
IBM® Workplace Forms™

XFDL Specification

Version 2.6.1

S325-2600-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 433.

First Edition (September 2006)

This edition applies to version 2.6.1 of IBM Workplace Forms and to all subsequent releases and modifications until

otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction 1

Origin and Goals 1

References 2

Terminology 2

Notation 2

Overlap With Other Specifications 2

Non-Repudiation and the Document-Centric Model . 2

Form Names and Extensions 3

MIME Types 3

The Structure of XFDL Forms 5

Top-Level Structure 5

Overview of XForms Models 6

Items 7

Options and Array Elements 10

XForms-related Options 10

Options in the XFDL Namespace 11

Implicit Options 14

Content Models for XFDL Options 14

Locales 17

Characters in Character Data Content 17

Base-64 and Compressed Encoding of Binary Data 17

Scope Identifiers (sid) 18

Commenting XFDL 18

Document Reproducibility 19

Small XFDL Form Examples 21

signatures in XFDL 25

Applying signature Filters 25

Namespaces in signature Filters 26

Applying Multiple signatures 26

Securing signed Elements 27

Preventing Layout Changes 27

Preventing Exploitable Overlaps of signed Elements 28

Global Settings 31

Form Globals 31

Page Globals 32

Details on Items 35

action 35

box 36

button 37

cell 39

check 40

combobox 41

data 43

field 44

help 45

label 46

line 47

list 48

popup 49

radio 51

signature 52

spacer 54

toolbar 55

<custom item> 56

Details on XForms Items 57

checkgroup 57

pane 59

radiogroup 62

slider 64

table 65

Details on Options and Array Elements 69

Syntax 69

Option Content 69

Order of Precedence of Options 70

Defining Form Global and Page Global Options . . 70

Data Type Designators Used in Option Descriptions 71

acclabel 71

activated 73

active 74

bgcolor 75

border 76

colorinfo 76

coordinates 78

data 78

datagroup 79

delay 81

dirtyflag 82

excludedmetadata 83

filename 84

first 84

focused 86

focuseditem 87

fontcolor 87

fontinfo 88

format 90

formid 106

fullname 107

group 108

help 109

image 110

imagemode 110

itemfirst 111

itemlast 112

itemlocation 113

itemnext 119

itemprevious 121

justify 122

keypress 122

label 123

labelbgcolor 124

labelborder 125

labelfontcolor 125

© Copyright IBM Corp. 2003, 2006 iii

labelfontinfo 126

last 127

layoutinfo 129

linespacing 130

mimedata 131

mimetype 132

mouseover 133

next 134

pagefirst 135

pageid 136

pagelast 136

pagenext 137

pageprevious 138

previous 139

printbgcolor 139

printfontcolor 140

printing 141

printlabelbgcolor 142

printlabelfontcolor 143

printsettings 144

printvisible 148

readonly 148

requirements 149

rtf 153

saveformat 154

scrollhoriz 156

scrollvert 157

signature 157

signatureimage 158

signdatagroups 158

signdetails 159

signer 162

signformat 163

signgroups 170

signinstance 171

signitemrefs 173

signitems 174

signnamespaces 175

signoptionrefs 176

signoptions 178

signpagerefs 179

size 180

suppresslabel 181

texttype 181

thickness 182

transmitdatagroups 183

transmitformat 184

transmitgroups 186

transmititemrefs 188

transmititems 189

transmitnamespaces 190

transmitoptionrefs 191

transmitoptions 192

transmitpagerefs 193

triggeritem 194

type 194

url 196

value 199

visible 200

webservices 201

writeonly 202

<custom option> 203

Details on XForms Options 205

XForms Namespace 205

Linking Input Items to the XForms Data Model 205

Single Node Binding 205

Using the ref Attribute to Create a Single Node

Binding 206

Using the bind Attribute to Create a Single

Node Binding 208

Nodeset Binding 209

Bindings and Relevance 209

Metadata Sub-Options 210

Alert Setting 210

Hint Setting 210

Help Setting 211

xformsmodels 211

xforms:group 219

xforms:input 220

xforms:output 222

xforms:range 223

xforms:repeat 224

xforms:secret 226

xforms:select 227

xforms:select1 232

xforms:submit 236

xforms:switch 237

xforms:trigger 239

xforms:textarea 241

xforms:upload 242

Details on XForms Actions 245

Syntax 245

Actions and XForms Functions 246

Placing Actions in a Form 246

xforms:delete 246

xforms:insert 248

xforms:message 250

xforms:rebuild 251

xforms:recalculate 252

xforms:refresh 253

xforms:reset 253

xforms:revalidate 254

xforms:send 255

xforms:setfocus 256

xforms:setindex 257

xforms:setvalue 258

xforms:toggle 259

Details on XForms Event Handlers 261

Syntax 261

Placing Events in a Form 262

DOMActivate 262

xforms-deselect 262

xforms-disabled 263

xforms-enabled 264

xforms-invalid 265

xforms-model-construct 266

xforms-model-construct-done 266

xforms-model-destruct 267

iv

xforms-optional 268

xforms-readonly 269

xforms-readwrite 270

xforms-ready 270

xforms-required 271

xforms-select 272

xforms-submit 273

xforms-submit-done 274

xforms-submit-error 275

xforms-valid 276

xforms-value-changed 276

Details on Function Calls 279

Examples 279

About Parameters 279

Reference Strings 280

Usage Details on Using Functions 280

String Functions 280

countLines 280

countWords 281

pad 282

replace 283

strlen 284

strmatch 285

strpbrk 285

strrstr 286

strstr 287

substr 288

tolower 288

toupper 289

trim 290

URLDecode 290

URLEncode 291

Math Functions 291

abs 291

acos 292

annuity 293

asin 294

atan 294

ceiling 295

compound 295

cos 296

deg2rad 297

exp 297

fact 298

floor 298

ln 299

log 299

mod 300

pi 301

power 301

rad2deg 302

rand 302

round 303

sin 304

sqrt 305

tan 305

Utility Functions 306

applicationName 306

applicationVersion 306

applicationVersionNum 307

checkValidFormats 308

countChildren 310

countDatagroupItems 310

countGroupedItems 311

decimal 312

destroy 312

duplicate 313

forLoop 314

formatString 316

generateUniqueName 317

get 318

getAttr 319

getDataByPath 320

getGroupedItem 324

getInstanceRef 325

getPosition 326

getPref 327

getReference 329

isValidFormat 330

set 330

setAttr 332

toggle 334

xforms.getPosInSet 335

xforms.getSizeOfSet 336

xforms.updateModel 338

xmlmodelUpdate 338

xmlmodelValidate 339

Time and Date Functions 340

date 340

dateToSeconds 341

day 342

dayOfWeek 342

endOfMonth 343

hour 344

minute 344

month 345

now 346

second 346

time 347

year 347

Details on XForms Function Calls . . 349

Return Types 349

Empty Return Values 349

Boolean Functions 349

boolean-from-string 349

if 350

Number Functions 351

avg 351

min 352

max 353

count-non-empty 354

index 354

String Functions 355

property 355

Date and Time Functions 356

now 356

days-from-date 356

seconds-from-dateTime 358

seconds 360

months 361

Contents v

Node-set Functions 363

instance 363

Utility Functions 364

choose 364

power 364

current 365

Quick Reference Tables 367

Table of Items and Form and Page Globals . . . 367

Table of Options 369

Cross Reference Table for Items and Options . . . 387

Default Sizes 393

Order of Precedence of Filters 395

Color Table 399

The XFDL Compute System 419

Whitespace in Computes 419

Multiline Computes 419

Structure of Mathematical and Conditional

Expressions 420

Table of Operators 421

Precedence of Operations 421

Decision Operations and Namespace

Qualification 422

Illegal Characters in XML Attributes 422

Definition of Value 422

Quoted Strings 422

XFDL References to Elements 423

Referencing the XFDL Version 425

Function Call Syntax 425

Representing and Running XFDL Computes . . . 426

Introduction 426

Cached Dependency Lists 426

Topological Sorting 428

Handling Dynamic References 428

Reference Caching 429

Re-entrancy 430

Duplicate Entries on the Total Change List . . 430

Missing References 430

Handling of Element Deletion 430

Limitations 431

XForms and XFDL Computes 432

Appendix. Notices 433

Trademarks 434

Index 435

vi

Introduction

This document describes a class of XML documents called Extensible Forms

Description Language (XFDL) Forms and partially describes the behavior of

computer programs that process them. An XFDL processor is a software program

that reads, processes, and writes XFDL forms. Processing may include such tasks

as GUI rendering, data extraction, or modification.

Origin and Goals

From 1993 to 1998, PureEdge (since acquired by IBM®) developed the Universal

Forms Description Language (UFDL). XFDL is the result of developing an XML

syntax for the UFDL, thereby permitting the expression of powerful, complex

forms in a syntax that promotes application interoperability and adherence to

worldwide Internet standards. The current design goals of XFDL are to create a

high-level computer language that:

1. Represents forms as single objects without dependencies on externally defined

entities, thus allowing them to act as contractual documents.

2. Is represented by human-readable plain text.

3. Is a publicly accessible open standard.

4. Provides a syntax for inline mathematical and conditional expressions.

5. Permits the enclosure of an arbitrary size and number of base-64 encoded

binary files.

6. Offers precision layout needed to represent and print dense

business/government forms.

7. Facilitates server-side processing via client-side input validation and formatting.

8. Permits extensibility including custom items, options, and external code

functions.

9. Offers comprehensive signature support, including:

v Capture of the whole context of a business transaction

v Multiple signers

v Different signers of (possibly overlapping) portions of a form

v Freezing computations on signed portions of a form

Maintaining the data, logic, and presentation layers in a single, legally binding

document is a paradigm shift in electronic commerce, which traditionally separates

each layer. The decision to use a more ″document-centric″ model was not made

lightly - it was found to be necessary in order to provide legal non-repudiation.

The original version of XFDL was published as a W3C Note in 1998. A number of

features of XFDL have since been incorporated into a W3C Recommendation called

XForms in 2003. XForms defines constructs for a standard XML-based data model,

input validation, calculations, constraints, and other properties, server submission

characteristics, event-based action sequences, and a user interface vocabulary that

includes the ability to hierarchically group and to iterate user interface controls.

XForms standardizes the core business processing model of a web application, but

it is designed to be incorporated into host languages that provide extensions as

necessary to satisfy diverse additional requirements of web applications. XForms

leaves to the host language the task of providing the presentation definition of the

© Copyright IBM Corp. 2003, 2006 1

user interface such as fonts and colors and other augmentations. The XFDL

language now incorporates XForms and augments its functionality with many

additional features such as precise layout and digital signatures.

References

 [1] Boyer, J. Lexical and Syntactic Specification for the Universal Forms

Description Language (UFDL) Version 4.0. PureEdge Solutions. 6 SEP 1997.

[2] Bray, T., Paoli, J. & Sperberg-McQueen, C.M. (Eds.) Extensible Markup

Language (XML) 1.0. W3C Recommendation. http://www.w3.org/TR/1998/REC-xml-

19980210.html. 10 FEB 1998.

[3] Clark, J. & DeRose, S. (Eds.) XML Path Language (XPath) 1.0. W3C

Recommendation. http://www.w3.org/TR/1999/REC-xpath-19991116.html.

16 NOV 1999.

[4] Dubinko, M., Klotz, L., Merrick, R., & Raman, T.V. (Eds.) XForms 1.0.

W3C Recommentation. http://www.w3.org/TR/2003/REC-xforms-20031014/.

14 OCT 2003.

[5] Gordon, M. (Ed.) UFDL v4.0.1 Specification. PureEdge Solutions. 1993-

1998.

Terminology

Terms are defined in Section 1.2 of the XML specification (see Reference [2] above).

Notation

XFDL forms are XML documents; the form definition is encoded using XML

elements and attributes. In addition, XFDL imposes many constraints on the

contents of the elements and the values of the attributes. In this specification, the

nesting and sequence relationships between the elements and attributes are given,

where possible, in DTD notation, while the constraints on certain attribute values

are given in the BNF notation found in the XML specification. The DTD-syntax

description of the elements and attributes is ″almost complete″ in that it illustrates

XFDL constructs but not additional markup variations allowed by XML-related

standards (e.g. namespace declarations and interspersed elements or attributes in

other namespaces). Furthermore, the content models of some XFDL elements

depends on an attribute value, which is also not expressible using DTD notation.

Overlap With Other Specifications

To serve its purpose, XFDL requires comprehensive presentation control and data

typing machinery. This document describes a set of elements and attributes that

meet these requirements. It may be the case that the presentation controls can be

replaced by a W3C-specified set of form controls; however, existing specifications

allow too much user interface flexibility to be suitable for security and

non-repudiation purposes.

Non-Repudiation and the Document-Centric Model

A digital signature attached to a file accurately identifies the individual who used

it, based on the digital certificate provider’s security and the security of the user’s

hardware. However, to provide full non-repudiation and auditability, a business

transaction not only needs to be signed by someone whose identity is verifiable, it

also needs to be representative of the context in which it was signed.

2

With paper-based forms and documents, this is easily accomplished. Everything

that appears on the signed document is considered part of the transaction.

Electronic forms and documents, however, present a more complex problem in that

the exact appearance and functionality of the document must be signed as well as

the user’s input, or the transaction is meaningless. Legal standards for font size

and color must also be observed both when the document is signed and when it is

subsequently examined.

Digital signature technology alone can provide the first part of the solution, but

not the second. According to the Performance Guidelines for the Legal Acceptance

of Records Produced by Information Technology Systems, as published by the

Association for Information and Image Managements’ (U.S.), the only way in

which an electronic document can be considered to provide non-repudiation and

auditability is if it contains the following elements, clearly recognizable, in one file:

v Individual letters, numbers and symbols

v Combinations of letters, numbers and symbols forming words or sentences

v Graphics, such as signatures, logos, pictures, and so on.

v Sounds

v Other features of records such as color, shape, texture, and so on, that relate to

the content of the information

XFDL can be used to create forms that meet the above criteria by presenting a

business transaction as a single entity, which is updated as the user fills it in. Item

values are stored in XForms instance data, which appears in the same file that

contains the user interface and presentation layer markup.

When a user digitally signs a form, the XFDL markup for the presentation layer as

well as the underlying XForms instance data is signed. Subsequently, when the

form is opened in an XFDL viewing or processing application, the current XFDL

markup and XForms instance data are compared to those that were used to create

the digital signature. If any discrepancies exist, the signature is flagged as invalid,

and the form no longer provides non-repudiation or auditability.

Secondary documents can also be placed into an XFDL form as attachments, thus

enabling the user to sign both the attachments and the form itself.

This method of representing and collecting information in forms and digitally

signing and encrypting them ensures that the identity of the signer can be

confirmed and that the signer can be proven to have signed the full content and

context of the form.

Form Names and Extensions

To ensure cross-platform compatibility, form names should avoid the use of

characters that are illegal under popular operating systems or in URLs. Form

names should also include the .xfdl extension. The extension .xfd can also be used,

but it should be avoided if possible.

MIME Types

XFDL supports the following MIME types:

v application/vnd.xfdl

Introduction 3

4

The Structure of XFDL Forms

Top-Level Structure

An XFDL form is an XML 1.0 document whose root element tag is XFDL. This

element must be in the XFDL namespace, a URI that includes the major and minor

version of XFDL. For example,

 [1] <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"> ... </XFDL>

The XFDL element may contain many namespace attributes. By convention, the

XFDL namespace is declared to be the default and it is also assigned to the prefix

’xfdl’. Other prefixes that are likely to appear include the ’xforms’ prefix bound to

the XForms 1.0 namespace, the ’xsd’ prefix and possibly the ’xsi’ prefix from XML

schema, the ’ev’ prefix for XML events, and namespace prefixes for the data

vocabulary being processed by the XFDL form.

The XFDL element must contain a <globalpage> element as the first child element,

followed by one or more <page> elements.

 [2] <!ELEMENT XFDL (globalpage, page+)>

The <globalpage> element must contain a single <global> element, which can

contain zero or more option elements. These are referred to as form global options;

they typically contain information applicable to the whole form or default settings

for options appearing in the element content of pages. The <globalpage> and

<global> elements must contain an attribute called sid which must be set to the

value global. Although the attribute has a fixed value, it is still required because

XFDL processors must be able to clearly identify global objects by sid even in the

presence of interspersed custom elements in non-XFDL namespaces.

 [3] <!ELEMENT XFDL (globalpage, page+)>

[4] <!ELEMENT global (%options;*)>

[5] <!ATTLIST globalpage sid CDATA #REQUIRED #FIXED "global">

 <!-- This rule is only intended to communicate the restriction with

 DTD-like notation; DTDs don’t allow required and fixed (XML Schema does)

 -->

A <page> element contains a <global> element followed by zero or more ’item’

elements. The options in the page’s global element typically contain information

applicable to the whole page or default settings for options appearing within

element content of items. The page global options take precedence over form

global options. A page is also required to have a ’sid’ attribute, which provides an

identifier that is unique among all <page> elements (sid is short for scope

identifier). The ’sid’ attribute value must not be the word ’global’ and is otherwise

a letter followed by any combination of zero or more letters, digits and

underscores.

 [6] <!ELEMENT page (global, %items;*)>

[7] <!ATTLIST page sid CDATA #REQUIRED>

© Copyright IBM Corp. 2003, 2006 5

[8] sid ::= (Letter | Special) (Letter | Special | Digit | ’_’)* -

 (’global’)

[9] Letter ::= [A-Z] | [a-z]

[10] Digit ::= [0-9]

[11] Special ::= [0x00C0-0x00FF] - (0x00D7 | 0x00F7)

The intention of using multiple pages in a form is to show the user one page at a

time. Each page should contain items that describe GUI widgets including items

that allow users to switch to different pages without necessarily contacting a server

program. XFDL allows the page switching items to be defined in the form so the

form developer can add computations that control the flow of pages based on

context.

Overview of XForms Models

A form global option of particular import is called the ’xformsmodels’ option,

which contains one or more <xforms:model> elements. It is recommended that a

form contain only one XForms model, but multiple models are allowed (though

they have no ability to interact).

An XForms model has a number of possible components, but the principal

components that it defines are as follows:

v One or more instances of XML data over which the form operates. Instances

usually appear directly within the form, but they may also be externally

referenced

v Optional XML schema definitions for the data instances. If XML schema are

used, they are often externally referenced, but they may be placed directly

within an XForms model.

v Model Item Property (MIP) Definitions:

– calculate — Defines an XPath formula with a string result that gives the

content (value) of a node of instance data.

– constraint — Defines an XPath formula with a Boolean result that helps

determine the validity of a node of instance data.

– readonly — Defines an XPath formula with a Boolean result that helps

determine whether a node is modifiable.

– relevant — Defines an XPath formula with a Boolean result that helps

determine whether a node is relevant to processing. By default, the GUI

widgets bound to non-relevant nodes are invisible and inactive (unless

overridden by the appropriate XFDL options), and they are not submitted.

– type — Defines a static string (not a dynamic XPath formula) that gives a

basic schema data type for a node of instance data (these can be assigned

without using an XML schema definition).
v Parameters for submission of data to a server (e.g. an http or https URL, a

method of get or post, and an indication of whether the result should replace a

data instance or replace the entire form). The XForms submission process

removes non-relevant instance data nodes.

The XFDL items that define GUI widgets include within their content XForms

controls that allow the GUI widgets (as well as invisible ’custom’ items) to connect

to instance data in the XForms models. Modifications of the XFDL items cause data

to be pushed through the user interface bindings of the XForms controls and into

the instance data. The formulae definitions in the XForms model are then executed

6

automatically, resulting in changes to calculated values as well as updates to

validity constraints and other model item properties. All of the changes to values,

validity and properties that were made by an XForms model are then percolated

back out to the user interface layer by modifications to the GUI widgets and other

XFDL items.

The full validity of a node of instance data is assessed by combining under

Boolean-And the conformance of its content to any XML schema declarations for

the node, to the schema type given by the type MIP, and to the formula given by

its constraint MIP (if any of these are defined).

An instance node with a non-relevant or readonly ancestor is non-relevant or

readonly regardless of any state directly declared for the node. While

non-relevance and readonly status are inherited, the converse is not true. If every

ancestor of a node is relevant or not readonly, then the node’s relevance and

readonly status are determined by the direct settings for the node (if any, or

defaults otherwise).

Items

An item is a single object in a page of a form. Some items represent GUI widgets,

such as buttons, check boxes, popup lists, and text fields. Other items are used to

carry information such as attached word processing documents or digital

signatures.

Each item must have a sid attribute, which provides a scope identifier that

uniquely identifies the item from among all child items of its parent element.

An item can contain zero or more option elements. The options define the

characteristics of the item, and many take default values if not defined. XForms

user interface controls appear as options of XFDL items, and the XFDL item is said

to be the skin of the XForms form control that it contains.

 12 <!ELEMENT %items; (%options;*)>

13 <!ATTLIST %items; sid CDATA #REQUIRED>

XFDL allows elements in custom namespaces to appear at the item level (as long

as they contain an xfdl:sid attribute). To define the items available in the XFDL

namespace, the parameter entity reference to ″%item;″ could be defined partially

as:

 14 <!ENTITY % items "(action | box | button | check | checkgroup |

 combobox | data | field | label | line | list | pane | popup |

 radiogroup | signature | slider | spacer | table | toolbar)">

The details of each type of item listed in the rule above are discussed in “Details

on Items” on page 35, but are summarized here for your convenience.

action A non-visible item that can perform similar tasks to a button (print, cancel,

submit, and so on) either after a certain period of time or with a regular

frequency.

 |Skin for: <xforms:submit>, <xforms:trigger>

box An item that provides a graphic effect used to visually group a set of the

GUI widgets on the page. A box is drawn under all widgets on a page.

The Structure of XFDL Forms 7

This item is useful in some circumstances, but it is usually better to use a

pane item (see below) to both visually and logically group related user

interface elements.

button Performs one of a variety of tasks when pressed by the user, such as

saving, printing, canceling, submitting, digitally signing the form, viewing

documents enclosed in the form, and so on. A button can have a text or

image face.

 Skin for: <xforms:submit>, <xforms:trigger>, <xforms:upload>

check Defines a single check box.

 Skin for: <xforms:input>

checkgroup

Defines a group of checkboxes that operate together to provide a

multiselection capability.

 Skin for: <xforms:select>, <xforms:select1>

combobox

An edit field combined with a popup list; its value can be either selected

or typed.

 Skin for: <xforms:select1> (select or type input), <xforms:input> (date

selector)

data Used to carry binary information using base-64 encoding and compression,

such as enclosed files or digital images, using base-64 encoding. This item

appears when advanced XFDL enclosure mechanisms are used. When a

basic <xforms:upload> is used, the data appears in an <xforms:instance>

data node.

field Used to capture single- or multiple-line textual input from the user; it

includes input validation and formatting features as well as enriched text

capabilities.

 Skin for: <xforms:input> (single-line text), <xforms:secret> (single-line,

write-only), <xforms:textarea> (for multiline plain text or enriched text)

label Shows either an image or a single or multiple line text value.

 Skin for: <xforms:output>

line A simple graphic effect used as a separator.

list Shows a list box populated with choices from which the user may select

one.

 Skin for: <xforms:select>, <xforms:select1>

pane Provides an hierarchic grouping capability for other items that are defined

within the content of the pane. Also, may provide the ability to switch

between multiple groupings.

 Skin for: <xforms:group>, <xforms:switch>

popup Shows either the text of the currently selected choice or a label if there is

no selection; the popup provides a small button that causes the list of

selectable choices to appear, from which the user may select one.

 Skin for: <xforms:select1>

8

radiogroup

Defines a group of radio buttons. Initially none may be selected, but a

maximum of one radio button can be selected within the group.

signature

Receives the signature that ultimately results when a user presses a

signature button.

 Skin for: <xforms:select1>

slider Creates a sliding control, similar to a volume control, that lets the user set

a value within a specific range.

 Skin for: <xforms:range>

spacer An invisible GUI widget that facilitates spacing in the relational

positioning scheme.

table Provides a template of XFDL items that are to be duplicated according to

the amount of data available to be displayed. This item provides the ability

to dynamically adjust the form rendition based on the amount of data and

the amount of changes to that data.

 Skin for: <xforms:repeat>

toolbar Items associated with a toolbar item appear in a separate window pane

above the pane for the form page; it is the typical location for page

switching and other buttons as its contents are not printed if the form is

rendered on paper.

Note: The parameter entity %items is not intended as a formal definition of the

content model of a page (after the global element). It is only intended to

present the list of items. The items could be explicitly namespace qualified

with a prefix bound to the XFDL URI (given in Rule 1). Moreover, XFDL

permits form authors to intersperse custom elements among the items as

long as those elements have a ’sid’ attribute in the XFDL namespace.

Custom elements can be used, for example, to carry complex instructions

and logic for server-side components. While simple static application-specific

information could be represented with XML processing instructions, many

server side applications (e.g. workflow and database requests) require

complex instructions that can include the use of the XFDL compute system

to collect information from around the form. For more information, see

<custom_option>.

The Structure of XFDL Forms 9

Options and Array Elements

Options can appear as form globals, page globals, or as the contents of items. An

option defines a named property of an item, page, or form. The parameter entity

reference to ″%option;″ could partially be defined as follows:

 [15] <!ENTITY % options "(xformsmodels | xforms:input | xforms:secret |

 xforms:textarea | xforms:range | xforms:select1 | xforms:select |

 xforms:trigger | xforms:submit | xforms:upload | xforms:output |

 xforms:repeat | xforms:group | xforms:switch | acclabel |

 activated | active | bgcolor | border | colorinfo | coordinates |

 data | datagroup | delay | dirtyflag | excludedmetadata | filename |

 first | fontcolor | fontinfo | format | formid | fullname | image |

 imagemode | itemlocation | justify | label | labelbgcolor |

 labelborder | labelfontcolor | labelfontinfo | last | layoutinfo |

 linespacing | mimedata | mimetype | next | pageid | previous |

 printbgcolor | printfontcolor | printlabelbgcolor |

 printlabelfontcolor | printsettings | printvisible | readonly |

 requirements | rtf | saveformat | scrollhoriz | scrollvert |

 signature | signatureimage | signdatagroups | signdetails | signer |

 signformat | signgroups | signinstance | signitemrefs | signitems |

 signnamespaces | signoptionrefs | signoptions | signpagerefs | size |

 texttype | thickness | transmitdatagroups | transmitformat |

 transmitgroups | transmititemrefs | transmititems | transmitnamespaces |

 transmitoptionrefs | transmitoptions | transmitpagerefs | triggeritem |

 type | url | value | visible | webservices | writeonly)">

Again, the definition is partial because XFDL supports namespace qualification of

options as well as the interspersion of custom options in non-XFDL namespaces.

Typically, application-defined options occur in application-defined items, but they

are also sometimes used in XFDL-defined items to store intermediate results of

complex computations, thereby allowing the form developer to arbitrarily break

down a problem into manageable pieces. For more information, see “<custom

option>” on page 203.

Also, note that only a subset of these options is valid for any XFDL item. For

example, an xforms:repeat is only valid in a table item. The XFDL options are fully

discussed in “Details on Options and Array Elements” on page 69 and are

summarized in the following sections.

XForms-related Options

<xforms:input>

Binds to a node of instance data for the purpose of collecting/presenting a

single line of text or piece of information. A <field> presents the text, and

automatically translates various data types like dates and currencies to

schema compliant values. A <check> item appears checked or unchecked

based on an xsd:boolean interpretation of the bound instance node. The

<combobox> skin is specific to date selection. A custom item skin can be

used to help move any data from the XFDL layer to the instance.

<xforms:secret>

Binds to a node of instance data for the purpose of collecting a single-line

password. A <field> contains this option and presents itself as write-only.

<xforms:textarea>

Binds to a node of instance data for the purpose of collecting/presenting

multiline plain text or enriched text in a <field> item.

10

<xforms:output>

Presents text or an image in a <label> item. If the control binds to a node

of instance data, and the mediatype attribute contains an image-related

type (e.g. image/*), then an image is presented. Otherwise, text is

presented.

<xforms:select1>

Provides the ability to select one from a set of choices. The presentation of

the set of choices is governed by the item type that skins the control,

which can be <popup>, <combobox>, <list>, <checkgroup>, or

<radiogroup>

<xforms:select>

Provides the ability to select choices from a set of choices presented by a

<checkgroup> or <list>.

<xforms:submit>

Provides the ability to activate an <xforms:submission> appearing in an

XForms model, as the result of activating either an XFDL <button> or

<action> item.

<xforms:trigger>

Provides the ability to activate a sequence of XForms actions, as the result

of activating either an XFDL <button> or <action> item.

<xforms:upload>

Provides the ability for an XFDL button to attach content from the local

computer system to a form by placing an encoded version of it into an

indicated instance node.

<xforms:group>

Allows a set of user interface controls to be packaged together, visually

and logically, with the <pane> item skin.

<xforms:switch>

Appears in a <pane> skin item and offers grouping capabilities similar to

an <xforms:group> except that multiple grouping cases can be specified

and switched to during the run of the form.

<xforms:repeat>

Appears in the <table> item and provides the ability to iterate its content

of XFDL items once per node in a set of nodes selected from the XForms

instance data.

<xforms:range>

Sets the range of values a user can select with a <slider> item.

Options in the XFDL Namespace

acclabel

Provides a special description of input items that is read by screen reading

software.

active Specifies whether an item is active or inactive. In XFDL items containing

XForms controls, the default for this option is set by the relevant model

item property.

bgcolor, fontcolor, labelbgcolor, and labelfontcolor

Specify the colors for an item or its label using either predefined names or

RGB triplets in decimal or hexadecimal notation.

The Structure of XFDL Forms 11

border and labelborder

Control whether an item or its label has a border.

colorinfo

Records the colors used to draw the form when the user signs the form.

This is only necessary when the operating system colors are used instead

of the colors defined in the form (which is a feature for users with vision

impairments).

coordinates

Receives the location of a mouse click on an image, if the image is in a

button.

data and datagroup

Used to create an association between data items and the buttons that

provide file enclosure functionality.

delay Used in an action item to specify the timing for the event and whether it

should be repeated.

excludedmetadata

Used to store special information that is automatically excluded from

signatures.

filename and mimetype

Give additional information about an enclosed document.

fontinfo and labelfontinfo

Defines the typeface, point size, and special effects (bold, italics, and

underline) for the font used to display the item’s value or label.

format Contains sub-elements that parameterize input validation for the item’s

value.

formid Defines a unique identifier for the form, such as a serial number.

fullname, layoutinfo, signature, signatureimage, signdatagroups, signdetails, signer,

signformat, signgroups, signinstance, signitemrefs, signitems, signnamespaces,

signoptionrefs, signoptions, and signpagerefs

Work together to provide a full-featured digital signature as defined in

“Origin and Goals” on page 1 (goal 9).

image Identifies the data item containing the image for the button or label.

imagemode

Specifies the display behavior of the image within the data item; the image

may be clipped, resized, or scaled to fit the item.

itemlocation, size and thickness

Help to define the location and size of the item.

justify Controls whether text in the item should be left, center, or right justified.

label Associates a simple text label with the item; labels can also be created

independently with a label item.

linespacing

Adjusts the spacing between lines of text in an item.

mimedata

Used to store large binary data blocks encoded in bas-64 gzip compressed

or base-64 format.

next and previous

Link the item into the tab order of the page.

12

pageid Defines a unique identifier for a page, such as a serial number.

printbgcolor, printlabelbgcolor, printfontcolor, and printlabelfontcolor

Provide the ability to set printing colors for each indicated option different

from the display colors on the screen.

printvisible

Determines whether an item should be visible when the form is printed.

Has no effect on the visibility of the item on the screen.

printsettings

Parameterizes the paper rendition of a form.

readonly

Sets the item to be readonly. In XFDL items containing XForms controls,

the default for this option is set by the readonly model item property.

rtf Contains the rich text value of rich text fields.

requirements

Specifies the requirements for the Web Services to be used by the form.

saveformat and transmitformat

Control how the form is written (XFDL, HTML) when it is saved or

submitted.

scrollhoriz and scrollvert

Control whether a text field item has horizontal and vertical scroll bars or

whether it wordwraps, allows vertical sliding, and so on.

texttype

Sets whether a field contains plain text or rich text.

transmitdatagoups, transmitformat, transmitgroups, transmititiemrefs, transmititems,

transmitnamespaces, transmitoptionrefs, transmitoptions, and transmitpagerefs

Work together to allow you to transmit form submissions.

triggeritem

Set in the form globals to identify which action, button, or cell activated a

form transmission or cancellation.

type Specifies whether the action, button, or cell item will perform a network

operation, print, save, digitally sign, and so on.

url Provides the address for a page switch, or for a network link or

submission.

value Holds the primary text associated with the item. In XFDL items that

contain XForms controls, this option (and all options, such as those that are

computed) are treated as transient, which means that any updates to the

content are not serialized when the form is written because the updates are

reflected in instance data.

visible Determines whether the item should be shown to the user or made

invisible.

webservices

Defines the nameof the Web Services used by the form.

writeonly

Sets the item to be writeonly. This option is only for use with field items

that do not skin XForms controls.

The Structure of XFDL Forms 13

Implicit Options

There are some options that are defined within XFDL for the purpose of allowing

them to be referenced without being defined by the form author. These options are

dynamically added to the document object model (DOM) of the XFDL form while

it is being processed, and they are removed when it is serialized. These options

tend to be informational in nature or representative of events that can occur while

the form is being processed.

activated, focused, and mouseover

Indicates whether the form, page or item has been activated or focused or

contains the mouse pointer.

dirtyflag

In the form global item, this option indicates whether the end-user of the

form viewing program has changed the form.

focuseditem

At the page global level, records the scope identifier of the item that

currently has the focus.

itemprevious, itemnext, itemfirst, itemlast

Used to help create a doubly linked list of items in each page. The

itemprevious and itemnext options occur in each item, and itemfirst and

itemlast appear at the page global level.

keypress

Records a keypress by the user that was not used as input to an XFDL

item. The keypress is propagated upwards to the page and form global

items.

pageprevious, pagenext, pagefirst, pagelast

Used to help create a doubly linked list of pages in the form. The

pageprevious and pagenext options occur in each page, and pagefirst and

pagelast appear at the form global level.

printing

In the form global item, this option indicates whether the form is currently

printing.

version Appears in the form global item and defines the version of XFDL used to

write the form. It is obtained from the XFDL namespace declaration.

Content Models for XFDL Options

The content of an option can take one of two formats: simple character data or a

subtree of XML elements. In the latter case, the element children are typically

referenced as a zero-based array. The XFDL-specific options that have simple

content versus array content are defined by the parameter entity references

%simpleOption; and %arrayOption; below:

 [16] <!ENTITY % simpleOptions "(acclabel | activated | active | bgcolor |

 border | data | dirtyflag | filename | focused | focuseditem |

 fontcolor | formid | fullname | image | imagemode | justify |

 keypress | label | labelbgcolor | labelborder | labelfontcolor |

 linespacing | mimedata | mimetype | mouseover | next | pageid |

 previous | printbgcolor | printfontcolor | printing | printlabelbgcolor |

 printlabelfontcolor | printvisible | readonly | rtf | saveformat |

 scrollhoriz | scrollvert | signature | signatureimage | signer |

 signformat | texttype | thickness | transmitformat | triggeritem |

 type | url | value | version | visible | writeonly)">

[17] <!ELEMENT %simpleOptions; (#PCDATA)>

14

[18] <!ENTITY % arrayOptions "(colorinfo | coordinates | datagroup | delay

 excludedmetadata | fontinfo | format | itemlocation | labelfontinfo |

 layoutinfo | printsettings | requirements | signdatagroups |

 signdetails | signitemrefs | signitems | signnamespaces |

 signoptionrefs | signoptions | signpagerefs | size |

 transmitdatagroups | transmitgroups | transmititemrefs | transmititems |

 transmitnamespaces | transmitoptionrefs | transmitoptions |

 transmitpagerefs | webservices)">

While the simple options are clearly shown above to contain character data, the

further details of their content models are not shown. For example, all color

options support specification of an RGB triplet using either #RRGGBB in

hexadecimal or rrr,ggg,bbb in decimal as well as any color name given in “Color

Table” on page 399.

The array options defined above also each contain subelements that could contain

either simple character data or further element depth. The following are the

content models of the various array options, where all undefined elements resolve

to simple character content (PCDATA):

 [19] <!ELEMENT colorinfo (window,windowtext,borderlight,bordershadow,

 buttonface,buttontext)>

[20] <!ELEMEMT coordinates (x,y)>

[21] <!ELEMENT datagroup (datagroupref+)>

[22] <!ELEMENT delay (type,interval)>

[23] <!ELEMENT excludedmetadata (servernotarizations)>

[24] <!ELEMENT servernotarizations (notarization+)>

[25] <!ELEMENT fontinfo (fontname, size, effect+)>

[26] <!ELEMENT format (datatype (date, day_of_month, day_of_week,

 date_time, currency, float, integer, month, string, time, void,

 year)*, presentation (calendar, casetype, currencylocale,

 decimalseparator,fractiondigits, groupingseparator, keepformatindata,

 negativeindicator, pad, padcharacter, pattern, patternrefs, round,

 separator, showcurrency, significantdigits, style)*, constraints

 (casesensitive, checks, decimalseparators, groupingseparators, length,

 mandatory, message, patterns, range, separators, template, yearwindow)*)>

[27] <!ELEMENT itemlocation (x | y | width | height | offsetx | offsety |

 above | after | before | below | within | alignb2b | alignb2c | alignb2t |

 alignc2b | alignc2l | alignc2r | alignc2t | alignhorizbetween |

 alignhorizc2c | alignl2c | alignl2l | alignl2r | alignr2c | alignr2l |

 alignr2r | alignt2b | alignt2c | alignt2t | alignvertbetween |

 alignvertc2c | alignb2b | expandb2c | expandb2t | expandl2c |

 expandl2l | expandl2r | expandr2c | expandr2l | expandr2r | expandt2b |

 expandt2c | expandt2t)+>

[28] <!ELEMENT labelfontinfo (fontname, size, effect+)>

[29] <!ELEMENT layoutinfo (pagehashes (pagehash (pageref, hash))+)>

[30] <!ELEMENT printsettings (pages, dialog, border, pagelayout,

 radiosaschecks, radioswithoutvalues, scroll barsonfields,

 singlelinefieldsaslines)>

[31] <!ELEMENT pages (filter, pageref+)>

[32] <!ELEMENT dialog (active, copies, orientation, printpages)>

[33] <!ELEMENT printpages (active, choice)>

[34] <!ELEMENT requirements (requirement*, detected)>

The Structure of XFDL Forms 15

[35] <!ELEMENT (signdatagroups | transmitdatagroups) (filter, datagroupref+)>

[36] <!ELEMENT signdetails ((dialogcolumns (property+))?, (filteridentity

 (filter (tag, value))+)?)>

[37] <!ELEMENT (signitemrefs | transmititemrefs) >

[38] <!ELEMENT (signitems | transmititems) >

[39] <!ELEMENT (signnamespaces | transmitnamespaces) >

[40] <!ELEMENT (signoptionrefs | transmitoptionrefs) >

[41] <!ELEMENT (signoptions | transmitoptions) >

[42] <!ELEMENT (signpagerefs | transmitpagerefs) >

[43] <!ELEMENT size (width, height)>

[44] <!ELEMENT webservices (wsdl*)>

[45] <!ELEMENT xformsmodels (xforms:model+)>

For any character data option or array element in XFDL, an encoding attribute can

be specified for the content. As shown below, the content model of simple options

is character data. The values ’xml’ (for plain text), ’base64’ and ’base64-gzip’ can be

used in the encoding attribute. The default is ’xml’ except for the mimedata option,

which as ’base64-gzip’ as the default. A content encoding of base64 is useful if the

content being encoded is already in a compressed format, such as PNG or JPEG. If

the encoding is not ’xml’ then an XFDL-compliant processor applies the requisite

decoders before interpreting the content in the application context, and it applies

the appropriate encoders during serialization. The XFDL encoding attribute can

also be used on custom options and array elements, but it would have to be

namespace qualified since custom options are in a non-XFDL namespace.

Any character data option or array element can be qualified with the transient

attribute. The valid values are on and off, with a default of off for options and

array elements in XFDL items not containing XForms user interface elements and

on in XFDL items that do contain XForms user interface controls. When an option

or array element is transient, its content can be changed during run time, but the

original content obtained when the form was read will be restored upon

serialization. In an XFDL item whose <value> option is controlled by an XForms

user interface binding, the instance data holds the current value bound to the

control, so there is no need for the presentation layer node to be changed.

Transience allows options and array elements to be changed during run-time of the

form without breaking a digital signature over the option.

The content of any character data option or array element can also be qualified by

a compute attribute, which defines an expression used to obtain and update the

content based on content elsewhere in the form. Typically, computations over data

are performed in an XForms model using the <xforms:bind> element and its

calculate attribute or other model item properties such as constraint, readonly,

relevant, and required. However, calculations of presentation layer properties are

performed with XFDL computes, and where they are dependent on instance data,

they reference the transient <value> option of a user interface item bound to that

data. The details of XFDL computes appear in “The XFDL Compute System” on

page 419, the basic idea can be gleaned from the following example, which shows

label that turns red when the value is negative:

 <label sid="IncomeTax">

 <xforms:output ref="incomeTax/Total"/>

 <fontcolor compute="value >= ’0’ ? ’black’ : ’red’"/>

 </label>

16

At the start-up, the fontcolor option has empty content. When the XForms user

interface binding creates the <value> option and places the purchase order total

value into it, then the compute in the fontcolor is automatically evaluated, with a

result of either red or black. When the form is serialized, e.g saved to disk,

submitted or signed, the fontcolor content rendered into the serialization is empty

because all options in an XForms controlled XFDL item are transient. Thus, XFDL

computes can run even if the label item is signed because the countenance of the

label can only be changed if the data changes, which can only occur if the data is

not signed.

Locales

XFDL forms are designed to be locale and language aware. This means that each

form is designed for a specific language and set of locales. Locale support is

identified through the xml:lang attribute. This attribute is primarily added to the

XFDL tag in the form, and identifies which locale the form was designed for. For

example, the following form was designed for the English U.S. locale:

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0" xml:lang="en-US">

If the xml:lang attribute is not included on the <XFDL> tag, it defaults to the

en-US locale.

For more information:

v Regarding language codes, see:

 http://www.loc.gov/standards/iso639-2/englangn.html#ef

v Regarding country codes, see:

 http://ftp.ics.uci.edu/pub/websoft/wwwstat/country-codes.txt

v About the locales supported, refer to the Locales Specification for XFDL.

Characters in Character Data Content

The ampersand (&) and left angle bracket (<) are not permitted in character data

content of XML elements, since these characters mark the beginning of entity

references and XML tags, respectively. There may be occasions in which a

developer needs to include these in XFDL character content (for example, e-mail

URLs). In such cases, the developer can include the ampersand and left angle

bracket in a few different ways, such as using the XML entities & and < or

simply wrapping the character content in a CDATA section. The character sequence

]]>, which normally cannot appear in character data content, appears in a CDATA

section as the delimiter token that marks the end of a CDATA section. When the

sequence]]> appears as character data, then the right angle bracket (>), if

necessary, should be expressed with an entity reference such as >.

These rules apply to all XFDL elements, but they are often used when constructing

e-mail URLs, which use the ampersand to indicate additional parameters. For

example:

 <url><![CDATA[mailto:everyone@world.earth?body=Hello]]></url>

Base-64 and Compressed Encoding of Binary Data

In XFDL, option and suboption elements are allowed to store base-64 encoded and

compressed base-64 encoded binary data such as signatures, images, enclosed

word processing or spreadsheet documents, and so on. XFDL allows an encoding

attribute to control whether an element contains data in a format other than plain

The Structure of XFDL Forms 17

XML character data. Both compressed and uncompressed base-64 encoding use no

characters that are illegal in character data. Typically, based-64 and compressed

base-64 encodings are used with the <mimedata> option in XFDL.

Since binary data tends to be long, XFDL processors are expected to ″pretty print″

the lines of base-64 (whether or not the binary data is first compressed). Each level

of element depth beyond the root <XFDL> tag corresponds to three spaces. The

first line of base-64 is expected to be on the line after the element start tag, and the

lines of base-64 are expected to be indented three spaces more than the element

start tag. For example, the <mimedata> option’s start tag is indented 9 spaces

(three for the page level, three for the item level and three for the option level), so

each line of base-64 content in a <mimedata> option begins with 12 spaces. This

should be followed by 76 characters of base-64 (except for the last line), then a

linefeed (not a return-newline sequence). Thus, the element end tag is on the line

after the last line of base-64 content. The end tag is indented so that it aligns under

the start tag (e.g. indent 9 spaces for the <mimedata> option).

The above method describes the creation of new base-64 encoded content.

However, the normal XML preservation of whitespace in element content should

be used when reading XFDL forms so that prior whitespace indenting techniques

used with older XFDL forms and by custom options that use the XFDL encoding

attribute will continue to function properly (esp. with regard to digital signature

validation).

Scope Identifiers (sid)

An XFDL scope identifier, or sid, uniquely identifies an element within the scope

of its logical parent. Each <page> element must have a sid attribute that uniquely

identifies the page within the surrounding XFDL form element. An item element

must have a sid attribute that uniquely identifies the item within the surrounding

page element.

When an item appears in an <xforms:group>, <xforms:repeat> or a case of an

<xforms:switch>, then the scope identifier uniquely identifies the item within the

group, switch case or repeat template. When a repeat template is instantiated for

each node in the repeat nodeset, the items generated are unique within each

template instance (each logical row of a table).

In XFDL, each option element is defined to be uniquely identified within the scope

of the surrounding item element by its XML tag, which is why options (and array

elements) do not require a sid attribute.

Commenting XFDL

Comments are text added to the form that is ignored by XFDL processors. This

allows form developers to document the form from within the XFDL source code.

This helps subsequent form and application developers to immediately understand

the purpose of a particular block of markup, such as a complex compute or

function call. Comments are always wrapped in a special sequence of characters

that indicate the beginning and end of a comment section.

XFDL respects the standard XML comment style, which opens with <! -- and closes

with -->. For example:

 <! -- This is a code comment. -->

18

Because XFDL is an XML vocabulary, comment blocks can be of any length, from

one line to multiple lines.

Document Reproducibility

XFDL processors are expected to preserve the XML prolog and epilog, the

comments within the XFDL element, and all attributes appearing in start tags but

not specifically defined by XFDL. The attributes must be associated with their

respective start tags, and the comments must be associated with the respective

pages, items, options, or array elements to which they apply. Additionally, all

foreign-namespaced elements and attributes must be preserved. The XFDL

processor must be able to reproduce these language components for signatures and

for saving or transmitting the form.

The Structure of XFDL Forms 19

20

Small XFDL Form Examples

The first example in Figure 2 is designed to show a whole XFDL form. After the

XML prolog, the root XFDL element declares the XFDL namespace URI to be the

default namespace, and it binds the prefix xfdl to the XFDL namespace and the

prefix xforms to the XForms namespace. Implicit in the XFDL namespace URI is the

XFDL language version (7.0) to which the form complies. There is a form global

variable stating that all pages should have a light gray background color. However,

the page global background color is set to cornsilk. Since page globals override

form globals, the page will have a cornsilk background (see “Color Table” on page

399 for a list of valid color names in XFDL).

The form global also contains an XForms model, which creates a dataset

representing the three sides of a triangle (a, b, and c). The model also includes a

<bind> element that set sets the value of c based on the values of a and b using

the pythagorean theorem.

The page global item contain a label option that declares the caption bar text for the

window used to display the page. Note that label is a keyword that is used both as

an item type and an option scope identifier. Widgets such as fields and

comboboxes can have text labels associated with them, but image and text labels

can also be placed anywhere on the form, so a separate label item is required in

the language.

After the global options, the page contains three fields that are bound to the a, b,

and c elements in the data model. The first two fields collect side lengths for a

right angle triangle. The third fields displays the length of the hypotenuse, which

is automatically calculated by the <bind> in the data model based on the length of

the other two sides. The readonly option is added to prevent the user from

accidentally overwriting the value for field C.

© Copyright IBM Corp. 2003, 2006 21

<?xml version="1.0" encoding="UTF-8"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms">

 <globalpage sid="global">

 <global sid="global">

 <xformsmodels>

 <model xmlns="http://www.w3.org/2002/xforms">

 <instance>

 <data xmlns="">

 <a>3

 4

 <c></c>

 </data>

 </instance>

 <bind nodeset="c" calculate="power(../a * ../a +

 ../b * ../b, 0.5)"/>

 </model>

 </xformsmodels>

 <bgcolor>lightgrey</bgcolor>

 </global>

 </globalpage>

 <page sid="PAGE1">

 <global sid="global">

 <label>Pythagorean Theorem Form</label>

 <bgcolor>cornsilk</bgcolor>

 <fontinfo>

 <fontname>Times</fontname>

 <size>24</size>

 <effect>plain</effect>

 </fontinfo>

 </global>

 <field sid="side1">

 <xforms:input ref="a">

 <xforms:label>Enter length of side 1:</xforms:label>

 </xforms:input>

 <labelfontinfo>

 <fontname>Times</fontname>

 <size>24</size>

 <effect>bold</effect>

 </labelfontinfo>

 </field>

 <field sid="side2">

 <xforms:input ref="b">

 <xforms:label>Enter length of side 2:</xforms:label>

 </xforms:input>

 <labelfontinfo>

 <fontname>Times</fontname>

 <size>24</size>

 <effect>bold</effect>

 </labelfontinfo>

 </field>

 <field sid="Hypotenuse">

 <xforms:input ref="c">

 <xforms:label>The hypotenuse length is:</xforms:label>

 </xforms:input>

 <labelfontinfo>

 <fontname>Times</fontname>

 <size>24</size>

 <effect>bold</effect>

 </labelfontinfo>

 <readonly>on</readonly>

 </field>

 </page>

 </XFDL>

Figure 1. A Simple XFDL Form

22

The second example in Figure 3 (below) omits the XML prolog and the

declarations for the root XFDL element and page. The example only shows two

items. It is designed to demonstrate deeper element depth and more computes

than the form shown in Figure 2.

The first item is a field that purports to ask the user what portion of a bill, such as

a credit card bill, will be paid. The format option contains a number of array

elements. The first element sets the data type to ’currency’, which indicates the

type of user input that is permitted.

The <presentation> elements determine how user input is displayed. In this case,

there is only one setting, which stipulates that the dollar symbol should be

appended to the user’s input.

The <constraints> elements further restrict user input. The first setting turns the

’mandatory’ status on, which means that input is required in that field (i.e.,

emptiness is not a permitted response). The second constraint, named ’range’,

contains an array of two elements that define the lower and upper bounds of the

user’s input. For a credit card bill, the range of payment is typically bounded

above by what the cardholder owes and bounded below by some small percentage

of the current balance. Thus, the format option shows the possibility of unlimited

array element depth as well as the inclusion of computes deep within the element

hierarchy. XFDL offers what is known as a fine-grain compute system.

The second item element in Figure 3 is a label that demonstrates a longer compute

expression, including several array element references. Note that at the end of the

compute, the 700 is concatenated to the end of the string rather than added to the

35. Because addition is left associative, the entire portion of the string prior to the

700 has already been constructed. Therefore, due to run-time type identification,

the last + operator performs string concatenation, not a mathematical addition.

 <field sid="PayNow">

 <label>

 What portion of this bill do you want to pay now?

 </label>

 <value></value>

 <format>

 <datatype>currency</datatype>

 <presentation>

 <showcurrency>on</showcurrency>

 </presentation>

 <constraints>

 <mandatory>on</mandatory>

 <range>

 <min compute="Balance.value * ’0.05’">35</min>

 <max compute="Balance.value">700</max>

 </range>

 </constraints>

 </format>

 </field>

 <label sid="DemonstrateSuboptionReferencing">

 <value compute="PayNow.format[datatype] + ’ ’ +

 PayNow.format[presentation][showcurrency] + ’ ’

 + PayNow.format[constraints][range][min] +

 PayNow.format[range][max]"

 >currency on 35700</value>

 </label>

Figure 2. Example of Suboption Array Elements

Small XFDL Form Examples 23

24

signatures in XFDL

As discussed previously (in “Non-Repudiation and the Document-Centric Model”

on page 2), digital signature technology provides part of the solution for creating

non-repudiation in a document-centric model. As such, XFDL supports the

application of digital signatures to any XFDL document. However, to properly

implement support for digital signatures, both common use scenarios and overall

security must be considered.

For example, signatures are often used to sign only a portion of a document.

Furthermore, a secondary signature is often used to sign the rest of the document

while also endorsign the first part of the document. The classic example of this is

the ″For Office Use Only″ section in any form. The implementation of digital

signatures in XFDL must support scenarios like this, allowing both for filtering of

what is signed and for overlapping signatures.

Furthermore, while digital signatures clearly identify the user, the application of

digital signatures must also add a measure of security to the document itself. That

is, once a document is signed, it should be impossible to change any of the

information that was signed. Thus, a number of algorithms and rules must be

enforced by the XFDL processor in use.

Applying signature Filters

XFDL supports a filtering system for signatures. In effect, this allows any

combination of form elements to be either included or excluded from a signature,

which in turn allows forms to be divided into logical sections for the purposes of

signing.

For example, a document may include a ″For Office Use Only″ section that should

not be signed by the original user. By applying the correct filters, this section can

be excluded from the signature, allowing office workers to complete those portions

of the document even after the document has been signed.

XFDL includes a series of signature filters. Each filter applies to a different

cross-section of XFDL elements. For example, the signitems and signitemrefs filters

control which items are signed or ignored, while the signoptions and signoptionrefs

filters control which options are signed or ignored. Each level of filter also has an

assigned order of precedence. For example, filters at the option level override

filters at the item level.

By using these filters in combination, XFDL provides complete control over which

elements are omitted from a signature (or alternately to indicate which elements

should be included in a signature, though ’inclusive logic’ filters should be used

sparingly and with great care).

The complete list of available filters is: signitems, signoptions, signpagerefs,

signdatagroups, signgroups, signitemrefs, signnamespaces, and signoptionrefs. These

filters are implemented as XFDL options, and are detailed later in this document.

The order of precedence for these filters is outlined in “Order of Precedence of

Filters” on page 395.

© Copyright IBM Corp. 2003, 2006 25

Namespaces in signature Filters

Some signature filters refer to the elements to be omitted (or included) by their

element tag names. These filters are signitems, signoptions and signoptionrefs. These

options are lists whose members are compared to element tags. The comparison is

namespace aware. For example, if <itemref>xfdl:field</itemref> is a member of the

signitems filter, then the member will match any item-level element with the local

name field and a namespace URI equal to the one bound to the prefix xfdl. Note

that if a namespace prefix used in an element tag is not mapped to the same

namespace URI as it is in a signature filter member, then the signature filter

member will not match the element. For example, if the xfdl prefix is mapped to

the XFDL namespace URI in the above signitems member, then the following

elements will match:

 <xfdl:field xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0">

 <field xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0">

 <custom:field xmlns:foobar="http://www.ibm.com/xmlns/prod/XFDL/7.0">

but it will not match:

 <xfdl:field xmlns:xfdl="http://custom.HR">

 <foobar:field xmlns:foobar="http://custom.HR">

 <field xmlns="">

The last <field> element above has an empty namespace URI. To match such an

element, the null prefix must be used, e.g. <itemref>null:field</itemref>.

The namespace prefixes used in evaluating each member of a signature filter are

obtained from the namespace context of the element containing the signature filter

member. Each member of a signature filter may define different namespace

prefixes. However, the default namespace is the XFDL namespace. For example,

the member <itemref>field</itemref> in signitems matches any item-level <field>

element with a default namespace URI equal to the XFDL namespace URI as well

as namespace qualified elements such as <xfdl:field> if the given prefix is bound to

the XFDL namespace URI.

signature filter members that are namespace qualified with a prefix bound to the

XFDL namespace URI are logically equivalent to signature filter members that are

associated with the XFDL namespace URI by the default namespace. For example,

a signitems member of <itemref>field</itemref> with the default namespace of XFDL

is logically equivalent to the following, where the prefix xfdl is bound to the XFDL

namespace URI:

 <xfdl:itemref>field</xfdl:itemref>

 <xfdl:itemref xmlns="http://custom.HR">field</xfdl:itemref>

 <xfdl:itemref xmlns="">field</xfdl:itemref>

Suboptions of a signature filter that are not in the XFDL namespace are ignored.

For example, the signitems suboption <itemref xmlns=″″>field</itemref> has no effect

on signature filtration.

Applying Multiple signatures

Documents often require multiple signatures. Furthermore, it is common practice

for some signatures to endorse other signatures. These secondary signatures can be

said to overlap the original signatures, since they sign both the document and the

original signature.

26

For example, an insurance claim requires the claimant to sign the document. Later,

the insurance adjuster may also have to sign the document, both to endorse the

information provided by the claimant and to endorse information they have added

to the claim.

XFDL allows any number of signatures in a single document. The signatures will

sign separate portions of the form, or will overlap with other signatures, as

specified by the filters used.

For example, the first signature may use a set of filters that includes all elements in

the top half of a page. The second signature may use a filter that includes the first

signature and the top half of the page. Finally, a third signature might use a filter

that includes the entire page and both the first and second signatures.

Securing signed Elements

Paper documents rely on ink to secure the document. That is, once a document is

signed, it is difficult to change the document because it is difficult to erase ink

from paper. The very nature of paper and ink enforce the security of the document,

since attempts to change the document generally leave detectable traces.

In contrast, digital documents do not share this type of inherent security. In fact,

most digital documents allow easy and undetectable modification. For example,

word processing documents are easily opened, changed, and saved again without

leaving any evidence of what, if anything, was changed or who made the changes.

For this reason, the XFDL processor must provide the necessary security. Once an

element in a document is signed, it is implicit that future readers should be unable

to change that element. Thus, once an XFDL document is signed, the XFDL

processor must ensure that those elements included in the signature filters cannot

be changed.

This feature is not explicitly supported by XFDL, in that there are no flags in the

language that indicate whether a particular element in a document is signed.

Instead, the software processing the XFDL must interpret existing signatures and

enforce the rules correctly based on the filters in those signatures.

Preventing Layout Changes

Once a document is signed, it is also implicit that the layout of that document

should be secure. For example, if it were possible to move a paragraph, or even a

line, the meaning of the document could be changed.

To reflect this, any software processing XFDL must maintain the position of signed

visual elements. This means that both the position and the size of the visual

elements must be secured. If a visual element can change size, then it could be

enlarged to obscure another visible element and thereby change the meaning of the

document. Clearly, this must be prevented.

Thus, when a document is signed, the width, height, and position of all visible

signed elements must be recorded. XFDL provides the layoutinfo option as a place

to store this information within a given signature element. Furthermore, the

layoutinfo option itself should be signed as part of the signature, ensuring that it

cannot be changed.

signatures in XFDL 27

The layout can later be tested by re-calculating the position of all signed elements

and comparing this to the information stored in the layoutinfo option for that

signature. If the information does not match, then the document has been modified

and cannot be trusted.

The software processing the XFDL should perform this layout test at the following

times:

v Immediately after a signature is created, it should test the entire document. This

ensures that the process of generating the signature did not change the

information.

v Whenever a page of the document is viewed, it should test the signed contents

of that page.

v Whenever an item is computationally added, deleted, or moved, it should test

the appropriate page.

v Whenever the details of a signature are viewed, it should test all portions of the

document signed by that signature.

Preventing Exploitable Overlaps of signed Elements

Unlike paper documents, digital documents also offer the potential for visual

elements to overlap. For example, it is possible to create a block of text in a

document, and to then obscure or hide that text with a second, overlapping block

of text. In this scenario, even if the first block of text was secured with a signature,

it would be possible to move the second block of text after the document was

signed. This would change the meaning of the document by revealing information

that was previously hidden.

Since the guiding principle of signatures is that ″you sign what you see,″ a

scenario in which visual items are hidden or significantly overlapped cannot be

allowed. If the signer cannot see elements of the form, then the signature cannot be

considered valid.

When a document is signed, the XFDL processor must ensure that none of the

signed visual elements are overlapping with unsigned visual elements. If an

overlap is detected, the software must either warn the user or prevent the

signature from being created. Furthermore, if an existing signature is found to

include elements that are overlapping with unsigned elements, the document has

been altered and the software must warn the user.

However, this test must allow for certain tolerances. Most of the visual elements in

an XFDL document are surrounded by a small border of unused space which can

be allowed to overlap without obscuring the item itself. For example, two labels

might overlap slightly without the text in either label being obscured. In fact, this

sort of overlap is often necessary when reproducing tightly spaced paper forms.

Thus, an overlap of two pixels should be allowed for each item.

This test may also ignore signed elements that overlap each other, since the layout

tests discussed earlier prevent signed elements from being moved. Furthermore,

this test must also make exceptions for box items. Boxes are often used to visually

create sections in a document, and will overlap other visual elements as a result.

This overlap is allowed in the following cases:

v A signed box can overlap with any unsigned item, with the exception of other

boxes.

28

v A signed box can overlap with an unsigned box if the unsigned box appears on

top of the signed box (that is, if the unsigned box comes after the signed box in

the XFDL serialization, such that it is drawn after the signed box). This allows

the desired behavior of signing a large box but allowing unsigned items

(including boxes) to appear on top of part of the signed box, and it disallows the

unsigned box from later being moved in the XFDL serialization such that it

disappears. Note that an unsigned box can be added after signing and allowed

to overlap a signed box that was previously unobscured, but the other overlap

rules prevent this from happening if the unsigned box overlaps other signed

items in the signed box. To protect empty spaces in signed boxes from being

obscured by unsigned boxes, the form author should place empty signed

transparent labels in the spaces.

The XFDL processor should perform this overlap test at the following times:

v Immediately after a signature is created, it should test the entire document. This

ensures that the process of generating the signature did not create overlaps.

v Whenever a page of the document is viewed, it should test that page.

v Whenever an item is computationally added, deleted, or moved, it should test

the appropriate page.

v Whenever the details of a signature are viewed, it should test all portions of the

document signed by that signature.

signatures in XFDL 29

30

Global Settings

Form Globals

Form globals specify particular settings for the form and determine its physical

characteristics. For example, the bgcolor option determines the background color of

all pages in the form. Form globals appear within the global item in the globalpage,

which appears at the top of a form. Options defined within a page or item can

override global settings for that particular page or item.

Available Options

activated, bgcolor, border, dirtyflag, focused, fontcolor, fontinfo, formid, keypress,

label, previous, printbgcolor, printfontcolor, printing, printsettings, requirements,

saveformat, transmitformat, triggeritem, version, webservices, xformsmodels

Note: For descriptions, see “Details on Options and Array Elements” on page 69.

Example

This example defines settings and characteristics for the form:

 <?xml version="1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms">

 <globalpage sid="global">

 <global sid="global">

 <saveformat>application/vnd.xfdl</saveformat>

 <label>Time Sheet</label>

 <bgcolor>ivory</bgcolor>

 <fontinfo>

 <fontname>Helvetica</fontname>

 <size>10</size>

 <effect>plain</effect>

 </fontinfo>

 </global>

 </globalpage>

 ...

These global settings specify that:

v The form is written in XFDL version 7.0.

v All saves activated from the form should save the form as an XFDL form, unless

otherwise specified in an item that initiates a save.

v The title Time Sheet should appear in the title bar of all pages, unless specified

otherwise in a page global.

v All pages, toolbars and boxes should have an ivory background, unless they

contain an option specifying otherwise.

v All pages and items should use a plain, Helvetica, 10-point font, unless they

contain an option specifying otherwise. (Note: Labels that are parts of other

items, like fields, are excluded from the fontinfo option. They are set using the

labelfontinfo option, which is not available at this level.)

© Copyright IBM Corp. 2003, 2006 31

Usage Details

1. Define form globals within the global item of the globalpage.

2. The global item and the globalpage must always have a sid of global.

3. The globalpage follows the XFDL tag.

4. You can give the form a title that appears in the title bar by setting a global

label option.

5. When referencing form globals from within the form, the following syntax

applies:

 global.global.option[n|name]

For example:

 global.global.bgcolor

Page Globals

Page globals specify settings (like next and saveformat) and characteristics (like

bgcolor) for the page within which they appear. Page globals appear within a global

item at the top of each page definition, and apply to the whole page. They can be

overridden by option settings within items.

Available Options

activated, bgcolor, border, focused, focuseditem, fontcolor, fontinfo, itemfirst,

itemlast, keypress, label, mouseover, next, previous, pagefirst, pageid, pagelast,

pagenext, pageprevious, printbgcolor, printfontcolor, printsettings, saveformat,

transmitformat

Note: For descriptions, see “Details on Options and Array Elements” on page 69.

Example

The following example shows page globals on two pages within a single form:

 <page sid="PAGE_1">

 <global sid="global">

 <printsettings>

 <border>on</border>

 </printsettings>

 <bgcolor>gray84</bgcolor>

 <label>Administration Form 1</label>

 <next>FIELD_date</next>

 </global>

 ...

 <page sid="PAGE_2">

 <global sid="global">

 <printsettings>

 <border>on</border>

 </printsettings>

 <bgcolor>#C0C0FF</bgcolor>

 <label>Administration Form 2</label>

 <next>FIELD_adminname</next>

 </global>

 ...

″PAGE_1″ has a medium-gray background, and directs the focus to the item called

″FIELD_date″ as soon as it opens. It assumes the rest of its settings from the form

global. (If no form global exists, the page will assume the XFDL defaults.)

32

On ″PAGE_2″, the focus is directed to the item called ″FIELD_adminname″ as soon

as the page opens. ″PAGE_2″ assumes the rest of its settings from its page global

and XFDL defaults.

Usage Details

1. Page globals are defined in the global item at the top of a page, after the page

declaration.

2. The global item must have a sid of global.

3. Page globals apply only to the page they are on.

4. Page globals are optional.

5. To specify a title to appear in the page’s title bar, use the label option as a page

global.

6. When referencing page global options within the form, the following syntax

applies:

 pageid.global.option[n|name]

For example:

 PAGE_1.global.bgcolor

Global Settings 33

34

Details on Items

Items are the basic elements of a page. The syntax of an item definition is as

follows:

 The sid attribute uniquely identifies an item. (See “Scope Identifiers (sid)” on page

18.) Every item sid in a page must be unique. The ItemType element identifies the

type of item to create. (For example, <field...> defines the item as a field.) This

section contains information about XFDL-defined item types and the options

available for each.

Note: Defining an option more than once in an item’s definition is not permitted.

See “Details on Options and Array Elements” on page 69 for descriptions of

each option type.

action

Specifies form-initiated actions that execute automatically. The actions can be any

of the following types: link, replace, submit, done, display, print, refresh, pagedone,

save, select, enclose, extract, remove, signature, or cancel. See section “type” on

page 194 for a description of each of these actions.

Action items can be defined to occur only once or repeat at specified time intervals,

and after the page opens but before the page appears. See the section on the delay

option for information on timing options. Action items can trigger either

background actions or actions involving user interaction. A form can contain only

hidden items such as action items and operate in the background. Such forms are

called daemon forms.

Available Options

activated, active, data, datagroup, delay, itemnext, itemprevious, printsettings,

saveformat, transmitdatagroups, transmitformat, transmitgroups, transmititemrefs,

transmititems, transmitnamespaces, transmitoptionrefs, transmitoption,

transmitpagerefs, type, url, xforms:submit, xforms:trigger

 <itemType sid="itemTag">

 option definition1

 ...

 option definitionn

 </itemType>

Note:

v The itemType states the type of item to create. It must be one of the item types

defined in this specification, or must be a custom item that follows the rules for

custom items outlined in this specification.

v The sid attribute is mandatory.

v The value of each item sid must be unique in the page.

© Copyright IBM Corp. 2003, 2006 35

Example

The following action will send a status message to the server. The transaction

happens automatically every 10 minutes (600 seconds).

 <action sid="sendStatus_action">

 <delay>

 <type>repeat</type>

 <interval>600</interval>

 </delay>

 <type>submit</type>

 <url>mailto:manager@company.com</url>

 </action>

Usage Details

1. Repeating automatic actions is one method of creating a sparse-stated

connection. It allows the form to indicate periodically to a server application

that it is still running. Use the delay option to specify repetition.

2. Actions, by the form definition rules, reside on a page; therefore, actions occur

only when the page is open, and repeating actions stop when the page closes.

Actions defined to occur before the page displays, occur each time the page

opens.

box

Specifies a rectangular box on the form. Other items may be positioned on top of

boxes (using itemlocation). The purpose of box items is simply to add visual

variety to the form.

Available Options

bgcolor, border, fontinfo, itemlocation, itemnext, itemprevious, printbgcolor,

printvisible, size, visible

Example

The following example shows a typical box description. The box is 25 characters

wide and 4 characters high. The background color is blue.

 <box sid="blue_box">

 <bgcolor>blue</bgcolor>

 <size>

 <width>25</width>

 <height>4</height>

 </size>

 </box>

Usage Details

1. To make the box more visible, assign a background color that differs from the

page background color (the default).

2. When setting the size option of a box, the height and width of the box will be

based on the average character size for the font in use (set with the fontinfo

option). The default font, if none is specified in the page global settings, is

Helvetica 8 plain.

3. If you are creating an XForms form, you should use the pane item rather than

the box item. For more information about the pane item, refer to “pane” on page

59.

36

button

Specifies a click button that performs an action when clicked with the mouse or

activated with the space bar when it receives the input focus. Buttons can request

data from a web server, submit or cancel the form, sign the form, save it to disk, or

enclose external files.

Available Options

acclabel, activated, active, bgcolor, borderwidth, coordinates, data, datagroup,

focused, fontcolor, fontinfo, format, help, image, imagemode, itemlocation,

itemnext, itemprevious, justify, keypress, linespacing, mouseover, next,

printbgcolor, printfontcolor, printvisible, signature, signatureimage, signdatagroups,

signdetails, signer, signformat, signgroups, signinstances, signitemrefs, signitems,

signnamespaces, signoptionrefs, signoptions, signnamespaces, signpagerefs, size,

transmitformat, transmititemrefs, transmititems, transmitnamespaces,

transmitoptionrefs, transmitoptions, transmitpagerefs, type, url, value, visible,

xforms:submit, xforms:trigger, xforms:upload

Examples

Submit button

Buttons that trigger form processing requests must have a type option setting of

submit or done. The definition for such a button might look like this:

 <button sid="submit_button">

 <value>Process Form</value>

 <fontinfo>

 <fontname>Helvetica</fontname>

 <size>18</size>

 <effect>bold</effect>

 <effect>italic</effect>

 </fontinfo>

 <type>done</type>

 <url>http://www.ibm.server.com/cgi-bin/formProcessor</url>

 </button>

Enclosure button

This button encloses an external file in the form. The action to enclose a file is

enclose. The datagroup option identifies the list of datagroups, or folders, in which

the user can store the enclosed file. An enclose button might take the following

form:

 <button sid="enclose_button">

 <value>Enclose File</value>

 <fontinfo>

 <fontname>Helvetica</fontname>

 <size>18</size>

 <effect>bold</effect>

 <effect>italic</effect>

 </fontinfo>

 <type>enclose</type>

 <datagroup>

 <datagroupref>Images_Asia</datagroupref>

 <datagroupref>Images_Eur</datagroupref>

 <datagroupref>Images_SAmer</datagroupref>

 </datagroup>

 </button>

Details on Items 37

This button will allow users to enclose files into one of three datagroups (folders):

Images_Asia, Images_Eur, Images_SAmer.

Usage Details

1. The text displayed by the button is defined by: the value option if given and

not empty; otherwise, the xforms:label if the button contains an XForms option.

2. When setting the size option of a button, the height and width of the button is

based on the average character size for the font in use (set with the fontinfo

option).

3. If you set the width for a button, but not the height, then the button will

automatically grow to accommodate the text within the given width. In other

words, the text will wrap to fit within the width specified, and the height will

increase to accommodate the text.

4. If a button’s image option points to a data item that does not exist or contains

no data, then the button will display its value option instead.

5. If a button’s image option points to a data item that dynamically changes its

mimedata (but not its item sid), then the button will update the image it

displays. For information on how to update an image by enclosing a new one,

see the data option description.

6. The format option is available in buttons in order to force users to sign forms

before submitting them.

7. If a button of type enclose, extract, display, or remove contains both a datagroup

and a data option, the data option takes precedence.

8. There are two steps to making a signature button mandatory:

v Assign the following elements to the format option: string and mandatory.

v Set the button’s value equal to the button’s signer option setting.

v Setting the format to mandatory specifies that the button must have a value

setting that is not empty before the user submits the form. Equating the value

to the setting of the signer option ensures that the only way a button’s value

is set is if somebody uses it to sign the form. (The signer option stores the

identity of the person who signed the form using the button.)

Usage Details: Signature Buttons

1. A signature button is the means by which the user can sign a form. To make a

button a signature button, set its type to signature.

2. A signature button can be set up to sign the whole form or just part of it by

setting up filters on the signature, using the signdatagroups, signgroups,

signitemrefs, signitems, signnamespaces, signoptionrefs, and signoptions options.

Note: It is recommended that the triggeritem and coordinates options should

be filtered out. These options change when a submission is triggered or

when a user clicks an image button, respectively. Filtering out parts of

the form that a subsequent user will change, including subsequent

signatures and signature buttons and custom options that might change ,

should also be taken into consideration.

3. Signature buttons allow users to do the following:

v sign the form or portion of the form the button specifies.

v Delete their signatures (a signature can be deleted only by the user whose

signature it is, and if the signature is currently valid and not signed by some

other signature).

v View the signature and view the XFDL text of what the signature applies to.

38

4. All option references, calculations, and other formulas in any signed portion of

a form are frozen once they have been signed. Their setting will be valued at

the setting they contained at the moment when the signature was created. If the

user deletes the signature, however, then the formulas will become unfrozen,

and will change dynamically as normal.

5. It is strongly recommended that you consider the Usage Details in the

signitemrefs, signoptionrefs, signnamespaces, and signdatagroups filters, and avoid

using the other advanced filters unless a thorough security review has been

performed.

The usual options for other buttons (i.e. size, image, value) can also be used with

signature buttons.

cell

Populates combobox, list and popup items. A cell can belong to multiple comboboxes,

lists and popups. See the combobox, list and popup item sections for information on

associating cells with these items.

Cells fall into two categories according to their behavior:

v Action cells — These cells perform the same set of actions normally associated

with buttons. This includes such things as canceling, saving, and submitting the

form.

v Select cells — These cells provide users with a mutually exclusive set of values

from which to choose. When chosen, these cells appear selected. In a list this

means the cell is highlighted in some way. In a popup, the cell’s label becomes

the popup’s label.

Available Options

activated, active, data, datagroup, group, label, itemnext, itemprevious,

printsettings, saveformat, transmitdatagroups, transmitformat, transmitgroups,

transmititemrefs, transmititems, transmitnamespaces, transmitoptionrefs,

transmitoptions, transmitpagerefs, type, url, value

Example

The following example shows a list with three cells. To learn how to get the value

of the user’s selection, see Usage Details below.

 <popup sid="CountryPopup">

 <label>Country</label>

 <group>country</group>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 </popup>

 <cell sid="albCell">

 <value>Albania</value>

 <group>country</group>

 <type>select</type>

 </cell>

 <cell sid="algCell">

 <value>Algeria</value>

 <group>country</group>

 <type>select</type>

Details on Items 39

</cell>

 <cell sid="banCell">

 <value>Bangladesh</value>

 <group>country</group>

 <type>select</type>

 </cell>

Usage Details

1. Use the type option to establish a cell’s behavior. Select cells have a type of

select (the default type).

2. Cells can have both value and label options. These options affect the form

differently depending on whether the cell is linked to a combobox, a popup, or a

list item. In general, the label of the cell will be displayed as a choice, while the

value of the cell will be displayed if that cell is selected. For more information,

refer to the appropriate item type.

3. Cells take their color and font information from the combobox, list and popup

items with which they are associated. In this way, a cell’s appearance can vary

according to the list the user is viewing.

4. To get the value of a cell that a user has selected from a list, it is necessary to

dereference it in the following manner:

 page_tag.list_tag.value->value

For example:

 page1.countryPopup.value->value

When a user selects a cell from a list, the item sid of the cell is stored as the

value of the list. Hence the dereference syntax.

5. Starting with version 4.5, items of type cell are the only items that can be

filtered using the signgroups and transmitgroups options.

check

Provides a simple check box to record a selected or not selected answer from a

user. A selected check box appears filled while a deselected box appears empty.

The exact appearance of the check box is platform-dependent; but the shape is

rectangular. The check box appears as a normal check box for the users of each

platform.

Available Options

acclabel, active, bgcolor, focused, fontcolor, fontinfo, help, itemlocation, itemnext,

itemprevious, keypress, label, labelbgcolor, labelborder, labelfontcolor, labelfontinfo,

mouseover, next, previous, printbgcolor, printfontcolor, printlabelbgcolor,

printlabelfontcolor, printvisible, readonly, saveformat, size, suppresslabel, value,

visible, xforms:input

Example

This value option setting in this check box is on, so the check box will appear

selected when it displays. The item’s label is Activate Health Plan, and the label

will display in a Times 14 Bold font colored blue.

 <check sid="healthPlan_check">

 <value>on</value>

 <label>Active Health Plan</label>

 <labelfontinfo>

 <fontname>Times</fontname>

40

<size>14</size>

 <effect>bold</effect>

 </labelfontinfo>

 <labelfontcolor>blue</labelfontcolor>

 </check>

Usage Details

1. The value option setting indicates the user’s answer. If the user selects or checks

the check box, the value option contains on, otherwise it contains off. The

default value is off.

2. Check boxes do not belong to groups like radio buttons - each check box may

be turned on or off independently of the others.

3. The label option defines the label for the check box. The label appears above the

check box and aligned with the box’s left edge. There is no default label.

4. When setting the size option of a check box, the height and width of the

bounding box will be based on the average character size for the font in use

(set with the fontinfo option).

5. The fontcolor option determines the color of the check box fill pattern (defaults

to red).

6. For check items that contain an xforms:input option, the on or off value is

translated into true or false, respectively, when stored in the data model.

combobox

Comboboxes act like a hybrid of a field and a popup. Unopened, a combobox with

a label occupies the same space as two labels, and a combobox without a label

occupies the same space as a single label. After a user chooses a cell, the combobox

closes (that is, returns to its unopened state).

If none of the cells are appropriate, the user can type other information into the

combobox. When information is typed in, it is stored in the value option of the

combobox. When a cell is selected, the value option stores the value of that cell, so

unlike other list items (popup and list), dereferencing is not necessary.

A combobox’s label appears above the combobox item.

Available Options

acclabel, activated, active, bgcolor, borderwidth, focused, fontcolor, fontinfo,

format, group, help, itemlocation, itemnext, itemprevious, keypress, label,

labelbgcolor, labelborder, labelfontcolor, labelfontinfo, mouseover, next, previous,

printbgcolor, printlabelbgcolor, printfontcolor, printlabelfontcolor, printvisible,

readonly, size, suppresslabel, value, visible, xforms:input, xforms:select1

Example

This is an example of a combobox containing a set of selections allowing users to

choose a color.

 <combobox sid="CATEGORY_POPUP">

 <group>combo_Group</group>

 <label>Choose a Color:</label>

 </combobox>

Details on Items 41

The default label is ″Choose a Color:″. This will display above the combobox. Until

the user types in something or makes a selection, the field area of the combobox

will be blank.

These are the cells that make up the combobox. They are select cells and they

belong to the same group as the combobox: combo_Group.

 <cell sid="RED_CELL">

 <group>combo_Group</group>

 <type>select</type>

 <value>Red</value>

 </cell>

 <cell sid="WHITE_CELL">

 <group>combo_Group</group>

 <type>select</type>

 <value>White</value>

 </cell>

 <cell sid="BLUE_CELL">

 <group>combo_Group</group>

 <type>select</type>

 <value>Blue</value>

 </cell>

Usage Details

 1. Place cells in a combobox by creating a group for the combobox and assigning

cells to the group. Create a group using the group option in the combobox

definition. Assign cells to the group using the group option in the cell

definition.

 2. When first viewed, a combobox will display its value. If no value is set, the

combobox will be empty.

 3. The label option sets the text displayed above the item, as with a field.

 4. When a combobox is opened, its list displays:

v The label of each cell.

v The value of each cell that does not have a label.
 5. When a cell is selected from the combobox’s list, the following occurs:

v If the cell is of type select, the combobox’s value is set to the value of the

selected cell and the combobox displays that value.

v If the cell is of any other type, the appropriate action for the type is taken

and the combobox’s value is set to empty.
 6. When a value is typed into a combobox (rather than selected from the list),

the combobox’s value is set to the typed value.

 7. The label option for each cell is used to create a long form for each choice. For

example, a cell might have a label of ″United States of America″ and a value of

″USA″. The long form is displayed in the combobox’s list, but once that cell is

selected, the short form is displayed by the popup.

 8. Combobox, popup, and list items with the same group reference display the

same group of cells.

 9. Unlike popups and lists, comboboxes do not need to be dereferenced in order

to obtain the value.

10. When setting the size option of a combobox, the height and width of the

popup will be based on the average character size for the font in use (set with

the fontinfo option).

11. If you set the readonly option to on, the combobox will refuse all input,

although it will function normally otherwise and formulas will still be able to

change the value.

42

12. When a format is applied to a combobox, the formatting will be applied to the

value of each cell linked to the combobox. Those cells that fail the check will

be flagged or filtered. Those cells that pass the check will have their value

replaced with a formatted value. See the format option for more information.

If any two combobox, list, or popup items use the same set of cells, they must

apply the same formatting.

13. To make a combobox that displays a calendar widget, create a combobox with

no cells and give it a date function.

data

Stores an information object such as an image, a sound, or an enclosed file in an

XFDL form. Whenever any of these objects are are added to a form, the data that

describes the object is stored in a data item. A data item can only store the data

from a single object. Data in data items must be encoded in base64 format.

Data items are created automatically when files are enclosed in a form. Enclose

files using items with a type option setting of enclose.

Available Options

datagroup, filename, itemnext, itemprevious, mimedata, mimetype

Example

This is an example of a data item.

 <data sid="Supporting_Documents_1">

 <mimetype>text/plain</mimetype>

 <filename>HelloWorld.txt</filename>

 <mimedata encoding="base64">

 SGVsbG8sIHdvcmxkIQ==

 </mimedata>

 <datagroup>

 <datagroupref>Supporting_Documents</datagroupref>

 </datagroup>

 </data>

Usage Details

1. Stores the data in the mimedata option, and the data’s MIME type in the

mimetype option.

2. If a data item contains a datagroup option, it can be associated with one or more

other data items. Data items with a datagroup option are not replaced if a button

or cell of type enclose point to new data items. The new data items simply

become members of the same datagroup. Additionally, buttons and cells with the

same datagroupoption can access the contents of the data item.

3. If a button or cell of type enclose contains a data option that points to a data

item (as opposed to using the datagroup option), then special rules apply to the

data item’s behavior. If a user encloses a new data item using that button, the

new information overwrites the old. For example, if the data item originally

contained a jpeg image of a dog, and then a user enclosed a png image of a

house, then the data item’s mimedata, mimetype, and filename options update

themselves to contain the information about the house image.

4. Starting with XFDL version 4.5, data items are the only items that can be

filtered using the signdatagroups and transmitdatagroups options.

Details on Items 43

field

The field item creates a text area where users can display and enter one or more

lines of data. The field’s characteristics determine the number of lines, the width of

each line, and whether the field is scrollable.

Field data can be protected from modification, made to display in the system

password format (typically, hidden from view), and forced to conform to data type

and formatting specifications.

Available Options

acclabel, active, bgcolor, borderwidth, focused, fontcolor, fontinfo, format, help,

itemlocation, itemnext, itemprevious, justify, keypress, label, labelbgcolor,

labelborder, labelfontcolor, labelfontinfo, mouseover, next, previous, printbgcolor,

printlabelbgcolor, printfontcolor, printlabelfontcolor, printvisible, readonly, rtf,

scrollvert, scrollhoriz, size, suppresslabel, texttype, value, visible, writeonly,

xforms:input, xforms:secret, xforms:textarea

Example

This is an example of a single line field item that allows 20 characters of input. An

initial value of 23000 has been defined for the field. When the form appears, the

field will contain this value.

 <field sid="income_field">

 <label>Annual income</label>

 <value>23000</value>

 <size>

 <width>20</width>

 <height>1</height>

 </size>

 <fontinfo>

 <fontname>Courier</fontname>

 <size>12</size>

 <effect>plain</effect>

 </fontinfo>

 <labelfontinfo>

 <fontname>Helvetica</fontname>

 <size>12</size>

 <effect>plain</effect>

 </labelfontinfo>

 <labelfontcolor>blue</labelfontcolor>

 </field>

Usage Details

1. When setting the size option of a field, the width of the field will be based on

the average character size for the font in use (set with the fontinfo option) and

the height will exclude the external font leading.

2. Use the readonly option to create a readonly field.

3. Use the writeonly option to create a write only field. This is useful for

passwords.

4. The format option specifies the data type of the field’s data. It also contains

flags that allow the application of specified edit checks and formatting to the

data.

5. The label option defines the field’s label. The label is placed above the field and

aligned with the field’s left edge.

44

6. The scrollvert and scrollhoriz options govern a field’s scrolling characteristics.

They must be set to always to permit scrolling. With scrolling enabled, scroll

bars display along the bottom (horizontal scrolling) and right (vertical scrolling)

edges of the field.

7. The texttype option determines whether a field contains plain text or rich text.

Note that you cannot dynamically change a rich text field into a plain text field.

8. When using XForms, the following rules apply:

v To create a single line field, use xforms:input.

v To create a multi-line field, use xforms:textarea.

v To create a rich text field, use xforms:textarea. In this case, it is the rtf option

that is bound to the data model (as opposed to the value option). Rich text

fields do not support the use of xforms:input or xforms:secret.

v To create a write only field, use xforms:secret.

help

Defines a help message that can be used to support various external items in the

form. Separate help items can be created for every item supported, or one help item

can be used to support several items.

