IBM SPSS Collaboration and
Deployment Services 5 User
Preferences Service Developer’s
Guide

..lli

ln
I
®

Note: Before using this information and the product it supports, read the general information
under Notices on p. 29.

This edition appliesto IBM SPSS Callaboration and Deployment Services 5 and to all subsequent
releases and modifications until otherwise indicated in new editions.

Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.
Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM
© Copyright IBM Corporation 2000, 2012.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Preface

This guide is intended for devel opers working with the web services available in IBM® SPSS®
Collaboration and Deployment Services. Users should have experience writing web service client
applications and are assumed to have knowledge of IBM Corp. applications, Java and .NET
development, data modeling concepts, and related technologies.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software hel ps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises — able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit

http: //Amww.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://mwww.ibm.conm/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.

© Copyright IBM Corporation 2000, 2012. iii

http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/data/cognos/financial-performance-management.html
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www.ibm.com/spss
http://www.ibm.com/support

1 Introduction to web services

Web service system architecture
Web service protocolstack

Simple Object Access Protocol
Web Service Description Language.
ProXies. ...

2 User Preferences Service overview

Accessing the User Preferences Service
Calling User Preferences Service operations

3 User preferences concepts

Preferenceitems
Preferenceitemvalues.

4 Operation reference

Clientporttype. . ..ot e

The deleteValuesoperation.
The getValueByDefld operation.......................
The getValuesoperation
The getVersion operation.
The setValue operation
Manager porttypet

The getDefinitionsoperation
The getUsersoperation.
The getVersion operation.,

© Copyright IBM Corporation 2000, 2012. iv

Contents

Appendices

A Microsoft .NET Framework-based clients

Adding a service reference

Service reference modifications
Configuring the web service endpoint
Configuring endpoint behaviors
Exercising the service

B Notices

Index

32

Chapter

Introduction to web services

What are web services?

At ahigh level, aweb serviceis aset of functionality distributed across a network (LAN or the
Internet) using a common communication protocol. The web service serves as an intermediary
between an application and its clients, providing both a standardized information structure and a
standardized communication protocol for interaction between the two. Where other methods of
distributed application architecture rely on a single programming language being used on both
the application and its clients, aweb service allows the use of loosely coupled services between
non-homogenous platforms and languages. This provides a non-architecture-specific approach
allowing, for example, Java services to communicate with C# clients, or vice-versa.

Advantages to implementing application functionality as web services include the following:

m Software written in different languages (Java or C#) running on different platforms (UNIX or
Windows) can exchange services and data

m Application functionality can be accessed by a variety of clients. For example, both a
thin-client interface and a rich-client interface can take advantage of the web service
operations.

m Updatesto the service are immediately available to all service clients

Web service system architecture

Web services are deployed and made publicly available using an application server, such as JBoss
Application Server, WebSphere®, or Oracle WebL ogic Server. The published web services

are hosted by this application server to handle application requests, access permissions, and
process load. A high-level architecture of how web services are implemented is displayed

in the following diagram.

Figure 1-1
Web service architecture
|
Client code Application
code
“ Request » i Request
Client proxy cai L Application
; proxy
B —
l Response Response J

© Copyright IBM Corporation 2000, 2012. 1

2

Chapter 1

The client code supplies input to an operation offered by a proxy class. The proxy class generates
areqguest containing a standardized representation of the input and sends it across the network
to the application. A proxy class on the server receives the request and unmarshals the contents
into objects for processing by the application. Upon completing the operation, the application
supplies a proxy with the output. The proxy creates a standardized representation of that output
and sends the response back to the client. The client proxy unmarshals the response into native
objects for subsequent processing by the client code.

Standardizing the format of the information passing between the client and the application
allows a client written in one programming language to communicate with an application written
in another. The proxy classes, which are automatically generated from a web service description
by a variety of toolkits, handle the translation between native programming objects and the
standardized representation. For more information, see the topic Proxies on p. 6.

Web service protocol stack

A web service implementation depends on technologies often organized in alayered stack. The
implementation itself defines a standard protocol for each technology layer, with each layer
depending on the layers appearing below it in the stack.

Figure 1-2
Web service protocol stack

Description J— WSDL

Packaging J S0AP

Transport J— HTTR, HTTRPS

Beginning at the bottom of the stack, the Transport layer defines the technology standards for
communication, allowing information to move across the network. HTTP or HTTPS are often
used as the standard for the transport layer.

The Packaging layer rests on top of Transport and defines the standard for structuring
information for transport across the network. The SOAP format is commonly used, which offers
an XML structure for packaging the data. For more information, see the topic Simple Object
Access Protocol on p. 3.

The topmost layer is Description and identifies the standards used by the layers below it in
the stack, as well as providing the definition of the interface available for client use. The most
common means of conveying this information is through the use of aWSDL file. For more
information, see the topic Web Service Description Language on p. 3.

3

Introduction to web services
Simple Object Access Protocol

The Simple Object Access Protocol (SOAP) isaway to pass information between applicationsin
an XML format. SOAP messages are transmitted from the sending application to the receiving
application, typically over an HTTP session. The actual SOAP message is made up of the
Envelope element, which contains a Body element and an optional Header element.

m Envelope. This mandatory element is the root of the SOAP message, identifying the
transmitted XML as being a SOAP packet. An envelope contains a body section and an
optional header section.

m Header. This optional element provides an extension mechanism indicating processing
information for the message. For example, if the operation using the message requires security
credentials, those credentials should be part of the envelope header.

m Body. Thiselement contains the message payload, the raw data being transmitted between the
sending and receiving applications. The body itself may consist of multiple child elements,
with an XML schematypically defining the structure of this data.

