
IBM® Workplace Forms™ Server — Webform Server

Best Practices Guide 

Version  2.6.1  

S325-2596-00  

���



Note 

Before using this information  and the product it supports, read the information  in “Notices,”  on page 61.

First  Edition  (September  2006)  

This  edition  applies  to version  2.6.1  of IBM  Workplace  Forms  Server  — Webform  Server  (product  number  

L-DSED-6RFRFZ  and  to all subsequent  releases  and  modifications  until  otherwise  indicated  in new  editions.  

© Copyright  International  Business  Machines  Corporation  2003,  2006.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

Introduction  . . . . . . . . . . . . . 1 

About  Webform  Server   . . . . . . . . . . . 1 

Who  Should  Read  This  Document   . . . . . . . 1  

Differences Between Webform Server 

and Workplace Forms Viewer  . . . . . 3 

Designing  Forms  for  Webform  Server   . . . . . . 3 

Action  Items   . . . . . . . . . . . . . 3 

Appearance  of Forms   . . . . . . . . . . 3 

Attachments   . . . . . . . . . . . . . 3 

Computing  URLs  . . . . . . . . . . . . 4 

Dates  . . . . . . . . . . . . . . . . 4  

e-mailing  Forms   . . . . . . . . . . . . 4 

Event  Model   . . . . . . . . . . . . . 4 

IFX  Files  . . . . . . . . . . . . . . . 4 

Lists   . . . . . . . . . . . . . . . . 4 

Locales   . . . . . . . . . . . . . . . 5 

Navigating  Forms   . . . . . . . . . . . 5 

Printing   . . . . . . . . . . . . . . . 5 

Signatures   . . . . . . . . . . . . . . 5 

Type Checking  and  Predictive  Input  Checking   . . 6  

URLs   . . . . . . . . . . . . . . . . 6 

Viewer  Settings   . . . . . . . . . . . . 6 

XForms   . . . . . . . . . . . . . . . 7  

XForms  Submissions  . . . . . . . . . . . 7 

XML  Data  Model   . . . . . . . . . . . . 7 

Other  Differences  . . . . . . . . . . . . 7 

General Best Practices  . . . . . . . . 9 

Authenticate  Users  Through  Common  Practices   . . 9 

Do Not  Rely  on the  Size  of a Field  to  Limit  Input   . 10 

Use  Help  Messages  . . . . . . . . . . . . 10 

Design  Forms  for Print  to Use  the  Same  Page  Size  11 

Compress  All Forms   . . . . . . . . . . . 12 

Portals:  Do  Not  Use  Cancel  Buttons   . . . . . . 13 

Portals:  Disable  Unnecessary  Toolbar  Buttons   . . . 13  

Do Not  Use  Rich  Text  . . . . . . . . . . . 14 

Test Forms  Thoroughly   . . . . . . . . . . 15 

Creating Dynamic Webform Server 

Forms  . . . . . . . . . . . . . . . 17 

Minimize  the  Number  of Full  Page  Refreshes   . . . 17 

Restrict  Use  of Action  Items   . . . . . . . . . 18  

Use  Page  Breaks  for  Dynamic  Form  Design  . . . . 19  

Do Not  Toggle Computes  Off  Of Event  Model  

Options  . . . . . . . . . . . . . . . . 20 

Toggle Computes  off  of the  Triggeritem   . . . . . 20 

Use  Action  Items  to Trigger Computes  Off  Of a 

Page  Flip   . . . . . . . . . . . . . . . 22 

Choosing the Right Fonts  . . . . . . 25 

Use  Only  Fonts  that  are  Installed  on  Client  

Computers   . . . . . . . . . . . . . . 25  

Do Not  Use  Symbol  or Wingdings  Fonts   . . . . 26 

Use  Matching  Windows  and  Mac  Fonts   . . . . . 27 

Recommended  Japanese  Fonts   . . . . . . . . 27 

Formatting Fields  . . . . . . . . . . 29 

Formatting  Phone  Numbers   . . . . . . . . . 29 

Formatting  Postal  Codes   . . . . . . . . . . 30 

Formatting  E-Mail  Addresses   . . . . . . . . 32 

Designing Accessible Forms  . . . . . 35 

Why  Create  Accessible  Forms?   . . . . . . . . 35 

Topics Discussed   . . . . . . . . . . . . 35 

Other  Resources  . . . . . . . . . . . . . 35 

Provide  Appropriate  Accessibility  Messages   . . . 36  

Put Label  Text Into  Acclabels   . . . . . . . . 42  

Use  Field  Items  To Display  Text Information   . . . 43  

Assist  JAWS Users  to Enter  Forms  Mode   . . . . 45 

Place  Graphics  Inside  Buttons   . . . . . . . . 45 

Minimize  and  Explain  the  Use  of Dynamic  Content  47 

Reset  the  Form’s  Tab Order   . . . . . . . . . 47  

Identify  Row  and  Column  Headings   . . . . . . 48 

Use  Contrasting  Page  Background  Colors   . . . . 49 

Do Not  Use  List  Items  . . . . . . . . . . . 50 

Avoid Using  Write-Only  Fields   . . . . . . . . 51  

Test Forms  Thoroughly   . . . . . . . . . . 51 

Appendix A: Supported XFDL Options 53 

Appendix B: JAWS Announcements  . . 57 

Appendix C: Additional Usage Notes 59 

Appendix. Notices . . . . . . . . . . 61 

Trademarks   . . . . . . . . . . . . . . 62

 

© Copyright  IBM Corp. 2003, 2006 iii



iv 



Introduction  

This  document  describes  best  practices  for  designing  forms  for  use  with  Webform  

Server.  These  best  practices  describe  both  design  requirements  for  forms  used  with  

Webform  Server  and  recommendations  for  creating  forms  for  users  with  

disabilities.  

This  document  divides  these  form  design  issues  into  separate  sections.  Each  section  

contains  a basic  overview  of  the  design  issue  as well  as  a number  of  best  practices  

for  resolving  these  issues.  The  following  information  is provided  with  each  best  

practice:  

v   Overview  of  the  practice.  

v   Explanation  and  background  information  for  the  practice.  

v   Examples  and  usage  notes.  

v   Any  exceptions  to the  practice  that  may  exist.

About Webform  Server 

Webform  Server  enables  users  to view  and  complete  XFDL  documents  using  a 

standard  web  browser,  without  requiring  any  additional  software  or  plugins.  In 

addition,  Webform  Server  complies  with  Section  508  regulations  by  supporting  

most  of  the  accessibility  features  included  with  Microsoft® Windows® 2000  and  

Internet  Explorer  6.0.  

For  persons  with  vision  disabilities,  Webform  Server  supports  JAWS  for  Windows  

screen  reading  utility.  Provided  that  the  design  of the  form  follows  the  practices  

described  in  this  manual,  users  with  visual  impairments  will  be  able  to  access  all  

of  a form’s  information  and  functionality.  

Note:   Refer  to  IBM® Workplace  Forms™ Webform  Server  Administrator’s  Guide  for  

more  information  about  system  requirements.  

Who Should Read This Document 

You should  read  this  document  if you  need  to develop  forms  that  will  work  with  

Webform  Server.  This  document  is intended  for  form  developers  who  are  familiar  

with:  

v   General  form  design  principles  

v   Extensible  Forms  Description  Language  (XFDL)  

v   Workplace  Forms  Designer  

For  more  information  about  XFDL,  refer  to  the  XFDL  Specification. For  more  

information  about  the  Designer  refer  to  Workplace  Forms  Designer  User’s  Manual. 

 

© Copyright  IBM Corp. 2003, 2006 1



2 



Differences  Between  Webform  Server  and  Workplace  Forms  

Viewer  

Webform  Server  allows  users  to  complete  and  submit  forms  without  the  need  for  

any  client-side  software  other  than  a web  browser.  However,  in  the  absence  of 

specialized  client-side  software,  Webform  Server  cannot  support  the  full-range  of  

functionality  that  is offered  by  Workplace  Forms  Viewer. 

In  many  cases,  these  differences  in  functionality  require  a different  approach  to  

form  design.  For  instance,  forms  designed  for  use  with  the  Viewer  may  include  

rich  text  fields  and  computes  that  rely  on  the  keypress  or  mouseover  events.  

However,  since  neither  of  these  features  is supported  by  Webform  Server,  these  

forms  would  not  work  in  a Webform  Server  environment.  

As  a general  rule, any  form  that  works  with  Webform  Server  will  also  work  with  

the  Viewer,  but  the  reverse  is not  true. If  you  are  designing  forms  for  an  

environment  that  uses  both  Webform  Server  and  the  Viewer,  be  sure  to  restrict  the  

functionality  of  the  forms  to  those  features  that  Webform  Server  supports.  

Designing Forms for Webform  Server 

If  you  are  a form  designer  accustomed  to designing  forms  for  the  Viewer,  it is  

important  that  you  familiarize  yourself  with  the  differences  between  Webform  

Server  and  the  Viewer. Some  of  the  differences  are  simple  and  have  obvious  

implications,  while  others  are  more  complex  and  may  require  you  to  adopt  

different  strategies  when  designing  forms.  

Read  the  sections  below  for  a quick  overview  of  the  primary  differences  between  

Webform  Server  forms  and  Viewer  forms.  

Action Items 

Webform  Server  supports  actions,  but  with  some  limitations.  Webform  Server  

instructs  the  browser  to  automatically  refresh  a form  whenever  the  user  interacts  

with  the  form  in  certain  ways.  As  a side  effect  of  a refresh,  actions  items  that  are  

set  to  occur  once  will  actually  occur  each  time  the  form  is refreshed.  Furthermore,  

actions  that  are  set  to  repeat  will  not  work  properly.  Because  of  this,  we  

recommend  extremely  limited  use  of  action  items.  See  ″Restrict  Use  of Action  

Items″ . 

Appearance of Forms 

Webform  Server  draws  all  forms  using  standard  HTML  widgets  when  drawing  

check  boxes,  radio  buttons,  popups,  and  comboboxes.  This  may  produce  a slightly  

different  look  when  compared  to  forms  displayed  in  the  Viewer.  However,  this  

does  not  change  the  functionality  of the  form.  We recommend  that  you  test  your  

form  in  the  Viewer  and  with  Webform  Server  (on  all  platforms  that  the  form  will  

be  viewed  on).  

Attachments 

Webform  Server  allows  users  to  attach  files  to  a form  in  the  normal  manner.  

However,  users  can  only  attach  one  file  at  a time.  The  attachment  dialog  will  not  

 

© Copyright  IBM Corp. 2003, 2006 3



allow  users  to  multi-select  files.  This  may  dictate  slightly  different  form  design,  

since  requiring  a large  number  of attachments  can  be  cumbersome  for  the  user.  

Computing URLs 

Webform  Server  assumes  that  forms  are  always  submitted  to  the  server  that  is  

running  Webform  Server.  If  forms  are  submitted  to  other  servers,  Webform  Server  

will  not  be  able  to  intercept  the  form  and  translate  it back  into  XFDL.  For  this  

reason,  you  must  make  sure  that  all  computed  URLs  submit  the  form  to the  

Webform  Server.  

If you  are  using  Webform  Server  with  Portal,  do  not  use  computed  URLs.  

Dates 

While  the  Viewer  allows  you  to  configure  your  calendar  date  preferences,  Webform  

Server  does  not.  Webform  Server  always  interprets  ambiguous  dates  as  year, 

month,  day.  For  example,  01/02/03  would  be  February  3rd,  2001.  

e-mailing Forms 

Webform  Server  does  not  allow  users  to  e-mail  forms.  This  means  that  there  is no  

toolbar  control  for  mailing  forms,  and  that  buttons  configured  with  an  e-mail  URL  

will  not  work.  

If you  need  your  users  to  e-mail  forms  to  each  other,  they  must  save  the  forms  

locally  and  send  them  as  attachments  to regular  e-mails.  See  IBM  Workplace  Forms  

Server  —  Webform  Server  Administrator’s  Guide  for  more  details.  

Event Model 

Computes  based  on  the  activated,  dirtyflag, keypress,  and  mouseover  options  do  not  

work  under  Webform  Server.  

Computes  based  on  the  focused  and  focuseditem  options  will  work  under  Webform  

Server  if the  correct  settings  are  modified  in the  translator.properties  file.  For  more  

information,  see  “Do  Not  Toggle  Computes  Off  Of  Event  Model  Options”  on  page  

20.  

For  detailed  information  about  the  translator.properties  file,  see  the  IBM  Workplace  

Forms  Server  - Webform  Server  Administrator’s  Guide. 

IFX Files 

Webform  Server  supports  IFX  files  on  the  server.  That  is,  your  form  can  reference  

an  IFX  file  that  resides  on  the  server.  

Webform  Server  does  not  support  IFX  files  on  the  user’s  computer  (client)  or  IFX  

files  embedded  in  a form.  

Lists 

If a form  contains  a list  (the  XFDL  list  item),  and  the  text  within  the  list  is wider  

than  the  list  box,  a horizontal  scroll  bar  will  be  displayed  within  the  list  box  when  

the  form  is viewed  in  the  Viewer. 

If the  form  is  viewed  via  Webform  Server,  the  list  box  will  not  contain  a horizontal  

scroll  bar. Any  text  that  does  not  fit  within  the  list  box  will  be  truncated.  

 

4 



Locales 

Webform  Server  cannot  remotely  set  the  user’s  locale.  The  locale  viewed  by  the  

user  will  be  determined  by  the  user’s  browser,  not  the  form.  Furthermore,  if you  

are  using  the  Viewer  with  a Webform  Server  application  (for  example,  using  

Webform  Server  to  deliver  XFDL  forms  embedded  within  HTML  pages  for  users  

that  have  the  Viewer  installed  on  their  system),  the  locale  of  the  Viewer  may  not  

be  the  same  as  the  locale  of the  form.  Webform  Server  cannot  specify  the  locale  of 

the  Viewer.  The  Viewer’s  locale  is always  determined  based  on  the  Viewer  

Preferences.  The  default  locale  is  the  locale  of  the  operating  system.  

Navigating Forms 

The  up  and  down  arrow  keys  will  not  open  popups.  Instead,  use  ALT + UP  

ARROW  and  ALT + DOWN  ARROW.  Once  a popup  is open  you  can  still  use  the  

normal  arrow  keys  to  move  among  the  selections.  You should  also  not  that  

pressing  the  ESC  key  to  leave  a popup  or  combobox  does  not  cancel  the  last  choice  

the  user  made  before  leaving  the  widget.  Although  this  is the  default  HTML  form  

response  to  the  ESC  key,  it is not  the  default  Workplace  Forms  Viewer  response.  

Users  accustomed  to  using  the  Viewer  will  be  unfamiliar  with  this  result.  

When  working  in  a multi-line  field,  the  following  cursor  keys  produce  different  

results  than  in  the  Viewer:  

Page  Up  

Scrolls  the  text  up  one  ‘page’.  

Page  Down  

Scrolls  the  text  down  one  ‘page’.  

CTRL  + Page  Up  

Moves  the  cursor  to the  beginning  of the  visible  text.  

CTRL  + Page  Down  

Moves  the  cursor  to the  end  of the  visible  text.

Printing 

When  a user  prints  a form  through  Webform  Server,  the  server  responds  with  a 

print  preview  that  opens  in  a new  window.  The  user  can  either  print  the  form  

from  the  preview  or  close  the  preview  and  return  to  the  original  form.  

The  preview  is a PNG  image  of the  form  that  is generated  on  the  server.  This  

image  is  generated  to  a size  that  is  determined  by  the  server  configuration.  This  

means  that  the  image  is always  generated  to  fit  a specific  page  size,  which  in turn  

means  that  the  page  size  cannot  be  changed  from  form  to form  or  page  to page.  

Because  the  PNG  image  is generated  on  the  server,  any  fonts  used  by  the  form  

must  also  reside  on  the  server  in  order  for  the  form  to print  correctly.  In  other  

words,  when  designing  forms  that  users  may  print,  make  sure  you  use  fonts  that  

you  can  make  available  on  the  server.  

Signatures 

Webform  Server  allows  users  to  sign  forms  using  Clickwrap  signatures,  and  to 

verify  other  types  of  signatures  that  have  already  been  applied  to  the  form.  