Available Options

active, itemnext, itemprevious, value

Example

This is an example of a button item that links to a help item using the help option:

 <button sid="fullPicture_button">

 <value>View Full-Sized Picture</value>

 <help>button_help</help>

 <fontinfo>

 <fontname>Times</fontname>

 <size>14</size>

 <effect>plain</effect>

 </fontinfo>

 <type>link</type>

 <url>http://www.ibm.server.com/application/fullPic.frm</url>

 </button>

The following example shows the help item referred to in the button item definition.

The contents of the value option are presented as the help message when the user

asks for help with the button.

 <help sid="button_help">

 <value>

 Pressign this button will bring a full-sized image in a form

 down to your viewer.

 </value>

 </help>

Usage Details

1. The help item’s value option contains the help message text.

2. The link between the help item and the supported item is created by the help

option in the supported item’s definition. The help option contains the help

item’s item reference.

Details on Items 45

label

Defines a static text message or an image to display on the form. If both an image

and a text message are defined for the label, the image takes precedence in viewers

able to display images.

Available Options

active, bgcolor, borderwidth, fontcolor, fontinfo, format, help, image, imagemode,

itemlocation, itemnext, itemprevious, justify, linespacing, printbgcolor,

printfontcolor, printvisible, size, suppresslabel, value, visible, xforms:output

Example

This is an example of a multiple-line text label:

 <label sid="RHYME LABEL">

 <value>

 Little miss Muffet Sat on her tuffet,

 Eating her curds and whey.

 When along came a spider, who sat down beside her,

 and frightened miss Muffet away!

 </value>

 <fontinfo>

 <fontname>Times</fontname>

 <size>16</size>

 <effect>italic</effect>

 </fontinfo>

 <justify>right</justify>

 </label>

Usage Details

 1. The text displayed by a label is defined by: the xforms:output option, if given;

otherwise the value option.

 2. To define an image for a label, use the image option.

 3. To create a multiple line text message, add line breaks to the message text.

Use the escape sequence ’\n’ to indicate a line break.

 4. When setting the size option of a label, the height and width of the label will

be based on the average character size for the font in use (set with the fontinfo

option).

 5. If you set the width for a label, but not the height, then the label will

automatically grow to accommodate the text within the given width. In other

words, the text will wrap to fit within the width specified, and the height will

increase to accommodate the text.

 6. If a label’s image option points to a data item that does not exist or contains

no data, then the label will display its value option instead.

 7. If a label contains both a value option and an xforms:output option, then the

xforms:output overrides the value.

 8. If a label contains an xforms:output with an xforms:label, the value of the

xforms:label is concatenated with the value of the xforms:output (always label

first). This allows you to create a decoration for the text that is displayed. For

example, you might want your label to read ″Total: 200″, where the ″Total:″ is

provided by an xforms:label and the ″200″ is provided by the xforms:output.

Note that the xforms:label can only contain text and is not affected by the

format option.

46

9. If a label is decorated by an xforms:label, and the justify option it set to right

justify, then the value of the label item is right justified but the additional text

from the xforms:label remains left justified. This allows you to create space

between the xforms:label and the value, as shown:

 Total: 200

10. If a label contains a suppresslabel option, it prevents the xforms:label from being

displayed.

11. If a label’s image option points to a data item that dynamically changes its

mimedata (but not its item sid), then the label will update the image it

displays. For information on how to update an image by enclosing a new one,

see the data option description.

12. Set the image display behavior with the imagemode option.

13. The label’s background color defaults to being transparent - and thus the label

will allow whatever item it is over to show through. For example, it is

possible to place a label over another label holding an image. The image will

show through the top label.

14. Label contents (if text) can be formatted using format flags (see section

“format” on page 90).

15. The suppresslabel option suppresses the label, so that it is not displayed.

line

Draws a simple vertical or horizontal line on the form. Lines are useful for visually

separating parts of a page.

Available Options

fontcolor, fontinfo, itemlocation, itemnext, itemprevious, printfontcolor, printvisible,

size, thickness, visible

Example

This is an example of a horizontal line with a thickness of five pixels:

 <line sid="BLUE_LINE">

 <size>

 <width>40</width>

 <height>0</height>

 </size>

 <thickness>5</thickness>

 </line>

Usage Details

1. Specify the dimensions of a line using the size and thickness options. The size

option determines whether the line is vertical or horizontal. If the horizontal

dimension is set to zero, then the line is vertical. If the vertical dimension is set

to zero, then the line is horizontal. Size is calculated in characters.

2. The thickness option determines how thick the line will be. Thickness is

calculated in pixels.

3. The fontinfo option information is used when calculating the line’s size. The size

option’s unit of measurement is characters; therefore, choice of font can affect

the size. See the size option for more information.

4. The fontcolor option defines the color of the line.

Details on Items 47

list

Creates a list that allows the user to select one or more choices. Additionally, the

choices can be set to triggers actions, such as saving or submitting the form.

The entries in the list are cell items. Selections are cells with a type option setting of

select. Actions are cells with any other type option setting.

Available Options

acclabel, active, bgcolor, borderwidth, focused, fontcolor, fontinfo, format, group,

help, itemlocation, itemnext, itemprevious, keypress, label, labelbgcolor,

labelborder, labelfontcolor, labelfontinfo, mouseover, next, previous, printbgcolor,

printlabelbgcolor, printfontcolor, printlabelfontcolor, printvisible, readonly, size,

suppresslabel, value, visible, xforms:select, xforms:select1

Example

This is an example of a list containing three actions: submit form, save form, and

cancel form.

 <list sid="MAINMENU_LIST">

 <group>list_Group</group>

 <label>Options Menu</label>

 <labelfontcolor>blue</labelfontcolor>

 <size>

 <width>3</width>

 <height>20</height>

 </size>

 </list>

These are the cells that make up the list. They are action cells and they belong to

the same group as the list: list_Group.

 <cell sid="SUBMIT_CELL">

 <group>list_Group</group>

 <type>submit</type>

 <url>http://www.ibm.server.com/cgi-bin/processForm</url>

 <value>Submit Form</value>

 </cell>

 <cell sid="SAVE_CELL">

 <group>list_Group</group>

 <type>saveas</type>

 <value>Save Form</value>

 </cell>

 <cell sid="CANCEL_CELL">

 <group>list_Group</group>

 <type>cancel</type>

 <value>Cancel this Form</value>

 </cell>

Usage Details

 1. Users can only select one choice from a list item, unless the item includes the

xforms:select option, in which case they can select any number of choices.

 2. Create non-XForms lists by using the group option to link the list to a number

of cell items.

 3. When first viewed, a list displays it’s label above the item (as with a field) and

as many choices as its size allows.

 4. The choices in the list display:

v The label of each cell.

48

v The value of each cell that does not have a label.
 5. When a cell is selected from the list, the following occurs:

v If the cell is of type select, the list’s value is set to the name of the selected

cell and that cell is highlighted.

v If the cell is of any other type, the appropriate action for the type is taken,

the list’s value is set to empty, and the selected cell is highlighted.
 6. The label option for each cell is used to create a long form and and

abbreviated form for each choice. For example, a cell might have a label of

″United States of America″ and a value of ″USA″. The long form is displayed

in the list, but the short form available as the cell’s value.

 7. To get the value of a cell that a user has selected from a list, it is necessary to

dereference it in the following manner:

 page_tag.list_tag.value->value

For example:

 compute="page1.countryPopup.value->value"

 8. List, combobox and popup items with the same group reference display the

same group of cells.

 9. The value option will contain one of the following:

v The item reference of the most recently chosen cell, if the cell was of type

select.

v Nothing, if the cell most recently chosen was of any type other than select.
10. When setting the size option of a list, the height and width of the list will be

based on the average character size for the font in use (set with the fontinfo

option).

11. A vertical scroll bar will appear beside the list if the number of cells is greater

than the height (defined with the size option) of the list.

12. When a format is applied to a list, the formatting will be applied to the value

of each cell linked to the list. Those cells that fail the check will be flagged or

filtered. Those cells that pass the check will have their value replaced with a

formatted value. See the format option for more information.

13. If any two combobox, list, or popup items use the same set of cells, they must

apply the same formatting.

popup

Creates a popup menu from which users can make selections (as in a list of names)

and trigger actions (such as enclosing files and submitting the form). A popup can

contain both selections and actions.

The entries in the popup are cell items. Selections are cells with a type option

setting of select. Actions are cells with any other type option setting.

Popups act like a hybrid of a label, a button, and a list. Unopened, a popup

occupies only the space required for its label. Open, the popup displays a list of

selections and actions. After a user chooses a selection or an action, the popup

closes (that is, returns to its unopened state). A popup’s label displays inside the

popup item.

Details on Items 49

Available Options

acclabel, activated, active, bgcolor, borderwidth, focused, fontcolor, fontinfo,

format, group, help, itemlocation, itemnext, itemprevious, justify, keypress, label,

mouseover, next, previous, printbgcolor, printfontcolor, printvisible, readonly, size,

value, visible, xforms:select1

Example

This is an example of a popup list containing a set of selections allowing users to

choose a category.

Here is the popup definition. The default label is ″Choose a Category:″. This will

display until a user makes a selection. Afterwards, the cell’s value will display as

the label.

 <popup sid="CATEGORY_POPUP">

 <group>popup_Group</group>

 <label>Choose a Category:</label>

 </popup>

These are the cells that make up the popup. They are select cells and they belong

to the same group as the popup: popup_Group.

 <cell sid="HISTORY_CELL">

 <group>popup_Group</group>

 <type>select</type>

 <value>World History</value>

 </cell>

 <cell sid="SCIENCE_CELL">

 <group>popup_Group</group>

 <type>select</type>

 <value>Physical Sciences</value>

 </cell>

 <cell sid="MUSIC_CELL">

 <group>popup_Group</group>

 <type>select</type>

 <value>Music</value>

 </cell>

Usage Details

 1. Place cells in a popup by creating a group for the popup and assigning cells

to the group. Create a group using the group option in the popup definition.

Assign cells to the group using the group option in the cell definition.

 2. When first viewed, a popup will display its label if no value is set. If there is

no value or label, the popup will be empty.

 3. When a popup is opened, its list displays:

v The label of each cell.

v The value of each cell that does not have a label.
 4. When a cell is selected from the popup’s list, the following occurs:

v If the cell is of type select, the popup’s value is set to the name of the

selected cell and the popup displays the cell’s value.

v If the cell is of any other type, the appropriate action for that type is taken,

the popup’s value is set to empty, and the popup displays its label option
 5. The label option for each cell is used to create a long form for each choice. For

example, a cell might have a label of ″United States of America″ and a value of

″USA″. The long form is displayed in the popup’s list, but once that choice is

selected, the short form is displayed by the popup.

50

6. To get the value of a cell that a user has selected from a list, it is necessary to

dereference it in the following manner:

 page_tag.list_tag.value->value

For example:

 compute="page1.countryPopup.value->value"

When a user selects a cell from a list, the item sid of the cell is stored as the

value of the list. Hence the dereference syntax.

 7. Popup, combobox and list items with the same group reference display the same

group of cells.

 8. When setting the size option of a popup, the height and width of the popup

will be based on the average character size for the font in use (set with the

fontinfo option).

 9. When a format is applied to a popup, the formatting will be applied to the

value of each cell linked to the popup. Those cells that fail the check will be

flagged or filtered. Those cells that pass the check will have their value

replaced with a formatted value. See the format option for more information.

10. If any two comboboxes, lists, or popups use the same set of cells, they must

apply the same formatting.

radio

Intended for use with one or more other radio items. A group of radio buttons

presents users with a set of mutually exclusive choices. Each radio button

represents one choice the user can make.

There is always one selected radio button in the group. As well, since radio

buttons present a mutually exclusive set of choices, only one radio button in a

group can be selected. When a user chooses a radio button, that radio button

becomes selected.

A selected radio button appears filled in some way. All other radio buttons in the

group appear empty.

Available Options

acclabel, active, bgcolor, focused, fontcolor, fontinfo, group, help, itemlocation,

itemenxt, itemprevious, keypress, label, labelbgcolor, labelborder, labelfontcolor,

labelfontinfo, mouseover, next, previous, printbgcolor, printlabelbgcolor,

printfontcolor, printlabelfontcolor, printvisible, readonly, size, suppresslabel, value,

visible

Example

This example shows a group of three radio buttons. The first radio button is the

initial choice: the value option setting is on. The buttons all belong to the group

search_Group.

 <radio sid="NAME_RADIO">

 <value>on</value>

 <group>search_Group</group>

 <label>Search by Name</label>

 </radio>

 <radio sid="NUMBER RADIO">

 <group>search_Group</group>

 <label>Search by Number</label>

 </radio>

Details on Items 51

<radio sid="OCCUPATION RADIO">

 <group>search_Group</group>

 <label>Search by Occupation</label>

 </radio>

As shown here, only the chosen radio button needs to have a value option setting.

The remaining radio buttons will receive the (default) value setting of off.

Usage Details

1. Group radio buttons by assigning them to the same group. Do this by

including the group option in each radio button’s definition, and using the same

group reference in each case.

2. The value option contains the status indicator. It can be either on or off. The

value on indicates a status of chosen. The value off indicates a status of not

chosen. The default status is not chosen.

3. When the form opens, if no radio button has the status chosen, then the last

radio button defined for the group becomes chosen. If multiple radio buttons

are chosen, then only the last ’chosen’ radio button retains that status.

4. The label option defines a label to appear above the radio button and aligned

with its left edge.

5. When setting the size option of a radio button, the height and width of the

bounding box will be based on the average character size for the font in use

(set with the fontinfo option).

6. The fontcolor option determines the color of the radio button fill pattern

(defaults to red).

7. For radio items that contain an xforms:input option, the on or off value is

translated into true or false respectively when stored in the data model.

signature

Contains a signature and the data necessary to verify the authenticity of a signed

form. It is created by a form viewer or other program when a user signs a form

(usually using a signature button). The signature item contains an encrypted hash

value that makes it impossible to modify the form without changing the hash

value that the modified form would generate. To verify, one can generate the hash

value and then see if it matches the one in the signature.

Available Options

colorinfo, excludedmetadata, fullname, itemnext, itemprevious, layoutinfo,

mimedata, signature, signdatagroups, signdetails, signer, signformat, signgroups,

signinstances, signitemrefs, signitems, signnamespaces, signoptionrefs, signoptions,

signpagerefs

Example

This example shows a signature item below the signature button that created it.

 <button sid="empSigButton">

 <type>signature</type>

 <value compute="signer"></value>

 <signer>Jane D Smith, jsmith@insurance.com</signer>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

52

</constraints>

 </format>

 <signformat>application/vnd.xfdl;

 csp="Microsoft Base Cryptographic Provider v1.0";

 csptype=rsa_full;hashalg=sha1

 </signformat>

 <signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>coordinates</optiontype>

 </signoptions>

 <signitemrefs>

 <filter>omit</filter>

 <itemref>PAGE1.mgrSigButton</itemref>

 <itemref>PAGE1.admSigButton</itemref>

 <itemref>PAGE1.empsignature</itemref>

 <itemref>PAGE1.mgrsignature</itemref>

 <itemref>PAGE1.admsignature</itemref>

 </signitemrefs>

 <signature>empsignature</signature>

 </button>

 ...

 <signature sid="empsignature">

 <signformat>application/vnd.xfdl;

 csp="Microsoft Base Cryptographic Provider v1.0";

 csptype=rsa_full;hashalg=sha1

 </signformat>

 <signer>Jane D Smith, jsmith@insurance.com</signer>

 <fullname>

 "Verisign, Inc.", Verisign Trust Network,

 "www.verisign.com/repository/RPA Incorp. by

 Ref.,LIAB.LTD(c)98", Persona Not Validated,

 Digital ID Class 1 - Microsoft, Jane D

 Smith, jsmith@insurance.com

 </fullname>

 <signature>PAGE1.empsignature</signature>

 <signitemrefs>

 <filter>omit</filter>

 <itemref>PAGE1.mgrSigButton</itemref>

 <itemref>PAGE1.admSigButton</itemref>

 <itemref>PAGE1.empsignature</itemref>

 <itemref>PAGE1.mgrsignature</itemref>

 <itemref>PAGE1.admsignature</itemref>

 </signitemrefs>

 <!-- The items listed above MUST have itemlocation options with

 absolute and extent as the last settings in order for the filter

 below to be sufficient in terms of security -->

 <signoptionrefs>

 <filter>keep</filter>

 <optionref>PAGE1.mgrSigButton.itemlocation</optionref>

 <optionref>PAGE1.admSigButton.itemlocation</optionref>

 <optionref>PAGE1.empsignature.itemlocation</optionref>

 <optionref>PAGE1.mgrsignature.itemlocation</optionref>

 <optionref>PAGE1.admsignature.itemlocation</optionref>

 </signoptionrefs>

 <signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>coordinates</optiontype>

 </signoptions>

 <mimedata encoding="base64">

 MIIFMgYJKoZIhvcNAQcCoIIFIzCCBR8CAQExDzANBgkgAQUFADALB\ngk

 qhkiG9w0BBwGgggQZMCA36gAwSRiADjdhfHJl6hMrc5DySSP+X5j\nANf

 BGSOI\n9w0BAQQwDwYDVQQHEwhJbn<Rlcm5ldDEXMBUGA1UEChM\nOVmV

 yaVNpZ24sIEluYy4xNDAKn1ZlcmlTaWduIENsYXNzIDEgQ0Eg\nLSJbmR

Details on Items 53

dWFsIFN1YnNjcmliyZXIwHhcNOTgwMTI3MwMDAwOTgwM\M1OTU5WjCCAR

 ExETA

 </mimedata>

 </signature>

Usage Details

1. When a user signs a form using a signature button, the viewer creates the

signature item as specified in the button’s signature option. The viewer also

associates the signature with the signature button, using the signature’s

signature option.

2. When a user signs a form, the signer, signformat, signgroups, signitemrefs,

signitems, signnamespaces, signoptionrefs, and signoptions options are copied from

the button description to the signature description.

3. While signformat is not mandatory for button items, it is mandatory for

signature items.

4. A copy of the XFDL description of the form or portion of the form that is

signed is included in the signature’s mimedata option. This data is encrypted

using the hash algorithm specified in the button’s signformat option.

5. signatures always filter out the mimedata option for their own signature item,

regardless of the signature filter settings. This is done because the mimedata is

not populated with the signature information until after the signature has been

applied. (In other words, the signature can’t include itself because it hasn’t

been generated yet.)

6. When a program checks a signed form, it compares the data in the mimedata

option with that of the portion of the form that is apparently signed. If the

descriptions match, then the signature remains valid. If the signatures do not

match, the signature breaks, and the user is prompted.

7. An attempt to create a signature will fail if:

v The item named by the signature button’s signature option already exists.

v The signature button is already signed by any signature in the form.

v The signer’s private key is unavailable for signing.
8. Filters can be used to indicate which items and options to keep and to omit.

The explicit and implicit settings of an existing filter take precedence over an

implication that might be drawn from a non-existing filter. Set up these filters

in the signature button description.

9. To use certain types of digital signatures (CryptoAPI or Netscape, for example),

it is necessary for the user to obtain a digital signature certificate. Other types

of digital signatures require the user to have a pen/pad device installed on the

user’s computer.

spacer

Creates space between items on a form. It can be any size specified. It is invisible.

Available Options

fontinfo, itemlocation, itemnext, itemprevious, label, linespacing, size

Example

This example shows a spacer item that uses the size option to define the amount of

space it will occupy.

54

<spacer sid="THREE_SPACER">

 <size>

 <width>1</width>

 <height>3</height>

 </size>

 </spacer>

This example shows the spacer item that uses a label to define the amount of space

it will occupy. This sizing technique is useful when creating a spacer that is exactly

the same size as a real label on the form.

 <spacer sid="WELCOME_SPACER">

 <label>Welcome to Information Line</label>

 </spacer>

Usage Details

1. A spacer can be sized either by giving it length and width dimensions (using

size), by expanding the default size using the itemlocation option or by giving it

a label. If a label is used, the spacer equals the size of the text typed into the

label. The label does not appear; it is simply used to determine the spacer’s

size.

2. When setting the size option of a spacer, the height and width of the spacer will

be based on the average character size for the font in use (set with the fontinfo

option).

3. If you set the width for a spacer, but not the height, then the spacer will

automatically grow to accommodate the text within the given width. In other

words, the text will wrap to fit within the width specified, and the height will

increase to accommodate the text.

toolbar

Allows the definition of a toolbar for a page. A toolbar is a separate and fixed area

at the top of the page. It functions much like a toolbar in a word processing

application. Items placed in the toolbar are always visible at the top of the form,

no matter what portion of the page they are viewing.

The toolbar is visible no matter what portion of the page body is visible. However,

if the toolbar is larger than half the form window, it is necessary to scroll to see

everything it contains.

Available Options

bgcolor, itemnext, itemprevious, mouseover

Example

This example shows a toolbar that contains a label.

Here is the toolbar definition:

 <toolbar sid="TOOL_BAR">

 <bgcolor>cornsilk</bgcolor>

 </toolbar>

Here is the label that will appear in the toolbar.

Details on Items 55

<label sid="COMPANY_NAME">

 <value>My Company</value>

 <itemlocation>

 <within>TOOL_BAR</within>

 </itemlocation>

 </label>

Usage Details

1. The background color of the toolbar becomes the default background color for

items in the toolbar.

2. Add items to the toolbar using the within modifier of the itemlocation option.

Code the itemlocation option in each included item’s definition.

3. Each page can contain only one toolbar.

4. If an XForms item is placed in the toolbar, then any items controlled by it are

also placed in the toolbar, regardless of individual declarations. For example, if

a table were placed in the toolbar, then all items in that table would also

appear in the toolbar.

<custom item>

Allows form designers to add application specific information to the form

definition. This is useful when submitting forms to applications requiring

non-XFDL information. An example of non-XFDL information might be an SQL

query statement.

Available Options

All XFDL options, the xforms:input or xforms:textarea options, and any custom

options can be used with custom items.

Example

This is an example of a custom item definition. It includes both an XFDL and a

custom option.

 <custom:event xfdl:sid="STATUS_EVENT"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom">

 <xfdl:active>off</xfdl:active>

 <custom:ID>UF45567/home/users/preferences01</custom:ID>

 </custom:event>

Usage Details

1. Custom items must be in a non-XFDL namespace.

2. Custom items can also change the default namespace from the XFDL

namespace URI in order to eliminate excess prefixes within the desired

namespace.

3. Custom items may omit the XFDL scope identifier, but a sid attribute in the

XFDL namespace must be provided in order to reference the custom item’s

content with the XFDL compute system. Since default namespaces are not

applied to attributes, the sid attribute must still be qualified by a namespace

prefix associated with the XFDL namespace URI.

4. Both XFDL options and custom options within the custom item can have

computed values by using the XFDL compute attribute, which must be

qualified with a namespace prefix associated with the XFDL namespace URI.

56

Details on XForms Items

XForms items are only required when you are creating an XFDL form that contains

an XForms data model. These items are used to contain XForms constructs that do

not normally exist in XFDL, such as tables and checkgroups that automatically

repeat elements based on the structure of the data model.

XForms items follow the same syntax rules as XFDL items, and are described in

detail in the following sections.

checkgroup

Creates a group of check boxes. This is useful if you want to create a list of options

and allow the user to select some of them. You can configure a checkgroup to allow

only one selection, or to allow any number of selections.

Each check box appears as an empty box that is filled with a marker, such as a

check mark or an X, when selected.

Note that checkgroup items are only valid for XForms forms. If you are not using

XForms, use the check item instead.

Available Options

acclabel, active, bgcolor, border, focused, format, help, itemlocation, itemnext,

itemprevious, label, labelbgcolor, labelborder, labelfontcolor, labelfontinfo,

mouseover, next, previous, printbgcolor, printlabelbgcolor, printlabelfontcolor,

printvisible, readonly, suppresslabel, value, visible, xforms:select, xforms:select1

Example

The following code creates a checkgroup with three choices: US dollars, Canadian

dollars, and Euros. The choices themselves are defined within the xforms:select

option.

 <checkgroup sid="currency">

 <xforms:select ref="currency" appearance="full">

 <xforms:label>Select the currencies you accept:</xforms:label>

 <xforms:item>

 <xforms:label>US Dollars</xforms:label>

 <xforms:value>USD</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>CDN Dollars</xforms:label>

 <xforms:value>CDN</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Euro</xforms:label>

 <xforms:value>Euro</xforms:value>

 </xforms:item>

 </xforms:select>

 </checkgroup>

Alternatively, you could create the choices in your data model as follows:

© Copyright IBM Corp. 2003, 2006 57

<xforms:instance xmlns="">

 <data>

 <currency/>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

In this case, you would use the xforms:select option to link to those choices, as

illustrated by the following checkgroup:

 <checkgroup sid="currency">

 <xforms:select ref="currency" appearance="full">

 <xforms:label>Select the currencies you accept:</xforms:label>

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 </xforms:itemset>

 </xforms:select>

 </checkgroup>

Usage Details

 1. To allow the user to select any number of choices in the checkgroup, use an

xforms:select option. To limit the user to selecting one choice from the

checkgroup, use an xforms:select1 option.

 2. The check boxes in a checkgroup item are arranged vertically by default (that

is, each check appears immediately below the previous choice).

 3. To arrange a checkgroup item in another manner, use the <xforms:extension>

element to add an itemlocation to each check in the group. For example, you

might set the checks to appear one after another horizontally with the

following itemlocation:

 <xforms:extension>

 <itemlocation>

 <after compute="itemprevious"/>

 </itemlocation>

 </xforms:extension>

For more information about the <xforms:extension> element, refer to

“xforms:select” on page 227 or “xforms:select1” on page 232.

 4. Each check box in a checkgroup can have its own label. These labels are

displayed immediately to the right of each check box (rather than above each

check box, as with the check item).

 5. The single node binding in the xforms:select or xforms:select1 option creates a

link between the value option for the checkgroup and the bound element in the

data model, so that they share data. When the user makes a selection, the

xforms:value of that selection is stored in both locations.

 6. If the user makes multiple selections, those choices are stored as a space

delimited list. Because this list is space delimited, the choices themselves

cannot contain spaces.

 7. The contents of the value option for the checkgroup are never serialized.

 8. The mouseover option is active for each check box in the group, not for the

group as a whole. This means that you can use the <xforms:extension>

element to make changes to individual check boxes in the group. For example,

the following checkgroup changes the background color of each radio button

when the mouse is over it:

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

58

<xforms:extension>

 <bgcolor compute="mouseover == ’on’ ? ’blue’ : ’green’"/>

 </xforms:extension>

 </xforms:select>

 9. The itemlocation of radio buttons in a radiogroup is interpreted relative to the

top-left of the group, not the top-left of the form. The top-left of the group is

set 3 pixels in from the left edge of the group, and 3 pixels down from the top

edge of the group. This allows room for a border to be added to the group.

10. If using relative positioning, you can give each check an itemlocation of after the

itemprevious, as shown:

 <xforms:extension>

 <itemlocation>

 <after compute="itemprevious"/>

 </itemlocation>

 </xforms:extension>

This will place each check after its predecessor, except for the first check, which

is placed at the top left corner of the group. For the first check, the after

command is ignored because the checkgroup position is not set until after the

contained check items are positioned, and itemlocation keywords are ignored

when they refer to items that have not been positioned.

11. The itemnext is set as follows:

v The checkgroup itself refers to the first check in the group.

v The last check in the group refers to the item that follows the checkgroup in

the build order.

v The item that precedes the checkgroup in the build order refers to the

checkgroup itself.
12. The size of a checkgroup is determined by the size of the radio items and labels

in that group. As such, the extent setting in the itemlocation option has no

affect on the group’s sizing.

13. You can use the constraint setting in the data model to limit the number of

selections the user can make. To do this, set the <xforms:value> of each

selection to a standard length. For example, you might have five choices and

give them values of 1-5 (each being one character long). When the user makes

some selections, the values of the selections are concatenated into a space

delimited list. You can predict the length of this list based on the length of

your standard values. For example, if the user selects two items, then the list

will be three characters long (1 2), while selecting three items will create a list

that is 5 characters long (1 3 5). This allows you to set a constraint on the

length of that value (which is stored by the data element that is bound to the

<xforms:select>) that will actually limit the number of selections the user can

make.

14. You can then set a constraint on the data element that is bound to the

<xforms:select> so that it cannot exceed a certain length. In this case, limiting

it to a length of less than or equal to five will only allow three selections to be

made.

pane

A pane is used to contain one of the following:

v A group of items that can be positioned or made visible as a unit, and that can

be given a common border or background.

v A switch, which allows you to group items into sets, and then display one set of

items at a time to the user.

Details on XForms Items 59

The pane itself can also have a physical appearance, such as a border or a different

background color, that visually groups the items for the user.

Available Options

active, bgcolor, border, first, focused, itemlocation, itemnext, itemprevious, last,

label, labelbgcolor, labelfontcolor, labelfontinfo, next, previous, printbgcolor,

printlabelbgcolor, printlabelfontcolor, printvisible, suppresslabel, visible,

xforms:group, xforms:switch

Example

The following example shows a data model that we will link to a group of items

contained within a pane:

 <xformsmodels>

 <xforms:model>

 <xforms:instance xlmns="" id="customerInfo">

 <customerData>

 <name></name>

 <address>

 <street></street>

 <city></city>

 <country></country>

 </address>

 </customerData>

 </xforms:instance>

 </xforms:model>

 </xformsmodels>

The following pane contains a group of items in an xforms:group that link to the

data model:

 <pane sid="Address">

 <xforms:group ref="address">

 <field sid="street">

 <xforms:input ref="street">

 <xforms:label>Street:</xforms:label>

 </xforms:input>

 </field>

 <field sid="City">

 <xforms:input ref="city">

 <xforms:label>City:</xforms:label>

 </xforms:input>

 </field>

 <field sid="Country">

 <xforms:input ref="country">

 <xforms:label>Country:</xforms:label>

 </xforms:input>

 </field>

 </xforms:group>

 </pane>

The following example shows a pane that contains an xforms:switch. This pane

creates a ″wizard″ style form, in which the user completes one section then clicks a

button to move to the next section. Each section is enclosed by an xforms:case

within the xforms:switch, and each section except the last contains a button that

changes the switch to the next case:

 <pane sid="wizard">

 <xforms:switch>

 <xforms:case id="applicantName" selected="true">

 <field sid="firstName">

 <xforms:input ref="applicant/firstname">

60

<xforms:label>Enter your first name:</xforms:label>

 </xforms:input>

 </field>

 <field sid="lastName">

 <xforms:input ref="applicant/lastname">

 <xforms:label>Enter your last name:</xforms:label>

 </xforms:input>

 </field>

 <button sid="nextCase1">

 <xforms:trigger>

 <xforms:label>Next</xforms:label>

 <xforms:toggle case="spouseName"

 ev:event="DOMActivate"/>

 </xforms:trigger>

 </button>

 </xforms:case>

 <xforms:case id="spouseName" selected="false">

 <field sid="spouseFirstName">

 <xforms:input ref="spouse/firstname">

 <xforms:label

 >Enter the first name of your spouse:</xforms:label>

 </xforms:input>

 </field>

 <field sid="spouseLastName">

 <xforms:input ref="spouse/lastname">

 <xforms:label

 >Enter the last name of your spouse:</xforms:label>

 </xforms:input>

 </field>

 <button sid="nextCase2">

 <xforms:trigger>

 <xforms:label>Next</xforms:label>

 <xforms:toggle case="address"

 ev:event="DOMActivate"/>

 </xforms:trigger>

 </button>

 </xforms:case>

 <xforms:case id="address" selected="false">

 <field sid="street">

 <xforms:input ref="address/street">

 <xforms:label

 >Enter your street address:</xforms:label>

 </xforms:input>

 </field>

 <field sid="city">

 <xforms:input ref="address/city">

 <xforms:label

 >Enter the city you live in:</xforms:label>

 </xforms:input>

 </field>

 </xforms:case>

 </xforms:switch>

 </pane>

Usage Details

 1. A pane item will always expand to contain the items you place within it,

regardless of the specific size you set for the pane.

 2. If a pane is contained within an xforms:repeat, then the pane and all items

within the pane are duplicated for each row of the table.

 3. The next and previous options in the pane determine which items precede and

follow the pane in the tab order, but do not affect the tab order within the

pane. Instead, the next and previous options within the items in the pane control

the tab order within the pane.

Details on XForms Items 61

4. The first and last options determine where the focus is initially place when the

user tabs into a pane item.

 5. If a pane is not visible, then none of the controls in the pane will be visible,

regardless of their state of visibility.

 6. If a pane does not have a visible option (or if it is empty), then the signed

node binding of the xforms:group helps determine visibility.

 7. The size of a pane is determined by the size of the items in the pane. As such,

the extent setting in the itemlocation option has no affect on the pane’s sizing.

 8. The itemprevious is set as follows:

v The pane refers to the item that precedes the pane in the build order.

v The first item in the first row of the pane refers to the pane itself.

v The item that follows the pane in the build order refers to the last item in

the last row of the pane.
 9. The itemnext is set as follows:

v The pane itself refers to the first item in the pane.

v The last item in the pane refers to the item that follows the pane in the build

order.

v The item that precedes the pane in the build order refers to the pane itself.
10. The label option defaults to the xforms:label of the xforms:group within the pane.

radiogroup

Creates a group of radio buttons. This is useful if you want to create a list of

options from which the user may select only one choice.

Each radio button appears as an empty circle that is filled with a marker, such as a

dot, when selected.

Note that radiogroup items are only valid for XForms forms. If you are not using

XForms, use the radio item instead.

Available Options

acclabel, active, bgcolor, border, focused, format, help, itemlocation, itemnext,

itemprevious, label, labelbgcolor, labelborder, labelfontcolor, labelfontinfo,

mouseover, next, previous, printbgcolor, printlabelbgcolor, printlabelfontcolor,

printvisible, readonly, suppresslabel, value, visible, xforms:select1

Example

The following code creates a radiogroup with three choices: US Dollars, CDN

Dollars, and Euro. The choices themselves are defined within the xforms:select1

option.

 <radiogroup sid="currency">

 <xforms:select1 ref="selectedCurrency" appearance="full">

 <xforms:label

 >Select the currencies you accept:</xforms:label>

 <xforms:item>

 <xforms:label>US Dollars</xforms:label>

 <xforms:value>USD</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>CDN Dollars</xforms:label>

 <xforms:value>CDN</xforms:value>

62

</xforms:item>

 <xforms:item>

 <xforms:label>Euro</xforms:label>

 <xforms:value>Euro</xforms:value>

 </xforms:item>

 </xforms:select1>

 </radiogroup>

Alternatively, you could create the choices in your data model as follows:

 <xforms:instance id="currency" xmlns="">

 <data>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

In this case, you would use the xforms:select option to link to those choices, as

illustrated by the following checkgroup:

 <checkgroup sid="currencyType">

 <xforms:select1 ref="selectedCurrency" appearance="full">

 <xforms:label>Select your preferred currency for payment:</

 xforms:label>

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 </xforms:itemset>

 </xforms:select1>

 </checkgroup>

Usage Details

1. To allow the user to select any number of choices use a checkgroup instead of a

radiogroup.

2. Each radio button in a checkgroup can have it’s own label. These labels are

displayed immediately to the right of the radio button (rather than above the

radio button, as with the radio item).

3. The single node binding in the xforms:select or xforms:select1 option creates a

link between the value option for the radiogroup and the bound element in the

data model, so that they share data. When the user makes a selection, the

xforms:value of that selection is stored in both locations.

4. The contents of the value option for the radiogroup are never serialized.

5. The mouseover option is active for each radio button in the group, not for the

group as a whole. This means that you can use the <xforms:extension> element

to make changes to individual radio buttons in the group. For example, the

following radiogroup changes the background color of each radio button when

the mouse is over it:

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 <xforms:extension>

 <bgcolor compute="mouseover == ’on’ ? ’blue’ : ’green’"/>

 </xforms:extension>

 </xforms:itemset>

6. The itemlocation of radio buttons in a radiogroup is interpreted relative to the

top-left of the group, not the top-left of the form. The top-left of the group is

set 3 pixels in from the left edge of the group, and 3 pixels down from the top

edge of the group. This allows room for a border to be added to the group.

Details on XForms Items 63

7. If using relative positioning, you can give each radio an itemlocation of after the

itemprevious, as shown:

 <xforms:extension>

 <itemlocation>

 <after compute="itemprevious"/>

 </itemlocation>

 </xforms:extension>

This will place each radio after its predecessor, except for the first radio, which is

placed at the top left corner of the group. For the first radio, the after command

is ignored because the radiogroup position is not set until after the contained

radio items are positioned, and itemlocation keywords are ignored when they

refer to items that have not been positioned.

8. The itemnext is set as follows:

v The radiogroup itself refers to the first radio in the group.

v The last check in the group refers to the item that follows the checkgroup in

the build order.

v The item that precedes the radiogroup in the build order refers to the

radiogroup itself.
9. The size of a radiogroup is determined by the size of the radio items and labels

in that group. As such, the extent setting in the itemlocation option has no affect

on the group’s sizing.

slider

Creates a sliding control, similar to a volume control, that lets the user set a value

within a specific range. The slider is always horizontal.

Note that this item is only available in an XForms form. There is no equivalent for

an XFDL form.

Available Options

acclabel, active, bgcolor, border, focused, fontcolor, fontinfo, format, help,

itemlocation, itemnext, itemprevious, label, labelbgcolor, labelborder, labelfontcolor,

labelfontinfo, next, previous, printbgcolor, printfontcolor, printlabelbgcolor,

printlabelfontcolor, printvisible, readonly, size, suppresslabel, value, visible,

xforms:range

Example

The following example shows and slider that allows the user to select any number

between 1 and 10:

 <slider sid="rating">

 <xforms:range ref="rating" start="1" end="10" step="1">

 <xforms:label>Rate this form on a scale of 1 to 10</xforms:label>

 </xforms:range>

 </slider>

Usage Details

1. The numbers that indicate the value are always shown at the bottom the slider.

2. The fontcolor and fontinfo option affect the numbers that show the value of the

slider.

64

3. The single node binding in the xforms:range option creates a link between the

value option for the slider and the bound element in the data model, so that

they share data. When the user makes a selection, that value is stored in both

locations.

4. The contents of the value option for the slider are never serialized.

5. The supresslabel option supresses the slider’s label, but does not affect the

numbers that indicate the value.

table

Creates a traditional table of repeated items organized into rows. This is

accomplished by creating a template row that includes all of the items that should

appear in each row. This row is then linked to the XForms data model.

Each time a new row is added to the table, the template items are duplicated to

create the new row. This occurs when the elements in the data model that are

linked to those items are duplicated. This allows the table to expand to any size

while ensuring that data for each row in the table is still maintained in the data

model.

The template row is created within an xforms:repeat option. This option is used to

group the items that create the template row, and also links the row to particular

portion of the data model. The template items can be configured with any location

relative to one another. This means that they need not appear in horizontal

succession.

Rows are added or removed from a table using the xforms:insert and xforms:delete

action respectively. For more information about actions, see “Details on XForms

Actions” on page 245.

Available Options

active, bgcolor, border, first, focused, itemlocation, itemnext, itemprevious, last,

next, previous, printbgcolor, printvisible, visible, xforms:repeat

Example

Before creating a table, you should create the data model that the table will reflect.

The data model should group the elements you want in the table by rows. For

example, suppose you wanted to create a purchase order form. Your table might

collect three pieces of information: what the user wants to purchase, how many

units they want to purchase, and what the cost of that item is. You might create

the following data model to store that information:

 <po>

 <order>

 <row>

 <product></product>

 <quantity></quantity>

 <lineTotal></lineTotal>

 </row>

 </order>

 </po>

As you can see, the three data elements are contained by a <row> element. This

will allow us to duplicate any number of rows.

Details on XForms Items 65

For the actual table, we will use the following items to reflect the data model: a

popup that lets the user select which product to purchase, a field that lets them

enter a quantity for the product, and a label that displays the cost of the products.

Furthermore, these items will be contained within an xforms:repeat option, we will

link that option to the <row> element in the data model, as shown:

 <table sid="itemsTable">

 <xforms:repeat nodeset="order/row">

 <popup sid="Product">

 <xforms:select1 appearance="minimal" ref="product">

 <xforms:label>Choose product</xforms:label>

 <xforms:item>

 <xforms:label>Widget</xforms:label>

 <xforms:value>widget</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Gadget</xforms:label>

 <xforms:value>gadget</xforms:value>

 </xforms:item>

 </xforms:select1>

 </popup>

 <field sid="Qty">

 <xforms:input ref="quantity">

 <xforms:label></xforms:label>

 </xforms:input>

 </field>

 <label sid="LineTotal">

 <xforms:output ref="lineTotal"></xforms:output>

 <value></value>

 </label>

 </xforms:repeat>

 </table>

When the user adds rows to the table, the description of the table does not change.

Instead, the data model expands to include the new data. For instance, if the user

had entered two rows of data, your data model might look like this:

 <po>

 <order>

 <row>

 <product>widget</product>

 <quantity>2</quantity>

 <lineTotal>2.00</lineTotal>

 </row>

 <row>

 <product>gadget</product>

 <quantity>5</quantity>

 <lineTotal>15.00</lineTotal>

 </row>

 </order>

 </po>

Based on this data model, the Viewer will create two rows of the popup, field, and

label items, with no changes to the markup for the table item. This occurs because

the nodeset in the xforms:repeat binds to every <row> element in the <order>,

duplicating the template items for each.

Usage Details

 1. To add rows to a table or remove rows from a table, you must use the

xforms:insert and xforms:delete actions respectively. For more information about

these actions, refer to “Details on XForms Actions” on page 245.

66

2. When using an xforms:insert action or an xforms:delete action, you should add

an xforms:bind that makes the data elements for the last row non-relevant. For

example:

 <xforms:bind nodeset="order/row[postion()=last()]"

 relevant="false()"/>

This allows you to start with an empty table but also helps you to preserve a

row of data that is used as a prototype when you insert a new row.

You should also amend the delete action so that it does not delete this

prototypical row. For example:

 <xforms:delete nodeset="order/row[last()>1]" at="index(’table’)/>

If the prototypical row of data is deleted, the xforms:repeat becomes

non-functional, as there is no data tempate for the xforms:insert to use. This is

a limitation of XForms 1.0.

 3. The itemlocation of items in table rows is interpreted relative to the top-left of

the table row, not the top-left of the form. The top-left of each row is

determined as follows:

v Each row is set 3 pixels in from the left edge of the table.

v The first row is set 3 pixels below the top of the table.

v Each successive row is set 1 pixel below the previous row.

By default, only 1 pixel of space is inserted between rows. As such, we

recommend that you position the items in your rows to add the desired

amount of additional space to the top of each row. For example, you might

set each item in a row to have a <y> value of 2, thereby adding 2 pixels of

space to the top of the row.
 4. The itemlocation of items in table rows may reference items in the same row of

a table, or items outside of the table. For instance, you might want to align an

item in a row with a column heading. However, the itemlocation cannot

reference containers (such as panes or tables) that contain that item.

 5. The next and previous options in the table determine which items precede and

follow the table in the tab order, but do not affect the tab order within the

table.

 6. When tabbing into a table, a forward tab places you in the first row of the

table and reverese tab places you on the last row of the table. The first and last

options determine which item in that row receives the focus.

 7. Tab order within a table is determined by the next and previous options within

the items in each row, combined with the natural order of the rows. When

you are on the last item in a row and tab forward, you move to the first item

in the next row. When you are on the first item in a row and tab backward,

you move to the last item in the previous row.

 8. When using computes with a table, the following restrictions apply:

v Computes written within a row may not reference elements in a different

row.

v Computes written outside a row may not reference elements within a row.

Note that this means computes within a row of a table may reference

elements outside of the table.
 9. If the nodeset binding of the xforms:repeat is empty or contains non-relevant

nodes, then the xforms:repeat provides a default of false to the table’s visible

and active options.

10. If the table is not visible, then none of the controls in the table will be visible,

regardless of their states of visibility.

Details on XForms Items 67

11. When working with tables, users will also need controls (such as buttons) that

can add and delete rows. To do this, you must use the xforms:insert and

xforms:delete actions. For more information about these actions, refer to

“Details on XForms Actions” on page 245.

12. The size of a table is determined by the size of the items in the table. As such,

the extent setting in the itemlocation option has no affect on the table’s sizing.

13. The itemprevious is set as follows:

v The table refers to the item that precedes the table in the build order.

v The first item in the first row of the table refers to the table itself.

v The item that follows the table in the build order refers to the last item in

the last row of the table.
14. The itemnext is set as follows:

v The table itself refers to the first item in the first row of the table.

v The last item in the last row of the table refers to the item that follows the

table in the build order.

v The item that precedes the table in the build order refers to the table itself.

68

Details on Options and Array Elements

In the XFDL language, items contains options, which define the characteristics of

an item. Options themselves may contain any number of array elements, which

further define the characteristics.

This chapter outlines the common features of options, then details each of the

XFDL options separately. For information about XForms options, refer to “Details

on XForms Options” on page 205.

Syntax

For simple character data content:

 <optionTag>character data content</optionTag>

For computed options:

 <optionTag compute="expression">character data content</optionTag>

For array options:

 <optionTag>

 <!-- suboption elements -->

 </optionTag>

An option defines a characteristic given to a form, a page, or an item. For example,

the bgcolor option set at the form or page global level defines the background color

of the pages of the form itself whereas a bgcolor option set at the item level defines

the background color for the containing item. Some form and page global options

define defaults for item-level options. For example, if an item has no fontinfo

option, then the fontinfo in the page globals are used, and if the page globals

contain no fontinfo option, then the fontinfo in the form globals (and the form global

fontinfo has implied defaults if it is not specified).

The definition of an option consists of content between start and end tags. The

element tag defines the type of option. This type must be one of the option types

defined in this specification, or a user-defined option that follows the rules in the

″custom option″ description in this specification.

Option Content

The content of an option can take one of three formats: simple character data, a

compute, or an array of subordinate XML elements. Computes are identified by a

compute attribute, while arrays are identified by the presence of subordinate

elements.

Simple Character Data

The default is simple character data, in which case the option must contain text

with no child elements. For example:

 <value>This is the value</value>

© Copyright IBM Corp. 2003, 2006 69

Compute

If the character content must be computed, then the computational expression

appears in the start tag of the option in an attribute named compute. If the XFDL

computation system has been applied to the form, then the the option also contains

simple character data for the current computed value of the expression. For

example:

 <value compute="price1Field.value + price2Field.value * ’0.07’">205.68</value>

It is typical to have a form run its computes on a client machine, then have server

modules simply read the current values, ignoring the content of the compute

attributes. In essence, an application can ignore the compute attributes unless it

must change element values that are referenced by computed options. See section

“The XFDL Compute System” on page 419 for details on how the compute

expression is represented.

Array

The third case for an option’s content is an array of subordinate elements. The

option must contain one or more array elements. For example:

 <itemlocation>

 <below>nameField</below>

 <after>addressField</after>

 </itemlocation>

Each array element may also contain an array. This recursive definition permits

arbitrary depth for XFDL arrays.

Array Element Names

A number of the XFDL-defined options use array elements. XFDL assigns names to

each of these array elements so that they are easier to reference.

Order of Precedence of Options

An option set at a lower level in the form hierarchy overrides a similar option set

at a higher level. It overrides it for only the level it is in and any that come below

it in the hierarchy. For example, the fontinfo option in the following example would

override a global fontinfo setting for the page it is in, and also for any items in that

page.

 <page sid="Page1">

 <global="global">

 <fontinfo>

 <fontname>Helvetica</fontname>

 <size>12</size>

 <effect>plain</effect>

 </fontinfo>

 </global>

Defining Form Global and Page Global Options

Form global options are optional and must be defined in a <global> element in a

<globalpage> element after the XFDL start tag and before the first <page> in a

form. Page global options are optional and must be defined in a <global> element

after the <page> start tag and before the first item in a page. To determine whether

an option is a valid form global or page global option, see section “Form Globals”

on page 31.

70

Data Type Designators Used in Option Descriptions

XFDL defines a set of data types that describe type of content allowed in an

option. Each option description in this specification uses one or more of the

following data type designators:

char A single ASCII character.

string A series of ASCII characters.

color A color name, an RGB triplet, or a hexadecimal RGB value that represents

the color.

 The syntax of an RGB triplet is:

 <bgcolor>Red, Green, Blue</bgcolor>

 Where red, green, and blue are values from 0 to 255.

 The syntax for a hexidecimal RGB value is:

 <bgcolor>#RRGGBB</bgcolor>

 Where RR, GG, and BB are the hexidecimal values for the red, green, and

blue settings.

coordinate

Whole number in the range 0 to 1,000 representing one coordinate of a

position.

integer

Positive or negative whole number in the range -32,768 to 32,767.

unsigned byte

Whole number in the range 0 to 255.

unsigned

Whole number in the range 0 to 65,535.

numeric boolean

A value of 0 or 1, in which 0 is false and 1 is true.

acclabel

Defines a message that is available to active screen readers. When the focus shifts

to the item containing the acclabel, the message is read aloud by the screen reader.

The message should contain additional information about the item to assist users

with vision impairments.

Syntax

 message string a message that is read aloud to users

Available In

button, check, checkgroup, combobox, field, list, popup, radio, radiogroup, slider

 <acclabel>message</acclabel>

Details on Options and Array Elements 71

Example

The following example shows a field that contains an accessibility message.

 <field sid="firstName">

 <acclabel>Type your first name.</acclabel>

 </field>

When the focus moves to the field, the acclabel message will be passed to the

screen reader, which will read ″Type your first name″ aloud.

Usage Details

 1. Default: none

 2. Screen readers normally provide information in addition to the acclabel option.

This information is defined by the screen reader in use, and cannot be

controlled through XFDL.

 3. If the item contains a label option, the screen reader will read the label option

as well as the acclabel option.

 4. If the item has a value option, the screen reader will read the item’s value. If

the item has a blank value, the screen reader will say that the item is empty.

 5. If the item has associated cells, the screen reader reads the value option of the

cells.

 6. If the item contains a help option, the screen reader will read the value of the

associated help item. The screen reader will also read this help message if the

item contains a format option and the item’s content is invalid when the user

tries to tab to a new item

 7. If the item contains a format option with a message flag, the screen reader will

read the contents of the message flag if the item’s content is invalid when the

user tries to tab to a new item.

 8. If the item is signed, the screen reader reads the signed message as well as the

acclabel option. The signed message is defined by the Viewer and is not

modifiable through XFDL.

 9. If you are using a label item to provide information for another item, the

acclabel option of the second item should include the contents of the label item.

Since label items never receive the focus, screen readers will never read their

contents. The acclabel option can provide the same information to users, with

further explanation if necessary.

10. The following table provides the actions which invoke the screen reader and

the order in which it reads the messages provided by the form and the

Viewer:

Action

Viewer Help

On

Item is

signed Messages Read by Screen Reader

Item gains focus No No label option + acclabel + value

Item gains focus Yes No label option + acclabel + value + help

Item gains focus n/a Yes label option + acclabel + value + help +

signed

Tab out of item

failed

n/a n/a format + help

Spacebar or arrow

keys activate list

of choices

n/a No cell value

72

activated

Specifies whether an item, page, or form is currently activated by the user or not.

This option is usually set by an external program such as a parser, but under

certain circumstances can be set by computes in the form. The activated option for

an item can be set by a compute if the item is an action, button or cell utilized on

the current page. The activated option must be set to either on or off and the item

must be capable of being activated. Cells that are not grouped with a popup,

combobox or list on the current page cannot be activated. Buttons that are not

visible cannot be activated.

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 <activated>status</activated>

 status on item, page, or form is currently activated by user

off item, page, or form is not currently activated by user

maybe button only: item might be activated, as user has pressed it, but

has not yet released it

Available In

action, button, cell, combobox, popup, page global, form global

Example

The following example shows a button that changes color when it is activated:

 <button sid="saveButton">

 <type>saveas</type>

 <value>Save</value>

 <activated>off</activated>

 <bgcolor compute="toggle(activated, ’off’, ’on’) == ’1’

 ? ’white’ : ’gray’"></bgcolor>

 </button>

The button will appear white when the user activates it, and gray otherwise.

The following example shows how the activated option can be set for an item

based on user input. This use of the activated option works with the keypress

option to establish a default button on the form.

 <button sid="DefaultButton">

 <type>cancel</type>

 <activated>off</activated>

 <custom:myoption compute="toggle(global.keypress, ’’,

 ’ESC’) == ’1’ ? set(’activated’,’on’) :

 ’’"></custom:myoption>

 </button>

When the user presses the ESC key (which is not processed by any item on the

form), the activated option for the button will be set to on and the button will fire.

Details on Options and Array Elements 73

Usage Details

1. Default: off

2. Activated is set to on when an item is activated, and remains on until any

transaction initiated by the item is properly under way. For example, in a print

button, activated will be turned on when the user initiates the print action, and

will remain on until network results indicate the print action is taking place.

3. The activated option is not included in form descriptions that are saved or

transmitted.

4. Specific details on activated behavior for each item:

v action — actions set activated to on when they fire, and off when the

transaction they initiate is under way.

v button — buttons set activated to maybe when the user holds the mouse

pointer or space bar down on the button. They set it to on if the user releases

the pointer or space bar while over the button, and they set activated to off

when the transaction the button initiates is under way.

v cell — cells behave in the same manner as buttons. In the split second

during which a user selects a select type of cell, it sets activated to on. It turns

activated off as soon as the action of being selected is finished. Cells that

initiate network transactions set activated to on from the beginning of the

request to the time when the request produces results. Note that there is no

maybe status for a cell.

v combobox and popup — comboboxes and popup lists set activated to on

when their lists are popped open, and off when the lists are not open. Note

that the ″field″ portion of a combobox does not register an activated setting.

v page — a page sets activated to on while it is open, and off when it is not. A

page can be open and activated even when the form is minimized (not

actively on screen).

v form — a form sets activated to on while it is open, and off when it is not. A

form can be open and activated even when it is minimized (not actively on

screen) .

active

Specifies whether an item is active or inactive. Inactive items do not respond to

user input and, if possible, appear dimmed. For example, an inactive check box

will be dimmed and the user will not be able to select or deselect the box.

Syntax

 status on item is active

off item is inactive

Available In

action, button, cell, check, checkgroup, field, help, label, list, popup, radio,

radiogroup, slider

 <active>status</active>

74

Example

This sample specifies the item is active.

 <active>on</active>

Usage Details

1. Default:

v XFDL: on.

v XForms: defaults to the relevant property for the data element to which the

containing item is bound.
2. Setting active to off is similar to setting the readonly option to on.

bgcolor

Defines the background color of a page or an item.

Syntax

 color special The color may be expressed in any of the following

formats:

v Comma-separated RGB values. For example:

 192, 192, 192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

box, button, check, checkgroup, combobox, field, label, list, popup, radio,

radiogroup, slider, toolbar, page global, form global

Examples

These samples all set the background color to forest green.

 <bgcolor>forest green</bgcolor>

 <bgcolor>34,139,34</bgcolor>

 <bgcolor>#228B22</bgcolor>

Usage Details

1. Default: varies depending on the object

2. The transparent color has no RGB equivalent.

v Form: white

v Page: the form bgcolor setting or default (white)

v Item (depends on the item type):

 <bgcolor>color</bgcolor>

Details on Options and Array Elements 75

v button items: gray (or grey)

v check, combobox, field, list, popup, radio, and slider items: white

v checkgroup and radiogroup items: transparent, but the individual check and

radio items that form the group default to white.

v label, table, and pane items: transparent (if no color is specified, the label

background color will be the same as the page background color).

v All other items: the background color of the page.

border

Defines whether an item is displayed with a border. Borders are drawn as a three

dimensional effect.

Syntax

 status on item has a border

off item does not have a border

Available In

box, button, check, checkgroup, combobox, field, label, list, pane, popup, radio,

radiogroup, slider, table

Example

This sample sets the item to display a border:

 <border>on</border>

Usage Details

1. Default:

v For label items, the default is always off.

v For all other items, the default is on.

colorinfo

Records the colors used to draw the form when a user signs it. This option is only

created if the user is allowing the operating system colors to override the color

settings in the form. This is most common for users with vision disabilities who

may set the operating system colors to provide better contrast between elements

on the screen. When the operating system colors override those set by the form

itself, it is useful to create a record of those colors so that the appearance of the

document, when signed, can be recreated.

 <border>status</border>

76

Syntax

 color_name text the name of the operating system color. Possible color names

include:

v window — The color of the window displaying the form.

v windowtext — The color of the text used in the form.

v borderlight — The color of all three dimensional borders

drawn on the form.

v buttonshadow — The color used to draw the shadow on a

button.

v buttonface — The color used for to draw the face of a

button.

v buttontext — The color used to draw the text on a button.

color special The color may be expressed in any of the following formats:

v Comma-separated RGB values. For example:

 192,192,192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

signature

Example

When a user signs a form that is respecting the operating system color, a colorinfo

block similar to the following is added to the signature item:

 <colorinfo>

 <window>255,255,255</window>

 <windowtext>0,0,0</windowtext>

 <borderlight>255,255,255</borderlight>

 <bordershadow>157,157,157</bordershadow>

 <buttonface>224,224,224</buttonface>

 <buttontext>0,0,0</buttontext>

 </colorinfo>

Usage Details

1. Default: none

 <colorinfo>

 <color_name1>color</color_name1>

 ...

 <color_namen>color</color_namen>

 </colorinfo>

Details on Options and Array Elements 77

coordinates

Records the position of the mouse pointer on an image. The image must exist in a

button item. The recording occurs when a user selects (i.e. clicks) the button using

the mouse pointer.

The position is an intersection on an unseen grid overlaying the image. The points

along each axis of the grid range from zero (0) through 1000 with position 0,0

occurring in the button’s top left corner. The coordinates map the intersection

closest to the mouse pointer’s position.

Syntax

 X_coordinate coordinate the coordinate on the X axis

Y_coordinate coordinate the coordinate on the Y axis

Available In

button

Example

When a user clicks on a button containing an image, a coordinates option is inserted

into the button item. The following coordindates option sets a position of 180 on

the x-axis and 255 on the y-axis.

 <coordinates>

 <x>180</x>

 <y>255</y>

 </coordinates>

Usage Details

1. Default: none

data

Associates an action, button, or cell item with a single data item. The data option is

valid only in items with a type setting of enclose, display, extract, or remove.

Syntax

 data item string the item sid of the data item to associate with the action,

button, or cell

 <coordinates>

 <x>X_coordinate</x>

 <y>Y_coordinate</y>

 </coordinates>

 <data>data item</data>

78

Available In

action, button, cell

Example

The button below is an enclosure button associated with a single data item.

 <button sid="encloseImageButton">

 <value>Update Image</value>

 <type>enclose</type>

 <data>displayImage</data>

 </button>

If a user enclosed another file, then the data item referred to in the button’s data

option would be replaced with the new data item. (The data item would use the

same item sid - the one that’s referred to in the data option.)

Usage Details

1. Default: none

2. A data option specifies only zero or one data items.

3. If an item with a type setting of enclose and a data option is used to enclose a

second data item, then the second data item will replace the first.

4. If an enclosure mechanism is used to replace an image stored in a data item

with a new image (see above), then buttons and labels whose image option is

set to the identifier of the image data item will be updated to display the new

image.

5. A data item referred to in a data option might also have a datagroup option and

thus belong to the datagroups of other actions, buttons, or cells.

datagroup

Provides a way of associating related data items to each other and to certain other

items. There are two ways of using this option. In the first case, it enables you to

create a group of data items, called a datagroup. In the second case, this option

enables you to reference such a datagroup from button, action, or cell items.

This option is most often used to group file enclosures. For example, you can use

this feature to create folders with which users can organize their enclosures. Each

enclosed file can belong to several datagroups, and each datagroup can contain

several enclosed files.

Details on Options and Array Elements 79

Syntax

 datagroup reference string identifies a data group. This can done in one of two

formats:

v datagroup_name for datagroups on the same page

v page_sid.datagroup_name for datagroups on a different

page.

Available In

action, button, cell, data

Example

If this sample were part of a data item definition, it would mean the data item

belonged to the datagroups Business_Letters, Personal_Letters, and Form_Letters.

If this sample were part of an action, button, or cell item, it would mean the user

could store the enclosure in one of the three datagroups.

 <datagroup>

 <datagroupref>Business_Letters</datagroupref>

 <datagroupref>Personal_Letters</datagroupref>

 <datagroupref>Form_Letters</datagroupref>

 </datagroup>

In the following example, the Enclose button references the datagroups

Business_Letters and Personal_Letters. As a result, when users click this button,

they can choose to place the file they are enclosing into one of these folders.

Because the datagroup Form_Letters is not specified in the datagroup reference, it is

not available to ″BUTTON1″.

 <button sid="BUTTON1">

 <value>Click to Enclose File</value>

 <type>enclose</type>

 <datagroup>

 <datagroupref>Business_Letters</datagroupref>

 <datagroupref>Personal_Letters</datagroupref>

 </datagroup>

 </button>

Usage Details

1. Default: none

2. The grouping of data items into datagroups cannot span multiple pages. That is,

all the data items assigned to a given datagroup must belong to the same page.

 <datagroup>

 <datagroupref>datagroup reference1</datagroupref>

 ...

 <datagroupref>datagroup referencen</datagroupref>

 </datagroup>

Note:

v Include a datagroup reference entry for each datagroup this item accesses.

80

On the other hand, buttons, actions, and cells from one page can reference

datagroups from another page, provided that you specify the page sid in the

datagroup reference.

3. Used with items handling enclosures, datagroup lists the datagroups the item

can access. Used with a data item, datagroup lists the datagroups to which the

enclosure belongs. Enclosures are stored in data items.

4. Items that handle enclosed files perform enclose, extract, remove, and display

actions. These actions types are set using the type option.

5. When a user selects an item that handles enclosed files, the list of datagroups

appears. The user chooses the datagroup (or folder) with which to work. If the

action is enclosing, the enclosed file is added to that datagroup. Otherwise, a

list of files in the datagroup appears. The user chooses a file from the list.

6. The action of enclosing a file creates the data item, and stores the user’s choice

of datagroup (or folder) in the data item’s datagroup option.

delay

Delays the execution of an automatic action or specifies an automatic action repeat

factor. Repeated actions stop when the page containing the action definition closes.

Define automatic actions using an action item.

Syntax

 repeat factor repeat queue the action to repeat at the <interval> specified

once perform the action once after the <interval> specified

interval integer the frequency of repeated actions or the delay before

performing single occurrence actions. The unit of

measurement is seconds.

-1 perform the action before the page displays. Only valid

with a repeat factor of once.

Available In

action

Example

This sample sets the action to occur once, 15 minutes (900 seconds) after the page

opens.

 <delay>

 <type>once</type>

 <interval>900</interval>

 </delay>

 <delay>

 <type>repeat factor</type>

 <interval>interval</interval>

 </delay>

Details on Options and Array Elements 81

Usage Details

1. Defaults:

v repeat factor: once

v interval: zero seconds

2. This means the action will occur when the page appears.

3. Repeating automatic actions is one method of creating a sparse-stated

connection. It allows the form to indicate periodically to a server application

that it is still running.

4. All actions with the same interval occur in the order they are defined in the

page.

5. The page does not display while actions with an interval of -1 are running.

dirtyflag

Records whether the form has been updated since the last save or submission. If

the user attempts to close the form when the dirtyflag is set to on, the user will first

be prompted to save their changes.

The dirtyflag is set to on whenever the user makes a change to the form. Such

changes include typing information into the form, selecting choices in lists or with

radio buttons, and so on. The dirtyflag is set to off whenever the user saves or

submits the form.

Note that the dirtyflag is not set by computed changes to the form. For example, if

the user clicks a button that triggers a compute, and that compute copies

information to a field in the form, the dirtyflag would not be set. In these cases, the

form should include additional computes that set the dirtyflag.

If necessary, the save prompt can be disabled by using a compute to set the

dirtyflag to off.

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 status on indicates that the user has changed the form since the last save or

network submission

off indicates that the user has not changed the form since the last save

or network submission

Available In

form global

Example

This example shows how the dirtyflag can be set to off.

 <dirtyflag>status<dirtyflag>

82

<button sid="ApplicationSpecificSave">

 <value>Save</value>

 <type>cancel</type>

 <custom:myoption compute="toggle(activated, ’off’, ’on’)

 == ’1’ ?

 MySaveFunction() + set(’global.global.dirtyflag’,

 ’off’) : ""></custom:myoption>

 </button>

Usage Details

1. Defaults: none

2. The dirtyflag option is not saved or transmitted with the form description.

excludedmetadata

This option allows additional data about a signature to be included, but never

signed. This makes it possible to store the notarization of signatures without

interfering with other, overlapping signatures.

For example, if signer1 signs a form and then signer2 affixes an overlapping

signature, you could not modify the first signature without breaking the second. In

this case, you would not be able to notarize the first signature, since affixing the

notarization would change the mimedata of that signature and break the second

signature.

The excludedmetadata provides a place to store the notarization for the first

signature without breaking the second signature. You can add information to this

option at any time, since the excludedmetadata option is never signed.

Syntax

 Notarization string a compressed base64 encoded PKCS-7 signature that signs the

hash of the mimedata option and the details of the signature

that is being notarized

Available In

signature

Example

The following example shows an excludedmetadata option with two notarizing

signatures. Note that the base64 blocks would be much larger in practice.

 <excludedmetadata>

 <servernotarizations>

 <notarization>notarization1</notarization>

 ...

 <notarization>notarizationn</notarization>

 </servernotarizations>

 </excludedmetadata>

Details on Options and Array Elements 83

<excludedmetadata>

 <servernotarizations encoding="base64-gzip">

 <notarization>asdfkj439fgasdf81hgb</notarization>

 <notarization>opkbt1ed7f8y3476p294</notarization>

 </servernotarizations>

 </excludedmetadata>

Usage Details

1. Default: none

filename

Identifies the name of an enclosed file. This name appears in the list of enclosed

files.

Syntax

 name of file string the name of the enclosed file

Available In

data

Example

This sample specifies the name of an enclosed file:

 <filename>std_logo.xfd</filename>

Usage Details

1. Default: none

2. To ensure cross-platform compatibility, limit filenames to the following set of

characters: lowercase letters from a to z, uppercase letters from A to Z, the

integers 0 through 9, and the underscore (_).

3. To ensure cross-platform compatibility, limit form names to a maximum of

eight characters, followed by a .xfd extension.

first

Identifies the first item in a repeat, group or switch. This is the item that first

receives the focus when the user tabs into a group, a particular case in a switch, or

a new row in a repeat.

This option affects the tab order in the following ways:

v When the user tabs forward into a table or pane, the focus goes to this item first.

In the case of a table, the focus goes to this item in the first row.

v When the user tabs forward from the end of a row, the focus goes to this item in

the next row (if there is one), or to the item stipulated by the table’s next option.

v When the user tabs backward from this item, the focus goes to the preceding

row, or to the item that precedes the table or pane.

 <filename>name of file</filename>

84

Syntax

 item reference string an XFDL reference to the first item in a row of a table or the

first item in a pane.

Available In

pane, table

Example

The following example shows a table in which the first option contains a reference

to the second item in the repeat structure:

 <table sid="itemsTable">

 <first>Product</first>

 <last>Qty</last>

 <xforms:repeat nodeset="order/row">

 <field sid="Qty">

 <previous>Product</previous>

 <xforms:input ref="qty">

 <xforms:label></xforms:label>

 </xforms:input>

 </field>

 <popup sid="Product">

 <next>Qty</next>

 <xforms:select1 appearance="minimal" ref="product">

 <xforms:label>Choose product</xforms:label>

 <xforms:item>

 <xforms:label>Widget</xforms:label>

 <xforms:value>widget</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Gadget</xforms:label>

 <xforms:value>gadget</xforms:value>

 </xforms:item>

 </xforms:select1>

 </popup>

 <label sid="LineTotal">

 <xforms:output ref="lineTotal"/>

 </label>

 </xforms:repeat>

 </table>

In this case, when the user first tabs into the table, the focus goes to the popup in

the first row. When the user tabs to the next row, the focus goes to the popup in

the second row.

Usage Details

1. Default: the first item in the <xforms:repeat> or <xforms:group> element, or the

first item in the selected case of the <xforms:switch> element.

2. When a pane contians an xforms:switch, this option is not effective unless all

cases contain an element with the same sid that is identified as first.

 <first>item reference</first>

Details on Options and Array Elements 85

focused

Specifies whether an item, page, or form currently has the input focus. This option

is usually set by code outside XFDL, but can also be set by a compute, provided

that the compute is setting the focus of an item to on, the item is on the same

page, and the item receiving the focus is capable of doing so.

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 status on item, page, or form has input focus

off item, page, or form does not have input focus

Available In

button, check, checkgroup, combobox, field, list, popup, radio, radiogroup, slider,

page global, form global

Example

The following example shows a button that changes its color to white if it has the

input focus, and to blue if it does not.

 <button sid="saveButton">

 <type>saveas</type>

 <value>Save</value>

 <focused>off</focused>

 <bgcolor compute="focused==’on’ ? ’white’ : ’blue’"><bgcolor>

 </button>

The following example shows how the focus can be moved to a different item

based on user input.

 <check sid="CHECK1">

 <value>off<value>

 <label>Check here to skip next section</label>

 <custom:myoption compute="toggle(value, ’off’, ’on’) ==

 ’1’ ? set(’FIELD14.focused’,’on’): ’’"></custom:myoption>

 </check>

Usage Details

1. Default: off

2. The focused option is set to on when an item, page, or form receives the input

focus, and is set to off when the focus is moved to another item, page or form.

3. An object’s focused option does not change when the form application

displaying it becomes active or inactive on a desktop. For example, a page that

is open on screen will have a focused option set to on, even if the page is

minimized or is not the currently active application on the desktop.

 <focused>status</focused>

86

4. In objects that are hierarchical, it is possible for more than one object to have

the focus at one time. For example, a form, a page, and a field can all be

focused at the same time.

5. When a form viewing application is closing a form, it should set all focused

options to off and then resolve all formulas before shutting down.

6. The focused option is not included in form descriptions that are saved or

transmitted.

focuseditem

Specifies which item in the page currently has the focus.

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 sid string the sid of the item that currently has the focus

Available In

page global

Example

The following example shows a label that uses a compute to set its value. The

compute copies the name of the item that currently has the focus from the

focuseditem option. The label then displays this name.

 <label sid="itemWithFocus">

 <value compute="PAGE1.global.focuseditem></value>

 </label>

Usage Details

1. When the page changes, the focuseditem for the previous page is set to empty.

For example, if the user changed from ″PAGE1″ to ″PAGE2″, the focuseditem

option for ″PAGE1″ would be set to an empty string.

2. The focuseditem option is maintained by the form viewing application, and is

not included in form descriptions that are saved or transmitted.

fontcolor

Defines the font color for the text or filler portion of an item. In radio and check

items, fontcolor defines the color of the bullet and check, respectively. In line items,

fontcolor defines the color of the line. In other items, it defines the text color.

 <focuseditem>sid</focuseditem>

Details on Options and Array Elements 87

Syntax

 color special The color may be expressed in any of the following formats:

v Comma-separated RGB values. For example:

 192,192,192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

button, check, combobox, field, label, line, list, popup, radio, slider, page global,

form global

Examples

These samples all set the font color to chocolate.

 <fontcolor>chocolate</fontcolor>

 <fontcolor>210,105,30</fontcolor>

 <fontcolor>#993300</fontcolor>

Usage Details

1. Defaults behave as follows:

v If there is no fontcolor setting at the item level, the item will derive its

fontcolor setting from the page or form global level. If no fontcolor setting is

specified at the page or form level, the default is black.

v For check and radio items, the default is not inherited from the page or global

level, and is always red.

fontinfo

Defines the character set, font name, point size, and font characteristics for the text

portion of an item. Note that the font selected for an item influences the item’s

size.

 <fontcolor>color</fontcolor>

88

Syntax

 font name string the name of the font.

point size unsigned byte the size of the font.

effect string Can be any of the following:

v plain — use plain face font.

v bold — use bold face font.

v underline — use underlined font.

v italic — use italic font.

Available In

box, button, check, combobox, field, label, line, list, popup, radio, slider, spacer,

page global, form global

Example

This sample sets the font information to Times 14, bold italic:

 <fontinfo>

 <fontname>Times</fontname>

 <size>14</size>

 <effect>bold</effect>

 <effect>italic</effect>

 </fontinfo>

Usage Details

1. Defaults first to the page setting for fontinfo, then to the global setting for

foninfo. If neither setting exists, then the defaults are: Helvetica, 8, plain.

2. If any of the fontinfo settings are invalid, then the defaults will be used.

3. The size option calculates item size using the font’s average character width.

Therefore, choice of font affects item width.

4. XFDL supports the following fonts and font sizes:

v Fonts: Courier, Times, Symbol (symbol), Helvetica, and Palatino.

v Sizes: 8, 9, 10, 11, 12, 14, 16, 18, 24, 36, 48.
5. Other fonts and font sizes may be used. However, especially for cross-platform

Internet applications, it is best to choose from the ones cited above since they

are guaranteed to work.

 <fontinfo>

 <fontname>font name</fontname>

 <size>point size</size>

 <effect>effect1</effect>

 ...

 <effect>effectn</effect>

 </fontinfo>

Note:

v fontname and size must appear first, and in the order shown.

v weight, effects, form, and character set are optional.

Details on Options and Array Elements 89

format

Allows you to apply formatting to the contents of an item, or to create edit checks

for that item. It also allows you to set button items to be mandatory.

Syntax

 data type (see below) the type of data the item can contain.

presentation settings (see below) the formatting to apply to the data in this item.

constraint settings (see below) the constraints to apply to user input.

Available In

button, checkgroup, combobox, field, label, list, popup, radiogroup, slider

Data Types

You can only declare one data type for each item. If you do not set the data type,

XFDL will default to string. XFDL supports the following data types:

 Data Type Description Format Defaults To:

currency

a fixed point decimal

number with a scale of 2

and a range equal to the

range of a float

any number. Automatically adds .00

to end, if no decimal value specified.

date

a date including

day-of-month, month, and

year

3 Mar 2005

day_of_month

the number of a day of the

month

12

day_of_week

the name or number of a

day of the week

Thu

date_time

the date, including year,

month, day, and the time,

including at least hours and

minutes.

5 Oct 2005 6:45:21 PM

float

a positive or negative

floating point decimal

number in the range of 1.7 *

10-308 to 1.7 * 10308

any decimal number

 <format>

 <datatype>data type</datatype>

 <presentation>presentation settings</presentation>

 <constraints>constraint settings</constraints>

 </format>

Note:

v Datatype is mandatory and must appear first; the other settings are optional.

90

Data Type Description Format Defaults To:

integer

a positive or negative whole

number in the range of

-2,147,483,648 to

+2,147,483,647

any whole number

month

the name or number of a

month

Mar

string

free form character data up

to 32K long

any group of characters

time

a time value containing

hours and minutes.

Represents either the 12

hour or the 24 hour clock.

11:23:21 PM

void

disable entire format option

(including data type,

presentation, and

constraints)

no effect on contents of the item

year

a numeric year designation 2005

Presentation Settings

Presentation settings control the output of the text. For example, you can specify

that the text should include a currency symbol, or that it should round all numbers

up. You can specify any number of presentation settings.

Presentation settings follow this syntax:

The following list defines the valid settings:

calendar

This sets which calendar is used for formatting dates. It supports the

following settings:

v gregorian — A solar calendar. The primary calendar for North America.

v japanese — A lunisolar calendar (based on lunar and solar cycles). Used

in Japan, along with gregorian calendar.

Using this setting forces the calendar to be type selected, regardless of the

locale of the form. This setting is only valid for date types, such as date,

time, and so on.

 Default for en_US locale: gregorian.

 Default for other locales: not documented.

 <format>

 <presentation>

 <settingname1>setting</settingname1>

 ...

 <settingnamen>setting</settingnamen>

 </presentation>

 </format>

Note:

v You can define any number of settings.

Details on Options and Array Elements 91

casetype

Forces the value to be set to a particular case. Valid settings are:

v upper — Sets all letters to upper case.

v lower — Sets all letters to lower case.

v title — Capitalizes the first letter of each word.

v none — Leaves the capitalization unchanged.

This setting is only valid for string and date (date, time, and so on) data

types.

 Default: none.

currencylocale

Allows you to set a different locale for a particular currency field. For

example, you could set one field to use US dollars and another field to use

British pounds.

 Valid settings include all valid locales. For a complete list of locales and

their corresponding codes, see the “IBM Workplace Forms™ Locale

Specification for XFDL”.

 Note that this setting does not convert currencies in any way.

 Default: the locale of the form.

decimalseparator

The symbol(s) used to separate the decimal place. This is often a period, as

shown:

 100.00

 You can use any string. This setting is only valid for int, float, and

currency data types.

 Default for en_US locale: a period.

 Default for other locales: refer to IBM Workplace Forms Locale Specification for

XFDL.

Note: Must be used in conjunction with the decimalseparators constraint.

fractiondigits

Sets the number of digits shown after the decimal place. For example, a

setting of 3 would allow three digits after the decimal place, as shown:

 13.764

 All values are rounded according to the round setting. If no round setting is

specified, all values are rounded up. (See the round setting for an

explanation of rounding up.)

 Fractiondigits is only valid for float and currency data types. Note that

setting both fractiondigits and significantdigits may cause conflicting formats.

In this case, significantdigits takes precedence.

 Default: the maximum number of digits allowed for the data type.

groupingseparator

The symbol(s) used to separate groups of numbers (for example, thousands

in North America). This is often a comma, as shown:

 1,000,000

92

You can use any string, with the keyword none representing no separators

at all. However, you should not use strings that already have a meaning,

such as the period.

 This setting is only valid for int, float, and currency data types.

 Default for en_US locale: a comma.

 Default for other locales: refer to the IBM Workplace Forms Locale

Specification for XFDL.

Note: Must be used in conjunction with the groupingseparators constraint.

keepformatindata

Sets whether formatting, such as dollar signs and other ″decoration″, is

maintained when the value is copied to the XForms model. Valid values

are:

v on — maintain all formatting.

v off — strip all formatting.

Default: off.

negativeindicator

Sets the symbols that are used to indicate a negative value. You can place

symbols both before and after the number by setting a prefix and a suffix.

To do this, you must include the <prefix> and <suffix> tags in your

definition, as shown:

 <negativeindicator>

 <prefix>prefix</prefix>

 <suffix>suffix</suffix>

 </negativeindicator>

 The prefix and suffix are defined as strings. For exampe, if you set the

prefix to an open bracket and the suffix to a close bracket, you will get a

bracket negative. The following shows the bracket notation for negative

100:

 (100)

 You can also leave either the prefix or suffix blank, so long as the other

setting has a value.

 Note:

v The pattern setting overrides the negativeindicator setting.

v Do not use this setting with currency data types.

v Do not use symbols that already have meanings, such as the period.

Default for en_US locale: minus sign (-).

 Default for other locales: refer to the IBM Workplace Forms Locale

Specification for XFDL.

pad Sets the number of digits to show, regardless of the value. For example,

setting a pad of 5 would result in all numbers having five digits, as shown:

 00002

 00100

 If the value has more characters than dictated by the pad setting, the value

is not changed and is displayed as entered.

Details on Options and Array Elements 93

Pad is only valid for integer, float, and currency data types. Use the

padcharacter setting to control which character is used to pad the value.

 Default : 0 (no padding imposed).

padcharacter

Sets the character to use for padding. For example, if you set the

padcharacter to a zero and the pad setting was 5, numbers would be

displayed as follows:

 00010

 01245

 You may only specify a single character as the pad character. Furthermore,

you must use a pad character that is valid for your data type. For example,

you cannot use a Z in an integer value.

 Padcharacter is only valid for integer, float, and currency data types. Use

the pad setting to control how many pad characters are used.

 Default for en_US locale: 0.

 Default for other locales: refer to the IBM Workplace Forms Locale

Specification for XFDL.

pattern

Allows you to set a pattern for number and date data types. This pattern is

used to display the data. For example, you might want all numbers to be

formatted with two digits after the decimal place.

 To learn how to represent number and date patterns, refer to “Defining

Patterns” on page 101.

 Note that the pattern setting overrides both the style and negativeindicator

settings.

patternrefs

Allows you to define one or more patterns for string data types that are

used to display the data. For example, you may want to ensure that all

phone numbers are displayed with dashes, as shown: 250-604-8734.

 You must define each pattern in its own <patternref> tag, as shown:

 <patternrefs>

 <patternref1>pattern</patternref1>

 ...

 <patternrefn>pattern</patternrefn>

 </patternrefs>

 If you define only one pattern, that pattern is used for all input regardless

of the number of constraints you define.

 If you define more than one patternref, you must define an equal number of

patterns in the constraints. Each pattern is then matched to the

corresponding constraint. For example, the first pattern is matched to the

first constraint, the second pattern is matched to the second constraint, and

so on. This allows you to define a different pattern for each constraint.

 To learn how to represent string patterns, refer to page 103.

94

To review best practices for creating phone number, postal code, or e-mail

address patterns, see theWorkplace Forms Best Practices for Form Design

document.

 Note that the patternrefs setting overrides the style setting.

 Default: as dictated by the style setting.

round Determines how values are rounded. Valid settings are:

v floor — Always rounds down. For example, 46.9 becomes 46.

v ceiling — Always rounds up. For example, 46.1 becomes 47.

v up — Rounds values greater than 5 up, and values less than 5 down.

For values equal to 5, it rounds up. For example, 46.5 becomes 47, while

46.4 becomes 46.

v down — Rounds values greater than 5 up, and values less than 5 down.

For values equal to 5, it rounds down. For example, 46.5 becomes 46,

while 46.6 becomes 47.

v half_even — Rounds values greater than 5 up, and values less than 5

down. For values equal to 5, rounds up if the preceding digit is even,

and down if the preceding digit is odd. For example, 46.5 becomes 47,

while 45.5 becomes 45.

Round is only valid for integer, float, and currency data types.

 Note that if the significantdigits setting is used, then the round setting is

reset to half_even.

 Default: half_even.

showcurrency

Sets whether the appropriate currency symbol is shown. This is only valid

for a currency data type. Valid settings are on, which shows the symbol,

and off, which does not.

 The symbol used is determined by the currencylocale setting. If there is no

currencylocale setting, it defaults to normal currency symbol for the current

locale.

 Default: on.

significantdigits

Sets the number of significant digits allowed. This is generally the total

number of digits allowed in the number. For example, 134.56 has five

significant digits.

 If the data entered exceeds the number of significant digits allowed, then

only the least significant digits are shown. For example, if you allow five

significant digits and 12,345.56 is entered, then only 345.56 is shown.

 significantdigits is only valid for integer, float, and currency data types.

 Note that setting both fractiondigits and significantdigits may cause

conflicting formats. In this case, significantdigits takes precedence.

 Default: the maximum number of digits allowed for the data type.

style Sets how various data types are displayed. For example, you can use the

style to set whether times include seconds, and whether dates are spelled

out or numeric.

 Valid settings are:

Details on Options and Array Elements 95

v numeric

v short

v medium

v long

v full

For more information about how the styles affect the different data types,

see the “Data Type Styles.”

 Note that both the pattern and patternrefs settings override the style

setting.

 Default: medium.

Data Type Styles

The following table shows how the style affects the presentation of various data

types in the en_US locale. For other locales, refer to the IBM Workplace Forms Locale

Specification for XFDL. The symbols used to define each format are explained on

page 101.

 Data Type Style Format Example

date

numeric yyyyMMdd 20041123

short yyyy-MM-dd 2004-11-23

medium d MMM yyyy 23 Nov 2004

long MMMM d, yyyy November 23, 2004

full EEEE, MMMM d, yyyy Tuesday, November 23,

2004

day_of_month

numeric d 3

short d 3

medium d 3

long d 3

full d 3

day_of_week

numeric e 3

short e 3

medium EEE Wed

long EEEE Wednesday

full EEEE Wednesday

date_time

numeric yyyyMMdd h:mm 20041123 8:15

short yyyy-MM-dd h:mm a 11/23/04 8:15 AM

medium d MMM yyyy h:mm:ss a Nov 23, 2004 8:15:23 AM

long MMMM d, yyyy

h:mm:ss a

November 23, 2004 8:15:23

AM

month

numeric M 9

short M 9

medium MMM Sep

long MMMM September

96

Data Type Style Format Example

full MMMM September

time

numeric H.mm 17.30

short H:mm a 17:30 PM

medium h:mm:ss a 5:30:14 AM

long h:mm:ss a 5:30:14 AM

year

numeric yyyy 2004

short yy 04

medium yyyy 2004

long yyyy 2004

full yyyy G 2004 AD

Constraint Settings

Constraint settings control the text that the user is allowed to input. For example,

you can limit input to a range of numbers, to a particular length, or to a specific

pattern, such as the common ###-####.

Constraint settings follow this syntax:

The following list defines that valid settings:

casesensitive

Sets whether the data entered must match the case of the defined pattern

constraints. Valid settings are:

v on — The data entered must match the case of the defined templates.

v off — The data entered does not need to match the case of any defined

templates.

Default: off.

checks

Allows you to force the format check to fail, or to ignore all constraints

settings. Valid settings are:

v fail — Forces the format check to fail.

v ignore — Ignores all constraint settings. Note that the data type and the

presentation settings are still respected.

v none — Has no effect.

Default: none.

 <format>

 <constraints>

 <settingname1>setting</settingname1>

 ...

 <settingnamen>setting</settingnamen>

 </constraints>

 </format>

Note:

v You can define any number of settings.

Details on Options and Array Elements 97

decimalseparators

Defines one or more symbols that are allowed to indicate the decimal

place. This is often a period, as shown:

 100.00

 List each separator in its own separator tag, as shown:

 <decimalseparators>

 <decimalseparator1

 >separator</decimalseparator1>

 ...

 <decimalseparatorn

 >separator</decimalseparatorn>

 </decimalseparators>

 You can use any string, such as a comma or a comma followed by a space.

This setting is only valid for integer, float, and currency data types.

 Note:

v The user must use the same separator in a given string. For example, if

you define both comma and space as valid separators, the user must

type either 1,000,000 or 1 000 000. Mixing the separators, as in 1,000 000,

is not allowed.

v If this setting is empty, it inherits the decimalseparator defined in the

presentation settings.

