
IBM® Analytical Decision Management
Version 17 Release 0

Response Service Developer’s Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 21.

Product Information

This edition applies to version 17, release 0, modification 0 of IBM Analytical Decision Management and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2010, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introduction to web services 1
What are web services? 1
Web service system architecture 1
Web service protocol stack 2

Simple Object Access Protocol 2
Web Service Description Language 3

Proxies 5

Chapter 2. Response Service Overview 7
Accessing the Response Service 8
Calling Response Service Operations 9
Response Log 9

Chapter 3. Schema Reference 11
response-logging.xsd Schema 11

Elements 11

Chapter 4. WSDL Reference. 15
WSDL File. 15
WSDL Schema 16

Elements 16

Notices 21
Trademarks 22

Index 25

© Copyright IBM Corp. 2010, 2015 iii

iv IBM® Analytical Decision Management: Response Service Developer’s Guide

Chapter 1. Introduction to web services

What are web services?
At a high level, a web service is a set of functionality distributed across a network (LAN or the Internet)
using a common communication protocol. The web service serves as an intermediary between an
application and its clients, providing both a standardized information structure and a standardized
communication protocol for interaction between the two.

Where other methods of distributed application architecture rely on a single programming language
being used on both the application and its clients, a web service allows the use of loosely coupled
services between non-homogenous platforms and languages. This provides a non-architecture-specific
approach allowing, for example, Java services to communicate with C# clients, or vice versa.

Advantages to implementing application functionality as web services include the following:
v Software written in different languages (Java or C#) running on different platforms (UNIX or

Windows) can exchange services and data
v Application functionality can be accessed by a variety of clients. For example, both a thin-client

interface and a rich-client interface can take advantage of the web service operations.
v Updates to the service are immediately available to all service clients

Web service system architecture
Web services are deployed and made publicly available using an application server, such as WebSphere®,
JBoss Application Server, or Oracle WebLogic Server. The published web services are hosted by this
application server to handle application requests, access permissions, and process load. A high-level
architecture of how web services are implemented is displayed in the following diagram.

The client code supplies input to an operation offered by a proxy class. The proxy class generates a
request containing a standardized representation of the input and sends it across the network to the
application. A proxy class on the server receives the request and unmarshals the contents into objects for
processing by the application. Upon completing the operation, the application supplies a proxy with the
output. The proxy creates a standardized representation of that output and sends the response back to the
client. The client proxy unmarshals the response into native objects for subsequent processing by the
client code.

Standardizing the format of the information passing between the client and the application allows a client
written in one programming language to communicate with an application written in another. The proxy

Request Request

ResponseResponse

Figure 1. Web service architecture

© Copyright IBM Corporation 2010, 2015 1

classes, which are automatically generated from a web service description by a variety of toolkits, handle
the translation between native programming objects and the standardized representation. See the topic
“Proxies” on page 5 for more information.

Web service protocol stack
A web service implementation depends on technologies often organized in a layered stack. The
implementation itself defines a standard protocol for each technology layer, with each layer depending on
the layers appearing below it in the stack.

Beginning at the bottom of the stack, the Transport layer defines the technology standards for
communication, allowing information to move across the network. HTTP or HTTPS are often used as the
standard for the transport layer.

The Packaging layer rests on top of Transport and defines the standard for structuring information for
transport across the network. The SOAP format is commonly used, which offers an XML structure for
packaging the data. See the topic “Simple Object Access Protocol” for more information.

The topmost layer is Description and identifies the standards used by the layers below it in the stack, as
well as providing the definition of the interface available for client use. The most common means of
conveying this information is through the use of a WSDL file. See the topic “Web Service Description
Language” on page 3 for more information.

Simple Object Access Protocol
The Simple Object Access Protocol (SOAP) is a way to pass information between applications in an XML
format.

SOAP messages are transmitted from the sending application to the receiving application, typically over
an HTTP session. The actual SOAP message is made up of the Envelope element, which contains a Body
element and an optional Header element.
v Envelope. This mandatory element is the root of the SOAP message, identifying the transmitted XML

as being a SOAP packet. An envelope contains a body section and an optional header section.
v Header. This optional element provides an extension mechanism indicating processing information for

the message. For example, if the operation using the message requires security credentials, those
credentials should be part of the envelope header.

v Body. This element contains the message payload, the raw data being transmitted between the
sending and receiving applications. The body itself may consist of multiple child elements, with an
XML schema typically defining the structure of this data.