However,  Webform  Server  does  not  allow  users  to  sign  forms  using  any  other  

signature  types.  

 

Differences  Between  Webform  Server and Workplace  Forms Viewer  5



This  means  that  signature-based  security  is limited  when  using  Webform  Server.  

While  Clickwrap  signatures  prove  acceptance  of a document,  they  do  not  provide  

the  same  level  of  authentication  as  digital  signatures.  

Instead,  the  job  of  properly  identifying  the  user  is moved  to the  web  application,  

which  may  use  standard  authentication  measures  for  logging  in  users  before  they  

work  with  forms.  See  “Authenticate  Users  Through  Common  Practices”  on  page  9 

for  more  details.  

Type  Checking and Predictive Input Checking 

Webform  Server  does  not  support  predictive  input  checking.  However,  Webform  

Server  does  support  type  checking  when  the  user  exits  a field.  

For  instance,  if a field  is set  to  accept  phone  numbers  in  the  ###-####  format,  the  

user  will  be  able  to  enter  any  initial  value  into  that  field.  However,  once  they  shift  

focus  to  another  item,  the  field  will  be  highlighted  as  an  error  if the  value  does  not  

match  the  template.  

Note:   Changing  the  default  settings  in  the  Webform  Server  translator.properties  file  

(for  example,  setting  changeNotificationItems  to none) may  result  in  type  

checking  not  working  as  described  above.  For  detailed  information  about  

the  translator.properties  file,  see  the  IBM  Workplace  Forms  Server  —  Webform  

Server  Administrator’s  Guide. 

URLs 

Webform  Server  does  not  allow  users  to  submit  forms  to  multiple  URLs  at the  

same  time.  Submissions  are  restricted  to a single  URL  because  of potential  

difficulties  when  updating  the  original  XFDL  form.  

When  Webform  Server  sends  a form  to the  user, it  keeps  the  original  XFDL  form  

on  hand.  When  the  HTML  form  is later  submitted,  Webform  Server  updates  the  

XFDL  form  with  the  submitted  data.  However,  if two  sets  of  data  were  submitted,  

as  they  would  be  if you  were  submitting  to  two  URLs,  Webform  Server  would  

have  difficulty  synching  both  data  sets  with  the  original  XFDL  form.  For  this  

reason,  multiple  URLs  are  not  supported.  

Note:   XFDL  7.0  does  not  support  submissions  to  multiple  URLs.  Only  older  

versions  of  XFDL  support  submissions  to multiple  URLs.  In  other  words,  

you  cannot  setup  an  XFDL  7.0  form  so the  Viewer  submits  it to  multiple  

URLs.  

Viewer  Settings 

While  the  Viewer  supports  a number  of  specialized  settings  through  the  

ufv_settings  option,  Webform  Server  ignores  all  Viewer  Settings  except  for  the  menu, 

printwithformaterrors, savewithformaterrors, signwithformaterrors, and  

submitwithformaterrors  settings.  

Of  those  settings,  all  of  them  work  exactly  as  they  do  in  the  Viewer, with  the  

exception  of  the  menu  setting.  This  setting  supports  the  toolbar  buttons  that  are  

specific  to  Webform  Server.  The  following  table  lists  those  buttons  and  provides  

the  appropriate  tag  for  each:  

 Icon  Description  Tag  

Open  Opens  a new  form.  open  

 

6 



Icon  Description  Tag  

Save  Save  the  current  form.  save  

Print  Prints  the  current  form.  print  

Refresh  Refreshes  the current  page.  refresh  

Accessibility  Toggles accessibility  mode  on and  off.  accessibility
  

XForms 

When  creating  a form  using  XForms,  the  XForms  elements  are  enclosed  or  skinned  

within  XFDL  elements.  As  a result,  Webform  Server’s  support  of XForms  is  based  

on  Webform  Server’s  support  of  the  associated  XFDL  items  and  options.  See  the  

XFDL  Specification  for  details  on  how  XForms  elements  are  skinned  by  XFDL  

elements.  See  “Appendix  A:  Supported  XFDL  Options”  on  page  53  for  a complete  

list  of  the  XFDL  options  Webform  Server  supports.  

XForms Submissions 

Webform  Server  ignores  URLs  for  submissions  of type  replace=all. In  the  Viewer, 

submitting  to  a URL  submits  the  data  to the  URL.  For  example,  you  can  submit  

data  to  another  application,  like  a database,  using  a URL.  With  Webform  Server,  

submitting  to  a URL  submits  the  data  to the  (Webform  Server)  servlet.  This  means  

that  if you  want  to  submit  data  (using  replace=all) to another  application,  you  

cannot  use  only  a URL  submit;  you  must  also  retrieve  the  information  from  the  

servlet  and  direct  it to the  desired  application.  

Note:   To create  a submission  of  type  replace=all  (the  default  setting),  you  must  

create  it within  a DOMActivate  event.  

XML Data Model 

By  default,  the  XML  Data  Model  is  updated  while  the  user  is filling  out  the  form.  

However,  changing  the  default  settings  in  the  Webform  Server  translator.properties  

file  (for  example,  setting  changeNotificationItems  to  none) may  result  in  the  XML  

Data  Model  not  being  updated  while  the  user  is  filling  out  the  form.  If so,  the  user  

must  click  an  “update”  button  to  update  all  computes  in  the  form,  including  the  

XML  Data  Model.  For  detailed  information  about  the  translator.properties  file,  see  

the  IBM  Workplace  Forms  Server  —  Webform  Server  Administrator’s  Guide  for  more  

details.  

Other Differences 

The  following  table  lists  a number  of other  differences  that  do  not  require  

additional  explanation.  Additionally,  you  should  review  “Appendix  A:  Supported  

XFDL  Options”  on  page  53  for  a complete  list  of  the  XFDL  options  Webform  Server  

supports.  

 Functionality  Webform  Server  Viewer  

Calendar  Widget  Not  supported  — Webform  

Server  converts  the  calendar  

widget  to a date  format  field  

Supported  

e-mail  Partial  support  — Users  must  

save  forms  to their  local  

computer  and  e-mail  them  as 

attachments  via  e-mail  

program  

Full  support  

 

Differences  Between  Webform  Server and Workplace  Forms Viewer  7



Functionality  Webform  Server  Viewer  

Form  version  support  Version  6.0  and  later  Versions  4.4  and  later  

Inactive  cells  (cells  that  have  

their  active  option  set to  off)  

Internet  Explorer  —  Inactive  

cells  are  omitted  from  popups,  

comboboxes,  and  lists.  

Mozilla-based  browsers  —  

Inactive  cells  are  displayed  but  

are  disabled.  

Inactive  cells  are  displayed  

but  are  disabled.  

Rich  Text Fields  Not  supported  — Webform  

Server  converts  rich  text  fields  

to plain  text  fields.  

Supported  

Schema  Server-side  only  Client  and  Server  

Screen  readers  JAWS only  MSAA  compliant  

Slider  Not  supported  Supported  

Smartfill  Not  supported  Supported  

Spellchecking  Not  supported  Supported  

User  modification  of display  

or  print  preferences  

Not  supported  Supported  

Viewer  functions,  such  as 

fileOpen, messageBox, 

setCursor, and  so on.  

Not  supported  Supported  

Webservices  Supported  in XForms  forms  

only.  

Supports  webservices  in 

both  XFDL  and  XForms  

forms.  

Zoom  capability  Not  supported  Supported  

URIs  starting  with  “file:”  Not  supported  Supported
 

 

8 



General  Best  Practices  

When  designing  forms  for  use  with  Webform  Server,  there  are  a number  of  

practices  that  you  should  follow.  These  practices  will  ensure  that  the  form  operates  

properly  both  with  Webform  Server  and  with  the  Viewer. You should  consider  

them  regardless  of  whether  you  are  designing  new  forms  or  modifying  forms  

originally  designed  for  the  Viewer  for  use  with  Webform  Server.  

The  following  topics  are  discussed:  

v   “Authenticate  Users  Through  Common  Practices.”  

v   “Do  Not  Rely  on  the  Size  of  a Field  to Limit  Input”  on  page  10.  

v   “Use  Help  Messages”  on  page  10.  

v   “Design  Forms  for  Print  to  Use  the  Same  Page  Size”  on  page  11. 

v   “Compress  All  Forms”  on  page  12.  

v   “Portals:  Do  Not  Use  Cancel  Buttons”  on  page  13.  

v   “Portals:  Disable  Unnecessary  Toolbar  Buttons”  on  page  13.  

v   “Do  Not  Use  Rich  Text” on  page  14  

v   “Test Forms  Thoroughly”  on  page  15.

Authenticate Users Through Common Practices 

Webform  Server  only  supports  Clickwrap  signatures.  While  Clickwrap  signatures  

provide  proof  of  acceptance,  they  do  little  to  prove  the  identity  of the  user. At  best,  

they  provide  weak  authentication.  This  restriction  is normally  overcome  by  using  

stronger  signature  technology,  such  as  digital  signatures.  However,  this  is not  

possible  with  Webform  Server.  

Instead,  if security  is  a concern,  use  common  web  authentication  practices  such  as  

basic  authentication.  

Examples 

The  simplest  solution  is to  enable  basic  authentication  through  your  web  server  or  

your  processing  application.  These  applications  can  authenticate  users  based  on  an  

ID  and  password  before  serving  forms  to  them.  

Other  options  include  solutions  such  as NTLM,  Kerberos,  or  SSL  with  Mutual  

Authentication.  

Exceptions to this Practice 

Authenticating  users  is unnecessary  if your  forms  do  not  include  signatures,  or  if 

your  forms  application  has  a limited  and  trusted  user-base.  However,  if security  is 

a concern,  you  should  authenticate  all  users  as  described.  

 

© Copyright  IBM Corp. 2003, 2006 9



Do Not Rely on the Size of a Field to Limit Input 

In  some  cases,  form  designers  may  rely  on  the  size  of  a field  to  limit  the  amount  of 

text  the  user  can  enter.  For  example,  a multi-line  field  with  a scrollhoriz  of  

wordwrap  and  a scrollvert  of fixed  normally  prevents  the  user  from  typing  beyond  

the  visible  limit  of  the  field.  

However,  Webform  Server  cannot  restrict  input  in  this  manner.  Instead,  the  

following  rules apply:  

v   Single-Line  Fields  —  You can  use  the  format  option  to  limit  the  amount  of text  

the  user  can  type.  

v   Multi-Line  Fields  —  There  is no  way  to  limit  the  amount  of text  the  user  can  

type.

Example 

The  following  field  uses  the  length  setting  in  the  format  option  to limit  text  to 100  

characters.  Note  that  this  assumes  a single-line  field.  

   <field  sid="Description">  

      <value></value>  

      <format>  

         <datatype>string</datatype>  

         <constraints>  

            <mandatory>optional</mandatory>  

            <length>  

               <min>0</min>  

               <max>100</max>  

            </length>  

         <constraints>  

      </format>  

   </field>  

Exceptions to This Practice 

There  are  no  exceptions  to  this  practice.  

Use Help Messages 

Although  Webform  Server  can  check  user  input  for  formatting  errors  when  the  

user  exits  a field,  unlike  Viewer  forms,  Webform  Server  forms  cannot  predictively  

check  user  input  for  formatting  errors  as  the  user  enters  information  within  a field.  

If your  database  requires  users  to  enter  information  in  a particular  format  (such  as  

dates  in  DDMMYYYY),  you  may  want  to  use  help  messages  to  make  this  

formatting  information  apparent  to  your  users.  

Help  messages  are  popup  messages  that  appear  when  users  pass  their  mouse  over  

a form  item  with  help.  You can  use  these  help  messages  to explain  the  type  of  

information  required,  or  the  type  of formatting  that  is necessary.  Additionally,  

using  help  messages  to provide  this  information  allows  you  to  provide  the  

assistance  your  users  need  without  cluttering  the  form’s  appearance  with  multiple  

labels  explaining  the  restrictions.  

Example 

The  following  diagram  shows  an  example  of how  you  can  use  a help  message  to 

provide  both  formatting  information  and  user  help:  

 

10 



Exceptions To This Practice 

The  hover  help  messages  only  appear  for  5 seconds  at a time.  These  messages  

should  be  kept  as  concise  as possible  so that  they  are  easier  for  users  to  read.  This  

caveat  applies  to  Webform  Server  forms  only;  it does  not  apply  to Viewer  forms  

embedded  inside  a Webform  Server  application.  

Design Forms for Print to Use the Same Page Size 

Unlike  the  Viewer, Webform  Server  does  not  print  directly  from  the  form  on  the  

screen.  Instead,  Webform  Server  generates  a PNG  image  of the  form.  This  image  is  

generated  to  fit  a particular  size  of page  (the  size  of  the  page  is set  in  the  

configuration  options  for  Webform  Server),  and  the  size  of the  page  cannot  be  

changed  from  form  to form  or  page  to  page.  

This  means  that  you  should  design  all  forms  for  print  to fit  the  same  page  size.  If 

you  do  not,  the  image  of  the  form  will  be  scaled  to fit  the  page  size,  which  may  

result  in  loss  of detail.  

Example 

When  setting  the  page  size  for  Webform  Server,  you  must  account  for  the  margins  

imposed  by  the  web  browser.  Internet  Explorer  automatically  uses  a 3/4″ margin  

on  all  sides.  This  means  that  if you  wanted  to design  your  forms  for  an  8.5″  x 11″ 

page,  you  would  set  the  page  size  in  Webform  Server  to 7″ x 9.5″  (the  page  size  

minus  the  browser  margins).  

This  setting  is made  in  the  translator.properties  file,  and  would  look  like  this:  

   printPageWidth  = 7 

   printPageHeight  = 9.5  

For  more  information  about  configuring  Webform  Server,  refer  to the  Webform  

Server  Administration  Manual. 

Exceptions To This Practice 

You can  disregard  this  practice  if : 

v   Your users  will  never  print  the  form.  

v   You have  tested  your  form  to  ensure  that  printing  from  Webform  Server  does  

not  cause  a loss  of  detail  or  other  visual  problems.

 

General  Best Practices  11



Compress All Forms 

Webform  Server  will  load  and  process  forms  more  quickly  if they  are  compressed.  

This  will  reduce  CPU  time  required  to process  forms,  which  will  in  turn  reduce  the  

overall  load  on  your  server.  

With  this  in  mind,  you  should:  

v   Ensure  that  all  of  your  forms  are  saved  in a compressed  format.  

v   Ensure  that  all  of  your  forms  are  configured  to  submit  in  a compressed  format.

Example 

To save a form in compressed format: 

1.   Load  the  form  in  the  Designer.  

2.   In  the  Outline  view, select  Form  Global. 

3.   In  the  Properties  view, click  the  Advanced  button.  

v   The  Advanced  property  appears  in  the  Properties  view.
4.   Next,  expand  the  Advanced  property.  

5.   Next  to  saveformat, click  the  value  field.  

6.   From  the  dropdown  list,  select  application/vnd.xfdl;content-encoding=″base64-
gzip″.  

7.   Save  the  form.

The  form  will  be  saved  in  compressed  format.  All  Workplace  Forms  products  can  

open  forms  compressed  in this  manner,  but  you  will  not  be  able  to  edit  the  form  in  

a text  editor.  

To configure a form to submit in compressed format: 

1.   Load  the  form  in  the  Designer.  

2.   Select  the  submission  button.  

3.   In  the  Properties  view, click  the  Advanced  button.  

v   The  Advanced  property  appears  in  the  Properties  view.
4.   Next,  expand  the  Advanced  property.  

5.   Next  to  saveformat, click  the  value  field.  

6.   From  the  dropdown  list,  select  application/vnd.xfdl;content-encoding=″base64-
gzip″.  

7.   Save  the  form.

The  form  will  now  submit  in  compressed  format  when  the  user  clicks  the  

submission  button.  All  Workplace  Forms  products  can  open  forms  compressed  in  

this  manner.  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

 

12 



Portals: Do Not Use Cancel Buttons 

Do  not  use  buttons  with  a type  of  cancel  in  any  forms  that  will  be  used  in a portal  

environment.  When  used  in  a portal,  cancel  buttons  close  the  entire  browser  

window  rather  than  just  the  form.  

