
IBM SPSS Collaboration and Deployment Services
Version 8 Release 1

Data Services Service Developer's
Guide

IBM



Note
Before using this information and the product it supports, read the information in “Notices” on page 41.

Product Information

This edition applies to version 8, release 1, modification 0 of IBM SPSS Collaboration and Deployment Services and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Chapter 1. Introduction to web services 1
What are web services? . . . . . . . . . . . 1
Web service system architecture . . . . . . . . 1
Web service protocol stack . . . . . . . . . . 2

Simple Object Access Protocol . . . . . . . 2
Web Service Description Language . . . . . . 3

Proxies . . . . . . . . . . . . . . . . 5

Chapter 2. Data Services Service
overview . . . . . . . . . . . . . . 7
Workflow . . . . . . . . . . . . . . . 7
Accessing the Data Services Service. . . . . . . 7
Calling Data Services Service operations . . . . . 7

Chapter 3. Data Service concepts. . . . 9
Uniform Resource Identifiers . . . . . . . . . 9
Data sources . . . . . . . . . . . . . . 9
Credentials . . . . . . . . . . . . . . 10
Tables . . . . . . . . . . . . . . . . 10

Chapter 4. Operation reference . . . . 13
The getDataSets operation . . . . . . . . . 13
The getSamples operation . . . . . . . . . 15
The getTableMetaData operation . . . . . . . 19
The getTableSimpleColumns operation . . . . . 22
The getTableTypes operation. . . . . . . . . 24
The getVersion operation . . . . . . . . . . 25

Chapter 5. JAX-WS clients . . . . . . 27
Generating a JAX-WS client . . . . . . . . . 27
Packaging a JAX-WS client . . . . . . . . . 27
Configuring a JAX-WS client . . . . . . . . 27

SOAPHandler example . . . . . . . . . 28
Exercising web services from JAX-WS clients . . . 30

Chapter 6. Microsoft .NET
Framework-based clients . . . . . . . 31
Adding a service reference . . . . . . . . . 31

Service reference modifications . . . . . . . 31
Configuring the web service endpoint . . . . . 32
Configuring endpoint behaviors . . . . . . . 33
Exercising the service . . . . . . . . . . . 33

Single sign-on authentication . . . . . . . 34

Chapter 7. Message header reference 35
Security headers . . . . . . . . . . . . . 35

Security element . . . . . . . . . . . . 35
UsernameToken element . . . . . . . . . 36
BinarySecurityToken and
BinarySecuritySSOToken elements . . . . . . 36

The client-accept-language element . . . . . . 37
HTTP headers . . . . . . . . . . . . . 37

Appendix. Deprecated features . . . . 39

Notices . . . . . . . . . . . . . . 41
Privacy policy considerations . . . . . . . . 42
Trademarks . . . . . . . . . . . . . . 43

Glossary . . . . . . . . . . . . . . 45
A . . . . . . . . . . . . . . . . . . 45
B . . . . . . . . . . . . . . . . . . 45
C . . . . . . . . . . . . . . . . . . 45
D . . . . . . . . . . . . . . . . . . 46
E . . . . . . . . . . . . . . . . . . 46
F . . . . . . . . . . . . . . . . . . 47
G . . . . . . . . . . . . . . . . . . 47
I . . . . . . . . . . . . . . . . . . 47
J . . . . . . . . . . . . . . . . . . 47
K . . . . . . . . . . . . . . . . . . 47
L . . . . . . . . . . . . . . . . . . 48
M . . . . . . . . . . . . . . . . . 48
N. . . . . . . . . . . . . . . . . . 48
O . . . . . . . . . . . . . . . . . . 48
P . . . . . . . . . . . . . . . . . . 49
R . . . . . . . . . . . . . . . . . . 49
S . . . . . . . . . . . . . . . . . . 49
T . . . . . . . . . . . . . . . . . . 50
U . . . . . . . . . . . . . . . . . . 50
V . . . . . . . . . . . . . . . . . . 50
W . . . . . . . . . . . . . . . . . 50
X . . . . . . . . . . . . . . . . . . 50

Index . . . . . . . . . . . . . . . 51

© Copyright IBM Corp. 2000, 2017 iii



iv IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Chapter 1. Introduction to web services

What are web services?
At a high level, a web service is a set of functionality distributed across a network (LAN or the Internet)
using a common communication protocol. The web service serves as an intermediary between an
application and its clients, providing both a standardized information structure and a standardized
communication protocol for interaction between the two.

Where other methods of distributed application architecture rely on a single programming language
being used on both the application and its clients, a web service allows the use of loosely coupled
services between non-homogenous platforms and languages. This provides a non-architecture-specific
approach allowing, for example, Java services to communicate with C# clients, or vice versa.

Advantages to implementing application functionality as web services include the following:
v Software written in different languages (Java or C#) running on different platforms (UNIX or

Windows) can exchange services and data
v Application functionality can be accessed by a variety of clients. For example, both a thin-client

interface and a rich-client interface can take advantage of the web service operations.
v Updates to the service are immediately available to all service clients

Web service system architecture
Web services are deployed and made publicly available using an application server, such as WebSphere®,
JBoss Application Server, or Oracle WebLogic Server. The published web services are hosted by this
application server to handle application requests, access permissions, and process load. A high-level
architecture of how web services are implemented is displayed in the following diagram.

The client code supplies input to an operation offered by a proxy class. The proxy class generates a
request containing a standardized representation of the input and sends it across the network to the
application. A proxy class on the server receives the request and unmarshals the contents into objects for
processing by the application. Upon completing the operation, the application supplies a proxy with the
output. The proxy creates a standardized representation of that output and sends the response back to the
client. The client proxy unmarshals the response into native objects for subsequent processing by the
client code.

Standardizing the format of the information passing between the client and the application allows a client
written in one programming language to communicate with an application written in another. The proxy

Request Request

ResponseResponse

Figure 1. Web service architecture

© Copyright IBM Corporation 2000, 2017 1



classes, which are automatically generated from a web service description by a variety of toolkits, handle
the translation between native programming objects and the standardized representation. See the topic
“Proxies” on page 5 for more information.

Web service protocol stack
A web service implementation depends on technologies often organized in a layered stack. The
implementation itself defines a standard protocol for each technology layer, with each layer depending on
the layers appearing below it in the stack.

Beginning at the bottom of the stack, the Transport layer defines the technology standards for
communication, allowing information to move across the network. HTTP or HTTPS are often used as the
standard for the transport layer.

The Packaging layer rests on top of Transport and defines the standard for structuring information for
transport across the network. The SOAP format is commonly used, which offers an XML structure for
packaging the data. See the topic “Simple Object Access Protocol” for more information.

The topmost layer is Description and identifies the standards used by the layers below it in the stack, as
well as providing the definition of the interface available for client use. The most common means of
conveying this information is through the use of a WSDL file. See the topic “Web Service Description
Language” on page 3 for more information.

Simple Object Access Protocol
The Simple Object Access Protocol (SOAP) is a way to pass information between applications in an XML
format.

SOAP messages are transmitted from the sending application to the receiving application, typically over
an HTTP session. The actual SOAP message is made up of the Envelope element, which contains a Body
element and an optional Header element.
v Envelope. This mandatory element is the root of the SOAP message, identifying the transmitted XML

as being a SOAP packet. An envelope contains a body section and an optional header section.
v Header. This optional element provides an extension mechanism indicating processing information for

the message. For example, if the operation using the message requires security credentials, those
credentials should be part of the envelope header.

v Body. This element contains the message payload, the raw data being transmitted between the
sending and receiving applications. The body itself may consist of multiple child elements, with an
XML schema typically defining the structure of this data.

A SOAP packet and the corresponding XML is structured in the following way:

Figure 2. Web service protocol stack

2 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Web Service Description Language
A Web Service Description Language (WSDL) file provides an XML-based map of what functionality the
published web service allows, separating the implementation in the service from the interface. The WSDL
defines the following:
v The access location of the web service
v Operations the web service exposes
v Parameters the exposed operations accept
v Any request or response messages associated with the operations

The WSDL provides the information necessary to generate a client-side proxy in the target programming
language.

In accordance with the WSDL specification adopted by the World Wide Web Consortium, information in
the WSDL is organized into the following sections:
v Types. Content definitions for web service operation input and output. See the topic “Types” for more

information.
v Messages. Input and output definitions for the web service operations. See the topic “Messages” on

page 4 for more information.
v PortTypes. Groups of operations offered by the web service. See the topic “Port types” on page 4 for

more information.
v Bindings. Protocols and formats for the web service operations. See the topic “Bindings” on page 4 for

more information.
v Services. Endpoints at which the web service functionality can be accessed. See the topic “Services” on

page 5 for more information.

Types
The types element of a WSDL file contains the data type definitions employed by messages processed by
the web service. These definitions use XML to organize the information relevant to the type element
being defined. Consider the following example type definitions:
<wsdl:types>
<schema targetNamespace="http://xml.spss.com/security/remote"

xmlns="http://www.w3.org/2001/XMLSchema">
<element name="getProviders">
<complexType />

</element>
<element name="getProvidersResponse">
<complexType>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 

       <soapenv:Header>

          <ns1:client-accept-language soapenv:mustUnderstand="0" 

            xsi:type="xsd:string" xmlns:ns1="http://xml.spss.com/ws/headers">

              en-US;q=1.0, en;q=0.8

          </ns1:client-accept-language>

        </soapenv:Header>

           <soapenv:Body>

              <getProviders xmlns="http://xml.spss.com/security/remote"/>

           </soapenv:Body>

</soapenv:Envelope>       

Figure 3. An example SOAP packet

Chapter 1. Introduction to web services 3

http://www.w3.org/TR/wsdl


<sequence>
<element name="providerInfo[unbounded]" type="tns1:providerInfo" />

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

This section defines two elements, getProviders and getProvidersResponse. The former is an empty element.
The latter contains a sequence of providerInfo child elements. These children are all of the providerInfo type,
which is defined elsewhere.

In practice, the WSDL file typically references type element definitions found in an external XML schema.
For instance, the following definition uses security-remote.xsd to define type elements.
<wsdl:types>

<xs:schema>
<xs:import namespace="http://xml.spss.com/security/remote"

schemaLocation="security-remote.xsd"/>
</xs:schema>

</wsdl:types>

Messages
The message elements of a WSDL file defines the input or output parameters for operations available in
the web service. Each message can consist of one or more parts, with the parts similar to the parameters
of a function call in a traditional programming language. Consider the following two example message
definitions:
<wsdl:message name="getProvidersResponse">

<wsdl:part element="tns2:getProvidersResponse" name="parameters" />
</wsdl:message>
<wsdl:message name="getProvidersRequest">

<wsdl:part element="tns2:getProviders" name="parameters" />
</wsdl:message>

The getProvidersResponse message contains a single part, corresponding to the getProvidersResponse element
defined in the types section of the WSDL file. Similarly, the getProvidersRequest message also contains a
single part, as defined by the getProviders element in the types section. See the topic “Types” on page 3
for more information.

