
IBM® Workplace Forms™

Creating Signature Buttons in XFDL

Version 2.6.1

S325-2604-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 25.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Creating Signature Buttons in XFDL . . 1

What the User Sees 1

Signature Basics 2

Signing a Form 3

Setting the Text that the Button Displays 4

Making Signatures Mandatory 4

Signing Portions of Forms 5

About the Signature Filters 6

Order of Precedence of Signature Filters 7

Elements to Exclude from Signatures 8

Using Filters to Guarantee Form Security 9

Setting the Signature Type 9

Using Generic RSA Signatures 10

Using Microsoft CryptoAPI Signatures 10

Using Netscape Signatures 11

Using Clickwrap Signatures 11

Using Authenticated Clickwrap Signatures . . . 14

Using Signature Pad Signatures 15

Using Entrust Signatures 17

Using Silanis Signatures 18

Reference: Available Options for Digital Signature

Buttons 23

Appendix. Notices 25

Trademarks 26

© Copyright IBM Corp. 2003, 2006 iii

iv

Creating Signature Buttons in XFDL

This document explains how to create signature buttons in Extensible Forms

Description Language (XFDL). It illustrates the various types of signing

ceremonies, describes how to build a basic signature button, and introduces

signature filters for increasing the flexibility of signatures and the security of

signed forms.

This document is intended for forms designers and assumes that you have a basic

knowledge of XFDL.

It contains the following sections:

v ″What the User Sees″ — Explains the signing ceremony from the user’s

perspective, and demonstrates how a signature prevents further modification of

the form.

v ″Signature Basics″ — Introduces the elements of a signature and provides

sample code for a basic signature button.

v ″Setting the Text that the Button Displays″ — Explains how to set the button to

display different text depending on whether the form has been signed.

v ″Making Signatures Mandatory″ — Explains when and why you should make

signatures mandatory, as well as providing sample code and usage details.

v ″Signing Portions of Forms″ — Introduces the concept of signature filters and

how they can enhance security. It provides descriptions of the different types of

filters and how you can use them, as well as supplying sample code.

v ″Setting the Signature Type″ — Provides an overview of signature types, details

available engines, and presents sample code.

v ″Reference: Available Options for Digital Signature Buttons″ — Provides a list

of all the options you can use with signature buttons.

What the User Sees

To sign a form, users click the signature button. Typically, signature buttons are

recognized by the text they display, or a label near the button. They also tend to be

larger than the text, since they also have to display the signer’s name once they are

signed.

When users click the signature button, the Digital Signature Viewer opens. The

Digital Signature Viewer allows users to sign forms, verify or delete existing

signatures, and view the details of what parts of the form were signed.

© Copyright IBM Corp. 2003, 2006 1

Users click Sign to sign the form. If they have more than one certificate installed

on their computer, a dialog box appears, displaying all of the available signatures

and allowing them to choose one. Once users have selected a certificate, the form

is signed and the Digital Signature Viewer displays the details of the signature.

User’s then click OK to return to the form. In the form, the signature button

changes to reflect the new signature. Typically, it displays the name and email

address of the signer (although this depends on the type of signature engine used).

Once a form is signed, the Viewer prevents users from changing any of the signed

information. Furthermore, when the user mouses over a signed item in a form, a

tooltip appears indicating that the item has been signed and cannot be altered.

Signature Basics

A typical signature button is created using the following options:

 <button sid="BUTTON1">

 <type>

 <value>

 <format>

2

<size>

 <signformat>

 <signature>

 </button>

These options define the characteristics of the signature button in the following

ways:

v type — Setting the type option to signature indicates that this is a signature

button.

v value — The value option sets the text that the button displays. In general, you

will display an instruction, such as ″Click here to sign″, or the signer’s identity

(typically the signer’s name and email address).

v format — Use format to make the signature mandatory, so that the user must

sign the button before submitting the form.

v size — Use size to set the size of the button. We recommend that you set

signature buttons to be at least 40 characters wide. This ensures that there is

room to display the signer’s name and email address on the button.

v signformat — Use signformat to set which type of signature you want the button

to create, such as Netscape, Microsoft®, ClickWrap, and so on.

v signature — The signature option sets the name of the signature item that will be

created when the form is signed.

In addition to the options listed above, signature buttons also use a number of

filters that determine which portions of the form are signed. These filters are

created by adding a combination of filtering options to the button. These filtering

options are discussed in greater detail later in this document.

Signing a Form

When a user clicks a signature button, the Viewer automatically creates the

following elements in the form:

v A signer option is added to the signature button. In general, this option contains

the signer’s name and email address. However, the value assigned to this option

depends on the signature engine that was used to sign the form.

v A signature item is created on the same page as the signature button. This item is

given the name indicated in the button’s signature option, and is used to store

the details of the signature.

While you do not need to create the signature item yourself, the following code

shows the options typically used in a signature item:

 <signature sid="SIGNATURE1">

 <layoutinfo>

 <signformat>

 <signature>

 <fullname>

 <mimedata>

 </signature>

The signature item will also include any of the filtering options used in the

signature button.

Creating Signature Buttons in XFDL 3

Setting the Text that the Button Displays

Signature buttons switch between two states: unsigned and signed. When a

signature button is unsigned, it is generally good practice to have the button

display instructions, such as ″Click here to sign″. When a signature button is

signed, it is generally a good practice to show the identity of the person who

signed it.

Since buttons display the text in their value option, you must set the value option

appropriately, depending on whether the button is unsigned or signed. To do this,

you must use a compute.

The compute for this relies on the button’s signer option. As discussed earlier, the

signer option is created by the Viewer when the button is signed. This means that

there is no signer option when the button is unsigned.