Default: a comma.

groupingseparators

Defines one or more symbols that are allowed to separate groups of

numbers (such as thousands in North America) during input. This is often

a comma, as shown:

 1,000,000

 List each separator in its own separator tag, as shown:

 <groupingseparators>

 <groupingseparator1

 >separator</groupingseparator1>

 ...

 <groupingseparatorn

 >separator</groupingseparatorn>

 </groupingseparators>

 You can use any string, such as a comma or a comma followed by a space,

with the keyword none representing no separator at all. This setting is only

valid for integer, float, and currency data types.

 Usage Details

v The user must use the same separator in a given string. For example, if

you define both comma and space as valid separators, the user must

type either 1,000,000 or 1 000 000. Mixing the separators, as in 1,000 000,

is not allowed.

v If this setting is left empty, it inherits the groupingseparator defined in

the presentation settings.

Default: a comma.

length Sets a range of lengths that the data entered must fall within. To do this,

you must include the <min> and <max> tags in your definition, as shown:

98

<length>

 <min>shortest length allowed</min>

 <max>longest length allowed</max>

 </length>

 For example, if you wanted all values to be between 4 and 7 characters in

length, you would set the min to 4 and the max to 7. This allows the user

to enter a value that is either 4 characters or 7 characters in length, as well

as all lengths in between.

 The length is calculated after all formatting has been applied, and will

include all formatting characters such as the negative sign, currency

symbols, and so on.

 If you add a length setting to a field, the field is treated as mandatory.

 Default: the maximum range of lengths allowed for the data type.

mandatory

Sets whether the user must enter a value. Valid settings are:

v on — The user must enter a value.

v off — The user need not enter a value.

This value works in conjunction with the required property for the linked

element in the XForms model. If either setting indicates that input is

mandatory, then it is mandatory.

 Default: the required property of the linked XForms data element, or off.

message

Sets the message that is displayed when the input is invalid. This can be

any text.

 Default: none.

patterns

Allows you to set one or more patterns for strings, date, or numbers that

are are valid as input. For example, you might want to constrain dates to

the following format: YYYY-MM-DD.

 You must define each pattern in its own <pattern> tag, as shown:

 <patterns>

 <pattern1>pattern</pattern1>

 ...

 <patternn>pattern</patternn>

 </patterns>

 To learn how to represent different patterns, refer to “Defining Patterns” on

page 101.

 If you define more than one patternref in the presentation settings, you

must define an equal number of patterns in the constraints. Each patternref

is then matched to the corresponding constraint pattern. For example, the

first patternref is matched to the first constraint pattern, the second patternref

is matched to the second constraint pattern, and so on. This allows you to

define a different pattern for each constraint.

 Note that unlike the template setting, the pattern setting will not show users

any of the text you include in your patterns, since there is no way to tell

which pattern the user will follow.

Details on Options and Array Elements 99

range Sets a numerical range that the data entered must fall within. To do this,

you must include the <low> and <high> tags in your definition, as shown:

 <range>

 <min>smalled number allowed</min>

 <max>highest number allowed</max>

 </range>

 The low and high values are inclusive. For example, if you wanted to

create a range from 1 to 100, you would set the low value to 1 and the

high value to 100. This allows the user to enter either 1 or 100, as well as

all values in between.

 If you set a range for a string, the data is evaluated on a character by

character basis. For example, you might set your low value to ″fg″ and

your high value to ″jk″. I this case, the first character entered would have

to be in the f-j range, and the second character would have to be in the g-k

range. This check ignores case.

 If you add a range setting to a field, the field is treated as mandatory.

 Default: the maximum range allowed for the data type.

template

Allows you to display symbols in the input area before the user enters

their data. This is useful if you want to show formatting placeholders, such

as parentheses for the area code in a phone number.

 To create a template, use a period to represent any 1 character that the user

types in. All other characters are shown to the user as typed.

 For example, if you create the following template:

 (...)...-....

 The user will see the following:

 () -

 Setting a template in no way limits the user input. If you want to limit the

user input, you must also use the patterns setting. Futhermore, you can

only set one template.

yearwindow

Sets how to interpret two digit dates. This provides two options for

interpreting dates:

v Fixed Date — You can specify a specific year, such as 70. All numbers

from that year and up are assumed to be in the 20th century (for

example, 1975). All numbers before that are assumed to be in the 21st

century (for example, 2004).

To set a fixed date, you must include the <fixedyear> tag as shown:

 <yearwindow>

 <fixedyear>the year</fixedyear>

 </yearwindow>

v Sliding Date — You can specify a range rather than a fixed date. This

means that the date on which the decision is based changes as time

passes. The date is calculated by taking the current date and subtracting

a number you specify. For example, if you set your range to 30 years

and it is 2004, your decision date would be 2004 - 30 = 1974. In this case,

100

all numbers from 74 and up would be in the 20th century, and all

numbers below 74 would be in the 21st century.

To set a sliding date, you must include the <factor> tag as shown:

 <yearwindow>

 <factor>range</factor>

 </yearwindow>

You can set either a fixed date or a sliding date, but not both. If you do set

both, the sliding date will override the fixed date.

 Default: a sliding date with a factor of 80.

Defining Patterns

When defining a pattern or patternref, you must create a template for that pattern.

For example, phone numbers commonly follow this template: (000)000-0000. The

following sections explain how to create the following patterns:

v Date Patterns

v Number Patterns

v String Patterns

Date Patterns

The following symbols are used to create date patterns:

 Symbol Description Example

G

The era, expressed as AD or BC. AD

y

The year. 1997

u

The extended year. 4601

M

The month. 11

d

The day of the month. 23

h

The hour for a twelve-hour clock (1-12). 11

H

The hour for a twenty-four hour clock (0-23). 23

m

The minute of the hour (1-59) 34

s

The second of the minute (1-59). 12

S

The fractional second, expressed as a decimal

value.

234

E

The day of the week, as text. Tuesday

e

The day of the week, as a number (1-7). 2

D

The day of the year (1-366). 234

F

The occurrence of that weekday in the month

(1-5). For example, the second Wednesday in

the month.

2

w

The week in the year (1-52). 27

W

The week in the month (1-5). 3

a

The meridiem, expressed as AM or PM. AM

Details on Options and Array Elements 101

Symbol Description Example

k

The hour in the day (1-24). 23

K

The hour in the day (0-11) 3

g

The Julian day. 2451334

A

The millisecond in the day. 69540000

’

Use to enclose text you want to display. ’Date=’

’’

Use to write a single quote as part of text. ’o’’clock’

When creating date patterns, you can repeat the placeholder to determine which

format to use. For example, a single e represents the day of the week as a single

digit, such as 3. Two e’s (ee) represents the day of the week as two digits, such as

03. Three E’s (EEE) represents the day of the week as short text, such as Wed. And

finally, four E’s (EEEE) represents the day of the week as full text, such as

Wednesday.

Number Patterns

The following symbols are used to create number patterns:

 Symbol Description Example

0

Use to specify a digit that must appear. For

example, 0.00 would require input with a

single digit before the decimal place, and two

digits after. Similarly, #0.00 would allow one

or more digits before the decimal place, and

two digits after.

#0.00

@

Use to specify the number of significant digits

to show. significant digits are the largest value

digits in the number. For example, in the

number 12345, the 1 is the most significant,

the 2 is the second most, and so on. Typing

that number into a template of @@@ would

produce the number 12300.

A significant digit is always shown, even if its

value is zero. Furthermore, you cannot use

this symbol with a decimal value.

@@@

Represents zero or more digits. For example,

#.# would accept any of the following values:

1, 1.1, 0.1, or 123.34.

#.#

.

Decimal separator. #.#

1-9

Each number represents a digit that must

appear, and is used to set the increment for

rounding. This means that #5 would round

the number to the nearest five. Similarly, #29

would round the number to the nearest

multiple of 29.

For example, if you set a pattern of #35 and

the user typed 138, the number would be

rounded to 140 (the nearest multiple of 35).

#5

102

Symbol Description Example

-

A negative indicator. Note that this is a

placeholder for the characters defined in the

negativeindicator setting. For example, if you

defined your negative indicator as

parentheses, then -#.# would result a value

like: (123.45).

-#.#

,

A separator indicator, representing the

character used to separate increments of one

thousand in numbers. Note that this is a

placeholder for the characters defined in the

separator setting. For example, if you declared

your separator as a comma followed by a

space, then 0,000 would result in a value like:

4, 000.

0,000

\u00A4

A currency indicator. Note that this is a

placeholder for the indicator defined in the

currencylocale setting. For example, if you

declared your currencylocale to be the US,

and your template was \u00A4#0.00, you

would get a value like: $534.23.

If this symbol appears twice, it is replaced by

the international currency symbol.

\u00A4#0.0

E

Separates the mantissa from the exponent in

scientific notation. For example, 0.#E# would

result in a value like: 1.23E4

Note that when using # in scientific notation,

this represents the number of digits that will

always appear after the decimal. So 0.# will

result in one digit after the decimal, while

0.### will result in three digits.

0.#E#

+

Use this to prefix positive exponents with the

plus sign. For example, 0.#E+# would result in

a value like: 1.34E+4.

0.#E+#

;

Separates the positive and negative versions

of a pattern. For example, if you wanted a

pattern of #.# or -#.#, you would declare:

#.#;-#.#

#.#;-#.#

%

Multiply the data by 100 and show as a

percentage. For example, if you set a template

of #% and entered a value of 0.12, you woud

get: 12%.

#%

\u2030

Multiply the data by 1000 and show as per

mille. For example, if you set a template of

#.#\u2030 and entered a value of .123, you

would get: 123 per mille.

#.#/u2030

*

Precedes a pad character, which you can use

to insert specific symbols. For example,

*0##.## would result in a value like: 012.23.

*0##.##

String Patterns

Details on Options and Array Elements 103

All string patterns are written with Unix style regular expressions. Regular

expressions are well-defined through a variety of public sources (such as

www.regular-expressions.info), and as such are not discussed in detail in this

document.

When using regular expressions, be aware that the patternrefs you set for the

presentation are intended to match corresponding patterns in your constraints. This

means that you can define groups in your constraints, and then refer to those

groups from the presentation setting using the standard $# notation.

Examples

This example specifies a field containing integer data with a range of values from

10 to 1,000 inclusive, and formatted with commas separating the thousands:

 <format>

 <datatype>integer</datatype>

 <presentation>

 <groupingseparator>,<groupingseparator>

 </presentation>

 <constraints>

 <range>

 <min>10</min>

 <max>1000</max>

 </range>

 </constraints>

 </format>

This example specifies a field that contains currency data that is mandatory. An

error message appears if the data is not entered correctly.

 <format>

 <datatype>currency</datatype>

 <constraints>

 <mandatory>on</mandatory>

 <message>Entry incorrect -- try again.</message>

 </constraints>

 </format>

This example specifies a field in which date data will be formatted as month,

day-of-month, and year (for example, November 23, 2004):

 <format>

 <datatype>date</datatype>

 <presentation>

 <style>long</style>

 </presentation>

 </format>

This example sets up a template and patterns for both presentation and constraints.

The template sets up a format of (###) ###-#### for a telephone number. This

means that when the field is first displayed, it will show the parentheses and the

dash to the user. The constraint pattern uses a regular expression to create the

same pattern, thereby limiting the input to match the template. Finally, the

presentation patternref uses a regular expression to define how the input should be

formatted when displayed on the screen. This expression refers to the groups

defined in the constraint pattern.

 <format>

 <datatype>string</datatype>

 <constraints>

 <template>(...) ...-....</template>

 <patterns>

 <pattern>\((\d{3})\)\s(\d{3})-(\d{4})</pattern>

104

</patterns>

 </constraints>

 <presentation>

 <patternrefs>

 <patternref>($1) $2-$3</patternref>

 </patternrefs>

 </presentation>

 </format>

Usage Details

 1. Default datatype: string.

 2. Default presentation:

v calendar — gregorian (en_US locale)

v casetype — none

v currencylocale — the locale of the form

v decimalseparator — period (.) (en_US locale)

v fractiondigits — maximum number of digits allowed by data type

v negativeindicator — minus sign (-) (en_US locale)

v pad — 0

v padcharacter — 0 (en_US locale)

v pattern — n/a

v round — up

v groupingseparator — comma (,) (en_US locale)

v showcurrency — on

v significantdigits — the maximum number of digits allowed for the data

type

v style — medium

Note: The default values for other locales are listed in the IBM Workplace

Forms Locale Specification for XFDL.

 3. Default constraints:

v casesensitive — off

v checks — none

v decimalseparator — period (.) (en_US locale)

v length — maximum range of lengths allowed for the data type

v mandatory — the required property of the linked XForms data element, or

off

v message — the <xforms:alert> setting for the item, if present.

v patterns — n/a

v range — the maximum range allowed by the data type

v groupingseparators — comma (,)

v template — n/a

v yearwindow — a sliding date with a factor of 30
 4. In some cases, it’s possible to create formatting that will have unpredictable

results. For example, if you specify that the grouping separator should be a

period, this may cause problems since the decimal separator is also a period.

Use good judgement when defining your formats.

Details on Options and Array Elements 105

5. All constraints are applied to the input data. This may create an item the user

cannot complete. For example, the combination of data type date and

constraint pattern of #.# creates such a situation. A date type cannot be

formatted as a decimal number.

 6. You should use caution if you are designing forms that use two digit dates.

While the yearwindow setting provides a mechanism for interpreting two digit

dates, the best solution is to use four digit dates.

 7. When applying a format to a combobox, list, or popup, the formatting will be

applied to the value of each cell linked to the item. Those cells that do not

pass the check will be flagged or filtered. If a cell passes the checks, its value

will be replaced with a formatted value before the item is displayed. The label

option for these cells will remain unaffected.

 8. When applying a format to a combobox, list, or popup item, a cell with an

empty value will fail all format checks but will still be selectable, even if input

is mandatory. This allows users to erase their previous choice (which will also

reset all formulas based on that choice). However, users will still need to

select a valid cell before they can submit the form.

 9. If any two comboboxes, lists, or popups use the same set of cells, they must

apply the same formatting.

10. The void data type disables a format line completely through the use of a

compute. Void formats never fail regardless of the checks in the format

statement.

11. For details on using the format option in buttons, see the Usage Details in the

button item description.

12. The message constraint overrides the <xforms:alert> setting for the item.

13. An item is mandatory if either the mandatory constraint is set to true or the

required property for a bound data element is set to true.

14. If an element in the XForms data model is both empty and invalid, then any

item on the form that is bound to that element is set to be mandatory.

formid

Defines a unique identifier for the form.

Syntax

 form title string provides a title for the form

serialnumber string provides a unique identifying string

for the form. This is generated by

an external program such as a form

design program.

 <formid>

 <title>form title</title>

 <serialnumber>serial number</serialnumber>

 <version>version number</version>

 </formid>

Note:

v serialnumber and version are mandatory; title is optional

106

version number number in the format AA.Bb.cc shows the major (AA), minor (Bb)

and maintenance (cc) numbers for

the form. This is generated by an

external program such as a form

design program, but can also be set

manually.

Available In

form global

Example

This sample shows how the formid option appears in the global characteristics of a

form.

 <formid>

 <title>Admin_Form</title>

 <serialnumber>{94EC8BA0-7D33-11D2-B5E3-0060}</serialnumber>

 <version>4.8.2</version>

 </formid>

Usage Details

1. Defaults:

v title: none

v serialnumber: none

v version : 1.0.0

2. This option is intended for use with form design programs and licensign

models.

fullname

Used in a signature item to record the fully qualified name of the signer. This

name is retrieved from the digital certificate used to the sign the form.

Syntax

 name string the fully qualified name of the signer, as supplied by the

digital certificate used to sign the form

Available In

signature

Example

This sample shows a fullname option as part of a signature item:

 <signature sid="empsignature">

 <signer>Jane D Smith, jsmith@insurance.com</signer>

 <fullname>

 "Verisign, Inc.", Verisign Trust Network,

 <fullname>name</fullname>

Details on Options and Array Elements 107

"www.verisign.com/repository/RPA Incorp. by

 Ref.,LIAB.LTD(c)98", Persona Not Validated,

 Digital ID Class 1 - Microsoft, Jane D Smith,

 jsmith@insurance.com

 </fullname>

 </signature>

Usage Details

1. This option is added to the form during the signing process, and is created by

the software that enables signing (such as a form viewer).

group

Provides a way of associating related items. There are two ways of using this

option. In the first case, it enables you to to create groups of cells or radio buttons.

In the second case, the group option enables you to populate lists, popups, and

comboboxes by referencing a group of cells. Items with the same group reference

are considered members of the same group.

Syntax

 group reference string identifies the group. Can be one of:

v group_name for groups on the current page

v page_sid.group_name for groups on other pages

Available In

cell, combobox, list, popup, radio

Example

In the following sample, the group option creates a group called ″LIST1_GROUP″

containing the cell items ″CELL1″ and ″CELL2″.

 <cell sid="CELL1">

 <group>LIST1_GROUP</group>

 <value>red</value>

 <type>select</type>

 </cell>

 <cell sid="CELL2">

 <group>LIST1_GROUP</group>

 <value>green</value>

 <type>select</type>

 </cell>

In the following code, the group option is used to populate the list item with the

cells from the the preceding sample.

 <list sid="LIST1">

 <group>LIST1_GROUP</group>

 <label>Colors</label>

 <value></value>

 </list>

 <group>group reference</group>

108

Usage Details

1. Default: none

2. The association of cells or radio buttons into groups cannot span multiple

pages. That is, all the cells or radio buttons assigned to a given group must

belong to the same page. On the other hand, you are allowed to populate a list,

popup, or combobox with a group of cells defined on another page, as long as

you specify the page sid in the group reference.

3. List and popup items are populated with cells that have the same group

reference as the item. It is possible to have multiple list and popup items with

the same group reference. In this way, the same group of cells can populate

more than one list or popup.

4. All radio items having the same group reference will form a mutually exclusive

group.

help

Points to the help message for the item. The item reference identifies the help item

containing the help message. There can be many items pointing to the same help

message.

Syntax

 item reference string a reference to the help item that contains the help

message.

Available In

button, check, checkgroup, combobox, field, label, list, popup, radio, radiogroup,

slider

Example

This sample points to the help item general_help defined on the page called

page_1.

 <help>page_1.general_help</help>

Usage Details

1. Default

v XFDL: none

v XForms: if no help item is referenced, then the concatenated value of the

<xforms:hint> and <xforms:help> settings are used to create a help message

that is shown for the item. For more information about these settings, refer to

“Metadata Sub-Options” on page 210.
2. The help option overrides the <xforms:hint> and <xforms:help> settings for the

item.

 <help>item reference</help>

Details on Options and Array Elements 109

image

Associates an image with an item. The item reference identifies the data item

containing the image. This image replaces any text label if the viewer is able to

display images.

Syntax

 item reference string identifies the data item

Available In

button, label

Example

This sample points to the data item company_logo defined on the page called

page_lst.

 

Usage Details

1. Default: none

2. Use this option to associate images with button and label items.

3. If an enclosure mechanism is used to replace an image stored in a data item

with a new image, then buttons and labels whose image option is set to the

identifier of the image data item will be updated to display the new image. For

details, see the data option description.

4. Use the imagemode option to control the display behavior of the image.

imagemode

Defines how the image will be displayed in the item.

Syntax

 image mode clip if the image is smaller than the item, the image is

centered in the item. Otherwise, the image is placed in

the item from the top left corner and the parts of the

image that extend past the item’s bounding box are cut

off.

resize image is placed in the item from the top left corner. The

image is then expanded or contracted in both directions

so that it fits the item exactly.

 

 <imagemode>image mode</imagemode>

110

scale if the image is smaller than the item, the image is

centered in the item. Otherwise, the image is placed in

the item from the top left corner. The image is expanded

or contracted, keeping the original aspect ratio, to the

point at which one of the sides fits snugly in the item

and the other side is smaller than the item.

Available In

button, label

Example

This sample displays a company logo as a resized image.

 

 <imagemode>resize</imagemode>

Usage Details

1. Default: resize

2. An imagemode of clip draws the image in the upper left corner of the item. If

the image is too big for the item’s space, and the image is clipped at the item’s

edge. If the image is smaller than the item in either horizontally or vertically,

the image is centered appropriately.

3. An imagemode of resize resizes the image to be the exact size of the item,

whether that means an increase in size, decrease in size, or an increase in one

dimension and decrease in the other.

4. An imagemode of scale also resizes the image to fit the item, except that it will

preserve the aspect ratio of the original image. If either dimension of the image

is larger than the item, then the image will be made small enough to fit in the

given space as follows:

v The larger dimension will fit snugly in the space.

v The other dimension will be scaled by the same factor.

Likewise, if both dimensions of the image are smaller than the space given

by the button or label, then the image will be expanded to fit the given space

as follows:

v The larger dimension will fit snugly in the space.

v The other dimension will be scaled by the same factor.
5. Use this option with the image option to control the image’s appearance with

button and label items.

itemfirst

Identifies the first item on the page, excluding the global item. An item is first

when it appears first in the build order (in other words, it is first in the XFDL text).

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Details on Options and Array Elements 111

Syntax

 item reference string a reference to the first item on the page, excluding the

global item.

Available In

page global

Example

This sample shows how the itemfirst option appears in the page globals of a form.

 <page sid="PAGE1">

 <global sid="global">

 <itemfirst>LABEL1</itemfirst>

 </global>

 </page>

Usage Details

1. Defaults: none

2. The itemfirst option is not saved or transmitted with form descriptions.

itemlast

Identifies the last item on the page, excluding the global item. An item is last when

it appears last in the build order (in other words, it is last in the XFDL text).

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 item reference string a reference to the last item on the page, excluding the

global item.

Available In

page global

Example

This sample shows how the itemlast option appears in the page globals of a form.

 <itemfirst>item reference</itemfirst>

 <itemlast>item reference</itemlast>

112

<page sid="PAGE1">

 <global sid="global">

 <itemlast>BUTTON2</itemlast>

 </global>

 </page>

Usage Details

1. Defaults: none

2. The itemlast option is not saved or transmitted with form descriptions.

itemlocation

Serves two purposes:

v It specifies the location of an item in the page layout.

v It allows you set the size of the item, either in relation to another item, or in

absolute terms.

Itemlocation offers three ways to position items on the page: absolute positioning,

relative positioning, and offset positioning. Absolute positioning anchors the top

left corner of an item to a particular location on the page, using an x-y coordinate.

For example, you might place an item 10 pixels in from the left margin, and 10

pixels down from the top of the page. Relative positioning places items on the

page in relation to one another. For example, it might place one item below

another. Finally, offset positioning allows you to place an item on the page relative

to another item, and then move it a set amount. For example, you might place an

item below another, and then move it 10 pixels to the right.

Itemlocation also provides two ways to the set the size for an item: relative

positioning and extent sizing. Relative positioning allows you set the size of an

item relative to another item on the page. For example, you might expand an item

so that it’s right edge lines up with the right edge of a different item. Extent sizing

allows you to set the absolute size of an item, to the pixels. For example, you

might set an item to be 100 pixels wide and 30 pixels tall.

Note that you can also combine these methods for positioning and sizing. For

example, you might place an item on the form using absolute positioning, and

then place a second item below the first using relative positioning.

Syntax

 settings (see below) v the setting describes where to position the item and

how to size it. This can take four forms: absolute

positioning, relative positioning, offset positioning, and

extent sizing. These methods are described in more

detail below.

 <itemlocation>

 settings

 </itemlocation>

Details on Options and Array Elements 113

Available In

box, button, check, checkgroup, field, label, line, list, popup, combobox, radio,

radiogroup, slider, spacer

Absolute Positioning

Absolute positioning places the item at a specific x-y coordinate on the page. This

location is measured from the top left corrner of the page to the top left corner of

the item, and is expressed in pixels. When using absolute positioning, the syntax

is:

 x-coordinate short (must be positive) v the horizontal distance in pixels from the

form’s top left corner

y-coordinate short (must be positive) v the vertical distance in pixels from the

form’s top left corner

Example

This sample places a label on the page so that its top left corner is 20 pixels in

from the page’s left edge, and 30 pixels down from the top of the page.

 <label sid="persInfo_label">

 <value>Personal Information</value>

 <itemlocation>

 <x>20</x>

 <y>30</y>

 </itemlocation>

 </label>

Relative Positioning

Relative positioning allows an item to be placed relative to the location of another

item. It also allows for the specification of an item’s size relative to the size and

location of other items. The other items (called reference points or anchor items)

must be defined earlier in the XFDL form description before they can be used in an

itemlocation statement.

When using the relative positioning scheme, the first external item placed on the

form appears in the top left corner. It cannot be placed in relation to any other

item, since no other items exist. All subsequent items can be placed in relation to

items that appear before them in the form’s description. If no relational position for

an item is specified, it will appear below the previous item, with its left edge

against the page’s left edge.

When using relative positioning, the syntax is:

 <itemlocation>

 <x>x-coordinate</x>

 <y>y-coordinate</y>

 </itemlocation>

114

modifier (see below) v determines where in relation to the reference

point the item is placed. For example, you can

specify that the item goes ″below″ the reference

item. The available modifiers are described in

more detail below.

item reference string v identifies the reference point item. This item

must be on the same page, or within the same

toolbar, as the item you are placing.

Modifiers

There are three types of modifiers:

v position modifiers - used to position an item

v alignment modifiers - used to align one edge of an item (relative positioning

only)

v expansion modifiers - used to alter an item’s size (relative positioning only)

Position Modifiers

above Places item a small distance above reference point item; aligns left edges.

after Places item a small distance after reference point item; aligns top edges.

before Places item a small distance before reference point item; aligns top edges.

below places item a small distance below reference point item; aligns left edges.

offset Places item so that it is offset from its original location by the measurement

specified in the x-coordinate and y-coordinate settings.

within

Assigns item to the toolbar. Note that the within modifier must appear

before any other modifiers.

Alignment Modifiers

alignb2b

Aligns bottom edge of item with bottom edge of reference point item.

alignb2c

Aligns bottom edge of item with vertical center of reference point item.

alignb2t

Aligns bottom edge of item with top edge of reference point item.

 <itemlocation>

 <modifier>item reference</modifier>

 </itemlocation>

or

 <itemlocation>

 <modifier>

 <itemref>item reference</itemref>

 <itemref>item reference</itemref>

 </modifier>

 </itemlocation>

Note:

v the second syntax is used when an item is positioned between two other items.

Details on Options and Array Elements 115

alignc2b

Aligns vertical center of item with bottom edge of reference point item.

alignc2l

Aligns horizontal center of item with left edge of reference point item.

alignc2r

Aligns horizontal center of item with right edge of reference point item.

alignc2t

aligns vertical center of item with top edge of reference point item.

alignhoriz between

Aligns horizontal center of item between right edge of first reference point

item and left edge of second reference point item.

alignhorizc2c

Aligns horizontal center of item with horizontal center of reference point

item; center below. Note that this modifier requires two reference points.

alignl2c

Aligns left edge of item with horizontal center of reference point item.

alignl2l

Aligns left edge of item with left edge of reference point item.

alignl2r

Aligns left edge of item with right edge of reference point item.

alignr2c

Aligns right edge of item with horizontal center of reference point item.

alignr2l

Aligns right edge of item with left edge of reference point item.

alignr2r

Aligns right edge of item with right edge of reference point item.

alignt2b

aligns top edge of item with bottom edge of reference point item.

alignt2c

Aligns top edge of item with vertical center of reference point item.

alignt2t

Aligns top edge of item with top edge of reference point item.

alignvertbetween

Aligns vertical center of item between bottom edge of first reference point

item and top edge of second reference point item. Note that this modifier

requires two reference points.

alignvertc2c

Aligns vertical center of item with vertical center of reference point item.

Expansion Modifiers

expandb2b

Aligns bottom edge of item with bottom edge of reference point item.

expandb2c

Holds top edge of item constant and expands bottom edge to align with

vertical center of reference point item.

116

expandb2t

Holds top edge of item constant and expands bottom edge to align with

top edge of reference point item.

expandl2c

Holds right edge of item constant and expands left edge to align with

horizontal center of reference point item.

expandl2l

Holds right edge of item constant and expands left edge to align with left

edge of reference point item.

expandl2r

Holds right edge of item constant and expands left edge to align with right

edge of reference point item.

expandr2c

Holds left edge of item constant and expands right edge to align with

horizontal center of reference point item.

expandr2l

Holds left edge of item constant and expands right edge to align with left

edge of reference point item.

expandr2r

Holds left edge of item constant and expands right edge to align with right

edge of reference point item.

expandt2b

Holds bottom edge of item constant and expands top edge to align with

bottom edge of reference point item.

expandt2c

Holds bottom edge of item constant and expands top edge to align with

vertical center of reference point item.

expandt2t

Holds bottom edge of item constant and expands top edge to align with

top edge of reference point item.

Examples

This sample aligns the vertical center of an item between the bottom edge of the

item label_one and the top edge of the item label_two.

 <itemlocation>

 <alignvertbetween>

 <itemref>label_one</itemref>

 <itemref>label_two</itemref>

 </alignvertbetween>

 </itemlocation>

This sample aligns the item’s left edge with the center of item the_firm and

expands the right edge to align with the right edge of the same reference item

(the_firm).

 <itemlocation>

 <alignl2c>the_firm</alignl2c>

 <expandr2r>the_firm</expandr2r>

 </itemlocation>

This sample assigns an item to the toolbar main_toolbar and positions it under the

company logo company_logo.

Details on Options and Array Elements 117

<itemlocation>

 <within>main_toolbar</within>

 <below>company_logo</below>

 </itemlocation>

Offset Positioning

The relative positioning scheme also allows an item to be offset from its original

position, by a particular number of pixels. This is a quick way to create an

indented layout on a form. You can offset an item in any of these four directions:

right, left, up, down. The offset is expressed as an x and y value, and follows the

relative positioning statement, as shown:

 relative positioning (see above) v sets the position of the item relative to one or

more items on the form.

x-offset integer v the number of pixels to move the item along the

x axis. A positive number moves the item to the

right, a negative number moves the item to the

left.

y-offset integer v the number of pixels to move the item along the

y axis. A positive number moves the item down,

a negative number moves the item up.

Example

This sample places an item below a label called persInfo_label, and then uses offset

to move the item 15 pixels to the left and 20 pixels down:

 <itemlocation>

 <below>persInfo_label</below>

 <offsetx>-15</offsetx>

 <offsety>20</offsety>

 </itemlocation>

Extent Sizing

Extent sizing provides a different way to set the size of an item, and works in

conjunction with either absolute or relative positioning. Unlike the size option,

which sets the size of an item in terms of the number of internal characters, you

can use extent sizing to set the absolute size of the exterior, or bounding box, of an

item. Futhermore, using extent sizing overrides the size option.

Extent sizing sets the size of an item in pixels, using separate values for the width

and the height. When an extent is specified, the item’s top left corner will stay

where it is, and the item will be resized so that it is as many pixels wide as the

width value and as many pixels tall as the height value.

Extent sizing uses the following syntax:

 <itemlocation>

 relative positioning

 <offsetx>x-offset</offsetx>

 <offsety>y-offset</offsety>

 </itemlocation>

118

positioning (see above) v sets the position of the item on the form. This

can be either absolute or relative positioning.

width integer v the width of the item, in pixels.

height integer v the height of the item, in pixels.

Example

This sample shows an extent setting on a field that has been placed using absolute

positioning. The field is first placed at an x-y coordinate of 10, 10. It is then sized

to be 300 pixels wide and 30 pixels high.

 <itemlocation>

 <x>10</x>

 <y>10</y>

 <width>300</width>

 <height>30</height>

 </itemlocation>

Usage Details

1. Default item location:

v in the body of the page

v under the previous item in the page definition

v aligned along the left margin of the page
2. Itemlocation overrides size. If the itemlocation affects the size of the item (using

extent sizing) and the size option has also been set for the item, the itemlocation

will determine the size.

3. There are two measurements for sizing items when using absolute positoning:

in pixels (using extent sizing) or in characters (using the size option). If you

choose to size items using characters, you should be aware that different

platforms and video cards use differently sized fonts. Even with so-called

cross-platform fonts, an item’s actual size (in pixels) might change from one

platform to the next if it is sized using character height and width. As a result,

absolutely positioned items sized with characters may have overlap or sizing

problems if displayed on different platforms, different video cards, or in both

small font and large font modes. To ensure that forms appear the same on any

platform, and under any video card or font mode while using absolute

positioning, size items in pixels or inches.

4. An item’s vertical center is halfway between the top and bottom edges. The

horizontal center is halfway between the left and right edges.

itemnext

Identifies the next item on the page, excluding the global item. An item is next

when it appears next in the build order (in other words, it is next in the XFDL

text).

 <itemlocation>

 positioning

 <width>width</width>

 <height>height</height>

 </itemlocation>

Details on Options and Array Elements 119

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 item reference string a reference to the next item on the page, excluding

the global item.

Available In

action, box, button, cell, check, checkgroup, combobox, data, field, help, label, line,

list, popup, radio, radiogroup, signature, slider, spacer, toolbar

Example

The following example shows what two labels look like in memory, with the

itemnext option inserted in each:

 <label sid="LABEL2">

 <value>This is a label.</value>

 <itemnext>LABEL3</itemnext>

 </label>

 <label sid="LABEL3">

 <value>This is a label.</value>

 <itemnext>LABEL4</itemnext>

 </label>

You can use computes to determine the next item on the form. For example, the

following code shows a label that uses a compute set its value. The compute goes

to the item that currently has the focus, then copies the value of the itemnext option

from that item:

 <label sid="nextItemName">

 <value compute="PAGE1.global.focuseditem->itemnext"></value>

 </label>

Usage Details

1. Defaults: none

2. If the itemnext option is in the last item on the page, it points to the first item

on the page (excluding the global item).

3. When the itemnext option is used in items that appear in table rows:

v Each item points to the next item in the row.

v The last item in the row points to the first item in the next row.

v The last item in the table it points to the first item following the table.
4. When working with panes, tables, radiogroups, or checkgroups:

v The item that precedes a table, pane, radiogroup, or checkgroup points to the

table, pane, radiogroup, or checkgroup.

v The last item generated by a pane, table, radiogroup, or checkgroup points to

the first item following the containing item.
5. The itemnext option is not saved or transmitted with form descriptions.

 <itemnext>item reference</itemnext>

120

itemprevious

Identifies the previous item on the page, excluding the global item. An item is

previous when it immediately precedes the current item in the build order (in other

words, it comes immediately before the current item in the XFDL text).

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 item reference string a reference to the previous item on the page,

excluding the global item.

Available In

action, box, button, cell, check, checkgroup, combobox, data, field, help, label, line,

list, popup, radio, radiogroup, signature, slider, spacer, toolbar

Example

The following example shows what two labels look like in memory, with the

itemprevious option inserted in each:

 <label sid="LABEL2">

 <value>This is a label.</value>

 <itemprevious>LABEL1</itemprevious>

 </label>

 <label sid="LABEL3">

 <value>This is a label.</value>

 <itemprevious>LABEL2</itemprevious>

 </label>

You can use computes to determine the previous item on the form. For example,

the following code shows a label that uses a compute to set its value. The compute

goes to the item that currently has the focus, then copies the value of the

itemprevious option from that item:

 <label sid="nextItemName">

 <value compute="PAGE1.global.focuseditem->itemprevious"></value>

 </label>

Usage Details

1. Defaults: none

2. If the itemprevious option is in the first item on the page (excluding the global

item), it points to the last item on the page.

3. When the itemprevious option is used in items that appear in table rows:

v Each item points to the previous item in the row.

v The first item in a row points to the last item in the previous row.

v The first item in the table points to the table.
4. The itemprevious option is not saved or transmitted with form descriptions.

 <itemprevious>item reference</itemprevious>

Details on Options and Array Elements 121

justify

Aligns lines of text within the space an item occupies.

Syntax

 alignment left align each line’s left edge along the left margin

right align each line’s right edge along the right margin

center align the center of each line with the center of the item

Available In

button, combobox, field, label, popup

Example

This sample aligns the text in the center of the item.

 <justify>center</justify>

Usage Details

1. Default: varies depending on the item

v button and popup items: center

v combobox, label and field items: left

2. The built-in labels (label option) for items do not support a justification option.

3. If you center or right justify a field with a scrollhoriz of never, the field will

wordwrap if you type beyond the edge of the field. However, the new line of

text will continue to be right or center justified.

keypress

Contains the last keystroke made by the user in the focused item, page, or form. A

keypress option is ignored if no keypress has been established at the level of focus.

If the value of a keypress option is ignored at the item level, it passes up to the

page level, and if ignored at the page level, it passes up to the form level. This

option allows for the creation of a default button (shortcut key) on a page or a

form.

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 Key pressed ESC escape key

 <justify>alignment</justify>

 <keypress>key pressed</keypress>

122

ENTER enter key

NUMPAD_ ENTER number pad enter key

″ ″ space bar

F[1-12] function key (can be any key from F1 to

F12)

any keyboard char any key on the keyboard

Available In

button, field, combobox, popup, list, radio, check, page global, form global

Example

The following example shows how you can set the keypress option to respond to

the F7 key. When the form’s user presses the F7 key, it activates the CancelButton’s

cancel action and cancels the form.

 <button sid="CancelButton">

 <type>cancel</type>

 <value>Cancel</value>

 <custom:myoption compute="toggle(global.global.keypress,

 ’’, ’F7’) == ’1’ ? set (’CancelButton.activated’,’on’)

 : ’’"></custom:myoption>

 </button>

Usage Details

1. Default: none

2. The keypress option enables the use of a default button or action on the form.

3. You cannot place a compute in the activated option of a button. You must place

it in a custom option.

4. The keypress option is not saved or transmitted with form descriptions.

label

Specifies a text label for an item. The label usually appears above the item and

aligned with its left margin. For popup items, the label appears inside the item

when no selection has been made.

Syntax

 label text string the text of the label

Available In

cell, check, checkgroup, combobox, field, list, pane, popup, radio, radiogroup,

slider, spacer, page global, form global

 <label>label text</label>

Details on Options and Array Elements 123

Example

This sample defines a typical label.

 <label>Student Registration Form</label>

Usage Details

1. Default:

v XFDL: none

v XForms: the value of the xforms:label option.
2. If an item contains both a label option and an xforms:label option, the XFDL label

option takes precedence.

3. The label defined in a label option has a transparent background by default. To

display a particular color behind the label, set the labelbgcolor option.

4. If used in the page global, the label option sets the title of the page as it appears

in the title bar of the window displaying the form. If used in the form global,

the label option sets the default title for all pages.

5. Multiple line labels require a carriage return in the code where you want it to

appear in the label. For example:

 <label>This label spans

 two lines.</label>

Note that not all items allows multi-line labels.

labelbgcolor

Defines the background color for the label specified in the label option.

Syntax

 color special The color may be expressed in any of the following formats:

v Comma-separated RGB values. For example:

 192,192,192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

check, checkgroup, combobox, field, list, pane, radio, radiogroup, slider

Examples

These samples all set the background color to red.

 <labelbgcolor>red</labelbgcolor>

 <labelbgcolor>255,0,0</labelbgcolor>

 <labelbgcolor>#FF0000</labelbgcolor>

 <labelbgcolor>color</labelbgcolor>

124

Usage Details

1. Default: transparent

This means that a label option will always be transparent unless a color is

specified (if no color is specified, the label background color will be the same

as the page background color or an underlying box, if there is one).

labelborder

Defines whether there is a border around the label specified in the label option.

Syntax

 border on item has a border

off item does not have a border

Available In

check, checkgroup, combobox, field, list, radio, radiogroup, slider

Example

This sample sets the the label to have a border:

 <labelborder>on</labelborder>

Usage Details

1. Default: off

2. The border is always one pixel in width.

labelfontcolor

Defines the font color for the label specified in the label option.

 <labelborder>status</labelborder>

Details on Options and Array Elements 125

Syntax

 color special The color may be expressed in any of the following

formats:

v Comma-separated RGB values. For example:

 192,192,192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

check, checkgroup, combobox, field, list, pane, radio, radiogroup, slider

Examples

These samples both set the font color to green1:

 <labelfontcolor>green</labelfontcolor>

 <labelfontcolor>0,255,0</labelfontcolor>

 <labelfontcolor>#008000</labelfontcolor>

Usage Details

1. Defaults first to page setting for fontcolor, then to the form setting for fontcolor.

If there is no fontcolor setting at the page or form level, the default is black.

labelfontinfo

Defines the font name, point size, and font characteristics for the label specified in

the label option.

Syntax

 font name string the name of the font

point size unsigned byte the size of the font

 <labelfontcolor>color</labelfontcolor>

 <labelfontinfo>

 <fontname>font name</fontname>

 <size>point size</size>

 <effect>effect1</effect>

 ...

 <effect>effectn</effect>

 </labelfontinfo>

Note:

v effects are optional.

126

effect string Can be any of the following:

v plain — use plain face font.

v bold — use bold face font.

v underline — use underlined font.

v italic — use italic font.

Available In

check, checkgroup, combobox, field, list, pane, radio, radiogroup, slider

Example

This sample sets the font information to Palatino 12, plain (the default), underlined

in the ANSI character set.

 <labelfontinfo>

 <fontname>Palatino</fontname>

 <size>12</size>

 <effect>underline</effect>

 </labelfontinfo>

Usage Details

1. Defaults first to page setting for fontinfo, then to the form setting for fontinfo. If

neither setting exists, then the defaults are:

v font name: Helvetica

v point size: 8

v weight: plain

v effects: not underlined

v form: not italics

2. If any of the font info settings are invalid, then the defaults are used.

3. The size option calculates item size using the font’s average character width.

Therefore, choice of font affects item width.

4. XFDL supports the following fonts and font sizes:

v Fonts: Courier, Times, Symbol (symbol), Helvetica, and Palatino.

v Sizes: 8, 9, 10, 11, 12, 14, 16, 18, 24, 36, 48.
5. Other fonts and font sizes may be used. However, especially for cross-platform

Internet applications, it is best to choose from the ones cited above since they

are guaranteed to work.

last

Identifies the last item in a repeat, group, or switch. This is the item that receives

the focus when the user tabs backward into a group, a particular case, or a new

row in a repeat.

This option affects the tab order in the following ways:

v When the user tabs backward into a table or pane, the focus goes to this item. In

the case of a table, the focus goes to this item in the last row.

v When the user tabs backward from the beginning of a row, the focus goes to this

item in the previous row or to the item that precedes the table or pane.

Details on Options and Array Elements 127

v When the user tabs forward from this item, the focus goes to the next row or to

the item that follows the table or pane.

Syntax

 item reference string an XFDL reference to the last item in the last row of a

table or the last item in a pane.

Available In

pane, table

Example

The following example shows what a table might look like in memory, once the

first option has been created. In this case, the first option contains a reference to the

last LineTotal field in the table:

 <table sid="itemsTable">

 <first>Product</first>

 <last>Qty</last>

 <xforms:repeat nodeset="order/row">

 <field sid="Qty">

 <previous>Product</previous>

 <xforms:input ref="qty">

 <xforms:label></xforms:label>

 </xforms:input>

 </field>

 <popup sid="Product">

 <next>Qty</next>

 <xforms:select1 appearance="minimal" ref="product">

 <xforms:label>Choose product</xforms:label>

 <xforms:item>

 <xforms:label>Widget</xforms:label>

 <xforms:value>widget</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Gadget</xforms:label>

 <xforms:value>gadget</xforms:value>

 </xforms:item>

 </xforms:select1>

 </popup>

 <label sid="LineTotal">

 <xforms:output ref="lineTotal"/>

 </label>

 </xforms:repeat>

 </table>

In this case, if the user tabs backward into the table, the focus goes to the Qty field

on the last row. When the user tabs to the previous row, the focus goes to the Qty

field in that row.

Usage Details

1. Default: last item in the build order of a repeat, group, or case

2. When a page contains an xforms:switch, this option is not effective unless all

cases contain an elmement with the same sid that is identified as last.

 <last>item reference</last>

128

layoutinfo

This option records location information for all visible signed items. A hash is

taken of each page containing a signed item, and this hash includes positioning

information for all the signed items relative to each other in those pages.

Syntax

 page sid string the scope ID of the page you are hashing.

pagehash string the hash of the page.

Available In

signature

Example

In the following example, the signature item includes hashes for the three pages on

which items were signed:

 <signature sid="signature1">

 <layoutinfo>

 <pagehashes>

 <pagehash>

 <pageref>PAGE1</pageref>

 <hash encoding="base64">pJAdX7+zh9+zEe</hash>

 </pagehash>

 <pagehash>

 <pageref>PAGE2</pageref>

 <hash encoding="base64">s+tHT+SElktqw4sod5</hash>

 </pagehash>

 <pagehash>

 <pageref>PAGE3</pageref>

 <hash encoding="base64">Jo13Ds+eth3EsSGE</hash>

 </pagehash>

 </pagehashes>

 </layoutinfo>

 </signature>

Usage Details

1. This option helps ensure the security of your forms when you have signed

items that are positioned using relative positioning, and unsigned reference

items. Reference items are items on which the relative positioning of other items

is based. Without layoutinfo, it is possible to move signed items on the form -

 <layoutinfo>

 <pagehashes>

 <pagehash>

 <pageref>page sid1</pageref>

 <hash>pagehash1</hash>

 </pagehash>

 ...

 <pagehash>

 <pageref>page sidn</pageref>

 <hash>pagehashn</hash>

 </pagehash>

 </pagehashes>

 </layoutinfo>

Details on Options and Array Elements 129

without breaking the signature - by moving their unsigned reference items. By

using layoutinfo to record the position of the signed items relative to each

other, you can detect this form of tampering.

linespacing

This option adjusts the spacing between lines of text. This sets on offset value,

which will add to or subtract from the default spacing. For example, a value of 1

will add one pixel to the space between each line, while a value of -1 will remove

one pixel from the space between each line.

Syntax

 offset integer the offset measured in pixels. This can be a positive or

negative integer, or a value of 0 for no offset.

Available In

button, label, spacer

Example

In the following example, the linespacing for a label is set to 12, which will create

a large amount of space between lines:

 <label sid="LABEL1">

 <size>

 <width>10</width>

 <height>5</height>

 </size>

 <value>

 </value>

 <linespacing>12</linespacing>

 </label>

Usage Details

1. Default: 0.

2. When using a negative offset, the offset cannot be larger than the size of the

font (that is, the second line of text cannot be moved higher than the first line).

For example, if the font was 12 pixels high, the offset could not be larger than

-12.

3. When using a positive offset, there is no limit to the size of the offset.

4. For buttons and labels, the linespacing affects the text in the value option. For

spacers, the linespacing affects the text in the label option.

 <linespacing>offset</linespacing>

130

mimedata

Contains the actual data associated with a data item or a signature item. It can be

binary data or the contents of an enclosed file. The data is encoded in base64

format, so that even forms containing binary data can be viewed in a text editor.

When the data is needed by the form, it is decoded automatically from base64 back

to its native format.

Data may also be compressed before base64 encoding, allowing an item to store a

larger block of data.

About MIME data in signature items

The MIME data contains the contents of a signature. An XFDL generator must

create it as follows:

1. Using the signature filter instructions in the associated signature button, create

a plain-text version of the form or portion of the form to be signed.

2. Using the instructions in the signature button’s signformat option, create a hash

of the plain-text description.

3. sign the hash with the signer’s private key.

4. Include a binary represenation of the signature (as generated by the signature

engine) in the mimedata option.

Syntax

 format string the format in which to encode the data. Valid formats are:

v base64 — a base 64 textual representation of the data.

v base64-gzip — a base 64 textual represenation of the

data after it has been gzip compressed.

MIME data string the binary data or enclosed file contents

Available In

data, signature

Example

This sample assigns some encoded data to the mimedata option:

 <mimedata encoding="base64-gzip">

 R0lGODdhYABPAPAAAP///wAAACwAAAAAYABPAAAC/4SPqcvtD02Y

 Art68+Y7im7ku2KkzXnOzh9v7qNw+k+TbDoLFTvCSPzMrS2YzmTE

 </mimedata>

This sample shows a mimedata option in a digital signature:

 <signature sid="empsignature">

 <signformat>application/vnd.xfdl</signformat>

 <signer>Jane D Smith, jsmith@insurance.com</signer>

 <signature>Page1.empsignature</signature>

 <signitemrefs>

 <filter>omit</filter>

 <mimedata encoding="format">MIME data</mimedata>

Details on Options and Array Elements 131

<itemref>Page1.mgrSigButton</itemref>

 <itemref>Page1.admSigButton</itemref>

 <itemref>Page1.empsignature</itemref>

 <itemref>Page1.mgrsignature</itemref>

 <itemref>Page1.admsignature</itemref>

 </signitemrefs>

 <!-- The items listed above MUST have itemlocation

 options with absolute and extent as the last

 settings in order for the filter below to

 be sufficient in terms of security -->

 <signoptionrefs>

 <filter>keep</filter>

 <optionref>PAGE1.mgrSigButton.itemlocation</optionref>

 <optionref>PAGE1.admSigButton.itemlocation</optionref>

 <optionref>PAGE1.empsignature.itemlocation</optionref>

 <optionref>PAGE1.mgrsignature.itemlocation</optionref>

 <optionref>PAGE1.admsignature.itemlocation</optionref>

 </signoptionrefs>

 <signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>coordinates</optiontype>

 </signoptions>

 <mimedata encoding="base64">

 MIIFMgYJKoZIhvcNACooIIFIzCCBR8CAQExDzANBgkgAQUFADA

 LB\ngkqhkiG9w0BBwGgggQZMCA36gAwSRiADjdhfHJl6hMrc5D

 ySSP+X5j\nANfBGSOI\n9w0BAQQwDwYDVQQHEwhJbmRlcm5lqw

 dDEXMBUGA1UEChM\nOVmVyaVNpZ24sIEluYy4xNDAKnqweaftn

 1ZlcmlTaWduIENsYXNzIDEgQ0Eg\nLSJbmRdWFsIFN1YnNjcml

 iyZXIwHhcNOTgwMTI3MwMDAwOTgwM\M1OTU5WjCCARExETA

 </mimedata>

 </signature>

Usage Details

1. Default: none

2. Base64 encoding transforms the data into a format that can be processed easily

by text editors, e-mail applications, and so on. Converting data to base64

format ensures the resulting string contains no characters requiring an escape

sequence.

3. Base64-gzip encoding compresses the data before transforming it to base64

format.

4. For signatures: because the signer’s public key is included in the MIME data, a

subsequent program can verify a signature without requiring that the signer’s

key be previously installed.

5. For signatures: the mimedata option in a signature item is always omitted from

the signature represented by that item, regardless of the signature filters in use.

This is done because the mimedata is not populated with the signature

information until after the signature has been applied. (In other words, the

signature can’t include itself because it hasn’t been generated yet.)

6. For signatures: the mimedata option in a data item used to store a signature

image (see signatureimage option) is always omitted from the signature

represented by that image, regardless of the signature filters in use. This is

done because the mimedata is not populated with the signature image until after

the signature has been applied. (In other words, the signature can’t include its

own image because it hasn’t been added to the form yet.)

mimetype

Defines the MIME type of the data stored in a data item.

132

Syntax

 MIME type string the MIME type of the data item

Available In

data

Example

This sample sets the MIME type to indicate image data:

 <mimetype>image/gif</mimetype>

Usage Details

1. Default: application/vnd.xfdl

2. The following are examples of MIME types. For full information on MIME

types, read the MIME rfcs (1521, 1522, 1867 and 822), available on the World

Wide Web.

application/vnd.xfdl

XFDL form item

image/jpeg

image item

image/rast

image item

image/bmp

image item

image/gif

image item

text/plain

ASCII text item

mouseover

Specifies whether the mouse pointer is currently over an item or page.

This option is set by an external program such as a parser, and is not saved or

transmitted as part of the form. Instead, it is automatically created each time the

form is read into memory, and is maintained only during display or processing.

Syntax

 status on mouse pointer is over item or page

 <mimetype>MIME type</mimetype>

 <mouseover>status</mouseover>

Details on Options and Array Elements 133

off mouse pointer is not over item or page

Available In

button, check, checkgroup, combobox, field, list, popup, radio, radiogroup, toolbar,

page global

Example

The following example shows a button that changes its color to white if it the

mouse pointer is over it, and to blue if the pointer is not over it.

 <button sid="saveButton">

 <type>saveas</type>

 <value>Save</value>

 <bgcolor compute="mouseover == ’on’ ? ’white’ :

 ’blue’"></bgcolor>

 </button>

Usage Details

1. Default: off

2. An object’s mouseover option is set to on when the mouse pointer is over the

object, and to off when the mouse pointer is not over the object.

3. A page global mouseover option is set to on when the mouse pointer is over the

page (even if it is also over an item on the page).

4. A mouseover option in a toolbar is set to on when the mouse pointer is over the

toolbar (even if it is also over an item in the toolbar).

5. The mouseover option is not included in form descriptions that are saved or

transmitted.

next

Identifies the item to receive focus when a user tabs ahead from the current item.

If a user tabs ahead from the last item on the page, the tab cycles within the same

page, beginning with the first item on the page. Only modifiable or readonly items

can receive focus.

Syntax

 item reference string identifies the item to receive focus next

Available In

button, check, checkgroup, combobox, field, list, popup, radio, radiogroup, slider,

page global

Example

This sample points to the item ″address_field″. When users tab ahead from the

current item, the item identified as ″address_field″ will receive focus.

 <next>item reference</next>

134

<next>address_field</next>

Usage Details

1. Default: none

2. The first page defined in the form is always the first page displayed. The

default tabbing order depends on the order in which page and item definitions

occur within the form definition. The sequence is as follows:

v First item to receive focus: first modifiable item defined for the body of the

first page

v Subsequent items to receive focus: each modifiable item on the page in the

order in which they are defined
3. If the last item on the page is tabbed past, the first modifiable item in the

page’s toolbar receives focus. If there is no toolbar, focus returns to the first

item.

4. Placing next in page globals defines the first item to receive focus when the

page appears.

5. If the next option identifies page globals, focus moves to the item defined to

receive focus when the page appears. The page globals reference is global for

the current page or page_tag.global for another page.

pagefirst

Stores a reference to the global item on the first page of the form, excluding the

global page. A page is first when it appears first in the build order (in other words,

it is first in the XFDL text).

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 page reference string a reference to the first page in the form, excluding the

global page.

Available In

page global

Example

This sample shows how the pagefirst option appears in the page globals of a form.

 <page sid="PAGE1">

 <global sid="global">

 <pagefirst>PAGE1.global</pagefirst>

 </global>

 </page>

 <pagefirst>page reference</pagefirst>

Details on Options and Array Elements 135

Usage Details

1. Defaults: none

2. The pagefirst option stores a reference to the global item of the first page. For

example, PAGE1.global.

3. The pagefirst option is not saved or transmitted with the form description.

pageid

Defines a unique identifier for the page.

Syntax

 serial number string provides a unique identifying string for the form.

This is generated by an external program such as a

form design program.

Available In

page global

Example

This sample shows how the pageid option appears in the page globals of a form.

 <pageid>

 <serialnumber>{94EC2BA4-7D34-B5E4-0060-9947}</serialnumber>

 </pageid>

Usage Details

1. Defaults: none

2. This option is intended for use with form design programs and licensign

models.

pagelast

Stores a reference to the global item in the last page of the form, excluding the

global page. A page is last when it appears last in the build order (in other words,

it is last in the XFDL text).

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 <pageid>

 <serialnumber>serial number</serialnumber>

 </pageid>

 <pagelast>page reference</pagelast>

136

page reference string a reference to the last page in the form, excluding the

global page.

Available In

page global

Example

This sample shows how the pagelast option appears in the page globals of a form.

 <page sid="PAGE1">

 <global sid="global">

 <pagelast>PAGE4.global</pagelast>

 </global>

 </page>

Usage Details

1. Defaults: none

2. The pagelast option stores a reference to the global item of the last page. For

example, PAGE4.global.

3. The pagelast option is not saved or transmitted with form descriptions.

pagenext

Stores a reference to the global item in the next page in the form, excluding the

global page. A page is next when it appears next in the build order (in other

words, it is next in the XFDL text).

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 page reference string a reference to the next page in the form, excluding the

global page.

Available In

page global

Example

This example shows the pagenext option for PAGE2 of a form.

 <page sid="PAGE2">

 <global sid="global.global">

 <pagenext>PAGE3.global</pagenext>

 </global>

 </page>

 <pagenext>page reference</pagenext>

Details on Options and Array Elements 137

Usage Details

1. Defaults: none

2. The pagenext option stores a reference to the global item of the next page. For

example, PAGE1 might contain the following reference: PAGE2.global.

3. If the pagenext option is on the last page of the form, it points to the first page

of the form (excluding the global page).

4. The pagenext option is not saved or transmitted with form descriptions.

pageprevious

Stores a reference to the global item in the previous page in the form, excluding

the global page. A page is previous when it immediately precedes the current page

in the build order (in other words, it is immediately previous in the XFDL text).

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

Syntax

 page reference string a reference to the previous page in the form,

excluding the global page.

Available In

page global

Example

This example shows the pageprevious option for PAGE2 of a form.

 <page sid="PAGE2">

 <global sid="global.global">

 <pageprevious>PAGE1.global</pageprevious>

 </global>

 </page>

Usage Details

1. Defaults: none

2. The pageprevious option stores a reference to the global item of the previous

page. For example, PAGE2 might contain the following reference: PAGE1.global.

3. If the pageprevious option is on the first page of the form (excluding the global

page), it points to the last page of the form.

4. The pageprevious option is not saved or transmitted with form descriptions.

 <pageprevious>page reference</pageprevious>

138

previous

Identifies the item to receive focus when a user tabs backwards, using SHIFT +

TAB, from the current item. If the current item has a previous option, the item

indicated in that option is next in the reverse tab order. If the current item has no

previous option, the previous item in the build order that can receive the input

focus is next in the reverse tab order.

Syntax

 item reference string identifies the item to receive focus next

Available In

button, check, checkgroup, combobox, field, list, pane, popup, radio, radiogroup,

slider, table

Example

This sample points to the item ″date_field″. When users tab back from the current

item, the item identified as ″date_field″ will receive focus.

<previous>date_field</previous>

Usage Details

1. The first page defined in the form is always the first page displayed. The

default tabbing order depends on the order in which page and item definitions

occur within the form definition. The sequence is as follows:

v First item to receive focus: first modifiable item defined for the body of the

first page

v Subsequent items to receive focus: each modifiable item on the page in the

reverse order in which they are defined
2. When tabbing back past the first item on the page, the last modifiable item in

the page’s toolbar receives focus. If there is no toolbar, focus returns to the last

item defined in the page.

printbgcolor

Enables the form to be printed with a specific background color on a color printer.

This color can be the same as or different from the background color shown on the

screen. On black and white printers, grayscaling is used.

See also: printlabelbgcolor, printfontcolor, printlabelfontcolor.

 <previous>item reference</previous>

Details on Options and Array Elements 139

Syntax

 color special The color may be expressed in any of the following formats:

v Comma-separated RGB values. For example:

 192,192,192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

box, button, check, checkgroup, combobox, field, label, list, popup, radio,

radiogroup, slider, page global, form global

Examples

These samples both set the printed background color to forest green.

 <printbgcolor>forest green</printbgcolor>

 <printbgcolor>34,139,34</printbgcolor>

 <printbgcolor>#228B22</printbgcolor>

Usage Details

1. Defaults behave as follows:

v Form: white

v Page: the form global setting or default (white)

v Item: when no printbgcolor is specified, the printbgcolor default is derived

from the item’s specified or default bgcolor (which may be further derived

from the page or form global bgcolor settings or defaults).

printfontcolor

Enables the item to be printed with a specific font color on a color printer. This

color can be the same as or different from the font color shown on the screen. On

black and white printers, grayscaling is used.

 <printbgcolor>color</printbgcolor>

140

Syntax

 color special The color may be expressed in any of the following formats:

v Comma-separated RGB values. For example:

 192,192,192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

button, check, combobox, field, label, line, list, popup, radio, slider, page global,

form global

Examples

These samples both set the printed font color to forest green.

 <printfontcolor>forest green</printfontcolor>

 <printfontcolor>34, 139, 34</printfontcolor>

 <printfontcolor>#228B22</printfontcolor>

Usage Details

1. The default printfontcolor is derived from the fontcolor setting or default for the

item, except in the case of checks or radios, which default to black. (The

fontcolor default may be further derived from page or form settings or defaults.)

2. For check items, the printfontcolor option describes what color the check in the

check box will be when the form is printed. Likewise, for radio items, the

printfontcolor option describes what color the on dot will be when the form is

printed.

3. For line items, the printfontcolor option describes what color a line will be when

the form is printed.

printing

Indicates whether the form is currently printing. This value toggles from off to on

just before printing. Any computes that rely on this option are updated before the

form prints. This allows you to make computed changes to the form just before it

is printed.

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

 <printfontcolor>color</printfontcolor>

Details on Options and Array Elements 141

Syntax

 setting on the form is currently printing.

off the form is not printing.

Available In

form global

Example

This example shows a form that is currently printing:

 <globalpage sid="global">

 <global sid="global">

 <printing>on</printing>

 </global>

 </globalpage>

Usage Details

1. The printing option is not saved or transmitted with the form description.

printlabelbgcolor

Enables a item’s built-in label to be printed with a specific background color on a

color printer. This color can be the same as or different from the background color

shown on the screen. On black and white printers, grayscaling is used.

Syntax

 color special The color may be expressed in any of the following

formats:

v Comma-separated RGB values. For example:

 192,192,192

v Hexadecimal-based RGB values. For example:

 #336699

v Color name. For example:

 blue

Available In

check, checkgroup, combobox, field, list, pane, radio, radiogroup, slider

 <printing>setting</printing>

 <printlabelbgcolor>color</printlabelbgcolor>

142

Examples

These samples both set the printed label background color to forest green.

 <printlabelbgcolor>forest green</printlabelbgcolor>

 <printlabelbgcolor>34,139,34</printlabelbgcolor>

 <printlabelbgcolor>#228B22</printlabelbgcolor>

Usage Details

1. Default: the printlabelbgcolor default is derived from the item’s specified or

default labelbgcolor.

printlabelfontcolor

Enables an item’s built-in label to be printed with a specific font color on a color

printer. This color can be the same as or different from the font color shown on the

screen. On black and white printers, grayscaling is used.

Syntax

 color special The color may be expressed in any of the following

formats:

v Comma-separated RGB values. For example:

192,192,192

v Hexadecimal-based RGB values. For example:

#336699

v Color name. For example:

blue

Available In

check, checkgroup, combobox, field, list, pane, radio, radiogroup, slider

Examples

These samples both set the printed label font color to forest green.

 <printlabelfontcolor>forest green</printlabelfontcolor>

 <printlabelfontcolor>34,139,34</printlabelfontcolor>

 <printlabelfontcolor>#228B22</printlabelfontcolor>

Usage Details

1. Default: the printlabelfontcolor default is derived from the item’s specified or

default labelfontcolor.

 <printlabelfontcolor>color</printlabelfontcolor>

Details on Options and Array Elements 143

printsettings

Determines the settings that will be used when the form is printed. The user can

be allowed to change these defaults, or the form can be set so that it will always

follow the defaults.

Syntax

 page list (see below) the list of pages that print

dialog settings (see below) determines whether the print dialog is shown,

and which settings must be used when printing

(for example, paper orientation and number of

copies)

header/footer settings (see below)

border on prints a border around form pages.

off does not print a border around form pages.

signlinefieldsaslines on print a single line field as a line.

off prints a single line field as a rectangle.

scroll barsonfields on prints scroll bars on fields.

off removes scroll bars from fields when printing.

radioswithoutvalues on prints radio buttons without the selected value.

off prints radio buttons with the selected value.

radiosaschecks on prints radio buttons as check boxes.

off prints radio buttons as radio buttons.

 <printsettings>

 <pages>page list</pages>

 <dialog>dialog settings</dialog>

 <header>header settings</header>

 <footer>footer settings</footer>

 <border>on|off</border>

 <singlelinefieldsaslines>on|off</singlelinefieldsaslines>

 <scroll barsonfields>on|off</scroll barsonfields>

 <radioswithoutvalues>on|off</radioswithoutvalues>

 <radiosaschecks>on|off</radiosaschecks>

 <pagelayout>layout setting</pagelayout>

 </printsettings>

Note:

v All settings are optional.

144

layout setting string controls whether the print job is scaled to fit a

page, or tiled across multiple pages. Valid

settings are:

v fittopage — scales the form to fit on a single

page, without maintaining the aspect ratio.

v shrinktopage — scales the form to fit on a

single page, and maintains the aspect ratio of

the form.

v tileonedirection — sizes the smallest

dimension (either width or length) to fit to a

single page, and tiles the other dimension

across multiple pages.

v tiletwodirections — does not resize the form,

and tiles both the width and the height across

multiple pages if necessary.

Available In

action, button, cell, page global, form global

Page List

The page list uses the following syntax:

 <pages>

 <filter>keep|omit</filter>

 <pageref>page sid1</pageref>

 ...

 <pageref>page sidn</pageref>

 </pages>

The settings for the page list work as follows:

 Setting Description

filter Whether to omit or keep the pages listed. Using keep will print all

pages listed, and exclude all other pages in the form. Using omit will

print all pages in the form except those listed.

pageref a list of page sids that indicates which pages to keep or omit.

Dialog Settings

The dialog settings use the following syntax:

 <dialog>

 <active>on/off</active>

 <copies>#</copies>

 <orientation>portrait|landscape</orientation>

 <printpages>print page settings</printpages>

 </dialog>

Details on Options and Array Elements 145

The settings work as follows:

 Setting Description

active when on, the print dialog will be displayed before the form is printed,

allowing the user to change the settings. When off, the dialog will not

be shown and the form will be printed immediately.

copies a positive integer that determines the number of copies that will be

printed; defaults to 1.

orientation determines whether the form will be printed in landscape or portrait

orientation.

printpage settings (see below)

Print Page Settings

The print page settings use the following syntax:

The settings work as follows:

 Setting Description

active when on, the print dialog will allow the user to choose between

printing ″All″ pages or the ″Current Page″; defaults to on.

choice all sets the printpages default to ″All″; current sets the printpages

default to ″Current Page″; defaults to all.

Header/Footer Settings

The header and footer settings use the following syntax:

The settings work as follows:

 Setting Description

left text this text is left justified in the header/footer.

center text this text is centered in the header/footer.

right text this text is right justified in the header/footer.

 <printpages>

 <active>on|off</active>

 <choice>all|current</choice>

 </printpages>

 <header>

 <left>left text</left>

 <center>center text</center>

 <right>right text</right>

 </header>

 <footer>

 <left>left text</left>

 <center>center text</center>

 <right>right text</right>

 </footer>

146

Each header and footer can be one or more lines in height. However, they can be

no larger than 1/3 of the page size.

Each section (that is, left, center, or right) can contain different text. For example,

you might put a date in the left section, a title in the middle section, and a

document number in the right section.

If you place a long string of text in a header or footer, it will overlap the other

sections of that header or footer. For example, suppose you put the following text

in the left section of your header:

 This form is for demonstration purposes only. Do not distribute.

This text would start at the left edge of the form, but would continue to overlap

the middle portion of the header. Futhermore, a longer string would also overlap

the right portion of the header.

Any hard returns placed in a string are respected. For example, you could avoid

overlapping the other sections of the header by using the same string with hard

returns, as shown:

 This form is for

 demonstration purposes

 only. Do not distribute.

If a string is wider than the form, it is truncated appropriately. For example, a

string that starts on the left edge of the form is truncated once it reaches the right

edge of the form, and vice versa. If a string starts in the middle of the form, it is

truncated on both the left and right edges.

Example

This sample prevents ″page2″ from being printed, sets the form to print in

landscape orientation, strips the scollbars from all fields, and prints two copies of

the form:

 <printsettings>

 <pages>

 <filter>omit</filter>

 <pageref>page2</pageref>

 </pages>

 <dialog>

 <active>on</active>

 <orientation>landscape</orientation>

 <copies>2</copies>

 </dialog>

 <scroll barsonfields>off</scroll barsonfields>

 </printsettings>

Usage Details

1. Defaults:

v Page List — the page list will default to keeping all pages in the form.

v Dialog Settings — the dialog will default to being on, and will print one

copy of all pages in the form in a portrait orientation. By default, the user

will be able to change all of these settings.

v border — off.

v singlelinefieldsaslines, scroll barsonfields, radioswithoutvalues,

radiosaschecks, pagelayout — the equivalent setting in the form rendering

software.

Details on Options and Array Elements 147

2. Those settings that inherit their default value from the form rendering software

will override the form rendering software if they are set differently.

3. Print settings set on a specific page override the global printsettings. For

example, if you set the number of copies globally, then set the orientation for

page two, page two will not inherit the copies setting. If you want to add page

specific settings to your form, you must repeat the form’s global settings in the

settings for that page.

printvisible

Determines whether an item is visible when the form is printed. To set whether the

item is visible in the Viewer, use the visible option.

Syntax

 setting on the item is visible when the form is printed.

off the item is not visible when the form is printed.

Available In

box, button, check, checkgroup, combobox, field, label, line, list, popup, radio,

radiogroup, slider

Examples

In this example, the nameField does not print due to the printvisible setting, but the

addressField does because it defaults to the visible setting, which defaults to on.

 <field sid="nameField">

 <value>John Doe</value>

 <printvisible>off</printvisible>

 </field>

 <field sid="addressField">

 <value>123 Home Street</value>

 </field>

Usage Details

1. Default: defaults to the visible option for the item.

2. This option overrides the visible option for the purposes of printing.

readonly

Sets the item to be readonly, so that user’s can read information in the item but

cannot change that information.

 <printvisible>setting</printvisible>

148

Syntax

 setting on the item is readonly.

off the item accepts input.

Available In

check, checkgroup, combobox, field, list, popup, radio, radiogroup, slider

Example

The following example shows a field that is set to be readonly:

 <field sid="readOnlyField">

 <value>You cannot type into this field.</value>

 <readonly>on</readonly>

 </field>

Usage Details

1. Default:

v XFDL: off.

v XForms: defaults to the readonly property for the data element to which the

containing item is bound.
2. If an item has either the readonly option or the XForms readonly property set,

then the item is readonly. For more information about the readonly property,

refer to “Property Settings” on page 213.

3. The readonly setting permits users to scroll an item even though they cannot

update the item’s contents.

requirements

Specifies one or more requirements that must be satisfied before the form will

function properly. For example, a form may require a Java™ Virtual Machine to run

correctly.

You can use the requirements feature to check for the availability of a particular

class, function call, or Java Virtual Machine. If the requirement is not met, you can

display a message and then either continue or fail.

 <readonly>setting</readonly>

Details on Options and Array Elements 149

Syntax

 requirement

settings

(see below)

status on all requirements were detected successfully. This is a

controlled option that is not written out with the form.

off one or more requirements were not detected successfully.

This is a controlled option that is not written out with the

form. This is the default value.

Available In

form global

Requirement Settings

The requirement settings use the following syntax:

The settings work as follows:

 Setting Description

component identifies the type of requirement. This can be a class, a function call, or a

java virtual machine (see below).

detected When on, the component for this requirement was successfully detected.

When off, the component for this requirement was not successfully

detected. The default is off. This is a controlled option that is not written

out with the form.

actions optional. Specifies the action to perform if the component is not available. (see

below).

optional. Contains a message that is displayed when the component is not

successfully detected. If this option is not set, then no message is

displayed to the user.

 <requirements>

 <requirement>requirement settings1</requirement>

 ...

 <requirement>requirement settingsn</requirement>

 <detected>status</detected>

 </requirements>

 <requirement>

 <component>component setting</component>

 <detected>on|off</detected>

 <actions>

 actions

 </actions>

 </requirement>

150

Class Component

When you list a class as a requirement, that class must be available for the

requirement to be fulfilled. The class component uses the following syntax:

The settings work as follows:

 Setting Description

class name the name of the class. For example:

 com.PureEdge.WebServices

version number optional. The minimum version of the instance that must be registered. For

example, 1.0.0.

Class Instance Component

When you list a class instance as a requirement, that class instance must be

available for the requirement to be fulfilled. The class instance component uses the

following syntax:

The settings work as follows:

 Setting Description

class instance

name

the name of the class instance. For example:

 com.PureEdge.WebServices

version number optional. The minimum version of the instance that must be registered. For

example, 1.0.0.

value a string that was used to register the class. For example, the Sun JVM

(com.uwi.java.JavaInvocationEngineFactory class) is registered with the

following string: ″Sun VM 1.4″

You may include any number of strings, and all strings must match for

the requirement to be met.

 <component>

 <class>

 <name>class name</name>

 <minversion>version number</minversion>

 </class>

 </component>

 <component>

 <class>

 <name>class instance name</name>

 <minversion>version number</minversion

 <criteria>

 <value>value1</value>

 ...

 <value>valuen</value>

 </criteria>

 </class>

 </component>

Details on Options and Array Elements 151

Function Call Component

When you list a function call as a requirement, that function call must exist as an

XFDL function for the requirement to be fulfilled. The function call can be made

available through an extension or a WSDL. The function call component uses the

following syntax:

The settings work as follows:

 Setting Description

name the name of the function call. This is the name of the function that must

be registered and it must include the package name.

Java VM Component

When you list a Java Virtual Machine as a requirement, the correct version of the

Java VM must be available on the local computer. The Java VM component uses

the following syntax:

The settings work as follows:

 Setting Description

minimum

version

optional. The minimum acceptable version of the Java VM. For example,

1.2.

You must list either a minumum version or a maximum version. You may

also list both.

maximum

version

optional. The maximum acceptable version of the Java VM. For example,

1.4.

You must list either a minumum version or a maximum version. You may

also list both.

Example

The following example sets up the following requirements for a form: (1) a Java

Virtual Machine version 1.4.0 or greater must be available, and (2) the Web

Services class must be available.

 <component>

 <functioncall>

 <name>name</name>

 </functioncall>

 </component>

 <component>

 <javavm>

 <minversion>minimum version</minversion>

 <maxversion>maximum version</maxversion>

 </javavm>

 </component>

152

<requirements>

 <requirement>

 <component>

 <javavm>

 <minversion>1.4.0</minversion>

 </javavm>

 </component>

 <actions>

 <message>Your computer does not have the required Java

 Virtual Machine installed. Because of this, the Web

 Services functions will not execute properly. To

 correct this, you must install the Sun Java VM version

 1.4 or higher.</message>

 </actions>

 </requirement>

 <requirement>

 <component>

 <class>

 <name>com.PureEdge.WebServices</name>

 <minversion>1.0.0</minversion>

 </class>

 </component>

 <actions>

 <message>The Web Services system is not available on your

 computer. Please contact your System Administrator for

 assistance.</message>

 </actions>

 </requirement>

 </requirements>

Usage Details

1. The detected option is not written out with the form description that is saved or

transmitted.

2. The default for the detected options is off.

rtf

Stores the rich text value for rich text fields.

Syntax

 rich text string the rich text string.

Available In

field

Example

This sample shows a rich text field:

 <field sid="richTextField">

 <texttype>text/rtf</texttype>

 <value>Hello</value>

 <rtf>rich text version of Hello</rtf>

 </field>

 <rtf>rich text</rtf>

Details on Options and Array Elements 153

Usage Details

1. Default: if the rtf option is empty or does not exist, a default rich text string is

created as follows:

v Text: set to equal the value option.

v Font: set as the fontinfo and fontcolor options.

v Justification: set as the justify option.

If the required options are not present, then the default settings for those

options are used. Note that the background color is controlled by the bgcolor

option, not the rich text.
2. To use rich text in a field, the texttype option must be set to text/rtf.

3. A plain text version of the rich text string is stored in the value option, with the

following considerations:

v If the value option has a compute, that compute is lost when the text is

copied from the rtf option. (However, external changes to the value are still

made. For example, a set.)

v Once the text is copied to the value option, the format system may impose a

change based on the format option. If a change occurs, then the rtf option is

reset based on the formatted value option and the fontinfo, fontcolor, justify,

and bgcolor options.

v If the plain text version does not match the rich text, then the rich text takes

precedence. In this case, the value option is updated to reflect the rich text.
4. Computed changes to the fontinfo, fontcolor, bgcolor, justify, texttype, or value

options will cause the rtf option to update if necessary.

5. Changes to the rtf option do not cause changes to the fontinfo, fontcolor, bgcolor,

or justify options.

6. Dynamically changing the texttype from rtf to plain text is not supported.

7. When using XForms, the rtf option is bound to the data model (as opposed to

the value option).

saveformat

Specifies the format a form will be saved in. An XFDL form may be saved in XFDL

format or HTML format. Furthermore, the XFDL format may be compressed using

ASCII compression.

The formats work as follows:

v XFDL format saves the entire form definition, including the user input.

v HTML format saves the form as a series of assignment statements for each

modifiable item, equating the item reference with the item’s value. The only

items included in the save are custom items and the following modifiable items:

check, field, list, popup, combobox and radio.

Syntax

 MIME type application/vnd.xfdl use XFDL format

application/vnd.xfdl;content-
encoding=″base64-gzip″

use compressed XFDL format

 <saveformat>MIME type</saveformat>

154

application/x-www-form-urlencoded use HTML format

Available In

action, button, cell, page global, form global

Examples

This example shows how to use saveformat in a save button:

 <button sid="save_button">

 <type>saveas</type>

 <saveformat>application/x-www-form-urlencoded</saveformat>

 </button>

When a user clicks this button, the form will be converted to HTML format (see

Usage Note 3 below) and saved to the user’s drive.

XFDL format in form globals

This example shows how to use saveformat as a form global characteristic.

 <?xml version="1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms">

 <globalpage sid="global">

 <global sid="global">

 <bgcolor>ivory</bgcolor>

 <saveformat>application/vnd.xfdl</saveformat>

 </global>

 </globalpage>

 <page sid="page_1">

 ...

Any time a user saves this form, it will be saved in XFDL format.

Usage Details

1. Default: The default format is the format that the form was in before it was

parsed. For example, a form written in XFDL will be transmitted in XFDL,

unless otherwise specified by this option.

2. This option can also be included as a form global option and in the definitions

of items that trigger save actions. These are button or cell items that have a type

option setting of save.

HTML Format by Item Type

The general syntax of a form saved in HTML format is:

 itemreference=value&item reference=value&...

Note:

v The ampersand separates form items.

Details on Options and Array Elements 155

The syntax of items saved in HTML format by type:

 Item Type HTML Format

check item sid=value option setting

field item sid=value option setting

list item sid=value option setting of selected cell

Note that the item reference identifies the list.

popup item sid= value option setting of selected cell

Note that the item reference identifies the popup.

combobox item sid= value option setting

radio group option setting=item sid of selected radio

custom item sid=value option setting

Substitutions and Omissions:

v Only modifiable items are saved as HTML data. A form cannot be saved in

HTML format and expected to be viewed as a form again. It is saved as a string

of item tags and their associated values.

v Spaces in the value are replaced by the plus sign (+). For example, ’Two words’

becomes ’Two+words’.

v The membership operator in item and group references is replaced by a minus

sign.

v page_one.age_group becomes page_one-age_group.

v Page tags are removed from item and group references in single page forms.

v Check boxes and radio buttons with a value option setting of off are omitted.

v Entries resulting in an empty string on the right hand side of the assignment

statement are omitted. This occurs when the referenced option setting is empty

or the option definition is missing.

scrollhoriz

Defines horizontal scrolling options for a field item.

Syntax

 option never permit scrolling using the cursor but display no

horizontal scroll bar

always permit scrolling and display a horizontal scroll bar

wordwrap wrap field contents from line to line, inhibit

scrolling and display no horizontal scroll bar

Available In

field

 <scrollhoriz>option</scrollhoriz>

156

Example

This sample sets the horizontal scrolling option to permit scrolling and to display

the horizontal scroll bar.

 <scrollhoriz>always</scrollhoriz>

Usage Details

1. Default: never

2. The scroll bar displays along the field’s bottom edge.

scrollvert

Defines vertical scrolling options for a field item.

Syntax

 option never permit scrolling using the cursor but display no vertical

scroll bar

always permit scrolling and display a vertical scroll bar

fixed inhibit scrolling and display no vertical scroll bars

Available In

field

Example

This sample sets the vertical scrolling option to inhibit all scrolling.

 <scrollvert>fixed</scrollvert>

Usage Details

1. Default: never

2. The scroll bar displays along the field’s right edge.

signature

Used in conjunction with the button item to establish the XFDL item name by

which a particular signature will be identified.

Syntax

 name of signature string the name of the signature

 <scrollvert>option</scrollvert>

 <signature>name of signature</signature>

Details on Options and Array Elements 157

Available In

button, signature

Example

This sample identifies the signature item for a particular button as ″mysig″.

 <signature>mysig</signature>

Usage Details

1. Default: none

2. The signature option must be included in each signature button that is set up.

signatureimage

Points to a data item, identifying it as the data item into which the captured

signature image is placed. Used only with image-based digital signatures (such as

CIC InkTools).

Syntax

 data item string the itemref for the data item that contains an image

associated with a signature

Available In

button

Example

This sample identifies the data item ″SIGIMAGE″. When the user signs a form

with a pen/pad device, the mimedata of the captured image is placed in the data

item ″SIGIMAGE″.

 <signatureimage>SIGIMAGE</signatureimage>

Usage Details

1. Default: none

2. This option is used with signature types that utilize a digital image, such as

InkTools signatures.

signdatagroups

Specifies which datagroups are filtered for a particular signature. Filtering a

datagroup means keeping or omitting all of the data items that are in the specified

datagroup.

For example, if a signdatagroups option specifies that the ″attachments″ datagroup

should be kept, then all data items within the ″attachments″ group will be signed.

 <signatureimage>data item</signatureimage>

158

This filter applies to all data items present at the time of signing, including those

added as enclosures.

Syntax

 datagroup filter keep include datagroups in the datagroup reference list with the

signature; omit those not in the list

omit omit datagroups in the datagroup reference list from the

signature; include those not in the list

datagroup

reference

string identifies a datagroup whose data items will be filtered

Available In

button, signature

Example

This example specifies a signdatagroups option that keeps the datagroup called

″Business_Letters″.

 <signdatagoups>

 <filter>keep</filter>

 <datagroupref>Business_Letters</datagroupref>

 </signdatagroups>

Usage Details

1. Default: omit nothing (keep all data items), unless the containing page is

omitted

2. Since enclosed files can belong to several datagroups, and datagroups can

contain several enclosed files, care must be exercised when setting up

signdatagroups options to ensure that only the desired datagroups are filtered.

3. Other filters may take precedence over the signdatagroups option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

signdetails

Specifies which certificate attributes are shown to the user when they are choosign

a certificate to sign the form, and defines the filters used to select the available

certificates when the user is signing a form.

 <signdatagroups>

 <filter>datagroup filter</filter>

 <datagroupref>datagroup reference1</datagroupref>

 ...

 <datagroupref>datagroup referencen</datagroupref>

 </signdatagroups>

Note:

v There may be any number of datagroup reference entries.

Details on Options and Array Elements 159

For example, the signdetails option could specify that only those certificates with a

common name that begins with ″Bob″ are shown, and that only the owner’s

common name and e-mail address are shown.

Syntax

 Expression Setting Description

dialogcolumns (see below) a list of certificate attributes that should be shown to the

user when they are selecting a certificate to sign

filteridentity (see below) a list of certificate attributes and values that are used to

filter which certificates are available to the user for signing

dialogcolumns

The dialogcolumns element uses the following syntax:

Each certificate attribute listed is shown to the user when they view the certificates

available for signing. For example, if you wanted the user to see the owner’s

common name and e-mail address for each certificate, you would use the

following setting:

 <dialogcolumns>

 <property>Subject: CN</property>

 <property>Subject: E</property>

 </dialogcolumns>

For a list of available attributes, see ″Certificate Attributes″ below.

filteridentity

The filteridentity element uses the following syntax:

 <signdetails>

 dialogcolumns

 filteridentity

 </signdetails>

Note:

v Both dialogcolumns and filteridentity are optional.

 <dialogcolumns>

 <property>attribute1</property>

 ...

 <property>attributen</property>

 </dialogcolumns>

Note:

v The number of attributes is optional.

160

attribute string the name of the attribute you want to user to filter the

available certificates

value string the value to which you want to compare the attribute. Use

an asterisk (*) as a wildcard or multiple characters, or a

question mark (?) as a wildcard for a single character.

If the value of the attribute matches the filter, then the certificate will be available

to the user. For example, to restrict the available certificates to those with a

common name beginning with ″Bob″, you would use the following filter:

 <filteridentity>

 <filter>

 <tag>Subject: CN</tag>

 <value>Bob*</value>

 </filter>

 </filteridentity>

For a list of available attributes, see ″Certificate Attributes″ below.

Available In

button, signature

Example

This example specifies a signdetails option that makes those certificates with an

e-mail address in the ibm domain available, and shows the serial number and the

owner’s common name for each certificate.

 <signdetails>

 <dialogcolumns>

 <property>Serial</property>

 <property>Subject: CN</property>

 </dialogcolumns>

 <filteridentity>

 <filter>

 <tag>Subject: E</ae>

 <value>*@ibm.com</value>

 </filter>

 </filteridentity>

 </signdetails>

 <filteridentity>

 <filter>

 <tag>attribute1</tag>

 <value>value1</value>

 </filter>

 ...

 <filter>

 <tag>attributen</tag>

 <value>valuen</value>

 </filter>

 </filteridentity>

Note:

v The number of attributes and filters is optional.

Details on Options and Array Elements 161

Usage Details

1. Default: all certificates are available, and the certificate’s common name and

expiry date are shown to the user.

Certificate Attributes

The following is a list of attributes that are common to X.509 certificates. Note that

the names of certificate attributes are case sensitive.