Example 

The  following  button  has  a type  of  cancel: 

   <button  sid="Cancel">  

      <type>cancel</type>  

      <value>Cancel  Form</value>  

   </button>  

Using  this  sort  of  button  in  a portal  environment  will  close  the  entire  browser  

window  rather  than  just  the  form.  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

Portals: Disable Unnecessary Toolbar  Buttons 

When  running  Webform  Server  in  a portal  environment,  you  may  want  to  prevent  

users  from  saving  and  opening  forms  by  disabling  the  buttons  in  the  toolbar.  In  

general,  the  philosophy  of a portal  is to provide  a central  location  to  work  on  

forms.  Allowing  the  user  to  save  or  load  forms  from  their  local  computer  may  

conflict  with  that  philosophy,  and  may  even  cause  unexpected  problems  with  your  

workflow  or  other  aspects  of  your  portal  application.  

Example 

To disable  the  save  and  open  buttons  in  the  toolbar,  you  must  use  the  ufv_settings  

option.  Place  this  option  in  the  global  page  of the  form,  and  use  the  menu  setting  

to  turn  the  save  and  open  buttons  off,  as  shown:  

   <globalpage  sid="global">  

      <global  sid="global">  

         <ufv_settings>  

            <menu>  

               <save>off</save>  

               <open>off</open>  

            </menu>  

         <ufv_settings>  

      </global>  

   </globalpage>  

For  more  information  using  ufv_settings  to control  the  buttons  in  the  toolbar,  refer  

to  ″Viewer  Settings″  . 

Exceptions To This Practice 

You can  disregard  this  practice  if your  users  need  to  work  offline.  In  this  case,  you  

should  test  your  application  to  ensure  that  users  can  load  forms  into  your  portal  

without  any  problems.  

 

General  Best Practices  13



Do Not Use Rich Text  

You should  not  use  rich  text  formatted  fields  in  Webform  Server  forms  as  most  

browsers  cannot  properly  display  the  resulting  rich  text.  Typically,  any  rich  text  

formatting  used  to  modify  the  field’s  text  is stripped  out,  leaving  only  plain  text.  

As  a result,  we  recommend  modifying  text  using  XFDL  options  only.  

Examples 

In  the  following  example  of  a form  in  the  Viewer,  the  green  color  is provided  by  

the  XFDL  color  option.  The  other  text  styles  are  provided  by  rtf:

Page 1

100%

This field displays text with
. Note how the

.
of the text

rich
text formatting
style can be changed
within the field

  

 

This  next  sample  shows  a form  in  Webform  Server.  Note  how  the  only  text  style  

that  remains  is  the  green  color  provided  by  the  XFDL  color  option:

 

14 



This field displays text with rich
text formatting. Note that in
Webform Server, the text style
only reflects the green color set
by the XFDL color option.

Sample - Microsoft Internet Explorer

File Edit Favorites Tools Help

Back Search Favorites

Go LinksAddress http://IBMSampleWFS/Samples/FormViewServlet?action

Done Local intranet

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

Test  Forms Thoroughly 

You should  always  test  your  forms  thoroughly  before  releasing  them  to  your  users.  

Examples 

Examples  of  possible  tests  include:  

v   Viewing  and  completing  the  form  in  Webform  Server  in  all  target  environments  

(Windows  and/or  Mac)  to ensure  the  correct  appearance  and  function  of the  

form.  

v   Viewing  and  completing  the  form  in  the  Viewer  to ensure  the  form  works  in all 

environments.  

v   Printing  the  form  from  Webform  Server  to  ensure  the  page  size  is correct.  

v   Using  Webform  Server,  view  the  form  on  client  computer  with  a “clean”  

Windows/Mac  OS  install  to ensure  that  font  substitutions  do  not  affect  the  

appearance  of  the  form.

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

 

General  Best Practices  15



16 



Creating  Dynamic  Webform  Server  Forms  

In  general,  Webform  Server  supports  option  changes  via  dynamic  updates  or  

automatic  page  refreshes.  When  the  user  interacts  with  a form  (by  changing  the  

value  of  a item  or, optionally,  changing  focus  from  one  item  to  another)  and  the  

change  resulting  from  that  interaction  affects  the  visual  state  of the  form,  then  

Webform  Server  either:  

v   dynamically  changes  the  visual  state  of  the  form  without  refreshing  the  entire  

page,  or  

v   changes  the  visual  state  of  the  form  by  automatically  refreshing  the  entire  page.  

(If  autoRefresh  is  turned  off  in the  translator.properties  file,  the  form  will  not  be  

automatically  refreshed.)  

When  designing  forms,  make  sure  you  understand  which  options  are  supported  by 

dynamic  updates  versus  full  page  refreshes.  (See  “Appendix  A:  Supported  XFDL  

Options”  on  page  53  for  details.)  

The  following  topics  are  discussed:  

v   “Minimize  the  Number  of  Full  Page  Refreshes.”  

v   “Restrict  Use  of Action  Items”  on  page  18..  

v   “Use  Page  Breaks  for  Dynamic  Form  Design”  on  page  19.  

v   “Do  Not  Toggle  Computes  Off  Of  Event  Model  Options”  on  page  20.  

v   “Toggle  Computes  off  of  the  Triggeritem”  on  page  20.  

v   “Use  Action  Items  to  Trigger  Computes  Off  Of  a Page  Flip”  on  page  22.

Minimize the Number of Full Page Refreshes 

Minimizing  the  number  of full  page  refreshes  will  maximize  the  performance  of  

your  Webform  Server  application  by  reducing  bandwidth  use  and  load  on  the  

server.  Furthermore,  it will  improve  the  user  experience  by  reducing  load  times.  

A full  page  refresh  requires  the  form  to  be  sent  back  to  the  server,  refreshed,  and  

returned  to  the  user. While  a single  full  page  refresh  may  take  milliseconds,  large  

form  pages,  multiple  users,  or  multiple  page  refresh  triggers  can  considerably  slow  

the  process.  

However,  there  are  alternatives.  Instead  of  using  computes  that  rely  on  options  

that  required  full  page  refreshes,  design  your  form  so  that  computes  rely  on 

options  that  support  dynamic  updates.  For  example,  to highlight  a label  when  the  

user  tabs  into  a field,  you  could  use  a compute  either  to  change  the  label  text  to a 

different  color  or  to  change  the  label  text  to  bold.  Changes  in  font  color  are  

updated  dynamically,  but  changes  in font  style  (for  example,  plain,  bold,  and  so  

on)  require  an  automatic  page  refresh.  Therefore,  a change  in  font  color  will  

happen  faster  than  a change  in font  style.  For  detailed  information  regarding  

which  options  support  dynamic  updating  and  which  require  a full  page  refresh,  

see  “Appendix  A:  Supported  XFDL  Options”  on  page  53.  

Note:   You can  configure  Webform  Server  to  turn  off  full  page  refreshes  entirely.  

See  IBM  Workplace  Forms  Server  —  Webform  Server  Administrator’s  Guide  for  

details.

 

© Copyright  IBM Corp. 2003, 2006 17



Examples 

The  following  compute  changes  the  label  text  to  a different  color:  

   <field  sid="First_Name">  

      <value></value>  

      <label>First  Name</label>  

         <labelfontinfo>  

            <fontname>Arial</fontname>  

            <size>8</size>  

            <labelfontcolor  compute="CHECK1.value  == ’on’  ? (’blue’)  &#xA;  

               : ’’"></labelfontcolor>  

         </labelfontinfo>  

      </field>  

Exceptions to this Practice 

There  are  no  exceptions  to  this  practice.  

Restrict Use of Action Items 

Webform  Server  instructs  the  browser  to  automatically  refresh  a form  whenever  

user  input  results  in  certain  changes  to  the  form  (for  example,  layout  changes).  As  

a side  effect  of a refresh,  action  items  that  are  set  to  occur  once  will  actually  occur  

each  time  the  form  is refreshed.  This  means  that  actions  may  be  triggered  when  

you  do  not  want  them  to  be.  Furthermore,  actions  that  are  set  to repeat  will  not  

work  properly  when  the  form  is viewed  in  Internet  Explorer.  

As  a result,  you  should  restrict  or  eliminate  the  use  of  action  items,  and  ensure  

that  you  test  all  actions  thoroughly.  

Examples 

The  following  action  item  opens  an  informational  web  page  when  the  form  is first  

opened:  

   <action  sid="OpenInfo">  

      <delay>  

         <type>repeat</type>  

         <interval>600</interval>  

      </delay>  

      <type>link</type>  

      <url>http://www.ibm.com/sample/instructions.htm</url>  

   </action>  

The  web  page  is intended  to  provide  the  user  with  extra  instructions  that  they  

should  review  once  before  completing  the  form.  However,  each  time  the  form  is 

refreshed  (either  automatically  by  Webform  Server  or  manually  by  the  user),  the  

action  will  trigger  and  load  the  web  page  again.  Clearly,  this  will  become  an  

annoyance  for  users  and  will  prevent  them  from  completing  the  form  quickly  and  

easily.  

Exceptions to this Practice 

Action  items  are  only  recommended  if you  need  to  trigger  some  computes  off  of a 

page  flip.  For  more  information,  see  ″Use  Action  Items  to  Trigger  Computes  Off  Of  

a Page  Flip″ . 

 

18 



Use Page Breaks for Dynamic Form Design 

Webform  Server  instructs  the  browser  to automatically  refresh  a form  whenever  

user  input  results  in  certain  changes  to  the  form  (for  example,  certain  layout  

changes).  One  way  to minimize  the  number  of refreshes  is to  divide  your  form  into  

pages.  

For  example,  you  might  design  a form  in which  one  section  changes  completely  

depending  on  whether  the  user  is single  or  married.  If the  layout  change  requires  

Webform  Server  to  refresh  the  form,  you  may  prefer  to  divide  the  form  into  pages  

to  eliminate  the  need  for  a refresh.  For  example,  on  the  first  page  of  the  form  the  

user  might  enter  some  personal  information  and  indicate  whether  they  are  married  

or  single.  Then  the  user  clicks  a button  to  flip  to  the  next  page.  The  content  of  the  

second  page  is  based  purely  on  their  marital  status,  and  is  calculated  during  the  

page  flip.  In this  case,  single  users  skip  page  two  entirely  and  are  shown  page  

three,  while  married  users  see  page  two,  in  which  they  must  provide  some  

information  about  their  spouse  and  dependents.  

By  relying  on  page  flips  in  this  way,  you  can  minimize  the  number  of refreshes  

users  experience.  

Example 

The  following  pictures  illustrate  a form  in  which  the  spousal  information  becomes  

visible  when  the  user  selects  the  appropriate  check  box:  

  

 

The  change  in  form  layout  may  require  Webform  Server  to refresh  the  form,  

requiring  the  user  to  wait  a few  seconds  to  see  the  modified  form.  

Instead,  you  can  add  a page  flip  to  the  first  page,  as  shown:  

 

Creating Dynamic  Webform  Server Forms 19



In  this  case,  the  user  clicks  the  Next  button  to  move  to the  next  page.  This  brings  

up  the  special  “Spousal  Information”  page  because  the  user  selected  Yes in  the  

previous  page.  This  makes  the  calculation  that  produces  the  special  section  part  of  

the  normal  flow  of  completing  the  form  and  provides  the  user  with  a more  

intuitive  experience.  

Exceptions to this Practice 

Alternately,  you  can  design  your  form  using  options  that  Webform  Server  can  

dynamically  update,  like  visible  and  active. 

Do Not Toggle  Computes Off Of Event Model Options 

Examples 

Do  not  toggle  computes  off  of the  activated,  dirtyflag,  focused, focuseditem  keypress,  or  

mouseover  options.  Computes  based  on  these  options  do  not  work  under  Webform  

Server.  Instead  you  should  design  your  form  so that  computes  are  activated  by  

changes  to  the  form’s  content.  For  example,  toggling  a visible/invisible  section  

based  on  whether  a particular  checkbox  has  been  selected.  

No  example  provided  

Exceptions to this Practice 

You may  choose  to  enable  computes  based  on  the  focused  and  focuseditem  options  

by  modifying  the  focusNotificationItems  property  in  the  translator.properties  file.  For  

more  information  about  the  translator.properties  file,  see  the  IBM  Workplace  Forms  

Server  - Webform  Server  Administrator’s  Guide. 

Toggle  Computes off of the Triggeritem 

Many  form  designs  rely  on  computes  that  are  triggered  off  of the  activated  option.  

For  example,  you  may  want  certain  computes  to  run when  a button  is clicked,  so  

those  computes  are  set  to run when  the  button’s  activated  option  goes  from  off  to 

on.  

Since  Webform  Server  does  not  support  the  activated  option,  this  strategy  does  not  

work.  Clicking  a button  will  not  automatically  trigger  a compute.  Instead,  you  

must  set  your  compute  to  toggle  off  of the  triggeritem  option,  and  set  your  buttons  

to  a type  of  refresh. 

 

20 



When  the  user  clicks  a button  of  type  refresh, Webform  Server  sends  the  form  to  

the  server  for  an  update.  It also  sets  the  value  of  the  form’s  triggeritem  twice:  first  

to  nothing,  and  then  to  equal  the  scope  identifier  (SID)  of the  button  that  was  

pressed.  This  allows  you  to  create  a toggle  that  will  run when  the  triggeritem  

changes  from  an  empty  string  to  the  SID  of the  button.  While  the  server  is 

updating  the  form,  any  compute  set  to detect  this  change  will  run. 

This  means  that  instead  of  setting  a compute  to  run when  a button’s  activated  

changes  from  off  to  on,  you  set  the  same  compute  to  run when  the  triggeritem  

changes  from  an  empty  string  to  the  SID  of that  button.  

Example 

The  following  code  shows  a button  that  is set  to  duplicate  a row. In  this  case,  the  

row  contains  only  one  field  to  simplify  the  example.  Notice  that  the  button  is of 

type  select  and  that  the  compute  is set  to toggle  off  of  the  activated  option.  This  is  

standard  for  forms  that  run in  the  Viewer.  

   <button  sid="addRowButton">  

      <value>Add  Row</value>  

      <type>select</type>  

      <custom:rowNumber>1</custom:rowNumber>  

      <custom:totalRows>1</custom:totalRows>  

      <custom:addRow  xfdl:compute="(toggle(activated,  ’off’,  &#xA;  

         ’on’)  == ’1’)  &#xA;  

         ? set(’custom:rowNumber’,  custom:rowNumber  + ’1’)  &#xA;  

         +. set  (’custom:totalRows’,  custom:totalRows  + ’1’)  &#xA;  

         +. set(duplicate(’NameField_0’,  ’item’,  &#xA;  

         ’addRowButton’,  ’item’,  ’BEFORE_SIBLING’,  &#xA;  

         ’NameField_’  +. custom:rowNumber)  +. ’.visible’,  &#xA;  

         ’on’)"></custom:addRow>  

   </button>  

In  the  next  example,  notice  that  the  button’s  type  has  been  changed  to  refresh, and  

the  compute  is  now  toggled  off  of  the  triggeritem  option.  Otherwise,  the  code  is 

identical  to  the  first  example.  

   <button  sid="addRowButton">  

      <value>Add  Row</value>\  

      <type>refresh</type>  

      <custom:rowNumber>1</custom:rowNumber>  

      <custom:totalRows>1</custom:totalRows>  

      <custom:addRow  xfdl:compute="(toggle(  

         global.global.triggeritem,  ’’, &#xA;  

         ’PAGE1.addRowButton’)==  ’1’)  &#xA;  

         ? set(’custom:rowNumber’,  custom:rowNumber  + ’1’)  &#xA;  

         +. set  (’custom:totalRows’,  custom:totalRows  + ’1’)  &#xA;  

         +. set(duplicate(’NameField_0’,  ’item’,  &#xA;  

         ’addRowButton’,  ’item’,  ’BEFORE_SIBLING’,  &#xA;  

         ’NameField_’  +. custom:rowNumber)  +. ’.visible’,  &#xA;  

         ’on’)"></custom:addRow>  

   </button>  

Since  the  Viewer  also  respects  the  refresh  type,  this  button  will  work  in  both  

Webform  Server  and  the  Viewer, duplicating  the  row  when  the  user  clicks  the  

button.  