Port types
The portType element of a WSDL file defines the actual interface to the web service. A port type is simply
a group of related operations and is comparable to a function library, module, or class in a traditional
programming language. The definition specifies the parameters for the operations, as well as any values
returned. The parameters and return values correspond to messages defined elsewhere in the WSDL file.
Consider the following example port type definition:
<wsdl:portType name="ProviderInformation">

<wsdl:operation name="getProviders">
<wsdl:input message="impl:getProvidersRequest" name="getProvidersRequest" />
<wsdl:output message="impl:getProvidersResponse" name="getProvidersResponse" />

</wsdl:operation>
</wsdl:portType>

The ProviderInformation port type consists of a single operation, getProviders. Input to this operation
corresponds to the getProvidersRequest message. The operation returns information in the structure defined
by the getProvidersResponse message. See the topic “Messages” for more information.

Bindings
The binding element of a WSDL file binds the interface defined by the port type to transport and
messaging protocols. Consider the following example binding definition:
<wsdl:binding name="ProviderInformationSoapBinding" type="impl:ProviderInformation">

<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getProviders">
<wsdlsoap:operation soapAction="" />
<wsdl:input name="getProvidersRequest">

<wsdlsoap:body namespace="http://xml.spss.com/security/remote" use="literal" />
</wsdl:input>
<wsdl:output name="getProvidersResponse">

4 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



<wsdlsoap:body namespace="http://xml.spss.com/security" use="literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

In this case, the transport attribute of the wsdlsoap:binding element defines HTTP as the transport
protocol. The getProviders operation in the interface is bound to the SOAP messaging protocol.

Services
The service element of a WSDL file identifies the network location at which the service interface can be
accessed. Consider the following example service definition:
<wsdl:service name="ProviderInformationService">
<wsdl:port binding="impl:ProviderInformationSoapBinding" name="ProviderInformation">

<wsdlsoap:address location="http://pes_server:8080/security-ws/services/ProviderInformation" />
</wsdl:port>

</wsdl:service>

In this example, the operations comprising the ProviderInformation port type can be accessed at:

http://pes_server:8080/security-ws/services/ProviderInformation

Proxies
Proxies serve as bridges between the client and the web service. A client-side proxy marshals the input
objects into a standardized representation which is sent to the web service. A server-side proxy
unmarshals the information into input objects for the service operations. The results of the operation are
marshalled into standard representations and returned to the client. The client proxy unmarshals the
response information into objects for any additional processing by the client.

Creating a proxy is the first step when developing a web service client; the proxy is the translation-unit
between your application and the web service the application is using. Fortunately, many development
environments include tools for automatically generating the client proxy from the web service WSDL file,
allowing the client developer to focus on the client application code instead of transport and packaging
protocols.

The proxy classes generated from a WSDL file depend on the tool used. For Java, the wsdl2java tool,
which is part of the Apache Axis project, can be used. This tool produces a Java class for each type in the
WSDL. Each port type results in a Java interface. A binding creates a stub class, and a WSDL service
yields a service interface with a locator implementation. These generated classes and interfaces can be
called directly from a client application written in Java to access the web service functionality.

An alternative Java proxy tool is wsimport, which is part of JAX-WS. The general structure of the
generated classes is similar to that created by the Axis tool, but there are some differences. For example,
instead of using arrays for input fields and returned items, the code generated from the wsimport tool
uses List collections. In addition, if an input type matches an output type for a method, the wsimport
tool uses a Holder class for the parameter.

In contrast, on the .NET platform, the wsdl.exe tool is often used to generate a web service proxy. This
tool creates a single source file in a specified language containing the proxy class. This class includes both
synchronous and asynchronous methods for each operation defined in the WSDL. For example, the web
service operation getProviders results in the methods getProviders, getProvidersBegin, and
getProvidersEnd. The latter two can be used for asynchronous processing.

A variety of other tools exist for other programming languages. For details, consult the documentation for
those tools. In each case, the tool creates native programming constructs that permit leveraging a web
service regardless of the service implementation language.

Chapter 1. Introduction to web services 5



6 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Chapter 2. Data Services Service overview

The Data Services Service provides functionality used when working with the data sources defined in the
IBM® SPSS® Collaboration and Deployment Services Repository for analytic and scoring tasks. In general,
the service provides the ability to perform the following tasks:
v Retrieve metadata about the tables available in data sources
v Retrieve information about table columns and links

The Data Services Service is often used in conjunction with the Scoring Service. Use the Data Services
Service to access information about the data used for a particular scoring configuration.

Workflow
The actual sequence of web service calls you need when working with data sources will depend on your
particular application. However, the input requirements for the Data Services Service operations leads to
the following general workflow for a specific data source:
1. Determine the types of tables used in the data source by using the getTableTypes operation.
2. Retrieve the metadata for the data source tables of the wanted type or types by using the

getTableMetaData operation.
3. Using the metadata for a specific table, access information about the table columns by using the

getTableSimpleColumns operation. In addition, you can you use the table metadata to retrieve
information about the data sets within the data source by using the getDataSets operation.

Accessing the Data Services Service
To access the functionality offered by the Data Services Service, create a client application using the proxy
classes generated by your preferred web service tool. The endpoint for the service is:
http://<host-name>:<port-number>/<context-root>/scoring/services/Data

The value of <host-name> corresponds to the name or IP address of the machine on which IBM SPSS
Collaboration and Deployment Services Repository is installed.

Note: An IPv6 address must be enclosed in square brackets, such as [3ffe:2a00:100:7031::1].
The value of <port-number> indicates the port number on which the repository server is running. The
<context-root> value specifies the custom context root, if any, configured for your repository server. If your
system does not use a context root, omit this portion of the endpoint. To access the WSDL file for the
service, append ?wsdl to the service endpoint.

For example, if IBM SPSS Collaboration and Deployment Services Repository is running on port 80 of the
machine cads_server without a context root, the WSDL file can be accessed using the path:
http://cads_server:80/scoring/services/Data?wsdl

Calling Data Services Service operations
Clients access the operations offered by the web service using a stub for the service. The following is an
example of how to acquire a stub in Java through Axis defined methods:
String context = "/scoring/services/data";
URL url = new URL("http", "cads_server", 80, context);
dataService service = new dataServiceLocator();
stub = service.getStatus(url);

The service operations can be called directly from the stub, such as:

© Copyright IBM Corporation 2000, 2017 7



stub.getTableMetaData(dsURI, credURI, type);

8 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Chapter 3. Data Service concepts

Uniform Resource Identifiers
Resources within the IBM SPSS Collaboration and Deployment Services Repository are often referenced
using a uniform resource identifier. A content repository URI consists of the following items:
v The scheme spsscr:

v A hierarchical specification consisting of an authority definition and an optional object path
v An optional query specifying an object identifier
v Optional fragments defining version information

The URI has the following format:
spsscr://[host][:port]/[path/filename [?hierarchyType=type] | ?id=repositoryID][#l.label | #m.marker]

The hierarchical portion begins with two slashes, followed by the authority definition. This information
identifies the host name and port number for the repository containing the object, followed by a slash.
The authority definition may be omitted, in which case the URI indicates a relative location within the
repository processing the service request.
spsscr:///[path/filename [?hierarchyType=type] | ?id=repositoryID][#l.label | #m.marker]

The URI continues with either the full path to the object, including its name, or a question mark and a
query term consisting of the key id, an equals sign, and the repository resource identifier for the object.
This identifier can be obtained from the information returned by the getResource operation of the
Content Repository Service.

If the URI specifies an object path, the path may be followed by a query parameter designating the type
of hierarchy containing the object. This parameter begins with a question mark, followed by the key
hierarchyType, an equals sign, and the hierarchy type designator. Valid hierarchy types include folder, topic,
configuration, server, credential, datasource, enterprise, and submitted. If the hierarchyType parameter is
omitted, the folder hierarchy is used by default. The hierarchyType parameter is valid only when using the
path to identify the object.

Optional version fragments follow the object information. The fragments begin with a hash symbol (#),
followed by a single letter indicating whether the fragment is a version label (l) or a version timestamp
marker (m). The fragment ends with a period and the actual label or marker for the version. Replace any
spaces in the label or marker with escape characters. For example, the URI:
spsscr://myserver:80/marketing/campaign1#m.0:2006-10-08%2012:34:10.223

refers to the version of the campaign1 job in the marketing folder saved at 12:34 on October 8, 2006. A URI
that does not include a version fragment references the latest version of the object. For instance, the URI:
spsscr://localhost/campaign2

refers to the latest version of the job campaign2.

Data sources
A data source definition defines the connection information necessary to connect to a data source. The
connection properties depend on the data source type. For example, open database connectivity (ODBC)
provides a mechanism for client programs to access databases or data sources. An ODBC definition
consists of the data source name (DSN). Similarly, Java database connectivity (JDBC) determines how Java
applications access databases. A JDBC definition consists of the driver name and URL. The data service

© Copyright IBM Corp. 2000, 2017 9



API also provides public Java interfaces for implementing custom drivers to access nonstandard data
sources. For information on creating custom drivers, see the IBM SPSS Collaboration and Deployment
Services customization documentation.

Data source definitions allow other components to access the data sources used in the system. Data
source definitions are typically created using the IBM SPSS Deployment Manager and are stored in the
IBM SPSS Collaboration and Deployment Services Repository. For information on creating data source
definitions, see the IBM SPSS Deployment Manager documentation. Data sources can be referenced using
their IBM SPSS Collaboration and Deployment Services Repository uniform resource identifiers. See the
topic “Uniform Resource Identifiers” on page 9 for more information.

Credentials
Some IBM SPSS Collaboration and Deployment Services Repository resources require access to data from
physical data sources. In order to connect to these data sources, credential definitions must be defined
and stored within the IBM SPSS Collaboration and Deployment Services Repository. Each credential
definition contains a user identifier and password. In addition, some credentials require the specification
of a security provider against which to validate the credential information. Credentials stored within the
repository can be referenced using their uniform resource identifiers. See the topic “Uniform Resource
Identifiers” on page 9 for more information.

Tables
Information within the databases referenced by the data source definitions is stored in tables having
defined characteristics. Each table has a defined type within the architecture, with the list of types
varying across database vendors. Commonly occurring types include TABLE and VIEW.

In addition to the table type, each table has a set of metadata values providing information useful when
referencing the table. These metadata properties include the following:
v Catalog name. Name of the catalog containing the table.
v Schema name. Name of the schema on which the table is based.
v Table name. Name of the table within the database.
v Qualifier separator. In a fully qualified name, the character used between the catalog and the

remainder of the name.
v Catalog prefix. A boolean flag indicating whether the catalog is used as a prefix or a suffix in

qualified names. If the flag is true, the name format is catalog.schema.table. If the flag is false, the format
is schema.table.catalog. The actual delimiter used for the catalog is defined by the qualifier separator.

v Catalog use. A boolean flag indicating whether or not the catalog is used in qualified names. If the
flag is false, the name format is schema.table. If the flag is true, the name format is determined by the
catalog prefix value.

v Identifier quote character. The character the database uses to quote user-defined identifiers. For
example, a table name containing a space character, such as My Table, is invalid in SQL queries unless
quoted. For a SQL Server database, the quote character is double quotation marks so the table would
be referenced as “My Table”. In contrast, for a mySQL database, the quote character is a backtick so the
table would be referenced as `My Table`.