 Attribute Description

Version the version of the X.509 specification that the certificate follows

Serial the certificate’s serial number

signatureAlg the algorithm used by the Certificate Authority to sign the certificate

BeginDate the date at which the certificate became valid

EndDate the certificate’s expiry date

PublicKey the certificate’s public key

FriendlyName the certificate’s friendly name

Subject: CN the certificate owner’s common name

Subject: E the certificate owner’s e-mail address

Subject: T the certificate owner’s title

Subject: L the certificate owner’s locality

Subject: ST the certificate owner’s state of residence

Subject: O the organization to which the certificate owner belongs

Subject: OU the name of the organizational unit to which the certificate owner belongs

Subject: C the certificate owner’s country of residence

Subject: STREET the certificate owner’s street address

Subject: ALL the certificate owner’s complete distinguished name

Issuer: CN the certificate issuer’s common name

Issuer: E the certificate issuer’s e-mail address

Issuer: T the certificate issuer’s title

Issuer: L the certificate issuer’s locality

Issuer: ST the certificate issuer’s state of residence

Issuer: O the organization to which the certificate issuer belongs

Issuer: OU the organizational unit to which the certificate issuer belongs

Issuer: C the certificate issuer’s country of residence

Issuer: STREET the certificate issuer’s street address

Issuer: ALL the certificate issuer’s complete distinguished name

signer

Identifies who signed a particular form.

162

Syntax

 Identity of user string identity of user

Available In

button, signature

Example

In this example, signer is similar to a user’s e-mail signature, clearly identifying

who signed the form.

 <signer>John Smith, jsmith@acme.org</signer>

Usage Details

1. The setting of the signer option varies, depending on the signing engine used:

 signing Engine signer Setting

Generic RSA common name, e-mail

CryptoAPI common name, e-mail

Netscape common name, e-mail

Entrust signer’s login identity

CIC signer’s name as entered during signing ceremony

Clickwrap Accepted

HMAC Clickwrap the value of the answer indicated by the HMACsigner tag in the

signformat option

Note that if the HMACsigner tag includes more than one

answer, they are combined in a comma delimited list. For

example, ″answer1, answer2″.

2. The signer option is automatically generated by the signature button when the

user signs the form. It is added to both the signature button code and the

signature code. No manual coding is required.

signformat

Records the type of encoding that a form viewing program must use to create the

mimedata setting in a signature. Specifically, the parameters in signformat specify:

v The MIME type of the data from which the mimedata setting is created (see

below for an explanation).

v The signature engine to use.

v Settings specific to the engine used.

About the mimedata setting:

 <signer>identity of user</signer>

Details on Options and Array Elements 163

To create the mimedata setting, a form viewer takes the signer’s certificate and a

plaintext representation of the form or portion of the form that the signature

applies to, and encodes them according to the settings in signformat. For details,

see the mimedata option.

Syntax

 MIMEtype string the MIME type of the signed data. May be:

v XFDL — application/vnd.xfdl

signature engine string the type of signature. Valid types are:

v ClickWrap

v CryptoAPI

v Entrust

v Generic RSA (includes CryptoAPI and Netscape)

v HMAC-ClickWrap

v Netscape

v signaturePad

v Silanis

Default: Generic RSA

verifier string an optional flag that indicates which verifier should

be used when verifying certificate chains during

digital signature operations. Valid verifiers are:

v Basic — Performs basic certificate verification.

v DODJ12 — Performs strict certificate verification

that complies with US Department of Defense

requirements.

Default: Basic

cval string an optional flag that indicates whether the current

value of computed options is signed. This is useful if

you want to sign the compute, but not the value

calculated by the compute (for example, if you are

signing the presentation layer of a form).

If you want to sign the current values, do not use

this flag. If you do not want to sign the current

values, use:

 cval="off"

Default: current values are signed.

delete string an optional flag that indicates whether the signature

can be deleted by the user. By default, all signatures

can be deleted. If you want to prevent a signature

from being deleted, use:

 delete="off"

 <signformat>MIME type;

 engine="signature engine";

 verifier;

 cval;

 delete;

 parameters

 </signformat>

164

parameters depends on

engine

additional parameters required by the signature

engine (see below)

Available In

button, signature

About the signature Engines

The following table describes the signature engines that are available:

 signature Engine Description

ClickWrap The ClickWrap signature allows users to sign a form without

requiring a digital certificate. Instead, the signer may have to

answer some questions about themself and echo some text to

indicate their intent to agree to the document.

CryptoAPI The CryptoAPI signature uses digital certificates that are stored in

your Internet Explorer certificate store to create a digital signature.

Entrust The Entrust signature allows the end-user to sign the form using

the Entrust brand of products.

Generic RSA The Generic RSA signature uses digital certificates from either your

Internet Explorer or your Netscape certificate store.

HMAC-ClickWrap The HMAC-ClickWrap signature is similar to the ClickWrap

signature, in that the end-user does not require a digital certificate

to create a signature. Instead, the end-user provides a shared secret

(such as a password) that can be verified by a server. Once the

signature is verified, the server then uses its own digital certificate

to sign the form and validate the end-user’s non-digital signature.

Netscape The Netscape signature uses digital certificates that are stored in

your Netscape certificate store to create a digital signature.

signaturePad The signaturePad signature allows the end-user to sign the form

using a variety of pad-style hardware. This signature type includes

support for signature pads from Interlink and Topaz, as well as

pads that support the WinTab standard.

Silanis A Silanis signature allows the end-user to sign the form using the

Silanis brand of products. It is also the only signature type that can

create non-locking signatures, in which the data that is signed is

not locked to prevent changes.

Additional Parameters for Common signature Engines

The following table details the additional parameters you must use for each

signature type when defining the signformat option. Note that the Generic RSA

signature does not require any additional parameters.

 Engine Parameter Valid Settings Description

Clickwrap hashalg sha1 hash algorithm with 160-bit

message digest. This is the default

setting.

md5 hash algorithm with 128-bit

message digest

Details on Options and Array Elements 165

Engine Parameter Valid Settings Description

titleText string text to display for the main title of

the signature dialog box

mainPrompt string text to display for the main prompt

mainText string text to display for the main text

question1Text string label for the first question

answer1Text string default answer to the first question;

user can overwrite

question2Text string label for the second question

answer2Text string default answer to the second

question; user can overwrite

question3Text string label for the third question

answer3Text string default answer to the third

question; user can overwrite

question4Text string label for the forth question

answer4Text string default answer to the forth

question; user can overwrite

question5Text string label for the fifth question

answer5Text string default answer to the fifth question;

user can overwrite

echoPrompt string text to display for the echo prompt

echoText string text to display for the signer to echo

buttonPrompt string text to display above the accept and

reject buttons

acceptText string text to display on the accept button

rejectText string text to display on the reject button

HMACsigner string a comma delimited list of the the

answers that store the signer’s

identity. This is written as answern.

For example, answer1, answer2, and

so on. Note that this parameter

applies only to HMAC-Clickwrap

signatures

HMACSecret string a comma delimited list of the the

answers that store the shared secret.

This is written as answern. For

example, answer1, answer2, and so

on. Note that this parameter applies

only to HMAC-Clickwrap

signatures

readonly string a comma delimited list of the the

answers that should be read-only.

This is written as answern. For

example, answer1, answer2, and so

on. Note that this parameter applies

only to HMAC-Clickwrap

signatures

CryptoAPI csp determined by form

viewing program

Cryptographic Service Provider (ie

Microsoft® Base Cryptographic

Provider v1.0)

166

Engine Parameter Valid Settings Description

csptype rsa_full full RSA implementation (this is the

default)

rsa_sig for a CSP that supplies only RSA

signature algorithms

dss for a CSP that supplies algorithms

compliant with the Digital signature

Standard

dss_dh for a CSP that supplies DSS

compliant algorithms and

Diffie-Hellman encryption

fortezza for a CSP that supplies Fortezza

algorithms

hashalg sha1 hash algorithm with 160-bit

message digest. This is the default

setting.

md5 hash algorithm with 128-bit

message digest

Entrust hashalg sha1 hash algorithm with 160-bit

message digest. This is the default

setting.

md5 hash algorithm with 128-bit

message digest

Netscape hashalg sha1 hash algorithm with 160-bit

message digest. This is the default

setting.

md5 hash algorithm with 128-bit

message digest

signaturePad TSP string defines the preferred signature pad

software/hardware to use. Valid

settings are:

v Interlink

v Topaz

v WinTab

If no setting is specified, the form

viewing software will determine

which hardware is available, and

will default to either Interlink or

Topaz first and WinTab second.

hashalg sha1 hash algorithm with 160-bit

message digest. This is the default

setting.

md5 hash algorithm with 128-bit

message digest

titleText string text to display for the main title of

the signature dialog box

mainPrompt string text to display for the main prompt

mainText string text to display for the main text

question1Text string label for the first question

Details on Options and Array Elements 167

Engine Parameter Valid Settings Description

answer1Text string default answer to the first question;

user can overwrite

question2Text string label for the second question

answer2Text string default answer to the second

question; user can overwrite

question3Text string label for the third question

answer3Text string default answer to the third

question; user can overwrite

question4Text string label for the forth question

answer4Text string default answer to the forth

question; user can overwrite

question5Text string label for the fifth question

answer5Text string default answer to the fifth question;

user can overwrite

echoPrompt string text to display for the echo prompt

echoText string text to display for the signer to echo

buttonPrompt string text to display above the accept and

reject buttons

acceptText string text to display on the accept button

rejectText string text to display on the reject button

readonly string a comma delimited list of the the

answers that should be read-only.

This is written as answern. For

example, answer1, answer2, and so

on.

startText string text to display on the button that

starts the signature capture

endText string text to display on the button that

ends the signature capture

penColor string the color to use when drawing the

signature on the screen. This is

either a color name or a comma

separated list of RGB values.

backgroundColor string the color to use for the background

of the signature graphic. This is

either a color name or a comma

separated list of RGB values.

Silanis lock on sets the signature to lock all signed

data. This prevents the user from

changing data once it has been

signed. By default, all signature

types lock the data.

off prevents the signature from locking

the data. This means users will be

able to change signed data. Note

that changes to signed data will still

break the signature.

168

Note: Instead of using one of the above settings for csptype, the numeric value

that is defined for it in the cryptographic API may be used. For example,

csptype=dss and csptype=3 produce the same result.

Example

This example shows a button configured for a CryptoAPI signature.

 <button sid="empSigButton">

 <type>signature</type>

 <value compute="signer"></value>

 <signer></signer>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <signformat> application/vnd.xfdl;

 csp="Microsoft Base Cryptographic Provider v1.0";

 csptype=rsa_full; hashalg=sha1

 </signformat>

 <signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>coordinates</optiontype>

 </signoptions>

 <signitemrefs>

 <filter>omit</filter>

 <itemref>PAGE1.mgrSigButton</itemref>

 <itemref>PAGE1.admSigButton</itemref>

 <itemref>PAGE1.empsignature</itemref>

 <itemref>PAGE1.mgrsignature</itemref>

 <itemref>PAGE1.admsignature</itemref>

 </signitemrefs>

 <!-- The items listed above MUST have itemlocation

 options with absolute and extent as the last

 settings in order for the filter below to

 be sufficient in terms of security -->

 <signoptionrefs>

 <filter>keep</filter>

 <optionref>PAGE1.mgrSigButton.itemlocation</optionref>

 <optionref>PAGE1.admSigButton.itemlocation</optionref>

 <optionref>PAGE1.empsignature.itemlocation</optionref>

 <optionref>PAGE1.mgrsignature.itemlocation</optionref>

 <optionref>PAGE1.admsignature.itemlocation</optionref>

 </signoptionrefs>

 <signature>empsignature</signature>

 </button>

This example shows a button configured for a Clickwrap signature.

 <button sid="empSigButton">

 <type>signature</type>

 <value compute="signer"></value>

 <signer></signer>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <signformat>application/vnd.xfdl;

 engine="ClickWrap"; hashalg="md5";

 titleText="Document Acceptance";

 echoPrompt="Type the following:";

 echoText="I agree";question1Text="Name:";

Details on Options and Array Elements 169

question2Text="Employee ID #:"

 </signformat>

 <signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>coordinates</optiontype>

 </signoptions>

 <signitemrefs>

 <filter>omit</filter>

 <itemref>PAGE1.mgrSigButton</itemref>

 <itemref>PAGE1.admSigButton</itemref>

 <itemref>PAGE1.empsignature</itemref>

 <itemref>PAGE1.mgrsignature</itemref>

 <itemref>PAGE1.admsignature</itemref>

 </signitemrefs>

 <!-- The items listed above MUST have itemlocation

 options with absolute and extent as the last

 settings in order for the filter below to

 be sufficient in terms of security -->

 <signoptionrefs>

 <filter>keep</filter>

 <optionref>PAGE1.mgrSigButton.itemlocation</optionref>

 <optionref>PAGE1.admSigButton.itemlocation</optionref>

 <optionref>PAGE1.empsignature.itemlocation</optionref>

 <optionref>PAGE1.mgrsignature.itemlocation</optionref>

 <optionref>PAGE1.admsignature.itemlocation</optionref>

 </signoptionrefs>

 <signature>empsignature</signature>

 </button>

Usage Details

1. An XFDL Viewer automatically copies the signformat option from a signature

button to its associated signature item.

2. signformat is an optional setting for a button item, but is mandatory for a

signature item.

signgroups

Specifies which groups are filtered for a particular signature. Filtering a group

means keeping or omitting all the cell items that are in the specified group.

For example, if a signgroups option specifies that the ″colorcells″ group should be

kept, then all cells within the ″colorcells″ group will be signed.

Syntax

 group filter keep include groups of cells in the group reference list with the

signature; omit those not in the list

 <signgroups>

 <filter>group filter</filter>

 <groupref>group reference1</groupref>

 ...

 <groupref>group referencen</groupref>

 </signgroups>

Note:

v There may be any number of group reference entries.

170

omit omit groups of cells in the group reference list from the

signature; include those not in the list

group reference string identifies a group whose cell items will be filtered

Available In

button, signature

Example

This example shows a signgroups setting that omits the group of cells named

″monthlyPayCells″.

 <signgroups>

 <filter>omit</filter>

 <groupref>monthlyPayCells</groupref>

 </signgroups>

Usage Details

1. Default: omit nothing (keep all cell items), unless the containing page is

omitted

2. It is possible to have several list or popup items with the same group reference,

as these are populated with cells that have the same group reference as the

item which contains them. Therefore, when setting up signgroups options,

caution must be exercised in making group references to list or popup items

which might be populated by the same group of cells.

3. Other filters may take precedence over the signgroups option. Refer to “Order of

Precedence of Filters” on page 395 for more information on the order of

precedence of filters.

signinstance

Specifies what XForms instance data is filtered for a particular signature. Filtering

instances means keeping or omitting specific data from each data instance.

When instance data is omitted from a signature but the associated user interface

elements are signed, the user can still enter data into those elements. Furthermore,

the overlap and layout tests are not performed on those items. This leaves them

free to change certain characteristics, such as size (for expanding tables or fields),

to accommodate the user input. This facilitates signing the presentation layer of a

form while leaving the actual data open to change.

Details on Options and Array Elements 171

Syntax

 instance filter keep include groups of cells in the group reference list

with the signature

omit omit groups of cells in the group reference list from

the signature; include those not in the list

model ID string the ID of the <xforms:model> that the contains the

data you want to filter. Set to empty to default to

the first model in the form.

XPath XPath an XPath reference to the root node of the data you

want to filter. All children of this node are filtered

in the same manner.

This reference is evaluated relative to the root node

of the first instance in the model.

Available In

button, signature

Example

The following code shows an XForms model for a purchase order:

 <xforms:model>

 <xforms:instance id="po" xmlns="">

 <po>

 <order>

 <row>

 <product/>

 <unitCost>0</unitCost>

 <qty></qty>

 <lineTotal></lineTotal>

 </row>

 </order>

 <subtotal>0</subtotal>

 <tax>0</tax>

 <total>0</total>

 </po>

 </xforms:instance>

 <xforms:instance id="temps" xmlns="">

 <root>

 <productCode/>

 <signinstance>

 <filter>instance filter</filter>

 <dataref1>

 <model>model ID</model>

 <ref>XPath</ref>

 </dataref>

 ...

 <datarefn>

 ...

 </dataref>

 </signinstance>

Note:

v There may be any number of group reference entries.

172

<submitting>false</submitting>

 </root>

 </xforms:instance>

 </xforms:model>

In this case, you might want to omit the temporary information that is stored in

the temps instance. To do this, you would use the following filter:

 <signinstance>

 <filter>omit</filter>

 <dataref>

 <model></model>

 <ref>instance(’temps’)</ref>

 </dataref>

 </signinstance>

Usage Details

1. Default: omit nothing (keep instance data)

2. Avoid using other signature filters with signinstance except when absolutely

necessary. Because signed items still accept input so long as the associated data

elements are not signed, you do not need to worry about filtering most user

interface elements out of the signature. However, you must still omit some

elements, such as additional signature buttons, signature items, data items, and

the triggeritem option.

signitemrefs

Specifies individual items that are filtered for a particular signature. Filtering an

item reference means keeping or omitting specific items, rather than all items of a

particular type (see signitems).

Syntax

 item filter keep include items in the item reference list with the

signature; omit those not in the list

omit omit items in the item reference list from the

signature; include those not in the list

item reference string specifies the item to be filtered

Available In

button, signature

 <signitemrefs>

 <filter>item filter</filter>

 <itemref>item reference1</itemref>

 ...

 <itemref>item referencen</itemref>

 </signitemrefs>

Note:

v There may be any number of item reference entries.

Details on Options and Array Elements 173

Example

This sample sets the signitemrefs option to omit two fields from the signature:

 <signitemrefs>

 <filter>omit</filter>

 <itemref>field1</itemref>

 <itemref>page1.field2</itemref>

 </signitemrefs>

Usage Details

1. Default: omit nothing (keep all items), unless the containing page is omitted.

2. Since all items have a name and type, signitemrefs filters are always applicable.

3. When not signing the entire form, it is strongly recommended that an omit

signitemrefs filter be used to exclude unwanted items, and that a keep

signoptionrefs filter should be used to cover the layout of omitted items. See

the Usage Details for the signoptionrefs option for details.

4. If this filter is used with the keep setting, then it is easy to add or delete items

that would obscure or unobscure signed items without breaking a signature.

The keep setting is useful as an optimization when you want to create a

co-signature (i.e., a signature which signs another signature that uses omission

logic).

5. Other filters may take precedence over the signitemrefs option. Refer to “Order

of Precedence of Filters” on page 395 for more information on the order of

precedence of filters.

signitems

Specifies which types of items filtered for a particular signature. Filtering an item

means keeping or omitting all items of a particular type, rather than specific items

(see signitemrefs).

Syntax

 item filter keep include types of items in the item type list with the

signature; omit those not in the list

omit omit types of items in the item type list from the signature;

include those not in the list

item type string specifies the type (element tag name) of items to be

filtered

 <signitems>

 <filter>item filter</filter>

 <itemtype>item type1</itemtype>

 ...

 <itemtype>item typen</itemtype>

 </signitems>

Note:

v There may be any number of item type entries.

174

Available In

button, signature

Example

This sample sets the signitems option to keep the following types of items with the

signature: boxes, buttons, and fields.

 <signitems>

 <filter>keep</filter>

 <itemtype>box</itemtype>

 <itemtype>button</itemtype>

 <itemtype>field</itemtype>

 </signitems>

Usage Details

1. Default: omit nothing (keep all items), unless the containing page is omitted.

2. The only recommended use of this filter is to omit data items in support of the

usage of the signdatagroups filter.

3. Element tag names can be specified with or without a namespace prefix. The

default namespace URI is the XFDL namespace URI if no namespace prefix is

given. If a namespace prefix is given, then the namespace URI to which the

prefix is bound is used in determining whether or not each element matches

the given filter.

For example, the filter component <itemtype>box</itemtype> could

equivalently be written <itemtype>xfdl:box</itemtype> if the prefix xfdl is

mapped to the XFDL namespace URI.

4. Other filters may take precedence over the signitems option. Refer to “Order of

Precedence of Filters” on page 395 for more information on the order of

precedence of filters.

signnamespaces

Specifies which namespaces are filtered for a particular signature. Filtering a

namespace means keeping or omitting all of the form elements and attributes that

are in the specified namespace.

For example, if a signnamespaces option specifies that the http://www.ibm.com/
xmlns/prod/XFDL/Custom namespace should be kept, then all elements in that

namespace are signed.

Details on Options and Array Elements 175

Syntax

 namespace filter keep include all form elements in the namespace URI list

with the signature; omit those not in the list

omit omit all form element that are in the namespaces in

the namespace URI list from the signature; include

those not in the list

namespace URI string identifies a namespace whose elements will be

filtered

Available In

button, signature

Example

This example shows a signnamespaces setting that omits the http://www.ibm.com/
xmlns/prod/XFDL/Custom namespace.

 <signnamespaces>

 <filter>omit</filter>

 <uri>http://www.ibm.com/xmlns/prod/XFDL/Custom</uri>

 </signnamespaces>

Usage Details

1. Default: omit nothing (keep all namespaces).

2. Other filters may take precedence over the signnamespaces option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

signoptionrefs

Specifies individual options that are filtered for a particular signature. Filtering

option references means keeping or omitting specific options, rather than all

options of a particular type (see signoptions).

 <signnamespaces>

 <filter>namespace filter</filter>

 <uri>namespace URI1</uri>

 ...

 <uri>namespace URIn</uri>

 </signnamespaces>

Note:

v There may be any number of namespace URI entries.

176

Syntax

 option filter keep include options in the option reference list with the

signature; omit those not in the list

omit omit options in the option reference list from the

signature; include those not in the list

option reference string specifies the option to be filtered

Available In

button, signature

Example

This example specifies a signoptionrefs setting that keeps a particular field with the

signature.

 <signoptionrefs>

 <filter>keep</filter>

 <optionref>page1.field1.value</optionref>

 </signoptionrefs>

Note: The page name may be dropped if the option in question is on the same

page, but the item name must not be dropped.

Usage Details

1. Default: keep all options (omit nothing), unless the containing item is

omitted.

2. Note that, unlike signoptions, the signoptionrefs filter can cause an item to be

included even if the item filters would normally omit the item. This is

necessary in order to ensure that the hashed text of a signature is in valid

XFDL format.

3. It is strongly recommended that signoptionrefs be used to keep the itemlocation

of items that have been omitted, and that all omitted items have an

itemlocation with absolute and extent settings as the last two settings.

4. Element tag names can be specified with or without a namespace prefix. The

default namespace URI is the XFDL namespace URI if no namespace prefix is

given. If a namespace prefix is given, then the namespace URI to which the

prefix is bound is used in determining whether or not each element matches

the given filter.

For exampe, the filter component <optionref>page1.field1.value</optionref>

could equivalently be written <optionref>page1.field1.xfdl:value</optionref> if the

prefix xfdl is mapped to the XFDL namespace URI.

 <signoptionrefs>

 <filter>option filter</filter>

 <optionref>option reference1</optionref>

 ...

 <optionref>option referencen</optionref>

 </signoptionrefs>

Note:

v There may be any number of option reference entries.

Details on Options and Array Elements 177

5. Other filters may take precedence over the signoptionrefs option. Refer to “Order

of Precedence of Filters” on page 395 for more information on the order of

precedence of filters.

signoptions

Specifies which types of options are filtered for a particular signature. Filtering

options means keeping or omitting all options of a particular type, rather than

specific options (see signoptionrefs).

Syntax

 option filter keep include types of options in the option type list with the

signature; omit those not in the list

omit omit types of options in the option type list from the

signature; include those not in the list

option type string specifies the type (element tag name) of options to be

filtered

Available In

button, signature

Example

This example shows a signoptions setting that omits two types of options from the

signature.

 <signoptions>

 <filter>omit</filter>

 <optiontype>url</optiontype>

 <optiontype>printsettings</optiontype>

 </signoptions>

Usage Details

1. Default: keep all options (omit nothing), unless the containing item is

omitted.

2. One signoptions setting must always be specified in the following way:

 <signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>coordinates</optiontype>

 </signoptions>

 <signoptions>

 <filter>option filter</filter>

 <optiontype>option type1</optiontype>

 ...

 <optiontype>option typen</optiontype>

 </signoptions>

Note:

v There may be any number of option type entries.

178

v This setting ensures that the signature will not be broken due to an alteration

to the form.

v If the this option must be used as a keep filter, then consider omitting the

global.global.triggeritem and the coordinates of image buttons using a

signoptionrefs filter.
3. Element tag names can be specified with or without a namespace prefix. The

default namespace URI is the XFDL namespace URI if no namespace prefix is

given. If a namespace prefix is given, then the namespace URI to which the

prefix is bound is used in determining whether or not each element matches

the given filter component.

For example, the filter component <optiontype>triggeritem</optiontype> could

be equivalently written as <optiontype>xfdl:triggeritem</optiontype> if the

prefix xfdl is mapped to the XFDL namespace URI.

4. Other filters may take precedence over the signoptions option. Refer to “Order

of Precedence of Filters” on page 395 for more information on the order of

precedence of filters.

signpagerefs

Specifies individual pages that are filtered for a particular signature. Filtering

pages means keeping or omitting a page and all of its contents.

Syntax

 page filter keep include pages in the page reference list with the

signature; omit those not in the list

omit omit pages in the page reference list from the signature;

include those not in the list

page reference string specifies the page to be filtered

Available In

button, signature

Example

This sample sets the signpagerefs option to omit two pages from the signature.

 <signpagerefs>

 <filter>omit</filter>

 <pageref>page1</pageref>

 <pageref>page2</pageref>

 </signpagerefs>

 <signpagerefs>

 <filter>page filter</filter>

 <pageref>page reference1</pageref>

 ...

 <pageref>page referencen</pageref>

 </signpagerefs>

Note:

v There may be any number of page reference entries.

Details on Options and Array Elements 179

Usage Details

1. Default: keep all pages.

2. Other filters may take precedence over the signpagerefs option. Refer to “Order

of Precedence of Filters” on page 395 for more information on the order of

precedence of filters.

size

Specifies an item’s size. It does not include external labels, borders, or scroll bars.

These are part of the bounding box size which is calculated automatically.

Examples of item size are the input area in a field item or the height and width of

the label in label and button items.

Syntax

 width unsigned byte the horizontal dimension of the item, measured in

characters

height unsigned byte the vertical dimension of the item, measured in

lines

Available In

box, button, check, combobox, field, label, line, list, popup, radio, slider, spacer

Example

This sample sets the item’s size to 80 characters wide by five lines high.

 <size>

 <width>80</width>

 <height>5</height>

 </size>

Usage Details

1. Default: refer to “Default Sizes” on page 393 for a complete list of default sizes.

2. Size and Font:

v The width might not always accommodate the number of characters

specified. The calculation to determine actual width is:

v width * (average character width for the item’s font)

v The width will only exactly match the number of characters the item can

display horizontally when the font is mono-spaced (like Courier).
3. If either the height or the width is invalid, the default item size will be used. A

dimension of zero (0) is invalid for all items except the line item.

4. The item and bounding box sizes can be changed by using itemlocation with an

expansion or extent modifier. This will override the size option.

 <size>

 <width>width</width>

 <height>height</height>

 </size>

180

suppresslabel

Suppresses the built-in label for some items, so that the label is not shown even if

the label option or xforms:label option is set.

This is most useful when you are using XFDL to wrap an XForm control that

includes labels that are not necessary in the visual presentation. For example, you

might not want to display the labels of items in a table.

When the label is suppressed, the item is both displayed and printed as if no label

were present at all. This means that both the appearance and size match an

equivalent item with no label.

Syntax

 status on suppress the item’s built-in label.

off do not suppress the item’s built-in label.

Available In

button, check, checkgroup, combobox, field, list, label, pane, radio, radiogroup,

slider

Example

This example shows a table with one field in each row. The suppresslabel option has

a compute that deterimines whether the field is in the first row, and suppresses the

label if the field is not. This effectively creates a title row of labels on the first row

of the table, then suppresses the labels for all subsequent rows.

 <table sid="customerTable">

 <xforms:repeat nodeset="customer">

 <field sid="nameField">

 <xforms:input ref="name">

 <xforms:label>Name:</xforms:label>

 </xforms:input>

 <suppresslabel compute="xforms.getPosInSet() == ’1’ ?

 ’off’ : ’on’"/>

 </field>

 </xforms:repeat>

 </table>

Usage Details

1. Default: off.

texttype

Specifies whether a field uses plain text or rich text.

 <suppresslabel>status</suppresslabel>

Details on Options and Array Elements 181

Syntax

 type string the type of text to use. Valid options are:

v text/plain

v text/rtf

Available In

field

Example

This sample sets a field to use rich text.

 <field sid="richTextField">

 <texttype>text/rtf</texttype>

 <value>Hello</value>

 <rtf>rich text version of Hello</rtf>

 </field>

Usage Details

1. Default: text/plain

2. If using rich text:

v The rich text is stored in the rtf option.

v A plain text version of the rich text is stored in the value option (refer to the

rtf option for more information).

thickness

Specifies the thickness of a line item. The unit of measurement is pixels.

Syntax

 thickness unsigned byte the thickness of the line

Available In

line

Example

This sample defines a horizontal line 40 characters long and five pixels thick:

 <size>

 <width>40</width>

 <height>0</height>

 </size>

 <thickness>5</thickness>

 <texttype>type</texttype>

 <thickness>thickness</thickness>

182

Usage Details

1. Default: one pixel

2. Use size to define the dimension of a line in one direction (height or width)

and thickness to define the dimension in the other direction. The dimension

thickness defines must be set to zero in size.

3. The line’s thickness may be changed by using itemlocation with an expansion

modifier for the dimension that thickness describes.

transmitdatagroups

Specifies which datagroups are filtered when the form is transmitted. Filtering a

datagroup means keeping or omitting all the data items that are in the specified

datagroup.

For example, if a transmitdatagroups option specifies that the ″attachments″

datagroup should be kept, then all data items within the ″attachments″ group will

be transmitted.

This filter applies to all data items present when transmitted, including those

added as enclosures.

Syntax

 datagroup filter keep include datagroups in the datagroup reference list

with the transmission; omit those not in the list

omit omit datagroups in the datagroup reference list from

the transmission; keep those not in the list

datagroup reference string identifies a datagroup whose data items will be

filtered

Available In

action, button, cell

Examples

This sample specifies that only items of type data with a datagroup setting of

enclosures should be transmitted:

 <transmitdatagroups>

 <filter>keep</filter>

 <datagroupref>enclosures</datagroupref>

 </transmitdatagroups>

 <transmitdatagroups>

 <filter>datagroup filter</filter>

 <datagroupref>datagroup reference1</datagroupref>

 ...

 <datagroupref>datagroup referencen</datagroupref>

 </transmitdatagroups>

Note:

v There may be any number of datagroup reference entries.

Details on Options and Array Elements 183

This sample specifies that all items of type data except those with a datagroup

setting of others should be kept in the transmission:

 <transmitdatagroups>

 <filter>omit</filter>

 <datagroupref>others</datagroupref>

 </transmitdatagroups>

Usage Details

1. Default: omit nothing (keep all data items), unless the containing page is

omitted.

2. Since enclosed files can belong to several datagroups, and datagroups can

contain several enclosed files, care must be exercised when setting up

transmitdatagroups options to ensure that only the desired datagroups are

filtered.

3. Other filters may take precedence over the transmitdatagroups option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

transmitformat

Specifies the format of the form data submitted to a processing application. An

XFDL form can submit data in XFDL format or in HTML format. Furthermore, the

XFDL format may be compressed using ASCII compression.

XFDL format submits the entire form definition, including user input.

HTML format submits just an assignment statement for each item equating the

item reference with the item’s value. The only items included are modifiable items,

custom items, and items with a transmit option setting of all.

Note: Form and page globals are sent only if the format is XFDL.

Syntax

 MIME type application/vnd.xfdl use XFDL format

application/vnd.xfdl;

content-encoding=″base64-gzip″

use compressed XFDL format

application/x-www-form-urlencoded use HTML form format

Available In

action, button, cell, page global, form global

Examples

XFDL format

This example shows a button which, when clicked, will submit the form in XFDL

format.

 <transmitformat>MIME type</transmitformat>

184

<button sid="send_button">

 <type>done</type>

 <url>mailto:rrunner@acme.com</url>

 <transmitformat>application/vnd.xfdl</transmitformat>

 </button>

When a user clicks the button, the entire form definition will be submitted, unless

other transmit options specify a partial submission.

HTML form format

This sample shows an automatic action that submits form data in HTML form

format.

 <action sid="status_action">

 <type>submit</type>

 <url>http://www.host.domain/cgi-bin/recvStatus</url>

 <transmitformat>

 application/x-www-form-urlencoded

 </transmitformat>

 <delay>

 <type>repeat</type>

 <interval>180</interval>

 </delay>

 </action>

Every 180 seconds, the form definition will be converted to HTML form format.

HTML Format by Item Type

The general syntax of a submitted HTML form is:

The syntax of an HTML form entry by item type:

 Item Type HTML Format

field item sid=value option setting

list item sid=value option setting of selected cell

Note that the item reference identifies the list.

popup item sid=value option setting of selected cell

Note that the item reference identifies the popup.

combobox item sid=value option setting

check item sid=value option setting

radio group option setting=item sid of selected radio

custom item sid=value option setting

all other items item sid=value option setting

Substitutions and Omissions:

 item reference=value&item reference=value&...

Note:

v The ampersand separates form items.

Details on Options and Array Elements 185

v Spaces in the value are replaced by the plus sign (+). For example, ’Two words’

becomes ’Two+words’.

v The membership operator in item and group references is replaced by a minus

sign.

v page_one.age_group becomes page_one-age_group.

v Page tags are removed from item and group references in single page forms.

v Check boxes and radio buttons with a value option setting of off are omitted.

v Entries resulting in an empty string on the right hand side of the assignment

statement are omitted. This occurs when the referenced option setting is empty

or the option definition is missing.

HTML Considerations

The functionality of XFDL forms differs somewhat from HTML forms. Those

differences are:

v Enclosures — HTML does not support enclosures. To submit enclosed form

data, use XFDL format.

v Item tags — XFDL allows a smaller set of characters in item tags than HTML

does. XFDL item tags support the following characters: a-z, A-Z, 0-9, and the

underscore (_).

v Check boxes — XFDL check boxes vary slightly from HTML check boxes. XFDL

check boxes are independent items; HTML check boxes are grouped together

using the same format as radio items. When an XFDL form is submitted in

HTML format, the submission will contain an entry for each check box.

Usage Details

1. Default: The default is the format that the form was in before it was parsed.

For example, a form written in XFDL will be transmitted in XFDL unless

otherwise specified by this option.

2. This option can be included as a form global option and in the definitions of

items that trigger form submissions. These items have a type option setting of

submit or done.

transmitgroups

Specifies which groups are filtered for a particular trasmission. Filtering a group

means keeping or omitting all the cell items that are in the specified group.

For example, if a transmitgroups option specifies that the ″colorcell″ group should

be kept, then all cells within the ″colorcell″ group will be transmitted.

186

Syntax

 transmit flag keep include groups of cells in the group reference list with

the transmission; omit those not in the list

omit omit groups of cells in the group reference list from the

transmission; include those not in the list

group reference string identifies a group whose cell items will be filtered

Available In

action, button, cell

Examples

This sample specifies that only the items in the ″countryCells″ and

″departmentCells″ groups should be kept in the transmission.

 <transmitgroups>

 <filter>keep</filter>

 <groupref>countryCells</groupref>

 <groupref>departmentCells</groupref>

 </transmitgroups>

This sample specifies that all groups of cells should be kept in the transmission

except for ″firstNameCells″ group.

 <transmitgroups>

 <filter>omit</filter>

 <groupref>firstNameCells</groupref>

 </transmitgroups>

Usage Details

1. Default: omit nothing (keep all cell items), unless the containing page is

omitted.

2. It is possible to have several list or popup items with the same group reference,

as these are populated with cells that have the same group reference as the

item which contains them. Therefore, when setting up a transmitgroups option,

caution must be exercised in making group references to list or popup items

which might be populated by the same group of cells.

3. Other filters may take precedence over the transmitgroups option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

 <transmitgroups>

 <filter>transmit flag</filter>

 <groupref>group reference1</groupref>

 ...

 <groupref>group referencen</groupref>

 </transmitgroups>

Note:

v There may be any number of group reference entries.

Details on Options and Array Elements 187

transmititemrefs

Specifies individual items that are filtered for a particular transmission. Filtering

item references means keeping or omitting individual items, rather than all items

of a particular type (see transmititems).

Syntax

 transmit flag keep include items in the item reference list with the

transmission; omit those not in the list

omit omit items in the item reference list from the transmission;

include those not in the list

item reference string identifies the item to be filtered

Available In

action, button, cell

Examples

This sample specifies that only the item on page1 called ″MgrSignButton″ should

be transmitted, and that all other items should be omitted.

 <transmititemrefs>

 <filter>keep</filter>

 <itemref>page1.MgrSignButton</itemref>

 </transmititemrefs>

This sample shows how you would use transmititemrefs in conjunction with

transmititems: although all items that are buttons are omitted, the button on page1

called ″MgrSignButton″ will be kept.

 <transmititems>

 <filter>omit</filter>

 <itemtype>button</itemtype>

 </transmititems>

 <transmititemrefs>

 <filter>keep</filter>

 <itemref>page1.MgrSignButton</itemref>

 </transmititemrefs>

Usage Details

1. Default: omit nothing (keep all items), unles the containing page is omitted

 <transmititemrefs>

 <filter>transmit flag</filter>

 <itemref>item reference1</itemref>

 ...

 <itemref>item referencen</itemref>

 </transmititemrefs>

Note:

v There may be any number of item reference entries.

188

2. Other filters may take precedence over the transmititemrefs option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

transmititems

Specifies types of items that are filtered for a particular transmission. Filtering

items means keeping or omitting all items of a particular type, rather than

individual items (see transmititemrefs).

Syntax

 transmit flag keep include types of items in the item type list with the

transmission; omit those not in the list

omit omit types of items in the item type list from the

transmission; include those not in the list

item type string identifies the type (element tag name) of items to be

filtered

Available In

action, button, cell

Example

This sample specifies that box, help, label, spacer, and toolbar items should be omitted

from the form data submitted to the form processing application.

 <transmititems>

 <filter>omit</filter>

 <itemtype>box</itemtype>

 <itemtype>help</itemtype>

 <itemtype>spacer</itemtype>

 <itemtype>toolbar</itemtype>

 </transmititems>

Usage Details

1. Default: omit nothing (keep all items), unless the containing page is omitted.

2. Element tag names can be specified with or without a namespace prefix. The

default namespace URI is the XFDL namespace URI if no namespace prefix is

given. If a namespace prefix is given, then the namespace URI to which the

prefix is bound is used in determining whether or not each element matches

the given filter.

 <transmititems>

 <filter>transmit flag</filter>

 <itemtype>item type1</itemtype>

 ...

 <itemtype>item typen</itemtype>

 </transmititems>

Note:

v There may be any number of item type entries.

Details on Options and Array Elements 189

For example, the filter component <itemtype>box</itemtype> could

equivalently be written <itemtype>xfdl:box</itemtype> if the prefix xfdl is

mapped to the XFDL namespace URI.

3. Other filters may take precedence over the transmititems option. Refer to “Order

of Precedence of Filters” on page 395 for more information on the order of

precedence of filters.

transmitnamespaces

Specifies which namespaces are filtered for a particular transmission. Filtering a

namespace means keeping or omitting all of the form elements and attributes that

are in the specified namespace.

For example, if a transmitnamespaces option specifies that the http://
www.ibm.com/xmlns/prod/XFDL/Custom namespace should be kept, then all

elements in that namespace are transmitted.

Syntax

 namespace filter keep include all form elements in the namespace URI list

with the transmission; omit those not in the list

omit omit all form element that are in the namespaces in

the namespace URI list from the transmission; include

those not in the list

namespace URI string identifies a namespace whose elements will be filtered

Available In

action, button, cell

Example

This example shows a transmitnamespaces setting that omits the

http://www.ibm.com/xmlns/prod/XFDL/Custom namespace.

 <transmitnamespaces>

 <filter>omit</filter>

 <uri>http://www.ibm.com/xmlns/prod/XFDL/Custom</uri>

 </transmitnamespaces>

Usage Details

1. Default: omit nothing (keep all namespaces).

 <transmitnamespaces>

 <filter>namespace filter</filter>

 <uri>namespace URI1</uri>

 ...

 <uri>namespace URIn</uri>

 </transmitnamespace>

Note:

v There may be any number of namespace URI entries.

190

2. Other filters may take precedence over the transmitnamespaces option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

transmitoptionrefs

Specifies individual options that are filtered for a particular transmission. Filtering

option references means keeping or omitting individual options, rather than all

options of a particular type (see transmitoptions).

Syntax

 transmit flag keep include options in the option reference list with the

transmission; omit those not in the list

omit omit options in the option reference list from the

transmission; include those not in the list

option reference string identifies the option to be filtered

Available In

action, button, cell

Examples

This sample shows how you would use transmitoptionrefs in conjunction with

transmitoptions: although all options that are values are omitted, the value in the

″NameField″ on ″page1″ will be kept.

 <transmitoptions>

 <filter>omit</filter>

 <optiontype>value</optiontype>

 </transmitoptions>

 <transmitoptionrefs>

 <filter>keep</filter>

 <optionref>page1.NameField.value</optionref>

 </transmitoptionrefs>

This sample shows how you would use transmitoptionrefs in conjunction with

transmititemrefs: although the item called ″MgrSignButton″ on ″page1″ is omitted,

its signer option is kept

 <transmititemrefs>

 <filter>omit</filter>

 <itemref>MgrSignButton</itemref>

 </transmititemrefs>

 <transmitoptionrefs>

 <filter>transmit flag</filter>

 <optionref>option reference1</optionref>

 ...

 <optionref>option referencen</optionref>

 </transmitoptionrefs>

Note:

v There may be any number of option reference entries.

Details on Options and Array Elements 191

<transmitoptionrefs>

 <filter>keep</filter>

 <optionref>page1.MgrSignButton.signature</optionref>

 </transmitoptionrefs>

Usage Details

1. Default: keep all options (omit nothing), unless the containing item is

omitted.

2. Element tag names can be specified with or without a namespace prefix. The

default namespace URI is the XFDL namespace URI if no namespace prefix is

given. If a namespace prefix is given, then the namespace URI to which the

prefix is bound is used in determining whether or not each element matches

the given filter.

For exampe, the filter component <optionref>page1.field1.value</optionref>

could equivalently be written <optionref>page1.field1.xfdl:value</optionref> if the

prefix xfdl is mapped to the XFDL namespace URI.

3. Other filters may take precedence over the transmitoptionrefs option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

transmitoptions

Specifies types of options that are filtered for a particular transmission. Filtering

options means keeping or omitting all options of a particular type, rather than

individual items (see transmititemrefs).

Syntax

 transmit flag keep include types of options in the option type list with the

transmission; omit those not in the list

omit omit types of options in the option type list from the

transmission; include those not in the list

option type string specifies the type (element tag name) of options to be

filtered

Available In

action, button, cell

 <transmitoptions>

 <filter>transmit flag</filter>

 <optiontype>option type1</optiontype>

 ...

 <optiontype>option typen</optiontype>

 </transmitoptions>

Note:

v There may be any number of option type entries.

192

Example

This sample specifies that only the active, mimedata, and value options should be

included in the form data submitted to the form processing application.

 <transmitoptions>

 <filter>keep</filter>

 <optiontype>active</optiontype>

 <optiontype>mimedata</optiontype>

 <optiontype>value</optiontype>

 </transmitoptions>

Usage Details

1. Default: keep all options (omit nothing), unless the containing item is

omitted.

2. Element tag names can be specified with or without a namespace prefix. The

default namespace URI is the XFDL namespace URI if no namespace prefix is

given. If a namespace prefix is given, then the namespace URI to which the

prefix is bound is used in determining whether or not each element matches

the given filter component.

For example, the filter component <optiontype>triggeritem</optiontype> could

be equivalently written as <optiontype>xfdl:triggeritem</optiontype> if the

prefix xfdl is mapped to the XFDL namespace URI.

3. Other filters may take precedence over the transmitoptions option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

transmitpagerefs

Specifies individual pages that are filtered for a particular signature. Filtering

pages means keeping or omitting a page and all of its contents.

Syntax

 transmit flag keep include pages in the page reference list with the transmission;

omit those not in the list

omit omit pages in the page reference list from the transmission;

include those not in the list

page reference string specifies the page to be filtered

Available In

action, button, cell

 <transmitpagerefs>

 <filter>transmit flag</filter>

 <pageref>page reference1</pageref>

 ...

 <pageref>page referencen</pageref>

 </transmitpagerefs>

Note:

v There may be any number of page reference entries.

Details on Options and Array Elements 193

Examples

This sample specifies that only page1 should be transmitted, and that all other

pages should be omitted:

 <transmitpagerefs>

 <filter>keep</filter>

 <pageref>page1</pageref>

 </transmitpagerefs>

Usage Details

1. Default: keep all pages

2. Other filters may take precedence over the transmitpagerefs option. Refer to

“Order of Precedence of Filters” on page 395 for more information on the order

of precedence of filters.

triggeritem

Identifies the item that triggered a form submission. Items triggering form

submissions have a type option setting of refresh, submit, or done.

When a user selects an item that triggers a form submission, the triggeritem option

is added to the form globals and assigned the item reference of the selected item.

Syntax

 item reference string identifies the trigger item

Available In

form global

Example

This sample indicates that the item triggering the request is on the page called

″Page_one″ and has is called ″submit_button″.

 <triggeritem>Page_one.submit_button</triggeritem>

Usage Details

1. Actions of type submit or done set the triggeritem to the SID of the triggering

item. Actions of type refresh first clear the triggeritem by setting it to empty

(″″), then set the triggeritem to the SID of the triggering item.

type

Associates a task with an item that can trigger a task: action, button, or cell.

 <triggeritem>item reference</triggeritem>

194

Syntax

 action type (see below) the task to perform

Tasks

The tasks can be any of the following:

Tasks Description of Tasks

Use with the Following

Items

cancel Close the form; if any changes were

made to the form since the last save or

submit, then the user is informed that

the form has changed and is allowed to

choose whether the cancellation will

proceed. Note that the value options of

many items, as well as the contents of

data items, may change in response to

an enclose or remove action.

action, button, cell

display Display an enclosed file. The web

browser will choose the appropriate

viewer according to the file’s MIME

type.

action, button cell

done Perform a submit followed by a cancel. action, button, cell

enclose Allows the user to place one or more

files into one or more of the datagroups

defined for the form. The files will be

encoded using base64 encoding format.

button, cell

extract Allows a user to copy the contents of an

enclosed file into a file on the local disk.

button, cell

link Perform all requests specified by the url

options in the current item. See section

″8.93 url″ for more details.

action, button, cell

pagedone Move to the page specified in the url

option. This closes the current page and

replaces it with the new page. All fields

containing error checking on the current

page must be correctly filled out before

it can be closed.

action, button, cell

print Print the form on a local printer. action, button, cell

refresh Sets the triggeritem to ″″ and then to the

full reference (including scope ID) of the

item that triggered the refresh.

action, button, cell

remove Allows the user to remove an item from

a datagroup; the underlying data item

will only be deleted if it belongs to no

other datagroups.

button, cell

replace Perform a link followed by a cancel. action, button, cell

 <type>action type</type>

Details on Options and Array Elements 195

Tasks Description of Tasks

Use with the Following

Items

saveform Saves the form to the current filename

and location. If no filename has been

set, prompts the user for a filename and

location, then saves the file.

action, button, cell

saveas Prompts the user for a filename and

save location, then saves the file.

action, button, cell

select With action items: the item’s active

option goes from off, to on, to off again.

Additionally, if an xforms:action is

contained within the action item, then

the xforms:action is triggered.

With button items containing images:

stores where on the image the button

was clicked in the coordinates option.

With cell items: flags the cell as selected

when a user chooses the cell. This

means the item reference of the cell is

copied to the value option of the parent

list or popup.

action, button, cell

signature Create a signature. button

submit Initiate the form processing applications

identified in the url options of the

current item.

action, button, cell

Available In

action, button, cell

Example

This sample specifies that ″BUTTON1″ saves the form to a local file.

 <button sid="BUTTON1">

 <value>Save</value>

 <type>saveas</type>

 </button>

Usage Details

1. Default: select

url

Provides the url to a target, such as a file or application. Items containing this

option must have a type option setting of link, replace, submit, done, or pagedone.

The object identified must be one of the following:

v File — Used with a type option of link or replace. The file identified is

downloaded, and either displayed or saved. Examples of such files are images,

word processing documents, and XFDL forms.

196

v Application — Used with a type option of submit or done. The application

identified is initiated. A form processing application, such as a cgi or a servlet, is

an example of such an application.

v Item — Used with a type option of pagedone. The item identified, on the page

identified, receives focus. The item must be on another page.

v Form or Page Globals — Used with a type option setting of pagedone. The focus

moves to the first item on the page when the new form or page appears. The

form globals reference is global.global. The page globals reference is <page

sid>.global for another page

v e-mail Address — Used with a type option of submit, done, link, or replace.

With a submit or done type, the form is attached to an e-mail message, and that

message is sent to the address in the url. With a link or replace type, an e-mail

message is created and sent, but the form is not attached to the message.

Depending on the settings you use, the user may be able to add additional

information to the e-mail.

Syntax

 the URL string identifies the target. Can be one of:

v A URL with the format: scheme://
host.domain[:port]/path/filename for files and

applications. Scheme is restricted to http or https.

v A URL with a mailto format. See ″URLs for e-mail″

below for further information.

v #item reference for the next item in the form to receive

focus.

URLs for e-mail

URLs that provide an e-mail address must follow this general format:

 mailto:address?parameter=setting¶meter=setting...

The first parameter follows the question mark (?) symbol, while each additional

parameter is added using the ampersand (&) symbol.

For example, a URL using all parameters would look like this:

 mailto:setting?to=setting&cc=setting&bcc=setting&

 subject=setting&body=setting&filename=setting

 <url>the URL</url>

Note:

v item reference can be an item, form or page global reference.

Details on Options and Array Elements 197

The following table lists the available parameters and their settings:

 Parameter Setting Description

mailto:

to=

cc=

bcc=

string a complete e-mail address, such as john@acme.com. To

include additional addresses, use the appropriate

parameter twice. For example, to add two cc addresses,

use the cc= parameter twice as shown:

 mailto:john@acme.com?cc=bob@acme.com

 &cc=fred@acme.com

Note that the first address, immediately after the mailto:

parameter, is the first recipient. Additional recipients are

specified using the to= parameter.

subject= string this is the subject line of the e-mail. The text must

conform to standard URL encoding rules, such as

replacing spaces with the plus (+) symbol.

body= string this is the body of the e-mail. The text must conform to

standard URL encoding rules, such as replacing spaces

with the plus (+) symbol.

filename= string this is the name you want to give to the file that is

attached to the e-mail message. If you do not set this

parameter, a default file name will be assigned.

If you provide the mailto:, cc=, bcc=, subject=, and body= parameters, the e-mail

will be sent automatically and the user will not be able to modify the message.

This is true even if the parameters are set to nothing. For example, the following

URL would mail the message automatically:

 mailto:tim@acme.com?cc=&bcc=&subject=Hello&body=Hello+Tim&body=

If you leave out any of those parameters, the user will see the e-mail message

before it is sent, and will be able to change the e-mail.

Note: The ampersand is a restricted character in XML. As such, you must either

use an entity reference (&) or enclose the mailto URL in a CDATA

section when using the ampersand. See below for an example that uses

CDATA.

Available In

action, button, cell

Example

This sample identifies a form processing application:

 <url>http://www.host.domain/cgi-bin/recv_status</url>

This sample identifies a page to display:

 <url>#PAGE2.global</url>

This sample creates an e-mail message that is sent automatically because it

contains all of the necessary parameters. Note that the URL is enclosed in the

CDATA construct because it contains ampersands (&).

 <url><![CDATA[mailto:john@acme.com?&subject=Hello&

 body=Hello.+How+are+you?]]></url>

198

This sample creates an e-mail message that appears to the user before sending,

allowing the user to change the parameters.

 <url>mailto:john@acme.com</url>

Usage Details

1. Default: none

2. You can only list a single URL.

3. You can create a URL that includes computed values, as shown:

 <url compute="PAGE1.FIELD1.value"></url>

4. You can create a URL that includes user input as part of the URL string. Ensure

that you concatenate (+.) the elements of the string. Additionally, you must

contain the e-mail parameters (mailto, &subject, and so on) within quotation

marks. For example:

 <url compute="’mailto:’ +. to_field.value +.

 ’&subject=’ +. subject_field.value +. ’&body=’

 +. body_field.value></url>

5. If you have specified an HTML transmitformat in a form, the form sends its data

as HTML when it communicates with a server. Information transmitted in

HTML is URL-encoded. Therefore, for forms transmitted in HTML, you must

replace all non alpha-numeric characters with a character triplet consisting of

the % character followed by two hexadecimal digits. These hexadecimal digits

are derived from the ASCII code for the original character. The hexadecimal

digits are ″0123456789ABCDEF″. For example:

 Character ASCII Code URL-encoded triplet

<space> 32 %20

\r 13 %0D

Applications receiving form data must check the content type of the incoming

data to see whether it is url-encoded.

value

Reflects the contents of an item. Visually, this can take several forms, depending on

the item to which it applies. For example, the value option in label items contains

the label text; the value option in radio items contains a status indicator; and the

value option in list items contains the scope identifer (sid) of the most recently

selected cell (if it was a select cell).

An item’s contents will be stored in the form whenever a user saves the form or

submits it for processing. This is true even for inactive items and items using the

default value option setting (in this case, a value option containing the default

setting is added to the item’s definition).

Syntax

 setting string the item’s contents

 <value>setting</value>

Details on Options and Array Elements 199

Available In

button, cell, check, checkgroup, combobox, field, help, label, list, popup, radio,

radiogroup, slider

Example

This sample identifies the text of a label item.

 <value>My Form Title</value>

Usage Details

1. Default: varies by item. Refer to the item in question for more information.

2. Rich text fields use both the value and the rtf option to store the text of the

field. Refer to the rtf option for more information.

3. Multiple line values need to have carriage returns inserted in the code. For

example:

 <value>This value spans

 two lines.</value>

4. To get the value of a cell that a user has selected from a list or popup,

dereference it in the following manner:

 page_tag.list_tag.value->value

For example:

 page1.countryPopup.value->value

When a user selects a cell from a list, the scope identifer (sid) of the cell is

stored as the value of the list. Hence the dereference syntax.

visible

Defines whether or not the item is visible on the screen and can be printed.

Syntax

 status on item can be seen on the screen and printed

off item cannot be seen on the screen and will not print when

the form is printed.

Available In

box, button, check, checkgroup, combobox, field, label, line, list, popup, radio,

radiogroup, slider

Example

This sample shows how an item can be set to be visible at the user’s request.

 <check sid="SHOW_INSTRUCTIONS">

 <value>off</value>

 <label>Do you want to see the instructions?</label>

 </check>

 <label sid="INSTRUCTION_LABEL">

 <visible>status</visible>

200

<visible compute="SHOW_INSTRUCTIONS.value==’on’ ?

 ’on’ : ’off’"></visible>

 <value>Please complete all portions of this form.</value>

 </label>

Usage Details

1. Default:

v XFDL: on.

v XForms: defaults to the relevant property for the data element to which the

containing item is bound.
2. An XFDL item in an xforms:group, xforms:repeat, or xforms:case will not be visible

if:

v The XFDL item containing the xforms:group, xforms:repeat, or xforms:case is not

visible.

v The xforms:case is not selected.

v The row containing the XFDL item (created by the xforms:repeat) is

non-relevant.

These cases are true regardless of the visible option for that XFDL item, and

regardless of whether the XFDL item itself contains XForms options.

webservices

Enables you to embed a WSDL document within a form. This makes the functions

defined in the WSDL document available to the form as though they were XFDL

functions.

Syntax

 webservice name string the name of the Web Service.

wsdl n/a the WSDL document.

Available In

form global

Example

 <?xml version="1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms">

 <globalpage sid="global">

 <global sid="global">

 <webservices>

 <wsdl name="name of webservice">

 ...wsdl document...

 <webservices>

 <wsdl name="webservice name">wsdl1</wsdl>

 ...

 <wsdl name="webservice name">wsdln</wsdl>

 </webservices>

Details on Options and Array Elements 201

</wsdl>

 </webservices>

 </global>

 </globalpage>

Usage Details

1. To call a web service message or function, you must use both the name of the

web service package and the name of the message or operation. The package

name has two parts: the service name and the port type. These two parts are

separated by an underscore. The syntax of this call is:

 <service_name>_<portType>.<message_name>

For example, the following reference calls the HelloWorld operation inside the

Service1 web service. It uses the Service1Soap port type:

 Service1_Service1Soap.HelloWorld()

2. Web services must not include the underscore character (_) in either service or

port names, but can include it in operation names.

3. Web services must not use mandatory headers, as defined by the

soap:mustUnderstand tag.

4. Web services are restricted to the 46 primitive data types as defined by schema.

Third party extension to the primitive data types are not supported.

5. Web services may use basic or digest authentication. In either case,

authentication must be performed before calling any functions in the web

service. This is accomplished by calling the setNetworkPassword function, which

is automatically created in a package with the same name as the web service.

Note that when calling the setNetworkPassword function, you need to include

the service name, but not the port type. For example:

 Service1.setNetworkPassword()

6. Web services do not support SSL.

7. The functions provided by web services support the use of XPath references.

8. When used with XForms, web services can be called through XForms

submissions.

writeonly

Sets a field to be write only. This means that the user can type into the field, but

cannot read what is typed. Instead, each character is replaced by a uniform symbol

(such as an asterisk).

This is useful if you are creating a password field.

Syntax

 setting on the item is write only, which means that each character is

replaced with a uniform symbol (such as an asterisk) to

obscure the input.

off the item displays input normally.

 <writeonly>setting</writeonly>

202

Available In

field

Example

The following example shows a field that is set to be write only:

 <field sid="writeOnlyField">

 <value>You cannot type into this field.</value>

 <readonly>on</readonly>

 </field>

Usage Details

1. Default:

v XFDL: off

v XForms: the xforms:secret option, if present.
2. The xforms:secret option overrides the writeonly option, and forces the field to be

write only.

<custom option>

Allows form designers to add application specific information to the form

definition. This is useful when submitting forms to applications requiring

non-XFDL information. An example of non-XFDL information might be an SQL

query statement. Custom options must not be in the XFDL namespace.

Syntax

Example

This sample shows a custom option containing an SQL query.

 <sql:query

 xmlns:sql="http://www.iso-standards.org/9075/2002/sqlxml">

 <!-- Content describing an SQL query -->

 </sql:query>

This XML could be included in the definition of an item that triggers a form

submission. Since the internal content can use XFDL computes to populate the

query based on form content from the user, the server-side processing would be

able to perform a proper query and have the results used to populate a response

form.

Usage Details

1. The naming conventions for a custom option are as follows:

v Custom options can have computed values by using the XFDL compute

attribute, which must be qualified with a namespace prefix associated with

the XFDL namespace URI.

 <option xmlns="http://www.ibm.com/xmlns/prod/XFDL/Custom">

 <!-- Arbitrary XML content -->

 </option>

Details on Options and Array Elements 203

v In order to make the XML content addressable by the XFDL compute system,

the tag names of the custom option and any elements within it must conform

to the XFDL syntax for a scope identifier.

204

Details on XForms Options

XForms options are only required when you are creating an XFDL form that

contains an XForms data model. These options link the XFDL items to the data

model, so that the items and model share data.

XForms options belong to the XForms namespace. However, in most respects these

options are treated just like XFDL options. They are added to the syntax of the

form at the same level, set particular characteristics for the containing item, and

are recognized by the XFDL parser.

Despite this, XForms options do have some features that differ from XFDL options.

This chapter describes these features and then details each of the XForms options

separately.

XForms Namespace

XForms options exist in the XForms 1.0 namespace, which is defined as:

 http://www.w3.org/2002/xforms

By convention, XFDL uses the xforms prefix for this namespace, which is normally

declared on the <XFDL> element of the form as shown:

 <XFDL xmlns:xforms="http://www.w3.org/2002/xforms">

Linking Input Items to the XForms Data Model

Items are linked to the XForms data model through the XForms options they

contain. For example, a field item might use the xforms:input option to link it to a

specific element in the data model.

For most input items, this link creates a relationship between the item’s value

option and the data element, so that they share information. For rich text fields, the

link is between the data element and the rtf option, although the plaintext option

can also be pushed to the data model by using an additional custom item.

Single Node Binding

When creating XForms options, most of the time you will also have to link that

option to the XForms data model. For example, you might create a field in your

form that uses the xforms:input option. This option links the field to a particular

element or attribute in the instance data, so that the field and that element or

attribute share data.

These links are created through a single node binding, which is expressed in one of

two ways:

v As a ref attribute (with an optional model attribute).

v As a bind attribute.

© Copyright IBM Corp. 2003, 2006 205

Using the ref Attribute to Create a Single Node Binding

When you use the ref attribute to create a single node binding, you use an XPath

reference to create a direct link between a display element in the form, such as a

field, and a data element in the XForms model. The attribute is written as shown:

 ref="XPath to data model element"

For example, you might have a field that includes the xforms:input option. This

option uses the ref attribute to link the contents of the field to an element in the

XForms model, as shown:

 <xforms:input ref="XPath to data model element">

By default, XPath expressions begin at the root element of the first instance in the

data model. For example, you might have the following data model:

 <xforms:model>

 <xforms:instance xmlns="">

 <personnel>

 <name></name>

 <address></address>

 <telephone></telephone>

 <personnel>

 </xforms:instance>

 <xforms:model>

In this case, the XPath expression would begin at the <personnel> element, since it

is the root element of the default instance in the data model. Thus, to link the

<xforms:input> element to the <name> element in the model, you would use the

following expression:

 <xforms:input ref="name">

Inheritance

single node bindings that use the ref attribute are evaluated relative to the nearest

expressed single node binding. For example, consider the following XForms data

model:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <x>

 <y>5</y>

 </x>

 </root>

 </xforms:instance>

 </xforms:model>

Within the body of your form, you may have an xforms:group that contains a field

with an xforms:input. Both of these elements are bound to the data model, as

shown:

 <xforms:group ref="x">

 <field sid="Number">

 <xforms:input ref="y">

 <xforms:label>Number:</xforms:label>

 </xforms:input>

 </field>

 </xforms:group>

In this case, the xforms:group is evaluated relative to the root node of the data

model, which in this case is <root>. This links the group to the <x> element. The

206

xforms:input, being a child of the xforms:group element, inherits its starting point

from the xforms:group and is evaluated relative to the <x> element. This links the

xforms:input to the <y> element.

Some XForms elements have optional single node bindings. In these cases, if the

binding is not declared, then the children of that element inherit the same starting

point as the element itself.

For example, consider the following xforms:group:

 <xforms:group ref="x">

 <button sid="Submit">

 <xforms:trigger>

 <xforms:label ref="submittext"/>

 </xforms:trigger>

 </button>

 </xforms:group>

In this case, the xforms:trigger element inherits a starting point of <x> from the

xforms:group. Since the xforms:trigger does not declare a single node binding itself,

the xforms:label also inherits a starting point of <x> from the xforms:group.

Absolute References

Absolute references are preceded with a slash, and begin with the root element of

the data instance. For example, consider the following instance:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <a>

 5

 <c>

 <d>10</d>

 </c>

 </root>

 </xforms:instance>

 </xforms:model>

To create an absolute reference to the <d> element, you would write:

 /root/c/d

Additionally, absolute references override all inherance rules. For example,

consider the following xforms:group element:

 <xforms:group ref="a">

 <field sid="Number1">

 <xforms:input ref="b">

 <xforms:label>First Number:</xforms:label>

 </xforms:input>

 </field>

 <field sid="Number2">

 <xforms:input ref="/root/c/d">

 <xforms:label>Second Number:</xforms:label>

 </xforms:input>

 </field>

 </xforms:group>

In this case, the reference for the first xforms:input is evaluated from the <a>

element because it inherits this starting location from the xforms:group. However,

the reference for the second xforms:input overrides that inheritance and links to the

<d> element.

Details on XForms Options 207

Multiple Models

If you are using multiple models in your form, all references will default to the

first model. To refer to a different model, you must use a model attribute along

with your ref attribute. The model attribute is written as shown:

 model="model ID"

The model ID is determined by the id attribute on the xforms:model tag. For

example, consider the following data model:

 <xforms:models>

 <xforms:model>

 ...

 </xforms:model>

 <xforms:model id="m2">

 <xforms:instance xmlns="">

 <root>

 <x>5</x>

 </root>

 </xforms:instance>

 </xforms:model>

 </xforms:models>

In this case, the first model is not assigned an ID, but the second model is. To

create a reference to the x element in the second model, you must use both the ref

and model attributes, as shown:

 ref="x" model="m2"

When you switch to the non-default model in this way, the reference is evaluated

from the root element of the first data instance in that model. In other words,

inheritance from a previous single node binding to a different model is ignored.

Using the bind Attribute to Create a Single Node Binding

When you use the bind attribute to create a single node binding, you are creating

an indirect link between a display element in the form, such as a field, to a data

element in the XForms model. To do this, you link the element in the form to a

<bind> element in the data model using that element’s ID. This linking is then

automatically extended to the data element that the <bind> affects.

For example, consider the following data model:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <a/>

 <c/>

 </root>

 </xforms:instance>

 <xforms:bind id="hypotenuse" nodeset="c">

 <xforms:bind calculate="power(../a * ../a + ../b * ../b, 0.5)"/>

 </xforms:bind>

 </xforms:model>

In this case, the <a> and elements hold the length of the sides of a triangle.

The <bind> element then calculates the hypotenuse and sets that value in the <c>

element. You might link an xforms:input to this bind, as shown:

208

<field sid="Number">

 <xforms:input bind="hypotenuse">

 <xforms:label>Number:</xforms:label>

 </xforms:input>

 </field>

In this case, the xforms:input is linked to the identified bind, which in turn link the

xforms:input to the <c> element in the data instance. This means that the field and

the <c> element would share data.

Nested Binds

When creating a single node binding, you cannot link to nested binds. You can

only link to the outermost bind in any nested structure.

Inheritance

single node bindings that are created using the bind attribute do not inherit starting

locations from other single node bindings (unlike single node bindings created

using the ref attribute).

Nodeset Binding

A nodeset binding links an element in the form to a set of data elements. For

example, xforms:repeat options always bind to a collection of rows in the data

model, with each row representing a row in a table.

Nodeset bindings operate in all ways like single node bindings, except that they

return a set of nodes rather than a single node. For more information about single

node bindings, refer to “Single Node Binding” on page 205.

Bindings and Relevance

The relevance of display elements is determined based on their binding. For

example, if a field in the form is bound to element <x> in the data model, then

that field inherits its relevance from element <x>. If an item becomes non-relevant,

then its visible and active options default to off.

The xforms:group, xforms:switch, and xforms:repeat options override the relevance of

any display elements they contain.

For example, consider the following xforms:group:

 <xforms:group ref="x">

 <field sid="Number1">

 <xforms:input ref="../y">

 <xforms:label>First Number:</xforms:label>

 </xforms:input>

 </field>

 <field sid="Number2">

 <xforms:input ref="../z">

 <xforms:label>Second Number:</xforms:label>

 </xforms:input>

 </field>

 </xforms:group>

In this case, the relevance of the group as a whole is determined by the <x>

element. This means that if <x> is not relevant, then neither of the fields are

Details on XForms Options 209

considered relevant regardless of that status of <y> or <z> (which may be relevant

even if <x> is not because they are siblings of <x>).

Furthermore, if an xforms:repeat is bound to a nodeset that contains no relevant

nodes, then the visible and active options of the containing table default to off.

This overriding behavior ensures that grouped items are always displayed or

hidden as a group, rather than as individual items.

Metadata Sub-Options

Many of the XForms options support the inclusion of metadata sub-options. These

sub-options are optional, and provide information that is passed to the user

interface, including alerts and help messages. Valid sub-options include:

v Alert Setting

v Hint Setting

v Help Setting

Alert Setting

Sets an alert message that is displayed to the user if they enter invalid information.

This is equivalent to the message setting in the format option. If both an xforms:alert

and a message are provided for an item, then the message overrides the xforms:alert.

The alert setting follows this syntax:

 single node binding string see “Single Node Binding” on page 205.

alert text string the alert message. If the single node binding is

provided, then it overrides this message.

Hint Setting

Provides a help message that is displayed to the user if they enter help mode. This

message is generally a short instruction, such as telling the user what format is

valid for a specific field, and is displayed as a tooltip.

This is equivalent to the help option. If an item contains both an xforms:hint and a

help option, then the help option overrides the xforms:hint.

The hint setting follows this syntax:

 single node binding string see “Single Node Binding” on page 205.

hint text string the hint text. If the single node binding is provided, then

it overrides this message.

 <xforms:alert single_node_binding>alert text</xforms:alert>

 <xforms:hint single_node_binding>hint text</xforms:hint>

210

Help Setting

Provides a help message that is displayed to the user if they enter help mode. This

message is generally longer than an xforms:hint, and is intended to provide detailed

help to the user.

Although there is no direct equivalent in XFDL, xforms:help is treated like the help

option, and is displayed as a tooltip when the user enters help mode.

If an item contains both an xforms:hint and an xforms:help, then the help is

appended to the hint. Futhermore, if an item contains both an xforms:help and a

help option, then the help option overrides the xforms:help.

The help setting follows this syntax:

 single node

binding

string see “Single Node Binding” on page 205.

help text string the help text. If the single node binding is provided, then

it overrides this message.

xformsmodels

Allows you to define one or more XForms data models in your form. Once

defined, you can link the data in these models directly to the presentation layer of

your form.

The <xformsmodels> tag can contain any number of XForms models, which in

turn can contain any number of data instances. In general, you will use only one

XForms model, since multiple models do not share data or user interface bindings.

Each data instance contains an XML element. This can be any valid XML with a

single root, allowing you to re-use existing data models from other applications.

Optionally, you can use the src attribute to load XForms instance data from an

external source. In this case, the result is stored in the form once it is loaded.

 <xforms:help single_node_binding>help text</xforms:help>

Details on XForms Options 211

Syntax

name string optional. An arbitrary name that you may assign to each

model and data instance. The first model/instance is default,

and does not require an ID. All subsequent models and

instances do.

All names assigned to id attributes must be globally unique

within the form.

namespace string optional. The namespace of the instance data. All references

to instance data must include an appropriate namespace

prefix, unless you use the empty namespace (denoted by

empty quotation marks, ″″).

 <xformsmodels>

 <xforms:model id="name1" schema="schema URIs"

 functions="functions">

 <xsd:schema>schema1</xsd:schema>

 ...

 <xsd:schema>scheman</xsd:schema>

 <xforms:instance id="name1" xmlns="namespace"

 src="source">

 instance1

 </xforms:instance>

 ...

 <xforms:instance id="namen" xmlns="namespace"

 src="source">

 instancen

 </xforms:instance>

 <xforms:bind1

property_settings>

 <xforms:bind1a

property_settings>

 ...

 </xforms:bind>

 ...

 </xforms:bind>

 ...

 <xforms:bindn

property_settings/>

 <xforms:submission1

submission_attributes/>

 ...

 <xforms:submissionn

submission attributes/>

 </xforms:model>

 ...

 <xforms:model id="namen" schema="schema URIs"

 functions="functions">

 ...

 </xforms:model>

 </xformsmodels>

Note:

v there can be any number of xforms:model elements, each containing its own model.

v <xforms:bind> elements can nest to any depth.

212

schema URIs string optional. A space separated list of URIs that point to XML

schemas. These schemas are constantly enforced within the

XForms model.

The file: scheme of referencing URIs is supported, with the

following exceptions:

v Cannot reference the Program Files directory.

v Cannot reference the Windows® or Windows System

directories.

v Cannot reference any temporary directory.

Additionally, the resulting file must be contained by a folder

in a sub-tree of the folder that contains the originating file.

To refer to a schema file in the Viewer’s schema folder, use

an xsf prefix. For example:

 xsf:filename.xsd

functions string optional. A space separated list functions used by the model.

By default, all XForms 1.0 functions are supported. This

allows you to add support for the following XForms 1.1

functions:

 power

 current

schema schema optional. An XML schema that is embedded in the form.

These schemas are constantly enforced within the XForms

model.

src URI optional. Use this to point to an external file that contains

the instance data.

This supports HTTP, HTTPS, and file URIs. Relative URIs are

evaluated based on the location from which the form was

obtained.

When the document is retrieved from the Web, relative file

locations are evaluated from the following folder:

 Documents and Settings\<user>\

 Application Data\PureEdge\xforms

instance XML optional. An arbitrary XML data instance with a single root.

This can be as simple or complex as you like, as long as it is

valid XML.

If the containing <xforms:instance> tag has an src attribute,

this instance data is ignored and the loaded data is used

instead.

property

settings

special sets properties for particular elements in the XForms model.

See below for more information.

submission

attributes

(see below)

Property Settings

The property settings allow you to set specific properties for elements in your data

model. They follow this syntax:

Details on XForms Options 213

name string optional. An arbitrary name you assign to the bind. All

names assigned to id attributes must be globally unique

within the form.

nodeset XPath an XPath expression defining which node or nodes in the

data model are affected. This links the properties to one or

more elements in a data instance.

property expression the property to apply to the indicated nodeset. Property

attributes are expressed as follows:

 property_name = setting

See below for more information.

Available Properties

The following list describes the properties you can set for a nodeset:

calculate

Applies a calculation that sets the content of a node. This calculation is

written as an XPath expression that is evaluated relative to a node in the

bind’s nodeset.

 For example, if you had a purchase order form, you might use the

following expression to set the value of the ″total″ node to equal the value

of the ″subtotal″ node plus the value of the ″tax″ node:

 calculate="../subtotal + ../tax"

 Do not link a data node with a calculation to a UI element that has a value

set by a an XFDL compute. When the XForms UI binding transfers data to

the UI element, the XFDL compute is destroyed.

constraint

Allows you to set a constraint for a node. For example, you could specify

that the value of the node must be greater than one, or that it must not

equal the value of a different node.

 This property is set by any XPath expression that results in a boolean

value. True means the constraint has been met, false means it has not.

 For example, the following expression would ensure that the value for the

upperPage node was always greater than or equal to the value of the

lowerPage node:

 nodeset="pagination/upperPage"

 constraint=". >= ../lowerPage"

 <xforms:bind id="name" nodeset="nodeset" property1

... propertyn/>

Note:

v xforms:bind elements never contain data.

v an xforms:bind element can itself contain xforms:bind elements. Furthermore,

the nodeset for the inner bind is evaluated relative to each node of the outer

bind’s nodeset.

214

If a constraint is set for a data node, and a different constraint is set for a

linked UI element, then then the validity of the data is determined by

considering both settings. If the data is invalid for either setting, the data

will be considered invalid overall.

 If a node is relevant (see below) and has a failed constraint, then an

XForms submission is not permitted.

readonly

sets whether the associated node is readonly. If a UI element is linked to a

readonly node, then the UI element will also be readonly. However, if the

UI element has the readonly option set, it will override the setting for the

data node.

 This property is set by any XPath expression that results in a boolean

value. True means the node is readonly, false means the node is not.

 For example, the following expression would make the associated node

readonly:

 readonly="true()"

relevant

Determines whether a node is relevant. Non-relevant nodes are omitted

from XForms submissions. Additionally, if a UI element is linked to a

non-relevant node, then that UI element is not displayed to the user.

However, if the UI element has either the active or visible options set, they

will override the setting for the data node.

 This property is set by any XPath expression that results in a boolean

value. True means the node is relevant, false means the node is not.

 For example, the following expression would make the node relevant if

another node named “paymentType” had a value of “credit”:

 nodeset="creditCardNumber"

 relevant="../paymentType = ’credit’"

required

Sets whether the node requires input. If a UI element is linked to a

required node, then the UI element inherits the setting. Furthermore, if the

node does not require input, but a linked UI element does, then input is

still required.

 This property is set by any XPath expression that results in a boolean

value. True means the node is required, false means the node is not.

 For example, the following expression would set the node to require input:

 required="true()"

 If a relevant (see above) data note is required but empty, then an XForms

submission in not permitted.

type Sets the data type of the node. The valid data types are defined by XML

schema.

 For example, the following expression sets the node to a date type:

 type="xsd:date"

 If the data type set for the node conflicts with the data type set for a linked

UI element, then the validity of the data is determined by considering both

settings. If the data is invalid for either setting, the data will be considered

invalid overall.

Details on XForms Options 215

For example, if you set a data node to be type int and you set a linked

XFDL field to be type string, then typing in ″abc″ (a valid XFDL string)

would still result in an error, since it does not match the int type.

 If a relevant (see above) data node’s content does not match its type, then

an XForms submission is not permitted.

Available Data Types

XML Schema defines a group of data types that can be used with the

<xforms:model> tag. This includes the following commonly used types:

v xsd:boolean

v xsd:date

v xsd:double

v xsd:integer

For more information about the available data types, refer to the XML Schema

specification as published by the W3C.

Submission Attributes

Submissions are defined by a set of attributes on an <xforms:submission> tag. This

allows you to control the submission, setting where it goes, how it is formatted,

and so on. The <xforms:submission> tag must be placed inside the

<xforms:model> tag, but outside of the data instances contained in the model.

The <xforms:submission> tag follows this format:

 name string an arbitrary name you assign to the submission. All names

assigned to id attributes must be globally unique within the form.

single node

binding

string sets the root node for the submission. This node and all of its

children are submitted. The node must be part of the same model

in which the xforms:submission appears. This binding is optional. If

the submission does not contain a single node binding, then the

default instance of the default data model is sent.

For more information about single node bindings, refer to “Single

Node Binding” on page 205.

method string determines the submission method used. Set to one of the

following:

v put — serializes the data in the XForms model as XML. No

response is expected (this is generally used with a file URL).

v post — serializes the data in the XForms model as XML.

v get — serializes the data in the XForms model using URL

encoding (x-www-form-urlencoded).

 <xforms:submission id="name" single_node_binding

 method="method" mediatype="media" action="URL

 includenamespaceprefixes="prefixes"

 replace="replace" instance="instanceID"

 xfdl:actionref="dynamicURL"/>

216

media MIME

type

optional. Overrides the default MIME type for the submission. If

this is not set, the submission defaults to application/xml.

URL URL the URL to which the data is submitted. This must be a complete

URL, and may use any of the following schemes: http, https, or file.

prefixes string a space separated list of namespace prefixes. The definitions for

these namespaces are included with the root node when the data

is submitted. If no prefixes are listed, all prefixes inherited by the

root node are included. To include only the default namespace, use

#default.

replace string determines how the return data is handled. Set to one of the

following:

v all — replace the entire form with the returned data.

v instance — replaces the instance specified by the instance

attribute.

v none — ignore the returned data.

instanceID string optional. The ID of the instance to replace. If not provided, defaults

to the instance that contained the submission data.

dynamicURL URL optional. the element in the model which will provide the URL to

which the data is submitted. The URL in this element must be

complete, and may use any of the following schemes: http, https, or

file.

If used, the URL found in the specified element is default. If no

URL is found, then the URL provided by the action attribute is

used.

Available In

form global

Example

The following example creates a small XForms data model that contains the name,

age, and birthdate of a person. The model includes binds that set the age to be an

integer value and set the birthdate to be a date value, as well as an submission

that submits the entire instance.

 <?xml version="1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms">

 <globalpage sid="global">

 <global sid="global">

 <xformsmodels xmlns="">

 <xforms:model>

 <xforms:instance>

 <testmodel>

 <name></name>

 <age></age>

 <birthdate></birthdate>

 </testmodel>

 </xforms:instance>

 <xforms:bind nodeset="age" type="xsd:integer"/>

 <xforms:bind nodeset="birthdate" type="xsd:date"/>

 <xforms:submission id="submitTest" method="post"

 action="http://www.testserver.com/cgi-bin/testscript"

 includenamespaceprefixes=""/>

Details on XForms Options 217

</xforms:model>

 </xformsmodels>

 </global>

 </globalpage>

Usage Details

 1. When using an XForms model, you must link the model to the presentation

layer of the form. You do this by adding other XForms options to the form,

and then using single node and nodeset bindings to create these links.

 2. If you are including an XForms model in your form, you must declare the

XForms namespace. In general, you should declare this on the XFDL node, as

shown:

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms">

 3. When writing the XPath expression for a constraint, you must express the less

than and greater than symbols as character references (< and >

respectively) or they will be confused with the opening and closing symbols

for the tag.

 4. Each data model can have any number of xforms:submissions. This is useful if

you need to submit different data at given times, or if you need to submit the

same data to different servers.

 5. There are two ways to trigger a submission:

v Create a submission button using the xforms:submit option. For more

information, refer to “xforms:submit” on page 236.

v Create a submission button using an xforms:trigger and one or more

xforms:send actions. For more information, refer to ″Details on XForms

Actions″.
 6. The <xforms:model> portion of the xformsmodels option can trigger XForms

actions using the xforms-model-construct, xforms-model-construct-done,

xforms-model-destruct, and xforms-ready events. For more information, refer to

“Details on XForms Event Handlers” on page 261.

 7. The <xforms:submission> portion of the xformsmodels option can trigger

XForms actions using the xforms-submit, xforms-submit-done, and

xforms-submit-error events. For more information, refer to “Details on XForms

Event Handlers” on page 261.

 8. Action handlers for xforms-submit-done and xforms-submit-error are supported

only for replace=instance and replace=none type submissions.

 9. For SOAP submissions, use a method of post and the following MIME type in

the mediatype attribute:

 application/soap+xml; action=Some Action;[charset=x]

Where you provide the name of the action and optionally supply a character

set.

If the root element of the submitted data is in the SOAP 1.1 namespace

(http://schemas.xmlsoap.org/soap/envelope/) then the content-type used is

text/xml rather than the given mediatype, the charset parameter is preserved,

and the SOAP Action header is added with a value of Some Action.

10. If an element in the XForms data model is both empty and invalid, then any

item on the form that is bound to that element is set to be mandatory.

11. You can create an XForms version of Smartfill by creating submissions that

save and load instance data to a file on the user’s computer. To create a “save

user data” submission, you must include a submission id, an action that

218

points to the xml file that will contain the data, a “put” method to place the

data in the file, a reference to the instance containing the data, and an instance

replace of none. For example:

 <xforms:submission id="saveName" action="file:savedata1.xml" method="put"

 ref="name" replace="none"></xforms:submission>

To create a ″load user data″ submission, you must include a submission id, an

action that points to the xml file that contains the user data, a “get” method to

load the data into the data model, a reference to the instance that will contain

the user data, and replace the entire instance. Furthermore, to ensure that the

new data is displayed in the form, you must create an xforms:setvalue action.

For example:

 <xforms:submission id="loadName" action="file:savedata1.xml" instance="name"

 method="get" replace="instance">

 <xforms:setvalue ref="name" value="instance(’name’)"

 ev:event="xforms-submit-done"/>

 </xforms:submission>

xforms:group

This option groups the items that are contained within a pane item.

Syntax

 single node

binding

string optional. See “Single Node Binding” on page 205.

Available In

pane

Example

The following example shows a pane item with a group of fields that store the

user’s address:

 <pane sid="address">

 <xforms:group ref="customerData/address">

 <field sid="Street">

 <xforms:input ref="street">

 <xforms:label>Street:</xforms:label>

 </xforms:input>

 </field>

 <field sid="City">

 <xforms:input ref="city">

 <xforms:label>City:</xforms:label>

 </xforms:input>

 </field>

 <field sid="Country">

 <xforms:input ref="country">

 <xforms:label>Country:</xforms:label>

 <xforms:group single_node_binding>

 ...items in group...

 </xforms:group>

Details on XForms Options 219

</xforms:input>

 </field>

 </xforms:group>

 </pane>

Usage Details

1. If the group has a single node binding, and it resolves to an empty nodeset or a

non-relevant node, then the xforms:group provides a default of false to the pane

item’s visible option. However, if it resolve to a relevant node, then the default

visibility is true.

xforms:input

This option links a field, combobox or check box to an element in the data model

so that they share data. However, the xforms:input only support a single line of

data. For example, if you added an xforms:input option to a field in your form, you

could use that option to link the field to a name element in your data model. Once

linked, any changes made to the data in one would be reflected by the other.

This option is only available if you are using an XForms data model.

Syntax

 single node binding string see “Single Node Binding” on page 205.

label text string sets the text for the item’s built-in label, as well as the

accessibility message for the item. Although the

xforms:label tag must appear, you can use an empty

string if you do not want to set the label.

If the item also has a label or acclabel option, they will

override this setting.

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

Available In

check, combobox, field, custom

Example

The following code shows an XForms model that contains a name, age, and

birthdate element:

 <xformsmodels>

 <xforms:model>

 <xforms:instance id="test">

 <testmodel>

 <name></name>

 <age></age>

 <xforms:input single_node_binding>

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:input>

220

<birthdate></birthdate>

 </testmodel>

 </xforms:instance>

 </xforms:model>

 </xformsmodels>

Using that data model, the following code links a field to the name element in the

data model, so that they share data:

 <field sid="nameField">

 <xforms:input ref="name">

 <xforms:label>Name:</xforms:label>

 </xforms:input>

 </field>

Once you have a basic field, you can add a help message to it. In the following

example, the <xforms:hint> element is used to provide some simple help for the

user:

 <field sid="nameField">

 <xforms:input ref="name">

 <xforms:label>Name:</xforms:label>

 <xforms:hint>Enter your full name.</xforms:hint>

 </xforms:input>

 </field>

You can also add an alert, in case the user enters the wrong type of data. For

instance, the following example creates a field that links to the age node in the

data model above and has a data type of integer. Additionally, there is an alert that

will appear if the user tries to enter the wrong data type:

 <field sid="ageField">

 <xforms:input ref="age">

 <xforms:label>Age:</xforms:label>

 <xforms:alert>You must enter an integer value.</xforms:alert>

 <xforms:input>

 <format>

 <datatype>integer</datatype>

 </format>

 </field>

To get the user’s birthdate, you can use a combobox instead of a field. In this case,

we will create a combobox with no cells, and set the value option using the date

function. This causes the combobox to display a date picker widget when opened.

 <combobox sid="birthdate">

 <xforms:input ref="birthdate">

 <xforms:label>Birthdate:</xforms:label>

 </xforms:input>

 <format>

 <datatype>date</datatype>

 </format>

 <group>date</group>

 </combobox>

Usage Details

1. This option limits a field to a single line of input. To create a field that accepts

more input, use the xforms:textarea option instead.