A SOAP packet and the corresponding XML is structured in the following way:

Figure 2. Web service protocol stack

2 IBM® Analytical Decision Management: Response Service Developer’s Guide

Web Service Description Language
A Web Service Description Language (WSDL) file provides an XML-based map of what functionality the
published web service allows, separating the implementation in the service from the interface. The WSDL
defines the following:
v The access location of the web service
v Operations the web service exposes
v Parameters the exposed operations accept
v Any request or response messages associated with the operations

The WSDL provides the information necessary to generate a client-side proxy in the target programming
language.

In accordance with the WSDL specification adopted by the World Wide Web Consortium, information in
the WSDL is organized into the following sections:
v Types. Content definitions for web service operation input and output. See the topic “Types” for more

information.
v Messages. Input and output definitions for the web service operations. See the topic “Messages” on

page 4 for more information.
v PortTypes. Groups of operations offered by the web service. See the topic “Port types” on page 4 for

more information.
v Bindings. Protocols and formats for the web service operations. See the topic “Bindings” on page 4 for

more information.
v Services. Endpoints at which the web service functionality can be accessed. See the topic “Services” on

page 5 for more information.

Types
The types element of a WSDL file contains the data type definitions employed by messages processed by
the web service. These definitions use XML to organize the information relevant to the type element
being defined. Consider the following example type definitions:
<wsdl:types>
<schema targetNamespace="http://xml.spss.com/security/remote"
xmlns="http://www.w3.org/2001/XMLSchema">
<element name="getProviders">
<complexType />

</element>
<element name="getProvidersResponse">
<complexType>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>
 <ns1:client-accept-language soapenv:mustUnderstand="0"
 xsi:type="xsd:string" xmlns:ns1="http://xml.spss.com/ws/headers">
 en-US;q=1.0, en;q=0.8
 </ns1:client-accept-language>
 </soapenv:Header>

 <soapenv:Body>
 <getProviders xmlns="http://xml.spss.com/security/remote"/>
 </soapenv:Body>

</soapenv:Envelope>

Figure 3. An example SOAP packet

Chapter 1. Introduction to web services 3

http://www.w3.org/TR/wsdl

<sequence>
<element name="providerInfo[unbounded]" type="tns1:providerInfo" />

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

This section defines two elements, getProviders and getProvidersResponse. The former is an empty element.
The latter contains a sequence of providerInfo child elements. These children are all of the providerInfo type,
which is defined elsewhere.

In practice, the WSDL file typically references type element definitions found in an external XML schema.
For instance, the following definition uses security-remote.xsd to define type elements.
<wsdl:types>
<xs:schema>
<xs:import namespace="http://xml.spss.com/security/remote"
schemaLocation="security-remote.xsd"/>

</xs:schema>
</wsdl:types>

Messages
The message elements of a WSDL file defines the input or output parameters for operations available in
the web service. Each message can consist of one or more parts, with the parts similar to the parameters
of a function call in a traditional programming language. Consider the following two example message
definitions:
<wsdl:message name="getProvidersResponse">
<wsdl:part element="tns2:getProvidersResponse" name="parameters" />

</wsdl:message>
<wsdl:message name="getProvidersRequest">

<wsdl:part element="tns2:getProviders" name="parameters" />
</wsdl:message>

The getProvidersResponse message contains a single part, corresponding to the getProvidersResponse element
defined in the types section of the WSDL file. Similarly, the getProvidersRequest message also contains a
single part, as defined by the getProviders element in the types section. See the topic “Types” on page 3
for more information.

Port types
The portType element of a WSDL file defines the actual interface to the web service. A port type is simply
a group of related operations and is comparable to a function library, module, or class in a traditional
programming language. The definition specifies the parameters for the operations, as well as any values
returned. The parameters and return values correspond to messages defined elsewhere in the WSDL file.
Consider the following example port type definition:
<wsdl:portType name="ProviderInformation">
<wsdl:operation name="getProviders">
<wsdl:input message="impl:getProvidersRequest" name="getProvidersRequest" />
<wsdl:output message="impl:getProvidersResponse" name="getProvidersResponse" />

</wsdl:operation>
</wsdl:portType>

The ProviderInformation port type consists of a single operation, getProviders. Input to this operation
corresponds to the getProvidersRequest message. The operation returns information in the structure defined
by the getProvidersResponse message. See the topic “Messages” for more information.