The Table 1 on page 11 table displays example SELECT statements for various values of the metadata
properties. Each example uses a catalog named admin, a schema named testdb, and a table named My
Table.

10 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Table 1. Example SELECT statements.

Qualifier
Separator

Catalog
Use

Catalog
Prefix

Identifier Quote
Character

SELECT Statement

. True True " select * from admin.testdb."My Table"

@ True False " select * from testdb."My Table"@admin

& False False ` select * from testdb.`My Table`

The Data Services Service includes operations for retrieving the table types and the table metadata.

Chapter 3. Data Service concepts 11



12 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Chapter 4. Operation reference

The getDataSets operation
Returns information about the data sets for tables contained within a specified data source. Supply one or
more table metadata definitions to limit the results to specific tables.

The information returned consists of escaped XML definitions of the columns in the tables, as well as any
links involving the tables.

Input fields

The following table lists the input fields for the getDataSets operation.

Table 2. Fields for getDataSets.

Field Type/Valid Values Description

dataSourceURI string The data source URI.

credentialsURI string The credentials URI.

tableMeta tableMeta[] This element is used to describe the
table metadata within the data
source.

Return information

The following table identifies the information returned by the getDataSets operation.

Table 3. Return Value.

Type Description

dataSetBundle

Java example

To access the data sets information for a data source, supply the getDataSets operation with strings
corresponding to the repository uniform resource identifiers for the following:
v The data source
v Valid credentials for accessing the data source

To limit the data sets information to specific tables, include an array of TableMeta objects describing the
tables. The meta objects would typically be selected from the results of the getTableMetaData operation.

The following sample returns the data sets information for the fourth table returned by the
getTableMetaData operation.
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
String type = "TABLE";
TableMeta[] meta = stub.getTableMetaData(dsURI, credURI, type);
DataSetBundle bundle = stub.getDataSets(dsURI, credURI, meta[3]);

String[] datasets = bundle.getDataSets();
for (int i = 0; i < datasets.length; i++) {

System.out.println(datasets[i]);
}

© Copyright IBM Corporation 2000, 2017 13



String[] links = bundle.getLinks();
for (int j = 0; j < links.length; j++) {

System.out.println(links[j]);
}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
List<String> typeList = Arrays.asList("TABLE", "VIEW");
List<TableMeta> metaList = stub.getTableMetaData(dsURI, credURI, typeList);
DataSetBundle bundle = stub.getDataSets(dsURI, credURI, metaList.get(3));

List<String> datasetsList = bundle.getDataSets();
for (String datasets : datasetsList)
{

System.out.println(datasets);
}

List<String> linksList = bundle.getLinks();
for (String links : linksList)
{

System.out.println(links);
}

SOAP request example

Client invocation of the getDataSets operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText"
>pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getDataSets xmlns="http://xml.spss.com/data/remote">
<dataSourceURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080be</dataSourceURI>
<credentialsURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080c4</credentialsURI>
<tableMeta xmlns="http://xml.spss.com/data">

<catalogName>cq_ecm_data</catalogName>
<schemaName>cq</schemaName>
<tableName>Defect</tableName>
<qualifierSeparator>.</qualifierSeparator>
<catalogPrefixBool>true</catalogPrefixBool>
<useCatalogBool>true</useCatalogBool>
<identifierQuoteCharacter>&quot;</identifierQuoteCharacter>

</tableMeta>
</getDataSets>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getDataSets operation call by sending a SOAP response message containing the
results. An example of such a message follows.

14 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getDataSetsResponse xmlns="http://xml.spss.com/data/remote">
<datasets xmlns="http://xml.spss.com/data">

<dataSets>&lt;?xml version=&quot;1.0&quot;
encoding=&quot;UTF-8&quot;?&gt; &lt;dataSet
xmlns=&quot;http://xml.spss.com/pev&quot;
name=&quot;Defect&quot;
qualifiedTableName=&quot;&amp;quot;cq_ecm_data&amp;quot;
.&amp;quot;cq&amp;quot;.&amp;quot;Defect&amp;quot;&quot;&gt;&lt;column
name=&quot;ratl_mastership&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;dbid&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;is_active&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;id&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;verificationotes&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;reflist&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;release_commitment_date&quot;
type=&quot;timestamp&quot;/&gt;&lt;column
name=&quot;release_commitment&quot;
type=&quot;integer&quot;/&gt;&lt;key
name=&quot;fk_16779512_1&quot;
isUnique=&quot;true&quot;&gt;&lt;keyColumn
name=&quot;reflist&quot;
type=&quot;integer&quot;/&gt;&lt;/key&gt;&lt;key
name=&quot;fk_16780379_2&quot;
isUnique=&quot;true&quot;&gt;&lt;keyColumn
name=&quot;deflist&quot;
type=&quot;integer&quot;/&gt;&lt;/key&gt;&lt;key
name=&quot;fk_16780379_3&quot;
isUnique=&quot;true&quot;&gt;&lt;keyColumn
name=&quot;release_commitment&quot;
type=&quot;integer&quot;/&gt;&lt;/key&gt;&lt;/dataSet&gt;

</dataSets>
</datasets>

</getDataSetsResponse>
</soapenv:Body>

</soapenv:Envelope>

The getSamples operation
Returns a data sample from a data provider based on specified inputs. For example, the operation can
retrieve values for the variables var1, var2, and var3 based on the value for the key variable var0. The
information returned consists of a table structure containing the sample values in the rows.

Input fields

The following table lists the input fields for the getSamples operation.

Table 4. Fields for getSamples.

Field Type/Valid Values Description

sampleDetails sampleDetails This element is used to describe the
information needed for getSamples
request.

Return information

The following table identifies the information returned by the getSamples operation.

Table 5. Return Value.

Type Description

sampleResult Return type of getSamples() Web Service.

Chapter 4. Operation reference 15



SOAP request example

Client invocation of the getSamples operation generates a SOAP request message that is sent to the server
for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText"
>pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getSamples xmlns="http://xml.spss.com/data/remote">
<sampleDetails xmlns="http://xml.spss.com/data">

<evURI>spsscr:///?id=ac140f8000072ffb0000010b290a16b28003#m.4:2009-02-12%2013:10:33.289</evURI>
<avURI>spsscr:///?id=0a010a077e08b4a40000011f5cabdad38098#m.2:2009-02-11%2011:37:24.848</avURI>
<dpdXML>&lt;?xml version=&quot;1.0&quot;

encoding=&quot;UTF-8&quot;?&gt; &lt;rtDataProviderDefinition
xmlns=&quot;http://xml.spss.com/pev&quot;
applicationViewReference=&quot;spsscr:///?id=0a010a077e08b4a40000011f5cabdad38098&quot;&gt;
&lt;dataSet name=&quot;Defect&quot;
datasourceReference=&quot;spsscr:///?id=0a010a07e123f4280000011f5babe02080be&quot;
qualifiedTableName=&quot;&amp;quot;cq_ecm_data&amp;quot;.&amp;quot;cq&amp;quot;
.&amp;quot;Defect&amp;quot;&quot;
credentialReference=&quot;spsscr:///?id=0a010a07e123f4280000011f5babe02080c4&quot;
transactionIsolationLevel=&quot;NONE&quot;&gt;&lt;column
name=&quot;internalcustomer&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;ucm_stream&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;customer_severity&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;state&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;release_commitment&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;target_milestone&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;project&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;release_commitment_date&quot;
type=&quot;timestamp&quot;/&gt;&lt;column
name=&quot;submitter&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;internalcustomer_1&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;vendor&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;locked_by&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;deliverable&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;verification_1&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;headline&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;ucm_vob_object&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;submit_date&quot;
type=&quot;timestamp&quot;/&gt;&lt;column
name=&quot;severity_1&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;targetbuild&quot;
type=&quot;string&quot;/&gt;&lt;column

16 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



name=&quot;automatedregression&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;ucm_stream_object&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;description&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;priority&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;component_os&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;dbid&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;ucm_project&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;overall_status&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;incident_type&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;publicdescription&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;ucm_view&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;numberoftestvariations&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;lock_version&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;build_found&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;unduplicate_state&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;reportedby&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;is_active&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;userimpact&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;build_fixed&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;reflist&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;risk_assessment&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;rank&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;oslanguage&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;devcurest&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;old_system_id&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;oldstate&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;otherenvironment&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;contactname&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;note_entry&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;contactemail&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;applanguage&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;legacy_id&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;notes_log&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;verification&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;field_history&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;feature&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;documentationfixed&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;enhancement_ind&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;component_project&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;timeestimate&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;devstart&quot;
type=&quot;timestamp&quot;/&gt;&lt;column
name=&quot;version&quot;
type=&quot;integer&quot;/&gt;&lt;column

Chapter 4. Operation reference 17



name=&quot;qa_owner&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;fix_decision&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;deflist&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;os&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;targetdate&quot;
type=&quot;timestamp&quot;/&gt;&lt;column
name=&quot;verificationotes&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;attachment_exists&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;symptoms&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;component_suite&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;field_history_1&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;oemcustomer&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;ratl_mastership&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;documentationimpact&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;devorigest&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;devend&quot;
type=&quot;timestamp&quot;/&gt;&lt;column
name=&quot;old_id&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;developmentimpact&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;severity&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;devactual&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;owner&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;testing_blocked_ind&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;component&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;vendor_failure&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;component_feature&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;customer_reference&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;suite&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;targetversion&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;resolution&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;hardware&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;keywords&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;at_field_history&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;fixincurrentiteration&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;contactphone&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;id&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;is_duplicate&quot;
type=&quot;integer&quot;/&gt;&lt;column
name=&quot;component_deliverable&quot;
type=&quot;string&quot;/&gt;&lt;column
name=&quot;customerid&quot;
type=&quot;string&quot;/&gt;&lt;key
name=&quot;fk_16780379_2&quot;
isUnique=&quot;true&quot;&gt;&lt;keyColumn
name=&quot;deflist&quot;
type=&quot;integer&quot;/&gt;&lt;/key&gt;&lt;key
name=&quot;fk_16780379_3&quot;
isUnique=&quot;true&quot;&gt;&lt;keyColumn
name=&quot;release_commitment&quot;
type=&quot;integer&quot;/&gt;&lt;/key&gt;&lt;key
name=&quot;fk_16779512_1&quot;
isUnique=&quot;true&quot;&gt;&lt;keyColumn

18 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



name=&quot;reflist&quot;
type=&quot;integer&quot;/&gt;&lt;/key&gt;&lt;/dataSet&gt;&lt;tableMapping
rootDataSet=&quot;Defect&quot;
cacheTimeout=&quot;0&quot;&gt;&lt;pevCatalogTable
name=&quot;CQdefects&quot;/&gt;&lt;columnMapping
sourceColumnName=&quot;component&quot;
isCached=&quot;false&quot;&gt;&lt;pevCatalogColumn
name=&quot;component&quot;
type=&quot;integer&quot;/&gt;&lt;/columnMapping&gt;&lt;columnMapping
sourceColumnName=&quot;customerid&quot;
isCached=&quot;false&quot;&gt;&lt;pevCatalogColumn
name=&quot;customerid&quot;
type=&quot;string&quot;/&gt;&lt;/columnMapping&gt;&lt;/tableMapping&gt;
&lt;/rtDataProviderDefinition&gt;</dpdXML>

<tableName>CQdefects</tableName>
<resultColumnNames>customerid</resultColumnNames>
<resultColumnNames>component</resultColumnNames>
<keyValues name="custID">

<columnName>customerid</columnName>
<rowValues>

<value value="19029.00000"/>
</rowValues>

</keyValues>
<sample>AV</sample>

</sampleDetails>
</getSamples>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getSamples operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getSamplesResponse xmlns="http://xml.spss.com/data/remote">
<sampleResult name="ResultTable" xmlns="http://xml.spss.com/data">

<columnName>customerid</columnName>
<columnName>component</columnName>
<rowValues>

<value value="19029.00000"/>
<value value="0"/>

</rowValues>
</sampleResult>

</getSamplesResponse>
</soapenv:Body>

</soapenv:Envelope>

The getTableMetaData operation
Returns the metadata for tables contained within a specified data source. Supply one or more table types
to limit the results to specific types.