Exceptions to this Practice 

If  you  need  to  trigger  a compute  off  of a page  flip,  you  cannot  use  the  triggeritem  

to  do  this  because  the  pagedone  buttons  do  not  set  the  triggeritem. Instead,  you  must  

use  an  action  item  to perform  the  page  flip.  For  more  information,  see  “Use  Action  

 

Creating Dynamic  Webform  Server Forms 21



Items  to  Trigger  Computes  Off  Of  a Page  Flip.”  

Use Action Items to Trigger Computes Off Of a Page Flip 

In  some  cases  you  may  want  to trigger  a compute  when  the  user  clicks  a page  flip  

button.  For  example,  before  the  Viewer  changes  the  page,  you  may  want  to  record  

which  page  the  user  is currently  on  so  that  you  can  return  to  it  later. 

To do  this  in  the  Viewer,  you  would  normally  toggle  the  compute  off  of  the  

activated  option  of  the  pagedone  button.  However,  because  Webform  Server  does  not  

support  the  activated  option,  this  will  not  work.  Furthermore,  the  Webform  Server  

practice  of  toggling  computes  off  of  the  triggeritem  will  not  work  either, because  

pagedone  buttons  do  not  set  the  triggeritem. 

To work  around  this  limitation,  you  must  first  change  your  button  from  a type  of 

pagedone  to  a type  of refresh. This  will  set  the  triggeritem  when  the  button  is clicked,  

which  you  can  then  use  to  trigger  a compute.  

However,  the  button  will  no  longer  flip  the  page.  To make  this  happen,  you  must  

add  an  action  item  to  the  form  that  will  perform  the  page  flip  when  the  user  clicks  

the  refresh  button.  To do  this,  you  must  set  the  active  option  of  the  action  to  off,  and  

then  toggle  it to  on  whenever  the  refresh  button  is clicked.  This  will  trigger  the  

action,  which  will  then  flip  the  page.  

This  creates  the  following  sequence  of  actions:  

1.   The  user  clicks  the  refresh  button.  

2.   This  sets  the  triggeritem  option  in  the  form,  and  causes  the  page  to  update.  

3.   Any  compute  set  to  toggle  off  the  triggeritem  is run. 

v   This  must  include  a compute  that  sets  the  active  option  of  the  action  item  to  

on.
4.   The  action  is  triggered,  and  flips  to  the  appropriate  page  of  the  form.

Once  the  user  has  changed  the  page,  the  action  item  will  not  run again  unless  they  

return  to  that  page.  If you  allow  the  user  to  return  to  the  first  page,  then  you  must  

make  sure  the  action  is turned  off  again  (usually  through  a compute  that  is 

triggered  by  flipping  to  that  page).  

Example 

In  this  example,  when  the  user  clicks  the  “summary  page”  button,  a reference  to  

the  current  page  is  set  into  a button  on  the  summary  page.  This  allows  the  user  to 

return  to  the  current  page  from  the  summary  page.  To create  this  effect,  we  must  

use  a refresh  button  and  a pagedone  action,  as  shown:  

   <button  sid="GoToSummary">  

      <type>refresh</type>  

   </button>  

   <action  sid="PageFlip">  

      <active>off</active>  

      <delay>  

         <type>once</type>  

         <interval>0</interval>  

      </delay>  

      <type>pagedone</type>

 

22 



<url>#Page4.global</url>  

      <custom:actions  xfdl:compute="your computes  here" 

         ></custom:actions>  

   </action>  

In  this  case,  we  need  the  compute  to  perform  these  actions:  

1.   Set  the  “PageFlip”  action  in  the  summary  page  to point  to the  first  page.  

v   This  ensures  that  the  user  will  return  to the  current  page  when  they  click  the  

“Return”  button.
2.   Set  a custom  option  in  the  summary  page  with  the  name  of the  referring  page.  

v   This  ensures  that  you  can  turn  the  action  item  off  in  the  referring  page  before  

flipping  back  to  it.
3.   Set  the  action  item  on  the  summary  page  to  be  inactive.  

v   This  ensures  that  the  pagedone  action  is  turned  off,  in  case  a previous  page  

flip  left  it  turned  on.
4.   Set  the  action  item  on  the  current  page  to be  active.  

v   This  activates  the  action  item,  which  flips  the  page.

Furthermore,  the  compute  must  be  triggered  by  the  user  clicking  the  “PageFlip”  

button.  The  following  compute  demonstrates  this,  assuming  that  the  summary  

page  is Page4  and  the  custom  option  is called  custom:referer  and  is part  of  the  

action  item:  

   (toggle(global.global.triggeritem)  == ’1’)  and 

      (global.global.triggeritem  == ’Page1.GoToSummary’)  ? 

      set(’Page4.PageFlip.url[0]’,  ’#Page1.global’)  + 

      set(’Page4.PageFlip.custom:referer’,  ’Page1’)  + 

      set(’Page4.PageFlip.active’,  ’off’)  + 

      set(’active’,  ’on’)  : ’’  

The  summary  page  must  have  a similar  button  and  action  item,  as  shown:  

   <button  sid="ReturnButton">  

      <type>refresh</type>  

   </button>  

   <action  sid="PageFlip">  

      <active>off</active>  

      <delay>  

         <type>once</type>  

         <interval>0</interval>  

      </delay>  

      <type>pagedone</type>  

      <url></url>  

      <custom:actions  xfdl:compute="your computes  here">< 

         /custom:actions>  

   </action>  

However,  the  compute  in the  summary  page  does  not  need  to do  as  much  work.  It 

simply  needs  to  perform  these  actions:  

1.   Set  the  action  item  in  the  referring  page  to  be  inactive.  

v   This  ensures  that  the  pagedone  action  is  turned  off,  in  case  a previous  page  

flip  left  it  turned  on.
2.   Set  the  action  item  on  the  current  page  to be  active.  

v   This  activates  the  action  item,  which  flips  the  page.

Once  again,  the  compute  is triggered  by  the  user  clicking  a button.  In  this  case,  the  

“Return”  button.  The  following  compute  demonstrates  this:  

 

Creating Dynamic  Webform  Server Forms 23



(toggle(global.global.triggeritem)  == ’1’)  and 

      (global.global.triggeritem  == ’Page4.ReturnButton’)  ? 

      set(custom:referer  +. ’.PageFlip.active’,  ’off’)  + 

      set(’active’,  ’on’)  : ’’ 

Exceptions 

There  are  no  exceptions  to  this  practice.  

 

24 



Choosing  the  Right  Fonts  

Choosing  the  correct  fonts  when  designing  your  forms  will  make  the  form  

completion  process  easier  and  more  pleasurable  for  your  users.  In general,  you  

should  always  choose  fonts  that  are  easily  to  read  and  widely  available.  

This  section  gives  helpful  suggestion  on  how  to choose  appropriate  fonts  for  your  

forms.  The  following  topics  are  discussed:  

v   “Use  Only  Fonts  that  are  Installed  on  Client  Computers”.  

v   “Do  Not  Use  Symbol  or  Wingdings  Fonts”  on  page  26  

v   “Use  Matching  Windows  and  Mac  Fonts”  on  page  27  

v   “Recommended  Japanese  Fonts”  on  page  27

Use Only Fonts that are Installed on Client Computers 

When  the  form  is  displayed  on  the  client  computer,  the  web  browser  relies  on  the  

fonts  installed  on  that  computer.  This  means  that  if the  appropriate  font  is not  

available,  the  web  browser  will  substitute  a “closest  match”  font.  This  can  change  

the  appearance  of the  form,  and  may  actually  cause  some  information  to  become  

obscured  if the  substituted  font  has  a significantly  different  size.  

If  you  cannot  be  sure  which  fonts  are  installed  on  client  computers  (for  example,  if 

the  form  is  intended  for  the  general  public),  you  should  restrict  your  form  to fonts  

that  are  installed  by  default  with  the  client  computers  (that  is,  fonts  that  are  

installed  by  default  with  Windows  or  Mac  OS).  

A similar  problem  may  occur  when  you  design  a form  using  fonts  available  on  a 

Windows  system  if the  form  is viewed  on  a Mac  system.  Even  if there  is a font  

available  on  both  Windows  and  Mac  systems  having  the  same  name,  the  actual  

font  information  may  not  be  identical.  This  can  result  in  differences  in text  

appearance  and  layout.  For  example,  text  may  be  slightly  wider  on  Mac  systems,  

resulting  in  labels  wrapping  onto  two  lines.  

When  designing  forms  for  use  on  Mac  systems,  make  sure  you  use  fonts  that  are  

identical  on  both  Windows  and  Mac  systems,  not  just  fonts  that  have  the  same  

name,  and  test  your  forms  on  both  Windows  and  Mac  systems.  Most  importantly,  

test  your  form  thoroughly.  

International  fonts  are  typically  different  on  Windows  and  Mac  systems.  If  you  

design  a form  using  non-English  text  for  use  on  a Mac  system,  test  your  form  

thoroughly.  

Example 

The  following  diagrams  show  two  versions  of the  same  form.  The  form  on  the  left  

uses  the  Times  New  Roman  font  at a point  size  of  8. The  form  on  the  right  uses  

the  Arial  font,  also  at a point  size  of 8.  Notice  how  changing  the  font  causes  some  

information  to  disappear  below  the  bottom  of the  label.  

 

© Copyright  IBM Corp. 2003, 2006 25



Exceptions To This Practice 

You can  disregard  this  practice  if:  

v   You provide  the  proper  fonts  to your  users  before  they  view  your  forms.  

v   You test  your  form  on  a “clean”  Windows  or  Mac  installation  to ensure  that  any  

font  substitutions  made  do  not  adversely  affect  the  form.

Do Not Use Symbol or Wingdings Fonts 

Webform  Server  does  not  properly  render  Symbol  or  Wingdings  fonts.  Not  only  do  

some  of  the  symbols  display  incorrectly,  but  text  and  the  items  containing  the  text  

may  be  sized  improperly  as  well.  

If you  need  to  include  a symbol  on  your  form  that  is normally  contained  within  

the  Symbol  or  Wingdings  fonts,  we  recommend  that  you  use  an  image  instead.  

Example 

The  following  diagrams  show  a form  that  contains  text  in  the  Wingdings  font.  On  

the  left,  the  form  is  displayed  in  the  Viewer, while  on  the  right,  the  form  is 

displayed  in  Webform  Server.  Notice  that  while  the  Viewer  displays  only  three  

lines  of  text,  Webform  Server  displays  four  lines  (although  the  fourth  is cut  off  at 

the  bottom).  Futhermore,  notice  that  the  text  wrapping  is different.  In  the  Viewer  

the  form  begins  the  second  line  with  a space,  while  in Webform  Server  it  does  not.  

  

 

 

26 



Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

Use Matching Windows and Mac Fonts 

Fonts  may  not  display  the  same  way  on  a Mac  system  as  they  do  on  a Windows  

system.  Even  if there  is a font  available  on  both  Windows  and  Mac  systems  having  

the  same  name,  the  actual  font  information  may  not  be  identical.  This  can  result  in  

differences  in  text  appearance  and  layout.  For  example,  text  may  be  slightly  wider  

on  Mac  systems,  resulting  in  labels  wrapping  onto  two  lines.  

When  designing  forms  for  use  on  Mac  systems  – especially  when  using  

international  fonts  – make  sure  you  use  fonts  that  are  identical  on  both  Windows  

and  Mac  systems,  not  just  fonts  that  have  the  same  name,  and  test  your  forms  on  

both  Windows  and  Mac  systems.  Most  importantly,  test  your  form  thoroughly.  

Example 

No  example  provided.  

Exceptions To This Practice 

You can  disregard  this  practice  if: 

v   You provide  the  proper  fonts  to your  users  before  they  view  your  forms.  

v   You test  your  form  on  a “clean”  Windows  or  Mac  installation  to ensure  that  any  

font  substitutions  made  do  not  adversely  affect  the  form.

Recommended Japanese Fonts 

You may  find  that  forms  that  contain  Japanese  fonts  do  not  print  correctly.  While  

this  does  not  interfere  with  the  presentation  of  forms  online,  it may  negatively  

effect  users  who  wish  to  print  the  form  for  their  own  records.  To avoid  this  

problem,  IBM  recommends  that  you  choose  fonts  from  the  following  list:  

v   MS  Mincho  

v   MS  PMincho  

v   MS  Gothic  

v   MS  PGothic  

v   MS  UI  Gothic

Example 

No  example  provided.  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

 

Choosing  the Right  Fonts  27



28 



Formatting  Fields  

Formatting  fields  allows  you  to  create  datatype,  presentation,  or  constraint  rules on  

data  entered  into  the  field.  This  allows  you  to  add  currency  symbols  to  currency  

fields,  pre-format  dates,  phone  numbers  or  social  insurance  numbers,  zip  codes  

and  so  on.  

This  section  provides  examples  for  creating  some  of the  most  popular  field  

formats.  The  following  topics  are  discussed:  

v   “Formatting  Phone  Numbers.”  

v   “Formatting  Postal  Codes”  on  page  30.  

v   “Formatting  E-Mail  Addresses”  on  page  32.

Formatting Phone Numbers 

Phone  number  fields  come  in  a number  of  formats.  Some  locales  may  include  

periods,  others  dashes,  while  others  include  parentheses.  In  your  form,  you  may  

want  to  accept  a wide  range  of phone  number  formats,  force  a particular  phone  

number  format,  or  ensure  that  users  can  only  input  numbers  and  not  letters.  You 

can  do  this  by  defining  the  field’s  presentation  format  and  providing  input  

constraints.  

Input  Constraints  

If  you  are  creating  a form  that  may  have  an  international  audience,  it is best  to  

accept  a wide  range  of  phone  number  formats.  In  particular,  you  must  specify  the  

patterns  that  the  phone  number  field  will  accept.  For  example,  to  specify  a three  

digit  area  code  followed  by  a seven  digit  phone  number,  you  would  create  a 

pattern  that  allows:  

1.   optional  parentheses  around  a three  digit  area  code  

2.   optional  dash,  dot,  or  space  

3.   3 digits  

4.   optional  dash,  dot,  or  space  

5.   4 digits

You must  use  a Unix-style  regular  expression  to specify  this  pattern.  For  example,  

the  following  regular  expression  creates  the  pattern  described  above:  

   (?(\d{3})\)?[[-.][:whitespace:]]?(\d{3})[[-.][:whitespace:]]?(\d{4})  

A field  formatted  with  this  expression  would  accept  user  input  formatted  in  many  

ways,  including:  

v   ##########  

v   (###)###-####  

v   (###)  ###-####  

v   ###  ###  ####  

v   ###.###.####  

v   ###-###-####

 

© Copyright  IBM Corp. 2003, 2006 29



However,  it  would  reject  user  input  that  contained  11 or  more  numbers  or  which  

included  alphabetic  characters.  

For  more  information  about  Unix-style  regular  expressions,  see  

http://www.regular-expressions.info/.  For  detailed  information  about  formatting  

fields,  see  the  format  option  section  of  the  XFDL  Specification. 

Presentation  

For  every  pattern  you  create  as  an  input  constraint,  you  must  have  a 

corresponding  presentation  patternref. The  patternref  allows  you  to specify  how  the  

user’s  input  is  displayed  in  the  form.  For  example,  if you  want  to  display  the  user  

input  as  ###-###-####  you  need  to specify  that  dashes  are  placed  between  each  

string  of digits.  You must  use  a Unix-style  regular  expression  to  specify  this  

pattern.  For  example:  

   $1-$2-$3  

Examples 

The  following  code  sample  shows  how  to  accept  multiple  phone  number  formats  

while  ensuing  that  the  data  is displayed  as ###-###-####.  For  example,  

123-456-7890.  