With this in mind, you can create a simple test to set the value of the button. If the

signer option has no value (that is, if it does not exist), then there is no signature

and the button should read ″Click here to sign″. If the signer option has a value,

then there is a signature and the button should show the identity of the signer.

Since the signer option stores the signer’s identity, the button’s value can bet set to

equal the signer option.

More formally, you might express this logic as: if the signer option is empty, then

set the button’s value to ″Click here to sign″; otherwise, set the button’s value to

equal the signer option.

In XFDL, you would write this as follows:

 <button sid="BUTTON1">

 <value compute="signer == ’’ ? ’Click to sign’ : signer"></value>

 </button>

Making Signatures Mandatory

Most signatures are required. That is, most documents that offer a place to sign

also require a signature before they can be accepted or processed.

Similarly, you may want to make your signature buttons mandatory. When you

make the signature button mandatory, the Viewer will prevent the user from

submitting the form until they have signed it. This ensures that you do not receive

unsigned forms.

You can use the format option to make signatures mandatory. In this case, the

format option should contains two elements:

v datatype — Allows you to set the data type to string. This means that the value

of the button (the text that is displayed by the button) will be a string. For

example:

 <datatype>string</datatype>

v constraints — Allows you to place constraints on items, such as templates,

lengths, and ranges. You can also use constraints to make the button mandatory.

The format of constraints is:

 <constraints>

 <settingname1>setting</settingname1>

 ...

 <settingnamen>setting</settingnamen>

 </constraints>

4

In this case, you only want to ensure that the signature button is mandatory, so

that the user must sign the button before they can submit the form. Therefore, you

must add the mandatory element. The format of mandatory is:

 <mandatory>on|off</mandatory>

The mandatory element must be contained inside the constraints element, as shown:

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

For example, the format option would be written as:

 <button sid="BUTTON1">

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 </button>

Once you have set the button to be mandatory, you may also need to change the

value option of the button. This is because the mandatory feature is triggered off of

the value option of the item. If the item has no value, the Viewer will force the user

to provide a value. If the item has a value, the Viewer will allow the user to

continue.

Earlier, we discussed setting unsigned buttons to read ″Click here to sign″.

However, if we assign a value to a button that is unsigned, the mandatory feature

will not work correctly. Thus, we must modify the logic that sets the button’s value

option.

In this case, we want to use the following logic: if the signer option is empty, then

set the button’s value to empty; otherwise, set the button’s value to equal the signer

option.

For example, a button with the correct format and value options would be written

as:

 <button sid="BUTTON1">

 <format>

 <datatype>string</datatype>

 <constraints>

 <mandatory>on</mandatory>

 </constraints>

 </format>

 <value compute="signer == ’’ ? ’’ : signer"></value>

 </button>

Note: This works for forms that have a single signature. If your form requires

multiple signatures, there are more sophisticated methods that you must use

to make each signature become mandatory in turn.

Signing Portions of Forms

Forms are frequently signed by more than one person. For example, many forms

include a ″For Office Use Only″ section that requires a second signature by one of

the staff processing the form. In these cases, the office worker must be able to enter

more information in the unsigned portion of the form and then add their own

signature.

Creating Signature Buttons in XFDL 5

For example, the following diagrams show a form in which the first signature

signs the body of the form, but not the second signature. The second signature

then signs the body of the form, including the first signature. This allows the

second signer to endorse the original signature.

Signature 2Signature 1 Signature 2Signature 1

Signature 1 signs the filled
section of the form.

Signature 2 signs Signature 1
and the filled section of the
form.

XFDL makes this possible by using signature filters. Signature filters specify which

parts of the form a particular signature will sign. This means that you can create

one signature that sign only the first portion of the form, and then a second

signature that signs the second portion of the form, or the entire form.

Note: If you do not use any signature filters, the entire form is signed by default.

About the Signature Filters

When creating filters, you must first decide what type of filtering you want to use:

v keep — Keep filters let you specify the portions of the form you want to sign,

leaving the rest of the form unsigned.

v omit — Omit filters let you specify the portions of the form you don’t want

signed, and ensures that the rest of the form is signed.

Note: Omit filters provides greater security than keep filters, and should be

used as a best practice.

Once you have decided what sort of filtering to use, you can create your filters by

combining the various filtering options. The filtering options are:

v signitems option — Specifies the types of items that the signature will keep or

omit. For example, you might set the filter to omit all button items from the

signature.

v signoptions option — Specifies the types of options that the signature will keep

or omit. For example, you might set the filter to omit all triggeritem options from

the signature.

v signgroups option — Specifies one or more groups, as defined by the group

option, that the signature will either keep or omit. This filters any radio buttons

or cells belonging to that group, but does not filter list, popup, or combobox items.

For example, if you had a popup containing a cell for each State, you might set

the filter to omit the State group, which would omit all cells in that group.

v signdatagroups option — Specifies one or more datagroups, as defined by the

datagroup option, that the signature will either keep or omit. This filters data

items belonging to that datagroup, but does not filter any action, button, or cell

items. For example, if you had an enclosure button containing references, you

might set a filter to omit the References datagroup, which would omit all data

items in that group.

6

v signinstance option — Specifies the XForms instance data that the signature will

either keep or omit. For example, you might set the filter to omit any data that

is not sent to the server.

v signitemrefs option — Specifies individual items that the signature will keep or

omit. For example, you might set the filter to omit BUTTON1 on PAGE1.

v signoptionrefs option — Specifies individual options that the signature will keep

or omit. For example, you might set the filter to omit BUTTON1.value on

PAGE1.

v signnamespaces option — Specifies all of the form elements and attributes in the

indicated namespace that the signature will keep or omit. For example, you

might set the filter to omit the http://www.ibm.com/xmlns/prod/XFDL/
Custom namespace.

v signpagerefs option — Specifies individual pages that the signature will keep or

omit. For example, you might set the filter to omit PAGE1.

