
IBM® Workplace Forms™

Duplicating Form Nodes

Version 2.6.1

S325-2606-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 11.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Duplicating Form Nodes 1

Why Duplicate Form Nodes? 1

What is a Form Node? 1

About Unique Identifiers 3

Creating Paging Controls for Duplicated Pages

and Setting the Tab Order for Duplicated Items . . 4

Example 4

Duplicating XForms Nodes 5

getReference 5

generateUniqueName 6

duplicate 7

Appendix. Notices 11

Trademarks 12

© Copyright IBM Corp. 2003, 2006 iii

iv

Duplicating Form Nodes

This document provides a full description of the three functions used in

duplicating form nodes within a form. These functions are: duplicate,

generateUniqueName, and getReference. These functions are contained in the standard

system function package.

The following sections will introduce you to the concept of duplicating form nodes

and show you how these three functions can be used together. For a quick

reference to each of these functions, refer to the last pages of this document.

You should be familiar with XFDL and the XFDL compute system (including

function calls) before you use these functions. Refer to the XFDL Specification for

more information. Also, you should have some understanding of how the

components of an XFDL form are organized into a hierarchy of interrelated nodes.

Refer to the Workplace Forms™ Server — API User’s Manual for more information

about the node structure.

Why Duplicate Form Nodes?

The duplicate function allows form users to generate new pages or items within a

form open in Workplace Forms Viewer. As a form developer, you might use the

duplicate function to allow users or applications that use XFDL forms to

dynamically create new items and pages as needed on a form.

The node duplication process works as follows:

1. A custom option must be set up to call the duplicate function under specified

circumstances (for example, when an action is initiated or a button is clicked).

The custom option can appear anywhere.

2. The duplicate function creates a new node with a unique sid. The parameters

specified in the duplicate function determine the identity of the template node,

the location of the duplicate, and the sid of the duplicate.

3. Once the duplication is complete, the Viewer automatically refreshes its

display to include any visible changes. If a new page was added, the Viewer

will continue to display the original page, and the user will need to use a

paging control to move to the new page.

What is a Form Node?

A form node refers to a uniquely identifiable portion of a form, such as the form

itself, a page, an item, an option or an array element. You can use the functions in

this document to duplicate pages, items and options.

For those unfamiliar with the concept of nodes, here is a brief description of the

terminology used in this document. You may wish to view the diagram on the next

page as you read these terms.

Original Node

The node you want to duplicate.

New Node

The node you create by duplicating the original node.

© Copyright IBM Corp. 2003, 2006 1

Parent Node

The node that the original node belongs to. For example, the parent node of

an item would be the page on which the item is located, and the parent

node of a page would be the form.

Child Node

This refers to any pages, items, options or array elements contained within

the original node. For example, an item node may contain several children,

which would be the options describing that item. Each option, in turn, may

itself have several children the form of array elements.

Sibling Node

Refers to any node that is a child of the same parent as the original node’s

parent. For example, if a page contains three items, INS_LABEL,

NAME_FIELD and SAVE_BUTTON, then NAME_FIELD and

SAVE_BUTTON are sibling nodes of INS_LABEL.

Partial Reference

This term refers to an incomplete page, item or option reference. For

example, a partial reference to PAGE1.LABEL2.value would be simply

value.

The following code and diagram illustrate how the node structure works with

XFDL forms. In this example, both the sample code and the node structure

represent the same form:

Sample Code

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0">

 <globalpage sid="global">

 <global sid="global">

 </global>

 </globalpage>

 <page sid="PAGE1">

 <global sid="global">

 </global>

 <label>PAGE1</label>

 <label sid="INS_LABEL">

 <value>Please enter your name:</value>

 </label>

 <field sid="NAME_FIELD">

 <value></value>

 <size>

 <width>30</width>

 <height>1</height>

 </size>

 </field>

 <button sid="SAVE_BUTTON">

 <value>Save Form Now</value>

 <type>saveform</type>

 </button>

 </page>

 </xfdl>

2

Node Structure

PAGE1

global

label

INS_LABEL

value

NAME_FIELD SAVE_BUTTON

value valuesize type

height widthSample Reference:
PAGE1.NAME_FIELD.VALUE

About Unique Identifiers

Every node within a form requires a unique identifier (for example, PAGE1 or

SAVE_BUTTON). This is referred to as a scope identifier or sid. Each sid must be

unique within its parent node.

