﬁo(t))

For a specified pattern, the covariate values x, are determined and x, is computed. There are three
plots available for Cox regression.
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Survival Plot

For stratum j, (ti, S’o(ti\xc)>, i=1,...,k; are plotted where

oA

S(ti|x.) = (So(ti))exp (%)

Hazard Plot
For stratum j, (ti, fI(ti\xc)>, i=1,...,k; are plotted where
H(ti|x.) = exp (x/cé)ﬁo (t:)

LML Plot

The log-minus-log plot is used to see whether the stratification variable should be included as
a covariate. For stratum j, (ti, X 3+ 1n ﬁg(ti)), i=1,...,k; are plotted. If the plot shows
parallelism among strata, then the stratum variable should be a covariate.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring
Survival and cumulative hazard estimates are given in “Survival Table ” on p. 101.

Conditional upon survival until time #(, the probability of survival until time # is

A S (t + o)
S(t+tolty) = ———2
(t + tolto) 3 (i)
Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Additionally, records with “total” survival time (past + future) greater than the record with the
longest observed uncensored survival time are also assigned a predicted value of $null$.
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Decision List Algorithms

The objective of decision lists is to find a group of individuals with a distinct behavior pattern; for
example, a high probability of buying a product. A decision list model consists of a set of decision
rules. A decision rule is an if-then rule, which has two parts: antecedent and consequent. The
antecedent is a Boolean expression of predictors, and the consequent is the predicted value of the
target field when the antecedent is true. The simplest construct of a decision rule is a segment
based on one predictor; for example, Gender = ‘Male’ or 10 < Age < 20.

A record is covered by a rule if the rule antecedent is true. If a case is covered by one of the
rules in a decision list, then it is considered to be covered by the list.

In a decision list, order of rules is significant; if a case is covered by a rule, it will be ignored
by subsequent rules.

Algorithm Overview

The decision list algorithm can be summarized as follows:
» Candidate rules are found from the original dataset.
» The best rules are appended to the decision list.
» Records covered by the decision list are removed from the dataset.

» New rules are found based on the reduced dataset.

The process repeats until one or more of the stopping criteria are met.

Terminology of Decision List Algorithm
The following terms are used in describing the decision list algorithm:

Model. A decision list model.

Cycle. In every rule discovery cycle, a set of candidate rules will be found. They will then be
added to the model under construction. The resulting models will be inputs to the next cycle.

Attribute. Another name for a variable or field in the dataset.

Source attribute. Another name for predictor field.

Extending the model. Adding decision rules to a decision list or adding segments to a decision rule.
Group. A subset of records in the dataset.

Segment. Another name for group.

© Copyright IBM Corporation 1994, 2015. 105
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Main Calculations

Notation

The following notations are used in describing the decision list algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).
L A collection of list models.
L; The ith list model of L.
Lpun A list model that contains no rules.
Pr, The estimated response probability of list Z;.
N Total population size
Xmmn The value of the mth field (column) for the nth record (row) of X.
X, The subset of records in X that are covered by list model L;.
Y The target field in X.
Y, The value of the target field for the nth record.
A Collection of all attributes (fields) of X.
A;j The jth attribute of X.
R A collection of rules to extend a preceding rule list.
Ry, The kth rule in rule collection R.
T A set of candidate list models.
ResultSet A collection of decision list models.
Primary Algorithm

The primary algorithm for creating a decision list model is as follows:

1. Initialize the model.

» Let d = Search depth, and w = Search width.
» If L=, add L, to L.

> T=0.

2. Loop over all elements L; of L.

» Select the records X not covered by rules of L;:

X7 =X - X,

i

» Call the decision rule algorithm to create an alternative rule set R on X . For more information,
see the topic “Decision Rule Algorithm” on p. 107.
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Construct a set of new candidate models by appending each rule in R to L;.
Save extended list(s) to 7.
Select list models from 7.

Calculate the estimated response probability Py, of each list model in T as

. N(Y,=1,X, € Xz
N(X, € X1.)

L, —

Select the w lists in 7 with the highest P, as L*.
Add L* to ResultSet.

Ifd=1 or L* = O, return ResultSet and terminate; otherwise, reduce d by one and repeat from

step 2.

Decision Rule Algorithm

Each rule is extended in decision rule cycles. With decision rules, groups are searched for
significantly increased occurrence of the target value. Decision rules will search for groups
with a higher or lower probability as required.

Notation

The following notations are used in describing the decision list algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).

R A collection of rules to extend a preceding rule list.

R; The ith rule in rule collection R.

Ran A special rule that covers all the cases in X.

Pr, The estimated response probability of R;.

N Total population size.

X The value of the mth field (column) for the nth record (row) of X.

Xkg, The subset of records in X that are covered by rule R;.

Y The target field in X.

Y, The value of the target field for the nth record.

A Collection of all attributes (fields) of X.

Aj The jth attribute of X. If Allow attribute re-use is false, 4 excludes
attributes existing in the preceding rule.

SplitRule(X, 4;) The rule split algorithm for deriving rules about 4; and records in X.
For more information, see the topic “Decision RuI]e Split Algorithm”
on p. 108.

T A set of candidate list models.

ResultSet A collection of decision list models.
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Algorithm Steps

N v v v &

vV Vv V

The decision rule algorithm proceeds as follows:
Initialize the rule set.

Let d = Search depth, and w = Search width.
If R =0, add R,y to R.

T=0.

Loop over all rules R; in R.

Select records X, covered by rule R;.

Create an empty set S of new segments.

Loop over attributes A; in 4.

®m  Generate new segments based on attribute A4;:

SplitRule(Xp,, A;)

®  Add new segments to S.

Construct a set of new candidate rules by extending R; with each segment in S.
Save extended rules to 7. If S = &, add R; to ResultSet.

Select rules from 7.

Calculate the estimated response probability Pg, for each extended rule in T as

p N(Yvn = laXn S XRi)

BT TTN(X, € Xn)

Select the w rules with the highest P, as R*.

Add R* to ResultSet.

If d = 1, return ResultSet and terminate. Otherwise, set R = R*, T'= &, reduce d by one, and
repeat from step 2.

Decision Rule Split Algorithm

The decision rule split algorithm is used to generate high response segments from a single attribute
(field). The records and the attribute from which to generate segments should be given. This
algorithm is applicable to all ordinal attributes, and the ordinal attribute should have values that
are unambiguously ordered. The segments generated by the algorithm can be used to expand an
n-dimensional rule to an (n + 1)-dimensional rule. This decision rule split algorithm is sometimes
referred to as the sea-level method.
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Notation

The following notations are used in describing the decision rule split algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).

C A sorted list of attribute values (categories) to split. Values are sorted
in ascending order.

C; The ith category in the list of categories C.

Xnc The value of the split field (attribute) for the nth record (row) of X.

Y The target field in X.

Yo The value of the target field for the nth record.

N Total population size.

M Number of categories in C.

P; Observed response probability of category C;.

SL.r A segment of categories, St r = {C;|C; € C, 1< L<i<R< M}

- + The confidence interval (CI) for the response probability of Sz r.
pSL,R’pSL,R ’

max, (C;, Cy) The category with the higher response probability from {C;, C;}.
max,, (C;, Cj) The category with the larger number of records from {C;, C;}.
Algorithm Steps

The decision rule split algorithm proceeds as follows:
1. Compute P; of each category C;.

P = ]\‘va/n — 17Xn,c < Cz)
‘ N(Xp,. € Ci)

Py =Py1) =0

If N(X,, . € C;) =0, C; will be skipped.

2. Find local maxima of P; to create a segment set.
PeakSet = {C;|C; € C,0<i=1<M}
where [ is a positive integer satisfying the conditions
Pr> Py
P :P(M),OglgL—I
Pr > P( L+1)

The segment set is the ordered segments based on Fg,
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SegmentSel = {SL,Rlci € PeakSet, L = R =i, Pg, > Pgi“}

w

Select a segment in SegmentSet.

If SegmentSet is empty, return ResultSet and terminate.

Select the segment Sz, r with the highest response probability Ps, .

IfR—-L+1=MorPs, , <Ps, ,,, remove the segment from SegmentSet and choose another.

Validate the segment.

vV & v v v

If the following conditions are satisfied:

m The size of the segment exceeds the minimum segment size criterion
Size(Sp ) > Maz(gsyin, d, Max(g - Size(parent))
where

parent € ResultSet, Lpgrent > L, Rparent < R

m  Response probability for the segment is significantly higher than that for the overall sample,
as indicated by non-overlapping confidence intervals

— +
pSL,R > pPOp
For more information, see the topic “Confidence Intervals” on p. 110.
m  Extending the segment would lower the response probability
PSL—l,R < PSL,R and PSL,R+1 < PSL,R
then add the segment Sy,  to ResultSet, and remove any segments S; ., from ResultSet that have
S1,r as parent and for which Size (S/LA’R) < g-Size(SL.r).
5. Extend the segment.
» Add Cugjacent to Si g, where

Maxy(Cp1,Cry1) £ Pry# Prig
Cadjacent =  Maz,(Cr,—1,Cry1) if P = Pryyand N (Cpq) # N(Cgy1)
Crs1 otherwise

» Adjust R or L accordingly, i.e. if Cpgjacent = Cr—1, st L = L — 1; if Cypgjacent = Cry1, set
R=R+1.

» Return Sy, r to SegmentSet, and repeat from step 3.

Confidence Intervals

The confidence limits (p~, p™) for p are calculated as
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m .
p = { THM—x+1)} Foin_wi1) 201 a2 ifz 7£ 0
0

ifx=20
(24 1) Foeqn) 2(n_ayi—aye :
er = TL_:C+(I+1)F2(;:+1)¢2(7L7:L‘);17a/2 lf.fl'f 7£ n
1 ifzr=n

where # is the coverage of the rule or list, x is the response frequency of the rule or list, o is the
desired confidence level, and F, ;.. is the inverse cumulative distribution function for F with a
and b degrees of freedom, for percentile 100c.

Secondary Measures

For each segment, the following measures are reported:

Coverage. The number of records in the segment, N (S).

Frequency. The number of records in the segment for which the response is true,
N, =1,X, € 5).

Probability. The proportion of records in the segment for which the response is true, W,

Frequency

or .
Coverage

Blank Handling

In decision list models, blank values for input fields can be treated as a separate category that can
be used to define segments, or can be excluded from the model, depending on the expert model
option. The default is to use blanks as a category for defining segments. Records with blank
values for the target field are excluded from model building.

Generated Model/Scoring

The decision list generated model consists of a set of segments. When scoring new data, each
record is evaluated for membership in each segment, in order. The first segment in model order
that describes the record based on the predictor fields claims the record and determines the
predicted value and the probability. Records where the predicted value is not the response value
will have a value of $null. Probabilities are calculated as described above.

Blank Handling

In scoring data with a decision list generated model, blanks are considered valid values for
defining segments. If the model was built with the expert option Allow missing values in conditions
disabled, a record with a missing value for one of the input fields will not match any segment
that depends on that field for its definition.
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No analysis is done for any subfile group for which the number of non-empty groups is less
than two or the number of cases or sum of weights fails to exceed the number of non-empty
groups. An analysis may be stopped if no variables are selected during variable selection or
the eigenanalysis fails.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Table 14-1

Notation

Notation Description

g Number of groups

p Number of variables

q Number of variables sclected
Xijk Value of variable i for case k in group j
fik Case weights for case k in group j
mj Number of cases in group j

nj Sum of case weights in group j

n Total sum of weights

Basic Statistics

The procedure calculates the following basic statistics.

Mean
X = (Z fijijk) /n; (variable i in group 5)
k=1
g m; . )
X, = Z finXign | /n (variable i)
j=1k=1
Variances
mj ‘ .,
(Z fijiij - ”in1>
§E = = =) (variable i in group j)
g My —
<Z SinXi — nXi) (variable )
=1 k=1
Sie =~ n—1

© Copyright IBM Corporation 1994, 2015. 113
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Within-Groups Sums of Squares and Cross-Product Matrix (W)

g

mj g ’nl]’ Tnj
wy = Fie X Xije— FirXijx fieXoge | /mg 4 1=1,....p
/
k-1

j=1k=1 j=1 \k=1

Total Sums of Squares and Cross-Product Matrix (T)

g mj g mj g mj
tia = Z Z FinXijnXijn— (Z Z fijijk:> (Z Z fjk:lek:> /n

j=1k=1 j=1k=1 j=1k=1
Within-Groups Covariance Matrix
C=VY_ nsy

(n—9)

Individual Group Covariance Matrices

(Z FinXijnXijn — Yijylj‘nJ)
()

i) _ \k=1
¢ = (n;—1)

Within-Groups Correlation Matrix (R)

ry = \/:i—iilw” lfw“LUll > 0
SYSMIS otherwise

Total Covariance Matrix

Univariate F and Afor Variable |

o (tii—wi)(n—g)
Iy = wi;(g—1)
with g—1 and n—g degrees of freedom
Ay =41

with 1, g—1 and n—g degrees of freedom

Rules of Variable Selection

Both direct and stepwise variable entry are possible. Multiple inclusion levels may also be
specified.
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Method = Direct

For direct variable selection, variables are considered for inclusion in the order in which they are
passed from the upstream node. A variable is included in the analysis if, when it is included,

no variable in the analysis will have a tolerance less than the specified tolerance limit (default
=0.001).

Stepwise Variable Selection

At each step, the following rules control variable selection:

Eligible variables with higher inclusion levels are entered before eligible variables with lower
inclusion levels.

The order of entry of eligible variables with the same even inclusion level is determined by
their order in the upstream node.

The order of entry of eligible variables with the same odd level of inclusion is determined
by their value on the entry criterion. The variable with the “best” value for the criterion
statistic is entered first.

When level-one processing is reached, prior to inclusion of any eligible variables, all
already-entered variables which have level one inclusion numbers are examined for removal.
A variable is considered eligible for removal if its F-to-remove is less than the F' value for
variable removal, or, if probability criteria are used, the significance of its F-to-remove
exceeds the specified probability level. If more than one variable is eligible for removal, that
variable is removed that leaves the “best” value for the criterion statistic for the remaining
variables. Variable removal continues until no more variables are eligible for removal.
Sequential entry of variables then proceeds as described previously, except that after each step,
variables with inclusion numbers of one are also considered for exclusion as described before.

A variable with a zero inclusion level is never entered, although some statistics for it are
printed.

Ineligibility for Inclusion

A variable with an odd inclusion number is considered ineligible for inclusion if:

The tolerance of any variable in the analysis (including its own) drops below the specified
tolerance limit if it is entered, or

Its F-to-enter is less than the F-value for a variable to enter value, or

If probability criteria are used, the significance level associated with its F-to-enter exceeds the
probability to enter.

A variable with an even inclusion number is ineligible for inclusion if the first condition above
is met.
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Computations During Variable Selection

During variable selection, the matrix W is replaced at each step by a new matrix W* using the
symmetric sweep operator described by Dempster (1969). If the first g variables have been
included in the analysis, W may be partitioned as:

{Wn W12}
Wy Wy

where W1 is gxq. At this stage, the matrix W* is defined by

WH — [Wul Wf11W12 } — [Wﬁ sz]

Wy W' Wa — Wy W W, Wi Wi

In addition, when stepwise variable selection is used, 7 is replaced by the matrix 7*, defined
similarly.

The following statistics are computed.

Tolerance

TOL; = ¢ w}/wy if variable i is not in the analysis and w;; # 0
—1/(w}w;;) if variable i is in the analysis and w;; # 0.

If a variable’s tolerance is less than or equal to the specified tolerance limit, or its inclusion in the
analysis would reduce the tolerance of another variable in the equation to or below the limit, the
following statistics are not computed for it or any set including it.

F-to-Remove

o (wi -t (n—g—g+1)
Fi = AV

with degrees of freedom g—1 and n—g—g+1.

F-to-Enter

L wi (g—1

with degrees of freedom g—1 and n—g—g.

Wilks’ Lambda for Testing the Equality of Group Means
A= [Wy|/|T1|

with degrees of freedom ¢, g—1 and n—g.
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The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka,
1971)

F— (1—A®)(r/s+1—qh/2)

Asqgh
where
5= qq’;z};:f ifg* +h*#5
1 otherwise
r=n—1-(q+g)/2
h=g—1

with degrees of freedom g/ and r/s+1—gh/2. The approximation is exact if g or 4 is 1 or 2.
Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976)

V=-(n- g)z wal(tiz — wi)

=1 [=1

When n—g is large, V, under the null hypothesis, is approximately distributed as x? with g(g—1)
degrees of freedom. When an additional variable is entered, the change in V, if positive, has
approximately a x? distribution with g—1 degrees of freedom.

The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b

D2, =—(n-9> Y wi(Xia — Xit) (Xia — Xu)

i=11=1

The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio)

_ (n—g—g+Dnany 2
Fab = o)t tms) Dab

The Sum of Unexplained Variations (Dixon, 1973)

g—1 g

R= Y 4/(4+Dp)

a=1b=a+1

Classification Functions

Once a set of g variables has been selected, the classification functions (also known as Fisher’s
linear discriminant functions) can be computed using

q
bij:(n—g)walylj 1=1,2...,¢,7=12,...,9
=1

for the coefficients, and
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q
aj:logpj—%Zbin,-j j:1,2,...,q
i=1

for the constant, where p; is the prior probability of group ;.

Canonical Discriminant Functions

The canonical discriminant function coefficients are determined by solving the general eigenvalue
problem

(T — W)V = AWV

where V is the unscaled matrix of discriminant function coefficients and A is a diagonal matrix of
eigenvalues. The eigensystem is solved as follows:

The Cholesky decomposition

W =LU

is formed, where L is a lower triangular matrix, and U = L.
The symmetric matrix L~'BU ! is formed and the system
(L YT -W)U - AI)(UV) =0

is solved using tridiagonalization and the QL method. The result is m eigenvalues, where
m = min (g, g — 1) and corresponding orthonormal eigenvectors, UV. The eigenvectors of the
original system are obtained as

V = U L(UV)

For each of the eigenvalues, which are ordered in descending magnitude, the following statistics
are calculated.

Percentage of Between-Groups Variance Accounted for

100X

3

> M
E=1

Canonical Correlation

A/ (14 Ak)
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Wilks’ Lambda

Testing the significance of all the discriminating functions after the first £:

A= ] va+x) k=0,1,....m—1
i=k+1

The significance level is based on
X?=—(n—(g+9)/2-1)nAy

which is distributed as a x? with (¢—k)(g—k—1) degrees of freedom.

The Standardized Canonical Discriminant Coefficient Matrix D

The standard canonical discriminant coefficient matrix D is computed as

D=8,V

where

S=diag(\/w11, /W22, - -, /Wpp)

S11= partition containing the first ¢ rows and columns of S

V is a matrix of eigenvectors such that VW, V=/
The Correlations Between the Canonical Discriminant Functions and the Discriminating
Variables

The correlations between the canonical discriminant functions and the discriminating variables
are given by

R=S8;,'W;,V
If some variables were not selected for inclusion in the analysis (¢g<p), the eigenvectors are
implicitly extended with zeroes to include the nonselected variables in the correlation matrix.

Variables for which 1W;; = 0 are excluded from S and W for this calculation; p then represents
the number of variables with non-zero within-groups variance.

The Unstandardized Coefficients

The unstandardized coefficients are calculated from the standardized ones using

B=/(n— 9)81_11])
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The associated constants are:

q
ap = *Z bikXie
i=1

The group centroids are the canonical discriminant functions evaluated at the group means:

q
Frj = ax + Z birn X i

i=1

Tests For Equality Of Variance

Box’s M is used to test for equality of the group covariance matrices.

g
M= (n—- g)log‘C" - Z (n; — 1)log‘C(j)’
j=1
where
C' = pooled within-groups covariance matrix excluding groups with singular covariance matrices

C) = covariance matrix for group j.

Determinants of C" and C¥) are obtained from the Cholesky decomposition. If any diagonal
element of the decomposition is less than 10-11, the matrix is considered singular and excluded
from the analysis.

P
log |CY)| = 23" logli; — plog (n; — 1)

i=1

where 1;; is the ith diagonal entry of L such that (n; — 1)C4) = L'L. Similarly,
p 1
log ‘C ’ = QZlogl“ —plog (n —g)
i=1
where
(n’ - g)c’ —L'L
n'= sum of weights of cases in all groups with nonsingular covariance matrices

The significance level is obtained from the F distribution with #; and #, degrees of freedom
using (Cooley and Lohnes, 1971):

F:{]W/b ifey > ef

bo M : 2
=) ifey < ef

where
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2p2+3p—1
6(g-1)(p+1)

g
3 P 1 (p—1)(p+2)
(nj -1 (n—g)) °7Y

t=(g—-1plp+1)/2

o
S,
I
e Q/—\
H'Mla
—
3
=
[ |-
—
|
pu
—
o

€2

fg = (tl —|—2)/|62 —eﬂ

ty : 2

b — { ety ifes > €7
- ta ; 2
T e -2/t 1f€2 <eq

If €2 — e, is zero, or much smaller than ey, #; cannot be computed or cannot be computed
accurately. If

ey = €9 + 0.0001(82 — e%)

the program uses Bartlett’s x? statistic rather than the F statistic:
X2 =M(1—-e)

with 1 degrees of freedom.

For testing the group covariance matrix of the canonical discriminant functions, the procedure is
similar. The covariance matrices C" and C) are replaced by D, and D', where

D; =B'CYB
is the group covariance matrix of the discriminant functions.

The pooled covariance matrix in this case is an identity, so that

D = (n—g)L,, — z (n; —1)D;

where the summation is only over groups with singular D).

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Generated model/scoring

The basic procedure for classifying a case is as follows:

B If X is the 1xq vector of discriminating variables for the case, the 1xm vector of canonical
discriminant function values is
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f=XB+a

B A chi-square distance from each centroid is computed
xj = (f—£;)D; (f — £;)
where D; is the covariance matrix of canonical discriminant functions for group j and f; is
the group centroid vector. If the case is a member of group j, X? has a x? distribution with
m degrees of freedom. P(X|G), labeled as P(D>d|G=g) in the output, is the significance
level of such a x .

m  The classification, or posterior probability, is

2
PyID,| "M% 5

g

—1/2 4?2
> PyDy e
=1

P(Gy[X) =

where p; is the prior probability for group j. A case is classified into the group for which
P (G;|X) is highest.

The actual calculation of P (G ;|X) is

g; =log Pj — %(log D;| + X?)

exp (g; —max; g;)

9
1= | S (o opes)
=1
0 otherwise

if g; — max; g; > —46

If individual group covariances are not used in classification, the pooled within-groups covariance
matrix of the discriminant functions (an identity matrix) is substituted for D; in the above
calculation, resulting in considerable simplification.

If any D is singular, a pseudo-inverse of the form
DY 0
0 0

replaces Dj‘1 and |D;1,| replaces |D;|. Dj;; is a submatrix of D; whose rows and columns
correspond to functions not dependent on preceding functions. That is, function 1 will be excluded
only if the rank of D; = 0, function 2 will be excluded only if it is dependent on function 1, and
so on. This choice of the pseudo-inverse is not optimal for the numerical stability of Djjll, but
maximizes the discrimination power of the remaining functions.

Cross-Validation (Leave-one-out classification)

The following notation is used in this section:

Table 14-2
Notation

Notation Description
Xj (X1jk,...,quk)T

~



123

Notation
M;

~

My,

d? (a, b)
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Description
Sample mean of jth group

mj
M; = %Z finXn
k=1 ~

~

Sample mean of jth group excluding point X ;i

TTLj

My = 5 D S X
=1
14k

Polled sample covariance matrix
Sample covariance matrix of jth group

Polled sample covariance matrix without point X

T
—1 -1
n;x; (Xjkaj) (Xjk,fMj) x;
— nfgffjk, 2_1 + ~ ~ ~ ~

n—g T
(nj—fjk)(nj—g)—nj (Xjk:—]\/[j> gj‘l (Xjk—]\/fj)

T T
(o5

Cross-validation applies only to linear discriminant analysis (not quadratic). During
cross-validation, all cases in the dataset are looped over. Each case, say X, is extracted once and

treated as test data. The remaining cases are treated as a new dataset.

Here we compute d2 (Xjk, ]ij> and d3 <Xjk, ]L[,;) (i=1,...,9.i £ j). If there is an i(i # j) that

satisfies (log (P;) — d3 { Xj. J\L) /2 >log (P;) — d2 <Xjk, M ) /2), then the extracted point

~

X, 1s misclassified. The estimate of prediction error rate is the ratio of the sum of misclassified

case weights and the sum of all case weights.
To reduce computation time, the linear discriminant method is used instead of the canonical
discriminant method. The theoretical solution is exactly the same for both methods.

Blank Handling (discriminant analysis algorithms scoring)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

References
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Ensembles Algorithms

Ensembles are used to enhance model accuracy (boosting), enhance model stability (bagging),
build models for very large datasets (pass, stream, merge), and generally combine scores from
different models.

®  For more information, see the topic “Very large datasets (pass, stream, merge) algorithms”
on p. 130.

For more information, see the topic “Bagging and Boosting Algorithms” on p. 125.

For more information, see the topic “Ensembling model scores algorithms” on p. 136.

Bagging and Boosting Algorithms

Bootstrap aggregating (Bagging) and boosting are algorithms used to improve model stability and
accuracy. Bagging works well for unstable base models and can reduce variance in predictions.
Boosting can be used with any type of model and can reduce variance and bias in predictions.

Notation

The following notation is used for bagging and boosting unless otherwise stated:

K The number of distinct records in the training set.

X5 Predictor values for the kth record.

Yk Target value for the kth record.

fr Frequency weight for the kth record.

Wk Analysis weight for the kth record.

N The total number of records; N = ©h_, i

M The number of base models to build; for bagging, this is the number of
bootstrap samples.

" () The model built on the mth bootstrap sample.

b Simulated frequency weight for the kth record of the mth bootstrap sample.

wy Updated analysis weight for the kth record of the mth bootstrap sample.

g =T (Xk) Predicted target value of the kth record by the mth model.

P (X4) For a categorical target, the probability that the kth record belongs to
category l;, i=1, ..., C, in model m.

II(x) For any condition , I () is 1 if # holds and 0 otherwise.

© Copyright IBM Corporation 1994, 2015. 125



126

Ensembles Algorithms

Bootstrap Aggregation

Bootstrap aggregation (bagging) produces replicates of the training dataset by sampling with
replacement from the original dataset. This creates bootstrap samples of equal size to the original
dataset. The algorithm is performed iteratively over k=1,..,K and m=1,...,M to generate frequency
weights:

rv.binom <N, %) k=1
Sok = fr

. [ 1 .
rv.binom | N — Z mis Tlf otherwise
2

Then a model is built on each replicate. Together these models form an ensemble model. The
ensemble model scores new records using one of the following methods; the available methods
depend upon the measurement level of the target.

Scoring a Continuous Target

B Mean
M
~ 1 ~
Ye = 37 z Yk
m=1
® Median

Sort g7 and relabel them g1y < ... < §an)

Yk = 1 (s . .
5 ( Y(ar) -I-y(% )> if M is even

Scoring a Categorical Target

m  Voting
Ik = argmaxy,cn |M | Z P (Xk)
mEMz
Py = m Z e (Xk)

mEM@k

where Q) = {argmax;, |M;,

m  Highest probability
Uk = argmax, (maxm (le (Xk)))
Py = maep, (P2 (X))

m  Highest mean probability

M
Jr = argmaxy, 37 . P (Xx)

m=1

ﬁ@k:jwzpyn Xk

m=1
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Bagging Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is
1 K
v AT (yr == )
k=1

For continuous targets, it is

B2 SE L fele — i)’
E{n{:lfk(yk - g)Z

where 7 = %EkK:l frye
Note that R can never be greater than one, but can be less than zero.

For the naive model, 3 is the modal category for categorical targets and the mean for continuous
targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.
For categorical targets, diversity is
1 K
—_— L (; M — L (y;
N ;fk (vr) [ (yx)]

where L (yx) = Y2 11 (g5 = 977).

For continuous targets, diversity is

ka Z Z vk — U1 ) Uk — k)

m 1 n=1,n#m

D=1~ —3
K Feluk — Tg)
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Adaptive Boosting

Adaptive boosting (AdaBoost) is an algorithm used to boost models with continuous targets
(Freund and Schapire 1996, Drucker 1997).

1. Initialize values.

—=——  if analysis weights specified
Setwy = Ti1wifi _
1/N otherwise

Set m=1, wi* = wy, and f;* = fi. Note that analysis weights are initialized even if the method
used to build base models does not support analysis weights.

2. Build base model m, T™ (-), using the training set and score the training set.

K
1— Z Lsz’fk
k=1

Set the model weight for base model m, w™ = log i

g Lywy fr
=1

abs(§y' —yk)

where Ly, = —= (abs(o7 )"

3. Set weights for the next base model .

w',’f“ =K om a;?;:L_l
Yitia T fi
x 1-Lg
> Lewi fr
where a]" ™t = wir | *=L . Note that analysis weights are always updated. If

k=l
1- ZLkwlek

k=1
the method used to build base models does not support analysis weights, the frequency weights
are updated for the next base model as follows:

rv.binom (N, w',:,”ka) k=1
m+1 m—+1
— ] B w S .
k rv.binom | N — S gmtt o - otherwise
= 1 — k- wm+ f
i=1 "k U

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

K

Note: base models where Z Lywi® frr > 0.5 or maxy (abs(§}” — yx)) are removed from the
k=1

ensemble.

Scoring

AdaBoost uses the weighted median method to score the ensemble model.

Sort g;* and relabel them g1y < ... < §(ay), retaining the association of the model weights, w™,
and relabeling them w(yy, ..., w(an
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The ensemble predlcted Value is then g = §;y, where i is the value such that

Zu < = Zw <Zw

m=1 m 1 m=1

Stagewise Additive Modeling using Multiclass Exponential loss

Stagewise Additive Modeling using a Multiclass Exponential loss function (SAMME) is an
algorithm that extends the original AdaBoost algorithm to categorical targets.

1. Initialize values.

—=——  if analysis weights specified
Set wy, = Zg(:lwif'i )
1/N otherwise

Set m=1, w* = wy, and f* = fi. Note that analysis weights are initialized even if the method
used to build base models does not support analysis weights.

2. Build base model m, T™ (-), using the training set and score the training set.

Set the model weight for base model m, w™ = log ==  log (C' — 1)

err™

where err™ Z wp fe I T (yr 2 0100).

3. Set weights for the next base model.

w/rsn+1 K a;:;ll—l—l
Yilia T fi
where a}" ™' = wi exp (W™ I (yx # §7*)) . Note that analysis weights are always updated. If the

method used to build base models does not support analysis weights, the frequency weights are
updated for the next base model as follows:

ruv.binom (N, w;""'lfk) k=1
m—+1 — wm+1f
k rv.binom | N — Ek L pmAl k otherwise
=1JEk ! k—1_ m+1
- Ei:1 W fz

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

Note: base models where err,, = 0 or w™ <= 0 are removed from the ensemble.

Scoring
SAMME uses the weighted majority vote method to score the ensemble model.

The predicted value of the kth record for the mth base model is §;* = arg max;, P (Xy).

The ensemble predicted value is then g, = argmax;, Z w™II (7" ==1;). Ties are resolved

m=1
at random.
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m

The ensemble predicted probability is p;, = Z “ Pl (X4).

i
mEMy, E, w

i€ My,

Boosting Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is
R
v > Fell (ye == )
k=1

For continuous targets, it is

R2_1_ SR felye — i)
oK ey — 7)°

where Y= %EkK:lfkyk
Note that R2 can never be greater than one, but can be less than zero.

For the naive model, . is the modal category for categorical targets and the mean for continuous
targets.

References
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Very large datasets (pass, stream, merge) algorithms

We implement the PSM features PASS, STREAM, and MERGE through ensemble modeling.
PASS builds models on very large data sets with only one data pass; STREAM updates the
existing model with new cases without the need to store or recall the old training data; MERGE
builds models in a distributed environment and merges the built models into one model.
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In an ensemble model, the training set will be divided into subsets called blocks, and a model will
be built on each block. Because the blocks may be dispatched to different threads (here one process
contains one thread) and even different machines, models in different processes can be built at the
same time. As new data blocks arrive, the algorithm simply repeats this procedure. Therefore it
can easily handle the data stream and perform incremental learning for ensemble modeling.

The PASS operation includes following steps:

Split the data into training blocks, a testing set and a holdout set. Note that the frequency weight,
if specified, is ignored when splitting the training set into blocks (to prevent blocks from being
entirely represented by a single case) but is accounted for when creating the testing and holdout
sets.

Build base models on training blocks and build a reference model on the testing set. A single
model is built on the testing set and each training block.

Evaluate each base model by computing the accuracy based on the testing set. Select a subset
of base models as ensemble elements according to accuracy.

Evaluate the ensemble model and the reference model by computing the accuracy based on
the holdout set. If the ensemble model’s performance is not better than the reference model’s
performance on the holdout set, we use the reference model to score the new cases.

Computing Model Accuracy

The accuracy of a base model is assessed on the testing set. For each vector of predictors a; and
the corresponding label ¢; observed in the testing set T, let é (x;) be the label predicted by the
given model. Then the testing error is estimated as:

T
Categorical target. v = ¢ S (fi T (e # e(x))

S
i=1

|7
Continuous target.” = ‘Tﬂ Z (fi - lyi — 0:)

St
=1

Where I (¢; # é(x;)) is 1 if ¢; # & (x;) and 0 otherwise.

The accuracy for the given model is computed by A=1—F. The accuracy for the whole ensemble
model and the reference model is assessed on the holdout set.
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Stream

When new cases arrive and the user wants to update the existing ensemble model with these
cases, the algorithm will:

1. Start a PASS operation to build an ensemble model on the new data, then

2. MERGE the newly created ensemble model and the existing ensemble model.

The MERGE operation has the following steps:

1. Merge the holdout sets into a single holdout set and, if necessary, reduce this set to a reasonable
size.

2. Merge the testing sets into a single testing set and, if necessary, reduce this set to a reasonable size.
3. Build a merged reference model on the merged testing set.

4. Evaluate every base model by computing the accuracy based on the merged testing set. Select a
subset of base models as elements of the merged ensemble model according to accuracy.

5. [Evaluate the merged ensemble model and the merged reference model by computing the accuracy
based on the merged holdout set.

