
IBM SPSS Modeler 16 Python Scripting
and Automation Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 247.

Product Information

This edition applies to version 16, release 0, modification 0 of IBM SPSS Modeler and to all subsequent releases and
modifications until otherwise indicated in new editions.

Contents

Chapter 1. Scripting 1
Scripting Overview 1
Types of Scripts 1
Stream Scripts 1
Standalone Scripts 3
SuperNode Scripts 3
Looping and conditional execution in streams . . . 4

Looping in streams 5
Conditional execution in streams 7

Executing and Interrupting Scripts 8
Find and Replace 9

Chapter 2. The Scripting Language . . 13
Scripting Language Overview 13
Python and Jython 13
Python Scripting. 14

Operations 14
Lists 14
Strings 15
Remarks 16
Statement Syntax 16
Identifiers 17
Blocks of Code 17
Passing Arguments to a Script 17
Examples 18
Mathematical Methods 19
Using Non-ASCII characters 20

Object-Oriented Programming 21
Defining a Class 21
Creating a Class Instance 22
Adding Attributes to a Class Instance 22
Defining Class Attributes and Methods 22
Hidden Variables 23
Inheritance 23

Chapter 3. Scripting in IBM SPSS
Modeler 25
Types of scripts 25
Streams, SuperNode streams, and diagrams . . . 25

Streams. 25
SuperNode streams. 25
Diagrams 25

Executing a stream 25
The scripting context 26
Referencing existing nodes 26

Finding nodes 27
Setting properties 27

Creating nodes and modifying streams 28
Creating nodes 28
Linking and unlinking nodes 29
Importing, replacing, and deleting nodes . . . 30
Traversing through nodes in a stream 31

Getting information about nodes 31

Chapter 4. The Scripting API 35
Introduction to the Scripting API 35
Example: searching for nodes using a custom filter 35
Metadata: Information about data 35
Accessing Generated Objects 38
Handling Errors 39
Stream, Session, and SuperNode Parameters . . . 40
Global Values. 44
Working with Multiple Streams: Standalone Scripts 44

Chapter 5. Scripting Tips 47
Modifying Stream Execution. 47
Working with models 47
Generating an Encoded Password 47
Script Checking 47
Scripting from the Command Line. 48
Specifying File Paths 48
Compatibility with Previous Releases. 48

Chapter 6. Command Line Arguments 49
Invoking the Software 49
Using Command Line Arguments 49

System Arguments 50
Parameter Arguments 51
Server Connection Arguments 51
IBM SPSS Collaboration and Deployment
Services Repository Connection Arguments. . . 52
Combining Multiple Arguments 53

Chapter 7. Properties Reference 55
Properties Reference Overview 55

Abbreviations 55
Node and Stream Property Examples 55

Node Properties Overview 56
Common Node Properties 56

Chapter 8. Stream Properties 57

Chapter 9. Source Node Properties . . 61
Source Node Common Properties 61
asimport Node Properties 62
cognosimport Node Properties 63
tm1import Node Properties 64
database Node Properties. 64
datacollectionimport Node Properties. 66
excelimport Node Properties. 68
evimport Node Properties 68
fixedfile Node Properties 69
sasimport Node Properties 71
simgen Node Properties 71
statisticsimport Node Properties 74
userinput Node Properties 74
variablefile Node Properties 75
xmlimport Node Properties 77

iii

Chapter 10. Record Operations Node
Properties 79
append Node Properties 79
aggregate Node Properties 79
balance Node Properties 80
derive_stb Node Properties 80
distinct Node Properties 82
merge Node Properties 82
rfmaggregate Node Properties 83
Rprocess Node Properties 84
sample Node Properties 85
select Node Properties 86
sort Node Properties 86
streamingts Node Properties. 87

Chapter 11. Field Operations Node
Properties 91
anonymize Node Properties 91
autodataprep Node Properties 91
binning Node Properties 94
derive Node Properties 96
ensemble Node Properties 97
filler Node Properties 98
filter Node Properties 99
history Node Properties 99
partition Node Properties 100
reclassify Node Properties 100
reorder Node Properties 101
restructure Node Properties 101
rfmanalysis Node Properties 102
settoflag Node Properties 103
statisticstransform Node Properties 104
timeintervals Node Properties 104
transpose Node Properties 108
type Node Properties 108

Chapter 12. Graph Node Properties 113
Graph Node Common Properties 113
collection Node Properties 113
distribution Node Properties 114
evaluation Node Properties 115
graphboard Node Properties 116
histogram Node Properties 118
multiplot Node Properties 119
plot Node Properties 120
timeplot Node Properties 122
web Node Properties 123

Chapter 13. Modeling Node Properties 125
Common Modeling Node Properties 125
anomalydetection Node Properties 125
apriori Node Properties 127
autoclassifier Node Properties 127

Setting Algorithm Properties 129
autocluster Node Properties 129
autonumeric Node Properties 131
bayesnet Node Properties 132
buildr Node Properties 133
c50 Node Properties 133
carma Node Properties 134

cart Node Properties 135
chaid Node Properties 137
coxreg Node Properties 138
decisionlist Node Properties 140
discriminant Node Properties 141
factor Node Properties 142
featureselection Node Properties 143
genlin Node Properties 145
glmm Node Properties 148
kmeans Node Properties. 151
knn Node Properties 152
kohonen Node Properties 153
linear Node Properties 154
logreg Node Properties 155
neuralnet Node Properties 158
neuralnetwork Node Properties 159
quest Node Properties 161
regression Node Properties 162
sequence Node Properties 163
slrm Node Properties 164
statisticsmodel Node Properties 165
svm Node Properties 165
timeseries Node Properties 166
twostep Node Properties 168

Chapter 14. Model Nugget Node
Properties 169
applyanomalydetection Node Properties 169
applyapriori Node Properties 169
applyautoclassifier Node Properties 170
applyautocluster Node Properties 170
applyautonumeric Node Properties 170
applybayesnet Node Properties 170
applyc50 Node Properties 171
applycarma Node Properties 171
applycart Node Properties 171
applychaid Node Properties 172
applycoxreg Node Properties 172
applydecisionlist Node Properties 172
applydiscriminant Node Properties 173
applyfactor Node Properties 173
applyfeatureselection Node Properties 173
applygeneralizedlinear Node Properties 173
applyglmm node Properties 174
applykmeans Node Properties 174
applyknn Node Properties 174
applykohonen Node Properties 174
applylinear Node Properties 175
applylogreg Node Properties 175
applyneuralnet Node Properties 175
applyneuralnetwork Node Properties 176
applyquest Node Properties 176
applyregression Node Properties 176
applyr Node Properties 177
applyselflearning Node Properties 177
applysequence Node Properties 177
applysvm Node Properties 177
applytimeseries Node Properties 178
applytwostep Node Properties. 178

iv IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 15. Database Modeling Node
Properties 179
Node Properties for Microsoft Modeling 179

Microsoft Modeling Node Properties 179
Microsoft Model Nugget Properties 181

Node Properties for Oracle Modeling 182
Oracle Modeling Node Properties 182
Oracle Model Nugget Properties 188

Node Properties for IBM DB2 Modeling 189
IBM DB2 Modeling Node Properties. 189
IBM DB2 Model Nugget Properties 194

Node Properties for IBM Netezza Analytics
Modeling 194

Netezza Modeling Node Properties 194
Netezza Model Nugget Properties 203

Chapter 16. Output Node Properties 205
analysis Node Properties 205
dataaudit Node Properties 206
matrix Node Properties 207
means Node Properties 208
report Node Properties 209
Routput Node Properties 210
setglobals Node Properties 211
simeval Node Properties. 211
simfit Node Properties 212
statistics Node Properties 212
statisticsoutput Node Properties 213
table Node Properties 213
transform Node Properties 216

Chapter 17. Export Node Properties 217
Common Export Node Properties 217
asexport Node Properties 217
cognosexport Node Properties 218
tm1export Node Properties 218
databaseexport Node Properties 219
datacollectionexport Node Properties 222
excelexport Node Properties 222
outputfile Node Properties 223
sasexport Node Properties 224
statisticsexport Node Properties 224
xmlexport Node Properties 224

Chapter 18. IBM SPSS Statistics Node
Properties 227
statisticsimport Node Properties 227

statisticstransform Node Properties 227
statisticsmodel Node Properties 228
statisticsoutput Node Properties 228
statisticsexport Node Properties 228

Chapter 19. SuperNode Properties 231

Appendix A. Node names reference 233
Model Nugget Names 233
Avoiding Duplicate Model Names 235
Output Type Names 235

Appendix B. Migrating from legacy
scripting to Python scripting. 237
Legacy script migration overview 237
General differences 237
The scripting context 237
Commands versus functions 237
Literals and comments 238
Operators 238
Conditionals and looping 239
Variables 240
Node, output and model types 240
Property names. 240
Node references 240
Getting and setting properties 241
Editing streams. 241

Node operations 242
Looping 242
Executing streams 243
Accessing objects through the file system and
repository 244

Stream operations 244
Model operations 245
Document output operations 245

Other differences between legacy scripting and
Python scripting 245

Notices 247
Trademarks 248

Index 251

Contents v

vi IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 1. Scripting

Scripting Overview
Scripting in IBM® SPSS® Modeler is a powerful tool for automating processes in the user interface. Scripts
can perform the same types of actions that you perform with a mouse or a keyboard, and you can use
them to automate tasks that would be highly repetitive or time consuming to perform manually.

You can use scripts to:
v Impose a specific order for node executions in a stream and conditionally execute nodes depending on

whether the conditions for execution have been met.
v Create loops to repeatedly execute nodes within the stream.
v Specify an automatic sequence of actions that normally involves user interaction--for example, you can

build a model and then test it.
v Set up complex processes that require substantial user interaction--for example, cross-validation

procedures that require repeated model generation and testing.
v Set up processes that manipulate streams—for example, you can take a model training stream, run it,

and produce the corresponding model-testing stream automatically.

This chapter provides high-level descriptions and examples of stream-level scripts, standalone scripts, and
scripts within SuperNodes in the IBM SPSS Modeler interface. More information on scripting language,
syntax, and commands is provided in the chapters that follow.1

Note: You cannot import and run scripts created in IBM SPSS Statistics within IBM SPSS Modeler.

Types of Scripts
IBM SPSS Modeler uses three types of scripts:
v Stream scripts are stored as a stream property and are therefore saved and loaded with a specific

stream. For example, you can write a stream script that automates the process of training and applying
a model nugget. You can also specify that whenever a particular stream is executed, the script should
be run instead of the stream's canvas content.

v Standalone scripts are not associated with any particular stream and are saved in external text files.
You might use a standalone script, for example, to manipulate multiple streams together.

v SuperNode scripts are stored as a SuperNode stream property. SuperNode scripts are only available
in terminal SuperNodes. You might use a SuperNode script to control the execution sequence of the
SuperNode contents. For nonterminal (source or process) SuperNodes, you can define properties for
the SuperNode or the nodes it contains in your stream script directly.

Stream Scripts
Scripts can be used to customize operations within a particular stream, and they are saved with that
stream. Stream scripts can be used to specify a particular execution order for the terminal nodes within a
stream. You use the stream script dialog box to edit the script that is saved with the current stream.

To access the stream script tab in the Stream Properties dialog box:

1. The IBM SPSS Modeler Legacy scripting language is still available for use with IBM SPSS Modeler 16. See the document IBM
SPSS Modeler 16 Scripting and Automation Guide for more information. See Appendix B, “Migrating from legacy scripting to Python
scripting,” on page 237 for guidance on mapping your existing IBM SPSS Modeler Legacy scripts to Python scripts.

© Copyright IBM Corporation 1994, 2013 1

1. From the Tools menu, choose:
Stream Properties > Execution

2. Click the Execution tab to work with scripts for the current stream.
3. Select the Execution mode: Default (optional scrip).

The toolbar icons at the top of the stream script dialog box let you perform the following operations:
v Import the contents of a preexisting standalone script into the window.
v Save a script as a text file.
v Print a script.
v Append default script.
v Edit a script (undo, cut, copy, paste, and other common edit functions).
v Execute the entire current script.
v Execute selected lines from a script.
v Stop a script during execution. (This icon is only enabled when a script is running.)
v Check the syntax of the script and, if any errors are found, display them for review in the lower panel

of the dialog box.

Additionally, you can specify whether this script should or should not be run when the stream is
executed. You can select Run this script to run the script each time the stream is executed, respecting the
execution order of the script. This setting provides automation at the stream level for quicker model
building. However, the default setting is to ignore this script during stream execution. Even if you select
the option Ignore this script, you can always run the script directly from this dialog box.

You can also choose to change the type of scripting from Python scripting to legacy scripting.

The script editor includes the following features that help with script authoring:
v Syntax highlighting; keywords, literal values (such as strings and numbers), and comments are

highlighted.
v Line numbering.
v Block matching; when the cursor is placed by the start of a program block, the corresponding end

block is also highlighted.
v Suggested auto-completion.

The colors and text styles used by the syntax highlighter can be customized using the IBM SPSS Modeler
display preferences. You can access the display preferences by choosing Tools > Options > User Options
and clicking the Syntax tab.

A list of suggested syntax completions can be accessed by selecting Auto-Suggest from the context menu,
or pressing Ctrl + Space. Use the cursor keys to move up and down the list, then press Enter to insert the
selected text. Press Esc to exit from auto-suggest mode without modifying the existing text.

The Debug tab displays debugging messages and can be used to evaluate script state once the script has
been executed. The Debug tab consists of a read-only text area and a single line input text field. The text
area displays text that is sent to either standard output, for example through the Python print command,
or standard error by the scripts, for example through error message text. The input text field takes input
from the user. This input is then evaluated within the context of the script that was most recently
executed within the dialog (known as the scripting context). The text area contains the command and
resulting output so that the user can see a trace of commands. The input text field always contains the
command prompt (>>> for Python scripting).

A new scripting context is created in the following circumstances:
v A script is executed using the “Run this script” button or the “Run selected lines” button.

2 IBM SPSS Modeler 16 Python Scripting and Automation Guide

v The scripting language is changed.

If a new scripting context is created, the text area is cleared.

Note: Executing a stream outside of the script panel will not modify the script context of the script panel.
The values of any variables created as part of that execution will not be visible within the script dialog.

Standalone Scripts
The Standalone Script dialog box is used to create or edit a script that is saved as a text file. It displays
the name of the file and provides facilities for loading, saving, importing, and executing scripts.

To access the standalone script dialog box:

From the main menu, choose:

Tools > Standalone Script

The same toolbar and script syntax-checking options are available for standalone scripts as for stream
scripts. See the topic “Stream Scripts” on page 1 for more information.

SuperNode Scripts
You can create and save scripts within any terminal SuperNodes using IBM SPSS Modeler's scripting
language. These scripts are only available for terminal SuperNodes and are often used when creating
template streams or to impose a special execution order for the SuperNode contents. SuperNode scripts
also enable you to have more than one script running within a stream.

For example, let's say you needed to specify the order of execution for a complex stream, and your
SuperNode contains several nodes including a SetGlobals node, which needs to be executed before
deriving a new field used in a Plot node. In this case, you can create a SuperNode script that executes the
SetGlobals node first. Values calculated by this node, such as the average or standard deviation, can then
be used when the Plot node is executed.

Within a SuperNode script, you can specify node properties in the same manner as other scripts.
Alternatively, you can change and define the properties for any SuperNode or its encapsulated nodes
directly from a stream script. See the topic Chapter 19, “SuperNode Properties,” on page 231 for more
information. This method works for source and process SuperNodes as well as terminal SuperNodes.

Note: Since only terminal SuperNodes can execute their own scripts, the Scripts tab of the SuperNode
dialog box is available only for terminal SuperNodes.

To open the SuperNode script dialog box from the main canvas:

Select a terminal SuperNode on the stream canvas and, from the SuperNode menu, choose:

SuperNode Script...

To open the SuperNode script dialog box from the zoomed-in SuperNode canvas:

Right-click on the SuperNode canvas, and from the context menu, choose:

SuperNode Script...

Chapter 1. Scripting 3

Looping and conditional execution in streams
From version 16.0 onwards, SPSS Modeler enables you to create some basic scripts from within a stream
by selecting values within various dialog boxes instead of having to write instructions directly in the
scripting language. The two main types of scripts you can create in this way are simple loops and a way
to execute nodes if a condition has been met.

You can combine both looping and conditional execution rules within a stream. For example, you may
have data relating to sales of cars from manufacturers worldwide. You could set up a loop to process the
data in a stream, identifying details by the country of manufacture, and output the data to different
graphs showing details such as sales volume by model, emissions levels by both manufacturer and
engine size, and so on. If you were interested in analyzing European information only, you could also
add conditions to the looping that prevented graphs being created for manufacturers based in America
and Asia.

Note: Because both looping and conditional execution are based on background scripts they are only
applied to a whole stream when it is run.
v Looping You can use looping to automate repetitive tasks. For example, this might mean adding a

given number of nodes to a stream and changing one node parameter each time. Alternatively, you
could control the running of a stream or branch again and again for a given number of times, as in the
following examples:
– Run the stream a given number of times and change the source each time.
– Run the stream a given number of times, changing the value of a variable each time.
– Run the stream a given number of times, entering one extra field on each execution.
– Build a model a given number of times and change a model setting each time.

v Conditional Execution You can use this to control how terminal nodes are run, based on conditions
that you predefine, examples may include the following:
– Based on whether a given value is true or false, control if a node will be run.
– Define whether looping of nodes will be run in parallel or sequentially.

Both looping and conditional execution are set up on the Execution tab within the Stream Properties
dialog box. Any nodes that are used in conditional or looping requirements are shown with an additional
symbol attached to them on the stream canvas to indicate that they are taking part in looping and
conditional execution.

You can access the Execution tab in one of 3 ways:
v Using the menus at the top of the main dialog box:

1. From the Tools menu, choose:
Stream Properties > Execution

2. Click the Execution tab to work with scripts for the current stream.
v From within a stream:

1. Right-click on a node and choose Looping/Conditional Execution.
2. Select the relevant submenu option.

v From the graphic toolbar at the top of the main dialog box, click the stream properties icon.

If this is the first time you have set up either looping or conditional execution details, on the Execution
tab select the Looping/Conditional Execution execution mode and then select either the Conditional or
Looping subtab.

4 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Looping in streams
With looping you can automate repetitive tasks in streams; examples may include the following:
v Run the stream a given number of times and change the source each time.
v Run the stream a given number of times, changing the value of a variable each time.
v Run the stream a given number of times, entering one extra field on each execution.
v Build a model a given number of times and change a model setting each time.

You set up the conditions to be met on the Looping subtab of the stream Execution tab. To display the
subtab, select the Looping/Conditional Execution execution mode.

Any looping requirements that you define will take effect when you run the stream, if the
Looping/Conditional Execution execution mode has been set. Optionally, you can generate the script
code for your looping requirements and paste it into the script editor by clicking Paste... in the bottom
right corner of the Looping subtab; the main Execution tab display changes to show the Default
(optional script) execution mode with the script in the top part of the tab. This means that you can
define a looping structure using the various looping dialog box options before generating a script that
you can customize further in the script editor. Note that when you click Paste... any conditional execution
requirements you have defined will also be displayed in the generated script.

To set up a loop:
1. Create an iteration key to define the main looping structure to be carried out in a stream. See Create

an iteration key for more information.
2. Where needed, define one or more iteration variables. See Create an iteration variable for more

information.
3. The iterations and any variables you created are shown in the main body of the subtab. By default,

iterations are executed in the order they appear; to move an iteration up or down the list, click on it
to select it then use the up or down arrow in the right hand column of the subtab to change the order.

Creating an iteration key for looping in streams
You use an iteration key to define the main looping structure to be carried out in a stream. For example,
if you are analyzing car sales, you could create a stream parameter Country of manufacture and use this as
the iteration key; when the stream is run this key is set to each different country value in your data
during each iteration. Use the Define Iteration Key dialog box to set up the key.

To open the dialog box, either select the Iteration Key... button in the bottom left corner of the Looping
subtab, or right click on any node in the stream and select either Looping/Conditional Execution >
Define Iteration Key (Fields) or Looping/Conditional Execution > Define Iteration Key (Values). If you
open the dialog box from the stream, some of the fields may be completed automatically for you, such as
the name of the node.

To set up an iteration key, complete the following fields:

Iterate on. You can select from one of the following options:
v Stream Parameter - Fields. Use this option to create a loop that sets the value of an existing stream

parameter to each specified field in turn.
v Stream Parameter - Values. Use this option to create a loop that sets the value of an existing stream

parameter to each specified value in turn.
v Node Property - Fields. Use this option to create a loop that sets the value of a node property to each

specified field in turn.
v Node Property - Values. Use this option to create a loop that sets the value of a node property to each

specified value in turn.

Chapter 1. Scripting 5

What to Set. Choose the item that will have its value set each time the loop is executed. You can select
from one of the following options:
v Parameter. Only available if you select either Stream Parameter - Fields or Stream Parameter - Values.

Select the required parameter from the available list.
v Node. Only available if you select either Node Property - Fields or Node Property - Values. Select the

node for which you want to set up a loop. Click the browse button to open the Select Node dialog and
choose the node you want; if there are too many nodes listed you can filter the display to only show
certain types of nodes by selecting one of the following categories: Source, Process, Graph, Modeling,
Output, Export, or Apply Model nodes.

v Property. Only available if you select either Node Property - Fields or Node Property - Values. Select
the property of the node from the available list.

Fields to Use. Only available if you select either Stream Parameter - Fields or Node Property - Fields.
Choose the field, or fields, within a node to use to provide the iteration values. You can select from one
of the following options:
v Node. Only available if you select Stream Parameter - Fields. Select the node that contains the details

for which you want to set up a loop. Click the browse button to open the Select Node dialog and
choose the node you want; if there are too many nodes listed you can filter the display to only show
certain types of nodes by selecting one of the following categories: Source, Process, Graph, Modeling,
Output, Export, or Apply Model nodes.

v Field List. Click the list button in the right column to display the Select Fields dialog box, within
which you select the fields in the node to provide the iteration data. See “Selecting fields for iterations”
on page 7 for more information.

Values to Use. Only available if you select either Stream Parameter - Values or Node Property - Values.
Choose the value, or values, within the selected field to use as iteration values. You can select from one
of the following options:
v Node. Only available if you select Stream Parameter - Values. Select the node that contains the details

for which you want to set up a loop. Click the browse button to open the Select Node dialog and
choose the node you want; if there are too many nodes listed you can filter the display to only show
certain types of nodes by selecting one of the following categories: Source, Process, Graph, Modeling,
Output, Export, or Apply Model nodes.

v Field List. Select the field in the node to provide the iteration data.
v Value List. Click the list button in the right column to display the Select Values dialog box, within

which you select the values in the field to provide the iteration data.

Creating an iteration variable for looping in streams
You can use iteration variables to change the values of stream parameters or properties of selected nodes
within a stream each time a loop is executed. For example, if your stream loop is analyzing car sales data
and using Country of manufacture as the iteration key, you may have one graph output showing sales by
model and another graph output showing exhaust emissions information. In these cases you could create
iteration variables that create new titles for the resultant graphs, such as Swedish vehicle emissions and
Japanese car sales by model. Use the Define Iteration Variable dialog box to set up any variables that you
require.

To open the dialog box, either select the Iteration Variable... button in the bottom left corner of the
Looping subtab, or right click on any node in the stream and select:Looping/Conditional Execution >
Define Iteration Variable.

To set up an iteration variable, complete the following fields:

Change. Select the type of attribute that you want to amend. You can choose from either Stream
Parameter or Node Property.

6 IBM SPSS Modeler 16 Python Scripting and Automation Guide

v If you select Stream Parameter, choose the required parameter and then, by using one of the following
options, if available in your stream, define what the value of that parameter should be set to with each
iteration of the loop:
– Global variable. Select the global variable that the stream parameter should be set to.
– Table output cell. To set a stream parameter to be the value in a table output cell, select the table

from the list and enter the Row and Column to be used.
– Enter manually. Select this if you want to manually enter a value for this parameter to take in each

iteration. When you return to the Looping subtab a new column is created into which you enter the
required text.

v If you select Node Property, choose the required node and one of its properties and then set the value
you want to use for that property. Set the new property value by using one of the following options:
– Alone. The property value will use the iteration key value. See “Creating an iteration key for

looping in streams” on page 5 for more information.
– As prefix to stem. Uses the iteration key value as a prefix to what you enter in the Stem field.
– As suffix to stem. Uses the iteration key value as a suffix to what you enter in the Stem field
If you select either the prefix or suffix option you are prompted to add the additional text to the Stem
field. For example, if your iteration key value is Country of manufacture, and you select As prefix to
stem, you might enter - sales by model in this field.

Selecting fields for iterations
When creating iterations you can select one or more fields using the Select Fields dialog box.

Sort by. You can sort available fields for viewing by selecting one of the following options:
v Natural. View the order of fields as they have been passed down the data stream into the current

node.
v Name. Use alphabetical order to sort fields for viewing.
v Type. View fields sorted by their measurement level. This option is useful when selecting fields with a

particular measurement level.

Select fields from the list one at a time or use the Shift-click and Ctrl-click methods to select multiple
fields. You can also use the buttons below the list to select groups of fields based on their measurement
level, or to select or deselect all fields in the table.

Note that the fields available for selection are filtered to show only the fields that are appropriate for the
stream parameter or node property you are using. For example, if you are using a stream parameter that
has a storage type of String, only fields that have a storage type of String are shown.

Conditional execution in streams
With conditional execution you can control how terminal nodes are run, based on the stream contents
matching conditions that you define; examples may include the following:
v Based on whether a given value is true or false, control if a node will be run.
v Define whether looping of nodes will be run in parallel or sequentially.

You set up the conditions to be met on the Conditional subtab of the stream Execution tab. To display
the subtab, select the Looping/Conditional Execution execution mode.

Any conditional execution requirements that you define will take effect when you run the stream, if the
Looping/Conditional Execution execution mode has been set. Optionally, you can generate the script
code for your conditional execution requirements and paste it into the script editor by clicking Paste... in
the bottom right corner of the Conditional subtab; the main Execution tab display changes to show the
Default (optional script) execution mode with the script in the top part of the tab. This means that you
can define conditions using the various looping dialog box options before generating a script that you

Chapter 1. Scripting 7

can customize further in the script editor. Note that when you click Paste... any looping requirements you
have defined will also be displayed in the generated script.

To set up a condition:

1. In the right hand column of the Conditional subtab, click the Add Execution Statement button
to open the Conditional Execution Statement dialog box. In this dialog you specify the condition that
must be met in order for the node to be executed.

2. In the Conditional Execution Statement dialog box, specify the following:
a. Node. Select the node for which you want to set up conditional execution. Click the browse button

to open the Select Node dialog and choose the node you want; if there are too many nodes listed
you can filter the display to show nodes by one of the following categories: Export, Graph,
Modeling, or Output node.

b. Condition based on. Specify the condition that must be met for the node to be executed. You can
choose from one of four options: Stream parameter, Global variable, Table output cell, or Always
true. The details you enter in the bottom half of the dialog box are controlled by the condition you
choose.
v Stream parameter. Select the parameter from the list available and then choose the Operator for

that parameter; for example, the operator may be More than, Equals, Less than, Between, and so
on. You then enter the Value, or minimum and maximum values, depending on the operator.

v Global variable. Select the variable from the list available; for example, this might include:
Mean, Sum, Minimum value, Maximum value, or Standard deviation. You then select the
Operator and values required.

v Table output cell. Select the table node from the list available and then choose the Row and
Column in the table. You then select the Operator and values required.

v Always true. Select this option if the node must always be executed. If you select this option,
there are no further parameters to select.

3. Repeat steps 1 and 2 as often as required until you have set up all the conditions you require. The
node you selected and the condition to be met before that node is executed are shown in the main
body of the subtab in the Execute Node and If this condition is true columns respectively.

4. By default, nodes and conditions are executed in the order they appear; to move a node and condition
up or down the list, click on it to select it then use the up or down arrow in the right hand column of
the subtab to change the order.

In addition, you can set the following options at the bottom of the Conditional subtab:
v Evaluate all in order. Select this option to evaluate each condition in the order in which they are

shown on the subtab. The nodes for which conditions have been found to be "True" will all be
executed once all the conditions have been evaluated.

v Execute one at a time. Only available if Evaluate all in order is selected. Selecting this means that if a
condition is evaluated as "True", the node associated with that condition is executed before the next
condition is evaluated.

v Evaluate until first hit. Selecting this means that only the first node that returns a "True" evaluation
from the conditions you specified will be run.

Executing and Interrupting Scripts
A number of ways of executing scripts are available. For example, on the stream script or standalone
script dialog, the "Run this script" button executes the complete script:

8 IBM SPSS Modeler 16 Python Scripting and Automation Guide

The "Run selected lines" button executes a single line, or a block of adjacent lines, that you have selected
in the script:

You can execute a script using any of the following methods:
v Click the "Run this script" or "Run selected lines" button within a stream script or standalone script

dialog box.
v Run a stream where Run this script is set as the default execution method.
v Use the -execute flag on startup in interactive mode. See the topic “Using Command Line Arguments”

on page 49 for more information.

Note: A SuperNode script is executed when the SuperNode is executed as long as you have selected Run
this script within the SuperNode script dialog box.

Interrupting Script Execution

Within the stream script dialog box, the red stop button is activated during script execution. Using this
button, you can abandon the execution of the script and any current stream.

Find and Replace
The Find/Replace dialog box is available in places where you edit script or expression text, including the
script editor, or when defining a template in the Report node. When editing text in any of these areas,
press Ctrl+F to access the dialog box, making sure cursor has focus in a text area. If working in a Filler
node, for example, you can access the dialog box from any of the text areas on the Settings tab, or from
the text field in the Expression Builder.
1. With the cursor in a text area, press Ctrl+F to access the Find/Replace dialog box.
2. Enter the text you want to search for, or choose from the drop-down list of recently searched items.
3. Enter the replacement text, if any.
4. Click Find Next to start the search.
5. Click Replace to replace the current selection, or Replace All to update all or selected instances.
6. The dialog box closes after each operation. Press F3 from any text area to repeat the last find

operation, or press Ctrl+F to access the dialog box again.

Search Options

Match case. Specifies whether the find operation is case-sensitive; for example, whether myvar matches
myVar. Replacement text is always inserted exactly as entered, regardless of this setting.

Whole words only. Specifies whether the find operation matches text embedded within words. If
selected, for example, a search on spider will not match spiderman or spider-man.

Regular expressions. Specifies whether regular expression syntax is used (see next section). When
selected, the Whole words only option is disabled and its value is ignored.

Figure 1. Run This Script button

Figure 2. Run Selected Lines button

Chapter 1. Scripting 9

Selected text only. Controls the scope of the search when using the Replace All option.

Regular Expression Syntax

Regular expressions allow you to search on special characters such as tabs or newline characters, classes
or ranges of characters such as a through d, any digit or non-digit, and boundaries such as the beginning
or end of a line. A regular expression pattern describes the structure of the string that the expression will
try to find in an input string. The following types of regular expression constructs are supported.

Table 1. Character matches

Characters Matches

x The character x

\\ The backslash character

\0n The character with octal value 0n (0 <= n <= 7)

\0nn The character with octal value 0nn (0 <= n <= 7)

\0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7)

\xhh The character with hexadecimal value 0xhh

\uhhhh The character with hexadecimal value 0xhhhh

\t The tab character ('\u0009')

\n The newline (line feed) character ('\u000A')

\r The carriage-return character ('\u000D')

\f The form-feed character ('\u000C')

\a The alert (bell) character ('\u0007')

\e The escape character ('\u001B')

\cx The control character corresponding to x

Table 2. Matching character classes

Character classes Matches

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (subtraction)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p (union). Alternatively this could be specified as
[a-dm-p]

[a-z&&[def]] a through z, and d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c (subtraction). Alternatively this could be
specified as [ad-z]

[a-z&&[^m-p]] a through z, and not m through p (subtraction). Alternatively this could be
specified as [a-lq-z]

Table 3. Predefined character classes

Predefined character classes Matches

. Any character (may or may not match line terminators)

\d Any digit: [0-9]

\D A non-digit: [^0-9]

\s A white space character: [\t\n\x0B\f\r]

\S A non-white space character: [^\s]

10 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 3. Predefined character classes (continued)

Predefined character classes Matches

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

Table 4. Boundary matches

Boundary matchers Matches

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A non-word boundary

\A The beginning of the input

\Z The end of the input but for the final terminator, if any

\z The end of the input

For more information about using regular expressions, and for some examples, see http://
www.ibm.com/developerworks/java/tutorials/j-introtojava2/section9.html.

Examples

The following code searches for and matches the three numbers at the start of a string:
^[0-9]{3}

The following code searches for and matches the three numbers at the end of a string:
[0-9]{3}$

Chapter 1. Scripting 11

http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/section9.html
http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/section9.html

12 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 2. The Scripting Language

Scripting Language Overview
The scripting facility for IBM SPSS Modeler enables you to create scripts that operate on the SPSS
Modeler user interface, manipulate output objects, and run command syntax. You can run scripts directly
from within SPSS Modeler.

Scripts in IBM SPSS Modeler are written in the scripting language Python. The Java-based
implementation of Python that is used by IBM SPSS Modeler is called Jython. The scripting language
consists of the following features:
v A format for referencing nodes, streams, projects, output, and other IBM SPSS Modeler objects.
v A set of scripting statements or commands that can be used to manipulate these objects.
v A scripting expression language for setting the values of variables, parameters, and other objects.
v Support for comments, continuations, and blocks of literal text.

The following sections describe the Python scripting language, the Jython implementation of Python, and
the basic syntax for getting started with scripting within IBM SPSS Modeler. Information about specific
properties and commands is provided in the sections that follow.

Python and Jython
Jython is an implementation of the Python scripting language, which is written in the Java language and
integrated with the Java platform. Python is a powerful object-oriented scripting language. Jython is
useful because it provides the productivity features of a mature scripting language and, unlike Python,
runs in any environment that supports a Java virtual machine (JVM). This means that the Java libraries
on the JVM are available to use when you are writing programs. With Jython, you can take advantage of
this difference, and use the syntax and most of the features of the Python language

As a scripting language, Python (and its Jython implementation) is easy to learn and efficient to code,
and has minimal required structure to create a running program. Code can be entered interactively, that
is, one line at a time. Python is an interpreted scripting language; there is no precompile step, as there is
in Java. Python programs are simply text files that are interpreted as they are input (after parsing for
syntax errors). Simple expressions, like defined values, as well as more complex actions, such as function
definitions, are immediately executed and available for use. Any changes that are made to the code can
be tested quickly. Script interpretation does, however, have some disadvantages. For example, use of an
undefined variable is not a compiler error, so it is detected only if (and when) the statement in which the
variable is used is executed. In this case, the program can be edited and run to debug the error.

Python sees everything, including all data and code, as an object. You can, therefore, manipulate these
objects with lines of code. Some select types, such as numbers and strings, are more conveniently
considered as values, not objects; this is supported by Python. There is one null value that is supported.
This null value has the reserved name None.

For a more in-depth introduction to Python and Jython scripting, and for some example scripts, see
www.ibm.com/developerworks/java/tutorials/j-jython1 and www.ibm.com/developerworks/java/
tutorials/j-jython2.

13

www.ibm.com/developerworks/java/tutorials/j-jython1
www.ibm.com/developerworks/java/tutorials/j-jython2
www.ibm.com/developerworks/java/tutorials/j-jython2

Python Scripting
This guide to the Python scripting language is an introduction to the components that are most likely to
be used when scripting in IBM SPSS Modeler, including concepts and programming basics. This will
provide you with enough knowledge to start developing your own Python scripts to use within IBM
SPSS Modeler.

Operations
Assignment is done using an equals sign (=). For example, to assign the value "3" to a variable called "x"
you would use the following statement:
x = 3

The equals sign is also used to assign string type data to a variable. For example, to assign the value "a
string value" to the variable "y" you would use the following statement:
y = "a string value"

The following table lists some commonly used comparison and numeric operations, and their
descriptions.

Table 5. Common comparison and numeric operations

Operation Description

x < y Is x less than y?

x > y Is x greater than y?

x <= y Is x less than or equal to y?

x >= y Is x greater than or equal to y?

x == y Is x equal to y?

x != y Is x not equal to y?

x <> y Is x not equal to y?

x + y Add y to x

x - y Subtract y from x

x * y Multiply x by y

x / y Divide x by y

x ** y Raise x to the y power

Lists
Lists are sequences of elements. A list can contain any number of elements, and the elements of the list
can be any type of object. Lists can also be thought of as arrays. The number of elements in a list can
increase or decrease as elements are added, removed, or replaced.

Examples

[] Any empty list.

[1] A list with a single element, an integer.

["Mike", 10, "Don", 20] A list with four elements, two string elements and two
integer elements.

[[],[7],[8,9]] A list of lists. Each sub-list is either an empty list or a list
of integer elements.

14 IBM SPSS Modeler 16 Python Scripting and Automation Guide

x = 7; y = 2; z = 3;
[1, x, y, x + y]

A list of integers. This example demonstrates the use of
variables and expressions.

You can assign a list to a variable, for example:
mylist1 = ["one", "two", "three"]

You can then access specific elements of the list, for example:
mylist[0]

This will result in the following output:
one

The number in the brackets ([]) is known as an index and refers to a particular element of the list. The
elements of a list are indexed starting from 0.

You can also select a range of elements of a list; this is called slicing. For example, x[1:3] selects the
second and third elements of x. The end index is one past the selection.

Strings
A string is an immutable sequence of characters that is treated as a value. Strings support all of the
immutable sequence functions and operators that result in a new string. For example, "abcdef"[1:4]
results in the output "bcd".

In Python, characters are represented by strings of length one.

Strings literals are defined by the use of single or triple quoting. Strings that are defined using single
quotes cannot span lines, while strings that are defined using triple quotes can. A string can be enclosed
in single quotes (’) or double quotes ("). A quoting character may contain the other quoting character
un-escaped or the quoting character escaped, that is preceded by the backslash (\) character.

Examples
"This is a string"
’This is also a string’
"It’s a string"
’This book is called "Python Scripting and Automation Guide".’
"This is an escape quote (\") in a quoted string"

Multiple strings separated by white space are automatically concatenated by the Python parser. This
makes it easier to enter long strings and to mix quote types in a single string, for example:
"This string uses ’ and " ’that string uses ".’

This results in the following output:
This string uses ’ and that string uses ".

Strings support several useful methods. Some of these methods are given in the following table.

Table 6. String methods

Method Usage

s.capitalize() Initial capitalize s

s.count(ss {,start {,end}}) Count the occurrences of ss in s[start:end]

s.startswith(str {, start {, end}})
s.endswith(str {, start {, end}})

Test to see if s starts with str
Test to see if s ends with str

Chapter 2. The Scripting Language 15

Table 6. String methods (continued)

Method Usage

s.expandtabs({size}) Replace tabs with spaces, default size is 8

s.find(str {, start {, end}})
s.rfind(str {, start {, end}})

Finds first index of str in s; if not found, the result is -1.
rfind searches right to left.

s.index(str {, start {, end}})
s.rindex(str {, start {, end}})

Finds first index of str in s; if not found: raise
ValueError. rindex searches right to left.

s.isalnum Test to see if the string is alphanumeric

s.isalpha Test to see if the string is alphabetic

s.isnum Test to see if the string is numeric

s.isupper Test to see if the string is all uppercase

s.islower Test to see if the string is all lowercase

s.isspace Test to see if the string is all whitespace

s.istitle Test to see if the string is a sequence of initial cap
alphanumeric strings

s.lower()
s.upper()
s.swapcase()
s.title()

Convert to all lower case
Convert to all upper case
Convert to all opposite case
Convert to all title case

s.join(seq) Join the strings in seq with s as the separator

s.splitlines({keep}) Split s into lines, if keep is true, keep the new lines

s.split({sep {, max}}) Split s into "words" using sep (default sep is a white
space) for up to max times

s.ljust(width)
s.rjust(width)
s.center(width)
s.zfill(width)

Left justify the string in a field width wide
Right justify the string in a field width wide
center justify the string in a field width wide
Fill with 0.

s.lstrip()
s.rstrip()
s.strip()

Remove leading white space
Remove trailing white space
Remove leading and trailing white space

s.translate(str {,delc}) Translate s using table, after removing any characters in
delc. str should be a string with length == 256.

s.replace(old, new {, max}) Replaces all or max occurrences of string old with string
new

Remarks
Remarks are comments that are introduced by the pound (or hash) sign (#). All text that follows the
pound sign on the same line is considered part of the remark and is ignored. A remark can start in any
column. The following example demonstrates the use of remarks:
#The HelloWorld application is one of the most simple
print ’Hello World’ # print the Hello World line

Statement Syntax
The statement syntax for Python is very simple. In general, each source line is a single statement. Except
for expression and assignment statements, each statement is introduced by a keyword name, such as if
or for. Blank lines or remark lines can be inserted anywhere between any statements in the code. If there
is more than one statement on a line, each statement must be separated by a semicolon (;).

16 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Very long statements can continue on more than one line. In this case the statement that is to continue on
to the next line must end with a backslash (\), for example:
x = "A loooooooooooooooooooong string" + \

"another looooooooooooooooooong string"

When a structure is enclosed by parentheses (()), brackets ([]), or curly braces ({}), the statement can be
continued on to a new line after any comma, without having to insert a backslash, for example:
x = (1, 2, 3, "hello",

"goodbye", 4, 5, 6)

Identifiers
Identifiers are used to name variables, functions, classes and keywords. Identifiers can be any length, but
must start with either an alphabetical character of upper or lower case, or the underscore character (_).
Names that start with an underscore are generally reserved for internal or private names. After the first
character, the identifier can contain any number and combination of alphabetical characters, numbers
from 0-9, and the underscore character.

There are some reserved words in Jython that cannot be used to name variables, functions, or classes.
They fall under the following categories:
v Statement introducers: assert, break, class, continue, def, del, elif, else, except, exec, finally, for,

from, global, if, import, pass, print, raise, return, try, and while

v Parameter introducers: as, import, and in

v Operators: and, in, is, lambda, not, and or

Improper keyword use generally results in a SyntaxError.

Blocks of Code
Blocks of code are groups of statements that are used where single statements are expected. Blocks of
code can follow any of the following statements: if, elif, else, for, while, try, except, def, and class.
These statements introduce the block of code with the colon character (:), for example:
if x == 1:

y = 2
z = 3

elif:
y = 4
z = 5

Indentation is used to delimit code blocks (rather than the curly braces that are used in Java). All lines in
a block must be indented to the same position. This is because a change in the indentation indicates the
end of a code block. It is usual to indent by four spaces per level. It is recommended that spaces are used
to indent the lines, rather than tabs. Spaces and tabs must not be mixed. The lines in the outermost block
of a module must start at column one, else a SyntaxError will occur.

The statements that make up a code block (and follow the colon) can also be on a single line, separated
by semicolons, for example:
if x == 1: y = 2; z = 3;

Passing Arguments to a Script
Passing arguments to a script is useful as it means a script can be used repeatedly without modification.
The arguments that are passed on the command line are passed as values in the list sys.argv. The
number of values passed can be obtained by using the command len(sys.argv). For example:

Chapter 2. The Scripting Language 17

import sys
print "test1"
print sys.argv[0]
print sys.argv[1]
print len(sys.argv)

In this example, the import command imports the entire sys class so that the methods that exist for this
class, such as argv, can be used.

The script in this example can be invoked using the following line:
/u/mjloos/test1 mike don

The result is the following output:
/u/mjloos/test1 mike don
test1
mike
don
3

Examples
The print keyword prints the arguments immediately following it. If the statement is followed by a
comma, a new line is not included in the output. For example:
print "This demonstrates the use of a",
print " comma at the end of a print statement."

This will result in the following output:
This demonstrates the use of a comma at the end of a print statement.

The for statement is used to iterate through a block of code. For example:
mylist1 = ["one", "two", "three"]
for lv in mylist1:

print lv
continue

In this example, three strings are assigned to the list mylist1. The elements of the list are then printed,
with one element of each line. This will result in the following output:
one
two
three

In this example, the iterator lv takes the value of each element in the list mylist1 in turn as the for loop
implements the code block for each element. An iterator can be any valid identifier of any length.

The if statement is a conditional statement. It evaluates the condition and returns either true or false,
depending on the result of the evaluation. For example:
mylist1 = ["one", "two", "three"]
for lv in mylist1:

if lv == "two"
print "The value of lv is ", lv

else
print "The value of lv is not two, but ", lv

continue

In this example, the value of the iterator lv is evaluated. If the value of lv is two a different string is
returned to the string that is returned if the value of lv is not two. This results in the following output:
The value of lv is not two, but one
The value of lv is two
The value of lv is not two, but three

18 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Mathematical Methods
From the math module you can access useful mathematical methods. Some of these methods are given in
the following table. Unless specified otherwise, all values are returned as floats.

Table 7. Mathematical methods

Method Usage

math.ceil(x) Return the ceiling of x as a float, that is the smallest
integer greater than or equal to x

math.copysign(x, y) Return x with the sign of y. copysign(1, -0.0) returns
-1

math.fabs(x) Return the absolute value of x

math.factorial(x) Return x factorial. If x is negative or not an integer, a
ValueError is raised.

math.floor(x) Return the floor of x as a float, that is the largest integer
less than or equal to x

math.frexp(x) Return the mantissa (m) and exponent (e) of x as the pair
(m, e). m is a float and e is an integer, such that x == m *
2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5
<= abs(m) < 1.

math.fsum(iterable) Return an accurate floating point sum of values in
iterable

math.isinf(x) Check if the float x is positive or negative infinitive

math.isnan(x) Check if the float x is NaN (not a number)

math.ldexp(x, i) Return x * (2**i). This is essentially the inverse of the
function frexp.

math.modf(x) Return the fractional and integer parts of x. Both results
carry the sign of x and are floats.

math.trunc(x) Return the Real value x, that has been truncated to an
Integral.

math.exp(x) Return e**x

math.log(x[, base]) Return the logarithm of x to the given value of base. If
base is not specified, the natural logarithm of x is
returned.

math.log1p(x) Return the natural logarithm of 1+x (base e)

math.log10(x) Return the base-10 logarithm of x

math.pow(x, y) Return x raised to the power y. pow(1.0, x) and pow(x,
0.0) always return 1, even when x is zero or NaN.

math.sqrt(x) Return the square root of x

In addition to the mathematical functions, there are some useful trigonometric methods. These methods
are shown in the following table.

