
IBM® Workplace Forms™

Using Authenticated Clickwrap

Version 2.6.1

S325-2611-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 13.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Implementing Authenticated Clickwrap 1

About Authenticated Clickwrap 1

Using the Shared Secret 1

Notarizing the Signature 2

Server Architecture 2

How the Architecture Fits into Your Overall

Application 3

About the User Database 3

Key Data Elements 3

Using Multiple IDs or Shared Secrets 3

About the Authentication Module 4

The Basic Algorithm 4

Alternate Scenarios 5

About the Shared Secret Module 5

HMAC Signature Validation Functions

Quick Reference 7

validateHMACWithHashedSecret 7

validateHMACWithSecret 10

Appendix. Notices 13

Trademarks 14

© Copyright IBM Corp. 2003, 2006 iii

iv

Implementing Authenticated Clickwrap

Authenticated Clickwrap enables users to securely sign a form without relying on

an extended PKI infrastructure. However, implementing an Authenticated

Clickwrap system does require an initial investment in architecture and design

time. You must first plan the elements of your system, and then implement the

necessary components.

This document describes a typical implementation for Authenticated Clickwrap,

and discusses the architectural concerns involved. Once you have read this

document, you should be ready to plan and implement your own Authenticated

Clickwrap system.

Please be aware that this document describes a typical implementation for

Authenticated Clickwrap, and should not be taken to represent the only possible

implementation. Authenticated Clickwrap allows for a great deal of flexibility in

the server-side implementation, but has some universal requirements that are

addressed in this document.

About Authenticated Clickwrap

Authenticated Clickwrap offers a way to sign a form that relies on a user ID and a

shared secret (typically a password) to identify the signer.

In normal use, the user signs the form by entering an ID and secret. When the

form is sent to the server, the server retrieves the user’s secret from a database and

uses that secret to verify the signature. Furthermore, the server can notarize the

Authenticated Clickwrap signature by signing it with a digital certificate, thereby

creating a secondary digital signature. This secondary signature shows that the

server has confirmed the identity of the signer, and ensures that the original

signature can be trusted over time.

This is how Authenticated Clickwrap works at a high level. The details of the

technical process are somewhat more complicated, and are explained in the

following sections. If you already know the details, you can skip forward to

″Server Architecture″ .

Using the Shared Secret

The security of the secret is key to an Authenticated Clickwrap system. Only the

user and the server should have access to an individual secret.

To help ensure the security of the secret, an Authenticated Clickwrap signature

never stores the secret in the form. This means that the secret itself is never

transmitted in any way.

When the form is signed, the signature information is created by producing a

signature hash that is based on a hash of the form and the user’s secret. While the

secret itself is not included in the signature hash, you do require the secret to

confirm that the signature is authentic.

When the form is sent to the server, the server reads the signature from the form,

checks to see if the form has been tampered with, and gets the user’s ID from the

© Copyright IBM Corp. 2003, 2006 1

signature. The server then looks up the user’s secret in a database and, using that

secret, creates a new signature hash. Finally, the computer compares the new

signature hash of the form to the hash stored in the original signature - they will

only match if the user provided the same secret that is stored in the server’s

database, thereby confirming the user’s identity.

Notarizing the Signature

Once the server has verified the user’s secret and authenticated the user’s identity,

the server can notarize the Authenticated Clickwrap signature. To do this, the

server simply signs the original signature with a digital signature.

This accomplishes two goals:

v When the signature is verified, the digital signature is checked in addition to the

Authenticated Clickwrap signature. Before notarization, the Viewer will show an

Authenticated Clickwrap siganture as ″Verified, but Not Authenticated″ because

the server has not yet authenticated the signer. Once notarized, the Viewer will

show an Authenticated Clickwrap signature as ″Valid″ since the signer has been

authenticated. This tells the next user of the form that they can trust the

signature to be authentic, and is particularly useful for forms that require

overlapping signatures.

v The digital signature will remain valid over time. In contrast, the Authenticated

Clickwrap signature relies on the shared secrets stored in the user database. If

the secrets change and a history is not maintained, it becomes impossible to

verify old signatures. Furthermore, you can notarize an Authenticated Clickwrap

signature any number of times, allowing you to renew the notarization if the

original digital signature is going to expire.