Each filtering option must be set to either keep or omit, and must include a list of

elements. For example, to omit all buttons and labels from a signature, you would

use the following filter:

 <button sid="BUTTON1">

 <signitems>

 <filter>omit</filter>

 <itemtype>button</itemtype>

 <itemtype>label</itemtype>

 </signitems>

 </button>

Signatures can include any number filters. Each filter acts in an order of

precedence. For example, the signitems filter is always processed first. The

signoptions filter is then only applied to those items that remain.

For example, to omit all button and label items, as well as omitting all bgcolor

options in the remaining items, you would use the following filter:

 <button sid="BUTTON1">

 <signitems>

 <filter>omit</filter>

 <itemtype>button</itemtype>

 <itemtype>label</itemtype>

 </signitems>

 <signoptions>

 <filter>omit</filter>

 <optiontype>bgcolor</optiontype>

 </signitems>

 </button>

For detailed description of the order of precedence, see ″Order of Precedence of

Signature Filters″.

Order of Precedence of Signature Filters

Complex forms frequently use a combination of filter options. As a result, the

Viewer must follow an order of precedence so that filter options are always

processed in a consistent manner. The following table lists the behavior of the filter

options and the order in which the Viewer applies them:

Creating Signature Buttons in XFDL 7

Filter Option Omit Filter Keep Filter Notes

1. signinstance Omits only data in

the indicated

instance; throws

them out.

Keeps only data in

the indicated

instance; throws

others out.

2. signnamespaces Omits only elements

and attributes in the

namespaces

indicated; throws

them out.

Keeps only elements

and attributes in the

namespaces

indicated; throws

others out.

An element is kept if

any of its children

are kept, even if it is

in the wrong

namespace.

3. signitems Omits only the types

listed; omitted items

are not signed.

Keeps only the types

listed; all other types

are not signed.

4. signoptions In the items that

remain (not omitted

by signitems) omits

all listed options.

Omitted options are

not signed.

In the items that

remain, keeps all

indicated options. All

other options remain

unsigned.

5. signpagerefs Omits the specified

pages. Overrides

settings in signitems

and signoptions.

Keeps the specified

pages. Respects

settings in signitems

and signoptions.

Omitted pages are

not completely

deleted; the page sid

is preserved.

6. signdatagroups and

signgroups

Omits the items in

that group, even if

they are of a type

that should be kept

according to a

signitems setting.

Keeps the items in

that group, even if

they are of a type

that should not be

kept according to a

signitems setting.

These settings

override those in

signpagerefs.

7. signitemrefs Omits the specified

items and overrides

previous settings.

Keeps the specified

items and overrides

previous settings.

Respects settings in

signoptions.

These settings

override signitems,

signgroups,

signpagerefs, and

signdatagroups.

8. signoptionrefs Omits the specified

options, overriding

any previous settings.

Keeps the specified

options, overriding

any previous settings.

If the item containing

the option has been

omitted, that item’s

sid and the specified

option are preserved.

This option’s setting

overrides all other

filter options.

When using signatures, note that the mimedata option is always omitted in the

following scenarios, regardless of the signature filters in use:

v The mimedata option in a signature item is always omitted from the signature that

item represents.

v The mimedata option in a data item that stores a signature image (see the

signatureimage option) is always omitted from the signature that image

represents.

Elements to Exclude from Signatures

There are certain form elements that you should always exclude from signatures.

For example, when you click a submit button, the triggeritem option is

8

automatically set, recording the name of the button that triggered the submission.

However, if a signature been applied to the triggeritem option, the Viewer will not

be able to update the option correctly.

In general, you should always exclude the following form elements from a

signature:

v the triggeritem option

v the coordinates option

v any portion of the form that subsequent users will change

v subsequent signatures and signature buttons

v the signature item that stores the information for the signature you are creating

Using Filters to Guarantee Form Security

Digital signatures protect the legal validity of signed forms. If you do not use best

practices when creating your signature filters, you increase the chance that users

will be able to repudiate signed forms based on a misunderstanding about what

they’ve signed.

For example, a mortgage contract with a flawed signature filter could allow

tampering to terms that are crucial to the contract. This alteration could confuse or

modify the terms of the contract, and result in a challenge to the validity of the

document.

Judicious use of omit and keep filters can guarantee form security. As a best

practice, you should always use the omit filter to create signatures. If you use a

keep filter, it should only be to sign another signature that is already using an omit

filter.

Using these practices will help prevent you from accidentally excluding items and

options that should be signed, and will prevent malicious users from adding to the

form’s contents without breaking the signature.

Setting the Signature Type

XFDL supports a number of different signature engines. Each signature button

must be configured to use a specific engine when signing the form. The available

engines are:

v Generic RSA

v Authenticated Clickwrap

v Microsoft CryptoAPI

v Signature Pad

v Netscape

v Entrust

v Clickwrap

v Silanis

You can specify the signature engine for your form by using the engine parameter

in the signformat option. If you do not include a signformat option or do not set the

engine parameter, the form will use the Generic RSA engine by default.

The syntax for using each engine is described in the following sections.

Creating Signature Buttons in XFDL 9

Using Generic RSA Signatures

The Generic RSA engine is the default signing engine, and is used if you do not

declare an engine in the signformat option. It automatically searches for any

standard RSA certificates on the user’s computer, which includes both Microsoft

CryptoAPI and Netscape certificates.