Adaptive Predictor Selection

There are two methods, depending upon whether the method used to build base models has an
internal predictor selection algorithm.

Method has predictor selection algorithm

The first base model is built with all predictors available to the method’s predictor selection
algorithm. Base model j (j > 1) makes the ith predictor available with probability

nli—f—C'

nH—C”ﬁ

pi = max

where n'; is the number of times the ith predictor was selected by the method’s predictor selection
algorithm in the previous j—1 base models, n; is the number of times the ith predictor was made
available to the method’s predictor selection algorithm in the previous j—1 base models, C is a
constant to smooth the value of p;, and 3 is a lower limit on p;.

Method does not have predictor selection algorithm

Each base model makes the ith predictor available with probability
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i = (1—pi)? if pi < 0.05
I} otherwise

where p; is the p-value of a test for the ith predictor, as defined below.

m  For a categorical target and categorical predictor, p is a chi-square test of

G? = 22;1 Z‘j]:l G7; where G, = Nigln (Nij/N“) Nig > 0
0 else

freedom (I — 1) (J — 1). N;; is the number of cases with X=i and Y=j, N;. = Z‘j]:l N;
N.]- = 21'1:1 Nijs and ]\/vij = JVlAN]/N

m  For a categorical target and continuous predictor, p is an F' test of

TN (z-E) -1 .
F= Zﬂjl (7, -5) /t7-) with degrees of freedom J — 1, N — J. Nj is the
Zjﬂ (N;—1)s;/(N—J)

number of cases with Y=j, Z; and s? are the sample mean and sample variance of X given
Y=, and T = Y] | N;T;/N

m  For a continuous target and categorical predictor, p is an F test of

I — =\2
F= Zﬁ':l N(w:-3) /U1 with degrees of freedom I — 1, N — I. Nj is the
S (No-Ds(y),/(N-1) .
number of cases with X=i, 7, and s(y)>

X=i,and y = X_, N;3,;/N.

and with degrees of

7o

are the sample mean and sample variance of Y given

®m  For a continuous target and continuous predictor, p is a two-sided # test of ¢t = r/ {\Q =% where
i, (@ —F ) (3 —7) /(N -1

\/s§z>2s<y>2
of X and s(y)” is the sample variance of Y.

7= ) and with degrees of freedom N — 2. s(z)” is the sample variance

Automatic Category Balancing

When a target category occurs relatively infrequently, many models do a poor job of predicting
members of that rarely occurring category, even if the overall prediction rate of the model is fairly
good. Automatic category balancing should improves the model’s accuracy when predicting
infrequently occurring values.

As records arrive, they are added to a training block until it is full. Then the proportion of records
in each category is computed: C; = %%, where w; is the weighted number of records taking
category i and w is the total weighted number of records.

» If there is any category such that C; < «/ (10 - |C|), where |C| is the number of target categories
and a= 0.3, then randomly remove each record from the training block with probability

Min {(1 — Min(C)/CYy), (1 - %\)}

This operation will tend to remove records from frequently-occurring categories. Add new records
to the training block until it is full again, and repeat this step until the condition is not satisfied.

» If there is any category such that C; < «/ |C], then recompute the frequency weight for record & as
fr = fr max (10, a max (C')/Cy1)), where i (k) is the category of the kth record. This operation
gives greater weight to infrequently occurring categories.
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Model Measures

The following notation applies.

N
M

fx

Accuracy

Total number of records
Total number of base models
The frequency weight of record &

The observed target value of record &
The predicted target value of record & by the ensemble model

The predicted target value of record & by base model m

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

.

1 N

N > felI (ye == i)
h—1

where

o i (g = k)
I (yk = k) = { 0, otherwise

For continuous targets, it is

~ N2
U

K felyr — 7)°

where g = £ 5K fry,

Note that R2 can never be greater than one, but can be less than zero.

For the naive model, 3, is the modal category for categorical targets and the mean for continuous

targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.

For categorical targets, diversity is
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K
1
~ %72 o L M—L{
N ; Fiel (o) | (1)
where L (yx) = S0, 1T (y, = §}") and 11 (yy, = ") is defined as above.

Diversity is not available for continuous targets.

There are several strategies for scoring using the ensemble models.

Continuous Target

~ 1 M ~
Mean.y; psas = 57 2om_1 Uim
Median.gi,ng = ‘Median‘i‘/[ (Qi,m)

where 3; pgas is the final predicted value of case i, and §; ,,, is the mth base model’s predicted
value of case i.

Categorical Target

Voting. Assume that d,, , represents the label output of the mth base model for a given vector of
predictor values. dp, , = 1 if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

M M
K
E dpm,j = maxj_; E A i
m=1 m=1

Let E,, be the testing error estimated for the mth base model. Weights for the weighted majority
vote are then computed according to the following expression:

M
1-F 1—-F;
Wy, = Max (log Tm, 0)/ E max (log z L O)
m i=1

1

Probability voting. Assume that p,,, ;, is the posterior probability estimated for the kth target
category by the mth base model for a given vector of predictor values. The following rules
combine the probabilities computed by the base models. The jth category is selected such that it
satisfies the corresponding equation.

m  Highest probability. maxnl\f:1 (Pm,j) = maxle(maxmzl (p,mk))

. o M M
m Highest mean probability. ﬁ > i Pm,; = maxp_, (% > 1 Pm, k)
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Ties are resolved at random.

Softmax smoothing. The softmax function can be used for smoothing the probabilities:

s Exp(m)

pi - K
> Eap(pi)
=1

where p; is the rule-based confidence for category i and p{ is the smoothed value.

Ensembling model scores algorithms

Notation

Scoring

Ensembling scores from individual models can give more accurate predictions. By combining
scores from multiple models, limitations in individual models may be avoided, resulting in a
higher overall accuracy. Models combined in this manner typically perform at least as well as the
best of the individual models and often better.

Note that while the options for general ensembling of scores are similar to those for boosting,
bagging, and very large datasets, the specific options for combining scoring are slightly different.

The following notation applies.

N Total number of records

M Total number of base models

Yi The observed target value of record i

Yi The predicted target value of record i by the ensemble model
g The predicted target value of record i by base model m

There are several strategies for scoring using the ensemble models.

Continuous Target
~ 1 M ~
Mean'yin - M Zm:l Yi,m

where y; as is the final predicted value of case 7, and y; ,, is the mth base model’s predicted
value of case i.

Standard error.SAEi,M = ﬁ\/ﬁ Zﬁ'{:l (?jzm — gi,]\l)Z
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Categorical Target

Voting. Assume that d,,, ;, represents the label output of the mth base model for a given vector of
predictor values. dy, » = 1 if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

M M
K
Z dm,j = maxy_ Z dm,k

m=1 m=1

Confidence-weighted (probability) voting. Assume that p,, 1, is the posterior probability estimated
for the kth target category by the mth base model for a given vector of predictor values. The
following rules combine the probabilities computed by the base models. The jth category is
selected such that it satisfies the corresponding equation.

M M
A= K d
Prm,jOm,j = MaXp_1Pm k m.k
m=1 m=1

Highest confidence (probability) wins.
K M
maxle (pm,j) = maxkzl(maxm:] (p7n7k’))

Raw propensity-weighted voting. This is equivalent to confidence-weighted voting for a flag target,
where the weights for t7ue are the propensities and the weights for false are 1—propensity.

Adjusted propensity-weighted voting. This is similar to raw propensity-weighted voting for a
flag target, where the weights for frue are the adjusted propensities and the weights for false
are 1—adjusted propensity.

Average raw propensity. The raw propensities scores are averaged across the base models. If the
average is > 0.5, then the record is scored as true.

Average adjusted propensity. The adjusted propensities scores are averaged across the base models.
If the average is > 0.5, then the record is scored as frue.






Factor Analysis/PCA Algorithms

Overview

The Factor/PCA node performs principal components analysis and six types of factor analysis.

Primary Calculations

Factor Extraction

Principal Components Analysis
The matrix of factor loadings based on factor m is

Am - QmFE

where

Qm = (wla w2, "-awm)

Iy = diag ("71|a |’7’2 y ey "VmD

The communality of variable i is given by

m
hi = Z |7’j|wi2j
j=1

Analyzing a Correlation Matrix

Y1 > va > ... > v, are the eigenvalues and w; are the corresponding eigenvectors of R, where
R is the correlation matrix.

Analyzing a Covariance Matrix

1> v2 > ... > 7, are the eigenvalues and w; are the corresponding eigenvectors of 3, where
= (0ij),,»n 18 the covariance matrix.
1
The rescaled loadings matrix is A, g = [diag(Z)]” 2 A,p.
The rescaled communality of variable i is h;p = o] Lh,.

© Copyright IBM Corporation 1994, 2015. 139
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Principal Axis Factoring

Analyzing a Correlation Matrix

An iterative solution for communalities and factor loadings is sought. At iteration i, the
communalities from the preceding iteration are placed on the diagonal of R, and the resulting R is
denoted by R,;. The eigenanalysis is performed on R,;, and the new communality of variable j

is estimated by

m
o 2
hiy = 2 1 Wik
J=1
The factor loadings are obtained by

Ami) = Dy,

(i)
Iterations continue until the maximum number (default 25) is reached or until the maximum
change in the communality estimates is less than the convergence criterion (default 0.001).

m(i)

Analyzing a Covariance Matrix

This analysis is the same as analyzing a correlation matrix, except ¥ is used instead of the
correlation matrix R. Convergence is dependent on the maximum change of rescaled communality
estimates.

At iteration i, the rescaled loadings matrix is A,,;r = [diag(E)]f%Am(i). The rescaled
communality of variable i is hj;)r = a;lhj(,»).

Maximum Likelihood

The maximum likelihood solutions of A and %? are obtained by minimizing
-1 -1
F=tr[(AA + %) "R] ~log |(A0" + 0*) 'R| -~ p

with respect to A and v, where p is the number of variables, A is the factor loading matrix, and
¥? is the diagonal matrix of unique variances.

The minimization of ' is performed by way of a two-step algorithm. First, the conditional
minimum of F for a given y is found. This gives the function f(3/), which is minimized
numerically using the Newton-Raphson procedure. Let x(*) be the column vector containing the
logarithm of the diagonal elements of y at the sth iteration. Then

o) (8 g
where d®) is the solution to the system of linear equations
HE g6 — )

and where
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aé) — M
G.I'za.’rj

and h(®) is the column vector containing %ﬁ‘/’) The starting point x(!) is

) log [(1 = %) /7"“} for ML and GLS

‘o [(1 - %) /rii]% for ULS

where m is the number of factors and r* is the ith diagonal element of R 1.

P 02 . .
The values of f(1), %, and a;) szj can be expressed in terms of the eigenvalues

71 <y < ... <4, and corresponding eigenvectors wy, wa,...,w, of matrix R ~14. That is,

p
W)= Y (ogy+7"'—1)
k=m-+1
of - —1\, 2
Jr: Z (1= )Wz‘k
2
k=m+1
0% f . Of a T Y+ — 2 -
rom = dun D Wik | D winwjn + 0
L ¢ k=m+1 n=1 Tk Tn
where

5o (1 ifi=
W0 ifid]

The approximate second-order derivatives

2

f [ <
= [ N wpwj

&rlf)xj N
k=m+1

are used in the initial step and when the matrix of the exact second-order derivatives is not positive
definite or when all elements of the vector d are greater than 0.1. If 2271; < 0.05 (Heywood
variables), the diagonal element is replaced by 1 and the rest of the elements of that column and
row are set to 0. If the value of f(1/) is not decreased by step d, the step is halved and halved
again until the value of f(v) decreases or 25 halvings fail to produce a decrease. (In this case, the
computations are terminated.) Stepping continues until the largest absolute value of the elements
of d is less than the criterion value (default 0.001) or until the maximum number of iterations
(default 25) is reached. Using the converged value of ¢/ (denoted by 1), the eigenanalysis is
performed on the matrix ¢/R ~'4}. The factor loadings are computed as

M

[\m - I;Qm (ijll - Im)

where
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Fm = dza.g (/Ylg Y2y ey f)m)

Q= (w1, w2, oo, Win)

Unweighted and Generalized Least Squares

The same basic algorithm is used in ULS and GLS as in maximum likelihood, except that

% forULS

b
1) = { ey
z:m—l-l = 2 : for GLS

for the ULS method, the eigenanalysis is performed on the matrix R — 2, where
Y1 > 2 > ... 2> 7, are the eigenvalues. In terms of the derivatives, for ULS,

9 p
Lo Y ek

(9171' k=m+1
o f a Ik + L T
s = 4lewy D wiwwn Y o Cwgen + 0y Y (oF - F)wk
Lt k=m+1 n=1 Tk Tn k=m-+1
and
2
0% f -
EA4dr;z; Wil
Oi0z; Z j(k:%;l R
For GLS,
of P
o = 2k w)wh
ri A
=m-+1
a2f af g =~ Vi + Yo — 2 i3 T+
=0y — + Wik n——————WinWjn + '’ ex J
833281‘] 1) or; k:n;i_l,}k ik%ik ;'Mz Tk — mWin p 5
and
2
9%f P
= WikWjk
Oz;dz, (k_zmjﬂ o

Also, the factor loadings of the ULS method are obtained by
Am = erfn

The chi-square statistic for m factors for the ML and GLS methods is given by
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Xow = <W—1—2p;5—2?m>f(1/3)

with ((p —m)>—p— m) /2 degrees of freedom.

Alpha Factoring
Alpha factoring involves an iterative procedure, where at each iteration i:

The eigenvalues (v(;)) and eigenvectors (w(;)) of

H(i.fl)(R — I)H(Eiil) +1

are computed.

The new communalities are
m
2
by | D 1w | i)
Jj=1

The initial values of the communalities, Hg, are

L1 L |R[>10%andall0 < h; < 1
o max; [r;| otherwise

where r# is the ith diagonal entry of R 1.

If |[R| > 10 ® and all r** are equal to one, the procedure is terminated. If for some i, max; |r;;| > 1,
the procedure is terminated.

Iteration stops if any of the following are true:

In]?X ‘hk(z) — hk(z—l)l <€
1= MAX
gz = O for anyk

The communalities are the values when iteration stops, unless the last termination criterion is true,
in which case the procedure terminates. The factor pattern matrix is

fn(f)

where fis the final iteration.

1
2

o = Hlp Q)0
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Image Factoring

Analyzing a Correlation Matrix

Eigenvalues and eigenvectors of ST!RS~1! are found.

1 1
2 .
S —d'&(lg (m,,m)

where r11 is the ith diagonal element of R~!

The factor pattern matrix is

Fp = SQ(Am — L) A

W

where A, and £2,, correspond to the m eigenvalues greater than 1 (and the associated
eigenvectors). If m = 0, the procedure is terminated.

The communalities are

2
™ (3~ 1)}

h; = —
LZ (77™)

=1

The image covariance matrix is

R + SQR—182 . 282

The anti-image covariance matrix is

S’R1S?2

Analyzing a Covariance Matrix

When analyzing a covariance matrix, the covariance matrix ¥ is used instead of the correlation
matrix R. The calculation is similar to the correlation matrix case.

The rescaled factor pattern matrix is

[

Fo.r = [diag(Z)]:F,,

and the rescaled communality of variable i is h;gr = a{ilhi.
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Factor Rotation

Orthogonal Rotations

Rotations are done cyclically on pairs of factors until the maximum number of iterations is
reached or the convergence criterion is met. The algorithm is the same for all orthogonal rotations,
differing only in computations of the tangent values of the rotation angles.

The factor pattern matrix is normalized by the square root of communalities:
" 1

A* =HiA,

where

Am = (A, .-, A,,) 1s the factor pattern matrix

H = diag (hy, ..., hy)
The tranformation matrix T is initialized to I,,,.

At each iteration i:

®  The convergence criterion is

m 2

— *4 *2 2
SViy =2 { n 2 Mg — ( 220 | |/
k=1 k=1

j=1

where the initial value of Ay, 1) is the original factor pattern matrix. For subsequent iterations,
the initial value is the final value of A}, (i-1) when all factor pairs have been rotated.

For all pairs of factors (A;,Ax) where k& > j, the following are computed:

®  The angle of rotation is

1 X
P= Ztan_l <?>

where
D — MTB Varimax
X=4D- mnﬁ Equamax
D Quartimax

2 2 .
C— (4 ;B ) Varimax

Y= C— W Equamax

c Quartimax

2 2 _ B
upi) = Foiy — Tokiy Vo) = 2D ey P =1
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A= Zp—l p(i B = 22:1 Up(i)
C=3 1[“ 1ﬁaﬂ D =32 2up(i) ()

If |sin (P)| < 107*, no rotation is done on the pair of factors.

B The new rotated factors are

(ij(i)a;k(i)) = (—j(i)’éz(i»

where A} ;) are the last values for factor j calculated in this iteration.

cos (P) —sin(P) ‘
sin (P)  cos (P)

B The accrued rotation transformation matrix is

(F5: k) = (£, k) sin (P)  cos (P)

cos (P) —sin(P) '

where ¢; and 5, are the last calculated values of the jth and Ath columns of T.

m [teration is terminated when
[SVisy = SViiy| £107°
or the maximum number of iterations is reached.
Final rotated factor pattern matrix
Ap = HZ A
m = 2 A (f)
where AZ ) is the value of the last iteration.

Reflect factors with negative sums. If

D Aijiy) <0
=1

then

Aj = =i

Rearrange the rotated factors such that
n
12
2 Nz >§)m
Jj=1

The communalities are
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m
L E 12
h] = /\]Z
1=1

Direct Oblimin Rotation

The direct oblimin method (Jennrich and Sampson, 1966) is used for oblique rotation. The user
can choose the parameter 4. The default value is § = 0.

The factor pattern matrix is normalized by the square root of the communalities

OF = H3A,,

m

where

m
L 2
hj = E A ik
k=1
If no Kaiser is specified, this normalization is not done.

Initializations

The factor correlation matrix C is initialized to I,,,. The following are also computed:

sy = { 1 if Kaiser k=1,..n

hy ifno Kaiser ™ ’

n
u; = E /\;“-2-22': 1,....m
J=1

n
§ : *4
j=1
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At each iteration, all possible factor pairs are rotated. For a pair of factors A, and A, (p # ),
the following are computed:

Gpg =G —xp — 24

Spqﬂ' = §5; — )\;ka — /\2112
SIS
Z NN
*2 4
T= Z Spa,idip — n upDpq
& 5
Z = Z SP‘]vi)\;(p)\;‘q - (;) YpaDpq
P = Z/\*S)\* ( >upypq

J
R = zpy — (ﬁ) Upliq

P
P, = g(Cpq — $—)
P
1
Q = 5(1“1, —4depgP + R+2T) /2y,
1
R = §(Cpq(T+R) —P—Z)/xp

A root a of the equation b® + P'b? + Q'b + R = 0 is computed, as well as

A:1—|—20pqa—|—a2

The rotated pair of factors is
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1 —a
0 1

1* 1YY %y %
(35) = (. %)
These replace the previous factor values.

New values are computed for

iy = | Aluy

S 42

Ip = Az
T

~ X *4

Vg = E :Azq
i=1

iy = i xg
1=1
Fq =1y — (%) i
Sk = Spak + Mo + Ao
D = Dpy + i + g

G = Gpg+ By + 7y

Factor Analysis/PCA Algorithms

All values designated with a tilde (~) replace the original values and are used in subsequent

calculations.

The new factor correlations with factor p are

Gip =t Leip +taciy (1 £ p)
Epi = Cip

Cpp =1

After all factor pairs have been rotated, iteration is terminated if:

MAX iterations have been done, or
‘Fl(z) — Fl(i—l) ‘ < (FO)(EPS)
where
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n N
- S\ -~
_ ~2 2
H=> 35— <g> D
=1

Otherwise, the factor pairs are rotated again.
The final rotated factor pattern matrix is

- 1e,

Am = H2 A,
where ), is the value in the final iteration.
The factor structure matrix is

S =AnChn

where C,, is the factor correlation matrix in the final iteration.

Promax Rotation

The promax rotation is a computationally fast rotation (Hendrickson and White, 1964). The speed
is achieved by first rotating to an orthogonal varimax solution and then relaxing the orthogonality
of the factors to better fit the simple structure.

Varimax rotation is used to get an orthogonal rotated matrix Ar = {X;;}.

The matrix P = (p;;) is calculated, where

pxXm
k+1

Aij (Zgnzl )‘zzj ) 2
: N
(T 2) k

Here, k is the power of promax rotation (k > 1).

Dij =

The matrix L is calculated.
-1
L = (A'gAg) "A'RP
The matrix L is normalized by column to a transformation matrix

Q=LD
where D = (diag(L’ L))% is the diagonal matrix that normalizes the columns of L.

At this stage, the rotated factors are

fpromam_temp = Q - fvarimam
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Because var( foromaz temp) = (Q Q)—l, and the diagonal elements do not equal 1, we must
modify the rotated factor to

f promax — Cf promax_temp

1
2

where C = {diag ((Q'Q)*l) }_

The rotated factor pattern is

Apromaa: = Avarimachil

The correlation matrix of the factors is
Ry =C(QQ)'C

The factor structure matrix is

Ag = Aproma:): Rff

Factor Score Coefficients

IBM® SPSS® Modeler uses the regression method of computing factor score coefficients
(Harman, 1976).

ATt PCA without rotation
W = ¢ Apn(NmAy)~' PCA with rotation
R!S,, otherwise

where S, is the factor structure matrix. For orthogonal rotations S,, = A,,.

For principal components analysis without rotation, if any |y;| < 10~%, factor score coefficients
are not computed. For principal components with rotation, if the determinant of A’,, A, is less
than 103, the coefficients are not computed. Otherwise, if R is singular, factor score coefficients
are not computed.

Blank Handling

By default, a case that has a missing value for any input or output field is deleted from the
computation of the correlation matrix on which all consequent computations are based. If the Only
use complete records option is deselected, each correlation in the correlation matrix R. is computed
based on records with complete data for the two fields associated with the correlation, regardless
of missing values on other fields. For some datasets, this approach can lead to a nonpositive
definite R matrix, so that the model cannot be estimated.
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Secondary Calculations

Field Statistics and Other Calculations
The statistics shown in the advanced output for the regression equation node are calculated in the

same manner as in the FACTOR procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Factor algorithm document, available at Attp./www.ibm.com/support.

Generated Model/Scoring

Factor Scores

Factor scores are assigned to scored records by applying the factor score coefficients to the input
field value for the record,

n
Fse =) wiifi
i=1

where fs;, is the factor score for the kth factor, wy; is the factor score coefficient for the ith input
field (from the W matrix) and the kth factor, and f; is the value of the ith input field for the record
being scored.For more information, see the topic “Factor Score Coefficients” on p. 151.

Blank Handling

Records with missing values for any input field in the final model cannot be scored and are
assigned factor/component score values of $null$.
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Feature Selection Algorithm

Introduction

Data mining problems often involve hundreds, or even thousands, of variables. As a result,
the majority of time and effort spent in the model-building process involves examining which
variables to include in the model. Fitting a neural network or a decision tree to a set of variables
this large may require more time than is practical.

Feature selection allows the variable set to be reduced in size, creating a more manageable set
of attributes for modeling. Adding feature selection to the analytical process has several benefits:

m  Simplifies and narrows the scope of the features that is essential in building a predictive model.

B Minimizes the computational time and memory requirements for building a predictive model
because focus can be directed to the subset of predictors that is most essential.

® Lecads to more accurate and/or more parsimonious models.

m  Reduces the time for generating scores because the predictive model is based upon only a
subset of predictors.

Primary Calculations

Feature selection consists of three steps:
m  Screening. Removes unimportant and problematic predictors and cases.
® Ranking. Sorts remaining predictors and assigns ranks.

m  Selecting. Identifies the important subset of features to use in subsequent models.

The algorithm described here is limited to the supervised learning situation in which a set of
predictor variables is used to predict a target variable. Any variables in the analysis can be either
categorical or continuous. Common target variables include whether or not a customer churns,
whether or not a person will buy, and whether or not a disease is present.

The terms features, variables, and attributes are often used interchangeably. Within this
document, we use variables and predictors when discussing input to the feature selection
algorithm, with features referring to the predictors that actually get selected by the algorithm for
use in a subsequent modeling process.

Screening

This step removes variables and cases that do not provide useful information for prediction and
issues warnings about variables that may not be useful.

The following variables are removed:
B Variables that have all missing values.
B Variables that have all constant values.

Bm  Variables that represent case ID.

© Copyright IBM Corporation 1994, 2015. 153
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The following cases are removed:
m  Cases that have missing target values.

m  Cases that have missing values in all its predictors.

The following variables are removed based on user settings:

B Variables that have more than m{% missing values.

m  Categorical variables that have a single category counting for more than m% cases.
m  Continuous variables that have standard deviation < m3%.
|

Continuous variables that have a coefficient of variation |CV| < my4%. CV = standard
deviation / mean.

m  Categorical variables that have a number of categories greater than ms% of the cases.

Values my, mp, m3, my, and ms are user-controlled parameters.

Ranking Predictors

This step considers one predictor at a time to see how well each predictor alone predicts the target
variable. The predictors are ranked according to a user-specified criterion. Available criteria
depend on the measurement levels of the target and predictor.

The importance value of each variable is calculated as (1 — p), where p is the p value of the
appropriate statistical test of association between the candidate predictor and the target variable,
as described below.

Categorical Target

This section describes ranking of predictors for a categorical target under the following scenarios:
m  All predictors categorical
m  All predictors continuous

m  Some predictors categorical, some continuous

All Categorical Predictors

The following notation applies:

Table 17-1
Notation
Notation Description
X The predictor under consideration with / categories.
Y Target variable with J categories.
N Total number of cases.

Nij The number of cases with X =7 and Y =.
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Notation Description
J
Ni. The number of cases with X =i. N;. = Z Ni;
j=1
I
N The number of cases with Y =j. N.; = Z Nij

i=1

The above notations are based on nonmissing pairs of (X, Y). Hence J, N, and N-j may be
different for different predictors.

P Value Based on Pearson’s Chi-square

Pearson’s chi-square is a test of independence between X and Y that involves the difference
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by J\Afij = N;.N.;/N. Under the null hypothesis,
Pearson’s chi-square converges asymptotically to a chi-square distribution x? with degrees
of freedom d = (I-1)(J-1).

The p value based on Pearson’s chi-square X2 is calculated by p value = Prob(x2 > X2), where
I g 2 .
2=y (Nij - Nij) /N,
i=1 j=1
Predictors are ranked by the following rules.
Sort the predictors by p value in the ascending order
If ties occur, sort by chi-square in descending order.
If ties still occur, sort by degree of freedom d in ascending order.

If ties still occur, sort by the data file order.
P Value Based on Likelihood Ratio Chi-square

The likelihood ratio chi-square is a test of independence between X and Y that involves the ratio
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by Nij = N,.N.;/N. Under the null hypothesis, the
likelihood ratio chi-square converges asymptotically to a chi-square distribution x?% with degrees
of freedom d = (I-1)(J-1).

The p value based on likelihood ratio chi-square G2 is calculated by p value = Prob(x3> G2), where

G2 = 2iic¥?j, with 6% = {évf tn (Nig/ i) N > 0,

i=1 j=1 else.

Predictors are ranked according to the same rules as those for the p value based on Pearson’s
chi-square.

Cramer’s V
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Cramer’s V is a measure of association, between 0 and 1, based upon Pearson’s chi-square. It is
defined as

V= (W;J}—n)m'

Predictors are ranked by the following rules:
Sort predictors by Cramer’s V' in descending order.
If ties occur, sort by chi-square in descending order.

If ties still occur, sort by data file order.
Lambda

Lambda is a measure of association that reflects the proportional reduction in error when values of
the independent variable are used to predict values of the dependent variable. A value of 1 means
that the independent variable perfectly predicts the dependent variable. A value of 0 means that
the independent variable is no help in predicting the dependent variable. It is computed as

ijax (Nij) — m;’.lX(Nj)
AY|X) =~

N—max; (N ;)

Predictors are ranked by the following rules:
Sort predictors by lambda in descending order.
If ties occur, sort by [ in ascending order.

If ties still occur, sort by data file order.

All Continuous Predictors

If all predictors are continuous, p values based on the F statistic are used. The idea is to perform a
one-way ANOVA F test for each continuous predictor; this tests if all the different classes of ¥
have the same mean as X.

The following notation applies:

Table 17-2
Notation
Notation Description
N; The number of cases with ¥ = .
; The sample mean of predictor X for target class ¥ =.
s? The sample variance of predictor X for target class ¥ = .
Nj
55 =D (@ —7)°/(N; — 1)
=1
T

J
The grand mean of predictor X. 7 = Z N;z; /N

j=1
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The above notations are based on nonmissing pairs of (X, Y).
P Value Based on the F Statistic

The p value based on the F statistic is calculated by p value = Prob{F(J—1, N—J) > F'}, where

N;(z; - %)2/(,7—1)

M-

1

|
Il

B

(N; —1) s?/(N—J)

M

<
i
a

and F(J—1, N-J) is a random variable that follows an F distribution with degrees of freedom J—1
and N—J. If the denominator for a predictor is zero, set the p value = 0 for the predictor.

Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.
2. [If ties occur, sort by F in descending order.
3. [Ifties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical, the criterion for continuous predictors
is still the p value based on the F statistic, while the available criteria for categorical predictors are
restricted to the p value based on Pearson’s chi-square or the p value based on the likelihood ratio
chi-square. These p values are comparable and therefore can be used to rank the predictors.

Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.

2. Ifties occur, follow the rules for breaking ties among all categorical and all continuous predictors
separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Continuous Target

This section describes ranking of predictors for a continuous target under the following scenarios:
m  All predictors categorical
m  All predictors continuous

m  Some predictors categorical, some continuous
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All Categorical Predictors

If all predictors are categorical and the target is continuous, p values based on the F statistic are
used. The idea is to perform a one-way ANOVA F test for the continuous target using each
categorical predictor as a factor; this tests if all different classes of X have the same mean as Y.

The following notation applies:

Table 17-3

Notation

Notation Description

X The categorical predictor under consideration with 7 categories.

Y The continuous target variable. ij represents the value of the continuous

target for the jth case with X = i.

Ni The number of cases with X = i.

Y; The sample mean of target Y in predictor category X = i.

s(y)f The sample variance of target Y for predictor category X = i.
Z y’LJ - yl) / - 1)
=1

g The grand mean of target Y. 7 = ¥/_, N;g,/N

The above notations are based on nonmissing pairs of (X, Y).

The p value based on the F statistic is p value = Prob{F(I-1, N—I) > F'}, where

I
SN - 5) ay
_ =1

-1
Z (N; —1) /(rv )
i=1

in which F(/—1, N—I) is a random variable that follows a F distribution with degrees of freedom
I-1 and N—1. When the denominator of the above formula is zero for a given categorical predictor
X, set the p value = 0 for that predictor.

F

b

Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.
2. [If ties occur, sort by F in descending order.
3. [Ifties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

All Continuous Predictors

If all predictors are continuous and the target is continuous, the p value is based on the asymptotic
t distribution of a transformation ¢ on the Pearson correlation coefficient 7.
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The following notation applies:

Table 17-4

Notation

Notation Description

The continuous predictor under consideration.

Y The continuous target variable.
z=%",2,/N The sample mean of predictor variable X.
7=9y/N The sample mean of target Y.

s(x)Q The sample variance of predictor variable X.
s(y)’ The sample variance of target variable Y.

The above notations are based on nonmissing pairs of (X, Y).

The Pearson correlation coefficient 7 is

S (@i -7 ) (yi-7)/ (N 1)
\/s(m)zs(y)2 ’

r =

The transformation ¢ on 7 is given by

N-2
1—r2"

t=r

Under the null hypothesis that the population Pearson correlation coefficient p = 0, the p value
is calculated as

value — 0 ifr? =1,
b T | 2 Prob{T > |¢|} else.

T is a random variable that follows a ¢ distribution with N—2 degrees of freedom. The p value
based on the Pearson correlation coefficient is a test of a linear relationship between X and Y. If
there is some nonlinear relationship between X and Y, the test may fail to catch it.

Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.
2. Ifties occur in, sort by 2 in descending order.
3. [Ifties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical in the dataset, the criterion for
continuous predictors is still based on the p value from a transformation and that for categorical
predictors from the F statistic.
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Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.
2. Ifties occur, follow the rules for breaking ties among all categorical and all continuous predictors

separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Selecting Predictors

If the length of the predictor list has not been prespecified, the following formula provides an
automatic approach to determine the length of the list.

Let L be the total number of predictors under study. The length of the list L may be determined by

L= {min (max (30, 2\/L_0) ,Lo)] >

where [x] is the closest integer of x. The following table illustrates the length L of the list for
different values of the total number of predictors L.

Lo L L/Ly(%)
10 10 100.00%
15 15 100.00%
20 20 100.00%
25 25 100.00%
30 30 100.00%
40 30 75.00%
50 30 60.00%
60 30 50.00%
100 30 30.00%
500 45 9.00%
1000 63 6.30%
1500 77 5.13%
2000 89 4.45%
5000 141 2.82%
10,000 200 2.00%
20,000 283 1.42%
50,000 447 0.89%
Generated Model

The feature selection generated model is different from most other generated models in that it does
not add predictors or other derived fields to the data stream. Instead, it acts as a filter, removing

unwanted fields from the data stream based on generated model settings.
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The set of fields filtered from the stream is controlled by one of the following criteria:

Field importance categories (Important, Marginal, or Unimportant). Fields assigned to any
of the selected categories are preserved; others are filtered.

Top k fields. The k fields with the highest importance values are preserved; others are filtered.

Importance value. Fields with importance value greater than the specified value are preserved;
others are filtered.

Manual selection. The user can select specific fields to be preserved or filtered.






GENLIN Algorithms

Generalized linear models (GZLM) are commonly used analytical tools for different types of data.
Generalized linear models cover not only widely used statistical models, such as linear regression
for normally distributed responses, logistic models for binary data, and log linear model for count
data, but also many useful statistical models via its very general model formulation.

Generalized Linear Models

Generalized linear models were first introduced by Nelder and Wedderburn (1972) and later
expanded by McCullagh and Nelder (1989). The following discussion is based on their works.

