
IBM® Workplace Forms™

Embedding the Viewer in HTML Web Pages

Version 2.6.1

S325-2598-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 15.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Embedding the Viewer in HTML Web

Pages 1

System Requirements 1

Overview 1

Displaying Forms in an HTML Page 2

Embedding a Form 2

Selecting Which Browsers to Support 3

Creating an Object 3

Defining the Object Parameters 4

Adding a Nested Object 6

Defining the Script Parameters 7

Adding the Form to the Script 8

Adding XML Instances to the HTML Page . . . 9

Sample Embedded Form 11

Sample Embedded XForms Form 11

Using Object Parameters in Computes 13

Embedding Signed Forms 13

Embedding Internationalized Forms 13

Appendix. Notices 15

Trademarks 16

© Copyright IBM Corp. 2003, 2006 iii

iv

Embedding the Viewer in HTML Web Pages

Embedding an XFDL form in an HTML page allows users to view forms inside

portal environments or as part of a series of web pages. Furthermore, it allows

application designers to manipulate the embedded form like any other HTML

object. Unlike other embedded objects, such as HTML or XML forms, embedded

XFDL forms maintain user data even after the web page is changed or refreshed.

This document explains how to embed an XFDL form inside an HTML page using

the HTML object element and associated parameter attributes. It also describes how

to refer to the object parameters from inside the form and recommends best

practices for enclosing signed forms.

System Requirements

To view XFDL forms embedded in HTML pages, users must have Workplace

Forms™ Viewer version 2.5 or higher or a PureEdge-branded Viewer 6.2 or higher

installed on their computer. Additionally, the web pages can be viewed with

Internet Explorer 6, Netscape 7.x, Mozilla 1.x, or Firefox 1.x.

Overview

Embedding a form in an HTML page allows you to display forms in a portal

environment or as part of a series of web pages. This permits forms to be updated

dynamically in response to user selections on the HTML page.

To embed a form, you must use two HTML elements:

v objects — An object allows you to display non-HTML data in the browser. It

also allows you to define the size and borders of an object.

v scripts — The script contains and loads the form.You can also use other scripts

to contain data that is used to modify the form, such as XML instances.

The HTML object is a placeholder. In your HTML file, it specifies the location

where the object will be displayed in relation to the other elements on the web

page. For example, you could place an object inside an HTML table cell:

 <tr>

 <td>

 <object>...</object>

 </td>

 </tr>

The script element is not displayed as part of the web page, so it can be placed

anywhere in your HTML code. You may prefer to place scripts directly after the

object that they are associated with, or at the beginning or end of the page. In the

following example, the script that contains the form is placed immediately after the

table with the form’s object:

 </table>

 <script>

 ... XFDL form ...

 </script>

© Copyright IBM Corp. 2003, 2006 1

Displaying Forms in an HTML Page

When you embed an XFDL form in an HTML page, you are essentially declaring

that a portion of the web page is controlled by a program other than the browser,

such as Workplace Forms Viewer. As a result, this portion of the page operates

differently than the HTML page in which it resides.

For example, if a user is filling out a form on one webpage but needs more

information to complete it, the user may click a link on the HTML page which

takes them to a new page. Normally, if users performed this action, any data they

entered into the form would be lost. However, with an XFDL form, the form can

simply be detached from the first web page and provided for viewing in a second

web page, as shown in the diagram below:

HTML Web Page 2

XFDL Form

HTML Web Page 1

XFDL F
XFDL FORM

With user data
XFDL FORM XFDL FORM

With user data With user data

When a form is detached from one web page and reattached to another, it

maintains all of the user’s data. Unlike the first web page, any successive web

pages that need to display the same form do not need to explicitly embed the

form. If you want them to display the same form and retain user data, they must

simply contain objects that share the same detach_id.

Successive pages do not have to display the same form. A second web page can

display an entirely different form if it contains a different object. You may even

redirect users to an entirely different web page if users are taking too long to

complete a form and the detached form has timed out. Objects that contain a

refresh_URL ensure that users can be directed to another web page if they need

help or to a fresh new form if they abandoned completion of the old one.

Once the form is embedded in an HTML web page, you can treat it like any other

HTML object. For example, you can use javascript, other portlets, or servlets to

generate dynamic content within the object or form. For example, you can generate

new XML instances for your form.