A SOAP packet and the corresponding XML is structured in the following way:

Figure 1-3
An example SOAP packet

csoapenv.Enuelopﬁ Jsch | ' I
xmins:soapenv="http://schemas.xml|soap.org/soap/envelopel
SOAP Envelope xmins:xsd="hitp:/fwww. w2 org/2001/XMLSchema’”
xmins:xsi="http fwww. w3 org/2001/XMLSchema-instance™>

<soapenv:Header>
<ns1:client-accept-language soapenv.mustUnderstand="0"

xsl:type="xsd:string"
o ;';:;ga[a xmins:nsi="http:fxml spss.comiws/eaders™>
P en-US;g=1.0, en,g=0.8

JE— <ins1:client-accept-language>
=/soapenv Header>
<goapeny: Body>

Body " h e ; .
e <getProviders xmins="http./ixml.spss.com/securityfremote”/=
Application Data <Ispapeny Body>
— A

</soapenv.Envelopes

Web Service Description Language

A Web Service Description Language (WSDL) file provides an XML-based map of what
functionality the published web service allows, separating the implementation in the service from
the interface. The WSDL defines the following:

m The access location of the web service

m Operations the web service exposes

m Parameters the exposed operations accept

® Any request or response messages associated with the operations

The WSDL provides the information necessary to generate a client-side proxy in the desired
programming language.

4

Chapter 1

In accordance with the WSDL specification (http://mww.w3.org/ TR/wsdl) adopted by the World
Wide Web Consortium, information in the WSDL is organized into the following sections:

m Types. Content definitions for web service operation input and output. For more information,
see the topic Types on p. 4.

m Messages. |nput and output definitions for the web service operations. For more information,
see the topic Messages on p. 5.

m PortTypes. Groups of operations offered by the web service. For more information, see the
topic Port types on p. 5.

m Bindings. Protocols and formats for the web service operations. For more information, see
the topic Bindings on p. 5.

m Services. Endpoints at which the web service functionality can be accessed. For more
information, see the topic Services on p. 6.

Types

The types element of a WSDL file contains the data type definitions employed by messages
processed by the web service. These definitions use XML to organize the information relevant to
the type element being defined. Consider the following type definitions:

<wsdl:types>
<schema targetNamespace="http://xml.spss.com/security/remote"
xmins="http://www.w3.0rg/2001/XMLSchema">
<element name="getProviders">
<complexType />
</element>
<element name="getProvidersResponse">
<complexType>
<sequence>
<element name="providerinfo[unbounded]' type="tns1:providerinfo" />
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>

This section defines two elements, getProviders and getProvidersResponse. The former isan
empty element. The latter contains a sequence of providerInfo child elements. These children are
all of the providerInfo type, which is defined elsewhere.

In practice, the WSDL file typically references type element definitions found in an external
XML schema. For instance, the following definition uses security-remote.xsd to define type
elements.

<wsdl:itypes>
<xs:schema>
<xs:import namespace="http://xml.spss.com/security/remote"
schemalocation="security-remote.xsd"/>
</xs:schema>
</wsdl:types>

http://www.w3.org/TR/wsdl

5

Introduction to web services

Messages

The message elements of a WSDL file defines the input or output parameters for operations
available in the web service. Each message can consist of one or more parts, with the parts
similar to the parameters of afunction call in atraditional programming language. Consider the
following two message definitions:

<wsdl:message name="getProvidersResponse">

<wsdl:part element="tns2:getProvidersResponse" name="parameters" />
</wsdl:message>
<wsdl:message name="getProvidersRequest">

<wsdl:part element="tns2:getProviders" name="parameters" />
</wsdl:message>

The getProvidersResponse message contains a single part, corresponding to the

getProvider sResponse element defined in the types section of the WSDL file. Similarly, the
getProvider sRequest message a so contains a single part, as defined by the getProviders element
in the types section. For more information, see the topic Typeson p. 4.

Port types

The portType element of aWSDL file defines the actual interface to the web service. A port type
issimply agroup of related operations and is comparable to afunction library, module, or classin
atraditional programming language. The definition specifies the parameters for the operations, as
well as any values returned. The parameters and return val ues correspond to messages defined
elsewhere in the WSDL file. Consider the following port type definition:

<wsdl:portType name="ProviderInformation">
<wsdl:operation name="getProviders">
<wsdlinput message="impl:getProvidersRequest’ name="getProvidersRequest" />
<wsdl:output message="impl:getProvidersResponse" name="getProvidersResponse" />
</wsdl:operation>
</wsdl:portType>

The ProviderInformation port type consists of a single operation, getProviders. Input to this
operation corresponds to the getProvider sRequest message. The operation returns information
in the structure defined by the getProvider sResponse message. For more information, see the
topic Messages on p. 5.

Bindings

The binding element of aWSDL file binds the interface defined by the port type to transport and
messaging protocols. Consider the following binding definition:

<wsdl:binding name="ProviderInformationSoapBinding" type="impl:ProviderInformation">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getProviders">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getProvidersRequest">
<wsdlsoap:body namespace="http://xml.spss.com/security/remote" use="literal" />

6

Chapter 1
</wsdl:input>
<wsdl:output name="getProvidersResponse">
<wsdlsoap:body namespace="http://xml.spss.com/security" use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
In this case, the transport attribute of the wsdlsoap:binding element defines HTTP as the transport
protocol. Both the getProviders and getProvidersReponse operations in the interface are bound
to the SOAP messaging protocol.
Services
The service element of aWSDL file identifies the network location at which the service interface
can be accessed. Consider the following service definition:
<wsdl:service name="ProviderInformationService">
<wsdl:port binding="impl:ProviderinformationSoapBinding" name="ProviderInformation">
<wsdlsoap:address location="http://pes_server:8080/security-ws/services/ProviderInformation” />
</wsdl:port>
</wsdl:service>
In this example, the operations comprising the Provider Information port type can be accessed at:
http://pes_server:8080/security-ws/services/Provider Information
Proxies

Proxies serve as bridges between the client and the web service. A client-side proxy marshals the
input objects into a standardized representation which is sent to the web service. A server-side
proxy unmarshals the information into input objects for the service operations. The results of the
operation are marshalled into standard representations and returned to the client. The client proxy
unmarshals the response information into objects for any additional processing by the client.

