IBM SPSS Collaboration and
Deployment Services 5 Single
Sign-0n Services Developer’s Guide

..lli

ln
I
®

Note: Before using this information and the product it supports, read the general information
under Notices on p. 58.

This edition appliesto IBM SPSS Callaboration and Deployment Services 5 and to all subsequent
releases and modifications until otherwise indicated in new editions.

Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.
Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM
© Copyright IBM Corporation 2000, 2012.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Preface

This guide is intended for devel opers working with the web services available in IBM® SPSS®
Collaboration and Deployment Services. Users should have experience writing web service client
applications and are assumed to have knowledge of IBM Corp. applications, Java and .NET
development, data modeling concepts, and related technologies.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software hel ps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises — able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit

http: //Amww.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://mwww.ibm.conm/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.

© Copyright IBM Corporation 2000, 2012. iii

http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/data/cognos/financial-performance-management.html
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www.ibm.com/spss
http://www.ibm.com/support

1 Introduction to web services

Web service system architecture
Web service protocol stack,

Simple Object Access Protocol
Web Service Description Language.
ProXies. . ..o e

2 Single sign-on services overview

SSO Authentication Service overview.
Workflow.
Accessing the SSO Authentication Service
Calling SSO Authentication Service operations

SSO Directory Management Service overview
Accessing the SSO Directory Management Service.

Calling SSO Directory Management Service operations

3 Single sign-on concepts

The Kerberosticket i
Securitytoken
Single sign-on provider.
Directoriest

Configurable directories
Manageable directories.
Principals.

4 Operation reference

SSO Authentication Service operations
The getSSOProviderConfig operation.
The getToken operation...........
The isSSOEnabled operation

Contents

SSO Directory Management Service operations.,

The createPrincipal operation.
The createRoleDefinition operation
The deletePrincipals operation
The deleteRoleDefinition operation
The getActionListoperation.
The getConfigurableDirectories operation
The getManageableDirectoriesoperation
The getManageablePrincipals operation.
The getPrincipalDataoperation.............
The getSSOConfiguration operation.
The getVersion operation.t
The importPrincipals operation
The putSSOConfiguration operation.
The updatePrincipal operation.
The updateRoleDefinition operation.

Appendices

A Microsoft .NET Framework-based clients

Adding a service reference.

Service reference modifications L
Configuring the web service endpoint.
Configuring endpointbehaviors
Exercisingthe SErvice.ot

B Notices

Index

61

Chapter

Introduction to web services

What are web services?

At ahigh level, aweb serviceis aset of functionality distributed across a network (LAN or the
Internet) using a common communication protocol. The web service serves as an intermediary
between an application and its clients, providing both a standardized information structure and a
standardized communication protocol for interaction between the two. Where other methods of
distributed application architecture rely on a single programming language being used on both
the application and its clients, aweb service allows the use of loosely coupled services between
non-homogenous platforms and languages. This provides a non-architecture-specific approach
allowing, for example, Java services to communicate with C# clients, or vice-versa.

Advantages to implementing application functionality as web services include the following:

m Software written in different languages (Java or C#) running on different platforms (UNIX or
Windows) can exchange services and data

m Application functionality can be accessed by a variety of clients. For example, both a
thin-client interface and a rich-client interface can take advantage of the web service
operations.

m Updatesto the service are immediately available to all service clients

Web service system architecture

Web services are deployed and made publicly available using an application server, such as JBoss
Application Server, WebSphere®, or Oracle WebL ogic Server. The published web services

are hosted by this application server to handle application requests, access permissions, and
process load. A high-level architecture of how web services are implemented is displayed

in the following diagram.

Figure 1-1
Web service architecture
|
Client code Application
code
“ Request » i Request
Client proxy cai L Application
; proxy
B —
l Response Response J

© Copyright IBM Corporation 2000, 2012. 1

2

Chapter 1

The client code supplies input to an operation offered by a proxy class. The proxy class generates
areqguest containing a standardized representation of the input and sends it across the network
to the application. A proxy class on the server receives the request and unmarshals the contents
into objects for processing by the application. Upon completing the operation, the application
supplies a proxy with the output. The proxy creates a standardized representation of that output
and sends the response back to the client. The client proxy unmarshals the response into native
objects for subsequent processing by the client code.

Standardizing the format of the information passing between the client and the application
allows a client written in one programming language to communicate with an application written
in another. The proxy classes, which are automatically generated from a web service description
by a variety of toolkits, handle the translation between native programming objects and the
standardized representation. For more information, see the topic Proxies on p. 6.

Web service protocol stack

A web service implementation depends on technologies often organized in alayered stack. The
implementation itself defines a standard protocol for each technology layer, with each layer
depending on the layers appearing below it in the stack.

Figure 1-2
Web service protocol stack

Description J— WSDL

Packaging J S0AP

Transport J— HTTR, HTTRPS

Beginning at the bottom of the stack, the Transport layer defines the technology standards for
communication, allowing information to move across the network. HTTP or HTTPS are often
used as the standard for the transport layer.

The Packaging layer rests on top of Transport and defines the standard for structuring
information for transport across the network. The SOAP format is commonly used, which offers
an XML structure for packaging the data. For more information, see the topic Simple Object
Access Protocol on p. 3.

The topmost layer is Description and identifies the standards used by the layers below it in
the stack, as well as providing the definition of the interface available for client use. The most
common means of conveying this information is through the use of aWSDL file. For more
information, see the topic Web Service Description Language on p. 3.

3

Introduction to web services
Simple Object Access Protocol

The Simple Object Access Protocol (SOAP) isaway to pass information between applicationsin
an XML format. SOAP messages are transmitted from the sending application to the receiving
application, typically over an HTTP session. The actual SOAP message is made up of the
Envelope element, which contains a Body element and an optional Header element.

m Envelope. This mandatory element is the root of the SOAP message, identifying the
transmitted XML as being a SOAP packet. An envelope contains a body section and an
optional header section.

m Header. This optional element provides an extension mechanism indicating processing
information for the message. For example, if the operation using the message requires security
credentials, those credentials should be part of the envelope header.

m Body. Thiselement contains the message payload, the raw data being transmitted between the
sending and receiving applications. The body itself may consist of multiple child elements,
with an XML schematypically defining the structure of this data.

A SOAP packet and the corresponding XML is structured in the following way:

Figure 1-3
An example SOAP packet

csoapenv.Enuelopﬁ Jsch | ' I
xmins:soapenv="http://schemas.xml|soap.org/soap/envelopel
SOAP Envelope xmins:xsd="hitp:/fwww. w2 org/2001/XMLSchema’”
xmins:xsi="http fwww. w3 org/2001/XMLSchema-instance™>

<soapenv:Header>
<ns1:client-accept-language soapenv.mustUnderstand="0"

xsl:type="xsd:string"
o ;';:;ga[a xmins:nsi="http:fxml spss.comiws/eaders™>
P en-US;g=1.0, en,g=0.8

JE— <ins1:client-accept-language>
=/soapenv Header>
<goapeny: Body>

Body " h e ; .
e <getProviders xmins="http./ixml.spss.com/securityfremote”/=
Application Data <Ispapeny Body>
— A

</soapenv.Envelopes

Web Service Description Language

A Web Service Description Language (WSDL) file provides an XML-based map of what
functionality the published web service allows, separating the implementation in the service from
the interface. The WSDL defines the following:

m The access location of the web service

m Operations the web service exposes

m Parameters the exposed operations accept

® Any request or response messages associated with the operations

The WSDL provides the information necessary to generate a client-side proxy in the desired
programming language.

4

Chapter 1

In accordance with the WSDL specification (http://mww.w3.org/ TR/wsdl) adopted by the World
Wide Web Consortium, information in the WSDL is organized into the following sections:

m Types. Content definitions for web service operation input and output. For more information,
see the topic Types on p. 4.

m Messages. |nput and output definitions for the web service operations. For more information,
see the topic Messages on p. 5.

m PortTypes. Groups of operations offered by the web service. For more information, see the
topic Port types on p. 5.

m Bindings. Protocols and formats for the web service operations. For more information, see
the topic Bindings on p. 5.

m Services. Endpoints at which the web service functionality can be accessed. For more
information, see the topic Services on p. 6.

Types

The types element of a WSDL file contains the data type definitions employed by messages
processed by the web service. These definitions use XML to organize the information relevant to
the type element being defined. Consider the following type definitions:

<wsdl:types>
<schema targetNamespace="http://xml.spss.com/security/remote"
xmins="http://www.w3.0rg/2001/XMLSchema">
<element name="getProviders">
<complexType />
</element>
<element name="getProvidersResponse">
<complexType>
<sequence>
<element name="providerinfo[unbounded]' type="tns1:providerinfo" />
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>

This section defines two elements, getProviders and getProvidersResponse. The former isan
empty element. The latter contains a sequence of providerInfo child elements. These children are
all of the providerInfo type, which is defined elsewhere.

In practice, the WSDL file typically references type element definitions found in an external
XML schema. For instance, the following definition uses security-remote.xsd to define type
elements.

<wsdl:itypes>
<xs:schema>
<xs:import namespace="http://xml.spss.com/security/remote"
schemalocation="security-remote.xsd"/>
</xs:schema>
</wsdl:types>

http://www.w3.org/TR/wsdl

5

Introduction to web services

Messages

The message elements of a WSDL file defines the input or output parameters for operations
available in the web service. Each message can consist of one or more parts, with the parts
similar to the parameters of afunction call in atraditional programming language. Consider the
following two message definitions:

<wsdl:message name="getProvidersResponse">

<wsdl:part element="tns2:getProvidersResponse" name="parameters" />
</wsdl:message>
<wsdl:message name="getProvidersRequest">

<wsdl:part element="tns2:getProviders" name="parameters" />
</wsdl:message>

The getProvidersResponse message contains a single part, corresponding to the

getProvider sResponse element defined in the types section of the WSDL file. Similarly, the
getProvider sRequest message a so contains a single part, as defined by the getProviders element
in the types section. For more information, see the topic Types on p. 4.

Port types

The portType element of aWSDL file defines the actual interface to the web service. A port type
issimply agroup of related operations and is comparable to afunction library, module, or classin
atraditional programming language. The definition specifies the parameters for the operations, as
well as any values returned. The parameters and return val ues correspond to messages defined
elsewhere in the WSDL file. Consider the following port type definition:

<wsdl:portType name="ProviderInformation">
<wsdl:operation name="getProviders">
<wsdlinput message="impl:getProvidersRequest’ name="getProvidersRequest" />
<wsdl:output message="impl:getProvidersResponse" name="getProvidersResponse" />
</wsdl:operation>
</wsdl:portType>

The ProviderInformation port type consists of a single operation, getProviders. Input to this
operation corresponds to the getProvider sRequest message. The operation returns information
in the structure defined by the getProvider sResponse message. For more information, see the
topic Messages on p. 5.