   <field  sid="FIELD2">  

      <label>Phone  Number</label>  

         <format>  

            <datatype>string</datatype>  

            <constraints>  

               <patterns>  

                  <pattern>\(?(\d{3})\)?[[-.][:whitespace:]]?(\d{3})[[-.]&#xA;  

                  [:whitespace:]]?(\d{4})</pattern>  

               </patterns>  

            </constraints>  

            <presentation>  

               <patternrefs>  

                  <patternref>$1-$2-$3</patternref>  

               </patternrefs>  

            </presentation>  

         </format>  

         <value></value>  

      </field>  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

Formatting Postal Codes 

Postal  codes  (also  known  as post  codes  or  ZIP  codes)  are  a series  of characters  

appended  to  a postal  address  for  the  purpose  of sorting  mail.  Most  countries  use  4, 

5,  6, or  9 digit  numeric  strings,  while  others  use  both  numbers  and  letters.  In  your  

form,  you  may  want  to  accept  a wide  range  of  valid  postal  code  formats  while  

filtering  invalid  ones.  You can  do  this  by  defining  the  field’s  presentation  format  

and  providing  input  constraints.  

Input  Constraints  

 

30 

http://www.regular-expressions.info/


In  particular,  you  must  specify  the  patterns  that  the  postal  code  fields  may  accept.  

For  example,  to  specify  a Canadian  postal  code  (two  sets  of  three  alternating  

alphanumeric  characters,  such  as  V9A  1G2)  you  would  create  a pattern  that  allows:  

v   a letter  

v   a number  

v   a letter  

v   an  optional  space  

v   a number  

v   a letter  

v   a number

You  must  use  a Unix-style  regular  expression  to specify  this  pattern.  For  example,  

the  following  regular  expression  creates  the  pattern  described  above:  

   ([A-Za-z]{1}[0-9]{1}[A-Za-z]{1})\s?([0-9]{1}[A-Za-z]{1}[0-9]{1})  

A field  formatted  with  only  this  expression  would  accept  user  input  formatted  in 

only  two  ways:  

v   x#x  #x#  

v   x#x#x#

To add  additional  postal  code  styles,  you  need  to add  additional  acceptable  

patterns.  For  example,  to  add  4,  5, or  6 character  digit  strings,  or  a 9 digit  string  

that  may  contain  a dash,  you  would  add  the  following  patterns:  

   (\d{4})  

   (\d{5})  

   (\d{6})  

   (\d{5})-?(\d{4})  

For  more  information  about  Unix-style  regular  expressions,  see  

http://www.regular-expressions.info/.  For  detailed  information  about  formatting  

fields,  see  the  format  option  section  of  the  XFDL  Specification. 

Presentation  

For  every  pattern  you  create  as  an  input  constraint,  you  must  have  a 

corresponding  presentation  patternref. The  patternref  allows  you  to  specify  how  the  

user’s  input  is displayed  in  the  form.  If there  are  multiple  patterns,  the  first  

patternref  corresponds  to  the  first  pattern,  the  second  patternref  corresponds  to  the  

second  pattern,  and  so  on.  You must  use  a Unix-style  regular  expression  to  specify  

this  patternref. The  follow  example  shows  the  patternrefs  for  the  6 character  

alphanumeric  code,  the  4,  5, and  6 digit  codes,  and  the  9 digit  code  that  contains  a 

dash:  

   $1 $2 

   $1 

   $1 

   $1 

   $1-$2  

Note  that  the  patternref  for  the  4,  5, and  6 digit  codes  is  exactly  the  same  

(indicating  a single  string).  However,  each  must  be  listed  separately  to ensure  they  

correspond  with  the  correct  input  constraint  pattern.  

 

Formatting  Fields 31

http://www.regular-expressions.info/


Examples 

The  following  code  sample  shows  how  to  accept  multiple  postal  code  formats  and  

allow  them  to  display  in  the  format  chosen  by  the  user. This  example  also  uses  

casetype  to  ensure  that  any  letters  are  displayed  as  upper  case:  

   <field  sid="FIELD4">  

      <label>Postal/ZIP  code</label>  

      <format>  

         <datatype>string</datatype>  

         <constraints>  

            <patterns>  

               <pattern>([A-Za-z]{1}[0-9]{1}[A-Za-z]{1})\s?([0-9]{1}[A-Za-z]&#xA;  

                 {1}[0-9]{1})</pattern>  

               <pattern>(\d{4})</pattern>  

               <pattern>(\d{5})</pattern>  

               <pattern>(\d{6})</pattern>  

               <pattern>(\d{5})-?(\d{4})</pattern>  

            </patterns>  

         </constraints>  

         <presentation>  

            <patternrefs>  

               <patternref>$1  $2</patternref>  

               <patternref>$1</patternref>  

               <patternref>$1</patternref>  

               <patternref>$1</patternref>  

               <patternref>$1-$2</patternref>  

            </patternrefs>  

            <casetype>upper</casetype>  

         </presentation>  

      </format>  

      <value></value>  

   </field>  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

Formatting E-Mail Addresses 

E-mail  addresses  only  come  in  one  format:  a string  of  alphanumeric  characters  

(which  may  include  punctuation  symbols),  followed  by  the  @ sign,  and  concluded  

with  a domain  name.  There  are  two  primary  ways  to  format  e-mail  address  fields:  

v   To accept  any  e-mail  address  

v   To accept  only  e-mail  addresses  from  a particular  domain

Accepting  Any  E-Mail  Address  

To format  a field  to  accept  any  e-mail  address  (and  reject  any  data  that  is not  an  

e-mail  address),  you  must  create  an  input  constraint  pattern.  You must  use  a 

Unix-style  regular  expression  to specify  this  pattern.  For  example,  the  following  

regular  expression  configures  a field  to  accept  any  e-mail  address,  but  rejects  any  

that  do  not  contain  an  @ symbol  or  domain  name:  

   (?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@(?:(?:[A-Za-z0-9]+[-]?){1,}&#xA;  

      [A-Za-z0-9]+\.){1,}[A-Za-z]{2,4}  

For  more  information  about  Unix-style  regular  expressions,  see  

http://www.regular-expressions.info/.  For  detailed  information  about  formatting  

fields,  see  the  format  option  section  of  the  XFDL  Specification. 

 

32 

http://www.regular-expressions.info/


Accepting  Only  E-Mail  Addresses  From  a Specific  Domain  

To format  a field  to  only  accept  e-mail  addresses  from  a particular  domain,  you  

must  create  an  input  constraint  pattern  that  specifies  the  required  domain  name.  

You must  use  a Unix-style  regular  expression  to specify  this  pattern.  For  example,  

the  following  regular  expression  configures  a field  to accept  only  e-mail  addresses  

with  an  IBM  domain:  

   (?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@ibm\.com  

For  more  information  about  Unix-style  regular  expressions,  see  

http://www.regular-expressions.info/.  For  detailed  information  about  formatting  

fields,  see  the  format  option  section  of  the  XFDL  Specification. 

Examples 

The  following  code  sample  shows  how  to create  a field  that  accepts  any  e-mail  

address:  

   <field  sid="FIELD24">  

      <label>E-Mail  Address</label>  

      <format>  

         <datatype>string</datatype>  

         <constraints>  

            <patterns>  

               <pattern>(?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@  &#xA;  

                   (?:(?:[A-Za-z0-9]+[-]?){1,}[A-Za-z0-9]+\.){1,}[A-Za-z]&#xA;  

               {2,4}</pattern>  

            </patterns>  

         </constraints>  

     </format>  

     <value></value>  

   </field>  

The  following  code  sample  shows  how  to create  a field  that  accepts  only  e-mail  

addresses  from  a particular  domain:  

   <field  sid="FIELD25">  

      <label>E-Mail  Address</label>  

      <format>  

         <datatype>string</datatype>  

         <constraints>  

            <patterns>  

               <pattern>(?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@ibm\.com</pattern>  

            </patterns>  

         </constraints>  

      </format>  

      <value></value>  

   </field>  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

 

Formatting  Fields 33

http://www.regular-expressions.info/


34 



Designing  Accessible  Forms  

Why Create Accessible Forms? 

With  the  release  of  Section  508  of  the  Rehabilitation  Act,  the  US  government  has  

issued  a set  of  regulations  describing  minimum  accessibility  standards  for  

information  technologies.  These  regulations  have  two  important  goals:  

1.   To give  members  of  the  public  who  have  disabilities  equal  access  to  

government  services.  

2.   To ensure  that  persons  with  disabilities  have  equal  access  to  employment  

opportunities  with  the  federal  government.

Topics  Discussed 

This  section  describes  practices  you  should  follow  whether  you  are  designing  new  

accessible  forms  or  updating  existing  ones.  The  emphasis  is on  issues  that  apply  to  

XFDL  forms  that  will  be  read  by  Freedom  Scientific’s  JAWS  for  Windows  4.0  screen  

reading  software.  It  includes  the  following  topics:  

v   ″Provide  Appropriate  Accessibility  Messages″. 

v   ″Put  Label  Text Into  Acclabels″. 

v   ″Use  Field  Items  To Display  Text Information″. 

v   ″Place  Graphics  Inside  Buttons″.  

v   ″Minimize  and  Explain  the  Use  of Dynamic  Content″.  

v   ″Reset  the  Form’s  Tab Order″. 

v   ″Identify  Row  and  Column  Headings″. 

v   ″Use  Contrasting  Page  Background  Colors″. 

v   ″Do  Not  Use  List  Items″. 

v   ″Test Forms  Thoroughly″.

Other Resources 

Whether  a given  XFDL  document  complies  with  Section  508  regulations  depends  

almost  entirely  on  its  design.  While  these  practices  will  help  you  create  XFDL  

forms  that  integrate  with  screen  readers  and  magnifiers,  you  will  also  have  to 

consider  several  other  accessibility  design  issues  not  covered  here.  This  document  

does  not  address  general  accessibility  practices  for  form  design.  If you  need  more  

information  on  this  subject,  refer  to  these  online  resources:  

v   www.w3c.org/WAI/  —  The  Web Accessibility  Initiative  web  site  explores  

technology,  guidelines,  tools,  education  and  outreach  with  the  goal  of  improving  

access  to  the  Internet.  

v   www.microsoft.com/enable/  —  Discusses  Microsoft’s  built-in  accessibility  

features.  

v   www.access-board.gov/sec508/508standards.htm  —  Electronic  and  information  

technology  accessibility  standards  published  by  the  US  Architectural  and  

Transportation  Barriers  Compliance  Board.  

v   www-3.ibm.com/able/  —  Product  and  service  information  for  people  with  

disabilities.  

v   ncam.wgbh.org/webaccess/  —  Accessibility  projects  by  the  National  Centre  for  

Accessible  Media.

 

© Copyright  IBM Corp. 2003, 2006 35



Provide Appropriate Accessibility Messages 

Although  JAWS  recognizes  most  items  that  appear  on  a form,  the  default  

information  it  provides  is generally  insufficient  to  allow  users  with  visual  

disabilities  to  complete  a form.  As  a result,  you  must  provide  all  the  necessary  

information  in  the  item’s  accessibility  message.  In  fact,  without  adequate  help  

information  your  form  may  not  meet  minimum  accessibility  requirements.  

The  acclabel  option  can  help  you  meet  those  requirements.  Using  an  acclabel  allows  

you  to  provide  appropriate  messages  to  help  users  with  disabilities  without  

impacting  users  without  impairments.  

You can  assign  acclabels  to  any  item  that  is  capable  of  receiving  input  focus.  

The  following  general  practices  can  help  you  create  useful  messages:  

v   Repeat  the  text  of  labels  in  the  acclabel  of the  following  item.  

v   For  interactive  items  such  as  fields,  lists,  buttons,  and  so  on,  use  verbs  that  

indicate  the  type  of  action  the  user  must  perform.  Some  good  choices  are:  type,  

select,  check,  and  press.  Avoid  using  ″enter″ because  it is too  vague.  

v   Mention  whether  completion  of the  item  is optional  or  mandatory.  You may  

choose  to  only  mention  this  for  items  that  are  mandatory.  

v   In  the  case  of  fields  that  only  accept  certain  types  of  input,  explain  the  format  

requirements  (such  as  text,  numeric,  date,  and  so  on).  Be  as  descriptive  as  

necessary.  

v   Be  consistent  in  the  amount  and  type  of information  you  provide.  For  example,  

if you  decide  to  only  indicate  which  fields  are  mandatory,  do  not  unexpectedly  

mention  that  a certain  field  is optional.  

v   Use  consistent  language  for  items  of the  same  type.  For  example,  you  might  

decide  to  use  the  phrase  ″Select  a choice  from  the  list.″ as  part  of  the  

accessibility  message  for  popup  lists.  In that  case,  you  should  use  the  same  

phrase  for  every  popup  list  on  the  form.  

v   You should  consider  the  experience  level  of  the  users  of your  form.  If you  expect  

users  to  be  fairly  new  to  computers,  you  may  need  to  provide  more  detailed  

instructions.  On  the  other  hand,  if users  are  experienced  or  will  be  using  the  

same  form  frequently,  you  may  choose  to  provide  shorter  messages.  

v   If  the  Help  functionality  is turned  on,  JAWS  reads  an  item’s  help  message,  so  

acclabels  do  not  need  to repeat  that  content.  For  more  information  on  JAWS  

announcements  and  proper  accessibility  practices  when  designing  forms,  refer  to  

Appendix  B:  JAWS Announcements.

Example 

When  building  an  accessible  form,  it’s  important  to be  familiar  with  JAWS  and  the  

default  phrases  it announces  for  each  item  in  addition  to  your  custom  accessibility  

message.  Before  continuing  with  this  section,  you  may  want  to  review  Appendix  B: 

JAWS  Announcements  

When  creating  accessibility  messages,  try  to keep  in  mind  what  people  with  vision  

disabilities  need  to  know  to  use  an  item.  The  exact  wording  of each  message  will  

depend  on  the  item  itself  and,  to  some  extent,  on  the  overall  design  of the  form.  

However,  the  following  examples  demonstrate  the  type  of  information  that  you  

should  provide  for  each  item.  

 

36 



Note:   In  the  following  examples,  messages  automatically  provided  by  JAWS are  

italicized  in  the  text.  

Field  

The  following  diagram  shows  a typical  text  field  with  its  associated  label.  

  

 

JAWS  reads  field  messages  in the  following  order:  

v   label  option  

v   accessibility  message  

v   the  value,  or  empty  value  status  

v   JAWS message  

v   help  message

Note:   For  details  on  JAWS messages  and  how  they  integrate  with  form  messages,  

see  Appendix  B:  JAWS Announcements.  

Fields  often  have  special  formatting  requirements.  For  example,  mandatory  fields  

are  indicated  to  sighted  users  by  a yellow  shading  of the  text  area.  Other  special  

fields  may  require  specific  formatting,  such  as  fields  that  accept  only  area  codes.  

The  following  diagram  shows  a mandatory  text  field.  

  

 

If  users  with  visual  disabilities  tabbed  into  this  field,  they  would  be  unaware  that  

the  focus  is  in  a mandatory  text  field  unless  you  provided  an  accessibility  message  

for  fields.  Although  JAWS does  announce  the  contents  of the  field’s  label  option,  

the  label  does  not  indicate  that  the  field  is  mandatory.  Additionally,  users  with  

cognitive  disabilities  may  require  clear  instructions  to  correctly  respond  to the  

field.  

The  following  code  shows  a suitable  accessibility  message  for  this  field:  

   <acclabel>  

      Mandatory  field.  Type  your  last  name,  first  name,  and  middle  initial.  

   </acclabel>  

As  a result,  when  JAWS  users  move  the  focus  to  this  field  they  will  hear:  ″Name  

left  parens  last,  first,  and  middle  initial  right  parens.  Mandatory  field.  Type your  

last  name,  first  name,  and  middle  initial.  Edit  field  is  empty.  Type in text.″ 

Note:   You should  use  the  verb  ″type″ for  fields  because  this  describes  the  action  

that  users  need  to perform  to complete  this  item.

 

Designing  Accessible  Forms 37



The  field  in  the  following  diagram  contains  special  formatting  constraints.  This  

field  has  been  formatted  to  accept  phone  numbers  and  area  codes.  If users  do  not  

enter  their  area  code,  they  will  be  informed  that  their  entry  is invalid.  Note  that  

the  field  already  provides  parentheses  and  a dash  - users  only  need  to  type  the  

correct  numbers.  