Server Architecture

A simple Authenticated Clickwrap system uses the following architecture:

Authentication
Module

User
Database

Shared Secret
Module

Form

As shown, this architecture relies on three central components:

v User database — This database stores a table of user IDs and shared secrets.

v Authentication module — This module receives forms and authenticates the

signatures, using the shared secrets from the user database.

v Shared secret module — This module allows users to update their shared

secrets in the user database.

2

How the Architecture Fits into Your Overall Application

The components for Authenticated Clickwrap will likely form part of a larger

application. For example, you may want to route the form to the next user in the

process or archive the form in a document repository.

You should consider how the form is going to be used when planning your

application. For instance, if the form is only going to be signed once, notarized,

and then archived, you can build a fairly simple system in which the

authentication module forwards the form to the archive.

However, if the form involves overlapping signatures, it’s best to notarize the form

between each signature. For example, the first user signs the form and the server

notarizes that signature, then the second user signs the form and the server

notarizes the second signature, and so on. This ensures that each user in the

process can trust earlier signatures, since they have been notarized by the server. In

this case, you will need the authentication module (or an additional component) to

route the form appropriately.

About the User Database

The user database stores a list of user IDs and shared secrets. You can create a new

database for use with Authenticated Clickwrap, or you can use existing systems,

such as an LDAP server or an existing table of web site permissions.

In general, you can use any system you like to store the user information.

However, you should give serious consideration to the security of the system.

Authenticated Clickwrap signatures rely completely on the secrecy of the shared

secrets. If you store the user information in an open system, or in a system that

users cannot update themselves, you will compromise the security of those secrets.

Key Data Elements

The user database should store the following data elements:

v User ID — This is a unique ID that identifies the user. Typical IDs may be

employee numbers, the user’s first initial and last name, the user’s email

address, and so on.

v Shared Secret — This is typically a user password. We recommend that you

store a hash of the user’s secret rather than the secret itself. This increases the

overall security of the system by ensuring that the original secret is never stored

anywhere - not on the server and not in the signature. The API accomodates this

by providing a function for hashing secrets as well as a function for verifying

Authenticated Clickwrap signatures using a hashed secret.

v Date — This is the date at which the shared secret became active. We

recommend that you keep a history of secrets and their activation dates. This

ensures that you can authenticate signatures that were created using old secrets,

and is especially useful if you require your users to regularly change their

shared secrets.

Using Multiple IDs or Shared Secrets

Authenticated Clickwrap signatures allow for multiple IDs or shared secrets. This

is useful for the following reasons:

v Once the form is signed, all IDs will appear in the signature button as comma

separated values. For example, if yours users used both their name and email

address as IDs, then the button would show:

Implementing Authenticated Clickwrap 3

<user name>, <email>

v You may want your users to use multi-part secrets, such as a credit card number

and expiration date. This is less confusing if they can enter the numbers in

separate fields.

If you decide to use multiple IDs or shared secrets, follow these guidelines:

v Ensure you set up your database properly to store all IDs and shared secrets.

v If you are storing hashed secrets, you must concatenate the secrets and then

hash the combined secret. For example, if the secrets were ″blue″ and ″red″, you

would store a hash of ″bluered″ in your database.

v Do not use a single signature button for multiple signatures. For example, do

not set up a signature button to accept both an employee’s and a manager’s ID

and password. Instead, create two separate signature buttons - one for the

employee and one for the manager.

About the Authentication Module

The authentication module verifies and notarizes Authenticated Clickwrap

signatures. In most cases, it will also route the form to the next stage of processing.

For example, it might send the form to the next user in an approval process, or

simply archive the form in a document repository.

You will have to write the authentication module yourself, using IBM® Workplace

Forms™ Server - API to access and verify the Authenticated Clickwrap signature.

IBM typically uses a servlet architecture for these modules. Furthermore, you

should thoroughly understand how to retrieve the shared secrets from the user

database, as you will have to write the code that interfaces with the database.

The Basic Algorithm

In general, the authentication module will locate a signature node and then verify

and notarize the signature. For example, the following algorithm finds and

notarizes a specific signature.

Note: As you must use the API to provide the necessary functionality for reading

the form and verifying signatures, each step in the algorithm below also lists

the corresponding methods in the Java™ edition of the API.