Creating a proxy is the first step when developing a web service client; the proxy is the
translation-unit between your application and the web service the application isusing. Fortunately,
many devel opment environments include tools for automatically generating the client proxy from
the web service WSDL file, allowing the client devel oper to focus on the client application code
instead of transport and packaging protocols.

The proxy classes generated from a WSDL file depend on the tool used. For Java, the
wsdl2java tool, which is part of the Apache Axis project, can be used. Thistool produces a Java
class for each type in the WSDL. Each port type results in a Javainterface. A binding creates a
stub class, and aWSDL service yields a service interface with alocator implementation. These
generated classes and interfaces can be called directly from aclient application written in Javato
access the web service functionality.

An dternative Java proxy tool is wsimport, which is part of JAX-WS. The general structure of
the generated classes is similar to that created by the Axistool, but there are some differences.
For example, instead of using arrays for input fields and returned items, the code generated from

7

Introduction to web services

the wsimport tool uses List collections. In addition, if an input type matches an output type for a
method, the wsimport tool uses a Holder class for the parameter.

In contrast, on the .NET platform, the wsdl.exe tool is often used to generate a web service
proxy. Thistool creates a single source file in a specified language containing the proxy class.
This class includes both synchronous and asynchronous methods for each operation defined in the
WSDL. For example, the web service operation getProviders results in the methods getProviders,
getProvidersBegin, and getProvidersEnd. The latter two can be used for asynchronous processing.

A variety of other tools exist for other programming languages. For details, consult the
documentation for those tools. In each case, the tool creates native programming constructs that
permit leveraging a web service regardless of the service implementation language.

Chapter

User Preferences Service overview

The User Preferences Service allows users of a client application to store and retrieve individual
values for preference items defined in the system, permitting a customized experience for each
user. For example, a user can specify his or her eemail address and have it persist across sessions.
In addition, the service includes administrative functionality for managing preference items, such
as identifying which users have specified preference values.

Accessing the User Preferences Service

To access the functionality offered by the User Preferences Service, create a client application
using the proxy classes generated by your preferred web service tool. The service includes two
port types, Client and Manager, with the following endpoints:

http://<host-name>:<port-number>/userpref-ws/services/Client
http://<host-name>:<port-number>/userpref-ws/services/Manager

The value of <host-name> corresponds to the machine on which IBM® SPSS® Collaboration and
Deployment Services Repository isinstalled, with <port-number> indicating the port number on
which itisrunning. To accessthe WSDL file for the service, append ?wsdl to the service endpoint.

For example, if IBM SPSS Collaboration and Deployment Services Repository is running on port
80 of the machine cads_server, the WSDL file can be accessed using the path:

http://cads_server:80/userpref-ws/services/Client?wsdl
http://cads_server:80/userpref-ws/services/Manager?wsdl

Calling User Preferences Service operations

Clients access the operations offered by the web service using astub for the service. Thefollowing
is an example of how to acquire a stub in Javathrough Axis defined methods:

String context = "/userpref-ws/services/Client";
URL url = new URL("http", "cads_server", 80, context);

UserPref service = new UserPrefServiceLocator();
stub = service.getUserPref(url);

The service operations can be called directly from the stub, such as:

stub.getValues(request);

© Copyright IBM Corporation 2000, 2012. 8

Chapter

3

User preferences concepts

Preference items

A preference item corresponds to an internal system setting that is allowed to vary across users.
For example, every user has an e-mail address but the individual values of the addresses can differ.
Preference items available in the system are defined by the following properties:

m Definition ID. Aninternal identifier used to reference the item, such as email/default.

m Name. Thelocalized name of the item, such as Email Address. The name can be used in
client user interfaces that expose the item.

m Component. The localized name of the component that defined the item, such as General
Preferences. The component name may be used to group similar itemsin lists.

m Type. Thetype of information stored in the item, which can have implications on the interface
used to edit the item value. Some types include constraints on the permissible values for

the item.

Table 3-1

Item Types

Type Description Constraints

freeForm A string. Minimum and maximum
number of charactersin the
string.

email An e-mail address compliant with RFC-822

(http://mwww.ietf.org/rfc/rfc0822.txt).
password A security-sensitive string. Values for items of
this type are often masked in user interfaces.

choices A set of predefined choices. The number of selections
from the set. Valid values
include one, many, or at
least one (some).

bool A binary choice, such as Yes/No or True/False.

int An integer. The minimum and
maximum values for the
integer.

accessControlList A set of principall D/permissionID pairs.

Anitem may aso include an HTML string designed to serve as help text in user interfaces that
expose the item.

A preference item may be defined to be backed by either a configuration item or auser directory
item. If the preference item itself has no specified value, the value of the backing item will be
used in its place. For example, getting the value for the email/default item may return a value
from a user directory, such as Active Directory, if the user has not specifically set his or her e-mail
address. If neither the preference item nor its backing item have values, no value will be returned.