Bindings

The binding element of aWSDL file binds the interface defined by the port type to transport and
messaging protocols. Consider the following binding definition:

<wsdl:binding name="ProviderInformationSoapBinding" type="impl:ProviderInformation">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getProviders">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getProvidersRequest">
<wsdlsoap:body namespace="http://xml.spss.com/security/remote" use="literal" />

6

Chapter 1
</wsdl:input>
<wsdl:output name="getProvidersResponse">
<wsdlsoap:body namespace="http://xml.spss.com/security" use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
In this case, the transport attribute of the wsdlsoap:binding element defines HTTP as the transport
protocol. Both the getProviders and getProvidersReponse operations in the interface are bound
to the SOAP messaging protocol.
Services
The service element of aWSDL file identifies the network location at which the service interface
can be accessed. Consider the following service definition:
<wsdl:service name="ProviderInformationService">
<wsdl:port binding="impl:ProviderinformationSoapBinding" name="ProviderInformation">
<wsdlsoap:address location="http://pes_server:8080/security-ws/services/ProviderInformation” />
</wsdl:port>
</wsdl:service>
In this example, the operations comprising the Provider Information port type can be accessed at:
http://pes_server:8080/security-ws/services/Provider Information
Proxies

Proxies serve as bridges between the client and the web service. A client-side proxy marshals the
input objects into a standardized representation which is sent to the web service. A server-side
proxy unmarshals the information into input objects for the service operations. The results of the
operation are marshalled into standard representations and returned to the client. The client proxy
unmarshals the response information into objects for any additional processing by the client.

Creating a proxy is the first step when developing a web service client; the proxy is the
translation-unit between your application and the web service the application isusing. Fortunately,
many devel opment environments include tools for automatically generating the client proxy from
the web service WSDL file, allowing the client devel oper to focus on the client application code
instead of transport and packaging protocols.

The proxy classes generated from a WSDL file depend on the tool used. For Java, the
wsdl2java tool, which is part of the Apache Axis project, can be used. Thistool produces a Java
class for each type in the WSDL. Each port type results in a Javainterface. A binding creates a
stub class, and aWSDL service yields a service interface with alocator implementation. These
generated classes and interfaces can be called directly from aclient application written in Javato
access the web service functionality.

An dternative Java proxy tool is wsimport, which is part of JAX-WS. The general structure of
the generated classes is similar to that created by the Axistool, but there are some differences.
For example, instead of using arrays for input fields and returned items, the code generated from

7

Introduction to web services

the wsimport tool uses List collections. In addition, if an input type matches an output type for a
method, the wsimport tool uses a Holder class for the parameter.

In contrast, on the .NET platform, the wsdl.exe tool is often used to generate a web service
proxy. Thistool creates a single source file in a specified language containing the proxy class.
This class includes both synchronous and asynchronous methods for each operation defined in the
WSDL. For example, the web service operation getProviders results in the methods getProviders,
getProvidersBegin, and getProvidersEnd. The latter two can be used for asynchronous processing.

A variety of other tools exist for other programming languages. For details, consult the
documentation for those tools. In each case, the tool creates native programming constructs that
permit leveraging a web service regardless of the service implementation language.

Chapter

Single sign-on services overview

Single sign-on (SSO) is a method of access control that enables a user to log in once and gain
access to the resources of multiple software systems without being prompted to log in again.
IBM® SPSS® Collaboration and Deployment Services provides single sign-on capability by
initially authenticating users through an external directory service based on the K er ber os security
protocol, and subsequently using the credentialsin all IBM SPSS Collaboration and Deployment
Services applications (for example, IBM® SPSS® Collaboration and Deployment Services
Deployment Manager, IBM® SPSS® Collaboration and Deployment Services Deployment Portal,
or a portal server) without additional authentication.

Note: Single sign-on is not allowed for browser-based IBM® SPSS® Collaboration and
Deployment Services Deployment Manager.

Figure 2-1
IBM SPSS Collaboration and Deployment Services SSO architecture

™
~
| Ticket Granting Ticket > \‘:
0
Kerberos Ticket |
IBM® SPSS® Collaboration and - "
Deployment Services Client 4,9%6 Key Distribution Center server
rosh
ey

(> 4 (= 17

q/o/{f«oﬁf

IBM® SPSS® Collaboration and
Deployment Services Repository

For example, when IBM SPSS Collaboration and Deployment Servicesis used in conjunction
with Windows Active directory, you must configure the K erberos Key Distribution Center
(KDC) service to enable single sign-on. The service will supply session tickets and temporary

© Copyright IBM Corporation 2000, 2012. 8

9

Single sign-on services overview

session keys to users and computers within an Active Directory domain. The KDC must run on
each domain controller as part of Active Directory Domain Services (AD DS). When single
sign-on is enabled, IBM SPSS Collaboration and Deployment Services applications log into a
Kerberos domain and use Kerberos tokens for web services authentication. If single sign-onis
enabled, it is strongly recommended that SSL communication be configured for the repository.

Single sign-on functionality for IBM SPSS Collaboration and Deployment Services clientsis
enabled by the following web services:

m SSO Authentication Service. Enables single sign-on access.

m SSO Directory Management Service. Enables management and configuration of IBM SPSS
Collaboration and Deployment Services single sign-on.

Proxy generation tools typically access the WSDL file for a service using the service endpoint.
By appending ?wsdl to the endpoint, you can view a generated WSDL. However, the WSDL file
for this service imports the type definitions from a schema. That schema itself also references
elements from other schemas. This nesting of schemas causes the WSDL created using the
service endpoint to be incomplete, causing difficulties for proxy generation tools. To avoid these
problems, use the separate WSDL and schema files provided by IBM Corp. for proxy generation
instead of appending ?wsdl to the endpoint. For this service, these files are:

m security.wsdl
m security-remote.xsd
m security.xsd

Java implementations of single sign-on clients for IBM SPSS Collaboration and Deployment
Services can be based on the Java Authentication and Authorization Service (JAAS) or any
other specification compatible with Kerberos.

SSO0 Authentication Service overview

The SSO Authentication Service provides methods for users of client applications to connect
to asingle sign-on-enabled IBM® SPSS® Collaboration and Deployment Services server by
supplying the client single sign-on provider information and distributing K erberos tokens.

Workflow

Theinitial exchange between a client and the server would be as follows:

m Determineif single sign-on is enabled

m Retrieve single sign-on provider configuration

m Usethe JGSS API to obtain aticket-granting ticket from the single sign-on provider
|

Passing in the Kerberos ticket, obtain a security token. The token is used in subsequent calls
to web services that require credential passing in non-SSO environments (for example,
Authentication Service and Capability Information Service).

10

Chapter 2

Accessing the SSO Authentication Service

To access the functionality offered by the SSO Authentication Service, create a client application
using the proxy classes generated by your preferred web service tool. The endpoint for the
serviceis:

http://<host-name>:<port-number>/security-ws/services/SSOAuthentication
The value of <host-name> corresponds to the machine on which IBM® SPSS® Collaboration and

Deployment Services Repository isinstalled, with <port-number> indicating the port number on
whichitisrunning. To accessthe WSDL file for the service, append ?wsdl to the service endpoint.

For example, if IBM SPSS Collaboration and Deployment Services Repository is running on port
80 of the machine cads_server, the WSDL file can be accessed using the path:

http://cads_server:80/security-ws/services/SSOAuthentication?wsdl

Calling SSO Authentication Service operations

Clients access the operations offered by the web service using astub for the service. Thefollowing
is an example of how to acquire a stub in Java through Axis defined methods:

String context = "/security-ws/services/SSOAuthentication”,

URL url = new URL("http", "cads_server", 80, context);
SSOAuthenticationService service = new SSOAuthenticationServiceLocator();
stub = service.getSSOAuthentication(url);

The service operations can be called directly from the stub, such as:

stub.isSSOEnabled();

SS0 Directory Management Service overview

The SSO Directory Management Service allows control over single sign-on configuration and
user and group access to IBM® SPSS® Collaboration and Deployment Services. Specifically, the
service offers the ability to perform the following tasks:

m Configure the single sign-on provider
m Create users and groups for the system, and edit their properties
m Assign users and groups to security roles that control access to system functionality

Accessing the SSO Directory Management Service

To access the functionality offered by the SSO Directory Management Service, create a client
application using the proxy classes generated by your preferred web service tool. The endpoint
for the service is:

http://<host-name>:<port-number>/security-ws/services/SS0DirectoryManagement

il

Single sign-on services overview

The value of <host-name> corresponds to the machine on which IBM® SPSS® Collaboration and
Deployment Services Repository isinstalled, with <port-number> indicating the port number on
whichitisrunning. To accessthe WSDL file for the service, append ?wsdl to the service endpoint.

For example, if IBM SPSS Collaboration and Deployment Services Repository is running on port
80 of the machine cads_server, the WSDL file can be accessed using the path:

http://cads_server:80/security-ws/services/SS0DirectoryManagement?wsd|

Calling SSO Directory Management Service operations

Clients access the operations offered by the web service using astub for the service. Thefollowing
is an example of how to acquire a stub in Java through Axis defined methods:

String context = "/security-ws/services/SSODirectoryManagement”,
URL url = new URL("http", "cads_server", 80, context);

SSODirectoryManagementService service = new SSODirectoryManagementServiceLocator();
stub = service.getSSODirectoryManagement(url);

The service operations can be called directly from the stub, such as:

stub.getVersion();

Chapter

3

Single sign-on concepts

The Kerberos ticket

The client and server do not initially share an encryption key. Whenever a client authenticates
itself to a new verifier it relies on the authentication server to generate a new encryption key and
distribute it securely to both parties. This new encryption key is called a session key and the
Kerberos ticket is used to distribute it to the verifier. The Kerberos ticket is a certificate issued

by an authentication server, encrypted using the server key. Among other information, the ticket
contains the random session key that will be used for authentication of the principal to the verifier,
the name of the principal to whom the session key was issued, and an expiration time after which
the session key is no longer valid. The ticket is not sent directly to the verifier, but isinstead sent
to the client who forwards it to the verifier as part of the application request. Because the ticket is
encrypted in the server key, known only by the authentication server and intended verifier, it is not
possible for the client to modify the ticket without detection.

A key distribution center (KDC) distributes Kerberos tickets to authenticated users. A KDC
issues two types of tickets, as follows:

m A master ticket, also known as the ticket granting ticket (TGT)
m A serviceticket

A KDC firstissues a TGT to aclient. The client can then request several service tickets against
his or her TGT.

Security token

Web services security provides a general-purpose mechanism to associate security tokens with
messages for single message authentication. A security token represents a set of claims made by a
client that might include a name, password, identity, key, certificate, group, privilege, and soon. A
security token is embedded in the SOA P message within the SOAP header. The security token
within the SOAP header is propagated from the message sender to the intended message receiver.