Bindings
The binding element of a WSDL file binds the interface defined by the port type to transport and
messaging protocols. Consider the following example binding definition:
<wsdl:binding name="ProviderInformationSoapBinding" type="impl:ProviderInformation">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getProviders">
<wsdlsoap:operation soapAction="" />
<wsdl:input name="getProvidersRequest">
<wsdlsoap:body namespace="http://xml.spss.com/security/remote" use="literal" />

</wsdl:input>
<wsdl:output name="getProvidersResponse">

4 IBM® Analytical Decision Management: Response Service Developer’s Guide

<wsdlsoap:body namespace="http://xml.spss.com/security" use="literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

In this case, the transport attribute of the wsdlsoap:binding element defines HTTP as the transport
protocol. The getProviders operation in the interface is bound to the SOAP messaging protocol.

Services
The service element of a WSDL file identifies the network location at which the service interface can be
accessed. Consider the following example service definition:
<wsdl:service name="ProviderInformationService">
<wsdl:port binding="impl:ProviderInformationSoapBinding" name="ProviderInformation">
<wsdlsoap:address location="http://pes_server:8080/security-ws/services/ProviderInformation" />

</wsdl:port>
</wsdl:service>

In this example, the operations comprising the ProviderInformation port type can be accessed at:

http://pes_server:8080/security-ws/services/ProviderInformation

Proxies
Proxies serve as bridges between the client and the web service. A client-side proxy marshals the input
objects into a standardized representation which is sent to the web service. A server-side proxy
unmarshals the information into input objects for the service operations. The results of the operation are
marshalled into standard representations and returned to the client. The client proxy unmarshals the
response information into objects for any additional processing by the client.

Creating a proxy is the first step when developing a web service client; the proxy is the translation-unit
between your application and the web service the application is using. Fortunately, many development
environments include tools for automatically generating the client proxy from the web service WSDL file,
allowing the client developer to focus on the client application code instead of transport and packaging
protocols.

The proxy classes generated from a WSDL file depend on the tool used. For Java, the wsdl2java tool,
which is part of the Apache Axis project, can be used. This tool produces a Java class for each type in the
WSDL. Each port type results in a Java interface. A binding creates a stub class, and a WSDL service
yields a service interface with a locator implementation. These generated classes and interfaces can be
called directly from a client application written in Java to access the web service functionality.

An alternative Java proxy tool is wsimport, which is part of JAX-WS. The general structure of the
generated classes is similar to that created by the Axis tool, but there are some differences. For example,
instead of using arrays for input fields and returned items, the code generated from the wsimport tool
uses List collections. In addition, if an input type matches an output type for a method, the wsimport
tool uses a Holder class for the parameter.

In contrast, on the .NET platform, the wsdl.exe tool is often used to generate a web service proxy. This
tool creates a single source file in a specified language containing the proxy class. This class includes both
synchronous and asynchronous methods for each operation defined in the WSDL. For example, the web
service operation getProviders results in the methods getProviders, getProvidersBegin, and
getProvidersEnd. The latter two can be used for asynchronous processing.

A variety of other tools exist for other programming languages. For details, consult the documentation for
those tools. In each case, the tool creates native programming constructs that permit leveraging a web
service regardless of the service implementation language.

Chapter 1. Introduction to web services 5

6 IBM® Analytical Decision Management: Response Service Developer’s Guide

Chapter 2. Response Service Overview

The Response Service supplements the Scoring Service. It's a web service allowing client applications
such as call center interfaces to send responses to the service to be logged. For example, a bank might
have a call center interface that presents specific offers to the call center agent. The agent can then make
the appropriate offer to the bank customer, and the customer's answer (response) is sent to the Response
Service and logged. The following figure presents the flow of a complete example.

Table 1. Scoring Service and Response Service example.

Figure label Description

Customer Joe calls.

The call center sends Joe's customer ID to the Scoring Service. If logging is turned on in the
scoring configuration (optional), this information is sent to the score log. Note that score logging
is distinct from response logging.

The Scoring Service determines the best offer for customer Joe (Gold Card, for example) and
sends the offer back to the call center. This information is also written to the score log (if
enabled); Views and Queries can be written against the score log.