© Copyright IBM Corporation 2000, 2012. 9

http://www.ietf.org/rfc/rfc0822.txt
http://www.ietf.org/rfc/rfc0822.txt

10

Chapter 3

Preference item values

Each user can have a different value for a preference item. That value has an internal address
comprised of the following attributes:

m Definition ID. The identifier for the item.

m Principal ID. An interna identifier for the user associated with the value, including both the
directory containing the user and the user name. This string uniquely identifies the principal
in the enterprise as viewed from the IBM® SPSS® Collaboration and Deployment Services
system.

m Value key. Some item types, such as choices, may have multiple user-named values. For these
items, the address includes a value key denoting the value name. If the item allows only
one value, the address omits the value key.

References to an item value that omit the principal ID from the address default to the identifier
for the current principal. Consequently, the principal ID is only required when one user needs
to access another user’s item values, such as when an administrator modifies preference item
values for auser. However, in that case, the person making the changes must be assigned to
arole containing the userPref/Admin action.

The User Preferences Service includes operations for assigning, retrieving, and deleting item
values based on their addresses.

Chapter

Operation reference

Client port type

The Client port type includes operations used for working with preference item values, such as
retrieving, setting, and deleting values.

The deleteValues operation
Removes one or more values for user preference items. Thiswould typically be used to cleanup

obsolete user preferences. For example, a system defined process might determine users or content
that no longer exist and remove related user preference values.

Input fields

The following table lists the input fields for the deleteValues operation.

Table 4-1
Fields for deleteValues
Field Type/Valid Values Description
deleteValues deleteValues Identifier for the values to delete,

composed of a definition ID, a
principal 1D, and/or avalues key.

Return information

The following table identifies the information returned by the deleteValues operation.

Table 4-2
Return Value

Type Description
string Total number of values deleted.

Java example

Removing the values assigned to a user preference item involves creating a DeleteValues
object. Use the setDefID method to define the definition ID for the item. Supply this object to
the deleteValues operation.

DeleteValues deleteValues = new DeleteValues();
deleteValues.setDeflD("com.spss.security/upDefaultACL");
stub.deleteValues(deleteValues);

© Copyright IBM Corporation 2000, 2012. 1

12

Chapter 4

SOAP request example

Client invocation of the deleteValues operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<deleteValues xmIns="http://xml.spss.com/pes/userPref/remote">
<deleteValues xmIns="http://www.spss.com/pes/userPref" deflID="com.spss.security/upDefaultACL"/>
</deleteValues>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a deleteValues operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<deleteValuesResponse xmins="http://xml.spss.com/pes/userPref/remote">
<nsl:deleteValueResponse xmins:ns1="http://www.spss.com/pes/userPref">
<nsl:response>1</nsl:response>
</ns1.deleteValueResponse>
</deleteValuesResponse>
</soapenv:Body>
</soapenv:Envelope>

The getValueByDefld operation

Returns current user preference item value for a specified item.

13

Operation reference

Input fields

The following table lists the input fields for the getValueByDefld operation.

Table 4-3

Fields for getValueByDefld

Field Type/Valid Values Description
defldRequest defldRequest

Return information

The following table identifies the information returned by the getValueByDefld operation.

Table 4-4
Return Value

Type Description
defldResponse

The getValues operation

Returns current user preferenceitem valuesfor one or more items based on partial or fully qualified
value addresses. If the address omits the definition ID for an item, the operation returns val ues for
al items for the user. The request also includes aflag indicating whether or not the values from
the hierarchy and whether configuration and user preference macros should be resolved.

Input fields

The following table lists the input fields for the getValues operation.

Table 4-5
Fields for getValues
Field Type/Valid Values Description
valueRequest valueRequest Identifier for thevaluestoretrieve,

composed of a definition ID, a
principal 1D, and/or avalues key.

Return information

The following table identifies the information returned by the getValues operation.

Table 4-6
Return Value
Type Description
valuesResponse Preference values corresponding to the request
parameters.

Java example

To retrieve values for a user preference item, create a ValueRequest object. Use the setDeflD
method to define the definition ID for the item. Supply this object to the getValues operation.

14

Chapter 4

The web service returns the valuesin aValuesResponse object. Use the getValueArray method
to return a ValueArray object, from which individual values can be returned using the getValue
method. The following sample retrieves the value for the email/default item:

String emailAddress =",
ValueRequest valueRequest = new ValueRequest();
valueRequest.setDeflD("email/default’);

ValuesResponse valuesResponse = stub.getValues(valueRequest);

SOAP request example

Client invocation of the getValues operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<getValues xmIns="http://xml.spss.com/pes/userPref/remote">
<valueRequest xmIns="http://www.spss.com/pes/userPref' defID="email/default'/>
</getValues>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server respondsto agetValues operation call by sending a SOAP response message containing
the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/

xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>

<getValuesResponse xmins="http://xml.spss.com/pes/userPref/remote">

<nsl:valuesResponse xmins:ns1="http://www.spss.com/pes/userPref">
<nsl.valueArray>
<nsT:value ns1:component="$$userPref/grpGeneral ns1:name="8$userPref/emailName"
ns1:deflD="email/default’ ns1:principallD="//uNative//validUser">

15

Operation reference

validUser@company.com
</nsl:value>
</nsl.valueArray>
</ns1.valuesResponse>
</getValuesResponse>
</soapenv:Body>
</soapenv:Envelope>

The getVersion operation

Returns the version number of the service.

Return information

The following table identifies the information returned by the getVersion operation.

Table 4-7

Return Value

Type Description

string The version of the web service.

Java example

To access the version number of the service, call the getVersion operation from the service stub.