Notation

The following notation is used throughout this section unless otherwise stated:

Table 18-1

Notation

Notation Description

n Number of complete cases in the dataset. It is an integer and n > 1.

p Number of parameters (including the intercept, if exists) in the model. It is an integer
and p > 1.

Px Number of non-redundant columns in the design matrix. It is an integer and py > 1.

n x 1 dependent variable vector. The rows are the cases.

r n % 1 vector of events for the binomial distribution; it usually represents the number of
“successes.” All elements are non-negative integers.

m n % 1 vector of trials for the binomial distribution. All elements are positive integers
and mj > r;, i=1,...,n.

[ n x 1 vector of expectations of the dependent variable.

n n x 1 vector of linear predictors.

X n x p design matrix. The rows represent the cases and the columns represent the
parameters. The ith row is z; = (i1, - .- ,a:ip)TJ:l,...,n with z;; = 1 if the model has an
intercept.

(0] n x 1 vector of scale offsets. This variable can’t be the dependent variable (y) or one of
the predictor variables (X).

8 p x 1 vector of unknown parameters. The first element in 3 is the intercept, if there is one.

o n x 1 vector of scale weights. If an element is less than or equal to 0 or missing, the
corresponding case is not used.

f n % 1 vector of frequency counts. Non-integer elements are treated by rounding the value
to the nearest integer. For values less than 0.5 or missing, the corresponding cases are
not used.

N

Effective sample size. N = Z fi. If frequency count variable f is not used, N = n.
=1

Model

A GZLM of y with predictor variables X has the form

© Copyright IBM Corporation 1994, 2015. 163
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n=gEY)=X8+0, y~F

where 1 is the linear predictor; O is an offset variable with a constant coefficient of 1 for each
observation; g(.) is the monotonic differentiable link function which states how the mean of
y, E (y) = p, is related to the linear predictor i ; F is the response probability distribution.
Choosing different combinations of a proper probability distribution and a link function can
result in different models.

In addition, GZLM also assumes y; are independent for i=1,....,n. Then for each observation,
the model becomes

mi=g(m) =2 B+0i, yi~F

Notes

X can be any combination of scale variables (covariates), categorical variables (factors),

and interactions. The parameterization of X is the same as in the GLM procedure. Due to
use of the over-parameterized model where there is a separate parameter for every factor
effect level occurring in the data, the columns of the design matrix X are often dependent.
Collinearity between scale variables in the data can also occur. To establish the dependencies
in the design matrix, columns of XT¥X, where & = diag({fiw1,... fawn),, are examined by
using the sweep operator. When a column is found to be dependent on previous columns,
the corresponding parameter is treated as redundant. The solution for redundant parameters
is fixed at zero.

When y is a binary dependent variable which can be character or numeric, such as
“male”/”female” or 1/2, its values will be transformed to 0 and 1 with 1 typically representing
a success or some other positive result. In this document, we assume to be modeling the
probability of success. In this document, we assume that y has been transformed to 0/1
values and we always model the probability of success; that is, Prob(y = 1). Which original
value should be transformed to 0 or 1 depends on what the reference category is. If the
reference category is the last value, then the first category represents a success and we are
modeling the probability of it. For example, if the reference category is the last value, “male”
in “male”/”’female” and 2 in 1/2 are the last values (since “male” comes later in the dictionary
than “female”) and would be transformed to 0, and “female” and 1 would be transformed to 1
as we model the probability of them, respectively. However, one way to change to model the
probability of “male” and 2 instead is to specify the reference category as the first value. Note
if original binary format is 0/1 and the reference category is the last value, then 0 would be
transformed to 1 and 1 to 0.

When r, representing the number of successes (or number of 1s) and m, representing
the number of trials, are used for the binomial distribution, the response is the binomial
proportion y = r/m.

Probability Distribution

GZLMs are usually formulated within the framework of the exponential family of distributions.
The probability density function of the response Y for the exponential family can be presented as
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yo —b(0)

f(y)zeXp{W—w

Felnofu)

where 0 is the canonical (natural) parameter, ¢ is the scale parameter related to the variance of y
and o is a known prior weight which varies from case to case. Different forms of b(0) and c(y,
d/w) will give specific distributions. In fact, the exponential family provides a notation that allows
us to model both continuous and discrete (count, binary, and proportional) outcomes. Several are
available including continuous ones: normal, inverse Gaussian, gamma; discrete ones: negative
binomial, Poisson, binomial.

The mean and variance of y can be expressed as follows

Ey) =0 (0) =

=

1

Var (y) =0 (0)

INRSS

=V(u>%

where b () and b” () denote the first and second derivatives of b with respect to 0, respectively;
V' () is the variance function which is a function of .

In GZLM, the distribution of y is parameterized in terms of the mean (p) and a scale parameter
(¢) instead of the canonical parameter (0). The following table lists the distribution of y,
corresponding range of y, variance function (¥()), the variance of y (Var(y)), and the first
derivative of the variance function (V' (1)), which will be used later.

Table 18-2

Distribution, range and variance of the response, variance function, and its first derivative
Distribution Range of y V(p) Var(y) (p)
Normal (—00,00) 1 ¢ 0
Inverse Gaussian (0,00) 3 T 3u2
Gamma (0,00) u? o2 21
Negative binomial | 0(1) p+kp? p+ip2 1+2kp
Poisson 0(1)o0 n n 1
Binomial(m) 0()ym/m u(1—p) w(1—py/m 1-2p

Notes

®  ((1)z means the range is from 0 to z with increments of 1; thatis, 0, 1, 2, ..., z.

®  For the binomial distribution, the binomial trial variable m is considered as a part of the
weight variable o.

m [f a weight variable o is presented, ¢ is replaced by ¢/®.

m  For the negative binomial distribution, the ancillary parameter (k) can be user-specified.
When k = 0, the negative binomial distribution reduces to the Poisson distribution. When
k =1, the negative binomial is the geometric distribution.
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Scale parameter handling. The expressions for /(p) and Var(y) for continuous distributions include
the scale parameter ¢ which can be used to scale the relationship of the variance and mean (Var(y)
and p). Since it is usually unknown, there are three ways to fit the scale parameter:

It can be estimated with g jointly by maximum likelihood method.
It can be set to a fixed positive value.

It can be specified by the deviance or Pearson chi-square. For more information, see the
topic “Goodness-of-Fit Statistics ” on p. 178.

On the other hand, discrete distributions do not have this extra parameter (it is theoretically equal
to one). Because of it, the variance of y might not be equal to the nominal variance in practice
(especially for Poisson and binomial because the negative binomial has an ancillary parameter k).
A simple way to adjust this situation is to allow the variance of y for discrete distributions to have
the scale parameter as well, but unlike continuous distributions, it can’t be estimated by the ML
method. So for discrete distributions, there are two ways to obtain the value of ¢:

It can be specified by the deviance or Pearson chi-square.

It can be set to a fixed positive value.

To ensure the data fit the range of response for the specified distribution, we follow the rules:

m  For the gamma or inverse Gaussian distributions, values of y must be real and greater than
zero. If a value of'y is less than or equal to 0 or missing, the corresponding case is not used.

m  For the negative binomial and Poisson distributions, values of y must be integer and
non-negative. If a value of y is non-integer, less than 0 or missing, the corresponding case is
not used.

®  For the binomial distribution and if the response is in the form of a single variable, y must
have only two distinct values. If y has more than two distinct values, the algorithm terminates
in an error.

m  For the binomial distribution and the response is in the form of ratio of two variables denoted
events/trials, values of r (the number of events) must be nonnegative integers, values of m
(the number of trials) must be positive integers and m; > ri, V i. If a value of r is not integer,
less than 0, or missing, the corresponding case is not used. If a value of m is not integer, less
than or equal to 0, less than the corresponding value of r, or missing, the corresponding
case is not used.

The ML method will be used to estimate 5 and possibly ¢. The kernels of the log-likelihood
function (¢y) and the full log-likelihood function (£), which will be used as the objective function
for parameter estimation, are listed for each distribution in the following table. Using £ or £ won’t
affect the parameter estimation, but the selection will affect the calculation of information criteria.
For more information, see the topic “Goodness-of-Fit Statistics ” on p. 178.
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Table 18-3
The log-likelihood function for probability distribution
Distribution fx and ¢
Normal " e [ wi(y — ) P
LA ()
£=10 + i fﬁ{ln (2m)}
=1 2
Inverse Gaussian "o i [ wily — w)? oyl
o —23{7@,;,@ (%))
L=t + Z {ln (2m)}
Gamma i Wi wiys wi ( (w))}
ly = i —In [ —Z —1In =
* ;f{¢ (m) w, é
LéwZﬁ —In ()}
Negative
binomial by = Zfz {yiln (kps) — (yi + 1/k) In (1 + ki) + In (T(yi + 1/k)) — In (D(1/k))}
C=b+ ) i =T+ 1)}
=1
Poisson
£y = Z fl {yz In (p:) — pi}
n Wi
b=tli+) fig{— In (y:1)}
=1
Binomial(m)
by = Zfz Cyidn (n) + (1 g (1 )
> [2%2% my m; _ m;!
! = gk + ;flz{hl (Ti )}7Where <’I"¢ ) = m

When an individual y = 0 for the negative binomial or Poissondistributions and y =0 or 1 for the
binomial distribution, a separate value of the log-likelihood is given. Let ¢y ; be the log-likelihood
value for individual case i when y; = 0 for the negative binomial and Poisson and 0/1 for the
binomial. The full log-likelihood for i is equal to the kernel of the log-likelihood for i; that is,
= -

Table 18-4

Log-likelihood

Distribution fi

Negative binomial bi=—Ffi %W ify, =0
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Distribution 4
Poisson bpi=—fi%pi if yi =0
Binomial(m) P fi% In(1— ;) ify; =0
P () iy =1

B [(z) is the gamma function and In(T'(z)) is the log-gamma function (the logarithm of the
gamma function), evaluated at z.

m  For the negative binomial distribution, the scale parameter is still included in ¢y for flexibility,
although it is usually set to 1.

®m  For the binomial distribution (r/m), the scale weight variable becomes w; = w;m; in {; that

is, the binomial trials variable m is regarded as a part of the weight. However, the scale
weight in the extra term of ¢ is still w;.

Link Function

The following tables list the form, inverse form, range of /i, and first and second derivatives
for each link function.

Table 18-5
Link function name, form, inverse of link function, and range of the predicted mean
Link function n=g(p) Inverse p=g~1(n) Range of ji
Identity n n LER
Log In(p) exp(n) A>0
Logit exp(n) ie 0,1

o8l In (ﬁ) 1+e§);pn(n) e o]
Probit @~ *(p), where D(n) A eo,1]

CD(E) _ \/%/ 5722'/2032
Complementary In(—(In(1—p)) 1—exp(—exp(n)) Aelo1]
log-log
a#0 ue /e fi € Rif o orl/a is odd integ

Power(a){ a=0 { In (1) { exp (n) fi > 0 otherwise
Log-complement In(1—p) 1—exp(n) 4<1
Negative log-log —In(—In(p)) exp(—exp(—n)) &€ 0,1]
Negative binomial |, (M :%) #}% >0
Odds (p/A=—p)*-1 (tan)'/ i€ 0,1]

ower(a){ e N 1+(1<+(;n>1/a
pover@ o 2o | Un(5%5) il

Note: In the power link function, if |o| < 2.2e-16, a is treated as 0.

Table 18-6

The first and second derivatives of link function

Link function

First derivative g'(u) = 52 = A

Second derivative g” (1) =

8211

Bu?

Identity

1

0
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Link function First derivative g'(u) = Z—Z = A |Second derivative g"(u) = 222

1 2
Log m —A
Logit e A?(2p — 1)
Probit ¢((D‘11 7 where A2 1(p)

o) — e
Complementary log-log m —A%(1 +1n (1 — p)

a#0 ap®! AGT71
Power(a){ w0 { i { A2
Log-complement = —A?
Negative log-log () A2(1 4 1n(p))
Negative binomial T — A1 4 2kp)
p* 1 a1 | a+l
Odds power(a){ Z f 8 { (171,1,)n+1 { A(T + ﬁ)
- p(l—p) A2(2[,L — ].)

When the canonical parameter is equal to the linear predictor, 8 = 5, then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.

Table 18-7

Canonical and default link functions for probability distributions

Distribution Canonical link function
Normal Identity
Inverse Gaussian Power(—2)
Gamma Power(—1)
Negative binomial Negative binomial
Poisson Log
Binomial Logit
Estimation

Having selected a particular model, it is required to estimate the parameters and to assess the

precision of the estimates.

Parameter estimation

The parameters are estimated by maximizing the log-likelihood function (or the kernel of the
log-likelihood function) from the observed data. Let s be the first derivative (gradient) vector of
the log-likelihood with respect to each parameter, then we wish to solve
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Bﬂ}
s = =0
|:88 px1

In general, there is no closed form solution except for a normal distribution with identity link
function, so estimates are obtained numerically via an iterative process. A Newton-Raphson
and/or Fisher scoring algorithm is used and it is based on a linear Taylor series approximation
of the first derivative of the log-likelihood.

First Derivatives

If the scale parameter ¢ is not estimated by the ML method, s is a px1 vector with the form:
w w
Zfz zyz Zfz zyz ) T
oV (1) g 14i)

where y;, V (1;) and g’ (p;) are defined in Table 18-5“Link function name, form, inverse of link
function, and range of the predicted mean” on p. 168, Table 18-2“Distribution, range and variance
of the response, variance function, and its first derivative” on p. 165 and Table 18-6“The first and
second derivatives of link function” on p. 168, respectively.

If the scale parameter ¢ is estimated by the ML method, it is handled by searching for In(¢) since
¢ is required to be greater than zero.

Let T = In(¢) so ¢ = exp(t) , then s is a (p+1)x1 vector with the following form

)]

S =

3=

ar Ipr1)x1 {

ﬂ
aor

ot [ f Wi yz
g_ﬂ exp Z

"]

where 8£/07 is the same as the above with ¢ is replaced with exp(t), 9¢£/37 has a different form
depending on the distribution as follows:

Table 18-8
The 1st derivative functions w.r.t. the scale parameter for probability distributions
Distribution g_‘
Normal LI A — )2
Z ﬁ{wz(yz pi)” 1}
—~ 2 exp (1)
Inverse Gaussian " fo [ wilys — pi)?
Jr )Y Y q
; 2 {exp (T)yips? }
Gamma ” " \oaps ) )
Sdle(mtn) 02 )
= XP (1) exp (1) i i exp (1)

Note: 1(z) is a digamma function, which is the derivative of logarithm of a gamma function,
evaluated at z; that is, ¥/(z) =

d1ln (I'(2)) _
Iz

' (2)
T'(z) -
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As mentioned above, for normal distribution with identity link function which is a classical linear
regression model, there is a closed form solution for both 3 and t, so no iterative process is
needed. The solution for 3, after applying the SWEEP operation in GLM procedure, is

b= (i fiwix;rxi) _ (i fiwz-x;r(yi — oi)> = <XT‘I’X>_ <XT‘P(y — 0)),
i=1 i=1

where ¥ = diag(fiws, ... fawn) and (Z)~ is the generalized inverse of a matrix Z. If the scale
parameter ¢ is also estimated by the ML method, the estimate of 7 is

7 =in () =mn (Ai S s — < - oz-)2> .
=1

Second Derivatives

Let H be the second derivative (Hessian) matrix. If the scale parameter is not estimated by the ML
method, H is a pXp matrix with the following form

_{ 9%t
~ LagasT

] = -xTwx
pXp

where W is an nxn diagonal matrix. There are two definitions for W depending on which
algorithm is used: W, for Fisher scoring and W, for Newton-Raphson. The ith diagonal element
for W, is

v = %0 1
T Vi) (w)

and the ith diagonal element for W, is

f'CL)’
Wi = We,; + Z(bl (yi — 1) -

bl

1"

Vi) g (i) +V (i) g (i)
(V () (g (1))’

bl

where V' (;) and g" (u;) are defined in Table 18-2“Distribution, range and variance of the
response, variance function, and its first derivative” on p. 165 and Table 18-6“The first and second
derivatives of link function” on p. 168, respectively. Note the expected value of W, is W, and
when the canonical link is used for the specified distribution, then W, = We.

If the scale parameter is estimated by the ML method, H becomes a (p+1)x(p+1) matrix with the
form
d

2

Q
o~

[ aWT o
H=— 0808
- [ 5t 32 J
oropl 7 (p+1)x(p+1)
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where 92¢/8307 is a px1 vector and §%¢/ 879387 is a 1xp vector and the transpose of §2¢ /OpoT.
For all three continuous distributions:

ot
o8

9t _ - B fiwi(yi — i) e
apor _iz_; xp (D V () g ()

The forms of 9?£/87?% are listed in the following table.

Table 18-9
The second derivative functions w.r.t. the scale parameter for probability distributions
Distribution 8%¢
ar2
Normal ks fiwi
Z 2ex ( )(ylil“l‘l)z
=1 P
Inverse Gaussian | ™ fzw )
Z Do (Y o Wi — i)
— 2exp(T)yipi
Gamma n ) ) , )
Yt (wem) (- n) s =e (me))
— exp (T) i i exp (7) exp (1)~ \exp (1)

Note: ¢ (z) is a trigamma function, which is the derivative of #/(z), evaluated at z.
Iterations

An iterative process to find the solution for 8 (which might include ¢) is based on Newton-Raphson
(for all iterations), Fisher scoring (for all iterations) or a hybrid method. The hybrid method
consists of applying Fisher scoring steps for a specified number of iterations before switching

to Newton-Raphson steps. Newton-Raphson performs well if the initial values are close to the
solution, but the hybrid method can be used to improve the algorithm’s robustness from bad initial
values. Apart from improved robustness, Fisher scoring is faster due to the simpler form of

the Hessian matrix.

The following notation applies to the iterative process:

Table 18-10

Notation

Notation Description

1 Starting iteration for checking complete separation and quasi-complete separation. It
must be 0 or a positive integer. This criterion is not used if the value is 0.

J The maximum number of steps in step-halving method. It must be a positive integer.

K The first number of iterations using Fisher scoring, then switching to Newton-Raphson.
It must be 0 or a positive integer. A value of 0 means using Newton-Raphson for all
iterations and a value greater or equal to M means using Fisher scoring for all iterations.

M The maximum number of iterations. It must be a non-negative integer. If the value is
0, then initial parameter values become final estimates.

€¢, €p,EH Tolerance levels for three types of convergence criteria.

Abs A 0/1 binary variable; 4bs = 1 if absolute change is used for convergence criteria

and Abs = 0 if relative change is used.
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And the iterative process is outlined as follows:

Input values for 7, J, K, M, ¢, ep,em and A4bs for each type of three convergence criteria.

For ,B(O) compute initial values (see below), then calculate log-likelihood £(9), gradient vector
s(® and Hessian matrix H(® based on 8(0).

Let &=1.
Compute estimates of ith iteration:

ﬁ(i) _ 5(.1'71) _ g(H (1-71)) —s(ifl), where (H) is a generalized inverse of H. Then compute the
log-likelihood based on ().

Use step-halving method if £ < £0-1): reduce & by half and repeat step (4). The set of values
of &is {0.51:j=0, ..., J—1}. If Jis reached but the log-likelihood is not improved, issue a
warning message, then stop.

Compute gradient vector s(*) and Hessian matrix H*) based on /3(0. Note that W, is used to
calculate H® if i < K; W,, is used to calculate H') if i > K.

Check if complete or quasi-complete separation of the data is established (see below) if
distribution is binomial and the current iteration i > I. If either complete or quasi-complete
separation is detected, issue a warning message, then stop.

Check if all three convergence criteria (see below) are met. If they are not but M is reached,
issue a warning message, then stop.

If all three convergence criteria are met, check if complete or quasi-complete separation of

the data is established if distribution is binomial and i < 7 (because checking for complete or
quasi-complete separation has not started yet). If complete or quasi-complete separation is
detected, issue a warning message, then stop, otherwise, stop (the process converges for binomial
successfully). If all three convergence criteria are met for the distributions other than binomial,
stop (the process converges for other distributions successfully). The final vector of estimates is
denoted by 3 (and 7). Otherwise, go back to step (3).

Initial Values

Initial values are calculated as follows:

Set the initial fitted values fi; = (y;m; + 0.5)/(m; + 1) for a binomial distribution (y; can be
a proportion or 0/1 value) and ji; = y; for a non-binomial distribution. From these derive
fi=q (i) g (f;) andV (fi;) . If 7; becomes undefined, set 7; = 1.

Calculate the weight matrix W, with the diagonal element @,; = £ Fa mg, where ¢ is
i) (g (-
set to 1 or a fixed positive value. If the denominator of @.; becomes 0, set ;= 0

Assign the adjusted dependent variable z with the ith observation
zi = (7 — 0i) 4+ (i — fiz) g (j1;) for a binomial distribution and z; = (7}; — 0;) for a non-binomial
distribution.
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4. Calculate the initial parameter values

O = (XTW@X) Ty,
and

o=z~ xp0) W, (2 xp)

if the scale parameter is estimated by the ML method.

Scale Parameter Handling

For normal, inverse Gaussian, and gamma response, if the scale parameter is estimated by the ML
method, then it will be estimated jointly with the regression parameters; that is, the last element
of the gradient vector s is with respect to T.

If the scale parameter is set to be a fixed positive value, then it will be held fixed at that value for
in each iteration of the above process.

If the scale parameter is specified by the deviance or Pearson chi-square divided by degrees of
freedom, then it will be fixed at 1 to obtain the regression estimates through the whole iterative
process. Based on the regression estimates, calculate the deviance and Pearson chi-square values
and obtain the scale parameter estimate.

Checking for Separation

For each iteration after the user-specified number of iterations; that is, if i > I, calculate (note
here v refers to cases in the dataset)

Pmin = Min py

Pmax = mlepu,

p;knin = IIlUIIl (Inin (NUa 1— p%'))a
where

_J py ify, = success (=1
Pe =931 - py ify, = failure (= 0)

(p, is the probability of the observed response for case v) and 1, = g1 (X;IB + 0U> .

If min (Pmin, Pmax) = Pmin > 0.99 we consider there to be complete separation. Otherwise, if
Prmax > 0.99 or pf;, < 0.001 and if there are very small diagonal elements (absolute value

< V1077 ~ 3.16 x 10~*) in the non-redundant parameter locations in the lower triangular matrix
in Cholesky decomposition of —H, where H is the Hessian matrix, then there is a quasi-complete
separation.
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Convergence Criteria

The following convergence criteria are considered:
g(i)fg(ifl)

< ¢ if relative change
Log-likelihood convergence: ’e(”*l) +10-6

’E(i) — é(ifl)’ < ¢ if absolute change

3( i) 3(1 1)

max, ( ‘ (1 5 6> < ep if relative change
Parameter convergence: +1” .

max; (‘B(Z D < ep if absolute change

T -~
(S(f)) (H(i)) (s(z’))
< ey if relative change

Hessian convergence: ’e(”) 4106

WT N
(S(L)) (H(")) (s(’)) < ey if absolute change
where ¢, ep and eq are the given tolerance levels for each type.

If the Hessian convergence criterion is not user-specified, it is checked based on absolute change
with epy = 1E-4 after the log-likelihood or parameter convergence criterion has been satisfied. If
Hessian convergence is not met, a warning is displayed.

Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors

The parameter estimate covariance matrix, correlation matrix and standard errors can be
obtained easily with parameter estimates. Whether or not the scale parameter is estimated by
ML, parameter estimate covariance and correlation matrices are listed for 3 only because the
covariance between 3 and # should be zero.

Model-Based Parameter Estimate Covariance

The model-based parameter estimate covariance matrix is given by
Xm=-H =-(-XWX)

where H™ is the generalized inverse of the Hessian matrix evaluated at the parameter estimates.
The corresponding rows and columns for redundant parameter estimates should be set to zero.

Robust Parameter Estimate Covariance

The validity of the parameter estimate covariance matrix based on the Hessian depends on the
correct specification of the variance function of the response in addition to the correct specification
of the mean regression function of the response. The robust parameter estimate covariance
provides a consistent estimate even when the specification of the variance function of the response
is incorrect. The robust estimator is also called Huber’s estimator because Huber (1967) was
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the first to describe this variance estimate; White’s estimator or HCCM (heteroskedasticity
consistent covariance matrix) estimator because White (1980) independently showed that this
variance estimate is consistent under a linear regression model including heteroskedasticity; or
the sandwich estimator because it includes three terms. The robust (or Huber/White/sandwich)
estimator is defined as follows

n ‘ 4T 2
a2 Y-S5 )
1=1

)g (Nz)

Parameter Estimate Correlation

The correlation matrix is calculated from the covariance matrix as usual. Let o;; be an element of

¥m or Zr, then the corresponding element of the correlation matrix is \/g_”—”\/g_ The corresponding
i FF)

rows and columns for redundant parameter estimates should be set to system missing values.

Parameter Estimate Standard Error

Let BL- denote a non-redundant parameter estimate. Its standard error is the square root of the
ith diagonal element of iy or Xr:

5‘@ = /0

The standard error for redundant parameter estimates is set to a system missing value. If the
scale parameter is estimated by the ML method, we obtain 7 and its standard error estimate

o= |— (;T), where % can be found in Table 18-9“The second derivative functions w.r.t. the
a2
scale parameter for probability distributions” on p. 172. Then the estimate of the scale parameter

is exp (7) and the standard error estimate is (exp ()-8 )

Wald Confidence Intervals

Wald confidence intervals are based on the asymptotic normal distribution of the parameter
estimates. The 100(1 — a)% Wald confidence interval for fBj is given by

(Bj - ~17a/2575j,3j + Zlfa/szaj),
where z, is the 100pth percentile of the standard normal distribution.

If exponentiated parameter estimates are requested for logistic regression or log-linear models,
then using the delta method, the estimate of exp (3;) is exp (Bj), the standard error estimate of

exp (@) is (exp (B ) Gp, ) and the corresponding 100(1 — a)% Wald confidence interval for
exp (8;) is

(exp (B] — zl_a/gfrgj) , eXp (BJ + 21—(1/2&,8]-))-

Wald confidence intervals for redundant parameter estimates are set to system missing values.
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Similarly, the 100(1 — a)% Wald confidence interval for ¢is

(exp (% - Zl—a/Q&T) » €XP (7A— =+ Zl—a/Qé'T))

Chi-Square Statistics
The hypothesis Hy; : 3; = 0 is tested for each non-redundant parameter using the chi-square
statistic:

L2
3

7B

G =

which has an asymptotic chi-square distribution with 1 degree of freedom.

Chi-square statistics and their corresponding p-values are set to system missing values for
redundant parameter estimates.

The chi-square statistic is not calculated for the scale parameter, even if it is estimated by ML
method.

P Values

Given a test statistic 7 and a corresponding cumulative distribution function G as specified
above, the p-value is defined as p = 1 — G (T'). For example, the p-value for the chi-square
test of Ho; : 3; = 0is p; = 1 — prob(x§ < «;).

Model Testing

After estimating parameters and calculating relevant statistics, several tests for the given model
are performed.

Lagrange Multiplier Test

If the scale parameter for normal, inverse Gaussian and gamma distributions is set to a fixed value
or specified by the deviance or Pearson chi-square divided by the degrees of freedom (when the
scale parameter is specified by the deviance or Pearson chi-square divided by the degrees of
freedom, it can be considered as a fixed value), or an ancillary parameter & for the negative
binomial is set to a fixed value other than 0, the Lagrange Multiplier (LM) test assesses the
validity of the value. For a fixed ¢ or £, the test statistic is defined as

Topm =

PN
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where s = 8¢/9r and A = — (ij) — - 070;§T> ( d,(;j;T> ( — 0%257) evaluated at the
parameter estimates and fixed ¢ or k value. Ty has an asymptotic chi-square distribution with 1
degree of freedom, and the p-values are calculated accordingly.

For testing ¢, see Table 18-8“The 1st derivative functions w.r.t. the scale parameter for probability
distributions” on p. 170 and see Table 18-9“The second derivative functions w.r.t. the scale
parameter for probability distributions” on p. 172 for the elements of s and 4, respectively.

If k is set to 0, then the above statistic can’t be applied. According to Cameron and Trivedi (1998),
the LM test statistic should now be based on the following auxiliary OLS regression (without
constant)

(yi—ps) =y =~
bl i+

where ji;= g1 (:L]TB) and ¢; is an error term. Let the response of the above OLS regression

[(yi — [M)2 — yi} /ju; be z; and the explanatory variable fi; be w;. The estimate of the above
regression parameter a and the standard error of the estimate of a are

n
> fiwizi
i=1

a=*——and s, =

> fiwk

jo3

and it has an asymptotic standard normal distribution under the null hypothesis of equidispersion
in a Poisson model (Hj : £ = 0). Three p-values are provided. The alternative hypothesis

can be one-sided overdispersion (H, : k > 0), underdispersion (H, : k < () or two-sided
non-directional (H, : k # 0) with the variance function of V(i) = p + ku?. The calculation

of p-values depends on the alternative. For H, : k > 0,p-value = 1 — ®(z), where ®(-) is the
cumulative probability of a standard normal distribution; for H, : k < 0,p-value = ®(z); and for
H, : k # 0,p-value = 2(1 — ®(|z|)).

Goodness-of-Fit Statistics

Several statistics are calculated to assess goodness of fit of a given generalized linear model.
Deviance

The theoretical definition of deviance is:

D =2¢(L(y;y) — L(iy)),
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where £ ({1; y) is the log-likelihood function expressed as the function of the predicted mean values
fi (calculated based on the parameter estimates) given the response variable, and ¢ (y; y) is the
log-likelihood function computed by replacing & with y. The formula used for the deviance is
>o7_, fid;, where the form of di for the distributions are given in the following table:

Table 18-11
Deviance for individual case
Distribution dz
Normal wilys — pi)’
Inverse Gaussian ;;? (yi — i)’
Gamma 2@{_ n (ﬁ) 4 v }
Negative Binomial 2wi{1/z' In (Z_:) — (gi +1/k)In (%)}
Poisson 9N Py P r—
Binomial(m) 2w {yi In (z_z) Y (1-y)ln (iii“i )}
Note

®  Wheny is a binary dependent variable with 0/1 values (binomial distribution), the deviance
and Pearson chi-square are calculated based on the subpopulations; see below.

®  When y = 0 for negative binomial and Poisson distributions and y = 0 (for » = 0) or 1 (for r
= m) for binomial distribution with r/m format, separate values are given for the deviance.
Let d; be the deviance value for individual case i when y; = 0 for negative binomial and
Poisson and 0/1 for binomial.

Table 18-12

Deviance for individual case

Distribution d;

Negative Binomial 2uw; W ify; =0

Poisson 2wipi ify; =0

Binomial(m) —2wiIn(1 - p;)ify; =00rr; =0
—2wi In(y;) ifys=1orr; =m;

Pearson Chi-Square
n
2
X2 = fivi
=1

I* ; —_ n 2 . . . . . . pRp— . 2 . . .
where v; = ‘”(‘7,"27“”)') for the binomial distribution and ~; = % for other distributions.

Scaled Deviance and Scaled Pearson Chi-Square

The scaled deviance is D* = D/¢ and the scaled Pearson chi-square is x** = x?/¢.
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Since the scaled deviance and Pearson chi-square statistics have a limiting chi-square distribution
with N — py degrees of freedom, the deviance or Pearson chi-square divided by its degrees

of freedom can be used as an estimate of the scale parameter for both continuous and discrete
distributions.

~ D ~ 2
9= N-—pa or ¢ = N)ipl‘

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume ¢ = 1,
then estimate the regression parameters, calculate the deviance and Pearson chi-square values
and obtain the scale parameter estimate from the above formula. Then the scaled version of both
statistics is obtained by dividing the deviance and Pearson chi-square by ¢. In the meantime, some
statistics need to be revised. The gradient vector and the Hessian matrix are divided by ¢ and

the covariance matrix is multiplied by ¢. Accordingly the estimated standard errors are also
adjusted, the Wald confidence intervals and significance tests will be affected even the parameter
estimates are not affected by 6.

Note that the log-likelihood is not revised; that is, the log-likelihood is based on ¢ = 1 because the
scale parameter should be kept the same in the log-likelihood for fair comparison in information
criteria and model fitting omnibus test.

Overdispersion

For the Poisson and binomial distributions, if the estimated scale parameter is not near the
assumed value of one, then the data may be overdispersed if the value is greater than one or
underdispersed if the value is less than one. Overdispersion is more common in practice. The
problem with overdispersion is that it may cause standard errors of the estimated parameters to be
underestimated. A variable may appear to be a significant predictor, when in fact it is not.

Deviance and Pearson Chi-Square for Binomial Distribution with 0/1 Binary Response Variable

When r and m (event/trial) variables are used for the binomial distribution, each case represents m
Bernoulli trials. When y is a binary dependent variable with 0/1 values, each case represents a
single trial. The trial can be repeated for several times with the same setting (i.e. the same values
for all predictor variables). For example, suppose the first 10 y values are 2 1s and 8 0s and x
values are the same (if recorded in events/trials format, these 10 cases is recorded as 1 case

with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation.
Cases with common values in the variable list that includes all predictor variables are regarded as
coming from the same subpopulation. When the binomial distribution with binary response is
used, we should calculate the deviance and Pearson chi-square based on the subpopulations. If we
calculate them based on the cases, the results might not be useful.

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the
data should be reconstructed from the single trial format to the events/trials format. Assume the
following notation for formatted data:

Table 18-13
Notation

Notation Description
ng Number of subpopulations.
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Notation Description
ril Sum of the product of the frequencies and the scale weights associated with y = 1 in the
Jth subpopulation. So rjg is that with y = 0 in the jth subpopulation.
mj Total weighted observations; m;j = rj| + rjo.
Yil The proportion of 1s in the jth subpopulation; yj| = rji/ m;.
Hj The fitted probability in the jth subpopulation (4i; would be the same for each case in the

Jjth subpopulation because values for all predictor variables are the same for each case.)

The deviance and Pearson chi-square are defined as follows:

s . 1— 2. A Ny (s — 2
D:2ij{yj11n<%>+(lyj1)1n<1 yﬂ)}andxzzz—?(yﬂ 'u’),

o j — 1 = k(1= py)

then the corresponding estimate of the scale parameter will be

2

p=-L and $=—X

Ns—Px Ns—Pa

The full log likelihood, based on subpopulations, is defined as follows:

n 7L
~1 m; =1 m;!
(=1 + —<ln _J)}:£+ —{IH—J},
" ;;:qs{ (Tﬂ " & rjlryo!

where /;, is the kernel log likelihood; it should be the same as the kernel log-likelihood computed
based on cases before, there is no need to compute again.