The table metadata information returned can be used when calling the getDataSets operation.

Input fields

The following table lists the input fields for the getTableMetaData operation.

Table 6. Fields for getTableMetaData.

Field Type/Valid Values Description

dataSourceURI string The data source URI.

credentialsURI string The credentials URI.

typeNames string[] The table types.

Chapter 4. Operation reference 19



Return information

The following table identifies the information returned by the getTableMetaData operation.

Table 7. Return Value.

Type Description

tableMeta[] This element is used to describe the table metadata
within the data source.

Java example

To access the table metadata for a data source, supply the getTableMetaData operation with three strings
corresponding to the following:
v Repository uniform resource identifier for the data source
v Repository uniform resource identifier for valid credentials that can access the data source
v Table type(s)

The following sample returns the metadata for all tables of type TABLE in the data source.
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
String type = "TABLE";
TableMeta[] meta = stub.getTableMetaData(dsURI, credURI, type);

System.out.println("Table type = " + type);
System.out.println("CATALOG NAME\tSCHEMA NAME\tTABLE NAME\t" +

"QUALIFIER SEPARATOR\tCATALOG PREFIX\tUSE CATALOG\t" +
"IDENTIFIER QUOTE CHARACTER\n");

for (int i = 0; i < meta.length; i++) {
System.out.println(meta[i].getCatalogName() + "\t" +

meta[i].getSchemaName() + "\t" +
meta[i].getTableName() + "\t" +
meta[i].getQualifierSeparator() + "\t" +
meta[i].getCatalogPrefixBool() + "\t" +
meta[i].getUseCatalogBool() + "\t" +
meta[i].getIdentifierQuoteCharacter());

}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
List<String> typeList = Arrays.asList("TABLE", "VIEW");
List<TableMeta> metaList = stub.getTableMetaData(dsURI, credURI, typeList);

System.out.println("Table type = " + type);
System.out.println("CATALOG NAME\tSCHEMA NAME\tTABLE NAME\t" +

"QUALIFIER SEPARATOR\tCATALOG PREFIX\tUSE CATALOG\t" +
"IDENTIFIER QUOTE CHARACTER\n");

for (TableMeta meta : metaList)
{

System.out.println(meta[i].getCatalogName() + "\t" +
meta.getSchemaName() + "\t" +
meta.getTableName() + "\t" +
meta.getQualifierSeparator() + "\t" +
meta.getCatalogPrefixBool() + "\t" +
meta.getUseCatalogBool() + "\t" +
meta.getIdentifierQuoteCharacter());

}

SOAP request example

Client invocation of the getTableMetaData operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

20 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText"
>pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getTableMetaData xmlns="http://xml.spss.com/data/remote">
<dataSourceURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080be</dataSourceURI>
<credentialsURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080c4</credentialsURI>
<typeNames>TABLE</typeNames>

</getTableMetaData>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getTableMetaData operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getTableMetaDataResponse xmlns="http://xml.spss.com/data/remote">
<tableMeta xmlns="http://xml.spss.com/data">

<catalogName>cq_ecm_data</catalogName>
<schemaName>cq</schemaName>
<tableName>actiondef</tableName>
<qualifierSeparator>.</qualifierSeparator>
<catalogPrefixBool>true</catalogPrefixBool>
<useCatalogBool>true</useCatalogBool>
<identifierQuoteCharacter>&quot;</identifierQuoteCharacter>

</tableMeta>
<tableMeta xmlns="http://xml.spss.com/data">

<catalogName>cq_ecm_data</catalogName>
<schemaName>cq</schemaName>
<tableName>actiondef_usergroups</tableName>
<qualifierSeparator>.</qualifierSeparator>
<catalogPrefixBool>true</catalogPrefixBool>
<useCatalogBool>true</useCatalogBool>
<identifierQuoteCharacter>&quot;</identifierQuoteCharacter>

</tableMeta>
<tableMeta xmlns="http://xml.spss.com/data">

<catalogName>cq_ecm_data</catalogName>
<schemaName>cq</schemaName>
<tableName>attachments</tableName>
<qualifierSeparator>.</qualifierSeparator>
<catalogPrefixBool>true</catalogPrefixBool>
<useCatalogBool>true</useCatalogBool>
<identifierQuoteCharacter>&quot;</identifierQuoteCharacter>

</tableMeta>
<tableMeta xmlns="http://xml.spss.com/data">

<catalogName>cq_ecm_data</catalogName>
<schemaName>cq</schemaName>
<tableName>Defect</tableName>
<qualifierSeparator>.</qualifierSeparator>
<catalogPrefixBool>true</catalogPrefixBool>
<useCatalogBool>true</useCatalogBool>
<identifierQuoteCharacter>&quot;</identifierQuoteCharacter>

</tableMeta>
</getTableMetaDataResponse>

</soapenv:Body>
</soapenv:Envelope>

Chapter 4. Operation reference 21



The getTableSimpleColumns operation
Returns the names and types for columns in a specified table within a data source. The column
information returned can be used when comparing the column definitions for two tables.

Input fields

The following table lists the input fields for the getTableSimpleColumns operation.

Table 8. Fields for getTableSimpleColumns.

Field Type/Valid Values Description

dataSourceURI string The data source URI.

credentialsURI string The credentials URI.

tableMeta tableMeta This element is used to describe the
table metadata within the data
source.

Return information

The following table identifies the information returned by the getTableSimpleColumns operation.

Table 9. Return Value.

Type Description

simpleColumn[] This element is used to describe the column metadata.

Java example

To access the column information for a table in a data source, supply the getTableSimpleColumns
operation with the following:
v String denoting the repository uniform resource identifier for the data source
v String denoting the repository uniform resource identifier for valid credentials that can access the data

source
v TableMeta object describing the table

The following sample returns the column information for the table named Defect in the data source.
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
TableMeta meta = new TableMeta();
meta.setSchemaName("cq_ecm_data");
meta.setSchemaName("cq");
meta.setTableName("Defect");
meta.setQualifierSeparator(".");
meta.setCatalogPrefixBool("true");
meta.setUseCatalogBool("true");
meta.setIdentifierQuoteCharacter("&quot;");

SimpleColumn[] col = stub.getTableSimpleColumns(dsURI, credURI, meta);

System.out.println("COLUMN NAME\tTYPE\n");
for (int i = 0; i < col.length; i++) {

System.out.println(col[i].getName() + "\t" +
col[i].getType().toString());

}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
TableMeta meta = new TableMeta();

22 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



meta.setSchemaName("cq_ecm_data");
meta.setSchemaName("cq");
meta.setTableName("Defect");
meta.setQualifierSeparator(".");
meta.setCatalogPrefixBool("true");
meta.setUseCatalogBool("true");
meta.setIdentifierQuoteCharacter("&quot;");

List<SimpleColumn> colList = stub.getTableSimpleColumns(dsURI, credURI, meta);
System.out.println("COLUMN NAME\tTYPE\n");
for (SimpleColumn col : colList)
{

System.out.println(col.getName() + "\t" +
col.getType().toString());

}

SOAP request example

Client invocation of the getTableSimpleColumns operation generates a SOAP request message that is sent
to the server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>

<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getTableSimpleColumns xmlns="http://xml.spss.com/data/remote">
<dataSourceURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080be</dataSourceURI>
<credentialsURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080c4</credentialsURI>
<tableMeta xmlns="http://xml.spss.com/data">

<catalogName>cq_ecm_data</catalogName>
<schemaName>cq</schemaName>
<tableName>Defect</tableName>
<qualifierSeparator>.</qualifierSeparator>
<catalogPrefixBool>true</catalogPrefixBool>
<useCatalogBool>true</useCatalogBool>
<identifierQuoteCharacter>&quot;</identifierQuoteCharacter>

</tableMeta>
</getTableSimpleColumns>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getTableSimpleColumns operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<getTableSimpleColumnsResponse xmlns="http://xml.spss.com/data/remote">

<simpleColumn xmlns="http://xml.spss.com/data">
<name>ratl_mastership</name>
<type>integer</type>

</simpleColumn>
<simpleColumn xmlns="http://xml.spss.com/data">

<name>dbid</name>
<type>integer</type>

</simpleColumn>
<simpleColumn xmlns="http://xml.spss.com/data">

<name>is_active</name>
<type>integer</type>

</simpleColumn>
<simpleColumn xmlns="http://xml.spss.com/data">

<name>id</name>
<type>string</type>

</simpleColumn>
<simpleColumn xmlns="http://xml.spss.com/data">

<name>state</name>

Chapter 4. Operation reference 23



<type>integer</type>
</simpleColumn>
<simpleColumn xmlns="http://xml.spss.com/data">

<name>version</name>
<type>integer</type>

</simpleColumn>
</getTableSimpleColumnsResponse>

</soapenv:Body>
</soapenv:Envelope>

The getTableTypes operation
Returns the types of tables contained within a specified data source. The information returned can be
used to limit the getTableMetaData call results to a specific table type.

Input fields

The following table lists the input fields for the getTableTypes operation.

Table 10. Fields for getTableTypes.

Field Type/Valid Values Description

dataSourceURI string The data source URI.

credentialsURI string The credentials URI.

Return information

The following table identifies the information returned by the getTableTypes operation.

Table 11. Return Value.

Type Description

string[] The table types of the data source.

Java example

To access the table types for a data source, supply the getTableTypes operation with two strings
corresponding to the repository uniform resource identifiers for the data source and valid credentials for
accessing the data source.
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
String[] types = stub.getTableTypes(dsURI, credURI);

for (int i = 0; i < types.length; i++) {
System.out.println(types[i]);

}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String dsURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080be";
String credURI = "spsscr:///?id=0a010a07e123f4280000011f5babe02080c4";
List<String> typeList = stub.getTableTypes(dsURI, credURI);
for (String type : typeList)
{

System.out.println(type);
}

SOAP request example

Client invocation of the getTableTypes operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

24 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText"
>pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getTableTypes xmlns="http://xml.spss.com/data/remote">
<dataSourceURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080be</dataSourceURI>
<credentialsURI>spsscr:///?id=0a010a07e123f4280000011f5babe02080c4</credentialsURI>

</getTableTypes>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getTableTypes operation call by sending a SOAP response message containing
the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getTableTypesResponse xmlns="http://xml.spss.com/data/remote">
<typeNames>SYSTEM TABLE</typeNames>
<typeNames>TABLE</typeNames>
<typeNames>VIEW</typeNames>

</getTableTypesResponse>
</soapenv:Body>

</soapenv:Envelope>

The getVersion operation
Returns the version number of the service.