System.out.printin("Service Version = " + stub.getVersion());

SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getVersion xmlns="http://xml.spss.com/pes/userPref/remote"/>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"

16

Chapter 4

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getVersionResponse xmins="http://xml.spss.com/pes/userPref/remote">
<version>4.20.000</version>
</getVersionResponse>
</soapenv:Body>
</soapenv:Envelope>

The setValue operation

Assigns avalue to a user preference item using a fully qualified value address. The User
Preferences Service validates the value against any constraints defined for the item. If thevalueis
invalid, the operation returns an exception without saving the value. To report the problem to

the user, use the information returned by the exception’s getFaultReason method. For proxies
generated by Axis, casting to an AxisFault may be needed:

String displayMessage = ((AxisFault)e).getFaultReason()

Input fields

The following table lists the input fields for the setValue operation.

Table 4-8
Fields for setValue
Field Type/Valid Values Description
setValue setValue The address of the value to set,

and the actual content/data to
assign to the address.

Return information

The following table identifies the information returned by the setValue operation.

Table 4-9

Return Value

Type Description

string General status message. This message should not be

interpreted by client applications as the value may
changein future releases. It currently serves merely
as a placeholder for the protocol.

Java example

To specify avalue for a user preference item, create a SetValue object. Use the setDeflD method
to specify the definition ID for the item being set. The setContent method defines the value to
assign to that item. Supply this object to the setValue operation.

SetValue value = new SetValue();
value.setDeflD("email/default");
value.setContent('jjones@yahoo.com’);

17

Operation reference
SetValueResponse valueResponse = stub.setValue(value);

SOAP request example

Client invocation of the setValue operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<setValue xmiIns="http://xml.spss.com/pes/userPref/remote">
<setValue xmIns="http://www.spss.com/pes/userPref"
xmins:ns1="http://www.spss.com/pes/userPref' ns1:deflID="email/default">
jjones@yahoo.com
</setValue>
</setValue>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a setValue operation call by sending a SOAP response message containing
the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<setValueResponse xmins="http://xml.spss.com/pes/userPref/remote">
<ns1:setValueResponse xmins:ns1="http://www.spss.com/pes/userPref">
<nsl:response>0K</ns1:response>
</ns1:setValueResponse>
</setValueResponse>
</soapenv:Body>
</soapenv:Envelope>

18

Chapter 4

Manager port type

The Manager port type includes operations used for managing preference items, such asretrieving
item definitions and identifying users with values for items.

The getDefinitions operation

Retrieves all preference item definitions available in the system. The operation can aso return a
specific item based on its definition ID.

Use this operation to get alist of al possible preference items for constructing a data-driven
user interface. The item types can be used to determine the optimal interface control to use for
editing the value, while the constraints can be used to validate new values. Use the setValue
operation to actually update the existing value. For more information, see the topic The setValue
operation on p. 16.

Input fields

The following table lists the input fields for the getDefinitions operation.

Table 4-10

Fields for definitionRequest

Field Type/Valid Values Description
definitionRequest definitionRequest

Return information

The following table identifies the information returned by the getDefinitions operation.

Table 4-11
Return Value

Type Description

definitionResponse

Java example

The getDefinitions operation returns a DefinitionResponse object containing information

about the existing preference items. Use the getPreferenceDataltems method to return a
PreferenceDataltems object from which an array of PreferenceData objects containing details
about the items can be obtained using the getPreferenceData method. For each entry in the array,
accessor methods return specific properties, such as the item name, 1D, and type.

DefinitionResponse response = stub.getDefinitions();
PreferenceDataltems items = response.getPreferenceDataltems();
PreferenceData[] prefData = items.getPreferenceData();
for (intj = 0; j < prefData.length; j++) {
System.out.printin("Name: " + prefData[jl.getltemName());
System.out.printIn("ID: " + prefDatalj].getDefID());
System.out.printin("Type: " + prefDatalj].getltemTypel());
System.out.printin("Component: " + prefDatalj].getComponentName());

19

Operation reference

System.out.printin(Instance Count: " + prefDatalj].getInstanceCount());

}

SOAP request example

Client invocation of the getDefinitions operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<definitionRequest xmlns="http://xml.spss.com/pes/userPref/remote">
<definitionRequest xmIns="http://www.spss.com/pes/userPref'/>
</definitionRequest>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getDefinitions operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<definitionRequestResponse xmins="http://xml.spss.com/pes/userPref/remote">
<ns1:definitionResponse xmins:ns1="http://www.spss.com/pes/userPref">
<ns1l:preferenceDataltems>
<nsl:preferenceData ns1:componentName="security/cfgGroup/
ns1:deflD="com.spss.security/upDefaultACL" ns1:exposelnServer="false"
nsl:instanceCount="0" ns1:itemName="security/upnDefaultACL"
nsl:itemType="accessControlList' ns1:keyed="false">
<ns1:helpHTML>Default privileges for creating objects.</ns1:helpHTML>
</ns1:preferenceData>
<nsl:preferenceData ns1:componentName="User Preference Sample"
ns1:deflD="demo/Bool" ns1:exposelnServer="false" ns1:instanceCount="0"