Potential problems arise when nodes are duplicated. If a node were to be

duplicated more than once, each copy would possess the same sid as the first copy.

Using the function generateUniqueName in concert with the duplicate function

eliminates this problem.

When duplicating pages, you must also take into account the fact that new pages

will contain the identical options and items as their originals. This is particularly

significant for the label option at the page level, which determines the text shown

in the title bar of Workplace Forms Viewer. When a page is duplicated, the label is

also duplicated. Thus the new page node contains the same label as the original,

and the identity of the new page is not apparent to the user viewing the form,

who sees only the page label. To get around this, the label option of the page

should be set to display the page sid. However, since the pages this effects do not

exist when you write the code, you need some way of dynamically referencing the

page sid.

You can use the function getReference to determine the page sid. getReference will

return the reference to a page, item, or option node.

In the following example, the value of the label option in PAGE1 will be

hard-coded as ″PAGE1″. If this page was duplicated, the new page might have a

sid of New_PAGE1. The label for the page, and the title bar in the Viewer,

however, would still display ″PAGE1″.

 <page sid="PAGE1">

 <global sid="global"></global>

 <label>PAGE1</label>

By using getReference to dynamically update the label option, this can be avoided.

In the example below, the label will display the sid of the page.

 <page sid="PAGE1">

 <global sid="global"></global>

 <label compute="getReference(’label’, ’option’, ’page’)"></label>

Duplicating Form Nodes 3

The getReference function can be used any time a node reference would need to be

updated after a duplication.

Creating Paging Controls for Duplicated Pages and Setting

the Tab Order for Duplicated Items

If your form creates new pages, users will not be able to get to those pages unless

paging controls are created as well. However, since the pages do not exist when

you are creating the controls, you need some way of referencing duplicated pages.

Likewise, it is difficult to set the tab order for items that do not exist yet.

To accomplish these tasks, you need to use the relative references provided by

XFDL. These references let you refer to items or pages which either do not yet

exist, or vary depending on how the form is configured. The available relative

references are:

 Relative Tag Refers to Reference Syntax

pagefirst First page in form description. global.pagefirst->item

pagelast Last page in form description. global.pagelast->item

pageprevious Previous page in form description. First

page points to the last page in the

form.

global.pageprevious->item

pagenext Next page in form description. Last

page points to first page in the form.

global.pagenext->item

itemfirst First item in page description. global.itemfirst->option

itemlast Last item in page description. global.itemlast->option

itemprevious Previous item in page description. First

item points to last item in page

description.

global.itemprevious-
>option

itemnext Next item in page description. Last

item points to first item in page

description.

global.itemnext->option

Example

If you are creating a paging control on a page that may be duplicated, you must

use a dynamic reference rather than a hard-coded URL option to move to the next

page.

 <button sid="PAGING_CONTROL">

 <type>done</type>

 <url compute="global.pagenext"></url>

 <value>Next Page</value>

 </button>

When this button is duplicated, the URL is still valid because it points to the next

page, no matter what that page is. If the URL is on the last page of the form, it will

cycle back to the first page, and vice versa.

Note: You do not need to use the complete dereference syntax for a page change

as you would if you wanted to reference a specific item on the next page.

For more information on this topic, see the section on Relative References in the

XFDL Specification.

4

Duplicating XForms Nodes

If you duplicate an entire page, the elements in the new page will automatically

bind to the XForms data model. However, this binding will not occur if you only

duplicate an item or option within the page. This means that duplicating items or

options that are bound to the data model may cause your forms to behave

erratically.

getReference

getReference returns the reference to a page, item, or option. This function works as

a ″Where am I?″ check for these form elements. It is always called from within the

node for which the reference is needed, but the returned reference can be for any

parent node down to that from which it was called. For instance, getReference could

be called from a custom option within a field, but return only the reference for that

field.