Figure 4. Example use of Scoring Service and Response Service

© Copyright IBM Corporation 2010, 2015 7

Table 1. Scoring Service and Response Service example (continued).

Figure label Description

The call center operator presents the Gold Card offer to customer Joe.

Joe says yes to the offer.

The call center sends Joe's "yes" response to the Response Service and this response is logged.
Queries can be written against the response log, or against both logs.

The Response Service compliments the Scoring Service and has one primary method:

public void logRequest(java.lang.String id, com.ibm.spss.dm.logging.schema.jaxb.info) throws
java.rmi.RemoteException

Where:
v id is the ID of the request to be logged. This should correspond with the ID returned from the scoring

service (step 3 in the diagram above). This ID is specific to the scoring transaction; it would not be the
same as the Customer ID in this example.

v info is the response information to be logged. See the topic “response-logging.xsd Schema” on page
11 for more information.

For a given score request, the scoring service may return 0 or more scores. Depending on the application,
the scores may represent offers such as Credit Card or Personal Loan. Similarly, the info to be logged via
the Response Service can contain 0 or more responses, which would indicate whether the customer
accepted each offer.

A given response typically corresponds to a specific score returned from the Scoring Service. Each score
returned can be identified by the ModelOutput value for that score, and correlated to the ModelOutput
value of the response. Much like the id, these model outputs can be used to correlate a specific response
to a given score output.

Each response can contain 0 or more OutputResponse items. For example, an OutputResponse may contain
the name/value pairs “Purchased”/”True” and “NegotiatedPrice”/”250.00”.

For the info and for each response, the caller can specify additional properties. Again, these are
name/value pairs to be used at the caller's discretion.

Accessing the Response Service
To access the functionality offered by the Scoring Service, create a client application using the proxy
classes generated by your preferred web service tool. The endpoint for the service is:
http://<host-name>:<port-number>/DM/services/ResponseService

The value of <host-name> corresponds to the machine on which the IBM® SPSS® Collaboration and
Deployment Services Repository is installed, with <port-number> indicating the port number on which it
is running.

Use the WSDL and schema files provided by IBM Corp. for proxy generation. For the Response Service,
these files are:
v response-logging.xsd

v dm-response-remote.xsd

v responseService.wsdl

8 IBM® Analytical Decision Management: Response Service Developer’s Guide

Calling Response Service Operations
The file com.ibm.spss.dm.logging.client.ws.jaxws.ResponseLogger contains a helper class that can be used to
call the Response Service.

Alternatively, clients can access the operations offered by the web service using a stub for the service. The
following is an example of how to acquire a stub in Java through JAX-WS defined methods:
ResponseServices responseServices = new ResponseServices();
ResponseService responseService = responseServices.getResponseService();
String url = "http://pes_server:80/DM/services/ResponseService";
((BindingProvider) responseService).getRequestContext().put(

BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
UserNameToken userNameToken = new UserNameToken("admin", "spss");
userNameToken.updateServiceSecurity(responseService);

The service operations can be called directly from the stub, such as:
service.logRequest(id, info);

Security consideration

When calling the Response Service on the main IBM SPSS Collaboration and Deployment Services
service, it is secured by IBM SPSS Collaboration and Deployment Services security. But when calling the
Response Service that is deployed on a remote scoring server, the Response Service is secured by the
application server security. See the IBM SPSS Collaboration and Deployment Services documentation for
more information.

Response Log
The Response Service will log to the SPSSDMRESPONSE_LOG table in the IBM SPSS Collaboration and
Deployment Services Repository. There will be one row logged for each call to logRequest.

This table consists of the following columns:
v SERIAL. This is id that is passed on the logRequest.
v STAMP. This is the time when the logRequest was called.
v INFO. This is the info that is passed on the logRequest.

As long as the Scoring Service id is passed as the id to the logRequest, the SPSSDMRESPONSE_LOG can
be joined to the SPSSSCORE_LOG table using the SERIAL column.

The INFO column of the SPSSDMRESPONSE_LOG table follows the response-logging.xsd schema that is
recorded in the database. Much like the SPSSSCORE_LOG used by the Scoring Service, custom SQL
views containing XML queries can be written over this table. Note that while the XML schema of the
Response Service and Scoring Service may complement each other, they are not the same schema.