20

Chapter 4

nsl:itemName="bool type" ns1:itemType="bool" ns1:keyed="false">
<ns1:helpHTML>Yes or No</ns1:helpHTML>
</ns1:preferenceData>
<ns1:preferenceData ns1:componentName="User Preference Sample"
ns1:defID="demo/Choice" ns1:exposelnServer="false" ns1:instanceCount="0"
nsl:itemName="choices type" nsl:itemType="choices" ns1:keyed="false">
<ns1:constraints>"red|1r", "green|2g", "blue|3b"</ns1:constraints>
<ns1:helpHTML>Select a color.</ns1:helpHTML>
</ns1:preferenceData>
<ns1:preferenceData ns1:backing="config:demo/FreeForm"
ns1l:componentName="User Preference Sample" ns1:deflD="demo/FreeForm"
nsl:exposelnServer="false" ns1l:instanceCount="0" ns1:itemName="freeForm type"
nsl:itemType="freeForm" ns1:keyed="false">
<nsl:constraints>0:2147483647</ns1:constraints>
<ns1:helpHTML>Any string.</ns1:helpHTML>
</nsl:preferenceData>
<ns1:preferenceData ns1:componentName="User Preference Sample"
ns1:deflD="demo/Int" ns1:exposelnServer="false" ns1:instanceCount="0"
nsl:itemName="int type" nsl:itemType="int" ns1:keyed="false">
<ns1:constraints>-2147483648:2147483647</ns1:constraints>
<ns1:helpHTML>A number</ns1:helpHTML>
</ns1:preferenceData>
<nsl:preferenceData ns1:componentName="User Preference Sample"
nsl:deflD="demo/Password" ns1:exposelnServer="false" ns1l:instanceCount="0"
nsl:itemName="password type" ns1:itemType="password" ns1:keyed="false">
<ns1:helpHTML>A password.</ns1:helpHTML>
</ns1:preferenceData>
<nsl:preferenceData ns1:backing="userdir:email’ ns1:componentName="General
ns1:deflD="email/default' ns1:exposelnServer="true" ns1:instanceCount="0"
nsl:itemName="email type" nsl:itemType="email' ns1:keyed="false">
<ns1:helpHTML>The user's specified default email address.</ns1:helpHTML>
</ns1:preferenceData>
</ns1:preferenceDataltems>

</ns1.definitionResponse>
</definitionRequestResponse>
</soapenv:Body>
</soapenv:Envelope>

The getUsers operation

Returns the set of all users that have user preferences values defined. The principal calling this
operation must be assigned to arole with the user Pref/Admin action.

The list of users returned by the getUsers operation can be compared to lists of users for
directoriesin use. Users present in the former list but not in the latter have been removed from
the system and their values can be safely deleted. Supply the deleteValues operation with
value addresses that include the principal 1Ds for those users to remove their values. For more
information, see the topic The deleteValues operation on p. 11.

21

Operation reference

Input fields

The following table lists the input fields for the getUsers operation.

Table 4-12

Fields for usersRequest

Field Type/Valid Values Description
usersRequest usersRequest

Return information

The following table identifies the information returned by the getUsers operation.

Table 4-13
Return Value

Type Description
usersResponse

Java example

The getUsers operation returns a UsersResponse object containing information about the
users. Use the getUserDataltems method to return a UserDataltems object from which an array
of UserDetails objects containing details about the returned users can be obtained using the
getUserDetails method.

For each entry in the array, the getlnstanceCount method returns the number of preference
values for the user. In addition, the getUser method returns a User object containing the display
name and principal 1D for the user.

UsersResponse users = stub.getUsers();
UserDetails[] details = users.getUserDataltems().getUserDetails();
for (intj = 0; j < details.length; j++) {
User userProfile = details[j].getUser();
System.out.printin("User " + userProfile.getDisplay() +
" (principal ID =" + userProfile.getPrincipallD() + ") has " +
details[j].getInstanceCount() + "preference item values defined.");

}

SOAP request example

Client invocation of the getUsers operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>

22

Chapter 4

<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<usersRequest xmlns="http://xml.spss.com/pes/userPref/remote">
<usersRequest xmlns="http://www.spss.com/pes/userPref'/>
</usersRequest>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getUsers operation call by sending a SOAP response message containing
the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<usersRequestResponse xmins="http://xml.spss.com/pes/userPref/remote">
<ns1:usersResponse xmins:ns1="http://www.spss.com/pes/userPref">
<nsl:userDataltems>
<nsl:userDetails ns1:instanceCount="1">
<nstl:user ns1:principallD="//uNative//validUser" ns1:display="validUser"/>
</ns1:userDetails>
<nsl:userDetails ns1:instanceCount="1">
<nst:user ns1:principallD="//uADL/domain/jjones" ns1:display="jjones (domain)'/>
</nsl:userDetails>
</nsl:userDataltems>
</ns1:usersResponse>
</usersRequestResponse>
</soapenv:Body>
</soapenv:Envelope>

The getVersion operation

Returns the version number of the service.

Return information

The following table identifies the information returned by the getVersion operation.

23

Operation reference

Table 4-14

Return Value

Type Description

string The version of the web service.

Java example

To access the version number of the service, call the getVersion operation from the service stub.

System.out.printin("Service Version = " + stub.getVersion());

SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getVersion xmlns="http://xml.spss.com/pes/userPref/remote"/>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getVersionResponse xmins="http://xml.spss.com/pes/userPref/remote">
<version>4.20.000</version>
</getVersionResponse>
</soapenv:Body>
</soapenv:Envelope>

Appendix

A

Microsoft .NET Framework-based
clients

In order to use the web services from a Microsoft Windows Communication Foundation (WCF)
client, you will need Visua Studio 2008 or later. The discussion here assumes the use of Visua
Studio 2008. In general, the process for accessing IBM® SPSS® Collaboration and Deployment
Services web services involves the following steps:

1. Add aService Reference. For moreinformation, see the topic Adding a service reference on p. 24.

2. Configure the web service endpoint. For more information, see the topic Configuring the web
service endpoint on p. 26.

3. Programmatically configure the necessary endpoint behaviors. For more information, see the
topic Configuring endpoint behaviors on p. 27.