Table 8. Trigonometric methods

Method Usage

math.acos(x) Return the arc cosine of x in radians

math.asin(x) Return the arc sine of x in radians

math.atan(x) Return the arc tangent of x in radians

math.atan2(y, x) Return atan(y / x) in radians.

Chapter 2. The Scripting Language 19

Table 8. Trigonometric methods (continued)

Method Usage

math.cos(x) Return the cosine of x in radians.

math.hypot(x, y) Return the Euclidean norm sqrt(x*x + y*y). This is the
length of the vector from the origin to the point (x, y).

math.sin(x) Return the sine of x in radians

math.tan(x) Return the tangent of x in radians

math.degrees(x) Convert angle x from radians to degrees

math.radians(x) Convert angle x from degrees to radians

math.acosh(x) Return the inverse hyperbolic cosine of x

math.asinh(x) Return the inverse hyperbolic sine of x

math.atanh(x) Return the inverse hyperbolic tangent of x

math.cosh(x) Return the hyperbolic cosine of x

math.sinh(x) Return the hyperbolic cosine of x

math.tanh(x) Return the hyperbolic tangent of x

There are also two mathematical constants. The value of math.pi is the mathematical constant pi. The
value of math.e is the mathematical constant e.

Using Non-ASCII characters
In order to use non-ASCII characters, Python requires explicit encoding and decoding of strings into
Unicode. In IBM SPSS Modeler, Python scripts are assumed to be encoded in UTF-8, which is a standard
Unicode encoding that supports non-ASCII characters. The following script will compile because the
Python compiler has been set to UTF-8 by SPSS Modeler.

However, the resulting node will have an incorrect label.

The label is incorrect because the string literal itself has been converted to an ASCII string by Python.

Python allows Unicode string literals to be specified by adding a u character prefix before the string
literal:

Figure 3. Node label containing non-ASCII characters, displayed incorrectly

20 IBM SPSS Modeler 16 Python Scripting and Automation Guide

This will create a Unicode string and the label will be appear correctly.

Using Python and Unicode is a large topic which is beyond the scope of this document. Many books and
online resources are available that cover this topic in great detail.

Object-Oriented Programming
Object-oriented programming is based on the notion of creating a model of the target problem in your
programs. Object-oriented programming reduces programming errors and promotes the reuse of code.
Python is an object-oriented language. Objects defined in Python have the following features:
v Identity. Each object must be distinct, and this must be testable. The is and is not tests exist for this

purpose.
v State. Each object must be able to store state. Attributes, such as fields and instance variables, exist for

this purpose.
v Behavior. Each object must be able to manipulate its state. Methods exist for this purpose.

Python includes the following features for supporting object-oriented programming:
v Class-based object creation. Classes are templates for the creation of objects. Objects are data

structures with associated behavior.
v Inheritance with polymorphism. Python supports single and multiple inheritance. All Python instance

methods are polymorphic and can be overridden by subclasses.
v Encapsulation with data hiding. Python allows attributes to be hidden. When hidden, attributes can

be accessed from outside the class only through methods of the class. Classes implement methods to
modify the data.

Defining a Class
Within a Python class, both variables and methods can be defined. Unlike in Java, in Python you can
define any number of public classes per source file (or module). Therefore, a module in Python can be
thought of similar to a package in Java.

In Python, classes are defined using the class statement. The class statement has the following form:
class name (superclasses): statement

or
class name (superclasses):

assignment
.
.
function
.
.

Figure 4. Node label containing non-ASCII characters, displayed correctly

Chapter 2. The Scripting Language 21

When you define a class, you have the option to provide zero or more assignment statements. These create
class attributes that are shared by all instances of the class. You can also provide zero or more function
definitions. These function definitions create methods. The superclasses list is optional.

The class name should be unique in the same scope, that is within a module, function or class. You can
define multiple variables to reference the same class.

Creating a Class Instance
Classes are used to hold class (or shared) attributes or to create class instances. To create an instance of a
class, you call the class as if it were a function. For example, consider the following class:
class MyClass:

pass

Here, the pass statement is used because a statement is required to complete the class, but no action is
required programmatically.

The following statement creates an instance of the class MyClass:
x = MyClass()

Adding Attributes to a Class Instance
Unlike in Java, in Python clients can add attributes to an instance of a class. Only the one instance is
changed. For example, to add attributes to an instance x, set new values on that instance:
x.attr1 = 1
x.attr2 = 2

.

.
x.attrN = n

Defining Class Attributes and Methods
Any variable that is bound in a class is a class attribute. Any function defined within a class is a method.
Methods receive an instance of the class, conventionally called self, as the first argument. For example,
to define some class attributes and methods, you might enter the following code:
class MyClass

attr1 = 10 #class attributes
attr2 = "hello"

def method1(self):
print MyClass.attr1 #reference the class attribute

def method2(self):
print MyClass.attr2 #reference the class attribute

def method3(self, text):
self.text = text #instance attribute
print text, self.text #print my argument and my attribute

method4 = method3 #make an alias for method3

Inside a class, you should qualify all references to class attributes with the class name; for example,
MyClass.attr1. All references to instance attributes should be qualified with the self variable; for
example, self.text. Outside the class, you should qualify all references to class attributes with the class
name (for example MyClass.attr1) or with an instance of the class (for example x.attr1, where x is an
instance of the class). Outside the class, all references to instance variables should be qualified with an
instance of the class; for example, x.text.

22 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Hidden Variables
Data can be hidden by creating Private variables. Private variables can be accessed only by the class itself.
If you declare names of the form __xxx or __xxx_yyy, that is with two preceding underscores, the Python
parser will automatically add the class name to the declared name, creating hidden variables, for
example:
class MyClass:

__attr = 10 #private class attribute

def method1(self):
pass

def method2(self, p1, p2):
pass

def __privateMethod(self, text):
self.__text = text #private attribute

Unlike in Java, in Python all references to instance variables must be qualified with self; there is no
implied use of this.

Inheritance
The ability to inherit from classes is fundamental to object-oriented programming. Python supports both
single and multiple inheritance. Single inheritance means that there can be only one superclass. Multiple
inheritance means that there can be more than one superclass.

Inheritance is implemented by subclassing other classes. Any number of Python classes can be
superclasses. In the Jython implementation of Python, only one Java class can be directly or indirectly
inherited from. It is not required for a superclass to be supplied.

Any attribute or method in a superclass is also in any subclass and can be used by the class itself, or by
any client as long as the attribute or method is not hidden. Any instance of a subclass can be used
wherever and instance of a superclass can be used; this is an example of polymorphism. These features
enable reuse and ease of extension.

Example
class Class1: pass #no inheritance

class Class2: pass

class Class3(Class1): pass #single inheritance

class Class4(Class3, Class2): pass #multiple inheritance

Chapter 2. The Scripting Language 23

24 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 3. Scripting in IBM SPSS Modeler

Types of scripts
In IBM SPSS Modeler there are three types of script:
v Stream scripts are used to control execution of a single stream and are stored within the stream.
v SuperNode scripts are used to control the behavior of SuperNodes.
v Stand-alone or session scripts can be used to coordinate execution across a number of different streams.

Various methods are available to be used in scripts in IBM SPSS Modeler with which you can access a
wide range of SPSS Modeler functionality. These methods are also used in Chapter 4, “The Scripting
API,” on page 35 to create more advanced functions.

Streams, SuperNode streams, and diagrams
Most of the time, the term stream means the same thing, regardless of whether it is a stream that is
loaded from a file or used within a SuperNode. It generally means a collection of nodes that are
connected together and can be executed. In scripting, however, not all operations are supported in all
places, meaning a script author should be aware of which stream variant they are using.

Streams
A stream is the main IBM SPSS Modeler document type. It can be saved, loaded, edited and executed.
Streams can also have parameters, global values, a script, and other information associated with them.

SuperNode streams
A SuperNode stream is the type of stream used within a SuperNode. Like a normal stream, it contains
nodes which are linked together. SuperNode streams have a number of differences from a normal stream:
v Parameters and any scripts are associated with the SuperNode that owns the SuperNode stream, rather

than with the SuperNode stream itself.
v SuperNode streams have additional input and output connector nodes, depending on the type of

SuperNode. These connector nodes are used to flow information into and out of the SuperNode
stream, and are created automatically when the SuperNode is created.

Diagrams
The term diagram covers the functions that are supported by both normal streams and SuperNode
streams, such as adding and removing nodes, and modifying connections between the nodes.

Executing a stream
The following example runs all executable nodes in the stream, and is the simplest type of stream script:
modeler.script.stream().runAll(None)

The following example also runs all executable nodes in the stream:
stream = modeler.script.stream()
stream.runAll(None)

In this example, the stream is stored in a variable called stream. Storing the stream in a variable is useful
because a script is typically used to modify either the stream or the nodes within a stream. Creating a
variable that stores the stream results in a more concise script.

25

The scripting context
The modeler.script module provides the context in which a script is executed. The module is
automatically imported into a SPSS Modeler script at run time. The module defines four functions that
provide a script with access to its execution environment:
v The session() function returns the session for the script. The session defines information such as the

locale and the SPSS Modeler backend (either a local process or a networked SPSS Modeler Server) that
is being used to run any streams.

v The stream() function can be used with stream and SuperNode scripts. This function returns the
stream that owns either the stream script or the SuperNode script that is being run.

v The diagram() function can be used with SuperNode scripts. This function returns the diagram within
the SuperNode. For other script types, this function returns the same as the stream() function.

v The supernode() function can be used with SuperNode scripts. This function returns the SuperNode
that owns the script that is being run.

The four functions and their outputs are summarized in the following table.

Table 9. Summary of modeler.script functions

Script type session() stream() diagram() supernode()

Standalone Returns a session Returns the current
managed stream at
the time the script
was invoked (for
example, the stream
passed via the batch
mode -stream
option), or None.

Same as for stream() Not applicable

Stream Returns a session Returns a stream Same as for stream() Not applicable

SuperNode Returns a session Returns a stream Returns a SuperNode
stream

Returns a SuperNode

The modeler.script module also defines a way of terminating the script with an exit code. The
exit(exit-code) function stops the script from executing and returns the supplied integer exit code.

One of the methods that is defined for a stream is runAll(List). This method runs all executable nodes.
Any models or outputs that are generated by executing the nodes are added to the supplied list.

It is common for a stream execution to generate outputs such as models, graphs, and other output. To
capture this output, a script can supply a variable that is initialized to a list, for example:
stream = modeler.script.stream()
results = []
stream.runAll(results)

When execution is complete, any objects that are generated by the execution can be accessed from the
results list.

Referencing existing nodes
A stream is often pre-built with some parameters that must be modified before the stream is executed.
Modifying these parameters involves the following tasks:
1. Locating the nodes in the relevant stream.
2. Changing the node or stream settings (or both).

26 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Finding nodes
Streams provide a number of ways of locating an existing node. These methods are summarized in the
following table.

Table 10. Methods for locating an existing node

Method Return type Description

s.findAll(type, label) Collection Returns a list of all nodes with the
specified type and label. Either the
type or label can be None, in which
case the other parameter is used.

s.findAll(filter, recursive) Collection Returns a collection of all nodes that
are accepted by the specified filter. If
the recursive flag is True, any
SuperNodes within the specified
stream are also searched.

s.findByID(id) Node Returns the node with the supplied
ID or None if no such node exists. The
search is limited to the current
stream.

s.findByType(type, label) Node Returns the node with the supplied
type, label, or both. Either the type or
name can be None, in which case the
other parameter is used. If multiple
nodes result in a match, then an
arbitrary one is chosen and returned.
If no nodes result in a match, then
the return value is None.

s.findDownstream(fromNodes) Collection Searches from the supplied list of
nodes and returns the set of nodes
downstream of the supplied nodes.
The returned list includes the
originally supplied nodes.

s.findUpstream(fromNodes) Collection Searches from the supplied list of
nodes and returns the set of nodes
upstream of the supplied nodes. The
returned list includes the originally
supplied nodes.

As an example, if a stream contained a single Filter node that the script needed to access, the Filter node
can be found by using the following script:
stream = modeler.script.stream()
node = stream.findByType("filter", None)
...

Alternatively, if the ID of the node (as shown on the Annotations tab of the node dialog box) is known,
the ID can be used to find the node, for example:
stream = modeler.script.stream()
node = stream.findByID("id32FJT71G2") # the filter node ID
...

Setting properties
Nodes, streams, models, and outputs all have properties that can be accessed and, in most cases, set.
Properties are typically used to modify the behavior or appearance of the object. The methods that are
available for accessing and setting object properties are summarized in the following table.

Chapter 3. Scripting in IBM SPSS Modeler 27

Table 11. Methods for accessing and setting object properties

Method Return type Description

p.getPropertyValue(propertyName) Object Returns the value of the named
property or None if no such property
exists.

p.setPropertyValue(propertyName,
value)

Not applicable Sets the value of the named property.

p.setPropertyValues(properties) Not applicable Sets the values of the named
properties. Each entry in the
properties map consists of a key that
represents the property name and the
value that should be assigned to that
property.

p.getKeyedPropertyValue(
propertyName, keyName)

Object Returns the value of the named
property and associated key or None
if no such property or key exists.

p.setKeyedPropertyValue(
propertyName, keyName, value)

Not applicable Sets the value of the named property
and key.

For example, if you wanted to set the value of a Variable File node at the start of a stream, you can use
the following script:
stream = modeler.script.stream()
node = stream.findByType("variablefile", None)
node.setPropertyValue("full_filename", "$CLEO/DEMOS/DRUG1n")
...

Alternatively, you might want to filter a field from a Filter node. In this case, the value is also keyed on
the field name, for example:
stream = modeler.script.stream()
Locate the filter node ...
node = stream.findByType("filter", None)
... and filter out the "Na" field
node.setKeyedPropertyValue("include", "Na", False)

Creating nodes and modifying streams
In some situations, you might want to add new nodes to existing streams. Adding nodes to existing
streams typically involves the following tasks:
1. Creating the nodes.
2. Linking the nodes into the existing stream flow.

Creating nodes
Streams provide a number of ways of creating nodes. These methods are summarized in the following
table.

Table 12. Methods for creating nodes

Method Return type Description

s.create(nodeType, name) Node Creates a node of the specified type
and adds it to the specified stream.

s.createAt(nodeType, name, x, y) Node Creates a node of the specified type
and adds it to the specified stream at
the specified location. If either x < 0
or y < 0, the location is not set.

28 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 12. Methods for creating nodes (continued)

Method Return type Description

s.createModelApplier(modelOutput,
name)

Node Creates a model applier node that is
derived from the supplied model
output object.

For example, to create a new Type node in a stream you can use the following script:
stream = modeler.script.stream()
Create a new type node
node = stream.create("type", "My Type")

Linking and unlinking nodes
When a new node is created within a stream, it must be connected into a sequence of nodes before it can
be used. Streams provide a number of methods for linking and unlinking nodes. These methods are
summarized in the following table.

Table 13. Methods for linking and unlinking nodes

Method Return type Description

s.link(source, target) Not applicable Creates a new link between the
source and the target nodes.

s.link(source, targets) Not applicable Creates new links between the source
node and each target node in the
supplied list.

s.linkBetween(inserted, source,
target)

Not applicable Connects a node between two other
node instances (the source and target
nodes) and sets the position of the
inserted node to be between them.
Any direct link between the source
and target nodes is removed first.

s.linkPath(path) Not applicable Creates a new path between node
instances. The first node is linked to
the second, the second is linked to
the third, and so on.

s.unlink(source, target) Not applicable Removes any direct link between the
source and the target nodes.

s.unlink(source, targets) Not applicable Removes any direct links between the
source node and each object in the
targets list.

s.unlinkPath(path) Not applicable Removes any path that exists
between node instances.

s.disconnect(node) Not applicable Removes any links between the
supplied node and any other nodes
in the specified stream.

s.isValidLink(source, target) boolean Returns True if it would be valid to
create a link between the specified
source and target nodes. This method
checks that both objects belong to the
specified stream, that the source node
can supply a link and the target node
can receive a link, and that creating
such a link will not cause a
circularity in the stream.

Chapter 3. Scripting in IBM SPSS Modeler 29

The example script that follows performs these five tasks:
1. Creates a Variable File input node, a Filter node, and a Table output node.
2. Connects the nodes together.
3. Sets the file name on the Variable File input node.
4. Filters the field "Drug" from the resulting output.
5. Executes the Table node.
stream = modeler.script.stream()
filenode = stream.createAt("variablefile", "My File Input ", 96, 64)
filternode = stream.createAt("filter", "Filter", 192, 64)
tablenode = stream.createAt("table", "Table", 288, 64)
stream.link(filenode, filternode)
stream.link(filternode, tablenode)
filenode.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
filternode.setKeyedPropertyValue("include", "Drug", False)
results = []
tablenode.run(results)

Importing, replacing, and deleting nodes
As well as creating and connecting nodes, it is often necessary to replace and delete nodes from the
stream. The methods that are available for importing, replacing and deleting nodes are summarized in
the following table.

Table 14. Methods for importing, replacing, and deleting nodes

Method Return type Description

s.replace(originalNode,
replacementNode, discardOriginal)

Not applicable Replaces the specified node from the
specified stream. Both the original
node and replacement node must be
owned by the specified stream.

s.insert(source, nodes, newIDs) List Inserts copies of the nodes in the
supplied list. It is assumed that all
nodes in the supplied list are
contained within the specified
stream. The newIDs flag indicates
whether new IDs should be
generated for each node, or whether
the existing ID should be copied and
used. It is assumed that all nodes in
a stream have a unique ID, so this
flag must be set to True if the source
stream is the same as the specified
stream. The method returns the list of
newly inserted nodes, where the
order of the nodes is undefined (that
is, the ordering is not necessarily the
same as the order of the nodes in the
input list).

s.delete(node) Not applicable Deletes the specified node from the
specified stream. The node must be
owned by the specified stream.

s.deleteAll(nodes) Not applicable Deletes all the specified nodes from
the specified stream. All nodes in the
collection must belong to the
specified stream.

s.clear() Not applicable Deletes all nodes from the specified
stream.

30 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Traversing through nodes in a stream
A common requirement is to identify nodes that are either upstream or downstream of a particular node.
The stream provides a number of methods that can be used to identify these nodes. These methods are
summarized in the following table.

Table 15. Methods to identify upstream and downstream nodes

Method Return type Description

s.iterator() Iterator Returns an iterator over the node
objects that are contained in the
specified stream. If the stream is
modified between calls of the next()
function, the behavior of the iterator
is undefined.

s.predecessorAt(node, index) Node Returns the specified immediate
predecessor of the supplied node or
None if the index is out of bounds.

s.predecessorCount(node) int Returns the number of immediate
predecessors of the supplied node.

s.predecessors(node) List Returns the immediate predecessors
of the supplied node.

s.successorAt(node, index) Node Returns the specified immediate
successor of the supplied node or
None if the index is out of bounds.

s.successorCount(node) int Returns the number of immediate
successors of the supplied node.

s.successors(node) List Returns the immediate successors of
the supplied node.

Getting information about nodes
Nodes fall into a number of different categories such as data import and export nodes, model building
nodes, and other types of nodes. Every node provides a number of methods that can be used to find out
information about the node.

The methods that can be used to obtain the ID, name, and label of a node are summarized in the
following table.

Table 16. Methods to obtain the ID, name, and label of a node

Method Return type Description

n.getLabel() string Returns the display label of the
specified node. The label is the value
of the property custom_name only if
that property is a non-empty string
and the use_custom_name property is
not set; otherwise, the label is the
value of getName().

Chapter 3. Scripting in IBM SPSS Modeler 31

Table 16. Methods to obtain the ID, name, and label of a node (continued)

Method Return type Description

n.setLabel(label) Not applicable Sets the display label of the specified
node. If the new label is a non-empty
string it is assigned to the property
custom_name, and False is assigned to
the property use_custom_name so that
the specified label takes precedence;
otherwise, an empty string is
assigned to the property custom_name
and True is assigned to the property
use_custom_name.

n.getName() string Returns the name of the specified
node.

n.getID() string Returns the ID of the specified node.
A new ID is created each time a new
node is created. The ID is persisted
with the node when it is saved as
part of a stream so that when the
stream is opened, the node IDs are
preserved. However, if a saved node
is inserted into a stream, the inserted
node is considered to be a new object
and will be allocated a new ID.

Methods that can be used to obtain other information about a node are summarized in the following
table.

Table 17. Methods for obtaining information about a node

Method Return type Description

n.getTypeName() string Returns the scripting name of this
node. This is the same name that
could be used to create a new
instance of this node.

n.isInitial() Boolean Returns True if this is an initial node,
that is one that occurs at the start of
a stream.

n.isInline() Boolean Returns True if this is an in-line node,
that is one that occurs mid-stream.

n.isTerminal() Boolean Returns True if this is a terminal
node, that is one that occurs at the
end of a stream.

n.getXPosition() int Returns the x position offset of the
node in the stream.

n.getYPosition() int Returns the y position offset of the
node in the stream.

n.setXYPosition(x, y) Not applicable Sets the position of the node in the
stream.

n.setPositionBetween(source,
target)

Not applicable Sets the position of the node in the
stream so that it is positioned
between the supplied nodes.

n.isCacheEnabled() Boolean Returns True if the cache is enabled;
returns False otherwise.

32 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 17. Methods for obtaining information about a node (continued)

Method Return type Description

n.setCacheEnabled(val) Not applicable Enables or disables the cache for this
object. If the cache is full and the
caching becomes disabled, the cache
is flushed.

n.isCacheFull() Boolean Returns True if the cache is full;
returns False otherwise.

n.flushCache() Not applicable Flushes the cache of this node. Has
no affect if the cache is not enabled
or is not full.

Chapter 3. Scripting in IBM SPSS Modeler 33

34 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 4. The Scripting API

Introduction to the Scripting API
The Scripting API provides access to a wide range of SPSS Modeler functionality. All the methods
described so far are part of the API and can be accessed implicitly within the script without further
imports. However, if you want to reference the API classes, you must import the API explicitly with the
following statement:
import modeler.api

This import statement is required by many of the Scripting API examples.

Example: searching for nodes using a custom filter
The section “Finding nodes” on page 27 included an example of searching for a node in a stream using
the type name of the node as the search criterion. In some situations, a more generic search is required
and this can be implemented using the NodeFilter class and the stream findAll() method. This kind of
search involves the following two steps:
1. Creating a new class that extends NodeFilter and that implements a custom version of the accept()

method.
2. Calling the stream findAll() method with an instance of this new class. This returns all nodes that

meet the criteria defined in the accept() method.

The following example shows how to search for nodes in a stream that have the node cache enabled. The
returned list of nodes could be used to either flush or disable the caches of these nodes.
import modeler.api

class CacheFilter(modeler.api.NodeFilter):
"""A node filter for nodes with caching enabled"""
def accept(this, node):
return node.isCacheEnabled()

cachingnodes = modeler.script.stream().findAll(CacheFilter(), False)

Metadata: Information about data
Because nodes are connected together in a stream, information about the columns or fields that are
available at each node is available. For example, in the Modeler UI, this allows you to select which fields
to sort or aggregate by. This information is called the data model.

Scripts can also access the data model by looking at the fields coming into or out of a node. For some
nodes, the input and output data models are the same, for example a Sort node simply reorders the
records but doesn't change the data model. Some, such as the Derive node, can add new fields. Others,
such as the Filter node can rename or remove fields.

In the following example, the script takes the standard IBM SPSS Modeler druglearn.str stream, and for
each field, builds a model with one of the input fields dropped. It does this by:
1. Accessing the output data model from the Type node.
2. Looping through each field in the output data model.
3. Modifying the Filter node for each input field.
4. Changing the name of the model being built.
5. Running the model build node.

35

Note: Before running the script in the druglean.str stream, remember to set the scripting language to
Python (the stream was created in a previous version of IBM SPSS Modeler so the stream scripting
language is set to Legacy).
import modeler.api

stream = modeler.script.stream()
filternode = stream.findByType("filter", None)
typenode = stream.findByType("type", None)
c50node = stream.findByType("c50", None)
Always use a custom model name
c50node.setPropertyValue("use_model_name", True)

lastRemoved = None
fields = typenode.getOutputDataModel()
for field in fields:

If this is the target field then ignore it
if field.getModelingRole() == modeler.api.ModelingRole.OUT:

continue

Re-enable the field that was most recently removed
if lastRemoved != None:

filternode.setKeyedPropertyValue("include", lastRemoved, True)

Remove the field
lastRemoved = field.getColumnName()
filternode.setKeyedPropertyValue("include", lastRemoved, False)

Set the name of the new model then run the build
c50node.setPropertyValue("model_name", "Exclude " + lastRemoved)
c50node.run([])

The DataModel object provides a number of methods for accessing information about the fields or
columns within the data model. These methods are summarized in the following table.

Table 18. DataModel object methods for accessing information about fields or columns

Method Return type Description

d.getColumnCount() int Returns the number of columns in
the data model.

d.columnIterator() Iterator Returns an iterator that returns each
column in the "natural" insert order.
The iterator returns instances of
Column.

d.nameIterator() Iterator Returns an iterator that returns the
name of each column in the "natural"
insert order.

d.contains(name) Boolean Returns True if a column with the
supplied name exists in this
DataModel, False otherwise.

d.getColumn(name) Column Returns the column with the
specified name.

d.getColumnGroup(name) ColumnGroup Returns the named column group or
None if no such column group exists.

d.getColumnGroupCount() int Returns the number of column
groups in this data model.

d.columnGroupIterator() Iterator Returns an iterator that returns each
column group in turn.

36 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 18. DataModel object methods for accessing information about fields or columns (continued)

Method Return type Description

d.toArray() Column[] Returns the data model as an array
of columns. The columns are ordered
in their "natural" insert order.

Each field (Column object) includes a number of methods for accessing information about the column.
The table below shows a selection of these.

Table 19. Column object methods for accessing information about the column

Method Return type Description

c.getColumnName() string Returns the name of the column.

c.getColumnLabel() string Returns the label of the column or an
empty string if there is no label
associated with the column.

c.getMeasureType() MeasureType Returns the measure type for the
column.

c.getStorageType() StorageType Returns the storage type for the
column.

c.isMeasureDiscrete() Boolean Returns True if the column is
discrete. Columns that are either a set
or a flag are considered discrete.

c.isModelOutputColumn() Boolean Returns True if the column is a
model output column.

c.isStorageDatetime() Boolean Returns True if the column's storage
is a time, date or timestamp value.

c.isStorageNumeric() Boolean Returns True if the column's storage
is an integer or a real number.

c.isValidValue(value) Boolean Returns True if the specified value is
valid for this storage, and valid
when the valid column values are
known.

c.getModelingRole() ModelingRole Returns the modeling role for the
column.

c.getSetValues() Object[] Returns an array of valid values for
the column, or None if either the
values are not known or the column
is not a set.

c.getValueLabel(value) string Returns the label for the value in the
column, or an empty string if there is
no label associated with the value.

c.getFalseFlag() Object Returns the "false" indicator value for
the column, or None if either the
value is not known or the column is
not a flag.

c.getTrueFlag() Object Returns the "true" indicator value for
the column, or None if either the
value is not known or the column is
not a flag.

Chapter 4. The Scripting API 37

Table 19. Column object methods for accessing information about the column (continued)

Method Return type Description

c.getLowerBound() Object Returns the lower bound value for
the values in the column, or None if
either the value is not known or the
column is not continuous.

c.getUpperBound() Object Returns the upper bound value for
the values in the column, or None if
either the value is not known or the
column is not continuous.

Note that most of the methods that access information about a column have equivalent methods defined
on the DataModel object itself. For example the two following statements are equivalent:
dataModel.getColumn("someName").getModelingRole()
dataModel.getModelingRole("someName")

Accessing Generated Objects
Executing a stream typically involves producing additional output objects. These additional objects might
be a new model, or a piece of output that provides information to be used in subsequent executions.

In the example below, the druglearn.str stream is used again as the starting point for the stream. In this
example, all nodes in the stream are executed and the results are stored in a list. The script then loops
through the results, and any model outputs that result from the execution are saved as an IBM SPSS
Modeler model (.gm) file, and the model is PMML exported.
import modeler.api

stream = modeler.script.stream()

Set this to an existing folder on your system.
Include a trailing directory separator
modelFolder = "C:/temp/models/"

Execute the stream
models = []
stream.runAll(models)

Save any models that were created
taskrunner = modeler.script.session().getTaskRunner()
for model in models:

If the stream execution built other outputs then ignore them
if not(isinstance(model, modeler.api.ModelOutput)):

continue

label = model.getLabel()
algorithm = model.getModelDetail().getAlgorithmName()

save each model...
modelFile = modelFolder + label + algorithm + ".gm"
taskrunner.saveModelToFile(model, modelFile)

...and export each model PMML...
modelFile = modelFolder + label + algorithm + ".xml"
taskrunner.exportModelToFile(model, modelFile, modeler.api.FileFormat.XML)

The task runner class provides a convenient way running various common tasks. The methods that are
available in this class are summarized in the following table.

38 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 20. Methods of the task runner class for performing common tasks

Method Return type Description

t.createStream(name, autoConnect,
autoManage)

Stream Creates and returns a new stream.
Note that code that must create
streams privately without making
them visible to the user should set
the autoManage flag to False.

t.exportDocumentToFile(
documentOutput, filename,
fileFormat)

Not applicable Exports the stream description to a
file using the specified file format.

t.exportModelToFile(modelOutput,
filename, fileFormat)

Not applicable Exports the model to a file using the
specified file format.

t.exportStreamToFile(stream,
filename, fileFormat)

Not applicable Exports the stream to a file using the
specified file format.

t.insertNodeFromFile(filename,
diagram)

Node Reads and returns a node from the
specified file, inserting it into the
supplied diagram. Note that this can
be used to read both Node and
SuperNode objects.

t.openDocumentFromFile(filename,
autoManage)

DocumentOutput Reads and returns a document from
the specified file.

t.openModelFromFile(filename,
autoManage)

ModelOutput Reads and returns a model from the
specified file.

t.openStreamFromFile(filename,
autoManage)

Stream Reads and returns a stream from the
specified file.

t.saveDocumentToFile(
documentOutput, filename)

Not applicable Saves the document to the specified
file location.

t.saveModelToFile(modelOutput,
filename)

Not applicable Saves the model to the specified file
location.

t.saveStreamToFile(stream,
filename)

Not applicable Saves the stream to the specified file
location.

Handling Errors
The Python language provides error handling via the try...except code block. This can be used within
scripts to trap exceptions and handle problems that would otherwise cause the script to terminate.

In the example script below, an attempt is made to retrieve a model from a IBM SPSS Collaboration and
Deployment Services Repository. This operation can cause an exception to be thrown, for example, the
repository login credentials might not have been set up correctly, or the repository path is wrong. In the
script, this may cause a ModelerException to be thrown (all exceptions that are generated by IBM SPSS
Modeler are derived from modeler.api.ModelerException).
import modeler.api

session = modeler.script.session()
try:

repo = session.getRepository()
m = repo.retrieveModel("/some-non-existent-path", None, None, True)
print goes to the Modeler UI script panel Debug tab
print "Everything OK"

except modeler.api.ModelerException, e:
print "An error occurred:", e.getMessage()

Chapter 4. The Scripting API 39

Note: Some scripting operations may cause standard Java exceptions to be thrown; these are not derived
from ModelerException. In order to catch these exceptions, an additional except block can be used to
catch all Java exceptions, for example:
import modeler.api

session = modeler.script.session()
try:

repo = session.getRepository()
m = repo.retrieveModel("/some-non-existent-path", None, None, True)
print goes to the Modeler UI script panel Debug tab
print "Everything OK"

except modeler.api.ModelerException, e:
print "An error occurred:", e.getMessage()

except java.lang.Exception, e:
print "A Java exception occurred:", e.getMessage()

Stream, Session, and SuperNode Parameters
Parameters provide a useful way of passing values at runtime, rather than hard coding them directly in a
script. Parameters and their values are defined in the same as way for streams, that is, as entries in the
parameters table of a stream or SuperNode, or as parameters on the command line. The Stream and
SuperNode classes implement a set of functions defined by the ParameterProvider object as shown in the
following table. Session provides a getParameters() call which returns an object that defines those
functions.

Table 21. Functions defined by the ParameterProvider object

Method Return type Description

p.parameterIterator() Iterator Returns an iterator of parameter
names for this object.

p.getParameterDefinition(
parameterName)

ParameterDefinition Returns the parameter definition for
the parameter with the specified
name, or None if no such parameter
exists in this provider. The result may
be a snapshot of the definition at the
time the method was called and need
not reflect any subsequent
modifications made to the parameter
through this provider.

p.getParameterLabel(parameterName) string Returns the label of the named
parameter, or None if no such
parameter exists.

p.setParameterLabel(parameterName,
label)

Not applicable Sets the label of the named
parameter.

p.getParameterStorage(
parameterName)

ParameterStorage Returns the storage of the named
parameter, or None if no such
parameter exists.

p.setParameterStorage(
parameterName, storage)

Not applicable Sets the storage of the named
parameter.

p.getParameterType(parameterName) ParameterType Returns the type of the named
parameter, or None if no such
parameter exists.

p.setParameterType(parameterName,
type)

Not applicable Sets the type of the named
parameter.

p.getParameterValue(parameterName) Object Returns the value of the named
parameter, or None if no such
parameter exists.

40 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 21. Functions defined by the ParameterProvider object (continued)

Method Return type Description

p.setParameterValue(parameterName,
value)

Not applicable Sets the value of the named
parameter.

In the following example, the script aggregates some Telco data to find which region has the lowest
average income data. A stream parameter is then set with this region. That stream parameter is then used
in a Select node to exclude that region from the data, before a churn model is built on the remainder.

The example is artificial because the script generates the Select node itself and could therefore have
generated the correct value directly into the Select node expression. However, streams are typically
pre-built, so setting parameters in this way provides a useful example.

The first part of the example script creates the stream parameter that will contain the region with the
lowest average income. The script also creates the nodes in the aggregation branch and the model
building branch, and connects them together.
import modeler.api

stream = modeler.script.stream()

Initialize a stream parameter
stream.setParameterStorage("LowestRegion", modeler.api.ParameterStorage.INTEGER)

First create the aggregation branch to compute the average income per region
statisticsimportnode = stream.createAt("statisticsimport", "SPSS File", 114, 142)
statisticsimportnode.setPropertyValue("full_filename", "$CLEO_DEMOS/telco.sav")
statisticsimportnode.setPropertyValue("use_field_format_for_storage", True)

aggregatenode = modeler.script.stream().createAt("aggregate", "Aggregate", 294, 142)
aggregatenode.setPropertyValue("keys", ["region"])
aggregatenode.setKeyedPropertyValue("aggregates", "income", ["Mean"])

tablenode = modeler.script.stream().createAt("table", "Table", 462, 142)

stream.link(statisticsimportnode, aggregatenode)
stream.link(aggregatenode, tablenode)

selectnode = stream.createAt("select", "Select", 210, 232)
selectnode.setPropertyValue("mode", "Discard")
Reference the stream parameter in the selection
selectnode.setPropertyValue("condition", "’region’ = ’$P-LowestRegion’")

typenode = stream.createAt("type", "Type", 366, 232)
typenode.setKeyedPropertyValue("direction", "churn", "Target")

c50node = stream.createAt("c50", "C5.0", 534, 232)

stream.link(statisticsimportnode, selectnode)
stream.link(selectnode, typenode)
stream.link(typenode, c50node)

The example script creates the following stream.

Chapter 4. The Scripting API 41

The following part of the example script executes the Table node at the end of the aggregation branch.
First execute the table node
results = []
tablenode.run(results)

The following part of the example script accesses the table output that was generated by the execution of
the Table node. The script then iterates through rows in the table, looking for the region with the lowest
average income.
Running the table node should produce a single table as output
table = results[0]

table output contains a RowSet so we can access values as rows and columns
rowset = table.getRowSet()
min_income = 1000000.0
min_region = None

From the way the aggregate node is defined, the first column
contains the region and the second contains the average income
row = 0
rowcount = rowset.getRowCount()
while row < rowcount:

if rowset.getValueAt(row, 1) < min_income:
min_income = rowset.getValueAt(row, 1)
min_region = rowset.getValueAt(row, 0)

row += 1

The following part of the script uses the region with the lowest average income to set the "LowestRegion"
stream parameter that was created earlier. The script then runs the model builder with the specified
region excluded from the training data.
Check that a value was assigned
if min_region != None:

stream.setParameterValue("LowestRegion", min_region)
else:

stream.setParameterValue("LowestRegion", -1)

Finally run the model builder with the selection criteria
c50node.run([])

The complete example script is shown below.
import modeler.api

stream = modeler.script.stream()

Figure 5. Stream that results from the example script

42 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Create a stream parameter
stream.setParameterStorage("LowestRegion", modeler.api.ParameterStorage.INTEGER)

First create the aggregation branch to compute the average income per region
statisticsimportnode = stream.createAt("statisticsimport", "SPSS File", 114, 142)
statisticsimportnode.setPropertyValue("full_filename", "$CLEO_DEMOS/telco.sav")
statisticsimportnode.setPropertyValue("use_field_format_for_storage", True)

aggregatenode = modeler.script.stream().createAt("aggregate", "Aggregate", 294, 142)
aggregatenode.setPropertyValue("keys", ["region"])
aggregatenode.setKeyedPropertyValue("aggregates", "income", ["Mean"])

tablenode = modeler.script.stream().createAt("table", "Table", 462, 142)

stream.link(statisticsimportnode, aggregatenode)
stream.link(aggregatenode, tablenode)

selectnode = stream.createAt("select", "Select", 210, 232)
selectnode.setPropertyValue("mode", "Discard")
Reference the stream parameter in the selection
selectnode.setPropertyValue("condition", "’region’ = ’$P-LowestRegion’")

typenode = stream.createAt("type", "Type", 366, 232)
typenode.setKeyedPropertyValue("direction", "churn", "Target")

c50node = stream.createAt("c50", "C5.0", 534, 232)

stream.link(statisticsimportnode, selectnode)
stream.link(selectnode, typenode)
stream.link(typenode, c50node)

First execute the table node
results = []
tablenode.run(results)

Running the table node should produce a single table as output
table = results[0]

table output contains a RowSet so we can access values as rows and columns
rowset = table.getRowSet()
min_income = 1000000.0
min_region = None

From the way the aggregate node is defined, the first column
contains the region and the second contains the average income
row = 0
rowcount = rowset.getRowCount()
while row < rowcount:

if rowset.getValueAt(row, 1) < min_income:
min_income = rowset.getValueAt(row, 1)
min_region = rowset.getValueAt(row, 0)

row += 1

Check that a value was assigned
if min_region != None:

stream.setParameterValue("LowestRegion", min_region)
else:

stream.setParameterValue("LowestRegion", -1)

Finally run the model builder with the selection criteria
c50node.run([])

Chapter 4. The Scripting API 43

Global Values
Global values are used to compute various summary statistics for specified fields. These summary values
can be accessed anywhere within the stream. Global values are similar to stream parameters in that they
are accessed by name through the stream. They are different from stream parameters in that the
associated values are updated automatically when a Set Globals node is run, rather than being assigned
by scripting or from the command line. The global values for a stream are accessed by calling the
stream's getGlobalValues() method.

The GlobalValues object defines the functions that are shown in the following table.

Table 22. Functions that are defined by the GlobalValues object

Method Return type Description

g.fieldNameIterator() Iterator Returns an iterator for each field
name with at least one global value.

g.getValue(type, fieldName) Object Returns the global value for the
specified type and field name, or
None if no value can be located. The
returned value is generally expected
to be a number, although future
functionality may return different
value types.

g.getValues(fieldName) Map Returns a map containing the known
entries for the specified field name,
or None if there are no existing entries
for the field.

GlobalValues.Type defines the type of summary statistics that are available. The following summary
statistics are available:
v MAX: the maximum value of the field.
v MEAN: the mean value of the field.
v MIN: the minimum value of the field.
v STDDEV: the standard deviation of the field.
v SUM: the sum of the values in the field.

For example, the following script accesses the mean value of the "income" field, which is computed by a
Set Globals node:
import modeler.api

globals = modeler.script.stream().getGlobalValues()
mean_income = globals.getValue(modeler.api.GlobalValues.Type.MEAN, "income")

Working with Multiple Streams: Standalone Scripts
To work with multiple streams, a standalone script must be used. The standalone script can be edited
and run within the IBM SPSS Modeler UI or passed as a command line parameter in batch mode.

The following standalone script opens two streams. One of these streams builds a model, while the
second stream plots the distribution of the predicted values.
Change to the appropriate location for your system
demosDir = "C:/Program Files/IBM/SPSS/Modeler/16/DEMOS/streams/"

session = modeler.script.session()
tasks = session.getTaskRunner()

44 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Open the model build stream, locate the C5.0 node and run it
buildstream = tasks.openStreamFromFile(demosDir + "druglearn.str", True)
c50node = buildstream.findByType("c50", None)
results = []
c50node.run(results)

Now open the plot stream, find the Na_to_K derive and the histogram
plotstream = tasks.openStreamFromFile(demosDir + "drugplot.str", True)
derivenode = plotstream.findByType("derive", None)
histogramnode = plotstream.findByType("histogram", None)

Create a model applier node, insert it between the derive and histogram nodes
then run the histgram
applyc50 = plotstream.createModelApplier(results[0], results[0].getName())
applyc50.setPositionBetween(derivenode, histogramnode)
plotstream.linkBetween(applyc50, derivenode, histogramnode)
histogramnode.setPropertyValue("color_field", "$C-Drug")
histogramnode.run([])

Finally, tidy up the streams
buildstream.close()
plotstream.close()

Chapter 4. The Scripting API 45

46 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 5. Scripting Tips

This section provides an overview of tips and techniques for using scripts, including modifying stream
execution and using an encoded password in a script.

Modifying Stream Execution
When a stream is run, its terminal nodes are executed in an order optimized for the default situation. In
some cases, you may prefer a different execution order. To modify the execution order of a stream,
complete the following steps from the Execution tab of the stream properties dialog box:
1. Begin with an empty script.
2. Click the Append default script button on the toolbar to add the default stream script.
3. Change the order of statements in the default stream script to the order in which you want statements

to be executed.

Working with models
If automatic model replacement is enabled in IBM SPSS Modeler, and a model builder node is executed
through the IBM SPSS Modeler user interface, an existing model nugget that is linked to the model
builder node is replaced with the new model nugget. If the model builder node is executed using a
script, the existing linked model nugget is not replaced. To replace the existing model nugget, you must
explicitly specify the replacement of the nugget in your script.

Generating an Encoded Password
In certain cases, you may need to include a password in a script; for example, you may want to access a
password-protected data source. Encoded passwords can be used in:
v Node properties for Database Source and Output nodes
v Command line arguments for logging into the server
v Database connection properties stored in a .par file (the parameter file generated from the Publish tab

of an export node)

Through the user interface, a tool is available to generate encoded passwords based on the Blowfish
algorithm (see http://www.schneier.com/blowfish.html for more information). Once encoded, you can copy
and store the password to script files and command line arguments. The node property epassword used
for database and databaseexport stores the encoded password.
1. To generate an encoded password, from the Tools menu choose:

Encode Password...

2. Specify a password in the Password text box.
3. Click Encode to generate a random encoding of your password.
4. Click the Copy button to copy the encoded password to the Clipboard.
5. Paste the password to the desired script or parameter.

Script Checking
You can quickly check the syntax of all types of scripts by clicking the red check button on the toolbar of
the Standalone Script dialog box.

47

Script checking alerts you to any errors in your code and makes recommendations for improvement. To
view the line with errors, click on the feedback in the lower half of the dialog box. This highlights the
error in red.

Scripting from the Command Line
Scripting enables you to run operations typically performed in the user interface. Simply specify and run
a standalone stream on the command line when launching IBM SPSS Modeler.

For example:
client -script scores.py -execute

The -script flag loads the specified script, while the -execute flag executes all commands in the script
file.

Specifying File Paths
When specifying file paths to directories and files, you can use either a single forward slash (/) or a
double backslash (\\) as the directory separator, for example
c:/demos/druglearn.str

or
c:\\demos\\druglearn.str

Compatibility with Previous Releases
Legacy scripts that were created in previous releases of IBM SPSS Modeler should generally work
unchanged in the current release. For the scripts to work, Legacy must be selected on the stream script
tab in the Stream Properties dialog box, or the Standalone Script dialog box. Model nuggets may now be
inserted in the stream automatically (this is the default setting), and may either replace or supplement an
existing nugget of that type in the stream. Whether this actually happens depends on the settings of the
Add model to stream and Replace previous model options (Tools > Options > User Options >
Notifications). You may, for example, need to modify a script from a previous release in which nugget
replacement is handled by deleting the existing nugget and inserting the new one.

Scripts created in the current release may not work in earlier releases.

Python scripts created in the current release will not work in earlier releases.

If a script created in an older release uses a command that has since been replaced (or deprecated), the
old form will still be supported, but a warning message will be displayed. For example, the old
generated keyword has been replaced by model, and clear generated has been replaced by clear
generated palette. Scripts that use the old forms will still run, but a warning will be displayed.

Figure 6. Stream script toolbar icons

48 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 6. Command Line Arguments

Invoking the Software
You can use the command line of your operating system to launch IBM SPSS Modeler as follows:
1. On a computer where IBM SPSS Modeler is installed, open a DOS, or command-prompt, window.
2. To launch the IBM SPSS Modeler interface in interactive mode, type the modelerclient command

followed by the required arguments; for example:
modelerclient -stream report.str -execute

The available arguments (flags) allow you to connect to a server, load streams, run scripts, or specify
other parameters as needed.

Using Command Line Arguments
You can append command line arguments (also referred to as flags) to the initial modelerclient
command to alter the invocation of IBM SPSS Modeler.