2. When using xforms:input with a check box item, the on or off values of the

check box are translated into a boolean true or false (xsd:boolean) when copied

to the data model.

3. When using xforms:input with a combobox item, the combobox must have an

XFDL data type of date.

Details on XForms Options 221

4. Any item with an xforms:input option can trigger XForms actions using the

xforms-value-changed event. For more information, refer to “Details on XForms

Event Handlers” on page 261.

5. When you add an xforms:input to a custom item, it works just as though it was

placed in a valid XFDL item. This means that a value option is created and is

linked to the data model.

6. Pressign the ENTER key in a single line field will commit the value that has

been typed to the form. This means it will be copied to the XForms model.

xforms:output

Links a button or a label to information in the XForms data model. This allows

you to display images or text from the data model on the face of a button or label.

If you use this to link to an image in the data model, that image must be base64

encoded.

Syntax

 single node binding string optional. See “Single Node Binding” on page 205.

XPath XPath optional. An XPath reference that sets the value for the

output. This is useful for performing simple

calculations on one or more data elements. For

example, you might add two data elements together.

The XPath reference is evaluated relative to the root

node of the default instance. If a single node binding

is provided, this attribute is ignored.

mediatype MIME type if the XPath parameter refers to image data, you

must include this parameter to specify the MIME

type of the image.

Note that only image MIME types are valid.

label text string sets the text for the value option of the button or

label, as well as the accessibility message for the

item. Although the xforms:label tag must appear, you

can use an empty string if you do not want to set the

label.

If the item also has an acclabel option, it will override

this setting.

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

Available In

label

 <xforms:output single_node_binding value="XPath" mediatype="MIME type">

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:output>

222

(Note that xforms:output cannot be the immediate child of a button; however, it can

be a descendent through the xforms:trigger, xforms:submit, or xforms:upload options.)

Example

The following example shows a label that uses the xforms:output option to link it to

a total that is calculated in the data model. The label will then use this data as its

value, and display it to the user.

 <label sid="totalCost">

 <xforms:output ref="total"/>

 </label>

Usage Details

1. Images in the data model must be base64 encoded before they can be linked

with the xforms:output option.

2. The xforms:label is optional in an xforms:output. If provided, the value of the

xforms:label is prepended to the text from the single node binding of the

xforms:output (if it has one). The concatenated value is then displayed by the

XFDL label (unless the label displays an image).

3. Right justification affects only the text provided by the xforms:output. Any text

provided by an xforms:label is left justified.

4. The text provided by xforms:label does not affect the XFDL value option. Only

data obtained by the signe node binding to the xforms:output is placed in the

XFDL value. This means that the format option settings are applied to the

xforms:output text, but not the xforms:label text. This allows you to create a

leading label for other values, such as currency types.

5. Although xforms:output cannot be the immediate child of an XFDL button item,

it can appear as a child that is several times removed through the xforms:trigger,

xforms:submit, or xforms:upload options.

6. The value attribute can reference data in a non-default model if you wrap the

xforms:output in an xforms:group and bind the group to the data model you want

to reference. For example, the following sample shows how to add the values

of 2 nodes in the non-default model:

 <pane sid="ModelChooser">

 <xforms:group model="x" ref="/data">

 <label sid="Sum"

 <xforms:output value="a + b"/>

 </label>

 </xforms:group>

 </pane>

xforms:range

Sets the range of values a user can select with a slider item.

Syntax

 single node binding string see “Single Node Binding” on page 205.

 <xforms:range single node binding start="start" end="end"

 step="step">

 <xforms:label>label text</xforms:label>

 </xforms:range>

Details on XForms Options 223

start integer or float the starting value for the range.

end integer or float the end value for the range.

step integer or float how much each increment in the range increases

the total. For example, a step of one counts by

ones (1, 2, 3...) while a step of two counts by

twos (1, 3, 5...).

Available In

slider

Example

The following example shows and slider that allows the user to select any number

between 1 and 10:

 <slider sid="rating">

 <xforms:range ref="rating" start="1" end="2" step="1">

 <xforms:label>Rate this form on a scale of 1 to 10</xforms:label>

 </xforms:range>

 </slider>

Usage Details

1. Any item with an xforms:range option can trigger XForms actions using the

xforms-value-changed event. For more information, refer to “Details on XForms

Event Handlers” on page 261.

xforms:repeat

Creates a template row of items for a table. These items are then duplicated for

each row the user adds to the table, and for each row of data that exists in the

XForms data model.

Syntax

 name string an arbitrary name that you assign to the table. All

names assigned to id attributes must be globally

unique within the form.

nodeset binding string See “Nodeset Binding” on page 209.

index integer This determines which row of the repeat receives

the focus initially.

Default: 1.

XFDL Items XFDL the XFDL items that should appear in each row of

the table. This can include nested grouping items,

such as table and pane, as well as non-XForms items,

such as line.

 <xforms:repeat id="name" nodeset_binding

 startindex="index">

 ...XFDL items...

 </xforms:repeat>

224

Available In

table

Example

The following example shows a table that uses an xforms:repeat to create a row of

data that you might find in a purchase order. This row contains: a popup that lets

the user select which item to purchase, a field that lets them enter a quantity for

the item, and a label that displays the cost of the item.

 <table sid="itemsTable">

 <xforms:repeat nodeset="order/row">

 <popup sid="Product">

 <xforms:select1 appearance="minimal" ref="product">

 <xforms:label>Choose product</xforms:label>

 <xforms:item>

 <xforms:label>Widget</xforms:label>

 <xforms:value>widget</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Gadget</xforms:label>

 <xforms:value>gadget</xforms:value>

 </xforms:item>

 </xforms:select1>

 </popup>

 <field sid="Qty">

 <xforms:input ref="qty">

 <xforms:label>Qty:</xforms:label>

 </xforms:input>

 </field>

 <label sid="LineTotal">

 <xforms:output ref="lineTotal"/>

 </label>

 </xforms:repeat>

 </table>

Usage Details

1. To add or remove rows from a table, you must use the xforms:insert and

xforms:delete actions respectively. For more information about these actions, refer

to “Details on XForms Actions” on page 245.

2. An xforms:repeat maintains an internal index that indicates which row has the

focus. When the focus is sent to the table, it automatically goes to the indexed

row. The index is one-based, so that the first row has an index of 1, the second

row an index of 2, and so on. You can change the index by using the

xforms:setindex action.

3. When using computes with a repeat, the following rules apply:

v Computes written within a row may not reference elements in a different

row.

v Computes written outside a row may not reference elements within a row.
4. Due to a limitation in XForms 1.0, xforms:repeat cannot contain an xforms:switch.

5. If the nodeset binding of the xforms:repeat is empty or contains non-relevant

nodes, then the xforms:repeat provides a default of false to the table’s visible

option.

Details on XForms Options 225

xforms:secret

Links a field to an element in the XForms data model, and makes the field write

only.

This option is only available if you are using an XForms data model. If you are not

using an XForms model, use the writeonly option to create write only fields.

Syntax

 single node binding string see “Single Node Binding” on page 205.

label text string sets the text for the field’s built-in label, as well as

the accessibility message for the field. Leave this

setting empty for no label.

If the field also has either a label option or an acclabel

option, those settings will override the xforms:label.

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

Available In

field

Example

The following code shows an XForms model that contains a password element:

 <xformsmodels>

 <xforms:model>

 <xforms:instance id="test">

 <testmodel>

 <name></name>

 <age></age>

 <birthdate></birthdate>

 <password></password>

 </testmodel>

 </xforms:instance>

 </xforms:model>

 </xformsmodels>

Using that data model, the following code creates a write only field that links to

the password element:

 <field sid="passwordField">

 <xforms:secret ref="password">

 <xforms:label>Password:</xforms:label>

 </xforms:secret>

 </field>

 <xforms:secret single_node_binding>

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:secret>

226

Usage Details

1. The xforms:secret must contain an <xforms:label> tag. Furthermore, any text in

the <xforms:label> tag will override the label option. If you do not want a label,

leave the <xforms:label> empty.

2. This setting overrides the writeonly option.

3. If you link a secret field to a readonly data element, the user will not be able to

see or change the information in the field.

4. Any item with an xforms:secret option can trigger XForms actions using the

xforms-value-changed event. For more information, refer to “Details on XForms

Event Handlers” on page 261.

xforms:select

Sets the choices that are displayed by a checkgroup or list when the user can select

one or more of the choices. When the form is processed, an individual check or cell

item is automatically generated to represent each choice.

Syntax

The xforms:select option has two different syntaxes, depending on whether the

choices are included in the option itself, or whether the choices are included in the

data model and linked by the option.

If you want to include the choices in the option itself, use the following syntax:

 single node

binding

string see “Single Node Binding” on page 205.

style string sets to one of the following values:

v full for a checkgroup

v compact for a list item

Default: compact.

 <xforms:select single_node_binding appearance="style">

 <xforms:label>label text</xforms:label>

 <xforms:item1>

 <xforms:label>label for choice</xforms:label>

 <xforms:value>value for choice</xforms:value>

 <xforms:extension>XFDL Options</xforms:extension>

 </xforms:item1>

 ...

 <xforms:itemn>

 ...

 <xforms:itemn>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:select>

Note:

v there can be any number of xforms:item elements.

Details on XForms Options 227

label text string sets the text for a label that is displayed at the top of

the checkgroup. Leave this blank to display no label.

If the item also has a label option, it will override this

setting.

label for choice string sets the text that is displayed for the choice.

value for choice string sets the value that is stored if the user selects this

choice.

XFDL Options XFDL options adds specific XFDL options to the item represented by

the choice. For example, you might want to add a type

option to the choices in a list, so that the cells that are

generated by those choices trigger actions.

Hint, Help Setting metadata see “Metadata Sub-Options” on page 210.

If you want to include the choices in the data model, use the following syntax:

 single node

binding

string see “Single Node Binding” on page 205.

label text string sets the text for a label that is displayed at the top of the

checkgroup.

Leave this blank to display no label.

XPath to choices string an XPath reference to the elements in the data model that

provide the choices. This defines the set of item’s that the

checkgroup or list displays as choices. This reference is

relative to the XPath to element reference.

For example, your data model may contain the following

elements that represent the choices for your item:

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

In this case, you would reference those choices as:

 choice

 <xforms:select single_node_binding appearance="full">

 <xforms:label>label text</xforms:label>

 <xforms:itemset nodeset="XPath to choices">

 <xforms:label ref="XPath to label text"/>

 <xforms:value ref="."></xforms:value>

 <xforms:extension>XFDL Options</xforms:extension>

 </xforms:itemset>

 Hint Setting

 Help Setting

 Alert Setting

 </xforms:select>

228

XPath to label text string an XPath reference to the label text for each choice. This

text is included in your data model as attributes on the

data elements that contain your choices. This reference is

relative to the XPath to choices reference.

For example, your data model may contain the following

elements that represent the choices for your checkgroup:

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

In this case, your would reference the show attributes

that contain the text that describes that element, as

shown:

 @show

XFDL Options XFDL

options

adds specific XFDL options to all items represented by

the itemset. For example, if you are creating a checkgroup,

you might want to set the itemlocation for all items in the

set, so that they are spaced horizontally rather than

vertically.

Hint, Help Setting metadata see “Metadata Sub-Options” on page 210.

Available In

checkgroup, list

Example

The following code creates a checkgroup with three choices: US Dollars, CDN

Dollars, and Euro. The choices themselves are defined within the xforms:select

option.

 <checkgroup sid="currency">

 <xforms:select ref="currency" appearance="full">

 <xforms:label

 >Select the currencies you accept:</xforms:label>

 <xforms:item>

 <xforms:label>US Dollars</xforms:label>

 <xforms:value>USD</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>CDN Dollars</xforms:label>

 <xforms:value>CDN</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Euro</xforms:label>

 <xforms:value>Euro</xforms:value>

 </xforms:item>

 </xforms:select>

 </checkgroup>

Alternatively, you could create the choices in your data model as follows:

 <xforms:instance xmlns="" id="currency">

 <data>

 <currency/>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

Details on XForms Options 229

In this case, you would use the xforms:select option to link to those choices, as

illustrated by the following checkgroup:

 <checkgroup sid="currency">

 <xforms:select ref="currency" appearance="full">

 <xforms:label

 >Select the currencies you accept:</xforms:label>

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 </xforms:itemset>

 </xforms:select>

 </checkgroup>

Usage Details

 1. The single node binding for the xforms:select must refer to the same model as

the single node bindings for the choices within the xforms:select.

 2. To create a checkgroup or list item from which the user can select only one

choice, use the xforms:select1 option.

 3. The choices available in a list are equivalent to cells of type select. If you want

a choice to perform a different action use the xforms:extension to set a different

type. For example, the following xforms:item is set to type link:

 <xforms:item>

 <xforms:label>US Dollars</xforms:label>

 <xforms:value>USD</xforms:value>

 <xforms:extension>

 <type>link</type>

 <url>http://www.ibm.myserver.com/mypage.htm</url>

 </xforms:extension>

 </xforms:item>

 4. If your xforms:select contains both an xforms:itemset and one or more

xforms:item elements, the xforms:itemset is used and the individual xforms:item

elements are ignored.

 5. The single node binding in the xforms:select option creates a link between the

value option for the containing item and the bound element in the data model,

so that they share data. When the user makes a selection, the xforms:value of

that selection is stored in the XFDL value of the item containing the

xforms:select and in the data node bound to the xforms:select.

 6. If the user makes multiple selections, those choices are stored as a space

delimited list. The selected items are listed by their build order in the form.

Because this list is space delimited, the choices themselves cannot contain

spaces.

 7. To store the value of each selection in its own data element, use the

xforms:select and xforms:deselect events. For more information, refer to “Details

on XForms Actions” on page 245.

 8. The item set (determined by the xforms:item elements or the xforms:itemset

element) may be empty if the bound nodes contain no data, or if the bound

nodes are not relevant. In either case, the containing item is displayed without

any choices. For example, a checkgroup would be displayed without any checks

in it.

 9. Checkgroup and radiogroup items are arranged vertically by default (that is,

each choice appears immediately below the previous choice). To arrange

checkgroup or radiogroup items in another manner, use the xforms:extension to

add an itemlocation to each item in the group. For example, you might set the

items to appear one after another horizontally with the following itemlocation:

230

<itemlocation>

 <after compute="itemprevious"/>

 </itemlocation>

10. To set the choices in a list to perform particular actions, such as a save or

submit, use the xforms:extension to add a type option to each <xforms:item>

element. For example, you might create the following items in your list:

 <xforms:item>

 <xforms:label>Save</xforms:label>

 <xforms:value>Save</xforms:value>

 <xforms:extension>

 <type>saveas</type>

 </xforms:extension>

 </xforms:item>

 <xforms:item>

 <xforms:label>Submit</xforms:label>

 <xforms:value>Submit</xforms:value>

 <xforms:extension>

 <type>submit</type>

 </xforms:extension>

 </xforms:item>

11. The value option overrides the xforms:value of the listed choices. This is useful

when working with list items. A list displays the xforms:label of a choice until it

is selected, at which point it displays the xforms:value of a choice. This means

that you can set the value option to override the default xforms:value, which

will change what is displayed when a choice is selected.

For example, you might have a data model that sets a full text label for the

choices, but uses an abbreviated value. The following instance shows this,

using the show attribute to set the xforms:label and the contents of each

element to set the xforms:value:

 <xforms:instance id="currency">

 <data>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

In this case, you might want to display the full text label even after a choice is

selected. You can do this by using xforms:extension to add a value to each item

in the set. You can then set the value to compute its contents to equal the label,

which is populated with the full text description. The following sample shows

this:

 <checkgroup sid="currency">

 <xforms:select ref="currency" appearance="full">

 <xforms:label

 >Select the currencies you accept:</xforms:label>

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 <xforms:extension>

 <value compute="label"/>

 </xforms:extension>

 </xforms:itemset>

 </xforms:select>

 </checkgroup>

12. Any item with an xforms:select option can trigger XForms actions using the

xforms-value-changed, xforms-select, or xforms-deselect events. For more

information, refer to “Details on XForms Event Handlers” on page 261.

Details on XForms Options 231

xforms:select1

Sets the choices that are displayed by a checkgroup, radiogroup, list, popup, or

combobox. The xforms:select1 option limits users to selecting one of the choices.

Syntax

The xforms:select1 option has two different syntaxes, depending on whether the

choices are included in the option itself, or whether the choices are included in the

data model and linked by the option.

If you want to include the choices in the option itself, use the following syntax:

 single node

binding

string see “Single Node Binding” on page 205.

style string set to one of the following values:

v full — if you are setting choices for a radiogroup of

checkgroup.

v compact — if you are setting choices for a list.

v minimal — if you are setting choices for a popup or

combobox.

Default: minimal.

type string set one of the following values:

v open — set to open if the item is a combobox.

v closed — set to closed if the item is not a combobox.

This parameter defaults to closed, and is not required

if the item is not a combobox.

Default: closed.

label text string sets the text for a label that is displayed at the top of

the item. Leave this blank to display no label.

If the item also has a label option, it will override this

setting.

 <xforms:select1 single_node_binding appearance="style"

 selection="type">

 <xforms:label>label text</xforms:label>

 <xforms:item1>

 <xforms:label>label for choice</xforms:label>

 <xforms:value>value for choice</xforms:value>

 </xforms:item1>

 ...

 <xforms:itemn>

 ...

 <xforms:itemn>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:select>

Note:

v there can be any number of xforms:item elements.

232

label for choice string sets the text that is displayed for the choice.

value for choice string sets the value that is stored if the user selects this

choice.

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

If you want to include the choices in the data model, use the following syntax:

 single node

binding

string see “Single Node Binding” on page 205.

type string set to one of the following values:

v full — if you are setting choices for a radiogroup of

checkgroup.

v compact — if you are setting choices for a list.

v minimal — if you are setting choices for a popup or

combobox.

input string set one of the following values:

v open — set to open if the item is a combobox.

v closed — set to closed if the item is not a combobox.

This parameter defaults to closed, and is not required if

the item is not a combobox.

label text string sets the text for a label that is displayed at the top of the

item.

Leave this blank to display no label.

XPath to choices string an XPath reference to the elements in the data model that

provide the choices. This defines the set of item s that the

item displays as choices. This reference is relative to the

XPath to element reference.

For example, your data model may contain the following

elements that represent the choices for your item:

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

In this case, your would reference those choices as:

 choice

 <xforms:select1 single_node_binding appearance="type"

 selection="input">

 <xforms:label>label text</xforms:label>

 <xforms:itemset nodeset="XPath to choices">

 <xforms:label ref="XPath to label text"

 ></xforms:label>

 <xforms:value ref="."></xforms:value>

 </xforms:itemset>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:select>

Details on XForms Options 233

XPath to label text string an XPath reference to the label text for each choice. This

text is included in your data model as attributes on the

data elements that contain your choices. This reference is

relative to the XPath to choices reference.

For example, your data model may contain the following

elements that represent the choices for your checkgroup:

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

In this case, your would reference the show attributes that

contain the text that describes that element, as shown:

 @show

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

Available In

checkgroup, combobox, list, popup, radiogroup

Example

The following code creates a popup with three choices: US Dollars, CDN Dollars,

and Euro. The choices themselves are defined by the xforms:select1 option.

 <popup sid="currencyType">

 <xforms:select1 ref="selectedCurrency" appearance="minimal">

 <xforms:label>Select the payment currency:</xforms:label>

 <xforms:item>

 <xforms:label>US Dollars</xforms:label>

 <xforms:value>USD</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>CDN Dollars</xforms:label>

 <xforms:value>CDN</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Euro</xforms:label>

 <xforms:value>Euro</xforms:value>

 </xforms:item>

 </xforms:select1>

 </popup>

Alternatively, you could create the choices in your data model as follows:

 <xforms:instance id="currency" xmlns="">

 <data>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

In this case, you would use the xforms:select option to link to those choices, as

illustrated by the following checkgroup:

 <popup sid="currencyType">

 <xforms:select1 ref="selectedCurrency" appearance="minimal">

 <xforms:label>Select your preferred currency for payment:</

 xforms:label>

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

234

<xforms:value ref="."></xforms:value>

 </xforms:itemset>

 </xforms:select1>

 </popup>

Usage Details

 1. The single node binding for the xforms:select1 must refer to the same model as

the single node bindings for the choices within the xforms:select1.

 2. To create a checkgroup or list item from which the user can select any number

of choices, use the xforms:select option.

 3. The choices available in a list are equivalent to cells of type select. If you want

a choice to perform a different action use the xforms:extension to set a different

type. For example, the following xforms:item is set to type link:

 <xforms:item>

 <xforms:label>US Dollars</xforms:label>

 <xforms:value>USD</xforms:value>

 <xforms:extension>

 <type>link</type>

 <url>http://www.ibm.myserver.com/mypage.htm</url>

 </xforms:extension>

 </xforms:item>

 4. If your xforms:select1 contains both an xforms:itemset and one or more

xforms:item elements, the xforms:itemset is used and the individual xforms:item

elements are ignored.

 5. The single node binding in the xforms:select1 option creates a link between the

value option for the containing item and the bound element in the data model,

so that they share data. When the user makes a selection, the xforms:value of

that selection is stored in the XFDL value of the item containing the

xforms:select1 and in the data node bound to the xforms:select1.

 6. The item set (determined by the xforms:item elements or the xforms:itemset

element) may be empty if the bound nodes contain no data, or if the bound

nodes are not relevant. In either case, the containing item is displayed without

any choices. For example, a checkgroup would be displayed without any checks

in it.

 7. Checkgroup and radiogroup items are arranged vertically by default (that is,

each choice appears immediately below the previous choice). To arrange

checkgroup or radiogroup items in another manner, use the xforms:extension to

add an itemlocation to each item in the group. For example, you might set the

items to appear one after another horizontally with the following itemlocation:

 <itemlocation>

 <after compute="itemprevious"/>

 </itemlocation>

 8. To set the choices in a combobox, list, or popup to perform particular actions,

such as a save or submit, you can use the xforms:extension to add a type option

to each <xforms:item> element. For example, you might create the following

items in:

 <xforms:item>

 <xforms:label>Save</xforms:label>

 <xforms:value>Save</xforms:value>

 <xforms:extension>

 <type>saveas</type>

 </xforms:extension>

 </xforms:item>

 <xforms:item>

 <xforms:label>Submit</xforms:label>

 <xforms:value>Submit</xforms:value>

Details on XForms Options 235

<xforms:extension>

 <type>submit</type>

 </xforms:extension>

 </xforms:item>

 9. The value option overrides the xforms:value of the listed choices. This is useful

when working with list items. A list displays the xforms:label of a choice until it

is selected, at which point it displays the xforms:value of a choice. This means

that you can set the value option to override the default xforms:value, which

will change what is displayed when a choice is selected.

For example, you might have a data model that sets a full text label for the

choices, but uses an abbreviated value. The following instance shows this,

using the show attribute to set the xforms:label and the contents of each

element to set the xforms:value:

 <xforms:instance id="currency">

 <data>

 <choice show="US Dollars">USD</choice>

 <choice show="CDN Dollars">CDN</choice>

 <choice show="Euros">Euro</choice>

 </data>

 </xforms:instance>

In this case, you might want to display the full text label even after a choice is

selected. You can do this by using xforms:extension to add a value to each item

in the set. You can then set the value to compute its contents to equal the label,

which is populated with the full text description. The following sample shows

this:

 <checkgroup sid="currency">

 <xforms:select ref="currency" appearance="full">

 <xforms:label>Select the currencies you accept:</xforms:label>

 <xforms:itemset nodeset="instance(’currency’)/choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 <xforms:extension>

 <value compute="label"/>

 </xforms:extension>

 </xforms:itemset>

 </xforms:select>

 </checkgroup>

10. Any item with an xforms:select1 option can trigger XForms actions using the

xforms-value-changed, xforms-select, or xforms-deselect events. For more

information, refer to “Details on XForms Event Handlers” on page 261.

xforms:submit

Sets a button or action item to perform and XForms submission. The rules for the

submission are defined in the XForms data model. The xforms:submit links a button

to a particular set of rules, which are then carried out when the button is clicked.

For more information about XForms submissions, see “xformsmodels” on page 211.

236

Syntax

 ID string the ID of the xforms:submission you want to use. This

is declared in the data model.

label text string sets the text that the button containing the submit

displays, as well as the default accessibility message

for that button. If the button also has value or acclabel

options, they will override this setting.

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

Available In

action, button

Example

The following example shows a button that is linked to the completeSubmit

submission rules in the XForms data model. This button also relies on the

xforms:label to set the text and accessibility message for the button.

 <button sid="completeSubmit">

 <xforms:submit submission="completeSubmit">

 <xforms:label>Submit All Data</xforms:label>

 </xforms:submit>

 </button>

Usage Details

1. You can also trigger submissions using the xforms:send action. For more

information, refer to “xforms:send” on page 255.

xforms:switch

Allows you to divide a portion of the form into sets of items, and then control

which set is shown to the user. For example, you may have a form page with Basic

and Advanced settings, and may only want to show one type of settings to the

user at any given time.

The switch option uses the xforms:case element to group the items into sets. Each

set can contain any number of XFDL items, which are written normally as children

of the xforms:case.

To change which set of items is displayed, you must use the xforms:toggle action.

 <xforms:submit submission="ID">

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:submit>

Details on XForms Options 237

Syntax

 name string an arbitrary name that you assign to the switch or case.

All names assigned to id attributes must be globally

unique within the form.

single node

binding

string optional. See “Single Node Binding” on page 205.

state XPath optional. An XPath expression that is evaluated relative

to the single node binding (if given) or the context node

of the switch. If this resolves to a node that contains the

ID of an <xforms:case>, then that case is active and

shown to the user. Otherwise, the xforms:case with a

selected attribute of true is shown.

The selected case and the state node are synchronized

(that is, changing one changes the other).

boolean boolean true indicates the case is active (that is, the one shown

to the user); false indicates the case is not active.

Note that only one case can be active within a single

switch.

XFDL items XFDL the items that are displayed to the user if the case is

active.

Available In

pane

Example

This example shows a switch that contains two cases: one if the user is single, and

another if the user is married. The first case simply contains a label that informs

the user that no additional information is necessary. The second case contains a

number of fields that request some information about the user’s spouse. To begin

with, the items for the single case are displayed on the form, since it is selected

(that is, selection = true).

 <pane sid="marriageStatus">

 <xforms:switch>

 <xforms:case id="single" selected="true">

 <label sid="singleLabel">

 <xforms:output ref="spouse/none"/>

 </label>

 <switch id="name" single_node_binding xfdl:state="state">

 <xforms:case1

id="name" selected="boolean"

 ...XFDL items...

 </xforms:case1>

 ...

 <xforms:casen

id="name" selected="boolean"

 ...XFDL items...

 </xforms:casen>

 </switch>

Note:

v there can be any number of xforms:case elements, each containing its own set of items.

238

</xforms:case>

 <xforms:case id="married" selected="false">

 <field sid="spouseName">

 <xforms:input ref="spouse/name">

 <xforms:label>Enter your spouse’s name:</xforms:label>

 </xforms:input>

 </field>

 <field sid="spouseAge">

 <xforms:input ref="spouse/age">

 <xforms:label>Enter your spouse’s age:</xforms:label>

 </xforms:input>

 </field>

 </xforms:case>

 </xforms:switch>

 </pane>

In addition, the following code shows a button that uses the xforms:toggle action to

change the switch to show the married case. Note that the xforms:toggle is

enclosed in an xforms:trigger, which is activated when the button is clicked and

triggers the toggle action.

 <button sid="setMarried">

 <xforms:trigger>

 <xforms:label></xforms:label>

 <xforms:toggle case="married" ev:event="DOMActivate"

 ></xforms:toggle>

 </xforms:trigger>

 </button>

Usage Details

1. An xforms:switch can contain any number of xforms:case elements, which can in

turn contain any number of XFDL items, including panes (with groups and

switches) and tables (with repeats).

2. To change which case is selected, you must use the xforms:toggle action. For

more information, see “xforms:toggle” on page 259.

3. An xforms:switch is not allowed in an xforms:repeat element.

xforms:trigger

This option triggers an event in response to an XFDL action or the user clicking an

XFDL button. The event is expressed as an XForms action, which allow you to

make various changes to the form. For example, you could use an XForms action

to set which case in a switch statement is true, or you could us an XForms action

to insert or delete items on the form.

Details on XForms Options 239

Syntax

 single node binding string optional. See “Single Node

Binding” on page 205.

Adding a single node

binding to an xforms:trigger

does not cause the trigger to

share data with the bound

node. It simply allows the

trigger to inherit the relevant

properties from the data

model.

label text string sets the text that the button

containing the trigger

displays, as well as the

default accessibility message

for that button. If the button

also has value or acclabel

options, they will override

this setting.

XForms Action (see below)

Alert, Hint, Help Setting metadata see “Metadata Sub-Options”

on page 210.

XForms Action

The XForms action determines what type of action is actually triggered. This could

be a single action, such as deleting a data node, or multiple actions, such as setting

the value of multiple data nodes. For more information about using XForms

actions, refer to “Details on XForms Actions” on page 245.

Available In

action, button

Example

The following example shows a button that toggles the case of a switch item. In

this case, the toggle sets the basic case to be true. Note that this trigger does not

include a ref attribute, since the button is always relevant.

 <button sid="basicPrefs">

 <xforms:trigger>

 <xforms:label></xforms:label>

 <xforms:toggle case="basic" ev:event="DOMActivate"

 ></xforms:toggle>

 </xforms:trigger>

 </button>

 <xforms:trigger single_node_binding>

 <xforms:label>label text</xforms:label>

 XForms Action

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:trigger>

240

Usage Details

1. The xforms:trigger option triggers XForms actions through the DOMActivate

event. For more information about actions, refer to “Details on XForms

Actions” on page 245. For more information about events, refer to “Details on

XForms Event Handlers” on page 261.

2. A button or action that contains the trigger to type must be of type select,

which is the default if the type is omitted. Any other type will override the

trigger.

3. An xforms:trigger does not set the triggeritem option for the form. If this is

required, you must add a compute that will set the option when the button or

action is activated.

xforms:textarea

This option links a multi-line field to an element in the data model so that they

share data. For example, if you added an xforms:textarea option to a field in your

form, you could use that option to link the field to an element in your data model.

Once linked, any changes made to the data in one would be reflected by the other.

This option is only available if you are using an XForms data model.

Syntax

 single node

binding

string see “Single Node Binding” on page 205.

label text string sets the text for the field’s built-in label, as well as the

accessibility message for the field. Leave this setting

empty for no label.

If the item also has a label or acclabel option, they will

override this setting.

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

Available In

custom, field

Example

The following code shows an XForms model that contains a to, from, date, and

note element:

 <xformsmodels>

 <xforms:model xmlns="">

 <xforms:instance id="memo">

 <memorandum>

 <xforms:textarea single_node_binding>

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:textarea>

Details on XForms Options 241

<to></to>

 <from></from>

 <date></date>

 <note></note>

 </memorandum>

 </xforms:instance>

 </xforms:model>

 </xformsmodels>

Using that data model, the following code links a field to the note element in the

data model, so that they share data:

 <field sid="noteField">

 <xforms:textarea ref="note">

 <xforms:label>Note:</xforms:label>

 </xforms:textarea>

 <value></value>

 </field>

Usage Details

1. This option is for multi-line fields. To create a field with only a single line of

input, use the xforms:input option instead.

2. If an XFDL field has a texttype setting of text/rtf, then the UI binding connects

to the rtf option rather than the value option for that field.

3. To copy the plain text from an rich text field to the XForms data model, you

must use a custom item with an xforms:textarea. Within that item, create a custom

option that has a compute. This compute must copy the contents of the value

option from the rich text field to the value option for the custom item. For

example:

 <field sid="commentField">

 <xforms:textarea ref="comment/richText">

 <xforms:label>Comment:</xforms:label>

 </xforms:textarea>

 <texttype>text/rtf</texttype>

 <value>contains the plain text</value>

 </field>

 <custom:holder sid="plainTextHolder">

 <xforms:textarea ref="comment/plainText">

 <xforms:label/>

 <xforms:textarea>

 <custom:copytext compute="toggle(commentField.value) == 1 ?

 set(value, commentField.value) : ’’"/>

 <value>is set to contain the plain text</value>

 </custom:holder>

4. Any item with an xforms:textarea option can trigger XForms actions using the

xforms-value-changed event. For more information, refer to “Details on XForms

Event Handlers” on page 261.

5. When you add an xforms:textarea to a custom item, it works just as though it

was placed in a valid XFDL item. This means that a value option is created and

is linked to the data model.

xforms:upload

Sets a button to attach a file to the form. The file is loaded directly into the XForms

data model as base64 data. If the file is an image, you can use an xforms:output to

display the file to the user.

This is equivalent to a button of type enclose, but does not allow multiple

enclosures.

242

Syntax

 single node binding string See “Single Node Binding” on page 205.

MIME type MIME type filters the file types that the user can upload. This

is a space delimited list of MIME types that are

allowed.

To limit uploads to those image formats supported

by XFDL, set this to:

image/*

label text string sets the text that the button containing the upload

displays, as well as the default accessibility

message for that button. If the button also has value

or acclabel options, they will override this setting.

Alert, Hint, Help

Setting

metadata see “Metadata Sub-Options” on page 210.

Available In

button

Example

The following example show a button that uploads an employee assessment into

the data model. This upload also copies the MIME type of the file and the filename

to elements in the data model.

 <button sid="loadAssessment">

 <xforms:upload ref="assessment/text"

 mediatype="text/plain">

 <xforms:label>Enclose Assessment</xforms:label>

 <xforms:mediatype ref="../mediatype"></xforms:mediatype>

 <xforms:filename ref="../filename"></xforms:filename>

 </xforms:upload>

 </button>

Usage Details

1. An xforms:upload can only upload a single file. If you want to add multiple files

to a form, you must create multiple upload buttons (or use custom XFDL

constructs).

2. The only way to display an uploaded file is through the xforms:output option.

However, this option is limited to displaying text and image files.

 <xforms:upload single_node_binding mediatype="MIME type">

 <xforms:label>label text</xforms:label>

 <xforms:mediatype single_node_binding></xforms:mediatype>

 <xforms:filename single_node_binding"></xforms:filename>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:upload>

Details on XForms Options 243

244

Details on XForms Actions

XForms actions are similar to the XFDL actions you can create using the action

item. XForms actions allow you to initiate a number of processes, including

submitting a form, setting a value in a form, inserting a row in a repeat table, and

so on.

Unlike XFDL action items, XForms actions are triggered by events in the form. For

example, you might create an action that occurs when the user clicks a button,

when a particular value in the form has changed, or when a submission has

returned an error.

This section provides general information about actions, and then details each

action type in turn.

Syntax

Actions are written in two ways, depending on whether you want to use a group

of action or a single action.

When using a group of actions, you place them in an <xforms:action> tag. This

groups the actions together, so that the actions all respond to the same trigger

event. Once triggered, each action is processed in turn. The following syntax

applies:

 event string this sets the event that will trigger the actions. For more

information about events, refer to “Details on XForms Event

Handlers” on page 261.

condition XPath optional. An XPath expression that evaluates to either true or

false. If false, the actions within the xforms:action tag are not

processed. This expression is evaluated relative to the context

set by its nearest ancestor with a single node or nodeset

binding.

This allows for conditional logic within actions.

action string the type of action you want to use.

action_setting string one or more attributes that set any values required for the

action.

Optionally, you can use only a single action. In this case, no <xforms:action> tag is

required, as the triggering event is included on the action’s tag. This is written as

shown:

 <xforms:action event xfdl:if="condition">

 <action1

action_settings>

 ...

 <actionn

action_settings>

 </xforms:action>

© Copyright IBM Corp. 2003, 2006 245

action string the type of action you want to use.

event string this sets the event that will trigger the action. For more

information about events, refer to “Details on XForms Event

Handlers” on page 261.

condition XPath optional. An XPath expression that evaluates to either true or

false. If false, the action is not processed. This expression is

evaluated relative to the context set by its nearest ancestor

with a single node or nodeset binding.

This allows for conditional logic within actions.

action_setting string one or more attributes that set any values required for the

action.

Note that all actions are in the XForms namespace, and are preceded by the xforms:

prefix. Futhermore, all action settings are written as attributes.

Actions and XForms Functions

Actions that include an XPath reference may also use XForms functions to resolve

that reference. For more information about XForms functions, refer to “Details on

XForms Function Calls” on page 349.

Placing Actions in a Form

The placement of actions depends on the triggering event. For example, if an

action is triggered by a button click, the action must be placed within the

<xforms:trigger> element of the button item. Similarly, if an action is triggered by a

change in the XForms model, it must be included as a child of <xforms:model>

tag.

For example:

 <button>

 <xforms:trigger>

 </xforms:trigger>

 <button>

For more information about the events available and where they are placed, refer

to “Details on XForms Event Handlers” on page 261.

xforms:delete

Deletes a row of elements from a table. The elements are first deleted from the

XForms model, then the table’s repeat deletes the visible items that were linked to

those data elements.

 <action event xfdl:if="condition" action_settings>

246

Syntax

 event string the XForms event that triggers the action.

nodeset binding special see “Single Node Binding” on page 205.

index string an index number that determines which row to delete.

Indexing is one-based, meaning the first row is row 1, the

second row is row 2, and so on.

Example

This example assumes you are working with a purchase order form that includes

the following data instance:

 <xforms:instance xmlns="">

 <po>

 <order>

 <row>

 <product>widget</product>

 <quantity>2</quantity>

 <unitCost>2.00</unitCost>

 <lineTotal>4.00</lineTotal>

 </row>

 ...

 <row>

 <product></product>

 <quantity>0</quantity>

 <unitCost>0</unitCost>

 <lineTotal>0</lineTotal>

 </row>

 </order>

 <subtotal>4.00</subtotal>

 <tax>1.12</tax>

 <totalCost>4.48</totalCost>

 </po>

 </xforms:instance>

This data instance includes multiple <row> elements that represent the rows in a

table. The last row is a ″template″ row. Template rows are not visible to the user. It

simply contains the basic information for a table row, so that when the user wants

to add a row to the table, the information needed to create that row is available.

All other rows are visible to the user and contain data that the user has entered.

The xforms:repeat that creates this table must also exclude the template row, as

shown:

 <table sid="orderTable">

 <xforms:repeat nodeset="order/row[position()!=last()]"

 id="orderTable" startindex="1">

In this case, the nodeset includes all rows that are not in the last position in the

table (which would be the template row). This ensures that the template row is

never included in the table itself, and is never shown to the user.

 <xforms:delete event nodeset_binding at="index"/>

OR

 <xforms:action event>

 <xforms:delete nodeset="XPath" at="index"/>

 </xforms:action>

Details on XForms Actions 247

To delete a row from this table, you need to create a control (such as a button) that

the user can click to trigger an xforms:delete action. You also need to add some

other actions to this control to account for special cases. The following button

illustrates this:

 <button sid="deleteRow">

 <xforms:trigger>

 <xforms:label>Delete Row</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:delete nodeset="order/row[last()>1]"

 at="index(’orderTable’)"/>

 <xforms:insert nodeset="order/row[last()=1]" at="1"

 position="before"/>

 <xforms:setfocus control="orderTable"/>

 </xforms:action>

 </xforms:trigger>

 </button>

In this button, the first action is the xforms:delete. This delete identifies the nodeset

for the row. It uses the last function to ensure that there is more than one row left

in the table (if there is more than one row, the last row will have an index greater

than one). If there was only one row left, that would mean you were deleting the

template row. In this case, the delete will not execute because the last row is not

greater than one. The delete then uses the index function to determine which row

of the repeat (called orderTable) the cursor is on, then deletes that row.

The next action is an xforms:insert. This action uses the last function to detect

whether there is only one row left (in which case the last row is row 1). If there is

only one row left, then the table is effectively empty, since the last row is always

the invisible template row. In this case, the insert function adds a new, blank row

to the table. This prevents the user from deleting all rows in the table, and thereby

making the table disappear.

Finally, we use the xforms:setfocus action to reset the focus to the table. This is

necessary because when the user clicks the ″Delete Row″ button, the focus shifts to

the button, so we put it back to the table.

Usage Details

1. When deleting a row, the index for the xforms:repeat does not change. Once the

row is deleted, the rows following are all renumbered (their index is reduced

by one). This effectively places the focus on the row that followed the deleted

row.

2. When processing the data model on the back end, make sure that you also

exclude the template row. Otherwise, you will include a row of blank data in

your results.

xforms:insert

Allows you to add a row of elements to a table. This function copies the last row

of elements in the data model, then inserts the copy in the desired location in the

data model. Once the copy is inserted in the data model, the table’s repeat creates

corresponding items that are displayed to the user.

248

Syntax

 event string the XForms event that triggers the action.

nodeset

binding

special see “Nodeset Binding” on page 209.

index string an index number that sets the insertion point. The copy is

placed either before or after this row in the table.

Indexing is one-based, meaning the first row is row 1, the

second row is row 2, and so on.

position string determines whether the copy is placed before or after the

insertion point (determined by the at setting). Valid

settings are before and after.

Example

This example assumes you are working with a purchase order form that includes

the following data instance:

 <xforms:instance xmlns="">

 <po>

 <order>

 <row>

 <product>widget</product>

 <quantity>2</quantity>

 <unitCost>2.00</unitCost>

 <lineTotal>4.00<lineTotal>

 </row>

 ...

 <row>

 <product></product>

 <quantity>0</quantity>

 <unitCost>0</unitCost>

 <lineTotal>0</lineTotal>

 </row>

 </order>

 <subtotal>4.00</subtotal>

 <tax>1.12</tax>

 <totalCost>4.48</totalCost>

 </po>

 </xforms:instance>

 <xforms:insert ev:event="xforms-model-construct-done"

 nodeset="order/row[last()=1]" at="1" position="before"/>

This data instance includes a single <row> element. This is the ″template″ row for

the table. As such, it is is never used to store data. The purpose of this row is to

provide a template that is copied when adding new rows to the form.

Since the data model begins with only one row, and that row is invisible to the

user, we also add an xforms:insert to the data model. This insert is triggered when

the form is first opened, once the XForms model is completely built. It uses the last

 <xforms:insert event nodeset_binding at="index"

 position="position"/>

OR

 <xforms:action event>

 <xforms:insert nodeset="XPath" at="index"

 position="position"/>

 </xforms:action>

Details on XForms Actions 249

function to determine whether there is only one row in the table. If there is, it add

a new, blank row. This ensures that the table always begins with one blank row

that the user can see.

The xforms:repeat that creates this table must also exclude the template row, as

shown:

 <table sid="orderTable">

 <xforms:repeat nodeset="order/row[position()!=last()]"

 id="orderTable" startindex="1">

In this case, the nodeset includes all rows that are not in the last position in the

table (which would be the template row). This ensures that the template row is

never included in the table itself, and is never shown to the user.

To add more rows to this table, you must create a control (such as a button) that

the user can click to trigger another xforms:insert action. You also need to add some

other actions to this control account for special cases. The following button

illustrates this:

 <button sid="addRow">

 <xforms:trigger>

 <xforms:label>Add Row</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:insert nodeset="order/row" at="index(’orderTable’)"

 position="after"/>

 <xforms:setfocus control="orderTable"/>

 </xforms:action>

 </xforms:trigger>

 </button>

In this button, the first action is the xforms:insert. This insert uses the index function

to determine which row of the repeat (called orderTable) the cursor is on, then

adds a new row after the row with the focus.

The next action is an xforms:setfocus, which resets the focus to the table. This is

necessary because when the user clicks the ″Add Row″ button, the focus shifts to

the button, so we put it back to the table.

Usage Details

1. When adding a row, the index for the xforms:repeat is automatically updated to

point to the row that was just added.

2. When processing the data model on the back end, make sure that you also

exclude the template row. Otherwise, you will include a row of blank data in

your results.

xforms:message

Sets a message that is displayed to the user in a small dialog box.

250

Syntax

 event string The XForms event that triggers the action.

level modal Determines the appearance of the message. This attribute

must always be modal.

message string The text of the message.

Example

The following code shows an XForms model that contains the xforms:message

action. When the model is first initiated, the xforms-ready event triggers the

message action, which opens and dialog that says, “Data Model Ready”.

 <xforms:model>

 <xforms:instance id="data" xmlns="">

 <data>

 <field1>25</field1>

 <field2>0</field2>

 <field3></field3>

 </data>

 </xforms:instance>

 <xforms:message level="modal" ev:event="xforms-ready"

 >Data Model Ready</xforms:message>

 </xforms:model>

xforms:rebuild

Causes the form viewing application to rebuild any internal data structures that

are used to track computational dependencies within a particular model.

In general, the XForms processor automatically runs this action when required. As

such, this action is included mostly for completeness.

Syntax

 event string the XForms event that triggers the action.

model string the ID of the model to rebuild. If the model attribute is

omitted, then the default model is used.

 <xforms:message event level="modal">message</xforms:message>

OR

 <xforms:action event>

 <xforms:message level="modal">message</xforms:message>

 </xforms:action>

 <xforms:rebuild event model="model"/>

OR

 <xforms:action event>

 <xforms:rebuild model="model"/>

 </xforms:action>

Details on XForms Actions 251

Example

The following button rebuilds model X when clicked:

 <button sid="rebuildX">

 <xforms:trigger>

 <xforms:label>Rebuild</xforms:label>

 <xforms:rebuild ev:event="DOMActivate" model="X"/>

 </xforms:trigger>

 </button>

Usage Details

1. This feature is most likely to be used on scaled-down xforms processors, in

which the implicit rebuild-recalculate-revalidate-refresh sequence is not

implemented because of limited resources. In this case, explicit requests for

these actions may force an exchange with a server.

2. If an action sequence includes a setvalue action that affects a node which is used

in an XPath predicate in the nodeset of an XForms bind, then you can call

rebuild to cause the XForms bind to be re-evaluated.

xforms:recalculate

Causes the forms viewing application to recalculate any instance data that is

affected by computations and is not up-to-date. This affects all data instances in

the designated model.

In general, the XForms processor automatically runs this action when required. As

such, this action is included mostly for completeness.

Syntax

 event string the XForms event that triggers the action.

model string the ID of the model to recalculate. If the model attribute is

omitted, then the default model is used.

Example

The following button recalculates model X when clicked:

 <button sid="recalculateX">

 <xforms:trigger>

 <xforms:label>Recalculate</xforms:label>

 <xforms:recalculate ev:event="DOMActivate" model="X"/>

 </xforms:trigger>

 </button>

Usage Details

1. This feature is most likely to be used on scaled-down xforms processors, in

which the implicit rebuild-recalculate-revalidate-refresh sequence is not

 <xforms:recalculate event model="model"/>

OR

 <xforms:action event>

 <xforms:recalculate model="model"/>

 </xforms:action>

252

implemented because of limited resources. In this case, explicit requests for

these actions may force an exchange with a server.

2. Normally, recalculation occurs at the end of an action sequence. However, the

form author may need to force an earlier recalculation if there is a setvalue

action whose XPath references depend on the recalculated results of prior

setvalue actions.

xforms:refresh

Causes the forms viewing application to update all user interface elements linked

to a particular model, so that they match the underlying data in the XForms

model.

In general, the XForms processor automatically runs this action when required. As

such, this action is included simply for completeness.

Syntax

 event string the XForms event that triggers the action.

model string the ID of the model to refresh. If the model attribute is

omitted, then the default model is used.

Example

The following button refreshes the model X when clicked:

 <button sid="refreshX">

 <xforms:trigger>

 <xforms:label>Refresh</xforms:label>

 <xforms:refresh ev:event="DOMActivate" model="X"/>

 </xforms:trigger>

 </button>

Usage Details

1. This feature is most likely to be used on scaled-down xforms processors, in

which the implicit rebuild-recalculate-revalidate-refresh sequence is not

implemented because of limited resources. In this case, explicit requests for

these actions may force an exchange with a server.

2. If you are performing a number of consecutive submissions, refresh may be

useful for updating the form to show progress, especially after submissions that

return data to the form.

xforms:reset

Returns a particular XForms model to the state it was in when the form was

opened. This allows the user the reset the contents of the form to their ″starting

point″, which can increase usability of the form.

 <xforms:refresh event model="model"/>

OR

 <xforms:action event>

 <xforms:refresh model="model"/>

 </xforms:action>

Details on XForms Actions 253

Syntax

 event string the XForms event that triggers the action.

model string the ID of the model to reset. If the model attribute is omitted,

then the default model is used.

Example

The following model contains data for a change of address, as well as a submission

that sends the information for processing. Once the data is submitted, an

xforms:reset action is triggered. This action resets the data in the form, allowing the

user to type in the next address change without have to close the form and open it

again. This allows for rapid entry of several changes. Note that this requires the

submission button to be of type submit rather than done.

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <customerInfo>

 <id/>

 <newAddress>

 <street/>

 <city/>

 <state/>

 <zip/>

 </newAddress>

 </customerInfo>

 </root>

 </xforms:instance>

 <xforms:submission id="submit" method="post"

 action="http://www.ibm.poserver.com/cgi-bin/updateAddress"

 includenamespaceprefixes="">

 <xforms:reset ev:event="xforms-submit-done"/>

 </xforms:submission>

 </xforms:model>

xforms:revalidate

Causes the forms viewing application to validate all instance data in a particular

model. This ensures that all validation checks have been performed.

In general, the XForms processor automatically runs this action when required. As

such, this action is included simply for completeness.

 <xforms:reset event model="model"/>

OR

 <xforms:action event>

 <xforms:reset model="model"/>

 </xforms:action>

254

Syntax

 event string the XForms event that triggers the action.

model string the ID of the model to revalidate. If the model attribute is

omitted, then the default model is used.

Example

The following button revalidates model X when clicked:

 <button sid="revalidateX">

 <xforms:trigger>

 <xforms:revalidate ev:event="DOMActivate" model="X"/>

 <xforms:label>Revalidate</xforms:label>

 </xforms:trigger>

 </button>

Usage Details

1. This feature is most likely to be used on scaled-down xforms processors, in

which the implicit rebuild-recalculate-revalidate-refresh sequence is not

implemented because of limited resources. In this case, explicit requests for

these actions may force an exchange with a server.

xforms:send

Triggers an XForms submission. The submission must already be defined in the

XForms model.

Syntax

 event string the XForms event that triggers the action.

submission string the ID of the submission you want to trigger. You can

include multiple submission attributes.

Example

The following example shows two <xforms:submission> elements. When triggered,

the submission attempts to post the data for a purchase order to a cgi script for

 <xforms:revalidate event model="model"/>

OR

 <xforms:action event>

 <xforms:revalidate model="model"/>

 </xforms:action>

 <xforms:send event submission="submission"/>

OR

 <xforms:action event>

 <xforms:send submission="submission"/>

 </xforms:action>

Details on XForms Actions 255

processing. If an error is encountered, the xforms:send action is triggered. This

starts a second submission, called ″error″ which submits to a different server

(possibly a fall-back server).

 <xforms:submission id="S" method="post" includenamespaceprefixes=""

 action="http://www.ibm.poserver.com/cgi-bin/po">

 <xforms:send ev:event="xforms-submit-error"

 submission="error"/>

 </xforms:submission>

 <xforms:submission id="error" method="post" includenamespaceprefixes=""

 action="http://www.ibm.errorserver.com/cgi-bin/error">

 </xforms:submission>

Usage Details

1. You can also use the xforms:submit option to initiate a send action.

xforms:setfocus

Sets the focus to a particular presentation element in the form.

Syntax

 event string the XForms event that triggers the action.

XPath XPath reference an XPath reference to an element in the data model.

The presentation element that is linked to this data

element will receive the focus.

Example

The following examples shows a button that is used to add new rows to a table:

 <button sid="addRow">

 <xforms:trigger>

 <xforms:label>Add Row</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:insert nodeset="order/row" at="index(’orderTable’)"

 position="after"/>

 <xforms:setfocus control="orderTable"/>

 </xforms:action>

 </xforms:trigger>

 </button>

When the button is clicked by the user, the focus moves to the button itself.

However, once the new row appears, it’s preferable to send the focus back to the

table.

To accomplish this, the xforms:setfocus is included as the last action for the button,

and moves the focus back to the xforms:repeat that controls the table. The focus is

then automatically placed on the row that was just added.

 <xforms:setfocus event control="XPath"/>

OR

 <xforms:action event>

 <xforms:setfocus control="XPath"/>

 </xforms:action>

256

Usage Details

1. You can use xforms:setfocus to refer to specific items in a repeat template. In this

case, the row index of the repeat determines which item gets the focus.

For example, consider a case in which each row of repeat X contains a field and

a popup, and the repeat begins with an index of 2. You set the focus to the

popup item. To locate this item, we first go to row 2 of the repeat, then find the

popup within that row.

2. Setting the focus to an element on a different page of the form will change the

page that is displayed.

xforms:setindex

Sets the index for the xforms:repeat element in a table. This determines which row

in the table receives the focus.

Rows use one-based indexing. This means that the first row has an index of 1, the

second and index of 2, and so on.

Syntax

 event string the XForms event that triggers the action.

id XPath reference the ID of the <xforms:repeat> element for which you want

to set the index.

index XPath the number to set the index to.

Example

The following button deletes a row from a table:

 <button sid="deleteRow">

 <xforms:trigger>

 <xforms:label>Delete Row</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:delete nodeset="order/row"

 at="index(’orderTable’)"/>

 <xforms:setindex index="index" repeat="orderTable/>

 <xforms:setfocus control="orderTable"/>

 </xforms:action>

 </xforms:trigger>

 </button>

The third action performed by this button is an xforms:setindex. In this case,

xforms:setindex ensures that the index is always focused on the last row of the table

and unless the row to be deleted is selected by the user.

 <xforms:setindex event repeat="ID" index="index"/>

OR

 <xforms:action event>

 <xforms:setindex repeat="ID" index="index"/>

 </xforms:action>

Details on XForms Actions 257

Usage Details

1. You can use xforms:setindex to set the index of a repeat that is nested in another

repeat. In this case, the row index of the outer repeat determines which inner

repeat is set.

For example, consider a case in which repeat X contains repeat Y. Repeat X has

an index of 2, and repeat Y has an index of 5. You set repeat Y to an index of 3.

To locate the correct repeat, we first go to row two of repeat X, then find repeat

Y within that row.

xforms:setvalue

Sets the value for a specified element in the data model.

Syntax

 event string the XForms event that triggers the action.

single node

binding

special see “Single Node Binding” on page 205.

value XPath XPath reference optional. If included, the result of the XPath

reference is used to set the value. This overrides

the value setting.

value string optional. If included, this string is used to set

the value. If the value XPath setting is present, it

overrides this setting.

Example

The following data instance contains two address blocks: one for the home address

and one for the mailing address:

 <xforms:instance xmlns="" id="registration">

 <address>

 <home>

 <street/>

 <city/>

 <state/>

 <zip/>

 </home>

 <mailing>

 <street/>

 <city/>

 <state/>

 <zip/>

 </mailing>

 </address>

 </xforms:instance>

 <xforms:setvalue event single_node_binding

 value="value XPath">value</xforms:setvalue>

OR

 <xforms:action event>

 <xforms:setvalue ref="XPath" model="model"

 value="value XPath"/>value</xforms:setvalue>

 </xforms:action>

258

In this case, if the addresses are the same, it might be useful to include a button in

the form that will copy all of the data from the home address to the mailing

address, as shown:

 <button sid="copyAddress">

 <xforms:trigger>

 <xforms:action ev:event="DOMActivate">

 <xforms:setvalue ref="address/mailing/street"

 value="../../home/street"/>

 <xforms:setvalue ref="address/mailing/city"

 value="../../home/street"/>

 <xforms:setvalue ref="address/mailing/state"

 value="../../home/state"/>

 <xforms:setvalue ref="address/mailing/zip"

 value="../../home/zip"/>

 </xforms:action>

 </xforms:trigger>

 </button>

Usage Details

1. The xforms:setvalue action does not work on values that are set to be readonly in

the XForms model; however, it does work on values that are set to be readonly

through the readonly option.

xforms:toggle

Selects one of the cases in an xforms:switch and makes it active. When one case is

selected, all other cases in the switch are deselected.

Syntax

 event string the XForms event that triggers the action.

case string the ID of the case to select.

Example

The following button assumes that you have an xforms:switch with two cases: single

and married. When clicked, the button sets the switch to the married case:

 <button sid="setMarried">

 <xforms:trigger>

 <xforms:label>Married</xforms:label>

 <xforms:toggle case="married" ev:event="DOMActivate"

 ></xforms:toggle>

 </xforms:trigger>

 </button>

Usage Details

1. XFDL allows an xforms:switch option to appear inside an xforms:repeat option. In

this case, the row index of the repeat determines which switch is affected by

the xforms:toggle action.

 <xforms:toggle event case="case"/>

OR

 <xforms:action event>

 <xforms:toggle case="case"/>

 </xforms:action>

Details on XForms Actions 259

For example, consider a case in which repeat X contains a switch, and repeat X

begins with an index of 2. You toggle the case of the switch. To locate the

correct switch, we first locate row 2 of the repeat, then locate the switch within

that row.

260

Details on XForms Event Handlers

XForms event handlers track events in the form, such as a button click or the

selection of a particular choice. When these events occur, they are registered by the

XForms system. This allows you to create actions that are triggered by these

events. For example, you might create an action that is triggered when a particular

button is clicked, or when a particular choice in a list is selected.

This section provides general information about event handlers, and then details

each event in turn.

Syntax

XForms event handlers exist in the following namspace:

 http://www.w3.org/2001/xml-events

By convention, XFDL uses the ev prefix for this namespace, which is normally

declared on the <XFDL> element of the form as shown:

 <XFDL xmlns:ev="http://www.w3.org/2001/xml-events">

Event handlers themselves are declared as an attribute on XForms actions, and are

written as shown:

 ev:event="event"

When creating an event handler, you can add the attribute to either the general

<xforms:action> tag or, for a single action event handler, directly to any specific

XForms action tag.

When using the <xforms:action> tag, the individual actions do not require event

handlers, as shown:

 In this case, the event triggers all of the actions contained in the <xforms:action>

tag, which are then processed in the order listed.

When using a single action, the event is added to the action tag as shown:

 In this case, the occurrence of the event triggers only the single action containing

the ev:event.

 <xforms:action ev:event="event">

 <action1

action_settings>

 ...

 <actionn

action_settings>

 </xforms:action>

 <action ev:event="event" action_settings>

© Copyright IBM Corp. 2003, 2006 261

Placing Events in a Form

The ev:event attribute is always placed within an action tag to make it an event

handler, but the type of event you use dictates where in the form that action may

be placed. For example, actions that rely on a button press must be placed within

the xforms:trigger option in that button.

In general, the event handler for an event (the action containing an ev:event for a

given event) must appear as a child element of the XForms element that receives

the event.

For more information about where specific events can be placed, refer to the

detailed description for that event.

DOMActivate

Detects the activation of the presentation element that contains this event. For

example, clicking a button registers the DOMActivate event for that button.

Syntax

Available In

action item, button item

Example

The following button assumes that you have an xforms:switch with two cases: single

and married. When clicked, the DOMActivate event triggers an xforms:toggle action,

which sets the switch to the married case:

 <button sid="setMarried">

 <xforms:trigger>

 <xforms:label></xforms:label>

 <xforms:toggle case="married" ev:event="DOMActivate"/>

 </xforms:trigger>

 </button>

Usage Details

1. See the xforms:insert action for an example of an event handler that performs

more than one XForms action.

xforms-deselect

Occurs when a choice in an xforms:select, xforms:select1, or xforms:switch option that

was previously selected becomes deselected.

Syntax

 ev:event="DOMActivate"

 ev:event="xforms-deselect"

262

Available In

<xforms:case> element, <xforms:item> element

Example

The following list allows the user to choose one or more peripherals that they want

included when purchasign a computer. The list contains three choices (mouse,

keyboard, and USB memory stick) that are represented by three <xforms:item>

tags. Each item also contains some xforms:setvalue actions. When the user selects an

accessory, an xforms-select event occurs for that choice. This triggers the the first

setvalue action in that item, which sets an element in the data model to ″Yes″.

When the user deselects and accessory, that choice registers an xforms-deselect even

and triggers the second setvalue action in that item, which resets the element in

the data model to blank.

 <list sid="accessories">

 <xforms:select ref="po/accessories" appearance="compact">

 <xforms:label>Select the accessory:</xforms:label>

 <xforms:item>

 <xforms:label>Mouse</xforms:label>

 <xforms:value>Mouse</xforms:value>

 <xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/mouse" value="Yes"/>

 <xforms:setvalue ev:event="xforms-deselect"

 ref="po/accessories/mouse" value=""/>

 </xforms:item>

 <xforms:item>

 <xforms:label>Keyboard</xforms:label>

 <xforms:value>Keyboard</xforms:value>

 <xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/keyboard" value="Yes"/>

 <xforms:setvalue ev:event="xforms-deselect"

 ref="po/accessories/keyboard" value=""/>

 </xforms:item>

 <xforms:item>

 <xforms:label>USB Memory Stick</xforms:label>

 <xforms:value>USB</xforms:value>

 <xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/USB" value="Yes"/>

 <xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/USB" value=""/>

 </xforms:item>

 </xforms:select>

 </list>

Usage Details

1. The xform-deselect event only occurs in xforms:select and xforms:select1 options

that use the <xforms:item> element. If the option uses the <xforms:itemset>

element, use the xforms-value-changed event instead.

2. The xforms-deselect event does not occur within a combobox item because the

selection is open.

xforms-disabled

Occurs when an data node changes its state from relevant to non-relevant, or when

a data node that is not relevant changes value and remains non-relevant.

This event is triggered on the XForms control bound to that node.

Details on XForms Event Handlers 263

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a label item that displays the total for a purchase order. If the

total is less than 100, then the data node becomes non-relevant and the

xforms-disabled event is triggered. In this case, the event triggers an xforms:message

action that explains that the total is too low.

The following bind sets the minimum value of the po/total node in the data model

to be 100:

 <xforms:bind nodeset="po/total" relevant=". > 100"/>

The following code defines the label that displays the total:

 <label sid="Total">

 <xforms:output ref="po/total">

 <xforms:message ev:event="xforms-disabled" level="modal"

 >Values less than $100 should be paid from petty cash.</xforms:message>

 </xforms:output>

 </label>

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-enabled

Occurs when a data node that non-relevant (relevant = false) becomes relevant, or

when a node that is relevant changes value and remains relevant.

This event is triggered on the XForms control bound to that node.

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a label item that displays the total for a purchase order. If the

total is less than 100, then the data node becomes non-relevant. If the value is then

 ev:event="xforms-disabled"

 ev:event="xforms-enabled"

264

changed to be greater than 100, the node becomes relevant again and the

xforms-enabled event is triggered. In this case, the event triggers an xforms:message

action that explains that the value is now acceptable.

The following bind sets the minimum value of the po/total node in the data model

to be 100:

<xforms:bind nodeset="po/total" relevant=". < 100"/>

The following code defines the label that displays the total:

<label sid="Total">

 <xforms:output ref="po/total">

 <xforms:message ev:event="xforms-disabled"

 level="modal">The value is acceptable.</xforms:message>

 </xforms:output>

</label>

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-invalid

Occurs when a data node changes its state from invalid to valid, or when data that

is invalid changes value and remains invalid. Validity is determined based on

whether the data matches the data type and constraints specified in the model, as

well as the schema validity. Note that the state of ″required but empty″ is valid.

This event is triggered on the XForms control bound to that node.

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a label item that displays the total for a purchase order. If the

total exceeds 10,000, then the data node becomes invalid and the xforms-invalid

event is triggered. In this case, the event triggers an xforms:message action that

explains that the total is too high.

The following bind sets the maximum value of the po/total node in the data

model to be 10,000:

<xforms:bind nodeset="po/total" constraint=". < 10000"/>

The following code defines the label that displays the total:

 ev:event="xforms-invalid"

Details on XForms Event Handlers 265

<label sid="Total">

 <xforms:output ref="po/total">

 <xforms:message ev:event="xforms-invalid"

 level="modal">Total exceeds maximum allowed valued.</xforms:message>

 </xforms:output>

</label>

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-model-construct

Occurs when the forms viewing application first opens a form and begins to

construct the XForms model.

Syntax

Available In

<xforms:model> element

Example

The following model contains simple data for a test form. When the form is first

opened, an xforms-model-construct event occurs as the forms viewer begins to

construct the model. This triggers the xforms:message action, which opens a dialog

that says, ″Beginning model construction.″

 <xforms:model>

 <xforms:instance xmlns="">

 <testmodel>

 <a/>

 <c/>

 </testmodel>

 </xforms:instance>

 <xforms:message level="modal" ev:event="xforms-model-construct"

 >Beginning model construction.</xforms:message>

 </xforms:model>

Usage Details

1. Because the data structures for XForms instances are not created until after

action handlers for this event are run, few XForms actions other than message

will work. This event is mainly for debugging.

xforms-model-construct-done

Occurs when the forms viewing application has finished constructing the XForms

model. This occurs just after the form is opened, and always completes before the

user can interact with the form.

 ev:event="xforms-model-construct"

266

Syntax

Available In

<xforms:model> element

Example

The following model contains data for a purchase order form. The data begins

with a single template row which is set to be non-relevant by a bind. This means

the row is not visible in the form. When the form is first opened, the forms viewer

will construct the XForms data model, creating a table with a single invisible row

in it. When it has completed building the model, an xforms-model-construct-done

event occurs. This triggers the xforms:insert action, which duplicates the template

row so that there is a visible row that the user can work with.

 <xforms:model>

 <xforms:instance id="po" xmlns="">

 <po>

 <order>

 <row>

 <product/>

 <unitCost>0</unitCost>

 <qty></qty>

 <lineTotal></lineTotal>

 </row>

 </order>

 <subtotal>0</subtotal>

 <tax>0</tax>

 <total>0</total>

 </po>

 </xforms:instance>

 <xforms:bind nodeset="order/row[last()]" relevant="false()"/>

 <xforms:insert ev:event="xforms-model-construct-done"

 nodeset="order/row[last()=1]" at="1" position="before"/>

 </xforms:model>

Usage Details

1. The xforms-model-construct-done event is appropriate for initializing data because

the user interface has not yet been processed (that is, repeats have not been

expanded, and form controls have not been recognized). However, because the

user interface layer is not yet available, actions that operate on the UI layer are

not appropriate in event handlers for this event. For example, toggle, setfocus

and setindex will not work. To initialize the user interface, use the xforms-ready

event instead.

xforms-model-destruct

Occurs when the XForms model is removed from memory. This generally happens

when the form is closed or submitted.

 ev:event="xforms-model-construct-done"

Details on XForms Event Handlers 267

Syntax

Available In

<xforms:model> element

Example

The following model contains simple data for a test form. When the is closed, the

forms viewer will destroy the XForms data model and an xforms-model-destruct-done

event will occur. This triggers the xforms:message action, which opens a dialog that

says, ″Model destroyed.″

 <xforms:model>

 <xforms:instance xmlns="">

 <testmodel>

 <a/>

 <c/>

 </testmodel>

 </xforms:instance>

 <xforms:message level="modal" ev:event="xforms-model-destruct"

 >Model destroyed.</xforms:message>

 </xforms:model>

xforms-optional

Occurs when a data node that is required (required = true) changes to being

optional, or when a data node that is required changes value and remains

required.

This event is triggered on the XForms control bound to that node.

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a field item that accepts the first name of the user’s spouse.

This field is required if they select the ″married″ radio button in the form.

However, if they then select the ″single″ radio button, the field becomes optional

and the xforms-optional event is triggered. In this case, the event triggers the

xforms:message action, which tells the user that the spousal information is no longer

required.

The following bind sets makes the spouse’s name required if the married radio

button is selected:

 ev:event="xforms-model-destruct"

 ev:event="xforms-optional"

268

<xforms:bind nodeset="personalInfo/spouseFirstName"

 required="../marital_status = ’married’"/>

The following code defines the label that displays the total:

 <field sid="spouseFirstName">

 <xforms:input ref="personalInfo/spouseFirstName">

 <xforms:label>Spouse’s First Name:</xforms:label>

 <xforms:message ev:event="xforms-optional"

 level="modal">Spousal data no longer required.</xforms:message>

 </xforms:input>

 </field>

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-readonly

Occurs when a data node is read-write (readonly = false) becomes readonly, or

when a node that is readonly changes value and reamains readonly.

This event is triggered on the XForms control bound to that node.

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a field item that accepts the first name of the user’s spouse.

When the user selects the ″married″ radio button, this field becomes read-write. If

the user then select ″single″, the field becomes readonly and the xforms-readonly

event is triggered. In this case, the event triggers the xforms:message action, which

tells the user that the spousal information is not required.

The following bind sets makes the spouse’s name readonly if the ″single″ radio

button is selected:

<xforms:bind nodeset="personalInfo/spouseFirstName" readonly="../single = ’on’"/>

The following code defines the label that collects the spouse’s first name:

 <field sid="spouseFirstName">

 <xforms:input ref="personalInfo/spouseFirstName">

 <xforms:label>Spouse’s First Name:</xforms:label>

 <xforms:message ev:event="xforms-required"

 level="modal">Spousal information is not required.</xforms:message>

 </xforms:input>

 </field>

 ev:event="xforms-readonly"

Details on XForms Event Handlers 269

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-readwrite

Occurs when a data node that is readwrite (readwrite = true) becomes read-write,

or when a node that is read-write changes value and remains read-write.

This event is triggered on the XForms control bound to that node.

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a field item that accepts the first name of the user’s spouse.

When the user selects the ″married″, the ″single″ radio button goes off and the

field becomes readwrite, triggering an xforms-readwrite event. In this case, the event

triggers the xforms:message action, which tells the user that the spousal information

is required.

The following bind sets makes the spouse’s last name readonly if the ″single″ radio

button is selected:

<xforms:bind nodeset="personalInfo/spouseFirstName" readonly="../single = ’on’"/>

The following code defines the label that displays the total:

<field sid="spouseFirstName">

 <xforms:input ref="personalInfo/spouseFirstName">

 <xforms:label>Spouse’s First Name:</xforms:label>

 <xforms:message ev:event="xforms-readwrite" level="modal"

 >You must provide all listed spousal information.</xforms:message>

 </xforms:output>

</label>

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-ready

Occurs when the forms viewing application has finished the initial set up of all

XForms constructs and is ready for user interaction.

 ev:event="xforms-readwrite"

270

Syntax

Available In

<xforms:model> element

Example

The following model contains simple data for a test form. When the form is first

opened, the forms viewer will construct the XForms data model. When is has

completed building the model, an xforms-ready event occurs. This triggers the

xforms:setfocus action, which sets the focus to the last element in the data model.

 <xforms:model>

 <xforms:instance xmlns="">

 <testmodel>

 <a/>

 <c/>

 </testmodel>

 </xforms:instance>

 <xforms:setfocus ev:event="xforms-ready" control="c"/>

 </xforms:model>

Usage Details

1. You can also use this event to trigger data initialization (as you can with

xforms-model-construct-done), but xforms-ready is the primary event for triggering

actions that initialize the user interface, such as setfocus, setindex, and toggle.

xforms-required

Occurs when an data node that is optional (required = false) becomes required, or

when a data node that is required changes value and remains required.

This event is triggered on the XForms control bound to that node.

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a field item that accepts the first name of the user’s spouse.

When the user selects the ″married″ radio button, this field becomes required and

the xforms-required event is triggered. In this case, the event triggers the

xforms:message action, which tells the user that the spousal information is required.

 ev:event="xforms-ready"

 ev:event="xforms-required"

Details on XForms Event Handlers 271

The following bind sets makes the spouse’s last name required if the married radio

button is selected:

<xforms:bind nodeset="personalInfo/spouseFirstName"

 required="../marital_status = ’married’"/>

The following code defines the label that displays the total:

<field sid="spouseFirstName">

 <xforms:input ref="personalInfo/spouseFirstName">

 <xforms:label>Spouse’s First Name:</xforms:label>

 <xforms:message ev:event="xforms-required" level="modal"

 >You must provide all listed spousal information.</xforms:message>

 </xforms:input>

</field>

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-select

Occurs when a choice is selected from an xforms:select, xforms:select1, or

xforms:switch option. This event only occurs on the item that is selected.

Syntax

Available In

<xforms:case> element, <xforms:item> element

Example

The following list allows the user to choose one or more peripherals that they want

included when purchasign a computer. The list contains three choices (mouse,

keyboard, and USB memory stick) that are represented by three <xforms:item>

tags. Each item also contains some xforms:setvalue actions. When the user selects an

accessory, an xforms-select event occurs for that choice. This triggers the the first

setvalue action in that item, which sets an element in the data model to ″Yes″.

When the user deselects and accessory, that choice registers an xforms-deselect even

and triggers the second setvalue action in that item, which resets the element in

the data model to blank.

 <list sid="accessories">

 <xforms:select ref="po/accessories" appearance="compact">

 <xforms:label>Select the accessory:</xforms:label>

 <xforms:item>

 <xforms:label>Mouse</xforms:label>

 <xforms:value>Mouse</xforms:value>

 <xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/mouse" value="Yes"/>

 <xforms:setvalue ev:event="xforms-deselect"

 ref="po/accessories/mouse" value=""/>

 </xforms:item>

 <xforms:item>

 <xforms:label>Keyboard</xforms:label>

 <xforms:value>Keyboard</xforms:value>

 ev:event="xforms-select"

272

<xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/keyboard" value="Yes"/>

 <xforms:setvalue ev:event="xforms-deselect"

 ref="po/accessories/keyboard" value=""/>

 </xforms:item>

 <xforms:item>

 <xforms:label>USB Memory Stick</xforms:label>

 <xforms:value>USB</xforms:value>

 <xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/USB" value="Yes"/>

 <xforms:setvalue ev:event="xforms-select"

 ref="po/accessories/USB" value=""/>

 </xforms:item>

 </xforms:select>

 </list>

Usage Details

1. The xform-select event only occurs in xforms:select and xforms:select1 options that

use the <xforms:item> element. If the option uses the <xforms:itemset>

element, use the xforms-value-changed event instead.

xforms-submit

Occurs when an XForms submission begins.

Syntax

Available In

<xforms:submission> element

Example

The following example illustrates how you can remove empty rows from a table

before submitting a form.

First, you must set up your <xforms:submission> as shown below. When this

submission begins, an xforms-submit event occurs. This triggers the first

xforms:setvalue action, which sets an element in the data model to ″true″ to indicate

that a submission is in progress. If the submission returns an error, an

xforms-submit-error event occurs. This triggers the second xforms:setvalue action,

which sets the same element in the data model to ″false″ to indicate that a

submission is no longer occurring.

 <xforms:submission id="S" method="post" includenamespaceprefixes=""

 action="http://www.ibm.poserver.com/cgi-bin/po">

 <xforms:setvalue ev:event="xforms-submit"

 ref="instance(’temps’)/submitting" value="’true’"/>

 <xforms:setvalue ev:event="xforms-submit-error"

 ref="instance(’temps’)/submitting" value="’false’"/>

 </xforms:submission>

Next, you must create an <xforms:bind> that affects the relevancy of the rows in

the form, as shown:

 ev:event="xforms-submit"

Details on XForms Event Handlers 273

<xforms:bind nodeset="order/row[not(last())]"

 relevant="boolean-from-string(if(qty > 0 or

 instance(’temps’)/submitting=’false’, ’true’, ’false’))"/>

This bind applies the following logic to each row in the table (except for the last

row, which is assumed to be a template row): if the quantity is greater than zero or

the form is not submitting, then the row is relevant; otherwise, the row is not

relevant. This effectively makes all empty rows non-relevant when the form is

being submitted (keeping in mind that template rows are already marked as

non-relevant).

xforms-submit-done

Occurs when an XForms submission has successfully completed.

Syntax

Available In

<xforms:submission> element

Example

The following model includes two submissions: the first submission sends the form

to a shipping database while the second submission sends the form to a billing

database. The form is set up so that when the user clicks the submit button, only

the first submission is triggered. Once that submission has successfully completed,

an xforms-submit-done event occurs. This triggers the xforms:send action in the first

submission, which in turn triggers the second submission. This prevents billing

from occurring if the order was not properly registered with shipping.

 <xforms:model>

 <xforms:instance xmlns="">

 <po>

 <order>

 <row>

 <product/>

 <unitCost>0</unitCost>

 <qty></qty>

 <lineTotal></lineTotal>

 </row>

 </order>

 </po>

 </xforms:instance>

 <xforms:submission id="submitShipping" method="post"

 action="http://www.ibm.poserver.com/cgi-bin/shipping"

 includenamespaceprefixes="">

 <xforms:send ev:event="xforms-submit-done"

 submission="submitBilling"/>

 </xforms:submission>

 <xforms:submission id="submitBilling" method="post"

 action="http://www.ibm.poserver.com/cgi-bin/billing"

 includenamespaceprefixes=""/>

 </xforms:model>

 ev:event="xforms-submit-done"

274

Usage Details

1. The xforms-submit-done event does not work with replace all submissions (refer

to the xforms:send action for more information).

xforms-submit-error

Occurs when an XForms submission returns an error.

Syntax

Available In

<xforms:submission> element

Example

The following example illustrates how you can remove empty rows from a table

before submitting a form.

First, you must set up your <xforms:submission> as shown below. When this

submission begins, an xforms-submit event occurs. This triggers the first

xforms:setvalue action, which sets an element in the data model to ″true″ to indicate

that a submission is in progress. If the submission returns an error, an

xforms-submit-error event occurs. This triggers the second xforms:setvalue action,

which sets the same element in the data model to ″false″ to indicate that a

submission is no longer occurring.

<xforms:submission id="S" method="post" includenamespaceprefixes=""

 action="http://www.ibm.poserver.com/cgi-bin/po">

 <xforms:setvalue ev:event="xforms-submit"

 ref="instance(’temps’)/submitting" value="’true’"/>

 <xforms:setvalue ev:event="xforms-submit-error"

 ref="instance(’temps’)/submitting" value="’false’"/>

</xforms:submission>

Next, you must create an <xforms:bind> that affects the relevancy of the rows in

the form, as shown:

<xforms:bind nodeset="order/row[not(last())]"

 relevant="boolean-from-string(if(qty > 0 or

 instance(’temps’)/submitting=’false’, ’true’, ’false’))"/>

This bind applies the following logic to each row in the table (except for the last

row, which is assumed to be a template row): if the quantity is greater than zero or

the form is not submitting, then the row is relevant; otherwise, the row is not

relevant. This effectively makes all empty rows non-relevant when the form is

being submitted (keeping in mind that template rows are already marked as

non-relevant).

ev:event="xforms-submit-error"

Details on XForms Event Handlers 275

xforms-valid

Occurs when a data node changes its state from invalid to valid, or when a valid

node changes its value and remains valid. Validity is determined based on whether

the data matches the data type and constraints specified in the model, as well as

the schema validity. Note that the state of ″required but empty″ is valid.

This event is triggered on the XForms control bound to that node.

Syntax

Available In

xforms:input, xforms:output, xforms:range, xforms:secret, xforms:select,

xforms:select1, xforms:submit, xforms:textarea, xforms:trigger, xforms:upload

Example

This example shows a label item that displays the total for a purchase order. If the

total exceeds 10,000, then the data node becomes invalid. If the total is then

changed so that is it less than 10,000 then it becomes valid again, and the

xforms-valid event is triggered. In this case, the event triggers an xforms:message

action that explains that the value is now acceptable.

The following bind sets the maximum value of the po/total node in the data

model to be 10,000:

<xforms:bind nodeset="po/total" constraint=". < 10000"/>

The following code defines the label that displays the total:

<label sid="Total">

 <xforms:output ref="po/total">

 <xforms:message ev:event="xforms-valid"

 level="modal">Total is valid.</xforms:message>

 </xforms:output>

</label>

Usage Details

1. The order in which user interface events are processed is indeterminate. This

means you cannot rely on them processing in a particular order.

xforms-value-changed

Occurs when a value is changed in an XForms option.

 ev:event="xforms-valid"

276

Syntax

Available In

xforms:input option, xforms:output option, xforms:range option, xforms:secret

option, xforms:select option, xforms:select1 option, xforms:textarea option

Example

The following example assumes that you are working with a purchase order form

that contains two data instances. The first data instance contains information about

the products that can be purchases, as shown:

 <xforms:instance id="products" xmlns="">

 <products>

 <product name="Widget" code="W1" unitcost="9.99"/>

 <product name="Gadget" code="G1" unitcost="5.49"/>

 <product name="Trinket" code="T1" unitcost="11.25"/>

 <product name="Gromet" code="G2" unitcost="7.77"/>

 </products>

 </xforms:instance>

The second data instance contains the data elements that the user fills out to order

the products:

 <xforms:instance id="po" xmlns="">

 <po>

 <order>

 <row>

 <product/>

 <unitCost>0</unitCost>

 <qty></qty>

 <lineTotal></lineTotal>

 </row>

 </order>

 <subtotal>0</subtotal>

 <tax>0</tax>

 <total>0</total>

 </po>

This instance is linked to a table item in the form, which creates a table with four

columns: product name, unit cost, quantity, and line total. The product name is

chosen from a popup item that contains the xforms:select1 shown below. When the

user selects something from the popup, an xforms-value-changed event occurs. In

this case, this event triggers two actions: first, the second column is automatically

populated with the unit cost for that item (by getting that cost from the po

instance); second, the focus is moved to the third column, since the second column

has already been completed.

 <xforms:select1 ref="product" appearance="minimal">

 <xforms:label>Choose product</xforms:label>

 <xforms:itemset nodeset="instance(’products’)/product">

 <xforms:label ref="@name"/>

 <xforms:value ref="@code"/>

 <xforms:extension>

 <value compute="label"/>

 </xforms:extension>

 </xforms:itemset>

 ev:event="xforms-value-changed"

Details on XForms Event Handlers 277

<xforms:setvalue ref="../unitCost" ev:event="xforms-value-changed"

 value="instance(’products’)/product[@code=instance(’po’)

 /order/row[index(’orderTable’)]/product]/@unitcost"/>

 </xforms:select1>

Usage Details

1. This event only occurs on xforms:select and xforms:select1 options that include an

<xforms:itemset> element. If the option includes a list of <xforms:item>

elements instead, use the xforms-select and xforms-deselect events.

278

Details on Function Calls

XFDL is an assertion-based language, which means a ″truth engine″ maintains

statements in the code as true. The functions described in this section of the

specification allow an XFDL form to perform procedural operations that would

normally require complicated computations to achieve.

Function calls run code that may be external to the XFDL form definition. Below

are the BNF rules for functions.

 [46] FunctionCall := (LibName ’.’)? FunctionName ’(’ (Compute

 (’,’ Compute)*)? ’)’

[47] LibName ::= sid

[48] FunctionName ::= sid

The LibName allows functions to be grouped into separate namespaces, but the

predefined functions in this specification do not require a LibName. (The LibName

assigned to these predefined functions is system.) Any user-defined namespace

must contain an underscore in its name.

Examples

Calling a predefined function (in the system namespace):

 <custom:status xfdl:compute="toggle(field1.value, ’high’, ’low’)">

 </custom:status>

or

 <custom:status xfdl:compute="system.toggle(field1.value,

 ’high’, ’low’)"></custom:status>

Calling a user-defined function (in a custom namespace)

 <value compute="hr_funcs.holiday(field1.value, field2.value)"></value>

About Parameters

In general, parameters are enclosed in single quotes, as shown:

 function(’param1’, ’param2’)

However, in some cases you may want to copy a value from another element in

the form. For example, you may want to use the value of a user-set field as the

parameter in a function. To do this, you would use a reference to that value with

no quotations as a parameter, as shown:

 function(’param1’, reference)

In this case, the reference will be evaluated, and the value retrieved will be

subsituted for the reference, resulting in the following:

 function(’param1’, ’retrieved value’)

The function will then be computed.

© Copyright IBM Corp. 2003, 2006 279

Reference Strings

In some cases, a function may require a reference string as a parameter. For

example, the second parameter of the measureHeight function allows you to

specify which item should be measured by providing a reference to that item.

In the normal case, you would provide a reference that is enclosed in quotation

marks, as shown:

 measureHeight(’pixels’, ’descriptionField’)

The quotation marks indicate that the function should use the reference as the final

value. So in this case, the function will measure the height of the descriptionField.

However, if a different element in the form is storing the reference you want to

use, you can provide a reference to that element that is not in quotations. For

example:

 getHeight(’pixels’, storageField.value)

In this case, the function will first retrieve the value of the storageField.value option,

and will use that value to compute the function. For example, if the value option of

storageField contained ″descriptionField″, then the function would be evaluated as

though it was:

 getHeight(’pixels’, ’descriptionField’)

Usage Details on Using Functions

Position in Strings

The position of the first character in a string is at position zero. For example:

 This is a string

The capital T in the string above is at position zero.

String Functions

countLines

Counts the number of lines that a string would take up over a given width, and

returns the number of lines. The count assumes that the font is a monospaced font,

and that the line will be wrapped at the ends of words, and not in the middle of

words.

This function is useful if it is necessary to dynamically size items into which a

string will be inserted. For example, to insert an entry from a database into a field

on a form, dynamically size the height of the field so that all of the text is visible.

Note: The width must be a character-based width and not a pixel-based width.

280

Syntax

 string literal string or option

reference

the string to base the measurement on

width positive int the width, in monospaced characters, to base

the measurement on

Returns

The number of lines, or ″″ (empty) if an error occurs.

Example

In this example, the field’s height will be set by the number that countLines returns.

The calculation is based on a dynamically-generated value, and the field’s set

width (50).

 <field sid="commentField">

 <label>Comments</label>

 <itemlocation>

 <below>deptField</below>

 </itemlocation>

 <size>

 <width>50</width>

 <height compute="countLines(value, ’50’)"></height>

 </size>

 </field>

countWords

Counts the number of words in a specified string.

Syntax

 string literal string or option reference the original string (enclose literal strings in

double quotation marks, do not enclose option

references in quotation marks)

Returns

The number of words in the original string, or nothing if an error occurs.

Example

In this example, countWords will return the value ″5″.