To create a signature button that uses the Generic RSA engine, set the following

parameters in the signformat option:

v MIME type — The MIME type that is used to store the signature information.

You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. In this case, Generic RSA.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

For example, the XFDL code for a button that uses the Generic RSA engine and

prevents the signature from being deleted looks like this:

 <button sid="BUTTON1">

 <signformat>

 application/vnd.xfdl;

 engine="Generic RSA";

 delete="off"

 </signformat>

 </button>

Using Microsoft CryptoAPI Signatures

The CryptoAPI engine uses certificates located in the Microsoft certificate store. To

create a signature button that uses the CryptoAPI engine, set the following

parameters in the signformat option:

v MIME type — The MIME type that is used to store the signature information.

You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. In this case, CryptoAPI.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

CryptoAPI also uses optional parameters to set specific CSP behavior. You should

only set these parameters if you need to use a specific CSP. In all other cases, you

should accept the default values. The parameters are:

v csp — The cryptographic service provider used to create the signature. This

should only be set if you need to use a specific CSP. Otherwise, the signature

will default to the Microsoft Base Cryptographic Service Provider.

v csptype — Identifies the type of CSP in use. This should only be set if you need

to use a specific CSP. Otherwise, the signature will default to a full RSA

implementation (rsa_full).

For example, the generic XFDL code for a button using the CryptoAPI engine

looks like this:

 <button sid="BUTTON1">

 <signformat>

 application/vnd.xfdl;

 engine="CryptoAPI"

 </signformat>

 </button>

10

Using Netscape Signatures

The Netscape engine uses certificates located in the Netscape certificate store.

Although Netscape browsers are not supported by the Viewer, Firefox browsers

use a Netscape certificate store. To create a signature button that uses the Netscape

engine, set the following parameters in the signformat option:

v MIME type — The MIME type that will be used to store the signature

information. You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. In this case, Netscape.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

Netscape also uses an optional parameter to set the hash algorithm used to

generate the signature. This parameter is:

v hashalg — The name of the hash algorithm to use when generating the

signature. Valid algorithms are sha1 and md5. The default algorithm is sha1.

For example, the generic XFDL code for a button using the Netscape engine looks

like this:

 <button sid="BUTTON1">

 <signformat>

 application/vnd.xfdl;

 engine="Netscape"

 </signformat>

 </button>

Using Clickwrap Signatures

Clickwrap signatures are electronic signatures that do not require digital

certificates. While they still offer a measure of security due to an encryption

algorithm, Clickwrap signatures are not security tools. Instead, Clickwrap

signatures offer a simple method of obtaining electronic evidence of user

acceptance to an electronic agreement. The Clickwrap signing ceremony

authenticates users through a series of questions and answers, and records the

signer’s consent. Clickwrap style agreements are frequently found in licensing

agreements and other online transactions.

To create a signature button that uses the Clickwrap engine, set the following

parameters in the signformat option:

v MIME type — The MIME type that is used to store the signature information.

You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. In this case, ClickWrap.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

For example, the XFDL code for a generic signature button using the Clickwrap

engine looks like this:

 <button sid="BUTTON1">

 <signformat>

 application/vnd.xfdl;

 engine="ClickWrap"

 </signformat>

 </button>

Creating Signature Buttons in XFDL 11

This creates a minimal Clickwrap signing ceremony with default options, as

shown:

You can add more features to the signing ceremony by using additional

parameters. For example, you may want to ask the signer some questions to help

confirm their identity, and then have them type some text to confirm their

agreement. These additional parameters are discussed in the next section.

Customizing Your Clickwrap Signing Ceremony

You can customize your Clickwrap signing ceremony by adding parameters to the

signformat option. The following table lists the optional parameters, their use, and

their default settings:

 Parameter Use Default Text

titleText Sets the title of the signing ceremony.

This is generally used to describe the

signing ceremony, the company, or the

title of the agreement.

Click-Wrap Signing

Ceremony

mainPrompt Typically used to explain the signing

ceremony to users.

None

mainText Normally contains the main text of the

agreement. For example, the text of a

licensing agreement. You can add as

much text as necessary to this

parameter; the signing ceremony

automatically displays scrollbars if the

text is longer than the display field.

None

question1Text -

question5Text

Allows you to ask from one to five

questions that help establish the identity

of the user.

None

answer1Text -

answer5Text

These are the answers to the questions

asked by question1Text to question5Text.

The Viewer normally adds these

parameters to the form as users

complete the fields. However, you can

prepopulate the answers if you want.

None

echoPrompt Use this to instruct the user to echo the

echoText. Generally, if you include

echoText, you will want this to say

something like, ″Please type the

following phrase to show that you

understand and agree to this contract.″

None

echoText This is the actual text that the user

should echo, or re-type. Generally, this

should say something like, ″I

understand the terms of this agreement.″

None

12

Parameter Use Default Text

buttonPrompt This is an instruction line that appears

above the accept and reject buttons. The

user must click the accept button to

sign, so generally the prompt should say

something like, ″Click accept to sign this

document.″

Click the Accept button

to sign.

acceptText Sets the text that the accept button

displays.

Accept

rejectText Sets the text that the reject button

display.

Not Accept

The following diagram illustrates a customized Clickwrap signing ceremony that

uses all of the optional parameters:

The following is the XFDL code that created the above signing ceremony. Note that

the values of some parameters, such as the mainText, have been shortened from the

example above.