Embedding a Form

To embed a form inside an HTML page, you must:

v Determine which browsers you want to support.

v Create an object inside the web page.

v Define the object parameters.

v Create and define a nested object (if necessary).

v Define the script parameters of the embedded form.

v Insert the XFDL form you want to embed.

v Add XML instances to the web page. (optional)

2

Selecting Which Browsers to Support

You can embed a form into any HTML page. However, every browser interprets

HTML code differently. If you know that all your users are only using one type of

browser, you can focus your HTML code to support it specifically. On the other

hand, if your users are using multiple browser types, you will need to create

additional code to ensure that all of the browsers recognize and display the

embedded form.

If you are only supporting one kind of browser, you can create a single object. If

you are supporting multiple browser types, you need to create nested objects. In

this case, the outer object must always support Internet Explorer, while the inner

object must support the Mozilla, Netscape, and Firefox browsers.

Creating an Object

The object element in HTML allows web page designers to specify data to be

rendered by a browser plugin. IBM® has taken advantage of this element to allow

XFDL forms to be embedded in a web page. Using the object element allows you to

specify how the object is implemented and the location of the object’s data. This is

done using the following attributes:

Attribute

Browser

Support Description

id All Assigns a name to the object, identifying it for manipulation

by associated applications. It must be unique within the

HTML page. For example,

 <OBJECT id="unique_name">

classid IE only Specifies the browser plugin used to display the object. In

this case, it identifies the Active X control that activates the

Viewer. This value must always be:

 CLSID:354913B2-7190-49C0-944B-1507C9125367

For example:

 <OBJECT classid="CLSID:354913B2-7190-49C0

 -944B-1507C9125367">

Note that the classid attribute essentially fullfills the same

function for the Internet Explorer browser as the type

attribute does for the Netscape, Firefox, and Mozilla

browsers.

type Mozilla,

Netscape,

Firefox

The type attribute has one parameter:

v mime type – Identifies the language used by the script

for Internet Explorer 6.x. This value must always be

application/vnd.xfdl.

For example:

 <OBJECT type="application/vnd.xfdl">

Note that the type attribute essentially fullfills the same

function for the Netscape, Firefox, and Mozilla browsers as

the classid attribute does for the Internet Explorer browser.

height All Indicates the height of the object in pixels. For example:

 <OBJECT height="400">

width All Indicates the width of the object in pixels. For example:

 <OBJECT width="800">

Embedding the Viewer in HTML Web Pages 3

Attribute

Browser

Support Description

style All Allows you to specify font color, styles, and sizes, as well as

background colors and object positioning. For example:

 <OBJECT STYLE="position:absolute;

 left:10px;top:10px;height:600px;

 width:800px;background-color:aqua;

 font-family:Helvetica">

You may also modify the form’s display area with the following optional

attributes:

Attribute

Browser

Support Description

align All Sets the position of the object within its allowed display

area. The valid settings are: left, right, and center. For

example:

 <OBJECT align="center">

border All Sets the width of the object’s border in pixels. This value

must always be an integer. For example:

 <OBJECT border="2">

hspace All Sets the amount of white space (in pixels) to be inserted to

the left and right of an object. If the object has a border, this

additional white space is outside of the border. This number

is always an integer. For example:

 <OBJECT hspace="2">

vspace All Sets the amount of white space (in pixels) to be inserted

above and below an object. If the object has a border, this

additional white space is outside of the border. This number

is always an integer. For example:

 <OBJECT hspace="2">

Note: Remember, if you plan to support multiple browsers, the outer object must

support Internet Explorer.

Example

In the following example, the object is assigned a unique name, pointed at the

Viewer Active X control, and given a size.

 <OBJECT id="unique_name" height="400" width="800"

 classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">

 ... object parameters...

 </OBJECT>

Note: For more information about the HTML object element, refer to the W3C

website at: http://www.w3.org/TR/REC-html40/struct/objects.html.

