
IBM® Workplace Forms™ Designer

User's Guide

Version 2.6.1

S325-2589-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 201.

First Edition (September 2006)

This edition applies to version 2.6.1 of IBM Workplace Forms Designer (product number L-DSED-6RFRFB) and to

all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces version 2.6 of Workplace Forms Designer.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction 1

Getting started 3

Planning a form 3

Designing a form 4

Interface 5

Perspectives 5

Selecting a perspective 5

Editor 6

Design panel 6

Source panel 6

Preview panel 7

Palette 7

Pinning Palette libraries 8

Hiding and showing the Palette 8

Views 8

Showing, minimizing, maximizing or closing

views 8

Navigator view 9

Outline view 9

Properties view 9

Problems view 9

Enclosures view 10

Advanced views 10

Projects 13

Creating projects 13

Opening and closing projects 13

Opening projects 13

Closing projects 13

Creating project sub-folders 14

Linking resources to projects 14

Renaming projects 14

Deleting projects 15

Forms 17

Creating forms 17

Opening forms 17

Upgrading forms 18

Saving forms 18

Saving a form with a new name 19

Compressing forms 19

Renaming forms 19

Setting global form properties 19

Creating form templates 20

Customize your template images and descriptions 20

Recovering previous versions of a form 21

Closing forms 21

Deleting forms 22

Importing forms 22

Exporting forms 22

Pages 25

Adding pages to a form 25

Moving between pages 26

Moving to any page 26

Moving to the next page 26

Moving to the previous page 26

Sizing pages 26

Setting page properties 26

Setting properties for a single page 27

Setting properties for all pages 27

Ordering pages 27

Deleting pages 27

Providing navigation between pages 28

Laying out items on a page 29

Item types 29

Standard Library items 29

Object Library items 35

Inserting items onto a page 37

Arranging items on a page 37

Bounding boxes 37

Layout grids 38

Rulers and guides 39

Zooming and display 40

Selecting items 41

Moving items 41

Resizing items 41

Changing the build order of items 42

Tab order 42

Changing the tab order of items on a page . . . 42

Aligning items 43

Alignment types 44

Spacing items 45

Removing relative alignment assignment . . . 46

Expanding items 46

Expansion types 46

Cutting, copying, pasting and deleting items . . . 47

Cutting items 48

Copying items 48

Pasting items 48

Deleting items 48

Visibility 48

Converting XFDL items to XForms 49

Setting item properties 51

Resetting a property to its default value 51

Copying a property setting from one item to

another 51

Changing colors 52

Changing the background and text color . . . 52

Changing the toolbar color 52

Changing the color of an item 53

Showing or hiding categories 53

Showing advanced properties 53

Sorting properties in alphabetical order 54

Help messages 54

© Copyright IBM Corp. 2003, 2006 iii

Adding context-sensitive help to an item . . . 54

Creating an error message for a field or combo

box 55

Adding accessibility messages 55

Toolbars 57

Adding a toolbar to a page 57

Adding items to a toolbar 57

Resizing a toolbar 57

Copying a toolbar from one page to another . . . 58

Fields 59

Creating a field 59

Creating a field with a label 59

Specifying the type of data to accept 59

Data types 60

Specifying the constraints on data 61

Constraints types 61

Setting up a mandatory field 62

Reformatting input data 63

Presentation types 63

Changing scroll bars 66

Buttons and actions 67

Buttons 67

Creating buttons 68

Creating submit buttons 68

Creating link or replace buttons 71

Creating save or cancel buttons 71

Creating print buttons 71

Automatic actions 71

Creating automatic actions 72

Lists and choices 75

Creating check box lists 76

Creating radio lists 77

Creating popup lists 77

Creating combo box lists 78

Creating box lists 79

Creating calendars 80

Using lists to trigger actions 80

Images 81

Adding an image file to a form 81

Adding an image to a button or label 82

Resizing and cropping images on buttons and

labels 82

Image-mapping a button 83

Adding a background template image 83

Formulas 85

When to use formulas 85

Planning a formula 85

Setting up simple formulas 86

Setting one value to equal another (assignment) 86

Performing a calculation based on two values

(calculation) 86

Summing values 88

Setting an item value to equal a function . . . 88

Making decisions based on user input

(if/then/else) 89

Functions 91

Operators and the order of operations 96

Creating custom formulas 97

References: Referring to other items and their