Information Criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Akaike information criteria (AIC). —2¢ + 2d

Finite sample corrected (AICC). —2¢ + %

Bayesian information criteria (BIC). —2¢ + d1n (V)
Consistent AIC (CAIC). —2¢ + d(In (N) + 1).

where ¢ is the log-likelihood evaluated at the parameter estimates. Notice that d = py if only 3 is
included; d = py + 1 if the scale parameter is included for normal, inverse Gaussian, or gamma.

Notes

m  { (the full log-likelihood) can be replaced with ¢y (the kernel of the log-likelihood) depending
on the user’s choice.

®  When r and m (event/trial) variables are used for the binomial distribution, then the N used

n

here would be the sum of the trials frequencies; N = Z fim;. In this way, the same value

i=1
results whether the data are in raw, binary form or in summarized, binomial form.
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Test of Model Fit

The model fitting omnibus test is based on —2 log-likelihood values for the model under
consideration and the initial model. For the model under consideration, the value of the —2
log-likelihood is

(i)

Let the initial model be the intercept-only model if intercept is in the considered model or the
empty model otherwise. For the intercept-only model, the value of the —2 log-likelihood is

~2(/n)

For the empty model, the value of the —2 log-likelihood is
—24(0)

Then the omnibus (or global) test statistic is

S=2 (lé (B) - é(,é’n)) for the intercept-only model or

S=2 ([ (B) - E(O)) for the empty model.

S has an asymptotic chi-square distribution with » degrees of freedom, equal to the difference in
the number of valid parameters between the model under consideration and the initial model.

r = p, — 1 for the intercept-only model,; r = p,, for the empty model. The p-values then can

be calculated accordingly.

Note if the scale parameter is estimated by the ML method in the model under consideration, then
it will also be estimated by the ML method in the initial model.

Default Tests of Model Effects

For each regression effect specified in the model, type I and III analyses can be conducted.
Type I Analysis

Type I analysis consists of fitting a sequence of models, starting with a model with only an
intercept term (if there is one), and adding one additional effect, which can be covariates, factors
and interactions, of the model on each step. So it depends on the order of effects specified in the
model. On the other hand, type III analysis won’t depend on the order of effects.

Wald Statistics. For each effect specified in the model, type I test matrix L; is constructed

and Hy: L;3 = 0 is tested. Construction of matrix L; is based on the generating matrix

H, = (XTQX) —XTQX7 where Q is the scale weight matrix with ith diagonal element w; and
such that L;5 is estimable. It involves parameters only for the given effect and the effects
containing the given effect. If such a matrix cannot be constructed, the effect is not testable.
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Since Wald statistics can be applied to type I and III analysis and custom tests, we express Wald
statistics in a more general form. The Wald statistic for testing L; 8 = K, where L; is a rxp full
row rank hypothesis matrix and K is a »x1 resulting vector, is defined by

S = <LiB . K)T(LiELZ-T> B (Liﬁ - K)

where 3 is the maximum likelihood estimate and X is the parameter estimates covariance matrix. S
has an asymptotic chi-square distribution with r& degrees of freedom, where ro = rank (LZLT) .

Ifrg < r, then (LZLT) isa generalized inverse such that Wald tests are effective for a restricted
set of hypotheses L;-3 — K containing a particular subset C of independent rows from Hy.

For type I and III analysis, calculate the Wald statistic for each effect i according to the
corresponding hypothesis matrix L; and K=0.

Type III Analysis

Wald statistics. See the discussion of Wald statistics for Type I analysis above. L; is the type III
test matrix for the ith effect.

Blank handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring

Scoring is defined as assigning one or more values to a case in a data set.

Predicted Values

Due to the non-linear link functions, the predicted values will be computed for the linear predictor
and the mean of the response separately. Also, since estimated standard errors of predicted values
of linear predictor are calculated, the confidence intervals for the mean are obtained easily.

Predicted values are still computed as long all the predictor variables have non-missing values
in the given model.

Predicted Values of the Linear Predictors
7; Zl}T B + 04
Estimated Standard Errors of Predicted Values of the Linear Predictors

Gy = A/ :r;rEa",

Predicted Values of the Means
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fri =g~ (»%TB + Oi)

where g~ 1 is the inverse of the link function. For binomial response with 0/1 binary response
variable, this the predicted probability of category 1.

Confidence Intervals for the Means
Approximate 100(1—a)% confidence intervals for the mean can be computed as follows
g ! (l;FB +0; £21_a/26y)

If either endpoint in the argument is outside the valid range for he inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

Blank handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.
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Generalized linear mixed models
algorithms

Generalized linear mixed models extend the linear model so that:
B The target is linearly related to the factors and covariates via a specified link function.
m  The target can have a non-normal distribution.

m The observations can be correlated.

Generalized linear mixed models cover a wide variety of models, from simple linear regression to
complex multilevel models for non-normal longitudinal data.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n Number of complete cases in the dataset. It is an integer and n > 1.

p Number of parameters (including the constant, if it exists) in the model. It is an integer
and p > 1.

Px Number of non-redundant columns in the design matrix of fixed effects. It is an integer
and py > 1.

K Number of random effects.

y nx 1 target vector. The rows are records.

r nx 1 events vector for the binomial distribution representing the number of “successes”
within a number of trials. All elements are non-negative integers.

m nx 1 trials vector for the binomial distribution. All elements are positive integers and m;
> 1y, i=1,...,n.

n nx 1 expected target value vector.

n nx 1 linear predictor vector.

X nx p design matrix. The rows represent the records and the columns represent the
parameters. The ith row is xZT = (241, ..., Zip), where the superscript 7 means transpose
of a matrix or vector, 1 = 1,...,n with #;; = 1 if the model has an intercept.

z nx r design matrix of random effects.

(0] nx 1 offset vector. This can’t be the target or one of the predictors. Also this can’t be
a categorical field.

B px 1 parameter vector. The first element is the intercept, if there is one.

Y rx 1 random effect vector.

o nx 1 scale weight vector. If an element is less than or equal to 0 or missing, the

corresponding record is not used.

f nx 1 frequency weight vector. Non-integer elements are treated by rounding the value
to the nearest integer. For values less than 0.5 or missing, the corresponding records
are not used.

N n
Effective sample size, N = Z fi.. If frequency weights are not used, N = n.
i=1
O covariance parameters of the kth random effect
0c . T T
covariance parameters of the random effects, 0 = [91 ,eeas 0 K}

© Copyright IBM Corporation 1994, 2015. 187
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Or covariance parameters of the residuals
0 T T
0=[0%,6%] =[of,....0%,0%]
Vy,, Covariance matrix of y, conditional on the random effects

Model

The form of a generalized linear mixed model for the target y with the random effects vy is

n=g(E(y|v)) = X5+ Zvy+ O,y|y ~ F,

where 1 is the linear predictor; g(.) is the monotonic differentiable link function; y is a (rx 1)
vector of random effects which are assumed to be normally distributed with mean 0 and variance
matrix G, X is a (nx p) design matrix for the fixed effects; Z is a (nx r) design matrix for the
random effects; O is an offset with a constant coefficient of 1 for each observation; F is the
conditional target probability distribution. Note that if there are no random effects, the model
reduces to a generalized linear model (GZLM).

The probability distributions without random effects offered (except multinomial) are listed in
Table 19-1 on p. 188. The link functions offered are listed in Table 19-3 on p. 189. Different
combinations of probability distribution and link function can result in different models.

See “Nominal multinomial distribution > on p. 206 for more information on the nominal
multinomial distribution.

See “Ordinal multinomial distribution ” on p. 213 for more information on the ordinal multinomial
distribution.

Note that the available distributions depend on the measurement level of the target:

B A continuous target can have any distribution except multinomial. The binomial distribution
is allowed because the target could be an “events” field. The default distribution for a
continuous target is the normal distribution.

B A nominal target can have the multinomial or binomial distribution. The default is
multinomial.

B An ordinal target can have the multinomial or binomial distribution. The default is

multinomial.
Table 19-1
Distribution, range and variance of the response, variance function, and its first derivative
Distribution Range of y V() Var(y) ()
Normal (—00,00) 1 ¢ 0
Inverse Gaussian | (0,00) u3 ou3 3u2
Gamma (0,00) u? $u2 2u
Negative binomial | 0(1)e0 Hep? +Hep?2 1+2kp
Poisson 0(1)o0 n p 1
Binomial(m) 0(l)ym/m u(1—p) p(1—p)/m 1-2p
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Notes
B ((1)z means the range is from 0 to z with increments of 1; thatis, 0, 1,2, ..., z

m  For the binomial distribution, the binomial trial variable m is considered as a part of the
weight variable o.

m If a scale weight variable o is presented, ¢ is replaced by ¢/w.

m  For the negative binomial distribution, the ancillary parameter (k) is estimated by the
maximum likelihood (ML) method. When k& = 0, the negative binomial distribution reduces to
the Poisson distribution. When & = 1, the negative binomial is the geometric distribution.

The full log-likelihood function (£), which will be used as the objective function for parameter
estimation, is listed for each distribution in the following table.

Table 19-2

The log-likelihood function for probability distribution
Distribution 4

Normal

/—€k+z {ln (2m)}

Inverse Gaussian

Z—Zk—ﬁ-z {ln (2m)}

Gamma
z_zk+2f1 —In(y:)}
Negative LI
binomial =1 + Z figb—{f In (T'(y; + 1))}
=1
Poisson

Z—Zk—&-Zﬁ {—In (g1}

Binomial(m) w; ms; m; mi!
=15 + ;ﬁg{ln (Ti )},where (n ) = g =)t

The following tables list the form, inverse form, range of /i, and first and second derivatives
for each link function.

Table 19-3
Link function name, form, inverse of link function, and range of the predicted mean
Link function n=g(p) Inverse p=g~1(n) Range of fi
Identity n n LER
Log In(p) exp(n) >0
Logit exp(n) 7 1

o8l ln (ﬁ) 1+el>)cp72n) felo]
Probit @' (p), where () € [0,1]

3 .
() = V%/ e " dy

Complementary In(—(In(1—p)) 1—exp(—exp(n)) L€ [0,1]
log-log




190

Generalized linear mixed models algorithms

Link function n=g(p) Inverse p=g~1(n) Range of /i

a#0 u nt/e it € Rif « orl /e is odd integer
Power(a){ a=0 { In (u) { exp (n) i1 > 0 otherwise
Log-complement | In(1—p) 1—exp(n) <1
Negative log-log | —In(=In(y)) exp(—exp(—n)) i€ [0,1]

Note: In the power link function, if |a| < 2.2e-16, a is treated as 0.

Table 19-4

The first and second derivatives of link function

Link function

First derivative g’ (1) = 27 = A

ou

Second derivative g (1) = o2y

Bu?
Identity 1 0
Log m —A?
Logit i A2 —1)
Probit m, where A2 ()
6() = gz "
Complementary log-log m ~A%2(1+In(1 - p)
a#0 ap®? Aol
Power(a){ =0 { % { 7A*2‘
Log-complement = —A?
Negative log-log Tt A?(1+1n ()

When the canonical parameter is equal to the linear predictor, # = 5, then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.

Table 19-5

Canonical and default link functions for probability distributions

Distribution Canonical link function
Normal Identity

Inverse Gaussian Power(-2)

Gamma Power(—1)

Negative binomial Negative binomial
Poisson Log

Binomial Logit

The variance of y, conditional on the random effects, is

var (yly) = A'/?RAY?
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The matrix A is a diagonal matrix and contains the variance function of the model, which
is the function of the mean p, divided by the corresponding scale weight variable; that is,
A = diag(V(p;)/wi),i = 1,...,n. The variance functions, V(1), are different for different
distributions. The matrix R is the variance matrix for repeated measures.

Generalized linear mixed models allow correlation and/or heterogeneity from random effects
(G-side) and/or heterogeneity from residual effects (R-side). resulting in 4 types of models:

1. Ifa GLMM has no G-side or R-side effects, then it reduces to a GZLM; G=0 and R = ¢I, where I
is the identity matrix and ¢ is the scale parameter. For continuous distributions (normal, inverse
Gauss and gamma), ¢ is an unknown parameter and is estimated jointly with the regression
parameters by the maximum likelihood (ML) method. For discrete distributions (negative
binomial, Poisson, binomial and multinomial), ¢ is estimated by Pearson chi-square as follows:

b= LG:fw,@z — )
N*i:l 1Wi V(ﬂz) )

where N* = N — p, for the restricted maximum pseudo-likelihood (REPL) method.

2. Ifamodel only has G-side random effects, then the G matrix is user-specified and R = ¢l. ¢ is
estimated jointly with the covariance parameters in G for continuous distributions and ¢ = 1 for
discrete distributions..

3. If a model only has R-side residual effects, then G = 0 and the R matrix is user-specified. All
covariance parameters in R are estimated using the REPL method, defined in “Estimation ”

onp. 192.

4. If a model has both G-side and R-side effects, all covariance parameters in G and R are jointly
estimated using the REPL method.

For the negative binomial distribution, there is the ancillary parameter &, which is first estimated
by the ML method, ignoring random and residual effects, then fixed to that estimate while other
regression and covariance parameters are estimated.

Fixed effects transformation

To improve numerical stability, the X matrix is transformed according to the following rules.

The ith row of X is x; = (241, ..., ;ri,,)T, i=1,...,n with z;; = 1 if the model has an intercept.
Suppose x} is the transformation of x; then the jth entry of x} is defined as
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where ¢j and sj are centering and scaling values for x;;, respectively, for /=1,...,p and choices
of G and sj , are listed as follows:

®  For a non-constant continuous predictor or a derived predictor which includes a continuous
predictor, if the model has an intercept, ¢; = 0 and ¢; = Z;,j # 1, where Z; is the sample
n

mean of the jth predictor, Z; = %Z fizijands; =1lands; =, /sﬁj,j # 1, where «/S%j is

i=1
n
the sample standard deviation of the jth predictor and sf,j = ﬁz filzi; — fj)Q. Note

i=1
that the intercept column is not transformed. If the model has no intercept, ¢; = 0 and

85 = 4/5%, + 7.
®m  For a constant predictor z;; = a # 0,V4, ¢; = 0 and s; = a, that is, scale it to 1.

®  For a dummy predictor that is derived from a factor or a factor interaction, ¢; = 0ands; = 1;
that is, leave it unchanged.

Estimation

We estimate GLMMs using linearization-based methods, also called the pseudo likelihood
approach (PL; Wolfinger and O’Connell (1994)), penalized quasi-likelihood (PQL; Breslow

and Clayton (1993)), marginal quasi-likelihood (MQL; Goldstein (1991)). They are based on

the similar principle that the GLMMs are approximated by an LMM so that well-established
estimation methods for LMMs can be applied. More specifically, the mean target function; that is,
the inverse link function is approximated by a linear Taylor series expansion around the current
estimates of the fixed-effect regression coefficients and different solutions of random effects (0

is used for MQL and the empirical Bayes estimates are used for PQL). Applying this linear
approximation of the mean target leads to a linear mixed model for a transformation of the original
target. The parameters of this LMM can be estimated by Newton-Raphson or Fisher scoring
technique and the estimates then are used to update the linear approximation. The algorithm
iterates between two steps until convergence. In general, the method is a doubly iterative process.
The outer iterations are to update the transformed target for an LMM and the inner iterations are to
estimate parameters of the LMM.

It is well known that parameter estimation for an LMM can be based on maximum likelihood
(ML) or restricted (or residual) maximum likelihood (REML). Similarly, parameter estimation
for a GLMM in the inner iterations can based on maximum pseudo-likelihood (PL) or restricted
maximum pseudo-likelihood (REPL).

Linear mixed pseudo model

Following Wolfinger and O’Connell (1993), a first-order Taylor series of p in (1) about 3 and
4 yields

wr it (7Y (XS’ + 75 + O) [X(ﬁ - 5’) +Z(y - ﬁ')]
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where (gfl) (XB + 75 + O) is a diagonal matrix with elements consisting of evaluations of

! = ' -1 . .
the 1st derivative of g~*. Since (g7*) (Xﬁ + 75 + O) = (g (/])) , this equation can be
rearranged as

7

g () (n— ) + XP+Z7 =~ XB+2Zy
If we define a pseudo target variable as
v=g(B)y — ) + XB+Z7 = g (B)(y — 1) + g(f) — O,

then the conditional expectation and variance of v, based on E (y|y) and var (yly) = AY/*RAY/?,
are

E(vy) = g (3)(un— i) + XG+Z7

var(vly) = g (R)AY*RAYg ()

where A}/Q = diag[(V(/]i)/wi)l/Q],i =1,...,n.
Furthermore, we also assume v|y is normally distributed. Then we consider the model of v
v=XgB+Zy+¢

as a weighted linear mixed model with fixed effects B, random effects y ~ N(0, G), error terms
. 25 A1/2 1

e~ N (0, g9 (A} RAL g

W= Ap, [g,(/ﬂ}

series approximation of the linked target g(y). The estimation method of unknown parameters

of B and 0, which contains all unknowns in G and R, for traditional linear mixed models can
be applied to this linear mixed pseudo model.

(/1)), because var(e) = var(v]y), and diagonal weight matrix

. Note that the new target v (with O if an offset variable exists) is a Taylor

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in 0, corresponding to the linear mixed
model for v are the following:

Tv(©) r(6) > In (2n)

L

(0:%) =~ [V (0)] — 5r(0)

)T — Pz

(R (0:v) = —%m v (0)] - %r(G V(0) 1r(0) %m XTv(e) x| - In (27)

where

V(0)=ZG(0)Z + W 2R ()W /21 (0) = v — X(XTV(O)’lx) XTvo) 'v=v- XN
denotes the effective sample size, and py denotes the rank of the design matrix of X or the number
of non-redundant parameters in X. Note that the regression parameters in 3 are profiled from the
above equations because the estimation of B can be obtained analytically. The covariance
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parameters in 0 are estimated by Newton-Raphson or Fisher scoring algorithm. Following the
tradition in linear mixed models, the objection functions of minimization for estimating 6 would
be —2£(0; v) or —2¢r(0: v). Upon obtaining 8, estimates for 3 and y are computed as

B = (XTV(é)lx) _XTV<(§>1V
y = GZTV<9)_1f

where /3 is the best linear unbiased estimator (BLUE) of B and 4 is the estimated best linear
unbiased predictor (BLUP) of v in the linear mixed pseudo model. With these statistics, v and
W are recomputed based on jz and the objective function is minimized again to obtain updated
g. Tteration between —2/(6; v) and the above equation yields the PL estimation procedure and
between —2£k(0; v) and the above equation the REPL procedure.

There are two choices for 4 (the current estimates of y):
1. 4 for PQL; and
2. 0 for MQL.

On the other hand, 3 is always used as the current estimate of the fixed effects. Based on the two
objective functions (PL or REPL) and two choices of random effect estimates (PQL or MQL), 4
estimation methods can be implemented for GLMMs:

1. PL-PQL: pseudo-likelihood with 4=%;
2. PL-MQL: pseudo-likelihood with =0;
3. REPL-PQL.: residual pseudo-likelihood with 5=%;

4. REPL-MQL: residual pseudo-likelihood with 5=0.

We use method 3, REPL-PQL.

Iterative process
The doubly iterative process for the estimation of 0 is as follows:

1. Obtain an initial estimate of u, u(®). Specifically, 9 = (y;m; 4 0.5)/(m; + 1) for a binomial
distribution (y; can be a proportion or 0/1 value) and ! = y; for a non-binomial distribution. Also
set the outer iteration index j = 0.

2. Based on ji, compute
o, - ~ _ 1, -2
v=g(ii) - O+g (@)(y — /1) andW:A,zl[g (ur)} :

Fit a weighted linear mixed model with pseudo target v, fixed effects design matrix X, random
effects design matrix Z, and diagonal weight matrix W. The fitting procedure, which is called
the inner iteration, yields the estimates of 6, and is denoted as 0. The procedure uses the
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specified settings for parameter, log-likelihood, and Hessian convergence criteria for determining
convergence of the linear mixed model. Ifj = 0, go to step 4; otherwise go to the next step.

3. Check if the following criterion with tolerance level ¢ is satisfied:

PISIIICRY
2 T
max; <2 X |91§j—1)|+ 3§j1)|> <&

If it is met or maximum number of outer iterations is reached, stop. Otherwise, go to the next step.

4. Compute 3 by setting § = 0) then set 3 = 5. Depending on the choice of random effect
estimates, set y=75.

5. Compute the new estimate of | by
p=g1! (XB + 75+ 0)7

setj =j+ 1 and go to step 2.

Wald confidence intervals for covariance parameter estimates

Here we assume that the estimated parameters of G and R are obtained through the above doubly
iterative process. Then their asymptotic covariance matrix can be approximated by 2H !, where
H is the Hessian matrix of the objective function (—2£(0; v) or —2¢(0; v}) evaluated at 9 The
standard error for the ith covariance parameter estimate in the § vector, say §;, is the square root of
the ith diagonal element of 2H !,

Thus, a simple Wald’s type confidence interval or test statistic for any covariance parameter

can be obtained by using the asymptotic normality. However, these can be unreliable in small
samples, especially for variance and correlation parameters that have a range of [0, 00} and

[—1, 1] respectively. Therefore, following the same method used in linear mixed models, these
parameters are transformed to parameters that have range (—oc, 00). Using the delta method, these
transformed estimates still have asymptotic normal distributions.

For variance type parameters in G and R, such as ¢? in the autoregressive, autoregressive moving
average, compound symmetry, diagonal, Toeplitz, and variance components, and 8;; in the
unstructured type, the 100(1 — 0)% Wald confidence interval is given, assuming the variance
parameter estimate is 62 and its standard error is se(&z) from the corresponding diagonal element
of 2H™', by

exp (ln ([72) 21 - 672 se(&Z))

For correlation type parameters in G and R, such as p in the autoregressive, autoregressive moving
average, and Toeplitz types and ¢ in the autoregressive moving average type, which usually come
with the constraint of |p| < 1, the 100(1 — a)% Wald confidence interval is given, assuming the
correlation parameter estimate is p and its standard error is se(p) from the corresponding diagonal
element of 2H™*, by

tanh (tanhfl(ﬁ) +2_a- (1-— [)2)71 . se(ﬁ))
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] exp (r)+exp§—m) 1-z
hyperbolic tangent, respectively.

where tanh z = SRE)—P(=2) anq ganh 1y = t1n [1“’} are hyperbolic tangent and inverse

For general type parameters, other than variance and correlation types, in G and R, such as o7 in
the compound symmetry type and é;;,¢ # j, (off-diagonal elements) in the unstructured type, no
transformation is done. Then the 100(1 — a)% Wald confidence interval is simply, assuming the
parameter estimate is &; and its standard error is se(é; ) from the corresponding diagonal element
of 2H 1,

(61 — 21_qy2 - 5€(61)),81 + 21_q/2 - s€(51))

The 100(1 — a)% Wald confidence interval for ¢ is

(exp (% — zl_a/g&T) , €Xp (% —+ Zl_a/Q&T))

where 7 = In (¢).

Note that the z-statistics for the hypothesis Hy; : §; = 0, where 6; is a covariance parameter in

0 vector, are calculated; however, the Wald tests should be considered as an approximation and
used with caution because the test statistics might not have a standardized normal distribution.

Statistics for estimates of fixed and random effects

The approximate covariance matrix of (B — B,ﬁ—y) is

o [xTre1x xTR*17 {

T
_ ~-1] = |Ci1 Cy
7zTR*-1x ZTR*—12+G(9)

Ca1 Co2

where R* = var(vly)=g (ﬂ)A}/ ZRA}/ %4’ (f) is evaluated at the converged estimates and
011 = <XTVA 71X)

C’Ql = —GZTV_IXC'll

. . . -1 . . .
Cy9 <ZTR_IZ+G_1) — 021XTV_IZG

Statistics for estimates of fixed effects on original scale

If the X matrix is transformed, the restricted log pseudo-likelihood (REPL) would be different
based on transformed and original scale, so the REPL on the transformed scale should be
transformed back on the final iteration so that any post-estimation statistics based on REPL can
be calculated correctly. Suppose the final objective function value based on the transformed and
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original scales are —2£%(0; v) and —2/,(6; v), respectively, then —2£,(0; v) can be obtained
from —20%(0; v) as follows:

—20R(0;v) = —205(0;v) — 21n|A]

Because REPL has the following extra term involved the X matrix

—Ln ’X*TV(O)_lX* T

_ —%ln‘(XA) V(O)_1XA‘
=1l (‘AT‘ x ‘XV(O)_IX‘ x |A|)
=1 <1n ‘XV(G)_lX‘ +In|A|+1n ’ATD
— 1l ’XV(@)*X‘ ~InlA|
then —1 an‘XV(O)lx’ ——lmn ]x*TV(e)*X*] +1In|A| and £(0;v) = £%(0;v) + In|A|. Please
note that PL values are the same whether the X matrix is transformed or not.

In addition, the final estimates of B, C;1, C5; and C»; are based on the transformed scale, denoted
as 8*,C5,,C3, and C3,, respectively. They are transformed back to the original scale, denoted as
B8,C1,C5 and C,,, respectively, as follows:

p=Ap,

Gy = ACH AT,
Cyy = CiAT,
Cop = C3s.

Note that A could reduce to S™*; hereafter, the superscript * denotes a quantity on the transformed
scale.

Estimated covariance matrix of the fixed effects parameters

Two estimated covariance matrices of the fixed effects parameters can be calculated: model-based
and robust.

The model-based estimated covariance matrix of the fixed effects parameters is given by
Im=0Cn

The robust estimated covariance matrix of the fixed effects parameters for a GLMM is defined as
the classical sandwich estimator. It is similar to that for a generalized linear model or a generalized
estimating equation (GEE). If the model is a generalized linear mixed model and it is processed by
subjects, then the robust estimator is defined as follows
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S
mesy | S XTT T 1K, | o
j=1

where 7; = v; — X;4.

Standard errors for estimates in fixed effects and predictions in random effects

Let 3; denote a non-redundant parameter estimate in fixed effects. Its standard error is the square
root of the ith diagonal element of £y or Zr,

o B8: — Vi
The standard error for redundant parameter estimates is set to a system missing value.

Let 4; denote a prediction in random effects. Its standard error is the square root of the ith
diagonal element of Cs5:

Gy, =\ Caa;

Test statistics for estimates in fixed effects and predictions in random effects

The hypothesis Hy; : 3; = 0 is tested for each non-redundant parameter in fixed effects using the
¢ statistic:

~

Bi

03,

t; =

which has an asymptotic ¢ distribution with v degrees of freedom. See “Method for computing
degrees of freedom ” on p. 203 for details on computing the degrees of freedom.

Wald confidence intervals for estimates in fixed effects and predictions in random effects

The 100(1 — )% Wald confidence interval for 3; is given by
(&' — ty,a/208,, 0i + tu,a/gﬁ,&)

where t,, 4 /2 is the (1 — a/2) 100th percentile of the ¢, distribution.

For some models (see the list below), the exponentiated parameter estimates, their standard
errors, and confidence intervals are computed. Using the delta method, the estimate of exp (53;) is
exp (Bi), the standard error estimate is (exp (Bl) . &51) and the corresponding 100(1 — o)% Wald
confidence interval for exp (8;) is

<eXp (Bz’ - tw/ﬁﬁi) ; €XPp <5¢ + fu,a/gﬁ,&))-
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The list of models is as follows:
1. Logistic regression (binomial distribution + logit link).
2. Nominal logistic regression (nominal multinomial distribution + generalized logit link).
3. Ordinal logistic regression (ordinal multinomial distribution + cumulative logit link).
4. Log-linear model (Poisson distribution + log link).

5. Negative binomial regression (negative binomial distribution + log link).

Testing

After estimating parameters and calculating relevant statistics, several tests for the given model
are performed.

Goodness of fit

Information criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Finite sample corrected (AICC) —20+ (sz;if\i 7
Bayesian information criteria (BIC) —2{+dIn(N)

where ¢ is the restricted log-pseudo-likelihood evaluated at the parameter estimates. For REPL,
N is the effective sample size minus the number of non-redundant parameters in fixed effects
T

(Z fi — p2) and d is the number of covariance parameters.
i=1
Note that the restricted log-pseudo-likelihood values are of the linearized model, not on the

original scale. Thus the information criteria should not be compared across models with different
distribution and link function and they should be interpreted with caution.

Tests of fixed effects

For each effect specified in the model, a type III test matrix L is constructed and Hy: Lip =0 is
tested. Construction of L and the generating estimable function (GEF) is based on the generating
matrix H, = (XT‘PX) XT‘I’X, where ¥ = diag(fiw1, ... fanwy), such that L;P is estimable; that
is, L; = L;H,,. It involves parameters only for the given effect and the effects containing the given
effect. For type III analysis, L. does not depend on the order of effects specified in the model. If
such a matrix cannot be constructed, the effect is not testable.

Then the L matrix is then used to construct the test statistic
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) 1
o ATLT (LZLT) L3

Te

where r. = rank LZLT . The statistic has an approximate F distribution. The numerator
degrees of freedom is .. and the denominator degrees of freedom is v. See “Method for computing
degrees of freedom ” on p. 203 for details on computing the denominator degrees of freedom.

In addition, we test a null hypothesis that all regression parameters (except intercept if there is
one) equal zero. The test statistic would be the same as the above F statistic except the L. matrix is
from GEF. If there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L
matrix is GEF without the first row which corresponds to the intercept. This test is similar to the
“corrected model” in linear models.

Estimated marginal means

There are two types of estimated marginal means calculated here. One corresponds to the
specified factors for the linear predictor of the model and the other corresponds to those for the
original scale of the target.

Estimated marginal means are based on the estimated cell means. For a given fixed set of factors,
or their interactions, we estimate marginal means as the mean value averaged over all cells
generated by the rest of the factors in the model. Covariates may be fixed at any specified value.
If not specified, the value for each covariate is set to its overall mean estimate.

Estimated marginal means are not available for the multinomial distribution.

Estimated marginal means for the linear predictor

Calculating estimated marginal means for the linear predictor

Estimated marginal means for the linear predictor are based on the link function transformation,
and constructed such that LB is estimable.

Suppose there are » combined levels of the specified categorical effect. This »x1 vector can be
expressed in the form @ = L. The variance matrix of @1 is then computed by

v(a)=LzLT
The standard error for the jth element of 11 is the square root of the jth diagonal element of V().
Let the jth element of 1 and its standard error be @; and &, respectively, then the corresponding

100(1 — a)% confidence interval for u;,j = 1,...,r, is given by

U,j :l: tvj,a/gauj
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where t,,; , 5 is the (1 — «/2)100th percentile of the # distribution with v/ degrees of freedom.
See “Method for computing degrees of freedom ” on p. 203 for details on computing the degrees
of freedom.

Comparing estimated marginal means for the linear predictor

We can compare estimated marginal means for the linear predictor based on a selected contrast
type, for which a set of contrasts for the factor is created. Let this set of contrasts define matrix
C used for testing the hypothesis Hy : Cu = 0. An F statistic is used for testing given set of
contrasts for the factor as follows:

T N~TY  /An
o (Cil) (CV(u)c ) (Cid)

I

which has an asymptotic F distribution with »; degrees of freedom, where r; = rank CV(ﬁ)CT).
See “Method for computing degrees of freedom ” on p. 203 for details on computing the
denominator degrees of freedom. The p-values can be calculated accordingly. Note that adjusted
p-values based on multiple comparisons adjustments won’t be computed for the overall test.

Each row c;r of matrix C is also tested separately. The estimate for the ith row is given by cZTﬁ and

its standard error by C?V(ﬁ)ci. The corresponding 100(1 — a)% confidence interval is given by
T. )

C, U + tv",a’/QO-CUi

The test statistic for Hy : cTu=0is

4
cZTﬂ

t; =

5-CU,‘,
It has an asymptotic ¢ distribution. See “Method for computing degrees of freedom ” on p. 203

for details on computing the degrees of freedom. The p-values can be calculated accordingly. In
addition, adjusted p-values for multiple comparisons can also computed.

Estimated marginal means in the original scale
Estimated marginal means for the target are based on the original scale. As a conditional predictor

defined by Lane and Nelder (1982), estimated marginal means for the target are derived from
those for the linear predictor.

Calculating estimated marginal means for the target

The estimated marginal means for the target are defined as

M =g ' (L3) =g (@)
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The variance of estimated marginal means for the target is

v (N1) = diag <M) LS diag (M)

8uj 6’Uj

where diag(dg~1(i1;)/d1;) is a rxr matrix and g 1(a;)/04; is the derivative of the inverse of
the link with respect to the jth value in & and dg =" (4;)/0; = 1/g' (]\L-) where ¢’ (]\L-) is
from Table 19-4 on p. 190.

The 100(1 — a)% confidence interval for M;,i = 1,...,r,is given by
—1/~ ~
g (ul + tvi’a/2aui).

Note: M is estimated marginal means for the proportion, not for the number of events when
events and trials variables are used for the binomial distribution.

Comparing estimated marginal means for the target

This is similar to comparing estimated marginal means for the linear predictor; just replace i1 with
M and V (0) with V (1\7[) . For more information, see the topic “Estimated marginal means for the
linear predictor” on p. 200.

Multiple comparisons

The hypothesis Hy : Cu = 0 can be tested using the multiple row hypotheses testing technique.
Let ¢!’ be the ith row vector of matrix C. The ith row hypothesis is Hy; : ¢/ u = 0. Testing H, is the
same as testing multiple non-redundant row hypotheses {Hgi}f‘;l simultaneously, where R is the
number of non-redundant row hypotheses, and Hg; represents the ith non-redundant hypothesis. A
hypothesis Hy; is redundant if there exists another hypothesis Hy;, j # ¢ such that ¢; = ac;, a # 0.

Adjusted p-values. For each individual hypothesis Hy;, test statistics can be calculated. Let
p; denote the p-value for testing Hy; and p! denote the adjusted p-value. The conclusion from
multiple testing is, at level « (the family-wise type I error),

reject Ho; : clu=0if pf <
reject Hy : Cu = 0 if min; (p}) < a.