Several types of command line arguments are available, and are described later in this section.

Table 23. Types of command line arguments.

Argument type Where described

System arguments See the topic “System Arguments” on page 50 for more
information.

Parameter arguments See the topic “Parameter Arguments” on page 51 for
more information.

Server connection arguments See the topic “Server Connection Arguments” on page 51
for more information.

IBM SPSS Collaboration and Deployment Services
Repository connection arguments

See the topic “IBM SPSS Collaboration and Deployment
Services Repository Connection Arguments” on page 52
for more information.

For example, you can use the -server, -stream and -execute flags to connect to a server and then load
and run a stream, as follows:
modelerclient -server -hostname myserver -port 80 -username dminer
-password 1234 -stream mystream.str -execute

Note that when running against a local client installation, the server connection arguments are not
required.

Parameter values that contain spaces can be enclosed in double quotes—for example:
modelerclient -stream mystream.str -Pusername="Joe User" -execute

You can also execute IBM SPSS Modeler scripts in this manner, using the -script flag.

Debugging Command Line Arguments

© Copyright IBM Corporation 1994, 2013 49

To debug a command line, use the modelerclient command to launch IBM SPSS Modeler with the
desired arguments. This enables you to verify that commands will execute as expected. You can also
confirm the values of any parameters passed from the command line in the Session Parameters dialog
box (Tools menu, Set Session Parameters).

System Arguments
The following table describes system arguments available for command line invocation of the user
interface.

Table 24. System arguments

Argument Behavior/Description

@ <commandFile> The @ character followed by a filename specifies a command list. When
modelerclient encounters an argument beginning with @, it operates on the
commands in that file as if they had been on the command line. See the topic
“Combining Multiple Arguments” on page 53 for more information.

-directory <dir> Sets the default working directory. In local mode, this directory is used for both data
and output. Example: -directory c:/ or -directory c:\\

-server_directory <dir> Sets the default server directory for data. The working directory, specified by using
the -directory flag, is used for output.

-execute After starting, execute any stream, state, or script loaded at startup. If a script is
loaded in addition to a stream or state, the script alone will be executed.

-stream <stream> At startup, load the stream specified. Multiple streams can be specified, but the last
stream specified will be set as the current stream.

-script <script> At startup, load the standalone script specified. This can be specified in addition to a
stream or state as described below, but only one script can be loaded at startup. If the
script file suffix is .py, the file is assumed to be a Python script, otherwise it is
assumed to be a legacy script.

-model <model> At startup, load the generated model (.gm format file) specified.

-state <state> At startup, load the saved state specified.

-project <project> Load the specified project. Only one project can be loaded at startup.

-output <output> At startup, load the saved output object (.cou format file).

-help Display a list of command line arguments. When this option is specified, all other
arguments are ignored and the Help screen is displayed.

-P <name>=<value> Used to set a startup parameter. Can also be used to set node properties (slot
parameters).

-scriptlang <python |
legacy>

This can be used to specify the scripting language associated with -script option,
regardless of the script file suffix.

Example

client -scriptlang python -script scores.txt -execute

This runs the supplied script file using Python even though the file suffix was not
.py.

Note: Default directories can also be set in the user interface. To access the options, from the File menu,
choose Set Working Directory or Set Server Directory.

Loading Multiple Files

From the command line, you can load multiple streams, states, and outputs at startup by repeating the
relevant argument for each object loaded. For example, to load and run two streams called report.str and
train.str, you would use the following command:

50 IBM SPSS Modeler 16 Python Scripting and Automation Guide

modelerclient -stream report.str -stream train.str -execute

Loading Objects from the IBM SPSS Collaboration and Deployment Services Repository

Because you can load certain objects from a file or from the IBM SPSS Collaboration and Deployment
Services Repository (if licensed), the filename prefix spsscr: and, optionally, file: (for objects on disk)
tells IBM SPSS Modeler where to look for the object. The prefix works with the following flags:
v -stream

v -script

v -output

v -model

v -project

You use the prefix to create a URI that specifies the location of the object—for example, -stream
"spsscr:///folder_1/scoring_stream.str". The presence of the spsscr: prefix requires that a valid
connection to the IBM SPSS Collaboration and Deployment Services Repository has been specified in the
same command. So, for example, the full command would look like this:
modelerclient -spsscr_hostname myhost -spsscr_port 8080
-spsscr_username myusername -spsscr_password mypassword
-stream "spsscr:///folder_1/scoring_stream.str" -execute

Note that from the command line, you must use a URI. The simpler REPOSITORY_PATH is not supported. (It
works only within scripts.)

Parameter Arguments
Parameters can be used as flags during command line execution of IBM SPSS Modeler. In command line
arguments, the -P flag is used to denote a parameter of the form -P <name>=<value>.

Parameters can be any of the following:
v Simple parameters

v Slot parameters, also referred to as node properties. These parameters are used to modify the settings
of nodes in the stream. See the topic “Node Properties Overview” on page 56 for more information.

v Command line parameters, used to alter the invocation of IBM SPSS Modeler.

For example, you can supply data source user names and passwords as a command line flag, as follows:
modelerclient -stream response.str -P:database.datasource={"ORA 10gR2", user1, mypsw, true}

The format is the same as that of the datasource parameter of the database node property. See the topic
“database Node Properties” on page 64 for more information.

Server Connection Arguments
The -server flag tells IBM SPSS Modeler that it should connect to a public server, and the flags
-hostname, -use_ssl, -port, -username, -password, and -domain are used to tell IBM SPSS Modeler how to
connect to the public server. If no -server argument is specified, the default or local server is used.

Examples

To connect to a public server:
modelerclient -server -hostname myserver -port 80 -username dminer
-password 1234 -stream mystream.str -execute

To connect to a server cluster:

Chapter 6. Command Line Arguments 51

modelerclient -server -cluster "QA Machines" \
-spsscr_hostname pes_host -spsscr_port 8080 \
-spsscr_username asmith -spsscr_epassword xyz

Note that connecting to a server cluster requires the Coordinator of Processes through IBM SPSS
Collaboration and Deployment Services, so the -cluster argument must be used in combination with the
repository connection options (spsscr_*). See the topic “IBM SPSS Collaboration and Deployment
Services Repository Connection Arguments” for more information.

Table 25. Server connection arguments.

Argument Behavior/Description

-server Runs IBM SPSS Modeler in server mode, connecting to a public server using the
flags -hostname, -port, -username, -password, and -domain.

-hostname <name> The hostname of the server machine. Available in server mode only.

-use_ssl Specifies that the connection should use SSL (secure socket layer). This flag is
optional; the default setting is not to use SSL.

-port <number> The port number of the specified server. Available in server mode only.

-cluster <name> Specifies a connection to a server cluster rather than a named server; this argument
is an alternative to the hostname, port and use_ssl arguments. The name is the
cluster name, or a unique URI which identifies the cluster in the IBM SPSS
Collaboration and Deployment Services Repository. The server cluster is managed
by the Coordinator of Processes through IBM SPSS Collaboration and Deployment
Services. See the topic “IBM SPSS Collaboration and Deployment Services
Repository Connection Arguments” for more information.

-username <name> The user name with which to log on to the server. Available in server mode only.

-password <password> The password with which to log on to the server. Available in server mode only.
Note: If the -password argument is not used, you will be prompted for a password.

-epassword
<encodedpasswordstring>

The encoded password with which to log on to the server. Available in server
mode only. Note: An encoded password can be generated from the Tools menu of
the IBM SPSS Modeler application.

-domain <name> The domain used to log on to the server. Available in server mode only.

-P <name>=<value> Used to set a startup parameter. Can also be used to set node properties (slot
parameters).

IBM SPSS Collaboration and Deployment Services Repository
Connection Arguments
Note: A separate license is required to access an IBM SPSS Collaboration and Deployment Services
repository. For more information, see http://www.ibm.com/software/analytics/spss/products/
deployment/cds/

If you want to store or retrieve objects from IBM SPSS Collaboration and Deployment Services via the
command line, you must specify a valid connection to the IBM SPSS Collaboration and Deployment
Services Repository. For example:
modelerclient -spsscr_hostname myhost -spsscr_port 8080
-spsscr_username myusername -spsscr_password mypassword
-stream "spsscr:///folder_1/scoring_stream.str" -execute

The following table lists the arguments that can be used to set up the connection.

52 IBM SPSS Modeler 16 Python Scripting and Automation Guide

http://www.ibm.com/software/analytics/spss/products/deployment/cds/
http://www.ibm.com/software/analytics/spss/products/deployment/cds/

Table 26. IBM SPSS Collaboration and Deployment Services Repository connection arguments

Argument Behavior/Description

-spsscr_hostname <hostname or IP
address>

The hostname or IP address of the server on which the IBM SPSS
Collaboration and Deployment Services Repository is installed.

-spsscr_port <number> The port number on which the IBM SPSS Collaboration and Deployment
Services Repository accepts connections (typically, 8080 by default).

-spsscr_use_ssl Specifies that the connection should use SSL (secure socket layer). This
flag is optional; the default setting is not to use SSL.

-spsscr_username <name> The user name with which to log on to the IBM SPSS Collaboration and
Deployment Services Repository.

-spsscr_password <password> The password with which to log on to the IBM SPSS Collaboration and
Deployment Services Repository.

-spsscr_epassword <encoded password> The encoded password with which to log on to the IBM SPSS
Collaboration and Deployment Services Repository.

-spsscr_domain <name> The domain used to log on to the IBM SPSS Collaboration and
Deployment Services Repository. This flag is optional—do not use it
unless you log on by using LDAP or Active Directory.

Combining Multiple Arguments
Multiple arguments can be combined in a single command file specified at invocation by using the @
symbol followed by the filename. This enables you to shorten the command line invocation and
overcome any operating system limitations on command length. For example, the following startup
command uses the arguments specified in the file referenced by <commandFileName>.
modelerclient @<commandFileName>

Enclose the filename and path to the command file in quotation marks if spaces are required, as follows:
modelerclient @ "C:\Program Files\IBM\SPSS\Modeler\nn\scripts\my_command_file.txt"

The command file can contain all arguments previously specified individually at startup, with one
argument per line. For example:
-stream report.str
-Porder.full_filename=APR_orders.dat
-Preport.filename=APR_report.txt
-execute

When writing and referencing command files, be sure to follow these constraints:
v Use only one command per line.
v Do not embed an @CommandFile argument within a command file.

Chapter 6. Command Line Arguments 53

54 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 7. Properties Reference

Properties Reference Overview
You can specify a number of different properties for nodes, streams, SuperNodes, and projects. Some
properties are common to all nodes, such as name, annotation, and ToolTip, while others are specific to
certain types of nodes. Other properties refer to high-level stream operations, such as caching or
SuperNode behavior. Properties can be accessed through the standard user interface (for example, when
you open a dialog box to edit options for a node) and can also be used in a number of other ways.
v Properties can be modified through scripts, as described in this section. For more information, see

“Setting properties” on page 27.
v Node properties can be used in SuperNode parameters.
v Node properties can also be used as part of a command line option (using the -P flag) when starting

IBM SPSS Modeler.

In the context of scripting within IBM SPSS Modeler, node and stream properties are often called slot
parameters. In this guide, they are referred to as node or stream properties.

For more information on the scripting language, see Chapter 2, “The Scripting Language,” on page 13.

Abbreviations
Standard abbreviations are used throughout the syntax for node properties. Learning the abbreviations is
helpful in constructing scripts.

Table 27. Standard abbreviations used throughout the syntax.

Abbreviation Meaning

abs Absolute value

len Length

min Minimum

max Maximum

correl Correlation

covar Covariance

num Number or numeric

pct Percent or percentage

transp Transparency

xval Cross-validation

var Variance or variable (in source nodes)

Node and Stream Property Examples
Node and stream properties can be used in a variety of ways with IBM SPSS Modeler. They are most
commonly used as part of a script, either a standalone script, used to automate multiple streams or
operations, or a stream script, used to automate processes within a single stream. You can also specify
node parameters by using the node properties within the SuperNode. At the most basic level, properties
can also be used as a command line option for starting IBM SPSS Modeler. Using the -p argument as part
of command line invocation, you can use a stream property to change a setting in the stream.

55

See the topics “Stream, Session, and SuperNode Parameters” on page 40 and “System Arguments” on
page 50 for further scripting examples.

Node Properties Overview
Each type of node has its own set of legal properties, and each property has a type. This type may be a
general type—number, flag, or string—in which case settings for the property are coerced to the correct
type. An error is raised if they cannot be coerced. Alternatively, the property reference may specify the
range of legal values, such as Discard, PairAndDiscard, and IncludeAsText, in which case an error is
raised if any other value is used. Flag properties should be read or set by using values of True and False.
In this guide's reference tables, the structured properties are indicated as such in the Property description
column, and their usage formats are given.

Common Node Properties
A number of properties are common to all nodes (including SuperNodes) in IBM SPSS Modeler.

Table 28. Common node properties.

Property name Data type Property description

use_custom_name boolean

name string Read-only property that reads the name (either auto
or custom) for a node on the canvas.

custom_name string Specifies a custom name for the node.

tooltip string

annotation string

keywords string Structured slot that specifies a list of keywords
associated with the object

cache_enabled boolean

node_type source_supernode
process_supernode
terminal_supernode
all node names as specified
for scripting

Read-only property used to refer to a node by type.
For example, instead of referring to a node only by
name, such as real_income, you can also specify the
type, such as userinput or filter.

SuperNode-specific properties are discussed separately, as with all other nodes. See the topic Chapter 19,
“SuperNode Properties,” on page 231 for more information.

56 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 8. Stream Properties

A variety of stream properties can be controlled by scripting.

The script can access the current stream using the stream() function in the modeler.script module, for
example:
mystream = modeler.script.stream()

To reference stream properties, you must use a special stream variable, denoted with a ^ preceding the
stream.

The nodes property is used to refer to the nodes in the current stream.

Stream properties are described in the following table.

Table 29. Stream properties.

Property name Data type Property description

execute_method Normal
Script

date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

date_baseline number

date_2digit_baseline number

© Copyright IBM Corporation 1994, 2013 57

Table 29. Stream properties (continued).

Property name Data type Property description

time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

time_rollover boolean

import_datetime_as_string boolean

decimal_places number

decimal_symbol Default
Period
Comma

angles_in_radians boolean

use_max_set_size boolean

max_set_size number

ruleset_evaluation Voting
FirstHit

refresh_source_nodes boolean Use to refresh source nodes
automatically upon stream execution.

script string

script_language Python
Legacy

Sets the scripting language for the
stream script.

annotation string

encoding SystemDefault
"UTF-8"

stream_rewriting boolean

stream_rewriting_maximise_sql boolean

stream_rewriting_optimise_clem_
execution

boolean

stream_rewriting_optimise_syntax_
execution

boolean

enable_parallelism boolean

sql_generation boolean

database_caching boolean

sql_logging boolean

sql_generation_logging boolean

sql_log_native boolean

sql_log_prettyprint boolean

58 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 29. Stream properties (continued).

Property name Data type Property description

record_count_suppress_input boolean

record_count_feedback_interval integer

use_stream_auto_create_node_
settings

boolean If true, then stream-specific settings
are used, otherwise user preferences
are used.

create_model_applier_for_new_
models

boolean If true, when a model builder creates
a new model, and it has no active
update links, a new model applier is
added.

create_model_applier_update_links createEnabled
createDisabled
doNotCreate

Defines the type of link created when
a model applier node is added
automatically.

create_source_node_from_builders boolean If true, when a source builder creates
a new source output, and it has no
active update links, a new source
node is added.

create_source_node_update_links createEnabled
createDisabled
doNotCreate

Defines the type of link created when
a source node is added automatically.

Chapter 8. Stream Properties 59

60 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 9. Source Node Properties

Source Node Common Properties
Properties that are common to all source nodes are listed below, with information on specific nodes in the
topics that follow.

Table 30. Source node common properties.

Property name Data type Property description

direction Input
Target
Both
None
Partition
Split
Frequency
RecordID

Keyed property for field roles.
Note: The values In and Out are now deprecated.
Support for them may be withdrawn in a future
release.

type Range
Flag
Set
Typeless
Discrete
Ordered Set
Default

Type of field. Setting this property to Default will clear
any values property setting, and if value_mode is set to
Specify, it will be reset to Read. If value_mode is already
set to Pass or Read, it will be unaffected by the type
setting.

storage Unknown
String
Integer
Real
Time
Date
Timestamp

Read-only keyed property for field storage type.

check None
Nullify
Coerce
Discard
Warn
Abort

Keyed property for field type and range checking.

values [value value] For a continuous (range) field, the first value is the
minimum, and the last value is the maximum. For
nominal (set) fields, specify all values. For flag fields,
the first value represents false, and the last value
represents true. Setting this property automatically sets
the value_mode property to Specify.

value_mode Read
Pass
Read+
Current
Specify

Determines how values are set for a field on the
next data pass.
Note that you cannot set this property to Specify
directly; to use specific values, set the values
property.

default_value_mode Read
Pass

Specifies the default method for setting values for all
fields.
This setting can be overridden for specific fields by
using the value_mode property.

61

Table 30. Source node common properties (continued).

Property name Data type Property description

extend_values boolean Applies when value_mode is set to Read. Set to T to add
newly read values to any existing values for the field.
Set to F to discard existing values in favor of the newly
read values.

value_labels string Used to specify a value label.
Note that values must be specified first.

enable_missing boolean When set to T, activates tracking of missing values for
the field.

missing_values [value value ...] Specifies data values that denote missing data.

range_missing boolean When this property is set to T, specifies whether a
missing-value (blank) range is defined for a field.

missing_lower string When range_missing is true, specifies the lower bound
of the missing-value range.

missing_upper string When range_missing is true, specifies the upper bound
of the missing-value range.

null_missing boolean When this property is set to T, nulls (undefined values
that are displayed as $null$ in the software) are
considered missing values.

whitespace_missing boolean When this property is set to T, values containing only
white space (spaces, tabs, and new lines) are considered
missing values.

description string Used to specify a field label or description.

default_include boolean Keyed property to specify whether the default behavior
is to pass or filter fields:

include boolean Keyed property used to determine whether individual
fields are included or filtered:

new_name string

asimport Node Properties
The Analytic Server source enables you to run a stream on Hadoop Distributed File System (HDFS).

Table 31. asimport node properties.

asimport node properties Data type Property description

data_source string The name of the data source.

host string The name of the Analytic Server host.

port integer The port on which the Analytic
Server is listening.

tenant string In a multi-tenant environment, the
name of the tenant to which you
belong. In a single-tenant
environment, this defaults to ibm.

set_credentials boolean If user authentication on the Analytic
Server is the same as on SPSS
Modeler server, set this to false.
Otherwise, set to true.

62 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 31. asimport node properties (continued).

asimport node properties Data type Property description

user_name string The user name for logging in to the
Analytic Server. Only needed if
set_credentials is true.

password string The password for logging in to the
Analytic Server. Only needed if
set_credentials is true.

cognosimport Node Properties

The IBM Cognos BI source node imports data from Cognos BI databases.

Table 32. cognosimport node properties.

cognosimport node properties Data type Property description

mode Data
Report

Specifies whether to import Cognos BI data
(default) or reports.

cognos_connection {"string",boolean,
"string","string",
"string"}

A list property containing the connection
details for the Cognos server. The format is:
{"Cognos_server_URL", login_mode, "namespace",
"username", "password"}
where:

Cognos_server_URL is the URL of the Cognos
server containing the source
login_mode indicates whether anonymous login is
used, and is either true or
false; if set to true, the
following fields should be set to ""
namespace specifies the security authentication
provider used to log on to the server
username and password are those used to log on
to the Cognos server

cognos_package_name string The path and name of the Cognos package from
which you are importing data objects, for
example:
/Public Folders/GOSALES
Note: Only forward slashes are valid.

cognos_items {"field","field", ...
,"field"}

The name of one or more data objects to be
imported. The format of field is
[namespace].[query_subject].[query_item]

cognos_filters field The name of one or more filters to apply before
importing data.

cognos_data_parameters list Values for prompt parameters for data. Name-
and-value pairs are enclosed in braces, and
multiple pairs are separated by commas and
the whole string enclosed in square brackets.
Format:
[{"param1", "value"},...,{"paramN", "value"}]

Chapter 9. Source Node Properties 63

Table 32. cognosimport node properties (continued).

cognosimport node properties Data type Property description

cognos_report_directory field The Cognos path of a folder or package from
which to import reports, for example:
/Public Folders/GOSALES

Note: Only forward slashes are valid.

cognos_report_name field The path and name within the report location of a
report to import.

cognos_report_parameters list Values for report parameters. Name-and-value
pairs are enclosed in braces, and multiple pairs
are separated by commas and the whole string
enclosed in square brackets.
Format:
[{"param1", "value"},...,{"paramN", "value"}]

tm1import Node Properties

The IBM Cognos TM1 source node imports data from Cognos TM1 databases.

Table 33. tm1import node properties.

tm1import node properties Data type Property description

pm_host string The host name. For example:
set TM1_import.pm_host=
’http://9.191.86.82:9510/pmhub/pm’

tm1_connection {"field","field", ...
,"field"}

A list property containing the connection
details for the TM1 server. The format is:
{ “TM1_Server_Name”
"tm1_ username" "tm1_ password"}
: set TM1_import.tm1_connection=
[’Planning Sample’ admin apple]

selected_view {"field" "field"} A list property containing the details of the selected
TM1 cube and the name of the cube view from
where data will be imported into SPSS. For example:
: set TM1_import.selected_view=
{’plan_BudgetPlan’ ’Goal Input’}

database Node Properties

The Database node can be used to import data from a variety of other packages using ODBC
(Open Database Connectivity), including Microsoft SQL Server, DB2, Oracle, and others.

64 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 34. database node properties.

database node properties Data type Property description

mode Table
Query

Specify Table to connect to a database table by
using dialog box controls, or specify Query to
query the selected database by using SQL.

datasource string Database name (see also note below).

username string Database connection details (see also note
below).

password string

epassword string Specifies an encoded password as an
alternative to hard-coding a password in a
script.

See the topic “Generating an Encoded
Password” on page 47 for more information.
This property is read-only during execution.

tablename string Name of the table you want to access.

strip_spaces None
Left
Right
Both

Options for discarding leading and trailing
spaces in strings.

use_quotes AsNeeded
Always
Never

Specify whether table and column names are
enclosed in quotation marks when queries are
sent to the database (for example, if they
contain spaces or punctuation).

query string Specifies the SQL code for the query you want
to submit.

Note: If the database name (in the datasource property) contains one or more spaces, periods (also
known as a "full stop"), or underscores, you can use the "backslash double quote" format to treat it as
string. For example: \"db2v9.7.6_linux\" or: "\"TDATA 131\"".

Note: If the database name (in the datasource property) contains spaces, then instead of individual
properties for datasource, username and password, you can also use a single datasource property in the
following format:

Table 35. database node properties - datasource specific.

database node properties Data type Property description

datasource string Format:
[database_name,username,password[,true |
false]]

The last parameter is for use with encrypted
passwords. If this is set to true, the password
will be decrypted before use.

Use this format also if you are changing the data source; however, if you just want to change the
username or password, you can use the username or password properties.

Chapter 9. Source Node Properties 65

datacollectionimport Node Properties

Figure 7. Dimensions
Data Import node

The IBM SPSS Data Collection Data Import node imports survey data based on the IBM SPSS
Data Collection Data Model used by IBM Corp. market research products. The IBM SPSS
Data Collection Data Library must be installed to use this node.

Table 36. datacollectionimport node properties.

datacollectionimport node properties Data type Property description

metadata_name string The name of the MDSC. The special value
DimensionsMDD indicates that the standard IBM
SPSS Data Collection metadata document
should be used. Other possible values include:
mrADODsc
mrI2dDsc
mrLogDsc
mrQdiDrsDsc
mrQvDsc
mrSampleReportingMDSC
mrSavDsc
mrSCDsc
mrScriptMDSC

The special value none indicates that there is
no MDSC.

metadata_file string Name of the file where the metadata is stored.

casedata_name string The name of the CDSC. Possible values
include:
mrADODsc
mrI2dDsc
mrLogDsc
mrPunchDSC
mrQdiDrsDsc
mrQvDsc
mrRdbDsc2
mrSavDsc
mrScDSC
mrXmlDsc

The special value none indicates that there is
no CDSC.

casedata_source_type Unknown
File
Folder
UDL
DSN

Indicates the source type of the CDSC.

casedata_file string When casedata_source_type is File, specifies
the file containing the case data.

casedata_folder string When casedata_source_type is Folder, specifies
the folder containing the case data.

66 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 36. datacollectionimport node properties (continued).

datacollectionimport node properties Data type Property description

casedata_udl_string string When casedata_source_type is UDL, specifies
the OLD-DB connection string for the data
source containing the case data.

casedata_dsn_string string When casedata_source_type is DSN, specifies
the ODBC connection string for the data
source.

casedata_project string When reading case data from a IBM SPSS Data
Collection database, you can enter the name of
the project. For all other case data types, this
setting should be left blank.

version_import_mode All
Latest
Specify

Defines how versions should be handled.

specific_version string When version_import_mode is Specify, defines
the version of the case data to be imported.

use_language string Defines whether labels of a specific language
should be used.

language string If use_language is true, defines the language
code to use on import. The language code
should be one of those available in the case
data.

use_context string Defines whether a specific context should be
imported. Contexts are used to vary the
description associated with responses.

context string If use_context is true, defines the context to
import. The context should be one of those
available in the case data.

use_label_type string Defines whether a specific type of label should
be imported.

label_type string If use_label_type is true, defines the label
type to import. The label type should be one
of those available in the case data.

user_id string For databases requiring an explicit login, you
can provide a user ID and password to access
the data source.

password string

import_system_variables Common
None
All

Specifies which system variables are imported.

import_codes_variables boolean

import_sourcefile_variables boolean

import_multi_response MultipleFlags
Single

Chapter 9. Source Node Properties 67

excelimport Node Properties

The Excel Import node imports data from any version of Microsoft Excel. An ODBC data
source is not required.

Table 37. excelimport node properties.

excelimport node properties Data type Property description

excel_file_type Excel2003
Excel2007

full_filename string The complete filename, including path.

use_named_range Boolean Whether to use a named range. If true, the
named_range property is used to specify the
range to read, and other worksheet and data
range settings are ignored.

named_range string

worksheet_mode Index
Name

Specifies whether the worksheet is defined by
index or name.

worksheet_index integer Index of the worksheet to be read, beginning
with 0 for the first worksheet, 1 for the second,
and so on.

worksheet_name string Name of the worksheet to be read.

data_range_mode FirstNonBlank
ExplicitRange

Specifies how the range should be determined.

blank_rows StopReading
ReturnBlankRows

When data_range_mode is FirstNonBlank,
specifies how blank rows should be treated.

explicit_range_start string When data_range_mode is ExplicitRange,
specifies the starting point of the range to
read.

explicit_range_end string

read_field_names Boolean Specifies whether the first row in the specified
range should be used as field (column) names.

evimport Node Properties

The Enterprise View node creates a connection to an IBM SPSS Collaboration and
Deployment Services Repository, enabling you to read Enterprise View data into a stream and
to package a model in a scenario that can be accessed from the repository by other users.

Table 38. evimport node properties.

evimport node properties Data type Property description

connection list Structured property--list of
parameters making up an Enterprise
View connection.

tablename string The name of a table in the
Application View.

68 IBM SPSS Modeler 16 Python Scripting and Automation Guide

fixedfile Node Properties

The Fixed File node imports data from fixed-field text files—that is, files whose fields are not
delimited but start at the same position and are of a fixed length. Machine-generated or
legacy data are frequently stored in fixed-field format.

Table 39. fixedfile node properties.

fixedfile node properties Data type Property description

record_len number Specifies the number of characters in each
record.

line_oriented boolean Skips the new-line character at the end of each
record.

decimal_symbol Default
Comma
Period

The type of decimal separator used in your
data source.

skip_header number Specifies the number of lines to ignore at the
beginning of the first record. Useful for
ignoring column headers.

auto_recognize_datetime boolean Specifies whether dates or times are
automatically identified in the source data.

lines_to_scan number

fields list Structured property.

full_filename string Full name of file to read, including directory.

strip_spaces None
Left
Right
Both

Discards leading and trailing spaces in strings
on import.

invalid_char_mode Discard
Replace

Removes invalid characters (null, 0, or any
character non-existent in current encoding)
from the data input or replaces invalid
characters with the specified one-character
symbol.

invalid_char_replacement string

use_custom_values boolean

custom_storage Unknown
String
Integer
Real
Time
Date
Timestamp

Chapter 9. Source Node Properties 69

Table 39. fixedfile node properties (continued).

fixedfile node properties Data type Property description

custom_date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

This property is applicable only if a custom
storage has been specified.

custom_time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

This property is applicable only if a custom
storage has been specified.

custom_decimal_symbol field Applicable only if a custom storage has been
specified.

encoding StreamDefault
SystemDefault
"UTF-8"

Specifies the text-encoding method.

70 IBM SPSS Modeler 16 Python Scripting and Automation Guide

sasimport Node Properties

The SAS Import node imports SAS data into IBM SPSS Modeler.

Table 40. sasimport node properties.

sasimport node properties Data type Property description

format Windows
UNIX
Transport
SAS7
SAS8
SAS9

Format of the file to be imported.

full_filename string The complete filename that you enter,
including its path.

member_name string Specify the member to import from the
specified SAS transport file.

read_formats boolean Reads data formats (such as variable labels)
from the specified format file.

full_format_filename string

import_names NamesAndLabels
LabelsasNames

Specifies the method for mapping variable
names and labels on import.

simgen Node Properties

The Simulation Generate node provides an easy way to generate simulated data—either from
scratch using user specified statistical distributions or automatically using the distributions
obtained from running a Simulation Fitting node on existing historical data. This is useful
when you want to evaluate the outcome of a predictive model in the presence of uncertainty
in the model inputs.

Table 41. simgen node properties.

simgen node properties Data type Property description

fields Structured property

correlations Structured property

max_cases integer Minimum value is 1000, maximum
value is 2,147,483,647

create_iteration_field boolean

iteration_field_name string

replicate_results boolean

random_seed integer

overwrite_when_refitting boolean

parameter_xml string Returns the parameter Xml as a
string

Chapter 9. Source Node Properties 71

Table 41. simgen node properties (continued).

simgen node properties Data type Property description

distribution Bernoulli
Beta
Binomial
Categorical
Exponential
Fixed
Gamma
Lognormal
NegativeBinomialFailures
NegativeBinomialTrials
Normal
Poisson
Range
Triangular
Uniform
Weibull

bernoulli_prob number 0 ≤ bernoulli_prob ≤ 1

beta_shape1 number Must be ≥ 0

beta_shape2 number Must be ≥ 0

beta_min number Optional. Must be less than beta_max.

beta_max number Optional. Must be greater than
beta_min.

binomial_n integer Must be > 0

binomial_prob number 0 ≤ binomial_prob ≤ 1

binomial_min number Optional. Must be less than
binomial_max.

binomial_max number Optional. Must be greater than
binomial_min.

exponential_scale number Must be > 0

exponential_min number Optional. Must be less than
exponential_max.

exponential_max number Optional. Must be greater than
exponential_min.

fixed_value string

gamma_shape number Must be ≥ 0

gamma_scale number Must be ≥ 0

gamma_min number Optional. Must be less than
gamma_max.

gamma_max number Optional. Must be greater than
gamma_min.

lognormal_shape1 number Must be ≥ 0

lognormal_shape2 number Must be ≥ 0

lognormal_min number Optional. Must be less than
lognormal_max.

lognormal_max number Optional. Must be greater than
lognormal_min.

negative_bin_failures_threshold number Must be ≥ 0

negative_bin_failures_prob number 0 ≤ negative_bin_failures_prob ≤ 1

72 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 41. simgen node properties (continued).

simgen node properties Data type Property description

negative_bin_failures_min number Optional. Must be less than
negative_bin_failures_max.

negative_bin_failures_max number Optional. Must be greater than
negative_bin_failures_min.

negative_bin_trials_threshold number Must be ≥ 0

negative_bin_trials_prob number 0 ≤ negative_bin_trials_prob ≤ 1

negative_bin_trials_min number Optional. Must be less than
negative_bin_trials_max.

negative_bin_trials_max number Optional. Must be less than
negative_bin_trials_min.

normal_mean number

normal_sd number Must be > 0

normal_min number Optional. Must be less than
normal_max.

normal_max number Optional. Must be greater than
normal_min.

poisson_mean number Must be ≥ 0

poisson_min number Optional. Must be less than
poisson_max.

poisson_max number Optional. Must be greater than
poisson_min.

triangular_mode number triangular_min ≤ triangular_mode ≤
triangular_max

triangular_min number Must be less than triangular_mode

triangular_max number Must be greater than
triangular_mode

uniform_min number Must be less than uniform_max

uniform_max number Must be greater than uniform_min

weibull_rate number Must be ≥ 0

weibull_scale number Must be ≥ 0

weibull_location number Must be ≥ 0

weibull_min number Optional. Must be less than
weibull_max.

weibull_max number Optional. Must be greater than
weibull_min.

Correlation can be any number between +1 and -1. You can specify as many or as few correlations as you
like. Any unspecified correlations are set to zero. If any fields are unknown, the correlation value should
be set on the correlation matrix (or table) and is shown in red text. When there are unknown fields, it is
not possible to execute the node.

Chapter 9. Source Node Properties 73

statisticsimport Node Properties

The IBM SPSS Statistics File node reads data from the .sav file format used by IBM SPSS
Statistics, as well as cache files saved in IBM SPSS Modeler, which also use the same format.

The properties for this node are described under “statisticsimport Node Properties” on page 227.

userinput Node Properties

The User Input node provides an easy way to create synthetic data—either from scratch or by
altering existing data. This is useful, for example, when you want to create a test dataset for
modeling.

Table 42. userinput node properties.

userinput node properties Data type Property description

data The data for each field can be of different
lengths but must be consistent with the field’s
storage. Setting values for a field that isn't
present creates that field. Additionally, setting
the values for a field to an empty string (" ")
removes the specified field.
Note: The values that are entered for this
property must be strings, not numbers. For
example, the numbers 1, 2, 3 and 4 must be
entered as "1 2 3 4".

names Structured slot that sets or returns a list of
field names generated by the node.

custom_storage Unknown
String
Integer
Real
Time
Date
Timestamp

Keyed slot that sets or returns the storage for a
field.

data_mode Combined
Ordered

If Combined is specified, records are generated
for each combination of set values and
min/max values. The number of records
generated is equal to the product of the
number of values in each field. If Ordered is
specified, one value is taken from each column
for each record in order to generate a row of
data. The number of records generated is equal
to the largest number values associated with a
field. Any fields with fewer data values will be
padded with null values.

values This property has been deprecated in favor of data
and should no longer be used.

74 IBM SPSS Modeler 16 Python Scripting and Automation Guide

variablefile Node Properties

The Variable File node reads data from free-field text files—that is, files whose records contain
a constant number of fields but a varied number of characters. This node is also useful for
files with fixed-length header text and certain types of annotations.

Table 43. variablefile node properties.

variablefile node properties Data type Property description

skip_header number Specifies the number of characters to ignore at
the beginning of the first record.

num_fields_auto boolean Determines the number of fields in each
record automatically. Records must be
terminated with a new-line character.

num_fields number Manually specifies the number of fields in
each record.

delimit_space boolean Specifies the character used to delimit field
boundaries in the file.

delimit_tab boolean

delimit_new_line boolean

delimit_non_printing boolean

delimit_comma boolean In cases where the comma is both the field
delimiter and the decimal separator for
streams, set delimit_other to true, and specify
a comma as the delimiter by using the other
property.

delimit_other boolean Allows you to specify a custom delimiter
using the other property.

other string Specifies the delimiter used when
delimit_other is true.

decimal_symbol Default
Comma
Period

Specifies the decimal separator used in the
data source.

multi_blank boolean Treats multiple adjacent blank delimiter
characters as a single delimiter.

read_field_names boolean Treats the first row in the data file as labels for
the column.

strip_spaces None
Left
Right
Both

Discards leading and trailing spaces in strings
on import.

invalid_char_mode Discard
Replace

Removes invalid characters (null, 0, or any
character non-existent in current encoding)
from the data input or replaces invalid
characters with the specified one-character
symbol.

invalid_char_replacement string

break_case_by_newline boolean Specifies that the line delimiter is the newline
character.

lines_to_scan number Specifies how many lines to scan for specified
data types.

Chapter 9. Source Node Properties 75

Table 43. variablefile node properties (continued).

variablefile node properties Data type Property description

auto_recognize_datetime boolean Specifies whether dates or times are
automatically identified in the source data.

quotes_1 Discard
PairAndDiscard
IncludeAsText

Specifies how single quotation marks are
treated upon import.

quotes_2 Discard
PairAndDiscard
IncludeAsText

Specifies how double quotation marks are
treated upon import.

full_filename string Full name of file to be read, including
directory.

use_custom_values boolean

custom_storage Unknown
String
Integer
Real
Time
Date
Timestamp

custom_date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

Applicable only if a custom storage has been
specified.

76 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 43. variablefile node properties (continued).

variablefile node properties Data type Property description

custom_time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

Applicable only if a custom storage has been
specified.

custom_decimal_symbol field Applicable only if a custom storage has been
specified.

encoding StreamDefault
SystemDefault
"UTF-8"

Specifies the text-encoding method.

xmlimport Node Properties

The XML source node imports data in XML format into the stream. You can import a single
file, or all files in a directory. You can optionally specify a schema file from which to read the
XML structure.

Table 44. xmlimport node properties.

xmlimport node properties Data type Property description

read single
directory

Reads a single data file (default), or all XML
files in a directory.

recurse boolean Specifies whether to additionally read XML
files from all the subdirectories of the specified
directory.

full_filename string (required) Full path and file name of XML file
to import (if read = single).

directory_name string (required) Full path and name of directory
from which to import XML files (if read =
directory).

full_schema_filename string Full path and file name of XSD or DTD file
from which to read the XML structure. If you
omit this parameter, structure is read from the
XML source file.

records string XPath expression (e.g. /author/name) to
define the record boundary. Each time this
element is encountered in the source file, a
new record is created.

mode read
specify

Read all data (default), or specify which items
to read.

Chapter 9. Source Node Properties 77

Table 44. xmlimport node properties (continued).

xmlimport node properties Data type Property description

fields List of items (elements and attributes) to
import. Each item in the list is an XPath
expression.

78 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 10. Record Operations Node Properties

append Node Properties

The Append node concatenates sets of records. It is useful for combining datasets with similar
structures but different data.

Table 45. append node properties.

append node properties Data type Property description

match_by Position
Name

You can append datasets based on the position of
fields in the main data source or the name of
fields in the input datasets.

match_case boolean Enables case sensitivity when matching field
names.

include_fields_from Main
All

create_tag_field boolean

tag_field_name string

aggregate Node Properties

The Aggregate node replaces a sequence of input records with summarized, aggregated
output records.

Table 46. aggregate node properties.

aggregate node properties Data type Property description

keys [field field ... field] Lists fields that can be used as keys for
aggregation. For example, if Sex and Region are
your key fields, each unique combination of M
and F with regions N and S (four unique
combinations) will have an aggregated record.

contiguous boolean Select this option if you know that all records
with the same key values are grouped together
in the input (for example, if the input is sorted
on the key fields). Doing so can improve
performance.

aggregates Structured property listing the numeric fields
whose values will be aggregated, as well as the
selected modes of aggregation.

extension string Specify a prefix or suffix for duplicate aggregated
fields (sample below).

add_as Suffix
Prefix

79

Table 46. aggregate node properties (continued).

aggregate node properties Data type Property description

inc_record_count boolean Creates an extra field that specifies how many
input records were aggregated to form each
aggregate record.

count_field string Specifies the name of the record count field.

balance Node Properties

The Balance node corrects imbalances in a dataset, so it conforms to a specified condition. The
balancing directive adjusts the proportion of records where a condition is true by the factor
specified.

Table 47. balance node properties.

balance node properties Data type Property description

directives Structured property to balance proportion of
field values based on number specified (see
example below).

training_data_only boolean Specifies that only training data should be
balanced. If no partition field is present in the
stream, then this option is ignored.

The directives node property uses the format:

[{ number string } \ { number string} \ ... { number string }].

Note: If strings (using double quotation marks) are embedded in the expression, they need to be preceded
by the escape character " \ ". The " \ " character is also the line continuation character, allowing you to
line up the arguments for clarity.

derive_stb Node Properties

The Space-Time-Boxes node derives Space-Time-Boxes from latitude, longitude and timestamp
fields. You can also identify frequent Space-Time-Boxes as hangouts.

Table 48. derive_stb node properties.

derive_stb node properties Data type Property description

mode IndividualRecords
Hangouts

latitude_field field

longitude_field field

timestamp_field field

hangout_density density A single density. See densities for valid density
values.

80 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 48. derive_stb node properties (continued).

derive_stb node properties Data type Property description

densities [density,density,..., density] Each density is a string, for example
STB_GH8_1DAY.
Note: There are limits to which densities are
valid. For the geohash, values from GH1 to GH15
can be used. For the temporal part, the following
values can be used:

EVER
1YEAR
1MONTH
1DAY
12HOURS
8HOURS
6HOURS
4HOURS
3HOURS
2HOURS
1HOUR
30MINS
15MINS
10MINS
5MINS
2MINS
1MIN
30SECS
15SECS
10SECS
5SECS
2SECS
1SEC

id_field field

qualifying_duration 1DAY
12HOURS
8HOURS
6HOURS
4HOURS
3HOURS
2Hours
1HOUR
30MIN
15MIN
10MIN
5MIN
2MIN
1MIN
30SECS
15SECS
10SECS
5SECS
2SECS
1SECS

Must be a string.

min_events integer Minimum valid integer value is 2.

qualifying_pct integer Must be in the range of 1 and 100.

add_extension_as Prefix
Suffix

name_extension string

Chapter 10. Record Operations Node Properties 81

distinct Node Properties

The Distinct node removes duplicate records, either by passing the first distinct record to the
data stream or by discarding the first record and passing any duplicates to the data stream
instead.

Table 49. distinct node properties.

distinct node properties Data type Property description

mode Include
Discard

You can include the first distinct record in the
data stream, or discard the first distinct record
and pass any duplicate records to the data
stream instead.

grouping_fields [field field field] Lists fields used to determine whether records
are identical.
Note: This property is deprecated from IBM
SPSS Modeler 16 onwards.

composite_value Structured slot

composite_values Structured slot

inc_record_count boolean Creates an extra field that specifies how many
input records were aggregated to form each
aggregate record.

count_field string Specifies the name of the record count field.

sort_keys Structured slot. Note: This property is deprecated from IBM
SPSS Modeler 16 onwards.

default_ascending boolean

low_distinct_key_count boolean Specifies that you have only a small number of
records and/or a small number of unique values
of the key field(s).

keys_pre_sorted boolean Specifies that all records with the same key
values are grouped together in the input.

disable_sql_generation boolean

merge Node Properties

The Merge node takes multiple input records and creates a single output record containing
some or all of the input fields. It is useful for merging data from different sources, such as
internal customer data and purchased demographic data.

Table 50. merge node properties.

merge node properties Data type Property description

method Order
Keys
Condition

Specify whether records are merged in the order
they are listed in the data files, if one or more
key fields will be used to merge records with
the same value in the key fields, or if records
will be merged if a specified condition is
satisfied.

condition string If method is set to Condition, specifies the
condition for including or discarding records.

82 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 50. merge node properties (continued).

merge node properties Data type Property description

key_fields [field field field]

common_keys boolean

join Inner
FullOuter
PartialOuter
Anti

outer_join_tag.n boolean In this property, n is the tag name as displayed
in the Select Dataset dialog box. Note that
multiple tag names may be specified, as any
number of datasets could contribute incomplete
records.

single_large_input boolean Specifies whether optimization for having one
input relatively large compared to the other
inputs will be used.

single_large_input_tag string Specifies the tag name as displayed in the Select
Large Dataset dialog box. Note that the usage of
this property differs slightly from the
outer_join_tag property (boolean versus string)
because only one input dataset can be specified.

use_existing_sort_keys boolean Specifies whether the inputs are already sorted
by one or more key fields.

existing_sort_keys [{string Ascending} \ {string
Descending}]

Specifies the fields that are already sorted and
the direction in which they are sorted.

rfmaggregate Node Properties

The Recency, Frequency, Monetary (RFM) Aggregate node enables you to take customers'
historical transactional data, strip away any unused data, and combine all of their remaining
transaction data into a single row that lists when they last dealt with you, how many
transactions they have made, and the total monetary value of those transactions.

Table 51. rfmaggregate node properties.

rfmaggregate node properties Data type Property description

relative_to Fixed
Today

Specify the date from which the recency of
transactions will be calculated.

reference_date date Only available if Fixed is chosen in relative_to.

contiguous boolean If your data are presorted so that all records with
the same ID appear together in the data stream,
selecting this option speeds up processing.

id_field field Specify the field to be used to identify the
customer and their transactions.

date_field field Specify the date field to be used to calculate
recency against.

value_field field Specify the field to be used to calculate the
monetary value.

extension string Specify a prefix or suffix for duplicate aggregated
fields.

Chapter 10. Record Operations Node Properties 83

Table 51. rfmaggregate node properties (continued).

rfmaggregate node properties Data type Property description

add_as Suffix
Prefix

Specify if the extension should be added as a
suffix or a prefix.

discard_low_value_records boolean Enable use of the discard_records_below setting.

discard_records_below number Specify a minimum value below which any
transaction details are not used when calculating
the RFM totals. The units of value relate to the
value field selected.

only_recent_transactions boolean Enable use of either the
specify_transaction_date or
transaction_within_last settings.

specify_transaction_date boolean

transaction_date_after date Only available if specify_transaction_date is
selected. Specify the transaction date after which
records will be included in your analysis.

transaction_within_last number Only available if transaction_within_last is
selected. Specify the number and type of periods
(days, weeks, months, or years) back from the
Calculate Recency relative to date after which
records will be included in your analysis.

transaction_scale Days
Weeks
Months
Years

Only available if transaction_within_last is
selected. Specify the number and type of periods
(days, weeks, months, or years) back from the
Calculate Recency relative to date after which
records will be included in your analysis.

save_r2 boolean Displays the date of the second most recent
transaction for each customer.

save_r3 boolean Only available if save_r2 is selected. Displays the
date of the third most recent transaction for each
customer.