Call

 getReference(’theReference’, ’referenceStart’, ’referenceLevel’)

Parameters

 Expression Type Description

theReference String A string that contains a partial reference to

the current node that you wish to identify.

This node is either the node from which the

function is called, or a sibling node of the

node from which the function is called. If

you want the reference for the node from

which the function was called, use that

node. For instance, to find the reference for

a value option in a field, theReference

would be value.

referenceStart page | item |

option

A string that contains the type of node

identified in theReference. For instance, if

theReference is value, referenceStart will

be option.

referenceLevel page | item |

option

A string that contains the lowest node level

in the reference for the function to return. If

getReference is called from an option node,

but referenceLevel is identified as item, the

reference returned would be page.item.

Returns

A reference to the page, item, or option from which the function was called.

Example

In the following example, getReference returns a reference to the node at the option

level. The result is PAGE1.field1.value.

Duplicating Form Nodes 5

<page sid="PAGE1">

 <global sid="global"></global>

 <field sid = "field1">

 <value compute="getReference(’’, ’’, ’option’)"></value>

 </field>

 </page>

In the following example, getReference returns a reference to the node at the page

level. The result is: PAGE1.

 <page sid="PAGE1">

 <global sid="global"></global>

 <field sid = "field1">

 <value compute="getReference(’’, ’’, ’page’)"></value>

 </field>

 </page>

generateUniqueName

generateUniqueName will create a unique name for a page, item or option. Use this

function to generate a unique name for any node created within a form.

Call

 generateUniqueName(theReference, referenceStart, namePrefix)

Parameters

 Expression Type Description

theReference String A string that contains a reference to the parent

node of the node that you wish to generate a

unique name for. For instance, if you want to

generate a unique name for an item on

PAGE_1, theReference would be PAGE_1. To

indicate that the parent node is the current

form, leave this parameter blank. You would

do this if you wanted to generate a unique

name for a page.

referenceStart page | item |

option

A string that contains the type of node

identified in theReference. In the example

above, referenceStart would be page.

namePrefix String A string that describes the prefix for the

unique name generated. This can be any

string you like. If you choose new_item as the

namePrefix, the first name generated by the

function would be new_item1, the second

would be new_item2, and so on.

Returns

A unique page, item or option name consisting of a namePrefix plus an integer.

Notes

v generateUniqueName generates a name consisting of the namePrefix and an integer.

The function then searches the parent node specified by theReference and

referenceStart for any page, item, or option identifiers with the same name. If the

name already exists in the parent node then the function increments the integer

until a unique name can be generated.

6

Example

The custom option generate calls the generateUniqueName function to generate a

unique name and sets the result in new_Name.

 <button sid="duplicateFieldButton">

 <value>duplicate Field1</value>

 <new_Name></new_Name>

 <custom:generate xfdl:compute="toggle(activated, ’off’,

 ’on’)== ’1’ ? set(’new_Name’, generateUniqueName

 (’PAGE1’, "page", newField_")) : ’’"></custom:generate>

 </button>

duplicate

This function makes a copy of a specified form node. The duplicate node returned

from this function can be attached to any other node as either a sibling or a child.

You can also assign a new identifier to the new node, as indicated by the

theIdentifier parameter. All of the properties of the original node are duplicated,

including any children. For instance, a duplicated page will contain all the settings,

items and options of the original.

Call

 duplicate(’theReference’, ’referenceStart’, ’baseNode’,

 ’baseNodeStart’, ’where’, ’theIdentifier’)

Parameters

 Expression Type Description

theReference String A string that contains the reference to the

node you wish to duplicate. For instance, if

you want to duplicate FIELD3 on PAGE2,

theReference would be PAGE2.FIELD3.

referenceStart form| page | item

| option

A string that contains the type node

identified in the theReference. In the

example above, referenceStart would be

item.

baseNode String A string that contains the identity of the

reference node for the new node. In the

example above, if you wanted the new node

to also be on PAGE2, the baseNode would

be PAGE2. If you wanted the new node to

be added to the page as a sibling to FIELD8,

the baseNode would be FIELD8.

baseNodeStart form| page | item

| option

A string that contains the node type

identified in baseNode. In the first example

above, baseNodeStart would be page; in the

second it would be item.