 <button sid="BUTTON1">

 <signformat>

 application/vnd.xfdl;

 engine="ClickWrap";

 titleText="ACME Incorporated";

 mainPrompt="End User License Agreement";

 mainText="This ACME Solutions...";

 question1Text="Full name:";

 question2Text="Address:";

 question3Text="Email address:";

 question4Text="Work telephone number:";

 question5Text="Home telephone number:";

Creating Signature Buttons in XFDL 13

echoPrompt="To indicate your acceptance...";

 echoText="I understand the terms of this agreement."

 </signformat>

 </button>

Using Authenticated Clickwrap Signatures

Authenticated Clickwrap enables users to securely sign a form without relying on

an extended PKI infrastructure. In normal use, the user signs the form by entering

an ID and secret, such as a password. When the form is sent to the server, the

server retrieves the user’s secret from a database and uses that secret to verify the

signature. Furthermore, the server can notarize the Authenticated Clickwrap by

signing it with a digital certificate, thereby creating a secondary digital signature.

This secondary signature shows that the server has confirmed the identity of the

signer, and ensures that the original signature can be trusted over time.

Note: Authenticated Clickwrap is a separately licensed product. Please ensure that

your company has the license to use Authenticated Clickwrap before you

provide forms or functionality that rely on it.

Authenticated Clickwrap signatures use all of the parameters that Clickwrap

signatures support. However, in practice you will probably only use the

question1Text through question5Text, and some additional parameters that are

unique to Authenticated Clickwrap.

To create a signature button that uses the Authenticated Clickwrap engine, set the

following parameters in the signformat option:

v MIME type — The MIME type that is used to store the signature information.

You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. In this case,

HMAC-ClickWrap.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

In addition to these parameters and the parameters used by Clickwrap signature,

Authenticated Clickwrap signatures also use the following parameters:

v HMACSigner — Indicates which answers identify the signer. The answer is

always written as answern. For example, if question1Text asked the user’s name,

then answer1 would identify the signer. Note that this parameter is mandatory.

v HMACSecret — Indicates which answers contain the secret. The answer is

always written as answern. For example, if question2Text asked for the user’s

secret, then answer2 would identify the signer. Note that this parameter is

mandatory.

v readonly — Indicates which answers are read-only. This is useful if you have

prepopulated the form, and want to ensure certain answers cannot be changed.

The answer is always written as answern. For example, if you wanted to make

the first answer read-only, then you would use answer1.

Note: The HMACSigner and the HMACSecret cannot point to the same answer.

Furthermore, if you list more than one answer, you must separate the

answers with a comma. Be sure not to add any additional white space, such

as a space. For example, ″answer1,answer2″ is correct.

For example, the following code shows a signature button that will request the

user’s ID and password:

14

<button sid="BUTTON1">

 <signformat>

 application/vnd.xfdl;

 engine="HMAC-ClickWrap";

 question1Text="Enter your ID:";

 question2Text="Enter your password:";

 HMACSigner="answer1";

 HMACSecret="answer2";

 </signformat>

 </button>

Using Signature Pad Signatures

These signatures use a signature pad that plugs into your computer. The signature

pad allows the user to create a hand-written signature that is then applied to the

form. Before you can use these signatures, you must have:

v The Signature Pad Extension for the Workplace Forms™ Viewer

v A signature pad

v Software that enables the signature pad

The Signature Pad Extension is available as a separate install package that adds

support for signature pads to the Viewer.

Signature pads and their supporting software are available from a variety of

vendors. Workplace Forms Viewer supports the signature pads from the following

companies:

v Interlink

v Topaz

v Any WinTab compliant signature pad

Once you have all of these components, you can create and use Signature Pad

signatures.

Creating a Signature

To create a signature button that uses a signature pad, set the following parameters

in the signformat option:

v MIME type — The MIME type that is used to store the signature information.

You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. This is SignaturePad.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

Signature Pad signatures use all of the parameters that Authenticated Clickwrap

signatures support, with the exception of HMACSigner and HMACSecret. As well,

Signature Pad signatures use the following additional parameters:

v tsp — Forces a particular Signature Pad signing engine. Valid setting are:

Interlink, Topaz, and WinTab. If you do not set this parameter, the Viewer will

determine which signature pads are available, and will always use either

Interlink or Topaz in preference to WinTab.

v startText — Sets the text that is displayed by the button that starts the capture of

the hand-written signature. The default text is ″Start Capture″.

v endText — Sets the text that is displayed by the button that ends the capture of

the hand-written signature. The default text is ″End Capture″.

Creating Signature Buttons in XFDL 15

v penColor — Sets the color of the pen that is used to write the signature. This

parameter will accept either a color name, such as ″blue″, or a comma-separated

RGB value, such as ″11, 12, 13″. The default value is ″0, 0, 0″, which is black.

v Background Color — Sets the background for the signature. This parameter will

accept either a color name, such as ″blue″, or a comma-separated RGB value,

such as ″11, 12, 13″. The default value is ″192, 192, 192″, which is a shade of

grey.

Displaying the Signature

Unlike other signature types, Signature Pad signatures create an image of the

handwritten signature that you must display in the signature button. This means

that you must set up the button so that it can properly display the image.

Additionally, your form must include two other images, one that you can display

when the signature is blank and one that you can display when the signature is

invalid.

When you design the form, include both the blank and invalid image in data items

in the form. This will make them available to the signature button.

Sizing the Signature Button and Scaling the Image

In most cases, the signer’s handwritten signature will be larger than the standard

button size for a digital signature. To account for this, you should:

v Make the signature button larger than normal.

v Use the imagemode option to scale the image to the correct size.

To make the signature button larger, use the size option to change it’s height. You

may want to experiment to determine the appropriate size.