Rprocess Node Properties

The R Process node enables you to take data from an
IBM(r) SPSS(r) Modeler stream and modify the data using
your own custom R script. After the data is modified it is
returned to the stream.

Table 52. Rprocess node properties.

Rprocess node properties Data type Property description

syntax string

convert_flags StringsAndDoubles
LogicalValues

convert_datetime boolean

convert_datetime_class POSIXct
POSIXlt

convert_missing boolean

84 IBM SPSS Modeler 16 Python Scripting and Automation Guide

sample Node Properties

The Sample node selects a subset of records. A variety of sample types are supported,
including stratified, clustered, and nonrandom (structured) samples. Sampling can be useful
to improve performance, and to select groups of related records or transactions for analysis.

Table 53. sample node properties.

sample node properties Data type Property description

method Simple

Complex

mode Include
Discard

Include or discard records that meet the specified
condition.

sample_type First
OneInN
RandomPct

Specifies the sampling method.

first_n integer Records up to the specified cutoff point will be
included or discarded.

one_in_n number Include or discard every nth record.

rand_pct number Specify the percentage of records to include or
discard.

use_max_size boolean Enable use of the maximum_size setting.

maximum_size integer Specify the largest sample to be included or
discarded from the data stream. This option is
redundant and therefore disabled when First
and Include are specified.

set_random_seed boolean Enables use of the random seed setting.

random_seed integer Specify the value used as a random seed.

complex_sample_type Random
Systematic

sample_units Proportions
Counts

sample_size_proportions Fixed
Custom
Variable

sample_size_counts Fixed
Custom
Variable

fixed_proportions number

fixed_counts integer

variable_proportions field

variable_counts field

use_min_stratum_size boolean

minimum_stratum_size integer This option only applies when a Complex
sample is taken with Sample units=Proportions.

use_max_stratum_size boolean

maximum_stratum_size integer This option only applies when a Complex
sample is taken with Sample units=Proportions.

Chapter 10. Record Operations Node Properties 85

Table 53. sample node properties (continued).

sample node properties Data type Property description

clusters field

stratify_by [field1 ... fieldN]

specify_input_weight boolean

input_weight field

new_output_weight string

sizes_proportions [{string string value}{string
string value}...]

If sample_units=proportions and
sample_size_proportions=Custom, specifies a
value for each possible combination of values of
stratification fields.

default_proportion number

sizes_counts [{string string value}{string
string value}...]

Specifies a value for each possible combination of
values of stratification fields. Usage is similar to
sizes_proportions but specifying an integer
rather than a proportion.

default_count number

select Node Properties

The Select node selects or discards a subset of records from the data stream based on a
specific condition. For example, you might select the records that pertain to a particular sales
region.

Table 54. select node properties.

select node properties Data type Property description

mode Include
Discard

Specifies whether to include or discard selected
records.

condition string Condition for including or discarding records.

sort Node Properties

The Sort node sorts records into ascending or descending order based on the values of one or
more fields.

Table 55. sort node properties.

sort node properties Data type Property description

keys [{string Ascending} \ {string
Descending}]

Specifies the fields you want to sort against. If no
direction is specified, the default is used.

default_ascending boolean Specifies the default sort order.

use_existing_keys boolean Specifies whether sorting is optimized by using
the previous sort order for fields that are already
sorted.

86 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 55. sort node properties (continued).

sort node properties Data type Property description

existing_keys Specifies the fields that are already sorted and
the direction in which they are sorted. Uses the
same format as the keys property.

streamingts Node Properties

The Streaming TS node builds and scores time series models in one step, without the need for
a Time Intervals node.

Table 56. streamingts node properties.

streamingts node properties Data type Property description

custom_fields boolean If custom_fields=false, the settings from an
upstream Type node are used. If
custom_fields=true, targets and inputs must be
specified.

targets [field1...fieldN]

inputs [field1...fieldN]

method ExpertModeler
Exsmooth
Arima

calculate_conf boolean

conf_limit_pct real

use_time_intervals_node boolean If use_time_intervals_node=true, then the
settings from an upstream Time Intervals node
are used. Otherwise, interval_offset_position,
interval_offset, and interval_type must be
specified.

interval_offset_position LastObservation
LastRecord

LastObservation refers to Last valid observation.
LastRecord refers to Count back from last
record.

interval_offset number

interval_type Periods
Years
Quarters
Months
WeeksNonPeriodic
DaysNonPeriodic
HoursNonPeriodic
MinutesNonPeriodic
SecondsNonPeriodic

events fields

expert_modeler_method AllModels
Exsmooth
Arima

consider_seasonal boolean

detect_outliers boolean

expert_outlier_additive boolean

Chapter 10. Record Operations Node Properties 87

Table 56. streamingts node properties (continued).

streamingts node properties Data type Property description

expert_outlier_level_shift boolean

expert_outlier_innovational boolean

expert_outlier_transient boolean

expert_outlier_seasonal_additive boolean

expert_outlier_local_trend boolean

expert_outlier_additive_patch boolean

exsmooth_model_type Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicative

exsmooth_transformation_type None
SquareRoot
NaturalLog

arima_p integer Same property as for Time Series modeling node

arima_d integer Same property as for Time Series modeling node

arima_q integer Same property as for Time Series modeling node

arima_sp integer Same property as for Time Series modeling node

arima_sd integer Same property as for Time Series modeling node

arima_sq integer Same property as for Time Series modeling node

arima_transformation_type None
SquareRoot
NaturalLog

Same property as for Time Series modeling node

arima_include_constant boolean Same property as for Time Series modeling node

tf_arima_p.fieldname integer Same property as for Time Series modeling node.
For transfer functions.

tf_arima_d.fieldname integer Same property as for Time Series modeling node.
For transfer functions.

tf_arima_q.fieldname integer Same property as for Time Series modeling node.
For transfer functions.

tf_arima_sp.fieldname integer Same property as for Time Series modeling node.
For transfer functions.

tf_arima_sd.fieldname integer Same property as for Time Series modeling node.
For transfer functions.

tf_arima_sq.fieldname integer Same property as for Time Series modeling node.
For transfer functions.

tf_arima_delay.fieldname integer Same property as for Time Series modeling node.
For transfer functions.

tf_arima_transformation_type.
fieldname

None
SquareRoot
NaturalLog

arima_detect_outlier_mode None
Automatic

arima_outlier_additive boolean

arima_outlier_level_shift boolean

88 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 56. streamingts node properties (continued).

streamingts node properties Data type Property description

arima_outlier_innovational boolean

arima_outlier_transient boolean

arima_outlier_seasonal_additive boolean

arima_outlier_local_trend boolean

arima_outlier_additive_patch boolean

deployment_force_rebuild boolean

deployment_rebuild_mode Count
Percent

deployment_rebuild_count number

deployment_rebuild_pct number

deployment_rebuild_field <field>

Chapter 10. Record Operations Node Properties 89

90 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 11. Field Operations Node Properties

anonymize Node Properties

The Anonymize node transforms the way field names and values are represented
downstream, thus disguising the original data. This can be useful if you want to allow other
users to build models using sensitive data, such as customer names or other details.

Table 57. anonymize node properties.

anonymize node properties Data type Property description

enable_anonymize boolean When set to T, activates anonymization of field values
(equivalent to selecting Yes for that field in the Anonymize
Values column).

use_prefix boolean When set to T, a custom prefix will be used if one has been
specified. Applies to fields that will be anonymized by the
Hash method and is equivalent to choosing the Custom radio
button in the Replace Values dialog box for that field.

prefix string Equivalent to typing a prefix into the text box in the Replace
Values dialog box. The default prefix is the default value if
nothing else has been specified.

transformation Random
Fixed

Determines whether the transformation parameters for a field
anonymized by the Transform method will be random or fixed.

set_random_seed boolean When set to T, the specified seed value will be used (if
transformation is also set to Random).

random_seed integer When set_random_seed is set to T, this is the seed for the
random number.

scale number When transformation is set to Fixed, this value is used for
"scale by." The maximum scale value is normally 10 but may be
reduced to avoid overflow.

translate number When transformation is set to Fixed, this value is used for
"translate." The maximum translate value is normally 1000 but
may be reduced to avoid overflow.

autodataprep Node Properties

The Automated Data Preparation (ADP) node can analyze your data and identify fixes, screen
out fields that are problematic or not likely to be useful, derive new attributes when
appropriate, and improve performance through intelligent screening and sampling techniques.
You can use the node in fully automated fashion, allowing the node to choose and apply
fixes, or you can preview the changes before they are made and accept, reject, or amend them
as desired.

Table 58. autodataprep node properties.

autodataprep node properties Data type Property description

objective Balanced
Speed
Accuracy
Custom

91

Table 58. autodataprep node properties (continued).

autodataprep node properties Data type Property description

custom_fields boolean If true, allows you to specify target, input,
and other fields for the current node. If false,
the current settings from an upstream Type
node are used.

target field Specifies a single target field.

inputs [field1 ... fieldN] Input or predictor fields used by the model.

use_frequency boolean

frequency_field field

use_weight boolean

weight_field field

excluded_fields Filter
None

if_fields_do_not_match StopExecution
ClearAnalysis

prepare_dates_and_times boolean Control access to all the date and time fields

compute_time_until_date boolean

reference_date Today
Fixed

fixed_date date

units_for_date_durations Automatic
Fixed

fixed_date_units Years
Months
Days

compute_time_until_time boolean

reference_time CurrentTime
Fixed

fixed_time time

units_for_time_durations Automatic
Fixed

fixed_date_units Hours
Minutes
Seconds

extract_year_from_date boolean

extract_month_from_date boolean

extract_day_from_date boolean

extract_hour_from_time boolean

extract_minute_from_time boolean

extract_second_from_time boolean

exclude_low_quality_inputs boolean

exclude_too_many_missing boolean

maximum_percentage_missing number

exclude_too_many_categories boolean

maximum_number_categories number

92 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 58. autodataprep node properties (continued).

autodataprep node properties Data type Property description

exclude_if_large_category boolean

maximum_percentage_category number

prepare_inputs_and_target boolean

adjust_type_inputs boolean

adjust_type_target boolean

reorder_nominal_inputs boolean

reorder_nominal_target boolean

replace_outliers_inputs boolean

replace_outliers_target boolean

replace_missing_continuous_inputs boolean

replace_missing_continuous_target boolean

replace_missing_nominal_inputs boolean

replace_missing_nominal_target boolean

replace_missing_ordinal_inputs boolean

replace_missing_ordinal_target boolean

maximum_values_for_ordinal number

minimum_values_for_continuous number

outlier_cutoff_value number

outlier_method Replace
Delete

rescale_continuous_inputs boolean

rescaling_method MinMax
ZScore

min_max_minimum number

min_max_maximum number

z_score_final_mean number

z_score_final_sd number

rescale_continuous_target boolean

target_final_mean number

target_final_sd number

transform_select_input_fields boolean

maximize_association_with_target boolean

p_value_for_merging number

merge_ordinal_features boolean

merge_nominal_features boolean

minimum_cases_in_category number

bin_continuous_fields boolean

p_value_for_binning number

perform_feature_selection boolean

p_value_for_selection number

Chapter 11. Field Operations Node Properties 93

Table 58. autodataprep node properties (continued).

autodataprep node properties Data type Property description

perform_feature_construction boolean

transformed_target_name_extension string

transformed_inputs_name_extension string

constructed_features_root_name string

years_duration_ name_extension string

months_duration_ name_extension string

days_duration_ name_extension string

hours_duration_ name_extension string

minutes_duration_ name_extension string

seconds_duration_ name_extension string

year_cyclical_name_extension string

month_cyclical_name_extension string

day_cyclical_name_extension string

hour_cyclical_name_extension string

minute_cyclical_name_extension string

second_cyclical_name_extension string

binning Node Properties

The Binning node automatically creates new nominal (set) fields based on the values of one
or more existing continuous (numeric range) fields. For example, you can transform a
continuous income field into a new categorical field containing groups of income as
deviations from the mean. Once you have created bins for the new field, you can generate a
Derive node based on the cut points.

Table 59. binning node properties.

binning node properties Data type Property description

fields [field1 field2 ... fieldn] Continuous (numeric range) fields pending
transformation. You can bin multiple fields
simultaneously.

method FixedWidth
EqualCount
Rank
SDev
Optimal

Method used for determining cut points for
new field bins (categories).

rcalculate_bins Always
IfNecessary

Specifies whether the bins are recalculated
and the data placed in the relevant bin every
time the node is executed, or that data is
added only to existing bins and any new bins
that have been added.

fixed_width_name_extension string The default extension is _BIN.

fixed_width_add_as Suffix
Prefix

Specifies whether the extension is added to
the end (suffix) of the field name or to the
start (prefix). The default extension is
income_BIN.

94 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 59. binning node properties (continued).

binning node properties Data type Property description

fixed_bin_method Width
Count

fixed_bin_count integer Specifies an integer used to determine the
number of fixed-width bins (categories) for
the new field(s).

fixed_bin_width real Value (integer or real) for calculating width of
the bin.

equal_count_name_
extension

string The default extension is _TILE.

equal_count_add_as Suffix
Prefix

Specifies an extension, either suffix or prefix,
used for the field name generated by using
standard p-tiles. The default extension is
_TILE plus N, where N is the tile number.

tile4 boolean Generates four quantile bins, each containing
25% of cases.

tile5 boolean Generates five quintile bins.

tile10 boolean Generates 10 decile bins.

tile20 boolean Generates 20 vingtile bins.

tile100 boolean Generates 100 percentile bins.

use_custom_tile boolean

custom_tile_name_extension string The default extension is _TILEN.

custom_tile_add_as Suffix
Prefix

custom_tile integer

equal_count_method RecordCount
ValueSum

The RecordCount method seeks to assign an
equal number of records to each bin, while
ValueSum assigns records so that the sum of
the values in each bin is equal.

tied_values_method Next
Current
Random

Specifies which bin tied value data is to be
put in.

rank_order Ascending
Descending

This property includes Ascending (lowest
value is marked 1) or Descending (highest
value is marked 1).

rank_add_as Suffix
Prefix

This option applies to rank, fractional rank,
and percentage rank.

rank boolean

rank_name_extension string The default extension is _RANK.

rank_fractional boolean Ranks cases where the value of the new field
equals rank divided by the sum of the
weights of the nonmissing cases. Fractional
ranks fall in the range of 0–1.

rank_fractional_name_
extension

string The default extension is _F_RANK.

rank_pct boolean Each rank is divided by the number of
records with valid values and multiplied by
100. Percentage fractional ranks fall in the
range of 1–100.

Chapter 11. Field Operations Node Properties 95

Table 59. binning node properties (continued).

binning node properties Data type Property description

rank_pct_name_extension string The default extension is _P_RANK.

sdev_name_extension string

sdev_add_as Suffix
Prefix

sdev_count One
Two
Three

optimal_name_extension string The default extension is _OPTIMAL.

optimal_add_as Suffix
Prefix

optimal_supervisor_field field Field chosen as the supervisory field to which
the fields selected for binning are related.

optimal_merge_bins boolean Specifies that any bins with small case counts
will be added to a larger, neighboring bin.

optimal_small_bin_threshold integer

optimal_pre_bin boolean Indicates that prebinning of dataset is to take
place.

optimal_max_bins integer Specifies an upper limit to avoid creating an
inordinately large number of bins.

optimal_lower_end_point Inclusive
Exclusive

optimal_first_bin Unbounded
Bounded

optimal_last_bin Unbounded
Bounded

derive Node Properties

The Derive node modifies data values or creates new fields from one or more existing fields.
It creates fields of type formula, flag, nominal, state, count, and conditional.

Table 60. derive node properties.

derive node properties Data type Property description

new_name string Name of new field.

mode Single
Multiple

Specifies single or multiple fields.

fields [field field field] Used in Multiple mode only to select multiple
fields.

name_extension string Specifies the extension for the new field
name(s).

add_as Suffix
Prefix

Adds the extension as a prefix (at the
beginning) or as a suffix (at the end) of the
field name.

96 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 60. derive node properties (continued).

derive node properties Data type Property description

result_type Formula
Flag
Set
State
Count
Conditional

The six types of new fields that you can
create.

formula_expr string Expression for calculating a new field value in
a Derive node.

flag_expr string

flag_true string

flag_false string

set_default string

set_value_cond string Structured to supply the condition associated
with a given value.

state_on_val string Specifies the value for the new field when the
On condition is met.

state_off_val string Specifies the value for the new field when the
Off condition is met.

state_on_expression string

state_off_expression string

state_initial On
Off

Assigns each record of the new field an initial
value of On or Off. This value can change as
each condition is met.

count_initial_val string

count_inc_condition string

count_inc_expression string

count_reset_condition string

cond_if_cond string

cond_then_expr string

cond_else_expr string

ensemble Node Properties

The Ensemble node combines two or more model nuggets to obtain more accurate predictions
than can be gained from any one model.

Table 61. ensemble node properties.

ensemble node properties Data type Property description

ensemble_target_field field Specifies the target field for all
models used in the ensemble.

filter_individual_model_output boolean Specifies whether scoring results
from individual models should be
suppressed.

Chapter 11. Field Operations Node Properties 97

Table 61. ensemble node properties (continued).

ensemble node properties Data type Property description

flag_ensemble_method Voting
ConfidenceWeightedVoting
RawPropensityWeightedVoting
AdjustedPropensityWeightedVoting
HighestConfidence
AverageRawPropensity
AverageAdjustedPropensity

Specifies the method used to
determine the ensemble score. This
setting applies only if the selected
target is a flag field.

set_ensemble_method Voting
ConfidenceWeightedVoting
HighestConfidence

Specifies the method used to
determine the ensemble score. This
setting applies only if the selected
target is a nominal field.

flag_voting_tie_selection Random
HighestConfidence
RawPropensity
AdjustedPropensity

If a voting method is selected,
specifies how ties are resolved. This
setting applies only if the selected
target is a flag field.

set_voting_tie_selection Random
HighestConfidence

If a voting method is selected,
specifies how ties are resolved. This
setting applies only if the selected
target is a nominal field.

calculate_standard_error boolean If the target field is continuous, a
standard error calculation is run by
default to calculate the difference
between the measured or estimated
values and the true values; and to
show how close those estimates
matched.

filler Node Properties

The Filler node replaces field values and changes storage. You can choose to replace values
based on a CLEM condition, such as @BLANK(@FIELD). Alternatively, you can choose to replace
all blanks or null values with a specific value. A Filler node is often used together with a
Type node to replace missing values.

Table 62. filler node properties.

filler node properties Data type Property description

fields [field field field] Fields from the dataset whose values will be
examined and replaced.

replace_mode Always
Conditional
Blank
Null
BlankAndNull

You can replace all values, blank values, or
null values, or replace based on a specified
condition.

condition string

replace_with string

98 IBM SPSS Modeler 16 Python Scripting and Automation Guide

filter Node Properties

The Filter node filters (discards) fields, renames fields, and maps fields from one source node
to another.

Using the default_include property. Note that setting the value of the default_include property does
not automatically include or exclude all fields; it simply determines the default for the current selection.
This is functionally equivalent to clicking the Include fields by default button in the Filter node dialog
box.

Table 63. filter node properties.

filter node properties Data type Property description

default_include boolean Keyed property to specify whether the default
behavior is to pass or filter fields. Note that
setting this property does not automatically
include or exclude all fields; it simply
determines whether selected fields are
included or excluded by default.

include boolean Keyed property for field inclusion and
removal.

new_name string

history Node Properties

The History node creates new fields containing data from fields in previous records. History
nodes are most often used for sequential data, such as time series data. Before using a History
node, you may want to sort the data using a Sort node.

Table 64. history node properties.

history node properties Data type Property description

fields [field field field] Fields for which you want a history.

offset number Specifies the latest record (prior to the current
record) from which you want to extract
historical field values.

span number Specifies the number of prior records from
which you want to extract values.

unavailable Discard
Leave
Fill

For handling records that have no history
values, usually referring to the first several
records (at the top of the dataset) for which
there are no previous records to use as a
history.

fill_with String
Number

Specifies a value or string to be used for
records where no history value is available.

Chapter 11. Field Operations Node Properties 99

partition Node Properties

The Partition node generates a partition field, which splits the data into separate subsets for
the training, testing, and validation stages of model building.

Table 65. partition node properties.

partition node properties Data type Property description

new_name string Name of the partition field generated by the
node.

create_validation boolean Specifies whether a validation partition should
be created.

training_size integer Percentage of records (0–100) to be allocated to
the training partition.

testing_size integer Percentage of records (0–100) to be allocated to
the testing partition.

validation_size integer Percentage of records (0–100) to be allocated to
the validation partition. Ignored if a validation
partition is not created.

training_label string Label for the training partition.

testing_label string Label for the testing partition.

validation_label string Label for the validation partition. Ignored if a
validation partition is not created.

value_mode System
SystemAndLabel
Label

Specifies the values used to represent each
partition in the data. For example, the training
sample can be represented by the system integer
1, the label Training, or a combination of the
two, 1_Training.

set_random_seed boolean Specifies whether a user-specified random seed
should be used.

random_seed integer A user-specified random seed value. For this
value to be used, set_random_seed must be set to
True.

enable_sql_generation boolean Specifies whether to use SQL pushback to assign
records to partitions.

unique_field Specifies the input field used to ensure that
records are assigned to partitions in a random
but repeatable way. For this value to be used,
enable_sql_generation must be set to True.

reclassify Node Properties

The Reclassify node transforms one set of categorical values to another. Reclassification is
useful for collapsing categories or regrouping data for analysis.

100 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 66. reclassify node properties.

reclassify node properties Data type Property description

mode Single
Multiple

Single reclassifies the categories for one field.
Multiple activates options enabling the
transformation of more than one field at a
time.

replace_field boolean

field string Used only in Single mode.

new_name string Used only in Single mode.

fields [field1 field2 ... fieldn] Used only in Multiple mode.

name_extension string Used only in Multiple mode.

add_as Suffix
Prefix

Used only in Multiple mode.

reclassify string Structured property for field values.

use_default boolean Use the default value.

default string Specify a default value.

pick_list [string string ... string] Allows a user to import a list of known new
values to populate the drop-down list in the
table.

reorder Node Properties

The Field Reorder node defines the natural order used to display fields downstream. This
order affects the display of fields in a variety of places, such as tables, lists, and the Field
Chooser. This operation is useful when working with wide datasets to make fields of interest
more visible.

Table 67. reorder node properties.

reorder node properties Data type Property description

mode Custom
Auto

You can sort values automatically or specify a
custom order.

sort_by Name
Type
Storage

ascending boolean

start_fields [field1 field2 ... fieldn] New fields are inserted after these fields.

end_fields [field1 field2 ... fieldn] New fields are inserted before these fields.

restructure Node Properties

The Restructure node converts a nominal or flag field into a group of fields that can be
populated with the values of yet another field. For example, given a field named payment
type, with values of credit, cash, and debit, three new fields would be created (credit, cash, debit),
each of which might contain the value of the actual payment made.

Chapter 11. Field Operations Node Properties 101

Table 68. restructure node properties.

restructure node properties Data type Property description

fields_from [category category
category]
all

include_field_name boolean Indicates whether to use the field name in the
restructured field name.

value_mode OtherFields
Flags

Indicates the mode for specifying the values
for the restructured fields. With OtherFields,
you must specify which fields to use (see
below). With Flags, the values are numeric
flags.

value_fields [field field field] Required if value_mode is OtherFields.
Specifies which fields to use as value fields.

rfmanalysis Node Properties

The Recency, Frequency, Monetary (RFM) Analysis node enables you to determine
quantitatively which customers are likely to be the best ones by examining how recently they
last purchased from you (recency), how often they purchased (frequency), and how much
they spent over all transactions (monetary).

Table 69. rfmanalysis node properties.

rfmanalysis node properties Data type Property description

recency field Specify the recency field. This may be a date,
timestamp, or simple number.

frequency field Specify the frequency field.

monetary field Specify the monetary field.

recency_bins integer Specify the number of recency bins to be
generated.

recency_weight number Specify the weighting to be applied to recency
data. The default is 100.

frequency_bins integer Specify the number of frequency bins to be
generated.

frequency_weight number Specify the weighting to be applied to frequency
data. The default is 10.

monetary_bins integer Specify the number of monetary bins to be
generated.

monetary_weight number Specify the weighting to be applied to monetary
data. The default is 1.

tied_values_method Next
Current

Specify which bin tied value data is to be put in.

recalculate_bins Always
IfNecessary

102 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 69. rfmanalysis node properties (continued).

rfmanalysis node properties Data type Property description

add_outliers boolean Available only if recalculate_bins is set to
IfNecessary. If set, records that lie below the
lower bin will be added to the lower bin, and
records above the highest bin will be added to
the highest bin.

binned_field Recency
Frequency
Monetary

recency_thresholds value value Available only if recalculate_bins is set to
Always. Specify the upper and lower thresholds
for the recency bins. The upper threshold of one
bin is used as the lower threshold of the
next—for example, [10 30 60] would define two
bins, the first bin with upper and lower
thresholds of 10 and 30, with the second bin
thresholds of 30 and 60.

frequency_thresholds value value Available only if recalculate_bins is set to
Always.

monetary_thresholds value value Available only if recalculate_bins is set to
Always.

settoflag Node Properties

The Set to Flag node derives multiple flag fields based on the categorical values defined for
one or more nominal fields.

Table 70. settoflag node properties.

settoflag node properties Data type Property description

fields_from [category category
category]
all

true_value string Specifies the true value used by the node
when setting a flag. The default is T.

false_value string Specifies the false value used by the node
when setting a flag. The default is F.

use_extension boolean Use an extension as a suffix or prefix to the
new flag field.

extension string

add_as Suffix
Prefix

Specifies whether the extension is added as a
suffix or prefix.

aggregate boolean Groups records together based on key fields.
All flag fields in a group are enabled if any
record is set to true.

keys [field field field] Key fields.

Chapter 11. Field Operations Node Properties 103

statisticstransform Node Properties

The Statistics Transform node runs a selection of IBM SPSS Statistics syntax commands
against data sources in IBM SPSS Modeler. This node requires a licensed copy of IBM SPSS
Statistics.

The properties for this node are described under “statisticstransform Node Properties” on page 227.

timeintervals Node Properties

The Time Intervals node specifies intervals and creates labels (if needed) for modeling time
series data. If values are not evenly spaced, the node can pad or aggregate values as needed
to generate a uniform interval between records.

Table 71. timeintervals node properties.

timeintervals node properties Data type Property description

interval_type None
Periods
CyclicPeriods
Years
Quarters
Months
DaysPerWeek
DaysNonPeriodic
HoursPerDay
HoursNonPeriodic
MinutesPerDay
MinutesNonPeriodic
SecondsPerDay
SecondsNonPeriodic

mode Label
Create

Specifies whether you want to label records
consecutively or build the series based on a
specified date, timestamp, or time field.

field field When building the series from the data,
specifies the field that indicates the date or
time for each record.

period_start integer Specifies the starting interval for periods or
cyclic periods

cycle_start integer Starting cycle for cyclic periods.

year_start integer For interval types where applicable, year in
which the first interval falls.

quarter_start integer For interval types where applicable, quarter
in which the first interval falls.

104 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 71. timeintervals node properties (continued).

timeintervals node properties Data type Property description

month_start January
February
March
April
May
June
July
August
September
October
November
December

day_start integer

hour_start integer

minute_start integer

second_start integer

periods_per_cycle integer For cyclic periods, number within each
cycle.

fiscal_year_begins January
February
March
April
May
June
July
August
September
October
November
December

For quarterly intervals, specifies the month
when the fiscal year begins.

week_begins_on Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

For periodic intervals (days per week, hours
per day, minutes per day, and seconds per
day), specifies the day on which the week
begins.

day_begins_hour integer For periodic intervals (hours per day,
minutes per day, seconds per day), specifies
the hour when the day begins. Can be used
in combination with day_begins_minute and
day_begins_second to specify an exact time
such as 8:05:01. See usage example below.

day_begins_minute integer For periodic intervals (hours per day,
minutes per day, seconds per day), specifies
the minute when the day begins (for
example, the 5 in 8:05).

day_begins_second integer For periodic intervals (hours per day,
minutes per day, seconds per day), specifies
the second when the day begins (for
example, the 17 in 8:05:17).

Chapter 11. Field Operations Node Properties 105

Table 71. timeintervals node properties (continued).

timeintervals node properties Data type Property description

days_per_week integer For periodic intervals (days per week, hours
per day, minutes per day, and seconds per
day), specifies the number of days per week.

hours_per_day integer For periodic intervals (hours per day,
minutes per day, and seconds per day),
specifies the number of hours in the day.

interval_increment 1
2
3
4
5
6
10
15
20
30

For minutes per day and seconds per day,
specifies the number of minutes or seconds
to increment for each record.

field_name_extension string

field_name_extension_as_prefix boolean

date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

106 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 71. timeintervals node properties (continued).

timeintervals node properties Data type Property description

time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

aggregate Mean
Sum
Mode
Min
Max
First
Last
TrueIfAnyTrue

Specifies the aggregation method for a field.

pad Blank
MeanOfRecentPoints
True
False

Specifies the padding method for a field.

agg_mode All
Specify

Specifies whether to aggregate or pad all
fields with default functions as needed or
specify the fields and functions to use.

agg_range_default Mean
Sum
Mode
Min
Max

Specifies the default function to use when
aggregating continuous fields.

agg_set_default Mode
First
Last

Specifies the default function to use when
aggregating nominal fields.

agg_flag_default TrueIfAnyTrue
Mode
First
Last

pad_range_default Blank
MeanOfRecentPoints

Specifies the default function to use when
padding continuous fields.

pad_set_default Blank
MostRecentValue

pad_flag_default Blank
True
False

max_records_to_create integer Specifies the maximum number of records to
create when padding the series.

estimation_from_beginning boolean

estimation_to_end boolean

Chapter 11. Field Operations Node Properties 107

Table 71. timeintervals node properties (continued).

timeintervals node properties Data type Property description

estimation_start_offset integer

estimation_num_holdouts integer

create_future_records boolean

num_future_records integer

create_future_field boolean

future_field_name string

transpose Node Properties

The Transpose node swaps the data in rows and columns so that records become fields and
fields become records.

Table 72. transpose node properties.

transpose node properties Data type Property description

transposed_names Prefix
Read

New field names can be generated automatically
based on a specified prefix, or they can be read
from an existing field in the data.

prefix string

num_new_fields integer When using a prefix, specifies the maximum
number of new fields to create.

read_from_field field Field from which names are read. This must be
an instantiated field or an error will occur when
the node is executed.

max_num_fields integer When reading names from a field, specifies an
upper limit to avoid creating an inordinately
large number of fields.

transpose_type Numeric
String
Custom

By default, only continuous (numeric range)
fields are transposed, but you can choose a
custom subset of numeric fields or transpose all
string fields instead.

transpose_fields [field field field] Specifies the fields to transpose when the Custom
option is used.

id_field_name field

type Node Properties

The Type node specifies field metadata and properties. For example, you can specify a
measurement level (continuous, nominal, ordinal, or flag) for each field, set options for
handling missing values and system nulls, set the role of a field for modeling purposes,
specify field and value labels, and specify values for a field.

Note that in some cases you may need to fully instantiate the Type node in order for other nodes to work
correctly, such as the fields from property of the Set to Flag node. You can simply connect a Table node
and execute it to instantiate the fields.

108 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 73. type node properties.

type node properties Data type Property description

direction Input
Target
Both
None
Partition
Split
Frequency
RecordID

Keyed property for field roles.
Note: The values In and Out are now
deprecated. Support for them may be
withdrawn in a future release.

type Range
Flag
Set
Typeless
Discrete
OrderedSet
Default

Measurement level of the field (previously
called the "type" of field). Setting type to
Default will clear any values parameter
setting, and if value_mode has the value
Specify, it will be reset to Read. If
value_mode is set to Pass or Read,
setting type will not affect value_mode.
Note: The data types used internally differ
from those visible in the type node. The
correspondence is as follows:
Range -> Continuous
Set - > Nominal
OrderedSet -> Ordinal
Discrete- > Categorical

storage Unknown
String
Integer
Real
Time
Date
Timestamp

Read-only keyed property for field storage
type.

check None
Nullify
Coerce
Discard
Warn
Abort

Keyed property for field type and range
checking.

values [value value] For continuous fields, the first value is the
minimum, and the last value is the maximum.
For nominal fields, specify all values. For flag
fields, the first value represents false, and the
last value represents true. Setting this property
automatically sets the value_mode property to
Specify.

value_mode Read
Pass
Read+
Current
Specify

Determines how values are set. Note that you
cannot set this property to Specify directly; to
use specific values, set the values property.

extend_values boolean Applies when value_mode is set to Read. Set to
T to add newly read values to any existing
values for the field. Set to F to discard existing
values in favor of the newly read values.

enable_missing boolean When set to T, activates tracking of missing
values for the field.

missing_values [value value ...] Specifies data values that denote missing data.

Chapter 11. Field Operations Node Properties 109

Table 73. type node properties (continued).

type node properties Data type Property description

range_missing boolean Specifies whether a missing-value (blank)
range is defined for a field.

missing_lower string When range_missing is true, specifies the
lower bound of the missing-value range.

missing_upper string When range_missing is true, specifies the
upper bound of the missing-value range.

null_missing boolean When set to T, nulls (undefined values that are
displayed as $null$ in the software) are
considered missing values.

whitespace_missing boolean When set to T, values containing only white
space (spaces, tabs, and new lines) are
considered missing values.

description string Specifies the description for a field.

value_labels [{Value LabelString} {
Value LabelString} ...]

Used to specify labels for value pairs.

display_places integer Sets the number of decimal places for the field
when displayed (applies only to fields with
REAL storage). A value of –1 will use the
stream default.

export_places integer Sets the number of decimal places for the field
when exported (applies only to fields with
REAL storage). A value of –1 will use the
stream default.

decimal_separator DEFAULT
PERIOD
COMMA

Sets the decimal separator for the field
(applies only to fields with REAL storage).

date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

Sets the date format for the field (applies only
to fields with DATE or TIMESTAMP storage).

110 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 73. type node properties (continued).

type node properties Data type Property description

time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

Sets the time format for the field (applies only
to fields with TIME or TIMESTAMP storage).

number_format DEFAULT
STANDARD
SCIENTIFIC
CURRENCY

Sets the number display format for the field.

standard_places integer Sets the number of decimal places for the field
when displayed in standard format. A value
of –1 will use the stream default. Note that
the existing display_places slot will also
change this but is now deprecated.

scientific_places integer Sets the number of decimal places for the field
when displayed in scientific format. A value
of –1 will use the stream default.

currency_places integer Sets the number of decimal places for the field
when displayed in currency format. A value
of –1 will use the stream default.

grouping_symbol DEFAULT
NONE
LOCALE
PERIOD
COMMA
SPACE

Sets the grouping symbol for the field.

column_width integer Sets the column width for the field. A value of
–1 will set column width to Auto.

justify AUTO
CENTER
LEFT
RIGHT

Sets the column justification for the field.

Chapter 11. Field Operations Node Properties 111

112 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 12. Graph Node Properties

Graph Node Common Properties
This section describes the properties available for graph nodes, including common properties and
properties that are specific to each node type.

Table 74. Common graph node properties.

Common graph node properties Data type Property description

title string Specifies the title. Example: "This is a title."

caption string Specifies the caption. Example: "This is a caption."

output_mode Screen
File

Specifies whether output from the graph node is
displayed or written to a file.

output_format BMP
JPEG
PNG
HTML
output (.cou)

Specifies the type of output. The exact type of output
allowed for each node varies.

full_filename string Specifies the target path and filename for output
generated from the graph node.

use_graph_size boolean Controls whether the graph is sized explicitly, using
the width and height properties below. Affects only
graphs that are output to screen. Not available for the
Distribution node.

graph_width number When use_graph_size is True, sets the graph width in
pixels.

graph_height number When use_graph_size is True, sets the graph height
in pixels.

Notes

Turning off optional fields. Optional fields, such as an overlay field for plots, can be turned off by
setting the property value to " " (empty string).

Specifying colors. The colors for titles, captions, backgrounds, and labels can be specified by using the
hexadecimal strings starting with the hash (#) symbol.

The first two digits specify the red content; the middle two digits specify the green content; and the last
two digits specify the blue content. Each digit can take a value in the range 0–9 or A–F. Together, these
values can specify a red-green-blue, or RGB, color.

Note: When specifying colors in RGB, you can use the Field Chooser in the user interface to determine the
correct color code. Simply hover over the color to activate a ToolTip with the desired information.

collection Node Properties

The Collection node shows the distribution of values for one numeric field relative to the
values of another. (It creates graphs that are similar to histograms.) It is useful for illustrating
a variable or field whose values change over time. Using 3-D graphing, you can also include
a symbolic axis displaying distributions by category.

113

Table 75. collection node properties.

collection node properties Data type Property description

over_field field

over_label_auto boolean

over_label string

collect_field field

collect_label_auto boolean

collect_label string

three_D boolean

by_field field

by_label_auto boolean

by_label string

operation Sum
Mean
Min
Max
SDev

color_field string

panel_field string

animation_field string

range_mode Automatic
UserDefined

range_min number

range_max number

bins ByNumber
ByWidth

num_bins number

bin_width number

use_grid boolean

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the
beginning of this section.

distribution Node Properties

The Distribution node shows the occurrence of symbolic (categorical) values, such as
mortgage type or gender. Typically, you might use the Distribution node to show imbalances
in the data, which you could then rectify using a Balance node before creating a model.

Table 76. distribution node properties.

distribution node properties Data type Property description

plot SelectedFields
Flags

114 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 76. distribution node properties (continued).

distribution node properties Data type Property description

x_field field

color_field field Overlay field.

normalize boolean

sort_mode ByOccurence
Alphabetic

use_proportional_scale boolean

evaluation Node Properties

The Evaluation node helps to evaluate and compare predictive models. The evaluation chart
shows how well models predict particular outcomes. It sorts records based on the predicted
value and confidence of the prediction. It splits the records into groups of equal size
(quantiles) and then plots the value of the business criterion for each quantile from highest to
lowest. Multiple models are shown as separate lines in the plot.

Table 77. evaluation node properties.

evaluation node properties Data type Property description

chart_type Gains
Response
Lift
Profit
ROI
ROC

inc_baseline boolean

field_detection_method Metadata
Name

use_fixed_cost boolean

cost_value number

cost_field string

use_fixed_revenue boolean

revenue_value number

revenue_field string

use_fixed_weight boolean

weight_value number

weight_field field

n_tile Quartiles
Quintles
Deciles
Vingtiles
Percentiles
1000-tiles

cumulative flag

style Line
Point

Chapter 12. Graph Node Properties 115

Table 77. evaluation node properties (continued).

evaluation node properties Data type Property description

point_type Rectangle
Dot
Triangle
Hexagon
Plus
Pentagon
Star
BowTie
HorizontalDash
VerticalDash
IronCross
Factory
House
Cathedral
OnionDome
ConcaveTriangle
OblateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

export_data boolean

data_filename string

delimiter string

new_line boolean

inc_field_names boolean

inc_best_line boolean

inc_business_rule boolean

business_rule_condition string

plot_score_fields boolean

score_fields [field1 ... fieldN]

target_field field

use_hit_condition boolean

hit_condition string

use_score_expression boolean

score_expression string

caption_auto boolean

graphboard Node Properties

The Graphboard node offers many different types of graphs in one single node. Using this
node, you can choose the data fields you want to explore and then select a graph from those
available for the selected data. The node automatically filters out any graph types that would
not work with the field choices.

Note: If you set a property that is not valid for the graph type (for example, specifying y_field for a
histogram), that property is ignored.

116 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 78. graphboard node properties.

graphboard node
properties Data type Property description

graph_type 2DDotplot
3DArea
3DBar
3DDensity
3DHistogram
3DPie
3DScatterplot
Area
ArrowMap
Bar
BarCounts
BarCountsMap
BarMap
BinnedScatter
Boxplot
Bubble
ChoroplethMeans
ChoroplethMedians
ChoroplethSums
ChoroplethValues
ChoroplethCounts
CoordinateMap
CoordinateChoroplethMeans
CoordinateChoroplethMedians
CoordinateChoroplethSums
CoordinateChoroplethValues
CoordinateChoroplethCounts
Dotplot
Heatmap
HexBinScatter
Histogram
Line
LineChartMap
LineOverlayMap
Parallel
Path
Pie
PieCountMap
PieCounts
PieMap
PointOverlayMap
PolygonOverlayMap
Ribbon
Scatterplot
SPLOM
Surface

Identifies the graph type.

x_field field Specifies a custom label for the x axis.
Available only for labels.

y_field field Specifies a custom label for the y axis.
Available only for labels.

z_field field Used in some 3-D graphs.

color_field field Used in heat maps.

size_field field Used in bubble plots.

categories_field field

Chapter 12. Graph Node Properties 117

Table 78. graphboard node properties (continued).

graphboard node
properties Data type Property description

values_field field

rows_field field

columns_field field

fields field

start_longitude_field field Used with arrows on a reference map.

end_longitude_field field

start_latitude_field field

end_latitude_field field

map_key_field field Used in various maps.

panelrow_field string

panelcol_field string

animation_field string

longitude_field field Used with co-ordinates on maps.

latitude_field field

map_color_field field

map_file field

reference_map_file field

map_layer field

reference_map_layer field

map_attribute field

reference_map_attribute field

histogram Node Properties

The Histogram node shows the occurrence of values for numeric fields. It is often used to
explore the data before manipulations and model building. Similar to the Distribution node,
the Histogram node frequently reveals imbalances in the data.

Table 79. histogram node properties.

histogram node properties Data type Property description

field field

color_field field

panel_field field

animation_field field

range_mode Automatic
UserDefined

range_min number

range_max number

118 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 79. histogram node properties (continued).

histogram node properties Data type Property description

bins ByNumber
ByWidth

num_bins number

bin_width number

normalize boolean

separate_bands boolean

x_label_auto boolean

x_label string

y_label_auto boolean

y_label string

use_grid boolean

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the
beginning of this section.

normal_curve boolean Indicates whether the normal distribution curve
should be shown on the output.

multiplot Node Properties

The Multiplot node creates a plot that displays multiple Y fields over a single X field. The Y
fields are plotted as colored lines; each is equivalent to a Plot node with Style set to Line and
X Mode set to Sort. Multiplots are useful when you want to explore the fluctuation of several
variables over time.

Table 80. multiplot node properties.

multiplot node properties Data type Property description

x_field field

y_fields [field field field]

panel_field field

animation_field field

normalize boolean

use_overlay_expr boolean

overlay_expression string

records_limit number

if_over_limit PlotBins
PlotSample
PlotAll

x_label_auto boolean

x_label string

y_label_auto boolean

y_label string

use_grid boolean

Chapter 12. Graph Node Properties 119

Table 80. multiplot node properties (continued).

multiplot node properties Data type Property description

graph_background color Standard graph colors are described at the
beginning of this section.

page_background color Standard graph colors are described at the
beginning of this section.

plot Node Properties

The Plot node shows the relationship between numeric fields. You can create a plot by using
points (a scatterplot) or lines.

Table 81. plot node properties.

plot node properties Data type Property description

x_field field Specifies a custom label for the x axis. Available
only for labels.

y_field field Specifies a custom label for the y axis. Available
only for labels.

three_D boolean Specifies a custom label for the y axis. Available
only for labels in 3-D graphs.

z_field field

color_field field Overlay field.

size_field field

shape_field field

panel_field field Specifies a nominal or flag field for use in making
a separate chart for each category. Charts are
paneled together in one output window.

animation_field field Specifies a nominal or flag field for illustrating data
value categories by creating a series of charts
displayed in sequence using animation.

transp_field field Specifies a field for illustrating data value
categories by using a different level of transparency
for each category. Not available for line plots.

overlay_type None
Smoother
Function

Specifies whether an overlay function or LOESS
smoother is displayed.

overlay_expression string Specifies the expression used when overlay_type is
set to Function.

style Point
Line

120 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 81. plot node properties (continued).

plot node properties Data type Property description

point_type Rectangle
Dot
Triangle
Hexagon
Plus
Pentagon
Star
BowTie
HorizontalDash
VerticalDash
IronCross
Factory
House
Cathedral
OnionDome
ConcaveTriangle
OblateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

x_mode Sort
Overlay
AsRead

x_range_mode Automatic
UserDefined

x_range_min number

x_range_max number

y_range_mode Automatic
UserDefined

y_range_min number

y_range_max number

z_range_mode Automatic
UserDefined

z_range_min number

z_range_max number

jitter boolean

records_limit number

if_over_limit PlotBins
PlotSample
PlotAll

x_label_auto boolean

x_label string

y_label_auto boolean

y_label string

z_label_auto boolean

z_label string

use_grid boolean

graph_background color Standard graph colors are described at the
beginning of this section.

Chapter 12. Graph Node Properties 121

Table 81. plot node properties (continued).

plot node properties Data type Property description

page_background color Standard graph colors are described at the
beginning of this section.

use_overlay_expr boolean Deprecated in favor of overlay_type.

timeplot Node Properties

The Time Plot node displays one or more sets of time series data. Typically, you would first
use a Time Intervals node to create a TimeLabel field, which would be used to label the x axis.

Table 82. timeplot node properties.

timeplot node properties Data type Property description

plot_series Series
Models

use_custom_x_field boolean

x_field field

y_fields [field field field]

panel boolean

normalize boolean

line boolean

points boolean

point_type Rectangle
Dot
Triangle
Hexagon
Plus
Pentagon
Star
BowTie
HorizontalDash
VerticalDash
IronCross
Factory
House
Cathedral
OnionDome
ConcaveTriangle
OblateGlobe
CatEye
FourSidedPillow
RoundRectangle
Fan

smoother boolean You can add smoothers to the plot only if you set
panel to True.

use_records_limit boolean

records_limit integer

symbol_size number Specifies a symbol size.