Several different methods to adjust p-values are provided here. Please note that if the adjusted
p-value is bigger than 1, it is set to 1 in all the methods.

Adjusted confidence intervals. Note that if confidence intervals are also calculated for the above
hypothesis, then adjusting confidence intervals is required to correspond to adjusted p-values.
The only item needed to be adjusted in the confidence intervals is the critical value from the
standard normal distribution. Assume that the original critical value is 2, _,/, and the adjusted
critical value is z*.
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LSD (Least Significant Difference)
The adjusted p-values are the same as the original p-values:

P, = Di

The adjusted critical value is:
t* == t,L,i7a/2

Sequential Bonferroni

The adjusted p-values are:

. Rpq) i=1
Py = j ¢ 2>
(i) max ((R—'lv‘i‘l)p(i)’p(i—l)) 122

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

tv“’),ﬁ ifi =1
L= Lot e s ifpa.)=(R — i+ 1)py) fori > 2
vt . B ' '
Sequential Sidak

The adjusted p-values are:

- 1-(1-p)" i=1
7 max (1 (- p(,-,))R”“,p;;_l)) i>9

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

(i) w lf?’ = 1)
tho = { tyw ey ifply = (R —i+ Lpg fori > 2,
: X X s
v(i)7il*<1*27a)1/“” lfp(i)_])(l;l) fori > 2

o 111(1—p*i71 )
where x = m
Method for computing degrees of freedom

Residual method

The value of degrees of freedom is given by N — rank(X), where N is the effective sample size
and X is the design matrix of fixed effects.
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Satterthwaite’s approximation

First perform the spectral decomposition LCL? = I'”DI" where T is an orthogonal matrix of
eigenvectors and D is a diagonal matrix of eigenvalues. If /,,, is the mth row of T'L, d,,, is the
mth eigenvalues and

y 3dy,
m gmz(é)—lgm
3., CIE . . . . A .
where g, = =%57=|,_, and ¥, is the asymptotic covariance matrix of ¢ obtained from the

Hessian matrix of the objective function; that is, ¥; = 2H 1. If

=Y ™ 51 (vm > 2)

Note that the degrees of freedom can only be computed when £>gq.

Scoring

For GLMMs, predicted values and relevant statistics can be computed based on solutions of
random effects. PQL-type predictions use ¥ as the solution for the random effects to compute
predicted values and relevant statistics.

POL-type predicted values and relevant statistics

Predicted value of the linear predictor
)6+ 214 + o

Standard error of the linear predictor

&nZ\/xZTin + Z?C’QQZi + QZZTCA’Q]_XZ‘,
Predicted value of the mean
gt (X;TBA + ZZT’A}/ + oi>

For the binomial distribution with 0/1 binary target variable, the predicted category ¢(x;) is

e(x;) = 1 (or sucess) ifji; > 0.5
*7 71 0 (or failure) otherwise

Approximate 100(1—a)% confidence intervals for the mean
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g_l <X1Tﬁ + Z;r’? + 0; itv,a/Q&n)

Raw residual on the link function transformation

R _ . _ 5
Tn,i =V — 7

Raw residual on the original scale of the target

R

= Y =

Pearson-type residual on the link function transformation

R

P i
T?’ = ———
1,8 ~ ’
var(v;|y)

where var(v;|y) is the ith diagonal element of var (v]y) and var(v]y) = g’ (ﬂ)A}/ QRA}/ *g' () where
fiis an nx 1 vector of PQL-type predicted values of the mean.

Pearson-type residual on the original scale of the target

R
T
rf :

Vvar(yily)

where var(y;|y) is the ith diagonal element of var(y) = A;{j RA;{ 3 and f,,, = fi.

Classification Table

Suppose that ¢ (j, J /> is the sum of the frequencies for the observations whose actual target

category is j (as row) and predicted target category is j (as column), j,j = 1,-- -, J (note that J =
2 for binomial), then

(37) = S AT (= dew = 1)
1=1

where I (-) is indicator function.

, A th
Suppose that p ( N} ) is the ( 3.3 ) element of the classification table, which is the row
percentage, then
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The percentage of total correct predictions of the model (or “overall percent correct”) is

J
c (4. 5)
j=1
DPtotal = 7 7 X 100%
> >2e(i)
j=1j'=1

Nominal multinomial distribution

The nominal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.

T, Number of cases in the sth super subject.

Yst Nominal categorical target for the th case in the sth super subject. Its category values
are denoted as 1, 2, and so on.

J The total number of categories for target.

Yst

Dummy vector of yst, yst = (Yst,1, -, yst,Jfl)T, where yu:; = 1 if yor = 7,
otherwise ys;,; = 0. The superscript 7 means the transpose of a matrix or vector.

Ys T
y, — (y};,...,y;FTS> ,s=1,---,85.
Y T
Y= (le,vyg>
Tst,j Probability of category j for the t#th case in the sth super subject; that is,
Tst,j = P(yst :J)
Trat Tst = (7Tst,17"'17rst,.]—1)
Ts T
s = (7757"'77Tgl‘s> 7‘9:17"'75
T

U
Ne—
=

T™= (ﬂ'lT,“',ﬂ‘
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Nst,j

T)st
Ns

n

0*
Bi
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Linear predictor value for category j of the 7th case in the sth super subject.

Net = (Mst, 1, "5 st T—1)
T
Ns = (n$7'~'7n;Ts) 75217“'75

T
(n (J-1)) x 1 vector of linear predictor. n = (an, o ,n:gr)

px 1 vector of predictor variables for the rth case in the sth super subject. The first
element is 1 if there is an intercept.

X, = (IJfl ®.’IL‘51,"',IJ71 (X)-'I;ST,,-)T:*s - 1»"'75

(n (J=1)) x (J=1)p design matrix of fixed effects, X = (X7 ,- -, Xg)T

rx 1 vector of coefficients for the random effect corresponding to the #th case in the
sth super subject.

Zy=(I5-1®2s, -,1511 ®ZST5)T73: 1,.-.,8

S
Design matrix of random effects, Z = & Z,, where @ is the direct sum of matrices.
s=1
nx 1 vector of offsets, O = (011, - -, 011y, - ,OSTS)T, where o, is the offset value of

the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

0" =0 ® 15_1, where 1, is a length ¢ vector of 1.

p* 1 vector of unknown parameters for category j, 3; = (Bj1,- -, 84p) - =1,--+,J.
The first element in 3; is the intercept for the category j, if there is one.

8= (8,85 )"

r % 1 vector of random effects for category j in the sth super subject, j = 1,---,J — 1.

Random effects for the sth super subject, vs = (7_}:1., e ,7;1:,,_1>T.

=&, 45"

Scale weight of the rth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.

nx 1 vector of scale weight variable, ® = (w11, -, wiry, - -, ws1, ,U.)STS)T

Frequency weight of the tth case in the sth super subject. If it is a non-integer value, it
is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.

nx 1 vector of frequency count variable, f = (fi1,- -, firy, -+, fs1,,- -, fSTS)T

Effective sample size, N = Z fi. If frequency count variable f'is not used, N = n.
=1

The form of a generalized linear mixed model for nominal target with the random effects is

n=g9EWy)|ly) =X+ 2Zy+ 0"
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where 7 is the linear predictor; X is the design matrix for fixed effects; Z is the design matrix for
random effects; y is a vector of random effects which are assumed to be normally distributed with
mean 0 and variance matrix G; g (.) is the logit link function such that

™ t,j
s ?

And its inverse function is

( exp (Mas,5) j=1,---,J -1,

J-1 )
14 > exp (ng )
Tstj =9 (Mstj) = 4 k=1

j=J

J-1 ;
1+ Z exp (Nst ki)
k=1

\

The variance of y, conditional on the random effects is
1/2 1/2
Var (yly) = 4/* R4}/

s T
where 4, = & & (dz‘ag (mst) — ﬂstw};> /wst and R = ¢l which means that R-side effects
s=1t=1
are not supported for the multinomial distribution. ¢ is set to 1.

Estimation

Linear mixed pseudo model

Similarly to “Linear mixed pseudo model ” on p. 192, we can obtain a weighted linear mixed
model

v=XpF+Zy+e

where v=D"'(y — #) + g(#) — O* and error terms & ~ N(O, D‘lA}-T/QRA}.T/QD‘l) with
S Ty S T dg_l(ﬁst) S T

D= @& & Dy= & & 2 P_ g g (diag (7st) —ﬁstﬁ}t)
s=1t=1 s=1t=1 dis s=1t=1
and
s T, T
Aﬂ = & D (diag ('ﬁst) - 77'81577"51}) /wst-
s=1t=1

And block diagonal weight matrix is
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5 S T
W =DA-'D= & @& wyDs.
[
s=1t=1

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in 0, corresponding to the linear mixed
model for v are the following:

£(0:%) = — £ [V () — 2r(0)TV(0) 'x(0) — T In (2n)
CR(0:v) — —%m v (6)] - %r(O)TV(G)_lr(G) - %m XTv()'x| - N% In (27)

where V (0) = ZG (0) 27 + W ~Y/2R () W1/2,7(0) = v — X 3,N denotes the effective sample
size, and p, denotes the total number of non-redundant parameters for /3.

The parameter # can be estimated by linear mixed model using the objection function —2£(6; v) or
—2¢5(0;v), 8 and v are computed as

g= (XTV (é)_lx> _1XTV (9) -
5= GZTV(é)lf

Iterative process

The doubly iterative process for the estimation of 8 is the same as that for other distributions, if we
replace i and X3 + Z% + O with @ and X8 + Z% + O" respectively, and set initial estimation
of & as

' 1
L0 _ w

For more information, see the topic “Iterative process ” on p. 194.

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates ” on p. 195.

Statistics for estimates of fixed and random effects

Similarly to “Statistics for estimates of fixed and random effects ” on p. 196, the approximate
covariance matrix of (B - 8,9 — 7) is
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) XTR1x XTpe-1g7 - o f
C=1 _ rps1 T ps—1 AN
ZTR1x ZTR Z+G(e) Ca1 Ch
) B 5T
Where R* = var (v|y) = D-1AY2RAY* D1 with D= & & (dia,g (rst) — mth) and
s=1¢t=1

éll = <XTV71X>_

6'21 = —GZTV{LXCA'H

“ T A “ -1 ~ T

Cloy = <Z RZ+ G—l) _CnxTV1zG

Statistics for estimates of fixed and random effects on original scale
If the fixed effects are transformed when constructing matrix X, then the final estimates of 3,
C11, C21, and Cay above are based on transformed scale, denoted as 3*, Cyy, C35; and C5,,

respectively. They would be transformed back on the original scale, denoted as 3, én: C’zl,
and C,,, respectively, as follows:

G =15
CA’ll = TCATITT
CA’21 = CA(;lTT
CA’22 = 052
J-1
where T = & A;.
j=1

Estimated covariance matrix of the fixed effects parameters

Model-based estimated covariance
Em — C]_]_

Robust estimated covariance of the fixed effects parameters

N
Y = S (Z XSTV;IMSTVS*XS) I
s=1
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where 7, = v, — X, /3, and v, is a part of v corresponding to the sth super subject.

Standard error for estimates in fixed effects and predictions in random effects

Let Bjc denote a non-redundant fixed effects parameter estimate. Its standard error is the square
root of the ((j — 1) p + ¢) th diagonal element of 2

~

TB5e = /OG- 1)pre) (- Dpte)

The standard error for redundant parameter estimates is set to system missing value.

Similarly, let 4; denote the ith random effects prediction. Its standard error is the square root
of the ith diagonal element of (/y,:

Gy =\ C22,4

Test statistics for estimates in fixed effects and predictions in random effects

Test statistics for estimates in fixed effects and predictions in random effects are as those described
in “Statistics for estimates of fixed and random effects ”” on p. 196.

Wald confidence intervals for estimates in fixed effects and random effects predictions

Wald confidence intervals are as those described in “Statistics for estimates of fixed and random
effects ” on p. 196.

Information criteria

These are as described in “Goodness of fit ” on p. 199.

Tests of fixed effects

For each effect specified in the model, a type III test matrix L is constructed from

the generating matrix H, = (27Qa) 27Qa, where = (2fy,---, 27, :r,gTS)T and
Q = diag (w11, -+, w1my, -, W81, -+, wery ). Then the test statistic is

_ BTL*T (L*ZL*T)_lL*B

Te

F

where 7, = mnk(L*EL*T) and L* = I;_; ® L. The statistic has an approximate F distribution.
The numerator degrees of freedom is . and the denominator degree of freedom is v. For more
information, see the topic “Method for computing degrees of freedom ” on p. 203.



212

Generalized linear mixed models algorithms

Scoring

POL-type predicted values and relevant statistics

(J — 1) x 1 predicted vector of the linear predictor

L , Txs T.

fist = (Ly-1 @ast) B+ (Lj-1 @ 2st) Ys + 1y-1 @ 0st
Estimated covariance matrix of the linear predictor

T T A
i, = Tj-1®@2g) BIjo1 @) + (Lr—1®z)" Coy(Ij-1 ® zg)
T
TA - - T( A
Iy wza) ChIa @) + (L@ e’ () (1@ za)
where C%, is a diagonal block corresponding to the sth super subject, the approximate covariance

matrix of 4, — v,; C3, is a part of Cy; corresponding to the sth super subject.

The estimated standard error of the jth element in s, #s¢ 5, is the square root of the jth diagonal
element of 3J;, ,,

O-TA)M,J' = V Uﬁst»jj
Predicted value of the probability for category j

Ast,j) y
J,ejlip(n 7]_]—1"'7']—17
1+ ) exp ()
k=1

’fl’st,j = gil(ﬁst,j> - 1

J-1
1+ Z exp (Mst k)
k=1

=

Predicted category

c(Xst) = arg mjax Tst,js

If there is a tie in determining the predicted category, the tie will be broken by choosing the
5 T

category with the highest N; = Z Z Fstyst ;.1f there is still a tie, the one with the lowest

s=1 t=1
category number is chosen.

Approximate 100(1-a)% confidence intervals for the predicted probabilities

The covariance matrix of #,; can be computed as

Cov (rst) = vg_l(ﬁst)TZﬁstvg_l (N)st)
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where
Ofss1 . 0ot 1 Ofss,0
) ONss 1 Ot ONss 1
Vg~ (0st) = : : :
Oftas 1 L. Ot Oftes, s
aﬁst,]—l 87751:.]—1 af]st,.}—l
with

k

87T$t7j _ 7A"-st,jA(l —Aﬁ'st,j)_vj =
aﬁst,k —Tst,i Tstky.] 7é k

then the confidence interval is
ﬁ—Stnj j: tv,a/Qﬁﬂ’st,j:j = 17 Ty ‘]

where 62 , is the jth diagonal element of C'ov (7s:) and the estimated variance of
7?‘-st,jyj = ]-7"'7']'

Ordinal multinomial distribution

The ordinal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.
Ts Number of cases in the sth super subject.
Yst Ordinal categorical target for the rth case in the sth super subject. Its category values
are denoted as consecutive integers from 1 to J.
J The total number of categories for target.
Yst Indicator vector of yss, yst = (yst,1,- - 7yst’j_1)T, where yg,; = 1 if yst = J,
otherwise ys¢,; = 0. The superscript 7 means the transpose of a matrix or vector.
Ys T
Ys = (ysTlv"'vy’;[‘Ts) »$ = 17"'75-
Y T
T T
Y= (yl 7"'7yS)
Ast,j Cumulative target probability for category j for the 7th case in the sth super subject;

Astg = P(yss £ 7).

T T
A= (xlT,..-,xE . where A, = (x;ﬁ,...m}n) and AL = ety Asts—1),
s=1,...,5andt=1,...,T..

Tst,j Probability of category j for the t#th case in the sth super subject; that is,
Tst,j = P (yst = J) and Tst,j = Ast,j - )\st,j71~
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Model

Nst,j

nsf,

s

n

A®B

st = (7Tst,17 e 77T3t,.]71)
T
T T
7rs:<ﬂ-317"'77rsT5 78217"'15

T
w = (wl,ee 1)
Linear predictor value for category j of the 7th case in the sth super subject.

Nt = (Mst, 1, s Nty J—1)
T
Ns = (W;17>W£"S) ) S = 17"')5

T
(n (J-1)) x 1 vector of linear predictor. n = (T)IT, ‘e 77];F>
px 1 vector of predictors for the t#th case in the sth super subject.

rx 1 vector of coefficients for the random effect corresponding to the rth case in the
sth super subject.

nx 1 vector of offsets, O = (011,-- -, 011y, - ,OSTS)T, where os; is the offset value of
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

0" =0 ® 1;-1, where 1, is a length ¢ vector of 1’s.

J—1 x 1 vector of threshold parameters, v = (1, %2, ... ,wjfl)T and
d’l <¢12 < v <1/J,]—1
p* 1 vector of unknown parameters.

T
(J—1+p) x 1 vector of all parameters B= (\|1T7 BT)

Scale weight of the rth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.

nx 1 vector of scale weight variable, ® = (w11, -, wiry, -, ws1," ,wSTS)T

Frequency weight of the ith case in the sth super subject. If it is a non-integer value, it
is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.

nx 1 vector of frequency count variable, f = (fi1,-- -, firy, -+, fs1,,- -, fsTS)T

Effective sample size, N = Z fi. If frequency count variable f'is not used, N = n.
i=1

a11B  a12B  a13B

direct (or Kronecker ) product of A and B, which is equal to | a21B  a22:B  a23B

as1B  as2B  assB

mx 1 vector of 1’s; 1, = (1,.. .,1)T

The form of a generalized linear mixed model for an ordinal target with random effects is

n=gA)=XB+Zy+ 0"
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where 7 is the expanded linear predictor vector; A is the expanded cumulative target probability
vector; ¢ (.) is a cumulative link function; X is the expanded design matrix for fixed effects
arranged as follows

X1
X = )
Xs
Xsl
Xs = : )
XsT

s/ T(J-1)x(J—14p)

Rt = (IJ_l lj1® Xg;)(Jl)x(JHp)

1 - 0 —x}

o .- 1 —X};
1 oo 0 —Zg1 - —Isip
0 - 1 —xg1 -+ —Tap

T T
B= (‘VT7 |3T> = ((\yl, V), BT) :Z is the expanded design matrix for random effects
arranged as follows

Z1 O 0
Z=1o0 . 0 |
0 0 Zs
Zsl

s = : ,

Zs, T.(J-1)xr

_ T
Zo = (1 Lw— ) ,
st J-1 & ~Zg (J—1)xr

v is a vector of random effects which are assumed to be normally distributed with mean 0 and
variance matrix G.

The variance of'y, conditional on the random effects is
1/2 1/2
Var (y|y) = AM/ RA,/

s T
where 4, = @ ) (diarg (mst) — wgtwg) /wst and R = ¢1 which means that R-side effects
s=1t=1
are not supported for the multinomial distribution. ¢ is set to 1.
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Estimation

Linear mixed pseudo model

Similarly to “Linear mixed pseudo model ” on p. 192, we can obtain a weighted linear mixed
model

v=XpB+Zy+e

where v=D""(y — #) + g(;\) — O" and error terms € ~ N(O, D tAl?RAL? (D‘l)T> with

S T S Te go-1(i S T, 4§
D= @& @ Dg= @ @M:@ o
s=1t=1 s=1t=1 d0st s=1t=19s
[ O 7
o ~() 0 0
a>\st,1 8Ast,2
Ty Tina 0 0
Dg = . :
85\5@]*2
0 0 a0
8Ast,J—2 8Ast,J—l
| 0 0 el
and
S T .
A= ® @ (diag(7y) - FuFl) fwa.
s=1t=1

And block diagonal weight matrix is
W =plAzlD

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in 8, corresponding to the linear mixed
model for v are the following:

T N

V(6) 'r(6) — = In (27)

00 v) = —% In |V (0)] - %r(@) .

(R(6:v) = —%m IV (0)] - %r(G)TV(B)_lr(B) - %m XTv(r x| - A P2 (om)

where V (0) = ZG (0) ZT + W ~1/2R () W—1/2,r(0) = v — XB,N denotes the effective sample
size, and p, denotes the total number of non-redundant parameters for B.

The parameter é can be estimated by linear mixed model using the objection function —2£(6; v) or
—20(0;v), B and + are computed as
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B - (XTV<9)_1X>_ XTv(é>_1u

4= C?ZTV(é)lf

Iterative process

The doubly iterative process for the estimation of 8 is the same as that for other distributions, if we
replace ji and XB + Z% + O with 7 and XB + Z# + O™ respectively, and set initial estimation
of & as

<0 _ %

For more information, see the topic “Iterative process ” on p. 194.

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates ” on p. 195.

Statistics for estimates of fixed and random effects

C is the approximate covariance matrix of (B -B,5— 7) and R* in C should be
s -1 41725 4172 o1 T
R* =war (v]y) =D A RAS(D ') .

Statistics for estimates of fixed and random effects on original scale

If the fixed effects are transformed when constructing matrix X, then the final estimates of B,
denoted as B*. They would be transformed back on the original scale, denoted as B, as follows:

/

1
(V)= : :A(W:> = AB*
<B> "/J(ﬁ—l B
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Testing

Estimated covariance matrix of the fixed effects parameters

The estimated covariance matrix of the fixed effects parameters are described in “Statistics for
estimates of fixed and random effects ”” on p. 196.

Standard error for estimates in fixed effects and predictions in random effects

Let 'zﬁj, j=1,...,J —1, be threshold parameter estimates and Bi,i=1,...,p, denote
non-redundant regression parameter estimates. Their standard errors are the square root of the
diagonal elements of m or Zr: &, = (/o5 and &p, = \/F(7 114),(7_114)» Tespectively, where
oy 1s the ith diagonal element of ¥y or Xy.

Standard errors for predictions in random effects are as those described in “Statistics for estimates
of fixed and random effects ” on p. 196.

Test statistics for estimates in fixed effects and predictions in random effects

The hypotheses Hy; : ¢; = 0,7 =1,...,J — 1, are tested for threshold parameters using the
¢ statistic:

=3,

Test statistics for estimates in fixed effects and predictions in random effects are otherwise as
those described in “Statistics for estimates of fixed and random effects ” on p. 196.

Wald confidence intervals for estimates in fixed effects and random effects predictions

The 100(1 — a)% Wald confidence interval for threshold parameter is given by
(@bj - tv,a/Q&%a/@b] + tv,a/ZOA—lbj)

Wald confidence intervals are otherwise as those described in “Statistics for estimates of fixed and
random effects ” on p. 196.

The degrees of freedom can be computed by the residual method or Satterthwaite method. For the

residual method, v = N — (J — 1 4 p,). For the Satterthwaite method, it should be similar to that
described in “Method for computing degrees of freedom ” on p. 203.

Information criteria

These are as described in “Goodness of fit ” on p. 199, with the following modifications.
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For REPL, the value of N is chosen to be effective sample size minus number of non-redundant
n
parameters in fixed effects, Z fi — (J — 1+ p,), where p, is the number of non-redundant

i=1
parameters in fixed effects, and d is the number of covariance parameters.

For PL, the value of N is effective sample size, Z fi, and d is the number of number of

i=1
non-redundant parameters in fixed effects, J — 1 + p,., plus the number of covariance parameters.

Tests of fixed effects

For each effect specified in the model excluding threshold parameters, a type I or III test
matrix L; is constructed and H: LiB = 0 is tested. Construction of matrix L; is based on
matrix H,, = (XIQXl) X?QXl, where X; = (1, — X) and such that L;B is estimable.
Note that L;B is estimable if and only if Ly = LyH,,, where Ly = (I, L(B)). Construction
of Ly considers a partition of the more general test matrix L; = (L;(y), L;(B)) first, where

L;(y) = (ly,...,17_1) consists of columns corresponding to the threshold parameters and
L;(B} is the part of L; corresponding to regression parameters, then replace L;(y) with their
J-1
sum lp = Z 1; to get L.
=1

Note that the threshold-parameter effect is not tested for both type I and III analyses and
construction of L is the same as in GENLIN. For more information, see the topic “Default Tests
of Model Effects ” on p. 182. Similarly, if the fixed effects are transformed when constructing
matrix X, then H,, should be constructed based on transformed values.

POL-type predicted values and relevant statistics

(J — 1) x 1 predicted vector of the linear predictor
Nst = XstB + ZstYs + 151 ® 0g

Estimated covariance matrix of the linear predictor

Y

N ~ N T
ot XstZX;l; + ZstC§2Z3; + ZstC281X;l; + Xt <C§1> Z;l;

where (%, is a diagonal block corresponding to the sth super subject, the approximate covariance
matrix of ¥, — ,; C3; is a part of C,; corresponding to the sth super subject.

The estimated standard error of the jth element in #j, 7). ;, is the square root of the jth diagonal

element of 35 ,,

aﬁ.st,j = V Uﬁst:jj
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Predicted value of the cumulative probability for category j

A~ _ 71 ~ .
Yst,j=9 (st j)s g =1,...,J =1
with 4; y = 1.

Predicted category

c(Xst) = arg mjax Tst,js

where Tst; = Yst.j — Yst,j—1-

If there is a tie in determining the predicted category, the tie will be broken by choosing the
S Ty

category with the highest NV; = Z Z fstyss.5.1f there is still a tie, the one with the lowest

s=1t=1
category number is chosen.

Approximate 100(1—a)% confidence intervals for the cumulative predicted probabilities

g_l(ﬁé‘t,j itv,a/26ﬁgw>;j = 1, .. .,J — 1’

If either endpoint in the argument is outside the valid range for the inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

The degrees of freedom can be computed by the residual method or Satterthwaite method.

For the residual method, v = N — (J — 1+ p,). For Satterthwaite’s approximation,

the L matrix is constructed by (X,, ,,Z,, ;), where X,, ; and Z_, ; are the jth rows of

X, and Z,, respectively, corresponding to the jth category. For example, the L matrix is
1,0,...,0, — X;l;, — z};) for the 1st category. The computation should then be

1x(J—14p+r)
similar to that described in “Method for computing degrees of freedom ” on p. 203.
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Imputation of Missing Values

The following methods are available for imputing missing values:

Fixed. Substitutes a fixed value (either the field mean, midpoint of the range, or a constant that
you specify).

Random. Substitutes a random value based on a normal or uniform distribution.

Expression. Allows you to specify a custom expression. For example, you could replace values
with a global variable created by the Set Globals node.

Algorithm. Substitutes a value predicted by a model based on the C&RT algorithm. For each field
imputed using this method, there will be a separate C&RT model, along with a Filler node that
replaces blanks and nulls with the value predicted by the model. A Filter node is then used to
remove the prediction fields generated by the model.

Details of each imputation method are provided below.

Imputing Fixed Values
For fixed value imputation, three options are available:

Mean. Substitutes the mean of the valid training data values for the field being imputed,

Nyalid
Zi:1 Ly

Nyalid

where x; is the value of field x for record i, excluding missing values, and 7.,,;4 is the number of
records with valid values for field x.

Midrange. Substitutes the value halfway between the minimum and maximum valid values for the
field being imputed,

Zmax — Tmin __ Lmax T Tmin

2 - 2

Trmin +

where z,in and x,., are the minimum and maximum observed valid values for field x,
respectively.

Constant. Substitutes the user-specified constant value.
For imputing fixed missing values in set or flag fields, only the Constant option is available.

Note: Using fixed imputed values for scale fields will artificially reduce the variance for that field,
which can interfere with model building using the field. If you impute using fixed values and
find that the field no longer has the expected effect in a model, consider imputing with a different
method that has a smaller impact on the field’s variance.

© Copyright IBM Corporation 1994, 2015. 223
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Imputing Random Values

For random value imputation, the options depend on the type of the field being imputed.

Range Fields
For range fields, you can select from a uniform distribution or a normal distribution.

Uniform distribution. Values are generated randomly on the inverval [#pin, 2max), Where each value
in the interval is equally likely to be generated.

Normal distribution. Values are generated from a normal distribution with mean %,,;;4 and variance

s2 where Z 4154 and sf]a“ 4 are derived from the valid observed values of x in the training data,

valid?

Nyalid
- it T
Lyalid —

Nyalid

Nyalid — 2
82 _ Zz:ll ! (ljz - xvalid)

valid —
Nalid — 1

Set Fields

For set fields, random imputed values are selected from the list of observed values. By default, the
probabilities of all values are equal,

for the j possible values of k. The Equalize button will return any modified values to the default
equal probabilities.

If you select Based on Audit, probabilities are assigned proportional to the relative frequencies of
the values in the training data

p(k) = —%

Nyalid
where n; is the number of records for which z; = k.

If you select Normalize, values are adjusted to sum to 1.0, maintaining the same relative
proportions,

p(k)
pnormalized(k) L A a—
x P(k)

This is useful if you want to enter your own weights for generated random values, but they aren’t
expressed as probabilities. For example, if you know you want twice as many No values as Yes
values, you can enter 2 for No and 1 for Yes and click Normalize. Normalization will adjust the
values to 0.667 and 0.333, preserving the relative weights but expressing them as probabilities.
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Imputing Values Derived from an Expression

For expression-based imputation, imputed values are based on a user-specified CLEM expression.
The expression is evaluated just as it would be for a filler node. Note that some expressions

may return $null or other missing values, with the result that missing values may exist even

after imputation with this method.

Imputing Values Derived from an Algorithm

For the Algorithm method, a C&RT model is built for each field to be imputed, using all other
input fields as predictors. For each record that is imputed, the model for the field to be imputed
is applied to the record to produce a prediction, which is used as the imputed value. For more
information, see the topic “Overview of C&RT” on p. 59.






K-Means Algorithm

Overview

The k-means method is a clustering method, used to group records based on similarity of values
for a set of input fields. The basic idea is to try to discover & clusters, such that the records within
each cluster are similar to each other and distinct from records in other clusters. K-means is an
iterative algorithm; an initial set of clusters is defined, and the clusters are repeatedly updated until
no more improvement is possible (or the number of iterations exceeds a specified limit).

Primary Calculations

In building the k&~-means model, input fields are encoded to account for differences in measurement
scale and type, and the clusters are defined and updated to generate the final model. These
calculations are described below.

Field Encoding

Input fields are recoded before the values are input to the algorithm as described below.

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is

/ Zj — Tmin
Ty = )

Tmax — Lmin

where x’; is the rescaled value of input field x for record i, x; is the original value of x for record i,
Xmin 18 the minimum value of x for all records, and xp,x 1s the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?

© Copyright IBM Corporation 1994, 2015. 227
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A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X7’ Xy’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x;’, x5’, and x3’. x1’ is an
indicator for category A, x5’ is an indicator for category B, and x3’ is an indicator for category C.

Applying the Set Encoding Value

After recoding set fields as described above, the algorithm can calculate a numerical difference
for the set field by taking the differences on the & derived fields (where £ is the number of
categories in the original set). However, there is an additional problem. For algorithms that
use the Euclidean distance to measure differences between records, the difference between two
records with different values i and j for the set is

J
Z (zk1 — £k2)2

k=1

where J is the number of categories, and xy, is value of the derived indicator for category & for
record n. But the values will be different on two of the derived indicators, x; and xj. Thus, the
sum will be \/(1 —0)>+ (0 —1)* = V2 ~ 1.414, which is larger than 1.0. That means that
based on this coding, set fields will have more weight in the model than range fields that are
rescaled to 0-1 range.

To account for this bias, k~~-means applies a scaling factor to the derived set fields, such that a
difference of values on a set field produces a Euclidean distance of 1.0. The default scaling
factor is \/% ~ 0.707. You can see that this value gives the desired result by inserting the value
into the distance formula:

The user can specify a different scaling factor by changing the Encoding value for sets parameter in

the K-Means node expert options.
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Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

The primary calculation in k-means is an iterative process of calculating cluster centers and
assigning records to clusters. The primary steps in the procedure are:

1. Select initial cluster centers
2. Assign each record to the nearest cluster
3. Update the cluster centers based on the records assigned to each cluster

4. Repeat steps 2 and 3 until either:
m In step 3, there is no change in the cluster centers from the previous iteration, or

B The number of iterations exceeds the maximum iterations parameter

Clusters are defined by their centers. A cluster center is a vector of values for the (encoded) input
fields. The vector values are based on the mean values for records assigned to the cluster.

Selecting Initial Cluster Centers

The user specifes £, the number of clusters in the model. Initial cluster centers are chosen using a
maximin algorithm:

1. Initialize the first cluster center as the values of the input fields for the first data record.

2. For each data record, compute the minimum (Euclidean) distance between the record and each
defined cluster center.

3. Select the record with the largest minimum distance from the defined cluster centers. Add a new
cluster center with values of the input fields for the selected record.

4. Repeat steps 2 and 3 until & cluster centers have been added to the model.

Once initial cluster centers have been chosen, the algorithm begins the iterative assign/update
process.

Assigning Records to Clusters

In each iteration of the algorithm, each record is assigned to the cluster whose center is closest.
Closeness is measured by the usual squared Euclidean distance
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Q

2 2
dij = ||Xi = Cjl[* =D (2gi — cgj)
g=1

where Xj is the vector of encoded input fields for record 7, Cj is the cluster center vector for cluster
J» Q 1s the number of encoded input fields, xg; is the value of the gth encoded input field for the ith
record, and cg; is the value of the gth encoded input field for the jth record.

For each record, the distance between the record and each cluster center is calculated, and the
cluster center whose distance from the record is smallest is assigned as the record’s new cluster.
When all records have been assigned, the cluster centers are updated.

Updating Cluster Centers

After records have been (re)assigned to their closest clusters, the cluster centers are updated. The
cluster center is calculated as the mean vector of the records assigned to the cluster:

Cj =X,

where the components of the mean vector X ; are calculated in the usual manner,

— 2221 2qi(Jj)
T =SS
J

where n;j is the number of records in cluster j, xgi(j) is the gth encoded field value for record i
which is assigned to cluster ;.

Blank Handling

In k-means, blanks are handled by substituting “neutral” values for the missing ones. For range
and flag fields with missing values (blanks and nulls), the missing value is replaced with 0.5. For
set fields, the derived indicator field values are all set to 0.0.

Effect of Options

There are several options that affect the way the model calculations are carried out.