Single sign-on provider

IBM® SPSS® Collaboration and Deployment Services sign-on requires a configured Kerberos
Key Distribution Server, referred to as asingle sign-on provider. Configuration information for a
Kerberos-based single sign-on provider must include the following information:

m Enable. Enables or disables the use of single sign-on provider.
m Security Provider. A configured external security providers, such as Windows Active Directory.
Local security provider cannot be selected.

© Copyright IBM Corporation 2000, 2012. 12

13

Single sign-on concepts

Kerberos Key Distribution Center Host Address. Fully qualified name of the Kerberos Domain
controller host. For Windows Active Directory, thisis the name of the host where Microsoft
Active Directory Services are installed.

Kerberos Realm. The Kerberos realm. For Active Directory, thisis the domain name.

Host. The name of the IBM® SPSS® Collaboration and Deployment Services Repository
host. For example, repositoryhost.mycompany.com.

Kerberos Service Principal Name. The user name for the Kerberos Service Principal.
Kerberos Service Principal Password. The password of the user Kerberos Service Principal.
Kerberos Key Table URL. The URL of the keytab file for Kerberos principal s authentication.

JAAS Configuration File. The path of JAAS (Java Authentication and Authorization Service)
configuration file on the IBM SPSS Collaboration and Deployment Services host file system.
If specified, it overrides the default JAAS configuration. Depending on the application server,
this may be necessary to configure the JRE to support SSO.

Directories

A security provider is responsible for verifying the credentials supplied by a user against a
particular user directory. IBM® SPSS® Collaboration and Deployment Services includes an
internal directory for authentication, but an existing enterprise user directory can aso be used.
Available providers include:

Native (or local user repository). The internal security provider for IBM SPSS Collaboration
and Deployment Services, in which users, groups, and roles can al be defined. The native
provider is always active and cannot be disabled.

OpenLDAP®. An open-source LDAP implementation for authentication, authorization, and
security policies. Users and groups for this provider must be defined directly using LDAP
tools. After configuring OpenLDAP for use with IBM SPSS Collaboration and Deployment
Services, the system can authenticate a user against the OpenL DAP server while maintaining
the permissions and access rights associated with that user. In contrast to the native provider,
this provider can be enabled or disabled.

Active Directory®. The Microsoft version of Lightweight Directory Access Protocol (LDAP)
for authentication, authorization, and security policies. Users and groups for this provider
must be defined directly in the Active Directory framework. After configuring Active
Directory for use with IBM SPSS Collaboration and Deployment Services, the system can
authenticate a user against the Active Directory server while maintaining the permissions
and access rights associated with that user. This provider can be enabled or disabled. For
additional information about Active Directory, see the original vendor’s documentation.

Active Directory with local override. A provider that leverages Active Directory but allows
the creation of extended groups and allowed-users filters. An extended group contains a list
of users from Active Directory but exists outside of the Active Directory framework. An
allowed-usersfilter restricts the list of Active Directory users that can authenticate against the
system to a defined set. This provider can be enabled or disabled.

IBMi. IBM i user profiles directory can be used to authenticate IBM SPSS Collaboration and
Deployment Services users. This provider can be enabled or disabled. If IBM i security
provider is used with single sign-on-enabled IBM SPSS Collaboration and Deployment

14

Chapter 3

Servicesinstalation, EIM (Enterprise Identity Management) must be enabled. Additionally,
/QIBM/User Data/Java400/ext/eim.jar must be copied into the library directory of the IBM
SPSS Collaboration and Deployment Services application server if the application server

is running on anon-IBM i host.

m JDE Application User. If you use IBM® ShowCase®, the ShowCase adapter installation
installs this security provider into your IBM SPSS Collaboration and Deployment Services
server. This security provider may be configured to allow JD Edwards (JDE) application users
to log in and use the IBM SPSS Collaboration and Deployment Services environment. For
instructions, see the ShowCase Administrator’s Guide.

Providersin the system can be characterized by the following properties:
m ID. A unique identifier for the provider.

m Name. The name of the provider, such as Native or Active Directory with Local Override. The
name typically appearsin aLogin dialog if multiple providers are enabled to allow a user to
select the provider against which to authenticate.

m Key. Aninterna value assigned to the ID/Name combination. Keys can be used in lists of
available providers, using the name corresponding to the key in client interfaces.

m Domain. The domain within the provider under which users are classified. Some security
providers, such as Native, do not use domains. For others, the domain returned by the service
may be null if the directory only offers one domain.

Configurable directories

Providers that require the specification of configuration parameters before the directory can
be accessed are referred to as configurable directories. Parameters that must be set vary by
provider, but typically include the following:

m Host URL. URL for the Active Directory server. The default port for LDAP is 389.
User Base DN. Base distinguished name for user searches.

Group Base DN. Base distinguished name for group searches.

Domain. The DNS namespace to which the user islogging in.

Domain user. A user ID to perform searches, specified in the format domain\username. The
name specified must have the proper permissions to look up and authenticate users.

® Domain user password. For security, the domain user password specified appears in a hashed
asterisk (*) format.

Examples of configurable directories include Active Directory and OpenLDAP.
The SSO Directory Management Service includes operations for retrieving configurable
directories and for specifying configuration parameters.

Manageable directories

Users and groups are typically defined within the directories themselves. For example, a sales
group would be defined directly within Active Directory using its native tools. You cannot define
agroup within Active Directory using IBM® SPSS® Collaboration and Deployment Services.

15

Single sign-on concepts

Directories that allow IBM SPSS Collaboration and Deployment Services to define users and
groups are referred to as manageable directories. These directories provide alist of allowed
principal types which can be added. For example, a manageable directory may only alow the
specification of users and groups, but not roles. The principalsin these directories are a so referred
to as manageable, denoting that they can be modified and deleted using IBM SPSS Collaboration
and Deployment Services. Examples of manageable directories include Active Directory with
Local Override and the Local User Repository.

The SSO Directory Management Service includes an operation for retrieving manageable
directories. Principals can then be added to any of the returned directories. In addition, you can
retrieve the list of manageable principals for any manageable directory.

Principals

Roles

Principals fall into one of three categories, as follows:
® A user isan individual who needs access to the system
m A group isaset of users who need access to the system

m A roleisaset of oneor more privileges, or actions. Roles are assigned to users or groups to
manage system security.

Each principa in the system is characterized by the following attributes:

m ID. A unique identifier of the principal. The ID may be useful for debugging purposes, but
should generally not be shown to users.

m Type. Anindicator of whether the principal is a user, group, or role.

m Display name. A name for the principal suitable for display by aclient application. This name
may include the provider name and domain for some system configurations.

m Type name. A reference to alocalized version of the type indicator.

Principals of the user type aso include a password used for authentication against a security
provider.

The SSO Directory Management Service includes operations for creating, importing, updating,
and deleting principals. In addition, you can retrieve information for a specified principal.

Roles provide away to manage user and group access to system functionality. Roles are assigned
to users and groups and work in conjunction with a security provider.

Each role created has associated actions that represent the permissions and level of control that
the user or group assigned to the role has. For example, a basic user role can be created. The basic
user roleis assigned a limited set of actions for access to the system and the ability to view the
contents of the repository. The basic user role does not have the associated actions to define
servers, add other users, or define system configurations that would impact other users and groups.

However, an advanced user role is needed to perform administrative tasks, such as deleting
users, creating groups, and defining additional roles. In this case, aless restricted role can be
created with more control over the application domain and assigned to a very small set of users.

16

Chapter 3

Thelist of available actions are defined within the system and cannot be edited by the user
assigning them.

If the user belongs to several groups, the roles assigned to that user—an action set—consist
of all roles explicitly assigned to the user as well as all roles indirectly assigned through group
membership. If the user or group is assigned to several roles, the user or group’s action set consists
of al roles explicitly assigned as well as all roles indirectly assigned through group membership.
Users and groups must be managed per security provider, whereas roles are managed across
security providers.

The SSO Directory Management Service includes operations for creating, updating, and
deleting roles. In addition, you can retrieve the list of actions associated with arole.

Chapter

Operation reference

Single sign-on functionality in IBM® SPSS® Collaboration and Deployment Servicesis enabled
by the operations of the following web services described in this chapter:

m SSO Authentication Service
m SSO Directory Management Service

SSO Authentication Service operations

This section describes the operations enabled by the SSO Authentication Service.

The getSSOProviderConfig operation

Retrieves the configuration parameters for a specified single sign-on security provider.

Input fields

The following table lists the input fields for the getSSOProviderConfig operation.

Table 4-1
Fields for getSSOProviderConfig
Field Type/Valid Values Description
uuid string Unique identifier of Provider

Return information

The following table identifies the information returned by the getSSOProviderConfig operation.

Table 4-2
Return Value

Type Description
property(]

Java example

The following example function calls getSSOProviderConfig from the stub for the service,
returning an array of information about single sign-on provider.

Property[] properties = stub.getSSOProviderConfig("); //SNON-NLS-1$

for (inti=0; i< properties.length; i++)
{
c¢_log.warn("name : " + properties[i].getName());
c_log.warn('value : " + properties|i].getValue());

© Copyright IBM Corporation 2000, 2012. 17

18

Chapter 4

}

return properties;

}

SOAP request example

Client invocation of the getSSOProviderConfig operation generates a SOAP request message that
is sent to the server for processing. An example of such a message follows.

<soapenv:Envelope
xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getSSOProviderConfig xmIns="http://xml.spss.com/security/remote">
<uuid></uuid>
</getSSOProviderConfig>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getSSOProviderConfig operation call by sending a SOAP response
message containing the results. An example of such a message follows.

<soapenv:Envelope
xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getSSOProviderConfigResponse xmins="http://xml.spss.com/security/remote">
<ns1:property name="SERVICE_PRINCIPAL_NAME"
value="HTTP/paswcads4.myCompany.com@myCompany.COM"
xmlns:ns1="http://xml.spss.com/security"/>
<ns2:property name="REALM" value="MYCOMPANY.COM"
xmlins:ns2="http://xml.spss.com/security"/>
<ns3:property name="SERVER_ADDRESS" value="paswcads4.myCompany.com"
xmins:ns3="http://xml.spss.com/security'/>
<ns4:property name="KDC_ADDRESS" value="kdc_host"
xmlins:ns4="http://xml.spss.com/security"/>
<ns5:property name="SECURITY_PROVIDER" value="AD"
xmlins:nsb="http://xml.spss.com/security"/>
<ns6:property name="KERBEROS_0ID" value="1.2.840.113554.1.2.2"
xmlns:ns6="http://xml.spss.com/security"/>
<ns7:property name="PROVIDER_ID" value="ssoKerberos"
xmlns:ns7="http://xml.spss.com/security"/>
<ns8:property name="NTLM_CLIENT_DISABLED" value="NTLM_CLIENT_DISABLED"

19

Operation reference

xmlns:ns8="http://xml.spss.com/security"/>
</getSSOProviderConfigResponse>
</soapenv:Body>
</soapenv:Envelope>

The getToken operation

Retrieves the single sign-on authentication token.