122 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 82. timeplot node properties (continued).

timeplot node properties Data type Property description

panel_layout Horizontal
Vertical

web Node Properties

The Web node illustrates the strength of the relationship between values of two or more
symbolic (categorical) fields. The graph uses lines of various widths to indicate connection
strength. You might use a Web node, for example, to explore the relationship between the
purchase of a set of items at an e-commerce site.

Table 83. web node properties.

web node properties Data type Property description

use_directed_web boolean

fields [field field field]

to_field field

from_fields [field field field]

true_flags_only boolean

line_values Absolute
OverallPct
PctLarger
PctSmaller

strong_links_heavier boolean

num_links ShowMaximum
ShowLinksAbove
ShowAll

max_num_links number

links_above number

discard_links_min boolean

links_min_records number

discard_links_max boolean

links_max_records number

weak_below number

strong_above number

link_size_continuous boolean

web_display Circular
Network
Directed
Grid

graph_background color Standard graph colors are described at the
beginning of this section.

symbol_size number Specifies a symbol size.

Chapter 12. Graph Node Properties 123

124 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 13. Modeling Node Properties

Common Modeling Node Properties
The following properties are common to some or all modeling nodes. Any exceptions are noted in the
documentation for individual modeling nodes as appropriate.

Table 84. Common modeling node properties.

Property Values Property description

custom_fields boolean If true, allows you to specify target, input,
and other fields for the current node. If
false, the current settings from an upstream
Type node are used.

target
or
targets

field

or
[field1 ... fieldN]

Specifies a single target field or multiple
target fields depending on the model type.

inputs [field1 ... fieldN] Input or predictor fields used by the model.

partition field

use_partitioned_data boolean If a partition field is defined, this option
ensures that only data from the training
partition is used to build the model.

use_split_data boolean

splits [field1 ... fieldN] Specifies the field or fields to use for split
modeling. Effective only if use_split_data
is set to True.

use_frequency boolean Weight and frequency fields are used by
specific models as noted for each model
type.

frequency_field field

use_weight boolean

weight_field field

use_model_name boolean

model_name string Custom name for new model.

mode Simple
Expert

anomalydetection Node Properties

The Anomaly Detection node identifies unusual cases, or outliers, that do not conform to
patterns of “normal” data. With this node, it is possible to identify outliers even if they do
not fit any previously known patterns and even if you are not exactly sure what you are
looking for.

125

Table 85. anomalydetection node properties.

anomalydetection Node Properties Values Property description

inputs [field1 ... fieldN] Anomaly Detection models screen
records based on the specified input
fields. They do not use a target field.
Weight and frequency fields are also not
used. See the topic “Common Modeling
Node Properties” on page 125 for more
information.

mode Expert
Simple

anomaly_method IndexLevel
PerRecords
NumRecords

Specifies the method used to determine
the cutoff value for flagging records as
anomalous.

index_level number Specifies the minimum cutoff value for
flagging anomalies.

percent_records number Sets the threshold for flagging records
based on the percentage of records in the
training data.

num_records number Sets the threshold for flagging records
based on the number of records in the
training data.

num_fields integer The number of fields to report for each
anomalous record.

impute_missing_values boolean

adjustment_coeff number Value used to balance the relative weight
given to continuous and categorical
fields in calculating the distance.

peer_group_num_auto boolean Automatically calculates the number of
peer groups.

min_num_peer_groups integer Specifies the minimum number of peer
groups used when peer_group_num_auto
is set to True.

max_num_per_groups integer Specifies the maximum number of peer
groups.

num_peer_groups integer Specifies the number of peer groups
used when peer_group_num_auto is set to
False.

noise_level number Determines how outliers are treated
during clustering. Specify a value
between 0 and 0.5.

noise_ratio number Specifies the portion of memory
allocated for the component that should
be used for noise buffering. Specify a
value between 0 and 0.5.

126 IBM SPSS Modeler 16 Python Scripting and Automation Guide

apriori Node Properties

The Apriori node extracts a set of rules from the data, pulling out the rules with the highest
information content. Apriori offers five different methods of selecting rules and uses a
sophisticated indexing scheme to process large data sets efficiently. For large problems,
Apriori is generally faster to train; it has no arbitrary limit on the number of rules that can be
retained, and it can handle rules with up to 32 preconditions. Apriori requires that input and
output fields all be categorical but delivers better performance because it is optimized for this
type of data.

Table 86. apriori node properties.

apriori Node Properties Values Property description

consequents field Apriori models use Consequents and
Antecedents in place of the standard target and
input fields. Weight and frequency fields are
not used. See the topic “Common Modeling
Node Properties” on page 125 for more
information.

antecedents [field1 ... fieldN]

min_supp number

min_conf number

max_antecedents number

true_flags boolean

optimize Speed
Memory

use_transactional_data boolean

contiguous boolean

id_field string

content_field string

mode Simple
Expert

evaluation RuleConfidence
DifferenceToPrior
ConfidenceRatio
InformationDifference
NormalizedChiSquare

lower_bound number

optimize Speed
Memory

Use to specify whether model building should
be optimized for speed or for memory.

autoclassifier Node Properties

The Auto Classifier node creates and compares a number of different models for binary
outcomes (yes or no, churn or do not churn, and so on), allowing you to choose the best
approach for a given analysis. A number of modeling algorithms are supported, making it
possible to select the methods you want to use, the specific options for each, and the criteria
for comparing the results. The node generates a set of models based on the specified options
and ranks the best candidates according to the criteria you specify.

Chapter 13. Modeling Node Properties 127

Table 87. autoclassifier node properties.

autoclassifier Node Properties Values Property description

target field For flag targets, the Auto Classifier node
requires a single target and one or more
input fields. Weight and frequency fields
can also be specified. See the topic
“Common Modeling Node Properties” on
page 125 for more information.

ranking_measure Accuracy
Area_under_curve
Profit
Lift
Num_variables

ranking_dataset Training
Test

number_of_models integer Number of models to include in the model
nugget. Specify an integer between 1 and
100.

calculate_variable_importance boolean

enable_accuracy_limit boolean

accuracy_limit integer Integer between 0 and 100.

enable_ area_under_curve _limit boolean

area_under_curve_limit number Real number between 0.0 and 1.0.

enable_profit_limit boolean

profit_limit number Integer greater than 0.

enable_lift_limit boolean

lift_limit number Real number greater than 1.0.

enable_number_of_variables_limit boolean

number_of_variables_limit number Integer greater than 0.

use_fixed_cost boolean

fixed_cost number Real number greater than 0.0.

variable_cost field

use_fixed_revenue boolean

fixed_revenue number Real number greater than 0.0.

variable_revenue field

use_fixed_weight boolean

fixed_weight number Real number greater than 0.0

variable_weight field

lift_percentile number Integer between 0 and 100.

enable_model_build_time_limit boolean

model_build_time_limit number Integer set to the number of minutes to
limit the time taken to build each
individual model.

enable_stop_after_time_limit boolean

stop_after_time_limit number Real number set to the number of hours to
limit the overall elapsed time for an auto
classifier run.

128 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 87. autoclassifier node properties (continued).

autoclassifier Node Properties Values Property description

enable_stop_after_valid_model_producedboolean

use_costs boolean

<algorithm> boolean Enables or disables the use of a specific
algorithm.

<algorithm>.<property> string Sets a property value for a specific
algorithm. See the topic “Setting Algorithm
Properties” for more information.

Setting Algorithm Properties
Algorithm names for the Auto Classifier node are cart, chaid, quest, c50, logreg, decisionlist,
bayesnet, discriminant, svm and knn.

Algorithm names for the Auto Numeric node are cart, chaid, neuralnetwork, genlin, svm, regression,
linear and knn.

Algorithm names for the Auto Cluster node are twostep, k-means, and kohonen.

Property names are standard as documented for each algorithm node.

Algorithm properties that contain periods or other punctuation must be wrapped in single quotes.

Multiple values can also be assigned for property.

Notes:
v Lowercase must be used when setting true and false values (rather than False).
v In cases where certain algorithm options are not available in the Auto Classifier node, or when only a

single value can be specified rather than a range of values, the same limits apply with scripting as
when accessing the node in the standard manner.

autocluster Node Properties

The Auto Cluster node estimates and compares clustering models, which identify groups of
records that have similar characteristics. The node works in the same manner as other
automated modeling nodes, allowing you to experiment with multiple combinations of
options in a single modeling pass. Models can be compared using basic measures with which
to attempt to filter and rank the usefulness of the cluster models, and provide a measure
based on the importance of particular fields.

Table 88. autocluster node properties.

autocluster Node Properties Values Property description

evaluation field Note: Auto Cluster node only. Identifies the
field for which an importance value will be
calculated. Alternatively, can be used to
identify how well the cluster differentiates
the value of this field and, therefore; how
well the model will predict this field.

Chapter 13. Modeling Node Properties 129

Table 88. autocluster node properties (continued).

autocluster Node Properties Values Property description

ranking_measure Silhouette
Num_clusters
Size_smallest_cluster
Size_largest_cluster
Smallest_to_largest
Importance

ranking_dataset Training
Test

summary_limit integer Number of models to list in the report.
Specify an integer between 1 and 100.

enable_silhouette_limit boolean

silhouette_limit integer Integer between 0 and 100.

enable_number_less_limit boolean

number_less_limit number Real number between 0.0 and 1.0.

enable_number_greater_limit boolean

number_greater_limit number Integer greater than 0.

enable_smallest_cluster_limit boolean

smallest_cluster_units Percentage
Counts

smallest_cluster_limit_percentage number

smallest_cluster_limit_count integer Integer greater than 0.

enable_largest_cluster_limit boolean

largest_cluster_units Percentage
Counts

largest_cluster_limit_percentage number

largest_cluster_limit_count integer

enable_smallest_largest_limit boolean

smallest_largest_limit number

enable_importance_limit boolean

importance_limit_condition Greater_than
Less_than

importance_limit_greater_than number Integer between 0 and 100.

importance_limit_less_than number Integer between 0 and 100.

<algorithm> boolean Enables or disables the use of a specific
algorithm.

<algorithm>.<property> string Sets a property value for a specific
algorithm. See the topic “Setting Algorithm
Properties” on page 129 for more
information.

130 IBM SPSS Modeler 16 Python Scripting and Automation Guide

autonumeric Node Properties

The Auto Numeric node estimates and compares models for continuous numeric range
outcomes using a number of different methods. The node works in the same manner as the
Auto Classifier node, allowing you to choose the algorithms to use and to experiment with
multiple combinations of options in a single modeling pass. Supported algorithms include
neural networks, C&R Tree, CHAID, linear regression, generalized linear regression, and
support vector machines (SVM). Models can be compared based on correlation, relative error,
or number of variables used.

Table 89. autonumeric node properties.

autonumeric Node Properties Values Property description

custom_fields boolean If True, custom field settings will be used
instead of type node settings.

target field The Auto Numeric node requires a single
target and one or more input fields. Weight
and frequency fields can also be specified.
See the topic “Common Modeling Node
Properties” on page 125 for more
information.

inputs [field1 ... field2]

partition field

use_frequency boolean

frequency_field field

use_weight boolean

weight_field field

use_partitioned_data boolean If a partition field is defined, only the
training data are used for model building.

ranking_measure Correlation
NumberOfFields

ranking_dataset Test
Training

number_of_models integer Number of models to include in the model
nugget. Specify an integer between 1 and
100.

calculate_variable_importance boolean

enable_correlation_limit boolean

correlation_limit integer

enable_number_of_fields_limit boolean

number_of_fields_limit integer

enable_relative_error_limit boolean

relative_error_limit integer

enable_model_build_time_limit boolean

model_build_time_limit integer

enable_stop_after_time_limit boolean

stop_after_time_limit integer

stop_if_valid_model boolean

Chapter 13. Modeling Node Properties 131

Table 89. autonumeric node properties (continued).

autonumeric Node Properties Values Property description

<algorithm> boolean Enables or disables the use of a specific
algorithm.

<algorithm>.<property> string Sets a property value for a specific
algorithm. See the topic “Setting Algorithm
Properties” on page 129 for more
information.

bayesnet Node Properties

The Bayesian Network node enables you to build a probability model by combining observed
and recorded evidence with real-world knowledge to establish the likelihood of occurrences.
The node focuses on Tree Augmented Naïve Bayes (TAN) and Markov Blanket networks that
are primarily used for classification.

Table 90. bayesnet node properties.

bayesnet Node Properties Values Property description

inputs [field1 ... fieldN] Bayesian network models use a single
target field, and one or more input fields.
Continuous fields are automatically
binned. See the topic “Common
Modeling Node Properties” on page 125
for more information.

continue_training_existing_model boolean

structure_type TAN
MarkovBlanket

Select the structure to be used when
building the Bayesian network.

use_feature_selection boolean

parameter_learning_method Likelihood
Bayes

Specifies the method used to estimate the
conditional probability tables between
nodes where the values of the parents
are known.

mode Expert
Simple

missing_values boolean

all_probabilities boolean

independence Likelihood
Pearson

Specifies the method used to determine
whether paired observations on two
variables are independent of each other.

significance_level number Specifies the cutoff value for determining
independence.

maximal_conditioning_set number Sets the maximal number of conditioning
variables to be used for independence
testing.

inputs_always_selected [field1 ... fieldN] Specifies which fields from the dataset
are always to be used when building the
Bayesian network.
Note: The target field is always selected.

132 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 90. bayesnet node properties (continued).

bayesnet Node Properties Values Property description

maximum_number_inputs number Specifies the maximum number of input
fields to be used in building the Bayesian
network.

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

buildr Node Properties

The R Building node enables you to enter custom R script
to perform model building and model scoring deployed
in IBM SPSS Modeler.

Table 91. buildr properties.

buildr Node Properties Values Property description

build_syntax string R scripting syntax for model building.

score_syntax string R scripting syntax for model scoring.

convert_flags StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_datetime boolean Option to convert variables with date or
datetime formats to R date/time formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what format variables
with date or datetime formats are
converted.

convert_missing boolean Option to convert missing values to R NA
value.

output_html boolean Option to display graphs on a tab in the R
model nugget.

output_text boolean Option to write R console text output to a
tab in the R model nugget.

c50 Node Properties

The C5.0 node builds either a decision tree or a rule set. The model works by splitting the
sample based on the field that provides the maximum information gain at each level. The
target field must be categorical. Multiple splits into more than two subgroups are allowed.

Chapter 13. Modeling Node Properties 133

Table 92. c50 node properties.

c50 Node Properties Values Property description

target field C50 models use a single target field and
one or more input fields. A weight field can
also be specified. See the topic “Common
Modeling Node Properties” on page 125 for
more information.

output_type DecisionTree
RuleSet

group_symbolics boolean

use_boost boolean

boost_num_trials number

use_xval boolean

xval_num_folds number

mode Simple
Expert

favor Accuracy
Generality

Favor accuracy or generality.

expected_noise number

min_child_records number

pruning_severity number

use_costs boolean

costs structured This is a structured property.

use_winnowing boolean

use_global_pruning boolean On (True) by default.

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

carma Node Properties

The CARMA model extracts a set of rules from the data without requiring you to specify
input or target fields. In contrast to Apriori the CARMA node offers build settings for rule
support (support for both antecedent and consequent) rather than just antecedent support.
This means that the rules generated can be used for a wider variety of applications—for
example, to find a list of products or services (antecedents) whose consequent is the item that
you want to promote this holiday season.

Table 93. carma node properties.

carma Node Properties Values Property description

inputs [field1 ... fieldn] CARMA models use a list of input fields,
but no target. Weight and frequency fields
are not used. See the topic “Common
Modeling Node Properties” on page 125 for
more information.

134 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 93. carma node properties (continued).

carma Node Properties Values Property description

id_field field Field used as the ID field for model
building.

contiguous boolean Used to specify whether IDs in the ID field
are contiguous.

use_transactional_data boolean

content_field field

min_supp number(percent) Relates to rule support rather than
antecedent support. The default is 20%.

min_conf number(percent) The default is 20%.

max_size number The default is 10.

mode Simple
Expert

The default is Simple.

exclude_multiple boolean Excludes rules with multiple consequents.
The default is False.

use_pruning boolean The default is False.

pruning_value number The default is 500.

vary_support boolean

estimated_transactions integer

rules_without_antecedents boolean

cart Node Properties

The Classification and Regression (C&R) Tree node generates a decision tree that allows you
to predict or classify future observations. The method uses recursive partitioning to split the
training records into segments by minimizing the impurity at each step, where a node in the
tree is considered “pure” if 100% of cases in the node fall into a specific category of the target
field. Target and input fields can be numeric ranges or categorical (nominal, ordinal, or flags);
all splits are binary (only two subgroups).

Table 94. cart node properties.

cart Node Properties Values Property description

target field C&R Tree models require a single target
and one or more input fields. A frequency
field can also be specified. See the topic
“Common Modeling Node Properties” on
page 125 for more information.

continue_training_existing_model boolean

objective Standard
Boosting
Bagging
psm

psm is used for very large datasets, and
requires a Server connection.

model_output_type Single
InteractiveBuilder

use_tree_directives boolean

Chapter 13. Modeling Node Properties 135

Table 94. cart node properties (continued).

cart Node Properties Values Property description

tree_directives string Specify directives for growing the tree.
Directives can be wrapped in triple quotes
to avoid escaping newlines or quotes. Note
that directives may be highly sensitive to
minor changes in data or modeling options
and may not generalize to other datasets.

use_max_depth Default
Custom

max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.

prune_tree boolean Prune tree to avoid overfitting.

use_std_err boolean Use maximum difference in risk (in
Standard Errors).

std_err_multiplier number Maximum difference.

max_surrogates number Maximum surrogates.

use_percentage boolean

min_parent_records_pc number

min_child_records_pc number

min_parent_records_abs number

min_child_records_abs number

use_costs boolean

costs structured Structured property.

priors Data
Equal
Custom

custom_priors structured Structured property.

adjust_priors boolean

trails number Number of component models for boosting
or bagging.

set_ensemble_method Voting
HighestProbability
HighestMeanProbability

Default combining rule for categorical
targets.

range_ensemble_method Mean
Median

Default combining rule for continuous
targets.

large_boost boolean Apply boosting to very large data sets.

min_impurity number

impurity_measure Gini
Twoing
Ordered

train_pct number Overfit prevention set.

set_random_seed boolean Replicate results option.

seed number

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

136 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 94. cart node properties (continued).

cart Node Properties Values Property description

adjusted_propensity_partition Test
Validation

chaid Node Properties

The CHAID node generates decision trees using chi-square statistics to identify optimal splits.
Unlike the C&R Tree and QUEST nodes, CHAID can generate nonbinary trees, meaning that
some splits have more than two branches. Target and input fields can be numeric range
(continuous) or categorical. Exhaustive CHAID is a modification of CHAID that does a more
thorough job of examining all possible splits but takes longer to compute.

Table 95. chaid node properties.

chaid Node Properties Values Property description

target field CHAID models require a single target and
one or more input fields. A frequency field
can also be specified. See the topic
“Common Modeling Node Properties” on
page 125 for more information.

continue_training_existing_model boolean

objective Standard
Boosting
Bagging
psm

psm is used for very large datasets, and
requires a Server connection.

model_output_type Single
InteractiveBuilder

use_tree_directives boolean

tree_directives string

method Chaid
ExhaustiveChaid

use_max_depth Default
Custom

max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.

use_percentage boolean

min_parent_records_pc number

min_child_records_pc number

min_parent_records_abs number

min_child_records_abs number

use_costs boolean

costs structured Structured property.

trails number Number of component models for boosting
or bagging.

set_ensemble_method Voting
HighestProbability
HighestMeanProbability

Default combining rule for categorical
targets.

Chapter 13. Modeling Node Properties 137

Table 95. chaid node properties (continued).

chaid Node Properties Values Property description

range_ensemble_method Mean
Median

Default combining rule for continuous
targets.

large_boost boolean Apply boosting to very large data sets.

split_alpha number Significance level for splitting.

merge_alpha number Significance level for merging.

bonferroni_adjustment boolean Adjust significance values using Bonferroni
method.

split_merged_categories boolean Allow resplitting of merged categories.

chi_square Pearson
LR

Method used to calculate the chi-square
statistic: Pearson or Likelihood Ratio

epsilon number Minimum change in expected cell
frequencies..

max_iterations number Maximum iterations for convergence.

set_random_seed integer

seed number

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

maximum_number_of_models integer

coxreg Node Properties

The Cox regression node enables you to build a survival model for time-to-event data in the
presence of censored records. The model produces a survival function that predicts the
probability that the event of interest has occurred at a given time (t) for given values of the
input variables.

Table 96. coxreg node properties.

coxreg Node Properties Values Property description

survival_time field Cox regression models require a single
field containing the survival times.

target field Cox regression models require a single
target field, and one or more input fields.
See the topic “Common Modeling Node
Properties” on page 125 for more
information.

method Enter
Stepwise
BackwardsStepwise

groups field

model_type MainEffects
Custom

custom_terms ["BP*Sex" "BP*Age"]

138 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 96. coxreg node properties (continued).

coxreg Node Properties Values Property description

mode Expert
Simple

max_iterations number

p_converge 1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0

p_converge 1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0

l_converge 1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
0

removal_criterion LR
Wald
Conditional

probability_entry number

probability_removal number

output_display EachStep
LastStep

ci_enable boolean

ci_value 90
95
99

correlation boolean

display_baseline boolean

survival boolean

hazard boolean

log_minus_log boolean

one_minus_survival boolean

separate_line field

value number or string If no value is specified for a field, the
default option "Mean" will be used for
that field.

Chapter 13. Modeling Node Properties 139

decisionlist Node Properties

The Decision List node identifies subgroups, or segments, that show a higher or lower
likelihood of a given binary outcome relative to the overall population. For example, you
might look for customers who are unlikely to churn or are most likely to respond favorably
to a campaign. You can incorporate your business knowledge into the model by adding your
own custom segments and previewing alternative models side by side to compare the results.
Decision List models consist of a list of rules in which each rule has a condition and an
outcome. Rules are applied in order, and the first rule that matches determines the outcome.

Table 97. decisionlist node properties.

decisionlist Node Properties Values Property description

target field Decision List models use a single target
and one or more input fields. A frequency
field can also be specified. See the topic
“Common Modeling Node Properties” on
page 125 for more information.

model_output_type Model
InteractiveBuilder

search_direction Up
Down

Relates to finding segments; where Up is
the equivalent of High Probability, and
Down is the equivalent of Low Probability..

target_value string If not specified, will assume true value for
flags.

max_rules integer The maximum number of segments
excluding the remainder.

min_group_size integer Minimum segment size.

min_group_size_pct number Minimum segment size as a percentage.

confidence_level number Minimum threshold that an input field has
to improve the likelihood of response (give
lift), to make it worth adding to a segment
definition.

max_segments_per_rule integer

mode Simple
Expert

bin_method EqualWidth
EqualCount

bin_count number

max_models_per_cycle integer Search width for lists.

max_rules_per_cycle integer Search width for segment rules.

segment_growth number

include_missing boolean

final_results_only boolean

reuse_fields boolean Allows attributes (input fields which
appear in rules) to be re-used.

max_alternatives integer

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

140 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 97. decisionlist node properties (continued).

decisionlist Node Properties Values Property description

adjusted_propensity_partition Test
Validation

discriminant Node Properties

Discriminant analysis makes more stringent assumptions than logistic regression but can be a
valuable alternative or supplement to a logistic regression analysis when those assumptions
are met.

Table 98. discriminant node properties.

discriminant Node Properties Values Property description

target field Discriminant models require a single target
field and one or more input fields. Weight
and frequency fields are not used. See the
topic “Common Modeling Node
Properties” on page 125 for more
information.

method Enter
Stepwise

mode Simple
Expert

prior_probabilities AllEqual
ComputeFromSizes

covariance_matrix WithinGroups
SeparateGroups

means boolean Statistics options in the Advanced Output
dialog box.

univariate_anovas boolean

box_m boolean

within_group_covariance boolean

within_groups_correlation boolean

separate_groups_covariance boolean

total_covariance boolean

fishers boolean

unstandardized boolean

casewise_results boolean Classification options in the Advanced
Output dialog box.

limit_to_first number Default value is 10.

summary_table boolean

leave_one_classification boolean

combined_groups boolean

separate_groups_covariance boolean Matrices option Separate-groups
covariance.

territorial_map boolean

Chapter 13. Modeling Node Properties 141

Table 98. discriminant node properties (continued).

discriminant Node Properties Values Property description

combined_groups boolean Plot option Combined-groups.

separate_groups boolean Plot option Separate-groups.

summary_of_steps boolean

F_pairwise boolean

stepwise_method WilksLambda
UnexplainedVariance
MahalanobisDistance
SmallestF
RaosV

V_to_enter number

criteria UseValue
UseProbability

F_value_entry number Default value is 3.84.

F_value_removal number Default value is 2.71.

probability_entry number Default value is 0.05.

probability_removal number Default value is 0.10.

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

factor Node Properties

The PCA/Factor node provides powerful data-reduction techniques to reduce the complexity
of your data. Principal components analysis (PCA) finds linear combinations of the input
fields that do the best job of capturing the variance in the entire set of fields, where the
components are orthogonal (perpendicular) to each other. Factor analysis attempts to identify
underlying factors that explain the pattern of correlations within a set of observed fields. For
both approaches, the goal is to find a small number of derived fields that effectively
summarizes the information in the original set of fields.

Table 99. factor node properties.

factor Node Properties Values Property description

inputs [field1 ... fieldN] PCA/Factor models use a list of input
fields, but no target. Weight and frequency
fields are not used. See the topic “Common
Modeling Node Properties” on page 125 for
more information.

method PC
ULS
GLS
ML
PAF
Alpha
Image

142 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 99. factor node properties (continued).

factor Node Properties Values Property description

mode Simple
Expert

max_iterations number

complete_records boolean

matrix Correlation
Covariance

extract_factors ByEigenvalues
ByFactors

min_eigenvalue number

max_factor number

rotation None
Varimax
DirectOblimin
Equamax
Quartimax
Promax

delta number If you select DirectOblimin as your rotation
data type, you can specify a value for
delta.

If you do not specify a value, the default
value for delta is used.

kappa number If you select Promax as your rotation data
type, you can specify a value for kappa.

If you do not specify a value, the default
value for kappa is used.

sort_values boolean

hide_values boolean

hide_below number

featureselection Node Properties

The Feature Selection node screens input fields for removal based on a set of criteria (such as
the percentage of missing values); it then ranks the importance of remaining inputs relative to
a specified target. For example, given a data set with hundreds of potential inputs, which are
most likely to be useful in modeling patient outcomes?

Table 100. featureselection node properties.

featureselection Node Properties Values Property description

target field Feature Selection models rank predictors
relative to the specified target. Weight
and frequency fields are not used. See
the topic “Common Modeling Node
Properties” on page 125 for more
information.

Chapter 13. Modeling Node Properties 143

Table 100. featureselection node properties (continued).

featureselection Node Properties Values Property description

screen_single_category boolean If True, screens fields that have too many
records falling into the same category
relative to the total number of records.

max_single_category number Specifies the threshold used when
screen_single_category is True.

screen_missing_values boolean If True, screens fields with too many
missing values, expressed as a
percentage of the total number of
records.

max_missing_values number

screen_num_categories boolean If True, screens fields with too many
categories relative to the total number of
records.

max_num_categories number

screen_std_dev boolean If True, screens fields with a standard
deviation of less than or equal to the
specified minimum.

min_std_dev number

screen_coeff_of_var boolean If True, screens fields with a coefficient
of variance less than or equal to the
specified minimum.

min_coeff_of_var number

criteria Pearson
Likelihood
CramersV
Lambda

When ranking categorical predictors
against a categorical target, specifies the
measure on which the importance value
is based.

unimportant_below number Specifies the threshold p values used to
rank variables as important, marginal, or
unimportant. Accepts values from 0.0 to
1.0.

important_above number Accepts values from 0.0 to 1.0.

unimportant_label string Specifies the label for the unimportant
ranking.

marginal_label string

important_label string

selection_mode ImportanceLevel
ImportanceValue
TopN

select_important boolean When selection_mode is set to
ImportanceLevel, specifies whether to
select important fields.

select_marginal boolean When selection_mode is set to
ImportanceLevel, specifies whether to
select marginal fields.

select_unimportant boolean When selection_mode is set to
ImportanceLevel, specifies whether to
select unimportant fields.

144 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 100. featureselection node properties (continued).

featureselection Node Properties Values Property description

importance_value number When selection_mode is set to
ImportanceValue, specifies the cutoff
value to use. Accepts values from 0 to
100.

top_n integer When selection_mode is set to TopN,
specifies the cutoff value to use. Accepts
values from 0 to 1000.

genlin Node Properties

The Generalized Linear model expands the general linear model so that the dependent
variable is linearly related to the factors and covariates through a specified link function.
Moreover, the model allows for the dependent variable to have a non-normal distribution. It
covers the functionality of a wide number of statistical models, including linear regression,
logistic regression, loglinear models for count data, and interval-censored survival models.

Table 101. genlin node properties.

genlin Node Properties Values Property description

target field Generalized Linear models require a single
target field which must be a nominal or
flag field, and one or more input fields. A
weight field can also be specified. See the
topic “Common Modeling Node
Properties” on page 125 for more
information.

use_weight boolean

weight_field field Field type is only continuous.

target_represents_trials boolean

trials_type Variable
FixedValue

trials_field field Field type is continuous, flag, or ordinal.

trials_number number Default value is 10.

model_type MainEffects
MainAndAllTwoWayEffects

offset_type Variable
FixedValue

offset_field field Field type is only continuous.

offset_value number Must be a real number.

base_category Last
First

include_intercept boolean

mode Simple
Expert

Chapter 13. Modeling Node Properties 145

Table 101. genlin node properties (continued).

genlin Node Properties Values Property description

distribution BINOMIAL
GAMMA
IGAUSS
NEGBIN
NORMAL
POISSON
TWEEDIE
MULTINOMIAL

IGAUSS: Inverse Gaussian.
NEGBIN: Negative binomial.

negbin_para_type Specify
Estimate

negbin_parameter number Default value is 1. Must contain a
non-negative real number.

tweedie_parameter number

link_function IDENTITY
CLOGLOG
LOG
LOGC
LOGIT
NEGBIN
NLOGLOG
ODDSPOWER
PROBIT
POWER
CUMCAUCHIT
CUMCLOGLOG
CUMLOGIT
CUMNLOGLOG
CUMPROBIT

CLOGLOG: Complementary log-log.
LOGC: log complement.
NEGBIN: Negative binomial.
NLOGLOG: Negative log-log.
CUMCAUCHIT: Cumulative cauchit.
CUMCLOGLOG: Cumulative complementary
log-log.
CUMLOGIT: Cumulative logit.
CUMNLOGLOG: Cumulative negative log-log.
CUMPROBIT: Cumulative probit.

power number Value must be real, nonzero number.

method Hybrid
Fisher
NewtonRaphson

max_fisher_iterations number Default value is 1; only positive integers
allowed.

scale_method MaxLikelihoodEstimate
Deviance
PearsonChiSquare
FixedValue

scale_value number Default value is 1; must be greater than 0.

covariance_matrix ModelEstimator
RobustEstimator

max_iterations number Default value is 100; non-negative integers
only.

max_step_halving number Default value is 5; positive integers only.

check_separation boolean

start_iteration number Default value is 20; only positive integers
allowed.

estimates_change boolean

estimates_change_min number Default value is 1E-006; only positive
numbers allowed.

146 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 101. genlin node properties (continued).

genlin Node Properties Values Property description

estimates_change_type Absolute
Relative

loglikelihood_change boolean

loglikelihood_change_min number Only positive numbers allowed.

loglikelihood_change_type Absolute
Relative

hessian_convergence boolean

hessian_convergence_min number Only positive numbers allowed.

hessian_convergence_type Absolute
Relative

case_summary boolean

contrast_matrices boolean

descriptive_statistics boolean

estimable_functions boolean

model_info boolean

iteration_history boolean

goodness_of_fit boolean

print_interval number Default value is 1; must be positive integer.

model_summary boolean

lagrange_multiplier boolean

parameter_estimates boolean

include_exponential boolean

covariance_estimates boolean

correlation_estimates boolean

analysis_type TypeI
TypeIII
TypeIAndTypeIII

statistics Wald
LR

citype Wald
Profile

tolerancelevel number Default value is 0.0001.

confidence_interval number Default value is 95.

loglikelihood_function Full
Kernel

singularity_tolerance 1E-007
1E-008
1E-009
1E-010
1E-011
1E-012

value_order Ascending
Descending
DataOrder

Chapter 13. Modeling Node Properties 147

Table 101. genlin node properties (continued).

genlin Node Properties Values Property description

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

glmm Node Properties

A generalized linear mixed model (GLMM) extends the linear model so that the target can
have a non-normal distribution, is linearly related to the factors and covariates via a specified
link function, and so that the observations can be correlated. Generalized linear mixed models
cover a wide variety of models, from simple linear regression to complex multilevel models
for non-normal longitudinal data.

Table 102. glmm node properties.

glmm Node Properties Values Property description

residual_subject_spec structured The combination of values of the specified
categorical fields that uniquely define
subjects within the data set

repeated_measures structured Fields used to identify repeated
observations.

residual_group_spec [field1 ... fieldN] Fields that define independent sets of
repeated effects covariance parameters.

residual_covariance_type Diagonal
AR1
ARMA11
COMPOUND_SYMMETRY
IDENTITY
TOEPLITZ
UNSTRUCTURED
VARIANCE_COMPONENTS

Specifies covariance structure for residuals.

custom_target boolean Indicates whether to use target defined in
upstream node (false) or custom target
specified by target_field (true).

target_field field Field to use as target if custom_target is
true.

use_trials boolean Indicates whether additional field or value
specifying number of trials is to be used
when target response is a number of events
occurring in a set of trials. Default is false.

use_field_or_value Field
Value

Indicates whether field (default) or value is
used to specify number of trials.

trials_field field Field to use to specify number of trials.

trials_value integer Value to use to specify number of trials. If
specified, minimum value is 1.

use_custom_target_reference boolean Indicates whether custom reference
category is to be used for a categorical
target. Default is false.

148 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 102. glmm node properties (continued).

glmm Node Properties Values Property description

target_reference_value string Reference category to use if
use_custom_target_reference is true.

dist_link_combination Nominal
Logit
GammaLog
BinomialLogit
PoissonLog
BinomialProbit
NegbinLog
BinomialLogC
Custom

Common models for distribution of values
for target. Choose Custom to specify a
distribution from the list provided
bytarget_distribution.

target_distribution Normal
Binomial
Multinomial
Gamma
Inverse
NegativeBinomial
Poisson

Distribution of values for target when
dist_link_combination is Custom.

link_function_type IDENTITY
LOGC
LOG
CLOGLOG
LOGIT
NLOGLOG
PROBIT
POWER
CAUCHIT

Link function to relate target
values to predictors.
If target_distribution is
Binomial you can use any
of the listed link functions.
If target_distribution is
Multinomial you can use
CLOGLOG, CAUCHIT, LOGIT,
NLOGLOG, or PROBIT.
If target_distribution is
anything other than Binomial or
Multinomial you can use
IDENTITY, LOG, or POWER.

link_function_param number Link function parameter value to use. Only
applicable if normal_link_function or
link_function_type is POWER.

use_predefined_inputs boolean Indicates whether fixed effect fields are to
be those defined upstream as input fields
(true) or those from fixed_effects_list
(false). Default is false.

fixed_effects_list structured If use_predefined_inputs is false, specifies
the input fields to use as fixed effect fields.

use_intercept boolean If true (default), includes the intercept in
the model.

random_effects_list structured List of fields to specify as random effects.

regression_weight_field field Field to use as analysis weight field.

use_offset None
offset_value
offset_field

Indicates how offset is specified. Value None
means no offset is used.

offset_value number Value to use for offset if use_offset is set
to offset_value.

offset_field field Field to use for offset value if use_offset is
set to offset_field.

Chapter 13. Modeling Node Properties 149

Table 102. glmm node properties (continued).

glmm Node Properties Values Property description

target_category_order Ascending
Descending
Data

Sorting order for categorical targets. Value
Data specifies using the sort order found in
the data. Default is Ascending.

inputs_category_order Ascending
Descending
Data

Sorting order for categorical predictors.
Value Data specifies using the sort order
found in the data. Default is Ascending.

max_iterations integer Maximum number of iterations the
algorithm will perform. A non-negative
integer; default is 100.

confidence_level integer Confidence level used to compute interval
estimates of the model coefficients. A
non-negative integer; maximum is 100,
default is 95.

degrees_of_freedom_method Fixed
Varied

Specifies how degrees of freedom are
computed for significance test.

test_fixed_effects_coeffecients Model
Robust

Method for computing the parameter
estimates covariance matrix.

use_p_converge boolean Option for parameter convergence.

p_converge number Blank, or any positive value.

p_converge_type Absolute
Relative

use_l_converge boolean Option for log-likelihood convergence.

l_converge number Blank, or any positive value.

l_converge_type Absolute
Relative

use_h_converge boolean Option for Hessian convergence.

h_converge number Blank, or any positive value.

h_converge_type Absolute
Relative

max_fisher_steps integer

singularity_tolerance number

use_model_name boolean Indicates whether to specify a custom name
for the model (true) or to use the
system-generated name (false). Default is
false.

model_name string If use_model_name is true, specifies the
model name to use.

confidence onProbability
onIncrease

Basis for computing scoring confidence
value: highest predicted probability, or
difference between highest and second
highest predicted probabilities.

score_category_probabilities boolean If true, produces predicted probabilities for
categorical targets. Default is false.

max_categories integer If score_category_probabilities is true,
specifies maximum number of categories to
save.

150 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 102. glmm node properties (continued).

glmm Node Properties Values Property description

score_propensity boolean If true, produces propensity scores for flag
target fields that indicate likelihood of
"true" outcome for field.

emeans structure For each categorical field from the fixed
effects list, specifies whether to produce
estimated marginal means.

covariance_list structure For each continuous field from the fixed
effects list, specifies whether to use the
mean or a custom value when computing
estimated marginal means.

mean_scale Original
Transformed

Specifies whether to compute estimated
marginal means based on the original scale
of the target (default) or on the link
function transformation.

comparison_adjustment_method LSD
SEQBONFERRONI
SEQSIDAK

Adjustment method to use when
performing hypothesis tests with multiple
contrasts.

kmeans Node Properties

The K-Means node clusters the data set into distinct groups (or clusters). The method defines
a fixed number of clusters, iteratively assigns records to clusters, and adjusts the cluster
centers until further refinement can no longer improve the model. Instead of trying to predict
an outcome, k-means uses a process known as unsupervised learning to uncover patterns in
the set of input fields.

Table 103. kmeans node properties.

kmeans node Properties Values Property description

inputs [field1 ... fieldN] K-means models perform cluster analysis
on a set of input fields but do not use a
target field. Weight and frequency fields are
not used. See the topic “Common Modeling
Node Properties” on page 125 for more
information.

num_clusters number

gen_distance boolean

cluster_label String
Number

label_prefix string

mode Simple
Expert

stop_on Default
Custom

max_iterations number

tolerance number

encoding_value number

Chapter 13. Modeling Node Properties 151

Table 103. kmeans node properties (continued).

kmeans node Properties Values Property description

optimize Speed
Memory

Use to specify whether model building
should be optimized for speed or for
memory.

knn Node Properties

The k-Nearest Neighbor (KNN) node associates a new case with the category or value of the k
objects nearest to it in the predictor space, where k is an integer. Similar cases are near each
other and dissimilar cases are distant from each other.

Table 104. knn node properties.

knn Node Properties Values Property description

analysis PredictTarget
IdentifyNeighbors

objective Balance
Speed
Accuracy
Custom

normalize_ranges boolean

use_case_labels boolean Check box to enable next option.

case_labels_field field

identify_focal_cases boolean Check box to enable next option.

focal_cases_field field

automatic_k_selection boolean

fixed_k integer Enabled only if automatic_k_selectio is
False.

minimum_k integer Enabled only if automatic_k_selectio is
True.

maximum_k integer

distance_computation Euclidean
CityBlock

weight_by_importance boolean

range_predictions Mean
Median

perform_feature_selection boolean

forced_entry_inputs [field1 ... fieldN]

stop_on_error_ratio boolean

number_to_select integer

minimum_change number

validation_fold_assign_by_field boolean

number_of_folds integer Enabled only if
validation_fold_assign_by_field is False

set_random_seed boolean

152 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 104. knn node properties (continued).

knn Node Properties Values Property description

random_seed number

folds_field field Enabled only if
validation_fold_assign_by_field is True

all_probabilities boolean

save_distances boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

kohonen Node Properties

The Kohonen node generates a type of neural network that can be used to cluster the data set
into distinct groups. When the network is fully trained, records that are similar should be
close together on the output map, while records that are different will be far apart. You can
look at the number of observations captured by each unit in the model nugget to identify the
strong units. This may give you a sense of the appropriate number of clusters.

Table 105. kohonen node properties.

kohonen Node Properties Values Property description

inputs [field1 ... fieldN] Kohonen models use a list of input fields,
but no target. Frequency and weight fields
are not used. See the topic “Common
Modeling Node Properties” on page 125 for
more information.

continue boolean

show_feedback boolean

stop_on Default
Time

time number

optimize Speed
Memory

Use to specify whether model building
should be optimized for speed or for
memory.

cluster_label boolean

mode Simple
Expert

width number

length number

decay_style Linear
Exponential

phase1_neighborhood number

phase1_eta number

phase1_cycles number

phase2_neighborhood number

phase2_eta number

Chapter 13. Modeling Node Properties 153

Table 105. kohonen node properties (continued).

kohonen Node Properties Values Property description

phase2_cycles number

linear Node Properties

Linear regression models predict a continuous target based on linear relationships between
the target and one or more predictors.

Table 106. linear node properties.

linear Node Properties Values Property description

target field Specifies a single target field.

inputs [field1 ... fieldN] Predictor fields used by the model.

continue_training_existing_model boolean

objective Standard
Bagging
Boosting
psm

psm is used for very large datasets, and
requires a Server connection.

use_auto_data_preparation boolean

confidence_level number

model_selection ForwardStepwise
BestSubsets
None

criteria_forward_stepwise AICC
Fstatistics
AdjustedRSquare
ASE

probability_entry number

probability_removal number

use_max_effects boolean

max_effects number

use_max_steps boolean

max_steps number

criteria_best_subsets AICC
AdjustedRSquare
ASE

combining_rule_continuous Mean
Median

component_models_n number

use_random_seed boolean

random_seed number

use_custom_model_name boolean

custom_model_name string

154 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 106. linear node properties (continued).

linear Node Properties Values Property description

use_custom_name boolean

custom_name string

tooltip string

keywords string

annotation string

logreg Node Properties

Logistic regression is a statistical technique for classifying records based on values of input
fields. It is analogous to linear regression but takes a categorical target field instead of a
numeric range.

Table 107. logreg node properties.

logreg Node Properties Values Property description

target field Logistic regression models require a single
target field and one or more input fields.
Frequency and weight fields are not used.
See the topic “Common Modeling Node
Properties” on page 125 for more
information.

logistic_procedure Binomial
Multinomial

include_constant boolean

mode Simple
Expert

method Enter
Stepwise
Forwards
Backwards
BackwardsStepwise

binomial_method Enter
Forwards
Backwards

model_type MainEffects
FullFactorial
Custom

When FullFactorial is specified as the
model type, stepping methods will not be
run, even if specified. Instead, Enter will
be the method used.

If the model type is set to Custom but no
custom fields are specified, a main-effects
model will be built.

custom_terms [{BP Sex}{BP}{Age}]

multinomial_base_category string Specifies how the reference category is
determined.

binomial_categorical_input string

Chapter 13. Modeling Node Properties 155

Table 107. logreg node properties (continued).

logreg Node Properties Values Property description

binomial_input_contrast Indicator
Simple
Difference
Helmert
Repeated
Polynomial
Deviation

Keyed property for categorical input that
specifies how the contrast is determined.

binomial_input_category First
Last

Keyed property for categorical input that
specifies how the reference category is
determined.

scale None
UserDefined
Pearson
Deviance

scale_value number

all_probabilities boolean

tolerance 1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9
1.0E-10

min_terms number

use_max_terms boolean

max_terms number

entry_criterion Score
LR

removal_criterion LR
Wald

probability_entry number

probability_removal number

binomial_probability_entry number

binomial_probability_removal number

requirements HierarchyDiscrete HierarchyAll
Containment
None

max_iterations number

max_steps number

p_converge 1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0

156 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 107. logreg node properties (continued).

logreg Node Properties Values Property description

l_converge 1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
0

delta number

iteration_history boolean

history_steps number

summary boolean

likelihood_ratio boolean

asymptotic_correlation boolean

goodness_fit boolean

parameters boolean

confidence_interval number

asymptotic_covariance boolean

classification_table boolean

stepwise_summary boolean

info_criteria boolean

monotonicity_measures boolean

binomial_output_display at_each_step
at_last_step

binomial_goodness_of_fit boolean

binomial_parameters boolean

binomial_iteration_history boolean

binomial_classification_plots boolean

binomial_ci_enable boolean

binomial_ci number

binomial_residual outliers
all

binomial_residual_enable boolean

binomial_outlier_threshold number

binomial_classification_cutoff number

binomial_removal_criterion LR
Wald
Conditional

calculate_variable_importance boolean

calculate_raw_propensities boolean

Chapter 13. Modeling Node Properties 157

neuralnet Node Properties
Caution: A newer version of the Neural Net modeling node, with enhanced features, is available in this
release and is described in the next section (neuralnetwork). Although you can still build and score a
model with the previous version, we recommend updating your scripts to use the new version. Details of
the previous version are retained here for reference.