Maximum Iterations

The maximum iterations parameter controls how long the algorithm will continue searching
for a stable cluster solution. The algorithm will repeat the classify/update cycle no more than
the number of times specified. If and when this limit is reached, the algorithm terminates and
produces the current set of clusters as the final model.
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Error Tolerance

The error tolerance parameter provides another means of controlling how long the algorithm will
continue searching for a stable cluster solution. The maximum change in cluster means for an
iteration ¢ is calculated as

max || C5(t) — Cj(t — 1) ||

where Cj(#) is the cluster center vector for the jth cluster at iteration 7 and Cj(z - 1) is the cluster
center vector at the previous iteration. If the maximum change is less than the specified tolerance
for the current iteration, the algorithm terminates and produces the current set of clusters as

the final model.

Encoding Value for Sets

The encoding value for sets parameter controls the relative weighting of set fields in the k-means
algorithm. The default value of /0.5 ~ 0.707 provides an equal weighting between range fields
and set fields. To emphasize set fields more heavily, you can set the encoding value closer to 1.0;
to emphasize range fields more, set the encoding value closer to 0.0. For more information, see
the topic “Numeric Coding of Symbolic Fields” on p. 227.

Model Summary Statistics

Cluster proximities are calculated as the Euclidean distance between cluster centers,

Q
dij = |Ci = Cjl| = \| D (cqi = cq5)°

g=1
Generated Model/Scoring
Generated k-means models provide predicted cluster memberships and distance from cluster
center for each record.
Predicted Cluster Membership

When assigning a new record with a predicted cluster membership, the Euclidean distance
between the record and each cluster center is calculated (in the same manner as for assigning
records during the model building phase), and the cluster center closest to the record is assigned as
the predicted cluster for the record.

Distances

The value of the distance field for each record, if requested, is calculated as the Euclidean
distance between the record and its assigned cluster center,
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dij = ||Xi = Cjl| = (| D (xqi — cgj)
g=1
Blank Handling

In k-means, scoring records with a generated model handles blanks in the same way they are
handled during model building. For more information, see the topic “Blank Handling” on p. 230.



Kohonen Algorithms

Overview

Kohonen models (Kohonen, 2001) are a special kind of neural network model that performs
unsupervised learning. It takes the input vectors and performs a type of spatially organized
clustering, or feature mapping, to group similar records together and collapse the input space
to a two-dimensional space that approximates the multidimensional proximity relationships
between the clusters.

The Kohonen network model consists of two layers of neurons or units: an input layer and
an output layer. The input layer is fully connected to the output layer, and each connection has
an associated weight. Another way to think of the network structure is to think of each output
layer unit having an associated center, represented as a vector of inputs to which it most strongly
responds (where each element of the center vector is a weight from the output unit to the
corresponding input unit).

Primary Calculations

Field Encoding

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is

/ L4 — Tmin

ry = —m—,
Lmax — Lmin

where x’; is the rescaled value of input field x for record i, x; is the original value of x for record i,
Xmin 18 the minimum value of x for all records, and xy,5x s the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?
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A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X7’ Xy’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x;’°, xp’, and x3’. x1’ is an
indicator for category A, xp’ is an indicator for category B, and x3’ is an indicator for category C.

Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

In a Kohonen model, the parameters are represented as weights between input units and output
units, or alternately, as a cluster center associated with each output unit. Input records are
presented to the network, and the cluster centers are updated in a manner similar to that used in
building a k-means model, with an important difference: the clusters are arranged spatially in a
two-dimensional grid, and each record affects not only the unit (cluster) to which it is assigned
but also units within a neighborhood about the winning unit. For more information, see the
topic “Neighborhoods” on p. 235.

Training of the Kohonen network proceeds as follows:
The network is initialized with small random weights.

Input records are presented to the network in random order. As each record is presented, the
output unit with the closest center to the input vector is identified as the winning unit.For more
information, see the topic “Distances” on p. 235.

The weights of the winning unit are adjusted to move the cluster center closer to the input vector.
For more information, see the topic “Weight Updates” on p. 235.

If the neighborhood size is greater than zero, then other output units that are within the
neighborhood of the winning unit are also updated so their centers are closer to the input vector.

At the end of each cycle, the learning rate parameter 7 (eta) is updated.
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» This process repeats until one of the stopping criteria is met. Training proceeds in two phases,
a gross structure phase and a fine tuning phase. Typically the first phase has a relatively large
neighborhood size and large eta to learn the overall structure of the data, and the second phase
uses a smaller neighborhood and smaller eta to fine tune the cluster centers.

Distances

Distances in a Kohonen network are calculated as Euclidean distance between the encoded input
vector and the cluster center for the output unit,

dij = \/ S (i wir)®
k

where z;;, s the value of the Ath input field for the ith record, and w;, is the weight for the Ath
input field on the jth output unit.

The activation of an output unit is simply the Euclidean distance between the output unit’s
weight vector (its center) and the input vector. Note that for Kohonen networks, the output unit
with the lowest activation is the winning unit. This is in contrast to other types of neural networks,
where higher activation represents stronger response.

Neighborhoods

The neighborhood function is based on the Chebychev distance, which considers only the
maximum distance on any single dimension:

de (2,y) = max |o; — i

where x; is the location of unit x on dimension i of the output grid, and y; is the location of
another unit y on the same dimension.

An output unit o; is considered to be in the neighborhood of another output unit o; if
dc (0;,0;) < n, where n is the neighborhood size.

Neighborhood size remains constant during each phase, but different phases usually use
different neighborhood sizes. By default, n = 2 for Phase 1 and » = 1 for Phase 2.

Weight Updates

For the winning output node, and its neighbors if the neighborhood is > 0, the weights are
adjusted by adding a portion of the difference between the input vector and the current weight
vector. The magnitude of the change is determined by the learning rate parameter  (eta). The
weight change is calculated as

AW =n- (W =1)

where W is the weight vector for the output unit being updated, I is the input vector, and # is the
learning rate parameter. In individual unit terms,
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Aw; =n-(wj —1ij)
where w; is the weight corresponding to input unit j for the output unit being updated, and ¢, is

the jth input unit.

Eta Decay

At the end of each cycle, the value of 5 is updated. The value of 1 generally decreases across
training cycles. The user can control the rate of decrease by selecting either linear or exponential
decay.

Linear decay. This is the default decay rate. When this option is selected, the value of 1 decays in a
linear fashion, decreasing by a fixed amount each cycle, according to the formula

Dt +1) = n(t) — (M)

c

where 7 (0) is the initial eta value for the current phase, and 7;,,, is the low eta for the current
training phase, calculated as the lesser of the initial eta values for the current phase and the
following phase, and c¢ is the number of cycles set for the current phase.

Exponential decay. When this option is selected, the value of r decays in an exponential fashion,
decreasing by a fixed proportion each cycle, according to the formula

tog (245

c

Nt +1) = nt) - exp

The value of 14, has a minimum value of 0.0001 to prevent arithmetic errors in taking the
logarithm.

Blank Handling

In Kohonen networks, blanks are handled by substituting “neutral” values for the missing ones.
For range and flag fields with missing values (blanks and nulls), the missing value is replaced
with 0.5. For range fields, numeric values outside the range limits found in the field’s type
information are coerced to the type-defined range. For set fields, the derived indicator field
values are all set to 0.0.

Effect of Options

Stop on. By default, training executes the specified number of cycles for each phase. If the Time
option is selected, training stops when the elapsed time reaches the specified limit (or sooner if the
specified number of cycles for both phases is completed before the time limit is reached).
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Random seed. Sets the seed for the random number generator used to initialize the weights of the
new network as well as the order of presentation for training records. Select a fixed seed value to
create a reproducible network.

Generated Model/Scoring

Cluster Membership

Cluster membership for a new record is derived by presenting the input vector for the record
to the network and identifying the output neuron with the closest weight vector, as described
in Distances above. The predicted value is returned as the x and y coordinates of the winning
neuron in the output grid.

Blank Handling

Blank handling for scoring is the same as during model building. For more information, see the
topic “Blank Handling” on p. 236.






Logistic Regression Algorithms

Logistic Regression Models

Logistic regression is a well-established statistical method for predicting binomial or multinomial
outcomes. IBM® SPSS® Modeler now offers two distinct algorithms for logistic regression
modeling:

Multinomial Logistic. This is the original logistic regression algorithm used in SPSS Modeler,
introduced in version 6.0. It can produce models when the target field is a set field with more
than two possible values. See below for more information. It can also produce models for flag or
binary outcomes, though it doesn’t give the same level of statistical detail for such models as the
newer binomial logistic algorithm.

Binomial Logistic. This algorithm, introduced in SPSS Modeler 11, is limited to models where the
target field is a flag, or binary field. This algorithm provides some enhanced statistical output,
relative to the output of the multinomial algorithm, and is less susceptible to problems when the
number of cells (unique combinations of predictor values) is large relative to the number of
records. For more information, see the topic “Binomial Logistic Regression” on p. 251.

For models with a flag output field, selection of a logistic algorithm is controlled in the modeling
node by the Procedure option.

Multinomial Logistic Regression

The purpose of the Multinomial Logistic Regression procedure is to model the dependence of a
nominal (symbolic) output field on a set of symbolic and/or numeric predictor (input) fields.

Primary Calculations

Field Encoding

In logistic regression, each symbolic (set) field is recoded as a group of numeric fields, with one
numeric field for each category or value of the original field, except the last category, which is
defined as a reference category. For each record, the value of the derived field corresponding to
the category of the record is set to 1.0, and all of the other derived field values are set to 0.0. For
records which have the value of the reference category, all derived fields are set to 0.0. Such
derived fields are sometimes called dummy fields, and this recoding is called dummy coding.
For example, consider the following data, where x is a symbolic field with possible values A,

B, and C:

Record # X X7’ Xy’
1 B 0 1

2 A 1 0

3 C 0 0
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In this data, the original set field x is recoded into two derived fields x;” and x5’. x;’ is an
indicator for category A, and x,’ is an indicator for category B. The last category, category C, is
the reference category; records belonging to this category have both x1” and x,’ set to 0.0.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y The output field, which takes integer values from 1 to J.

J The number of categories of the output field.

m The number of subpopulations.

x4 m x p? matrix with vector-element z#* , the observed values at the ith
subpopulation, determined by the input fields specified in the command.

X m x p matrix with vector-element z:, the observed values of the location
model’s input fields at the ith subpopulation.

Nij The sum of frequency weights of the observations that belong to the cell
corresponding to Y = j at subpopulation i.

N The sum of all n;;’s.

i The cell probability corresponding to Y = j at subpopulation .

log (mij /mir,) The logit of response category j relative to response category k.

B; = (Bi1, s Bip) p x 1 vector of unknown parameters in the jth logit (that is, logit of response

| | category j to response category J).

p Number of parameters in each logit. p > 1.

e Number of non-redundant parameters in logit j after maximum likelihood
estimation. p > p7” > 0.

P The total number of non-redundant parameters after maximum likelihood
estimation. p"" = Ef;ll pi".

!

B=(8-8;1) (k — 1)p x 1 vector of unknown parameters in the model.

~ =N ~ !

B = (,Bi, . ,‘3},1) The maximum likelihood estimate of B.

Tij The maximum likelihood estimate of ;.

Data Aggregation

Observations are aggregated by the definition of subpopulations. Subpopulations are defined by
the cross-classifications of the set of input fields.
Let n; be the marginal count of subpopulation i,

k
n; = E nij
J=1
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If there is no observation for the cell of ¥ = j at subpopulation 7, it is assumed that n;; = 0,
provided that n; # 0. A non-negative scalar § € [0, 1) may be added to any zero cell (that is, cell
with n;; = 0) if its marginal count n; is nonzero. The value of § is zero by default.

Generalized Logit Model
In a generalized logit model, the probability =;; of response category j at subpopulation i is
eXP (x'385)

1+ Z eXp zﬂk

T =

where the last category J is assumed to be the reference category.
In terms of logits, the model can be expressed as

g

forj=1, ..., J-1.

When J = 2, this model is equivalent to the binary logistic regression model. Thus, the above
model can be thought of as an extension of the binary logistic regression model from binary
response to polytomous nominal response.

Log-Likelihood

The log-likelihood of the model is given by

1+ 307 1 exp (x'3)

:iinij106< eXp( X'if}) )

A constant that is independent of parameters has been excluded here. The value of the constant
iSc= 27;1 IOg (nz‘/(nzl’nu'))

Model Parameters

Derivatives of the Log-Likelihood

Foranyj=1,...,J-1,5s=1, ..., p, the first derivative of / with respect to 3, is

m
= Z ins("ij — TLZ'7TZ'J‘>.
=1
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Foranyj,j=1,...,J-1ands, t=1, ..., p, the second derivative of / with respect to 5;, and j3;/; is

82l m
e i e LisTii (O iir — T
Ty 2Oy = )

where §;,» =1 if j = j', 0 otherwise.

Maximum Likelihood Estimate

To obtain the maximum likelihood estimate of B, a Newton-Raphson iterative estimation method
is used. Notice that this method is the same as Fisher-Scoring iterative estimation method in
this model, since the expectation of the second derivative of / with respect to B is the same
as the observed one.

Let 81/0B be the (J — 1)p x 1 vector of the first derivative of / with respect to B. Moreover,
let [8%1/0B&B| be the (J — 1)p x (J — 1)p matrix of the second derivative of / with respect to B.
Notice that —[9%1/0BOB| = 37" | X7 A;X;" where A; isa (J — 1) x (J — 1) matrix as

_ _ .
A = ny (Diag (71'7( J)) — 7T1( J)7Ti( 7) )
in which TTi(—J) = (mi1, oy miy 1) and Diag (wf"”) is a 8;, diagonal matrix 0fﬂ§—‘]). Let B™) be

the parameter estimate at iteration v, the parameter estimate B(*1) at iteration v + 1 is updated as

= ol
1=1 aB(V)

and ¢ > 0 is a stepping scalar such that {(B*'*1) — (B} > 0,X*isa (J — 1)p x (J — 1) matrix
of independent vectors,

X5 0 0
X;k — 0 X1
: 0
0O ... 0 x2

and A" is A; and 1/0B® is 81/0B , both evaluated at B = B®).

Stepping

Use step-halving method if {(B®*1)) — [(B®)) < 0. Let ¥ be the maximum number of steps in
step-halving, the set of values of £ is {1/2" : v =0,...,V — 1}.

Starting Values of the Parameters

/
If intercepts are included in the model, set ,3](.0) = (fBJ(-?),O, ey 0) where
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0 i =1
0 v (22) | 5

forj=1, ..., J-1.

If intercepts are not included in the model, set

ﬁ](O) — (O, ,O)I
forj=1, ..., J-1.

Convergence Criteria

Given two convergence criteria e, > (0 and €, > 0, the iteration is considered to be converged
if one of the following criteria are satisfied:

L i(B&+D) — (BM)| < ¢.

B! - By

< &p.

max;

3. The maximum above element in 81/9B®+1) is less than min (e, ¢,).

Checking for Separation

The algorithm checks for separation in the data starting with iteration »"##¢? (20 by default). To
check for separation:

1. For each subpopulation i , find j* : 7;;- = max; (7;;).
2. If n;j« = ny, then there is a perfect prediction for subpopulation i.

3. [If all subpopulations have perfect prediction, then there is complete separation. If some patterns
have perfect prediction and the Hessian of B is singular, then there is quasi-complete separation.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.
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Secondary Calculations

Model Summary Statistics

Log-Likelihood

Initial model with intercepts. If intercepts are included in the model, the predicted probability for
the initial model (that is, the model with intercepts only) is

m
E nij
~ =1

5 = _N

and the value of -2 log-likelihood of the initial model is
m J
—20(7) = =2) Y nyjlog (7).
i=1 j=1

Initial model with no intercepts. If intercepts are not included in the model, the predicted
probability for the initial model is

N 1
Tij = =

J

and the value of -2 log-likelihood of the initial model is

_2l(#) = —2N log G)

Final model. The value of -2 log-likelihood of the final model is

m J
—2[(77() = _QZZan log (’ﬁ’u)

i=1 j=1

Model Chi-Square

The model chi-square is given by
—20(7) — {—-2U(7)}

If the final model includes intercepts, then the initial model is an intercept-only model. Under
the null hypothesis that Hy : gi"ter<erts = 0, the model chi-square is asymptotically chi-squared
distributed with p"" — (J — 1)degrees of freedoms.
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If the model does not include intercepts, then the initial model is an empty model. Under the
null hypothesis that Hy : 3 = 0, the Model Chi-square is asymptotically chi-squared distributed
with p™" degrees of freedoms.

Pseudo R-Square Measures

Cox and Snell. Cox and Snell’s R? is calculated as

McFadden. McFadden’s RB? is calculated as
1(#)
R2 =1— | —=.
M (l (fr))

Goodness-of-Fit Measures

Pearson. The Pearson goodness-of-fit measure is
mJ

2
=0y e )
n;ifij ’

=1 j=1

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared
distributed with m(J — 1) — p™" degrees of freedom.

Deviance. The deviance goodness-of-fit measure is

=2 Z Z n;j log <7”L:L71']ZJ )

1=1 j=1

Under the null hypothesis, the deviance goodness-of-fit statistic is asymptotically chi-squared
distributed with m(J — 1) — p"" degrees of freedom.

Field Statistics and Other Calculations

The statistics shown in the advanced output for the logistic equation node are calculated in the
same manner as in the NOMREG procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Nomreg algorithm document, available at http.//www.ibm.com/support.


http://www.ibm.com/support
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Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. The forward stepwise, backward
stepwise, and backward entry methods use either the Wald statistic or the likelihood ratio statistic
for variable removal. The forward stepwise, forward entry, and backward stepwise use the score
statistic or the likelihood ratio statistic to select variables for entry into the model.

Forward Stepwise (FSTEP)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio statistic
for every variable eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance (p-value). If that significance is less than the
probability for a variable to enter, then go to step 4; otherwise, stop FSTEP.

4. Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

5. Calculate the significance for each variable in the current model using LR or Wald’s test.

6. Choose the variable with the largest significance. If its significance is less than the probability for
variable removal, then go back to step 2. If the current model with the variable deleted is the same
as a previous model, stop FSTEP; otherwise go to the next step.

7. Modify the current model by removing the variable with the largest significance from the previous
model. Estimate the parameters for the modified model and go back to step 5.

Forward Only (FORWARD)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score or LR statistic for every variable
eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FORWARD.

4. Update the current model by adding a new variable. If there are no more eligible variable left, stop

FORWARD; otherwise, go to step 2.

Backward Stepwise (BSTEP)

1.

Estimate the parameters for the full model that includes the final model from previous method and
all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry and
removal. Let current model be the full model.

Based on the MLEs of the current model, calculate the LR or Wald’s statistic for every variable
in the BSTEP list and find its significance.
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Choose the variable with the largest significance. If that significance is less than the probability
for a variable removal, then go to step 5. If the current model without the variable with the largest
significance is the same as the previous model, stop BSTEP; otherwise go to the next step.

Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model and go back to step 2.

Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

Based on the MLEs of the current model, calculate LR statistic or score statistic for every variable
not in the model and find its significance.

Choose the variable with the smallest significance. If that significance is less than the probability
for the variable entry, then go to the next step; otherwise, stop BSTEP.

Add the variable with the smallest significance to the current model. If the model is not the
same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Backward Only (BACKWARD)

1.

Estimate the parameters for the full model that includes all eligible variables. Let the current
model be the full model.

Based on the MLEs of the current model, calculate the LR or Wald’s statistic for all variables
eligible for removal and find its significance.

Choose the variable with the largest significance. If that significance is less than the probability
for a variable removal, then stop BACKWARD; otherwise, go to the next step.

Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model. If all the variables in the BACKWARD list are
removed then stop BACKWARD; otherwise, go back to step 2.

Stepwise Statistics

The statistics used in the stepwise variable selection methods are defined as follows.

Score Function and Information Matrix

The score function for a model with parameter B is:

The (j,s)th element of the score function can be written as
al(B
(B, =552
€T;

=) @i (ni; — mamy)

i=1
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Similarly, elements of the information matrix are given by

221(B
I (B)}js,j’t = aﬁjs(a,slt

- - g NiTisTitTij (53'.,-' - Wij')

i=1

where §,,» = 1if j = j', 0 otherwise.

(Note that #;; in the formula are functions of B)

Block Notations

By partitioning the parameter B into two parts, B and Bj, the score function, information matrix,
and inverse information matrix can be written as partitioned matrices:

U(By,B;) = (g; gigi;)

Al(B1,B2)
- ( aBl >
Al(B1.B>)
98>

where | (Bq, B2) =l (B)
I(B) =1(B1,B2)

_ (111 (B1,B2) 12 (B17B2)>
-\ 121 (B1,B2) I (B1,B2)

8%1(B1,B2)  0°1(Bi1,B2)
— 8B19B; 8B,8B,

9%1(B1,B2)  9°1(B1,B2)
8B28B1 832832

- Ji1 (B, B2)  Jia (B1, B2
J(B) = 1(B1, By) - = (le EB1,BQ§ Ja EBthg)

where

J11 = I;l -+ Iﬁ[lzjzzlzlli
Jiz = I 02

I = JE,

Jog = [Iog — In 1y 112]

Typically, By and B, are parameters corresponding to two different sets of effects. The dimensions
of the 1st and 2nd partition in U, I and J are equal to the numbers of parameters in B| and
B, respectively.

Score Test

Suppose a base model with parameter vector By,s. With the corresponding maximum likelihood
estimate Bbase. We are interested in testing the significance of an extra effect E if it is added to the
base model. For convenience, we will call the model with effect E the augmented model. Let

Bpg be the vector of extra parameters associated with the effect E, then the hypothesis can be
written as
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Hy: Bg=0vs. Hy BE7AO

Using the block notations, the score function, information matrix and inverse information of the
augmented model can be written as

_ Ubase (Bbase7 BE)
U (Bbase,BE) - ( UE (Bbase’ BE)

Iase ase B GSE?B IG,SG. B GS€7B
I(BbaseaBE):< base,base (Bb E)  Tbase.5 (Bp E))

IEJmse (Bbase7 BE) IEE (Bbasea BE)

Jase ase B ase,B Jase B ase;B
'](BbaseaBE) = ( based ( b E) b ’E( b E)>

']E,base (Bbasea BE) JEE (Bbasea BE)

Then the score statistic for testing our hypothesis will be
X T . .
s=Ug (Bbasea 0) JE,E (Bba,sea 0) Ug (Bbasea O)

where Uz (Bh,,,s,a,O) and Jg g (Eh,m, 0) are the 2nd partition of score function and inverse

information matrix evaluated at Byyse = Bpase and By = 0.

Under the null hypothesis, the score statistic s has a chi-square distribution with degrees of
freedom equal to the rank of Jg g (B1, Ba). If the rank of Jg g (B1, B2) is zero, then the score
statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of Jg g (B, B2) is

rg : ry > 0, then the p-value of the test is equal to 1 — F' (s; rg), where F (-, rg) is the cumulative
distribution function of a chi-square distribution with rz degrees of freedom.

Computational Formula for Score Statistic

When we compute the score statistic s, it is not necessary to re-compute I (Bbase,o) and

I (Bbase, 0) from scratch. The score function and information matrix of the base model can be
reused in the calculation. Using the block notations introduced earlier, we have

U (Bbam ()) _ Ubase (ABbase, 0) B U (?baSe)
Us; ((Brases0) Us (Biase,0)

and

(et [ 1) T ()

IE base (Bbasea 0) IpE (Bbasea 0)

In stepwise logistic regression, it is necessary to compute one score test for each effect that are not
in the base model. Since the 1st partition of U (Bbwe, 0) and I (Bbase, 0) depend only on the

base model, we only need to compute Ug (Bba“, O), lyase B (Bbaﬁe, O) and Ig g (Ebase, 0) for
each new effect.
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If B, is the s-th parameter of the j-th logit in Bp,s. and Sy, is the ¢-th parameter of k-th logit in

Bpg, then the elements of Ug (Bb,m, 0), Tpose B (Bbasey 0) and I'x g (B;mse, 0) can be expressed
as follows:

[UE (Bbasev 0)} o i iy (N — NiTik)
=1

me

[IE,E (Bbase,O)Lf oy = E N i i Tip (Oxhr — Finr)

i=1

[Ibase,E (Bbasev 0)} == nizisziig (G5 — k)
i=1

js,kt

where #;p, #r;p are computed under the base model.

Wald's Test

In backward stepwise selection, we are interested in removing an effect F from an already fitted
model. For a given base model with parameter vector By, ., we want to use Wald’s statistic to
test if effect £ should be removed from the base model. If the parameter vector for the effect F is
Bp, then the hypothesis can be formulated as

H()ZBF:OVS. H]_BF?éO

In order to write down the expression of the Wald’s statistic, we will partition our parameter vector
(and its estimate) into two parts as follows:

A B ase
Bbase = (Bb%s;\F> and Bbase - < bB \F>
F

The first partition contains parameters that we intended to keep in the model and the 2nd partition
contains the parameters of the effect F, which may be removed from the model. The information
matrix and inverse information will be partitioned accordingly,

7 (Bb ) _ (Ibase\F,base\F (Bbase\F7 Bbase\F) Ibase\F,F (Bbase\F: BF) >
e Irpase\F (Brase\r> BF) Ir,F (Bpase\r> Br)

and

J (Bb ) — <Jbase\F,b(me\F (an,se\F7 an,se\F) Jbase\F,F (Bhase\Fa BF) >
“se Jrpase\F (Bpase\r> BF) JrF (Bhase\r, BF)

Using the above notations, the Wald’s statistic for effect F' can be expressed as

w = Br[JpF (Byase\r, Br)] Br

Under the null hypothesis, w has a chi-square distribution with degrees of freedom equal to the
rank of Jp, m (Bpase\r; Br). If the rank of Jp p (Bpase\r, Br) is zero, then Wald’s statistic will be
set to 0 and the p-value will be 1. Otherwise, if the rank of Jp 5 (Bpgase\r, Br) is rp : 7p > 0, then
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the p-value of the test is equal to 1 — F' (w; rp), where F (w; rp) is the cumulative distribution
function of a chi-square distribution with »z degrees of freedom.

Generated Model/Scoring

Predicted Values

The predicted value for a record i is the output field category j with the largest logit value 7,5,

2

forj=1, ..., J-1. The logit for reference category J,r; s, is 1.0.

Predicted Probability
The probability for the predicted category j* for scored record i is derived from the logit for
category j*,
PO exp (rij) B exp (x'i5)
v J—1 - J—1
1+ Z exp (rij) 1+ Z exp (/i)

If the Append all probabilities option is selected, the probability is calculated for all J categories
in a similar manner.

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.

Binomial Logistic Regression

For binomial models (models with a flag field as the target), IBM® SPSS® Modeler uses an
algorithm optimized for such models, as described here.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n The number of observed cases
p The number of parameters
y n x 1 vector with element y;, the observed value of the ith case of the

dichotomous dependent variable

X n X p matrix with element x;;, the observed value of the ith case of the
jth parameter
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p x 1 vector with element 3;, the coefficient for the jth parameter

n x 1 vector with element w;, the weight for the ith case
Likelihood function
Log-likelihood function

-~ 2 W

Information matrix

Model

The linear logistic model assumes a dichotomous dependent variable ¥ with probability &, where
for the ith case,

exp (n:)

i = Thexp (n)

or
In (ﬁ) = =X,8

Hence, the likelihood function / for n observations 1, ..., yn, With probabilities =1, ..., w, and
case weights wy, ..., w,, can be written as

] — Hﬂ_‘;vmi(l _ ﬂ_i)wi(l*yi)

It follows that the logarithm of / is

T

L=Mn(l) =) (wiyiln(m)+wi(l—p)n(1-m))

i=1
and the derivative of L with respect to /3 is

T

*  _ OL _ Z s — )
LXj =83 wz(yz Wz)lzj
i=1

Maximum Likelihood Estimates (MLE)

The maximum likelihood estimates for 3 satisfy the following equations

Z w; (y; — 7;)xi; = 0, for the jth parameter

i=1
where ;o =1fori=1,...,n.
Note the following:

1. A Newton-Raphson type algorithm is used to obtain the MLEs. Convergence can be based on

®  Absolute difference for the parameter estimates between the iterations
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m  Percent difference in the log-likelihood function between successive iterations

B Maximum number of iterations specified

During the iterations, if #;(1 — #;) is smaller than 1078 for all cases, the log-likelihood function
is very close to zero. In this situation, iteration stops and the message “All predicted values
are either 1 or 0” is issued.

After the maximum likelihood estimates 3 are obtained, the asymptotic covariance matrix is
estimated by 71, the inverse of the information matrix Z, where

I=-[B(24)] = XWX,
K J

\7 = Dia'g{ﬁl(l - 7?"1)7 B 77¢rn(1 - 7?‘—n)}a

W = Diag{ws, ..., w.},

Fo— AU
P Thesp (7)

Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. There are two stepwise methods:
forward and backward. The stepwise methods can use either the Wald statistic, the likelihood
ratio, or a conditional algorithm for variable removal. For both stepwise methods, the score
statistic is used to select variables for entry into the model.

Forward Stepwise (FSTEP)

1.

If FSTEP is the first method requested, estimate the parameter and likelihood function for the
initial model. Otherwise, the final model from the previous method is the initial model for FSTEP.
Obtain the necessary information: MLEs of the parameters for the current model, predicted
probability, likelihood function for the current model, and so on.

Based on the MLEs of the current model, calculate the score statistic for every variable eligible for
inclusion and find its significance.

Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FSTEP.

Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

Calculate LR or Wald statistic or conditional statistic for each variable in the current model.
Then calculate its corresponding significance.
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6.

Choose the variable with the largest significance. If that significance is less than the probability
for variable removal, then go back to step 2; otherwise, if the current model with the variable
deleted is the same as a previous model, stop FSTEP; otherwise, go to the next step.

Modify the current model by removing the variable with the largest significance from the previous
model. Estimate the parameters for the modified model and go back to step 5.

Backward Stepwise (BSTEP)

1.

Estimate the parameters for the full model which includes the final model from previous method
and all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry
and removal. Let the current model be the full model.

Based on the MLEs of the current model, calculate the LR or Wald statistic or conditional statistic
for every variable in the model and find its significance.

Choose the variable with the largest significance. If that significance is less than the probability for
a variable removal, then go to step 5; otherwise, if the current model without the variable with the
largest significance is the same as the previous model, stop BSTEP; otherwise, go to the next step.

Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model and go back to step 2.

Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

Based on the MLEs of the current model, calculate the score statistic for every variable not in
the model and find its significance.

Choose the variable with the smallest significance. If that significance is less than the probability
for variable entry, then go to the next step; otherwise, stop BSTEP.

Add the variable with the smallest significance to the current model. If the model is not the
same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Stepwise Statistics

The statistics used in the stepwise variable selection methods are defined as follows.

Score Statistic

The score statistic is calculated for each variable not in the model to determine whether the
variable should enter the model. Assume that there are r; variables, namely, «;, ..., a,, inthe
model and r» variables, v, . ..,~,, not in the model. The score statistic for +; is defined as

S. = (1) Bas;
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if y; is not a categorical variable. If +; is a categorical variable with m categories, it is converted to
a (m — 1)-dimension dummy vector. Denote these new m — 1 variables as %, ..., ¥;1m_2. The
score statistic for ; is then

S: = (1) Ban, L3

where (L)'= (Li:w ...,Lifmmﬂ) and the (m — 1) x (m — 1) matrix Bag ; is

with
A11 = OLIVQ7
AlZ,z = glvl}/iv
Agyy = ; V',
~g ~
in which « is the design matrix for variables as, ..., a,, and+; is the design matrix for dummy
variables %;, ..., % .m_2. Note that « contains a column of ones unless the constant term
is excluded from r. Based on the MLEs for the parameters in the model, V is estimated by
V = Diag{#1 {1l — #1), ..., 7,(1 — &,)}. The asymptotic distribution of the score statistic is a

chi-square with degrees of freedom equal to the number of variables involved.

Note the following:

1. If the model is through the origin and there are no variables in the model, Bs, ; is defined by
A, and V is equal to 1T,

2. If By, ; is not positive definite, the score statistic and residual chi-square statistic are set to be zero.

Wald Statistic

The Wald statistic is calculated for the variables in the model to determine whether a variable
should be removed. If the ith variable is not categorical, the Wald statistic is defined by

I~k

Wald; = 5
2,

i

If it is a categorical variable, the Wald statistic is computed as follows:

Let 3; be the vector of maximum likelihood estimates associated with the m — 1 dummy variables,
and C the asymptotic covariance matrix for 8;. The Wald statistic is

Wald; = 3,C 13

The asymptotic distribution of the Wald statistic is chi-square with degrees of freedom equal to
the number of parameters estimated.
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Likelihood Ratio (LR) Statistic

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two
models evaluated at their MLEs. The LR statistic is used to determine if a variable should

be removed from the model. Assume that there are r; variables in the current model which is
referred to as a full model. Based on the MLEs of the full model, /(fu/l) is calculated. For each of
the variables removed from the full model one at a time, MLEs are computed and the likelihood
function I/(reduced) is calculated. The LR statistic is then defined as

LR = —2In (%) = —2(L(reduced) — L(full))

LR is asymptotically chi-square distributed with degrees of freedom equal to the difference
between the numbers of parameters estimated in the two models.

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for the
conditional statistic is the same as the LR statistic except that the parameter estimates for each
reduced model are conditional e,stimates, not MLEs. The conditional estimates are defined as

follows. Let A = ([31, e Bn) be the MLE for the r; variables in the model and C be the

asymptotic covariance matrix for 4. If variable x; is removed from the model, the conditional
estimate for the parameters left in the model given 3 is

By = By — <3 (CEQ) Bi

where 3; is the MLE for the parameter(s) assoc1ated with z; and /3( is ﬁ with ,BZ removed, c
the covariance between ﬂ( and f3;, and c22 is the covariance of 3;. Then the conditional StatIStIC
is computed by

72(L (B(i)) - L(fuu))

where L (B(i)) is the log-likelihood function evaluated at ,BEZ- )

Statistics

The following output statistics are available.

Initial Model Information

If By is not included in the model, the predicted probability is estimated to be 0.5 for all cases and
the log-likelihood function L(0) is

L(0) = Wn (0.5) = —0.6931472W

with W = Z w;. If By is included in the model, the predicted probability is estimated as

i=1
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n
S s
A=l
o= ——
and 3, is estimated by
BO =In (1:?(7)}0)

with asymptotic standard error estimated by

Gy = — 1
fo Wito(1—#0)

The log-likelihood function is

L(0) = W [#oIn (55 ) +1n (1 - 7).