Defining the Object Parameters

Object attributes identify and set the size of the object, but to specify run-time

values you must use the param element. The param element consists of name and

value pairs. For example:

 <PARAM NAME="XFDLID" VALUE="XFDLData">

4

http://www.w3.org/TR/REC-html40/struct/objects.html

These param attributes have no meaning in HTML. Instead, their properties

determine the Viewer’s behavior and how it handles the embedded form. There are

six of these special properties:

XFDLID

The ID of the script element that contains the form. This value can be

anything, as long as the XFDLID and the script id match. For example:

 <PARAM NAME="XFDLID" VALUE="XFDLData">

detach_id

The unique ID of the form instance. This attribute allows an XFDL form to

’detach’ from one web page and ’attach’ itself to another while retaining

any entered user data. The detach_id value can be any unique string. For

example:

 <PARAM NAME="detach_id" VALUE="1234567890ABCD">

 Successive objects containing the same form must all have the same

detach_id if you want to maintain user data between web pages. For

example, if form A appears in HTML pages 1- 4, and the form object in

page 1 has a detach_id of 10236B, then the form objects in pages 2 - 4 must

also have a detach_id of 10236B.

 If you specify a detach_id, you must also give the object a TTL (Time To

Live).

refresh_URL

The URL called to refresh the HTML page if the object’s detach_id has

expired and the page does not have an embedded XFDL form. This URL

can point to any web page, regardless of whether it contains an object or a

form. refresh_URL does not maintain user data. For example:

 <PARAM NAME="refresh_URL"

 VALUE="http://www.serv1/IRS/Sched22.htm">

TTL The length of time the detached form will live before being destroyed

automatically (called the Time To Live). The default TTL is 0. This value is

given in seconds. For example:

 <PARAM NAME="TTL" VALUE="15">

 If you specify a TTL, you must also give the object a detach_id.

retain_viewer

Determines whether the Viewer remains available after completing Viewer

replace or done actions. If retain_viewer is off, the Viewer closes after

completing either action. If it is on, the Viewer remains available for

further use, such as displaying a new form or to retaining form data after a

submission. For example:

 <PARAM NAME="retain_Viewer" VALUE="on">

instance_1... instance_n

Identifies XML instances inside an HTML page. This instances can be used

to modify specified XML instances inside the XFDL form. This information

includes:

v The ID of the new instance.

v The ID of the form instance.

Three additional values may be included:

v xforms – Indicates that the instance data is XForms.

Embedding the Viewer in HTML Web Pages 5

v replace – Indicates that the new instance data replaces the original

instance data. This value is optional, but either replace or append must be

used.

v append – Indicates that the new instance data is added to the original

instance data. This value is optional, but either replace or append must be

used.

v An XPath reference – Indicates where the new data should be placed.

This could be a non-default instance, or a particular element in an

instance. Note that any namespaces listed in this value resolve relative to

the document root. This value is optional if only one data instance

exists. If multiple instances exist, this reference is mandatory.

For example:

 <PARAM NAME="instance_1"

 VALUE="new_Inst old_Inst xforms; append ’[custom:rec][custom:name]’">

 The contents of the value attribute must be space separated.

 Multiple instance parameters must have sequentially numbered names,

starting with 1. For example, instance_1, instance_2, and so on.

Example

The following example displays an object with a complete set of param attributes to

control the Viewer’s behavior:

 <OBJECT...object attributes...>

 <PARAM NAME="XFDLID" VALUE="theForm">

 <PARAM NAME="TTL" VALUE="15">

 <PARAM NAME="detach_id" VALUE="12354678901234567890">

 <PARAM NAME="refresh_URL" VALUE="http://www.serv1/IRS/Sched22.htm">

 <PARAM NAME="retain_Viewer" VALUE="on">

 <PARAM NAME="instance_1" VALUE="newIns oldIns xforms; replace [0][0]">

 </OBJECT>

Note: The param element requires a start tag only. It does not require an end tag.

For more information about the HTML parameter element, refer to the W3C

website at: http://www.w3.org/TR/REC-html40/struct/objects.html#h-
13.3.2.

Order of Precedence

Objects frequently include multiple parameters. As a result, the Viewer must

follow an order of precedence so that the object parameters are always processed

in a consistent manner. When a new web page containing a form object is opened,

the following precedence is used to determine what is displayed:

1. detach_id — If a detach_id exists and its TTL has not expired, the object

displays the form referenced by the detach_id.

2. XFDLID — If there is no detach_id or it has expired, the object displays the

embedded form identified by the XFDLID.