Table 108. neuralnet node properties.

neuralnet Node Properties Values Property description

targets [field1 ... fieldN] The Neural Net node expects one or more
target fields and one or more input fields.
Frequency and weight fields are ignored.
See the topic “Common Modeling Node
Properties” on page 125 for more
information.

method Quick
Dynamic
Multiple
Prune
ExhaustivePrune
RBFN

prevent_overtrain boolean

train_pct number

set_random_seed boolean

random_seed number

mode Simple
Expert

stop_on Default
Accuracy
Cycles
Time

Stopping mode.

accuracy number Stopping accuracy.

cycles number Cycles to train.

time number Time to train (minutes).

continue boolean

show_feedback boolean

binary_encode boolean

use_last_model boolean

gen_logfile boolean

logfile_name string

alpha number

initial_eta number

high_eta number

low_eta number

eta_decay_cycles number

hid_layers One
Two
Three

hl_units_one number

158 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 108. neuralnet node properties (continued).

neuralnet Node Properties Values Property description

hl_units_two number

hl_units_three number

persistence number

m_topologies string

m_non_pyramids boolean

m_persistence number

p_hid_layers One
Two
Three

p_hl_units_one number

p_hl_units_two number

p_hl_units_three number

p_persistence number

p_hid_rate number

p_hid_pers number

p_inp_rate number

p_inp_pers number

p_overall_pers number

r_persistence number

r_num_clusters number

r_eta_auto boolean

r_alpha number

r_eta number

optimize Speed
Memory

Use to specify whether model building
should be optimized for speed or for
memory.

calculate_variable_importance boolean Note: The sensitivity_analysis property
used in previous releases is deprecated in
favor of this property. The old property is
still supported, but
calculate_variable_importance is
recommended.

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

neuralnetwork Node Properties

The Neural Net node uses a simplified model of the way the human brain processes
information. It works by simulating a large number of interconnected simple processing units
that resemble abstract versions of neurons. Neural networks are powerful general function
estimators and require minimal statistical or mathematical knowledge to train or apply.

Chapter 13. Modeling Node Properties 159

Table 109. neuralnetwork node properties.

neuralnetwork Node Properties Values Property description

targets [field1 ... fieldN] Specifies target fields.

inputs [field1 ... fieldN] Predictor fields used by the model.

splits [field1 ... fieldN Specifies the field or fields to use for split
modeling.

use_partition boolean If a partition field is defined, this option
ensures that only data from the training
partition is used to build the model.

continue boolean Continue training existing model.

objective Standard
Bagging
Boosting
psm

psm is used for very large datasets, and
requires a Server connection.

method MultilayerPerceptron
RadialBasisFunction

use_custom_layers boolean

first_layer_units number

second_layer_units number

use_max_time boolean

max_time number

use_max_cycles boolean

max_cycles number

use_min_accuracy boolean

min_accuracy number

combining_rule_categorical Voting
HighestProbability
HighestMeanProbability

combining_rule_continuous Mean
Median

component_models_n number

overfit_prevention_pct number

use_random_seed boolean

random_seed number

missing_values listwiseDeletion
missingValueImputation

use_custom_model_name boolean

custom_model_name string

confidence onProbability
onIncrease

score_category_probabilities boolean

max_categories number

score_propensity boolean

use_custom_name boolean

160 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 109. neuralnetwork node properties (continued).

neuralnetwork Node Properties Values Property description

custom_name string

tooltip string

keywords string

annotation string

quest Node Properties

The QUEST node provides a binary classification method for building decision trees, designed
to reduce the processing time required for large C&R Tree analyses while also reducing the
tendency found in classification tree methods to favor inputs that allow more splits. Input
fields can be numeric ranges (continuous), but the target field must be categorical. All splits
are binary.

Table 110. quest node properties.

quest Node Properties Values Property description

target field QUEST models require a single target and
one or more input fields. A frequency field
can also be specified. See the topic
“Common Modeling Node Properties” on
page 125 for more information.

continue_training_existing_model boolean

objective Standard
Boosting
Bagging
psm

psm is used for very large datasets, and
requires a Server connection.

model_output_type Single
InteractiveBuilder

use_tree_directives boolean

tree_directives string

use_max_depth Default
Custom

max_depth integer Maximum tree depth, from 0 to 1000. Used
only if use_max_depth = Custom.

prune_tree boolean Prune tree to avoid overfitting.

use_std_err boolean Use maximum difference in risk (in
Standard Errors).

std_err_multiplier number Maximum difference.

max_surrogates number Maximum surrogates.

use_percentage boolean

min_parent_records_pc number

min_child_records_pc number

min_parent_records_abs number

min_child_records_abs number

use_costs boolean

costs structured Structured property.

Chapter 13. Modeling Node Properties 161

Table 110. quest node properties (continued).

quest Node Properties Values Property description

priors Data
Equal
Custom

custom_priors structured Structured property.

adjust_priors boolean

trails number Number of component models for boosting
or bagging.

set_ensemble_method Voting
HighestProbability
HighestMeanProbability

Default combining rule for categorical
targets.

range_ensemble_method Mean
Median

Default combining rule for continuous
targets.

large_boost boolean Apply boosting to very large data sets.

split_alpha number Significance level for splitting.

train_pct number Overfit prevention set.

set_random_seed boolean Replicate results option.

seed number

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

regression Node Properties

Linear regression is a common statistical technique for summarizing data and making
predictions by fitting a straight line or surface that minimizes the discrepancies between
predicted and actual output values.

Note: The Regression node is due to be replaced by the Linear node in a future release. We recommend
using Linear models for linear regression from now on.

Table 111. regression node properties.

regression Node Properties Values Property description

target field Regression models require a single target
field and one or more input fields. A
weight field can also be specified. See the
topic “Common Modeling Node
Properties” on page 125 for more
information.

method Enter
Stepwise
Backwards
Forwards

include_constant boolean

162 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 111. regression node properties (continued).

regression Node Properties Values Property description

use_weight boolean

weight_field field

mode Simple
Expert

complete_records boolean

tolerance 1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9
1.0E-10
1.0E-11
1.0E-12

Use double quotes for arguments.

stepping_method useP
useF

useP : use probability of F
useF: use F value

probability_entry number

probability_removal number

F_value_entry number

F_value_removal number

selection_criteria boolean

confidence_interval boolean

covariance_matrix boolean

collinearity_diagnostics boolean

regression_coefficients boolean

exclude_fields boolean

durbin_watson boolean

model_fit boolean

r_squared_change boolean

p_correlations boolean

descriptives boolean

calculate_variable_importance boolean

sequence Node Properties

The Sequence node discovers association rules in sequential or time-oriented data. A sequence
is a list of item sets that tends to occur in a predictable order. For example, a customer who
purchases a razor and aftershave lotion may purchase shaving cream the next time he shops.
The Sequence node is based on the CARMA association rules algorithm, which uses an
efficient two-pass method for finding sequences.

Chapter 13. Modeling Node Properties 163

Table 112. sequence node properties.

sequence Node Properties Values Property description

id_field field To create a Sequence model, you need to
specify an ID field, an optional time field,
and one or more content fields. Weight and
frequency fields are not used. See the topic
“Common Modeling Node Properties” on
page 125 for more information.

time_field field

use_time_field boolean

content_fields [field1 ... fieldn]

contiguous boolean

min_supp number

min_conf number

max_size number

max_predictions number

mode Simple
Expert

use_max_duration boolean

max_duration number

use_gaps boolean

min_item_gap number

max_item_gap number

use_pruning boolean

pruning_value number

set_mem_sequences boolean

mem_sequences integer

slrm Node Properties

The Self-Learning Response Model (SLRM) node enables you to build a model in which a
single new case, or small number of new cases, can be used to reestimate the model without
having to retrain the model using all data.

Table 113. slrm node properties.

slrm Node Properties Values Property description

target field The target field must be a nominal or flag
field. A frequency field can also be
specified. See the topic “Common
Modeling Node Properties” on page 125
for more information.

target_response field Type must be flag.

continue_training_existing_model boolean

target_field_values boolean Use all: Use all values from source.

Specify: Select values required.

164 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 113. slrm node properties (continued).

slrm Node Properties Values Property description

target_field_values_specify [field1 ... fieldN]

include_model_assessment boolean

model_assessment_random_seed number Must be a real number.

model_assessment_sample_size number Must be a real number.

model_assessment_iterations number Number of iterations.

display_model_evaluation boolean

max_predictions number

randomization number

scoring_random_seed number

sort Ascending
Descending

Specifies whether the offers with the
highest or lowest scores will be displayed
first.

model_reliability boolean

calculate_variable_importance boolean

statisticsmodel Node Properties

The Statistics Model node enables you to analyze and work with your data by running IBM
SPSS Statistics procedures that produce PMML. This node requires a licensed copy of IBM
SPSS Statistics.

The properties for this node are described under “statisticsmodel Node Properties” on page 228.

svm Node Properties

The Support Vector Machine (SVM) node enables you to classify data into one of two groups
without overfitting. SVM works well with wide data sets, such as those with a very large
number of input fields.

Table 114. svm node properties.

svm Node Properties Values Property description

all_probabilities boolean

stopping_criteria 1.0E-1
1.0E-2
1.0E-3 (default)
1.0E-4
1.0E-5
1.0E-6

Determines when to stop the
optimization algorithm.

regularization number Also known as the C parameter.

precision number Used only if measurement level of
target field is Continuous.

Chapter 13. Modeling Node Properties 165

Table 114. svm node properties (continued).

svm Node Properties Values Property description

kernel RBF(default)
Polynomial
Sigmoid
Linear

Type of kernel function used for the
transformation.

rbf_gamma number Used only if kernel is RBF.

gamma number Used only if kernel is Polynomial or
Sigmoid.

bias number

degree number Used only if kernel is Polynomial.

calculate_variable_importance boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

adjusted_propensity_partition Test
Validation

timeseries Node Properties

The Time Series node estimates exponential smoothing, univariate Autoregressive Integrated
Moving Average (ARIMA), and multivariate ARIMA (or transfer function) models for time
series data and produces forecasts of future performance. A Time Series node must always be
preceded by a Time Intervals node.

Table 115. timeseries node properties.

timeseries Node Properties Values Property description

targets field The Time Series node
forecasts one or more
targets, optionally using one
or more input fields as
predictors. Frequency and
weight fields are not used.
See the topic “Common
Modeling Node Properties”
on page 125 for more
information.

continue boolean

method ExpertModeler
Exsmooth
Arima
Reuse

expert_modeler_method boolean

consider_seasonal boolean

detect_outliers boolean

expert_outlier_additive boolean

expert_outlier_level_shift boolean

expert_outlier_innovational boolean

expert_outlier_level_shift boolean

166 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 115. timeseries node properties (continued).

timeseries Node Properties Values Property description

expert_outlier_transient boolean

expert_outlier_seasonal_additive boolean

expert_outlier_local_trend boolean

expert_outlier_additive_patch boolean

exsmooth_model_type Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicative

exsmooth_transformation_type None
SquareRoot
NaturalLog

arima_p integer

arima_d integer

arima_q integer

arima_sp integer

arima_sd integer

arima_sq integer

arima_transformation_type None
SquareRoot
NaturalLog

arima_include_constant boolean

tf_arima_p. fieldname integer For transfer functions.

tf_arima_d. fieldname integer For transfer functions.

tf_arima_q. fieldname integer For transfer functions.

tf_arima_sp. fieldname integer For transfer functions.

tf_arima_sd. fieldname integer For transfer functions.

tf_arima_sq. fieldname integer For transfer functions.

tf_arima_delay. fieldname integer For transfer functions.

tf_arima_transformation_type. fieldname None
SquareRoot
NaturalLog

For transfer functions.

arima_detect_outlier_mode None
Automatic

arima_outlier_additive boolean

arima_outlier_level_shift boolean

arima_outlier_innovational boolean

arima_outlier_transient boolean

arima_outlier_seasonal_additive boolean

arima_outlier_local_trend boolean

arima_outlier_additive_patch boolean

conf_limit_pct real

Chapter 13. Modeling Node Properties 167

Table 115. timeseries node properties (continued).

timeseries Node Properties Values Property description

max_lags integer

events fields

scoring_model_only boolean Use for models with very
large numbers (tens of
thousands) of time series.

twostep Node Properties

The TwoStep node uses a two-step clustering method. The first step makes a single pass
through the data to compress the raw input data into a manageable set of subclusters. The
second step uses a hierarchical clustering method to progressively merge the subclusters into
larger and larger clusters. TwoStep has the advantage of automatically estimating the optimal
number of clusters for the training data. It can handle mixed field types and large data sets
efficiently.

Table 116. twostep node properties.

twostep Node Properties Values Property description

inputs [field1 ... fieldN] TwoStep models use a list of input fields,
but no target. Weight and frequency fields
are not recognized. See the topic “Common
Modeling Node Properties” on page 125 for
more information.

standardize boolean

exclude_outliers boolean

percentage number

cluster_num_auto boolean

min_num_clusters number

max_num_clusters number

num_clusters number

cluster_label String
Number

label_prefix string

distance_measure Euclidean
Loglikelihood

clustering_criterion AIC
BIC

168 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 14. Model Nugget Node Properties

Model nugget nodes share the same common properties as other nodes. See the topic “Common Node
Properties” on page 56 for more information.

applyanomalydetection Node Properties
Anomaly Detection modeling nodes can be used to generate an Anomaly Detection model nugget. The
scripting name of this model nugget is applyanomalydetection. For more information on scripting the
modeling node itself, see the topic “anomalydetection Node Properties” on page 125.

Table 117. applyanomalydetection node properties.

applyanomalydetection Node Properties Values Property description

anomaly_score_method FlagAndScore
FlagOnly
ScoreOnly

Determines which outputs are created for
scoring.

num_fields integer Fields to report.

discard_records boolean Indicates whether records are discarded from the
output or not.

discard_anomalous_records boolean Indicator of whether to discard the anomalous or
non-anomalous records. The default is off,
meaning that non-anomalous records are
discarded. Otherwise, if on, anomalous records
will be discarded. This property is enabled only
if the discard_records property is enabled.

applyapriori Node Properties
Apriori modeling nodes can be used to generate an Apriori model nugget. The scripting name of this
model nugget is applyapriori. For more information on scripting the modeling node itself, see the
topic“apriori Node Properties” on page 127.

Table 118. applyapriori node properties.

applyapriori Node Properties Values Property description

max_predictions number (integer)

ignore_unmatached boolean

allow_repeats boolean

check_basket NoPredictions
Predictions
NoCheck

criterion Confidence
Support
RuleSupport
Lift
Deployability

169

applyautoclassifier Node Properties
Auto Classifier modeling nodes can be used to generate an Auto Classifier model nugget. The scripting
name of this model nugget is applyautoclassifier. For more information on scripting the modeling node
itself, see the topic“autoclassifier Node Properties” on page 127.

Table 119. applyautoclassifier node properties.

applyautoclassifier Node
Properties Values Property description

flag_ensemble_method Voting
ConfidenceWeightedVoting
RawPropensityWeightedVoting
HighestConfidence
AverageRawPropensity

Specifies the method used to
determine the ensemble score. This
setting applies only if the selected
target is a flag field.

flag_voting_tie_selection Random
HighestConfidence
RawPropensity

If a voting method is selected,
specifies how ties are resolved. This
setting applies only if the selected
target is a flag field.

set_ensemble_method Voting
ConfidenceWeightedVoting
HighestConfidence

Specifies the method used to
determine the ensemble score. This
setting applies only if the selected
target is a set field.

set_voting_tie_selection Random
HighestConfidence

If a voting method is selected,
specifies how ties are resolved. This
setting applies only if the selected
target is a nominal field.

applyautocluster Node Properties
Auto Cluster modeling nodes can be used to generate an Auto Cluster model nugget. The scripting name
of this model nugget is applyautocluster. No other properties exist for this model nugget. For more
information on scripting the modeling node itself, see the topic “autocluster Node Properties” on page
129.

applyautonumeric Node Properties
Auto Numeric modeling nodes can be used to generate an Auto Numeric model nugget. The scripting
name of this model nugget is applyautonumeric. For more information on scripting the modeling node
itself, see the topic“autonumeric Node Properties” on page 131.

Table 120. applyautonumeric node properties.

applyautonumeric Node Properties Values Property description

calculate_standard_error boolean

applybayesnet Node Properties
Bayesian network modeling nodes can be used to generate a Bayesian network model nugget. The
scripting name of this model nugget is applybayesnet. For more information on scripting the modeling
node itself, see the topic “bayesnet Node Properties” on page 132.

Table 121. applybayesnet node properties.

applybayesnet Node Properties Values Property description

all_probabilities boolean

170 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 121. applybayesnet node properties (continued).

applybayesnet Node Properties Values Property description

raw_propensity boolean

adjusted_propensity boolean

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

applyc50 Node Properties
C5.0 modeling nodes can be used to generate a C5.0 model nugget. The scripting name of this model
nugget is applyc50. For more information on scripting the modeling node itself, see the topic“c50 Node
Properties” on page 133.

Table 122. applyc50 node properties.

applyc50 Node Properties Values Property description

sql_generate Never
NoMissingValues

Used to set SQL generation options during
rule set execution.

calculate_conf boolean Available when SQL generation is enabled;
this property includes confidence
calculations in the generated tree.

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

applycarma Node Properties
CARMA modeling nodes can be used to generate a CARMA model nugget. The scripting name of this
model nugget is applycarma. No other properties exist for this model nugget. For more information on
scripting the modeling node itself, see the topic “carma Node Properties” on page 134.

applycart Node Properties
C&R Tree modeling nodes can be used to generate a C&R Tree model nugget. The scripting name of this
model nugget is applycart. For more information on scripting the modeling node itself, see the topic“cart
Node Properties” on page 135.

Table 123. applycart node properties.

applycart Node Properties Values Property description

sql_generate Never
MissingValues
NoMissingValues

Used to set SQL generation options during
rule set execution.

calculate_conf boolean Available when SQL generation is enabled;
this property includes confidence
calculations in the generated tree.

display_rule_id boolean Adds a field in the scoring output that
indicates the ID for the terminal node to
which each record is assigned.

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

Chapter 14. Model Nugget Node Properties 171

applychaid Node Properties
CHAID modeling nodes can be used to generate a CHAID model nugget. The scripting name of this
model nugget is applychaid. For more information on scripting the modeling node itself, see the
topic“chaid Node Properties” on page 137.

Table 124. applychaid node properties.

applychaid Node Properties Values Property description

sql_generate Never
MissingValues

calculate_conf boolean

display_rule_id boolean Adds a field in the scoring output that
indicates the ID for the terminal node to
which each record is assigned.

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

applycoxreg Node Properties
Cox modeling nodes can be used to generate a Cox model nugget. The scripting name of this model
nugget is applycoxreg. For more information on scripting the modeling node itself, see the topic“coxreg
Node Properties” on page 138.

Table 125. applycoxreg node properties.

applycoxreg Node Properties Values Property description

future_time_as Intervals
Fields

time_interval number

num_future_times integer

time_field field

past_survival_time field

all_probabilities boolean

cumulative_hazard boolean

applydecisionlist Node Properties
Decision List modeling nodes can be used to generate a Decision List model nugget. The scripting name
of this model nugget is applydecisionlist. For more information on scripting the modeling node itself, see
the topic“decisionlist Node Properties” on page 140.

Table 126. applydecisionlist node properties.

applydecisionlist Node Properties Values Property description

enable_sql_generation boolean When true, IBM SPSS Modeler will try to
push back the Decision List model to SQL.

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

172 IBM SPSS Modeler 16 Python Scripting and Automation Guide

applydiscriminant Node Properties
Discriminant modeling nodes can be used to generate a Discriminant model nugget. The scripting name
of this model nugget is applydiscriminant. For more information on scripting the modeling node itself, see
the topic“discriminant Node Properties” on page 141.

Table 127. applydiscriminant node properties.

applydiscriminant Node Properties Values Property description

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

applyfactor Node Properties
PCA/Factor modeling nodes can be used to generate a PCA/Factor model nugget. The scripting name of
this model nugget is applyfactor. No other properties exist for this model nugget. For more information on
scripting the modeling node itself, see the topic “factor Node Properties” on page 142.

applyfeatureselection Node Properties
Feature Selection modeling nodes can be used to generate a Feature Selection model nugget. The
scripting name of this model nugget is applyfeatureselection. For more information on scripting the
modeling node itself, see the topic “featureselection Node Properties” on page 143.

Table 128. applyfeatureselection node properties.

applyfeatureselection Node
Properties Values Property description

selected_ranked_fields Specifies which ranked fields are checked
in the model browser.

selected_screened_fields Specifies which screened fields are checked
in the model browser.

applygeneralizedlinear Node Properties
Generalized Linear (genlin) modeling nodes can be used to generate a Generalized Linear model nugget.
The scripting name of this model nugget is applygeneralizedlinear. For more information on scripting the
modeling node itself, see the topic “genlin Node Properties” on page 145.

Table 129. applygeneralizedlinear node properties.

applygeneralizedlinear Node
Properties Values Property description

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

Chapter 14. Model Nugget Node Properties 173

applyglmm node Properties
GLMM modeling nodes can be used to generate a GLMM model nugget. The scripting name of this
model nugget is applyglmm. For more information on scripting the modeling node itself, see the
topic“glmm Node Properties” on page 148.

Table 130. applyglmm node properties.

applyglmm Node Properties Values Property description

confidence onProbability
onIncrease

Basis for computing scoring confidence
value: highest predicted probability, or
difference between highest and second
highest predicted probabilities.

score_category_probabilities boolean If set to True, produces the predicted
probabilities for categorical targets. A field
is created for each category. Default is
False.

max_categories integer Maximum number of categories for which
to predict probabilities. Used only if
score_category_probabilities is True.

score_propensity boolean If set to True, produces raw propensity
scores (likelihood of "True" outcome) for
models with flag targets. If partitions are in
effect, also produces adjusted propensity
scores based on the testing partition.
Default is False.

applykmeans Node Properties
K-Means modeling nodes can be used to generate a K-Means model nugget. The scripting name of this
model nugget is applykmeans. No other properties exist for this model nugget. For more information on
scripting the modeling node itself, see the topic “kmeans Node Properties” on page 151.

applyknn Node Properties
KNN modeling nodes can be used to generate a KNN model nugget. The scripting name of this model
nugget is applyknn. For more information on scripting the modeling node itself, see the topic“knn Node
Properties” on page 152.

Table 131. applyknn node properties.

applyknn Node Properties Values Property description

all_probabilities boolean

save_distances boolean

applykohonen Node Properties
Kohonen modeling nodes can be used to generate a Kohonen model nugget. The scripting name of this
model nugget is applykohonen. No other properties exist for this model nugget. For more information on
scripting the modeling node itself, see the topic “kohonen Node Properties” on page 153.

174 IBM SPSS Modeler 16 Python Scripting and Automation Guide

applylinear Node Properties
Linear modeling nodes can be used to generate a Linear model nugget. The scripting name of this model
nugget is applylinear. For more information on scripting the modeling node itself, see the topic“linear
Node Properties” on page 154.

Table 132. applylinear node Properties.

applylinear Node Properties Values Property description

use_custom_name boolean

custom_name string

enable_sql_generation boolean

applylogreg Node Properties
Logistic Regression modeling nodes can be used to generate a Logistic Regression model nugget. The
scripting name of this model nugget is applylogreg. For more information on scripting the modeling node
itself, see the topic “logreg Node Properties” on page 155.

Table 133. applylogreg node properties.

applylogreg Node Properties Values Property description

calculate_raw_propensities boolean

calculate_conf boolean

enable_sql_generation boolean

applyneuralnet Node Properties
Neural Net modeling nodes can be used to generate a Neural Net model nugget. The scripting name of
this model nugget is applyneuralnet. For more information on scripting the modeling node itself, see the
topic“neuralnet Node Properties” on page 158.

Caution: A newer version of the Neural Net nugget, with enhanced features, is available in this release
and is described in the next section (applyneuralnetwork). Although the previous version is still available,
we recommend updating your scripts to use the new version. Details of the previous version are retained
here for reference, but support for it will be removed in a future release.

Table 134. applyneuralnet node properties.

applyneuralnet Node Properties Values Property description

calculate_conf boolean Available when SQL generation is enabled; this
property includes confidence calculations in
the generated tree.

enable_sql_generation boolean

nn_score_method Difference
SoftMax

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

Chapter 14. Model Nugget Node Properties 175

applyneuralnetwork Node Properties
Neural Network modeling nodes can be used to generate a Neural Network model nugget. The scripting
name of this model nugget is applyneuralnetwork. For more information on scripting the modeling node
itself, see the topic “neuralnetwork Node Properties” on page 159.

Table 135. applyneuralnetwork node properties.

applyneuralnetwork Node
Properties Values Property description

use_custom_name boolean

custom_name string

confidence onProbability
onIncrease

score_category_probabilities boolean

max_categories number

score_propensity boolean

applyquest Node Properties
QUEST modeling nodes can be used to generate a QUEST model nugget. The scripting name of this
model nugget is applyquest. For more information on scripting the modeling node itself, see the
topic“quest Node Properties” on page 161.

Table 136. applyquest node properties.

applyquest Node Properties Values Property description

sql_generate Never
MissingValues
NoMissingValues

calculate_conf boolean

display_rule_id boolean Adds a field in the scoring output that
indicates the ID for the terminal node to
which each record is assigned.

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

applyregression Node Properties
Linear Regression modeling nodes can be used to generate a Linear Regression model nugget. The
scripting name of this model nugget is applyregression. No other properties exist for this model nugget.
For more information on scripting the modeling node itself, see the topic “regression Node Properties” on
page 162.

176 IBM SPSS Modeler 16 Python Scripting and Automation Guide

applyr Node Properties
R Building nodes can be used to generate an R model nugget. The scripting name of this model nugget is
applyr. For more information on scripting the modeling node itself, see the topic“buildr Node Properties”
on page 133.

Table 137. applyr node properties

applyr Node Properties Values Property Description

score_syntax string R scripting syntax for model scoring.

convert_flags StringsAndDoubles
LogicalValues

Option to convert flag fields.

convert_datetime boolean Option to convert variables with date
or datetime formats to R date/time
formats.

convert_datetime_class POSIXct
POSIXlt

Options to specify to what format
variables with date or datetime
formats are converted.

convert_missing boolean Option to convert missing values to
R NA value.

applyselflearning Node Properties
Self-Learning Response Model (SLRM) modeling nodes can be used to generate a SLRM model nugget.
The scripting name of this model nugget is applyselflearning. For more information on scripting the
modeling node itself, see the topic “slrm Node Properties” on page 164.

Table 138. applyselflearning node properties.

applyselflearning Node Properties Values Property description

max_predictions number

randomization number

scoring_random_seed number

sort ascending
descending

Specifies whether the offers with the highest
or lowest scores will be displayed first.

model_reliability boolean Takes account of model reliability option on
Settings tab.

applysequence Node Properties
Sequence modeling nodes can be used to generate a Sequence model nugget. The scripting name of this
model nugget is applysequence. No other properties exist for this model nugget. For more information on
scripting the modeling node itself, see the topic “sequence Node Properties” on page 163.

applysvm Node Properties
SVM modeling nodes can be used to generate an SVM model nugget. The scripting name of this model
nugget is applysvm. For more information on scripting the modeling node itself, see the topic“svm Node
Properties” on page 165.

Table 139. applysvm node properties.

applysvm Node Properties Values Property description

all_probabilities boolean

Chapter 14. Model Nugget Node Properties 177

Table 139. applysvm node properties (continued).

applysvm Node Properties Values Property description

calculate_raw_propensities boolean

calculate_adjusted_propensities boolean

applytimeseries Node Properties
Time Series modeling nodes can be used to generate a Time Series model nugget. The scripting name of
this model nugget is applytimeseries. For more information on scripting the modeling node itself, see the
topic“timeseries Node Properties” on page 166.

Table 140. applytimeseries node properties.

applytimeseries Node Properties Values Property description

calculate_conf boolean

calculate_residuals boolean

applytwostep Node Properties
TwoStep modeling nodes can be used to generate a TwoStep model nugget. The scripting name of this
model nugget is applytwostep. No other properties exist for this model nugget. For more information on
scripting the modeling node itself, see the topic “twostep Node Properties” on page 168.

178 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 15. Database Modeling Node Properties

IBM SPSS Modeler supports integration with data mining and modeling tools available from database
vendors, including Microsoft SQL Server Analysis Services, Oracle Data Mining, IBM DB2 InfoSphere
Warehouse, and IBM Netezza Analytics. You can build and score models using native database
algorithms, all from within the IBM SPSS Modeler application. Database models can also be created and
manipulated through scripting using the properties described in this section.

Node Properties for Microsoft Modeling

Microsoft Modeling Node Properties
Common Properties

The following properties are common to the Microsoft database modeling nodes.

Table 141. Common Microsoft node properties.

Common Microsoft Node
Properties Values Property Description

analysis_database_name string Name of the Analysis Services database.

analysis_server_name string Name of the Analysis Services host.

use_transactional_data boolean Specifies whether input data is in tabular or
transactional format.

inputs [field field field] Input fields for tabular data.

target field Predicted field (not applicable to MS Clustering or
Sequence Clustering nodes).

unique_field field Key field.

msas_parameters structured Algorithm parameters. See the topic “Algorithm
Parameters” on page 180 for more information.

with_drillthrough boolean With Drillthrough option.

MS Decision Tree

There are no specific properties defined for nodes of type mstree. See the common Microsoft properties at
the start of this section.

MS Clustering

There are no specific properties defined for nodes of type mscluster. See the common Microsoft
properties at the start of this section.

MS Association Rules

The following specific properties are available for nodes of type msassoc:

Table 142. msassoc node properties.

msassoc Node Properties Values Property Description

id_field field Identifies each transaction in the data.

trans_inputs [field field field] Input fields for transactional data.

© Copyright IBM Corporation 1994, 2013 179

Table 142. msassoc node properties (continued).

msassoc Node Properties Values Property Description

transactional_target field Predicted field (transactional data).

MS Naive Bayes

There are no specific properties defined for nodes of type msbayes. See the common Microsoft properties
at the start of this section.

MS Linear Regression

There are no specific properties defined for nodes of type msregression. See the common Microsoft
properties at the start of this section.

MS Neural Network

There are no specific properties defined for nodes of type msneuralnetwork. See the common Microsoft
properties at the start of this section.

MS Logistic Regression

There are no specific properties defined for nodes of type mslogistic. See the common Microsoft
properties at the start of this section.

MS Time Series

There are no specific properties defined for nodes of type mstimeseries. See the common Microsoft
properties at the start of this section.

MS Sequence Clustering

The following specific properties are available for nodes of type mssequencecluster:

Table 143. mssequencecluster node properties.

mssequencecluster Node Properties Values Property Description

id_field field Identifies each transaction in the data.

input_fields [field field field] Input fields for transactional data.

sequence_field field Sequence identifier.

target_field field Predicted field (tabular data).

Algorithm Parameters
Each Microsoft database model type has specific parameters that can be set using the msas_parameters
property.

These parameters are derived from SQL Server. To see the relevant parameters for each node:
1. Place a database source node on the canvas.
2. Open the database source node.
3. Select a valid source from the Data source drop-down list.
4. Select a valid table from the Table name list.
5. Click OK to close the database source node.
6. Attach the Microsoft database modeling node whose properties you want to list.

180 IBM SPSS Modeler 16 Python Scripting and Automation Guide

7. Open the database modeling node.
8. Select the Expert tab.

The available msas_parameters properties for this node are displayed.

Microsoft Model Nugget Properties
The following properties are for the model nuggets created using the Microsoft database modeling nodes.

MS Decision Tree

Table 144. MS Decision Tree properties.

applymstree Node Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

datasource string Name of the SQL Server ODBC data source name
(DSN).

sql_generate boolean Enables SQL generation.

MS Linear Regression

Table 145. MS Linear Regression properties.

applymsregression Node Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

MS Neural Network

Table 146. MS Neural Network properties.

applymsneuralnetwork Node
Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

MS Logistic Regression

Table 147. MS Logistic Regression properties.

applymslogistic Node Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

Chapter 15. Database Modeling Node Properties 181

Table 147. MS Logistic Regression properties (continued).

applymslogistic Node Properties Values Description

analysis_server_name string Name of the Analysis server host.

MS Time Series

Table 148. MS Time Series properties.

applymstimeseries Node Properties Values Description

analysis_database_name string This node can be scored directly in a
stream.

This property is used to identify the
name of the Analysis Services
database.

analysis_server_name string Name of the Analysis server host.

start_from new_prediction
historical_prediction

Specifies whether to make future
predictions or historical predictions.

new_step number Defines starting time period for
future predictions.

historical_step number Defines starting time period for
historical predictions.

end_step number Defines ending time period for
predictions.

MS Sequence Clustering

Table 149. MS Sequence Clustering properties.

applymssequencecluster Node
Properties Values Description

analysis_database_name string This node can be scored directly in a stream.

This property is used to identify the name of the
Analysis Services database.

analysis_server_name string Name of the Analysis server host.

Node Properties for Oracle Modeling

Oracle Modeling Node Properties
The following properties are common to Oracle database modeling nodes.

Table 150. Common Oracle node properties.

Common Oracle Node Properties Values Property Description

target field

inputs List of fields

partition field Field used to partition the data into separate samples
for the training, testing, and validation stages of
model building.

datasource

182 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 150. Common Oracle node properties (continued).

Common Oracle Node Properties Values Property Description

username

password

epassword

use_model_name boolean

model_name string Custom name for new model.

use_partitioned_data boolean If a partition field is defined, this option ensures that
only data from the training partition is used to build
the model.

unique_field field

auto_data_prep boolean Enables or disables the Oracle automatic data
preparation feature (11g databases only).

costs structured Structured property.

mode Simple
Expert

Causes certain properties to be ignored if set to
Simple, as noted in the individual node properties.

use_prediction_probability boolean

prediction_probability string

use_prediction_set boolean

Oracle Naive Bayes

The following properties are available for nodes of type oranb.

Table 151. oranb node properties.

oranb Node Properties Values Property Description

singleton_threshold number 0.0–1.0.*

pairwise_threshold number 0.0–1.0.*

priors Data
Equal
Custom

custom_priors structured Structured property.

* Property ignored if mode is set to Simple.

Oracle Adaptive Bayes

The following properties are available for nodes of type oraabn.

Table 152. oraabn node properties.

oraabn Node Properties Values Property Description

model_type SingleFeature
MultiFeature
NaiveBayes

use_execution_time_limit boolean *

execution_time_limit integer Value must be greater than 0.*

max_naive_bayes_predictors integer Value must be greater than 0.*

Chapter 15. Database Modeling Node Properties 183

Table 152. oraabn node properties (continued).

oraabn Node Properties Values Property Description

max_predictors integer Value must be greater than 0.*

priors Data
Equal
Custom

custom_priors structured Structured property.

* Property ignored if mode is set to Simple.

Oracle Support Vector Machines

The following properties are available for nodes of type orasvm.

Table 153. orasvm node properties.

orasvm Node Properties Values Property Description

active_learning Enable
Disable

kernel_function Linear
Gaussian
System

normalization_method zscore
minmax
none

kernel_cache_size integer Gaussian kernel only. Value must be greater than 0.*

convergence_tolerance number Value must be greater than 0.*

use_standard_deviation boolean Gaussian kernel only.*

standard_deviation number Value must be greater than 0.*

use_epsilon boolean Regression models only.*

epsilon number Value must be greater than 0.*

use_complexity_factor boolean *

complexity_factor number *

use_outlier_rate boolean One-Class variant only.*

outlier_rate number One-Class variant only. 0.0–1.0.*

weights Data
Equal
Custom

custom_weights structured Structured property.

* Property ignored if mode is set to Simple.

Oracle Generalized Linear Models

The following properties are available for nodes of type oraglm.

184 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 154. oraglm node properties.

oraglm Node Properties Values Property Description

normalization_method zscore
minmax
none

missing_value_handling ReplaceWithMean
UseCompleteRecords

use_row_weights boolean *

row_weights_field field *

save_row_diagnostics boolean *

row_diagnostics_table string *

coefficient_confidence number *

use_reference_category boolean *

reference_category string *

ridge_regression Auto
Off
On

*

parameter_value number *

vif_for_ridge boolean *

* Property ignored if mode is set to Simple.

Oracle Decision Tree

The following properties are available for nodes of type oradecisiontree.

Table 155. oradecisiontree node properties.

oradecisiontree Node Properties Values Property Description

use_costs boolean

impurity_metric Entropy
Gini

term_max_depth integer 2–20.*

term_minpct_node number 0.0–10.0.*

term_minpct_split number 0.0–20.0.*

term_minrec_node integer Value must be greater than 0.*

term_minrec_split integer Value must be greater than 0.*

display_rule_ids boolean *

* Property ignored if mode is set to Simple.

Oracle O-Cluster

The following properties are available for nodes of type oraocluster.

Table 156. oraocluster node properties.

oraocluster Node Properties Values Property Description

max_num_clusters integer Value must be greater than 0.

Chapter 15. Database Modeling Node Properties 185

Table 156. oraocluster node properties (continued).

oraocluster Node Properties Values Property Description

max_buffer integer Value must be greater than 0.*

sensitivity number 0.0–1.0.*

* Property ignored if mode is set to Simple.

Oracle KMeans

The following properties are available for nodes of type orakmeans.

Table 157. orakmeans node properties.

orakmeans Node Properties Values Property Description

num_clusters integer Value must be greater than 0.

normalization_method zscore
minmax
none

distance_function Euclidean
Cosine

iterations integer 0–20.*

conv_tolerance number 0.0–0.5.*

split_criterion Variance
Size

Default is Variance.*

num_bins integer Value must be greater than 0.*

block_growth integer 1–5.*

min_pct_attr_support number 0.0–1.0.*

* Property ignored if mode is set to Simple.

Oracle NMF

The following properties are available for nodes of type oranmf.

Table 158. oranmf node properties.

oranmf Node Properties Values Property Description

normalization_method minmax
none

use_num_features boolean *

num_features integer 0–1. Default value is estimated from the data by the
algorithm.*

random_seed number *

num_iterations integer 0–500.*

conv_tolerance number 0.0–0.5.*

display_all_features boolean *

* Property ignored if mode is set to Simple.

186 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Oracle Apriori

The following properties are available for nodes of type oraapriori.

Table 159. oraapriori node properties.

oraapriori Node Properties Values Property Description

content_field field

id_field field

max_rule_length integer 2–20.

min_confidence number 0.0–1.0.

min_support number 0.0–1.0.

use_transactional_data boolean

Oracle Minimum Description Length (MDL)

There are no specific properties defined for nodes of type oramdl. See the common Oracle properties at
the start of this section.

Oracle Attribute Importance (AI)

The following properties are available for nodes of type oraai.

Table 160. oraai node properties.

oraai Node Properties Values Property Description

custom_fields boolean If true, allows you to specify target, input, and other
fields for the current node. If false, the current
settings from an upstream Type node are used.

selection_mode ImportanceLevel
ImportanceValue
TopN

select_important boolean When selection_mode is set to ImportanceLevel,
specifies whether to select important fields.

important_label string Specifies the label for the "important" ranking.

select_marginal boolean When selection_mode is set to ImportanceLevel,
specifies whether to select marginal fields.

marginal_label string Specifies the label for the "marginal" ranking.

important_above number 0.0–1.0.

select_unimportant boolean When selection_mode is set to ImportanceLevel,
specifies whether to select unimportant fields.

unimportant_label string Specifies the label for the "unimportant" ranking.

unimportant_below number 0.0–1.0.

importance_value number When selection_mode is set to ImportanceValue,
specifies the cutoff value to use. Accepts values from
0 to 100.

top_n number When selection_mode is set to TopN, specifies the
cutoff value to use. Accepts values from 0 to 1000.

Chapter 15. Database Modeling Node Properties 187

Oracle Model Nugget Properties
The following properties are for the model nuggets created using the Oracle models.

Oracle Naive Bayes

There are no specific properties defined for nodes of type applyoranb.

Oracle Adaptive Bayes

There are no specific properties defined for nodes of type applyoraabn.

Oracle Support Vector Machines

There are no specific properties defined for nodes of type applyorasvm.

Oracle Decision Tree

The following properties are available for nodes of type applyoradecisiontree.

Table 161. applyoradecisiontree node properties.

applyoradecisiontree Node Properties Values Property Description

use_costs boolean

display_rule_ids boolean

Oracle O-Cluster

There are no specific properties defined for nodes of type applyoraocluster.

Oracle KMeans

There are no specific properties defined for nodes of type applyorakmeans.

Oracle NMF

The following property is available for nodes of type applyoranmf:

Table 162. applyoranmf node properties.

applyoranmf Node Properties Values Property Description

display_all_features boolean

Oracle Apriori

This model nugget cannot be applied in scripting.

Oracle MDL

This model nugget cannot be applied in scripting.

188 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Node Properties for IBM DB2 Modeling

IBM DB2 Modeling Node Properties
The following properties are common to IBM InfoSphere Warehouse (ISW) database modeling nodes.

Table 163. Common ISW node properties.

Common ISW node Properties Values Property Description

inputs List of fields

datasource

username

password

epassword

enable_power_options boolean

power_options_max_memory integer Value must be greater than 32.

power_options_cmdline string

mining_data_custom_sql string

logical_data_custom_sql string

mining_settings_custom_sql

ISW Decision Tree

The following properties are available for nodes of type db2imtree.

Table 164. db2imtree node properties.

db2imtree Node Properties Values Property Description

target field

perform_test_run boolean

use_max_tree_depth boolean

max_tree_depth integer Value greater than 0.

use_maximum_purity boolean

maximum_purity number Number between 0 and 100.

use_minimum_internal_cases boolean

minimum_internal_cases integer Value greater than 1.

use_costs boolean

costs structured Structured property.

ISW Association

The following properties are available for nodes of type db2imassoc.

Table 165. db2imassoc node properties.

db2imassoc Node Properties Values Property Description

use_transactional_data boolean

id_field field

content_field field

Chapter 15. Database Modeling Node Properties 189

Table 165. db2imassoc node properties (continued).

db2imassoc Node Properties Values Property Description

data_table_layout basic
limited_length

max_rule_size integer Value must be greater than 2.

min_rule_support number 0–100%

min_rule_confidence number 0–100%

use_item_constraints boolean

item_constraints_type Include
Exclude

use_taxonomy boolean

taxonomy_table_name string The name of the DB2 table to store taxonomy details.

taxonomy_child_column_name string The name of the child column in the taxonomy table.
The child column contains the item names or category
names.

taxonomy_parent_column_name string The name of the parent column in the taxonomy table.
The parent column contains the category names.

load_taxonomy_to_table boolean Controls if taxonomy information stored in IBM SPSS
Modeler should be uploaded to the taxonomy table at
model build time. Note that the taxonomy table is
dropped if it already exists. Taxonomy information is
stored with the model build node and can be edited
using the Edit Categories and Edit Taxonomy buttons.

ISW Sequence

The following properties are available for nodes of type db2imsequence.

Table 166. db2imsequence node properties.

db2imsequence Node Properties Values Property Description

id_field field

group_field field

content_field field

max_rule_size integer Value must be greater than 2.

min_rule_support number 0–100%

min_rule_confidence number 0–100%

use_item_constraints boolean

item_constraints_type Include
Exclude

use_taxonomy boolean

taxonomy_table_name string The name of the DB2 table to store taxonomy details.

taxonomy_child_column_name string The name of the child column in the taxonomy table.
The child column contains the item names or category
names.

taxonomy_parent_column_name string The name of the parent column in the taxonomy table.
The parent column contains the category names.

190 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 166. db2imsequence node properties (continued).

db2imsequence Node Properties Values Property Description

load_taxonomy_to_table boolean Controls if taxonomy information stored in IBM SPSS
Modeler should be uploaded to the taxonomy table at
model build time. Note that the taxonomy table is
dropped if it already exists. Taxonomy information is
stored with the model build node and can be edited
using the Edit Categories and Edit Taxonomy buttons.

ISW Regression

The following properties are available for nodes of type db2imreg.

Table 167. db2imreg node properties.

db2imreg Node Properties Values Property Description

target field

regression_method transform
linear
polynomial
rbf

See next table for properties that apply only if
regression_method is set to rbf.

perform_test_run field

limit_rsquared_value boolean

max_rsquared_value number Value between 0.0 and 1.0.

use_execution_time_limit boolean

execution_time_limit_mins integer Value greater than 0.

use_max_degree_polynomial boolean

max_degree_polynomial integer

use_intercept boolean

use_auto_feature_selection_method boolean

auto_feature_selection_method normal
adjusted

use_min_significance_level boolean

min_significance_level number

use_min_significance_level boolean

The following properties apply only if regression_method is set to rbf.

Table 168. db2imreg node properties if regression_method is set to rbf.

db2imreg Node Properties Values Property Description

use_output_sample_size boolean If true, auto-set the value to the default.

output_sample_size integer Default is 2.

Minimum is 1.

use_input_sample_size boolean If true, auto-set the value to the default.

input_sample_size integer Default is 2.

Minimum is 1.

Chapter 15. Database Modeling Node Properties 191

Table 168. db2imreg node properties if regression_method is set to rbf (continued).

use_max_num_centers boolean If true, auto-set the value to the default.

max_num_centers integer Default is 20.

Minimum is 1.

use_min_region_size boolean If true, auto-set the value to the default.

min_region_size integer Default is 15.

Minimum is 1.

use_max_data_passes boolean If true, auto-set the value to the default.

max_data_passes integer Default is 5.

Minimum is 2.

use_min_data_passes boolean If true, auto-set the value to the default.

min_data_passes integer Default is 5.

Minimum is 2.

ISW Clustering

The following properties are available for nodes of type db2imcluster.

Table 169. db2imcluster node properties.

db2imcluster Node Properties Values Property Description

cluster_method demographic
kohonen
birch

kohonen_num_rows integer

kohonen_num_columns integer

kohonen_passes integer

use_num_passes_limit boolean

use_num_clusters_limit boolean

max_num_clusters integer Value greater than 1.

birch_dist_measure log_likelihood
euclidean

Default is log_likelihood.

birch_num_cfleaves integer Default is 1000.

birch_num_refine_passes integer Default is 3; minimum is 1.

use_execution_time_limit boolean

execution_time_limit_mins integer Value greater than 0.

min_data_percentage number 0–100%

use_similarity_threshold boolean

similarity_threshold number Value between 0.0 and 1.0.

ISW Naive Bayes

The following properties are available for nodes of type db2imnbs.

192 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 170. db2imnb node properties.

db2imnb Node Properties Values Property Description

perform_test_run boolean

probability_threshold number Default is 0.001.