  

 

An  appropriate  accessibility  message  for  this  field  could  be:  

   <acclabel>  

      Type  your  area  code  and  phone  number  into  this  mandatory  

      field.  You  do not  need  to type  the  parenthesis  around  the  

      area  code  or the  dash  in the  phone  number.  These  symbols  

      have  been  provided  for  you.  

   </acclabel>  

When  users  tab  to  this  field,  JAWS  announces:  ″Phone  number.  Type your  area  

code  and  phone  number  into  this  mandatory  field.  You do  not  need  to type  the  

parenthesis  around  the  area  code  or  the  dash  in  the  phone  number.  These  symbols  

have  been  provided  for  you.  Edit  field  is empty.  Type in text.″ 

You should  note  that  JAWS  pronounces  most  punctuation,  including  parentheses,  

number  signs,  and  dashes  that  appear  in labels,  acclabels,  and  item  contents.  For  

example,  JAWS  reads  the  sequence  (###)  ###-####  as,  ″Left  parens  number  number  

number  right  parens  number  number  number  dash  number  number  number  

number″.  Not  surprisingly,  a person  with  cognitive  disabilities  could  find  this  

confusing.  When  writing  accessibility  messages,  try  to  describe  formatting  

requirements  in  words  rather  than  symbols.  

Combobox  

Comboboxes  allow  users  to  enter  text  or  to  select  a choice  from  a list,  as  illustrated  

below:  

  

 

To make  comboboxes  more  accessible  to  people  with  visual  impairments,  you  

should  indicate  the  total  number  of  choices  in  the  list.  JAWS  automatically  

provides  instructions  for  using  the  combobox.  

JAWS  reads  combobox  messages  in the  following  order:  

v   label  option  

v   accessibility  message  

v   the  selected  choice,  or  empty  choice  status  

v   JAWS  message  

v   help  message

 

38 



Note:   For  details  on  JAWS messages  and  how  they  integrate  with  form  messages,  

see  ″Appendix  B:  JAWS Announcements″. 

Because  JAWS  reads  the  label  first,  the  transition  between  the  accessibility  message  

and  the  choice  announcement  may  be  awkward.  At  the  end  of your  accessibility  

message,  you  may  want  to  repeat  the  name  of  the  combobox.  

The  following  code  demonstrates  appropriate  code  for  the  acclabel  of  the  combobox  

in  the  diagram  above:  

   <acclabel>  

      Type  your  employment  status  or select  a choice  from  the  list.  

      This  list  contains  4 items.  The Employment  Status  combobox.  

   </acclabel>  

When  JAWS  users  move  the  focus  to  this  field  they  will  hear:  ″Employment  status.  

Type your  employment  status  or  select  a choice  from  the  list.  This  list  contains  4 

items.  The  Employment  Status  combobox  is  empty.  This  is an  editable  combobox.  Type 

in  text  or  use  the  down  arrow  key  to  choose  from  the  list.  Type in  text.″ 

As  users  move  through  the  list,  JAWS  reads  the  choices  and  their  list  status  aloud.  

For  example,  ″Full-time.  1of  4.″  

Popup  List  

Popup  lists  are  the  easiest  method  of offering  choices  to  users  without  using  a lot  

of  space  on  a form.  To make  popup  lists  fully  accessible  to  users  with  visual  

impairments,  you  should  indicate  the  number  of choices  in  the  popup.  JAWS 

automatically  announces  instructions  for  using  popup  lists.  The  following  diagram  

shows  a typical  popup  list:  

  

 

JAWS  reads  popup  messages  in  the  following  order:  

v   accessibility  message  

v   label  option  or  selected  choice  

v   JAWS message  

v   help  message

Note:   For  details  on  JAWS messages  and  how  they  integrate  with  form  messages,  

see  ″Appendix  B:  JAWS Announcements″.

 

Designing  Accessible  Forms 39



Unlike  comboboxes,  JAWS reads  a popup’s  accessibility  message  before  its  label.  

Therefore,  a popup’s  accessibility  message  should  fully  introduce  the  item,  but  

doesn’t  need  to  verify  the  name  of the  popup.  An  appropriate  accessibility  message  

would  be:  

   <acclabel>  

      This  popup  allows  you  to select  your  marital  status  from  a list  of 6 choices.  

   </acclabel>  

When  users  access  this  popup,  JAWS  reads:  ″This  popup  allows  you  to  select  your  

marital  status  from  a list  of  6 choices.  Marital  Status.  This  is  a popup  list.  Use  the  

spacebar  or  down  arrow  key  to bring  up  the  list.  To  activate,  press  spacebar.″ 

As  users  move  through  the  list,  JAWS  reads  the  choices  and  their  list  status  aloud.  

For  example,  ″Married.  3 of  6.″  

Check  Box  

JAWS  reads  aloud  both  the  checkbox’s  accessibility  message  and  label.  However,  

form  designers  frequently  use  a separate  label  item  for  checkboxes  to allow  more  

flexible  placement  options  for  the  label.  As  a result,  to  make  checkboxes  accessible,  

you  should  repeat  the  contents  of the  label  in  the  acclabel  item.  The  following  

diagram  shows  a check  box  and  its  label:  

  

 

JAWS  reads  check  box  messages  in  the  following  order:  

v   label  option  

v   accessibility  message  

v   value  

v   JAWS  message  

v   help  message

Note:   For  details  on  JAWS messages  and  how  they  integrate  with  form  messages,  

see  ″Appendix  B:  JAWS  Announcements″. 

As  always,  the  accessibility  message  should  indicate  what  type  of action  the  user  

needs  to  perform.  The  following  code  shows  an  appropriate  help  message  for  this  

checkbox:  

   <acclabel>  

      Select  this  checkbox  if you  would  like  an agent  to contact  

      you  directly.  

   </acclabel>  

Although  the  message  consists  of only  one  sentence,  it  conveys  what  action  the  

user  can  take  as  well  as  the  question  presented  by  the  label.  When  users  access  this  

checkbox,  JAWS reads:  ″Would  you  like  an  agent  to  contact  you  directly?  Select  

this  checkbox  if you  would  like  an  agent  to  contact  you  directly.  Checkbox:  

checked/not  checked.  To  activate,  press  spacebar.″  

Radio  Button  

 

40 



As  with  checkboxes,  form  designers  frequently  use  separate  label  items  for  radio  

buttons.  As  a result,  you  must  provide  this  information  individually  for  each  radio  

button  by  using  its  accessibility  message.  

In  addition,  grouped  radio  buttons  often  have  a title  or  caption  that  applies  to the  

entire  group,  as  shown  in  the  following  diagram:  

  

 

JAWS  reads  radio  button  messages  in  the  following  order:  

v   label  option  

v   accessibility  message  

v   value  

v   JAWS message  

v   help  message

Note:   For  details  on  JAWS messages  and  how  they  integrate  with  form  messages,  

see  ″Appendix  B:  JAWS Announcements″. 

Grouped  radio  buttons  typically  have  a separate  label  that  describes  the  set  of  

buttons,  as  illustrated  in  the  diagram  above.  You should  present  this  information  in  

either  a read-only  field  or  in  the  acclabel  of  the  first  radio  button,  so  that  it  is 

available  to  all  your  users.  For  details  on  presenting  this  information,  see  ″Use  

Field  Items  To Display  Text Information″ on  page  47  or  ″Put  Label  Text Into  

Acclabels″. 

In  addition  to  containing  the  text  that  appears  on  the  form,  the  accessibility  

message  of  the  read-only  field  should  indicate  that  the  user  is expected  to  respond  

using  radio  buttons.  The  following  code  shows  an  appropriate  message  for  the  text  

field  shown  above:  

   <acclabel>  

      What  did  you  think  of the  course?  Respond  by using  the  

      following  radio  buttons.  

   </acclabel>  

If  you  prefer  not  to  use  read-only  fields,  you  should  ensure  that  this  information  is 

placed  in  the  acclabel  of  the  first  radio  button.  

In  either  case,  you  must  also  create  individual  accessibility  message  for  each  radio  

button.  For  example,  the  following  code  shows  an  acclabel  for  the  ″Excellent″  radio  

button:  

   <acclabel>Excellent</acclabel>  

 

Designing  Accessible  Forms 41



When  users  accessed  this  radio  button,  JAWS  would  read:  ″What  did  you  think  of  

the  course?  Respond  by  using  the  following  radio  buttons.  Excellent.  Radio  button.  

x of  n. Checked/Not  checked.  To  activate,  press  spacebar.″  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

Put Label Text  Into Acclabels 

Most  forms  contain  a certain  amount  of  read-only  text  such  as  titles,  captions,  

headings,  or  instructions.  This  text  is normally  displayed  using  label  items.  

However,  JAWS  only  announces  text  from  items  that  receive  the  input  focus.  

Because  label  items  are  not  designed  to  accept  input  from  the  user, they  never  

receive  the  focus.  As  a result,  the  screen  reader  cannot  read  a label’s  text.  If  you  

use  labels  to  separate  contextual  areas  on  a form,  users  with  visual  disabilities  may  

be  unaware  of  the  subject  change.  You should  include  this  text  in  the  acclabel  of  the  

appropriate  input  items.  This  allows  JAWS  to  inform  users  of any  changes  or  

instructions.  

Note:   This  practice  is an  alternative  to  ″Use  Field  Items  To Display  Text 

Information″ 

Example 

There  are  a number  of situations  in  which  you  would  use  read-only  text  

information  in  a form.  The  following  diagram  illustrates  a section  header,  followed  

by  instructions  for  completing  medical  information:  

  

 

The  following  code  creates  an  acclabel  option  for  the  ″Yes″ checkbox  shown  in  the  

previous  diagram.  Note  that  the  checkbox  acclabel  contains  all  the  information  

displayed  in  the  section’s  read-only  labels,  including  section  title,  instructions,  

sub-heading,  and  the  first  question  of  the  section:  

   <check  sid="LostSight_Yes">  

      <acclabel>  

         This  section  of the  form  records  your  Medical  

         History.  It  contains  a series  of questions  with  yes and  no 

         checkboxes.  If you  answer  yes  to any  of these  questions,  

         please  explain  your  response  in the  Remarks  section  that  

         directly  follows  the list  of questions.  Eyesight.  

         Question  1.  Have  you lost  the  use or sight  of either  eye?  

         Select  yes  or  no.  This  is the  Yes  checkbox.  

      </acclabel>  

   </check>  

When  a JAWS  user  tabs  to  this  item,  they  hear:  ″This  section  of the  form  records  

your  Medical  History.  It  contains  a series  of questions  with  yes  and  no  checkboxes.  

 

42 



If  you  answer  yes  to  any  of  these  questions,  please  explain  your  response  in  the  

Remarks  section  that  directly  follows  the  list  of  questions.  Eyesight.  Question  1. 

Have  you  lost  the  use  or  sight  of either  eye?  Select  yes  or  no.  This  is the  Yes 

checkbox.  Checkbox:  not  checked.  To  activate,  press  spacebar.″ 

Usage Notes 

When  an  item  receives  the  focus  (for  example,  by  using  the  tab  key  to  navigate  to  

the  field),  JAWS  typically  reads:  

v   The  label  option  of  the  item.  

v   The  accessibility  message.  

v   The  contents  of  the  item.  

v   Any  instructions  JAWS  automatically  adds  for  using  a particular  item  type.

As  a result,  you  should  ensure  that  the  item’s  label  option  and  accessibility  message  

do  not  repeat  information.  Repeating,  conflicting,  or  out-of-order  messaging  can  be 

confusing.  If  you  have  items  that  contain  the  text  of  a header,  caption,  or  

instruction  label  in  its  accessibility  message  do  not  use  a label  option  to display  

labels  for  those  items.  Instead,  use  a separate  label  item  to provide  text  for  sighted  

users.  

Whether  you  are  using  the  Designer  or  a text  editor  to  create  or  modify  your  form,  

remember:  

v   For  sighted  users,  create  a label  item  instead  of  a label  option. 

v   For  users  with  visual  disabilities,  ensure  that  you  place  all  relevant  information  

(section  header,  instructions,  item  information,  and  so on)  in  the  acclabel.

This  practice  may  result  in  lengthy  accessibility  messages.  In  many  cases,  this  can  

be  avoided  by  splitting  instructions  across  the  appropriate  items.  Where  a sighted  

user  might  prefer  to  read  all  of  the  instructions  at the  beginning  of a section,  it  

may  be  more  useful  to  split  the  instructions  across  multiple  items  for  a vision  

impaired  user. 

Exceptions To This Practice 

If  the  majority  of  your  intended  users  have  vision  impairments,  you  may  choose  to  

substitute  read-only  fields  for  labels  containing  section  headers,  instruction,  

captions,  and  so  on.  For  more  information  on  substituting  read-only  fields,  see  

″Use  Field  Items  To Display  Text Information″. 

Use Field Items To  Display Text  Information 

As  an  alternative  to  putting  label  text  in  acclabel  options,  you  may  choose  to avoid  

the  use  of  label  items  to  display  text  on  your  forms.  Instead,  you  can  use  specially  

formatted  field  items  to  display  label  text.  

This  practice  involves  creating  read-only  and  borderless  fields  that  receive  the  

focus.  When  properly  formatted  in  this  way,  fields  can  be  virtually  

indistinguishable  form  labels.  However,  unlike  labels,  JAWS  recognizes  fields  as  

normally  accepting  user  input  and  therefore  automatically  reads  any  text  they  

contain.  However,  if sighted  users  tab  through  a form  formatted  this  way,  they  will  

find  that  the  tab  order  includes  items  that  appear  to be  labels,  and  that  a cursor  

appears  when  that  item  has  the  focus.  This  may  reduce  the  usability  of  the  form  

for  sighted  users.  

 

Designing  Accessible  Forms 43



Note:   This  practice  is an  alternative  to  ″Put  Label  Text Into  Acclabels″. 

Example 

When  a field  receives  the  focus  (for  example,  by  using  the  tab  key  to  navigate  to  

the  field),  JAWS  first  announces  the  accessibility  message  for  the  field,  followed  by  

its  contents.  The  following  diagram  shows  part  of  a form  in  which  a field  item  

creates  a section  heading  and  gives  instructions  to the  user:  

  

 

In  this  case,  when  JAWS users  tab  into  a read-only  field,  they  hear  JAWS  read  the  

contents  of  the  field,  general  field  information,  and  any  additional  acclabel  the  field  

may  have.  

Usage Notes 

The  ability  to  provide  extra  information  through  an  item’s  accessibility  message  is  

an  important  part  of  making  a form  accessible.  For  more  information  on  providing  

accessibility  messages,  refer  to ″Provide  Appropriate  Accessibility  Messages″ on  

page  37.  

When  you  replace  a regular  label  with  a field,  remember  to:  

v   Not  specify  a label  option  for  the  field.  

v   Set  the  field  as  read-only.  

v   Set  the  field  as  active.  

v   Disable  the  border  around  the  field’s  contents.  

v   Specify  a custom  acclabel  item  for  the  field.  As  a minimum,  the  accessibility  

message  should  repeat  the  text  that  appears  on  the  form.  However,  it is usually  

desirable  to  make  the  audible  message  more  descriptive  than  the  text  it 

supports.

The  following  code  creates  an  acclabel  item  for  the  ″Select  Items  for  Purchase″ 

heading  shown  in  the  previous  diagram:  

   <acclabel>  

      This  section  of the form  allows  you to select  the  type  and 

      amount  of the  items  you  want  to purchase.  The  price  is 

      automatically  calculated  for you.  

   </acclabel>  

When  this  item  receives  the  input  focus,  JAWS  users  hear:  ″This  section  of  the  form  

allows  you  to  select  the  type  and  amount  of  the  items  you  want  to  purchase.  The  

price  is automatically  calculated  for  you.  Edit  field  contains  Select  Items  for  Purchase.  

Read-only.  Use  your  reading  keys  to  read  the  text.″ 

Note:   If  you  use  labels  to  identify  other  items,  such  as  fields,  checkboxes,  or  radio  

buttons,  you  may  not  need  to  exchange  read-only  fields  for  labels,  as  these  

items  can  contain  their  own  accessibility  messages  that  describes  their  

 

44 



function.  As  a rule of  thumb,  simply  ensure  that  JAWS  pronounces  all 

visible  text  on  the  form  whether  it be  through  read-only  fields  or  

accessibility  messages.  