Input fields

The following table lists the input fields for the getToken operation.

Table 4-3

Fields for getToken

Field Type/Valid Values Description
inputByteArray byte[] Input byte array.

Return information

The following table identifies the information returned by the getToken operation.

Table 4-4

Return Value

Type Description

byte[] Output byte array containing service ticket

Java example

The following example function calls getToken from the stub for the service, returning the token
as a byte array.

0id krb50id = new 0id("1.2.840.113554.1.2.2");
GSSManager manager = GSSManager.getinstance();
GSSName serverName = manager.createName(this.clientName, null);
GSSContext context = manager.createContext(serverName, krb50id, null, GSSContext. DEFAULT_LIFETIME);
context.requestMutualAuth(true);
context.requestCredDeleg(true);
byte [] token = new byte[0];
token = context.initSecContext(token, 0, token.length);

byte [] retToken = stub.getToken(token);

return retToken;

20

Chapter 4

SOAP request example

Client invocation of the getToken operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getToken xmlns="http://xml.spss.com/security/remote">
<inputByteArray>96</inputByteArray>
<inputByteArray>-126</inputByteArray>
<inputByteArray>11</inputByteArray>
<I-The rest of the byte array data >
</getToken>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getToken operation call by sending a SOAP response message containing
the results. An example of such a message follows.

<soapenv:Envelope
xmlins:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getTokenResponse xmins="http://xml.spss.com/security/remote">
<outputByteArray>-84</outputByteArray>
<outputByteArray>-19</outputByteArray>
<outputByteArray>0</outputByteArray>
<outputByteArray>5</outputByteArray>
<!-The rest of byte array data >
</getTokenResponse>
</soapenv:Body>
</soapenv:Envelope>

The isSSOEnabled operation

Retrieves a Boolean value indicating whether single sign-on is enabled.

Return information

The following table identifies the information returned by the isSSOEnabled operation.

21

Operation reference

Table 4-5
Return Value
Type Description
boolean Indicates if Single Sign On is enabled.

Java example

The following example function callsisSSOEnabled from the stub for the service, returning a
Boolean value.

// Web service call to determine if SSO is enabled.
boolean isSsoEnabled = stub.isSSOEnabled();

c¢_logger.warn("sso enabled =" + isSsoEnabled); /SNON-NLS-1$

return isSsoEnabled;

}

SOAP request example

Client invocation of the isSSOEnabled operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<isSSOEnabled xmIns="http://xml.spss.com/security/remote"/>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to aisSSOEnabled operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<isSSOEnabledResponse xmins="http://xml.spss.com/security/remote">
<uuid>true</uuid>
</isSSOEnabledResponse>
</soapenv:Body>
</soapenv:Envelope>

22

Chapter 4

SSO0 Directory Management Service operations

This section describes the operations enabled by the SSO Directory Management Service.

The createPrincipal operation

Creates a new user, group, or role in the system. The principal being added can be associated with
other principals already existing within the system. For example:

m New users can be associated with existing groups and roles.
m New groups can be associated with existing users and roles.
m New roles can be associated with existing users and groups.

Input fields

The following table lists the input fields for the createPrincipal operation.

Table 4-6
Fields for createPrincipal
Field Type/Valid Values Description
newPrincipal newPrincipal Information about a principal

being created. Thisinformation
includes: aprovider ID, auser ID
and password, the principal type,
and alist of principalsto associate
with the new principal.

Return information

The following table identifies the information returned by the createPrincipal operation.

Table 4-7

Return Value

Type Description

string Aninternal identifier for a principal.

Java example

Creating a principal involves the specification of the following pieces of information:
an identifier for the security provider that will contain the principal

the principal type

auser ID for the principa

a password for the principal

an optional list of associated principals

This information is contained within a NewPrincipal object.
The following sample creates a new user principal with the ID bbrever in the native security
provider.

23

Operation reference

NewPrincipal np = new NewPrincipal();
np.setProviderID("Native"),
np.setType(PrincipalType.USER);
np.setUserID("bbrever");
np.setUserPassword("qw12as3z");
stub.createPrincipal(np);

SOAP request example

Client invocation of the createPrincipal operation generates a SOAP request message that is sent
to the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<createPrincipal xmIns="http://xml.spss.com/security/remote">
<newPrincipal providerID="Native" userlD="bbrever" userPassword="qw12as3z"
type="user" xmIns="http://xml.spss.com/security’/>
</createPrincipal>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a createPrincipal operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<createPrincipalResponse xmIns="http://xml.spss.com/security/remote">
<nst:principallD xmIns:ns1="http://xml.spss.com/security">//uNative//bbrever</ns1:principalID>
</createPrincipalResponse>
</soapenv:Body>

24

Chapter 4

</soapenv:Envelope>

The createRoleDefinition operation

Creates a new named role in the system.

Input fields

The following table lists the input fields for the createRoleDefinition operation.

Table 4-8
Fields for createRoleDefinition
Field Type/Valid Values Description
newRoleDefinition newRoleDefinition Definition of the role, including

the role name and a list of
associated actions. Use interna
action identifers to specify the
actions to associate with the role.

Return information

The following table identifies the information returned by the createRoleDefinition operation.

Table 4-9
Return Value

Type Description

string General purpose response. Just a string.

Java example

Creating arole requires two pieces of information:
m aname for therole
m the actions to associate with the role

This information is contained within a NewRoleDefinition object.

The following sample creates an array of strings corresponding to action identifers. The
setActionID method assigns these identifiers to the NewRoleDefinition object. The setName
method assigns the name newRole to the role. Use the createRoleDefinition operation to apply
the changes to the system.

NewRoleDefinition nrd = new NewRoleDefinition();
nrd.setName("newRole");
String[] actionArray ={
"security/roleDefinition",
“security/manage”,
2

nrd.setActionID(actionArray); stub.createRoleDefinition(nrd);

25

Operation reference

SOAP request example

Client invocation of the createRoleDefinition operation generates a SOAP request message that is
sent to the server for processing. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<createRoleDefinition xmIns="http://xml.spss.com/security/remote">
<newRoleDefinition xmIns="http://xml.spss.com/security">
<actionID>security/roleDefinition</actionID>
<actionID>security/manage</actionID>
<name>newRole</name>
</newRoleDefinition>
</createRoleDefinition>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a createRoleDefinition operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<createRoleDefinitionResponse xmins="http://xml.spss.com/security/remote">
<ns1:status xmIns:ns1="http://xml.spss.com/security"></ns1:status>
</createRoleDefinitionResponse>
</soapenv:Body>
</soapenv:Envelope>

26

Chapter 4

The deletePrincipals operation

Removes one or more principals from the system. This operation may fail if aprincipa to be
removed isin aremote directory, or if removing a specified principal would result in no remaining
administrative users.

Input fields

The following table lists the input fields for the deletePrincipals operation.

Table 4-10
Fields for deletePrincipals
Field Type/Valid Values Description
principal IDList principal IDList List of IDs for principas to be
deleted.

Return information

The following table identifies the information returned by the deletePrincipals operation.

Table 4-11

Return Value

Type Description

string General purpose response. Just a string.

Java example

Deleting a principal involves the creation of a PrincipallDList object to contain the identifiers for
the principals to be deleted. Supply this object to the deletePrincipals operation. The following
sample deletes a single principal having an identifier of prinipalID.

PrincipallDList principallDList = new PrincipallDList();
principallDList.addPrincipallD(prinipallD);
directoryManagement.deletePrincipals(principallDList);

SOAP request example

Client invocation of the deletePrincipals operation generates a SOAP request message that is sent
to the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>

27

Operation reference

<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<deletePrincipals xmIns="http://xml.spss.com/security/remote">
<principallDList xmIns="http://xml.spss.com/security">
<principallD>//uNative//bbrever</principallD>
</principallDList>
</deletePrincipals>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server respondsto a deletePrincipals operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<deletePrincipalsResponse xmlns="http://xml.spss.com/security/remote">
<ns1:status xmIns:ns1="http://xml.spss.com/security"/>
</deletePrincipalsResponse>
</soapenv:Body>
</soapenv:Envelope>

The deleteRoleDefinition operation

Deletes an existing role from the system.

Input fields

The following table lists the input fields for the deleteRoleDefinition operation.

Table 4-12

Fields for deleteRoleDefinition
Field Type/Valid Values Description
rolelD rolelD Aninterna identifier for arole.
name string

Return information

The following table identifies the information returned by the deleteRoleDefinition operation.

28

Chapter 4
Table 4-13
Return Value
Type Description
string General purpose response. Just a string.

Java example

Deleting arole involves the creation of aRolelD object to contain the identifier for the role to be
deleted. UsesetlD to assign the identifier for therole. Supply this object to the deleteRoleDefinition
operation. The following sample deletes the role with an identifier of roleDefinitionl D.

RolelD rolelD = new RolelD();
String id = principallnfo.getID();
rolelD.setID(id);
directoryManagement.deleteRoleDefinition(rolelD);

SOAP request example

Client invocation of the deleteRoleDefinition operation generates a SOAP request message that is
sent to the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<deleteRoleDefinition xmlns="http://xml.spss.com/security/remote">
<rolelD ID="//rNative//newRole"/>
</deleteRoleDefinition>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a deleteRoleDefinition operation call by sending a SOAP response message
containing the results. An example of such a message follows.

29

Operation reference

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<deleteRoleDefinitionResponse xmlns="http://xml.spss.com/security/remote">
<ns1:status xmIns:ns1="http://xml.spss.com/security"/>
</deleteRoleDefinitionResponse>
</soapenv:Body>
</soapenv:Envelope>

The getActionList operation

Retrieves the list of actions available in the system. The actions returned are typically used for
defining roles.

Input fields

The following table lists the input fields for the getActionList operation.

Table 4-14

Fields for getActionList

Field Type/Valid Values Description
actionListRequest string

Return information

The following table identifies the information returned by the getActionList operation.

Table 4-15

Return Value

Type Description

actionList A list of all current (licensed) actions. Thisis very
static and can be safely be cached in aclient.

Java example

The following example function calls getActionList from the stub for the service, returning an
array of actions for the spcified principal.