Return information

The following table identifies the information returned by the getVersion operation.

Table 12. Return Value.

Type Description

string The service version number.

Java example

To access the version number of the service, call the getVersion operation from the service stub.
System.out.println("Service Version = " + stub.getVersion());

Chapter 4. Operation reference 25



SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the server
for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersion xmlns="http://xml.spss.com/data/remote"/>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersionResponse xmlns="http://xml.spss.com/data/remote">
<version>4.20.000</version>

</getVersionResponse>
</soapenv:Body>

</soapenv:Envelope>

26 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Chapter 5. JAX-WS clients

Java developers can create custom web service clients by using JAX-WS.

The discussion here assumes the use of Java 6. In general, the process for accessing IBM SPSS
Collaboration and Deployment Services web services involves the following steps:
1. Generate a web service client using wsimport
2. Package the client
3. Programmatically configure the client
4. Exercise the web service

Generating a JAX-WS client
To generate a JAX-WS client, open a command prompt and execute the Java 6 wsimport command.

The wsimport command creates JAX-WS service classes and JAXB classes that represent the WSDL
schema. For example, the following command executes wsimport for the Scoring.HttpV2 service, storing
the output in the current directory:
"c:\Program Files\IBM\Java60\bin\wsimport.exe" http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl

In this example, the command obtained the WSDL from the server by using the endpoint name followed
by ?wsdl. The wsimport command requires access to the WSDL in order to generate the files. JAX-WS also
requires access to the WSDL file during runtime, so this example hard codes the value provided to
wsimport in the Java code. The generated client fetches the WSDL from that same location unless
otherwise specified. An alternative is to store the WSDL locally and refer to the local copy rather than
downloading the WSDL from the server.

Packaging a JAX-WS client
A JAX-WS client must be packaged as a jar file.

The following example command creates a jar file named scoring.jar:
"c:\Program Files\IBM\Java60\bin\jar.exe" -cvf scoring.jar *

This command assumes the command prompt is in the same location in which the client was generated.

If you store the WSDL locally, include the WSDL and XSD files in the jar file. Place the files in the
\META-INF\wsdl directory within the file. Refer to that directory programmatically when configuring the
client.

Configuring a JAX-WS client
JAX-WS clients can obtain the WSDL file remotely from the server or locally from within the jar file.

The following example demonstrates obtaining the WSDL from the server:
com.spss.scoring.ws.jaxws.ScoringServices service =

new com.spss.scoring.ws.jaxws.ScoringServices(
new URL("http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl"),
new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

The URL includes the host and port for your server.

© Copyright IBM Corp. 2000, 2017 27



The following example demonstrates obtaining the WSDL from the within the jar file:
com.spss.scoring.ws.jaxws.ScoringServices service =

new com.spss.scoring.ws.jaxws.ScoringServices(
DemoClass.class.getResource("/META-INF/wsdl/scoring.wsdl"),
new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

In order to include the required SOAP security headers, create an object that implements
SOAPHandler<SOAPMessageContext>. See “SOAPHandler example” for an example handler object. The
following example shows how this object is used:
service.setHandlerResolver(new HandlerResolver()
{

@Override
public List<Handler> getHandlerChain(PortInfo portInfo)
{

List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(new SecurityHandler("user", "password", "en-US;q=1.0, en;q=0.8"));
return handlerChain;

}
});

Next, access the service endpoint:
ScoringV2 serviceEndpoint = service.getHttpV2();

After obtaining the service endpoint, set the JAX-WS standard endpoint address property, which specifies
the URL at which to access the endpoint.
Map<String, Object> requestContext = ((BindingProvider)serviceEndpoint).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

"http://localhost:7001/scoring/services/Scoring.HttpV2");

SOAPHandler example
JAX-WS clients must include an object that implements SOAPHandler<SOAPMessageContext>.

The following code provides an example of this object.
/****************************************************************
** Licensed Materials - Property of IBM
** IBM SPSS Products: Collaboration and Deployment Services
** © Copyright IBM Corp. 2000, 2013
** US Government Users Restricted Rights - Use, duplication or
** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
**
*****************************************************************/

import java.util.Collections;
import java.util.Set;

import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

/**
* This is a SOAP handler that applies a security header and a language header to a SOAP message.
*/
public class SecurityHandler implements SOAPHandler<SOAPMessageContext>
{

// WS-Security header values
public static final String SECURITY = "Security";
public static final String USERNAME_TOKEN = "UsernameToken";
public static final String USERNAME = "Username";
public static final String PASSWORD = "Password";
public static final String WS_SECURITY_NAMESPACE =

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

// prefixes

28 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



public static final String WSSE_PREFIX = "wsse"; // ws service security
public static final String SPSS_PREFIX = "spss"; // spss prefix

// SPSS custom language header values
public static final String SPSS_HEADER_NAMESPACE = "http://xml.spss.com/ws/headers";
public static final String CLIENT_ACCEPT_LANGUAGE_HEADER = "client-accept-language";

private String i_username;
private String i_password;
private String i_acceptLanguage;

/**
* Creates a security and language handler
* @param username A user name to access the web service. Cannot be null.
* @param password A password to access the web service. Cannot be null.
* @param acceptLanguage The language that should be used by the web service.
* This value should be formatted according to the HTTP specification regarding
* the Accept-Language HTTP header (e.g. en-US;q=1.0, en;q=0.8)
* If the value is null, the language header will not be added.
*/
public SecurityHandler(String username, String password, String acceptLanguage)
{

i_username = username;
i_password = password;
i_acceptLanguage = acceptLanguage;

}

@Override
public boolean handleMessage(SOAPMessageContext context)
{

// Apply this handler to only outbound traffic
if((Boolean)context.get(SOAPMessageContext.MESSAGE_OUTBOUND_PROPERTY))
{

// get the message
SOAPMessage message = context.getMessage();
try
{

// get the message header
SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();
SOAPHeader header = envelope.getHeader();
if (header == null)
{

header = envelope.addHeader();
}

// add the UsernameToken header
header.addChildElement(createUsernameTokenSecurityHeader());
// assuming the language was provided, apply the custom language header
if(i_acceptLanguage != null)
{

header.addChildElement(createLanguageHeader());
}

}
catch (Exception e)
{

e.printStackTrace();
}

}
// allow any other handler to execute
return true;

}

/**
* This method creates a custom language header, which allows the scoring service
* to use the given language if possible.
* @return A custom language header
* @throws Exception
*/
private SOAPElement createLanguageHeader() throws Exception
{

SOAPFactory factory = SOAPFactory.newInstance();

// create a custom language header
SOAPElement languageHeader =

factory.createElement(CLIENT_ACCEPT_LANGUAGE_HEADER,SPSS_PREFIX,SPSS_HEADER_NAMESPACE);

// include the language text
languageHeader.addTextNode(i_acceptLanguage);

return languageHeader;
}

/**
* Creates the WS-Security SOAP header for UsernameToken as SOAPElement.

Chapter 5. JAX-WS clients 29



*
* @return the WS-Security SOAP header for UsernameToken
* @throws Exception as appropriate
*/

private SOAPElement createUsernameTokenSecurityHeader() throws Exception
{

SOAPFactory factory = SOAPFactory.newInstance();

// create a UsernameToken element
SOAPElement usernameToken =

factory.createElement(USERNAME_TOKEN, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

// add the username element
SOAPElement usernameElement =

factory.createElement(USERNAME, WSSE_PREFIX, WS_SECURITY_NAMESPACE);
usernameElement.addTextNode(i_username);
usernameToken.addChildElement(usernameElement);

// add the password element
SOAPElement passwordElement =

factory.createElement(PASSWORD, WSSE_PREFIX, WS_SECURITY_NAMESPACE);
passwordElement.addTextNode(i_password);
usernameToken.addChildElement(passwordElement);

// create the Security Header
SOAPElement securityHeader =

factory.createElement(SECURITY, WSSE_PREFIX, WS_SECURITY_NAMESPACE);
securityHeader.addChildElement(usernameToken);

return securityHeader;
}

@Override
public boolean handleFault(SOAPMessageContext context)
{

// allow any other handler to execute
return true;

}

@Override
public void close(MessageContext context)
{

// do nothing
}

@Override
public Set<QName> getHeaders()
{

return Collections.emptySet();
}

}

Exercising web services from JAX-WS clients
Once properly configured, a JAX-WS client can make calls to IBM SPSS Collaboration and Deployment
Services web services.

For example, the following code calls the getConfigurations operation of the Scoring Service:
serviceEndpoint.getConfigurations();

30 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Chapter 6. Microsoft® .NET Framework-based clients

In order to use the web services from a Microsoft Windows Communication Foundation (WCF) client,
you will need Visual Studio 2008 or later. The discussion here assumes the use of Visual Studio 2008. In
general, the process for accessing IBM SPSS Collaboration and Deployment Services web services
involves the following steps:
1. Add a Service Reference. See the topic “Adding a service reference” for more information.
2. Configure the web service endpoint. See the topic “Configuring the web service endpoint” on page 32

for more information.
3. Programmatically configure the necessary endpoint behaviors. See the topic “Configuring endpoint

behaviors” on page 33 for more information.
4. Exercise the web service. See the topic “Exercising the service” on page 33 for more information.

Adding a service reference
The first step in using a WCF client to access IBM SPSS Collaboration and Deployment Services web
services is to make the service available to the Visual Studio project by adding it as a Service Reference.
1. In Visual Studio, right-click the folder’s References folder and select Add Service Reference.
2. Type the URL of the service WSDL location in the Address field, and click Go. The value corresponds

to the service endpoint appended with ?wsdl.
3. Specify the namespace in the Namespace field.
4. Click OK.

Visual Studio adds a new service reference to the Service Reference directory for the project. The name of
the reference corresponds to the specified namespace.

Important: If you have a .NET client created by using a version of IBM SPSS Collaboration and
Deployment Services before 6.0, you must regenerate your service references from the current WSDL files
to allow successful communication between your application and the current server. If you do not
regenerate your service references, you may experience a variety of errors that may include incorrect
namespace assignments, NullPointerExceptions in the web services being invoked, and data type
assignment errors.

Service reference modifications
Due to known compatibility issues between Microsoft tooling and some WSDL files, you need to
manually modify some service references before they can be used successfully. For information about the
specific issues, see articles 891386 and 326790 on the Microsoft Support site.

To modify a service reference:
1. In Visual Studio, select the project and click Show All Files from the Project menu.
2. Expand the service reference that needs to be modified.
3. Expand the Reference.svcmap node.
4. Open the Reference.cs file.
5. Make the required modifications.
6. Save the file.