Minimum value is 0; maximum value is 1.000

use_costs boolean

costs structured Structured property.

ISW Logistic Regression

The following properties are available for nodes of type db2imlog.

Table 171. db2imlog node properties.

db2imlog Node Properties Values Property Description

perform_test_run boolean

use_costs boolean

costs structured Structured property.

ISW Time Series

Note: The input fields parameter is not used for this node. If the input fields parameter is found in the
script a warning is displayed to say that the node has time and targets as incoming fields, but no input
fields.

The following properties are available for nodes of type db2imtimeseries.

Table 172. db2imtimeseries node properties.

db2imtimeseries Node Properties Values Property Description

time field Integer, time, or date allowed.

targets list of fields

forecasting_algorithm arima
exponential_smoothing
seasonal_trend_decomposition

forecasting_end_time auto
integer
date
time

use_records_all boolean If false, use_records_start and
use_records_end must be set.

use_records_start integer / time / date Depends on type of time field

use_records_end integer / time / date Depends on type of time field

interpolation_method none
linear
exponential_splines
cubic_splines

Chapter 15. Database Modeling Node Properties 193

IBM DB2 Model Nugget Properties
The following properties are for the model nuggets created using the IBM DB2 ISW models.

ISW Decision Tree

There are no specific properties defined for nodes of type applydb2imtree.

ISW Association

This model nugget cannot be applied in scripting.

ISW Sequence

This model nugget cannot be applied in scripting.

ISW Regression

There are no specific properties defined for nodes of type applydb2imreg.

ISW Clustering

There are no specific properties defined for nodes of type applydb2imcluster.

ISW Naive Bayes

There are no specific properties defined for nodes of type applydb2imnb.

ISW Logistic Regression

There are no specific properties defined for nodes of type applydb2imlog.

ISW Time Series

This model nugget cannot be applied in scripting.

Node Properties for IBM Netezza Analytics Modeling

Netezza Modeling Node Properties
The following properties are common to IBM Netezza database modeling nodes.

Table 173. Common Netezza node properties.

Common Netezza Node Properties Values Property Description

custom_fields boolean If true, allows you to specify target, input, and other
fields for the current node. If false, the current settings
from an upstream Type node are used.

inputs [field1 ... fieldN] Input or predictor fields used by the model.

target field Target field (continuous or categorical).

record_id field Field to be used as unique record identifier.

use_upstream_connection boolean If true (default), the connection details specified in an
upstream node. Not used if move_data_to_connection is
specified.

194 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 173. Common Netezza node properties (continued).

Common Netezza Node Properties Values Property Description

move_data_connection boolean If true, moves the data to the database specified by
connection. Not used if use_upstream_connection is
specified.

connection structured The connection string for the Netezza database where
the model is stored. Structured property in the form:
[’odbc’ ’<dsn>’ ’<username>’ ’<psw>’ ’<catname>’
’<conn_attribs>’ {true|false}]

where:
<dsn> is the data source name
<username> and <psw> are the username and password
for the database
<catname> is the catalog name
<conn_attribs> are the connection attributes
true | false indicates whether the password is needed.

table_name string Name of database table where model is to be stored.

use_model_name boolean If true, uses the name specified by model_name as the
name of the model, otherwise model name is created by
the system.

model_name string Custom name for new model.

include_input_fields boolean If true, passes all input fields downstream, otherwise
passes only record_id and fields generated by model.

Netezza Decision Tree

The following properties are available for nodes of type netezzadectree.

Table 174. netezzadectree node properties.

netezzadectree Node Properties Values Property Description

impurity_measure Entropy
Gini

The measurement of impurity, used
to evaluate the best place to split the
tree.

max_tree_depth integer Maximum number of levels to which
tree can grow. Default is 62 (the
maximum possible).

min_improvement_splits number Minimum improvement in impurity
for split to occur. Default is 0.01.

min_instances_split integer Minimum number of unsplit records
remaining before split can occur.
Default is 2 (the minimum possible).

weights structured Relative weightings for classes.
Structured property.
Default is weight of 1 for all
classes.

pruning_measure Acc
wAcc

Default is Acc (accuracy). Alternative
wAcc (weighted accuracy) takes class
weights into account while applying
pruning.

Chapter 15. Database Modeling Node Properties 195

Table 174. netezzadectree node properties (continued).

netezzadectree Node Properties Values Property Description

prune_tree_options allTrainingData
partitionTrainingData
useOtherTable

Default is to use allTrainingData to
estimate model accuracy. Use
partitionTrainingData to specify a
percentage of training data to use, or
useOtherTable to use a training data
set from a specified database table.

perc_training_data number If prune_tree_options is set to
partitionTrainingData, specifies
percentage of data to use for training.

prune_seed integer Random seed to be used for
replicating analysis results when
prune_tree_options is set to
partitionTrainingData; default is 1.

pruning_table string Table name of a separate pruning
dataset for estimating model
accuracy.

compute_probabilities boolean If true, produces a confidence level
(probability) field as well as the
prediction field.

Netezza K-Means

The following properties are available for nodes of type netezzakmeans.

Table 175. netezzakmeans node properties.

netezzakmeans Node Properties Values Property Description

distance_measure Euclidean
Manhattan
Canberra
maximum

Method to be used for measuring distance between data
points.

num_clusters integer Number of clusters to be created; default is 3.

max_iterations integer Number of algorithm iterations after which to stop
model training; default is 5.

rand_seed integer Random seed to be used for replicating analysis results;
default is 12345.

Netezza Bayes Net

The following properties are available for nodes of type netezzabayes.

Table 176. netezzabayes node properties.

netezzabayes Node Properties Values Property Description

base_index integer Numeric identifier assigned to first input field for
internal management; default is 777.

sample_size integer Size of sample to take if number of attributes is very
large; default is 10,000.

display_additional_information boolean If true, displays additional progress information in a
message dialog box.

196 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 176. netezzabayes node properties (continued).

netezzabayes Node Properties Values Property Description

type_of_prediction best
neighbors
nn-neighbors

Type of prediction algorithm to use: best (most
correlated neighbor), neighbors (weighted prediction of
neighbors), or nn-neighbors (non null-neighbors).

Netezza Naive Bayes

The following properties are available for nodes of type netezzanaivebayes.

Table 177. netezzanaivebayes node properties.

netezzanaivebayes Node Properties Values Property Description

compute_probabilities boolean If true, produces a confidence level (probability) field as
well as the prediction field.

use_m_estimation boolean If true, uses m-estimation technique for avoiding zero
probabilities during estimation.

Netezza KNN

The following properties are available for nodes of type netezzaknn.

Table 178. netezzaknn node properties.

netezzaknn Node Properties Values Property Description

weights structured Structured property used to assign weights to individual
classes.

distance_measure Euclidean
Manhattan
Canberra
Maximum

Method to be used for measuring the distance between
data points.

num_nearest_neighbors integer Number of nearest neighbors for a particular case;
default is 3.

standardize_measurements boolean If true, standardizes measurements for continuous input
fields before calculating distance values.

use_coresets boolean If true, uses core set sampling to speed up calculation
for large data sets.

Netezza Divisive Clustering

The following properties are available for nodes of type netezzadivcluster.

Table 179. netezzadivcluster node properties.

netezzadivcluster Node Properties Values Property Description

distance_measure Euclidean
Manhattan
Canberra
Maximum

Method to be used for measuring the distance between
data points.

max_iterations integer Maximum number of algorithm iterations to perform
before model training stops; default is 5.

max_tree_depth integer Maximum number of levels to which data set can be
subdivided; default is 3.

Chapter 15. Database Modeling Node Properties 197

Table 179. netezzadivcluster node properties (continued).

netezzadivcluster Node Properties Values Property Description

rand_seed integer Random seed, used to replicate analyses; default is
12345.

min_instances_split integer Minimum number of records that can be split, default is
5.

level integer Hierarchy level to which records are to be scored;
default is -1.

Netezza PCA

The following properties are available for nodes of type netezzapca.

Table 180. netezzapca node properties.

netezzapca Node Properties Values Property Description

center_data boolean If true (default), performs data centering (also known as
"mean subtraction") before the analysis.

perform_data_scaling boolean If true, performs data scaling before the analysis. Doing
so can make the analysis less arbitrary when different
variables are measured in different units.

force_eigensolve boolean If true, uses less accurate but faster method of finding
principal components.

pc_number integer Number of principal components to which data set is to
be reduced; default is 1.

Netezza Regression Tree

The following properties are available for nodes of type netezzaregtree.

Table 181. netezzaregtree node properties.

netezzaregtree Node Properties Values Property Description

max_tree_depth integer Maximum number of levels to which
the tree can grow below the root
node; default is 10.

split_evaluation_measure Variance Class impurity measure, used to
evaluate the best place to split the
tree; default (and currently only
option) is Variance.

min_improvement_splits number Minimum amount to reduce impurity
before new split is created in tree.

min_instances_split integer Minimum number of records that can
be split.

pruning_measure mse
r2
pearson
spearman

Method to be used for pruning.

198 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 181. netezzaregtree node properties (continued).

netezzaregtree Node Properties Values Property Description

prune_tree_options allTrainingData
partitionTrainingData
useOtherTable

Default is to use allTrainingData to
estimate model accuracy. Use
partitionTrainingData to specify a
percentage of training data to use, or
useOtherTable to use a training data
set from a specified database table.

perc_training_data number If prune_tree_options is set to
PercTrainingData, specifies
percentage of data to use for training.

prune_seed integer Random seed to be used for
replicating analysis results when
prune_tree_options is set to
PercTrainingData; default is 1.

pruning_table string Table name of a separate pruning
dataset for estimating model
accuracy.

compute_probabilities boolean If true, specifies that variances of
assigned classes should be included
in output.

Netezza Linear Regression

The following properties are available for nodes of type netezzalineregression.

Table 182. netezzalineregression node properties.

netezzalineregression Node
Properties Values Property Description

use_svd boolean If true, uses Singular Value Decomposition matrix
instead of original matrix, for increased speed and
numerical accuracy.

include_intercept boolean If true (default), increases overall accuracy of solution.

calculate_model_diagnostics boolean If true, calculates diagnostics on the model.

Netezza Time Series

The following properties are available for nodes of type netezzatimeseries.

Table 183. netezzatimeseries node properties.

netezzatimeseries Node Properties Values Property Description

time_points field Input field containing the date or
time values for the time series.

time_series_ids field Input field containing time series IDs;
used if input contains more than one
time series.

model_table field Name of database table where
Netezza time series model will be
stored.

description_table field Name of input table that contains
time series names and descriptions.

Chapter 15. Database Modeling Node Properties 199

Table 183. netezzatimeseries node properties (continued).

netezzatimeseries Node Properties Values Property Description

seasonal_adjustment_table field Name of output table where
seasonally adjusted values computed
by exponential smoothing or seasonal
trend decomposition algorithms will
be stored.

algorithm_name SpectralAnalysis or spectral
ExponentialSmoothing or esmoothing
ARIMA
SeasonalTrendDecomposition or std

Algorithm to be used for time series
modeling.

trend_name N
A
DA
M
DM

Trend type for exponential
smoothing:
N - none
A - additive
DA - damped additive
M - multiplicative
DM - damped multiplicative

seasonality_type N
A
M

Seasonality type for exponential
smoothing:
N - none
A - additive
M - multiplicative

interpolation_method linear
cubicspline
exponentialspline

Interpolation method to be used.

timerange_setting SD
SP

Setting for time range to use:
SD - system-determined (uses full
range of time series data)
SP - user-specified via earliest_time
and latest_time

earliest_time Date Start and end times, if
timerange_setting is SP.

Format: <yyyy>-<mm>-<dd>

latest_time

arima_setting SD
SP

Setting for the ARIMA algorithm
(used only if algorithm_name is set to
ARIMA):
SD - system-determined
SP - user-specified

If arima_setting = SP, use the
following parameters to set the
seasonal and non-seasonal values.

p_symbol less
eq
lesseq

ARIMA - operator for parameters p,
d, q, sp, sd, and sq:
less - less than
eq - equals
lesseq - less than or equal to

d_symbol

q_symbol

sp_symbol

sd_symbol

sq_symbol

200 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 183. netezzatimeseries node properties (continued).

netezzatimeseries Node Properties Values Property Description

p integer ARIMA - non-seasonal degrees of
autocorrelation.

q integer ARIMA - non-seasonal derivation
value.

d integer ARIMA - non-seasonal number of
moving average orders in the model.

sp integer ARIMA - seasonal degrees of
autocorrelation.

sq integer ARIMA - seasonal derivation value.

sd integer ARIMA - seasonal number of moving
average orders in the model.

advanced_setting SD
SP

Determines how advanced settings
are to be handled:
SD - system-determined
SP - user-specified via period ,
units_period and forecast_setting.

period integer Length of seasonal cycle, specified in
conjunction with units_period. Not
applicable for spectral analysis.

units_period ms
s
min
h
d
wk
q
y

Units in which period is expressed:
ms - milliseconds
s - seconds
min - minutes
h - hours
d - days
wk - weeks
q - quarters
y - years

For example, for a weekly time series
use 1 for period and wk for
units_period.

forecast_setting forecasthorizon
forecasttimes

Specifies how forecasts are to be
made.

forecast_horizon string If forecast_setting =
forecasthorizon, specifies end point
for forecasting.

Format: <yyyy>-<mm>-<dd>

forecast_times [{'date'},

{'date'},...,

{'date'}]

If forecast_setting =
forecasttimes, specifies times to use
for making forecasts.

Format: <yyyy>-<mm>-<dd>

include_history boolean Indicates if historical values are to be
included in output.

include_interpolated_values boolean Indicates if interpolated values are to
be included in output. Not applicable
if include_history is false.

Chapter 15. Database Modeling Node Properties 201

Netezza Generalized Linear

The following properties are available for nodes of type netezzaglm.

Table 184. netezzaglm node properties.

netezzaglm Node Properties Values Property Description

dist_family bernoulli
gaussian
poisson
negativebinomial
wald
gamma

Distribution type; default is
bernoulli.

dist_params number Distribution parameter value to use.
Only applicable if distribution is
Negativebinomial.

trials integer Only applicable if distribution is
Binomial. When target response is a
number of events occurring in a set
of trials, target field contains
number of events, and trials field
contains number of trials.

model_table field Name of database table where
Netezza generalized linear model
will be stored.

maxit integer Maximum number of iterations the
algorithm should perform; default is
20.

eps number Maximum error value (in scientific
notation) at which algorithm should
stop finding best fit model. Default is
-3, meaning 1E-3, or 0.001.

tol number Value (in scientific notation) below
which errors are treated as having a
value of zero. Default is -7, meaning
that error values below 1E-7 (or
0.0000001) are counted as
insignificant.

link_func identity
inverse
invnegative
invsquare
sqrt
power
oddspower
log
clog
loglog
cloglog
logit
probit
gaussit
cauchit
canbinom
cangeom
cannegbinom

Link function to use; default is logit.

202 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 184. netezzaglm node properties (continued).

netezzaglm Node Properties Values Property Description

link_params number Link function parameter value to use.
Only applicable if link_function is
power or oddspower.

interaction [{[colnames1],[levels1]},{[colnames2],
[levels2]},...,{[colnamesN],[levelsN]},]

Specifies interactions between fields.
colnames is a list of input fields, and
level is always 0 for each field.

intercept boolean If true, includes the intercept in the
model.

Netezza Model Nugget Properties
The following properties are common to Netezza database model nuggets.

Table 185. Common Netezza model nugget properties.

Common Netezza Model Nugget Properties Values Property Description

connection string The connection string for the Netezza database
where the model is stored.

table_name string Name of database table where model is stored.

Other model nugget properties are the same as those for the corresponding modeling node.

The script names of the model nuggets are as follows.

Table 186. Script names of Netezza model nuggets.

Model Nugget Script Name

Decision Tree applynetezzadectree

K-Means applynetezzakmeans

Bayes Net applynetezzabayes

Naive Bayes applynetezzanaivebayes

KNN applynetezzaknn

Divisive Clustering applynetezzadivcluster

PCA applynetezzapca

Regression Tree applynetezzaregtree

Linear Regression applynetezzalineregression

Time Series applynetezzatimeseries

Generalized Linear applynetezzaglm

Chapter 15. Database Modeling Node Properties 203

204 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 16. Output Node Properties

Output node properties differ slightly from those of other node types. Rather than referring to a
particular node option, output node properties store a reference to the output object. This is useful in
taking a value from a table and then setting it as a stream parameter.

This section describes the scripting properties available for output nodes.

analysis Node Properties

The Analysis node evaluates predictive models' ability to generate accurate predictions.
Analysis nodes perform various comparisons between predicted values and actual values for
one or more model nuggets. They can also compare predictive models to each other.

Table 187. analysis node properties.

analysis Node properties Data type Property description

output_mode Screen
File

Used to specify target location for
output generated from the output
node.

use_output_name boolean Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

output_format Text (.txt)
HTML (.html)
Output (.cou)

Used to specify the type of output.

by_fields [field field field]

full_filename string If disk, data, or HTML output, the
name of the output file.

coincidence boolean

performance boolean

evaluation_binary boolean

confidence boolean

threshold number

improve_accuracy number

inc_user_measure boolean

user_if expr

user_then expr

user_else expr

user_compute [Mean Sum Min Max
SDev]

205

dataaudit Node Properties

The Data Audit node provides a comprehensive first look at the data, including summary
statistics, histograms and distribution for each field, as well as information on outliers,
missing values, and extremes. Results are displayed in an easy-to-read matrix that can be
sorted and used to generate full-size graphs and data preparation nodes.

Table 188. dataaudit node properties.

dataaudit Node properties Data type Property description

custom_fields boolean

fields [field1 ... fieldN]

overlay field

display_graphs boolean Used to turn the display of graphs
in the output matrix on or off.

basic_stats boolean

advanced_stats boolean

median_stats boolean

calculate Count
Breakdown

Used to calculate missing values.
Select either, both, or neither
calculation method.

outlier_detection_method std
iqr

Used to specify the detection
method for outliers and extreme
values.

outlier_detection_std_outlier number If outlier_detection_method is std,
specifies the number to use to
define outliers.

outlier_detection_std_extreme number If outlier_detection_method is std,
specifies the number to use to
define extreme values.

outlier_detection_iqr_outlier number If outlier_detection_method is iqr,
specifies the number to use to
define outliers.

outlier_detection_iqr_extreme number If outlier_detection_method is iqr,
specifies the number to use to
define extreme values.

use_output_name boolean Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

output_mode Screen
File

Used to specify target location for
output generated from the output
node.

output_format Formatted (.tab)
Delimited (.csv)
HTML (.html)
Output (.cou)

Used to specify the type of output.

paginate_output boolean When the output_format is HTML,
causes the output to be separated
into pages.

206 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 188. dataaudit node properties (continued).

dataaudit Node properties Data type Property description

lines_per_page number When used with paginate_output,
specifies the lines per page of
output.

full_filename string

matrix Node Properties

The Matrix node creates a table that shows relationships between fields. It is most commonly
used to show the relationship between two symbolic fields, but it can also show relationships
between flag fields or numeric fields.

Table 189. matrix node properties.

matrix node properties Data type Property description

fields Selected
Flags
Numerics

row field

column field

include_missing_values boolean Specifies whether user-missing
(blank) and system missing (null)
values are included in the row and
column output.

cell_contents CrossTabs
Function

function_field string

function Sum
Mean
Min
Max
SDev

sort_mode Unsorted
Ascending
Descending

highlight_top number If non-zero, then true.

highlight_bottom number If non-zero, then true.

display [Counts
Expected
Residuals
RowPct
ColumnPct
TotalPct]

include_totals boolean

use_output_name boolean Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

Chapter 16. Output Node Properties 207

Table 189. matrix node properties (continued).

matrix node properties Data type Property description

output_mode Screen
File

Used to specify target location for
output generated from the output
node.

output_format Formatted (.tab)
Delimited (.csv)
HTML (.html)
Output (.cou)

Used to specify the type of output.
Both the Formatted and Delimited
formats can take the modifier
transposed, which transposes the
rows and columns in the table.

paginate_output boolean When the output_format is HTML,
causes the output to be separated
into pages.

lines_per_page number When used with paginate_output,
specifies the lines per page of
output.

full_filename string

means Node Properties

The Means node compares the means between independent groups or between pairs of
related fields to test whether a significant difference exists. For example, you could compare
mean revenues before and after running a promotion or compare revenues from customers
who did not receive the promotion with those who did.

Table 190. means node properties.

means node properties Data type Property description

means_mode BetweenGroups
BetweenFields

Specifies the type of means statistic
to be executed on the data.

test_fields [field1 ... fieldn] Specifies the test field when
means_mode is set to BetweenGroups.

grouping_field field Specifies the grouping field.

paired_fields [{field1 field2}
{field3 field4}
...]

Specifies the field pairs to use
when means_mode is set to
BetweenFields.

label_correlations boolean Specifies whether correlation labels
are shown in output. This setting
applies only when means_mode is
set to BetweenFields.

correlation_mode Probability
Absolute

Specifies whether to label
correlations by probability or
absolute value.

weak_label string

medium_label string

strong_label string

weak_below_probability number When correlation_mode is set to
Probability, specifies the cutoff
value for weak correlations. This
must be a value between 0 and
1—for example, 0.90.

208 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 190. means node properties (continued).

means node properties Data type Property description

strong_above_probability number Cutoff value for strong correlations.

weak_below_absolute number When correlation_mode is set to
Absolute, specifies the cutoff value
for weak correlations. This must be
a value between 0 and 1—for
example, 0.90.

strong_above_absolute number Cutoff value for strong correlations.

unimportant_label string

marginal_label string

important_label string

unimportant_below number Cutoff value for low field
importance. This must be a value
between 0 and 1—for example,
0.90.

important_above number

use_output_name boolean Specifies whether a custom output
name is used.

output_name string Name to use.

output_mode Screen
File

Specifies the target location for
output generated from the output
node.

output_format Formatted (.tab)
Delimited (.csv)
HTML (.html)
Output (.cou)

Specifies the type of output.

full_filename string

output_view Simple
Advanced

Specifies whether the simple or
advanced view is displayed in the
output.

report Node Properties

The Report node creates formatted reports containing fixed text as well as data and other
expressions derived from the data. You specify the format of the report using text templates
to define the fixed text and data output constructions. You can provide custom text
formatting by using HTML tags in the template and by setting options on the Output tab.
You can include data values and other conditional output by using CLEM expressions in the
template.

Table 191. report node properties.

report node properties Data type Property description

output_mode Screen
File

Used to specify target location for
output generated from the output
node.

output_format HTML (.html)
Text (.txt)
Output (.cou)

Used to specify the type of output.

Chapter 16. Output Node Properties 209

Table 191. report node properties (continued).

report node properties Data type Property description

use_output_name boolean Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

text string

full_filename string

highlights boolean

title string

lines_per_page number

Routput Node Properties

The R Output node enables you to analyze data and the
results of model scoring using your own custom R script.
The output of the analysis can be text or graphical. The
output is added to the Output tab of the manager pane;
alternatively, the output can be redirected to a file.

Table 192. Routput node properties.

Routput node properties Data type Property description

syntax string

convert_flags StringsAndDoubles
LogicalValues

convert_datetime boolean

convert_datetime_class POSIXct
POSIXlt

convert_missing boolean

output_name Auto
Custom

custom_name string

output_to Screen
File

output_type Graph
Text

full_filename string

graph_file_type HTML
COU

text_file_type HTML
TXT
COU

210 IBM SPSS Modeler 16 Python Scripting and Automation Guide

setglobals Node Properties

The Set Globals node scans the data and computes summary values that can be used in
CLEM expressions. For example, you can use this node to compute statistics for a field called
age and then use the overall mean of age in CLEM expressions by inserting the function
@GLOBAL_MEAN(age).

Table 193. setglobals node properties.

setglobals node properties Data type Property description

globals [Sum Mean Min Max
SDev]

Structured property

clear_first boolean

show_preview boolean

simeval Node Properties

The Simulation Evaluation node evaluates a specified predicted target field, and presents
distribution and correlation information about the target field.

Table 194. simeval node properties.

simeval node properties Data type Property description

target field

iteration field

presorted_by_iteration boolean

max_iterations number

tornado_fields [field1...fieldN]

plot_pdf boolean

plot_cdf boolean

show_ref_mean boolean

show_ref_median boolean

show_ref_sigma boolean

num_ref_sigma number

show_ref_pct boolean

ref_pct_bottom number

ref_pct_top number

show_ref_custom boolean

ref_custom_values [number1...numberN]

category_values Category
Probabilities
Both

category_groups Categories
Iterations

create_pct_table boolean

Chapter 16. Output Node Properties 211

Table 194. simeval node properties (continued).

simeval node properties Data type Property description

pct_table Quartiles
Intervals
Custom

pct_intervals_num number

pct_custom_values [number1...numberN]

simfit Node Properties

The Simulation Fitting node examines the statistical distribution of the data in each field and
generates (or updates) a Simulation Generate node, with the best fitting distribution assigned
to each field. The Simulation Generate node can then be used to generate simulated data.

Table 195. simfit node properties.

simfit node properties Data type Property description

build Node
XMLExport
Both

use_source_node_name boolean

source_node_name string The custom name of the source
node that is either being generated
or updated.

use_cases All
LimitFirstN

use_case_limit integer

fit_criterion AndersonDarling
KolmogorovSmirnov

num_bins integer

parameter_xml_filename string

generate_parameter_import boolean

statistics Node Properties

The Statistics node provides basic summary information about numeric fields. It calculates
summary statistics for individual fields and correlations between fields.

Table 196. statistics node properties.

statistics node properties Data type Property description

use_output_name boolean Specifies whether a custom output
name is used.

output_name string If use_output_name is true, specifies
the name to use.

212 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 196. statistics node properties (continued).

statistics node properties Data type Property description

output_mode Screen
File

Used to specify target location for
output generated from the output
node.

output_format Text (.txt)
HTML (.html)
Output (.cou)

Used to specify the type of output.

full_filename string

examine [field field field]

correlate [field field field]

statistics [Count Mean Sum Min
Max Range Variance
SDev SErr Median Mode]

correlation_mode Probability
Absolute

Specifies whether to label
correlations by probability or
absolute value.

label_correlations boolean

weak_label string

medium_label string

strong_label string

weak_below_probability number When correlation_mode is set to
Probability, specifies the cutoff
value for weak correlations. This
must be a value between 0 and
1—for example, 0.90.

strong_above_probability number Cutoff value for strong correlations.

weak_below_absolute number When correlation_mode is set to
Absolute, specifies the cutoff value
for weak correlations. This must be
a value between 0 and 1—for
example, 0.90.

strong_above_absolute number Cutoff value for strong correlations.

statisticsoutput Node Properties

The Statistics Output node allows you to call an IBM SPSS Statistics procedure to analyze
your IBM SPSS Modeler data. A wide variety of IBM SPSS Statistics analytical procedures is
available. This node requires a licensed copy of IBM SPSS Statistics.

The properties for this node are described under “statisticsoutput Node Properties” on page 228.

table Node Properties

The Table node displays the data in table format, which can also be written to a file. This is
useful anytime that you need to inspect your data values or export them in an easily readable
form.

Chapter 16. Output Node Properties 213

Table 197. table node properties.

table node properties Data type Property description

full_filename string If disk, data, or HTML output, the name
of the output file.

use_output_name boolean Specifies whether a custom output name
is used.

output_name string If use_output_name is true, specifies the
name to use.

output_mode Screen
File

Used to specify target location for output
generated from the output node.

output_format Formatted (.tab)
Delimited (.csv)
HTML (.html)
Output (.cou)

Used to specify the type of output.

transpose_data boolean Transposes the data before export so that
rows represent fields and columns
represent records.

paginate_output boolean When the output_format is HTML, causes
the output to be separated into pages.

lines_per_page number When used with paginate_output,
specifies the lines per page of output.

highlight_expr string

output string A read-only property that holds a
reference to the last table built by the
node.

value_labels [{Value LabelString}
{Value LabelString} ...]

Used to specify labels for value pairs.

display_places integer Sets the number of decimal places for the
field when displayed (applies only to
fields with REAL storage). A value of –1
will use the stream default.

export_places integer Sets the number of decimal places for the
field when exported (applies only to
fields with REAL storage). A value of –1
will use the stream default.

decimal_separator DEFAULT
PERIOD
COMMA

Sets the decimal separator for the field
(applies only to fields with REAL
storage).

214 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 197. table node properties (continued).

table node properties Data type Property description

date_format "DDMMYY"
"MMDDYY"
"YYMMDD"
"YYYYMMDD"
"YYYYDDD"
DAY
MONTH
"DD-MM-YY"
"DD-MM-YYYY"
"MM-DD-YY"
"MM-DD-YYYY"
"DD-MON-YY"
"DD-MON-YYYY"
"YYYY-MM-DD"
"DD.MM.YY"
"DD.MM.YYYY"
"MM.DD.YY"
"MM.DD.YYYY"
"DD.MON.YY"
"DD.MON.YYYY"
"DD/MM/YY"
"DD/MM/YYYY"
"MM/DD/YY"
"MM/DD/YYYY"
"DD/MON/YY"
"DD/MON/YYYY"
MON YYYY
q Q YYYY
ww WK YYYY

Sets the date format for the field (applies
only to fields with DATE or TIMESTAMP
storage).

time_format "HHMMSS"
"HHMM"
"MMSS"
"HH:MM:SS"
"HH:MM"
"MM:SS"
"(H)H:(M)M:(S)S"
"(H)H:(M)M"
"(M)M:(S)S"
"HH.MM.SS"
"HH.MM"
"MM.SS"
"(H)H.(M)M.(S)S"
"(H)H.(M)M"
"(M)M.(S)S"

Sets the time format for the field (applies
only to fields with TIME or TIMESTAMP
storage).

column_width integer Sets the column width for the field. A
value of –1 will set column width to
Auto.

justify AUTO
CENTER
LEFT
RIGHT

Sets the column justification for the field.

Chapter 16. Output Node Properties 215

transform Node Properties

The Transform node allows you to select and visually preview the results of transformations
before applying them to selected fields.

Table 198. transform node properties.

transform node properties Data type Property description

fields [field1... fieldn] The fields to be used in the
transformation.

formula All
Select

Indicates whether all or selected
transformations should be
calculated.

formula_inverse boolean Indicates if the inverse
transformation should be used.

formula_inverse_offset number Indicates a data offset to be used
for the formula. Set as 0 by default,
unless specified by user.

formula_log_n boolean Indicates if the logn transformation
should be used.

formula_log_n_offset number

formula_log_10 boolean Indicates if the log10 transformation
should be used.

formula_log_10_offset number

formula_exponential boolean Indicates if the exponential
transformation (ex) should be used.

formula_square_root boolean Indicates if the square root
transformation should be used.

use_output_name boolean Specifies whether a custom output
name is used.

output_name string If use_output_name is true,
specifies the name to use.

output_mode Screen
File

Used to specify target location for
output generated from the output
node.

output_format HTML (.html)
Output (.cou)

Used to specify the type of output.

paginate_output boolean When the output_format is HTML,
causes the output to be separated
into pages.

lines_per_page number When used with paginate_output,
specifies the lines per page of
output.

full_filename string Indicates the file name to be used
for the file output.

216 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 17. Export Node Properties

Common Export Node Properties
The following properties are common to all export nodes.

Table 199. Common export node properties.

Property Values Property description

publish_path string Enter the rootname name to be used for the
published image and parameter files.

publish_metadata boolean Specifies if a metadata file is produced that
describes the inputs and outputs of the
image and their data models.

publish_use_parameters boolean Specifies if stream parameters are included
in the *.par file.

publish_parameters string list Specify the parameters to be included.

execute_mode export_data
publish

Specifies whether the node executes
without publishing the stream, or if the
stream is automatically published when the
node is executed.

asexport Node Properties
The Analytic Server export enables you to run a stream on Hadoop Distributed File System (HDFS).

Table 200. asexport node properties.

asexport node properties Data type Property description

data_source string The name of the data source.

export_mode string Specifies whether to append exported
data to the existing data source, or to
overwrite the existing data source.

host string The name of the Analytic Server host.

port integer The port on which the Analytic
Server is listening.

tenant string In a multi-tenant environment, the
name of the tenant to which you
belong. In a single-tenant
environment, this defaults to ibm.

set_credentials boolean If user authentication on the Analytic
Server is the same as on SPSS
Modeler server, set this to false.
Otherwise, set to true.

user_name string The user name for logging in to the
Analytic Server. Only needed if
set_credentials is true.

password string The password for logging in to the
Analytic Server. Only needed if
set_credentials is true.

217

cognosexport Node Properties

The IBM Cognos BI Export node exports data in a format that can be read by Cognos BI
databases.

Note: For this node, you must define a Cognos connection and an ODBC connection.

Cognos connection

The properties for the Cognos connection are as follows.

Table 201. cognosexport node properties.

cognosexport node properties Data type Property description

cognos_connection {"field","field", ...
,"field"}

A list property containing the connection details
for the Cognos server. The format is:

{"Cognos_server_URL", login_mode, "namespace",
"username", "password"}

where:
Cognos_server_URL is the URL of the Cognos
server to which you are exporting
login_mode indicates whether anonymous login
is used, and is either true or false; if set to
true, the following fields should be set to ""
namespace specifies the security authentication
provider used to log on to the server
username and password are those used to log on
to the Cognos server

cognos_package_name string The path and name of the Cognos package to
which you are exporting data, for example:
/Public Folders/MyPackage

cognos_datasource string

cognos_export_mode Publish
ExportFile

cognos_filename string

ODBC connection

The properties for the ODBC connection are identical to those listed for databaseexport in the next
section, with the exception that the datasource property is not valid.

tm1export Node Properties

The IBM Cognos TM1 Export node exports data in a format that can be read by Cognos TM1
databases.

218 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 202. tm1export node properties.

tm1export node properties Data type Property description

pm_host string The host name. For example:
set TM1_import.pm_host=
’http://9.191.86.82:9510/pmhub/pm’

tm1_connection {"field","field", ...
,"field"}

A list property containing the connection
details for the TM1 server. The format is:
{ “TM1_Server_Name”
"tm1_username" "tm1_ password"}
: set TM1_import.tm1_connection=
[’Planning Sample’ admin apple]

selected_cube field The name of the cube to which you are exporting
data. For example:
:set TM1_export.selected_cube=
’plan_BudgetPlan’

spssfield_tm1element_mapping list The tm1 element to be mapped to must be part
of the column dimension for selected cube view.
Format: [{"param1", "value"},...,{"paramN",
"value"}]
For example:
:set TM1_export.spssfield_
tm1element_mapping = [{"plan_version",
"plan_version"},{"plan_department",
"plan_department"}]

databaseexport Node Properties

The Database export node writes data to an ODBC-compliant relational data source. In order
to write to an ODBC data source, the data source must exist and you must have write
permission for it.

Table 203. databaseexport node properties.

databaseexport node properties Data type Property description

datasource string

username string

password string

epassword string This slot is read-only during
execution. To generate an encoded
password, use the Password Tool
available from the Tools menu. See
the topic “Generating an Encoded
Password” on page 47 for more
information.

table_name string

write_mode Create
Append
Merge

Chapter 17. Export Node Properties 219

Table 203. databaseexport node properties (continued).

databaseexport node properties Data type Property description

map string Maps a stream field name to a
database column name (valid only
if write_mode is Merge).
For a merge, all fields must be
mapped in order to be exported.
Field names that do not exist in
the database are added as new
columns.

key_fields [field field ... field] Specifies the stream field that is used
for key; map property shows what
this corresponds to in the database.

join Database
Add

drop_existing_table boolean

delete_existing_rows boolean

default_string_size integer

type Structured property used to set the
schema type.

generate_import boolean

use_custom_create_table_command boolean Use the custom_create_table slot to
modify the standard CREATE TABLE
SQL command.

custom_create_table_command string Specifies a string command to use in
place of the standard CREATE TABLE
SQL command.

use_batch boolean The following properties are
advanced options for database
bulk-loading. A true value for
Use_batch turns off row-by-row
commits to the database.

batch_size number Specifies the number of records to
send to the database before
committing to memory.

bulk_loading Off
ODBC
External

Specifies the type of bulk-loading.
Additional options for ODBC and
External are listed below.

not_logged boolean

odbc_binding Row
Column

Specify row-wise or column-wise
binding for bulk-loading via ODBC.

loader_delimit_mode Tab
Space
Other

For bulk-loading via an external
program, specify type of delimiter.
Select Other in conjunction with the
loader_other_delimiter
property to specify delimiters, such
as the comma (,).

loader_other_delimiter string

220 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 203. databaseexport node properties (continued).

databaseexport node properties Data type Property description

specify_data_file boolean A true flag activates the data_file
property below, where you can
specify the filename and path to
write to when bulk-loading to the
database.

data_file string

specify_loader_program boolean A true flag activates the
loader_program property below,
where you can specify the name and
location of an external loader script
or program.

loader_program string

gen_logfile boolean A true flag activates the logfile_name
below, where you can specify the
name of a file on the server to
generate an error log.

logfile_name string

check_table_size boolean A true flag allows table checking to
ensure that the increase in database
table size corresponds to the number
of rows exported from IBM SPSS
Modeler.

loader_options string Specify additional arguments, such as
-comment and -specialdir, to the
loader program.

export_db_primarykey boolean Specifies whether a given field is a
primary key.

use_custom_create_index_command boolean If true, enables custom SQL for all
indexes.

custom_create_index_command string Specifies the SQL command used to
create indexes when custom SQL is
enabled. (This value can be
overridden for specific indexes as
indicated below.)

indexes.INDEXNAME.fields Creates the specified index if
necessary and lists field names to be
included in that index.

indexes.INDEXNAME.use_custom_
create_�index_command

boolean Used to enable or disable custom
SQL for a specific index.

indexes.INDEXNAME.custom_create_
ommand

Specifies the custom SQL used for the
specified index.

indexes.INDEXNAME.remove boolean If true, removes the specified index
from the set of indexes.

table_space string Specifies the table space that will be
created.

use_partition boolean Specifies that the distribute hash field
will be used.

partition_field string Specifies the contents of the
distribute hash field.

Chapter 17. Export Node Properties 221

Note: For some databases, you can specify that database tables are created for export with compression
(for example, the equivalent of CREATE TABLE MYTABLE (...) COMPRESS YES; in SQL). The properties
use_compression and compression_mode are provided to support this feature, as follows.

Table 204. databaseexport node properties using compression features.

databaseexport node properties Data type Property description

use_compression boolean If set to true, creates tables for export with
compression.

compression_mode Row
Page

Sets the level of compression for SQL Server
databases.

Default
Direct_Load_Operations
All_Operations
Basic
OLTP
Query_High
Query_Low
Archive_High
Archive_Low

Sets the level of compression for Oracle
databases. Note that the values OLTP,
Query_High, Query_Low, Archive_High, and
Archive_Low require a minimum of Oracle
11gR2.

datacollectionexport Node Properties

The IBM SPSS Data Collection export node outputs data in the format used by IBM SPSS
Data Collection market research software. The IBM SPSS Data Collection Data Library must
be installed to use this node.

Table 205. datacollectionexport node properties.

datacollectionexport node properties Data type Property description

metadata_file string The name of the metadata file to
export.

merge_metadata Overwrite
MergeCurrent

enable_system_variables boolean Specifies whether the exported
.mdd file should include IBM SPSS
Data Collection system variables.

casedata_file string The name of the .sav file to which
case data is exported.

generate_import boolean

excelexport Node Properties

The Excel export node outputs data in Microsoft Excel format (.xls). Optionally, you can
choose to launch Excel automatically and open the exported file when the node is executed.

Table 206. excelexport node properties.

excelexport node properties Data type Property description

full_filename string

222 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 206. excelexport node properties (continued).

excelexport node properties Data type Property description

excel_file_type Excel2003
Excel2007

export_mode Create
Append

inc_field_names boolean Specifies whether field names
should be included in the first row
of the worksheet.

start_cell string Specifies starting cell for export.

worksheet_name string Name of the worksheet to be
written.

launch_application boolean Specifies whether Excel should be
invoked on the resulting file. Note
that the path for launching Excel
must be specified in the Helper
Applications dialog box (Tools
menu, Helper Applications).

generate_import boolean Specifies whether an Excel Import
node should be generated that will
read the exported data file.

outputfile Node Properties

The Flat File export node outputs data to a delimited text file. It is useful for exporting data
that can be read by other analysis or spreadsheet software.

Table 207. outputfile node properties.

outputfile node properties Data type Property description

full_filename string Name of output file.

write_mode Overwrite
Append

inc_field_names boolean

use_newline_after_records boolean

delimit_mode Comma
Tab
Space
Other

other_delimiter char

quote_mode None
Single
Double
Other

other_quote boolean

generate_import boolean

Chapter 17. Export Node Properties 223

Table 207. outputfile node properties (continued).

outputfile node properties Data type Property description

encoding StreamDefault
SystemDefault
"UTF-8"

sasexport Node Properties

The SAS export node outputs data in SAS format, to be read into SAS or a SAS-compatible
software package. Three SAS file formats are available: SAS for Windows/OS2, SAS for
UNIX, or SAS Version 7/8.

Table 208. sasexport node properties.

sasexport node properties Data type Property description

format Windows
UNIX
SAS7
SAS8

Variant property label fields.

full_filename string

export_names NamesAndLabels
NamesAsLabels

Used to map field names from IBM
SPSS Modeler upon export to IBM
SPSS Statistics or SAS variable
names.

generate_import boolean

statisticsexport Node Properties

The Statistics Export node outputs data in IBM SPSS Statistics .sav format. The .sav files can
be read by IBM SPSS Statistics Base and other products. This is also the format used for cache
files in IBM SPSS Modeler.

The properties for this node are described under “statisticsexport Node Properties” on page 228.

xmlexport Node Properties

The XML export node outputs data to a file in XML format. You can optionally create an
XML source node to read the exported data back into the stream.

Table 209. xmlexport node properties.

xmlexport node properties Data type Property description

full_filename string (required) Full path and file name of XML
export file.

use_xml_schema boolean Specifies whether to use an XML schema (XSD
or DTD file) to control the structure of the
exported data.

224 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 209. xmlexport node properties (continued).

xmlexport node properties Data type Property description

full_schema_filename string Full path and file name of XSD or DTD file to
use. Required if use_xml_schema is set to true.

generate_import boolean Generates an XML source node that will read
the exported data file back into the stream.

records string XPath expression denoting the record
boundary.

map string Maps field name to XML structure.

Chapter 17. Export Node Properties 225

226 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 18. IBM SPSS Statistics Node Properties

statisticsimport Node Properties

The Statistics File node reads data from the .sav file format used by IBM SPSS Statistics, as
well as cache files saved in IBM SPSS Modeler, which also use the same format.

Table 210. statisticsimport node properties.

statisticsimport node properties Data type Property description

full_filename string The complete filename, including path.

password string The password. The password parameter must
be set before the file_encrypted parameter.

file_encrypted flag Whether or not the file is password protected.

import_names NamesAndLabels
LabelsAsNames

Method for handling variable names and
labels.

import_data DataAndLabels
LabelsAsData

Method for handling values and labels.

use_field_format_for_storage Boolean Specifies whether to use IBM SPSS Statistics
field format information when importing.

statisticstransform Node Properties

The Statistics Transform node runs a selection of IBM SPSS Statistics syntax commands
against data sources in IBM SPSS Modeler. This node requires a licensed copy of IBM SPSS
Statistics.

Table 211. statisticstransform node properties.

statisticstransform node properties Data type Property description

syntax string

check_before_saving boolean Validates the entered syntax before
saving the entries. Displays an
error message if the syntax is
invalid.

default_include boolean See the topic “filter Node
Properties” on page 99 for more
information.

include boolean See the topic “filter Node
Properties” on page 99 for more
information.

new_name string See the topic “filter Node
Properties” on page 99 for more
information.

227

statisticsmodel Node Properties

The Statistics Model node enables you to analyze and work with your data by running IBM
SPSS Statistics procedures that produce PMML. This node requires a licensed copy of IBM
SPSS Statistics.

statisticsmodel node properties Data type Property description

syntax string

default_include boolean See the topic “filter Node
Properties” on page 99 for more
information.

include boolean See the topic “filter Node
Properties” on page 99 for more
information.

new_name string See the topic “filter Node
Properties” on page 99 for more
information.

statisticsoutput Node Properties

The Statistics Output node allows you to call an IBM SPSS Statistics procedure to analyze
your IBM SPSS Modeler data. A wide variety of IBM SPSS Statistics analytical procedures is
available. This node requires a licensed copy of IBM SPSS Statistics.

Table 212. statisticsoutput node properties.

statisticsoutput node properties Data type Property description

mode Dialog
Syntax

Selects "IBM SPSS Statistics dialog"
option or Syntax Editor

syntax string

use_output_name boolean

output_name string

output_mode Screen
File

full_filename string

file_type HTML
SPV
SPW

statisticsexport Node Properties

The Statistics Export node outputs data in IBM SPSS Statistics .sav format. The .sav files can
be read by IBM SPSS Statistics Base and other products. This is also the format used for cache
files in IBM SPSS Modeler.

228 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 213. statisticsexport node properties.

statisticsexport node properties Data type Property description

full_filename string

file_type Standard
Compressed

Save file in sav or zsav format.

encrypt_file flag Whether or not the file is password
protected.

password string The password.

launch_application boolean

export_names NamesAndLabels
NamesAsLabels

Used to map field names from IBM
SPSS Modeler upon export to IBM
SPSS Statistics or SAS variable
names.

generate_import boolean

Chapter 18. IBM SPSS Statistics Node Properties 229

230 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Chapter 19. SuperNode Properties

Properties that are specific to SuperNodes are described in the following tables. Note that common node
properties also apply to SuperNodes.

Table 214. Terminal supernode properties.

Property name Property type/List of values Property description

execute_method Script
Normal

script string

script_language Python
Legacy

Sets the scripting language for the
SuperNode script.

SuperNode Parameters

You can use scripts to create or set SuperNode parameters using the same functions that are used to
modify stream parameters. See the topic “Stream, Session, and SuperNode Parameters” on page 40 for
more information.