Model Information

The following statistics are computed if a stepwise method is specified.

-2 Log-Likelihood

—23 " (wiysIn (7)) + wi(1 — y;) In (1 = 7))

i=1
Model Chi-Square
2(log-likelihood function for current model — log-likelihood function for initial model)

The initial model contains a constant if it is in the model; otherwise, the model has no terms.
The degrees of freedom for the model chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models. If the degrees of freedom is zero, the
model chi-square is not computed.

Block Chi-Square

2(log-likelihood function for current model — log-likelihood function for the final model from
the previous method)

The degrees of freedom for the block chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models.

Improvement Chi-Square

2(log-likelihood function for current model — log-likelihood function for the model from the
last step)

The degrees of freedom for the improvement chi-square statistic is equal to the difference between
the numbers of parameters estimated in each of the two models.
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Goodness of Fit

i w; (Y — 77'2‘)2
(1 — #;)

i=1

Cox and Snell’s R-Square (Cox and Snell, 1989; Nagelkerke, 1991)

2
2 _ 1 (i) W
RCS =1 (l(,@))

where I{3) is the likelihood of the current model and /(0) is the likelihood of the

initial model; that is, I(0) = W log (0.5) if the constant is not included in the model;

1{0) = W#,log {#,/(1 — #,)} + log (1 — #,)] if the constant is included in the model, where
ﬁ'o = E?w,yL/W

Nagelkerke's R-Square (Nagelkerke, 1981)
R} = R} s/ max (Ris)

where max (R%g) = 1 — {1(0)}*/".

Hosmer-Lemeshow Goodness-of-Fit Statistic

The test statistic is obtained by applying a chi-square test on a 2 x g contingency table. The
contingency table is constructed by cross-classifying the dichotomous dependent variable with
a grouping variable (with g groups) in which groups are formed by partitioning the predicted
probabilities using the percentiles of the predicted event probability. In the calculation,
approximately 10 groups are used (g=10). The corresponding groups are often referred to as the
“deciles of risk” (Hosmer and Lemeshow, 2000).

If the values of independent variables for observation i and i " are the same, observations i and
i’ are said to be in the same block. When one or more blocks occur within the same decile, the
blocks are assigned to this same group. Moreover, observations in the same block are not divided
when they are placed into groups. This strategy may result in fewer than 10 groups (that is,
¢ < 10) and consequently, fewer degrees of freedom.

Suppose that there are O blocks, and the gth block has mq number of observations, ¢ = 1, ..., Q.
Moreover, suppose that the kth group (k = 1,...,g) is composed of the g;th, ..., gxth blocks of
observations. Then the total number of observations in the kth group is s, = X2m;. The total
observed frequency of events (that is, Y=1) in the kth group, call it Oy, is the total number of
observations in the kth group with Y=1. Let Eqi be the total expected frequency of the event in the
kth group; then E|y is given by Fy; = si&i, where &, is the average predicted event probability
for the kth group.

5k = Zg’l"mjfrj/sk

The Hosmer-Lemeshow goodness-of-fit statistic is computed as
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Zg: (O — Epx)’
Eir(1—¢&)

The p value is given by Pr(x? > x3,,) where x? is the chi-square statistic distributed with
degrees of freedom (g—2).

Information for the Variables Not in the Equation

For each of the variables not in the equation, the score statistic is calculated along with the
associated degrees of freedom, significance and partial R. Let X; be a variable not currently in
the model and S; the score statistic. The partial R is defined by

S, —2xdf .
Partial R = { “iGmitay 19 > 2% df
0

otherwise

where df'is the degrees of freedom associated with S;, and L(initial) is the log-likelihood
function for the initial model.
The residual Chi-Square printed for the variables not in the equation is defined as

Res = (L’é)’BzzL*g

1

where Lg = (L* ...,Li;rg)

Y17

Information for the Variables in the Equation

For each of the variables in the equation, the MLE of the Beta coefficients is calculated along with
the standard errors, Wald statistics, degrees of freedom, significances, and partial R. If X; is not a
categorical variable currently in the equation, the partial R is computed as

s (B Waldi=2 £ W ald.
Partial R — szgn(ﬁl),/ 3L (initial) if B alc.ll > 2
0 otherwise

If X; is a categorical variable with m categories, the partial R is then

Wald; —2(m—1) . ) _
Partial_R = { 2L (initial) if Wald; > 2(m — 1)
0

otherwise

Casewise Statistics

The following statistics are computed for each case.

Individual Deviance

The deviance of the ith case, G;, is defined as

o = {\/Z(yZ In(7;)+ (1 —y) In (1 — 7)) ify; > 7
"l -2y In (7)) + (1 —yi)In(1 —#;)) otherwise
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Leverage

The leverage of the ith case, h;, is the ith diagonal element of the matrix

Logit Residual

5.o— e __
& = 7 0-m)

where e; = y; — 7;

Standardized Residual

€;

2 =
7T1‘(177Ti)

Cook's Distance

2
Z; hi

Di = 15

DFBETA
Let AB; be the change of the coefficient estimates from the deletion of case i. It is computed as

(x'cvx) X e
ABy = ———

Predicted Group
If #; > 0.5, the predicted group is the group in which y=1.
Note the following:

For the unselected cases with nonmissing values for the independent variables in the analysis,
the leverage (ﬁl) is computed as

o _ g _Vihj
hi = hi 1+V;ih;
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~ ’ ’ A~ -1
h; = V;X (X CVX) X,

For the unselected cases, the Cook’s distance and DFBETA are calculated based on A;.

Generated Model/Scoring

For each record passed through a generated binomial logistic regression model, a predicted value
and confidence score are calculated as follows:

Predicted Value

The probability of the value y = 1 for record i is calculated as

. exp ()

T =
1+ exp (1;)

where

771 — XZ’ﬂA

If # > 0.5, the predicted value is 1; otherwise, the predicted value is 0.

Confidence

For records with a predicted value of y = 1, the confidence value is #. For records with a predicted
value of y = 0, the confidence value is (1 — #).

Blank Handling (generated model)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.






KNN Algorithms

Nearest Neighbor Analysis is a method for classifying cases based on their similarity to other
cases. In machine learning, it was developed as a way to recognize patterns of data without
requiring an exact match to any stored patterns, or cases. Similar cases are near each other and
dissimilar cases are distant from each other. Thus, the distance between two cases is a measure
of their dissimilarity.

Cases that are near each other are said to be “neighbors.” When a new case (holdout) is presented,
its distance from each of the cases in the model is computed. The classifications of the most
similar cases — the nearest neighbors — are tallied and the new case is placed into the category that
contains the greatest number of nearest neighbors.

You can specify the number of nearest neighbors to examine; this value is called k. The pictures
show how a new case would be classified using two different values of &. When k=5, the new
case is placed in category / because a majority of the nearest neighbors belong to category /.
However, when k£ =9, the new case is placed in category 0 because a majority of the nearest
neighbors belong to category 0.

Nearest neighbor analysis can also be used to compute values for a continuous target. In this
situation, the average or median target value of the nearest neighbors is used to obtain the
predicted value for the new case.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Optional 1xN vector of responses with element y,, where n=1,...,.N
indexes the cases.

X0 POxN matrix of features with element z5,,, where p=1,...,P0 indexes the
features and n=1,...,N indexes the cases.

X PxN matrix of encoded features with element x,,, where p=1,....P
indexes the features and n=1,...,N indexes the cases.

P Dimensionality of the feature space; the number of continuous features
plus the number of categories across all categorical features.

N Total number of cases.

N;,j=1,2,---,J The number of cases with Y = j, where Y is a response variable with

J categories

N; The number of cases which belong to class j and are correctly classified
asj.
‘f The total number of cases which are classified as ;.
Preprocessing

Features are coded to account for differences in measurement scale.

© Copyright IBM Corporation 1994, 2015. 263
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Continuous

Continuous features are optionally coded using adjusted normalization:

R 2 (;rg,n — min (th)) .
P max (:L‘g) — min (:J:g)

where y,, is the normalized value of input feature p for case n, 2 is the original value of the
feature for case »n, min (xg) is the minimum value of the feature for all training cases, and
max (z) is the maximum value for all training cases.

Categorical

Categorical features are always temporarily recoded using one-of-c coding. If a feature has
¢ categories, then it is is stored as ¢ vectors, with the first category denoted (1,0,...,0), the next
category (0,1,0,...,0), ..., and the final category (0,0,...,0,1).

Training

Training a nearest neighbor model involves computing the distances between cases based upon
their values in the feature set. The nearest neighbors to a given case have the smallest distances
from that case. The distance metric, choice of number of nearest neighbors, and choice of the
feature set have the following options.

Distance Metric

We use one of the following metrics to measure the similarity of query cases and their nearest
neighbors.

Euclidean Distance. The distance between two cases is the square root of the sum, over all
dimensions, of the weighted squared differences between the values for the cases.

P

Euclidean;, = Z’w(p) (ﬂf(p)i - if(p)h>2
p=1

City Block Distance. The distance between two cases is the sum, over all dimensions, of the
weighted absolute differences between the values for the cases.

P

City Block;y, = Z Wy |2y — @)l
p=1
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The feature weight w(p) is equal to 1 when feature importance is not used to weight distances;
otherwise, it is equal to the normalized feature importance:

P
wey = Fly /Y Fly,)
p=1

See “Output Statistics ” for the computation of feature importance F1,.

Crossvalidation for Selection of k

Cross validation is used for automatic selection of the number of nearest neighbors, between a
minimum ky,;, and maximum k... Suppose that the training set has a cross validation variable
with the integer values 1,2,..., V. Then the cross validation algorithm is as follows:

For each k € [kmin, kmax), compute the average error rate or sum-of square error of &:

CVy, = szl e,/V, where e, is the error rate or sum-of square error when we apply the Nearest
Neighbor model to make predictions on the cases with X = v; that is, when we use the other
cases as the training dataset.

Select the optimal £ as: k= arg{min CVg : kmin < k < kpmax}-

Note: If multiple values of & are tied on the lowest average error, we select the smallest £ among
those that are tied.

Feature Selection

>

>

Feature selection is based on the wrapper approach of Cunningham and Delany (2007) and uses
forward selection which starts from Jz,,c.q features which are entered into the model. Further
features are chosen sequentially; the chosen feature at each step is the one that causes the largest
decrease in the error rate or sum-of squares error.

Let S represent the set of J features that are currently chosen to be included, 5§ represents the
set of remaining features and ey represents the error rate or sum-of-squares error associated
with the model based on S .

The algorithm is as follows:
Start with J = Jp,rceq features.

For each feature in S5 , fit the k nearest neighbor model with this feature plus the existing features
in S; and calculate the error rate or sum-of square error for each model. The feature in $5 whose
model has the smallest error rate or sum-of square error is the one to be added to create S1.

Check the selected stopping criterion. If satisfied, stop and report the chosen feature subset.
Otherwise, J=J+1 and go back to the previous step.

Note: the set of encoded features associated with a categorical predictor are considered and added
together as a set for the purpose of feature selection.
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Stopping Criteria
One of two stopping criteria can be applied to the feature selection algorithm.

Fixed number of features. The algorithm adds a fixed number of features, .J,44, in addition to those
forced into the model. The final feature subset will have .J,44 + JForceqa features. J, 44 may be
user-specified or computed automatically; if computed automatically the value is

Jodd = max {min (20, PO) — JForced, 0}

When this is the stopping criterion, the feature selection algorithm stops when J, 44 features
have been added to the model; that is, when J,4s = J + 1, stop and report .S, as the chosen
feature subset.

Note: if J,qqa = 0, no features are added and S; with J = Jpgyceq 18 reported as the chosen
feature subset.

Change in error rate or sum of squares error. The algorithm stops when the change in the absolute
error ratio indicates that the model cannot be further improved by adding more features.
Specifically, ife;11 =0 ore; > ey and

€J — CJj+1
| + ‘ S Amin
€J

where Ay is the specified minimum change, stop and report Sy, as the chosen feature subset.

IfCJ < eji1 and

leg — egi]
ey

> 2Amin

stop and report S as the chosen feature subset.

Note: if ey = 0 for J = Jporeeq, N0 features are added and S; with J = Jg,rceq 1S reported as
the chosen feature subset.

Combined k and Feature Selection

The following method is used for combined neighbors and features selection.
For each k, use the forward selection method for feature selection.

Select the &, and accompanying feature set, with the lowest error rate or the lowest sum-of-squares
error.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.
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Output Statistics

The following statistics are available.

Percent correct for class |

~

N]
—= x 100
N, X %

Overall percent for class j

\T ¥

N 100%

— X

N 0

Intersection of Overall percent and percent correct

J
Y Nj/N | x 100%

j=1

Error rate of classification

J
1- > N;/N | x100%
j=1

Sum-of-Square Error for continuous response

N

Z (Yn — Qn)Q

n=1

where ,, is the estimated value of y,,.

Feature Importance

Suppose there are X (1), X(2) - - - X () (1 <m< PO) in the model from the forward selection
process with the error rate or sum-of-squares error e. The importance of feature X, in the
model is computed by the following method.

» Delete the feature X,y from the model, make predictions and evaluate the error rate or
sum-of-squares error e, based on features X1y, Xy -+ Xp_1y, X(p+1)5 5 X(m)-

» Compute the error ratio e, + =

The feature importance of X,y is FI,y = e,y +

3=
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Scoring

After we find the & nearest neighbors of a case, we can classify it or predict its response value.

Categorical response

Classify each case by majority vote of its k£ nearest neighbors among the training cases.

» If multiple categories are tied on the highest predicted probability, then the tie should be broken by

choosing the category with largest number of cases in training set.

» If multiple categories are tied on the largest number of cases in the training set, then choose the

category with the smallest data value among the tied categories. In this case, categories are
assumed to be in the ascending sort or lexical order of the data values.

We can also compute the predicted probability of each category. Suppose k; is the number of
cases of the jth category among the k nearest neighbors. Instead of simply estimating the predicted
probability for the jth category by %, we apply a Laplace correction as follows:

]ﬂj—i—l
k+J

where J is the number of categories in the training data set.

The effect of the Laplace correction is to shrink the probability estimates towards to 1/J when the
number of nearest neighbors is small. In addition, if a query case has & nearest neighbors with the
same response value, the probability estimates are less than 1 and larger than 0, instead of 1 or 0.

Continuous response
Predict each case using the mean or median function.

Mean function.j,, = 3, c veresi(n) Ym/ k. Where Nearest (n) is the index set of those cases
that are the nearest neighbors of case n and y.,, is the value of the continuous response variable
for case m.

Median function. Suppose that y,,,, m € Nearest (n) are the values of the continuous response
variable, and we arrange y,,,, m € Nearest (n) from the lowest value to the highest value and
denote them as y(;,) < Yim,) < -+ < Ypm,), then the median is

Y(ier) k is odd

= w k 1is even

o
S

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.
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Linear modeling algorithms

Linear models predict a continuous target based on linear relationships between the target and

one or more predictors.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms” on p. 125.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n

S W

>

==l

Number of distinct records in the dataset. It is an integer and n > 1.

Number of parameters (including parameters for dummy variables but
excluding the intercept) in the model. It is an integer and p > 0.

Number of non-redundant parameters (excluding the intercept) currently in
the model. It is an integer and 0 < p* < p.

Number of non-redundant parameters currently in the model. p® = p* 41
Number of effects excluding the intercept. It is an integer and 0 < p® < p

n x 1 target vector with elements y;.
n x 1 frequency weight vector.
n x 1 regression weight vector.

Effective sample size. It is an integer and N = Z fi. If there is no
=1

frequency weight vector, N=n.

n X (p+ 1) design matrix with element z;;. The rows represent the records
and the columns represent the parameters.

n x 1 vector of unobserved errors.

(p + 1) x 1 vector of unknown parameters; 8 = (8o, 51, - 8p). Po is the
intercept.

(p + 1) x 1 vector of parameter estimates.

(p+ 1) x 1 vector of standardized parameter estimates. It is the result of a
sweep operation on matrix R. by is the standardized estimate of the intercept
and is equal to 0.

n x 1 vector of predicted target values.

Weighted sample mean for X;, j =1,2,---p

Weighted sample mean for y.

Weighted sample covariance between X; and X;, 4,5 = 1,2,---p.
Weighted sample covariance between X; and y.

Weighted sample variance for y.

(p+1) x (p+ 1) weighted sample correlation matrix for X (excluding the
intercept, if it exists) and y.

The resulting matrix after a sweep operation whose elements are 7;;.

© Copyright IBM Corporation 1994, 2015. 271
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Model

Linear regression has the form

y=XB+¢

where ¢ follows a normal distribution with mean 0 and variance 2D~ ', where
D' = diag(1/91,...,1/g,). The elements of € are independent with respect to each other.

Notes:
® X can be any combination of continuous and categorical effects.
m  Constant columns in the design matrix are not used in model building.

B [f #n=1 or the target is constant, no model is built.

Missing values

Records with missing values are deleted listwise.

Least squares estimation

The coefficients are estimated by the least squares (LS) method. First, we transform the model
by pre-multiplying D'/? as follows:

DY/2y — D/2XB | D2

so that the new unobserved error D'/ ¢ follows a normal distribution N, (0, o°I), where I is an
identity matrix and D'/? = diag(,/g1,- .., /gn). Then the least squares estimates of § can be
obtained from the following formula

B =arg mﬁin <D1/2y — D1/2X5) TF (D1/2y — D1/2X,B)

where F = diag(fi,..., f»). Note that

(Dl/ 2y _pl/ 2X5) 'r <D1/ 2y _pY/ 2Xﬁ)
— (y — X8) ' DY2FD'2(y — X3)
— (y —X8)'w(y - x8)

where W = diag{wy, ..., w,) = diag(g1 f1,.- ., gnfn), so the closed form solution of B is

5= (XTWX) xTwy
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3 is computed by applying sweep operations instead of the equation above. In addition, sweep
operations are applied to the transformed scale of X and y to achieve numerical stability.
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations
to it. The R matrix is constructed as follows.

First, compute weighted sample means, variances and covariances among X;, X;,
i,j=1,...,p,and y:

Weighted sample means of X; and y are X; = +u >or wizkiandy = %w > WYk
k=1 "k k=1 "%

Weighted sample covariance for X; and X is Si; =xg Sr wk (zri — X)) (k5 — X);
Weighted sample covariance for X; and y is Siy = w5 Sony Wk (zri — Xi) (yk — U);

Weighted sample variance for y is Sy, = x5 Sorey wi(ye — 7)°.

Second, compute weighted sample correlations r;; = 5“'5 ,i,7=1,...,p and y.
iG]
Then the matrix R is
Tz vt Tip gy
ro1 Taz ot Tap gl
2
. . . Y Ry Ry
R = : : . : = RT R
Ce r 12 22
Tyl Ty2 -+ Typ Tyy

If the sweep operations are repeatedly applied to each row of R;;, where R4, contains the
predictors in the model at the current step, the result is

—RppRyp B2 — RipRyp Ray

The last column Rﬁlng contains the standardized coefficient estimates; that is, b = RfllRlz.
Then the coefficient estimates, except the intercept estimate if there is an intercept in the model,

are.

S S yy

Pi =t S
Model selection

The following model selection methods are supported:

® None, in which no selection method is used and effects are force entered into the model. For
this method, the singularity tolerance is set to 1e—12 during the sweep operation.
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m  Forward stepwise, which starts with no effects in the model and adds and removes effects one
step at a time until no more can be added or removed according to the stepwise criteria.

m  Best subsets, which checks “all possible” models, or at least a larger subset of the possible
models than forward stepwise, to choose the best according to the best subsets criterion.

Forward stepwise

The basic idea of the forward stepwise method is to add effects one at a time as long as these
additions are worthy. After an effect has been added, all effects in the current model are checked
to see if any of them should be removed. Then the process continues until a stopping criterion
is met. The traditional criterion for effect entry and removal is based on their F-statistics and
corresponding p-values, which are compared with some specified entry and removal significance
levels; however, these statistics may not actually follow an F distribution so the results might be
questionable. Hence the following additional criteria for effect entry and removal are offered:

®m  Maximum adjusted RZ;
®  Minimum corrected Akaike information criterion (AICC); and

B Minimum average squared error (ASE) over the overfit prevention data

Candidate statistics

Some additional notations are needed describe the addition or removal of a continuous effecth or
categorical effect { X, }izl, where { is the number of categories.

£ The nlimber of non-redundant parameters of the eligible effect X; or
{XJ s } s=1-
p° The number of non-redundant parameters in the current model (including

the intercept).
p The number of non-redundant parameters in the resulting model (including
p¢ + £*for entering an effect

the intercept). Note that p” = .
Pt) P p“ — £*for removing an effect

SSe, The weighted residual sum of squares for the current model.

SSepiy The weighted residual sum of squares for the resulting model after entering
the effect.

SSep_s¢ The weighted residual sum of squares for the resulting model after removing
the effect.

Tyy The last diagonal element in the current R matrix.

Tyy The last diagonal element in the resulting R matrix.

F statistics. The F statistics for entering or removing an effect from the current model are:
(SSep — SSepre) /1 _ (ryy — Tyy) (N —p")
SSepyp/ (N —p") Fyy X O

la _ (88ey—r — SSey) /* _ (Pyy = ) (N = p°)
remeves SSep/(N — p°) Tyy X CF

F enter; —
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and their corresponding p-values are:
Penter; = P(Fé*.N—pr > Fente'rj) =1- P(Fﬁ*,N—pT < Fenter,-)

Premove; = P(FE*,prC > Fremovej) =1- P(FE*,prC < Fremovej)

Adjusted R-squared. The adjusted R2 value for entering or removing an effect from the current
model is:

(N — 1)y

di.R2=1—
a] N—pT

Corrected Akaike Information Criterion (AICC). The AICC value for entering or removing an effect
from the current model is:

(N — 1) Syy X Ty N 2" N
N N—p—1

AICC = Nln(

Average Squared Error (ASE). The ASE value for entering or removing an effect from the current
model is:

1 T
ASE = ——— “wi(y; — i)’
T
Zt:l Jt t=1

where §j; = x;/3 are the predicted values of y and T is the number of distinct testing cases in
the overfit prevention set.

The Selection Process

There are slight variations in the selection process, depending upon the model selection criterion:

m The F statistic criterion is to select an effect for entry (removal) with the minimum (maximum)
p-value and continue doing it until the p-values of all candidates for entry (removal) are equal
to or greater than (less than) a specified significance level.

m  The other three criteria are to compare the statistic (adjusted R2, AICC or ASE) of the
resulting model after entering (removing) an effect with that of the current model. Selection

stops at a local optimal value (a maximum for the adjusted R? criterion and a minimum
for the AICC and ASE).

The following additional definitions are needed for the selection process:

FLAG A p® x 1 index vector which records the status of each effect. FLAG; =
1 means the effect i is in the current model, FLAG; = 0 means it is not.
|{{|FLAG; = 1}| denotes the number of effects with FLAG; = 1.

MAXSTEP The maximum number of iteration steps. The default value is 3 x p°.

MAXEFFECT The maximum number of effects (excluding intercept if exists). The default
value is p°.



276

Linear modeling algorithms

Pin The significance level for effect entry when the F-statistic criterion is used.
The default is 0.05.

Pout The significance level for effect removal when the F statistic criterion is
used. The default is 0.1.

AF The F statistic change. It is Fenter; OT Fremoue; for entering or removing
an effect Xj (here Xj could represent continuous or categorical for simpler
notation).

pAaF The corresponding p-value for AF.

MSCeurrent The adjusted R2, AICC, or ASE value for the current model.

L. Set {FLAG;}*", = 0 and ifer = 0. The initial model is § = 3. If the adjusted R2, AICC, or ASE
criterion is used, compute the statistic for the initial model and denote it as MSC¢rent-

2. If{i|FLAG; =0} £ 0, iter < MAXSTEP and |{i|FLAG; =1}| < MAXEFFECT, go to the
next step; otherwise stop and output the current model .

3. Based on the current model, for every effect j eligible for entry (see Condition below),
If FC (the F statistic criterion) is used, compute Fepter; and penger;

If MSC (the adjusted R2, AICC, or ASE criterion) is used, compute MSC;.

4. IfFC is used, choose the effect X;-, j* = arg min; {penier; } and if penser,. < Pin, enter X;- to the
current model.

If MSC is used, choose the effect X;-, j* = argmin; {MSC;} and if M SC;- < MSCeyrrent,
enter X;- to the current model. (For the adjusted R? criterion, replace min with max and reverse
the inequality)

If the inequality is not satisfied, stop and output the current model.

5. If the model with the new effect is the same as any previously obtained model, stop and output the
current model; otherwise update the current model by doing the sweep operation on corresponding
row(s) and column(s) associated with X ;- in the current R matrix. Set FLAG;« =1 and iter
= iter + 1.

If FC is used, let AF = Fenter and pap = Penterju s
If MSC is used, let M SCoyrrent = MSC-.
6. For every effect £ in the current model; that is, FLAGy, = 1, Vk,
If FC is used, compute Fremove, and Premovey, 3
If MSC is used, compute MSCy.

7. If FC is used, choose the effect X+, k* = arg maxy {Premove, } ad if Premove,- > Pout, Femove
X+ from the current model.

If MSC is used, choose the effect X, k* = arg min, {MSCy} and if MSCj« < MSCeyrrent »
remove X from the current model. (For the adjusted R? criterion, replace min with max and
reverse the inequality)

If the inequality is met, go to the next step; otherwise go back to step 2.
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8. If the model with the effect removed is the same as any previously obtained model, stop and
output the current model; otherwise update the current model by doing the sweep operation
on corresponding row(s) and column(s) associated with X« in the current R matrix. Set
FLAG = = 0 and iter = iter + 1.

IfFCis used; let AF = Fremouek* and PAF = Premovey« »

If AC is used, let ATCCyrrent = AICCy«. Then go back to step 6.

Condition. In order for effect j to be eligible for entry into the model, the following conditions
must be met:

For continuous a effect Xj , r;; > ; (¢ is the singularity tolerance with a value of 1e—4)
For categorical effect {st}ﬁ:v MAZ {75, 13 Tajar e+ s Tieiet > 1

where ¢ is the singularity tolerance, and ;; and r;,;,,s = 1,...,{, are diagonal elements in the
current R matrix (before entering).

For each continuous effect X}, that is currently in the model, 7t < 1.

For each categorical effect {X ks}ﬁ’:l with ¢ levels that is currently in the model,
ML { Phykys Phakas - - s Phyky J £ < 1

where 7y, and 7 ., s = 1,..., ¢, are diagonal elements in the resulting R matrix; that is, the
results after doing the sweep operation on corresponding row(s) and column(s) associated with Xj
or { X, }f:l in the current R matrix. The above condition is imposed so that entry of the effect
does not reduce the tolerance of other effects already in the model to unacceptable levels.

Best subsets

Stepwise methods search fewer combinations of sub-models and rarely select the best one, so
another option is to check all possible models and select the “best” based upon some criterion.
The available criteria are the maximum adjusted R2, minimum AICC, and minimum ASE over
the overfit prevention set.

Since there are p¢ free effects, we do an exhaustive search over 2°° models, which include
intercept-only model (§ = ). Because the number of calculations increases exponentially with

p°, it is important to have an efficient algorithm for carrying out the necessary computations.
However, if p° is too large, it may not be practical to check all of the possible models.

We divide the problem into 2 tiers in terms of the number of effects:
B when p¢ < 20, we search all possible subsets

B when p© > 20, we apply a hybrid method which combines the forward stepwise method and
the all possible subsets method.



278

Linear modeling algorithms

Searching All Possible Subsets

An efficient method that minimizes the number of sweep operations on the R matrix (Schatzoff
1968), is applied to traverse all the models and outlined as follows:

Each sweep step(s) on an effect results in a model. So 27" models can be obtained
through a sequence of exactly 2°° sweeps on effects. Assuming that the all possible
models on p® — 1 effects can be obtained in a sequence S, ; of exactly 27" ~! sweeps
on the first 27"~ pivotal effects, and sweeping on the last effect will produce a new
model which adds the last effect to the model produced by the sequence Sp-_1, then
repeating the sequence S,._; will produce another 27"~ distinct models (including

the last effect). It is a recursive algorithm for constructing the sequence; that is,

Spe = (Spe 1,k Spe 1) = (Spe 25— 1, Spe 2.k, Spe 2,k — 1,5 ) =..., and so on.

The sequence of models produced is demonstrated in the following table:

k Sk Sequence of models produced

0 0 Only intercept

1 1 (1)

2 121 (1),(12),(2)

3 1213121 (1),(12),(2),(23),(123),(13),(3)

4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4)
p° Spe—1,P%, Spe—1 All 2*° models including the intercept model.

The second column indicates the indexes of effects which are pivoted on. Each parenthesis in the
third column represents a regression model. The numbers in the parentheses indicate the effects
which are included in that model.

Hybrid Method

If p>20, we apply a hybrid method by combining the forward stepwise method with the all
possible subsets method as follows:

Select the effects using the forward stepwise method with the same criterion chosen for best
subsets. Say that pS is the number of effects chosen by the forward stepwise method.

Apply one of the following approaches, depending on the value of pS, as follows:

B If pS <20, do an exhaustive search of all possible subsets on these selected effects, as
described above.

B [f20 <pS <40, select pS — 20 effects based on the p-values of type III sum of squares tests from
all pS effects (see ANOVA in “Model evaluation ” on p. 279) and enter them into the model,
then do an exhaustive search of the remaining 20 effects via the method described above.

B [f40 <ps, do nothing and assume the best model is the one with these ps effects (with a
warning message that the selected model is based on the forward stepwise method).
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Model evaluation
The following output statistics are available.

ANOVA

Weighted total sum of squares

SSe=> wilyi —7)* = (N —1) Sy, withdf. =dfy=N -1
=1

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total”.

Weighted residual sum of squares
SSe = Z%z(yz —3i)" = Ty (N = 1) Sy

with d.f. =df, = N—pC. Itis also called “SS for Error”.

Weighted regression sum of squares

n

N2 -
SSr = wi(i —§)° = (1= Fyy) (N = 1) Syy = S8, — S5,
=1
with d.f. =df,. = p*. It is called “SS for Corrected Model” if there is an intercept.

Regression mean square error

S8, /df,

Residual mean square error

SSe/dfe

F statistic for corrected model

. Ssr/dfr o SST 'dfe.

F = =
SSe/dfe SSe'dfr

which follows an F distribution with degrees of freedom df; and df, and the corresponding
p-value can be calculated accordingly.

Type Il sum of squares for each effect
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To compute type III SS for the effect j, j =1,...,p%, the type III test matrix L;
needs to be constructed first. Construction of L; is based on the generating matrix

H, = (XTDX) XTDX7 where D = diag (g1, - - -, gn), such that L;B is estimable. It involves
parameters only for the given effect and the effects containing the given effect. For type III
analysis, L doesn’t depend on the order of effects specified in the model. If such a matrix cannot
be constructed, the effect is not testable. For each effect j, the type III SS is calculated as follows

~ -1
s; =BT (L,61]) 18
where G = (XTWX) .
F statistic for each effect

The SS for the effect j is also used to compute the F statistic for the hypothesis test Hy: L;p
=0 as follows:

S;/r;
F. = 277
758 /dfe

where r; is the full row rank of L;. It follows an F distribution with degrees of freedom r; and
df., then the p-values can be calculated accordingly.

Model summary

Adjusted R square

1_R2 * .
adj.RQ:I—%:R2_(7)p:1_M
SSi/dfy df. df.
where
SS SS
RP="T 1220 =1 -y,
SSt SSt "y

Model information criteria

Corrected Akaike information criterion (AICC)

5SS, n 2p°N
N N —pt—1

AICC = Nln(

Coefficients and statistical inference

After the model selection process, we can get the coefficients and related statistics from the swept
correlation matrix. The following statistics are computed based on the R matrix.
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Unstandardized coefficient estimates

. S S
T T N b
R T T

forj - 17"'7p*
Standard errors of regression coefficients

The standard error of 3; is

55, = ver (5) =

Intercept estimation

T3 TyySyy
Sjidfe

The intercept is estimated by all other parameters in the model as
p P p—
72 5%,
J=1

The standard error of 3, is estimated by

~ _ ~2
%8 = V%,
where
A~ N ]- yyPyy Y2 1 X 3 3
%= S T 7 2T B 1 XX yeov( %, 3))
—2 2 T’kJXSS
N><df +Z /3 +22 k J+1X 7\/SkkS”><( —1)df.’

. N—1)7y, 8 2, D epo1 — — I N
52 = W%ﬁf)y + Z?:l Xjagj +2 25:1 ZZ:J'H XX jcov (,Bk,BJ) and cov (/J’k,ﬂj> is the
kth row and jth column element in the parameter estimates covariance matrix.

t statistics for regression coefficients

forj =1,---,p*, with degrees of freedom df. and the p-value can be calculated accordingly.

100(1-0)% confidence intervals

BiE6 s X layds.
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Note: For redundant parameters, the coefficient estimates are set to zero and standard errors, t
statistics, and confidence intervals are set to missing values.

Scoring

Predicted values

P
gk :Zxklﬁlvk: 17"'an'
i=0

Diagnostics
The following values are computed to produce various diagnostic charts and tables.
Residuals
ek = Yk — Yk
Studentized residuals

This is the ratio of the residual to its standard error.

SRES), = €+

where s is the square root of the mean square error; that is, s = /5SS, /df,, and h;, is the leverage
value for the kth case (see below).

Cook’s distance

ez hy,gx
s2(1 — hy,)%pe

COOKy, =
where the “leverage”

}Lk = gkkaXkT

is the kth diagonal element of the hat matrix

H=wY 2X<XTWX> xTw/2 — wi/zxexTwi/2

A record with Cook’s distance larger than N%pc is considered influential (Fox, 1997).
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Predictor importance

We use the leave-one-out method to compute the predictor importance, based on the residual sum
of squares (SSe) by removing one predictor at a time from the final full model.

If the final full model contains p predictors, X1, X3, - - -, X, then the predictor importance can be
calculated as follows:

1. =1
2. Ifi>p, gotostep 5.

3. Do a sweep operation on the corresponding row(s) and column(s) associated with X; in the
R matrix of the full final model.