To ensure that the image fits within the button, you should also set the imagemode

option to scale. This will resize the image (either by shrinking it or enlarging it) to

a best fit within the button, and will maintain the original aspect ratio.

For example, the following code creates a button that is 40 characters long and 5

lines tall, and that scales the image to fit the button:

 <button sid="BUTTON1">

 <size>

 <width>40</width>

 <height>5</height>

 </size>

 <imagemode>scale</imagemode>

 </button>

Setting the Name of the Signature Image

When the signature is created, the Viewer will automatically create a data item that

stores the signature’s image. You use the signatureimage option to set the name of

the data item and create a link to it from the button. When the Viewer creates the

data item for the image, it will automatically give the item the name that you set

in this option.

For example, to create a data item called SIGIMAGE, you would use the following

code:

 <button sid="BUTTON1">

 <signatureimage>SIGIMAGE</signatureimage>

 </button>

16

Displaying the Signature Image

Once you have created the signature button, you must link it to the signature

images in your form and ensure that the correct image is displayed. To do this,

you add an image option to the button. This will link the button to one of the three

images: blank, invalid, or the signature itself.

To make the decision, you must add a compute to the image option. This compute

will rely on the signer option in the button: if the signer option is empty, then the

form has not been signed and the image should be set to the blank image; if the

signer option is ″INVALID″, then the signature is invalid and the image should be

set to the invalid image; and finally, if the signer option is anything else (which

means it is the signer’s name), then the image should be set to the signature itself.

The following example shows a compute that makes this decision. In this case, the

data items that contain the images are named BLANKIMAGE, INVALIDIMAGE,

and SIGIMAGE:

 <button sid="BUTTON1">

 <image compute="signer == ’’ ? ’BLANKIMAGE’ :

 (signer == ’INVALID’ ? ’INVALIDIMAGE’ :

 ’SIGIMAGE’)"></image>

 </button>

Putting it All Together

The following example shows a signature button that is completely configured for

a Signature Pad signature. In addition, the code includes the BLANKIMAGE data

item and an INVALIDIMAGE data item.

 <button sid="BUTTON1">

 <type>signature</type>

 <signformat>

 application/vnd.xfdl; engine="SignaturePad"

 </signformat>

 <size>

 <width>40</width>

 <height>5</height>

 </size>

 <imagemode>scale</imagemode>

 <signatureimage>SIGIMAGE</signatureimage>

 <image compute="signer == ’’ ? ’BLANKIMAGE’ :

 (signer == ’INVALID’ ? ’INVALIDIMAGE’ :

 ’SIGIMAGE’)"></image>

 </button>

 <data sid="BLANKIMAGE">

 <mimetype>image/jpeg</mimetype>

 <mimedata encoding="base64-gzip">

 H5NstasOO4H=98YDADB3jgSFg+9g813y5h9SDYG2

 </mimedata>

 </data>

 <data sid="INVALIDIMAGE">

 <mimetype>image/jpeg</mimetype>

 <mimedata encoding="base64-gzip">

 3y5h9SDY3jgSFg+9g81G2O4HH=98YD5NstasOADB

 </mimedata>

 </data>

Using Entrust Signatures

The Entrust engine uses Entrust certificates rather than RSA certificates. As such,

users must have Entrust software installed on their computers to access those

certificates.

Creating Signature Buttons in XFDL 17

To create a signature button that uses the Entrust engine, set the following

parameters in the signformat option:

v MIME type — The MIME type that is used to store the signature information.

You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. In this case, Entrust.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

For example, the generic XFDL code for a button using the Entrust engine looks

like this:

 <button sid="BUTTON1">

 <type>signature</type>

 <signformat>

 application/vnd.xfdl;

 engine="Entrust"

 </signformat>

 </button>

Using Silanis Signatures

The Silanis engine uses special Silanis technology. As such, users must have Silanis

software installed on their computers to access those certificates.

To create a signature button that uses the Silanis engine, set the following

parameters in the signformat option:

v MIME type — The MIME type that is used to store the signature information.

You should always use application/vnd.xfdl.

v engine — The name of the signing engine to use. In this case, Silanis.

v delete — Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures. If you want to prevent a signature from

being deleted, set this to off.

Additionally, Silanis software allows you to create No-Lock signatures by adding

the following parameter:

v lock — This flag sets whether the signature locks the data. By default, this is set

to on, which means signatures lock the data they sign. If you want to prevent a

signature from locking data, set this to off. For more information, refer to

″About No-Lock Signatures″.

Sizing the Signature Button and Scaling the Image

Silanis signatures display an image rather than text on the signature button. This

allows the Silanis software to show a graphic of the user’s handwritten signature

once the form is signed. In most cases, this image is larger than the standard

button size for a digital signature. To account for this, you should:

v Make the signature button larger than normal.

v Use the imagemode option to scale the image to the correct size.

To make the signature button larger, use the extent setting in the itemlocation option

to change it’s height. You may want to experiment to determine the appropriate

size.

To ensure that the image fits within the button, you should also set the imagemode

option to scale. This will resize the image (either by shrinking it or enlarging it) to

a best fit within the button, and will maintain the original aspect ratio.

18

For example, the following code creates a button that is 300 pixels wide and 150

pixels tall, and that scales the image to fit the button:

 <button sid="BUTTON1">

 <itemlocation>

 <x>10</x>

 <y>10</y>

 <width>300</width>

 <height>150</height>

 </itemlocation>

 <imagemode>scale</imagemode>

 </button>

Storing the Signature Images

The graphic that displays the user’s handwritten signature is captured once and

then saved until needed. It is not placed in the form until the form is signed.

However, the form must still contain a data item that can store the image after

signing. This means that you must add a data item to your form for this purpose.