It is entirely up to the caller of the Response Service to make sure appropriate information is logged. The
Response Service makes no attempt to validate any information. For example, it does not validate that
the id matches a scoring service id. Nor does it validate that a ModelOutput matches an output of the
Scoring Service. The ability to join the SPSSDMRESPONSE_LOG and the SPSSSCORE_LOG is dependent
on the information the caller provides.

Chapter 2. Response Service Overview 9

10 IBM® Analytical Decision Management: Response Service Developer’s Guide

Chapter 3. Schema Reference

response-logging.xsd Schema
This section provides a reference for all the elements in the Response Service schema
(response-logging.xsd). Each topic lists the valid attributes for an element and its parent and child elements.
The response-logging.xsd schema file is included in the .zip archive with this guide.

The Response Service WSDL file (responseService.wsdl) uses a separate schema named
dm-response-remote.xsd.

Elements

Info Element

XML Representation
<xs:element name="Info">
<xs:sequence>
<xs:element name="Response" type="spss_dms_logging:ResponseType" minOccurs="0" maxOccurs="unbounded">
<xs:sequence>
<xs:element name="ModelOutput" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="OutputResponse" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>

</xs:sequence>
</xs:element>
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>

</xs:sequence>
</xs:element>

Child Elements

Property, Response

Response Element: Decision Management has the ability to generate multiple outputs (multiple offers).
There will be one OutputRow for each output (for each offer).

XML Representation
<xs:element name="Response" type="spss_dms_logging:ResponseType" minOccurs="0" maxOccurs="unbounded">
<xs:sequence>
<xs:element name="ModelOutput" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="OutputResponse" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>

</xs:sequence>
</xs:element>

Parent Elements

Info

Child Elements

ModelOutput, OutputResponse, Property

ModelOutput Element: A name value pair.

© Copyright IBM Corporation 2010, 2015 11

Table 2. Attributes for ModelOutput

Attribute Use Description Valid Values

name required string

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

XML Representation
<xs:element name="ModelOutput" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Response

OutputResponse Element: A name value pair.

Table 3. Attributes for OutputResponse

Attribute Use Description Valid Values

name required string

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

12 IBM® Analytical Decision Management: Response Service Developer’s Guide

XML Representation
<xs:element name="OutputResponse" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Response

Property Element: A name value pair.

Table 4. Attributes for Property

Attribute Use Description Valid Values

name required string

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

XML Representation
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Response

Property Element: A name value pair.

Table 5. Attributes for Property

Attribute Use Description Valid Values

name required string

Chapter 3. Schema Reference 13

Table 5. Attributes for Property (continued)

Attribute Use Description Valid Values

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

XML Representation
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Info

14 IBM® Analytical Decision Management: Response Service Developer’s Guide

Chapter 4. WSDL Reference

This section describes the Web Service Description Language (WSDL) file and its associated schema.

WSDL File
Following is the contents of the Response Service WSDL file (responseService.wsdl) included in the .zip
archive with this guide. Complete Javadoc is also included for the WSDL.
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions

targetNamespace="http://xml.pasw.com/dmResponseLogging/wsdl"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://xml.pasw.com/dmResponseLogging/wsdl"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:spss_rsr="http://xml.pasw.com/dm_response/remote"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- ** -->
<!-- IMPORTANT INFORMATION -->
<!-- See: http://www.w3.org/TR/wsdl -->
<!-- -->
<!-- The names of the elements in this WSDL are *very sensitive* and -->
<!-- must follow the WSI-Interop standard. -->
<!-- ** -->

<jaxws:bindings>
<jaxws:package name="com.ibm.spss.dm.logging.ws.jaxws"/>

</jaxws:bindings>

<!-- ** -->
<!-- TYPES -->
<!-- Reference: http://www.w3.org/TR/wsdl#_types -->
<!-- ** -->
<wsdl:types>

<xs:schema>
<xs:import namespace="http://xml.pasw.com/dm_response/remote" schemaLocation="dm-response-remote.xsd"/>

</xs:schema>
</wsdl:types>

<!-- ** -->
<!-- MESSAGES -->
<!-- Reference: http://www.w3.org/TR/wsdl#_messages -->
<!-- ** -->
<!-- Exceptions -->
<!-- wsdl:message name="responseException">