Get the last diagonal element in the current R and denote it Fé’y) Then the predictor importance of
X;1sVI = (fé’“y) — fyy) (N —1)88,,. Leti=i+ 1, and go to step 2.
5. Compute the normalized predictor importance of X;:

NormVI; = i —
Y v
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Neural Networks Algorithms

Neural networks predict a continuous or categorical target based on one or more predictors by
finding unknown and possibly complex patterns in the data.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms” on p. 125.

Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward, supervised learning network with up to two
hidden layers. The MLP network is a function of one or more predictors that minimizes the
prediction error of one or more targets. Predictors and targets can be a mix of categorical and
continuous fields.

Notation

The following notation is used for multilayer perceptrons unless otherwise stated:
xm) — (mgm) CC(m)) Input vector, pattern m, m=1,...M.
= y e T

yim) — (‘yim)~ - y%m)) Target vector, pattern m.

I Number of layers, discounting the input layer.

Ji Number of units in layer i. Jy = P, J; = R, discounting the bias unit.

re Set of categorical outputs.

r Set of continuous outputs.

Tn Set of subvectors of ¥ (™ containing 1-of-c coded Ath categorical field.
ai; Unitj of layer i, pattern m, j = 0, ..., Ji;4 =0, ..., I.

Wi:j,k Weight leading from layer i—1, unitj to layer 7, unit £&. No weights connect

m m

a;” 1.; and the bias aj.; that is, there is no w;.;,0 for any j.

C:nk Ji1
Z wi:j,ka?’_lzj, izl,...,l.
j=0
vi (¢) Activation function for layer i.
w Weight vector containing all weights (wl:o,l, W1,0,25 e wI:Jkl’JJ.
Architecture

The general architecture for MLP networks is:

Input Iayer: J():P units, ap:1, ", 00:J45 with ap:;j = Tj.

- - . . . . Ji—

ith hidden layer: J; units, a;.1, - -, a;.5,; With a;., = v; (c;r) and ¢, = ijol W;.j k@i—1.; Where
a;-1.0 = 1.

© Copyright IBM Corporation 1994, 2015. 285
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J1
Output layer: J1=R units, ar.1,---,as.5,; With ay.x = vr (cr.i) and er. = Z wr.;ki—1.; where
a;_1.0 = 1. =
Note that the pattern index and the bias term of each layer are not counted in the total number

of units for that layer.

Activation Functions

Hyperbolic Tangent

e¢ — e ¢

¢) =tanh(¢) = ———
7(e) = tanh (¢) =
This function is used for hidden layers.
Identity

ve) =¢

This function is used for the output layer when there are continuous targets.

Softmax
exp (c3)
7 (ek) =
Z exp (¢ )
jel'y,

This function is used for the output layer when all targets are categorical.

Error Functions

Sum-of-Squares

M
Er(w) =) En(w)
m=1
where
R 2
B () = 53 (" — o)
r=1

This function is used when there are continuous targets.
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Cross-Entropy

M
Ep(w) = Fp(w)

m=1
where
a'
En (’UJ) = _Z yﬁm) log ( (Imr))
rele Yr

This function is used when all targets are categorical.

Expert Architecture Selection
Expert architecture selection determines the “best” number of hidden units in a single hidden layer.

A random sample is taken from the entire data set and split into training (70%) and testing samples
(30%). The size of random sample is N = 1000. If entire dataset has less than N records, use all of
them. If training and testing data sets are supplied separately, the random samples for training and
testing should be taken from the respective datasets.

Given Kpin and Ki,x , the algorithm is as follows.

1. Start with an initial network of k£ hidden units. The default is &~=min(g(R,P),20,i(R,P)), where

(mp)—{ 45+VPEE] R<5P>8
IVU I = 1054+05(P+R)|  otherwise

where || denotes the largest integer less than or equal to x. b (R, P) = [%} is the maximum

number of hidden units that will not result in more weights than there are records in the entire
training set.

If k < Kpin, set k= Kpin. Else if £> Ky ax, set k= Kjj5x. Train this network once via the alternated
simulated annealing and training procedure (steps 1 to 5).

2. Ifk> Kyin, set DOWN=TRUE. Else if training error ratio > 0.01, DOWN=FALSE. Else stop and
report the initial network.

3. If DOWN=TRUE, remove the weakest hidden unit (see below); k~=k—1. Else add a hidden unit;
k=k+1.

4. Using the previously fit weights as initial weights for the old weights and random weights for the
new weights, train the old and new weights for the network once through the alternated simulated
annealing and training procedure (steps 3 to 5) until the stopping conditions are met.

5. If the error on test data has dropped:

If DOWN=FALSE, If k< K;,,x and the training error has dropped but the error ratio is still above
0.01, return to step 3. Else if &> Kpip, return to step 3. Else, stop and report the network with the
minimum test error.
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Training

Else if DOWN=TRUE, If |k—ko|>1, stop and report the network with the minimum test error. Else
if training error ratio for k=ky is bigger than 0.01, set DOWN=FALSE, k=k return to step 3. Else
stop and report the initial network.

Else stop and report the network with the minimum test error.
If more than one network attains the minimum test error, choose the one with fewest hidden units.

If the resulting network from this procedure has training error ratio (training error divided by error
from the model using average of an output field to predict that field) bigger than 0.1, repeat the
architecture selection with different initial weights until either the error ratio is <=0.1 or the
procedure is repeated 5 times, then pick the one with smallest test error.

Using this network with its weights as initial values, retrain the network on the entire training set.

The weakest hidden unit

For each hidden unit j, calculate the error on the test data when j is removed from the network.
The weakest hidden unit is the one having the smallest total test error upon its removal.

The problem of estimating the weights consists of the following parts:

Initializing the weights. Take a random sample and apply the alternated simulated annealing
and training procedure on the random sample to derive the initial weights. Training in step 3 is
performed using all default training parameters.

Computing the derivative of the error function with respect to the weights. This is solved via
the error backpropagation algorithm.

» Updating the estimated weights. This is solved by the gradient descent or scaled conjugate

gradient method.

Alternated Simulated Annealing and Training

The following procedure uses simulated annealing and training alternately up to K times.
Simulated annealing is used to break out of the local minimum that training finds by perturbing
the local minimum K5 times. If break out is successful, simulated annealing sets a better initial
weight for the next training. We hope to find the global minimum by repeating this procedure K3
times. This procedure is rather expensive for large data sets, so it is only used on a random sample
to search for initial weights and in architecture selection. Let Kj=K>=4, K3=3.

Randomly generate K, weight vectors between [ag—a, agta], where ap=0 and ¢=0.5. Calculate
the training error for each weight vector. Pick the weights that give the minimum training error
as the initial weights.

2. Set k=0.

3. Train the network with the specified initial weights. Call the trained weights w.
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4. If the training error ratio <= 0.05, stop the & loop and use w as the result of the loop. Else set
k1 = ki+1.

5. Ifk; <Ky, perturb the old weight to form K, new weights w' = w + w,, by adding K, different
random noise w,, between [a(k), a(k;)] where a (k1) = (0.5)’“&. Let wpin be the weights that
give the minimum training error among all the perturbed weights. If B (w.,;,) < Er (w), set the
initial weights to be wy,;,, return to step 3. Else stop and report w as the final result.

Else stop the k1 loop and use w as the result of the loop.

If the resulting weights have training error ratio bigger than 0.1, repeat this algorithm until either
the training error ratio is <=0.1 or the procedure is repeated K3 times, then pick the one with
smallest test error among the result of the & loops.

Error Backpropagation

Error-backpropagation is used to compute the first partial derivatives of the error function with
respect to the weights.

. N B TR tanh
First note that v (¢) = { 1 identity
The backpropagation algorithm follows:

For each i,jk, set -222— = (.

Qw5

For each m in group T; For each p=1,....J}, let

a”nl

57" = OB, __ I:p
Ip — LT - 7 ) .

P g v; (7)) (a}’}p - yz()m)> otherwise

I'p

_ yz()’") if cross-entropy error is used

For each i=I....,1 (start from the output layer); For each j=1,...,J;; For each £i=0,...,J;—{

> Let J2Ex = dai | .k, where 87 = Chn

Qwig, g ij T Bell
8By _ OB o
> Set awi:i,j - awi:::,j Swi.y 5
Ji
> Ifk>0andi> 1, set 8, =7 4 (),) Y o win,
j=1
-1
This gives us a vector of Z (J; + 1) Jiy1 elements that form the gradient of Er (wy).
i=0
Gradient Descent

Given the learning rate parameter 7, (set to 0.4) and momentum rate « (set to 0.9), the gradient
descent method is as follows.

1. Let k=0. Initialize the weight vector to wy, learning rate to 7y. Let Awg = 0.



290

Neural Networks Algorithms

Read all data and find Er (wy) and its gradient g, = VEz (wy). If [gx| < 1079, stop and report
the current network.

If nelgr) < alAwg|, a = 0.9 i ‘A?;;L‘ . This step is to make sure that the steepest gradient descent

direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small »;, is,
the error will not decrease.

Let v = wr — g + aAwyg

IfET (’U) < ET (wk), then set Wk41 =V, Awk+1 = W41 — Wk, and Ne+1 = Nk Else ne — -577k and
return to step 3.

If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Model Update

Given the learning rate parameters 7y (set to 0.4) and 7;,,, (set to 0.001), momentum rate « (set
to 0.9), and learning rate decay factor B = (1/pK)*In(mo/Miow), the gradient descent method for
online and mini-batch training is as follows.

Let £=0. Initialize the weight vector to wy, learning rate to 79. Let Awy = 0.

Read records in 7}, (T}, is randomly chosen) and find Er, (wy) and its gradient g, = VE7, (wp).

If nelgr| < alAwg|, o = 0.9 | H}L\ . This step is to make sure that the steepest gradient descent
direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small »; is,
the error will not decrease.

Let v = wi — nregr + aAwy.

If Er, (v) < Er, (wy), then set wy1 = v and Awyy1 = wgy1 — wy, Else
W1 = Wi, Awpyp = Dwy.

Mkt = € 2. I ney1 < Miow, then set mgy1 = Miow.

If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Scaled Conjugate Gradient

To begin, initialize the weight vector to wy, and let N be the total number of weights.

k=0. Set scalars \y = 5.0E — 7,0 = 5.0E — 5, \p = 0. Setry = pg = —VE7 (wo), and
success=true.

~ . VE _VE
If success=true, find the second-order information: &), = = Sk = (Wi +0kPk) T(We)

ok
dr = plsk, where the superscript ¢ denotes the transpose.
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3. Set dp = + (e — Ax) Ips >

If §,, < 0, make the Hessian positive definite: A, = 2</\k 8 ), Sk = —0r + M|Pr|% A = Ak

_ on_
[pxl?

5. Calculate the step size: pz = piry, op = fj—:

6. Calculate the comparison parameter: Aj, = 25y, [ET(wk)—Eilfw’“‘L“’“pk)].
7. If Ay > 0, error can be reduced. Set wi11 = Wi, + agPk, Fri1 :;VET (Wge1), If
|rre1] < 1079, return wy; as the final weight vector and exit. Set A\, = 0, success=true. If k mod
2
N=0, restart the algorithm: pgy1 = ry41, else set 3, = m”ﬂ%, Pk+1 = Yet1 + Bupr. If
Ay > .75, reduce the scale parameter: A, = %)\k. else (if Ag < 0): Set A\, = A, success=false.
8. Ip(1-Ag)

If Ay < .25, increase the scale parameter: A = Ax + TE

9. If success=false, return to step 2. Otherwise if a stopping rule is met, exit and report the network
as stated in the stopping criteria. Else set k=k+1 , Aj11 = Ax, Asr1 = A and return to step 2.

Note: each iteration requires at least two data passes.

Stopping Rules

Training proceeds through at least one complete pass of the data. Then the search should be
stopped according to following criteria. These stopping criteria should be checked in the listed
order. When creating a new model, check after completing an iteration. During a model update,
check criteria 1, 3, 4, 5 and 6 is after completing a data pass, and only check criterion 2 after an
iteration. In the descriptions below, a “step” means an iteration when building a new model and
a data pass when performing a model update. Let £ denote the current minimum error and

K denote the iteration where it occurs for the training set, £ and K, are that for the overfit
prevention set, and K3=min(K{,K>).

1. At the end of each step compute the total error for the overfit prevention set. From step K>, if the
testing error does not decrease below E, over the next n=1 steps, stop. Report the weights at step
K. If there is no overfit prevention set, this criterion is not used for building a new model; for a
model update when there is no overfit prevention set, compute the total error for training data at
the end of each step. From step K, if the training error does not decrease below £ over the next
n=1 steps, stop. Report the weights at step Kj.

2. The search has lasted beyond some maximum allotted time. For building a new model, simply
report the weights at step K3. For a model update, even though training stops before the
completion of current step, treat this as a complete step. Calculate current errors for training and
testing datasets and update £, K1, E», Kp correspondingly. Report the weights at step K3.

3. The search has lasted more than some maximum number of data passes. Report the weights
at step K3.

: : : ‘s : . |Er(wg)-BEr{ws_1)| _ 1n-10
Stop if the relative change in training error is small: By (w1 )1 Br (ws 2) 13) < e foré = 107" and

€1 = 10™*, where wy_1, wy, are the weight vectors of two consecutive steps. Report weights
at step K3.
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5. The current training error ratio is small compared with the initial error: ’

Er (wk)
__ ET+5
§ =10"1% and ¢; = 103, where Er is the total error from the model using the average of an

M
output field to predict that field; E is calculated by using a7!, = +; Z y™ in the error function,

m=1

where wy, 1s the weight vector of one step. Report weights at step K3.

< ¢ for

The current accuracy meets a specified threshold. Accuracy is computed based on the overfit
prevention set if there is one, otherwise the training set.

Note: In criteria 4 and 5, the total error for whole training data is needed. For model updates,
these criteria will not be checked if there is an overfit prevention set.

Model Updates

When new records become available, the synaptic weights can be updated. The new records are
split into groups of the size R = min(M,2N,1000), where M is the number of training records and N
is the number of weights in the network. A single data pass is made through the new groups to
update the weights. If the last of the new groups has more than one-quarter of the records of a
normal group, then it is processed normally; otherwise, it remains in the internal buffer so that
these records can be used during the next update. Thus, after the last update there may be some
unused records remaining in the buffer that will be lost.

Radial Basis Function

Notation

A radial basis function (RBF) network is a feed-forward, supervised learning network with only
one hidden layer, called the radial basis function layer. The RBF network is a function of one or
more predictors that minimizes the prediction error of one or more targets. Predictors and targets
can be a mix of categorical and continuous fields.

The following notation is used throughout this chapter unless otherwise stated:

x(m) _ (’ngm), - zg)m)) Input vector, pattern m, m=1,...M.

ym) — (y§m)7 " ygam)) Target vector, pattern m.

1 Number of layers, discounting the input layer. For an RBF network, /=2.

Ji Number of units in layer i. Jy = P, J; = R, discounting the bias unit. J;
is the number of RBF units.

Y (X“’”) Jjth RBF unit for input X, j=1, ....J;.

2% center of ¢;, it is P-dimensional.

Jj width of ¢;, it is P-dimensional.

h the RBF overlapping factor.
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ai; Unit j of layer i, pattern m, 7 =0, ..., Ji;¢ = 0, ..., I.
Wrj weight connecting rth output unit and jth hidden unit of RBF layer.
Architecture

There are three layers in the RBF network:

|Ilpllt Iayer: J():P units, ag:1, """, 00005 with ap:j = Ij.
RBF Iayer: Jl U.l’litS, , Q11,77 , Q1.0 5 with ar:; = ¢!j (X) and
P 1 Jy P ]_
2 2
¢j (X) = exp (-Z 257 (Tp — Hip) )/ZGXP (- 5,7 (¥p — Hip) )
p=1 “"3ip j=1 p=1 ""Jp

Jq1
Output Iayer: J2:R U.l’litS, ar.1,° 541755 with Ar.yr = Wyrg + Z w,.jqﬁj (X)
=1

Error Function

Sum-of-squares error is used:

M
Ep(w) = Z Epm (w)

m=1
where
R
1 m m \ 2
Em (w) = 521 <y7(‘ ) - a[:r)
r=

The sum-of-squares error function with identity activation function for output layer can be

used for both continuous and categorical targets. For continuous targets, a7, approximates the
conditional expectation of the target value £ (y, | X (m)) . For categorical targets, a7’ approximates
the posterior probability of class k: P (y, = 1|X (™).

Note: though ¥a7., = 1 (the sum is over all classes of the same categorical target field), a7, may
not lie in the range [0, 1].

Training
The network is trained in two stages:

1. Determine the basis functions by clustering methods. The center and width for each basis function is
computed.

2. Determine the weights given the basis functions. For the given basis functions, compute the
ordinary least-squares regression estimates of the weights.
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The simplicity of these computations allows the RBF network to be trained very quickly.

Determining Basis Functions

The two-step clustering algorithm is used to find the RBF centers and widths. For each cluster, the
mean and standard deviation for each continuous field and proportion of each category for each
categorical field are derived. Using the results from clustering, the center of the jth RBF is set as:

- _ } 7, ifpth field is continuous
Hip = mjp if pth field is a dummy field of a categorical field

where Z,,, is the jth cluster mean of the pth input field if it is continuous, and 7, is the proportion
of the category of a categorical field that the pth input field corresponds to. The width of the
jth RBF is set as

_ /2 5ip if pth field is continuous
Tir = Pjp (1 — pjp) if pth field is a dummy field of a categorical field

where s, is the jth cluster standard deviation of the pth field and />0 is the RBF overlapping
factor that controls the amount of overlap among the RBFs. Since some ¢, may be zeros, we
use spherical shaped Gaussian bumps; that is, a common width

in for all predictors. In the case that ¢; is zero for some j, set it to be min {0 : o; # O,};h:l. Ifall
o; are zero, set all of them to be v/A.

P
When there are a large number of predictors, Z (2p — p,jp)z could be easily very large and hence
=1
P 1 F
exp (—Z O—Q(mp — ,u,jp)2 > is practically zero for every record and every RBF unit if o is
207
p=1 J
relatively small. This is especially bad for ORBF because there would be only a constant term in
the model when this happens. To avoid this, ¢; is increased by setting the default overlapping

factor /4 proportional to the number of inputs: A=1 + 0.1 P.

Automatic Selection of Number of Basis Functions

The algorithm tries a reasonable range of numbers of hidden units and picks the “best”. By
default, the reasonable range [K1, K>] is determined by first using the two-step clustering method
to automatically find the number of clusters, K. Then set K1 = min(K, R) for ORBF and K;
=max {2, min(K, R)} for NRBF and K>=max(10, 2K, R).
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If a test data set is specified, then the “best” model is the one with the smaller error in the test
data. If there is no test data, the BIC (Bayesian information criterion) is used to select the “best”
model. The BIC is defined as

BIC = MRIn (MSE) + kn (M)

M R )
where MSE = iz > (y,f,m) - a}’f‘r> is the mean squared error and k= (P+1+R)J; for

m=1r

=1
NRBF and (P+1+R)J1+R for ORBF is the number of parameters in the model.

Model Updates

When new records become available, you can update the weights connecting the RBF layer and
output layer. Again, given the basis functions, updating the weights is a least-squares regression
problem. Thus, it is very fast.

For best results, the new records should have approximately the same distribution as the
original records.

Missing Values

The following options for handling missing values are available:
m  Records with missing values are excluded listwise.

B Missing values are imputed. Continuous fields impute the average of the minimum and
maximum observed values; categorical fields impute the most frequently occurring category.

Output Statistics

The following output statistics are available. Note that, for continuous fields, output statistics are
reported in terms of the rescaled values of the fields.

Accuracy

For continuous targets, it is

R S Felur — 9)°
SE  frlyk —7)°

where Y= %EkK:lfkyk
Note that R2 can never be greater than one, but can be less than zero.

For the naive model, 3 is the modal category for categorical targets and the mean for continuous
targets.
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For each categorical target, this is the percentage of records for which the predicted value matches
the observed value.

Predictor Importance

For more information, see the topic “Predictor Importance Algorithms” on p. 305.

Confidence

Confidence values for neural network predictions are calculated based on the type of output field
being predicted. Note that no confidence values are generated for numeric output fields.

Difference

The difference method calculates the confidence of a prediction by comparing the best match with
the second-best match as follows, depending on output field type and encoding used.

m Flag fields. Confidence is calculated as ¢ = 2 - |0.5 — o|, where o is the output activation
for the output unit.

m  Setfields. With the standard encoding, confidence is calculated as ¢ = 0; — 03, Where o0y is
the output unit in the fields group of units with the highest activation, and o, is the unit
with the second-highest activation.

With binary set encoding, the sum of the errors comparing the output activation and the
encoded set value is calculated for the closest and second-closest matches, and the confidence
is calculated as ¢ = es — e, where ¢ is the error for the second-best match and e; is the
error for the best match.

Simplemax

Simplemax returns the highest predicted probability as the confidence.
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OPTIMAL BINNING Algorithms

The Optimal Binning procedure performs MDLP (minimal description length principle)
discretization of scale variables. This method divides a scale variable into a small number of
intervals, or bins, where each bin is mapped to a separate category of the discretized variable.
MDLP is a univariate, supervised discretization method. Without loss of generality, the
algorithm described in this document only considers one continuous attribute in relation to a
categorical guide variable — the discretization is “optimal” with respect to the categorical guide.
Therefore, the input data matrix S contains two columns, the scale variable 4 and categorical

guide C.

Optimal binning is applied in the Binning node when the binning method is set to Optimal.

Notation

The following notation is used throughout this chapter unless otherwise stated:

S

Ao =z

T

TA

Ent(S)

E4, T, S)
Gain(4, T, S)
n

w

Simple MDLP

The input data matrix, containing a column of the scale variable 4 and a
column of the categorical guide C. Each row is a separate observation, or
instance.

A scale variable, also called a continuous attribute.
The value of A for the ith instance in S.

The number of instances in S.

A set of all distinct values in S.

A subset of S.

The categorical guide, or class attribute; it is assumed to have k&
categories, or classes.

A cut point that defines the boundary between two bins.
A set of cut points.

The class entropy of S.

The class entropy of partition induced by 7 on 4.

The information gain of the cut point 7 on 4.

A parameter denoting the number of cut points for the equal frequency
method.

A weight attribute denoting the frequency of each instance. If the weight
values are not integer, they are rounded to the nearest whole numbers before
use. For example, 0.5 is rounded to 1, and 2.4 is rounded to 2. Instances
with missing weights or weights less than 0.5 are not used.

This section describes the supervised binning method (MDLP) discussed in Fayyad and Irani

(1993).

Class Entropy

Let there be £ classes Cj, ..., Ci and let P(Cj, S) be the proportion of instances in S that have
class C;. The class entropy Ent(S) is defined as

© Copyright IBM Corporation 1994, 2015. 299
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k
Ent(S) = =) _ P (Ci,S)log, (P (Cy, 9))

i=1

Class Information Entropy

For an instance set S, a continuous attribute 4, and a cut point 7, let S| < S be the subset of
instances in S with the values of 4 < T, and S = $—S1. The class information entropy of the
partition induced by T, E(4, T; S), is defined as

S S
E(AT;S) = %Ent (S1)+ %Ent (S2)

Information Gain

Given a set of instances S, a continuous attribute 4, and a cut point 7 on A4, the information
gain of a cut point 7' is

Gain (A, T;S) = Ent(S) — E(A,T;S)

MDLP Acceptance Criterion

The partition induced by a cut point 7 for a set S of N instances is accepted if and only if

logy (N — 1) n A(A,T;S)

n (A, T,
Gain (A, T;S) > N N

and it is rejected otherwise.

Here A (4, T3 S) =log, (3" — 2) — [k - Ent (S) — k1 Ent (S1) — koEnt (S,)] in which k; is the
number of classes in the subset Sj of S.

Note: While the MDLP acceptance criterion uses the association between A4 and C to determine
cut points, it also tries to keep the creation of bins to a small number. Thus there are situations in
which a high association between 4 and C will result in no cut points. For example, consider the
following data:

D Class

2 3
1 1
2 0 6

Then the potential cut point is 7= 1. In this case:

Gain (A, T;S) = 0.5916728
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log, (N — 1) - A(AT;S)
N N

= 0.6530774

Since 0.5916728 < 0.6530774, T is not accepted as a cut point, even though there is a clear
relationship between 4 and C.

Algorithm: BinaryDiscretization

1.

Calculate E(4, d;; S) for each distinct value d; € D for which d; and d;+1 do not belong to the same
class. A distinct value belongs to a class if all instances of this value have the same class.

Select a cut point 7 for which E(4, T; S) is minimum among all the candidate cut points, that is,

T = argming, FE (A,d;; S)

Algorithm: MDLPCut

1.
2.
3.

BinaryDiscretization(4, T; D, S).
Calculate Gain(4, T; S).

If Gain (A, T; §) > ‘281 | AATS) fhepn

)Ty =T4UT.
b) Split D into D1 and D5, and S into S7 and S,.
¢) MDLPCut(4, Ta; D1, S1).

d) MDLPCut(4, TA; Dy, Sp). where S| S be the subset of instances in S with 4-values < 7, and
S = 5=S]. Dy and D; are the sets of all distinct values in S; and S», respectively.

Also presented is the iterative version of MDLPCut(4, Ta; D, S). The iterative implementation
requires a stack to store the D and S remaining to be cut.

First push D and S into stack. Then, while ( stack#J ) do
Obtain D and S by popping stack.
BinaryDiscretization(4, T; D, S).

Calculate Gain(4, T; S).

If Gain (A, T; §) > 28(V=1 4 AATS) hen
)Ty=T4UT.

ii) Split D into D and Dy, and S into S| and S5.
iii) Push D; and Sy into stack.

iv) Push D, and S, into stack.
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Note: In practice, all operations within the algorithm are based on a global matrix M. Its element,
mij, denotes the total number of instances that have value d; € D and belong to the jth class in S.
In addition, D is sorted in ascending order. Therefore, we do not need to push D and S into stack,
but only two integer numbers, which denote the bounds of D, into stack.

Algorithm: SimpleMDLP

1.
2.

Sort the set S with V instances by the value 4 in ascending order.
Find a set of all distinct values, D, in S.

Ty =9.

MDLPCut(4, Ta; D, S)

Sort the set T in ascending order, and output 7.

Hybrid MDLP

When the set D of distinct values in § is large, the computational cost to calculate E(4, d;; S)
for each d; € D is large. In order to reduce the computational cost, the unsupervised equal
frequency binning method is used to reduce the size of D and obtain a subset Dor € D. Then the
MDLPCut(4, Ta; D, S) algorithm is applied to obtain the final cut point set 7a.

Algorithm: EqualFrequency

It divides a continuous attribute 4 into n bins where each bin contains N/n instances. 7 is a
user-specified parameter, where 1 <n < N.

Sort the set S with  instances by the value 4 in ascending order.
Der= .
Jj=1.

Use the aempirical percentile method to generate the dj, ; which denote the (% x 100)th
percentiles.

Def = Def U dp,’,‘; i=i+1
If i<n, then go to step 4.

Delete the duplicate values in the set Der.

Note: If, for example, there are many occurrences of a single value of 4, the equal frequency
criterion may not be met. In this case, no cut points are produced.

Algorithm: HybridMDLP

1.

D =@,



303

OPTIMAL BINNING Algorithms

2. EqualFrequency(4, n, D; S).
3. TA=0.
4. MDLPCut(4, Ta; D, S).

5. Output Ty.

Model Entropy

The model entropy is a measure of the predictive accuracy of an attribute A4 binned on the class
variable C. Given a set of instances S, suppose that 4 is discretized into / bins given C, where
the ith bin has the value 4;. Letting S; c S be the subset of instances in S with the value A4;, the
model entropy is defined as:

J
Epn=) P(A) |~ P(Cjld)logyP (C;|A)

i=1 j=1

where P (4;) = % and P (C;j4;) = Z55:52 = P (G5, 8)).

Merging Sparsely Populated Bins

Occasionally, the procedure may produce bins with very few cases. The following strategy deletes
these pseudo cut points:

» For a given variable, suppose that the algorithm found 7,1 cut points, and thus zng,,1+1 bins. For
bins i=2, ..., nfpa) (the second lowest-valued bin through the second highest-valued bin), compute

sizeof(b;)
min(sizeof(b;_1),s1zeo0f{(b;11))

where sizeof(bin) is the number of cases in the bin.

» When this value is less than a user-specified merging threshold, b; is considered sparsely populated
and is merged with b;_; or b;11, whichever has the lower class information entropy. For more
information, see the topic “Class Information Entropy ” on p. 300.

The procedure makes a single pass through the bins.

Blank Handling

In optimal binning, blanks are handled in pairwise fashion. That is, for every pair of fields
{binning field, target field}, all records with valid values for both fields are used to bin that
specific binning field, regardless of any blanks that may exist in other fields to be binned.
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Predictor Importance Algorithms

Predictor importance can be determined by computing the reduction in variance of the target
attributable to each predictor, via a sensitivity analysis. This method of computing predictor
importance is used in the following models:

Neural Networks
C5.0

C&RT

QUEST

CHAID
Regression
Logistic
Discriminant
GenLin

SVM

Bayesian Networks

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Target
X; Predictor, where j=1,....k
k The number of predictors

Y = f(X1,X2,..., Xk) Model for Y based on predictors X, through Xj

Variance Based Method

Predictors are ranked according to the sensitivity measure defined as follows.

Vi _V(EX]X))
vy) V()

S; =

where V(Y) is the unconditional output variance. In the numerator, the expectation operator £
calls for an integral over X _;; that is, over all factors but X, then the variance operator /" implies
a further integral over X;.

Predictor importance is then computed as the normalized sensitivity.
Si
k

> j=1 Sj
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Saltelli et al (2004) show that S; is the proper measure of sensitivity to rank the predictors in order
of importance for any combination of interaction and non-orthogonality among predictors.

The importance measure Sj is the first-order sensitivity measure, which is accurate if the set of
the input factors (X , X3 ,..., Xi) is orthogonal/independent (a property of the factors), and
the model is additive; that is, the model does not include interactions (a property of the model)
between the input factors. For any combination of interaction and non-orthogonality among
factors, Saltelli (2004) pointed out that S; is still the proper measure of sensitivity to rank the
input factors in order of importance, but there is a risk of inaccuracy due to the presence of
interactions or/and non-orthogonality. For better estimation of Sj, the size of the dataset should
be a few hundred at least. Otherwise, S; may be biased heavily. In this case, the importance
measure can be improved by bootstrapping.

Computation

In the orthogonal case, it is straightforward to estimate the conditional variances V; by computing
the multidimensional integrals in the space of the input factors, via Monte Carlo methods as
follows.

Let us start with two input sample matrices M; and M, each of dimension N k:

(1) (1) (1)

g X, )
Ml — .L'§2) .I'gz) .L’](Cz)

ROV IR
and

A ) L)
I R

Ny i

(W) () )

where N is the sample size of the Monte Carlo estimate which can vary from a few hundred to one
thousand. Each row is an input sample. From M; and My, we can build a third matrix N .

(1) ) no )

T :I;(lr x( x

1 2 J 'k
2’ 2’ 2 2
Nj:;rg) mg) .T§) ml({;)
GG T

We may think of M; as the “sample” matrix, M, as the “resample” matrix, and IN; as the matrix
where all factors except X; are resampled. The following equations describe how to obtain the
variances (Saltelli 2002). The ‘hat’ denotes the numeric estimates.
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¥ ]- ‘s r 7 ~
V) = =2 £ (el alT) - B2
r=1
where
2
. 1
V) = | H 2 (el ,M)]
r=1

where
N
P, Fe o) (20 ) el ) )
’ N—lrzl boTE Tk L2 orem G =1y g g+ vk
and
N
B2y = L (1)) AWTCORNCY ()
(Y) NZf R SRR DA I i -2 SR > SR
r=1

When the target is continuous, we simply follow the accumulation steps of variance and
expectations. For a categorical target, the accumulation steps are for each category of Y. For each
input factor, .S; is a vector with an element for each category of Y. The average of elements of S; is
used as the estimation of importance of the ith input factor on Y.

Convergence. In order to improve scalability, we use a subset of the records and predictors when
checking for convergence. Specifically, the convergence is judged by the following criteria:

t N
n 1 |5: (7) — 54
ielD > = 5 <€

j=t—D+1 ?

i
where I = {i[S; (¢t) > 1/num}, D=100 and denotes the width of interest, S; = & Z Si (j)s
j=t-D+1
and ¢ = 0.005 defines the desired average relative error.

This specification focuses on “good” predictors; those whose importance values are larger than
average.

Record order. This method of computing predictor importance is desirable because it scales well to
large datasets, but the results are dependent upon the order of records in the dataset. However, with
large, randomly ordered datasets, you can expect the predictor importance results to be consistent.
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QUEST Algorithms

Overview of QUEST

QUEST stands for Quick, Unbiased, Efficient Statistical Tree. It is a relatively new binary
tree-growing algorithm (Loh and Shih, 1997). It deals with split field selection and split-point
selection separately. The univariate split in QUEST performs approximately unbiased field
selection. That is, if all predictor fields are equally informative with respect to the target field,
QUEST selects any of the predictor fields with equal probability.

QUEST affords many of the advantages of C&RT, but, like C&RT, your trees can become
unwieldy. You can apply automatic cost-complexity pruning (see ‘“Pruning” on p. 317) to a
QUEST tree to cut down its size. QUEST uses surrogate splitting to handle missing values. For
more information, see the topic “Blank Handling” on p. 313.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency Weight Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 29-1
Dataset with frequency field
Sex Employment Response Frequency

M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.
QUEST does not support the use of case weights.
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Model Parameters

QUEST deals with field selection and split-point selection separately. Note that you can specify
the alpha level to be used in the Expert Options for QUEST—the default value is opomina) = 0-05.

Field Selection

1. For each predictor field X, if X is a symbolic (categorical), or nominal, field, compute the p value
of a Pearson chi-square test of independence between X and the dependent field. If X is scale-level
(continuous), or ordinal field, use the F test to compute the p value.

2. Compare the smallest p value to a prespecified, Bonferroni-adjusted alpha level op.

m  [f the smallest p value is less than ap, then select the corresponding predictor field to split
the node. Go on to step 3.

m  [f the smallest p value is not less thanog, then for each X that is scale-level (continuous), use
Levene’s test for unequal variances to 