For the Content Repository Service , Content Repository URI Service, and Process Management Service,
you need to make the following changes to the RowType class:

© Copyright IBM Corp. 2000, 2017 31

http://support.microsoft.com/kb/891386
http://support.microsoft.com/kb/326790


v private value[][] cellField should be changed to private value[] cellField
v public value[][] cell should be changed to public value[] cell

For the Scoring Service, you need to make the following changes:
v in the returnedDPDOutputTable class, private returnedDPDOutputValue[][]

returnedDPDOutputrowField should be changed to private returnedDPDOutputValue[]
returnedDPDOutputrowField

v in the returnedDPDOutputTable class, private returnedDPDOutputValue[][] returnedDPDOutputRow
should be changed to private returnedDPDOutputValue[] returnedDPDOutputRow

v in the returnedRequestInputTable class, private returnedRequestInputValue[][]
returnedRequestInputRow should be changed to private returnedRequestInputValue[]
returnedRequestInputRow

v in the returnedRequestInputTable class, private returnedRequestInputValue[][]
returnedRequestInputRowField should be changed to private returnedRequestInputValue[]
returnedRequestInputRowField

v in the requestInputTable class, private input1[][] requestInputRowField should be changed to
private input1[] requestInputRowField

v in the requestInputTable class, private input1[][] requestInputRow should be changed to private
input1[] requestInputRow

For the PevServices Service, you need to make the following changes:
v in the avTableConflict class, private avColumnMeta[][] avColumnConflictField should be changed to

private avColumnMeta[] avColumnConflictField

v in the avTableConflict class, private avColumnMeta[][] avColumnConflict should be changed to
private avColumnMeta[] avColumnConflict

v in the evTableConflict class, private evColumnMeta[][] evColumnConflictField should be changed to
private evColumnMeta[] evColumnConflictField

v in the evTableConflict class, private evColumnMeta[][] evColumnConflict should be changed to
private evColumnMeta[] evColumnConflict

Configuring the web service endpoint
In WCF, you can configure a service endpoint either declaratively using an app.config file, or
programmatically using the WCF APIs. The following steps describe the creation of a basic configuration
within an app.config file.
1. In Visual Studio, double-click the app.config file for the application (or web.config for a

web-application).
2. Find the system.serviceModel element. Create it if it does not already exist.
3. Find the client element. Create it if it does not already exist.
4. Create a new endpoint element as a child of the client element.
5. Specify the appropriate service endpoint URL as the value of the address attribute.
6. Specify basicHttpBinding as the value of the binding attribute.
7. Specify the appropriate service contract as the value of the contract attribute. The service contract is

the value of the service reference namespace appended with the service name.
8. Optionally specify a value for the name attribute that identifies a name for the endpoint configuration.

If the name is blank, the configuration is used as the default for the service.

The resulting app.config file should be similar to the following example:
<system.serviceModel>

<client>
<endpoint

address="http://cads_server:8080/cr-ws/services/ContentRepository"

32 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



binding="basicHttpBinding"
bindingConfiguration=""
contract="IBM.SPSS.ContentRepository"
name=""/>

</client>
</system.serviceModel>

Configuring endpoint behaviors
The following two issues complicate the use of IBM SPSS Collaboration and Deployment Services web
services by WCF clients:
v WCF does not allow the username and password to be transmitted over HTTP
v WCF does not correctly understand the SOAP Fault format returned by the services

To address these problems, a sample Visual Studio project is available that contains classes adding
endpoint behaviors that resolve both issues. The IBM SPSS Collaboration and Deployment Services
installation media includes this project.

To use these classes, ensure that the IBM.SPSS.WCF.Utilities project containing these classes has been
compiled and added as a referenced DLL to the Visual Studio project that exercises the web services.
When constructing a new service client instance, ensure that the behaviors are added as follows:
ContentRepositoryClient serviceClient = new ContentRepositoryClient();
serviceClient.Endpoint.Behaviors.Add(

new ApplyClientInspectorsBehavior(
new HeaderInjectionMessageInspector(

new UsernameTokenSecurityHeader("admin", "Abcdefg1")
),
new SOAPFaultFormatMessageInspector())

);

This adds two message inspectors to the behaviors for the endpoint. The first allows message headers to
be injected, permitting a UsernameToken security header containing the username and password to be
transmitted over HTTP. The second message inspector intercepts SOAP Faults, ensuring that they are
formatted for proper WCF processing.

Exercising the service
After adding the service reference to the project, configuring the endpoint, and adding the necessary
endpoint behaviors, the WCF-based web service client is ready. Add the .NET source code to the project
to exercise the web service as needed.

There may be instances in which the .NET client proxies are generated incorrectly, leading to unexpected
missing results at runtime. If a web service call returns no results when results are expected, the
generated .NET types associated with the request and response should be examined. Specifically,
members of the types may have two .NET attributes assigned. The first, MessageBodyMemberAttribute,
will often include the proper namespace for the member type. The second, XmlElementAttribute, should
have the same namespace as MessageBodyMemberAttribute. If this is not the case, add the namespace to
XmlElementAttribute. Moreover, the addition of XML serialization attributes, such as
System.XML.Serialization.XmlElementAttribute, may be necessary to correctly name the expected
namespace or element. For example, the following generated client code would need to be modified:
public partial class getUsersResponse {

System.ServiceModel.MessageBodyMemberAttribute(Namespace =
"http://xml.spss.com/pes/userPref/remote", Order = 0)]

public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

The corrected code is as follows:
public partial class getUsersResponse {

[System.ServiceModel.MessageBodyMemberAttribute(Namespace =
"http://xml.spss.com/pes/userPref/remote", Order = 0)]

[System.Xml.Serialization.XmlElementAttribute(ElementName="usersRequestResponse")]
public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

Chapter 6. Microsoft® .NET Framework-based clients 33



Single sign-on authentication
You can use single sign-on authentication for web service calls by obtaining a service ticket that you
include in your SOAP requests.

The general process of using single sign-on authentication for WCF clients includes the following steps:
1. Obtain a ticket-grating ticket (TGT) using .NET or WCF code.
2. Send the TGT to the IBM SPSS Collaboration and Deployment Services Repository server using the

SSO Authentication Service getToken operation to obtain a service ticket. This ensures that single
sign-on authentication occurs on the repository server.

3. Send the service ticket in the SOAP header for all subsequent web services calls from your client
application.

34 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Chapter 7. Message header reference

The headers for the transport and packaging layers contain vital information for processing a web service
call.

For IBM SPSS Collaboration and Deployment Services, the SOAP headers contain the security
information under which the web service call is processed. In addition, the HTTP headers contain
information about the client that initiated the web service request.

Security headers
Most IBM SPSS Collaboration and Deployment Services web service calls require security information in
the request message.

In general, the structure of this content follows the WS-Security extension to the SOAP 1.1 standard. This
documentation provides details on the XML elements and attributes that are recognized by IBM SPSS
Collaboration and Deployment Services. Some of the elements and attributes are required, some are
optional, and some are ignored. Refer to the following official specifications for details, but IBM SPSS
Collaboration and Deployment Services requires some special values not referenced in the official
specifications.
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

The following table defines the values of namespaces that are used for the SOAP header elements.

Table 13. SOAP header namespaces

Namespace prefix Namespace value

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

soapenv http://schemas.xmlsoap.org/soap/envelope/

spsssec http://xml.spss.com/security

Security element
The wsse:Security element is the main security header element included in a soapenv:Header element.

Table 14. Attributes of wsse:Security

Attribute Description Example

soapenv:actor Targets a given endpoint along the
message path. This value is ignored.

http://schemas.xmlsoap.org/soap/
actor/next

soapenv:mustUnderstand Clients can specify if the server must
process this element. This value is
ignored.

0

© Copyright IBM Corp. 2000, 2017 35

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf


UsernameToken element
Use the wsse:UsernameToken element when a traditional user and password combination is required.

Table 15. Attributes of wsse:UsernameToken

Attribute Description

wsu:Id An optional string label for the security token. This value is ignored.

Table 16. Child elements of wsse:UsernameToken

Attribute Description Example

wsse:Username The xml value represents the identity of the
user.

a_user

wsse:Password The attribute Type specifies the type of
password. PasswordText is currently the
only supported type.

The xml value can handle plain text
passwords and encrypted data.

myPassword
[{AES}KrY+KLlOYo4O6545tgGsYQ==]

wsse:Nonce The xml value represents a
cryptographically random nonce encoded as
base64 data. This is currently ignored.

RUx1ugQo0o3g0Xyl+sUEsA==

wsu:Created The xml value represents the creation time
as a timestamp conforming to
wsu:Timestamp. This is currently ignored.

2013-10-08T02:09:20Z

BinarySecurityToken and BinarySecuritySSOToken elements
Binary security tokens may be used when IBM SPSS Collaboration and Deployment Services
communicates with itself or when single sign-on (SSO) is used. Customer usage of these token types is
limited to SSO.

The wsse:BinarySecurityToken and wsse:BinarySecuritySSOToken elements have the same format, but
only wsse:BinarySecurityToken is recognized in the official WS-Security standard. The element
wsse:BinarySecuritySSOToken was added as a nonstandard element when used in SSO.

Of these two elements, you should use wsse:BinarySecurityToken and you must supply the correct
attributes for proper handling. The most critical attribute is the wsu:Id value which is used during web
service request processing to handle the security token correctly.

Table 17. Attributes of wsse:BinarySecurityToken

Attribute Description Example

ValueType Indicates the type of the security
token. IBM SPSS Collaboration and
Deployment Services always writes
these values when creating its own
XML, but this value is currently
ignored during processing. You
should use
spsssec:BinarySecuritySSOToken.

spsssec:BinarySecurityToken
spsssec:BinarySecuritySSOToken

36 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Table 17. Attributes of wsse:BinarySecurityToken (continued)

Attribute Description Example

EncodingType Indicates the encoding type for the
token. The only currently supported
type is base64, so this value should
always be wsse:Base64Binary. IBM
SPSS Collaboration and Deployment
Services always writes these values
when creating its own XML, but this
value is currently ignored during
processing.

wsse:Base64Binary

wsu:Id An identifier for the token. This
value must be correctly provided.
You should always provide
spssSSOToken. The only valid case for
using spssToken is for internal web
service calls, which use an internal
token format.

spssToken
spssSSOToken

anyAttribute An extension mechanism to allow
any arbitrary attribute in other
namespaces. These extensions are
ignored.

The XML value for wsse:BinarySecurityToken and wsse:BinarySecuritySSOToken is string data in base64
format.

The client-accept-language element
This element restricts the set of natural languages that are preferred as a response to the request.

This element is inserted into a soapenv:Header element and is not related to WS-Security in any way. This
is the same value found in the HTTP header named Accept-Language as defined in RFC2068. The xml
value for this element might look like the following:
en-US;q=1.0, en;q=0.8

The namespace for this element could be any allowed value, such as ns1, which has an associated value
of http://xml.spss.com/ws/headers.

HTTP headers
In addition to SOAP headers, it is possible to apply HTTP headers as well. None of the HTTP headers is
required.