 <field sid="Field1">

 <label>Test countWords()</label>

 <format>

 countLines(string, width)

 countWords(string)

Details on Function Calls 281

<datatype>string</datatype>

 </format>

 <value compute="countWords(’Hello my name is Simon.’)"></value>

 </field>

pad

Pads or truncates an ASCII string to a specified length as explained:

v Padding — If the string is shorter than the specified length in the pad function

then the string is padded with spaces. The pad_orientation parameter

determines where the original string is oriented within the characters that make

up the new string.

v Truncating — If the string is longer than the specified length in the pad function,

than the string is truncated to the new length and any excess characters are lost.

The pad_orientation parameter specifies what part of the original string is saved.

Syntax

 string literal string or option reference the original string to pad or truncate

(enclose literal strings in double quotation

marks, do not enclose option references in

quotation marks)

length literal string or option reference length of the new string (enclose literal

strings in double quotation marks, do not

enclose option references in quotation

marks)

pad_orientation literal string or option reference the position of the original string in the

new padded or truncated string. (Enclose

literal strings in double quotation marks,

do not enclose option references in

quotation marks.)

This is an optional parameter. The valid

choices are left, center, or right. The

default value is left if the parameter is

invalid or is not supplied.

Returns

The string padded or truncated to the specified length, or nothing if an error

occurs.

Example

 <field sid="Field1">

 <label>Test pad(): Center pad</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="pad(’Hello’,’11’,’center’)"></value>

 </field>

 pad(string, length, pad_orientation)

282

<field sid="Field2">

 <label>Test pad(): Right pad</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="pad(’Hello’,’10’,’right’)"></value>

 </field>

 <field sid="Field3">

 <label>Test pad(): Right Truncate</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="pad(’Hello’,’2’,’left’)"></value>

 </field>

In Field1 of the previous example, the pad function has the pad orientation center.

Pad inserts 3 spaces on either side of the string ″Hello″ to create a new string

which is ″11″ characters long and looks like the following:

 " Hello "

In Field2 of the previous example, the pad function has the pad orientation right.

Pad inserts 5 spaces at the beginning of the string ″Hello″ to create a new string

which is ″10″ characters long and looks like the following:

 " Hello"

In Field3 of the previous example, the pad function has the pad orientation left and

will truncate 4 characters from the end of the string ″Hello″ to create the new

string ″He″ which is two characters long.

replace

Takes a string and replaces a substring in it (marked by start and end) with a new

string. Returns the resulting string.

If start is less than 0 then the substring will begin on the first character of string. If

end is greater than or equal to the length of string then the substring will end on

the last character of string. If the new string is not long enough (that is, it does not

reach position end), replacement will end with the last character of newString. If

the new string is too long (that is, it extends past position end), replacement will

end on position end.

An error occurs if start is greater than end, if either of start and end is not a valid

integer, or if string is empty.

Syntax

 string literal string or option

reference

the original string (enclose literal strings in

double quotation marks, do not enclose

option references in quotation marks)

 replace(string, start, end, newString)

Details on Function Calls 283

start int position of character at the start of the

substring (the first character in string is zero)

end int position of character at the end of the

substring (the first character in string is zero)

newString literal string or option

reference

the replacement string (enclose literal strings

in double quotation marks, do not enclose

option references in quotation marks)

Returns

The modified string, or ″″ (empty) if an error occurs.

Example

In this example, the result of replace is ″Go east, young man!″.

 <field sid="replaceField">

 <label>Test replace()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>Go west, young man!</value>

 <custom:change xfdl:compute="replace(value, ’3’, ’6’, "east")">

 </custom:change>

 </field>

strlen

Returns the length of string.

Syntax

 string literal string or option reference the string (enclose literal strings in double

quotation marks, do not enclose option

references in quotation marks)

Returns

A string containing the length.

Example

In this example, the result of strlen is ″28″.

 <field sid="stringLengthField">

 <label>The length of this label is:</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 strlen(string)

284

</constraints>

 </format>

 <value compute="strlen(label)"></value>

 </field>

strmatch

Determines if the wildcard string wild matches the non-wildcard string real and

returns the boolean result.

Syntax

 wild literal string or option reference the wildcard string to match (enclose literal

strings in double quotation marks, do not enclose

option references in quotation marks). Any of the

following wild card characters can be used:

? — represents any one (1) character

* — represents any number of characters

real literal string or option reference the non-wildcard match string (enclose literal

strings in double quotation marks, do not enclose

option references in quotation marks)

Returns

A string containing ″1″ if a match occurs, ″0″ if no match occurs.

Example

In this example, the result of strmatch is ″1″.

 <field sid="testStrmatch">

 <label>Test strmatch()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>To be or not to be, etc.</value>

 <custom:change xfdl:compute="strmatch(’?o be* ?o be*’, value)"

 ></custom:change>

 </field>

strpbrk

Returns the position of the first character in string1 that matches any of the

characters in string2. Note that the count is zero based.

 strmatch(wild, real)

Details on Function Calls 285

Syntax

 string1 literal string or option reference the string (enclose literal strings in double

quotation marks, do not enclose option

references in quotation marks)

string2 literal string or option reference the string of characters (enclose literal strings

in double quotation marks, do not enclose

option references in quotation marks)

Returns

A string containing the position, or ″-1″ if no matching characters are found.

Example

The result of strpbrk, displayed in ″FIELD2″ in the example below, is ″9″.

 <field sid="testStrpbrk">

 <label>testField</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>To be or not to be, etc.</value>

 <custom:change xfdl:compute="strpbrk(value, ’lLmMnNOpP’)"></custom:change>

 </field>

 <field sid="FIELD2">

 <label>result field</label>

 <value compute="testStrpbrk.custom:change"></value>

 </field>

strrstr

Returns the position of the first character of the last occurrence of string2 in string1.

Syntax

 string1 literal string or option reference the string (enclose literal strings in double

quotation marks, do not enclose option

references in quotation marks)

string2 literal string or option reference the substring (enclose literal strings in double

quotation marks, do not enclose option

references in quotation marks)

Returns

A string containing the position, or ″-1″ if no substring is found.

 strpbrk(string1, string2)

 strrstr(string1, string2)

286

Example

The result of strrstr, displayed in ″FIELD2″ in the example below, is ″16″.

 <field sid="testStrrstr">

 <label>testField</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>To be or not to be, etc.</value>

 <custom:change xfdl:compute="strrstr(value, ’be’)"

 ></custom:change>

 </field>

 <field sid="FIELD2">

 <label>result field</label>

 <value compute="testStrrstr.custom:change"></value>

 </field>

strstr

Returns the position of the first character of the first occurrence of string2 in

string1.

Syntax

 string1 literal string or option reference the string (enclose literal strings in double

quotation marks, do not enclose option

references in quotation marks)

string2 literal string or option reference the substring (enclose literal strings in double

quotation marks, do not enclose option

references in quotation marks)

Returns

A string containing the position, or ″-1″ if no occurrence is found.

Example

The result of strstr, displayed in ″FIELD2″ in the example below, is ″3″.

 <field sid="testStrstr">

 <label>testField</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>To be or not to be, etc.</value>

 <custom:change xfdl:compute="strstr(value, ’be’)"

 ></custom:change>

 </field>

 strstr(string1, string2)

Details on Function Calls 287

<field sid="FIELD2">

 <label>result field</label>

 <value compute="testStrstr.custom:change"></value>

 </field>

substr

Returns the substring of string from the position indicated in start through the

position indicated in end. If start is less than zero then the substring will begin on

the first character of string. If end is greater than or equal to the length of string

then the substring will end on the last character of string.

An error occurs if start is greater than end, if either of start and end is not a valid

integer, or if string is empty.

Syntax

 string literal string or option reference the string (enclose literal strings in double

quotation marks, do not enclose option

references in quotation marks)

start int position of character at the start of the

substring (the first character in string is zero)

end int position of character at the end of the

substring (the first character in string is zero)

Returns

The substring, or ″″ (empty) if an error occurs.

Example

The result of substr, displayed in ″FIELD2″ in the example below, is ″Watso″.

 <field sid="surnameField">

 <label>Surname</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>Watson</value>

 <custom:change xfdl:compute="substr(value, ’0’, ’4’)"

 ></custom:change>

 </field>

 <field sid="FIELD2">

 <label>result field</label>

 <value compute="surnameField.custom:change"></value>

 </field>

tolower

Returns the lower case of string.

 substr(string, start, end)

288

Syntax

 string literal string or option reference the original string (enclose literal strings in

double quotation marks, do not enclose option

references in quotation marks)

Returns

The lower case string.

Example

The result of tolower, shown in ″displayField″ in the example below, is ″hello!″.

 <field sid="tolowerField">

 <label>Test tolower()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>Hello!</value>

 <custom:change xfdl:compute="tolower(value)"></custom:change>

 </field>

 <field sid="displayField">

 <value compute="tolowerField.custom:change"></value>

 </field>

toupper

Returns the upper case of string.

Syntax

 string literal string or option reference the original string (enclose literal strings in

double quotation marks, do not enclose option

references in quotation marks)

Returns

The upper case string.

Example

The result of toupper, shown in ″displayField″ in the example below, is ″HELLO!″.

 <field sid="toupperField">

 <label>Test toupper()</label>

 <format>

 <datatype>string</datatype>

 tolower(string)

 toupper(string)

Details on Function Calls 289

<constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>Hello!</value>

 <custom:change xfdl:compute="toupper(value)"></custom:change>

 </field>

 <field sid="displayField">

 <value compute="toupperField.custom:change"></value>

 </field>

trim

Returns a copy of string with all leading and trailing white space (blanks, tabs,

newlines, carriage returns) removed.

Syntax

 string literal string or option reference the original string (enclose literal strings in

double quotation marks, do not enclose option

references in quotation marks)

Returns

The string with leading and trailing whitespace removed.

Example

In this example, the result of trim is ″Test trim()″.

 <field sid="trimField">

 <label> Test trim() </label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="trim(label)"></value>

 </field>

URLDecode

Returns a URL-decoded version of string.

Syntax

 string literal string or option reference the original string (enclose literal strings in

double quotation marks, do not enclose option

references in quotation marks)

 trim(string)

 URLDecode(string)

290

Returns

The URL-decoded string.

Example

In this example, the result of URLDecode is ″This is a line″.

 <field sid="URLDecodeField">

 <label>Test URLDecode()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="URLDecode(’This%20is%20a%20line%0D’)"></value>

 </field>

URLEncode

Returns a URL-encoded version of string.

Syntax

 string literal string or option reference the original string (enclose literal strings in

double quotation marks, do not enclose

option references in quotation marks)

Returns

The URL-encoded string.

Example

In this example, the result of URLEncode is ″This+is+a+line%0A″.

 <field sid="URLEncodeField">

 <value compute="URLEncode(’This is a line\n’)"></value>

 </field>

Math Functions

abs

Returns the absolute value of the number represented in number.

An error occurs if number is not a valid number.

 URLEncode(string)

Details on Function Calls 291

Syntax

 number decimal number a number

Returns

A string containing the absolute of the number, or ″″ if an error occurs.

Example

In this example, the result of abs is ″2341.23″.

 <field sid="absTest">

 <label>Test abs()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="abs(’-2341.23’)"></value>

 </field>

acos

Returns the arc cosine of a number stored in number.

An error occurs if number is not a valid number or has absolute value greater than

1.

Syntax

 number decimal number a number

Returns

A string containing the arc cosine, or ″″ if an error occurs.

Example

In this example, the result of acos is ″1.047198″.

 <field sid="arccosineField">

 <label>Test acos()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 abs(number)

 acos(number)

292

</constraints>

 </format>

 <value compute="acos(’0.5’)"></value>

 </field>

annuity

Returns the present value annuity factor for an ordinary annuity, at a periodic

interest rate indicated by rate over a number of periods specified in periods. (Present

value is the lump sum to invest at rate in order to produce a set payment over

periods. An ordinary annuity provides the payment at the end of each period

specified in periods.)

This function might be used to figure out either:

v P, the present value (lump sum to invest).

v R, the periodic payment amount that will be received.

For reference:

v P = R * annuity_factor

v R = P / annuity_factor

An error occurs if periods is not a valid integer, or if rate is 0.

Syntax

 rate decimal number the rate of interest in decimal form compounded

each period

periods integer the number of periods

Returns

A string containing the present value annuity factor, or ″″ if an error occurs.

Example

In this example, annuity returns ″5.786373″ and, if the desired payment entered

into ″paymentField″ were $1, then the value of ″presentValueInv″ would be $5.78.

(That is, a person would have to invest $5.78 at 5% for seven payments.)

 <field sid="presentValueInv">

 <label>The present value to invest is:</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="paymentField.value *

 annuity(’.05’, ’7’)"></value>

 </field>

 annuity(rate, periods)

Details on Function Calls 293

asin

Returns the arc sine of a number stored in number.

An error occurs if number is not a valid number or has an absolute value greater

than 1.

Syntax

 number decimal number a number

Returns

A string containing the arc sine, or ″″ if an error occurs.

Example

In this example, the result of asin is ″0.523599″.

 <field sid="arcsinField">

 <label>Test asin()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="asin(’0.5’)"></value>

 </field>

atan

Returns the arc tangent of a number stored in number.

An error occurs if number is not a valid number.

Syntax

 number decimal number a number

Returns

A string containing the arc tangent, or ″″ if an error occurs.

Example

In this example, the result of atan is ″0.463648″.

 asin(number)

 atan(number)

294

<field sid="arctangentField">

 <label>Test atan()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="atan(’0.5’)"></value>

 </field>

ceiling

Returns the ceiling of a number.

An error occurs if number is not a valid number.

Syntax

 number decimal number a number

Returns

A string containing the ceiling of the number, or ″″ if an error occurs.

Example

In this example, the result of ceiling is ″-19″.

 <field sid="ceilingTest">

 <label>Test ceiling()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="ceiling(’-19.6’)"></value>

 </field>

compound

Returns the compound interest factor at a rate indicated by rate over a number of

periods specified in periods.

This might be used to calculate the total amount of a loan, by multiplying an

original principle by the result of compound. See below for an example.

An error occurs if periods is not a valid integer.

 ceiling(number)

Details on Function Calls 295

Syntax

 rate decimal number the rate of interest in decimal form compounded each

period

periods integer the number of periods

Return

A string containing the compound interest factor, or ″″ if an error occurs.

Example

In this example, the result of compound is ″1.948717″. The value of the field is

1.948717 x the amount in the ″principleField″.

 <field sid="totalAmountField">

 <label>Total Amount of Loan</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="principleField.value *

 compound(’.1’, ’7’)"></value>

 </field>

cos

Returns the cosine of an angle stored in angle and expressed in radians.

An error occurs if angle does not contain a valid angle.

Syntax

 angle decimal number the angle in radians

Returns

A string containing the cosine, or ″″ if an error occurs.

Example

In this example, the result of cos is ″-0.416147″.

 <field sid="cosineField">

 <label>Test cos()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 compound(rate, periods)

 cos(angle)

296

<mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="cos(’2’)"></value>

 </field>

deg2rad

Returns the number of radians in an angle expressed in degrees stored in angle.

An error occurs if angle does not contain a valid angle.

Syntax

 angle decimal number the angle in degrees

Returns

A string containing the number of radians, or ″″ if an error occurs.

Example

In this example, the result of deg2rad is ″2.00000″.

 <field sid="deg2radField">

 <label>Test deg2rad()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="deg2rad(’114.591559’)"></value>

 </field>

exp

Returns the exponentiation of the number represented in number (i.e., enumber).

An error occurs if number is not a valid number.

Syntax

 number decimal number a number

Returns

A string containing the exponentiation of the number, or ″″ if an error occurs.

 deg2rad(angle)

 exp(number)

Details on Function Calls 297

Example

In this example, the result of exp is ″20.855369″.

 <field sid="expTestField">

 <label>Test exp()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="exp(’3’)"></value>

 </field>

fact

Returns the factorial value of the integer represented in integer.

An error occurs if integer is negative.

Syntax

 integer integer a non-negative integer

Returns

A string containing the factorial of the integer, or ″″ if an error occurs.

Example

In this example, the result of fact is ″40320″.

 <field sid="factTestField">

 <label>Test fact()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="fact(’8’)"></value>

 </field>

floor

Returns the floor of the number represented in number.

An error occurs if number is not a valid number.

Syntax

 fact(number)

 floor(number)

298

number decimal number a number

Returns

A string containing the floor of the number, or ″″ if an error occurs.

Example

In this example, the result of floor is ″-20″.

 <field sid="floorTestField">

 <label>Test floor()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="floor(’-19.6’)"></value>

 </field>

ln

Returns the natural logarithm of the number represented in number.

An error occurs if number is not a decimal number greater than zero.

Syntax

 number decimal number a number

Returns

A string containing the natural log of the number, or ″″ if an error occurs.

Example

In this example, the result of ln is ″0″.

 <field sid="lnTestField">

 <label>Test ln()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="ln(’1’)"></value>

 </field>

log

Returns the logarithm of the number represented in number to the base indicated

by base.

 ln(number)

Details on Function Calls 299

An error occurs if either of number or base is not a valid number. The number must

be equal to, or greater than 1.

Syntax

 number decimal number a number

base decimal number optional. A number representing the base for which the

logarithm will be computed. If no base is supplied, a

base of 10 is used.

Returns

A string containing the log of the number to the base, or ″″ if an error occurs.

Example

In this example, the result of log is ″2″.

 <field sid="logTestField">

 <label>Test log()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="log(’100’, ’10’)"></value>

 </field>

mod

Returns the modulus of the number represented in number using the divisor

indicated by divisor.

An error occurs if either of number or divisor is not a valid number, or divisor is 0.

Syntax

 number decimal number a number

divisor decimal number a number representing the divisor for which the

modulus will be computed

Returns

A string containing the modulus, or ″″ if an error occurs.

 log(number, base)

 mod(number, divisor)

300

Example

In this example, the result of mod is ″-0.200000″.

 <field sid="modTestField">

 <label>Test mod()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="mod(’-3.5’, ’.3’)"></value>

 </field>

pi

Returns the value of PI to 13 decimal places.

Syntax

Returns

A string containing the value of p.

Example

In this example, the result of pi is ″3.14159265359″ (precision is

software-dependent).

<field sid="piTestField">

 <label>Test pi()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="pi()"></value>

</field>

power

Returns the number represented in number raised to the power indicated by power.

An error occurs if either of number or power is not a valid number.

Syntax

 number decimal number a number

power decimal number a number representing the power by which the

number will be raised

pi()

 power(number, power)

Details on Function Calls 301

Returns

A string containing the number raised to the power, or ″″ if an error occurs.

Example

In this example, the result of power is ″100.00000″.

 <field sid="powerTestField">

 <label>Test power()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="power(’0.1’, ’-2’)"></value>

 </field>

rad2deg

Returns the number of degrees in an angle expressed in radians stored in angle.

An error occurs if angle does not contain a valid angle.

Syntax

 angle decimal number the angle in radians

Returns

A string containing the number of degrees, or ″″ if an error occurs.

Example

In this example, the result of rad2deg is ″114.591559″.

 <field sid="rad2degField">

 <label>Test rad2deg()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="rad2deg(’2’)"></value>

 </field>

rand

Returns a random integer from the range of integers indicated by lowerlimit and

upperlimit. (The range includes lowerlimit and upperlimit).

 rad2deg(angle)

302

An error occurs if either of lowerlimit or upperlimit is not a valid integer, or

upperlimit is less than lowerlimit.

Syntax

 lowerlimit integer the lower limit of the random number’s range

upperlimit integer the upper limit of the random number’s range

Returns

A string containing the random integer, or ″″ if an error occurs.

Example

In this example, the result of rand is an integer in the range [45,90].

 <field sid="randTestField">

 <label>Test rand()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="rand(’45’, ’90’)"></value>

 </field>

round

Returns the number represented in number rounded to the nearest decimal position

indicated by place (e.g., 100, 10, 1, 0.1, ...). All numbers rounded to right of an x/y

graph, so the result of rounding negative numbers goes the opposite way you

would expect. See below for an example.

An error occurs if number is not a valid number or place is not a power of 10.

Syntax

 number decimal number a number

place decimal number a number representing the decimal place where

number is to be rounded

Returns

A string containing the rounded number, or ″″ if an error occurs.

 rand(lowerlimit, upperlimit)

 round(number, place)

Details on Function Calls 303

Examples

In this example, the result of round is ″323.2400″.

 <field sid="roundTestField">

 <label>Test round()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="round(’323.235’, ’.01’)"></value>

 </field>

In this example, the result of round is ″-323.2300″.

 <field sid="roundTestField">

 <label>Test round()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="round(’-323.235’, ’.01’)"></value>

 </field>

sin

Returns the sine of an angle stored in angle and expressed in radians.

An error occurs if angle does not contain a valid angle.

Syntax

 angle decimal number the angle in radians

Returns

A string containing the sine, or ″″ if an error occurs.

Example

In this example, the result of sin is ″0.909297″.

 <field sid="sineField">

 <label>Test sin()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="sin(’2’)"></value>

 </field>

 sin(angle)

304

sqrt

Returns the square root of the number represented in number.

An error occurs if number is a negative number.

Syntax

 number decimal number a non-negative number

Returns

A string containing the square root, or ″″ if an error occurs.

Example

In this example, the result of sqrt is ″4.415880″.

 <field sid="sqrtTestField">

 <label>Test sqrt()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="sqrt(’19.5’)"></value>

 </field>

tan

Returns the tangent of an angle expressed in radians stored in angle.

An error occurs if angle does not contain a valid angle (for example, p/2, 3p/2,

5p/2, and so on).

Syntax

 angle decimal number the angle in radians

Returns

A string containing the tangent, or ″″ if an error occurs.

Example

In this example, the result of tan is ″-2.185040″.

 sqrt(number)

 tan(angle)

Details on Function Calls 305

<field sid="tanField">

 <label>Test tan()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="tan(’2’)"></value>

 </field>

Utility Functions

applicationName

Returns the name of the application that is processing the form. This name must be

set in the application so that it is available to the function call.

Syntax

Returns

A string containing the application name. For example, Workplace Forms products

will return the following application names:

v Workplace Forms Viewer — Viewer

v Workplace Forms Webform Server — Webform Server

Example

In this example, if the application were being displayed by the Viewer, the result of

applicationName would be ″Viewer″.

 <field sid="appNameField">

 <label>Test applicationName()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="applicationName()"></value>

 </field>

applicationVersion

Returns the version of the currently running application in the format

″MM.mm.TT″, where MM is the Major version number, mm is the minor version

number, TT is the maintenance number.

 applicationName()

306

Syntax

Returns

A string containing the application version.

Example

In this example, if running in an application of version 3.2.4, the result of

applicationVersion would be ″03.02.04″.

 <field sid="appVersionField">

 <label>Test applicationVersion()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="applicationVersion()"></value>

 </field>

applicationVersionNum

Returns the decimal form of the version of the currently running application. This

number is obtained from the hexadecimal format 0xMMmmTTPP, where MM is

the Major version number, mm is the minor version number, TT is the maintenance

number, and PP is the patch number. At this point, individual patches are not

recognized in version numbers and so will always be 0.

Syntax

Returns

A string containing the application version number.

Example

In this example, if running in an application at version v3.2.4, the result of

applicationVersionNum would be ″50463744″, which is the decimal representation of

0x03020400.

 <field sid="appVersionNumField">

 <label>Test applicationVersionNum()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="applicationVersionNum()"></value>

 </field>

 applicationVersion()

 applicationVersionNum()

Details on Function Calls 307

checkValidFormats

This function checks the format of all items in the form and returns the number of

items whose format is invalid. You can also set the function to create a list of the

invalid items. Note that you cannot use this function to check the validity of

XForms nodes, nor can you pass the results of this check to an item containing

XForms.

To check the validity of a single item, use the isValidFormat function (see

“isValidFormat” on page 330).

Syntax

 reference reference string optional. A reference to an option will contain the list

of invalid items. This option must be in the same item

that the function is called from.

For example, if you called the function from a label

item you might create the following custom option:

 <label sid="numberInvalid">

 <custom:list/>

In this case, you would use the following reference:

 custom:list

The function will create the option if it does not

already exist. The function then populates the option

with a list of references to the invalid items. For

example, if two fields were invalid you would get a

list like this:

 <custom:list>

 <custom:invalidref>Page1.Field1

 </custom:invalidref>

 <custom:invalidref>Page1.Field2

 </custom:invalidref>

 </custom:list>

If this parameter is not specified in the call, the

function still validates all form items but does not

create a list of references to invalid items.

optionName string optional. Sets the tag that is used to store each item in

the list of invalid items. This is useful if you need to

set a particular namespace for the list. For example, if

you store your list in a custom:list option, you might

set the following tag:

 custom:invalidref

This ensures that the list is stored in the same

namespace as the containing element.

Default: xfdl:ae

 checkValidFormats(reference, optionName)

308

Returns

Returns the number of items that failed the validity check. If there are no invalid

items, the function returns 0.

Example

The following sample form shows how you can use the checkValidFormats function

to specify custom behaviors if a form with invalid values is submitted:

 <?xml version="1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom">

 <globalpage sid="global">

 <global sid="global"></global>

 </globalpage>

 <page sid="PAGE1">

 <global sid="global"></global>

 <field sid="FIELD1">

 <format>

 <datatype>date</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 </field>

 <field sid="FIELD2">

 <value>4.00</value>

 <format>

 <datatype>dollar</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 </field>

 <button sid="BUTTON1">

 <value>Submit</value>

 <type>done</type>

 <url>http://localhost/cgi-bin/test.pl</url>

 <custom:checkIfValid compute=

 "toggle(BUTTON1.activated, ’off’, ’on’) == ’1’ ?

 (checkValidFormats(’custom:brokenOptions’,

 ’custom:invalidref’) != ’0’ ?

 set(’BUTTON1.activated’, ’off’) +

 viewer.messageBox(’Unable to send because at ’

 +. ’least ’ +. custom:brokenOptions[0] +.

 ’item is invalid.’) : ’’) : ’’"></custom:checkIfValid>

 </button>

 </page>

 </XFDL>

The format option for ″FIELD1″ specifies that this item must contain a date and

cannot be blank. If a user submits the form without correctly completing this field,

the checkValidFormats function prevents the submission. Instead, the function

creates a new option called ″brokenOptions″:

 <custom:brokenOptions>

 <custom:invalidref>PAGE1.FIELD1</custom:invalidref>

 </custom:brokenOptions>

The remaining code uses the information in brokenOptions to display a

context-sensitive message to the user.

Details on Function Calls 309

countChildren

Counts the number of children that belong to a form element.

Note that this count will include all global elements (such as global pages and

global items) if they are children of the node. Additionally, it will include elements

that are not written out with form but are included when the form is in memory,

such as activated, pageprevious, pagenext, itemprevious, itemnext, and so on.

Syntax

 reference reference string a reference to the element containing the children.

referenceType string optional. Identifies the type of reference used in the

reference parameter. Valid settings are: form, page,

item, option, and array. An array is anything below

the option level in the form.

scheme string optional. The scheme used to write the reference.

Defaults to XFDL. Requires the referenceType

parameter.

Returns

An integer representing the number of children or ″″ if an error occurs.

Example

In this example, the countChildren function calculates the number of items on the

page. Note that the compute subtracts one from this total to account for the global

item.

 <field sid="totalItems">

 <value compute="countChildren(’Page1’, ’page’) - 1"></value>

 </field>

countDatagroupItems

Returns the number of items in a particular datagroup.

Syntax

 datagroup string the name of the datagroup. This can include a page

reference, such as Page1.myGroup. If it does not, the

function searches for the group on the page that contains

the function.

 countChildren(reference, referenceType, scheme)

 countDatagroupItems(datagroup)

310

Returns

The number of items in the datagroup or ″″ if an error occurs.

Example

In this example, the field displays the number of items in a datagroup called

Data1.

 <field sid="totalCount">

 <label>The Green group contains this many items:</label>

 <value compute="countDatagroupItems(’Data1’)"></value>

 </field>

countGroupedItems

Returns any of the following:

v The total number of items in a group.

v The total number of items in a group that have a particular option. For example,

the number of items with a bgcolor setting in a group.

v The total number of items in a group that have a particular option setting. For

example, the number of items with a bgcolor set to blue in a group.

Syntax

 group string the name of the group you want to get an item from.

This can include a page reference, such as

Page1.myGroup.

option string optional. If supplied, the function will only count items

that contain this option.

literal string optional. If supplied, the function will only count items

that have the specified option set to this value. Must be

used with the option parameter.

groupContext string optional. The starting point to use to locate the group if

the group name is not fully qualified. For example, if

the group was on the first page, you would use Page1.

groupContextType string optional. The level of the group context parameter, such

as page, item, or option. Currently only page is valid.

referenceType string optional. Sets the scope of the reference that is returned.

The reference begins at the level below this. For

example, to get a reference that begins at the page level,

set this parameter to form. Valid settings are form and

page. Defaults to form.

scheme string optional. The referencing scheme used. Defaults to XFDL.

Returns

The number of items that match the search criteria or ″″ if an error occurs.

 countGroupedItems(group, option, literal, groupContext, groupContextType,

 referenceType, scheme)

Details on Function Calls 311

Example

In this example, the field displays the number of items in a group called Green.

 <field sid="totalCount">

 <label>The Green group contains this many items:</label>

 <value compute="countGroupedItems(’Page1.Green’)"></value>

 </field>

decimal

Returns the decimal representation of the number represented by number with base

indicated by base.

An error occurs if number is not a valid number, if base is not a valid positive

integer base, or number cannot be resolved under the specified base.

Syntax

 number number a number

base positive integer an integer that is the base of the provided number

Returns

A string containing the decimal representation of the number, or ″″ if an error

occurs.

Example

In this example, the result of decimal is ″-74″.

 <field sid="decimalTestField">

 <label>Test decimal()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="decimal(’-4A’, ’16’)"></value>

 </field>

destroy

Destroys (or deletes) specified elements from a form, including boxes, buttons,

checks, comboboxes, fields, labels, lines, lists, pages, popups, radios, and spacers.

When a compute within the destroy function causes a change to the form, the form

checks for other computes referenced by the destroy function and evaluates them

immediately.

 decimal(number, base)

312

Syntax

 reference reference string a reference to the element you want to destroy

type string the type of element being destroyed; types can be

page, item, or option

Returns

Nothing if the operation was successful, or an error message if the reference cannot

be destroyed.

Example

This example creates a button that, when clicked by the user, deletes ″FIELD1″

from ″PAGE2″ of the form.

 <button sid="deleteField_BUTTON">

 <value>Delete</value>

 <custom:destroy xfdl:compute=

 "toggle(activated, ’off’, ’on’) == ’1’ ?

 destroy(’PAGE2.FIELD1’, ’item’) : ’’"></custom:destroy>

 </button>

Usage Details

1. If you destroy an entire page, the bindings to the XForms data model are

automatically removed. However, this update does not occur if you only

destroy an item or option within the page. This means that destroying items or

options that are bound to the data model may cause your form to behave

erratically.

duplicate

Makes a copy of a specified form element, places the copy in a designated location,

and assigns it a new name. Computes in duplicate elements are evaluated

immediately.

When creating elements for duplication, you will need to use relative tags (see

“Function Call Syntax” on page 425). Also, see the generateUniqueName and

getReference functions.

Syntax

 reference reference string a reference to the element you want to duplicate. For

example, if you want to duplicate ″FIELD1″ on

″PAGE1″, the reference would be PAGE1.FIELD1.

 destroy(reference, type)

 duplicate(reference, type, newReference, newType, location, newName)

Details on Function Calls 313

type string the type of element being duplicated. Types can be

page, item or option. For example, if you want to

duplicate an element whose reference was

PAGE1.FIELD1, the type would be item.

newReference reference string a reference that identifies where to put the new

element. The new element is created as either a child

or sibling of this element. For example, to create an

element as a sibling of FIELD1, you would use:

PAGE1.FIELD1.

newType string the type of the newReference. Types can be page,

item, or option. For example, if the newReference is

PAGE2, the newType would be page; if the

newReference is FIELD8, the newType would be item.

location string a description of where to put the new element in

relation to the newReference supplied in newType.

Valid settings are:

v append_child — adds the new element as the last

child of the newType.

v after_sibling — adds the new element as a sibling

of the newType, placing it immediately after that

node in the form structure.

v before_sibling — adds the new element as a

sibling of the newType, placing it immediately

before that node in the form structure.

newName string a new name for the duplicate element

Returns

A duplicate element that contains the settings of the original element.

Example

In this example, the option custom:duplicate calls the duplicate function to make a

copy of ″Field1″ on ″Page1″, which is identified as an item type. The call then

places the duplicate on ″Page2″, which is identified as a page type, and places it

immediately after the last item on ″Page2″ (append_child).

 <button sid="duplicateFieldButton">

 <custom:duplicate xfdl:compute="toggle(activated, ’off’, ’on’) == ’1’ ?

 duplicate(’Page1.Field1’, ’item’, ’Page2’, ’page’,

 ’append_child’, new_Name) : ’’"></custom:duplicate>

 </button>

Usage Details

1. If you duplicate an entire page, the elements in the new page will

automatically bind to the XForms data model. However, this binding will not

occur if you only duplicate an item or option within the page. This means that

duplicating items or options that are bound to the data model may cause your

forms to behave erratically.

forLoop

This function creates loop that you can use to run a compute a number of times.

314

The forLoop uses an option in your form (such as a custom option) as an index

that stores the current count of the loop. As the loop counts, it sets this option to

the current count. For example, if the for loop counted from 1 to 3, it would first

set the option to 1, then to 2, then to 3. Each time the loop increments, it will

perform a particular compute.

A form with a for loop will begin counting that loop as soon as the form opens,

unless the loop itself relies on a triggering event, such as a keypress event or a

toggle function.

Creating a Loop that Counts Once

You can create a loop that counts once by setting the initial count and the final

count to be equal. For example, a loop that counts from 1 to 1 will count once.

Syntax

 indexReference reference string a reference to the option that will store the current

count of the for loop. If this option does not exist,

the function creates it with an empty value.

initialIndex int the starting value of the for loop. This value is

inclusive, meaning that the for loop will begin by

counting this value.

maxIndex int the ending value of the for loop. This value in

inclusive, meaning that the for loop will end by

counting this value.

compute string the compute that you want to run each time the

loop counts.

Returns

1 on success or 0 (zero) on failure.

Example

The following button contains computes that takes input from a field, calculates

the factorial of that input, then sets another field with the result:

 <button sid="calculateButton">

 <value>Click to calculate</value>

 <custom:toggle1 xfdl:compute="toggle(

 calculateButton.activated, ’off’, ’on’) == ’1’ ?

 set(’resultField.value’, ’1’) +

 forLoop(’custom:counter’, ’1’, numberField.value,

 set(’resultField.value’, resultField.value *

 custom:counter) : ’’"></custom:toggle1>

 <custom:counter></custom:counter>

 </button>

The custom:toggle1 option contains a compute that is triggered when a button in the

form is clicked. Once triggered, the compute does three things: (1) it resets the

result field to a value of 1, (2) it starts a for loop that runs from 1 to x, where x is a

 forLoop(indexReference, initialIndex, maxIndex, compute)

Details on Function Calls 315

number typed in by the user, and (3) it runs a compute each time the count

changes. This compute multiplies the value of the result field by the current count,

then sets that value to the result field.

This effectively creates a loop that calculates the factorial of the number. On the

first count, 1 * 1 is calculated and stored in the result field. On the second count,

the value of the result field (1) * 2 is calculated and stored in the result field. On

the third count, the value of the result field (2) * 3 is calculated, and stored in the

result field. And so on, until the final value has been calculated and stored in the

result field.

formatString

Returns a string formatted according to the rules set out in a referenced format

option.

An error occurs if an invalid format is specified.

Syntax

 reference reference string a reference to the string to reformat. For

example, to format the value contained in

″Field3″, the reference would be Field3.value.

formatOptionReference string the format option used to apply to the

reference. For example, to format the

reference with the format options defined in

″Field1″, the string would be Field1.format.

Returns

The formatted string.

Example

In this example, the result of formatString in ″Field2″ is ″$30,095.60″.

 <field sid="Field1">

 <label>Field 1</label>

 <format>

 <datatype>dollar</datatype>

 <presentation>

 <chowcurrency>on</showcurrency>

 </presentation>

 </format>

 <value></value>

 </field>

 <field sid="Field2">

 <label>Field 2</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="formatString(Field3.value, ’Field1.format’)"></value>

 formatString(reference, formatOptionReference)

316

</field>

 <field sid="Field3">

 <label>Field 3</label>

 <value>30095.6</value>

 </field>

In this example, formatString reformats a value as an integer and inserts it into

custom:value.

 <field sid="Field4">

 <value>$1.00</value>

 <format>

 <datatype>currency</datatype>

 </format>

 <custom:value xfdl:compute="formatString(value,

 ’custom:format’)"></custom:value>

 <custom:format>

 <datatype>integer</datatype>

 </custom:format>

 </field>

generateUniqueName

Creates a unique name for an element, and is usually used with the duplicate

function. The name is constructed using a prefix and an integer that are

concatenated, as shown:

 <prefix> +. <integer>

For example, consider a button that contains the code to copy a field (using the

duplicate function). You could include the generateUniqueName function in this code.

As a result, when a user clicks this button, the newly created field would have a

unique name (such as ″newField_1″), which is composed of a designated prefix

(″newField_″) and an automatically assigned integer (beginning at ″1″).

The function searches the form for any pages, items or options with the same

name as the specified prefix. If the name already exists within the scope of the

parent element, then the function will increment the integer until a unique name

can be generated.

When generating unique names using this function, you will need to use the set

function.

Syntax

 reference reference string a reference to the parent element of the element for

which you wish to generate a unique name. For

example, if you want to generate a unique name for an

item on ″PAGE1″, the reference would be PAGE1. To

indicate that the parent element is the current form,

leave this parameter blank. You would do this if you

wanted to generate a unique name for a page.

 generateUniqueName(reference, type, prefix)

Details on Function Calls 317

type string the type of node identified in the reference. For

example, if the reference is PAGE1, the type would be

″page″. Valid types include:

v form

v page

v item

v option

v array

prefix string the prefix for the unique name generated. This can be

any string you like. For example, if you choose

″newField_″ as the prefix, the first name generated by

the function would be ″newField_1″, the second would

be ″newField_2″, and so on.

Returns

A string that is composed of characters and an integer.

Example

In this example, the generateUniqueName function generates a unique name and

returns the result newField_1.

 <button sid="duplicateFieldButton">

 <value>duplicate Field1</value>

 <custom:name></custom:name>

 <custom:generate xfdl:compute=

 "toggle(activated, ’off’, ’on’) == ’1’ ?

 set(’custom:name’, generateUniqueName(’PAGE1’, ’page’,

 ’newField_’)) : ’’"></custom:generate>

 </button>

get

Gets the value of either an XFDL option or an element in the XForms model.

Syntax

 reference reference string a reference to the string to get.

If getting a string from an XFDL element, use XFDL

referencing. For example, to retrieve the value of

″Field1″, the reference would be Field1.value.

If getting a string from an element in the XForms

data model, use XPath referencing. For example, to

retrieve the value of the ZIP element, the reference

might be address/zip.

referenceType string optional. Identifies the type of reference used in the

reference parameter. To indicate a reference to an

option node, use option. To indicate a reference to a

node below the option level, use array. To indicate a

reference to an XForms element, use empty string.

 get(reference, referenceType, scheme)

318

scheme string optional. The referencing scheme used. Use xfdl to

refer to XFDL elements in the form, or xforms to

refer to the XForms data model.

If you need to refer to a particular data model, you

must use a MIME type format instead, as shown:

 application/xforms; model=ID

Set this to the ID of the model you want to work

with. If you do not specify a model, the first model

in the form is used.

If the scheme is not provided, it defaults to xfdl. If

you provide a scheme, you must also provide the

referenceType parameter.

Returns

The value of the form option reference or ″″ if an error occurs.

Example

In this example, get retrieves the value of ″Field2″, which is ″gold″.

 <field sid="Field1">

 <label>Field 1</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>gold</value>

 </field>

 <field sid="Field2">

 <label>Test get()</label>

 <format>

 <datatype>string</datatype>

 </format>

 <value compute="get(’Field1.value’)"></value>

 </field>

Usage Details

1. The get function does not support XPath referencing for the entire form. Use

XPath references only when getting data from the XForms data model.

2. If you use the instance function to access a particular data instance, you must

use the escape sequence for the quotations marks (") that appear around

the parameter. For example:

 get(’instance("loan")/Borrower/Name’, ’’,’xforms’)

3. If you attempt to get the value of an element in the XForms data model, and

that element is a parent (that is, it contains child elements), then the value of

the first child text node is returned.

4. If you reference an item that changes, the change does not automatically trigger

a re-evaluation of the function.

getAttr

Returns the value of an attribute on a form element.

Details on Function Calls 319

Syntax

 reference reference string a reference to the element that has the attribute. For

example, to get an attribute from a custom data

element in Field1, you might use:

 Page1.Field1.custom:data

All namespace prefixes are resolved relative to this

node.

type string the type of reference used. This is one of page, item,

option, or array.

attrName string the name of the attribute, including the appropriate

namespace. For example:

 prefix:attribute

Use null for the empty namespace, or nothing for the

XFDL namespace. All other namespace prefixes are

resolved relative to the reference node supplied.

scheme string optional. The referencing scheme used. Defaults to

XFDL.

Returns

The value of the attribute or ″″ if an error occurs.

Example

In this example, getAttr retrieves the value of the id attribute from the

<custom:data> element.

 <field sid="nameField">

 <value>John B.</value>

 <custom:data id="12"></custom:data>

 </field>

 <field sid="idField">

 <value compute="getAttr(’nameField.custom:data’, ’option’,’custom:id’)"/></value>

 </field>

getDataByPath

Retrieves specific information from a signature in the form, such as the signer’s

name, the signer’s e-mail address, and so on.

Syntax

 type string the type of object you are working with. This must be

signature.

ref string a reference to the signature item in the form.

 getAttr(reference, type, attrName, scheme)

 getDataByPath(type, ref, path)

320

path string the path to the data you are retrieving from the signature.

See the Usage Details below for further information.

Returns

A string containing the requested data.

Usage Details

About Data Paths

Data paths describe the location of information within a signature, just like file

paths describe the location of files on a disk. You describe the path with a series of

colon separated tags. Each tag represents either a piece of data, or an object that

contains further pieces of data (just like directories can contain files and

subdirectories).

For example, to retrieve the version of a signature, you would use the following

data path:

 Demographics

However, to retrieve the signer’s common name, you first need to locate the

signing certificate, then the subject, then finally the common name within the

subject, as follows:

 signingCert: Subject: CN

Some tags may contain more than one piece of information. For example, the

issuer’s organizational unit may contain a number of entries. You can either

retrieve all of the entries as a comma separated list, or you can specify a specific

entry by using a zero-indexed element number.

For example, the following path would retrieve a comma separated list:

 signingCert: Issuer: OU

Adding an element number of 0 would retrieve the first organizational unit in the

list, as shown:

 signingCert: Issuer: OU: 0

signature Tags

The following list describes the tags available in a signature object. Note that

Clickwrap and HMAC Clickwrap signatures have additional tags (detailed in

Clickwrap signature Tags and HMAC Clickwrap Tags).

Engine

The security engine used to create the signature.

signingCert

The certificate used to create the signature. This is an object that contains

further information, as detailed in Certificate Tags. Note that this object does

not exist for Clickwrap or HMAC Clickwrap signatures.

HashAlg

The hash algorithm used to create the signature.

Details on Function Calls 321

CreateDate

The date on which the signature was created.

Demographics

A string describing the signature.

Clickwrap signature Tags

The following list describes additional tags available in both Clickwrap and

HMAC Clickwrap signatures. Note that HMAC Clickwrap signatures have further

tags (detailed in HMAC Clickwrap Tags).

TitleText

The text for the Windows title bar of the signature dialog box.

MainPrompt

The text for the title portion of the signature dialog box.

MainText

The text for the text portion of the signature dialog box.

Question1Text

The first question in the signature dialog box.

Answer1Text

The signer’s answer.

Question2Text

The second question in the signature dialog box.

Answer2Text

The signer’s answer.

Question3Text

The third question in the signature dialog box.

Answer3Text

The signer’s answer.

Question4Text

The fourth question in the signature dialog box.

Answer4Text

The signer’s answer.

Question5Text

The fifth question in the signature dialog box.

Answer5Text

The signer’s answer.

EchoPrompt

Text that the signer must echo to create a signature.

EchoText

The signer’s response to the echo text.

ButtonPrompt

The text that provides instructions for the Clickwrap signature buttons.

AcceptText

The text for the accept signature button.

RejectText

The text for the reject signature button.

322

Certificate Tags

The following list describes the tags available in a certificate object. Note that

Clickwrap and HMAC Clickwrap signatures do not contain these tags.

Subject

The subject’s distinguished name. This is an object that contains further

information, as detailed in Distinguished Name Tags.

Issuer The issuer’s distinguished name. This is an object that contains further

information, as detailed in Distinguished Name Tags.

IssuerCert

The issuer’s certificate. This is an object that contains the complete list of

certificate tags.

Engine

The security engine that generated the certificate. This is an object that

contains further information, as detailed in Security Engine Tags.

Version

The certificate version.

BeginDate

The date on which the certificate became valid.

EndDate

The date on which the certificate expires.

Serial The certificate’s serial number.

signatureAlg

The signature algorithm used to sign the certificate.

PublicKey

The certificate’s public key.

FriendlyName

The certificate’s friendly name.

Distinguished Name Tags

The following list describes the tags available in a distinguished name object. Note

that Clickwrap and HMAC Clickwrap signatures do not contain these tags.

CN The common name.

E The e-mail address.

T The title.

O The organization.

OU The organizational unit.

C The country.

L The locality.

ST The state.

All The entire distinguished name.

HMAC Clickwrap Tags

Details on Function Calls 323

The following list describes the tags available in HMAC Clickwrap signature. Note

that these tags are in addition to both the regular signature Tags and the Clickwrap

signature Tags.

HMACsigner

A string indicating which answers store the signer’s ID.

HMACSecret

A string indicating which answers store the signer’s secret.

Notarization

The notarizing signatures. This is one or more signature objects that

contain further information, as detailed in signature Tags. There can be any

number of notarizing signatures. Use an element number to retrieve a

specific signature. For example, to get the first notarizing signature use:

 Notarization: 0

 If no element number is provided, the data will be retrieved from the first

valid notarizing signature found. If no valid notarizing signatures are

found, the function will return empty string.

Security Engine Tags

The following list describes the tags available in the security engine object:

Name The name of the security engine.

Help The help text for the security engine.

HashAlg

A hash algorithm supported by the security engine.

Example

The following example shows a label that displays the signer’s e-mail address once

the form is signed. In this case, the label’s value is set using an if/then test to

determine whether the signer option on the signature button is set to anything

other than an empty string. If it is, then the form has been signed, and

getDataByPath is called to get the e-mail address of the signer.

 <label sid="e-mailLabel">

 <value compute="Page1.sigButton.signer != ’’ ?

 getDataByPath(’signature’, ’Page1.usersignature’,

 ’signingCert: Subject: E’) : ’’></value>

 <label>

getGroupedItem

Returns a reference to any of the following:

v The first item in a given group.

v The first item in a group that has a particular option. For example, the first item

with a bgcolor.

v The first item in a group that has a particular option setting. For example, the

first item with a value of on.

324

Syntax

 group string the name of the group you want to get an item from.

This can include a page reference, such as

Page1.myGroup.

option string optional. If supplied, the function will search for an

item that has this option.

literal string optional. If supplied, the function will search for an

item that has the specified option set to this value.

Must be used with the option parameter. If the empty

function is used as this parameter, getGroupedItem will

search for an item that has no value set for the

specified option.

groupContext string optional. The starting point to use to locate the group if

the group name is not fully qualified. For example, if

the group was on the first page, you would use Page1.

groupContextType string optional. The level of the group context parameter, such

as page, item, or option. Currently only page is valid.

referenceType string optional. Sets the scope of the reference that is returned.

The reference begins at the level below this. For

example, to get a reference that begins at the page

level, set this parameter to form. Valid settings are form

and page. Defaults to form.

scheme string optional. The referencing scheme used. Defaults to

XFDL.

Returns

A reference to the first item matching the search criteria or ″″ if an error occurs.

Usage Details

getGroupedItemsupports the empty function as its third parameter. This allows

getGroupedItem to return items that contain empty values in the specified option.

Example

In this example, getGroupedItem gets the sid of the radio button that is turned on.

 <field sid="Field1">

 <label>The SID of the selected radio button is:</label>

 <value compute="getGroupedItem(’Page1.radioGroup’, ’value’,’on’)"></value>

 </field>

getInstanceRef

Returns a reference to a particular instance in the XML Data Model. You must

know the ID of the instance.

 getGroupedItem(group, option, literal, groupContext, groupContextType,

 itemScopeType, scheme)

Details on Function Calls 325

Syntax

 instanceID string the ID of the data instance.

scheme string optional. The referencing scheme used. Defaults to XFDL.

Returns

A string that contains a fully qualified reference to the data instance or ″″ if an

error occurs.

Example

The following example uses to getInstanceRef to set the value of a label. The label

will then display a reference to the personnelInfo instance.

 <field sid="instanceReference">

 <value compute="getInstanceRef(’personnelInfo’)"></value>

 </field>

getPosition

Returns the position index for an element within its parent.

For example, if a page contained two fields, and you called this function on the

second field, it would return a value of ″1″, indicating that it was the second child

(indexing is zero based).

Syntax

 reference reference string a reference to the element whose position you want

to determine.

type string the type of reference used. This is one of page, item,

option, or array.

scheme string optional. The referencing scheme used. Defaults to

XFDL.

Returns

An integer representing the position of the element within its parent or ″″ if an

error occurs.

Example

This example uses getPosition to determine the position index of the lastNameField

on the first page. It then adds one to the index to change change it from zero

based indexing to one based indexing, and concatenates that value into a string

that reads: ″The lastNameField is element #2 on page one.″

 getInstanceRef(instanceID, scheme)

 getPosition(reference, type, scheme)

326

<page sid="Page1">

 <field sid="firstNameField"></field>

 <field sid="lastNameField"></field>

 </page>

 <page sid="Page2">

 <field sid="positionField">

 <value compute="’The lastNameField is element #’ +.

 (getPosition(’Page1.lastNameField’, ’item’) + 1)

 +. ’ on page one.’"></value>

 </field>

 </page>

getPref

This returns the value of any setting in the Viewer Preferences form. For example,

you could use this function to retrieve the user’s e-mail address from the

Preferences form.

Syntax

 prefName string the name of the Preferences setting to get. See the Usage

Details below for a list of valid names.

Returns

A string containing the value of the Preferences setting or ″″ if an error occurs.

Usage Details

The following table lists shows the names for each setting in the Preferences form.

Unless otherwise noted, each setting will have a value appropriate to the value

option of the item type listed. For example, a field can be set to any string value, a

check box can be set to on or off, and so on.

 Preferences Type Setting Name

Basic Network Access — Popup networkAccess

Try to locate browser automatically —

Check Box

locateBrowser

Path to Browser — Field overrideDefaultPathTo

Browser

Use Default Simple MAPI Client —

Check Box

useMAPI

SMTP Server — Field mailHost

Return Address — Field returne-mailAddress

Use Enhanced Focus Indicator —

Check Box

focusIndicator

Use Operating System Colors —

Check Box

useSystemColors

Input Do Predictive Input Checking —

Check Box

predictiveChecking

 getPref(prefName)

Details on Function Calls 327

Preferences Type Setting Name

I Prefer to Enter Dates — Radio

Buttons

Valid values are: DDMMYY,

MMDDYY, and YYMMDD.

defaultDateFormat

Stop Tab From Invalid Input Items —

Check Box

forbidTaboutOnError

Stop Tab From Empty Mandatory

Items — Check Box

forbidTaboutOnMandatory

Enable Smartfill — Check Box smartfillEnabled

Printing Print Radio Buttons as Check Boxes

— Check Box

printRadiosAsChecks

Print Radio Buttons Without Values

— Check Box

printRadiosWithoutValues

Print Scroll Bars on Fields — Check

Box

printscroll barsOnFields

Print single Line Fields as Lines —

Check Box

printsingleLineFieldsAs Lines

Print Border Around Form Edge —

Check Box

printFormBorder

Page Layout Defaults — Radio

Buttons

Valid values are: fitToPage,

shrinkToPage, tileOneDirection, and

tileTwoDirections.

printedPageLayout

Print each page as separate print job

— Check Box

printPageSeparately

Print black and white (excluding

images) — Check Box

printBlackAndWhite

Advanced Show Boundary on All Form Items —

Check Box

displayBoundingBoxes

Use ’X’ Style Check Boxes — Check

Box

Valid values are: X and check.

checkBoxStyle

Scroll Fields on Zoom — Check Box scrollFieldsOnZoom

Digital Certificate Identity Filter —

Field

certIdentifyFilter

Path to Netscape Profile — Field overrideDefaultPathTo

NetscapeProfile

Check CRL Distribution Points checkCRLDistribution Points

Example

In this example, getPref is used to automatically populate a field with the user’s

e-mail address:

 <field sid="e-mailAddress">

 <label>e-mail address:</label>

 <value compute="getPref(’returne-mailAddress’)"></value>

 </field>

328

getReference

Returns a reference for the element that contains the call. The function works as a

″Where am I?″ check for a page, item, or option. It is always called from within the

element for which the reference is needed, but the returned reference can be for

that element or any of its parents.

For example, getReference could be called from within a page’s label, and return a

reference for that option (for example, PAGE1.global.label), its parent item (for

example, PAGE1.global), or the page it is on (for example, PAGE1).

This function is especially useful when duplicating pages, since new pages will

contain the identical options and items as their originals.

Syntax

 element string the element you want to identify. Possible values include

the page sid, the item or option type, and the name or

value of the item or option. For instance, to return the

reference for a label option containing the call, the element

parameter would be ″label″.

type string the element type, which can be page, item, option, or array.

For example, the element type of a label would be option.

level string the level in the reference for the function to return. If the

function is called from an option, but level is identified as

item, the reference returned would be page.item.

scheme string optional. The referencing scheme used. Defaults to XFDL.

Returns

A reference to the element (page, item, or option) from which the function was

called, or ″″ if an error occurs.

Example

In this example, getReference returns a reference to the page, which is PAGE1.

 <page sid="PAGE1">

 <global sid="global">

 <label compute="getReference(’label’, ’option’, ’page’)"

 ></label>

 </global>

In this example, getReference returns a reference to the option of label, which in this

case is PAGE1.global.label.

 <page sid="PAGE1">

 <global sid="global">

 <label compute="getReference(’label’, ’option’, ’option’)"

 ></label>

 </global>

 getReference(element, type, level, scheme)

Details on Function Calls 329

isValidFormat

Returns the boolean result of whether a string is valid according to the setting of

the format option referred to in formatOptionReference. Note that you cannot use

this function to check the validity of strings in items with XForms.

An error occurs if a non-existent format is specified.

Syntax

 string string a string to be checked against the format. For

example, to check 23.2 against a specific format,

the string would be “23.2”.

formatOptionReference string the option reference of the format, including the

page sid if necessary, to check the string against.

For example, to check 23.2 against a format

specified in Field1, the formatOptionReference

would be “Field1.format”.

Returns

″1″ if the string follows the format, ″0″ if not, or ″″ if an error occurs.

Example

In this example, the result of isValidFormat is ″0″ because the string to check

contains a non-integer number representation and the specified format to check is

of type integer.

 <field sid="Field1">

 <label>Field 1</label>

 <format>

 <datatype>integer</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value>45</value>

 </field>

 <field sid="Field2">

 <label>Test isValidFormat()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="isValidFormat(’23.2’, ’Field1.format’)"

 ></value>

 </field>

set

Sets the value of an XFDL form option or of an element in the XForms model.

 isValidFormat(string, formatOptionReference)

330

Syntax

 reference reference string a reference to the element to set.

If setting an XFDL element, use XFDL referencing. For

example, to set the value of ″Field1″, the reference

would be Field1.value.

If setting an elemement in the XForms data model, use

XPath referencing. For example, to set the value of the

ZIP element, the reference might be address/zip.

a reference to the option to set. For example, to set the

value of ″Field1″, the reference would be Field1.value; to

set the value of a check box, the reference would be

CHECK2.value. Note that this reference must be

contained in quotes.

value string the reference’s new value. For example, to set the

reference’s new value to silver, the value would be

silver; to set the value of a checkmark to off, the value

would be off.

referenceType string optional. Identifies the type of reference used in the

reference parameter. To indicate a reference to an option

node, use option. To indicate a reference to a node

below the option level, use array. To indicate a

reference to the XForms data model, use an empty

string.

scheme string optional. The referencing scheme used. Use xfdl to refer

to XFDL elements in the form, or xforms to refer to the

XForms data model.

If you need to refer to a particular data model, you

must use a MIME type format instead, as shown:

 application/xforms; model=ID

Set this to the ID of the model you want to work with.

If you do not specify a model, the first model in the

form is used.

If the scheme is not provided, it defaults to xfdl. If you

provide a scheme, you must also provide the

referenceType parameter.

Returns

″1″ if the operation completed successfully, ″0″ if an error occurred. An error occurs

if the specified form option could not be set to the specified value.

Example

In this example, the result of set is ″1″ and the value of Field1 is set to ″silver″.

 <field sid="Field1">

 <label>Field 1</label>

 <value>gold</value>

 set(reference, value, referenceType, scheme)

Details on Function Calls 331

</field>

 <field sid="Field2">

 <label>Test set()</label>

 <value compute="set(’Field1.value’, ’silver’)"></value>

 </field>

In this example, if a form user selects the ″CHECK1″ check box (thereby turning its

value on), the set function sets the value of ″CHECK2″ to off.

 <check sid="CHECK1">

 <custom:set xfdl:compute="value == ’on’ ?

 set(’CHECK2.value’, ’off’) : ’’"></custom:set>

 <value>off</value>

 </check>

 <check sid="CHECK2">

 <custom:set xfdl:compute="value == ’on’ ?

 set(’CHECK1.value’, ’off’) : ’’"></custom:set>

 <value>off</value>

 </check>

Usage Details

 1. The set function does not support XPath referencing for the entire form. Use

XPath references only when setting data in the XForms model.

 2. If the option you are setting does not exist, the set function will create it so

long as the containing page and item already exist. The set function will not

create elements in the XForms model.

 3. If you set the value of an XFDL option that has a compute, the compute is

destroyed.

 4. You can use the set function to create ″grouped″ check boxes. For example, if

a form user selects one check box (thereby turning its value on), the set

function can turn the value of another check box off.

 5. If you use a set function to turn radio button on (or off), you must also use a

set function to turn all of the other radio buttons in the same group off (or

on).

 6. When a compute within the set function causes a change to the form, the form

checks for other computes referenced by the set function and evaluates them

immediately.

 7. If you use the instance function to access a particular data instance, you must

use the escape sequence for the quotations marks (") that appear around

the parameter. For example:

 set(’instance("loan")/Borrower/Name’, ’Bill Smith’,

 ’’,’xforms’)

 8. The set function does not work on values that are set to be readonly in the

XForms model; however, it does work on values that are set to be readonly

through the readonly option.

 9. If you attempt to set the value of an element in the XForms data model, and

that element is a parent (that is, it contains child elements), then the value of

the first child text node is set.

10. For security reasons, the set function is not allowed to change the value of an

option or suboption in an XForms-associated item (that is, an XFDL item that

contains an XForms control or an XFDL item that has been created by an

xforms:group, xforms:switch, xforms:repeat, xforms:select1 or xforms:select.

setAttr

Sets the value of an attribute on a form element.

332

Syntax

 reference reference string a reference to the element that has the attribute. For

example, to set an attribute from a custom data

element in Field1, you might use:

 Page1.Field1.custom:data

All other namespace prefixes are resolved relative to

this node.

type string the type of reference used. This is one of page, item,

option, or array.

attrName string the name of the attribute, including the appropriate

namespace. For example:

 prefix:attribute

Use null for the empty namespace, or nothing for the

XFDL namespace. All other namespace prefixes are

resolved relative to the reference node supplied.

value string the value to assign to the attribute.

scheme string optional. The referencing scheme used. Defaults to

XFDL.

Returns

″1″ if the operation completed successfully or ″0″ if an error occurred.

Example

In this example, setAttr sets the value of the id attribute in the <custom:data>

element to 12.

 <field sid="nameField">

 <value>John B.</value>

 <custom:data id=""></custom:data>

 </field>

 <field sid="idField">

 <value compute="setAttr(’nameField.custom:data’, ’option’,

 ’id’, ’12’)"></value>

 </field>

Usage Details

1. Do not use the setAttr function to change the value of a single node or nodeset

binding. This change will not be respected.

2. In the case of an xforms:repeat, you can use the setAttr function to change the

nodeset binding. This allows you to copy a table to a new page and reset the

binding of that table (for cases in which tables needs to wrap to a new page).

3. Do not use setAttr to modify the action attribute of a submission.

 setAttr(reference, type, attrName, value, scheme)

Details on Function Calls 333

toggle

Monitors a specific form option and detects any changes to the value of that

option. This function can detect any change in an option, or can watch for specific

changes. For example, you can create a toggle that detects when an option changes

from on to off, or from Fred to Jim.

An error occurs if the specified form option does not exist.

Syntax

 reference reference string a reference to the option to watch. For example,

to watch the value of a check box called

″noChoiceAllowed″, the reference would be

noChoiceAllowed.value.

start string optional. The start condition for toggle. For

example, you would set this to off to monitor

when a check box is checked (the check box will

toggle from off to on when it is checked by the

user).

end string optional. The end condition for toggle. For

example, you would set this to on to monitor

when a check box is checked (the check box will

toggle from off to on when it is checked by the

user).

Returns

″1″ if the specified change occurs in the specified option, or ″0″ if another change

occurs.

Example

In this example, toggle monitors a specific option for any change. Every time the

value of ″nameField″ changes, toggle will return ″1″, and then a new time will be

entered into ″timeStampField″, using the now function.

 <field sid="timeStampField">

 <value compute="toggle(nameField.value) == ’1’ ? now() : ’’"

 ></value>

 <label>Time Stamp</label>

 <readonly>on</readonly>

 </field>

 <field sid="nameField">

 <label>Name</label>

 <value></value>

 </field>

In this example, toggle monitors a check box to determine if the check box is

checked. If the value of the check box goes from off to on, the value of the label

will change to ″The box has been checked.″

 <label sid="checkStatusLabel">

 <value compute="toggle(check1.value, ’off’, ’on’) == ’1’ ?

 ’The box has been checked.’ :

 toggle(reference, start, end)

334

’The box has not been checked.’"></value>

 </label>

 <check sid="check1">

 <value>off</value>

 </check>

xforms.getPosInSet

Returns an index that indicates the position in a set. For example, for a table item

this determines which row of the table the compute is in. For a group (checkgroup

or radiogroup), this determines which item in the group the compute is in.

This function is part of the xforms package of functions, and must include the

″xforms.″ prefix.

Syntax

Returns

An integer representing the position in the set. The integer is one-based. This

means that the first element/row returns a value of 1, the second a value of 2, and

so on.

Example

The following checkgroup uses the xforms.getPosInSet and xforms.getSizeOfSet

functions to arrange the checks in two equal length columns. To achieve this, the x

and y coordinates are computed for each item in the group as shown:

 <checkgroup sid="color">

 <xforms:select ref="color" appearance="full">

 <xforms:label>Select the colors you like:</xforms:label>

 <xforms:itemset nodeset="../choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 <xforms:extension>

 <itemlocation>

 <x compute="floor((xforms.getPosInSet() - ’1’) /

 (ceiling(xforms.getSizeOfSet() / ’2’))) * ’60’"/>

 <y compute="(xforms.getPosInSet() - ’1’) %

 (ceiling(xforms.getSizeOfSet() / ’2’)) * ’20’"/>

 </itemlocation>

 </xforms:extension>

 </xforms:itemset>

 </xforms:select>

 </checkgroup>

To calculate the x coordinate, the following algorithm is used:

1. Calculate the size of the set, divide this by two, then get the ceiling of that

value.

v This determines the length of the first column (which is always longer if

there is an odd number of items).
2. Determine the position of the item in the set and subtract one.

v This returns a zero-based position in the set.

 xforms.getPosInSet()

Details on Function Calls 335

3. Divide the position in the set by the length of the first row, then get the floor of

this value.

v This returns a zero if the position is less than the length of the first row, or a

one if the position is equal to or greater than the length of the first row. This

works because the set is zero-based, so the first five items (0-4) will return a

zero since they are all less than 5.
4. Multiply by 60.

v This returns an x coordinate of zero if the item is in the first column, or an x

coordinate of 60 if the item is in the second column, effectively indenting the

second column.

To calculate the y coordinate, the following algorithm is used:

1. Calculate the size of the set, divide this by two, then get the ceiling of that

value.

v This determines the length of the first column (which is always longer if

there is an odd number of items).
2. Determine the position of the item in the set and subtract one.

v This returns a zero-based position in the set.
3. Get the modulus of the position in the set divided by the length of the first

row.

v This returns zero for the first item, one for the second, two for the third, and

so on. When the end of the first row is reached, the modulus begins again at

zero.
4. Multiply by 20.

v This determines the y coordinate, so the first item has a y coordinate of zero,

the second a y coordinate of 20, and so on. The second row resets at zero

and begins the count again.

xforms.getSizeOfSet

Returns the size of a set. For example, for a table item this determines how many

rows are in the table. For a group (checkgroup or radiogroup), this determines how

many items are in the group.

This function is part of the xforms package of functions, and must include the

″xforms.″ prefix.

Syntax

Returns

An integer representing the size of the set.

Example

The following checkgroup uses the xforms.getPosInSet and xforms.getSizeOfSet

functions to arrange the checks in two equal length columns. To achieve this, the x

and y coordinates are computed for each item in the group as shown:

 xforms.getPosInSet()

336

<checkgroup sid="color">

 <xforms:select ref="color" appearance="full">

 <xforms:label>Select the colors you like:</xforms:label>

 <xforms:itemset nodeset="../choice">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 <xforms:extension>

 <itemlocation>

 <x compute="floor((xforms.getPosInSet() - ’1’) /

 (ceiling(xforms.getSizeOfSet() / ’2’))) * ’60’"/>

 <y compute="(xforms.getPosInSet() - ’1’) %

 (ceiling(xforms.getSizeOfSet() / ’2’)) * ’20’"/>

 </itemlocation>

 </xforms:extension>

 </xforms:itemset>

 </xforms:select>

 </checkgroup>

To calculate the x coordinate, the following algorithm is used:

1. Calculate the size of the set, divide this by two, then get the ceiling of that

value.

v This determines the length of the first column (which is always longer if

there is an odd number of items).
2. Determine the position of the item in the set and subtract one.

v This returns a zero-based position in the set.
3. Divide the position in the set by the length of the first row, then get the floor of

this value.

v This returns a zero if the position is less than the length of the first row, or a

one if the position is equal to or greater than the length of the first row. This

works because the set is zero-based, so the first five items (0-4) will return a

zero since they are all less than 5.
4. Multiply by 60.

v This returns an x coordinate of zero if the item is in the first column, or an x

coordinate of 60 if the item is in the second column, effectively indenting the

second column.

To calculate the y coordinate, the following algorithm is used:

1. Calculate the size of the set, divide this by two, then get the ceiling of that

value.

v This determines the length of the first column (which is always longer if

there is an odd number of items).
2. Determine the position of the item in the set and subtract one.

v This returns a zero-based position in the set.
3. Get the modulus of the position in the set divided by the length of the first

row.

v This returns zero for the first item, one for the second, two for the third, and

so on. When the end of the first row is reached, the modulus begins again at

zero.
4. Multiply by 20.

v This determines the y coordinate, so the first item has a y coordinate of zero,

the second a y coordinate of 20, and so on. The second row resets at zero

and begins the count again.

Details on Function Calls 337

xforms.updateModel

This function updates the XForms model in the form. In general, the model is

automatically updated by the forms viewing application when required. However,

this function has been added for completeness.

This function is part of the xforms package of functions, and must include the

″xforms.″ prefix.

Syntax

 id string optional. The id of the model you want to update. If no id is

provided, the first model is updated.

Returns

″1″ if the operation completed successfully or ″0″ if an error occurred.

Example

The following checkgroup uses the xforms.getPosInSet and xforms.getSizeOfSet

functions to arrange the checks in two equal length columns. To achieve this, the x

and y coordinates are computed for each item in the group as shown:

 <checkgroup sid="color">

xmlmodelUpdate

This function updates the XML data model in the form. This is useful if computes

have changed the structure of the data model in some way, such as changing or

adding bindings. These sorts of changes do not take effect until the xmlmodelUpdate

function is called.

Syntax

Returns

″1″ if the operation completed successfully or ″0″ if an error occurred.

Example

The following XML data model has two instances for customer data. In this case,

the second data instance is bound to the form, linking first name and last name.

 <xmlmodel>

 <instances>

 <xforms:instance xmlns="http://www.w3.org/2003/xforms">

 <customers>

 <customerData>

 <firstName></firstName>

 xforms.updateModel(id)

 xmlmodelUpdate()

338

<lastName></lastName>

 </customerData>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 </customerData>

 <customers>

 <xforms:instance>

 </instances>

 <bindings>

 <bind>

 <ref>[customers][1][firstName]</ref>

 <boundOption>Page1.firstNameField.value</boundOption>

 </bind>

 <bind>

 <ref>[customers][1][lastName]</ref>

 <boundOption>Page1.lastNameField.value</boundOption>

 </bind>

 </bindings>

 </xmlmodel>

The following button changes the data model so that the form elements are bound

to the first data instance rather than the second. When the button is clicked, the

toggle is triggered, which uses two set functions to change the boundOption

elements in the data model. It also calls the xmlmodelUpdate function to ensure that

the changes take effect immediately.

 <button sid="updateDataModel">

 <value>Click to Update Data Model</value>

 <type>select</type>

 <custom:update compute=

 "toggle(activated, ’off’, ’on’) == ’1’

 ? set(global.global.xmlmodel[bindings][0][ref],

 ’[customers][0][firstName]’) +

 set(global.global.xmlmodel[bindings][1][ref],

 ’[customers][0][lastName]’) + xmlmodelUpdate()

 : ’’"></custom:update>

 </button>

xmlmodelValidate

Validates the XML Data Model against the available schemas.

A form may contain schemas as part of the XML Data Model, or may link to

external schemas. In either case, the active schemas are listed in the schema

attribute on the xmlmodel element. Only those schemas listed in the schema attribute

are used to validate data.

Syntax

Returns

The schema error message if the validation fails or an empty string if the

validation is successful.

 xmlmodelValidate()

Details on Function Calls 339

Example

The following example creates a Submit button in the form. When the user clicks

the button, the toggle function triggers the xmlmodelValidate function, which

validates the data.

 <button sid="submitForm">

 <value>Submit</value>

 <type>done</type>

 <custom:results></custom:results>

 <custom:opt xfdl:compute="toggle(activated, ’off’, ’on’)

 == ’1’ ?

 set(’custom:results’, xmlmodelValidate())

 + (strlen(custom:results) > ’0’

 ? viewer.messageBox(custom:results)

 + set(’activated’, ’off’)

 : ’’) : ’’"></custom:opt>

 </button>

Time and Date Functions

date

Returns a date in ″yyyymmdd″ format. Either converts a number of seconds (from

12 am, January 1, 1970) or returns the current date if no value is provided.

Syntax

 datesecs integer optional. The number of seconds from 12 am, January

1, 1970. If no value is provided, the current date is

returned.

Returns

A string containing the current date, or the date specified by the a date represented

by the number of seconds since 00:00:00 GMT, January 1, 1970

Example

In this example, if run on January 18th, 1998, the result of date is ″19980118″.

 <field sid="dateTestField">

 <label>Test date()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="date()"></value>

 </field>

 date(datesecs)

340

dateToSeconds

Returns the number of seconds from the GMT date and time (represented in date

and time respectively) since 00:00:00 GMT, January 1st, 1970.

When passing a date parameter to the function dateToSeconds, the date should be

passed in a format used by XFDL. See the format option description for valid date

formats.

Note: The best way to ensure that you pass a date in a valid format is to enter the

date in a field, label or cell that has an XFDL format option assigned to it.

See the second example below.

When passing a time parameter to the function dateToSeconds, the time may consist

only of hours:minutes. You may use a 24-hour clock (for example, 23:34) or a

12-hour clock with A.M and P.M. (11:34 P.M.) designators. Time is an optional

parameter.

An error occurs if either of date or time is not well formed.

To call the reverse of this function use the date function.

Syntax

 date string a date in a recognized format (see “format” on page 90

for a list of formats)

time string optional. A time (ending in minutes) in a recognized

format (for example, 23:34 or 11:34 P.M.)

reference reference string optional. A reference to an item that contains the format

option to use when interpreting the date. If no format

is provided, the function makes a best guess when

interpreting the date.

Returns

A string containing the number of seconds, or ″″ if an error occurs.

Example

In this example, the result of dateToSeconds is ″890329140″.

 <field sid="dtsField">

 <value compute="dateToSeconds(’1998-03-19’, ’09:39’)"></value>

 </field>

The following example shows how to pass in a date that is set in another field.

 <field sid="enterDateField">

 <format>

 <datatype>date</datatype>

 <presentation>

 <style>long</style>

 </presentation>

 </format>

 dateToSeconds(date, time, reference)

Details on Function Calls 341

<value></value>

 </field>

 <field sid="dtsField">

 <value compute="dateToSeconds(enterDateField.value, ’09:39’)"

 ></value>

 </field>

In this example, the first field takes a date as input, and formats it in XFDL’s long

format. The second field calls the dateToSeconds function, and uses an option

reference as a parameter (enterDateField.value). This reference takes the

already-formatted date that the user enters, and passes it into the function.

day

Returns the numeric day of the month for the provided date in dateSecs or the

current date if one is not provided. The provided date is a string representing the

number of seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well formed.

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the day, or ″″ if an error occurs.

Example

In this example, the result of day is ″19″.

 <field sid="dayTestField">

 <label>Test day()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="day(’890300356’)"></value>

 </field>

dayOfWeek

Returns the numeric day of the week (Sunday=1, and so on) for the provided date

in dateSecs or the current date if one is not provided. The provided date is a string

representing the number of seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well-formed.

 day(dateSecs)

342

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1st, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the day of the week, or ″″ if an error occurs.

Example

In this example, the result of dayOfWeek is ″5″.

 <field sid="dowTestField">

 <label>Test dayOfWeek()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="dayOfWeek(’890300356’)"></value>

 </field>

endOfMonth

Returns the number of seconds since 00:00:00 GMT, January 1st, 1970 to the current

time on the last day of the month in the date provided in dateSecs or the current

date if one is not provided. The provided date is a string representing the number

of seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well-formed.

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1st, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the number of seconds, or ″″ if an error occurs.

Example

In this example, the result of endOfMonth is ″891337156″.

 dayOfWeek(dateSecs)

 endOfMonth(dateSecs)

Details on Function Calls 343

<field sid="eomTestField">

 <label>Test endOfMonth()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="endOfMonth(’890300356’)"></value>

 </field>

hour

Returns the numeric hour for the provided hour in dateSecs or the current hour if

one is not provided. If using dateSecs, the provided date is a string representing the

number of seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well-formed.

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1st, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the hour, or ″″ if an error occurs.

Example

In this example, the result of hour is ″9″.

 <field sid="hourTestField">

 <label>Test hour()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="hour(’890300356’)"></value>

 </field>

minute

Returns the numeric minute for the provided date in dateSecs or the current date if

one is not provided. The provided date is a string representing the number of

seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well formed.

 hour(dateSecs)

344

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1st, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the minute, or ″″ if an error occurs.

Example

In this example, the result of minute is ″39″.

 <field sid="minuteTestField">

 <label>Test minute()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="minute(’890300356’)"></value>

 </field>

month

Returns the numeric month of the year for the provided date in dateSecs or the

current date if one is not provided. The provided date is a string representing the

number of seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well formed.

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1st, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the month, or ″″ if an error occurs.

Example

In this example, the result of month is ″3″.

 <field sid="monthTestField">

 <label>Test month()</label>

 <format>

 minute(dateSecs)

 month(dateSecs)

Details on Function Calls 345

<datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="month(’890300356’)"></value>

 </field>

now

Returns the number of seconds since 00:00:00 GMT, January 1st, 1970.

Syntax

Returns

A string containing the number of seconds.

Example

In this example, if run at 09:39:16 GMT on Thursday, March 19th, 1998, the result

of now would be ″890300356″.

 <field sid="nowTestField">

 <label>Test now()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="now()"></value>

 </field>

second

Returns the numeric second for the provided date in dateSecs or the current date if

one is not provided. The provided date is a string representing the number of

seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well formed.

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1st, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the second, or ″″ if an error occurs.

 now()

 second(dateSecs)

346

Example

In this example, the result of second is ″16″.

 <field sid="secondTestField">

 <label>Test second()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="second(’890300356’)"></value>

 </field>

time

Returns the current time in ″hh:mm AM″ format.

Syntax

Returns

A string containing the current time.

Example

In this example, if run at 3:22 in the afternoon, the result of time would be ″3:22

PM″.

 <field sid="timeTestField">

 <label>Test time()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="time()"></value>

 </field>

year

Returns the numeric year for the provided date in dateSecs or the current date if

one is not provided. The provided date is a string representing the number of

seconds since 00:00:00 GMT, January 1st, 1970.

An error occurs if dateSecs is not well-formed.

 time()

Details on Function Calls 347

Syntax

 dateSecs number optional. A date represented by the number of seconds

since 00:00:00 GMT, January 1st, 1970. If no value is

supplied, the current date is used.

Returns

A string containing the year, or ″″ if an error occurs.

Example

In this example, the result of year is ″1998″.

 <field sid="yearTestField">

 <label>Test year()</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="year(’890300356’)"></value>

 </field>

 year(dateSecs)

348

Details on XForms Function Calls

XFDL supports the use of XForms functions. These functions can be included in

XPath expressions, and are only available when dealing with XForms-related

processes.

Return Types

XForms functions can return the following data types:

v boolean — a true or false value.

v string — a group of alpha-numeric characters.

v number — a double precision number.

v nodeset — a set of nodes in the data model. The set may be empty, or it may

contain or more nodes.

Empty Return Values

Some functions will return the string ″NaN″ when they are unable to compute a

real return value. NaN means ″not a number″, and generally indicates an empty

nodeset.

Boolean Functions

boolean-from-string

Converts a string to a boolean value. This is useful for converting string content,

such as content from an instance data node, to a boolean result, which is required

to set some of the properties on data elements, such as relevant and readonly.

Syntax

 string string the string to convert. The strings ″true″ and ″1″ are converted

to true. All other strings are converted to false.

Returns

A boolean value.

Example

The following data model contains two instances. The first instance, called ″po″,

contains the beginning of a table that will track the items that are being ordered.

The second instance, called ″temps″, contains a temporary variable that tracks

whether the form is being submitted.

 boolean-from-string(string)

© Copyright IBM Corp. 2003, 2006 349

<xforms:model functions="current">

 <xforms:instance id="po" xmlns="">

 <po>

 <order>

 <row>

 <product/>

 <unitCost>0</unitCost>

 <qty></qty>

 <lineTotal></lineTotal>

 </row>

 </order>

 <subtotal>0</subtotal>

 <tax>0</tax>

 <total>0</total>

 </po>

 </xforms:instance>

 <xforms:instance id="temps" xmlns="">

 <root>

 <submitting>false</submitting>

 </root>

 </xforms:instance>

The following bind determines whether each row in the table is relevant:

 <xforms:bind nodeset="order/row[not(last())]"

 relevant="boolean-from-string(if(qty > 0 or

 instance(’temps’)/submitting=’false’, ’true’, ’false’))"/>

This bind uses an if, instance, and boolen-from-string function to create following

logic: if the row has a quantity greater than zero, or the form is not being

submitted (as tracked by the submitting element in the temps instance), then

return ″true″; otherwise, return ″false″. Since the if function returns these values as

strings, the boolean-from-string function is used to convert the result to a boolean

value, which then sets the relevance of the nodeset.

if

Creates a basic if/then/else decision point in an XPath expression.

Syntax

 condition boolean an XPath expression that is evaluated as true or false.

then string a value that is returned if the condition is true.

else string a value that is returned if the condition is false.

Returns

Returns the then parameter if the condition is true, or the else parameter if the

condition is false.

 if(condition, then, else)

350

Example

The following data model contains two instances. The first instance, called ″po″,

contains the beginning of a table that will track the items that are being ordered.

The second instance, called ″temps″, contains a temporary variable that tracks

whether the form is being submitted.

 <xforms:model functions="current">

 <xforms:instance id="po" xmlns="">

 <po>

 <order>

 <row>

 <product/>

 <unitCost>0</unitCost>

 <qty></qty>

 <lineTotal></lineTotal>

 </row>

 </order>

 <subtotal>0</subtotal>

 <tax>0</tax>

 <total>0</total>

 </po>

 </xforms:instance>

 <xforms:instance id="temps" xmlns="">

 <root>

 <submitting>false</submitting>

 </root>

 </xforms:instance>

The following bind determines whether each row in the table is relevant:

 <xforms:bind nodeset="order/row[not(last())]"

 relevant="boolean-from-string(if(qty > 0 or

 instance(’temps’)/submitting=’false’, ’true’, ’false’))"/>

This bind uses an if, instance, and boolen-from-string function to create following

logic: if the row has a quantity greater than zero, or the form is not being

submitted (as tracked by the submitting element in the temps instance), then

return ″true″; otherwise, return ″false″. Since the if function returns these values as

strings, the boolean-from-string function is used to convert the result to a boolean

value, which then sets the relevance of the nodeset.

Number Functions

avg

Averages the values for a set of nodes. The strings values of the nodes are

converted to numbers, added together, and then divided by the number of nodes.

Syntax

 nodeset XPath an XPath reference to a set of nodes.

 avg(nodeset)

Details on XForms Function Calls 351

Returns

A number representing the average, or NaN if any node is the nodeset is not a

number or the nodeset is empty.

Example

The following model contains the beginnings of a table that tracks test scores for

students:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <students>

 <row>

 <name/>

 <studentNumber/>

 <score/>

 </row>

 </students>

 <lowScore/>

 <highScore/>

 <averageScore/>

 </root>

 </xforms:instance>

 </xforms:model>

The following bind uses the avg function to populate the <averageScore> element:

 <xforms:bind nodeset="averageScore"

 calculate="avg(../students/row/score)"/>

min

Determines the minimum value from a set of nodes. The string value of each node

is converted to a number, then the minimum value is determined.

Syntax

 nodeset XPath an XPath reference to a set of nodes.

Returns

A number representing the minimum value, or NaN if the nodeset was empty or

one of the nodes in the set evaluated to NaN.

Example

The following model contains the beginnings of a table that tracks test scores for

students:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <students>

 <row>

 <name/>

 min(nodeset)

352

<studentNumber/>

 <score/>

 </row>

 </students>

 <lowScore/>

 <highScore/>

 <averageScore/>

 </root>

 </xforms:instance>

 </xforms:model>

The following bind uses the min function to populate the <lowScore> element:

 <xforms:bind nodeset="lowScore"

 calculate="min(../students/row/score)"/>

max

Determines the maximum value from a set of nodes. The string value of each node

is converted to a number, then the minimum value is determined.

Syntax

 nodeset XPath an XPath reference to a set of nodes.

Returns

A number representing the maximum value, or NaN if the nodeset was empty or

one of the nodes in the set evaluated to NaN.

Example

The following model contains the beginnings of a table that tracks test scores for

students:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <students>

 <row>

 <name/>

 <studentNumber/>

 <score/>

 </row>

 </students>

 <lowScore/>

 <highScore/>

 <averageScore/>

 </root>

 </xforms:instance>

 </xforms:model>

The following bind uses the max function to populate the <highScore> element:

 <xforms:bind nodeset="highScore"

 calculate="max(../students/row/score)/>

 max(nodeset)

Details on XForms Function Calls 353

count-non-empty

Determines the number of non-empty nodes in a nodeset. A node is considered to

be non-empty if it can be converted into a string with a length greater than zero.

Syntax

 nodeset XPath an XPath reference to a set of

nodes.

Returns

A number representing the number of non-empty nodes in the set.

Example

The following model contains the beginnings of a table that tracks test scores for

students:

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <students>

 <row>

 <name/>

 <studentNumber/>

 <score/>

 </row>

 </students>

 <lowScore/>

 <highScore/>

 <averageScore/>

 <testsMarked/>

 </root>

 </xforms:instance>

 </xforms:model>

The following bind uses the count-non-empty function to determine how many

students have scores, then puts that value in the <testsMarked> element:

 <xforms:bind nodeset="testsMarked"

 calculate="count-non-empty(../students/row/score)"/>

index

Determines which row of a repeat currently has the focus. Repeats are indexed

with a one-based count. For example, the first row is row 1, the second is row 2,

and so on.

 count-non-empty(nodeset)

354

Syntax

 repeatID XPath an XPath reference to the id attribute of an xforms:repeat

option.

Returns

A number indicating which row has the focus.

Example

The following button adds a row to a table of students and test scores. When the

button is clicked, the xforms:insert action creates a new row within the table. This

insert action uses the index function to determine which row in the table currently

has the focus, and then places the new row after the row with the focus.

 <button sid="addRow">

 <xforms:trigger>

 <xforms:label>Add Row</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:insert nodeset="students/row"

 at="index(’studentTable’)" position="after"/>

 <xforms:setfocus control="studentTable"/>

 </xforms:action>

 </xforms:trigger>

 </button>

String Functions

property

Queries the forms viewing engine to determine one of the following:

v XForms version — which version of XForms is being used.

v XForms conformance — which aspects of XForms are supported.

Syntax

 string string one of the following strings:

v version

v conformance-level

Returns

If querying the version, returns a string with the major and minor version of

XForms. For example, ″1.0″.

 index(repeatID)

 property(string)

Details on XForms Function Calls 355

If querying the conformance, XFDL forms viewing applications return full. Other

applications may return other values, depending on their support for XForms.

Example

The following model contains a <conformance> data element that is populated by

a bind. This bind uses the property function to check the conformance level of the

application processing the form, and records that level in the form.