<wsdl:part name="responseException" element="spss_rsr:responseException"/>
</wsdl:message-->

<!-- ResponseService.ping -->
<wsdl:message name="pingRequest">

<wsdl:part name="parameters" element="spss_rsr:ping"/>
</wsdl:message>
<wsdl:message name="pingResponse">

<wsdl:part name="parameters" element="spss_rsr:pingResponse"/>
</wsdl:message>

<!-- ResponseService.logResponseData -->
<wsdl:message name="logRequest">

<wsdl:part name="parameters" element="spss_rsr:logRequest"/>
</wsdl:message>
<wsdl:message name="logResponse">

<wsdl:part name="parameters" element="spss_rsr:logResponse"/>
</wsdl:message>

<!-- ** -->
<!-- PORT TYPES with associated operations -->
<!-- Reference: http://www.w3.org/TR/wsdl#_porttypes -->
<!-- ** -->
<wsdl:portType name="ResponseService">

© Copyright IBM Corporation 2010, 2015 15

<wsdl:operation name="ping">
<wsdl:input name="ping" message="impl:pingRequest"/>
<wsdl:output name="pingResponse" message="impl:pingResponse"/>

</wsdl:operation>

<wsdl:operation name="logRequest">
<wsdl:input name="logRequest" message="impl:logRequest"/>
<wsdl:output name="logResponse" message="impl:logResponse"/>
<!-- wsdl:fault name="responseException" message="impl:responseException"/-->

</wsdl:operation>

</wsdl:portType>

<!-- ** -->
<!-- BINDINGS -->
<!-- Reference: http://www.w3.org/TR/wsdl#_bindings -->
<!-- ** -->
<wsdl:binding name="ResponseDataSOAP" type="impl:ResponseService">

<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ping">

<wsdlsoap:operation/>
<wsdl:input name="ping">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="pingResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>

</wsdl:operation>

<wsdl:operation name="logRequest">
<wsdlsoap:operation/>
<wsdl:input name="logRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="logResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>
<!-- wsdl:fault name="responseException">

<wsdlsoap:fault name="responseException" use="literal"/>
</wsdl:fault-->

</wsdl:operation>

</wsdl:binding>

<!-- ** -->
<!-- SERVICES -->
<!-- Reference: http://www.w3.org/TR/wsdl#_services -->
<!-- ** -->
<wsdl:service name="ResponseServices">

<wsdl:port name="ResponseService" binding="impl:ResponseDataSOAP">
<wsdlsoap:address location="http://localhost:8080/DM/services/ResponseService"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

WSDL Schema
This section provides a reference for all the elements in the dm-response-remote.xsd schema associated with
the Response Service WSDL file. Each topic lists the valid attributes for an element and its parent and
child elements. The dm-response-remote.xsd file is included in the .zip archive with this guide.

Elements

Info Element

XML Representation
<xs:element name="Info">
<xs:sequence>
<xs:element name="Response" type="spss_dms_logging:ResponseType" minOccurs="0" maxOccurs="unbounded">
<xs:sequence>
<xs:element name="ModelOutput" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="OutputResponse" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">

16 IBM® Analytical Decision Management: Response Service Developer’s Guide

</xs:element>
</xs:sequence>

</xs:element>
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>

</xs:sequence>
</xs:element>

Parent Elements

logRequest

Child Elements

Property, Response

Response Element: Decision Management has the ability to generate multiple outputs (multiple offers).
There will be one OutputRow for each output (for each offer).

XML Representation
<xs:element name="Response" type="spss_dms_logging:ResponseType" minOccurs="0" maxOccurs="unbounded">
<xs:sequence>
<xs:element name="ModelOutput" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="OutputResponse" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
</xs:element>

</xs:sequence>
</xs:element>

Parent Elements

Info

Child Elements

ModelOutput, OutputResponse, Property

ModelOutput Element: A name value pair.

Table 6. Attributes for ModelOutput

Attribute Use Description Valid Values

name required string

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

Chapter 4. WSDL Reference 17

XML Representation
<xs:element name="ModelOutput" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Response

OutputResponse Element: A name value pair.

Table 7. Attributes for OutputResponse

Attribute Use Description Valid Values

name required string

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

XML Representation
<xs:element name="OutputResponse" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Response

Property Element: A name value pair.