Table 18. HTTP headers

HTTP header Description

Accept-Language The accept language header value, as defined in RFC2068 (e.g. en-US;q=1.0,
en;q=0.8). If not supplied the server language setting is used as a default.

CLIENT_ADDR The client IP address that ultimately initiated the request.

CLIENT_HOSTNAME The client host name that ultimately initiated the request.

X-FORWARDED-FOR The client IP address that ultimately initiated the request. This is standard for
determining the originating IP address.

Chapter 7. Message header reference 37



The CLIENT_ADDR, CLIENT_HOSTNAME, and X-FORWARDED-FOR values are useful when a client application
makes a call through an HTTP proxy, load balancer, or when IBM SPSS Collaboration and Deployment
Services components make internal calls. The CLIENT_ADDR and CLIENT_HOSTNAME entries are specific HTTP
headers that can be set by IBM SPSS Collaboration and Deployment Services itself. The X-FORWARDED-FOR
header is a standard that some load balancers understand. These headers are used to make a best-effort
attempt in determining the originating client for a given call, allowing information to be used for
auditing purposes. The headers may not work as intended, but IBM SPSS Collaboration and Deployment
Services will fall back to reasonable defaults in those situations.

38 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Appendix. Deprecated features

If you are migrating from an earlier release of IBM SPSS Collaboration and Deployment Services, you
should be aware of the various features that have been deprecated since the last version.

If a feature is deprecated, IBM Corp. might remove this capability in a subsequent release of the product.
Future investment will be focussed on the strategic function listed under recommended migration action.
Typically, a feature is not deprecated unless an equivalent alternative is provided.

The following tables indicate what is deprecated. Where possible, the table also indicates the
recommended migration action.

Table 19. Features deprecated in previous versions

Deprecation Recommended migration action

Security Provider: Active Directory with local override,
which supports extended groups and allowed users

Use the standard Active Directory security provider with
any necessary groups added

IBM SPSS Collaboration and Deployment Services
Enterprise View

Use the Analytic Data View feature

IBM SPSS Collaboration and Deployment Services
Enterprise View Driver

Use the Analytic Data View feature

Scenario files Scenario files (.scn) are no longer supported. Enterprise
View source nodes cannot be modified in Deployment
Manager. Old scenario files can be modified in IBM SPSS
Modeler client and resaved as stream files. Also, scoring
configurations that used a scenario file must be deleted
and recreated based on a stream file.

Web Install for IBM SPSS Deployment Manager Use the standalone installer

BIRT Report Designer for IBM SPSS None

BIRT Report Designer for IBM SPSS viewer None

IBM SPSS Collaboration and Deployment Services Portlet Use the IBM SPSS Collaboration and Deployment
Services Deployment Portal directly, or use the web
services APIs

IBM SPSS Collaboration and Deployment Services Web
Part

Use the IBM SPSS Collaboration and Deployment
Services Deployment Portal directly, or use the web
services APIs

Scoring Service V1 API Scoring Service V2 API

Scheduling Server Service None

Reporting Service None

Authentication Service login operation Authentication Service doLogin operation

Search Service search operation Search Service search2.5 operation

SPSS AXIS/Castor web services client jar Use the tools provided with the Java Runtime
Environment, Integrated Development Environment, or
Eclipse Web Tools Platform (WTP)

For updated information about deprecated features, see the IBM Knowledge Center.

© Copyright IBM Corp. 2000, 2017 39

http://www.ibm.com/support/knowledgecenter/SS69YH/welcome


40 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2000, 2017 41



Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

42 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, See
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at
http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other product and service names might be trademarks of IBM or other companies.

Notices 43

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml


44 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Glossary

This glossary includes terms and definitions for
IBM SPSS Collaboration and Deployment
Services.

The following cross-references are used in this
glossary:
v See refers you from a term to a preferred

synonym, or from an acronym or abbreviation
to the defined full form.

v See also refers you to a related or contrasting
term.

To view glossaries for other IBM products, go to
www.ibm.com/software/globalization/
terminology (opens in new window).

A
access control list (ACL)

In computer security, a list associated
with an object that identifies all the
subjects that can access the object and
their access rights.

ACL See access control list.

action A permission for an aspect of system
functionality. For example, the ability to
set up notifications is defined as an
action. Actions are grouped and assigned
to users through roles. See also role.

Active Directory (AD)
A hierarchical directory service that
enables centralized, secure management
of an entire network, which is a central
component of the Microsoft Windows
platform.

AD See Active Directory.

allowed user
A subset of the users defined in a remote
directory, such as SiteMinder or Windows
Active Directory, that are allowed access
to SPSS Predictive Enterprise Services.
Allowed users are defined when only a
few users in a remote directory need
access to the application.

API See application programming interface.

appender
A component that receives logging

requests from a logger and writes log
statements to a specified file or console.
See also logger.

application programming interface (API)
An interface that allows an application
program that is written in a high-level
language to use specific data or functions
of the operating system or another
program.

B
batch file

A file that contains instructions that are
processed sequentially, as a unit.

binary large object (BLOB)
A data type whose value is a sequence of
bytes that can range in size from 0 bytes
to 2 gigabytes less 1 byte. This sequence
does not have an associated code page
and character set. BLOBs can contain, for
example, image, audio, or video data.

BLOB See binary large object.

break group
A set of rows of returned data that are
grouped according to a common column
value. For example, in a column of states,
the rows of data for each state are
grouped together.

burst report
A report that generates multiple output
files during a single run by using
multiple input parameters taken from
break groups in the report.

C
cascading permission

A permission of a parent folder in the
content repository that has been
propagated to its child objects.

character large object (CLOB)
A data type whose value is a sequence of
characters (single byte, multibyte, or both)
that can range in size from 0 bytes to 2
gigabytes less 1 byte. In general, the
CLOB data type is used whenever a

© Copyright IBM Corp. 2000, 2017 45

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/


character string might exceed the limits of
the VARCHAR data type.

CLOB See character large object.

common warehouse metamodel (CWM)
A metamodel written to be a common
standard by the Object Management
Group (OMG).

content repository
A centralized location for storing
analytical assets, such as models and data.
Content repository includes facilities for
security and access control, content
management, and process automation.

context data
Input data that is passed with a scoring
request in real time. For example, when a
score is requested for a customer based
on credit rating and geocode, the credit
score and geocode will be the context
data for the request.

credential
Information acquired during
authentication that describes a user, group
associations, or other security-related
identity attributes, and that is used to
perform services such as authorization,
auditing, or delegation. For example, a
user ID and password are credentials that
allow access to network and system
resources.

CWM See common warehouse metamodel.

D
data warehouse

A subject-oriented collection of data that
is used to support strategic decision
making. The warehouse is the central
point of data integration for business
intelligence. It is the source of data for
data marts within an enterprise and
delivers a common view of enterprise
data.

distinguished name (DN)
The name that uniquely identifies an
entry in a directory. A distinguished name
is made up of attribute:value pairs,
separated by commas. For example,
CN=person name and C=country or
region.

DN See distinguished name.

Document Object Model (DOM)
A system in which a structured
document, for example an XML file, is
viewed as a tree of objects that can be
programmatically accessed and updated.
See also Simple API for XML.

document type definition (DTD)
The rules that specify the structure for a
particular class of SGML or XML
documents. The DTD defines the structure
with elements, attributes, and notations,
and it establishes constraints for how each
element, attribute, and notation can be
used within the particular class of
documents.

DOM See Document Object Model.

dormant schedule
A schedule associated with a deleted or
unlabeled version of a job. A dormant
schedule cannot be used until it is
associated with a valid labeled job
version.

DTD See document type definition.

E
EAR See enterprise archive.

enterprise archive (EAR)
A specialized type of JAR file, defined by
the Java EE standard, used to deploy Java
EE applications to Java EE application
servers. An EAR file contains EJB
components, a deployment descriptor,
and web archive (WAR) files for
individual web applications. See also Java
archive, web archive.

execution server
A server that enables analytical processing
of resources stored in the repository. For
example, to execute an IBM SPSS
Statistics syntax in an IBM SPSS
Collaboration and Deployment Services
job, an IBM SPSS Statistics execution
server must be designated.

export The process of storing objects and
metadata from the content repository to
an external file.

extended group
A locally-defined group of remote users.
Extended groups are defined when
groups in the remote directory are not
fine-grained enough.

46 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Extensible Markup Language (XML)
A standard metalanguage for defining
markup languages that is based on
Standard Generalized Markup Language
(SGML).

Extensible Stylesheet Language (XSL)
A language for specifying style sheets for
XML documents. Extensible Stylesheet
Language Transformation (XSLT) is used
with XSL to describe how an XML
document is transformed into another
document.

F
field content assist

A feature that provides predefined system
and variable values for entry fields.

G
general job step

A method for running native operating
system commands and executable
programs on a host or a remote process
server. General jobs have access to files
stored within the repository and on the
file system and can be used to control the
input/output of analytical processing.

I
import

The process of adding objects and
metadata defined in an external file
generated by export, to the content
repository.

iterative consumer reporting job step
A job step that is passed a set of input
values generated by a preceding iterative
producer reporting job step. The report in
iterative consumer job step is executed for
each tuple in the received data set.

iterative producer reporting job step
A job step that generates a set of values
passed as input parameters to a following
iterative consumer job step.

J
JAAS See Java Authentication and

Authorization Service.

JAR See Java archive.

Java archive (JAR)
A compressed file format for storing all of
the resources that are required to install
and run a Java program in a single file.
See also enterprise archive, web archive.

Java Authentication and Authorization Service
(JAAS)

In Java EE technology, a standard API for
performing security-based operations.
Through JAAS, services can authenticate
and authorize users while enabling the
applications to remain independent from
underlying technologies.

Java Generic Security Services (JGSS)
A specification that provides Java
programs access to the services that
include the signing and sealing of
messages and a generic authentication
mechanism.

Java Naming and Directory Interface (JNDI)
An extension to the Java platform that
provides a standard interface for
heterogeneous naming and directory
services.

JGSS See Java Generic Security Services.

JNDI See Java Naming and Directory Interface.

job A mechanism for automating analytical
processing. A job consists of job steps,
executed sequentially or conditionally.
Input parameters can be defined for a job.
A job can be run on demand or triggered
by time-based or message-based
schedules, with records of job execution
stored as job history.

job step
A discrete unit of processing in a job.
Depending on the type, job steps can be
run on the content repository host or
specially defined execution or remote
process servers. Objects stored in the
repository or the file system can provide
input for a job step, and job step output
can be stored in the repository or written
to the file system.

K
KDC See key distribution center.

Kerberos
A network authentication protocol that is
based on symmetric key cryptography.
Kerberos assigns a unique key, called a

Glossary 47



ticket, to each user who logs on to the
network. The ticket is embedded in
messages that are sent over the network.
The receiver of a message uses the ticket
to authenticate the sender.

key distribution center (KDC)
A network service that provides tickets
and temporary session keys. The KDC
maintains a database of principals (users
and services) and their associated secret
keys. It is composed of the authentication
server and the ticket granting ticket
server.

keystore
In security, a file or a hardware
cryptographic card where identities and
private keys are stored, for authentication
and encryption purposes. Some keystores
also contain trusted or public keys.