Duplicating Form Nodes 7

where String A description of the desired location of the

new node in relation to the supplied

baseNode. Valid settings are:

APPEND_CHILD — Adds the new node as

the last child of the ’baseNode’. You may

also use APPEND CHILD without the

underscore between the words.

AFTER_SIBLING — Adds the new node as

a sibling of the ’baseNode’, placing it

immediately after that node in the form

structure. You may also use AFTER SIBLING

without the underscore between the words.

BEFORE_SIBLING — Adds the new node

as a sibling of the ’baseNode’, placing it

immediately before that node in the form

structure. You may also use BEFORE

SIBLING without the underscore between

the words.

theIdentifier String or form item

reference

An identifier for the new node. If this

parameter is left out, the same identifier that

was used in theReference is used. You can

call generateUniqueName within duplicate to

provide this identifier.

Returns

The duplicate node.

Notes

v The duplicate function uses the API function UFLDuplicate to generate copies of

form nodes within a form.

v The node that the duplicate function copies is specified by two parameters

theReference and referenceStart.

v The node that you wish to attach the copy to is specified by two parameters

baseNode and baseNodeStart.

v Normally, the function generateUniqueName is used to generate a new name for

each node that is duplicated. This function may be called within theIdentifier

parameter.

v If you are duplicating options or array elements, they do not need new unique

identifiers, but they must be placed in a different item or option node.

v If you duplicate an entire page, the elements in the new page will automatically

bind to the XForms data model. However, this binding will not occur if you only

duplicate an item or option within the page. This means that duplicating items

or options that are bound to the data model may cause your forms to behave

erratically.

Example

This example is broken up into several steps to make the duplication process as

clear as possible.

8

An item is created whose value is simply its item reference. The item reference is

defined by calling the function getReference. For more details about getReference

refer to the function description provided in this document.

 <page sid="PAGE1">

 <global sid="global"></global>

 <field sid="Field1">

 <label>myField</label>

 <value compute="getReference(’value’,’option’, ’option’)"></value>

 </field>

Create a button that duplicates ″Field1″ and places it on ″PAGE2″.

 <button sid="duplicateFieldButton">

 <value>duplicate Field1</value>

 <type>select</type>

Within the button, the custom option generate calls the generateUniqueName function

to generate a unique name and sets the result in new_Name. It is possible to omit

this step and use generateUniqueName directly in theIdentifier parameter in the

duplicate function, but here the steps are separated for clarity. For more details

about this function refer to the function description provided in this document.

 <custom:new_Name></custom:new_Name>

 <custom:generate xfdl:compute="toggle(activated, ’off’, ’on’)

 == ’1’ ? set(’new_Name’, generateUniqueName(’PAGE1’,

 ’page’, ’newField_’)) : ’’ "></custom:generate>

The custom option duplicate calls the duplicate function to make a copy of ″Field1″

and assigns the new field the name specified in new_Name. The new field is

placed after the last item on PAGE2.

 <custom:duplicate xfdl:compute="toggle(activated, ’off’,’on’) == ’1’ ?

 duplicate(’PAGE1.Field1’, ’item’, ’PAGE2’, ’page’,

 ’append_child’, custom:new_Name) : ’’ "></custom:duplicate>

 </button>

Duplicating Form Nodes 9

10

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 11

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

12

����

Program Number:

Printed in USA

S325-2606-00

	Contents
	Duplicating Form Nodes
	Why Duplicate Form Nodes?
	What is a Form Node?
	Sample Code
	Node Structure

	About Unique Identifiers
	Creating Paging Controls for Duplicated Pages and Setting the Tab Order for Duplicated Items
	Example

	Duplicating XForms Nodes
	getReference
	generateUniqueName
	duplicate

	Appendix. Notices
	Trademarks