The data item should include an empty mimedata option, as shown:

 <data sid="SIGIMAGE">

 <mimedata></mimedata>

 </data>

This item will store the images provided by Silanis once the form is signed.

You also need to supply a ″blank″ image that the button can display before the

form is signed. This image does not actually have to be blank, but should indicate

that the button has not yet been signed.

To add the blank image, create another data item that contains your image, as

shown:

 <data sid="BLANKIMAGE">

 <mimetype>image/jpeg</mimetype>

 <mimedata encoding="base64-gzip">

 H5NstasOO4H=98YDADB3jgSFg+9g813y5h9SDYG2

 </mimedata>

 </data>

Note: Silanis provides a standard image that you can use for unsigned buttons.

However, this image is only available through the Designer, which will

automatically set up the signature button for you.

Linking to the Signature Image

As already discussed, you should include an empty data item in your form. This

item stores the Silanis signature image once the form is signed. However, before

the Viewer can locate that data item, you must add a link to the button that points

to it.

To create this link, set the signatureimage option to the name of the data item. For

example, to link to a data item called SIGIMAGE, you would use the following

code:

 <button sid="BUTTON1">

 <signatureimage>SIGIMAGE</signatureimage>

 </button>

Note that this does not control which image is displayed by the button. It simply

creates a link that tells the Viewer which data item contains the signature image.

Creating Signature Buttons in XFDL 19

Displaying the Right Image

The signature button must display one of two images: the blank image, or the

signature image provided by the Silanis software. As with any button, you use the

image option to set which image is displayed. However, in this case you must also

use a compute to determine which image to display.

This compute relies on the signer option in the button: if the signer option is empty,

then the form has not been signed and the image option should be set to the blank

image; if the signer option has any other value, then there is a signature present

and the image option should be set to the image supplied by Silanis.

The following example shows a compute that makes this decision. In this case, the

data items that contain the images are named BLANKIMAGE and SIGIMAGE:

 <button sid="BUTTON1">

 <image compute="signer == ’’ ? ’BLANKIMAGE’ :

 ’SIGIMAGE’)"></image>

 </button>

Putting it All Together

The following example shows a signature button that is completely configured for

a Silanis signature. In addition, the code includes the BLANKIMAGE data item

and the SIGIMAGE data item:

 <button sid="BUTTON1">

 <type>signature</type>

 <signformat>application/vnd.xfdl; engine="Silanis"

 </signformat>

 <itemlocation>

 <x>10</x>

 <y>10</y>

 <width>300</width>

 <height>150</height>

 </itemlocation>

 <imagemode>scale</imagemode>

 <signatureimage>SIGIMAGE</signatureimage>

 <image compute="signer == ’’ ? ’BLANKIMAGE’ :

 ’SIGIMAGE’)"></image>

 </button>

 <data sid="BLANKIMAGE">

 <mimetype>image/jpeg</mimetype>

 <mimedata encoding="base64-gzip">

 H5NstasOO4H=98YDADB3jgSFg+9g813y5h9SDYG2

 </mimedata>

 </data>

 <data sid="SIGIMAGE">

 <mimedata></mimedata>

 </data>

About No-Lock Signatures

When you create a No-Lock signature, the Viewer does not lock the data covered

by that signature. This means that you can make changes to the data even though

it is signed. Making changes in this way still invalidates the signature, but you can

then apply a second signature to the same data to approve the changes. This

returns the original signature to a valid state.

This is useful in some workflows. For example, you might create a form in which

an employee completes a section and then signs. You might then want a manager

to review the form, make any corrections that are necessary to the employee’s

work, and then sign the form himself to approve the changes.

20

Creating a No-Lock Signature

To create a No-Lock signature, set the lock parameter to off in the signformat

option, as shown:

 <signformat>application/vnd.xfdl; engine="Silanis"; lock="off"

 </signformat>

When creating a No-Lock signature, you must also add a special setting to the

value and signer options for the signature button. This setting is the transient

attribute, which is added to the value and signer tags as shown:

 <button sid="BUTTON1">

 <value transient="on"></value>

 <signer transient="on"></signer>

 </button>

Finally, you must add the transient attribute to the image option as well. In this

case, the transient attribute can go either before or after the compute attribute. For

example, the following image option has the transient attribute before the compute

attribute:

 <image transient="on" compute="signer == ’’ ?

 ’BLANKIMAGE’ : ’SIGIMAGE’)"></image>

The transient setting allows the options to temporarily change their values without

breaking any signatures. This ensures that the signature does not become stuck in

a particular state once a second, overlapping signature is applied.

Creating an Approving Signature for No-Lock Scenarios

An approving signature is a signature that you add to the form so that your users

can approve changes made to data that is covered by a No-Lock signature. The

approving signature must sign all of the data that is covered by the No-Lock

signature, as well as the No-Lock signature itself. If it does not cover the same data

as the No-Lock signature, the No-Lock signature will not return to a valid state

when the approving signature is applied.

The approving signature may also cover additional data. For instance, you may

have a ″public″ section of your form that is covered by a No-Lock signature, and a

″office use only″ section that is covered by an approving signature. In this case, the

approving signature would cover both the ″public″ and ″office use only″ sections.

When you create an approving signature, you must:

v Prevent the the No-Lock signature from signing its own signature image.

v Prevent all approving signatures from signing the image for the No-Lock

signature.

This ensures that the signature image can change later if the state of the signature

changes. For example, if something happens to make the signature invalid, then

the image must change to reflect that.