4. Exercisethe web service. For more information, see the topic Exercising the service on p. 27.

Note that the IBM SPSS Collaboration and Deployment Services single sign-on implementation
is not compatible with Microsoft .NET web services, or the WCF. As aresult, single sign-on
is not available from these clients.

Adding a service reference

Thefirst step in using a WCF client to access IBM® SPSS® Collaboration and Deployment
Services web services is to make the service available to the Visua Studio project by adding
it as a Service Reference.

1. InVisua Studio, right-click the folder’s References folder and select Add Service Reference.

2. Typethe URL of the service WSDL location in the Address field, and click Go. The value
corresponds to the service endpoint appended with 2wsdl.

3. Specify the desired namespace in the Namespace field.

4. Click OK.

Visual Studio adds anew service reference to the Service Reference directory for the project. The
name of the reference corresponds to the specified namespace.

© Copyright IBM Corporation 2000, 2012. 24

25

Microsoft® .NET Framework-based clients

Service reference modifications

E N

o

Due to known compatibility issues between Microsoft tooling and some WSDL files, you need to
manually modify some service references before they can be used successfully. For information
about the specific issues, see articles 891386 (http://support.microsoft.com/kb/891386) and
326790 (http://support.microsoft.com/kb/326790) on the Microsoft Support site.

To modify a service reference:

In Visual Studio, select the project and click Show All Files from the Project menu.
Expand the service reference that needs to be modified.

Expand the Reference.svcmap node.

Open the Reference.csfile.

Make the required modifications.

Save thefile.

For the Content Repository Service, Content Repository URI Service, and Process Management
Service, you need to make the following changes to the RowType class:

m private value[][] cellField should be changed to private value[] cellField
m public value[][] cell should be changed to public value[] cell

For the Scoring Service, you need to make the following changes:

m in the returnedDPDOutputTable class, private returnedDPDOutputValue[][]
returnedDPDOutputrowField should be changed to private returnedDPDQutputValue[]
returnedDPDOutputrowField

m in the returnedDPDOutputTable class, private returnedDPDOutputValue[][]
returnedDPDOutputRow should be changed to private returnedDPDQutputValuel]
returnedDPDOutputRow

m in the returnedRequestinputTable class, private returnedRequestinputValuel][]
returnedRequestinputRow should be changed to private returnedRequestinputValue[]
returnedRequestinputRow

m in the returnedRequestinputTable class, private returnedRequestinputValuel][]
returnedRequestinputRowField should be changed to private returnedRequestinputValue[]
returnedRequestinputRowField

m intherequestinputTable class, private input1[][] requestinputRowField should be changed to
private input1[] requestinputRowField

m intherequestinputTable class, private input1[][] requestinputRow should be changed to private
input1[] requestinputRow

For the PevServices Service, you need to make the following changes:

m in the avTableConflict class, private avColumnMeta[][] avColumnConflictField should be
changed to private avColumnMeta[] avColumnConflictField

http://support.microsoft.com/kb/891386
http://support.microsoft.com/kb/326790

26

Appendix A

m inthe avTableConflict class, private avColumnMeta[][] avColumnConflict should be changed to
private avColumnMeta[] avColumnConflict

m inthe evTableConflict class, private evColumnMeta[][] evColumnConflictField should be
changed to private evColumnMeta[] evColumnConflictField

m intheevTableConflict class, private evColumnMetal[][] evColumnConflict should be changed to
private evColumnMeta[] evColumnConflict

Configuring the web service endpoint

In WCF, you can configure a service endpoint either declaratively using an app.config file, or
programmatically using the WCF APIs. The following steps describe the creation of a basic
configuration within an app.config file.

1. InVisua Studio, double-click the app.config file for the application (or web.config for a
web-application).

2. Find the system.serviceModel element. Createit if it does not already exist.

3. Find the client element. Createit if it does not already exist.

4. Create anew endpoint element as a child of the client element.

5. Specify the appropriate service endpoint URL as the value of the address attribute.
6. Specify basicHttpBinding as the value of the binding attribute.

7. Specify the appropriate service contract as the value of the contract attribute. The service contract
is the value of the service reference namespace appended with the service name.

8. Optionally specify avalue for the name attribute that identifies a name for the endpoint
configuration. If the name is blank, the configuration is used as the default for the service.

The resulting app.config file should be similar to the following example:

<system.serviceModel>
<client>
<endpoint
address="http://cads_server:8080/cr-ws/services/ContentRepository"
binding="basicHttpBinding"
bindingConfiguration=""
contract="IBM.SPSS.ContentRepository"
name="/>
</client>
</system.serviceModel>

27

Microsoft® .NET Framework-based clients

Configuring endpoint behaviors

The following two issues complicate the use of IBM® SPSS® Collaboration and Deployment
Servicesweb services by WCF clients:

m WCF does not alow the username and password to be transmitted over HTTP
m WCF does not correctly understand the SOAP Fault format returned by the services

To address these problems, a sample Visual Studio project is available that contains classes adding
endpoint behaviors that resolve both issues. The IBM SPSS Collaboration and Deployment
Services installation media includes this project.

To use these classes, ensure that the IBM.SPSSWCF.Utilities project containing these classes has
been compiled and added as areference to the Visual Studio project that exercises the web services.
When constructing a new service client instance, ensure that the behaviors are added as follows:

ContentRepositoryClient serviceClient = new ContentRepositoryClient();
serviceClient.Endpoint.Behaviors.Add(
new ApplyClientInspectorsBehavior(
new HeaderlnjectionMessagelnspector(
new UsernameTokenSecurityHeader("admin", "Abcdefg1")

),
new SOAPFaultFormatMessagelnspector())

);

This adds two message inspectors to the behaviors for the endpoint. The first allows message
headers to be injected, permitting a UsernameToken security header containing the username and
password to be transmitted over HTTP. The second message inspector intercepts SOAP Faults,
ensuring that they are formatted for proper WCF processing.