 <xforms:model>

 <xforms:instance id="conformance" xmlns="">

 <root>

 <conformance/>

 </root>

 </xforms:instance>

 <xforms:bind nodeset="instance(’conformance’)/conformance"

 calculate="property(’conformance-level’)"/>

 </xforms:model>

Date and Time Functions

now

Gets the current date and time from the system clock on the local computer.

Syntax

Returns

A string representing the time in the following format: 2005-10-20T17:00:00Z.

Example

The following buttons submits a purchase order form. When the button is clicked,

the actions are triggered in order. First, the xforms:setvalue action uses the now

function to record the time of submission. Then, the xforms:send action submits the

form to the server.

 <button sid="submitPO">

 <xforms:trigger>

 <xforms:action ev:event="DOMActivate">

 <xforms:setvalue ref="timeStamp" value="now()"/>

 <xforms:send submission="sendPO"/>

 <xforms:label>Submit PO</xforms:label>

 </xforms:trigger>

 </button>

days-from-date

Determines how many days difference there is between 1970-01-01 and the

provided date.

 now()

356

Syntax

 date xsd:date a date in one of the formats specified below.

Formats

The date may be written in any of the following formats:

date The date written in the following format:

 yyyy-mm-dd

 Where:

v yyyy is a four digit year, such as 2005.

v mm is a two digit month, such as 02 or 10.

v dd is a two digit day, such as 05 or 22.

Note that the date must include the dashes. For example, June 21, 2005

would be written as:

 2005-06-22

dateTime

The date and time written in the following format:

 yyyy-mm-ddThh:mm:ssZ

 Where:

v yyyy is a four digit year, such as 2005.

v mm is a two digit month, such as 02 or 10.

v dd is a two digit day, such as 05 or 22.

v T is the time separator. You must include this.

v hh is a two digit hour (24 hour clock), such as 02 or 18.

v mm is a two digit minute, such as 03 or 55.

v ss is at least a two digit second, such as 08 or 43. The seconds value may

also include a decimal fraction.

v Z is the timezone indicator. For no timezone adjustment, simply append

Z to the string. To make a timezone adjustment, replace the Z with the

following expression:

(+ | -) hh:mm

Where:

– hh is a two digit hour (24 hour clock).

– mm is a two digit minute.

Note that the dateTime must include the dashes and colons. For example,

June 21, 2005 at 4:55 PM Central Daylight Savings Time would be written

as:

 2005-06-21T16:55:00-05:00

 days-from-date(date)

Details on XForms Function Calls 357

Returns

A number representing the number of days, or NaN if the input does not match

the allowed formats.

Example

The following model might appear in an overdue notice for an online movie rental.

The model contains a due date as well as a ″days late″ entry. The number of days

the rental is late is calculated by a bind that performs the following processing:

convert today’s date (retrieved with the now function) to days, then convert the

due date to days, then subtract the due date from today’s date.

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <dueDate/>

 <daysLate/>

 </root>

 </xforms:instance>

 <xforms:bind nodeset="daysLate"

 calculate="days-from-date(now()) - days-from-date(../dueDate)"/>

 </xforms:model>

seconds-from-dateTime

Determines how many seconds difference there is between 1970-01-01 and the

provided date.

358

Syntax

 dateTime xsd:dateTime a date and time written in the following format:

yyyy-mm-ddThh:mm:ssZ

Where:

v yyyy is a four digit year, such as 2005.

v mm is a two digit month, such as 02 or 10.

v dd is a two digit day, such as 05 or 22.

v T is the time separator. You must include this.

v hh is a two digit hour (24 hour clock), such as 02 or 18.

v mm is a two digit minute, such as 03 or 55.

v ss is at least a two digit second, such as 08 or 43. The

seconds value may also include a decimal fraction.

v Z is the timezone indicator. For no timezone

adjustment, simply append Z to the string. To make a

timezone adjustment, replace the Z with the following

expression:

(+ | -) hh:mm

Where:

– hh is a two digit hour (24 hour clock).

– mm is a two digit minute.

Note that the dateTime must include the dashes and

colons. For example, June 21, 2005 at 4:55 PM Central

Daylight Savings Time would be written as:

2005-06-21T16:55:00-05:00

Returns

A number representing the number of seconds, or NaN if the input does not match

the allowed format.

Example

The following example shows an XForms model and a button item:

 <xforms:model>

 <xforms:instance id="timeData" xmlns="">

 <root>

 <timeOpened/>

 <timeSubmitted/>

 <elapsedTime/>

 </root>

 </xforms:instance>

 <xforms:bind nodeset="elapsedTime"

 calculate="(seconds-from-dateTime(../timeSubmitted) -

 seconds-from-dateTime(../timeOpened)) div 60"/>

 <xforms:setvalue ev:event="xforms-ready"

 ref="instance(’timeData’)/timeOpened" value="now()"/>

 </xforms:model>

 <button sid="submit">

 seconds-from-dateTime(dateTime)

Details on XForms Function Calls 359

<xforms:trigger>

 <xforms:action ev:event="DOMActivate">

 <xforms:setvalue ref="instance(’timeData’)/timeSubmitted"

 value="now()"/>

 <xforms:send submission="send"/>

 </xforms:action>

 <xforms:label>Submit</xforms:label>

 </xforms:trigger>

 </button>

The model contains data elements that record when the form is first opened, when

the form is submitted, and the elapsed time between the two. When the XForms

model is first ready, an xforms:setvalue function is triggered in the model and

records the time the form was opened. When the user clicks the submit button, an

xforms:setvalue action is triggered in the button and records the time the form was

submitted. The change in value also causes the xforms:bind to update, which

calculates the elapsed time by converting both times into seconds, subtracting the

timeOpened from the timeSubmitted, and then dividing by 60 to convert the result

to minutes.

seconds

Converts a duration to an equal number of seconds. Durations may include days,

hours, minutes, and seconds.

Syntax

 duration xsd:duration a duration, written in the following format:

PnYnMnDTnHnMnS

where:

v P marks the string as a duration.

v nY gives the number of years.

v nM gives the number of months.

v nD gives the number of days.

v T separates the date from the time.

v nH gives the number of hours.

v nM gives the number of minutes.

v nS gives the number of seconds.

For example, P1Y3M3DT12H34M21S is: 1 year, 3

months, 3 days, 12 hours, 34 minutes, and 21 seconds.

If any of the values are zero, they may be omitted. For

example, P120D is 120 days. Furthermore, the year and

month values are ignored by this function.

The T designator may only be absent if there are no time

elements. The P designator must always be present.

The number of seconds may include a decimal fraction.

 seconds(duration)

360

Returns

A number (possibly fractional) representing the number of seconds, or NaN if the

input does not match the allowed format.

Example

The following model converts days, hours and minutes into a total number of

minutes. The model contains data elements for days, hours, and minutes. The user

types these values into fields that are linked to the data elements. When data is

entered, the xforms:bind uses the concat function to turn the data into a formatted

duration string, converts that string to seconds using the seconds function, and then

divides by sixty to convert the time to minutes. This value is then stored in the

<totalTime> element.

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <days/>

 <hours/>

 <minutes/>

 <totalTime/>

 </root>

 </xforms:instance>

 <xforms:bind nodeset="totalTime"

 calculate="seconds(concat(’P’, ../days, ’DT’, ../hours, ’H’,

 ../minutes, ’M’)) div 60"/>

 </xforms:model>

months

Converts a duration to an equal number of months. Durations may include days

and months.

Details on XForms Function Calls 361

Syntax

 duration xsd:duration a duration, written in the following format:

PnYnMnDTnHnMnS

where:

v P marks the string as a duration.

v nY gives the number of years.

v nM gives the number of months.

v nD gives the number of days.

v T separates the date from the time.

v nH gives the number of hours.

v nM gives the number of minutes.

v nS gives the number of seconds.

For example, P1Y3M3DT12H34M21S is: 1 year, 3

months, 3 days, 12 hours, 34 minutes, and 21 seconds.

If any of the values are zero, they may be omitted. For

example, P11M is 11 months. Furthermore, only the

year and month values are used by this function. All

other values are ignored.

Returns

A whole number representing the number of months, or NaN if the input does not

match the allowed format.

Example

The following model converts years and months into a total number of months.

The model contains data elements for years and months. The user types these

values into fields that are linked to the data elements. When data is entered, the

xforms:bind uses the concat function to turn the data into a formatted duration

string, converts that string to months using the months function. This value is then

stored in the <totalTime> element.

 <xforms:model>

 <xforms:instance xmlns="">

 <root>

 <years/>

 <months/>

 <totalTime/>

 </root>

 </xforms:instance>

 <xforms:bind nodeset="totalTime"

 calculate="months(concat(’P’, ../years, ’Y’, ../months, ’M’))"/>

 </xforms:model>

 months(duration)

362

Node-set Functions

instance

Locates a particular data instance within a given model.

Syntax

 instanceID string the value of the id attribute for the instance.

Returns

The instance nodeset.

Example

The following data model contains two instances. The first instance, called ″po″,

contains the beginning of a table that will track the items that are being ordered.

The second instance, called ″temps″, contains a temporary variable that tracks

whether the form is being submitted.

 <xforms:model functions="current">

 <xforms:instance id="po" xmlns="">

 <po>

 <order>

 <row>

 <product/>

 <unitCost>0</unitCost>

 <qty></qty>

 <lineTotal></lineTotal>

 </row>

 </order>

 <subtotal>0</subtotal>

 <tax>0</tax>

 <total>0</total>

 </po>

 </xforms:instance>

 <xforms:instance id="temps" xmlns="">

 <root>

 <submitting>false</submitting>

 </root>

 </xforms:instance>

The following bind determines whether each row in the table is relevant:

 <xforms:bind nodeset="order/row[not(last())]"

 relevant="boolean-from-string(if(qty > 0 or

 instance(’temps’)/submitting=’false’, ’true’, ’false’))"/>

This bind uses an if, instance, and boolen-from-string function to create following

logic: if the row has a quantity greater than zero, or the form is being submitted

(as tracked by the submitting element in the temps instance), then return ″true″;

otherwise, return ″false″. Since the if function returns these values as strings, the

boolean-from-string function is used to convert the result to a boolean value, which

then sets the relevance of the nodeset.

 instance(instanceID)

Details on XForms Function Calls 363

Utility Functions

choose

Given two nodesets, this function returns one of them (that is, it chooses between

them) based on the results of an XPath expression.

Syntax

 booelan XPath an XPath expression that results in a boolean value. On

true, nodeset1 is used; on false, nodeset2 is used.

nodeset1 XPath an XPath expression that evaluates to a nodeset.

nodeset2 XPath an XPath expression that evaluates to a nodeset.

Returns

A nodeset.

Example

The following popup presents a list of either states of provinces, depending on

whether the user indicates they are from the US or Canada. In this case, a full list

of the states and provinces are included in the data model. The user selects US or

Canada from a radiogroup. The popup then uses the choose function to select the

right group of nodes from the data model: if the user selected the US (the US data

element is true), the popup uses states; if not, the popup uses provinces.

 <popup sid="stateProvince">

 <xforms:select1 ref="stateProvince" appearance="full">

 <xforms:label>Select your State/Province:</xforms:label>

 <xforms:itemset nodeset="choose(US=’true’,states/state,provinces/

 province)">

 <xforms:label ref="@show"></xforms:label>

 <xforms:value ref="."></xforms:value>

 </xforms:itemset>

 </xforms:select1>

 </popup>

power

Calculates the value of xn, where you supply x and n.

Syntax

 xvalue number the base number. This is raised to the power of n.

nvalue number the exponent. This is applied the x value.

 choose(boolean, nodeset1, nodeset2)

 power(xvalue, nvalue)

364

Returns

A number representing the result, or NaN if the result is not a real number.

Example

The following model uses the power function to apply the pythagoran theorem to

the sides of a triangle. The user enters sides a and b into fields that are linked to

the <a> and data elements. Side c is then culculated by the xforms:bind, which

uses the power function to get the square root of of a2 + b2. This value is then

stored in the <c> data element.

 <xforms:model functions="power">

 <xforms:instance xmlns="">

 <root>

 <a/>

 <c/>

 </root>

 </xforms:instance>

 <xforms:bind nodeset="c"

 calculate="power(../a * ../a + ../b * ../b, 0.5)"/>

 </xforms:model>

Usage Details

1. To use the power function, you must include the power function in the functions

attribute of the <xforms:model> tag.

current

Returns the nodeset that is currently providing the context for the XPath

expression. This is useful when you need to reset the context in the middle of an

XPath expression.

Syntax

Returns

Returns the context nodeset.

Example

The following model contains two data instances are used to create a form that

converts currencies. The first instance contains the user-supplied information,

including the amount and the currency they want to convert to. The second

instance contains information about exchange rates.

 <xforms:model functions="current">

 <xforms:instance xmlns="">

 <converter>

 <amount>100</amount>

 <currency>jpy</currency>

 <convertedAmount></convertedAmount>

 </converter>

 </xforms:instance>

 <xforms:instance xmlns="" id="convTable">

 <convTable date="20040212" currency="cdn">

 current()

Details on XForms Function Calls 365

<rate currency="eur">0.59376</rate>

 <rate currency="mxn">8.37597</rate>

 <rate currency="jpy">80.23451</rate>

 <rate currency="usd">0.76138</rate>

 </convTable>

 </xforms:instance>

 <xforms:model>

The following bind populates the <convertedAmount> element based on the data

provided by the user and the exchange rate:

 <bind nodeset="convertedAmount" calculate="../amount *

 instance(’convTable’)/rate[@currency=current()/../currency]"/>

The bind multiplies the <amount> by the proper conversion rate. The context node

for this bind is established by the nodeset attribute as the <convertedAmount>

element in the first instance. This means that all XPath is evaluated relative to this

node. However, to determine the conversion rate we must refer to the second

instance. To do this, we use the instance function to retrieve the second instance,

and then check the <rate> elements in that instance.

Next, we find the correct rate by do a string comparison between the currency

attribute of each <rate> element and the contents of the <currency> element in the

first instance. However, the <currency> element is in the first instance, and we

have already changed our context to the second instance by using the instance

function. So, to refer to the <currency> element in the first instance we must use

the current function, as shown:

 current()/../currency

Using the current function resets our context to the <convertedAmount> node,

which was established as our context node by the nodeset attribute on the bind. So

this expression evaluates to:

 convertedAmount/../currency

This retrieves the contents of the currency node in the first data element. This

value is then compared to the currency attribute on each <rate> element until the

correct <rate> element is located.

Usage Details

1. To use the current function, you must include the current function in the

functions attribute of the <xforms:model> tag.

366

Quick Reference Tables

Table of Items and Form and Page Globals

The following table lists the available options for each item type:

 Item Available Options

action activated; active; data; datagroup; delay; itemnext; itemprevious;

printsettings; saveformat; transmitdatagroups; transmitformat;

transmitgroups; transmititemrefs; transmititems; transmitnamespaces;

transmitoptionrefs; transmitoptions; transmitpagerefs; type; url

box bgcolor; border; fontinfo; itemlocation; itemnext; itemprevious;

printbgcolor; printvisible; size; visible

button activated; active; bgcolor; border; coordinates; data; datagroup; focused;

fontcolor; fontinfo; format; help; image; imagemode; itemlocation;

itemnext; itemprevious; justify; keypress; mouseover; next; previous;

printbgcolor; printfontcolor; printsettings; printvisible; saveformat;

signature; signatureimage; signdatagroups; signer; signformat; signgroups;

signitemrefs; signitems; signnamespaces; signoptionrefs; signoptions;

signpagerefs; size; transmitdatagroups; transmitformat; transmitgroups;

transmititemrefs; transmititems; transmitnamespaces; transmitoptionrefs;

transmitoptions; transmitpagerefs; type; url; value; visible; xforms:output;

xforms:submit; xforms:trigger; xforms:upload

cell activated; active; data; datagroup; group; itemnext; itemprevious; label;

printsettings; saveformat; transmitdatagroups; transmitformat;

transmitgroups; transmititemrefs; transmititems; transmitnamespaces;

transmitoptionrefs; transmitoptions; transmitpagerefs; type; url; value

check active; bgcolor; focused; fontcolor; fontinfo; help; itemlocation; itemnext;

itemprevious; keypress; label; labelbgcolor; labelborder; labelfontcolor;

labelfontinfo; mouseover; next; previous; printbgcolor; printfontcolor;

printlabelbgcolor; printlabelfontcolor; printvisible; readonly; size;

suppresslabel; value, visible; xforms:secret

checkgroup acclabel; active; bgcolor; border; focused; format; help; itemlocation;

itemnext; itemprevious; label; labelbgcolor; labelborder; labelfontcolor;

labelfontinfo; mouseover; next; previous; printbgcolor; printlabelbgcolor;

printlabelfontcolor; printvisible; readonly; suppresslabel; value; visible;

xforms:select; xforms:select1

combobox activated; active; bgcolor; border; focused; fontcolor; fontinfo; format;

group; help; itemlocation; itemnext; itemprevious; justify; keypress; label;

labelbgcolor; labelborder; labelfontcolor; labelfontinfo; mouseover; next;

previous; printbgcolor; printlabelbgcolor; printfontcolor;

printlabelfontcolor; printvisible; readonly; size; suppresslabel; value;

visible; xforms:input; xforms:secret; xforms:select1

data datagroup; filename; itemnext; itemprevious; mimedata; mimetype

field active; bgcolor; border; focused; fontcolor; fontinfo; format; help;

itemlocation; itemnext; itemprevious; justify; keypress; label; labelbgcolor;

labelborder; labelfontcolor; labelfontinfo; mouseover; next; previous;

printbgcolor; printlabelbgcolor; printfontcolor; printlabelfontcolor;

printvisible; readonly; scrollhoriz; scrollvert; size; suppresslabel; value;

visible; writeonly; xforms:input; xforms:secret; xforms:textarea

help active; itemnext; itemprevious; value

© Copyright IBM Corp. 2003, 2006 367

Item Available Options

label active; bgcolor; border; fontcolor; fontinfo; format; help; image;

imagemode; itemlocation; itemnext; itemprevious; justify; printbgcolor;

printfontcolor; printvisible; size; suppresslabel; value; visible;

xforms:output

line fontcolor; fontinfo; itemlocation; itemnext; itemprevious; printfontcolor;

printvisible; size; thickness; visible

list active; bgcolor; border; focused; fontcolor; fontinfo; format; group; help;

itemlocation; itemnext; itemprevious; keypress; label; labelbgcolor;

labelborder; labelfontcolor; labelfontinfo; mouseover; next; previous;

printbgcolor; printlabelbgcolor; printfontcolor; printlabelfontcolor;

printvisible; readonly; size; suppresslabel; value; visible; xforms:secret;

xforms:select1

pane active; border; bgcolor; first; focused; itemlocation; itemnext; itemprevious;

label; labelbgcolor; lablefontcolor; labelfontinfo; last; next; previous;

printbgcolor; printlabelbgcolor; printlabelfontcolor; printvisible;

suppresslabel; visible; xforms:group; xforms:switch

popup activated; active; bgcolor; border; focused; fontcolor; fontinfo; format;

group; help; itemlocation; itemnext; itemprevious; justify; keypress; label;

mouseover; next; previous; printbgcolor; printfontcolor; printvisible;

readonly; size; value; visible; xforms:secret; xforms:select1

radio active; bgcolor; focused; fontcolor; fontinfo; group; help; itemlocation;

itemnext; itemprevious; keypress; label; labelbgcolor; labelborder;

labelfontcolor; labelfontinfo; mouseover; next; previous; printbgcolor;

printlabelbgcolor; printfontcolor; printlabelfontcolor; printvisible; readonly;

size; suppresslabel; value; visible

radiogroup acclabel; active; bgcolor; border; focused; format; help; itemlocation;

itemnext; itemprevious; label; labelbgcolor; labelborder; labelfontcolor;

labelfontinfo; mouseover; next; previous; printbgcolor; printlabelbgcolor;

printlabelfontcolor; printvisible; readonly; suppresslabel; value; visible;

xforms:select1

signature colorinfo; fullname; layoutinfo; itemnext; itemprevious; mimedata;

signature; signdatagroups; signer; signformat; signitems; signitemrefs;

signgroups; signnamespaces; signoptions; signoptionrefs; signpagerefs

slider acclabel; active; bgcolor; border; focused; fontcolor; fontinfo; format; help;

itemlocation; itemnext; itemprevious; label; labelbgcolor; labelborder;

labelfontcolor; labelfontinfo; next; previous; printbgcolor; printfontcolor;

printlabelcolor; printlabelfontcolor; printvisible; readonly; size;

suppresslabel; value; visible; xforms:range

spacer fontinfo; itemlocation; itemnext; itemprevious; label; size

table active, bgcolor, border, first, focused, itemlocation, itemnext, itemprevious,

last, next, previous, printbgcolor, printvisible, visible, xforms:repeat

toolbar bgcolor; itemnext; itemprevious; mouseover

page globals activated; bgcolor; border; focused; fontcolor; fontinfo; itemfirst; itemlast;

keypress; label; mouseover; next; pagefirst; pageid; pagelast; pagenext;

pageprevious; printbgcolor; printfontcolor; printsettings; saveformat;

transmitformat

form globals activated; bgcolor; dirtyflag; focused; fontcolor; fontinfo; formid; keypress;

printbgcolor; printfontcolor; printing; printsettings; requirements;

saveformat; transmitformat; triggeritem; version; webservices

368

Table of Options

The following table list the details for the available options:

 Option Details

acclabel

 <acclabel>message</acclabel>

Default: n/a

Items: button; check; checkgroup; combobox; field; list; popup; radio;

radiogroup; slider

activated

 <activated>on|maybe|off</activated>

Default: off

Items: action; button; cell; combobox; popup; page global; form

global

active

 <active>on|off</active>

Default: on

Items: action; button; cell; check; checkgroup; combobox; field; help;

label; list; popup; radio; radiogroup; slider

Note: To prevent user input in a field, set the readonly option to on.

bgcolor

 <bgcolor>color</bgcolor>

Default:

v for form — white

v for page — the form bgcolor setting or default

v for button — gray

v for check, field, list, popup, radio — white

v for label, table, and pane — transparent

v all other items — the background color of the page

Items: box; button; check; checkgroup; combobox; field; label; list;

popup; radio; radiogroup; slider; toolbar; page globals; form globals

border

 <border>on|off</border>

Default:

v for label — off

v for all other items — on

Items: box; button; checkgroup; combobox; field; label; list; pane;

popup; radiogroup; slider; table

colorinfo

 <colorinfo>

 <color_name1>color</color_name1>

 ...

 <color_namen>color</color_namen>

 </colorinfo>

Default: none

Items: signature

Quick Reference Tables 369

Option Details

coordinates

 <coordinates>

 <x>X_coordinate</x>

 <y>Y_coordinate</y>

 </coordinates>

Default: none

Items: button

data

 <data>data_item</data>

Default: none

Items: action; button; cell

datagroup

 <datagroup>

 <datagroupref>datagroup_reference</datagroupref>

 <datagroupref>datagroup reference</datagroupref>

 </datagroup>

Default: none

Items: action; button; cell; data

delay

 <delay>

 <type>repeat|once</type>

 <interval>interval</interval>

 </delay>

Default: once with an interval of 0 seconds

Items: action

dirtyflag

 <dirtyflag>on|off</dirtyflag>

Default: none

Items: form globals

excludedmetadata

 <excludedmetadata>

 <servernotarizations>

 <notarization>Notarization</notarization>

 ...

 <notarization>Notarization</notarization>

 </servernotarizations>

 </excludedmetadata>

Default: none

Items: signature

filename

 <filename>file name</filename>

Default: none

Items: data

first

 <first>item reference</first>

Default: none

Items: table

370

Option Details

focused

 <focused>on|off</focused>

Default: off

Items: button; check; checkgroup; combobox; field; list; popup; radio;

radiogroup; slider; page global; form global

focuseditem

 <focuseditem>sid</focuseditem>

Default: n/a

Items: page global

fontcolor

 <fontcolor>color</fontcolor>

Default:

v for check and radio — red

v for all other items, the fontcolor set in the page or form globals, or

black if no preference set

Items: button; check; combobox; field; label; line; list; popup; radio;

slider; page globals; form globals

fontinfo

 <fontinfo>

 <fontname>font name</fontname>

 <size>point size</size>

 <effect>effect1</ae>

 ...

 <effect>effectn</effect>

 </fontinfo>

* effects are optional

Default: the fontinfo set in page or form globals, or Helvetica 8 plain

if no characteristics set

Items: box; button; check; combobox; field; label; line; list; popup;

radio; slider; spacer; page globals; form globals

format

 <format>

 <dataype>data type</datatype>

 <presentation>presentation settings</presentation>

 <constraints>constraint settings</constraints>

 </format>

* presentation and constraint settings are optional

Default:

v for data type — ASCII string

v for presenation settings — depends on data type

v for constraint settings — depends on data type

Items: button; checkgroup; combobox; field; label; list; popup;

radiogroup; slider

Quick Reference Tables 371

Option Details

formid

 <formid>

 <title>string</title>

 <serialnumber>string</serialnumber>

 <version>AA.Bb.cc</version>

 </formid>

* format and check flags are optional, and multiple flags are valid

Default: none

Items: form globals

formid

 <fullname>name</fullname>

Default: none

Items: signature

group

 <group>group name|group reference</group>

Default: none

Items: cell; combobox; list; popup; radio

help

 <help>item reference</help>

Default: none

Items: button; check; checkgroup; combobox; field; label; list; popup;

radio; radiogroup; slider

image

 

Default: none

Items: button; label

imagemode

 <imagemode>clip|resize|scale</imagemode>

Default: resize

Items: button; label

itemfirst

 <itemfirst>item reference</itemfirst>

Default: none

Items: page global

itemlocation

 <itemlocation>

 <x>x-coordinate</x>

 <y>y-coordinate</y>

 </itemlocation>

* this is for absolute positioning. Refer to the itemlocation entry for

examples of relative and offset positioning, or extent sizing.

Default:

v for the first item — the top left corner of the form

v for all other items — vertically below the previously created item

and horizontally at the left margin

Items: box; button; check; checkgroup; combobox; field; label; line;

list; popup; radio; radiogroup; slider; spacer

372

Option Details

itemlast

 <itemlast>item reference</itemlast>

Default: none

Items: page global

itemnext

 <itemnext>item reference</itemnext>

Default: none

Items: action; box; button; cell; check; checkgroup; combobox; data;

field; help; label; line; list; popup; radio; radiogroup; signature; slider;

spacer; toolbar

itemprevious

 <itemprevious>item reference</itemprevious>

Default: none

Items: action; box; button; cell; check; checkgroup; combobox; data;

field; help; label; line; list; popup; radio; radiogroup; signature; slider;

spacer; toolbar

justify

 <justify>left|right|center</justify>

Default:

v for button and popup — center

v for combobox, label, and field — left

Items: button; combobox; field; label; popup

keypress

 <keypress>key pressed</keypress>

Default: none

Items: button; check; combobox; field; list; popup; radio; page

globals; form globals

label

 <label>label text</label>

Default: none

Items: cell; check; checkgroup; combobox; field; list; pane; popup;

radio; radiogroup; slider; spacer; page globals; form globals

labelbgcolor

 <labelbgcolor>color</labelbgcolor>

Default: transparent

Items: check; checkgroup; combobox; field; list; pane; radio;

radiogroup; slider

labelborder

 <labelborder>on|off</labelborder>

Default: off

Items: check; checkgroup; combobox; field; list; radio; radiogroup;

slider

Quick Reference Tables 373

Option Details

labelfontcolor

 <labelfontcolor>color name</labelfontcolor>

Default: the item’s labelfontcolor setting, or the global fontcolor

setting or default

Items: check; checkgroup; combobox; field; list; pane; radio;

radiogroup; slider

labelfontinfo

 <labelfontinfo>

 <fontname>font name</fontname>

 <size>point size</size>

 <effect>effect1</effect>

 ...

 <effect>effectn</effect>

 </labelfontinfo>

* effects are optional

Default: Helvetica, 8, plain

Items: check; checkgroup; combobox; field; list; pane; radio;

radiogroup; slider

last

 <last>item reference</last>

Default: none

Items: table

layoutinfo

 <layoutinfo>

 <pagehashes>

 <pagehash>

 <pageref>page sid1</pageref>

 <hash>pagehash1</hash>

 </pagehash>

 ...

 <pagehash>

 <pageref>page sidn</pageref>

 <hash>pagehashn</hash>

 </pagehash>

 </pagehashes>

 </layoutinfo>

Default: none

Items: signature

linespacing

 <linespacing>offset</linespacing>

Default: 0

Items: button, label, spacer

mimedata

 <mimedata encoding="format">data</mimedata>

Default: none

Items: data, signature

mimetype

 <mimetype>MIME type</mimetype>

Default: none

Items: data

374

Option Details

mouseover

 <mouseover>on|off</mouseover>

Default: off

Items: button; check; combobox; field; list; popup; radio; toolbar;

page global

next

 <next>item reference</next>

Default:

v when the form opens — the first non-toolbar item in the form’s

description that users can modify

v when tabbing to subsequent items — the next item in the form’s

description that users can modify

v when tabbing from the last item — the first item in the form’s

description that users can modify (can be a toolbar item)

Items: button; combobox; check; checkgroup; field; list; popup; radio;

radiogroup; slider; page globals

pagefirst

 <pagefirst>page reference</pagefirst>

Default: none

Items: page global

pageid

 <pageid>

 <serialnumber>string</serialnumber>

 </pageid>

Default: none

Items: form globals

pagelast

 <pagelast>page reference</pagelast>

Default: none

Items: page global

pagenext

 <pagenext>page reference</pagenext>

Default: none

Items: page global

pageprevious

 <pageprevious>page reference</pageprevious>

Default: none

Items: page global

previous

 <previous>item_reference</previous>

Default: the previous item in the form description

Items: button; combobox; check; checkgroup; field; list; pane; popup;

radio; radiogroup; slider; table

Quick Reference Tables 375

Option Details

printbgcolor

 <printbgcolor>color</printbgcolor>

Default:

v for form — white

v for page — the form setting or default

v for items — the specified or default item bgcolor

Items: box; button; check; checkgroup; combobox; field; label; list;

popup; radio; radiogroup; slider; page global; form global

printfontcolor

 <printfontcolor>color</printfontcolor>

Default:

v for button, combobox, field, label, line, list, popup: the fontcolor

setting or default for the item

v for radio, check: red

Items: button; check; combobox; field; label; line; list; popup; radio;

slider

printing

 <printing>on|off</printing>

Default: off

Items: form global

printlabelbgcolor

 <printlabelbgcolor>color</printlabelbgcolor>

Default: the item’s specified or default labelbgcolor

Items: check; checkgroup; combobox; field; list; pane; radio;

radiogroup; slider

printlabelfontcolor

 <printlabelfontcolor>color</printlabelfontcolor>

Default: the item’s specified or default labelfontcolor

Items: check; checkgroup; combobox; field; list; pane; radio;

radiogroup; slider; page globals; form global

376

Option Details

printsettings

 <printsettings>

 <pages>page list</pages>

 <dailog>dialog settings</dialog>

 <border>on|off</border>

 <singlelinefieldsaslines>on|off</singlelinefieldsaslines>

 <scroll barsonfields>on|off</scroll barsonfields>

 <radioswithoutvalues>on|off</radioswithoutvalues>

 <radiosaschecks>on|off</radiosaschecks>

 <pagelayout>layout setting</pagelayout>

 </printsettings>

Default: the page list defaults to include all pages in the form, the

dialog defaults to on, has the following settings:

v orientation — portrait

v copies — 1

v printpages active — on

v printpages choices — all

v border — off

v singlelinefieldsaslines, scroll barsonfields, radioswithoutvalues,

radiosaschecks, pagelayout — as set in form rendering software.

Items: action; button; cell; page globals; form globals

printvisible

 <printvisible>on|off</printvisible>

Default: defaults to the visible setting for the item

Items: box; button; check; checkgroup; combobox; field; label; line;

list; popup; radio; radiogroup; slider

readonly

 <readonly>on|off</readonly>

Default: off

Items: check; checkgroup; combobox; field; list; popup; radio;

radiogroup; slider

requirements

 <requirements>

 <requirement>requirement settings</requirement>

 <detected>off</detected>

 <requirements>

Default: none

Items: form global

rtf

 <rtf>rich text string</rtf>

Default: a default rich text string is created using the value, fontinfo,

fontcolor, justify, and bgcolor options

Items: field

saveformat

 <saveformat>mimetype</saveformat>

Default: none

Items: action; button; cell; form globals; page globals

Quick Reference Tables 377

Option Details

scrollhoriz

 <scrollhoriz>never|always|wordwrap</scrollhoriz>

Default: never

Items: field

scrollvert

 <scrollvert>never|always|fixed</scrollvert>

Default: never

Items: field

signature

 <signature>string</signature>

Default: none

Items: button; signature

signatureimage

 <signatureimage>data item reference</signatureimage>

Default: none

Items: button

signdatagroups

 <signdatagroups>

 <filter>keep|omit</filter>

 <datagroupref>datagroup reference</datagroupref>

 <datagroupref>datagroup reference</datagroupref>

 </signdatagroups>

Default: keep

Items: button; signature

signdetails

 <signdetails>

 <dialogcolumns>

 <property>attribute1</property>

 <property>attributen</property>

 </dialogcolumns>

 <filteridentity>

 <filter>

 <tag>attribute1</tag>

 <value>value1</value>

 </filter>

 <filter>

 <tag>attributen</tag>

 <value>valuen</value>

 </filter>

 </filteridentity>

 </signdetails>

Default: all certificates are available, and the owner’s common name

and e-mail address is shown.

Items: button; signature

signer

 <signer>string</signer>

Default: none

Items: button; signature

378

Option Details

signformat

 <signformat>

 MIME type; engine="signature engine"; verifier;

 cval; parameters

</signformat>

Default: XFDL MIME type; Generic RSA signature engine; Basic

verifier; do not sign current values

Items: button; signature

signgroups

 <signgroups>

 <filter>keep|omit</filter>

 <groupref>group reference1</groupref>

 ...

 <groupref>group referencen</groupref>

 </signgroups>

Default: keep

Items: button; signature

signinstance

 <signinstance>

 <filter>instance filter</filter>

 <dataref1>

 <model>model ID</model>

 <ref>XPath</ref>

 </dataref>

 ...

 <datarefn>

 ...

 </dataref>

 </signinstance>

Default: keep

Items: button; signature

signitems

 <signitems>

 <filter>keep|omit</filter>

 <itemtype>item type1</itemtype>

 ...

 <itemtype>item typen</itemtype>

 </signitems>

Default: keep

Items: button; signature

signitemrefs

 <signitemrefs>

 <filter>keep|omit</filter>

 <itemref>item reference1</itemref>

 ...

 <itemref>item referencen</itemref>

 </signitemrefs>

Default: keep

Items: button; signature

Quick Reference Tables 379

Option Details

signnamespaces

 <signnamespaces>

 <filter>keep|omit</filter>

 <uri>namespace URI1</uri>

 ...

 <uri>namespace URIn</uri>

 </signnamespaces>

Default: keep

Items: button; signature

signoptionrefs

 <signoptionrefs>

 <filter>keep|omit</filter>

 <optionref>option reference1</optionref>

 ...

 <optionref>option referencen</optionref>

 </signoptionrefs>

Default: keep

Items: button; signature

signoptions

 <signoptions>

 <filter>keep|omit</filter>

 <optiontype>option type1</optiontype>

 ...

 <optiontype>option typen</optiontype>

 </signoptions>

Default: keep

Items: button; signature

signpagerefs

 <signpagerefs>

 <filter>keep|omit</filter>

 <pageref>page reference1</pageref>

 ...

 <pageref>page referencen</pageref>

 </signpagerefs>

Default: keep

Items: button; signature

size

 <size>

 <width>width</width>

 <height>height</height>

 </size>

* the unit of measurement is characters.

Default: see “Default Sizes” on page 393

Items: box; button; check; combobox; field; label; line; list; popup;

radio; slider; spacer

suppresslabel

 <suppresslabel>on|off</suppresslabel>

Default: off

Items: check; checkgroup; combobox; field; label; list; pane; radio;

radiogroup; slider

380

Option Details

texttype

 <texttype>text/plain|text/rtf<texttype>

Default: text/plain

Items: field

thickness

 <thickness>thickness</thickness>

Default: 1 pixel

Items: line

transmitdatagroups

 <transmitdatagroups>

 <filter>keep|omit</filter>

 <datagroupref>datagroup identifier1</datagroupref>

 ...

 <datagroupref>datagroup identifiern</datagroupref>

 </transmitdatagroups>

Default: keep

Items: action; button; cell

transmitformat

 <transmitformat>MIME type</transmitformat>

Default: application/vnd.xfdl

Items: action; button; cell; form globals; page globals

transmitgroups

 <transmitgroups>

 <filter>keep|omit</filter>

 <groupref>group identifier1</groupref>

 ...

 <groupref>group identifiern</groupref>

 </transmitgroups>

Default: keep

Items: action; button; cell

transmititemrefs

 <transmititemrefs>

 <filter>keep|omit</filter>

 <itemref>item identifier1</itemref>

 ...

 <itemref>item identifiern</itemref>

 </transmititemrefs>

Default: keep

Items: action; button; cell

transmititems

 <transmititems>

 <filter>keep|omit</filter>

 <itemtype>item type1</itemtype>

 ...

 <itemtype>item typen</itemtype>

 </transmititems>

Default: keep

Items: action; button; cell

Quick Reference Tables 381

Option Details

transmitnamespaces

 <transmitnamespaces>

 <filter>keep|omit</filter>

 <uri>namespace URI1</uri>

 ...

 <uri>namespace URIn</uri>

 </transmitnamespaces>

Default: keep

Items: action; button; cell

transmitoptionrefs

 <transmitoptionrefs>

 <filter>keep|omit</filter>

 <optionref>option identifier1</optionref>

 ...

 <optionref>option identifiern</optionref>

 </transmitoptionrefs>

Default: keep

Items: action; button; cell

transmitoptions

 <transmitoptions>

 <filter>keep|omit</filter>

 <optiontype>option type1</optiontype>

 ...

 <optiontype>option typen</optiontype>

 </transmitoptions>

Default: keep

Items: action; button; cell

transmitpagerefs

 <transmitpagerefs>

 <filter>keep|omit</filter>

 <pageref>page identifier1</pageref>

 ...

 <pageref>page identifiern</pageref>

 </transmitpagerefs>

Default: keep

Items: action; button; cell

triggeritem

 <triggeritem>item reference</triggeritem>

Default: the item reference of the item that triggered the submit or

done

Items: form globals

type

 <type>action type</type>

Default: select

Items: action; button; cell

url

 <url>URL|item reference</url>

Default: none

Items: action; button; cell

382

Option Details

value

 <value>setting</value>

Default: depends on item

Items: button; cell; check; checkgroup; combobox; field; help; label;

list; popup; radio; radiogroup; slider

visible

 <visible>on|off</visible>

Default: on

Items: box; button; check; checkgroup; combobox; field; label; line;

list; popup; radio; radiogroup; slider

webservices

 <webservices>

 <wsdl:name>name of webservice</wsdl>

 </webservices>

Default: none

Items: form global

writeonly

 <writeonly>on|off</writeonly>

Default: off

Items: field

xformsmodels

 <xformsmodels>

 <xforms:model id="name1">

 <xforms:instance id="name1">

 instance1

 </xforms:instance>

 ...

 <xforms:instance id="namen">

 instancen

 </xforms:instance>

 </xforms:model>

 ...

 <xforms:model id="namen">

 ...

 </xforms:model>

 <xforms:bind property setting1>

 </xforms:bind>

 ...

 <xforms:bind property settingn>

 </xforms:bind>

 </xformsmodels>

Default: none

Items: form global

xforms:group

 <xforms:group model="model ID" ref="XPath">

 ...items in group...

 </xforms:group>

Default: none

Items: pane

Quick Reference Tables 383

Option Details

xforms:input

 <xforms:input model="model ID" ref="XPath">

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:input>

Default: none

Items: combobox; check; field

xforms:output

 <xforms:output model="model ID" ref="XPath"

 mediatype="MIME type">

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:output>

Default: none

Items: label

xforms:range

 <xforms:range single node binding start="start"

 end="end" step="step">

 <xforms:label>label text</xforms:label>

 </xforms:range>

Default: none

Items: slider

xforms:repeat

 <xforms:repeat id="name" model="model ID"

 nodeset="XPath" startindex="index">

 ...XFDL items...

 </xforms:repeat>

Default: none

Items: field

xforms:secret

 <xforms:secret model="model ID" ref="XPath">

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:secret>

Default: none

Items: field

384

Option Details

xforms:select

 <xforms:select model="model ID"

 ref="XPath to element" appearance="full">

 <xforms:label>label text</xforms:label>

 <xforms:item1>

 <xforms:label>label for choice</xforms:label>

 <xforms:value>value for choice</xforms:value>

 </xforms:item1>

 ...

 <xforms:itemn>

 ...

 </xforms:itemn>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:select>

OR

 <xforms:select model="model ID"

 ref="XPath to element" appearance="full">

 <xforms:label>label text</xforms:label>

 <xforms:itemset nodeset="XPath to choices">

 <xforms:label ref="XPath to label text"/>

 <xforms:value ref="."></xforms:value>

 </xforms:itemset>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:select>

Default: none

Items: checkgroup

Quick Reference Tables 385

Option Details

xforms:select1

 <xforms:select1 model="model ID"

 ref="XPath to element" appearance="type"

 selection="input">

 <xforms:label>label text</xforms:label>

 <xforms:item1>

 <xforms:label>label for choice</xforms:label>

 <xforms:value>value for choice</xforms:value>

 </xforms:item1>

 ...

 <xforms:itemn>

 ...

 <xforms:itemn>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:select>

OR

 <xforms:select1 model="model ID"

 ref="XPath to element" appearance="type"

 setting="input">

 <xforms:label>label text</xforms:label>

 <xforms:itemset nodeset="XPath to choices">

 <xforms:label ref="XPath to label text"/>

 <xforms:value ref="."></xforms:value>

 </xforms:itemset>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:select>

Default: none

Items: checkgroup, combobox, list, popup, radiogroup

xforms:submit

 <xforms:submit submission="ID">

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:submit>

Default: none

Items: action; button

xforms:switch

 <switch id="name" ref="XPath">

 <xforms:case1

id="name" selection="boolean"

 ...XFDL items...

 </xforms:case1>

 ...

 <xforms:casen

id="name" selection="boolean"

 ...XFDL items...

 </xforms:casen>

 </switch>

Default: none

Items: pane

386

Option Details

xforms:textarea

 <xforms:textarea model="model ID" ref="XPath">

 <xforms:label>label text</xforms:label>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:textarea>

Default: none

Items: field

xforms:trigger

 <xforms:trigger model="model ID" ref="XPath">

 <xforms:label>label text</xforms:label>

 XForms Action

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:trigger>

Default: none

Items: action; button

xforms:upload

 <xforms:upload model="model ID" ref="upload XPath"

 mediatype="MIME type">

 <xforms:label>label text</xforms:label>

 <xforms:mediatype ref="mediatype XPath"/>

 <xforms:filename ref="filename XPath"/>

 Alert Setting

 Hint Setting

 Help Setting

 </xforms:upload>

Default: none

Items: button

Cross Reference Table for Items and Options

ac
ti

o
n

b
o

x

b
u

tt
o

n

ce
ll

ch
ec

k

ch
ec

k
g

ro
u

p

co
m

b
o

b
o

x

d
at

a

fi
el

d

h
el

p

la
b

el

li
n

e

li
st

p
an

e

p
o

p
u

p

ra
d

io

ra
d

io
g

ro
u

p

si
g

n
at

u
re

sl
id

er

sp
ac

er

ta
b

le

to
o

lb
ar

p
ag

e
g

lo
b

al

fo
rm

g
lo

b
al

(g
lo

b
al

p
ag

e)

acclabel v v v v v v v v v v

activated v v v v v v v

active v v v v v v v v v v v v v v v v

bgcolor v v v v v v v v v v v v v v v v v

border v v v v v v v v v v v v v v

colorinfo v

coordinates v

data v v v

Quick Reference Tables 387

ac
ti

o
n

b
o

x

b
u

tt
o

n

ce
ll

ch
ec

k

ch
ec

k
g

ro
u

p

co
m

b
o

b
o

x

d
at

a

fi
el

d

h
el

p

la
b

el

li
n

e

li
st

p
an

e

p
o

p
u

p

ra
d

io

ra
d

io
g

ro
u

p

si
g

n
at

u
re

sl
id

er

sp
ac

er

ta
b

le

to
o

lb
ar

p
ag

e
g

lo
b

al

fo
rm

g
lo

b
al

(g
lo

b
al

p
ag

e)

datagroup v v v v

delay v

dirtyflag v

excluded

metadata

v

filename v

first v v

focused v v v v v v v v v v v v v v

focuseditem v

fontcolor v v v v v v v v v v v v

fontinfo v v v v v v v v v v v v v v

format v v v v v v v v v

formid v

fullname v

group v v v v v

help v v v v v v v v v v v

image v v

imagemode v v

itemfirst v

itemlast v

itemlocation v v v v v v v v v v v v v v v v

itemnext v

itemprevious v

justify v v v v v

keypress v v v v v v v v v

label v v v v v v v v v v v v v v

labelbgcolor v v v v v v v v v

labelborder v v v v v v v v

labelfontcolor v v v v v v v v v

labelfontinfo v v v v v v v v v

last v v

layoutinfo v

linespacing v v v

mimedata v v

mimetype v

mouseover v v v
2

v v v v v v
2

v v

388

ac
ti

o
n

b
o

x

b
u

tt
o

n

ce
ll

ch
ec

k

ch
ec

k
g

ro
u

p

co
m

b
o

b
o

x

d
at

a

fi
el

d

h
el

p

la
b

el

li
n

e

li
st

p
an

e

p
o

p
u

p

ra
d

io

ra
d

io
g

ro
u

p

si
g

n
at

u
re

sl
id

er

sp
ac

er

ta
b

le

to
o

lb
ar

p
ag

e
g

lo
b

al

fo
rm

g
lo

b
al

(g
lo

b
al

p
ag

e)

next v v v v v v v v v v v v v

pagefirst v

pageid v

pagelast v

pagenext v

pageprevious v

previous v v v v v v v v v v v v v

printbgcolor v v v v v v v v v v v v v v v v

printfontcolor v v v v v v v v v v v v

printing v

printlabel

bgcolor

v v v v v v v v v

printlabel

fontcolor

v v v v v v v v v

printsettings v v v v v

printvisible v v v v v v v v v v v v v v v

readonly v v v v v v v v v

requirements v

rtf v

saveformat v v v v v

scrollhoriz v

scrollvert v

signature v v

signature

image

v

sign

datagroups

v v

signdetails v v

signer v v

signformat v v

signgroups v v

signinstance v v

signitemrefs v v

signitems v v

signname

spaces

v v

signoptionrefs v v

Quick Reference Tables 389

ac
ti

o
n

b
o

x

b
u

tt
o

n

ce
ll

ch
ec

k

ch
ec

k
g

ro
u

p

co
m

b
o

b
o

x

d
at

a

fi
el

d

h
el

p

la
b

el

li
n

e

li
st

p
an

e

p
o

p
u

p

ra
d

io

ra
d

io
g

ro
u

p

si
g

n
at

u
re

sl
id

er

sp
ac

er

ta
b

le

to
o

lb
ar

p
ag

e
g

lo
b

al

fo
rm

g
lo

b
al

(g
lo

b
al

p
ag

e)

signoptions v v

signpagerefs v v

size v v v v v v v v v v v v

suppresslabel v v v v v v v v v v

texttype v

thickness v

transmit

datagroups

v v v

transmit

format

v v v v v

transmit

groups

v v v

transmit

itemrefs

v v v

transmititems v v v

transmit

namespaces

v v v

transmit

optionrefs

v v v

transmit

options

v v v

transmit

pagerefs

v v v

triggeritem v

type v v v

url v v v

value v v v v v v v v v v v v v

visible v v v v v v v v v v v v v v v

webservices v

writeonly v

xformsmodels v

xforms:group v

xforms:input v v v

xforms:output v
1

v

xforms:range v

xforms:repeat v

xforms:secret v

xforms:select v v

390

ac
ti

o
n

b
o

x

b
u

tt
o

n

ce
ll

ch
ec

k

ch
ec

k
g

ro
u

p

co
m

b
o

b
o

x

d
at

a

fi
el

d

h
el

p

la
b

el

li
n

e

li
st

p
an

e

p
o

p
u

p

ra
d

io

ra
d

io
g

ro
u

p

si
g

n
at

u
re

sl
id

er

sp
ac

er

ta
b

le

to
o

lb
ar

p
ag

e
g

lo
b

al

fo
rm

g
lo

b
al

(g
lo

b
al

p
ag

e)

xforms: select1 v v v v v

xforms:submit v v

xforms:switch v

xforms:

textarea

v

xforms:trigger v v

xforms:upload v

1xforms:output cannot be the immediate child of a button; however, it can be a

descendent through the xforms:trigger, xforms:submit, or xforms:upload options.

2For checkgroup and radiogroup, the mouseover option is active for each item in the

group, not for the group as a whole. This means that you can use the

<xforms:extension> element to make changes to individual items in the group. For

more information, see “checkgroup” on page 58 and “radiogroup” on page 63.

Quick Reference Tables 391

392

Default Sizes

The following table shows the default basic item and bounding box sizes:

 Item Default Item Size Bounding Box Size

box width: 1 character

height: 1 character

Smaller than 1 not allowed in either

dimension

Same as default item size

button width: width of text

height: height of text (text is the value

option)

or size of embedded image if it exists

Same as default item size

check width: 1 character

height: 1 character

width: larger of 1 character or

label width

height: label height plus 1

character

checkgroup width: width checkgroup contents plus 6

pixels (for default locations, this is the

width of the widest check label, plus the

width of the check box, plus 6 pixels)

height: the height of the checkgroup

contents plus 6 pixels (for default

locations, this is 1 character for each

check in the group, plus 5 pixels

between each check, plus 6 pixels)

Same as default item size

combobox width: larger of label width and widest

cell

3

height: 1 character

Same as default item size

2

field width: 30 characters

height: 1 character

width: larger of item width and

label width

2

height: height of item plus height

of label

2

label width: 1 character if label empty,

otherwise label width

height: 1 character if label empty,

otherwise label height

or size of embedded image if it exists

Same as default item size

line width: 30 character

height: 1 pixel

One dimension must be 0

1

Same as default item size

© Copyright IBM Corp. 2003, 2006 393

Item Default Item Size Bounding Box Size

list width: larger of label width and widest

cell

3

height: number of cells in list

width: larger of item width and

widest cell

2

height: height of item plus height

of label

pane width: the width of the pane contents,

plus 6 pixels

height: the height of the pane contents,

plus 6 pixels

Same as default item size

popup width: larger of label width and widest

cell

3

height: 1 character

Same as default item size

2

radio width: 1 character

height: 1 character

width: larger of 1 character or

label width

height: label height plus 1

character

radiogroup width: width radiogroup contents plus 6

pixels (for default locations, this is the

width of the widest radio label, plus the

width of the radio button, plus 6 pixels)

height: the height of the radiogroup

contents plus 6 pixels (for default

locations, this is 1 character for each

radio in the group, plus 5 pixels between

each radio, plus 6 pixels)

Same as default item size

slider width: 20 characters

height: 3 characters

spacer width: 1 character if label empty,

otherwise label width

height: 1 character if label empty,

otherwise label height

(label is invisible)

Same as default item size

table width: the width of the table contents

plus 6 pixels

height: the height of the table contents,

plus 1 pixel for each relevant row, plus 6

pixels

Same as default item size

Usage Details

1. For line items, either height or width must be set to zero. The thickness option

specifies the thickness (in pixels) of the line in the dimension containing zero

(0).

2. This includes a scroll bar if one appears.

3. The cell’s width comes from the cell’s value option setting.

394

Order of Precedence of Filters

signature and transmission filters are applied with an order of precedence. This

prevents potential filter conflicts, in which one filter might stipulate that you omit

and item while another filter might stipulate that you keep an item.

When using signatures, note that the mimedata option is always omitted in the

following scenarios, regardless of the signature filters in use:

v The mimedata option in a signature item is always omitted from the signature that

item represents.

v The mimedata option in a data item that stores a signature image (see the

signatureimage option) is always omitted from the signature that image

represents.

Filters are applied in the following order:

Filter

Behavior If keep

flag is used

Behavior If omit flag

is used Usage Details

1. Filter namespaces,

based on

transmitnamespaces or

signnamespaces

setting.

Keeps only elements

and attributes in the

namespaces

indicated; throws

others out.

Omits only elements

and attributes in the

namespaces

indicated; throws

them out.

An element is kept if

any of its children

are kept, even if it is

in the wrong

namespace.

2. Filter types of

items, based on

transmititems or

signitems setting.

Keeps only those

types indicated;

throws others out,

including their

options.

Omits only those

types indicated;

throws them out,

including their

options.

3. Filter types of

options based on

transmitoptions and

signoptions setting.

In the items that

remain, keeps all

option types

indicated; throws

others out.

In the items that

remain, omits all

option types

indicated.

4. Filter specific

pages based on

transmitpagerefs or

signpagerefs settings.

Keeps the pages

whose tags are

specified. Settings in

transmitnamespaces,

transmititems, and

transmitoptions are

respected.

Omits the pages

whose tags are

specified. Overrides

settings in

transmitnamespaces,

transmititems, and

transmitoptions.

The page does not

entirely disappear

from the source code;

the page tags still

exist.

5. Filter groups of

items based on

transmitdatagroups

and transmitgroups, or

signdatagroups and

signgroups settings.

Keeps those items

whose tags are

specified, even if the

items are of a type

that should not be

kept according to a

transmitnamespaces or

transmititems setting.

Omits those items

whose tags are

specified, even if the

items are of a type

that should be kept

according to a

transmitnamespaces or

transmititems setting.

This option’s settings

override those in

transmitpagerefs and

signpagerefs.

© Copyright IBM Corp. 2003, 2006 395

Filter

Behavior If keep

flag is used

Behavior If omit flag

is used Usage Details

6. Filter specific items

based on

transmititemrefs or

signitemrefs settings.

Keeps the items

whose tags are

specified; overrides

previous settings if

necessary. Settings in

transmitoptions and

signoptions are

respected.

Omits the items

specified; overrides

the previous settings

if necessary.

This option’s settings

override those in

transmitnamespaces,

transmititems,

transmitgroups,

transmitpagerefs and

transmitdatagroups or

signitems, signgroups,

signpagerefs and

signdatagroups.

7. Filter specific

options based on

transmitoptionrefs and

signoptionrefs settings.

Regardless of all

other settings above,

keeps the specific

option instances

referred to; does not

keep any other

options; in the case

of items that will be

omitted except for a

single option, the

item will be kept,

with its original sid,

and only the one

option.

Omits the options

specified; overrides

the previous settings

if necessary.

This option’s settings

override all other

filters, including

transmitnamespaces,

transmititems,

transmitdatagroups,

transmitgroups,

transmititemrefs,

transmitpagerefs,

transmitoptions or

signitems,

signdatagroups,

signgroups,

signitemrefs,

signpagerefs, and

signoptions.

8. Filter based on

signinstance settings.

Regardless of all

other settings, keeps

the data elements

indicated.

Regardless of all

other settings, omits

the data elements

indicated.

This option’s settings

override all other

filters.

Example

This example uses the transmit-family of options. The order of precedence would

be the same for the sign-family of options.

 <page sid="Page1">

 <global sid="global"></global>

 <button sid="submitButton">

 <value>Filter Submission</value>

 <type>done</type>

 <url>http://www.server.dmn/cgi-bin/processForm</url>

 <transmitnamespaces>

 <filter>omit</filter>

 <uri>http://www.ibm.com/xmlns/prod/XFDL/Custom</uri>

 </transmitnamespaces>

 <transmititems>

 <filter>omit</filter>

 <itemtype>data</itemtype>

 </transmititems>

 <transmitdatagroups>

 <filter>keep</filter>

 <datagroupref>enclosures</datagroupref>

 <datagroupref>related</datagroupref>

 </transmitdatagroups>

 <transmititemrefs>

 <filter>omit</filter>

 <itemref>Page1.data2</itemref>

 </transmititemrefs>

396

<transmitoptions>

 <filter>omit</filter>

 <optiontype>filename</optiontype>

 </transmitoptions>

 </button>

 <button sid="encloseButton">

 

 <type>enclose</type>

 <datagroup>

 <datagroupref>enclosures</datagroupref>

 <datagroupref>related</datagroupref>

 </datagroup>

 </button>

 <data sid="data1">

 <custom:id>324</custom:id>

 <datagroup>

 <datagroupref>enclosures</datagroupref>

 </datagroup>

 <filename>jobdescr.frm</filename>

 <mimedata encoding="base64-gzip">dfksdfsdfhsdhs</mimedata>

 </data>

 <data sid="data2">

 <datagroup>

 <datagroupref>related</datagroupref>

 </datagroup>

 <filename>resume.doc</filename>

 <mimedata encoding="base64-gzip">dfhsjdfsjhfjs</mimedata>

 </data>

 <data sid="encloseImageData">

 <filename>c:\images\enclose.jpg</filename>

 <mimedata encoding="base64-gzip">

 aswWWW8MjfbyhsUELKKEFir8dfdUUUmnskshie3mkjkkeiIIUIUOl

 fRlgdsoepgejgjj1sd/3/6nnII/fjkess9Wfgjgkggkllgakkk2kl

 </mimedata>

 </data>

 </page>

As a result of the filtering, the following would happen (see result form

description below):

v The custom ″id″ option would be stripped from the ″data1″ item, as a result of

the transmitnamespaces setting.

v The ″encloseImageData″ data item would be stripped from the form, as a result

of the transmititems setting.

v The ″data1″ data item would remain in the form, as a result of the

transmitdatagroups setting, but would not contain the custom ″id″ option.

v The ″data2″ data item would be stripped from the form, as a result of the

transmititemrefs setting.

v The filename option would be stripped from ″data1″, as a result of the

transmitoptions setting.

The form description that would be received once filtering was applied would look

like this:

 <page sid="page1">

 <global sid="global"></global>

 <button sid="submitButton">

 <value>Filter Submission</value>

 <type>done</type>

 <url>http://www.server.dmn/cgi-bin/processForm</url>

 <transmitnamespaces>

 <filter>omit</filter>

 <uri>http://www.ibm.com/xmlns/prod/XFDL/Custom</uri>

 </transmitnamespaces>

Order of Precedence of Filters 397

<transmititems>

 <filter>omit</filter>

 <itemtype>data</itemtype>

 </transmititems>

 <transmitdatagroups>

 <filter>keep</filter>

 <datagroupref>enclosures</datagroupref>

 <datagroupref>related</datagroupref>

 </transmitdatagroups>

 <transmititemrefs>

 <filter>omit</filter>

 <itemref>page1.data2</itemref>

 </transmititemrefs>

 <transmitoptions>

 <filter>omit</filter>

 <optiontype>filename</optiontype>

 </transmitoptions>

 </button>

 <button sid="encloseButton">

 

 <type>enclose</type>

 <datagroup>

 <datagroupref>enclosures</datagroupref>

 <datagroupref>related</datagroupref>

 </datagroup>

 </button>

 <data sid="data1">

 <datagroup>

 <datagroupref>enclosures</datagroupref>

 </datagroup>

 <mimedata encoding="base64-gzip">dfksdfsdfhsdhs</mimedata>

 </data>

 </page>

398

Color Table

You can specify a color using either the color’s name, its RGB triplet, or the hex

value for the color. Each value in the RGB triplet is a number from 0 to 255

inclusive, representing the amount of primary color (red, green or blue) required to

produce the secondary color. Zero represents the least amount of a color and 255

represents the greatest amount of a color.

For example, the statement:

 <bgcolor>255,255,255</bgcolor>

is equivalent to:

 <bgcolor>white</bgcolor>

The following pages list the names and RGB triplet values for the available colors.

Note: The transparent color has no RGB equivalent.

 RGB Color Name

240 248 255 alice blue

240 248 255 aliceblue

250 235 215 antique white

250 235 215 antiquewhite

255 239 219 antiquewhite1

238 223 204 antiquewhite2

205 192 176 antiquewhite3

139 131 120 antiquewhite4

127 255 212 aquamarine

127 255 212 aquamarine1

118 238 198 aquamarine2

102 205 170 aquamarine3

69 139 116 aquamarine4

240 255 255 azure

240 255 255 azure1

224 238 238 azure2

193 205 205 azure3

131 139 139 azure4

245 245 220 beige

255 228 196 bisque

255 228 196 bisque1

238 213 183 bisque2

205 183 158 bisque3

139 125 107 bisque4

0 0 0 black

© Copyright IBM Corp. 2003, 2006 399

RGB Color Name

255 235 205 blanched almond

255 235 205 blanchedalmond

0 0 255 blue

138 43 226 blue violet

0 0 255 blue1

0 0 238 blue2

0 0 205 blue3

0 0 139 blue4

138 43 226 blueviolet

165 42 42 brown

255 64 64 brown1

238 59 59 brown2

205 51 51 brown3

139 35 35 brown4

222 184 135 burlywood

255 211 155 burlywood1

238 197 145 burlywood2

205 170 125 burlywood3

139 115 85 burlywood4

95 158 160 cadet blue

95 158 160 cadetblue

152 245 255 cadetblue1

142 229 238 cadetblue2

122 197 205 cadetblue3

83 134 139 cadetblue4

127 255 0 chartreuse

127 255 0 chartreuse1

118 238 0 chartreuse2

102 205 0 chartreuse3

69 139 0 chartreuse4

210 105 30 chocolate

255 127 36 chocolate1

238 118 33 chocolate2

205 102 29 chocolate3

139 69 19 chocolate4

255 127 80 coral

255 114 86 coral1

238 106 80 coral2

205 91 69 coral3

139 62 47 coral4

100 149 237 cornflower blue

400

RGB Color Name

100 149 237 cornflowerblue

255 248 220 cornsilk

255 248 220 cornsilk1

238 232 205 cornsilk2

205 200 177 cornsilk3

139 136 120 cornsilk4

0 255 255 cyan

0 255 255 cyan1

0 238 238 cyan2

0 205 205 cyan3

0 139 139 cyan4

184 134 11 dark goldenrod

0 100 0 dark green

189 183 107 dark khaki

85 107 47 dark olive green

255 140 0 dark orange

153 50 204 dark orchid

233 150 122 dark salmon

143 188 143 dark sea green

72 61 139 dark slate blue

47 79 79 dark slate gray

47 79 79 dark slate grey

0 206 209 dark turquoise

148 0 211 dark violet

184 134 11 darkgoldenrod

255 185 15 darkgoldenrod1

238 173 14 darkgoldenrod2

205 149 12 darkgoldenrod3

139 101 8 darkgoldenrod4

0 100 0 darkgreen

189 183 107 darkkhaki

85 107 47 darkolivegreen

202 255 112 darkolivegreen1

188 238 104 darkolivegreen2

162 205 90 darkolivegreen3

110 139 61 darkolivegreen4

255 140 0 darkorange

255 127 0 darkorange1

238 118 0 darkorange2

205 102 0 darkorange3

139 69 0 darkorange4

Color Table 401

RGB Color Name

153 50 204 darkorchid

191 62 255 darkorchid1

178 58 238 darkorchid2

154 50 205 darkorchid3

104 34 139 darkorchid4

233 150 122 darksalmon

143 188 143 darkseagreen

193 255 193 darkseagreen1

180 238 180 darkseagreen2

155 205 155 darkseagreen3

105 139 105 darkseagreen4

72 61 139 darkslateblue

47 79 79 darkslategray

151 255 255 darkslategray1

141 238 238 darkslategray2

121 205 205 darkslategray3

82 139 139 darkslategray4

47 79 79 darkslategrey

0 206 209 darkturquoise

148 0 211 darkviolet

255 20 147 deep pink

0 191 255 deep sky blue

255 20 147 deeppink

255 20 147 deeppink1

238 18 137 deeppink2

205 16 118 deeppink3

139 10 80 deeppink4

0 191 255 deepskyblue

0 191 255 deepskyblue1

0 178 238 deepskyblue2

0 154 205 deepskyblue3

0 104 139 deepskyblue4

105 105 105 dim gray

105 105 105 dim grey

105 105 105 dimgray

105 105 105 dimgrey

30 144 255 dodger blue

30 144 255 dodgerblue

30 144 255 dodgerblue1

28 134 238 dodgerblue2

24 116 205 dodgerblue3

402

RGB Color Name

16 78 139 dodgerblue4

178 34 34 firebrick

255 48 48 firebrick1

238 44 44 firebrick2

205 38 38 firebrick3

139 26 26 firebrick4

255 250 240 floral white

255 250 240 floralwhite

34 139 34 forest green

34 139 34 forestgreen

220 220 220 gainsboro

248 248 255 ghost white

248 248 255 ghostwhite

255 215 0 gold

255 215 0 gold1

238 201 0 gold2

205 173 0 gold3

139 117 0 gold4

218 165 32 goldenrod

255 193 37 goldenrod1

238 180 34 goldenrod2

205 155 29 goldenrod3

139 105 20 goldenrod4

192 192 192 gray

0 0 0 gray0

3 3 3 gray1

26 26 6 gray10

255 255 255 gray100

28 28 28 gray11

31 31 31 gray12

33 33 33 gray13

36 36 36 gray14

38 38 38 gray15

41 41 41 gray16

43 43 43 gray17

46 46 46 gray18

48 48 48 gray19

5 5 5 gray2

51 51 51 gray20

54 54 54 gray21

56 56 56 gray22

Color Table 403

RGB Color Name

59 59 59 gray23

61 61 61 gray24

64 64 64 gray25

66 66 66 gray26

69 69 69 gray27

71 71 71 gray28

74 74 74 gray29

8 8 8 gray3

77 77 77 gray30

79 79 79 gray31

82 82 82 gray32

84 84 84 gray33

87 87 87 gray34

89 89 89 gray35

92 92 92 gray36

94 94 94 gray37

97 97 97 gray38

99 99 99 gray39

10 10 10 gray4

102 102 102 gray40

105 105 105 gray41

107 107 107 gray42

110 110 110 gray43

112 112 112 gray44

115 115 115 gray45

117 117 117 gray46

120 120 120 gray47

122 122 122 gray48

125 125 125 gray49

13 13 13 gray5

127 127 127 gray50

130 130 130 gray51

133 133 133 gray52

135 135 135 gray53

138 138 138 gray54

140 140 140 gray55

143 143 143 gray56

145 145 145 gray57

148 148 148 gray58

150 150 150 gray59

15 15 15 gray6

404

RGB Color Name

153 153 153 gray60

156 156 156 gray61

158 158 158 gray62

161 161 161 gray63

163 163 163 gray64

166 166 166 gray65

168 168 168 gray66

171 171 171 gray67

173 173 173 gray68

176 176 176 gray69

18 18 18 gray7

179 179 179 gray70

181 181 181 gray71

184 184 184 gray72

186 186 186 gray73

189 189 189 gray74

191 191 191 gray75

194 194 194 gray76

196 196 196 gray77

199 199 199 gray78

201 201 201 gray79

20 20 20 gray8

204 204 204 gray80

207 207 207 gray81

209 209 209 gray82

212 212 212 gray83

214 214 214 gray84

217 217 217 gray85

219 219 219 gray86

222 222 222 gray87

224 224 224 gray88

227 227 227 gray89

23 23 23 gray9

229 229 229 gray90

232 232 232 gray91

235 235 235 gray92

237 237 237 gray93

240 240 240 gray94

242 242 242 gray95

245 245 245 gray96

247 247 247 gray97

Color Table 405

RGB Color Name

250 250 250 gray98

252 252 252 gray99

0 255 0 green

173 255 47 green yellow

0 255 0 green1

0 238 0 green2

0 205 0 green3

0 139 0 green4

173 255 47 greenyellow

192 192 192 grey

0 0 0 grey0

3 3 3 grey1

26 26 26 grey10

255 255 255 grey100

28 28 28 grey11

31 31 31 grey12

33 33 33 grey13

36 36 36 grey14

38 38 38 grey15

41 41 41 grey16

43 43 43 grey17

46 46 46 grey18

48 48 48 grey19

5 5 5 grey2

51 51 51 grey20

54 54 54 grey21

56 56 56 grey22

59 59 59 grey23

61 61 61 grey24

64 64 64 grey25

66 66 66 grey26

69 69 69 grey27

71 71 71 grey28

74 74 74 grey29

8 8 8 grey3

77 77 77 grey30

79 79 79 grey31

82 82 82 grey32

84 84 84 grey33

87 87 87 grey34

89 89 89 grey35

406

RGB Color Name

92 92 92 grey36

94 94 94 grey37

97 97 97 grey38

99 99 99 grey39

10 10 10 grey4

102 102 102 grey40

105 105 105 grey41

107 107 107 grey42

110 110 110 grey43

112 112 112 grey44

115 115 115 grey45

117 117 117 grey46

120 120 120 grey47

122 122 122 grey48

125 125 125 grey49

13 13 13 grey5

127 127 127 grey50

130 130 130 grey51

133 133 133 grey52

135 135 135 grey53

138 138 138 grey54

140 140 140 grey55

143 143 143 grey56

145 145 145 grey57

148 148 148 grey58

150 150 150 grey59

15 15 15 grey6

153 153 153 grey60

156 156 156 grey61

158 158 158 grey62

161 161 161 grey63

163 163 163 grey64

166 166 166 grey65

168 168 168 grey66

171 171 171 grey67

173 173 173 grey68

176 176 176 grey69

18 18 18 grey7

179 179 179 grey70

181 181 181 grey71

184 184 184 grey72

Color Table 407

RGB Color Name

186 186 186 grey73

189 189 189 grey74

191 191 191 grey75

194 194 194 grey76

196 196 196 grey77

199 199 199 grey78

201 201 201 grey79

20 20 20 grey8

204 204 204 grey80

207 207 207 grey81

209 209 209 grey82

212 212 212 grey83

214 214 214 grey84

217 217 217 grey85

219 219 219 grey86

222 222 222 grey87

224 224 224 grey88

227 227 227 grey89

23 23 23 grey9

229 229 229 grey90

232 232 232 grey91

235 235 235 grey92

237 237 237 grey93

240 240 240 grey94

242 242 242 grey95

245 245 245 grey96

247 247 247 grey97

250 250 250 grey98

252 252 252 grey99

240 255 240 honeydew

240 255 240 honeydew1

224 238 224 honeydew2

193 205 193 honeydew3

131 139 131 honeydew4

255 105 180 hot pink

255 105 180 hotpink

255 110 180 hotpink1

238 106 167 hotpink2

205 96 144 hotpink3

139 58 98 hotpink4

205 92 92 indian red

408

RGB Color Name

205 92 92 indianred

255 106 106 indianred1

238 99 99 indianred2

205 85 85 indianred3

139 58 58 indianred4

255 255 240 ivory

255 255 240 ivory1

238 238 224 ivory2

205 205 193 ivory3

139 139 131 ivory4

240 230 140 khaki

255 246 143 khaki1

238 230 133 khaki2

205 198 115 khaki3

139 134 78 khaki4

230 230 250 lavender

255 240 245 lavender blush

255 240 245 lavenderblush

255 240 245 lavenderblush1

238 224 229 lavenderblush2

205 193 197 lavenderblush3

139 131 134 lavenderblush4

124 252 0 lawn green

124 252 0 lawngreen

255 250 205 lemon chiffon

255 250 205 lemonchiffon

255 250 205 lemonchiffon1

238 233 191 lemonchiffon2

205 201 165 lemonchiffon3

139 137 112 lemonchiffon4

173 216 230 light blue

240 128 128 light coral

224 255 255 light cyan

238 221 130 light goldenrod

250 250 210 light goldenrod yellow

211 211 211 light gray

211 211 211 light grey

255 182 193 light pink

255 160 122 light salmon

32 178 170 light sea green

135 206 250 light sky blue

Color Table 409

RGB Color Name

132 112 255 light slate blue

119 136 153 light slate gray

119 136 153 light slate grey

176 196 222 light steel blue

255 255 224 light yellow

173 216 230 lightblue

191 239 255 lightblue1

178 223 238 lightblue2

154 192 205 lightblue3

104 131 139 lightblue4

240 128 128 lightcoral

224 255 255 lightcyan

224 255 255 lightcyan1

209 238 238 lightcyan2

180 205 205 lightcyan3

122 139 139 lightcyan4

238 221 130 lightgoldenrod

255 236 139 lightgoldenrod1

238 220 130 lightgoldenrod2

205 190 112 lightgoldenrod3

139 129 76 lightgoldenrod4

250 250 210 lightgoldenrod yellow

211 211 211 lightgray

211 211 211 lightgrey

255 182 193 lightpink

255 174 185 lightpink1

238 162 173 lightpink2

205 140 149 lightpink3

139 95 101 lightpink4

255 160 122 lightsalmon

255 160 122 lightsalmon1

238 149 114 lightsalmon2

205 129 98 lightsalmon3

139 87 66 lightsalmon4

32 178 170 lightseagreen

135 206 250 lightskyblue

176 226 255 lightskyblue1

164 211 238 lightskyblue2

141 182 205 lightskyblue3

96 123 139 lightskyblue4

132 112 255 lightslateblue

410

RGB Color Name

119 136 153 lightslategray

119 136 153 lightslategrey

176 196 222 lightsteelblue

202 225 255 lightsteelblue1

188 210 238 lightsteelblue2

162 181 205 lightsteelblue3

110 123 139 lightsteelblue4

255 255 224 lightyellow

255 255 224 lightyellow1

238 238 209 lightyellow2

205 205 180 lightyellow3

139 139 122 lightyellow4

50 205 50 lime green

50 205 50 limegreen

250 240 230 linen

255 0 255 magenta

255 0 255 magenta1

238 0 238 magenta2

205 0 205 magenta3

139 0 139 magenta4

176 48 96 maroon

255 52 179 maroon1

238 48 167 maroon2

205 41 144 maroon3

139 28 98 maroon4

102 205 170 medium aquamarine

0 0 205 medium blue

186 85 211 medium orchid

147 112 219 medium purple

60 179 113 medium sea green

123 104 238 medium slate blue

0 250 154 medium spring green

72 209 204 medium turquoise

199 21 133 medium violet red

102 205 170 medium aquamarine

0 0 205 mediumblue

186 85 211 mediumorchid

224 102 255 mediumorchid1

209 95 238 mediumorchid2

180 82 205 mediumorchid3

122 55 139 mediumorchid4

Color Table 411

RGB Color Name

147 112 219 mediumpurple

171 130 255 mediumpurple1

159 121 238 mediumpurple2

137 104 205 mediumpurple3

93 71 139 mediumpurple4

60 179 113 mediumseagreen

123 104 238 mediumslateblue

0 250 154 mediumspring green

72 209 204 mediumturquoise

199 21 133 mediumvioletted

25 25 112 midnight blue

25 25 112 midnightblue

245 255 250 mint cream

245 255 250 mintcream

255 228 225 misty rose

255 228 225 mistyrose

255 228 225 mistyrose1

238 213 210 mistyrose2

205 183 181 mistyrose3

139 125 123 mistyrose4

255 228 181 moccasin

255 222 173 navajo white

255 222 173 navajowhite

255 222 173 navajowhite1

238 207 161 navajowhite2

205 179 139 navajowhite3

139 121 94 navajowhite4

0 0 128 navy

0 0 128 navy blue

0 0 128 navyblue

253 245 230 old lace

253 245 230 oldlace

107 142 35 olive drab

107 142 35 olivedrab

192 255 62 olivedrab1

179 238 58 olivedrab2

154 205 50 olivedrab3

105 139 34 olivedrab4

255 165 0 orange

255 69 0 orange red

255 165 0 orange1

412

RGB Color Name

238 154 0 orange2

205 133 0 orange3

139 90 0 orange4

255 69 0 orangered

255 69 0 orangered1

238 64 0 orangered2

205 55 0 orangered3

139 37 0 orangered4

218 112 214 orchid

255 131 250 orchid1

238 122 233 orchid2

205 105 201 orchid3

139 71 137 orchid4

238 232 170 pale goldenrod

152 251 152 pale green

175 238 238 pale turquoise

219 112 147 pale violet red

238 232 170 palegoldenrod

152 251 152 palegreen

154 255 154 palegreen1

144 238 144 palegreen2

124 205 124 palegreen3

84 139 84 palegreen4

175 238 238 paleturquoise

187 255 255 paleturquoise1

174 238 238 paleturquoise2

150 205 205 paleturquoise3

102 139 139 paleturquoise4

219 112 147 palevioletred

255 130 171 palevoletred1

238 121 159 palevioletred2

205 104 137 palevioletred3

139 71 93 palevioletred4

255 239 213 papaya whip

255 239 213 papayawhip

255 218 185 peach puff

255 218 185 peachpuff

255 218 185 peachpuff1

238 203 173 peachpuff2

205 175 149 peachpuff3

139 119 101 peachpuff4

Color Table 413

RGB Color Name

205 133 63 peru

255 192 203 pink

255 181 197 pink1

238 169 184 pink2

205 145 158 pink3

139 99 108 pink4

221 160 221 plum

255 187 255 plum1

238 174 238 plum2

205 150 205 plum3

139 102 139 plum4

176 224 230 powder blue

176 224 230 powderblue

160 32 240 purple

155 48 255 purple1

145 44 238 purple2

125 38 205 purple3

85 26 139 purple4

255 0 0 red

255 0 0 red1

238 0 0 red2

205 0 0 red3

139 0 0 red4

188 143 143 rosy brown

188 143 143 rosybrown

255 193 193 rosybrown1

238 180 180 rosybrown2

205 155 155 rosybrown3

139 105 105 rosybrown4

65 105 225 royal blue

65 105 225 royalblue

72 118 255 royalblue1

67 110 238 royalblue2

58 95 205 royalblue3

39 64 139 royalblue4

139 69 19 saddle brown

139 69 19 saddlebrown

250 128 114 salmon

255 140 105 salmon1

238 130 98 salmon2

205 112 84 salmon3

414

RGB Color Name

139 76 57 salmon4

244 164 96 sandy brown

244 164 96 sandybrown

46 139 87 sea green

46 139 87 seagreen

84 255 159 seagreen1

78 238 148 seagreen2

67 205 128 seagreen3

46 139 87 seagreen4

255 245 238 seashell

255 245 238 seashell1

238 229 222 seashell2

205 197 191 seashell3

139 134 130 seashell4

160 82 45 sienna

255 130 71 sienna1

238 121 66 sienna2

205 104 57 sienna3

139 71 38 sienna4

135 206 235 sky blue

135 206 235 skyblue

135 206 255 skyblue1

126 192 238 skyblue2

108 166 205 skyblue3

74 112 139 skyblue4

106 90 205 slate blue

112 128 144 slate gray

112 128 144 slate grey

106 90 205 slateblue

131 111 255 slateblue1

122 103 238 slateblue2

105 89 205 slateblue3

71 60 139 slateblue4

112 128 144 slategray

198 226 255 slategray1

185 211 238 slategray2

159 182 205 slategray3

108 123 139 slategray4

112 128 144 slategrey

255 250 250 snow

255 250 250 snow1

Color Table 415

RGB Color Name

238 233 233 snow2

205 201 201 snow3

139 137 137 snow4

0 255 127 spring green

0 255 127 springgreen

0 255 127 springgreen1

0 238 118 springgreen2

0 205 102 springgreen3

0 139 69 springgreen4

70 130 180 steel blue

70 130 180 steelblue

99 184 255 steelblue1

92 172 238 steelblue2

79 148 205 steelblue3

54 100 139 steelblue4

210 180 140 tan

255 165 79 tan1

238 154 73 tan2

205 133 63 tan3

139 90 43 tan4

216 191 216 thistle

255 225 255 thistle1

238 210 238 thistle2

205 181 205 thistle3

139 123 139 thistle4

255 99 71 tomato

255 99 71 tomato1

238 92 66 tomato2

205 79 57 tomato3

139 54 38 tomato4

64 224 208 turquoise

0 245 255 turquoise1

0 229 238 turquoise2

0 197 205 turquoise3

0 134 139 turquoise4

238 130 238 violet

208 32 144 violet red

208 32 144 violetred

255 62 150 violetred1

238 58 140 violetred2

205 50 120 violetred3

416

RGB Color Name

139 34 82 violetred4

245 222 179 wheat

255 231 186 wheat1

238 216 174 wheat2

205 186 150 wheat3

139 126 102 wheat4

255 255 255 white

245 245 245 white smoke

245 245 245 WhiteSmoke

255 255 0 yellow

154 205 50 yellow green

255 255 0 yellow1

238 238 0 yellow2

205 205 0 yellow3

139 139 0 yellow4

154 205 50 yellowgreen

Color Table 417

418

The XFDL Compute System

An XFDL compute is an expression that controls the character content of an

element at or below the element depth of an XFDL option. XFDL computes can be

defined for custom options that are not in the XFDL namespace (a common

practice used for computing intermediate results), but in such cases, the attribute

must be properly namespace qualified (e.g. use xfdl:compute where the namespace

prefix ’xfdl’ is associated with the XFDL namespace URI). The XFDL compute

expression appears in a compute attribute. This section defines the infix notation for

XFDL compute expressions.

Most XFDL processors only need to preserve the compute as character data, but

some applications must parse the text of computes and construct expression tree

data structures to represent all computes in a form. This is necessary if the

application must change the content of options or suboptions that are referred to

by a compute. This section describes the syntax and operation of computes.

Whitespace in Computes

XFDL computes automatically support the notion of free form text found in most

programming languages. With the exception of the contents of quoted strings (see

“Quoted Strings” on page 422) and both static and dynamic references (see “XFDL

References to Elements” on page 423), unlimited whitespace is permitted. Adding

S? before and after every lexical token in every BNF rule in this section would

unnecessarily obfuscate the presentation of what is essentially the standard BNF

for mathematical and conditional expressions. Therefore, it is stated once here for

the reader that all whitespace appearing outside of quoted strings and other lexical

tokens is ignored.

While whitespace is formally ignored, there do arise cases in which it is necessary

to use whitespace to properly communicate the expression. These situations arise

because lexical analyzers are ’greedy’ in the sense that they will match as much of

a substring to the current token as possible. For example, in the boolean test a==b

and c==d, the spaces before and after the keyword ’and’ are required because the

element reference token that matches ’a’, ’b’, ’c’ and ’d’ also matches ’band’, ’andc’

and ’bandc’.

The XFDL compute is a normal XML attribute and is therefore subject to all of the

normal XML processing rules associated with attributes of the default type

(CDATA). This includes whitespace normalization as well as entity and character

reference resolution. An XML parser is expected to convert each tab or newline

character into a space, so these characters should be avoided when text editing.

XML processors capable of serialization are expected to encode tabs and new lines

in attribute values as character references since the attribute value normalization

on input implies that these characters would not be in the attribute value if they

were not encoded as character references in the input. In raw XML text, a new line

is encoded as
 which a subsequent XML parser will decode into a new line

character in the attribute value.

Multiline Computes

Due to XML attribute value normalization, linefeeds are converted to spaces.

Therefore, normal XML processing turns a multiline compute that has been

© Copyright IBM Corp. 2003, 2006 419

carefully laid out by its author into a single line compute. To alleviate this

problem, form authors are encouraged to put the character reference
 at the

end of each line of a multiline compute attribute.

A normal XML processor that reads
 followed by a new-line character will

translate the value to a real new-line followed by a space. The serialization

algorithm of an XML processor will then output the reference
 for the real

new-line followed by a space. A subsequent parse by an XML processor will

produce a real new-line followed by a space. Therefore, it is recommended that

XFDL processors (which uses a normal XML processor for parsing input) serialize

a real new-line followed by a space as the reference
 followed by a new-line,

which this restores the multi-line appearance of computes. This behavior must not

be performed when serializing the XML for a digital signature.

Structure of Mathematical and Conditional Expressions

An XFDL compute can be either a mathematical or conditional expression. A

conditional expression has three parts separated by the ternary ?: operator. The

first part is a Decision, which yields a boolean result. The consequences for a true

and false boolean result recurse to the definition of Compute, permitting arbitrary

nesting of decision logic.

 [49] Compute ::= Expr | Decision ’?’ Compute ’:’ Compute

The decision logic can apply logical-or (|| or ’or’), logical-and (&& or ’and’), and

logical negation (!) to the results of logical comparisons. The logical operators are

left associative, and the comparison operators cannot be chained (e.g. a < b < c is

illegal). The order of operations gives greatest precedence to negation, then

logical-and, and least precedence to logical-or. To override this, parentheses can be

used (e.g., the parentheses in (a<b || c<d) && e!=f cause the logical-or to occur

first, and no parentheses are required if the logical-and should be performed first).

 [50] Decision ::= Decision (’||’ | ’or’) AndDecision | AndDecision

[51] AndDecision ::= AndDecision (’&&’ | ’and’) NotDecision | NotDecision

[52] NotDecision ::= ’!’ Comparison | Comparison

[53] Comparison ::= ’(’ Decision ’)’ | Expr (’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ |

 ’!=’) Expr

A mathematical expression, denoted Expr, can include addition, subtraction, string

concatenation (+.), multiplication, division, integer modulus, unary minus, and

exponentiation. All mathematical operators are left associative except unary minus

and exponentiation. Further, proper order of operations is observed. Parentheses

can be used to override the order of operations as shown in the non-terminal

symbol named Value (defined later).

 [54] Expr ::= Expr ’+’ Term | Expr ’-’ Term | Expr ’+.’ Term | Term

[55] Term ::= Term ’*’ NFactor | Term ’/’ NFactor | Term ’%’ NFactor | NFactor

[56] Nfactor ::= Factor | ’-’ Factor

[57] Factor ::= Value ’^’ NFactor | Value

420

Table of Operators

The following table details the operators permitted in XFDL:

 Type of Operator Symbol Operation

Additive +

- (minus)

+.

addition

subtraction

concatenation

Multiplicative *

/

%

multiplication

division

modulus (returns remainder)

Exponentiation ^ exponential

Relational >

<

<=

>=

==

!=

greater than

less than

less than or equal to

greater than or equal to

equal to

not equal to

Logical &&

and

||

or

!

Note: The reserved words

’and’ and ’or’ are case

sensitive. Always use lower

case.