3. refresh_URL — If there is no detach_id or XFDLID, then the entire page is

reloaded to display the page specified by the refresh_URL.

Adding a Nested Object

If you intend to support multiple browsers, you need to create and define a second

object inside the first. This nested object must support the Netscape, Mozilla, and

Firefox browsers.

6

http://www.w3.org/TR/REC-html40/struct/objects.html#h-13.3.2
http://www.w3.org/TR/REC-html40/struct/objects.html#h-13.3.2

To create a nested object, you need to add a second object inside the start and end

tags of the first object. For example:

 <OBJECT id="ObjectForIE" height="200" width="200" border="5"

 classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">

 <parameters>

 <OBJECT ID="ObjectForFF" height="200" width="200" border="5"

 type="application/vnd.xfdl">

 <parameters>

 </OBJECT>

 </OBJECT>

You must also add an IF statement that around the second object that identifies it

as being for non-IE browsers. This statement must be contained inside a comment

wrapper. For example:

 <!--[if !IE]>-->

 <object2>

 <!--<![endif]-->

Example

The following example displays the nested objects required to support both

Internet Explorer and Mozilla-based browsers:

 <OBJECT id="ObjectForIE" height="200" width="200" border="5"

 classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">

 <PARAM NAME="XFDLID" VALUE="XFDLData">

 <PARAM NAME="detach_id" VALUE="2507088000">

 <PARAM NAME="refresh_url" VALUE="envAware.html">

 <PARAM NAME="TTL" VALUE="17">

 <PARAM NAME="retain_Viewer" VALUE="on">

 <!--[if !IE]>-->

 <OBJECT ID="ObjectForFF" height="200" width="200" border="5"

 type="application/vnd.xfdl">

 <PARAM NAME="XFDLID" VALUE="XFDLData">

 <PARAM NAME="detach_id" VALUE="2507088000">

 <PARAM NAME="refresh_url" VALUE="envAware.html">

 <PARAM NAME="TTL" VALUE="17">

 <PARAM NAME="retain_Viewer" VALUE="on">

 </OBJECT>

 <!--<![endif]-->

 </OBJECT>

Defining the Script Parameters

In HTML, the script element places a script inside the HTML page. In the case of

XFDL forms, the script includes the form itself. There are a number of attributes

that modify the script element. These attributes help the Viewer to recognize the

embedded form as valid XFDL. They include:

language

Identifies the language used by the script for older versions of Internet

Explorer. This value must always be XFDL. For example:

 <SCRIPT language="XFDL">

id Identifies the object referred to by the script. This id must match the

object’s XFDLID value. For example, if your XFDLID property reads:

 <PARAM NAME="XFDLID" VALUE="theForm">

Embedding the Viewer in HTML Web Pages 7

then your script id must be:

 <SCRIPT id="XFDLData">

type The type attribute has five parameters:

v mime type — Identifies the language used by the script for Internet

Explorer 6.x. This value must always be application/vnd.xfdl.

v wrapped — Identifies the type of container that encloses the form. This

value must always be comment.

v next-chunk — Indicates the next portion of the form to Mozilla, Firefox,

or Netscape browsers. If your form is larger than 64 K, these browsers

require your form to be broken into 64 K ‘chunks’ to ensure consistent

display. This value must be the script id of the next portion of the form.

v encoding — Indicates that the contents of the script are compressed.

This parameter is mandatory if the Viewer is to be embedded in Mozilla,

Firefox, or Netscape browsers; optional parameter for Internet Explorer

browsers. In either case, its value is always base64.

v content-encoding — Indicates internationalized characters. If this

optional parameter is used, its value identifies the type of Unicode

encoding that is in use. For example, UTF-16.

For example:

 <SCRIPT type="application/vnd.xfdl; wrapped=comment;

 encoding=base64; next-chunk=Part2; content-encoding=utf-16">

 These parameters must be separated with a semi-colon followed by a

space.

Example

The following example displays a script starting tag, complete with all of the

required attributes:

 <SCRIPT language="XFDL" id="XFDLData"

 type="application/vnd.xfdl; wrapped=comment; encoding=base64;

 content-encoding=utf-16">

 ...enclosed form...

 </SCRIPT>

Note: For more information about the HTML script element, see

http://www.w3.org/TR/REC-html40/interact/scripts.html.