Exercising the service

After adding the service reference to the project, configuring the endpoint, and adding the
necessary endpoint behaviors, the WCF-based web service client isready. Add the .NET source
code to the project to exercise the web service as needed.

There may be instances in which the .NET client proxies are generated incorrectly, leading to
unexpected missing results at runtime. If aweb service call returns no results when results

are expected, the generated .NET types associated with the request and response should be
examined. Specifically, members of the types may have two .NET attributes assigned. The first,
MessageBodyMemberAttribute, will often include the proper namespace for the member type. The
second, XmIElementAttribute, should have the same namespace as MessageBodyMemberAttribute.
If thisis not the case, add the namespace to XmlElementAttribute. Moreover, the addition of XML
seriaization attributes, such as System.XML.Serialization.XmlElementAttribute, may be necessary
to correctly name the expected namespace or element. For example, the following generated
client code would need to be modified:

public partial class getUsersResponse {
System.ServiceModel.MessageBodyMemberAttribute(Namespace =
“http://xml.spss.com/pes/userPref/remote", Order = 0)]

28

Appendix A

public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

The corrected code is as follows;

public partial class getUsersResponse {
[System.ServiceModel.MessageBodyMemberAttribute(Namespace =
“http://xml.spss.com/pes/userPref/remote”, Order = 0)]
[System.Xml.Serialization.Xml|ElementAttribute(ElementName="usersRequestResponse")]
public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

Appendix

Notices

Thisinformation was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
availablein your area. Any referenceto an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it isthe user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.SA

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS1S” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sitesis at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
thisone) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

© Copyright IBM Corporation 2000, 2012. 29

30

Appendix B

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of afee.

The licensed program described in this document and all licensed materia available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-1IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http: //www.ibm.convlegal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX isaregistered trademark of The Open Group in the United States and other countries.

Javaand all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

31

2 fifla
-V

CompaTRLL

Notices

accessControlList type
for preference items, 9

addresses

for item values, 10
app.config files

WCEF clients, 26
assigning

values, 16
backing

preference items, 9
bindings

in WSDL files, 5

body elements

in SOAP messages, 3
bool type

for preference items, 9

choices type
for preference items, 9
Client port type, 11
components
for preference items, 9
Content Repository service
WCEF clients, 25
Content Repository URI service
WCEF clients, 25

definition I1Ds

for preference items, 9
deleteValues operation, 11
deleting

values, 11

email type
for preference items, 9

freeForm type
for preference items, 9

getDefinitions operation, 18
getUsers operation, 20
getValueByDefld operation, 12
getValues operation, 13
getVersion operation, 15, 22

header elements

in SOAP messages, 3
Holder classes

in JAX-WS, 6
HTTP, 2
HTTPS, 2

© Copyright IBM Corporation 2000, 2012.

32

integer type

for preference items, 9
items

retrieving, 18

Java proxies, 6
JAX-WS, 6

legal notices, 29
List collections
in JAX-WS, 6

Manager port type, 18

M essageBodyM emberAttribute

for WCEF clients, 27

messages
in WSDL files, 5

names

for preference items, 9
.NET framework, 24
.NET proxies, 7

operation reference, 11

password type
for preference items, 9
PevServices service
WCEF clients, 25
port types
in WSDL files, 5
preference items, 9
backing, 9
values, 10

Process Management service

WCEF clients, 25
protocols

in web services, 2
proxies, 6

Java, 6

.NET, 7

retrieving
items, 18
users, 20
values, 12-13

Scoring service
WCEF clients, 25
service endpoints

User Preferences Service service, 8

Index

33

Index

services
in WSDL files, 6
setValue operation, 16
single sign-on
WCEF clients, 24
SOAP, 2-3
stubs
User Preferences Service service, 8

trademarks, 30

types
for preference items, 9
in WSDL files, 4

User Preferences Service service
service endpoint, 8

stubs, 8
users
retrieving, 20
values
addresses, 10
assigning, 16
deleting, 11

retrieving, 12-13
Visual Studio, 24

WCF clients, 24, 27
endpoint behaviors, 27
endpoint configuration, 26
limitations, 24
service reference, 2425
single sign-on, 24

web services
introduction to web services, 1
protocol stack, 2
system architecture, 1
what are web services?, 1

web.config files
WCF clients, 26

Windows Communication Foundation, 24

WSDL files, 2-3
accessing, 8
bindings, 5
messages, 5
port types, 5
services, 6
types, 4

wsdl.exe, 7

wsdl2java, 6

wsimport, 6

XmlElementAttribute
for WCF clients, 27

	IBM SPSS Collaboration and Deployment Services 5 User Preferences Service Developer’s Guide
	Contents
	1. Introduction to web services
	What are web services?
	Web service system architecture
	Web service protocol stack
	Simple Object Access Protocol
	Web Service Description Language

	Proxies

	2. User Preferences Service overview
	Accessing the User Preferences Service
	Calling User Preferences Service operations

	3. User preferences concepts
	Preference items
	Preference item values

	4. Operation reference
	Client port type
	The deleteValues operation
	The getValueByDefId operation
	The getValues operation
	The getVersion operation
	The setValue operation

	Manager port type
	The getDefinitions operation
	The getUsers operation
	The getVersion operation

	A. Microsoft® .NET Framework-based clients
	Adding a service reference
	Service reference modifications

	Configuring the web service endpoint
	Configuring endpoint behaviors
	Exercising the service

	B. Notices
	Index