AND

AND

OR

OR

NOT

Unary Minus - (minus) take negative

Decision x?y:z assign the value of expression y to

the result if expression x evaluates to

true. Otherwise, assign the value of

expression z to the result.

Assignment = assign right operand to left operand

Membership . (dot)

[]

->

structure membership

array membership

indirect membership

Precedence of Operations

Operations are evaluated in the following order:

v membership

The XFDL Compute System 421

v exponentiation

v multiplicative and unary minus

v additive

v relational

v logical NOT

v logical AND

v logical OR

v conditional

Decision Operations and Namespace Qualification

Both decision operations and namespace use the colon (:) character as a token. In

some cases, this makes it difficult to determine which colon is the decision

operator token and which colon is the namespace token. For example, consider the

following expression:

 x ? custom:y : z

This is a variation on the common ″if x then y, else z″ expression. In this

expression, the y statement is intended to be in the ″custom″ namespace. However,

as it is currently written the expression does not clearly define which colon

represents namespace and which colon represents the end of the y statement.

In cases such as these, parentheses should enclose the y statement of the

expression, thereby providing a clear indication of where the y statement ends. For

example:

 x ? (custom:y) : z

Illegal Characters in XML Attributes

Note that the ampersand (&) and less-than (<) characters are not permitted in XML

attribute values. Since XFDL computes appear in a compute attribute, these must

be escaped with character or entity references (e.g. the entity references & for

the ampersand and < for the less-than character). Hence, the less-than-or-equal

symbol (<=) could be encoded as ’ <=’.

Definition of Value

A value can be any of:

v a compute in parentheses, which provides an override for the order of

operations.

v a quoted string (see “Quoted Strings”).

v an XFDL reference to an element whose text data should be obtained when the

compute is evaluated (see “XFDL References to Elements” on page 423).

v the result of a function call (Section 3.8 Function Call Syntax).

 [58] Value ::= ’(’ Compute ’)’ | qstring | XFDLReference | FunctionCall

Quoted Strings

A quoted string is used to express a literal value in XFDL. The language rules for

computes permit the recognition of a quoted string token using the italicized token

name qstring. Whitespace before the open quote and after the close quote is

ignored. Because XML allows attribute values to be either singly or doubly quoted,

422

the XFDL compute expression syntax allows both single and double quotes so that

the XFDL author can avoid the use of entity references. Within an XFDL quoted

string, any character is allowed except for the type of quote mark used to start the

quoted string. Quoted strings can also be of arbitrary length in XFDL. To increase

human readability, XFDL supports multiline string continuation. If the next

non-whitespace character appearing after a closing quote is an open quote, then

the closing quote, whitespace, and open quote are discarded from the input stream.

.

 [59] qstring ::= ((’"’ [^"]* ’"’) | (’’’ [^’]* ’’’))+

A literal must be quoted regardless of its type (i.e. character strings, numeric

values, dates and so forth must all be quoted). However, the quoted string is in the

XFDL compute attribute value, which is a quoted string in XML. Therefore, if

double quotes are used to surround the compute expression, then literals must

either be expressed with single quotes or by using character or entity references for

double quotes (e.g. the entity reference "). Likewise, if the compute attribute

is surrounded by single quotes, then either double quotes must be used for the

quoted strings or character or entity references (such as ') must be used to

express quoted strings.

Occasionally a literal value simply must include the type of quote mark used to

surround the literal. In such cases, the XFDL author can either use entity references

to surround the literal value or use backslash (\) escaping. For example, \’ can be

used to place a single quote in an XFDL quoted string that is surrounded by single

quotes.

Backslash escaping is also supported for several other characters. The escape

sequences \n and \t result in a new line and a tab, respectively, in the quoted

string content. Since the backslash is the escaping character, it must also be

escaped to be inserted into the string content (e.g., \\).

Note that since a quoted string is meant to be interpreted by the XFDL compute

expression parser rather than the XML processor, it is recommended that backslash

escaping be used rather than XML character and entity references. However, it is

safe to use the XML mechanisms except for encoding a new-line in a quoted string.

The special processing performed by XFDL processors to preserve the text layout

of multiline computes may conflict with the use of an XML character reference for

a new-line if it is followed by a space (please see “Multiline Computes” on page

419). While correct processing will still result due to attribute value normalization

on the next parse, the text layout and surface string of the XFDL will be changed.

XFDL References to Elements

The simple character content of options and suboptions are obtained as the

operands of XFDL compute expressions using XFDL references. XFDL references

support forward and backward referencing. An XFDL reference can refer to any

option or array element with simple character content.

The element containing the desired character content is identified using scope

identifiers to negotiate a path through the parse tree. To traverse through the page

and item levels and identify an option, the well-known ’dot’ membership operator

is used. The well-known square-bracket array notation can then be used to access

The XFDL Compute System 423

suboptions to arbitrary element depth. For example, Page2.Field2.value would access

the option with tag name <value> in the <field> element having a sid of Field2 in

the <page> having a sid of Page2.

Because each XFDL element’s scope identifier (sid) is used to uniquely identify an

element only within the surrounding parent element, XFDL can support relative

referencing. For example, in an element identified as Field1, if a computation

includes the reference Field2.value, this means that the character data of the value

option in the item Field2 on the same page will be obtained. If Field2 is on a

separate page, say Page2, then a compute in Field1 can still access its value using

the fully-qualified reference Page2.Field2.value.

The context for interpreting a reference is also decided based on the form of the

reference itself in combination with its location in the form. For example, in the

XFDL below, the reference Bill.value appears in a compute that is attached to a

grand-child suboption of the format option. However, the name after the rightmost

’dot’ operator always refers to an option, and the name before the rightmost dot

always refers to an item. Since the page is not specified, it is determined to be the

page containing the reference.

 <page sid= "CreditCardApp">

 <field sid="Bill">

 <label>Your monthly bill is:</label>

 <value>700</value>

 <readonly>on</readonly>

 </field>

 <field sid="MinPayment">

 <label>Enter payment amount:</label>

 <value></value>

 <format>

 <datatype>currency</datatype>

 <range>

 <min compute="Bill.value * ’0.05’">35</min>

 <max compute="Bill.value">700</max>

 </range>

 </format>

 </field>

 </page>

XFDL references can also grow arbitrarily below the option level using the array

notation, allowing access to unbounded array element depth within any option. If

an array element is not named, then the zero-based numeric position of the array

element is used in the square brackets. If the array element is named, then the

scope identifier can be used in the square brackets. For example, given the format

option of the XFDL above, the reference format[0] yields dollar and the reference

format[range][1] yields 700. If a suboption is named, the numeric position can still

be used, e.g. format[1][1] also yields 700.

The above description covers static references. The XFDL referencing model also

supports dynamic references. The left associative ’arrow’ operator (->), also known

as the indirect membership operator, expects to receive a static or dynamic

reference as a left operand. The run-time value of the static or dynamic reference

must conform to the syntax of the ItemRef non-terminal. The right operand of the

indirect membership operator is an option reference. At run-time, the left operand

is evaluated, yielding a static item reference to an XML element representing an

XFDL item. This run-time item reference is combined with the right operand of the

indirect membership operator to yield an option or array element whose simple

data is the result of the evaluation.

424

The simplest example of a dynamic reference is retrieving the text of the selected

cell in an XFDL list box or popup, as is discussed in “Details on Items” on page 35,

because the value option of a list or popup is equal to the item reference of the

selected cell item. Thus, given an example popup that offers a selection of days of

the week, the text for the day of week selected by the user is obtained by

Popup_DayOfWeek.value->value.

An option reference can simply refer to element tag names in the XFDL namespace

without any namespace qualification. A namespace qualified scope identifier (the

non-terminal NSsid below) must be used if the element being referenced is not in

the XFDL namespace. In order to reference element in the empty namespace, XFDL

supports the predeclared prefix null. For example, to reference an element E which

has an empty namespace URI, use the reference null:E.

Below are the syntax rules for an XFDL reference. Note that unlike most other

syntax rules for XFDL expressions, intervening whitespace is not allowed in an

XFDL reference. An XFDL reference is treated as a single lexical token.

 [60] XFDLReference ::= StaticRef | StaticRef ’->’ DynamicRef

[61] StaticRef ::= ItemRef ’.’ OptionRef | OptionRef

[62] ItemRef ::= ((sid ’.’)? sid ’.’)? sid

[63] DynamicRef ::= DynamicRef ’->’ OptionRef | OptionRef

[64] OptionRef ::= NSsid (’[’ (Digit+ | NSsid) ’]’)*

[65] NSsid ::= sid | (Letter (Letter | Digit | ’_’)*) ’:’ sid

Referencing the XFDL Version

Since the XFDL version is represented by the XFDL namespace URI declaration in

the root XFDL node, the normal page.item.option notation cannot reference the

version number directly. However, as a convenience, it is allowable to refer the

XFDL version as a global form option, as follows:

 global.global.version

XFDL processors are expected to recognize this notation.

Function Call Syntax

Function calls run code that may be external to the XFDL form definition. A set of

predefined functions (called system functions) for doing standard mathematical

operations, string manipulations, and so on, is given in “Details on Function Calls”

on page 279. The LibName allows functions to be grouped into separate

namespaces, but the predefined system functions do not require a LibName. The

names of the system functions are considered reserved words and should not be

used as function names in other function libraries.

 [66] FunctionCall := (LibName ’.’)? FunctionName ’(’ (Compute (’,’

 Compute)*)? ’)’

[67] LibName ::= sid

[68] FunctionName ::= sid

The XFDL Compute System 425

Representing and Running XFDL Computes

Introduction

The XFDL compute engine implements a ’declarative’ computation system. The

behavior of the algorithm is similar to that of a spreadsheet. Complicating factors

for XFDL include dynamic references and side effect functions such as set(). When

a form is first started, many nodes with computed values may need to be

evaluated to find current display values. After the form is started, any specific

change to a given node should result in updates to computationally dependent

nodes. Further, the process is recursive in that when a computationally dependent

node is updated, then it may have further computationally dependent nodes that

must be queued for update.

The XFDL specification provides an abstract version of the desired algorithm, but

does not place specific constraints on the data structure used to represent the

compute system.

Cached Dependency Lists

On form startup, the compute system associates with each form node F a list of

other form nodes that are computationally dependent on F. A node is dependent

on F if a reference to F appears in the node’s compute. Figure 1 expresses the

XFDL compute engine algorithm based on utilizing these dependency lists. The

dependency lists are viewed as a directed graph, or digraph, of computational

dependencies.

Each form node will have several flags associated with it: Visited, OnStack,

Processed, Processing, and UsedToDeref. The Visited flag is require by depth first

search. The OnStack flag prevents duplicate entries on the stack, which prevents

circular referencing. The Processed flag is used in conjunction with OnStack to

allow a form node to stay on the stack but not be processed again when the form

node’s dependencies have all been processed. The pProcessing flag is used when

XFDLRunComputes() is called recursively from within the eval() function (side effect

functions such as set() call UFLSetLiteral(), so the compute system is called

recursively during their evaluation). The Processing flag tells XFDLRunComputes()

to terminate, returning control to eval(). The UsedToDeref flag indicates whether a

given form node’s literal value is being used by any compute in the form to

dereference another form node (explained in the next section). If this flag is set,

then changing the node’s literal will cause a change to the dependencies in the

form.

The dependency lists referred to in Figure 1 are constructed at build time. For each

compute CI, the function CreateRefList() traverses the compute parse tree for all

references to existing nodes. For each reference in CI

to a form node FR, the form

node FP

(the parent node containing CI) is added to the dependency list of FR,

except when FP

is equal to FR

(this exception allows support for self-referential

computes as discussed below). Thus, when a node FR

changes, the new algorithm

has a prebuilt list of dependent computes that must be re-evaluated.

The outermost loop of the new algorithm runs until it reaches quiescent state (in

other words, it achieves closure on the change to element E). When E is null, the

new algorithm pushes all computes for reevaluation. The inner loops of the

original algorithm in Figure 1 were mainly designed to find which computes were

pertinent (in other words, which ones needed to be re-evaluated). In the new

426

algorithm, the new pertinent vertices of a changed vertex FP

are immediately

known due to the precomputation of the dependency lists.

The implied behavior of the outermost loop is that it should terminate if there is a

circular reference other than a self-reference. By omitting a node from its own

dependency list, self-referential computes do not become circular references.

However, circular references involving more than one node can be expressed using

static references (for example, A=B, B=C, C=A), dynamic references, or even

indirect referencing via XFDL function calls (for example, the assignment X =

A+set(″A″, A+ ″1″)). To prevent circular referencing, the algorithm uses a

ChangeStack rather than a ChangeList (queue), and it uses the flags OnStack and

Processed to implement a depth first search, which is an algorithm that finds cycles

in a search space. Push() will not push a node already on the stack.

RunXFDLComputes(F (form), C (computes), E (a changed element or null)) ::=

If E is not null, then ProcessLiteralChange(F, E)

Else For each c ∈ C, ParentFormNode(c).Visited = 0

 For each c ∈ C,

 If not ParentFormNode(c).Visited,

 DFSPush(F, ParentFormNode(c))

 For each c ∈ C, ParentFormNode(c).Visited = 0

While not Empty(F.ChangeStack) and not TopStack(F.ChangeStack).processing Do

 FP

= TopStack(F.ChangeStack)

 If FP.Processed, then Pop(F.ChangeStack);

 else FP.processing = on

 Literal = eval(ChildComputeNode(FP), F.ChangeStack)

 If cval(FP) ≠ Literal, then

 cval(FP) = Literal

 ProcessLiteralChange(F, FP)

 FP.processing = off

 FP.Processed = on

ProcessLiteralChange(F, E) ::=

If E.UsedToDeref, then

 ProcessDependencyChanges(F, E)

DFSPush(F, E)

For each entry e of F.ChangeStack from top to bottom,

 If e.Visited, then e.Visited = 0

 Else break loop

F.TotalChangeList = F.TotalChangeList � E

DFSPush(F, E) ::=

E.visited = 1

For each f ∈ DependencyList(E)

 If not f.Visited and not f.OnStack

 DFSPushComputes(F, f)

Push(F.ChangeStack, E)

ProcessDependencyChanges(F, E) ::=

For each f ∈ DerefSubset(DependencyList(E)),

 NewRefList = CreateRefList(f, F)

 For each r ∈ (f.RefList � NewRefList) - (f.RefList � NewRefList)

 If r ∈ f.RefList, then

 DependencyList(r) = DependencyList(r) - f

 Else

 DependencyList(r) = DependencyList(r) + f

 f.RefList = NewRefList

Pop(S) ::= f = S.Pop(); f.OnStack = f.Processed = off

Push(S, f) ::= if not f.OnStack, then

 S.Push(f);

 f.OnStack=on;

 f.Processed=off

Figure 3. Algorithm Sketch for XFDL Compute Engine

The XFDL Compute System 427

Note, however, that we do not generate an error when a duplicate is found on the

change stack. This is because the loop initialization pushes all computes when E is

null. Thus, there are valid cases where we want to ignore the duplication without

generating an error. Reporting true circular references can be done using a depth

first search at design time with the compute system turned off.

Topological Sorting

When a node E changes, the function ProcessLiteralChange() does not simply push

the elements in its dependency list, which would make XFDLRunComputes a

simple depth first search of a digraph. Instead, it calls DFSPush(), which explores

the computational dependencies of E using a depth first search. In other words, E

is treated as the root of a depth first search tree of computational dependencies.

DFSPush() does not push E until it has visited all of E’s descendants (post-order

visitation of the DFS tree). This has the effect of placing the dependencies in a

linear order on the change stack (linear ordering in a directed acyclic graph is

called topological sorting). Since an element E appears on the stack above its

descendants, it is re-evaluated before its descendants. Since E’s descendants are

dependent on E, evaluating E before its descendants ensures that E will have the

correct value before its descendants are evaluated.

Because the dependency graph is directed, it is still possible for a depth first search

to take exponential time because it must explore a subtree rooted at r for each

parent of r. The directed graph can be acyclic even though the corresponding

undirected graph has cycles. If those cycles have a repeated structure (such as

might be found in a form with many rows of identical construction), the work on

each row can be constant but the work of a row may occur once for each change to

the preceding row. If each row requires at least two units of work, then the

computation is exponential in the number of rows.

Handling Dynamic References

A dynamic reference is a compute that includes the use of the arrow operator to

obtain a value by dereferencing other values in the form. Dynamic references

imply changes to the dependency lists during run-time. A number of

enhancements are required to solve this problem efficiently.

The dependency list of each form node will be segregated into normal

dependencies and dereference dependencies. The form node’s UsedToDeref flag

will be set if and only if its dependency list contains dereference dependencies.

After changing the literal value of a form node whose UsedToDeref flag is set,

certain dependencies will need to be re-evaluated (described below).

For each form node f containing a compute, we store a ReferenceList containing all

form nodes referred to within the compute. Again, the list will be segregated into

normal and dereference references. All subreferences in a dynamic reference except

for the rightmost reference are classified as dereference dependencies. For example,

in a compute containing popup.value->value, if the popup’s value is ″cell1″, then the

literal of popup.value is dereferenced, but cell1.value is not. This distinction is

important because a change to popup.value will cause dependency changes whereas

changing cell1.value will not.

Actually, the reference list of each compute must already be built as part of setting

up the dependency lists. The reference lists are required since, for each form node

FP

in f.ReferenceList, we must add f to FP.DependencyList. Now we are simply

deciding to retain the list for use in solving problems introduced by dynamic

428

references. So, while building dependency lists, if FP

is classified as a dereference

in f.ReferenceList, then f will be classified added a dereference dependency in

FP.DependencyList.

The ProcessDependencyChanges() function mentioned in Figure 1 can then rebuild

the dependency lists efficiently. When processing a stack entry FP, if the

UsedToDeref flag is set, then some dependency lists may need to be changed. A

form node f is considered to be in the ’dereference’ portion of FP.DependencyList.

Begin by creating a new reference list for f. Any form node FP

in f.ReferenceList but

not in the new reference list implies the removal of the dependency entry f from

FP.DependencyList. Any form node FP

not in f.ReferenceList but in the new

reference list implies the addition of the dependency entry f to FP.DependencyList.

Finally, the new reference list is assigned to f.ReferenceList.

Note that most of the dependency changes involve the addition and deletion of

’normal’ references and dependencies. For example, given a form node f with a

compute of popup.value->value, if popup.value were to change from ″cell1″ to ″cell2″,

then the ’normal’ entry of ″cell1″ in the f.ReferenceList would be deleted, and a

’normal’ entry of ″cell2″ would be added. Furthermore, the normal dependency on

f would be removed from in cell1.DependencyList and added to cell2.DependencyList.

It is possible that reference list and dependency list entries of type ’dereference’

can also be modified. An example would be a double dereference; in other words,

the change of x.value in a form containing the compute x.value->value->value. Thus,

an entry f in FP.DependencyList is a dereference if changing node FP

implies the

need to rebuild f.ReferenceList (which in turn implies changes to other dependency

lists, possibly including FP.DependencyList).

The statements above assert that the algorithm will only rebuild the references lists

of nodes marked as ’dereference’ dependencies in FP.DependencyList. Due to the

high cost of calling UFLDereference(), the algorithm should not rebuild reference list

entries that result from static references. Static reference nodes are distinguished

from dynamic reference nodes in the compute tree. Note that the leftmost

subreference of a dynamic reference is also static, so it will also not be recomputed.

Instead, the value in the reference cache will be used (see section “Reference

Caching”).

Reference Caching

When a compute is parsed into a parse tree of compute nodes, the nodes

representing static references currently cache the results of UFLDereference() so that

future evaluations of the compute can proceed without a costly search of the form.

Although the ReferenceList of each node contains all references, these cached

references are stored in compute nodes for instantaneous access by eval().

In the current API, caching of dynamic references was not performed because the

implementation had no way of knowing whether a change occurred that would

affect the validity of the cached value. The algorithm is able to cache dynamic

references. When the ReferenceList of a given form node is reconstructed, the

dynamic references in the compute node associated with that form node will also

be re-evaluated and re-cached.

Note that dynamic references call UFLDereference() once for the leftmost

subreference plus once per arrow in the dynamic reference. The reference cache

will cache the last UFLDereference() as this is the final results required by the eval()

function. However, the first UFLDereference() on the leftmost subreference will also

The XFDL Compute System 429

be cached. The leftmost subreference is static, so storing it can be used to optimize

the process of resolving dependency changes (see “Handling Dynamic References”

on page 428).

Re-entrancy

XFDLRunComputes() is no longer shown as returning a value. This is because the

returned change list, formerly denoted Z, is actually a property of the form F and

is now denoted F.TotalChangeList. This member is initialized to emptiness when

the form is first created. It is updated by running computes, but it is only

reinitialized to emptiness when an application takes ownership of the list from the

form. This allows an application to make numerous changes to the form before

using the F.TotalChangeList to update structures external to the form (such as a

database or a corresponding GUI).

The change list itself is now also a property of the form, denoted F.ChangeStack,

and it also is initialized to emptiness during form creation. Notice that it is not

initialized to emptiness at the start of run computes. This is done to support

re-entrancy. If the call to eval() runs a side effect function that in turn calls

UFLSetLiteral(), then XFDLRunComputes() will be reinvoked. The new function

instance will continue attempting to process the same change stack. Since the

change stack forbids duplicates, XFDLRunComputes() cannot recurse indefinitely on

a form of bounded size (side-effect functions such as duplicate() can create new

pieces of form with each run, so if the duplicate() duplicates itself, an infinite loop

can occur). When the instance of XFDLRunComputes() that was called recursively

encounters a stack entry marked ’processing’, this indicates that it is time to return

back to eval(), which ultimately returns to the previous instance of

XFDLRunComputes().

Duplicate Entries on the Total Change List

The algorithm in Figure 1 explicitly shows how it uses the OnStack and Processed

flags of each form node to prevent duplicate entries in the change stack. The

algorithm also uses the set union operator to indicate that duplicates will not be

allowed on the TotalChangeList. This is done using another flag, OnChangeList,

which is cleared on form node creation. An attempt to add a form node to the

TotalChangeList is preceded by a test of this flag. If it is set, then the form node is

already on the change list and will not be added again. If the flag is clear, then the

form node will be added to the TotalChangeList, then its OnChangeList flag will

be set.

When the API function UFLGetChangeList() is called, the OnChangeList flags of

each element in the TotalChangeList must be cleared before passing ownership of

the TotalChangeList from the form to the API caller.

Missing References

If an XFDL reference refers to a non-existent element or an element with array

content, then the reference simply resolves to the empty string. If a dynamic

subreference (i.e. the left operand of the dereference operator) refers to a

non-existent element, then the containing compute is disabled. If the desired form

node is created later, the compute is immediately re-activated.

Handling of Element Deletion

When an element is deleted, it may contain a compute. The XFDL processor must

remove dependency list entries associated with the elements referenced by the

compute expression being destroyed. Moreover, references to the element being

430

deleted may appear on change lists and reference caches in the compute system.

These must be removed as well. If a compute refers to an element that is being

deleted, then the compute will be handled according to the rules for missing

references (see the previous section for how these are handled).

Limitations

It is possible to create cases in which the algorithm halts a sequence of

computations that do not technically form circular logic, especially when side effect

functions such as set() are used. In other words, the case would halt by itself if the

algorithm would allow duplicates on the change stack. However, there is a

difference between circular logic and circular references. According to the XFDL

specification, circular referencing is forbidden (except for self references), and the

compute system simply does not continue evaluation of a node C that is already

on the stack.

A second limitation, also involving side effect functions, can actually cause an

infinite loop in the algorithm. The problem occurs when a side effect function

creates a new portion of the form. If the new portion of the form contains

computations that cause the continued recursive creation of new portions of the

form, then each new portion of form has elements that are distinct from all

previous elements and hence do not technically even cause a circular reference. A

depth first search halts on any form of finite size, but if computations result in

unbounded form growth, then it is correct behavior for a depth first search to run

indefinitely exploring the new regions of the form.

A third limitation is that a given compute may still be fired more than once. This is

not the result of circular reference in the dependency digraph but rather that the

same descendant is reachable along multiple paths (the undirected graph

corresponding to the dependency digraph has cycles, but the digraph contains no

way to get from the descendant back to the ancestor). In other words, a node r has

multiple parents because a depth first search of a digraph can yield multiple DFS

trees each containing r with one of its parents.

To solve this problem with static references only, a linear ordering could be created

for the directed acyclic graph of dependencies, and the edges of each node could

be resorted (in linear total time) so that the push order would respect the linear

ordering. However, this approach is impractical for XFDL. Due to dynamic

referencing, the linear ordering would need to be maintained dynamically.

Furthermore, dynamic changes to the linear ordering would cause dynamic

changes to the order of elements in the change stack. More advanced methods

could be developed to account for this, but the problem expands when the implicit

dependencies introduced by side effect functions are taken into account. Although

the compute system could run faster by running less computes, the cost of

operations necessary to account for dynamic references is prohibitive, and

implementing the method would not be worth the trouble due to the inability to

achieve correctness with side effect functions. Thus, the linear ordering imposed by

DFSPush() is temporal, and changes to nodes used in dynamic references may

invalidate the order such that extra computes will sometimes run more than once.

Those who wish to prevent functions such as viewer.messageBox from running

more than once must still resort to protecting these computes with conditional

logic and the toggle() function.

The XFDL Compute System 431

XForms and XFDL Computes

XForms provides its own methods to compute values for data in that is in the

XForms model. However, in same cases it may be either prefereable or necessary to

use XFDL computes. For example, XFDL computes are required to make changes

to the presentation layer that are not related to data, such as color changes and so

on.

In general, using XForms computes to manipulate data and XFDL computes to

manipulate the presentation layer will create a clean separation of duties that

creates few conflicts. However, be aware that when a form is first loaded, the

XForms engine overwrites all value and rtf options that are linked to the model by

a single node binding. This means that any XFDL computes on those options will

be removed from the form.

432

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 433

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

434

Index

Special characters
- (minus) operator 421

-> operator 421

! operator 420, 421

!= operator 421

? : operator 420, 421

. (dot) operator 421

\[\] operator 421

\[Types\] 2

\< in computes 17

\< operator 421

\<= operator 421

> operator 421

>= operator 421

|| operator 420, 421

& in computes 17

&& operator 420, 421

= operator 421

== operator 421

^ operator 421

A
above modifier 115

abs function 291

absolute positioning 113

absolute value, determining 291

accessibility messages 71

acclabel option 71

acos function 292

action item 7, 35

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether an item is

activated 73

filtering submissions by

datagroup 183

filtering submissions by group 186

filtering submissions by item

reference 188

filtering submissions by item

type 189

filtering transmissions by

datagroup 183

filtering transmissions by group 187

filtering transmissions by item

reference 188

filtering transmissions by item

type 189

filtering transmissions by

namespace 190

filtering transmissions by option

reference 191

filtering transmissions by option

type 192

filtering transmissions by page

reference 193

linking data items 79

action item (continued)
linking to a data item 79

setting a datagroup 80

setting an action to repeat 81

setting the destination URL 198

setting the file format for saves 155

setting the printing options 145

setting the timing for an action 81

setting the transmission format 184

setting the type of action 194

setting the type of action

triggered 196

setting the url for submissions 196

setting whether the item is active 74

submitting XForms data 237

XForms, linking to data model 240

action, registering in XForms 262

actionref attribute 216

actions
cancel 195

cells that trigger actions 39

display 195

done 195

enclose 195

extract 195

link 195

pagedone 195

print 195

refresh 195

remove 195

replace 195

save 196

saveform 196

See also XForms Actions 245

select 196

signature 196

submit 196

XForms actions, triggering 239

actions, XForms
See XForms Actions 245

activated option 73

activating items 74

active option 74

additive operators 421

after modifier 115

alert setting, XForms 210

alignment modifiers
alignb2b 116, 117

alignb2c 116

alignb2t 116

alignc2b 116

alignc2l 116

alignc2r 116

alignc2t 116

alignhorizbetween 116

alignhorizc2c 116

alignl2c 116

alignl2l 116

alignl2r 116

alignr2c 116

alignr2l 116

alignment modifiers (continued)
alignr2r 116

alignt2b 116

alignt2c 116

alignt2t 116

alignvertbetween 116

alignvertc2c 116

angles
converting degrees to radians 297

converting radians to degress 302

determining the arc cosine 292

determining the arc sine 294

determining the arc tangent 294

determining the cosine 296

determining the sine 304

determining the tangent 305

annuity function 293

appearance of forms, preventing

changes 27

application
determining the name of 306

determining version of 306, 307

application/vnd.xfdl 3, 184

with compression 184

application/x-www-form-
urlencoded 184

applicationName function 306

applicationVersion function 306

applicationVersionNum function 307

arcs
determining arc cosine 292

determining arc sine 294

determining arc tangent 294

array elements
element names 70

syntax 69, 70

arrays
element references 423

elements and options 10

asin function 294

assignment operator 421

atan function 294

attachment buttons 37

attachments
adding in XForms 242

grouping 79

See also enclosures 78

setting the datagroup 37

storing data for attachments 43, 78

storing the file name 84

attributes
for certificates 162

getting the value of an attribute 319

setting the value of an attribute 332

version attribute 5

automatic actions See action item 194

averaging numbers 351

avg function 351

© Copyright IBM Corp. 2003, 2006 435

B
background color See color 75

Backus Naur Form See BNF 279

base, converting to base 10 312

base64 encoding 131

encoding base64-gzip 131

encoding binary data 17, 131

before modifier 115

below modifier 115

bgcolor option 75

binary data objects 17

BNF rules
for functions 279

for XFDL 2

bold, setting for font 88

boolean functions 349

boolean-from-string 349

if 350

boolean-from-string function 349

booleans, converting to strings 349

border
setting for print 144

border option 76

borders
setting whether a label has a

border 125

setting whether an item has a

border 76

box item 8, 36

determining the next item on the

page 120

determining the previous item on the

page 121

positioning the item on the form 114

setting the background color 75

setting the background color for

print 140

setting the border 76

setting the font information 89

setting the size 180

setting whether a box is visible when

the form is printed 148

setting whether the item is

visible 200

built-in labels 123

suppressing 181

button item 8, 37

adding accessibility messages 71

attaching a file in XForms 243

attachments 37

capturing the last keystroke

(hotkeys) 123

controlling the display of an

image 111

controlling which certificate details

the user sees 161

controlling which certificates are

available to the user 161

creating attachment buttons 37

creating submit buttons 37

detecting if a button is clicked 334

detecting whether the mouse is over

the item 134

determining if the item is

activated 73

determining the next item on the

page 120

button item (continued)
determining the previous item on the

page 121

determining whether the item has the

focus 86

enclosure buttons 37

filtering signatures by

datagroup 158, 159

filtering signatures by group 170, 171

filtering signatures by instance 172

filtering signatures by item

reference 173

filtering signatures by item type 174,

175

filtering signatures by

namespace 175, 176

filtering signatures by option

reference 176, 177

filtering signatures by option

type 178

filtering signatures by page

reference 179, 193

filtering submissions by

datagroup 183

filtering submissions by group 186

filtering submissions by item

reference 188

filtering submissions by item

type 189

filtering transmissions by

datagroup 183

filtering transmissions by group 187

filtering transmissions by item

reference 188

filtering transmissions by item

type 189

filtering transmissions by

namespace 190

filtering transmissions by option

reference 191

filtering transmissions by option

type 192

filtering transmissions by page

reference 193

formatting the text 90

justifying text 122

label, suppressing 181

linking data items 79

linking to a data item 79

linking to a help message 109

linking to a signature image 158

linking to a signature item 157

linking to an image 110

positioning the item on the form 114

recording the location of a click 78

recording the signer’s identity 163

setting a datagroup 80

setting the background color 75

setting the background color for

print 140

setting the border 76

setting the button’s action 194

setting the destination URL 198

setting the file format for saves 155

setting the font color 88

setting the font color for print 141

setting the font information 89

button item (continued)
setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting the printing options 145

setting the signature MIME type 163

setting the size 180

setting the space between lines of

text 130

setting the text displayed 200

setting the transmission format 184

setting the type of action

triggered 196

setting the type of signature

created 158, 165

setting the url for submissions 196

setting whether a button is visible

when the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

signature buttons 38

storing the identity of the signer 162

submitting XForms data 237

button press, registering in XForms 262

C
caching references for computes 429

calculate property 214

calculations See computes 419

calendar 41

calendar, formatting 91

calulate property 214

cancel action 195

case
making a string lower case 288

making a string upper case 289

toggling the active case 259

case sensitivity, setting 97

case, formatting 92

cases, for switches 237

CDATA 17

ceiling function 295

cell item 39

cells that trigger actions 39

dereferencing cells 40

determining if the item is

activated 73

determining the next item on the

page 120

determining the previous item on the

page 121

filtering transmissions by

datagroup 183

filtering transmissions by group 187

filtering transmissions by item

reference 188

filtering transmissions by item

type 189

filtering transmissions by

namespace 190

filtering transmissions by option

reference 191

filtering transmissions by option

type 192

436

cell item (continued)
filtering transmissions by page

reference 193

linking cells to other items 108

linking to a data item 79

linking to data items 79

linking to lists 108

select cells 39

setting a datagroup 80

setting the built-in label text 123

setting the cell’s action 194

setting the destination URL 198

setting the file format for saves 155

setting the printing options 145

setting the transmission format 184

setting the type of action

triggered 196

setting the url for submissions 196

setting the value 200

setting whether the item is active 74

cells
deselection, registering in

XForms 262

selection, registering in XForms 272

centering text 122

certificates
available attributes 162

controlling which details are

shown 159

filtering which certificates are

available 159

setting which signature engine to

use 163

change list, duplicate entries 430

changes, preventing form layout

changes 27

char data type 71

character sets
setting the character set 88

setting the character set for the label

option 126

characters
locating in a string 285

restricted 17

check
deselection, registering in

XForms 262

selection, registering in XForms 272

check item 8, 40

adding accessibility messages 71

capturing the last keystroke

(hotkeys) 123

detecting whether the mouse is over

the item 134

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

label, suppressing 181

linking to a help message 109

positioning the item on the form 114

readonly, setting to be 149

setting the background color 75

setting the background color for

print 140

check item (continued)
setting the background color for the

built-in label 124

setting the border 76

setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the check to be on or off 200

setting the font characteristics for the

built-in label 127

setting the font color 88

setting the font color for print 141

setting the font color for the built-in

label 126

setting the font information 89

setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting the size 180

setting whether a check is visible

when the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

XForms, linking to data model 220

checkgorup item
linking to a help message 109

checkgroup item 57

adding accessibility messages 71

choices, setting 229, 234

detecting whether the mouse is over

the item 134

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

formatting the text 90

label, suppressing 181

positioning the item on the form 114

readonly, setting to be 149

setting the background color 75

setting the background color for

print 140

setting the background color for the

built-in label 124

setting the border 76

setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the check to be on or off 200

setting the font characteristics for the

built-in label 127

setting the font color for the built-in

label 126

setting the next item in the tab

order 134

checkgroup item (continued)
setting the previous item in the tab

order 139

setting whether a check is visible

when the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

checklists, creating 40, 57, 62

checkValidFormats function 308

child, determining which child an

element is 326

children, counting 310

choices
presenting choices 39, 40, 41, 48, 49,

51, 57, 62

setting choices to select 196

setting the choices for a

checkgroup 227

setting the choices for an item 232

choose function 364

CIC signatures 158

ClickWrap signature
about 165

signature engine parameters 165

clipping images 110

closing a form 195

color
list of colors 399

setting the background color 75

setting the background color for

print 139

setting the font color 87

setting the font color for print 140

setting the label’s background

color 124

setting the label’s background color

for print 142

setting the label’s font color 125

setting the label’s font color for

print 143

color data type 71

color, recording operating system

colors 76

colorinfo option 76

combobox item 8, 41

adding accessibility messages 71

capturing the last keystroke

(hotkeys) 123

choices, setting 234

detecting whether the mouse is over

the item 134

determining if the item is

activated 73

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

formatting the text 90

justifying text 122

label, suppressing 181

linking to a help message 109

linking to cells 108

positioning the item on the form 114

readonly, setting to be 149

Index 437

combobox item (continued)
setting the background color 75

setting the background color for

print 140

setting the background color for the

built-in label 124

setting the border 76

setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the font characteristics for the

built-in label 127

setting the font color 88

setting the font color for print 141

setting the font color for the built-in

label 126

setting the font information 89

setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting the size 180

setting whether a combobox is visible

when the form is printed 148

setting whether the item is

visible 200

setting which cell is selected 200

XForms, linking to data model 220

comments 18

comparing strings 285

compound function 295

compute system 419

computes
cached dependency lists 426

conditional expressions 420

duplicate entries on the total change

list 430

handling deleted form nodes 430

handling dynamic references 428

ignoring whitespace 419

limitations 431

mathematical expressions 420

missing references 430

re-entrancy 430

reference caching 429

representing computes 426

restricted characters 17

running computes 426

topological sorting 428

computes, setting for XForms 214

conditional expressions 420

conditions
if statement 350

constraint settings
casesensitive 97

checks 97

currency separator 98

decimalseparator 98

groupingseparator 98

length 99

mandatory 99

message 99

patterns 99

constraint settings (continued)
range 100

separator 98

template 100

yearwindow 100

constraints, setting 214

content format
syntax for options 14

context sensitive help 45, 109

coordinates option 78

copies, number printed 146

copying form elements 313

cos function 296

cosine
determining the arc cosine 292

determining the cosine 296

count-non-empty function 354

countChildren function 310

countDatagrouptems function 310

countGroupedItems function 311

countLines function 280

countWords function 281

cross-reference
items and options 367, 391

CryptoAPI signature
about 165

signature engine parameters 166

currency data type 90

currency separator 92, 98

currency symbol, showing 95

currency, formatting 92

current function 365

current item, determining which item has

the focus 87

cursor, placing the 256

custom item 56

naming conventions 56

XForms, linking to data model 220,

241

custom option 203

D
daemon forms 35

data item 8, 43

base64 encoding 17

determining the next item on the

page 120

determining the previous item on the

page 121

linking an image to a signature 158

linking images to other items 110

recording the filename of a data

object 84

setting a datagroup 80

setting the MIME type 132, 133

storing the data 131

storing the MIME data 131

data model
formatting, preserving 93

data option 78

data type
XForms, setting for 215

data types 2

char 71

color 71

currency 90

data types (continued)
date 90

date_time 90

day_of_month 90

day_of_week 90

float 90

for fields 90

for options 71

integer 91

month 91

reference strings 280

setting for items 90

string 71, 91

time 91

void 91

year 91

data, storing custom data in a form 203

datagroup option 37, 79

filtering signatures by datagroup 158

filtering submissions by

datagroup 183

datagroups, counting the items in a

datagroup 310

date
current date, determining 356

days, converting to 356

seconds, converting to 358

date data type 90

date function 340

date functions 340, 356

date 340

dateToSeconds 341

day 342

dayOfWeek 342

days-from-date 356

endOfMonth 343

month 345

months 361

now 356

seconds-from-dateTime 358

See also time functions 347

year 347

date patterns 101

date_time data type 90

dates
converting a date to seconds 341

creating a calendar widget 41

date pattern, formatting 94

determining the current date 346

determining the date 340

determining the day 342

determining the day of the week 342

determining the last day of the

month 343

determining the month 345

determining the year 347

style, setting 95

dateToSeconds function 341

day
determining the day 340, 342

determining the day of the week 342

determining the last day of the

month 343

day function 342

day_of_month data type 90

day_of_week data type 90

dayOfWeek function 342

438

days
date, converting from 356

days-from-date function 356

deactivating items 74

decimal function 312

decimal separator 92, 98

decision operators 421

decisions 420

default form settings 31

default page settings 32

default sizes for items 393

deg2rad function 297

degrees
converting degrees to radians 297

converting radians to degrees 302

delay option 81

deleting form elements 312

deleting form nodes with computes 430

dependency lists, computes 426

dereferencing cells 40

design goals, XFDL 1

destroy function 312

digits, formatting digits shown for

fractions 92

dirtyflag option 82

disabilities, recording operating system

colors for users with vision

impairments 76

display action 195

display elements
bgcolor 75

border 76

boxes 36

fontcolor 87

itemlocation 113

justify 122

label 123

labelbgcolor 124

labelborder 125

labelfontcolor 125

labelfontinfo 126

spacer 54

thickness 182

displaying
images 46

text 46, 123

document reproducibility 19

document-centric model 1, 2

DOMActivate event 262

done action 195

duplicate function 313

duplicating form elements 313

duration
months, converting to 361

seconds, converting to 360

duration, converting from 360

dynamic references 424

in computes 428

E
e-mail, setting the url for e-mail

submissions 196

edit checks
checking all formatting 308

determining if a value has a valid

format 330

edit checks (continued)
finding invalid items 308

effects, setting for font 88

elements 5

deleting form elements 312

duplicating form elements 313

locating an element 329

naming elements 18

preventing exploitable overlap of

signed elements 28

references to 423

root element 5

securing signed elements 27

setting the value of an element 330

else statement 350

empty function 324

enclose action 195

enclosure data 43

enclosures
enclosure buttons 37

grouping 79

setting a display action 195

setting a remove action 195

setting an enclose action 195

setting an extract action 195

setting the datagroup 37

storing 78

storing the file name 84

encoding
base64 131

base64-gzip 131

endOfMonth function 343

engines, signature
parameters for common engines 165

setting the signature engine to

use 163

Entrust signature
about 165

signature engine parameters 167

epilog, XML 19

error checking 90

error message, for invalid input 99

escape sequence for labels 46

event handlers 261

See alsoevents 261

events
DOMActivate 262

placement in form 262

syntax 261

xforms-deselect 262

xforms-disabled 263

xforms-enabled 264

xforms-invalid 265

xforms-model-construct 266

xforms-model-construct-done 266

xforms-model-destruct 267

xforms-optional 268

xforms-readonly 269

xforms-readwrite 270

xforms-ready 270

xforms-required 271

xforms-select 272

xforms-submit 273

xforms-submit-done 274

xforms-submit-error 275

xforms-valid 276

xforms-value-changed 276

excludedmetadata option 83

exp function 297

expandb2c modifier 117

expandb2t modifier 117

expandl2c modifier 117

expandl2l modifier 117

expandl2r modifier 117

expandr2c modifier 117

expandr2l modifier 117

expandr2r modifier 117

expandt2b modifier 117

expandt2c modifier 117

expandt2t modifier 117

exponent
calculating 364

exponentiation operators 421

exponents
calculating an exponential value 301

calculating the exponentiation 297

extensions, compatible 3

extract action 195

F
fact function 298

factorial, calculating 298

field item 8, 44

adding accessibility messages 71

capturing the last keystroke

(hotkeys) 123

counting lines of text 280

counting the number of words 281

creating rich text fields 153, 182

detecting whether the mouse is over

the item 134

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

formatting the text 90

justifying text 122

label, suppressing 181

linking to a help message 109

positioning the item on the form 114

readonly, setting to be 149

setting fields to print as lines 144

setting the background color 75

setting the background color for

print 140

setting the background color for the

built-in label 124

setting the border 76

setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the font characteristics for the

built-in label 127

setting the font color 88

setting the font color for print 141

setting the font color for the built-in

label 126

Index 439

field item (continued)
setting the font information 89

setting the horizontal scrolling 156

setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting the size 180

setting the value 200

setting the vertical scrolling 157

setting whether a field is visible when

the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

settings fields to print without scroll

bars 144

writeonly, setting a field to be 226

writeonly, setting to be 203

XForms, linking to data model 220,

240, 241

file formats, setting for saves 154

file name, for enclosures 84

filename option 84

filtering
general information for signatures 25

order of precedence 395

signatures by datagroup 158

signatures by group 170

signatures by item references 173

signatures by item type 174

signatures by namespace 175

signatures by option references 176

signatures by option type 178

signatures by page reference 179

signatures by XForms instance 171

submissions by datagroup 183

submissions by group 186

submissions by item reference 188

submissions by item type 189

submissions by option reference 191

submissions by option type 192

submissions by page reference 193

transmissions by namespace 190

triggeritem and coordinates 38

which certificates are available 159

first option 84

flags
for changes in form status 82

float data type 90

floor function 298

focus
determining whether an item has the

focus 86

determining which item has the

focus 87

focus, setting the 256

focused option 86

focuseditem option 87

folders, for enclosures 79

fontcolor option 87

fontinfo option 88

fonts
setting font characteristics 88

setting the character set 88

setting the character set for the label

option 126

fonts (continued)
setting the color 87

setting the label option’s font 126

for loop 314

forLoop function 314

form
element definition 5

form globals 31

page definition 5

revision number 106

serial number 106

title for a form 106

form global
adding a title, serial number, and

version 107

capturing the last keystroke

(hotkeys) 123

creating an XForms model 217

detecting whether the form has

changed 82

determining if the form is

activated 73

determining whether the form has the

focus 86

determining whether the form

printing 142

recording which item triggered an

event 194

setting the default background color

for built-in labels 124

setting the form’s background

color 75

setting the form’s background color

for print 140

setting the form’s border 76

setting the form’s default file format

for saves 155

setting the form’s default font

characteristics 89

setting the form’s default font

color 88

setting the form’s default font color

for print 141

setting the form’s default printing

options 145

setting the form’s default transmission

format 184

setting the form’s requirements for

Web Services 150

setting the form’s Web Services 201

setting the title of a form 123

format option 90

See Also constraint settings 90

See Also presentation settings 90

formatString function 316

formatting
checking all formatting 308

data model. preserving in 93

determining if a value has a valid

format 330

formatting, finding invalid items 308

formid option 106

forms
daemon forms 35

deleting form elements 312

detecting a change in status 82

duplicating form elements 313

forms (continued)
form names 3

form structure 5

locating a form element 329

formulas See computes 419

fractions, formatting digits shown 92

fullname option 107

function
See also date functions 340

See also time functions 340

See also utility functions 306

function calls
See also WSDL functions 201, 211

See also XForms functions 349

syntax 425

functions 279

about function parameters 279

reference strings 280

See also math functions 291

See also string functions 280

G
generateUniqueName function 317

Generic RSA signature
about 165

get function 318

getAttr function 319

getDataByPath function 320

getGroupedItem function 324

getInstanceRef function 325

getPosInSet function 335

getPosition function 326

getPref function 327

getReference function 329

getSizeOfSet function 336

globals
form globals 31

page globals 32

graphics See images 78

group option 108

filtering signatures by group 170

group, creating a group for a pane 219

grouping separator 93, 98

groups
counting the items in a group 311

filtering submissions by group 186

getting the sid of a grouped item 324

grouping attachments 79

grouping cells 108

grouping enclosures 79

grouping radio buttons 108

groups, determining position in a

group 335

groups, determining size of group 336

H
height, setting for items 180

help item 45

determining the next item on the

page 120

determining the previous item on the

page 121

linking to other items 109

setting the help message 200

440

help item (continued)
setting whether the item is active 74

help messages 45, 109

help option 109

help setting, XForms 211

hiding items 200

hint setting, XForms 210

HMAC-ClickWrap signature
about 165

HMAC-Clickwrap signatures 83

HMAC-ClickWrap signatures
signature engine parameters 165

horizontal scrolling in fields 156

hour
determining the hour 344

determining the time 347

hour function 344

HTML
submission format 185

submitting forms as 184

I
identifiers, scope 18

if function 350

if statement 350

image data 43

image option 110

imagemode option 110

images
controlling the display of 110

displaying 46

linking an image to a signature 158

linking items to images 110

mapping 78

setting the MIME type 132

storing 78

XForms, from data model 222

impairments, messages for sight

impairments 71

index
getting the position index of an

element 326

locating a character in a string 285

locating a substring within a

string 286, 287

index function 354

index, determining for row in table 354

index, setting for a table 257

indirect references 40, 423

input
capturing the last keystroke 122

mandatory 90

reformatting 90

restricting 90

input fields 44

input, creating XForms inputs 220, 241

instance
locating an 363

instance function 363

instances
getting a reference to an instance in

the XML data model 325

integer data type 91

interest, determining compound

interest 295

Interlink signature engine

parameters 167

invisible items 200

isValidFormat function 330

italics, setting for font 88

item details
definition 7

scope identifier 18

tag 18

item references
filtering signatures by item

references 173

filtering submissions by item

reference 188

item tags, relative 111, 112, 119, 121

itemfirst option 111

itemlast option 112

itemlocation option 113

itemnext option 119

itemprevious option 121

items
action 7, 35

box 8, 36

button 8, 37

cell 39

check 8, 40

checkgroup 57

combobox 8, 41

cross referenced with options 367,

391

custom 56

data 8, 43

default sizes 393

deleting form elements 312

determining if item is activated 73

determining if the mouse is over an

item 133

determining the first item on a

page 111

determining the last item on a

page 112

determining the next item on the

page 119

determining the previous item on the

page 121

determining the tab order 134

duplicating form elements 313

field 8, 44

filtering signatures by item type 174

filtering submissions by item

type 189

general details 35, 57

help 45

label 8, 46

line 8, 47

list 8, 48

locating a form element 329

making items invisible 200

pane 59

popup 8, 49

positioning items on the form 113

preventing exploitable overlaps of

signed items 28

radio 9, 51

radiogroup 62

referencing 423

setting the size of 180

items (continued)
setting the tab order 139

signature 9, 52

slider 9, 64

spacer 9, 54

table 65

toolbar 9, 55

turning items off 74

J
justify option 122

justifying text 122

K
keypress option 122

keystroke, capturing the last 122

L
label item 8, 46

adding line breaks 46

controlling the display of an

image 111

determining the next item on the

page 120

determining the previous item on the

page 121

formatting the text 90

justifying text 122

label, suppressing 181

linking to a help message 109

linking to an image 110

positioning the item on the form 114

setting the background color 75

setting the background color for

print 140

setting the border 76

setting the font color 88

setting the font color for print 141

setting the font information 89

setting the size 180

setting the space between lines of

text 130

setting the text displayed 200

setting whether a label is visible when

the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

XForms, linking to data model 222

label option 123

setting a background color 124

setting a font 126

setting a font color 125

setting whether the label has a

border 125

labelbgcolor option 124

labelborder option 125

labelfontcolor option 125

labelfontinfo option 126

labels, suppressing built-in labels 181

landscape printing 146

language support 17

last option 127

Index 441

layout
preventing changes 27

storing the layout information 129

layoutinfo option 129

leading, adjusting the space between lines

of text 130

left justify 122

length
determining for strings 284

length, setting limit for input 99

lexical constraints in top level

structure 5

line breaks in labels 46

line item 8, 47

determining the next item on the

page 120

determining the previous item on the

page 121

positioning the item on the form 114

setting the font color for print 141

setting the font information 89

setting the line color 88

setting the size 180

setting the thickness 182

setting whether a line is visible when

the form is printed 148

setting whether the item is

visible 200

lines, counting lines in a field 280

linespacing option 130

link action 195

linking cells to lists 108

list item 8, 48

adding accessibility messages 71

capturing the last keystroke

(hotkeys) 123

choices, setting 229, 234

detecting whether the mouse is over

the item 134

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

formatting the text 90

label, suppressing 181

linking to a help message 109

linking to cells 108

positioning the item on the form 114

readonly, setting to be 149

setting the background color 75

setting the background color for

print 140

setting the background color for the

built-in label 124

setting the border 76

setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the font characteristics for the

built-in label 127

setting the font color 88

list item (continued)
setting the font color for print 141

setting the font color for the built-in

label 126

setting the font information 89

setting the next item in the tab

order 134

setting the size 180

setting whether a list is visible when

the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

setting which cell is selected 200

ln function 299

locale
currency locale, formatting 92

locale support 17

location
locating a substring in a string 287

positioning items on the form 113

log function 299

logarithm
determining the logarithm 299

determining the natural

logarithm 299

logic 420

if statements 350

logical and 420

logical negation 420

logical operators 421

logical or 420

loop, for 314

lower case
making a string lower case 288

M
mandatory

XForms, setting for 215

mandatory input
setting 90

mandatory, setting input to be 99

mapping images 78

math functions 291

abs 291

acos 292

annuity 293

asin 294

atan 294

ceiling 295

compound 295

cos 296

deg2rad 297

exp 297

fact 298

floor 298

ln 299

log 299

mod 300

pi 301

power 301

rad2deg 302

rand 302

round 303

sin 304

sqrt 305

math functions (continued)
tan 305

mathematical expressions 420

max function 353

maximum, determining from number

set 353

membership
array membership 421

indirect membership 421

operators 421

structure membership 421

message, displaying to user 250

messages, help 45

methods See functions 425

MIME types 3, 132

application/vnd.xfdl 184

application/vnd.xfdl with

compression 184

application/x-www-form-
urlencoded 184

mimedata option 131

usage 17

mimetype option 132

min function 352

minimum, determining from number

set 352

minute
determining the minute 344

determining the time 347

minute function 344

MIPs
See property settings 213

mod function 300

model item properties
See property settings 213

model, creaing an XForms model 211

modifiers
above 115

after 115

alignb2b 116, 117

alignb2c 116

alignb2t 116

alignc2b 116

alignc2l 116

alignc2r 116

alignc2t 116

alignhorizbetween 116

alignhorizc2c 116

alignl2c 116

alignl2l 116

alignl2r 116

alignr2c 116

alignr2l 116

alignr2r 116

alignt2b 116

alignt2c 116

alignt2t 116

alignvertbetween 116

alignvertc2c 116

before 115

below 115

expandb2c 117

expandb2t 117

expandl2c 117

expandl2l 117

expandl2r 117

expandr2c 117

442

modifiers (continued)
expandr2l 117

expandr2r 117

expandt2b 117

expandt2c 117

expandt2t 117

offset 115

position 115

within 115

modulus, determining the modulus 300

month
determining the last day of the

month 343

determining the month 340, 345

month data type 91

month function 345

months
duration, converting from 361

months function 361

mortgage
calculating annuity 293

determining compound interest 295

mouse, tracking the location of 133

mouseover option 133

multiplicative operators 421

N
name of enclosed file 84

name of signer 107

names
compatible extensions 3

form name 3

generating unique 317

namespace
xforms namespace 205

namespaces
filtering signatures by

namespace 175

filtering transmissions by

namespace 190

naming elements 18

NaN 349

natural logarithm, determining 299

negative sign, formatting 93

Netscape signature
about 165

signature engine parameters 167

next option 134

node-set functions 363

context nodeset, determining 365

instance 363

nodes
non-empty, counting 354

nodeset
context, determining the 365

nodeset binding 209

non-empty, counting nodes 354

non-repudiation 1, 2, 129

notarizing signatures 83

notation, XFDL 2

now function 346, 356

number functions 351

avg 351

count-non-empty 354

index 354

max 353

number functions (continued)
min 352

number patterns 102

numbers
formatting 94

numbers, generating random 302

numbers, rounding 95

O
off, turning items off 74

offset for space between lines of text 130

offset modifier 115

operations, order of operations 420

operations, order of precedence
operations 421

operators
additive 421

assignment 421

decision 421

exponentiation 421

logical 421

membership 421

multiplicative 421

relational 421

table of operators 421

unary minus 421

option references
filtering signatures by option

references 176

filtering submissions by option

reference 191

options
acclabel 71

activated 73

active 74

bgcolor 75

border 76

colorinfo 76

content format 14

coordinates 78

cross-referenced with items 367, 391

custom 203

data 78

data types 71

datagroup 37, 79

definition 10

delay 81

dirtyflag option 82

excludedmetadata 83

filename 84

filtering signatures by option

type 178

filtering submissions by option

type 192

first 84

focused 86

focuseditem 87

fontcolor 87

fontinfo 88

format 90

formid 106

fullname 107

getting the value of an option 318

group 108

help 109

image 110

options (continued)
imagemode 110

itemfirst 111

itemlast 112

itemlocation 113

itemnext 119

itemprevious 121

justify 122

keypress 122

label 123

labelbgcolor 124

labelborder 125

labelfontcolor 125

labelfontinfo 126

last 127

layoutinfo 129

linespacing 130

locating a form element 329

mimedata 131

mimetype 132

mouseover 133

next 134

order of precedence 70

pagefirst 135

pageid 136

pagelast 136

pagenext 137

pageprevious 138

previous 139

printbgcolor 139

printfontcolor 140

printing 141

printlabelbgcolor 142

printlabelfontcolor 143

printsetting 144

quick reference table 369

readonly 148

requirements 149

rtf 153

saveformat 154

scrollhoriz 156

scrollvert 157

See also XForms options 205

setting the value of an option 330

signature 157

signatureimage 158

signdatagroups 158

signdetails 159

signer 162

signformat 163

signgroups 170

signinstance 171

signitemrefs 173

signitems 174

signnamespaces 175

signoptionrefs 176

signoptions 178

signpagerefs 179

size 180

suppresslabel 181

syntax 69

textype 181

thickness 182

transmitdatagroups 183

transmitformat 184

transmitgroups 186

transmititemrefs 188

Index 443

options (continued)
transmititems 189

transmitnamespaces 190

transmitoptionrefs 191

transmitoptions 192

transmitpagerefs 193

triggeritem 194

type 194

url 196

value 199

version, referencing 425

visible 200

webservices 201

writeonly 202

xforms:group 219

xforms:input 220

xforms:output 222

xforms:range 223

xforms:repeat 224

xforms:secret 226

xforms:select 227

xforms:select1 232

xforms:submit 236

xforms:switch 237

xforms:textarea 241

xforms:trigger 239

xforms:upload 242

xformsmodels 211

order of precedence
filters 395

operations 420, 421

options 70

orientation
for printing 146

origins
UFDL 1

XFDL 1

overlapping signatures 26

P
pad function 282

padding
number of pad characters, setting 93

pad character, setting 94

padding strings 282

page
definition 5

determining the first page in a

form 135

determining the last page in a

form 136

determining the next page in the

form 137

determining the previous page in the

form 138

page global 32

capturing the last keystroke

(hotkeys) 123

detecting whether the mouse is over

the page 134

determining if the page is

activated 73

determining the first item on a

page 112

determining the first page in a

form 135

page global (continued)
determining the last item on a

page 112

determining the last page in a

form 137

determining the next page in the

form 137

determining the previous page in the

form 138

determining whether a page has the

focus 86

determining which item has the

focus 87

setting the default background color

for built-in labels 124

setting the first item in the tab

order 134

setting the page background color 75

setting the page’s background color

for print 140

setting the page’s default file format

for saves 155

setting the page’s default font

characteristics 89

setting the page’s default font

color 88

setting the page’s default font color

for print 141

setting the page’s default printing

options 145

setting the page’s default transmission

format 184

setting the previous item in the tab

order 139

setting the serial number for a

page 136

setting the title of a page 123

page references
filtering signatures by page

reference 179

filtering submissions by page

reference 193

page tags, relative 135, 136, 137, 138

pagedone action 195

pagefirst option 135

pageid option 136

pagelast option 136

pagenext option 137

pageprevious option 138

pages
flipping pages 195

setting which pages print 144

paging controls See button item 37

pane
first element, identifying 85

last item, identifying 128

pane item 59

group, setting 219

label, suppressing 181

setting the background color for the

built-in label 124

setting the border 76

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

pane item (continued)
setting the font characteristics for the

built-in label 127

setting the font color for the built-in

label 126

switch, creating 238

panels See box item 36

panes, adding to a form 59

parameters
about function parameters 279

for common signature engines 165

reference strings 280

password fields, creating 202

password, creating writeonly fields 226

patterns
date patterns 101

number patterns 102

string patterns 103

pi function 301

placement of items on the form 113

point size, setting 88

popup item 8, 49

adding accessibility messages 71

capturing the last keystroke

(hotkeys) 123

choices, setting 234

detecting whether the mouse is over

the item 134

determining if the item is

activated 73

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

formatting the text 90

justifying text 122

linking to a help message 109

linking to cells 108

positioning the item on the form 114

readonly, setting to be 149

setting the background color 75

setting the background color for

print 140

setting the built-in label text 123

setting the font color 88

setting the font color for print 141

setting the font information 89

setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting the size 180

setting whether a popup is visible

when the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

setting which cell is selected 200

portrait printing 146

position modifiers 115

positioning
determining an element’s position

within its parent 326

items 113

locating a character in a string 285

444

power
calculating 364

power function 301, 364

precedence
for filters 395

of operations 421

options 70

preferences, getting the user’s Viewer

preferences 327

presentation settings
calendar 91

casetype 92

currency separator 92

currencylocale 92

decimalseparator 92

fractiondigits 92

groupingseparator 93

keepformatindatar 93

negativeindicator 93

pad 93

padcharacter 94

pattern 94

patternrefs 94

round 95

separator 92, 93

showcurrency 95

significant digits 95

style 95

previous option 139

print action 195

printbgcolor option 139

printfontcolor option 140

printing
determining whether the form is

printing 141

setting a print action 195

setting fields to print without scroll

bars 144

setting radio buttons to print as check

boxes 144

setting radio buttons to print without

the selected value 144

setting single line fields to print as

lines 144

setting the background color 139

setting the font color 140

setting the form to scale to the

page 145

setting the form to tile across

pages 145

setting the label’s background

color 142

setting the label’s font color 143

setting the number of copies 146

setting the orientation 146

setting the print options 144

setting whether the print dialog is

displayed 146

setting whether the user can control

which pages are printed 146

setting which pages are printed 145,

146

printing option 141

printlabelbgcolor option 142

printlabelfontcolor option 143

printsettings option 144

prolog, XML 19

prompting to save a form 82

property function 355

property settings 213

calculate 214

readonly 215

relevant 215

required 215

type 215

Q
quick reference

default item sizes 393

for options 369

list of colors 399

order of precedence for filters 395

quoted strings 422

R
rad2deg function 302

radians
converting degrees to radians 297

converting radians to degrees 302

radio
deselection, registering in

XForms 262

selection, registering in XForms 272

radio item 9, 51

adding accessibility messages 71

capturing the last keystroke

(hotkeys) 123

detecting whether the mouse is over

the item 134

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

grouping 108

label, suppressing 181

linking to a help message 109

linking to cells 108

positioning the item on the form 114

readonly, setting to be 149

setting radio buttons to print as check

boxes 144

setting radio buttons to print without

the selected value 144

setting the background color 75

setting the background color for

print 140

setting the background color for the

built-in label 124

setting the border 76

setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the font characteristics for the

built-in label 127

setting the font color 88

radio item (continued)
setting the font color for print 141

setting the font color for the built-in

label 126

setting the font information 89

setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting the radio to be on or off 200

setting the size 180

setting whether a radio is visible

when the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

radiogroup item 62

adding accessibility messages 71

choices, setting 234

detecting whether the mouse is over

the item 134

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

formatting the text 90

label, suppressing 181

linking to a help message 109

positioning the item on the form 114

readonly, setting to be 149

setting the background color 75

setting the background color for

print 140

setting the background color for the

built-in label 124

setting the border 76

setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the check to be on or off 200

setting the font characteristics for the

built-in label 127

setting the font color for the built-in

label 126

setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting whether a check is visible

when the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

rand function 302

random numbers, generating 302

range, setting for input 100

re-entrancy for computes 430

readers, messages for screen readers 71

readonly data, detecting changes 269

readonly option 148

readonly property 215

Index 445

readwrite data, detecting changes 270

references
caching references for computes 429

dereferencing cells 40

dynamic 424

dynamic references in computes 428

element references 423

filtering signatures by item

reference 173

filtering signatures by option

reference 176

filtering signatures by page

reference 179, 193

filtering submissions by item

reference 188

filtering submissions by item

type 189

indirect 40

missing references in computes 430

referencing the XFDL version 425

static references 423

references strings 280

references, source material 2

reformatting input 90

refresh action 195

relational operators 421

relative positioning 113, 114

relative tags
items 111, 112, 119, 121

pages 135, 136, 137, 138

relevancy, detecting changes 263, 264

relevant property 215

remainder, determining 300

remove action 195

repeat
index, determining 354

repeating an action 81

replace action 195

replace function 283

reproducibility of documents 19

required data, detecting changes 268,

271

required property 215

required, setting input to be 99

requirements option 149

resizing images 110

restricted characters in XFDL 17

restricting input 90

returning items with empty values 324

revision, number for forms 106

rich text, creating rich text fields 153,

181

right justify 122

root element 5

root, calculating square roots 305

round function 303

rounding
determining the ceiling 295

determining the floor 298

rounding a number 303

rounding numbers 95

row
adding from a table 248

deleting from a table 246

index, determining 354

index, setting 257

rows, repeating in a table 224

RSA signature See Generic RSA

signature 165

rtf option 153

S
save action 196

save prompt 82

saveform action 196

saveformat option 154

saving forms 196

setting the format 154

scaling images 110

scaling, when printing 145

schema
validating 339

scope identifiers 18

screen readers, messages for 71

scroll bars, setting fields to print

without 144

scrollhoriz option 156

scrollvert option 157

second
converting a date to seconds 341

converting seconds to a date 340

determining the second 346

second function 346, 360

seconds 360

date, converting from 358

time, converting from 358

seconds-from-dateTime function 358

secret, creating writeonly fields 226

securing signed elements 27

select action 196

separator, currency 92, 98

separator, decimal 92, 98

separator, grouping 93, 98

separator, thousands 93, 98

serial number
for a form 106

for a page 136

set function 330

setAttr function 332

settings
global form settings 31

global page settings 32

shortcut keys, creating 122

showing
images 46

text 46

sid 18

generating unique sids 317

getting the sid of a grouped item 324

sight impairments, messages for 71

signature action 196

signature engines, parameters for

common engines 165

signature item 9, 52

controlling which certificate details

the user sees 161

controlling which certificates are

available to the user 161

determining the next item on the

page 120

determining the previous item on the

page 121

signature item (continued)
filtering signatures by

datagroup 158, 159

filtering signatures by group 170, 171

filtering signatures by instance 172

filtering signatures by item

reference 173

filtering signatures by item type 174,

175

filtering signatures by

namespace 175, 176

filtering signatures by option

reference 176, 177

filtering signatures by option

type 178

filtering signatures by page

reference 179, 193

filtering transmissions by

namespace 190

linking an image to a signature 158

linking to a button item 157

recording the identity of the

signer 107

recording the signature type 158, 165

recording the signer’s identity 163

setting the MIME type 163

storing signature notarizations 83

storing the identity of the signer 162

storing the layout information 129

storing the layout information for the

form 129

storing the MIME data 131

storing the signature 131

signature option 157

signatureimage option 158

signaturePad signature
about 165

signature engine parameters 167

signatures
ClickWrap, about 165

CryptoAPI, about 165

data, getting from 320

document-centric model 2

Entrust, about 165

failure conditions 54

filtering 54, 158, 170, 171, 173, 174,

175, 176, 178, 179, 190

filtering triggeritem and

coordinates 38

Generic RSA, about 165

HMAC-Clickwrap signatures 83

HMAC-ClickWrap, about 165

in XFDL 25

linking a button to a signature

item 157

linking an image to a signature 158

mandatory signatures 38

multiple signatures 26

Netscape, about 165

non-repudiation 2

notarizing signatures 83

order of precedence for filters 395

overlapping signatures 26

preventing exploitable overlaps of

signed items 28

preventing layout changes 27

securing signed elements 27

446

signatures (continued)
setting a signing action 196

setting which certificate attributes are

shown 159

setting which signature engine to

use 163

signature buttons 38

signature filters 25

signaturePad, about 165

signer’s name 107

Silanis, about 165

storing identity of signer 162

storing the layout information 129

signdatagroups option 158

signdetails option 159

signer option 162

signer’s name 107

signformat option 163

signgroups option 170

significant digits, setting 95

signing forms 52

signinstance option 171

signitemrefs option 173

signitems option 174

signnamespaces option 175

signoptionrefs option 176

signoptions option 178

signpagerefs option 179

Silanis signature
about 165

signature engine parameters 168

sin function 304

sine
determining the arc sine 294

determining the sine 304

single node binding 205

absolute references 207

bind attribute 208

inheritance 206, 209

multiple models 208

nesting 209

ref attribute 206

relevance 209

size option 180

overriding with itemlocation 180

sizes, defaults for items 393

slider item 9, 64

adding accessibility messages 71

determining the next item on the

page 120

determining the previous item on the

page 121

determining whether the item has the

focus 86

formatting the text 90

label, suppressing 181

linking to a help message 109

positioning the item on the form 114

range, setting 224

readonly, setting to be 149

setting the background color 75

setting the background color for

print 140

setting the background color for the

built-in label 124

setting the border 76

slider item (continued)
setting the border for the built-in

label 125

setting the built-in label text 123

setting the built-in label’s background

color for print 142

setting the built-in label’s font color

for print 143

setting the check to be on or off 200

setting the font characteristics for the

built-in label 127

setting the font color 88

setting the font color for print 141

setting the font color for the built-in

label 126

setting the font information 89

setting the next item in the tab

order 134

setting the previous item in the tab

order 139

setting the size 180

setting whether a check is visible

when the form is printed 148

setting whether the item is active 74

setting whether the item is

visible 200

Smartfill, XForms 216

sorting, topological for computes 428

source material references 2

spacer item 9, 54

determining the next item on the

page 120

determining the previous item on the

page 121

positioning the item on the form 114

setting the built-in label text 123

setting the font characteristics 89

setting the size 180

setting the space between lines of

text 130

spaces
removing leading and trailing

whitespace from strings 290

spacing items on a form 54

whitespace in computes 419

specifications, overlap with XFDL 2

sqrt function 305

square root, calculating 305

status, detecting a change in the forms

status 82

string data type 71, 91

string functions 280, 355

countLines 280

countWords 281

pad 282

property 355

replace 283

strlen 284

strmatch 285

strpbrk 285

strrstr 286

strstr 287

substr 288

tolower 288

toupper 289

trim 290

URLDecode 290

string functions (continued)
URLEncode 291

string patterns 103

strings
counting the number of lines 280

counting the number of words 281

decoding a URL encoded string 290

determining the length of 284

encoding a URL string 291

formatting using set rules 316

locating a character in a string 285

locating a substring within a

string 286, 287

making a string lower case 288

making a string upper case 289

matching strings 285

padding or truncating strings 282

quoted strings 422

removing leading and trailing

whitespace 290

replacing substrings 283

retrieving a substring 288

strings, converting from booleans 349

strings, reference 280

strlen function 284

strmatch function 285

strpbrk function 285

strrstr function 286

strstr function 287

structure of XFDL
arrays 10

binary data objects 17

document reproducibility 19

items 7

options 10

restricted characters 17

scope identifiers 18

top level structure of XFDL forms 5

submission
See also XForms Submission 273

submissions
determining which item triggered a

submission 194

filtering by datagroup 183

filtering by group 186

filtering by item reference 188

filtering by item type 189

filtering by option reference 191

filtering by option type 192

filtering by page reference 193

HTML syntax 185

linking to another file 195

order of precedence for filters 395

setting a submit action 196

setting the format of a

submission 184

setting the url for 196

XForms submissions 236, 237

submissions, XForms 216

actionref attribute 216

submit
submitting the XForms model 255

submit action 196

submitting forms 37

substr function 288

Index 447

substrings
locating a substring within a

string 286

replacing 283

retrieving a substring 288

suppresslabel option 181

switch
toggling the case 259

T
tab order

changing by setting the focus 86

setting the next item 134

setting the previous item 139

table
first element, identifying 85

index, determining row index 354

index, setting 257

last item, identifying 128

repeating rows 224

row, adding 248

row, deleting 246

table item 65

repeating rows of items 225

setting the border 76

table, determining row in a table 335

tables, adding to a form 65

tags
generating unique tags 317

tan function 305

tangent
determining the arc tangent 294

determining the tangent 305

templates, setting for input 100

terminology, XFDL 2

ternary operator 420

text
adjusting the space between

lines 130

counting lines of text 280

counting the number of words 281

creating rich text fields 153, 181

determining the length of 284

displaying 46, 123

formatting using set rules 316

justifying 122

locating a character in 285

locating a string within a

substring 286, 287

making text lower case 288

making text upper case 289

matching text 285

padding or truncating strings 282

removing leading and trailing

whitespace 290

replacing substrings 283

retrieving a substring 288

textype option 181

thickness option 182

thousands separator 93, 98

tiling, when printing 145

time
current time, determining 356

determining the current time 346

determining the hour 344

determining the minute 344

time (continued)
determining the second 346

determining the time 347

seconds, converting to 358

time data type 91

time function 347

time functions 340, 356

dateToSeconds 341

hour 344

minute 344

months 361

now 346, 356

second 346

seconds 360

seconds-from-dateTime 358

See also date functions 347

time 347

timing an action 81

titles
displaying 46

form titles 106

toggle function 334

tolower function 288

toolbar item 9, 55

detecting whether the mouse is over

the item 134

determining the next item on the

page 120

determining the previous item on the

page 121

moving items to the toolbar 56

setting the background color 75

toolbars, adding to a form 55

Topaz signature
signature engine parameters 167

topological sorting, computes 428

toupper function 289

transmissions See submissions 194

transmit
transmitting the XForms model 255

transmitdatagroups option 183

transmitformat option 184

transmitgroups option 186

transmititemrefs option 188

transmititems option 189

transmitnamespaces option 190

transmitoptionrefs option 191

transmitoptions option 192

transmitpagerefs option 193

trigger, detecting if a value changes 334

triggering actions
automatically 35

from a list 39, 41, 48, 49

with a button 37

triggeritem option 194

trigonometry
determining the arc cosine 292

determining the arc sine 294

determining the arc tangent 294

determining the cosine 296

determining the sine 304

determining the tangent 305

trim function 290

truncating strings 282

turning items off 74

type option 194

type property 215

type settings 90

U
UFDL

origins 1

unary minus operator 421

underline, setting for font 88

universal settings
form settings 31

page settings 32

updateModel function 338

uploading data 242

upper case
making a string upper case 289

URL encoding
decoding a string 290

encoding a string 291

url option 196

URLDecode function 290

URLEncode function 291

user controls 37

utility functions 306, 364

applicationName 306

applicationVersion 306

applicationVersionNum 307

checkValidFormats 308

choose 364

countChildren 310

countDatagrouptems 310

countGroupedItems 311

current 365

decimal 312

destroy 312

duplicate 313

forLoop 314

formatString 316

generateUniqueName 317

get 318

getAttr 319

getDataByPath 320

getGroupedItem 324

getInstanceRef 325

getPosition 326

getPref 327

getReference 329

isValidFormat 330

power 364

set 330

setAttr 332

toggle 334

xforms.getPosInSet 335

xforms.getSizeOfSet 336

xforms.updateModel 338

xmlmodelUpdate 338

xmlmodelValidate 339

V
validity, detecting changes 265, 276

value
detecting if a value changes 334

determining an absolute value 291

returning items with empty

values 324

value change, registering in XForms 276

448

value option 199

definition 422

value, setting in XForms 258

version
determining version of running

application 306, 307

form version 106

version attribute 5

version, referencing the XFDL version

option 425

vertical scrolling in fields 157

Viewer, getting the user preferences 327

visible option 200

vision impairments
recording operating system colors 76

vision impairments, messages for 71

void data type 91

W
Web Services

specifying requirements 149

Web Services functions 201

webservices option 201

week, determining the day of the

week 342

weight, setting for font 88

whitespace
removing leading and trailing

whitespace from strings 290

whitespace in computes 419

width
setting for items 180

setting for lines 182

within modifier 115

words, counting the number of 281

writeonly option 202

writeonly, setting an item to be 226

WSDL functions 201

X
x-y coordinates 78

XFDL
commenting 18

compute system 419

design goals 1

element definition 5

element references 423

form structure 5

introduction to 1

item definition 7

MIME types 3

notation 2

overlap with other specifications 2

page definition 5

quoted strings 422

restricted characters 17

signatures in XFDL 25

submitting forms as 184

terminology 2

version 5

XFDL, saving forms as 154

XForms
actions

See XForms Actions 245

XForms (continued)
conformance, determining 355

event handlers
See events 261

model item properties
See property settings 213

model, creating 211

See also XForms functions 349

version, determining 355

xforms:group option 219

xforms:input option 220

xforms:output option 222

xforms:repeat option 224

xforms:secret option 226

xforms:select option 227

xforms:select1 option 232

xforms:submit option 236

xforms:switch option 237

xforms:textarea option 241

xforms:trigger option 239

xforms:upload option 242

XForms Actions
functions, using with 246

placement in a form 246

syntax 245

xforms:delete action 246

xforms:insert action 248

xforms:message action 250

xforms:rebuild action 251

xforms:recalculate action 252

xforms:refresh action 253

xforms:reset action 253

xforms:revalidate action 254

xforms:send action 255

xforms:setfocus action 256

xforms:setindex action 257

xforms:setvalue action 258

xforms:toggle action 259

XForms functions 349

avg 351

boolean-from-string 349

choose 364

count-non-empty 354

current 365

days-from-date 356

empty return values 349

if 350

index 354

instance 363

max 353

min 352

months 361

NaN 349

now 356

power 364

property 355

return types 349

seconds 360

seconds-from-dateTime 358

See also function calls 349

XForms instance
filtering signatures 171

XForms instance replace 216

XForms model
about 6

construction complete,

registering 266

XForms model (continued)
construction, registering 266

destruction, registering 267

instance, locating an 363

model item properties
See property settings 213

ready, registering when 270

rebuilding the model 251

recalculating the model 252

refreshing the model 253

resetting the model 253

revalidating the model 254

setting a value 258

submitting the model 255

updating 338

XForms options 205

alert setting 210

help setting 211

hint setting 210

metadata sub-options 210

nodeset binding 209

single node binding
See single node binding 205

XForms Smartfill 216

XForms submission
begins, registering 273

complete, registering 274

error, registering 275

XForms submissions 216

actionref 216

xforms-deselect event 262

xforms-disabled event 263

xforms-enabled event 264

xforms-invalid event 265

xforms-model-construct event 266

xforms-model-construct-done event 266

xforms-model-destruct event 267

xforms-optional event 268

xforms-readonly event 269

xforms-readwrite event 270

xforms-ready event 270

xforms-required event 271

xforms-select event 272

xforms-submit event 273

xforms-submit-done event 274

xforms-submit-error event 275

xforms-valid event 276

xforms-value-changed event 276

xforms:alert 210

xforms:case 237

xforms:delete action 246

xforms:group option 219

xforms:help 211

xforms:hint 210

xforms:input option 220

xforms:insert action 248

xforms:item 227, 232

xforms:itemset 227, 232

xforms:message action 250

xforms:output option 222

xforms:range option 223

xforms:rebuild action 251

xforms:recalculate action 252

xforms:refresh action 253

xforms:repeat option 224

xforms:reset action 253

xforms:revalidate action 254

Index 449

xforms:secret option 226

xforms:select option 227

xforms:select1 option 232

xforms:send action 255

xforms:setfocus action 256

xforms:setindex action 257

xforms:setvalue action 258

xforms:submit option 236

xforms:switch option 237

xforms:textarea option 241

xforms:toggle action 259

xforms:trigger option 239

xforms:upload option 242

xforms/
label

suppressing the label 181

xforms.getPosInSet function 335

xforms.getSizeOfSet function 336

xforms.updateModel function 338

xformsmodels option 211

XML data model
getting a reference to an instance in

the XML data model 325

XML epilog 19

xml model
updating 338

XML prolog 19

xml/
lang attribute 17

xmlmodelUpdate function 338

xmlmodelValidate function 339

XPath
nodeset, determining the context 365

Y
year

determining the year 347

year data type 91

year function 347

year window, setting 100

year, determining the year 340

450

����

Program Number:

Printed in USA

S325-2600-00

	Contents
	Introduction
	Origin and Goals
	References
	Terminology
	Notation
	Overlap With Other Specifications
	Non-Repudiation and the Document-Centric Model
	Form Names and Extensions
	MIME Types

	The Structure of XFDL Forms
	Top-Level Structure
	Overview of XForms Models
	Items
	Options and Array Elements
	XForms-related Options
	Options in the XFDL Namespace
	Implicit Options
	Content Models for XFDL Options

	Locales
	Characters in Character Data Content
	Base-64 and Compressed Encoding of Binary Data
	Scope Identifiers (sid)
	Commenting XFDL
	Document Reproducibility

	Small XFDL Form Examples
	signatures in XFDL
	Applying signature Filters
	Namespaces in signature Filters
	Applying Multiple signatures
	Securing signed Elements
	Preventing Layout Changes
	Preventing Exploitable Overlaps of signed Elements

	Global Settings
	Form Globals
	Page Globals

	Details on Items
	action
	box
	button
	cell
	check
	combobox
	data
	field
	help
	label
	line
	list
	popup
	radio
	signature
	spacer
	toolbar
	<custom item>

	Details on XForms Items
	checkgroup
	pane
	radiogroup
	slider
	table

	Details on Options and Array Elements
	Syntax
	Option Content
	Order of Precedence of Options
	Defining Form Global and Page Global Options
	Data Type Designators Used in Option Descriptions
	acclabel
	activated
	active
	bgcolor
	border
	colorinfo
	coordinates
	data
	datagroup
	delay
	dirtyflag
	excludedmetadata
	filename
	first
	focused
	focuseditem
	fontcolor
	fontinfo
	format
	formid
	fullname
	group
	help
	image
	imagemode
	itemfirst
	itemlast
	itemlocation
	itemnext
	itemprevious
	justify
	keypress
	label
	labelbgcolor
	labelborder
	labelfontcolor
	labelfontinfo
	last
	layoutinfo
	linespacing
	mimedata
	mimetype
	mouseover
	next
	pagefirst
	pageid
	pagelast
	pagenext
	pageprevious
	previous
	printbgcolor
	printfontcolor
	printing
	printlabelbgcolor
	printlabelfontcolor
	printsettings
	printvisible
	readonly
	requirements
	rtf
	saveformat
	scrollhoriz
	scrollvert
	signature
	signatureimage
	signdatagroups
	signdetails
	signer
	signformat
	signgroups
	signinstance
	signitemrefs
	signitems
	signnamespaces
	signoptionrefs
	signoptions
	signpagerefs
	size
	suppresslabel
	texttype
	thickness
	transmitdatagroups
	transmitformat
	transmitgroups
	transmititemrefs
	transmititems
	transmitnamespaces
	transmitoptionrefs
	transmitoptions
	transmitpagerefs
	triggeritem
	type
	url
	value
	visible
	webservices
	writeonly
	<custom option>

	Details on XForms Options
	XForms Namespace
	Linking Input Items to the XForms Data Model
	Single Node Binding
	Using the ref Attribute to Create a Single Node Binding
	Using the bind Attribute to Create a Single Node Binding

	Nodeset Binding
	Bindings and Relevance
	Metadata Sub-Options
	Alert Setting
	Hint Setting
	Help Setting

	xformsmodels
	xforms:group
	xforms:input
	xforms:output
	xforms:range
	xforms:repeat
	xforms:secret
	xforms:select
	xforms:select1
	xforms:submit
	xforms:switch
	xforms:trigger
	xforms:textarea
	xforms:upload

	Details on XForms Actions
	Syntax
	Actions and XForms Functions
	Placing Actions in a Form
	xforms:delete
	xforms:insert
	xforms:message
	xforms:rebuild
	xforms:recalculate
	xforms:refresh
	xforms:reset
	xforms:revalidate
	xforms:send
	xforms:setfocus
	xforms:setindex
	xforms:setvalue
	xforms:toggle

	Details on XForms Event Handlers
	Syntax
	Placing Events in a Form
	DOMActivate
	xforms-deselect
	xforms-disabled
	xforms-enabled
	xforms-invalid
	xforms-model-construct
	xforms-model-construct-done
	xforms-model-destruct
	xforms-optional
	xforms-readonly
	xforms-readwrite
	xforms-ready
	xforms-required
	xforms-select
	xforms-submit
	xforms-submit-done
	xforms-submit-error
	xforms-valid
	xforms-value-changed

	Details on Function Calls
	Examples
	About Parameters
	Reference Strings
	Usage Details on Using Functions

	String Functions
	countLines
	countWords
	pad
	replace
	strlen
	strmatch
	strpbrk
	strrstr
	strstr
	substr
	tolower
	toupper
	trim
	URLDecode
	URLEncode

	Math Functions
	abs
	acos
	annuity
	asin
	atan
	ceiling
	compound
	cos
	deg2rad
	exp
	fact
	floor
	ln
	log
	mod
	pi
	power
	rad2deg
	rand
	round
	sin
	sqrt
	tan

	Utility Functions
	applicationName
	applicationVersion
	applicationVersionNum
	checkValidFormats
	countChildren
	countDatagroupItems
	countGroupedItems
	decimal
	destroy
	duplicate
	forLoop
	formatString
	generateUniqueName
	get
	getAttr
	getDataByPath
	getGroupedItem
	getInstanceRef
	getPosition
	getPref
	getReference
	isValidFormat
	set
	setAttr
	toggle
	xforms.getPosInSet
	xforms.getSizeOfSet
	xforms.updateModel
	xmlmodelUpdate
	xmlmodelValidate

	Time and Date Functions
	date
	dateToSeconds
	day
	dayOfWeek
	endOfMonth
	hour
	minute
	month
	now
	second
	time
	year

	Details on XForms Function Calls
	Return Types
	Empty Return Values
	Boolean Functions
	boolean-from-string
	if

	Number Functions
	avg
	min
	max
	count-non-empty
	index

	String Functions
	property

	Date and Time Functions
	now
	days-from-date
	seconds-from-dateTime
	seconds
	months

	Node-set Functions
	instance

	Utility Functions
	choose
	power
	current

	Quick Reference Tables
	Table of Items and Form and Page Globals
	Table of Options
	Cross Reference Table for Items and Options

	Default Sizes
	Order of Precedence of Filters
	Color Table
	The XFDL Compute System
	Whitespace in Computes
	Multiline Computes

	Structure of Mathematical and Conditional Expressions
	Table of Operators
	Precedence of Operations
	Decision Operations and Namespace Qualification
	Illegal Characters in XML Attributes

	Definition of Value
	Quoted Strings
	XFDL References to Elements
	Referencing the XFDL Version

	Function Call Syntax
	Representing and Running XFDL Computes
	Introduction
	Cached Dependency Lists
	Topological Sorting
	Handling Dynamic References
	Reference Caching
	Re-entrancy
	Duplicate Entries on the Total Change List
	Missing References
	Handling of Element Deletion
	Limitations

	XForms and XFDL Computes

	Appendix. Notices
	Trademarks

	Index