Adding the Form to the Script

Once you’ve defined the script parameters, you can insert your XFDL form.

To insert the form:

1. Place a comment wrapper between the script tags. For example:

 <SCRIPT ...script attributes...>

 <!--

 -->

 </SCRIPT>

2. Paste the entire XFDL form inside the comment wrapper.

Example

The following example depicts a small XFDL form enclosed in a comment

wrapper:

8

http://www.w3.org/TR/REC-html40/interact/scripts.html

<SCRIPT ...script attributes...>

 <!--

 <?xml version="1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom">

 <globalpage sid="global">

 <global sid="global">

 <vfd_date>9/7/2004</vfd_date>

 </global>

 </globalpage>

 <page sid="PAGE1">

 <global sid="global">

 <label>PAGE1</label>

 </global>

 <label sid="LABEL1">

 <value>This is a short sample form.</value>

 </label>

 </page>

 </XFDL>

 -->

 </SCRIPT>

Adding XML Instances to the HTML Page

You can include XML instances (XForms or XML Data Model) in your web page

that contain XML data you can move into your form. This XML data can replace or

add to existing XML data inside your form – particularly useful for dynamically

populating forms with information selected by the user from an HTML page.

For example, consider a purchase order form embedded in an HTML page. The

XFDL form is a generic purchase order form, possibly personalized with user

information via a data fragment. This form is displayed in an HTML page (or a

series of HTML pages) that allow users to select the products they want to

purchase. When users select the desired product, they trigger the application server

to create a custom XML instance to replace the generic XML instance currently in

the XFDL form. To the eyes of the users, the form appears to automatically

populate with the correct purchase information, including order number, product

type, and pricing.

Regardless of whether the XML instance script in hardcoded into the HTML page

or generated by an application server, it must be wrapped in a script container.

Like a script element containing an XFDL form, you must define an instance’s script

with the following attributes:

language

Identifies the language used by the script for older versions of Internet

Explorer. This value must always be XFDL. For example:

 <SCRIPT language="XFDL">

id Identifies the instance. This id must match the object’s instance value. For

example, if instance_1 reads:

 <PARAM NAME="instance_1"

 VALUE="new_Instance old_Instance

 append[custom:record][custom:name]">

 then your script id must be:

 <SCRIPT id="new_Instance">

type The type attribute has two parameters:

Embedding the Viewer in HTML Web Pages 9

v mime type — Identifies the language used by the script for Internet

Explorer 6.x. This value must always be application/vnd.xfdl.

v wrapped — Identifies the type of container that encloses the instance.

This value must always be comment.

v encoding — Indicates that the instance is compressed. This parameter is

mandatory for all instances. The value is always base64.

For example:

 <SCRIPT type="application/vnd.xfdl;wrapped=comment">

 The type and wrapped parameters must be separated with a semi-colon.

Important: To identify XForms instances, you must add an xforms parameter to the

form object. For more information, see “Defining the Object

Parameters” on page 4.

To embed an instance:

1. Create a new script element. For example:

 <SCRIPT id=new_Instance type="application/vnd.xfdl; wrapped=comment">

 </SCRIPT>

2. Place a comment wrapper between the script tags.

3. Paste the XML instance between the comment tags.

Example

The following example depicts a script element that contains an XML instance

enclosed in a comment wrapper:

 <SCRIPT id="new_Instance" type="application/vnd.xfdl; wrapped=comment">

 <!--

 <name xmlns="http://www.ibm.com/xmlns/prod/XFDL/Custom">

 Arnold Jevaston</name>

 -->

 </SCRIPT>

Order of Precedence

Forms often include multiple XML instances. They may even refer to data

fragments, frequently used scraps of XML data that are stored on users’ computers.