Setting Properties for Encapsulated Nodes

In order to set the properties on nodes within the SuperNode, you must access the diagram owned by
that SuperNode, and then use the various find methods (such as findByName() and findByID()) to locate
the nodes. For example, in a SuperNode script that includes a single Type node:
supernode = modeler.script.supernode()
diagram = supernode.getCompositeProcessorDiagram()
Find the type node within the supernode internal diagram
typenode = diagram.findByName("type", None)
typenode.setKeyedProperty("direction", "Drug", "Input")
typenode.setKeyedProperty("direction", "Age", "Target")

Limitations of SuperNode scripts. SuperNodes cannot manipulate other streams and cannot change the
current stream.

231

232 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Appendix A. Node names reference

This section provides a reference for the scripting names of the nodes in IBM SPSS Modeler.

Model Nugget Names
Model nuggets (also known as generated models) can be referenced by type, just like node and output
objects. The following tables list the model object reference names.

Note these names are used specifically to reference model nuggets in the Models palette (in the upper
right corner of the IBM SPSS Modeler window). To reference model nodes that have been added to a
stream for purposes of scoring, a different set of names prefixed with apply... are used. See the topic
Chapter 14, “Model Nugget Node Properties,” on page 169 for more information.

Note: Under normal circumstances, referencing models by both name and type is recommended to avoid
confusion.

Table 215. Model Nugget Names (Modeling Palette).

Model name Model

anomalydetection Anomaly

apriori Apriori

autoclassifier Auto Classifier

autocluster Auto Cluster

autonumeric Auto Numeric

bayesnet Bayesian network

c50 C5.0

carma Carma

cart C&R Tree

chaid CHAID

coxreg Cox regression

decisionlist Decision List

discriminant Discriminant

factor PCA/Factor

featureselection Feature Selection

genlin Generalized linear regression

glmm GLMM

kmeans K-Means

knn k-nearest neighbor

kohonen Kohonen

linear Linear

logreg Logistic regression

neuralnetwork Neural Net

quest QUEST

regression Linear regression

233

Table 215. Model Nugget Names (Modeling Palette) (continued).

Model name Model

sequence Sequence

slrm Self-learning response model

statisticsmodel IBM SPSS Statistics model

svm Support vector machine

timeseries Time Series

twostep TwoStep

Table 216. Model Nugget Names (Database Modeling Palette).

Model name Model

db2imcluster IBM ISW Clustering

db2imlog IBM ISW Logistic Regression

db2imnb IBM ISW Naive Bayes

db2imreg IBM ISW Regression

db2imtree IBM ISW Decision Tree

msassoc MS Association Rules

msbayes MS Naive Bayes

mscluster MS Clustering

mslogistic MS Logistic Regression

msneuralnetwork MS Neural Network

msregression MS Linear Regression

mssequencecluster MS Sequence Clustering

mstimeseries MS Time Series

mstree MS Decision Tree

netezzabayes Netezza Bayes Net

netezzadectree Netezza Decision Tree

netezzadivcluster Netezza Divisive Clustering

netezzaglm Netezza Generalized Linear

netezzakmeans Netezza K-Means

netezzaknn Netezza KNN

netezzalineregression Netezza Linear Regression

netezzanaivebayes Netezza Naive Bayes

netezzapca Netezza PCA

netezzaregtree Netezza Regression Tree

netezzatimeseries Netezza Time Series

oraabn Oracle Adaptive Bayes

oraai Oracle AI

oradecisiontree Oracle Decision Tree

oraglm Oracle GLM

orakmeans Oracle k-Means

oranb Oracle Naive Bayes

234 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 216. Model Nugget Names (Database Modeling Palette) (continued).

Model name Model

oranmf Oracle NMF

oraocluster Oracle O-Cluster

orasvm Oracle SVM

Avoiding Duplicate Model Names
When using scripts to manipulate generated models, be aware that allowing duplicate model names can
result in ambiguous references. To avoid this, it is a good idea to require unique names for generated
models when scripting.

To set options for duplicate model names:
1. From the menus choose:

Tools > User Options

2. Click the Notifications tab.
3. Select Replace previous model to restrict duplicate naming for generated models.

The behavior of script execution can vary between SPSS Modeler and IBM SPSS Collaboration and
Deployment Services when there are ambiguous model references. The SPSS Modeler client includes the
option "Replace previous model", which automatically replaces models that have the same name (for
example, where a script iterates through a loop to produce a different model each time). However, this
option is not available when the same script is run in IBM SPSS Collaboration and Deployment Services.
You can avoid this situation either by renaming the model generated in each iteration to avoid
ambiguous references to models, or by clearing the current model (for example, adding a clear
generated palette statement) before the end of the loop.

Output Type Names
The following table lists all output object types and the nodes that create them. For a complete list of the
export formats available for each type of output object, see the properties description for the node that
creates the output type, available in “Graph Node Common Properties” on page 113 and Chapter 16,
“Output Node Properties,” on page 205.

Table 217. Output object types and the nodes that create them.

Output object type Node

analysisoutput Analysis

collectionoutput Collection

dataauditoutput Data Audit

distributionoutput Distribution

evaluationoutput Evaluation

histogramoutput Histogram

matrixoutput Matrix

meansoutput Means

multiplotoutput Multiplot

plotoutput Plot

qualityoutput Quality

Appendix A. Node names reference 235

Table 217. Output object types and the nodes that create them (continued).

Output object type Node

reportdocumentoutput This object type is not from a node; it's the output created by a
project report

reportoutput Report

statisticsprocedureoutput Statistics Output

statisticsoutput Statistics

tableoutput Table

timeplotoutput Time Plot

weboutput Web

236 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Appendix B. Migrating from legacy scripting to Python
scripting

Legacy script migration overview
This section provides a summary of the differences between Python and legacy scripting in IBM SPSS
Modeler, and provides information about how to migrate your legacy scripts to Python scripts. In this
section you will find a list of standard SPSS Modeler legacy commands and the equivalent Python
commands.

General differences
Legacy scripting owes much of its design to OS command scripts. Legacy scripting is line oriented, and
although there are some block structures, for example if...then...else...endif and for...endfor,
indentation is generally not significant.

In Python scripting, indentation is significant and lines belonging to the same logical block must be
indented by the same level.

Note: You must take care when copying and pasting Python code. A line that is indented using tabs
might look the same in the editor as a line that is indented using spaces. However, the Python script will
generate an error because the lines are not considered as equally indented.

The scripting context
The scripting context defines the environment that the script is being executed in, for example the stream
or SuperNode that executes the script. In legacy scripting the context is implicit, which means, for
example, that any node references in a stream script are assumed to be within the stream that executes
the script.

In Python scripting, the scripting context is provided explicitly via the modeler.script module. For
example, a Python stream script can access the stream that executes the script with the following code:
s = modeler.script.stream()

Stream related functions can then be invoked through the returned object.

Commands versus functions
Legacy scripting is command oriented. This mean that each line of script typically starts with the
command to be run followed by the parameters, for example:
connect ’Type’:typenode to :filternode
rename :derivenode as "Compute Total"

Python uses functions that are usually invoked through an object (a module, class or object) that defines
the function, for example:
stream = modeler.script.stream()
typenode = stream.findByName("type", "Type)
filternode = stream.findByName("filter", None)
stream.link(typenode, filternode)
derive.setLabel("Compute Total")

237

Literals and comments
Some literal and comment commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy
scripts to Python scripts for use in IBM SPSS Modeler 16.

Table 218. Legacy scripting to Python scripting mapping for literals and comments.

Legacy scripting Python scripting

Integer, for example 4 Same

Float, for example 0.003 Same

Single quoted strings, for example 'Hello' Same
Note: String literals containing non-ASCII characters must
be prefixed by a u to ensure that they are represented as
Unicode.

Double quoted strings, for example “Hello again” Same
Note: String literals containing non-ASCII characters must
be prefixed by a u to ensure that they are represented as
Unicode.

Long strings, for example

“””This is a string
that spans multiple
lines”””

Same

Lists, for example [1 2 3] [1, 2, 3]

Variable reference, for example set x = 3 x = 3

Line continuation (\), for example

set x = [1 2 \
3 4]

x = [1, 2,\
3, 4]

Block comment, for example

/* This is a long comment
over a line. */

""" This is a long comment
over a line. """

Line comment, for example set x = 3 # make x 3 x = 3 # make x 3

undef None

true True

false False

Operators
Some operator commands that are commonly used in IBM SPSS Modeler have equivalent commands in
Python scripting. This might help you to convert your existing SPSS Modeler Legacy scripts to Python
scripts for use in IBM SPSS Modeler 16.

Table 219. Legacy scripting to Python scripting mapping for operators.

Legacy scripting Python scripting

NUM1 + NUM2
LIST + ITEM
LIST1 + LIST2

NUM1 + NUM2
LIST.append(ITEM)
LIST1.extend(LIST2)

NUM1 – NUM2
LIST - ITEM

NUM1 – NUM2
LIST.remove(ITEM)

NUM1 * NUM2 NUM1 * NUM2

NUM1 / NUM2 NUM1 / NUM2

238 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 219. Legacy scripting to Python scripting mapping for operators (continued).

Legacy scripting Python scripting

=
==

==

/=
/==

!=

X ** Y X ** Y

X < Y
X <= Y
X > Y
X >= Y

X < Y
X <= Y
X > Y
X >= Y

X div Y
X rem Y
X mod Y

X // Y
X % Y
X % Y

and
or
not(EXPR)

and
or
not EXPR

Conditionals and looping
Some conditional and looping commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy
scripts to Python scripts for use in IBM SPSS Modeler 16.

Table 220. Legacy scripting to Python scripting mapping for conditionals and looping.

Legacy scripting Python scripting

for VAR from INT1 to INT2
...

endfor

for VAR in range(INT1, INT2):
...

or

VAR = INT1
while VAR <= INT2:

...
VAR += 1

for VAR in LIST
...

endfor

for VAR in LIST:
...

for VAR in_fields_to NODE
...

endfor

for VAR in NODE.getInputDataModel():
...

for VAR in_fields_at NODE
...

endfor

for VAR in NODE.getOutputDataModel():
...

if...then
...

elseif...then
...

else
...

endif

if ...:
...

elif ...:
...

else:
...

with TYPE OBJECT
...

endwith

No equivalent

var VAR1 Variable declaration is not required

Appendix B. Migrating from legacy scripting to Python scripting 239

Variables
In legacy scripting, variables are declared before they are referenced, for example:
var mynode
set mynode = create typenode at 96 96

In Python scripting, variables are created when they are first referenced, for example:
mynode = stream.createAt("type", "Type", 96, 96)

In legacy scripting, references to variables must be explicitly removed using the ^ operator, for example:
var mynode
set mynode = create typenode at 96 96
set ^mynode.direction."Age" = Input

Like most scripting languages, this is not necessary is Python scripting, for example:
mynode = stream.createAt("type", "Type", 96, 96)
mynode.setKeyedPropertyValue("direction","Age","Input")

Node, output and model types
In legacy scripting, the different object types (node, output, and model) typically have the type appended
to the type of object. For example, the Derive node has the type derivenode:
set feature_name_node = create derivenode at 96 96

The IBM SPSS Modeler API in Python does not include the node suffix, so the Derive node has the type
derive, for example:
feature_name_node = stream.createAt("derive", "Feature", 96, 96)

The only difference in type names in legacy and Python scripting is the lack of the type suffix.

Property names
Property names are the same in both legacy and Python scripting. For example, in the Variable File node,
the property that defines the file location is full_filename in both scripting environments.

Node references
Many legacy scripts use an implicit search to find and access the node to be modified. For example, the
following commands search the current stream for a Type node with the label "Type", then set the
direction (or modeling role) of the "Age" field to Input and the "Drug" field to be Target, that is the value
to be predicted:
set ’Type’:typenode.direction."Age" = Input
set ’Type’:typenode.direction."Drug" = Target

In Python scripting, node objects have to be located explicitly before calling the function to set the
property value, for example:
typenode = stream.findByType("type", "Type")
typenode.setKeyedPropertyValue("direction", "Age", "Input")
typenode.setKeyedPropertyValue("direction", "Drug", "Target")

Note: In this case, "Target" must be in string quotes.

Python scripts can alternatively use the ModelingRole enumeration in the modeler.api package.

240 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Although the Python scripting version can be more verbose, it leads to better runtime performance
because the search for the node is usually only done once. In the legacy scripting example, the search for
the node is done for each command.

Finding nodes by ID is also supported (the node ID is visible in the Annotations tab of the node dialog).
For example, in legacy scripting:
id65EMPB9VL87 is the ID of a Type node
set @id65EMPB9VL87.direction."Age" = Input

The following script shows the same example in Python scripting:
typenode = stream.findByID("id65EMPB9VL87")
typenode.setKeyedPropertyValue("direction", "Age", "Input")

Getting and setting properties
Legacy scripting uses the set command to assign a value. The term following the set command can be a
property definition. The following script shows two possible script formats for setting a property:
set <node reference>.<property> = <value>
set <node reference>.<keyed-property>.<key> = <value>

In Python scripting, the same result is achieved by using the functions setPropertyValue() and
setKeyedPropertyValue(), for example:
object.setPropertyValue(property, value)
object.setKeyedPropertyValue(keyed-property, key, value)

In legacy scripting, accessing property values can be achieved using the get command, for example:
var n v
set n = get node :filternode
set v = ^n.name

In Python scripting, the same result is achieved by using the function getPropertyValue(), for example:
n = stream.findByName("filter", None)
v = n.getPropertyValue("name")

Editing streams
In legacy scripting, the create command is used to create a new node, for example:
var agg select
set agg = create aggregatenode at 96 96
set select = create selectnode at 164 96

In Python scripting, streams have various methods for creating nodes, for example:
stream = modeler.script.stream()
agg = stream.createAt("aggregate", "Aggregate", 96, 96)
select = stream.createAt("select", "Select", 164, 96)

In legacy scripting, the connect command is used to create links between nodes, for example:
connect ^agg to ^select

In Python scripting, the link method is used to create links between nodes, for example:
stream.link(agg, select)

In legacy scripting, the disconnect command is used to remove links between nodes, for example:
disconnect ^agg from ^select

In Python scripting, the unlink method is used to remove links between nodes, for example:

Appendix B. Migrating from legacy scripting to Python scripting 241

stream.unlink(agg, select)

In legacy scripting, the position command is used to position nodes on the stream canvas or between
other nodes, for example:
position ^agg at 256 256
position ^agg between ^myselect and ^mydistinct

In Python scripting, the same result is achieved by using two separate methods; setXYPosition and
setPositionBetween. For example:
agg.setXYPosition(256, 256)
agg.setPositionBetween(myselect, mydistinct)

Node operations
Some node operation commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy
scripts to Python scripts for use in IBM SPSS Modeler 16.

Table 221. Legacy scripting to Python scripting mapping for node operations.

Legacy scripting Python scripting

create nodespec at x y stream.create(type, name)
stream.createAt(type, name, x, y)
stream.createBetween(type, name, preNode, postNode)
stream.createModelApplier(model, name)

connect fromNode to toNode stream.link(fromNode, toNode)

delete node stream.delete(node)

disable node stream.setEnabled(node, False)

enable node stream.setEnabled(node, True)

disconnect fromNode from toNode stream.unlink(fromNode, toNode)
stream.disconnect(node)

duplicate node node.duplicate()

execute node stream.runSelected(nodes, results)
stream.runAll(results)

flush node node.flushCache()

position node at x y node.setXYPosition(x, y)

position node between node1 and node2 node.setPositionBetween(node1, node2)

rename node as name node.setLabel(name)

Looping
In legacy scripting, there are two main looping options that are supported:
v Counted loops, where an index variable moves between two integer bounds.
v Sequence loops that loop through a sequence of values, binding the current value to the loop variable.

The following script is an example of a counted loop in legacy scripting:
for i from 1 to 10
println ^i

endfor

The following script is an example of a sequence loop in legacy scripting:

242 IBM SPSS Modeler 16 Python Scripting and Automation Guide

var items
set items = [a b c d]

for i in items
println ^i
endfor

There are also other types of loops that can be used:
v Iterating through the models in the models palette, or through the outputs in the outputs palette.
v Iterating through the fields coming into or out of a node.

Python scripting also supports different types of loops. The following script is an example of a counted
loop in Python scripting:
i = 1
while i <= 10:
print i
i += 1

The following script is an example of a sequence loop in Python scripting:
items = ["a", "b", "c", "d"]
for i in items:
print i

The sequence loop is very flexible, and when it is combined with IBM SPSS Modeler API methods it can
support the majority of legacy scripting use cases. The following example shows how to use a sequence
loop in Python scripting to iterate through the fields that come out of a node:
node = modeler.script.stream().findByType("filter", None)
for column in node.getOutputDataModel().columnIterator():
print column.getColumnName()

Executing streams
During stream execution, model or output objects that are generated are added to one of the object
managers. In legacy scripting, the script must either locate the built objects from the object manager, or
access the most recently generated output from the node that generated the output.

Stream execution in Python is different, in that any model or output objects that are generated from the
execution are returned in a list that is passed to the execution function. This makes it simpler to access
the results of the stream execution.

Legacy scripting supports three stream execution commands:
v execute_all executes all executable terminal nodes in the stream.
v execute_script executes the stream script regardless of the setting of the script execution.
v execute node executes the specified node.

Python scripting supports a similar set of functions:
v stream.runAll(results-list) executes all executable terminal nodes in the stream.
v stream.runScript(results-list) executes the stream script regardless of the setting of the script

execution.
v stream.runSelected(node-array, results-list) executes the specified set of nodes in the order that

they are supplied.
v node.run(results-list) executes the specified node.

In legacy script, a stream execution can be terminated using the exit command with an optional integer
code, for example:

Appendix B. Migrating from legacy scripting to Python scripting 243

exit 1

In Python scripting, the same result can be achieved with the following script:
modeler.script.exit(1)

Accessing objects through the file system and repository
In legacy scripting, you can open an existing stream, model or output object using the open command, for
example:
var s
set s = open stream "c:/my streams/modeling.str"

In Python scripting, there is the TaskRunner class that is accessible from the session and can be used to
perform similar tasks, for example:
taskrunner = modeler.script.session().getTaskRunner()
s = taskrunner.openStreamFromFile("c:/my streams/modeling.str", True)

To save an object in legacy scripting, you can use the save command, for example:
save stream s as "c:/my streams/new_modeling.str"

The equivalent Python script approach would be using the TaskRunner class, for example:
taskrunner.saveStreamToFile(s, "c:/my streams/new_modeling.str")

IBM SPSS Collaboration and Deployment Services Repository based operations are supported in legacy
scripting through the retrieve and store commands, for example:
var s
set s = retrieve stream "/my repository folder/my_stream.str"
store stream ^s as "/my repository folder/my_stream_copy.str"

In Python scripting, the equivalent functionality would be accessed through the Repository object that is
associated with the session, for example:
session = modeler.script.session()
repo = session.getRepository()
s = repo.retrieveStream("/my repository folder/my_stream.str", None, None, True)
repo.storeStream(s, "/my repository folder/my_stream_copy.str", None)

Note: Repository access requires that the session has been configured with a valid repository connection.

Stream operations
Some stream operation commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy
scripts to Python scripts for use in IBM SPSS Modeler 16.

Table 222. Legacy scripting to Python scripting mapping for stream operations.

Legacy scripting Python scripting

create stream DEFAULT_FILENAME taskrunner.createStream(name, autoConnect,
autoManage)

close stream stream.close()

clear stream stream.clear()

get stream stream No equivalent

load stream path No equivalent

open stream path taskrunner.openStreamFromFile(path, autoManage)

save stream as path taskrunner.saveStreamToFile(stream, path)

244 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Table 222. Legacy scripting to Python scripting mapping for stream operations (continued).

Legacy scripting Python scripting

retreive stream path repository.retreiveStream(path, version, label,
autoManage)

store stream as path repository.storeStream(stream, path, label)

Model operations
Some model operation commands that are commonly used in IBM SPSS Modeler have equivalent
commands in Python scripting. This might help you to convert your existing SPSS Modeler Legacy
scripts to Python scripts for use in IBM SPSS Modeler 16.

Table 223. Legacy scripting to Python scripting mapping for model operations.

Legacy scripting Python scripting

open model path taskrunner.openModelFromFile(path, autoManage)

save model as path taskrunner.saveModelToFile(model, path)

retrieve model path repository.retrieveModel(path, version, label,
autoManage)

store model as path repository.storeModel(model, path, label)

Document output operations
Some document output operation commands that are commonly used in IBM SPSS Modeler have
equivalent commands in Python scripting. This might help you to convert your existing SPSS Modeler
Legacy scripts to Python scripts for use in IBM SPSS Modeler 16.

Table 224. Legacy scripting to Python scripting mapping for document output operations.

Legacy scripting Python scripting

open output path taskrunner.openDocumentFromFile(path, autoManage)

save output as path taskrunner.saveDocumentToFile(output, path)

retrieve output path repository.retrieveDocument(path, version, label,
autoManage)

store output as path repository.storeDocument(output, path, label)

Other differences between legacy scripting and Python scripting
Legacy scripts provide support for manipulating IBM SPSS Modeler projects. Python scripting does not
currently support this.

Legacy scripting provides some support for loading state objects (combinations of streams and models).
State objects have been deprecated since IBM SPSS Modeler 8.0. Python scripting does not support state
objects.

Python scripting offers the following additional features that are not available in legacy scripting:
v Class and function definitions
v Error handling
v More sophisticated input/output support
v External and third party modules

Appendix B. Migrating from legacy scripting to Python scripting 245

246 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

247

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
ATTN: Licensing
200 W. Madison St.
Chicago, IL; 60606
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

248 IBM SPSS Modeler 16 Python Scripting and Automation Guide

http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other product and service names might be trademarks of IBM or other companies.

Notices 249

250 IBM SPSS Modeler 16 Python Scripting and Automation Guide

Index

A
adding attributes 22
Aggregate node

properties 79
aggregate node properties 79
Analysis node

properties 205
analysis node properties 205
Analytic Server source node

properties 62
anomaly detection models

node scripting properties 125, 169
anomalydetection node properties 125
Anonymize node

properties 91
anonymize node properties 91
Append node

properties 79
append node properties 79
applyanomalydetection node

properties 169
applyapriori node properties 169
applyautoclassifier node properties 170
applyautocluster node properties 170
applyautonumeric node properties 170
applybayesnet node properties 170
applyc50 node properties 171
applycarma node properties 171
applycart node properties 171
applychaid node properties 172
applycoxreg node properties 172
applydb2imcluster node properties 194
applydb2imlog node properties 194
applydb2imnb node properties 194
applydb2imreg node properties 194
applydb2imtree node properties 194
applydecisionlist node properties 172
applydiscriminant node properties 173
applyfactor node properties 173
applyfeatureselection node

properties 173
applygeneralizedlinear node

properties 173
applyglmm node properties 174
applykmeans node properties 174
applyknn node properties 174
applykohonen node properties 174
applylinear node properties 175
applylogreg node properties 175
applymslogistic node properties 181
applymsneuralnetwork node

properties 181
applymsregression node properties 181
applymssequencecluster node

properties 181
applymstimeseries node properties 181
applymstree node properties 181
applynetezzabayes node properties 203
applynetezzadectree node

properties 203

applynetezzadivcluster node
properties 203

applynetezzakmeans node
properties 203

applynetezzaknn node properties 203
applynetezzalineregression node

properties 203
applynetezzanaivebayes node

properties 203
applynetezzapca node properties 203
applynetezzaregtree node properties 203
applyneuralnet node properties 175
applyneuralnetwork node

properties 176
applyoraabn node properties 188
applyoradecisiontree node

properties 188
applyorakmeans node properties 188
applyoranb node properties 188
applyoranmf node properties 188
applyoraocluster node properties 188
applyorasvm node properties 188
applyquest node properties 176
applyr properties 177
applyregression node properties 176
applyselflearning node properties 177
applysequence node properties 177
applysvm node properties 177
applytimeseries node properties 178
applytwostep node properties 178
apriori models

node scripting properties 127, 169
apriori node properties 127
arguments

command file 53
IBM SPSS Collaboration and

Deployment Services Repository
connection 52

server connection 51
system 50

asexport node properties 217
asimport node properties 62
Auto Classifier models

node scripting properties 170
Auto Classifier node

node scripting properties 127
Auto Cluster models

node scripting properties 170
Auto Cluster node

node scripting properties 129
auto numeric models

node scripting properties 131
Auto Numeric models

node scripting properties 170
autoclassifier node properties 127
autocluster node properties 129
autodataprep node properties 91
automatic data preparation

properties 91
autonumeric node properties 131

B
Balance node

properties 80
balance node properties 80
bayesian network models

node scripting properties 132
Bayesian Network models

node scripting properties 170
bayesnet node properties 132
Binning node

properties 94
binning node properties 94
blocks of code 17
buildr properties 133

C
C&R tree models

node scripting properties 135, 171
C5.0 models

node scripting properties 133, 171
c50 node properties 133
CARMA models

node scripting properties 134, 171
carma node properties 134
cart node properties 135
CHAID models

node scripting properties 137, 172
chaid node properties 137
clear generated palette command 48
cognosimport node properties 63
Collection node

properties 113
collection node properties 113
command line

list of arguments 50, 51, 52
multiple arguments 53
parameters 51
running IBM SPSS Modeler 49
scripting 48

conditional execution of streams 4, 7
Cox regression models

node scripting properties 138, 172
coxreg node properties 138
creating a class 22
creating nodes 28, 29, 30

D
Data Audit node

properties 206
dataaudit node properties 206
Database export node

properties 219
database modeling 179
Database node

properties 64
database node properties 64
databaseexport node properties 219
datacollectionexport node properties 222

251

datacollectionimport node properties 66
db2imassoc node properties 189
db2imcluster node properties 189
db2imlog node properties 189
db2imnb node properties 189
db2imreg node properties 189
db2imsequence node properties 189
db2imtimeseries node properties 189
db2imtree node properties 189
decision list models

node scripting properties 140, 172
decisionlist node properties 140
defining a class 21
defining attributes 22
defining methods 22
Derive node

properties 96
derive node properties 96
derive_stb node properties 80
diagrams 25
Directed Web node

properties 123
directedweb node properties 123
discriminant models

node scripting properties 141, 173
discriminant node properties 141
Distinct node

properties 82
distinct node properties 82
Distribution node

properties 114
distribution node properties 114

E
encoded passwords

adding to scripts 47
Ensemble node

properties 97
ensemble node properties 97
Enterprise View node

properties 68
error checking

scripting 47
Evaluation node

properties 115
evaluation node properties 115
evimport node properties 68
examples 18
Excel export node

properties 222
Excel source node

properties 68
excelexport node properties 222
excelimport node properties 68
executing scripts 8
Executing streams 25
execution order

changing with scripts 47
export nodes

node scripting properties 217

F
factor node properties 142

feature selection models
node scripting properties 143, 173

featureselection node properties 143
Field Reorder node

properties 101
fields

turning off in scripting 113
Filler node

properties 98
filler node properties 98
Filter node

properties 99
filter node properties 99
find and replace 9
finding nodes 27
Fixed File node

properties 69
fixedfile node properties 69
flags

combining multiple flags 53
command line arguments 49

Flat File node
properties 223

flatfilenode properties 223
functions

comments 238
conditionals 239
document output operations 245
literals 238
looping 239
model operations 245
node operations 242
object references 238
operators 238
stream operations 244

G
generalized linear models

node scripting properties 145, 173
generated keyword 48
generated models

scripting names 233, 235
genlin node properties 145
GLMM models

node scripting properties 148, 174
glmm node properties 148
graph nodes

scripting properties 113
Graphboard node

properties 116
graphboard node properties 116

H
hidden variables 23
Histogram node

properties 118
histogram node properties 118
History node

properties 99
history node properties 99

I
IBM Cognos BI source node

properties 63
IBM Cognos TM1 source node

properties 64
IBM DB2 models

node scripting properties 189
IBM ISW Association models

node scripting properties 189, 194
IBM ISW Clustering models

node scripting properties 189, 194
IBM ISW Decision Tree models

node scripting properties 189, 194
IBM ISW Logistic Regression models

node scripting properties 189, 194
IBM ISW Naive Bayes models

node scripting properties 189, 194
IBM ISW Regression models

node scripting properties 189, 194
IBM ISW Sequence models

node scripting properties 189, 194
IBM ISW Time Series models

node scripting properties 189
IBM SPSS Collaboration and Deployment

Services Repository
command line arguments 52

IBM SPSS Data Collection export node
properties 222

IBM SPSS Data Collection source node
properties 66

IBM SPSS Modeler
running from command line 49

IBM SPSS Statistics export node
properties 228

IBM SPSS Statistics models
node scripting properties 228

IBM SPSS Statistics Output node
properties 228

IBM SPSS Statistics source node
properties 227

IBM SPSS Statistics Transform node
properties 227

identifiers 17
inheritance 23
interrupting scripts 8
iteration key

looping in scripts 5
iteration variable

looping in scripts 6

J
Jython 13

K
K-Means models

node scripting properties 151, 174
kmeans node properties 151
KNN models

node scripting properties 174
knn node properties 152
kohonen models

node scripting properties 153
Kohonen models

node scripting properties 174

252 IBM SPSS Modeler 16 Python Scripting and Automation Guide

kohonen node properties 153

L
linear models

node scripting properties 154, 175
linear node properties 154
linear regression models

node scripting properties 162, 176,
177

lists 14
logistic regression models

node scripting properties 155, 175
logreg node properties 155
looping in streams 4, 5

M
mathematical methods 19
Matrix node

properties 207
matrix node properties 207
Means node

properties 208
means node properties 208
Merge node

properties 82
merge node properties 82
Microsoft models

node scripting properties 179, 181
Migrating

accessing objects 244
commands 237
editing streams 241
executing streams 243
file system 244
functions 237
general differences 237
getting properties 241
looping 242
miscellaneous 245
model types 240
node references 240
node types 240
output types 240
overview 237
property names 240
repository 244
scripting context 237
setting properties 241
variables 240

model nuggets
node scripting properties 169
scripting names 233, 235

model objects
scripting names 233, 235

modeling nodes
node scripting properties 125

models
scripting names 233, 235

modifying streams 28, 31
MS Decision Tree

node scripting properties 179, 181
MS Linear Regression

node scripting properties 179, 181

MS Logistic Regression
node scripting properties 179, 181

MS Neural Network
node scripting properties 179, 181

MS Sequence Clustering
node scripting properties 181

MS Time Series
node scripting properties 181

msassoc node properties 179
msbayes node properties 179
mscluster node properties 179
mslogistic node properties 179
msneuralnetwork node properties 179
msregression node properties 179
mssequencecluster node properties 179
mstimeseries node properties 179
mstree node properties 179
Multiplot node

properties 119
multiplot node properties 119

N
nearest neighbor models

node scripting properties 152
Netezza Bayes Net models

node scripting properties 194, 203
Netezza Decision Tree models

node scripting properties 194, 203
Netezza Divisive Clustering models

node scripting properties 194, 203
Netezza Generalized Linear models

node scripting properties 194
Netezza K-Means models

node scripting properties 194, 203
Netezza KNN models

node scripting properties 194, 203
Netezza Linear Regression models

node scripting properties 194, 203
Netezza models

node scripting properties 194
Netezza Naive Bayes models

node scripting properties 194
Netezza Naive Bayesmodels

node scripting properties 203
Netezza PCA models

node scripting properties 194, 203
Netezza Regression Tree models

node scripting properties 194, 203
Netezza Time Series models

node scripting properties 194
netezzabayes node properties 194
netezzadectree node properties 194
netezzadivcluster node properties 194
netezzaglm node properties 194
netezzakmeans node properties 194
netezzaknn node properties 194
netezzalineregression node

properties 194
netezzanaivebayes node properties 194
netezzapca node properties 194
netezzaregtree node properties 194
netezzatimeseries node properties 194
neural network models

node scripting properties 158, 175
neural networks

node scripting properties 159, 176

neuralnet node properties 158
neuralnetwork node properties 159
node scripting properties 179

export nodes 217
model nuggets 169
modeling nodes 125

nodes
deleting 30
importing 30
information 31
linking nodes 29
names reference 233
replacing 30
unlinking nodes 29

non-ASCII characters 20
nuggets

node scripting properties 169
numericpredictor node properties 131

O
object oriented 21
operations 14
oraabn node properties 182
oraai node properties 182
oraapriori node properties 182
Oracle Adaptive Bayes models

node scripting properties 182, 188
Oracle AI models

node scripting properties 182
Oracle Apriori models

node scripting properties 182, 188
Oracle Decision Tree models

node scripting properties 182, 188
Oracle Generalized Linear models

node scripting properties 182
Oracle KMeans models

node scripting properties 182, 188
Oracle MDL models

node scripting properties 182, 188
Oracle models

node scripting properties 182
Oracle Naive Bayes models

node scripting properties 182, 188
Oracle NMF models

node scripting properties 182, 188
Oracle O-Cluster

node scripting properties 182, 188
Oracle Support Vector Machines models

node scripting properties 182, 188
oradecisiontree node properties 182
oraglm node properties 182
orakmeans node properties 182
oramdl node properties 182
oranb node properties 182
oranmf node properties 182
oraocluster node properties 182
orasvm node properties 182
output nodes

scripting properties 205
output objects

scripting names 235
outputfile node properties 223

Index 253

P
parameters 3, 55, 57

scripting 14
SuperNodes 231

Partition node
properties 100

partition node properties 100
passing arguments 17
passwords

adding to scripts 47
encoded 51

PCA models
node scripting properties 142, 173

PCA/Factor models
node scripting properties 142, 173

Plot node
properties 120

plot node properties 120
properties

common scripting 56
database modeling nodes 179
scripting 55, 56, 125, 169, 217
stream 57
SuperNodes 231

Python 13
scripting 14

Q
QUEST models

node scripting properties 161, 176
quest node properties 161

R
R Build node

node scripting properties 133
R Output node

properties 210
R Process node

properties 84
Reclassify node

properties 100
reclassify node properties 100
referencing nodes 26

finding nodes 27
setting properties 27

regression node properties 162
regular expressions 9
remarks 16
Reorder node

properties 101
reorder node properties 101
Report node

properties 209
report node properties 209
Restructure node

properties 101
restructure node properties 101
RFM Aggregate node

properties 83
RFM Analysis node

properties 102
rfmaggregate node properties 83
rfmanalysis node properties 102
Routput node properties 210

Rprocessnode node properties 84

S
Sample node

properties 85
sample node properties 85
SAS export node

properties 224
SAS source node

properties 71
sasexport node properties 224
sasimport node properties 71
scripting

abbreviations used 55
common properties 56
compatibility with earlier versions 48
conditional execution 4, 7
context 26
diagrams 25
error checking 47
executing 8
file paths 48
from the command line 48
graph nodes 113
in SuperNodes 3
interrupting 8
iteration key 5
iteration variable 6
legacy scripting 238, 239, 242, 244,

245
model replacement 47
modeling node execution 47
output nodes 205
overview 1, 13
Python scripting 238, 239, 242, 244,

245
selecting fields 7
standalone scripts 1, 25
stream execution order 47
streams 1, 25
SuperNode scripts 1, 25
SuperNode streams 25
syntax 14, 15, 16, 17, 18, 19, 20, 21,

22, 23
user interface 1, 3, 9
visual looping 4, 5

Scripting API
accessing generated objects 38
example 35
global values 44
handling errors 39
introduction 35
metadata 35
multiple streams 44
searching 35
session parameters 40
standalone scripts 44
stream parameters 40
SuperNode parameters 40

scripts
conditional execution 4, 7
importing from text files 1
iteration key 5
iteration variable 6
looping 4, 5
saving 1

scripts (continued)
selecting fields 7

security
encoded passwords 47, 51

Select node
properties 86

select node properties 86
Self-Learning Response models

node scripting properties 164, 177
sequence models

node scripting properties 163, 177
sequence node properties 163
server

command line arguments 51
Set Globals node

properties 211
Set to Flag node

properties 103
setglobals node properties 211
setting properties 27
settoflag node properties 103
Sim Eval node

properties 211
Sim Fit node

properties 212
Sim Gen node

properties 71
simeval node properties 211
simfit node properties 212
simgen node properties 71
Simulation Evaluation node

properties 211
Simulation Fit node

properties 212
Simulation Generate node

properties 71
slot parameters 3, 55, 56
SLRM models

node scripting properties 164, 177
slrm node properties 164
Sort node

properties 86
sort node properties 86
source nodes

properties 61
Space-Time-Boxes node

properties 80
standalone scripts 1, 3, 25
statements 16
Statistics node

properties 212
statistics node properties 212
statisticsexport node properties 228
statisticsimport node properties 227
statisticsmodel node properties 228
statisticsoutput node properties 228
statisticstransform node properties 227
stream execution order

changing with scripts 47
Streaming Time Series node

properties 87
streamingts node properties 87
streams

conditional execution 4, 7
execution 25
looping 4, 5
modifying 28

254 IBM SPSS Modeler 16 Python Scripting and Automation Guide

streams (continued)
multiset command 55
properties 57
scripting 1, 25

strings 15
supernode 55
SuperNode

stream 25
SuperNodes

parameters 231
properties 231
scripting 231
scripts 1, 3, 25
setting properties within 231
streams 25

support vector machine models
node scripting properties 177

Support vector machine models
node scripting properties 165

SVM models
node scripting properties 165

svm node properties 165
system

command line arguments 50

T
Table node

properties 213
table node properties 213
Time Intervals node

properties 104
Time Plot node

properties 122
time series models

node scripting properties 166, 178
timeintervals node properties 104
timeplot node properties 122
timeseries node properties 166
tm1import node properties 64
Transform node

properties 216
transform node properties 216
Transpose node

properties 108
transpose node properties 108
traversing through nodes 31
TwoStep models

node scripting properties 168, 178
twostep node properties 168
Type node

properties 108
type node properties 108

U
User Input node

properties 74
userinput node properties 74

V
Variable File node

properties 75
variablefile node properties 75

variables
scripting 14

W
Web node

properties 123
web node properties 123

X
XML export node

properties 224
XML source node

properties 77
xmlexport node properties 224
xmlimport node properties 77

Index 255

256 IBM SPSS Modeler 16 Python Scripting and Automation Guide

����

Printed in USA

	Contents
	Chapter 1. Scripting
	Scripting Overview
	Types of Scripts
	Stream Scripts
	Standalone Scripts
	SuperNode Scripts
	Looping and conditional execution in streams
	Looping in streams
	Conditional execution in streams

	Executing and Interrupting Scripts
	Find and Replace

	Chapter 2. The Scripting Language
	Scripting Language Overview
	Python and Jython
	Python Scripting
	Operations
	Lists
	Strings
	Remarks
	Statement Syntax
	Identifiers
	Blocks of Code
	Passing Arguments to a Script
	Examples
	Mathematical Methods
	Using Non-ASCII characters

	Object-Oriented Programming
	Defining a Class
	Creating a Class Instance
	Adding Attributes to a Class Instance
	Defining Class Attributes and Methods
	Hidden Variables
	Inheritance

	Chapter 3. Scripting in IBM SPSS Modeler
	Types of scripts
	Streams, SuperNode streams, and diagrams
	Streams
	SuperNode streams
	Diagrams

	Executing a stream
	The scripting context
	Referencing existing nodes
	Finding nodes
	Setting properties

	Creating nodes and modifying streams
	Creating nodes
	Linking and unlinking nodes
	Importing, replacing, and deleting nodes
	Traversing through nodes in a stream

	Getting information about nodes

	Chapter 4. The Scripting API
	Introduction to the Scripting API
	Example: searching for nodes using a custom filter
	Metadata: Information about data
	Accessing Generated Objects
	Handling Errors
	Stream, Session, and SuperNode Parameters
	Global Values
	Working with Multiple Streams: Standalone Scripts

	Chapter 5. Scripting Tips
	Modifying Stream Execution
	Working with models
	Generating an Encoded Password
	Script Checking
	Scripting from the Command Line
	Specifying File Paths
	Compatibility with Previous Releases

	Chapter 6. Command Line Arguments
	Invoking the Software
	Using Command Line Arguments
	System Arguments
	Parameter Arguments
	Server Connection Arguments
	IBM SPSS Collaboration and Deployment Services Repository Connection Arguments
	Combining Multiple Arguments

	Chapter 7. Properties Reference
	Properties Reference Overview
	Abbreviations
	Node and Stream Property Examples

	Node Properties Overview
	Common Node Properties

	Chapter 8. Stream Properties
	Chapter 9. Source Node Properties
	Source Node Common Properties
	asimport Node Properties
	cognosimport Node Properties
	tm1import Node Properties
	database Node Properties
	datacollectionimport Node Properties
	excelimport Node Properties
	evimport Node Properties
	fixedfile Node Properties
	sasimport Node Properties
	simgen Node Properties
	statisticsimport Node Properties
	userinput Node Properties
	variablefile Node Properties
	xmlimport Node Properties

	Chapter 10. Record Operations Node Properties
	append Node Properties
	aggregate Node Properties
	balance Node Properties
	derive_stb Node Properties
	distinct Node Properties
	merge Node Properties
	rfmaggregate Node Properties
	Rprocess Node Properties
	sample Node Properties
	select Node Properties
	sort Node Properties
	streamingts Node Properties

	Chapter 11. Field Operations Node Properties
	anonymize Node Properties
	autodataprep Node Properties
	binning Node Properties
	derive Node Properties
	ensemble Node Properties
	filler Node Properties
	filter Node Properties
	history Node Properties
	partition Node Properties
	reclassify Node Properties
	reorder Node Properties
	restructure Node Properties
	rfmanalysis Node Properties
	settoflag Node Properties
	statisticstransform Node Properties
	timeintervals Node Properties
	transpose Node Properties
	type Node Properties

	Chapter 12. Graph Node Properties
	Graph Node Common Properties
	collection Node Properties
	distribution Node Properties
	evaluation Node Properties
	graphboard Node Properties
	histogram Node Properties
	multiplot Node Properties
	plot Node Properties
	timeplot Node Properties
	web Node Properties

	Chapter 13. Modeling Node Properties
	Common Modeling Node Properties
	anomalydetection Node Properties
	apriori Node Properties
	autoclassifier Node Properties
	Setting Algorithm Properties

	autocluster Node Properties
	autonumeric Node Properties
	bayesnet Node Properties
	buildr Node Properties
	c50 Node Properties
	carma Node Properties
	cart Node Properties
	chaid Node Properties
	coxreg Node Properties
	decisionlist Node Properties
	discriminant Node Properties
	factor Node Properties
	featureselection Node Properties
	genlin Node Properties
	glmm Node Properties
	kmeans Node Properties
	knn Node Properties
	kohonen Node Properties
	linear Node Properties
	logreg Node Properties
	neuralnet Node Properties
	neuralnetwork Node Properties
	quest Node Properties
	regression Node Properties
	sequence Node Properties
	slrm Node Properties
	statisticsmodel Node Properties
	svm Node Properties
	timeseries Node Properties
	twostep Node Properties

	Chapter 14. Model Nugget Node Properties
	applyanomalydetection Node Properties
	applyapriori Node Properties
	applyautoclassifier Node Properties
	applyautocluster Node Properties
	applyautonumeric Node Properties
	applybayesnet Node Properties
	applyc50 Node Properties
	applycarma Node Properties
	applycart Node Properties
	applychaid Node Properties
	applycoxreg Node Properties
	applydecisionlist Node Properties
	applydiscriminant Node Properties
	applyfactor Node Properties
	applyfeatureselection Node Properties
	applygeneralizedlinear Node Properties
	applyglmm node Properties
	applykmeans Node Properties
	applyknn Node Properties
	applykohonen Node Properties
	applylinear Node Properties
	applylogreg Node Properties
	applyneuralnet Node Properties
	applyneuralnetwork Node Properties
	applyquest Node Properties
	applyregression Node Properties
	applyr Node Properties
	applyselflearning Node Properties
	applysequence Node Properties
	applysvm Node Properties
	applytimeseries Node Properties
	applytwostep Node Properties

	Chapter 15. Database Modeling Node Properties
	Node Properties for Microsoft Modeling
	Microsoft Modeling Node Properties
	Algorithm Parameters

	Microsoft Model Nugget Properties

	Node Properties for Oracle Modeling
	Oracle Modeling Node Properties
	Oracle Model Nugget Properties

	Node Properties for IBM DB2 Modeling
	IBM DB2 Modeling Node Properties
	IBM DB2 Model Nugget Properties

	Node Properties for IBM Netezza Analytics Modeling
	Netezza Modeling Node Properties
	Netezza Model Nugget Properties

	Chapter 16. Output Node Properties
	analysis Node Properties
	dataaudit Node Properties
	matrix Node Properties
	means Node Properties
	report Node Properties
	Routput Node Properties
	setglobals Node Properties
	simeval Node Properties
	simfit Node Properties
	statistics Node Properties
	statisticsoutput Node Properties
	table Node Properties
	transform Node Properties

	Chapter 17. Export Node Properties
	Common Export Node Properties
	asexport Node Properties
	cognosexport Node Properties
	tm1export Node Properties
	databaseexport Node Properties
	datacollectionexport Node Properties
	excelexport Node Properties
	outputfile Node Properties
	sasexport Node Properties
	statisticsexport Node Properties
	xmlexport Node Properties

	Chapter 18. IBM SPSS Statistics Node Properties
	statisticsimport Node Properties
	statisticstransform Node Properties
	statisticsmodel Node Properties
	statisticsoutput Node Properties
	statisticsexport Node Properties

	Chapter 19. SuperNode Properties
	Appendix A. Node names reference
	Model Nugget Names
	Avoiding Duplicate Model Names
	Output Type Names

	Appendix B. Migrating from legacy scripting to Python scripting
	Legacy script migration overview
	General differences
	The scripting context
	Commands versus functions
	Literals and comments
	Operators
	Conditionals and looping
	Variables
	Node, output and model types
	Property names
	Node references
	Getting and setting properties
	Editing streams
	Node operations

	Looping
	Executing streams
	Accessing objects through the file system and repository
	Stream operations
	Model operations
	Document output operations

	Other differences between legacy scripting and Python scripting

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