Preventing the No-Lock Signature from Signing the Image

To prevent the No-Lock signature from signing its signature image, use the

signitemrefs filter to omit the entire data item from the signature. For example, if

the signature image were stored in the SIGIMAGE1 item, you would use the

following filter:

Creating Signature Buttons in XFDL 21

<signitemrefs>

 <filter>omit</filter>

 <itemrefs>SIGIMAGE1</itemrefs>

 </signitemrefs>

If your signature item already contains a signitemrefs filter that omits items, simply

add the signature image to the list of items.

Preventing Approving Signatures from Signing the Image

Next you need to prevent all approving signatures from signing the signature

image for the No-Lock signature. Again, you use the signitemrefs filter to do this, as

shown:

 <signitemrefs>

 <filter>omit</filter>

 <itemrefs>SIGIMAGE1</itemrefs>

 </signitemrefs>

You must add this filter to all signatures that will sign the No-Lock signature.

Putting it All Together

The following example shows two buttons: a No-Lock signature button, and an

approving signature button (that locks the form). The No-Lock signature button

stores its image in the SIGIMAGE1 data item, while the approving signature

button stores its image in the SIGIMAGE2 data item.

Note that only the filters already discussed have been added to the signature

buttons. In an actual form, the No-Lock signature would also filter out the

approving signature.

 <button sid="NoLockSig">

 <type>signature</type>

 <signformat>

 application/vnd.xfdl;

 engine="Silanis";

 lock="off"</signformat>

 <itemlocation>

 <x>10</x>

 <y>10</y>

 <width>300</width>

 <height>150</height>

 </itemlocation>

 <imagemode>scale</imagemode>

 <signatureimage>SIGIMAGE1</signatureimage>

 <value transient="on"></value>

 <signer transient="on"></signer>

 <image transient="on" compute="signer == ’’ ?

 ’BLANKIMAGE’ : ’SIGIMAGE1’)"></image>

 <signitemrefs>

 <filter>omit</filter>

 <itemrefs>SIGIMAGE1</itemrefs>

 </signitemrefs>

 </button>

 <button sid="ApprovingSig">

 <type>signature</type>

 <signformat>application/vnd.xfdl; engine="Silanis"

 </signformat>

 <itemlocation>

 <x>10</x>

 <y>40</y>

 <width>300</width>

 <height>150</height>

 </itemlocation>

22

<imagemode>scale</imagemode>

 <signatureimage>SIGIMAGE2</signatureimage>

 <value></value>

 <signer></signer>

 <image compute="signer == ’’ ? ’BLANKIMAGE’ :

 ’SIGIMAGE2’)"></image>

 <signitemrefs>

 <filter>omit</filter>

 <itemrefs>SIGIMAGE1</itemrefs>

 </signitemrefs>

 </button>

 <data sid="BLANKIMAGE">

 <mimetype>image/jpeg</mimetype>

 <mimedata encoding="base64-gzip">

 H5NstasOO4H=98YDADB3jgSFg+9g813y5h9SDYG2

 </mimedata>

 </data>

 <data sid="SIGIMAGE1">

 <mimedata></mimedata>

 </data>

 <data sid="SIGIMAGE2">

 <mimedata></mimedata>

 </data>

Reference: Available Options for Digital Signature Buttons

The following table lists all of the options that apply to digital signature buttons:

 Option Behaviour

signature Sets the name (sid) that is used for the signature item when it is

created during signing.

signatureimage Sets the name (sid) that is used for the data item that stores the

signature’s image. Used only with Silanis signatures.

signdatagroups Sets which datagroups will be included or excluded from the

signature.

signer Records the identity of the person who signed the form.

signformat Sets the details of the signature, including the MIME type to

encode it, the signature engine to create it, and special settings

for the signature engine.

signgroups Sets which groups will be included or excluded from the

signature.

signinstance Sets which XForms instance data will be included or excluded

from the signature.

signitemrefs Sets specific items that will be included or excluded from the

signature.

signitems Sets which items will be included or excluded from the

signature.

signnamespaces Sets which namespace elements and attributes will be included

or excluded from the signature.

signoptionrefs Sets specific options that will be included or excluded from the

signature.

signoptions Sets which options will be included or excluded from the

signature.

signpagerefs Sets specific pages that will be included or excluded from the

signature.

Creating Signature Buttons in XFDL 23

24

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 25

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Other company, product, or service names may be trademarks or service marks of

others.

26

����

Program Number:

Printed in USA

S325-2604-00

	Contents
	Creating Signature Buttons in XFDL
	What the User Sees
	Signature Basics
	Signing a Form

	Setting the Text that the Button Displays
	Making Signatures Mandatory
	Signing Portions of Forms
	About the Signature Filters
	Order of Precedence of Signature Filters
	Elements to Exclude from Signatures
	Using Filters to Guarantee Form Security

	Setting the Signature Type
	Using Generic RSA Signatures
	Using Microsoft CryptoAPI Signatures
	Using Netscape Signatures
	Using Clickwrap Signatures
	Customizing Your Clickwrap Signing Ceremony

	Using Authenticated Clickwrap Signatures
	Using Signature Pad Signatures
	Creating a Signature
	Displaying the Signature
	Sizing the Signature Button and Scaling the Image
	Setting the Name of the Signature Image
	Displaying the Signature Image
	Putting it All Together

	Using Entrust Signatures
	Using Silanis Signatures
	Sizing the Signature Button and Scaling the Image
	Storing the Signature Images
	Linking to the Signature Image
	Displaying the Right Image
	Putting it All Together
	About No-Lock Signatures
	Creating a No-Lock Signature
	Creating an Approving Signature for No-Lock Scenarios
	Putting it All Together

	Reference: Available Options for Digital Signature Buttons

	Appendix. Notices
	Trademarks