ActionList list = null;

try {
list = stub.getActionList(null);

testActionList(list.getActionDetail());
} catch (RemoteException e) {
fail(e);

30

Chapter 4

}

return list;

}

SOAP request example

Client invocation of the getActionList operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<getActionList xmIns="http://xml.spss.com/security/remote">
<ns2:actionListRequest xsi:nil="true" xmlns:ns2="http://xml.spss.com/security'/>
</getActionList>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getActionList operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getActionListResponse xmlns="http://xml.spss.com/security/remote">
<actionList xmIns="http://xml.spss.com/security">
<actionDetail name="Custom Properties" id="contentRepository/customProperties">
<description>Custom Properties</description>

</actionDetail>
<actionDetail name="Manage Users, Groups and Roles" id="security/manage">

<description>Manage Users, Groups and Roles</description>
</actionDetail>

31

Operation reference

<actionDetail name="crUl/apFolders" id="contentRepository/folders">
<description>Content and Folders</description>

</actionDetail>

<actionDetail name="crUl/apServers" id="contentRepository/servers">
<description>Servers</description>

</actionDetail>

<actionDetail name="Export Content" id="contentRepository/export">
<description>Export Content</description>

</actionDetail>

<actionDetail name="Import Content" id="contentRepository/import">
<description>Import Content</description>

</actionDetail>

<actionDetail name="MIME Types" id="configuration/MimeManager">
<description>Manage MIME types</description>

</actionDetail>

<actionDetail name="Define Roles" id="security/roleDefinition">
<description>Manage Actions associated with Roles</description>

</actionDetail>

<actionDetail name="Configuration" id="configuration/Editor">
<description>Customize Configuration Settings</description>

</actionDetail>

<actionDetail name="Topics" id="contentRepository/topics">
<description>Manage Topics</description>

</actionDetail>

<actionDetail name="Schedules" id="prms/schedules">
<description>PRMS Schedules</description>

</actionDetail>

<actionDetail name="Jobs" id="prms/jobs">
<description>PRMS Jobs</description>

</actionDetail>

<actionDetail name="crUl/apCredentials" id="contentRepository/credentials">
<description>Credentials</description>

</actionDetail>

<actionDetail name="Configure Security Providers" id="security/config">
<description>Configure Security Providers</description>

</actionDetail>

</actionList>
</getActionListResponse>
</soapenv:Body>
</soapenv:Envelope>

The getConfigurableDirectories operation

Returnsalist of directoriesthat can be configured for use with the system. Usethe getConfiguration
operation to access the configuration information for a specific configurable directory. To specify
configuration parameters for a configurable directory, use the putConfiguration operation.

32

Chapter 4

Return information

The following table identifies the information returned by the getConfigurableDirectories

operation.

Table 4-16

Return Value

Type Description

configurableProviders List of available configurable providers. For each

provider, the list includes the name, ID, and a
boolean indicating whether or not the provider is
enabled.

Java example

The following function uses the getConfigurableDirectories operation to return an array of
ConfigurableProvider objects. Each object includes:

m the provider identifier
m the provider name
m anindicator of whether or not the provider is enabled

The information can be extracted as needed using the corresponding get method, such as getld.

public ConfigurableProvider[] getConfigurableDirectories()
throws RemoteException, I0Exception, ServiceException {
ConfigurableProviders providers = stub.getConfigurableDirectories();
return providers.getConfigurableProvider();

}

SOAP request example

Client invocation of the getConfigurableDirectories operation generates a SOAP request message
that is sent to the server for processing. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>

33

Operation reference

<soapenv:Body>
<getConfigurableDirectories xmins="http://xml.spss.com/security/remote"/>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getConfigurableDirectories operation call by sending a SOAP response
message containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getConfigurableDirectoriesResponse xmlns="http://xml.spss.com/security/remote">
<configurableProviders xmIns="http://xml.spss.com/security">
<configurableProvider enabled="true" name="Native" id="Native"/>
<configurableProvider enabled="true" name="Active Directory" id="AD"/>
<configurableProvider enabled="true" name="Active Directory with Local Override"
id="ADL"/>
<configurableProvider enabled="false" name="0penLDAP" id="devidapOpenLDAP"/>
</configurableProviders>
</getConfigurableDirectoriesResponse>
</soapenv:Body>
</soapenv:Envelope>

The getManageableDirectories operation

Returns a list of manageable directories currently in use in the system.

Return information

The following table identifies the information returned by the getManageableDirectories

operation.

Table 4-17

Return Value

Type Description

manageableProviders List of manageable providers. For each provider,

the returned information includes the name, ID, and
list of principal types that can be defined.

Java example
The following function uses the getManageableDirectories operation to return an array of
ManageableProvider objects. Each object includes:

m the provider identifier
m the provider name

34

Chapter 4

m anindicator of whether or not the provider allows importing of principals
m alist of alowed principa types

The information can be extracted as needed using the corresponding get method, such as getld.

public ManageableProvider[] getManageableDirectories()
throws RemoteException, I0Exception, ServiceException {
ManageableProviders providers = stub.getManageableDirectories();
return providers.getManageableProvider();

}

SOAP request example

Client invocation of the getManageableDirectories operation generates a SOAP request message
that is sent to the server for processing. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<getManageableDirectories xmIns="http://xml.spss.com/security/remote"/>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getManageableDirectories operation call by sending a SOAP response
message containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getManageableDirectoriesResponse xmIns="http://xml.spss.com/security/remote">
<manageableProviders xmlns="http://xml.spss.com/security">
<manageableProvider canlmport="true" name="Local User Repository" id="Native">

35

<allowablePrincipalTypes>

<principalType>role</principalType>
<principalType>user</principalType>
<principalType>group</principalType>

</allowablePrincipalTypes>
</manageableProvider>
<manageableProvider canlmport="

name="Active Directory with Local Override" id="ADL">

<allowablePrincipalTypes>
<principalType>group</principal
</allowablePrincipalTypes>
</manageableProvider>
</manageableProviders>

false"

Type>

</getManageableDirectoriesResponse>

</soapenv:Body>
</soapenv:Envelope>

The getManageablePrincipals operation

Operation reference

Returnsalist of principalsthat are defined for manageable directories. Thelist can be restricted to:

m aspecific provider

m atype of principal, such as user or role

m principals with names beginning with a specified string

Input fields

The following table lists the input fields for the getManageablePrincipals operation.

Table 4-18
Fields for getManageablePrincipals

Field

Type/Valid Values

Description

directoryCriterion

directoryCriterion

Criterion used to search a user
directory.

Return information

The following table identifies the information returned by the getManageablePrincipals operation.

Table 4-19

Return Value

Type Description

principalList List of principals. For each principal, the

information returned includes the display name, 1D,
and principa type.

36

Chapter 4

Java example

The following sample uses the getManageablePrincipals operation to return alist of principals for
the Native security provider. The getPrincipallnfo method returns general information available
for any principal, regardless of type. The getlsRole, getlsUser, and getlsGroup methods each
return a boolean indicating whether or not the principal is of the corresponding type, which can be

used to determine what additional information is available, if any.

DirectoryCriterion directoryCriterion = new DirectoryCriterion();
directoryCriterion.setProviderKey("Native"),
PrincipalList pList = stub.getManageablePrincipals(directoryCriterion);
int count = pList.getPrincipalinfoCount();
PrincipalList retList = new PrincipalList();
Principallnfo pi = null;
for (inti=0;i< count;i++){

pi = pList.getPrincipallnfo(i);

if (pi.getIsRole()) {

retList.addPrincipallnfo(pi);

}

}

SOAP request example

Client invocation of the getManageablePrincipals operation generates a SOAP request message

that is sent to the server for processing. An example of such a message follows.

<soapenv:Envelope xmlins:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<getManageablePrincipals xmlns="http://xml.spss.com/security/remote">
<directoryCriterion xmIns="http://xml.spss.com/security">
<providerKey>Native</providerKey>
</directoryCriterion>
</getManageablePrincipals>
</soapenv:Body>
</soapenv:Envelope>

37

Operation reference

SOAP response example

The server responds to a getManageablePrincipals operation call by sending a SOAP response
message containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getManageablePrincipalsResponse xmlns="http://xml.spss.com/security/remote">
<principalList id="Native" xmIns="http://xml.spss.com/security">
<principallnfo ID="//uNative//admin" isUser="true" isGroup="false"
isRole="false" principalType="user" displayName="admin"
typeName="security/principalTypeUser'/>
<principallnfo ID="//rNative//$$security/roleAdministrators" isUser="false"
isGroup="false" isRole="true" principalType="role"
displayName="administrators" typeName="security/principalTypeRole"/>
<principallnfo ID="//uNative//bbrewer" isUser="true" isGroup="false"
isRole="false" principalType="user" displayName="bbrewer"
typeName="security/principalTypeUser'/>
<principallnfo ID="//uNative//kkrueter" isUser="true" isGroup="false"
isRole="false" principalType="user" displayName="kkrueter"
typeName="security/principalTypeUser'/>
<principallnfo ID="//rNative//pemUser" isUser="false" isGroup="false"
isRole="true" principalType="role" displayName="pemUser"
typeName="security/principalTypeRole"/>
<allowablePrincipalTypes>
<principalType>user</principalType>
<principalType>group</principalType>
<principalType>role</principalType>
</allowablePrincipalTypes>
</principalList>
</getManageablePrincipalsResponse>
</soapenv:Body>
</soapenv:Envelope>

The getPrincipalData operation

Retrieves information for a specified user, group, or role, such as the principal type or associations
with other principals.

Input fields

The following table lists the input fields for the getPrincipalData operation.

Table 4-20
Fields for getPrincipalData
Field Type/Valid Values Description
principalID string An internal identifier for a
principal.

38

Chapter 4

Return information

The following table identifies the information returned by the getPrincipalData operation.

Table 4-21

Return Value

Type Description

principal Data Information about a principal, including its type,

display name, and list of associated principals.
Additional information depends on the principal
type. In addition, for roles, principal Data includes
associated actions.

Java example

The following sample returns the list of actions associated with a specified role. The
getPrincipalData operation returns the data for the role as a PrincipalData object. The
getPrincipalDataRole method returns information specific for roles as a PrincipalDataRole object,
from which information about the actions can be retrieved.

public ActionList getActionsForRole(String roleld)
throws RemoteException, I0Exception, ServiceException {
PrincipalData pd = stub.getPrincipalData(roleld);
PrincipalDataRole pdr = pd.getPrincipalDataRole();
ActionList list = new ActionList();
int count = pdr.getActionDetailCount();
for (inti=0;i< count; i++) {
list.addActionDetail(pdr.getActionDetail(i));
1

return list;

SOAP request example

Client invocation of the getPrincipalData operation generates a SOAP request message that is sent
to the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"

39

Operation reference

xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<getPrincipalData xmlns="http://xml.spss.com/security/remote">
<ns2:principallD xmIns:ns2="http://xml.spss.com/security">//rNative//newRole</ns2:principalID>
</getPrincipalData>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getPrincipalData operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getPrincipalDataResponse xmIns="http://xml.spss.com/security/remote">
<principalData name="kkreuter" xmIns="http://xml.spss.com/security">
<principalDataUser password="iCA-b1ca,Soda,Cracker/>
<principallnfo ID="//uNative//kkreuter" isUser="true" isGroup="false"
isRole="false" principalType="user" displayName="kkroeger" typeName="user'/>
<associatedPrincipals>
<principallnfo ID="//rNative//$$security/roleAdministrators" isUser="false"
isGroup="false" isRole="true" principalType="role" displayName="administrators"
typeName="role"/>
</associatedPrincipals>
<allowablePrincipalTypes>
<principalType>group</principalType>
<principalType>role</principalType>
</allowablePrincipalTypes>
</principalData>
</getPrincipalDataResponse>
</soapenv:Body>
</soapenv:Envelope>

The getSSOConfiguration operation

Retrieves configuration parameters for the single sign-on providers.