Table 8. Attributes for Property

Attribute Use Description Valid Values

name required string

18 IBM® Analytical Decision Management: Response Service Developer’s Guide

Table 8. Attributes for Property (continued)

Attribute Use Description Valid Values

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

XML Representation
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Response

Property Element: A name value pair.

Table 9. Attributes for Property

Attribute Use Description Valid Values

name required string

value optional A value, in string
representation. If this
attribute is not specified,
the value is considered to
be null. The text
representation of the
numeric types is obvious,
but several types are not.
The format of the
non-numeric types must be
as follows:
boolean="true"(case
insensitive) or "1" or
"false"(case insensitive) or
"0", date="yyyy-MM-dd",
daytime="HH:mm:ss", and
timestamp="yyyy-MM-
ddTHH:mm:ss".

string

Chapter 4. WSDL Reference 19

XML Representation
<xs:element name="Property" type="spss_dms_logging:nameValueType" minOccurs="0" maxOccurs="unbounded">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="optional"/>

</xs:element>

Parent Elements

Info

logRequest Element
Request for log response data service call

XML Representation
<xs:element name="logRequest">
<xs:sequence>
<xs:element name="id" type="xs:string"/>
<xs:element ref="spss_rs:Info"/>

</xs:sequence>
</xs:element>

Child Elements

Info, id

id Element:

XML Representation
<xs:element name="id" type="xs:string"/>

Parent Elements

logRequest

logResponse Element
Response from logResponseData service call

XML Representation
<xs:element name="logResponse"/>

ping Element
Request for ping service call

XML Representation
<xs:element name="ping"/>

pingResponse Element
Response from ping service call

XML Representation
<xs:element name="pingResponse"/>

responseException Element
Response service exception

XML Representation
<xs:element name="responseException"/>

20 IBM® Analytical Decision Management: Response Service Developer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2010, 2015 21

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
ATTN: Licensing
200 W. Madison St.
Chicago, IL; 60606
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

22 IBM® Analytical Decision Management: Response Service Developer’s Guide

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other product and service names might be trademarks of IBM or other companies.

Notices 23

24 IBM® Analytical Decision Management: Response Service Developer’s Guide

Index

Special characters
.NET proxies 5

B
bindings

in WSDL files 4
body elements

in SOAP messages 2

E
element reference 11, 15, 16

H
header elements

in SOAP messages 2
Holder classes

in JAX-WS 5
HTTP 2
HTTPS 2

I
id element 20
Info element 11, 16

J
Java proxies 5
JAX-WS 5

L
List collections

in JAX-WS 5
logRequest element 20
logResponse element 20

M
messages

in WSDL files 4
ModelOutput element 11, 17

O
OutputResponse element 12, 18

P
ping element 20
pingResponse element 20
port types

in WSDL files 4

Property element 13, 18, 19
protocols

in web services 2
proxies 5

.NET 5
Java 5

R
Response element 11, 17
Response service

log 9
service endpoint 8
stubs 9

responseException element 20

S
schema reference 11
service endpoints

Scoring service 8
services

in WSDL files 5
SOAP 2
stubs

Response service 9

T
types

in WSDL files 3

W
web services

introduction to web services 1
protocol stack 2
system architecture 1
what are web services? 1

WSDL files 2, 3
accessing 8
bindings 4
messages 4
port types 4
services 5
types 3

WSDL reference 15
wsdl.exe 5
wsdl2java 5
wsimport 5

© Copyright IBM Corp. 2010, 2015 25

26 IBM® Analytical Decision Management: Response Service Developer’s Guide

����

	Contents
	Chapter 1. Introduction to web services
	What are web services?
	Web service system architecture
	Web service protocol stack
	Simple Object Access Protocol
	Web Service Description Language
	Types
	Messages
	Port types
	Bindings
	Services

	Proxies

	Chapter 2. Response Service Overview
	Accessing the Response Service
	Calling Response Service Operations
	Response Log

	Chapter 3. Schema Reference
	response-logging.xsd Schema
	Elements
	Info Element

	Chapter 4. WSDL Reference
	WSDL File
	WSDL Schema
	Elements
	Info Element
	logRequest Element
	logResponse Element
	ping Element
	pingResponse Element
	responseException Element

	Notices
	Trademarks

	Index
	Special characters
	B
	E
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	W