1. Read the form.

v readForm

2. Locate the signature node.

v dereference for a known node. Use getChildren, getParent, getNext, getPrevious,

and getLiteral to traverse the form.
3. Check for previous notarization. If previous notarization exists, stop processing.

(Note that you may want to take a different action depending on whether the

notarizing signature is valid.

v getDataByPath (Signature)
4. Retrieve the ID of the signer from the signer option of the signature.

v getLiteralByRef

5. Use the user ID to retrieve the user’s secret from the user database.

6. Retrieve the certificate you want to use to notarize the signature.

v getEngineCertificateList retrieves available certificates.

v getDataByPath (Certificate) identifies specific certificates.

4

7. Verify and notarize the signature.

v validateHMACWithSecret

v validateHMACWithHashedSecret

Note: For more information about these functions, see “HMAC Signature

Validation Functions Quick Reference” on page 7
8. Write the updated form, or route it as necessary.

v writeForm

Depending on your overall application, you may need the authentication module

to offer sophisticated routing. You will have to incorporate these features into the

module yourself, or write another module to handle this aspect of your

application.

Alternate Scenarios

The basic algorithm assumes a simple scenario in which a single signature node is

known and is easily located. However, there are other scenarios that require more

sophisticated processing. For example:

v Sequential Signatures — In this case, the form is viewed and signed by a

number of people in turn. As each person signs the form, it goes to the server

for processing and notarization, and is then sent on to the next person. Each

time the server receives the form, it has to locate each signature button in turn

and determine (a) whether it has a signature, (b) whether the signature has

already been notarized, and (c) whether the notarization is valid. In each case,

the server must act accordingly. For instance, if there is a notarizing signature

but that signature is no longer valid, the server may need to throw an error or

otherwise notify a system administrator.

v Multiple Notarizations — You may find it useful to add multiple notarizations

to a signature. For example, you may want to notarize existing signatures on an

annual basis to prevent the digital signature from expiring with the certificate

that created it. In this case, your server module will have to parse each form to

locate notarized signatures, verify that the last notarization is still valid, and

then notarize the signature again.

Regardless of your specific needs, you should be able to adjust the basic algorithm

accordingly.

About the Shared Secret Module

The shared secret module allows users to connect to the user database and change

their shared secret. If you are using an existing system, such as an LDAP server or

a web site permissions table, you may already have a module like this in place.

If you do not, you will have to write the shared secret module yourself, and

should have a thorough understanding of your user database. IBM typically uses a

servlet architecture for these modules.

Regardless of your particular implementation, we recommend that you hash each

secret before storing it in the database. This is more secure, as it ensures that the

original secret is never stored anywhere. The API provides a hashing function that

you can use for this purpose, as well as a function that allows you to use the

hashed secret to verify a signature.

Implementing Authenticated Clickwrap 5

Note: If your Authenticated Clickwrap signature uses more than one shared secret,

you must concatenate the secrets, hash them, and then store the hash of the

combined secret in your database. For example, if the secrets were ″blue″

and ″red″, you would store the hash of ″bluered″ in your database.

6

HMAC Signature Validation Functions Quick Reference

validateHMACWithHashedSecret

Description

This method determines whether an HMAC signature is valid. HMAC signatures

include both Authenticated Clickwrap and Signature Pad signatures.

For Authenticated Clickwrap signatures, you must know the hash of the signer’s

shared secret to use this method. For Signature Pad signatures, you may use this

method without the shared secret if the signature was created without one. In any

case, the shared secret should be available from a corporate database or other

system.

This method will also notarize (that is, digitally sign) a valid HMAC signature if

you provide a digital certificate. However, notarization will not occur if the

signature does not include a shared secret. Once notarized, you must use the

verifySignature method to validate the signature.

Note: Authenticated Clickwrap is a separately licensed product. Please ensure that

your company has the license to use Authenticated Clickwrap before you

provide forms or functionality that rely on it.

Method

 public short validateHMACWithHashedSecret(

 byte [] hashedSecret,

 Certificate theServerCert,

 IntHolder theStatus,

) throws UWIException;

© Copyright IBM Corp. 2003, 2006 7

Parameters

 Expression Type Description

hashedSecret byte[] The hash of the shared secret that identifies

the user. This should be available from a

corporate database or other system.