Exceptions To This Practice 

Sighted  users  may  find  it  distracting  to see  the  cursor  tab  into  items  that  do  not  

require  user  input.  As  a result,  you  may  prefer  to put  label  text  into  the  acclabel  of  

the  first  item  in  the  section.  For  more  information,  see  ″Put  Label  Text Into  

Acclabels″. 

Assist JAWS Users to Enter Forms Mode 

JAWS  does  not  automatically  enter  Forms  mode  when  reading  text  in  the  Viewer, 

nor  does  it retain  Forms  mode  when  switching  pages  in  the  Viewer. This  means  

that  form  input  elements  may  behave  differently  for  JAWS  users  than  they  do  for  

other  users.  To ensure  that  screen  reader  users  can  easily  and  consistently  complete  

your  forms,  you  should  make  it as simple  as  possible  for  them  to  enter  or  return  to  

Forms  mode  while  they  are  using  your  forms.  

To ensure  that  JAWS users  have  the  same  forms  experience  as  sighted  users,  you  

should  ensure  that  the  first  item  on  every  page  of  a form  is a field.  Furthermore,  

you  should  add  a note  to  the  acclabel  on  this  field  to  remind  screen  reader  users  to  

press  Enter  so  that  they  enter  Forms  mode.  

Example 

No  example  provided.  

Exceptions To This Practice 

There  are  no  exceptions  to  this  practice.  

Place Graphics Inside Buttons 

508  regulations  require  that  there  be  a text  equivalent  description  of  non-text  

elements  such  as  images  and  graphics.  The  best  way  to  meet  this  requirement  is to  

place  images  and  graphics  within  buttons.  This  allows  you  to  place  a text  

description  of  the  image  in  the  button’s  accessibility  and  help  messages.  Removing  

the  button’s  border  maintains  the  image’s  appearance  for  sighted  users.  

When  users  access  the  button,  JAWS  reads  the  accessibility  message.  If Viewer  

Help  is  turned  on  when  users  tab  into  the  button,  JAWS  reads  the  help  message  

aloud  while  the  form  displays  a hover  help.  As  a result,  the  layout  of the  form  is 

not  affected.  

Example 

The  following  diagram  shows  part  of  a form  containing  an  image  of  the  PureEdge  

logo.  Because  the  image  is contained  within  a button,  the  form  designer  was  able  

to  use  help  and  acclabel  items  to  display  descriptive  text  about  the  image.  

 

Designing  Accessible  Forms 45



The  following  code  creates  the  image  button  shown  above:  

   <button  sid="BUTTON1">  

      <itemlocation> 

      <value>BUTTON1</value>  

        

      <borderwidth>0</borderwidth>  

      <acclabel>An  image  of PureEdge  Solution’s  logo</acclabel>  

      <help>HELP5</help>  

      <fontcolor> 

      <bgcolor> 

   </button>  

This  code  creates  the  help  message  for  the  button:  

   <HELP  sid="HELP5">  

      <value>An  image  of PureEdge  Solution’s  logo.</value>  

   </HELP>  

Note:   Remember,  Viewer  Help  must  be  turned  on  before  JAWS  can  read  the  help  

messages.  

Usage Notes 

When  using  buttons  to  display  images  you  should  remember  to:  

v   Specify  an  invisible  border  for  the  button.  

v   Make  the  button  the  same  size  as  the  image.  

v   Include  the  image  button  in  your  tab  layout.

You  may  be  tempted  to make  the  button  inactive  so  that  users  cannot  click  it.  

However,  keep  in  mind  that  inactive  buttons  do  not  receive  the  focus,  and  that  

users  with  visions  impairments  must  be  able  to  tab  to  an  item  to  get  an  

accessibility  message  for  it.  

Note:   Remember  that  help  messages  are  displayed  in  text  on  the  screen.  

Information  conveyed  in  a help  message  should  be  applicable  for  both  

sighted  users  and  users  with  visual  disabilities.  

Exceptions To This Practice 

According  to  Section  508  regulations,  you  only  need  to  provide  text  equivalent  

descriptions  for  non-text  elements  that  ″provide  information  required  for  

comprehension  of  content  or  to  facilitate  navigation″. In  other  words,  you  do  not  

need  to  provide  text  for  graphic  elements  such  as  lines,  frames,  and  boxes.  

 

46 



Minimize and Explain the Use of Dynamic Content 

Dynamic  content  usually  consists  of XFDL  items  whose  appearance,  operation,  or 

value  changes  at  runtime  in  response  to  user  events  involving  some  other  form  

element.  If you  are  creating  or  modifying  forms  that  will  be  used  by  people  with  

special  accessibility  needs,  you  should  only  include  dynamic  content  if it is 

essential  to  the  operation  of  the  form.  This  is particularly  true if the  dynamic  items  

significantly  affect  the  layout,  appearance,  or  operation  of  the  rest  of the  form.  

Although  dynamic  content  is often  included  to make  forms  easier  to  use,  persons  

with  visual  or  cognitive  disabilities  may  not  always  be  aware  of  these  changes  and  

may  find  the  form  difficult  to  understand,  or  may  completely  miss  changes  that  

affect  the  overall  meaning  of the  form.  

If  you  find  that  you  must  include  dynamic  content,  you  should  make  it as simple  

as  possible.  In  addition,  you  should  make  every  effort  to alert  users  of  how  the  

form  changes  and  which  items  are  affected.  The  example  section  below  

demonstrates  one  way  of doing  this  using  acclabel  items.  

Example 

The  following  diagram  shows  part  of  a form  containing  some  simple  dynamic  

content.  When  users  complete  the  ″Quantity″ and  ″Product″  items,  the  form  

automatically  fills  in  the  ″Unit  Price″ and  ″Amount″  fields.  

  

 

Although  this  is  a simple  example,  the  form  should  still  identify  which  fields  it 

updates  automatically.  The  easiest  way  to  do  this  is to  include  this  information  in 

the  affected  item’s  accessibility  message.  For  example,  the  following  code  creates  

the  accessibility  message  for  the  first  ″Amount″  field:  

   <acclabel>  

      Amount  Column.  Row  1. The form  automatically  calculates  this  

      amount.  

   </acclabel>  

Exceptions To This Practice 

Currently  there  are  no  exceptions  to  this  practice.  

Reset the Form’s Tab  Order 

This  practice  is a reminder  to  carefully  check  and  update  your  form’s  tab  order.  

If  you  modified  an  existing  form  to meet  Section  508  requirements,  you  most  likely  

added  a number  of  items  to  your  form.  In  that  case,  you  must  reset  the  form’s  tab  

order  so  that  the  focus  moves  from  item  to  item  in  a logical  order.  Keep  in mind  

that  many  users  with  disabilities  rely  solely  on  keyboard  navigation  to review  and  

complete  forms.  

 

Designing  Accessible  Forms 47



In  particular,  you  should  include  in the  tab  order  any  read-only  fields  that  

implement  informative  text  elements  such  as headings,  titles,  captions,  and  

instructions.  If  the  form  contains  a toolbar  item,  you  should  also  include  the  items  

that  appear  in  the  toolbar.  

Example 

The  following  diagram  shows  a portion  of a form  in  Designer,  with  the  tab  order  

view  enabled.  The  dots  indicate  items  that  receive  the  input  focus  and  the  arrows  

indicate  the  tab  order.  

  

 

Note  that  the  title  of  the  form  (Product  Order  Request)  is located  in  a toolbar  and  

is the  first  item  in  the  tab  order.  To include  this  title  in the  tab  order  and  make  its  

accessibility  message  available  to  the  screen  reader,  it was  implemented  using  a 

read-only  field  item,  rather  than  a label.  Other  fields  that  implement  read-only  text  

include  the  ″Contact  Information″ and  ″Select  Items  for  Purchase″ headings.  These  

items  are  also  part  of  the  tab  order  so  that  screen  reader  can  read  their  accessibility  

messages.  

Exceptions To This Practice 

Currently  there  are  no  exceptions  to  this  practice.  

Identify Row and Column Headings 

If your  form  contains  items  arranged  in  a table  layout,  you  must  identify  headings  

for  each  row  and  column.  This  involves  placing  read-only  fields  with  appropriate  

accessibility  messages  at the  start  of  every  data  column  and  row. 

 

48 



Section  508  regulations  require  that  row  and  data  columns  be  identified  for  data  

tables.  The  goal  of this  requirement  is  to  ensure  that  users  of assistive  technologies  

such  as  JAWS  can  correctly  interpret  tables.  

Although  XFDL  does  not  support  a true table  item,  it is easy  to arrange  individual  

fields  and  other  items  in  a grid-like  pattern,  thereby  replicating  the  functionality  of  

a table.  In  such  cases,  you  should  provide  row  and  column  headings  with  

accessibility  messages  that  JAWS  can  read  aloud.  You should  also  include  similar  

accessibility  information  for  each  cell,  so  that  users  always  know  their  current  

position  within  the  table.  

Example 

The  following  diagram  shows  a table  that  enables  users  to  select  items  for  

purchase.  The  table  consists  of  four  columns  and  five  rows.  

  

 

Note  that  every  row  and  column  is identified  by  a unique  heading.  Each  heading  

consists  of  a read-only  field  and  an  accessibility  message.  The  accessibility  message  

should  identify  the  item  as  a heading  and  whether  it is a column  or  row. It  is also  

helpful  to  number  each  column  or  row. The  following  code  shows  the  accessibility  

message  for  the  ″Unit  Price″ column  heading:  

   <acclabel>Column  Heading  3 of 4</acclabel>  

When  the  focus  is  on  the  ″Unit  Price″ heading,  JAWS  announces  ″Column  heading  

3 of  4.  Editable  text.  Unit  Price″. 

To help  users  with  visual  disabilities  be  aware  of  their  current  position  within  the  

table,  you  should  include  the  column  name  and  row  number  in the  acclabel  item  

for  each  cell.  For  example,  the  following  code  creates  a accessibility  message  for  

the  cell  in  the  third  row  of  the  first  column:  

   <acclabel>  

      Quantity  Column.  Row 3. Type  the  quantity  of the 

      product  you  would  like  to order.  

   </acclabel>  

Exceptions To This Practice 

Currently  there  are  no  exceptions  to  this  practice.  

Use Contrasting Page Background Colors 

You should  always  use  clearly  contrasting  colors  for  your  text  and  bgcolors.This  

makes  your  form  easier  to read  and  understand.  Additionally,  you  should  make  

sure  your  text  and  background  colors  are  clearly  different  than  the  colors  the  

Viewer  uses  to  display  the  focus  indicator  and  highlight  mandatory  and  invalid  

 

Designing  Accessible  Forms 49



fields.  By  default,  the  Viewer  shades  mandatory  fields  in  yellow  and  invalid  fields  

in  red.  The  focus  indicator  is always  black.  The  following  table  lists  the  RGB  triplet  

for  these  reserved  colors:  

 Reserved  Color  RGB  Triplet  

″Mandatory″  Yellow 255  255  208 

″Invalid″ Red  255  128  128 

″Focus  Indicator″ Black  0 0 0
  

You should  use  a page  background  color  that  provides  adequate  contrast  from  

these  colors.  

If the  enhanced  focus  indicator  is on,  the  Viewer  displays  it  as a black  square.  It 

indicates  that  the  item  has  the  cursor.  The  text  entry  area  of  mandatory  fields  has  a 

light  yellow  background,  while  invalid  fields  are  red.  If the  background  of  the  

form  is  a similar  color, these  fields  may  become  difficult  to see  for  people  with  

certain  vision  disabilities.  

Example 

The  following  diagrams  show  part  of the  same  form,  but  with  different  page  

background  colors.  Note  how  the  text  entry  area  of  the  mandatory  field  seems  to 

disappear  when  item  borders  are  off  and  the  page’s  background  color  is set  to  

Lemon  Chiffon  (255  250  205).  

  

 

Exceptions To This Practice 

Currently  there  are  no  exceptions  to  this  practice.  

Do Not Use List Items 

You should  avoid  using  list  items  in your  forms.  Instead,  you  should  use  

comboboxes  or  popup  lists.  Form  developers  generally  prefer  comboboxes  or  

popup  lists  anyway  because  they  take  up  less  space  on  the  form.  As  a result,  this  

practice  will  likely  have  no  impact  on  the  way  you  design  your  forms.  

Although  JAWS  recognizes  list  items,  it does  not  announce  them  as lists.  JAWS 

simply  reads  the  list  label  and  accessibility  message  and  directs  users  to  use  the  

arrow  keys.  If  you  cannot  avoid  using  lists  in  your  form,  ensure  that  your  label  or  

accessibility  message  uniquely  identifies  each  list  so that  users  with  visual  

disabilities  can  distinguish  between  multiple  lists  in  the  same  form.  

Example 

No  example  provided.  

Exceptions To This Practice 

Currently  there  are  no  exceptions  to  this  practice.  

 

50 



Avoid Using Write-Only  Fields 

You should  avoid  using  write-only  fields  in  your  forms  as much  as  possible.  

Write-only  fields  do  not  display  the  text  typed  by  the  user. Instead,  these  fields  

replace  each  character  with  an  asterisk.  They  are  frequently  used  to allow  users  to  

enter  sensitive  information,  such  as  passwords.  However,  some  screen  readers  will  

read  the  true text  of these  fields  instead  of the  replacement  characters.  To protect  

the  privacy  of  your  users,  you  should  avoid  using  write-only  fields  wherever  

possible.  

Example 

No  example  provided.  

Exceptions To This Practice 

If  your  forms  require  a write-only  field  to  allow  users  to enter  sensitive  

information,  you  should  consider  creating  a compute  that  turns  the  write-only  field  

invisible  once  it  has  been  filled  in.  Screen  readers  ignore  invisible  fields  and  

therefore  cannot  inadvertently  reveal  data  contained  in  an  invisible  field.  

Furthermore,  you  should  advise  your  screen  reader  users  to wear  headphones  

while  completing  forms  containing  sensitive  information.  This  ensures  that  

personal  information  cannot  be  overheard  when  it is read  aloud  by  the  screen  

reader.  

Test  Forms Thoroughly 

You should  always  test  your  forms  before  releasing  them  for  general  use.  You 

should  test  your  forms  using  all  of  the  accessibility  software  that  a person  with  

disabilities  may  use.  This  includes:  

v   Turn on  your  focus  indicator.  

v   Use  a screen  magnifier.  

v   Run  JAWS.  

v   Use  keyboard  commands  only.  (Do  not  use  a mouse  - many  users  with  

disabilities  cannot  navigate  with  a mouse.)  

v   Close  your  eyes  or  turn  off  your  monitor.

Testing  your  forms  using  typical  accessibility  tools  allows  you  to  ensure  that  your  

form  is  fully  accessible.  This  practice  ensures  that  all  visual  elements  in  the  form  

are  represented  by  text  that  JAWS  can  read  aloud,  that  tabbing  sequences  include  

all  form  items  and  proceed  in  a logical  order,  and  that  the  form’s  background  

colors  clearly  contrast  with  text,  mandatory  and  invalid  fields,  and  the  focus  

indicator.  

Example 

No  example  provided.  

Exceptions To This Practice 

Currently  there  are  no  exceptions  to  this  practice.  

 

Designing  Accessible  Forms 51



52 



Appendix  A:  Supported  XFDL  Options  

The  following  table  lists  all  XFDL  options,  and  indicates  how  each  option  is 

supported  by  Webform  Server.  Webform  Server  still  reads  forms  with  unsupported  

options,  but  will  not  set  these  options  or  respect  the  settings  in  these  options.  

In  general,  Webform  Server  supports  option  changes  via  dynamic  updates  or  

automatic  page  refreshes.  When  the  user  interacts  with  a form  (for  example,  by  

changing  the  value  of  a item,  changing  focus  from  one  item  to  another,  and  so  on)  

and  the  change  resulting  from  that  interaction  affects  the  visual  state  of  the  form,  

then  Webform  Server  either:  

v   dynamically  changes  the  visual  state  of  the  form  without  refreshing  the  entire  

page,  or  

v   changes  the  visual  state  of  the  form  by  automatically  refreshing  the  entire  page.