If your HTML contains replacement instances, or if replacement instances are

generated by an application server, the Viewer must follow an order of precedence

to ensure the instances are always loaded in a consistent manner. When a new web

page containing XML instances is opened, the following precedence is used to

determine what is displayed:

v Data Fragments — If Smartfill is on and an appropriate data fragment is stored

on a user’s computer, data fragments are loaded first. If there is a replacement

instance targeted at the fields populated by the Smartfill data, the data contained

in the replacement instance is ignored. To avoid this sort of complication, ensure

that your data fragments and instances have unique names or different naming

styles for each. For example, if your organization uses a data fragment called

PersonalInfo, but you want to use a different instance containing personal data in

a form, make sure the form’s instance has a different name or naming

convention. For example, personal_data.

v instance_1...instance_n — If your form is embedded in an HTML page that

contains multiple XML instances, the Viewer will process them sequentially, in

accordance to the number sequence in their script id. Thus instance_1 will load

first, instance_2 will load second, and so on.

10

Sample Embedded Form

The following example shows all the code required to fully embed a form. This

includes an object element with all of its mandatory attributes, the object

parameters, the script element, and a sample XFDL form wrapped in a comment

structure.

 <OBJECT id="Object1" height="200" width="200" border="5"

 classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">

 <PARAM NAME="XFDLID" VALUE="XFDLData">

 <PARAM NAME="detach_id" VALUE="2507088000">

 <PARAM NAME="refresh_url" VALUE="envAware.html">

 <PARAM NAME="TTL" VALUE="17">

 <PARAM NAME="retain_Viewer" VALUE="on">

 </OBJECT>

 <SCRIPT language="XFDL" id="XFDLData"

 type="application/vnd.xfdl; wrapped=comment">

 <!--

 <?xml version="1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom">

 <globalpage sid="global">

 <global sid="global">

 <vfd_date>9/7/2004</vfd_date>

 </global>

 </globalpage>

 <page sid="PAGE1">

 <global sid="global">

 <label>PAGE1</label>

 </global>

 <label sid="LABEL1">

 <value>This is a short sample form.</value>

 </label>

 </page>

 </XFDL>

 -->

 </SCRIPT>

Sample Embedded XForms Form

The following example shows all the code required to fully embed an XForms

form. This includes nested object elements that support both IE and Mozilla-based

browsers.

 <OBJECT id="forIEbrowser" height="300" width="800" border="5"

 classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">

 <PARAM NAME="XFDLID" VALUE="theForm">

 <PARAM NAME="detach_id" VALUE="2507088000">

 <PARAM NAME="refresh_url" VALUE="envAware.html">

 <PARAM NAME="TTL" VALUE="17">

 <PARAM NAME="retain_Viewer" VALUE="on">

 <PARAM NAME="instance_1" VALUE="newInst xforms; replace="."">

 <!--[if !IE]>Mozilla 1.x, Firefox 1.x, Netscape 7+ and others will use the

 nested inner object-->

 <OBJECT ID="forMozillabrowser" height="300" width="800" border="5"

 type="application/vnd.xfdl">

 <PARAM NAME="XFDLID" VALUE="theForm">

 <PARAM NAME="detach_id" VALUE="2507088000">

 <PARAM NAME="refresh_url" VALUE="envAware.html">

 <PARAM NAME="TTL" VALUE="17">

 <PARAM NAME="retain_Viewer" VALUE="on">

 <PARAM NAME="instance_1" VALUE="newInst xforms; replace="."">

 </OBJECT>

Embedding the Viewer in HTML Web Pages 11

<!--<![endif]-->

 </OBJECT>

 <SCRIPT language="XFDL" id="theForm2" type="application/vnd.xfdl; wrapped=comment;

 next-chunk=chunk2">

 <!--

 <?xml version="1.0" encoding="UTF-8"?>

 <XFDL xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

 xmlns:ev="http://www.w3.org/2001/xml-events"

 xmlns:xfdl="xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms"

 xmlns="xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0">

 <globalpage sid="global">

 <global sid="global">

 <xformsmodels>

 <xforms:model>

 <xforms:instance id="instance1" xmlns="">

 <root>

 <field_1></field_1>

 <field_2></field_2>

 <field_3></field_3>

 </root>

 </xforms:instance>

 </xforms:model>

 </xformsmodels>

 </global>

 </globalpage>

 -->

 </SCRIPT>

 <SCRIPT language="XFDL" id="chunk2" type="application/vnd.xfdl; wrapped=comment;

 next-chunk=chunk3">

 <!--

 <page sid="PAGE1">

 <global sid="global">

 <label>PAGE1</label>

 </global>

 <field sid="field1">

 <xforms:input ref="field_1">

 <xforms:label>Field with xforms:input</xforms:label>

 </xforms:input>

 </field>

 <field sid="field2">

 <xforms:textarea ref="field_2">

 <xforms:label>Field with xforms:textarea</xforms:label>

 </xforms:textarea>

 <size>

 <width>30</width>

 <height>2</height>

 </size>

 </field>

 -->

 </SCRIPT>

 <SCRIPT language="XFDL" id="chunk3" type="application/vnd.xfdl; wrapped=comment">