Input fields

The following table lists the input fields for the getSSOConfiguration operation.

40

Chapter 4

Table 4-22

Fields for getSSOProviderConfiguration

Field Type/Valid Values Description

SSOProviderlD string An internal identifier for a
provider.

Return information

The following table identifies the information returned by the getSS0Configuration operation.

Table 4-23

Return Value

Type Description

SSOProviderConfiguration Configuration parameters. For each parameter,

the information returned includes the name, 1D,
description, and value.

Java example

The following example function calls getSSOConfiguration from the stub for the service, returning
an array of SSO configuration parameters for the provider.

SSOProviderConfiguration SSOProviderConfig = stub.getSSOConfiguration(id);
return SSOproviderConfig;

SOAP request example

Client invocation of the getSSOConfiguration operation generates a SOAP request message that is
sent to the server for processing. An example of such a message follows.

<soapenv:Envelope
xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security
soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//adminUser</wsse:Username>
<wsse:Password wsse:Type=
‘http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">
secret
</wsse:Password>
<wsse:Nonce>0V7BEGvXgCjjxmcL+sLITA==</wsse:Nonce>
<wsu:Created
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

41

Operation reference

2009-04-03T16:20:42Z

</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

<nsl:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"

xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<getSSOProviderConfiguration xmins="http://xml.spss.com/security/remote">

<ns2:SSOProviderID xmins:ns2="http://xml.spss.com/security">ssoKerberos</ns2:SSOProviderID>
</getSSOProviderConfiguration>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getSS0Configuration operation call by sending a SOAP response
message containing the results. An example of such a message follows.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getSSOProviderConfigurationResponse xmins="http://xml.spss.com/security/remote">
<ns1:SSOProviderConfiguration enabled="true" canDisable="true" name="Kerberos SSO Provider"
id="ssoKerberos" xmlns:ns1="http://xml.spss.com/security">
<ns1:SSOProviderConfigltem type="text' name="KDC Host Address" id="kdcAddress">
<ns1:description>Kerberos Key Distribution Center machine address, for example:
kdc.mycompany.com</ns1:description>
<ns1:value>kdc.mycompany.com</ns1:value></ns1:SSOProviderConfigltem>
<ns1:SSOProviderConfigltem type="text' name="Kerberos Realm" id="realm">
<nsT:description>Kerberos Realm, for example: MYCOMPANY.COM</ns1:description>
<nsl:value>MYCOMPANY.COM</ns1:value></ns1:SSOProviderConfigltem>
<ns1:SSOProviderConfigltem type="text' name="Host Address" id="hostAddress">
<ns1l:description>PASW Deployment and Collarobation Services Server machine address, for example:
paswserver.mycompany.com</ns1:description>
<ns1:value>paswserver.mycompany.com</ns1:value></ns1:SSOProviderConfigltem>
<ns1:SSOProviderConfigltem type="text' name="Kerberos Service Principal" id="spn">
<ns1:description>Kerberos Service Principal Name, for example:
HTTP/paswserver.mycompany.com@MYCOMPANY.COM</ns1:description>
<ns1:value>HTTP/paswserver.mycompany.com@MYCOMPANY.COM</ns1:value>
</ns1:SSOProviderConfigltem>
<ns1:SSOProviderConfigltem type="password" name="Kerberos Service Principal Password"
id="spnPassword">
<ns1:description>Kerberos Service Principal Password</ns1:description>
<nsl:value>.iCA-b1ca,Soda,Cracker</ns1:value></ns1:SSOProviderConfigltem>
<ns1:SSOProviderConfigltem type="text" name="Kerberos Key Table URL" id="keytabURL">
<ns1:description>Kerberos Key Table URL, for example: FILE:c:/keytab/krb5.keytab</ns1:description>

42

Chapter 4

<nsl:value>FILE:C:/keytab/krb5.keytab</ns1:value></ns1:SSOProviderConfigltem>
<ns1:SSOProviderConfigltem type="text' name="JAAS Configuration File" id="jaasConfigURL">
<ns1:description>JAAS configurtion file that will be used instead. Consult Administrator's Guide
to determine format and content of this file.</ns1:description>
<ns1:value>#USE_SUPPLIED#</ns1:value></ns1:SSOProviderConfigltem>
<ns1:SSOProviderConfigltem type="text' name="Security Provider" id="securityProvider">
<ns1:description>Security Provider bound to Kerberos provider, for example:
Active Directory</ns1:description>
<ns1:value>AD</ns1:value>

</ns1:SSOProviderConfigltem>
</ns1:SSOProviderConfiguration>
</getSSOProviderConfigurationResponse>
</soapenv:Body>
</soapenv:Envelope>

The getVersion operation

Returns the version number of the service.

Return information

The following table identifies the information returned by the getVersion operation.

Table 4-24

Return Value

Type Description

string The version of the web service.

Java example

The following code uses the WSConnections classto return stubs for the services. The getVersion
operation returns the version number of each returned service to the standard output.

String host = "localhost”;

int port = 80;

boolean useSSL = false;

String username = "admin";

String password = "spss";

String acceptLanguage = "en_us";

// create an instance of the WebServiceConnections, passing in all the

// relevant connection information.

WebServiceConnections wsConnections = new WebServiceConnections(host,
port, useSSL, username, password, acceptLanguage);

CapabilityInformation capabilityInformation = wsConnections.getCapabilitylnformation();

System.out.printin("Capabilitylnformation version =" + capabilitylnformation.getVersion());

DirectoryManagement directoryManagement = wsConnections.getDirectoryManagement();

43

Operation reference

System.out.printin("Directory Management version =" + directoryManagement.getVersion());

ProviderInformation providerinformation = wsConnections.getProviderinformation();
System.out.printin("ProviderInformation version =" + providerInformation.getVersion());

DirectoryInformation directorylnformation = wsConnections.getDirectorylnformation();
System.out.printIn("Directorylnformation version =" + directorylnformation.getVersion());

Authentication authentication = wsConnections.getAuthentication();
System.out.printin("Authentication version =" + authentication.getVersion());

SS0DirectoryManagement ssoDirectoryManagement = wsConnections.getSSODirectoryManagement();
System.out.printin("SSODirectoryManagement version = " + ssoDirectoryManagement.getVersion());

SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getVersion xmlIns="http://xml.spss.com/security/remote"/>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<getVersionResponse xmins="http://xml.spss.com/security/remote">
<version>4.20.000</version>
</getVersionResponse>
</soapenv:Body>
</soapenv:Envelope>

The importPrincipals operation

Imports principals defined in an external file into the system. The file being imported must adhere
to the structure defined by the schema nativestore.xsd.

44

Chapter 4

Input fields

The following table lists the input fields for the importPrincipals operation.

Table 4-25
Fields for importPrincipals

Field

Type/Valid Values

Description

importPrincipals

importPrincipals

Data to bulk load into the Local
User Repository. The actual data
isin an attached file. The input
includes a mode property with one
of two values: update or replace.
Update mode adds new principas
to the existing set. Replace mode
deletes existing principals before
adding new ones.

Return information

The following table identifies the information returned by the importPrincipals operation.

Table 4-26

Return Value

Type Description

statusDetails Summary of changes made to the Local User

obsolete.

Repository, such as the number of users and groups
added and the number of users and groups made

Java example

Importing principals defined in an external file requires the specification of two pieces of

information:

m the name of the file containing the principals to import
m the bahavior, or mode, for the import

To import principals, create an ImportPrincipals object. Use the setMode method to define the
import mode. Create an attachment for the file to import and call the importPrincipals operation.

DirectoryManagement directoryManagement = wsConnections.getDirectoryManagement();

ImportPrincipals importPrincipals = new ImportPrincipals();
importPrincipals.setMode(ImportPrincipalsModeType.UPDATE);

// Create an attachment for the binary content

java.io.File examplelmport = new java.io.File("examplelmport.xml);
FileDataSource dataSource = new FileDataSource(examplelmport);

DataHandler dataHandler = new DataHandler(dataSource);

AttachmentPart attachmentPart = new AttachmentPart(dataHandler);

Attachment attachment = new Attachment();
attachment.setHref(attachmentPart.getContentld());

45

Operation reference

// Do Axis stub hack to add the attachment
((org.apache.axis.client.Stub) directoryManagement).addAttachment(attachmentPart);

directoryManagement.importPrincipals(importPrincipals);

SOAP request example

Client invocation of the importPrincipals operation generates a SOAP request message that is sent
to the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<importPrincipals xmIns="http://xml.spss.com/security/remote">
<importPrincipals mode="update" xmlIns="http://xml.spss.com/security'/>
</importPrincipals>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to aimportPrincipals operation call by sending a SOAP response message
containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<importPrincipalsResponse xmIns="http://xml.spss.com/security/remote">
<importPrincipalsStatus success="true" xmins="http://xml.spss.com/security">
<statusltem name="New Groups">
<value>2</value>
</statusltem>
<statusltem name="New Users">
<value>4</value>

46

Chapter 4

</statusltem>

<statusltem name="0Obsolete Groups">
<value>1</value>

</statusltem>

<statusltem name="0Obsolete Users">
<value>2</value>

</statusltem>

</importPrincipalsStatus>
</importPrincipalsResponse>
</soapenv:Body>
</soapenv:Envelope>

The putSSOConfiguration operation

Saves the changes to single sign-on provider configuration parameters.

Input fields

The following table lists the input fields for the putSSOConfiguration operation.

Table 4-27
Fields for putSSOProviderConfiguration
Field Type/Valid Values Description

SSOProviderConfigurationUpdate | SSOProviderConfigurationUpdate | A set of configuration item/value
pairs for a specific provider,
identified by its ID.

Return information

The following table identifies the information returned by the putSSOConfiguration operation.

Table 4-28

Return Value

Type Description

string General purpose response. Just a string.

Java example

The following example function calls putSSOConfiguration from the stub for the service, saving
SSO configuration parameters for the provider.