If there is more than one shared secret, you

must concatenate the strings with no

separating characters and then hash the

combined secret. For example, if the secrets

were ″blue″ and ″red″, you would pass the

hash of ″bluered″ to the method.

If there is no shared secret, pass and empty

string.

You must encode the byte array as follows:

Authenticated Clickwrap (HMAC) UTF-8

Signature Pad UTF-16LE

You can use the getBytes method to do this.

For example:

 mySecret.getBytes("UTF-8")

theCertificate Certificate The server certificate. If the HMAC signature

is valid, the function will use the private key

of this certificate to digitally sign the HMAC

signature. This signature is appended to the

signature item, and can be verified using

UFLVerifySignature.

If you pass null, the method will simply

validate the HMAC signature.

theStatus IntHolder This is a status flag that reports whether the

operation was successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK —

the operation was successful.

SecurityUserStatusType.SUSTATUS_

CANCELLED — the operation was cancelled

by the user.

SecurityUserStatusType.SUSTATUS_INPUT_

REQUIRED — the operation required user

input, but could not receive it (for example, it

was run on a server with no user).

Returns

A constant if the verification is successful, or throws a generic exception

(UWIException) if an error occurs. The following table lists the possible return

values:

Code

Numeric

Value Status

FormNodeP.UFL_DS_OK 0 The signature is verified.

8

Code

Numeric

Value Status

FormNodeP.UFL_DS_ALGORITHM

UNAVAILABLE

13590 The appropriate verification

engine for the signature is

not available.

FormNodeP.UFL_DS_F2MATCHSIGNER 13529 The certificate does not

match the signer’s name.

FormNodeP.UFL_DS_FAILED

AUTHENTICATION

1272 The signature is invalid or

the secret used is incorrect.

FormNodeP.UFL_DS_HASHCOMPFAILED 13527 The document has been

tampered with.

FormNodeP.UFL_DS_NOSIGNATURE 13526 There is no signature.

FormNodeP.UFL_DS_NOT

AUTHENTICATED

1240 The signer cannot be

authenticated.

FormNodeP.UFL_DS_UNEXPECTED 13589 An unexpected error

occurred.

FormNodeP.UFL_DS_UNVERIFIABLE 859 The signature cannot be

verified.

Example

The following example uses getSignature to get a signature object, and uses

getDataByPath to get the signer’s identity from the signature object. Next, it calls

validateHMACWithHashedSecret to validate the signature.

 public short checkSignature(FormNodeP theSignatureNode, Certificate theServerCert)

 {

 Signature theSignatureObject;

 byte [] hashedSecret;

 String signerCommonName;

 BooleanHolder encodedData;

 IntHolder theStatus;

 short validation;

 theSignatureObject = theSignatureNode.getSignature();

 encodedData = new BooleanHolder();

 if ((signerCommonName = theSignatureObject.getDataByPath(

 "SigningCert: Subject: CN", false, encodedData)) == null)

 {

 throw new UWIException("Could not determine signer’s name.");

 }

 /* Include external code that matches the signer’s identity to a hashed

 shared secret, sets hashedSecret to match. This is most likely a

 database lookup. */

 theStatus = new IntHolder();

 validation = theSignatureNode.validateHMACWithHashedSecret(

 hashedSecret, theServerCert, theStatus);

 /* Check the status in case the process required user input. */

 if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)

 {

 throw new UWIException("Validation required user input.");

 }

 return(validation);

 }

HMAC Signature Validation Functions Quick Reference 9

validateHMACWithSecret

Description

This method determines whether an HMAC signature is valid. HMAC signatures

include both Authenticated Clickwrap and Signature Pad signatures.

For Authenticated Clickwrap signatures, you must know the signer’s shared secret

to use this method. For Signature Pad signatures, you may use this method

without the shared secret if the signature was created without one. In any case, the

shared secret should be available from a corporate database or other system.

This method will also notarize (that is, digitally sign) a valid HMAC signature if

you provide a digital certificate. However, notarization will not occur if the

signature does not include a shared secret. Once notarized, you must use the

verifySignature method to validate the signature.