 <!--

 <field sid="field3">

 <xforms:secret ref="field_3">

 <xforms:label>Field with xforms:secret</xforms:label>

 </xforms:secret>

 </field>

 <spacer sid="vfd_spacer">

 <itemlocation>

 <x>250</x>

 <y>250</y>

 <width>1</width>

12

<height>1</height>

 </itemlocation>

 </spacer>

 </page>

 </XFDL>

 -->

 </SCRIPT>

Using Object Parameters in Computes

The Viewer functions enable you to trigger actions in the Viewer. The param Viewer

function allows you to call specific object parameters in computes that return the

parameter’s value. For example, if the param function called the object’s XFDLID

parameter, then it would return the object’s XFDL ID. For more information, see

the guide entitled “Viewer Functions”.

Embedding Signed Forms

If you want to embed a signed form into a web page, the form must be

compressed in base 64. When Internet Explorer parses a signed embedded form, it

may add extra carriage returns to the form. This prevents the form from matching

the signature hash value, which causes the Viewer to declare that the form’s

signature is invalid. Compressing signed forms ensures that this does not occur.

The easiest way to compress an XFDL form is to open it and compress it in the

Designer.

To compress a form:

1. Open Workplace Forms Designer.

2. Open the form you want to compress.

3. In the Outline view, select Form Global.

v Form Global data appears in the Properties view.
4. Right-click the Menu

icon, and select Show Advanced Properties.

5. Open the Advanced tree, and browse to saveformat.

6. Click the popup in the field next to saveformat and select application/
vnd.xfdl;content-encoding=″base64-gzip″.

Embedding Internationalized Forms

If your form contains characters outside of the ASCII (0-7F) range, the character

encoding in your XFDL form must match the BSTR encoding passed by the

browser to the object containing the Viewer. The easiest way to ensure that they

match is to specify character encoding only in the HTML form. You can place it in

a meta tag inside the HTML head tag. For example:

 <META http-equiv="Content-Type" content="text/html;charset=utf-8">

Furthermore, you must also remove the character encoding already in your form.

As the Designer automatically adds character encoding, you must open the form in

another text editor, such as UltraEdit, Notepad, or TextPad, and delete the

encoding.

To strip character encoding from an XFDL form:

1. Open the file in a text editor. Do not open it in Workplace Forms Designer.

Embedding the Viewer in HTML Web Pages 13

2. Search for the encoding attribute on the xml version tag and delete the attribute

and its setting.

3. Save the form.

However, under some circumstances you may find that you must include character

encoding in your XFDL form. If so, you must still ensure that the form encoding

matches the BSTR encoding. Therefore, if you include character encoding in your

form, it must always be:

v UTF-16LE

You cannot change your form’s character encoding in the Designer. You must edit

it in another text editor, such as UltraEdit or Notepad.

To change your form’s character encoding:

1. Open the file in a text editor.

v Do not open it in the Designer.
2. Search for the encoding attribute on the xml version tag.

3. Change the encoding setting to UTF-16LE.

4. Save the form.

14

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 15

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

16

����

Program Number:

Printed in USA

S325-2598-00

	Contents
	Embedding the Viewer in HTML Web Pages
	System Requirements
	Overview
	Displaying Forms in an HTML Page

	Embedding a Form
	Selecting Which Browsers to Support
	Creating an Object
	Example

	Defining the Object Parameters
	Example
	Order of Precedence

	Adding a Nested Object
	Example

	Defining the Script Parameters
	Example

	Adding the Form to the Script
	Example

	Adding XML Instances to the HTML Page
	Example
	Order of Precedence

	Sample Embedded Form
	Sample Embedded XForms Form
	Using Object Parameters in Computes
	Embedding Signed Forms
	Embedding Internationalized Forms

	Appendix. Notices
	Trademarks