SSOProviderConfigurationUpdate updatedConfig = new SSOProviderConfigurationUpdate();
updatedConfig.setSSOProviderltemValue(newltems);
stub.putSSOConfiguration(updatedConfig);

47

Operation reference

SOAP request example

Client invocation of the putSSO0Configuration operation generates a SOAP request message that is
sent to the server for processing. An example of such a message follows.

<soapenv:Envelope
xmlIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password
wsse:
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">
spss
</wsse:Password>
<wsse:Nonce>0V7BEGvXgCjjxmcL+sL9TA==</wsse:Nonce>
<wsu:Created
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
2009-04-03T16:20:42Z
</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0" xmIns:ns1="http://xml.spss.com/ws/headers">
en-US;q=1.0, en;q=0.8
</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<putSSOProviderConfiguration xmIns="http://xml.spss.com/security/remote">
<ns2:SSOProviderConfigurationUpdate ID="ssoKerberos" enabled="true"
xmlns:ns2="http://xml.spss.com/security">
<ns2:SSOProviderltemValue id="kdcAddress">
<ns2:value>kdc.mycompany.com</ns2:value>
</ns2:SSOProviderltemValue>
<ns2:SSOProviderltemValue id="spnPassword">
<ns2:value>.iCA-b1ca,Soda,Cracker</ns2:value>
</ns2:SSOProviderltemValue>
<ns2:SSOProviderltemValue id="keytabURL">
<ns2:value>FILE:C:/keytab/krb5.keytab</ns2:value>
</ns2:SSOProviderltemValue>
<ns2:SSOProviderltemValue id="hostAddress">
<ns2:value>paswserver.mycompany.com</ns2:value>
</ns2:SSOProviderltemValue>
<ns2:SS0ProviderltemValue id="jaasConfigURL">
<ns2:value>#USE_SUPPLIED#</ns2:value>

48

Chapter 4

</ns2:SSOProviderltemValue>

<ns2:SSOProviderltemValue id="spn">
<ns2:value>HTTP/paswserver.mycompany.com@MYCOMPANY.COM</ns2:value>

</ns2:SSOProviderltemValue>

<ns2:SSOProviderltemValue id="realm">
<ns2:value>MYCOMPANY.COM</ns2:value>

</ns2:SSOProviderltemValue>

<ns2:SSOProviderltemValue id="securityProvider">
<ns2:value>AD</ns2:value>

</ns2:SSOProviderltemValue>

</ns2:SSOProviderConfigurationUpdate>
</putSSOProviderConfiguration>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a putSS0Configuration operation call by sending a SOAP response
message containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<putSSOProviderConfigurationResponse xmlns="http://xml.spss.com/security/remote">
<nsl:status xmins:ns1="http://xml.spss.com/security"></ns1:status>
</putSSOProviderConfigurationResponse>
</soapenv:Body>
</soapenv:Envelope>

The updatePrincipal operation

Updates the password for an existing user, or modifies associations between existing users,
groups, and roles in the system.

Input fields

The following table lists the input fields for the updatePrincipal operation.

Table 4-29

Fields for updatePrincipal

Field Type/Valid Values Description
modifiedPrincipal modifiedPrincipal Updated information for a

principal identified by its ID.
This information may include a
new password, or a new set of
associations with other principals.

49

Operation reference

Return information

The following table identifies the information returned by the updatePrincipal operation.

Table 4-30

Return Value

Type Description

string An internal identifier for a principal.

Java example

Updating a principal involves defining a new password or assigning new relationships to other
principals. Thisinformation is contained within a ModifiedPrincipal object.

The following sample uses setPrincipallD to define the principal to be updated. The
setUserPassword method specifies the new password for the principal. Finaly, the
setAssociatedPrincipallD method defines the other principals to be associated. The
updatePrincipal operation updates the system according to the updated information in the
ModifiedPrincipal object.

ModifiedPrincipal mp = new ModifiedPrincipal();
mp.setPrincipallD("//uNative//bbrever");
mp.setUserPassword("qw12as34");
mp.setAssociatedPrincipallD("//gNative//$$security/everyoneGroup");
stub.updatePrincipal(mp);

SOAP request example

Client invocation of the updatePrincipal operation generates a SOAP reguest message that is sent
to the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<updatePrincipal xmIns="http://xml.spss.com/security/remote">
<modifedPrincipal principallD="//uNative//bbrever" userPassword="qw12as34"
xmins="http://xml.spss.com/security">

50

Chapter 4

<associatedPrincipallD>//gNative//$8security/everyoneGroup</associatedPrincipalID>

</modifedPrincipal>
</updatePrincipal>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a updatePrincipal operation call by sending a SOAP response message

containing the results. An example of such a message follows.

<soapenv:Envelope xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/*
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<soapenv:Body>

<updatePrincipalResponse xmiIns="http://xml.spss.com/security/remote">

<nsT:principallD xmiIns:ns1="http://xml.spss.com/security"></ns1:principalID>

</updatePrincipalResponse>
</soapenv:Body>
</soapenv:Envelope>

The updateRoleDefinition operation

Updates the list of actions associated with an existing role.

Input fields

The following table lists the input fields for the updateRoleDefinition operation.

Table 4-31
Fields for updateRoleDefinition

Field

Type/Valid Values

Description

modifiedRoleDefinition

modifiedRoleDefinition

Updated action associations for a
role, identified by its principal ID.

Return information

The following table identifies the information returned by the updateRoleDefinition operation.

Table 4-32

Return Value

Type Description

string General purpose response. Just a string.

51

Operation reference

Java example

Updating arole reguires two pieces of information:
m the role being updated
m the new actions to associate with the role

This information is contained within a ModifiedRoleDefinition object.

The following sample creates an array of strings corresponding to action identifers. The
setActionID method assigns these identifiers to the ModifiedRoleDefinition object. The
setPrincipallD method defines the principal to update. Use the updateRoleDefinition operation
to apply the changes to the system.

Stringl] actionArray ={
"configuration/Editor",
"security/config",
"security/roleDefinition",
"prms/jobs’,
“configuration/MimeManager"

|3

ModifiedRoleDefinition mrd = new ModifiedRoleDefinition();

mrd.setActionID(actionArray);

mrd.setPrincipallD("//rNative//nrole");
stub.updateRoleDefinition(mrd);

SOAP request example

Client invocation of the updateRoleDefinition operation generates a SOAP request message that is
sent to the server for processing. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<nsl:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmins:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<updateRoleDefinition xmIns="http://xml.spss.com/security/remote">
<modifiedRoleDefinition xmIns="http://xml.spss.com/security">
<actionID>configuration/Editor</actionID>
<actionID>security/config</actionID>

52

Chapter 4

<actionID>security/roleDefinition</actionID>
<actionlD>prms/jobs</actionID>
<actionID>configuration/MimeManager</actionID>
<principallD>//rNative//nrole</principallD>
</modifiedRoleDefinition>
</updateRoleDefinition>
</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a updateRoleDefinition operation call by sending a SOAP response
message containing the results. An example of such a message follows.

<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<updateRoleDefinitionResponse xmins="http://xml.spss.com/security/remote">
<ns1:status xmIns:ns1="http://xml.spss.com/security"></ns1:status>
</updateRoleDefinitionResponse>
</soapenv:Body>
</soapenv:Envelope>

Appendix

A

Microsoft .NET Framework-based
clients

In order to use the web services from a Microsoft Windows Communication Foundation (WCF)
client, you will need Visua Studio 2008 or later. The discussion here assumes the use of Visua
Studio 2008. In general, the process for accessing IBM® SPSS® Collaboration and Deployment
Services web services involves the following steps:

1. Add aService Reference. For more information, see the topic Adding a service reference on p. 53.

2. Configure the web service endpoint. For more information, see the topic Configuring the web
service endpoint on p. 55.

3. Programmatically configure the necessary endpoint behaviors. For more information, see the
topic Configuring endpoint behaviors on p. 56.

4. Exercisethe web service. For more information, see the topic Exercising the service on p. 56.

Note that the IBM SPSS Collaboration and Deployment Services single sign-on implementation
is not compatible with Microsoft .NET web services, or the WCF. As aresult, single sign-on
is not available from these clients.

Adding a service reference

Thefirst step in using a WCF client to access IBM® SPSS® Collaboration and Deployment
Services web services is to make the service available to the Visua Studio project by adding
it as a Service Reference.

1. InVisual Studio, right-click the folder’s References folder and select Add Service Reference.

2. Typethe URL of the service WSDL location in the Address field, and click Go. The value
corresponds to the service endpoint appended with 2wsdl.

3. Specify the desired namespace in the Namespace field.

4. Click OK.

Visual Studio adds anew service reference to the Service Reference directory for the project. The
name of the reference corresponds to the specified namespace.

© Copyright IBM Corporation 2000, 2012. 53

54

Appendix A

Service reference modifications

E N

o

Due to known compatibility issues between Microsoft tooling and some WSDL files, you need to
manually modify some service references before they can be used successfully. For information
about the specific issues, see articles 891386 (http://support.microsoft.com/kb/891386) and
326790 (http://support.microsoft.com/kb/326790) on the Microsoft Support site.

To modify a service reference:

In Visual Studio, select the project and click Show All Files from the Project menu.
Expand the service reference that needs to be modified.

Expand the Reference.svcmap node.

Open the Reference.csfile.

Make the required modifications.

Save thefile.

For the Content Repository Service, Content Repository URI Service, and Process Management
Service, you need to make the following changes to the RowType class:

m private value[][] cellField should be changed to private value[] cellField
m public value[][] cell should be changed to public value[] cell

For the Scoring Service, you need to make the following changes:

m in the returnedDPDOutputTable class, private returnedDPDOutputValue[][]
returnedDPDOutputrowField should be changed to private returnedDPDQutputValue[]
returnedDPDOutputrowField

m in the returnedDPDOutputTable class, private returnedDPDOutputValue[][]
returnedDPDOutputRow should be changed to private returnedDPDQutputValuel]
returnedDPDOutputRow

m in the returnedRequestinputTable class, private returnedRequestinputValuel][]
returnedRequestinputRow should be changed to private returnedRequestinputValue[]
returnedRequestinputRow

m in the returnedRequestinputTable class, private returnedRequestinputValuel][]
returnedRequestinputRowField should be changed to private returnedRequestinputValue[]
returnedRequestinputRowField

m intherequestinputTable class, private input1[][] requestinputRowField should be changed to
private input1[] requestinputRowField

m intherequestinputTable class, private input1[][] requestinputRow should be changed to private
input1[] requestinputRow

For the PevServices Service, you need to make the following changes:

m in the avTableConflict class, private avColumnMeta[][] avColumnConflictField should be
changed to private avColumnMeta[] avColumnConflictField

http://support.microsoft.com/kb/891386
http://support.microsoft.com/kb/326790

55

Microsoft® .NET Framework-based clients

m inthe avTableConflict class, private avColumnMeta[][] avColumnConflict should be changed to
private avColumnMeta[] avColumnConflict

m inthe evTableConflict class, private evColumnMeta[][] evColumnConflictField should be
changed to private evColumnMeta[] evColumnConflictField

m intheevTableConflict class, private evColumnMetal[][] evColumnConflict should be changed to
private evColumnMeta[] evColumnConflict

Configuring the web service endpoint

In WCF, you can configure a service endpoint either declaratively using an app.config file, or
programmatically using the WCF APIs. The following steps describe the creation of a basic
configuration within an app.config file.