Note:   This  table  represents  the  default  configuration  of Webform  Server.  See  the  

IBM  Workplace  Forms  Server  —  Webform  Server  Administrator’s  Guide  for  

details  on  changing  the  default  configuration.  

 

Option  

Updated  

Dynamically  

Updated  by Automatic  

Refresh  Not  Supported  

acclabel  Y 

activated  Y 

active  Y 

bgcolor  Y2 

border  Y 

borderwidth  Y 

boundingbox  Y 

colorinfo  Y 

columnwidth  Y 

coordinates  Y 

data  Y 

datagroup  Y 

delay  Y 

dirtyflag  Y 

editstate  Y 

excludedmetadata  Y 

filename  Y 

first  Y 

focused  Y6 

focuseditem  Y6 

fontcolor  Y2 

fontinfo  Y 

format  Y1 

formid  Y 

 

© Copyright  IBM Corp. 2003, 2006 53



Option  

Updated  

Dynamically  

Updated  by  Automatic  

Refresh  Not  Supported  

fullname  Y 

group  Y 

help  Y 

image  Y 

imagemode  Y3 

itemfirst  Y 

itemlast  Y 

itemlocation  Y 

itemnext  Y 

itemprevious  Y 

itemtag  Y 

justify  Y 

keypress  Y 

label  Y1 2 

labelbgcolor  Y2 

labelborder  Y 

labelbordercolor  Y 

labelborderwidth  Y 

labelfontcolor  Y2 

labelfontinfo  Y 

last  Y 

layoutinfo  Y 

linespacing  Y4 

mimedata  Y 

mimetype  Y 

mouseover  Y 

next  Y 

padding  Y 

pagefirst  Y 

pageid  Y 

pagelast  Y 

pagenext  Y 

pageprevious  Y 

previous  Y 

printbgcolor  Y 

printfontcolor  Y 

printing  Y 

printlabelbgcolor  Y 

printlabelfontcolor  Y 

printsettings  Y5 

 

54 



Option  

Updated  

Dynamically  

Updated  by Automatic  

Refresh  Not  Supported  

printvisible  Y 

readonly  Y 

rtf Y 

requirements  Y 

rowspacing  Y 

saveformat  Y 

scrollhoriz  Y 

scrollvert  Y 

signature  Y 

signatureimage  Y 

signdatagroups  Y 

signdetails  Y 

signer  Y 

signformat  Y 

signgroups  Y 

signitemrefs  Y 

signitems  Y 

signnamespaces  Y 

signoptionrefs  Y 

signoptions  Y 

signpagerefs  Y 

size  Y 

suppresslabel  Y 

texttype  Y 

thickness  Y 

transmitdatagroups  Y 

transmitformat  Y 

transmitgroups  Y 

transmititemrefs  Y 

transmititems  Y 

transmitnamespaces  Y 

transmitoptionrefs  Y 

transmitoptions  Y 

transmitpagerefs  Y 

triggeritem  Y 

type  Y 

url Y 

value  Y1 

visible  Y 

visiblerows  Y 

 

Appendix  A: Supported  XFDL Options 55



Option  

Updated  

Dynamically  

Updated  by  Automatic  

Refresh  Not  Supported  

webservices  Y 

writeonly  Y 

  

1If the  value  change  is meant  to  result  in the  item  being  implicitly  resized,  the  

resize  is  not  supported  by  Webform  Server.  When  designing  your  form,  make  sure  

you  size  the  item  so  it will  support  the  full  range  of  values  that  users  may  enter.  

2Changes  to  an  option  in  a page  or  form  global  item  will  not  be  updated  

dynamically  but  will  be  updated  by  an  automatic  page  refresh.  

3The  imagemode  option  only  respects  the  default  setting,  which  is  resize. 

4Setting  the  linespacing  option  too  small  will  result  in  text  overlapping.  Make  sure  

to  test  your  form  if you  are  using  this  option.  

5The  printsettings  option  only  allows  you  to  set  which  pages  are  printed.  It does  

respect  dialog  or  border  settings.  

6By  default,  the  focused  and  focuseditem  options  are  not  supported.  Focus  changes  

are  not  posted  to  the  server,  and  you  cannot  use  computations  to dynamically  set  

the  focus.  If  you  modify  the  translator.properties  file  (by  setting  

focusNotificationItems  to  all),  the  form  will  post  focus  changes  to  the  server;  

however,  this  will  result  in  very  high  network  traffic.  

 

56 



Appendix  B:  JAWS  Announcements  

This  appendix  lists  the  text  that  JAWS  reads  aloud  for  each  form  item.  Knowing  

this  information  will  help  you  create  more  meaningful  accessibility  messages  for  

users  who  rely  on  JAWS.  The  list  below  uses  the  following  placeholders  to 

represent  custom  information  that  is part  of  the  form’s  design:  

<acclabel>  

The  item’s  accessibility  message,  defined  by  the  associated  acclabel  item.  

<choice> 

One  of  the  selections  in the  list,  defined  by  a cell  item.  

<field  contents>  

The  text  that  appears  inside  the  field,  contained  in  the  item’s  value  option.  

<button  value  

The  text  that  appears  on  the  button,  defined  by  the  item’s  value  option.  

<label>  

The  text  that  appears  in  the  item’s  label,  defined  by  the  item’s  value  option.  

x Indicates  the  position  a choice  has  in  a list.  For  example,  1 of 7.  

n  Indicates  the  number  of  choices  in a list.  

<help>  The  help  message  that  only  appears  if Viewer  Help  is on  and:  

v   The  item  contains  the  focus  indicator.

or  

v   The  item  has  been  passed  over  by  the  mouse.

The  following  table  shows  the  text  that  JAWS  announces  for  each  type  of  

interactive  form  item  in  response  to  different  user  actions.  

 XFDL  Item  User  Action  JAWS Announces  

Field  (empty  

read/write)  

Move  to item  using  tab key.  Move  

to item  using  SHIFT  + TAB. 

<label><acclabel> Edit  field  is 

empty.  Type in text.  

Field  (read/write  

with  contents)  

Move  to item  using  tab key.  Move  

to item  using  SHIFT  + TAB. 

<label><acclabel> Edit  field  

contains  <field  contents>. Type in 

text.<help> 

Field  (read-only  

containing  text)  

Move  to item  using  tab key.  Move  

to item  using  SHIFT  + TAB. 

<acclabel> Edit  field  contains  <field  

contents>.  Read-only.  Use  your  

reading  keys  to read  the 

text.<help> 

List  (no  selection)  Move  to item  using  tab key.  Move  

to item  using  SHIFT  + TAB. 

<label><acclabel>Nothing  

selected.  To move  to an  item,  

press  the  arrow  keys.<help>  

List  (with  

selection)  

Move  to item  using  tab key.  Move  

to item  using  SHIFT  + TAB. 

<label><acclabel><choice> selected.  

To move  to an item,  press  the 

arrow  keys.<help>  

List  (with  or 

without  selection)  

Use  up or down  arrow  to scroll  

through  choices  in list.  

<choice>  x of n 

 

© Copyright  IBM Corp. 2003, 2006 57



XFDL  Item  User  Action  JAWS Announces  

Popup  (empty)  Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB. 

<acclabel><label>  This  is a popup  

list.  Use  the  spacebar  or down  

arrow  key  to  bring  up the  list. To 

activate,  press  spacebar.<help> 

Popup  (after  

activating  list)  

Press  the  spacebar  or down  arrow  

key.  

To move  to an item,  press  the 

arrow  keys.<help> 

Popup  (moving  

through  list)  

Press  the  arrow  keys.  <choice>  n of x 

Popup  (with  

selection)  

Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB. 

<acclabel>  <choice>  selected.  This  is 

a popup  list.  Use  the  spacebar  or 

down  arrow  key  to  bring  up the 

list.  To activate,  press  

spacebar.<help> 

Combobox  

(empty)  

Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB. 

<label><acclabel>  is empty.  This  is 

an editable  combobox.  Type the 

text  or use  the  down  arrow  key  to 

choose  from  the  list.  Type in 

text.<help>  

Combobox  (after  

activating  list)  

Press  the  spacebar  or down  arrow  

key.  

To move  to an item,  press  the 

arrow  keys.  

Combobox  

(moving  through  

list)  

Use  up or down  arrow  to scroll  

though  choices  in list.  

<choice>  n of x 

Combobox  (with  

selection)  

Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB. 

<label><acclabel>  contains  

<choice>Use the  spacebar  or down  

arrow  key  to  bring  up the  list. To 

activate,  press  spacebar.<help> 

Check  (not  

selected)  

Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB 

<label><acclabel>  Checkbox  not  

checked.  To activate,  press  

spacebar.<help> 

Check  (selected)  Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB 

<label><acclabel>  Checkbox.  

Checked.  To activate,  press  

spacebar.<help> 

Radio  (not  

selected)  

Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB 

<label><acclabel>  Radio  button.  x of 

n. Not  selected.  To activate,  press  

spacebar.<help> 

Radio  (selected)  Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB. 

<label><acclabel>  Radio  button.  x of 

n. Selected.  To activate,  press  

spacebar.<help> 

Button  Move  to  item  using  tab  key.  Move  

to item  using  SHIFT  + TAB. 

<label>  Button  <acclabel>  To 

activate,  press  spacebar.<help>
 

 

58 



Appendix  C:  Additional  Usage  Notes  

This  appendix  lists  additional  minor  form  design  issues  for  Webform  Server:  

v   If you  draw  a line  that  overlaps  a combobox  or  popup,  the  Viewer  will  show  the  

line  on  top.  However,  Webform  Server  will  show  the  combobox  or  popup  on  

top,  which  will  cause  a portion  of  the  line  to disappear.  To address  this  problem,  

ensure  lines  do  not  overlap  combo  boxes  or  popups.  

v   Scroll  bars  may  appear  on  fields  despite  the  scrollhoriz  and  scrollvert  settings.  

This  occurs  when  one  of the  scroll  bars  is set  to  appear  but  the  other  is not.  If 

the  user  types  beyond  the  constraints  of the  field,  the  other  scroll  bar  will  

appear  despite  the  settings.  

v   Webform  Server  does  not  respect  the  borderwidth  setting  in  the  printsettings  

option.  This  means  that  printed  forms  will  never  display  a border.  

v   If you  use  the  set  function,  the  value  you  are  setting  must  precede  the  set  

function  itself  in the  form’s  build  order.  For  example,  if a compute  in  Item  A sets  

a value  in  Item  B, then  Item  B must  come  before  Item  A in the  build  order. If the  

value  you  are  setting  follows  the  set  function  in  the  form’s  build  order,  the  value  

will  not  be  updated  properly.  

Note  that  using  the  set  function  to  set  a value  in  the  same  item  will  always  

work,  regardless  of build  order.  

v    Submission  buttons  that  are  set  to  transmit  the  XML  model  do  not  work.  No  

information  is submitted.  

v   Action  items  that  do  not  have  a delay  specified  will  not  run. To correct  this,  add  

the  delay  option  to  the  item.  

v   The  datagroup  option  should  always  include  the  page  reference.  This  allows  

forms  to  be  fully  compatible  with  both  the  Viewer  and  Webform  Server.  For  

example:<datagroup>PAGE1.group1</datagroup>  

v   The  page  reference  in  the  datagroup  option  determines  which  page  an  attachment  

is associated  with.  Forms  should  be  designed  to  manage  all  attachments  from  a 

single  page.  

Note  that  attachments  added  by  users  are  included  in these  data  groups  and  are  

associated  with  the  same  page  reference.  

v   Impact  Bold  fonts  that  are  48  points  or  larger  will  render  slightly  wider  than  

normal.  This  may  cause  lines  of text  to wrap  incorrectly.  

v   When  using  xforms:switch/xforms:case  in  a form  that  will  be  used  with  Webform  

Server,  the  xforms:switch  element  must  define  and  use  the  xfdl:state  attribute.  The  

xfdl:state  attribute  must  define  a reference  that  will  be  used  to  store  the  current  

state  of  the  xforms:switch  in an  XForms  model.  If not  used,  the  behavior  of  the  

xforms:switch/xforms:case  is undefined.  For  more  information  about  the  state  

attribute,  see  xforms:switch  in  the  XFDL  Specification. 

v   The  fonts  included  in the  default  Windows  East  Asian  Language  Pack  do  not  

contain  any  kerning  information.  For  the  most  consistent  and  readable  text,  use  

a 12  point  font.

 

© Copyright  IBM Corp. 2003, 2006 59



60 



Appendix.  Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in 

other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  

product,  program,  or  service  is not  intended  to  state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it  is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  grant  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in your  country  or  send  inquiries,  in  writing,  to:

IBM  World  Trade Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A  PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of  express  or  

implied  warranties  in  certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of the  publication.  IBM  may  make  improvements  

and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of  the  materials  for  this  IBM  

product  and  use  of  those  Web sites  is at your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in any  way  it 

believes  appropriate  without  incurring  any  obligation  to you.  

 

© Copyright  IBM Corp. 2003, 2006 61



Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of  the  

information  which  has  been  exchanged,  should  contact:

IBM  Corporation  

Office  4360  

One  Rogers  Street  

Cambridge,  MA  02142  

U.S.A.

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement,  or  any  equivalent  agreement  

between  us.  

Trademarks 

The  following  terms  are  trademarks  of International  Business  Machines  

Corporation  in  the  United  States,  other  countries,  or  both:

AIX  

IBM  

Workplace  

Workplace  Forms  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of  

Microsoft  Corporation  in  the  United  States,  other  countries,  or  both.  

Other  company,  product,  or  service  names  may  be  trademarks  or  service  marks  of  

others.  

 

62 





����

Program  Number: 5724-N08

  

Printed  in USA 

 

  

S325-2596-00  

              

 


	Contents
	Introduction
	About Webform Server
	Who Should Read This Document

	Differences Between Webform Server and Workplace Forms Viewer
	Designing Forms for Webform Server
	Action Items
	Appearance of Forms
	Attachments
	Computing URLs
	Dates
	e-mailing Forms
	Event Model
	IFX Files
	Lists
	Locales
	Navigating Forms
	Printing
	Signatures
	Type Checking and Predictive Input Checking
	URLs
	Viewer Settings
	XForms
	XForms Submissions
	XML Data Model
	Other Differences


	General Best Practices
	Authenticate Users Through Common Practices
	Do Not Rely on the Size of a Field to Limit Input
	Use Help Messages
	Design Forms for Print to Use the Same Page Size
	Compress All Forms
	Portals: Do Not Use Cancel Buttons
	Portals: Disable Unnecessary Toolbar Buttons
	Do Not Use Rich Text
	Test Forms Thoroughly

	Creating Dynamic Webform Server Forms
	Minimize the Number of Full Page Refreshes
	Restrict Use of Action Items
	Use Page Breaks for Dynamic Form Design
	Do Not Toggle Computes Off Of Event Model Options
	Toggle Computes off of the Triggeritem
	Use Action Items to Trigger Computes Off Of a Page Flip

	Choosing the Right Fonts
	Use Only Fonts that are Installed on Client Computers
	Do Not Use Symbol or Wingdings Fonts
	Use Matching Windows and Mac Fonts
	Recommended Japanese Fonts

	Formatting Fields
	Formatting Phone Numbers
	Formatting Postal Codes
	Formatting E-Mail Addresses

	Designing Accessible Forms
	Why Create Accessible Forms?
	Topics Discussed
	Other Resources
	Provide Appropriate Accessibility Messages
	Put Label Text Into Acclabels
	Use Field Items To Display Text Information
	Assist JAWS Users to Enter Forms Mode
	Place Graphics Inside Buttons
	Minimize and Explain the Use of Dynamic Content
	Reset the Form's Tab Order
	Identify Row and Column Headings
	Use Contrasting Page Background Colors
	Do Not Use List Items
	Avoid Using Write-Only Fields
	Test Forms Thoroughly

	Appendix A: Supported XFDL Options
	Appendix B: JAWS Announcements
	Appendix C: Additional Usage Notes
	Appendix. Notices
	Trademarks