L
LDAP See Lightweight Directory Access

Protocol.

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to
provide access to directories that support
an X.500 model and that does not incur
the resource requirements of the more
complex X.500 Directory Access Protocol
(DAP). For example, LDAP can be used to
locate people, organizations, and other
resources in an Internet or intranet
directory.

lock The process by which integrity of data is
ensured by preventing more than one
user from accessing or changing the same
data or object at the same time.

logger A component that prepares log statements
to be written to console or log file. See
also appender.

M
message-based schedule

A schedule that is used to trigger job
execution by an event signalled by a Java
Messaging Service (JMS) message. For
example, when a job relies on the input
from a third-party application, the
application must send a JMS message
when the input file is ready for
processing.

metamodel
A model that defines the language for
expressing a model.

meta-object
An instance of an XMI class as defined in
the metamodel.

meta-object facility (MOF)
A generalized facility and repository for
storing abstract information about
concrete object systems; dealing mostly
with construction, standardized by the
Object Management Group (OMG).

MIME See Multipurpose Internet Mail
Extensions.

MOF See meta-object facility.

Multipurpose Internet Mail Extensions (MIME)
An Internet standard that allows different
forms of data, including video, audio, or
binary data, to be attached to email
without requiring translation into ASCII
text.

N
notification

A mechanism that is used to generate
email messages informing users of
specific types of system events, such as
changes to content repository objects and
processing success and failure. Unlike
subscriptions, notifications can be set up
to send email to multiple users.

O
Object Management Group (OMG)

A non-profit consortium whose purpose is
to promote object-oriented technology and
the standardization of that technology.
The Object Management Group was
formed to help reduce the complexity,
lower the costs, and hasten the
introduction of new software applications.

ODS See Output Delivery System.

OMG See Object Management Group.

Output Delivery System (ODS)
A method of controlling the destination
for output within SAS. ODS can route
SAS output to a SAS data file, a text
listing file, HTML files, and files
optimized for high-resolution printing.

48 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



P
package

An installable unit of a software product.
Software product packages are separately
installable units that can operate
independently from other packages of
that software product.

principal
An entity that can communicate securely
with another entity. A principal is
identified by its associated security
context, which defines its access rights.

R
remote process server

A remote system that is designated for
running native operating system
commands and executable programs.

repository content adapter
An optional software package that
enables storing and processing content
from other IBM SPSS applications, such as
Statistics, Modeler, and Data Collection, as
well as third parties.

repository database
A relational database that is used for
storing content repository objects and
metadata.

resource
A content repository object.

resource definition
A subset of content repository resources
used to enable analytical processing, such
as definitions of data sources, credentials,
execution servers, and JMS message
domains.

role A set of permissions or access rights. See
also action.

S
SAX See Simple API for XML.

schedule
A content repository object that triggers
job execution.

scoring configuration
A configuration that defines
model-specific settings for generating

real-time scores, such as input data,
processing rules, outputs, logging, etc.

security provider
A system that performs user
authentication. Users and groups can be
defined locally (in which case, IBM SPSS
Collaboration and Deployment Services
itself is the security provider) or derived
from a remote directory, such as Windows
Active Directory or OpenLDAP.

service provider interface (SPI)
An API that supports replaceable
components and can be implemented or
extended by a third party.

SGML
See Standard Generalized Markup
Language.

shell script
A program, or script, that is interpreted
by the shell of an operating system.

Simple API for XML (SAX)
An event-driven, serial-access protocol for
accessing XML documents, used. A
Java-only API, SAX is used by most
servlets and network programs to
transmit and receive XML documents. See
also Document Object Model.

single sign-on (SSO)
An authentication process in which a user
can access more than one system or
application by entering a single user ID
and password.

SOAP A lightweight, XML-based protocol for
exchanging information in a
decentralized, distributed environment.
SOAP can be used to query and return
information and invoke services across
the Internet.

SPI See service provider interface.

SSO See single sign-on.

Standard Generalized Markup Language
(SGML)

A standard metalanguage for defining
markup languages that is based on the
ISO 8879 standard. SGML focuses on
structuring information rather than
presenting information; it separates the
structure and content from the
presentation. It also facilitates the
interchange of documents across an
electronic medium.

Glossary 49



stop word
A word that is commonly used, such as
"the," "an," or "and," that is ignored by a
search application.

subscription
Email notices and Really Simple
Syndication (RSS) feeds that repository
users create to receive when the state of
an asset changes.

T
TGT See ticket-granting ticket.

ticket-granting ticket (TGT)
A ticket that allows access to the ticket
granting service on the key distribution
center (KDC). Ticket granting tickets are
passed to the principal by the KDC after
the principal has completed a successful
request. In a Windows 2000 environment,
a user logs on to the network and the
KDC will verify the principal's name and
encrypted password and then send a
ticket granting ticket to the user.

time-based schedule
A schedule that triggers job execution at a
specified time or date. For example, a
time-based schedule may run a job at 5:00
pm every Thursday.

U
Universally Unique Identifier (UUID)

The 128-bit numeric identifier that is used
to ensure that two components do not
have the same identifier.

UUID See Universally Unique Identifier.

V
Velocity

A Java-based template engine that
provides a simple and powerful template
language to reference objects defined in
Java code. Velocity is an open source
package directed by the Apache Project.

W
W3C See World Wide Web Consortium.

WAR See web archive.

web archive (WAR)
A compressed file format, defined by the
Java EE standard, for storing all the
resources required to install and run a
web application in a single file. See also
enterprise archive, Java archive.

Web Services Description Language (WSDL)
An XML-based specification for
describing networked services as a set of
endpoints operating on messages
containing either document-oriented or
procedure-oriented information.

World Wide Web Consortium (W3C)
An international industry consortium set
up to develop common protocols to
promote evolution and interoperability of
the World Wide Web.

WSDL
See Web Services Description Language.

X
XMI See XML Metadata Interchange.

XML See Extensible Markup Language.

XML Metadata Interchange (XMI)
A model-driven XML integration
framework for defining, interchanging,
manipulating, and integrating XML data
and objects. XMI-based standards are in
use for integrating tools, repositories,
applications, and data warehouses.

XSL See Extensible Stylesheet Language.

50 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide



Index

Special characters
.NET framework 31
.NET proxies 5

A
app.config files

WCF clients 32

B
BinarySecuritySSOToken element

in SOAP headers 36
BinarySecurityToken element

in SOAP headers 36
bindings

in WSDL files 4
body elements

in SOAP messages 2

C
catalog prefix 10
catalogs

names 10
client-accept-language element

in SOAP headers 37
columns

metadata 22
Content Repository service

WCF clients 31
Content Repository URI service

WCF clients 31
Created element

in SOAP headers 36
credentials 10

D
Data Services Service

stubs 7
data sets

for tables 13
data sources 9

G
getDataSets operation 13
getSamples operation 15
getTableMetaData operation 19
getTableSimpleColumns operation 22
getTableTypes operation 24
getVersion operation 25
glossary 45

H
header elements

in SOAP messages 2, 35
SOAP security elements 35

Holder classes
in JAX-WS 5

HTTP 2
HTTP headers

for SOAP messages 37
HTTPS 2

I
identifier quote character 10

J
Java clients 27, 28, 30
Java proxies 5
JAX-WS 5, 27, 28, 30

L
List collections

in JAX-WS 5

M
MessageBodyMemberAttribute

for WCF clients 33
messages

in WSDL files 4
metadata

for columns 22
for tables 10, 19

N
namespaces

for SOAP security elements 35
Nonce element

in SOAP headers 36

P
Password element

in SOAP headers 36
PevServices service

WCF clients 31
port types

in WSDL files 4
Process Management service

WCF clients 31
protocols

in web services 2
proxies 5

.NET 5
Java 5

Q
qualifier separator 10

R
RowValuesType objects 15

S
SampleDetails objects 15
samples

for tables 15
schemas

names 10
Scoring service

WCF clients 31
Security element

in SOAP headers 35
services

in WSDL files 5
setAvURI method

for SampleDetails objects 15
setColumnName method

for TableType objects 15
setEvURI method

for SampleDetails objects 15
setKeyValues method

for SampleDetails objects 15
setName method

for TableType objects 15
setResultColumnNames method

for SampleDetails objects 15
setRowValues method

for TableType objects 15
setSample method

for SampleDetails objects 15
setTableName method

for SampleDetails objects 15
setValue method

for RowValuesType objects 15
for Value objects 15

single sign-on
for WCF clients 34
WCF clients 31

SOAP 2
SOAPHandler 28
SSO

See single sign-on
stubs

Data Services Service 7

T
TableMeta objects 13, 22
tables

data sets 13
metadata 10, 19
names 10
samples 15

© Copyright IBM Corp. 2000, 2017 51



tables (continued)
types 24

TableType objects 15
types

in WSDL files 3

U
Username element

in SOAP headers 36
UsernameToken element

in SOAP headers 36

V
Value objects 15
Visual Studio 31

W
WCF clients 31, 33, 34

endpoint behaviors 33
endpoint configuration 32
limitations 31
service reference 31
single sign-on 31

web services
introduction to web services 1
protocol stack 2
system architecture 1
what are web services? 1

web.config files
WCF clients 32

Windows Communication
Foundation 31

WSDL files 2, 3
bindings 4
messages 4
port types 4
services 5
types 3

wsdl.exe 5
wsdl2java 5
wsimport 5, 27

X
XmlElementAttribute

for WCF clients 33

52 IBM SPSS Collaboration and Deployment Services: Data Services Service Developer's Guide





IBM®

Printed in USA


	Contents
	Chapter 1. Introduction to web services
	What are web services?
	Web service system architecture
	Web service protocol stack
	Simple Object Access Protocol
	Web Service Description Language
	Types
	Messages
	Port types
	Bindings
	Services


	Proxies

	Chapter 2. Data Services Service overview
	Workflow
	Accessing the Data Services Service
	Calling Data Services Service operations

	Chapter 3. Data Service concepts
	Uniform Resource Identifiers
	Data sources
	Credentials
	Tables

	Chapter 4. Operation reference
	The getDataSets operation
	The getSamples operation
	The getTableMetaData operation
	The getTableSimpleColumns operation
	The getTableTypes operation
	The getVersion operation

	Chapter 5. JAX-WS clients
	Generating a JAX-WS client
	Packaging a JAX-WS client
	Configuring a JAX-WS client
	SOAPHandler example

	Exercising web services from JAX-WS clients

	Chapter 6. Microsoft® .NET Framework-based clients
	Adding a service reference
	Service reference modifications

	Configuring the web service endpoint
	Configuring endpoint behaviors
	Exercising the service
	Single sign-on authentication


	Chapter 7. Message header reference
	Security headers
	Security element
	UsernameToken element
	BinarySecurityToken and BinarySecuritySSOToken elements

	The client-accept-language element
	HTTP headers

	Appendix. Deprecated features
	Notices
	Privacy policy considerations
	Trademarks

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index
	Special characters
	A
	B
	C
	D
	G
	H
	I
	J
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X