1. InVisua Studio, double-click the app.config file for the application (or web.config for a
web-application).

2. Find the system.serviceModel element. Createit if it does not already exist.

3. Find the client element. Createit if it does not already exist.

4. Create anew endpoint element as a child of the client element.

5. Specify the appropriate service endpoint URL as the value of the address attribute.
6. Specify basicHttpBinding as the value of the binding attribute.

7. Specify the appropriate service contract as the value of the contract attribute. The service contract
is the value of the service reference namespace appended with the service name.

8. Optionally specify avalue for the name attribute that identifies a name for the endpoint
configuration. If the name is blank, the configuration is used as the default for the service.

The resulting app.config file should be similar to the following example:

<system.serviceModel>
<client>
<endpoint
address="http://cads_server:8080/cr-ws/services/ContentRepository"
binding="basicHttpBinding"
bindingConfiguration=""
contract="IBM.SPSS.ContentRepository"
name="/>
</client>
</system.serviceModel>

56

Appendix A

Configuring endpoint behaviors

The following two issues complicate the use of IBM® SPSS® Collaboration and Deployment
Servicesweb services by WCF clients:

m WCF does not alow the username and password to be transmitted over HTTP
m WCF does not correctly understand the SOAP Fault format returned by the services

To address these problems, a sample Visual Studio project is available that contains classes adding
endpoint behaviors that resolve both issues. The IBM SPSS Collaboration and Deployment
Services installation media includes this project.

To use these classes, ensure that the IBM.SPSSWCF.Utilities project containing these classes has
been compiled and added as areference to the Visual Studio project that exercises the web services.
When constructing a new service client instance, ensure that the behaviors are added as follows:

ContentRepositoryClient serviceClient = new ContentRepositoryClient();
serviceClient.Endpoint.Behaviors.Add(
new ApplyClientInspectorsBehavior(
new HeaderlnjectionMessagelnspector(
new UsernameTokenSecurityHeader("admin", "Abcdefg1")

),
new SOAPFaultFormatMessagelnspector())

);

This adds two message inspectors to the behaviors for the endpoint. The first allows message
headers to be injected, permitting a UsernameToken security header containing the username and
password to be transmitted over HTTP. The second message inspector intercepts SOAP Faults,
ensuring that they are formatted for proper WCF processing.

Exercising the service

After adding the service reference to the project, configuring the endpoint, and adding the
necessary endpoint behaviors, the WCF-based web service client isready. Add the .NET source
code to the project to exercise the web service as needed.

There may be instances in which the .NET client proxies are generated incorrectly, leading to
unexpected missing results at runtime. If aweb service call returns no results when results

are expected, the generated .NET types associated with the request and response should be
examined. Specifically, members of the types may have two .NET attributes assigned. The first,
MessageBodyMemberAttribute, will often include the proper namespace for the member type. The
second, XmIElementAttribute, should have the same namespace as MessageBodyMemberAttribute.
If thisis not the case, add the namespace to XmlElementAttribute. Moreover, the addition of XML
seriaization attributes, such as System.XML.Serialization.XmlElementAttribute, may be necessary
to correctly name the expected namespace or element. For example, the following generated
client code would need to be modified:

public partial class getUsersResponse {
System.ServiceModel.MessageBodyMemberAttribute(Namespace =
“http://xml.spss.com/pes/userPref/remote", Order = 0)]

57

Microsoft® .NET Framework-based clients

public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

The corrected code is as follows;

public partial class getUsersResponse {
[System.ServiceModel.MessageBodyMemberAttribute(Namespace =
“http://xml.spss.com/pes/userPref/remote”, Order = 0)]
[System.Xml.Serialization.Xml|ElementAttribute(ElementName="usersRequestResponse")]
public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

Appendix

Notices

Thisinformation was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
availablein your area. Any referenceto an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it isthe user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.SA

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS1S” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sitesis at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
thisone) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

© Copyright IBM Corporation 2000, 2012. 58

59

Notices

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of afee.

The licensed program described in this document and all licensed materia available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-1IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http: //www.ibm.convlegal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX isaregistered trademark of The Open Group in the United States and other countries.

Javaand all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

60

Appendix B

2 fifla
-V

CompaTRLL

Index

accessing the SSO Authentication Service, 10 header elements
accessing the SSO Directory Management Service, 10 in SOAP messages, 3
actions, 29 Holder classes

roles, 15 in JAX-WS, 6
Active Directory, 8, 13-14 HTTP, 2

with local override, 13, 15 HTTPS, 2
app.config files

WCEF clients, 55
authentication, 8 IBM i user repository, 13

importPrincipals operation, 43
iSSSOEnabled operation, 20

bindings
in WSDL files, 5 _
body elements Java proxies, 6
in SOAP messages, 3 JAX-WS, 6

JD Edwards (JDE), 14

JDE Application User security provider, 14
calling SSO Authentication Service operations, 10
calling SSO Directory Management Service operations, 11

configurable directories, 14, 31 Kerbero_s
Content Repository service domain, 8

WCEF clients, 54 Key _Dlstr_l bution Center, 8
Content Repository URI service Service Ticket, 8

WCEF clients, 54 Kerberos ticket, 12

createPrincipal operation, 22
createRoleDefinition operation, 24

LDAP, 13
legal notices, 58
deletePrincipals operation, 26 Li ﬁ]%ﬂlgwgs 6
deleteRoleDefinition operation, 27 L
dir : local override
ectories . .

. for Active Directory, 13, 15
configurable, 14, 31 local it 13 15
managesble, 14, 33 ocal user repository, 13,

domains
for security providers, 14 manageable directories, 14, 33
M essageBodyM emberAttribute
EIM, 13 for WCF clients, 56
eim.jar, 13 messages -
QT in WSDL files, 5

Enterprise |dentity Management, 13

native provider, 13

getActi(_)nLisI ope_ration,_ 29 _ nativestore.xsd, 43
getConfigurableDirectories operation, 31 NET framework. 53
getConfiguration operation, 31 NET proxies, 7 '
getManageableDirectories operation, 33 '
getManageabl ePrincipal s operation, 35
getPrincipal Data operation, 37 OpenLDAP, 13-14
getSSOConfiguration operation, 39 operation reference, 17
getSSOProviderConfig operation, 17 SSO Authentication Service, 17
getToken operation, 19 SSO Directory Management Service, 22
getVersion operation, 42
groups, 15, 37

creating, 22 PevServices service

deleting, 26 WCEF clients, 54

importing, 43 port types

updating, 48 in WSDL files, 5

61

62

Index

principals, 37
creating, 22
deleting, 26
importing, 43
manageable, 35
updating, 48
Process Management service
WCEF clients, 54
protocols
in web services, 2
providers, 13
domains, 14
keys, 14
names, 14
proxies, 6
Java, 6
.NET, 7
putConfiguration operation, 31
putSSOConfiguration operation, 46

roles, 15, 37
actions for, 29
creating, 22, 24
deleting, 26-27
importing, 43
updating, 48, 50

Scoring service
WCEF clients, 54
security providers, 13
IBM i user repository, 13
security token, 12
service endpoints
SSO Authentication Service, 10
SSO Directory Management Service, 10
services
in WSDL files, 6
single sign-on, 8, 13, 20
configurable directories, 14
directories, 13
Kerberos ticket, 12
manageable directories, 14
operation reference, 17
provider, 12
roles, 15
security token, 12
WCEF clients, 53
single sign-on provider, 12
SOAP, 2-3
SSO, 13
SSO Authentication Service, 8
accessing, 10
calling operations, 10
service endpoint, 10
stubs, 10
SSO Authentication Service operations, 17

SSO Directory Management Service, 8
accessing, 10
calling operations, 11
service endpoint, 10
stubs, 11

SSO Directory Management Service operations, 22

SSO provider configuration, 17, 39, 46
SSO Provider Information Service, 8
SSO token, 19
stubs
SSO Authentication Service, 10
SSO Directory Management Service, 11

trademarks, 59

types
in WSDL files, 4

updatePrincipal operation, 48
updateRol eDefinition operation, 50
users, 15, 37

creating, 22

deleting, 26

importing, 43

updating, 48

Visual Studio, 53

WCEF clients, 53, 56
endpoint behaviors, 56
endpoint configuration, 55
limitations, 53
service reference, 53-54
single sign-on, 53

web services
introduction to web services, 1
protocol stack, 2
system architecture, 1
what are web services?, 1

web.config files
WCEF clients, 55

Windows Communication Foundation, 53

WSDL files, 2-3
accessing, 10-11
bindings, 5
messages, 5
port types, 5
services, 6
types, 4

wsdl.exe, 7

wsdl2java, 6

wsimport, 6

XmlElementAttribute
for WCF clients, 56

	IBM SPSS Collaboration and Deployment Services 5 Single Sign-On Services Developer’s Guide
	Contents
	1. Introduction to web services
	What are web services?
	Web service system architecture
	Web service protocol stack
	Simple Object Access Protocol
	Web Service Description Language

	Proxies

	2. Single sign-on services overview
	SSO Authentication Service overview
	Workflow
	Accessing the SSO Authentication Service
	Calling SSO Authentication Service operations

	SSO Directory Management Service overview
	Accessing the SSO Directory Management Service
	Calling SSO Directory Management Service operations

	3. Single sign-on concepts
	The Kerberos ticket
	Security token
	Single sign-on provider
	Directories
	Configurable directories
	Manageable directories

	Principals
	Roles

	4. Operation reference
	SSO Authentication Service operations
	The getSSOProviderConfig operation
	The getToken operation
	The isSSOEnabled operation

	SSO Directory Management Service operations
	The createPrincipal operation
	The createRoleDefinition operation
	The deletePrincipals operation
	The deleteRoleDefinition operation
	The getActionList operation
	The getConfigurableDirectories operation
	The getManageableDirectories operation
	The getManageablePrincipals operation
	The getPrincipalData operation
	The getSSOConfiguration operation
	The getVersion operation
	The importPrincipals operation
	The putSSOConfiguration operation
	The updatePrincipal operation
	The updateRoleDefinition operation

	A. Microsoft® .NET Framework-based clients
	Adding a service reference
	Service reference modifications

	Configuring the web service endpoint
	Configuring endpoint behaviors
	Exercising the service

	B. Notices
	Index