Note: Authenticated Clickwrap is a separately licensed product. Please ensure that

your company has the license to use Authenticated Clickwrap before you

provide forms or functionality that rely on it.

Method

 public short validateHMACWithSecret(

 String theSecret,

 Certificate theServerCert,

 IntHolder theStatus,

) throws UWIException;

Parameters

 Expression Type Description

theSecret String The shared secret that identifies the user. This

should be available from a corporate database

or other system.

If there is more than one shared secret, you

must concatenate the strings with no

separating characters. For example, if the

secrets were ″blue″ and ″red″, you would pass

″bluered″ to the method.

If there is no shared secret pass an empty

string.

theServerCert Certificate The server certificate. If the HMAC signature

is valid, the method will use the private key

of this certificate to digitally sign the HMAC

signature. This signature is appended to the

signature item, and can be verified using

verifySignature.

If you pass null, the method will simply

validate the HMAC signature.

10

Expression Type Description

theStatus IntHolder This is a status flag that reports whether the

operation was successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK —

the operation was successful.

SecurityUserStatusType.SUSTATUS_

CANCELLED — the operation was cancelled

by the user.

SecurityUserStatusType.SUSTATUS_INPUT_

REQUIRED — the operation required user

input, but could not receive it (for example, it

was run on a server with no user).

Returns

A constant if the verification is successful, or throws a generic exception

(UWIException) if an error occurs. The following table lists the possible return

values:

Code

Numeric

Value Status

FormNodeP.UFL_DS_OK 0 The signature is verified.

FormNodeP.UFL_DS_ALGORITHM

UNAVAILABLE

13590 The appropriate verification

engine for the signature is not

available.

FormNodeP.UFL_DS_F2MATCHSIGNER 13529 The certificate does not match

the signer’s name.

FormNodeP.UFL_DS_FAILED

AUTHENTICATION

1272 The signature is invalid or the

secret used is incorrect.

FormNodeP.UFL_DS_HASHCOMPFAILED 13527 The document has been

tampered with.

FormNodeP.UFL_DS_NOSIGNATURE 13526 There is no signature.

FormNodeP.UFL_DS_NOTAUTHENTICATED 1240 The signer cannot be

authenticated.

FormNodeP.UFL_DS_UNEXPECTED 13589 An unexpected error occurred.

FormNodeP.UFL_DS_UNVERIFIABLE 859 The signature cannot be

verified.

Example

The following example uses getSignature to get the signature object, and uses

getDataByPath to get the signer’s identity from the signature object. It then calls

validateHMACWithSecret to validate the signature.

 public short checkSignature(FormNodeP theSignatureNode, Certificate theServerCert)

 {

 Signature theSignatureObject;

 String theSecret;

 String signerCommonName;

 BooleanHolder encodedData;

 IntHolder theStatus;

 short validation;

HMAC Signature Validation Functions Quick Reference 11

theSignatureObject = theSignatureNode.getSignature();

 encodedData = new BooleanHolder();

 if ((signerCommonName = theSignatureObject.getDataByPath(

 "SigningCert: Subject: CN", false, encodedData)) == null)

 {

 throw new UWIException("Could not determine signer’s name.");

 }

 /* Include external code that matches the signer’s identity to a shared

 secret, and sets theSecret to match. This is most likely a

 database lookup. */

 theStatus = new IntHolder();

 validation = theSignatureNode.validateHMACWithSecret(theSecret,

 theServerCert, theStatus);

 /* Check the status in case the process required user input. */

 if (theStatus.value != SecurityUserStatusType.SUSTATUS_OK)

 {

 throw new UWIException("Validation required user input.");

 }

 return(validation);

 }

12

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 13

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

14

����

Program Number:

Printed in USA

S325-2611-00

	Contents
	Implementing Authenticated Clickwrap
	About Authenticated Clickwrap
	Using the Shared Secret
	Notarizing the Signature

	Server Architecture
	How the Architecture Fits into Your Overall Application

	About the User Database
	Key Data Elements
	Using Multiple IDs or Shared Secrets

	About the Authentication Module
	The Basic Algorithm
	Alternate Scenarios

	About the Shared Secret Module

	HMAC Signature Validation Functions Quick Reference
	validateHMACWithHashedSecret
	validateHMACWithSecret

	Appendix. Notices
	Trademarks