options 97

Deleting a formula 98

Formula examples 98

Automatically calculating compound interest

factor 98

Displaying the current date automatically . . . 100

Custom functions 101

Creating custom functions 101

Making custom functions available 101

Distributing IFX files 102

Embedding JAR file 102

Using custom functions in the Compute Wizard 102

Attachments 105

Attaching files to a form 105

Creating attachment buttons 106

Signatures 107

Signing a form 108

Signature types 109

Digital signatures 109

Generic RSA signatures 109

Entrust signatures 110

Microsoft CryptoAPI signatures 110

Netscape signatures 110

Signature Pad signatures 110

Silanis signatures 111

Clickwrap signatures 111

Authenticated Clickwrap signatures 112

Creating signature buttons 112

Creating a Generic RSA signature button . . . 112

Creating a Microsoft CryptoAPI signature

button 113

Creating a Clickwrap signature button 114

Creating an Authenticated Clickwrap signature

button 115

Creating an Entrust signature button 116

Creating a Netscape signature button 116

Creating a Signature Pad signature button . . . 117

Creating a Silanis signature button 119

Signing portions of forms 121

Specifying the display for a signature button . . . 124

Making a signature button mandatory 125

Signature properties 125

Web services 127

Adding Web services to a form 127

Deleting an enclosed WSDL file from a form . . . 127

XForms 129

Adding XForms support 130

Adding XForms support to a new form . . . 130

Adding XForms support to an existing form . . 130

iv

The XForms model 130

Naming an XForms model 131

XForms data instances 131

Creating an XForms data instance 132

Building XForms data instances 134

XForms user interface 138

XForms items 138

Creating XForms labels 139

XForms fields 140

XForms lists 141

XForms conditional items 148

XForms tables 151

XForms help messages 159

Converting XFDL items to XForms items . . . 160

XForms binding 161

Binding using ref or nodeset 161

Binding using bind 162

XForms model binds 162

Highlighting bound XForms items 164

XForms submissions 165

Adding submissions to an XForms model . . . 165

Adding a submission to an XForms data

instance 165

Naming submissions 165

Setting which data is submitted 165

XForms Smartfill 169

XML Model 173

Displaying XML Model views 174

Creating an XML Model 174

Adding an XML Model to a form 174

Adding data instances to the XML Model . . . 174

Naming data instances 175

Deleting a data instance 175

Designing data instances 175

Adding elements to a data instance 176

Renaming data instance elements 176

Adding child elements to an element 176

Deleting data instance elements 176

Changing the namespace of data instance

elements 177

Adding attributes to data instance elements . . 177

Renaming attributes 177

Adding a value to an attribute 177

Converting an attribute to a namespace attribute 177

XML Model binding 177

Binding a data instance node to the form . . . 178

Deleting the bindings for an instance 178

XML Model submissions 178

Adding submissions to an XML Model 178

Setting the submission rules 178

Deleting submissions 179

Submission properties 179

Adding an XML submission button 179

Customizing the Designer interface 181

Customizing hot keys 181

Customizing the Palette 181

Selecting a Palette layout 181

Using large button icons 181

Creating your own custom library 182

Creating user defined perspectives 182

Exporting objects 183

Appendix A: Accessibility 185

Keyboard input and navigation 185

Keyboard shortcut keys 185

Features for accessibility display 185

Accessible documentation 185

Appendix B: Options 187

Appendix. Notices 201

Trademarks 202

Index 203

Contents v

vi

Introduction

IBM® Workplace Forms™ Designer allows form designers to create XFDL forms

within both a graphical drag-and-drop environment and a powerful source code

editor. You use the Designer together with IBM Workplace Forms Viewer. The

Viewer lets users view and complete XFDL forms. When designing a form, you use

the Viewer to preview and test your form.

The Designer is based on the Eclipse platform. The Eclipse platform is an

environment for developing and delivering software applications. The overall

Eclipse interface is referred to as the Workbench. If you have previously used the

Eclipse Workbench, then the Designer will look very familiar and you will already

know how to perform many general functions. If you have not previously used the

Eclipse Workbench, be aware that certain general functions in the Designer are

common to all Eclipse-based software applications. These general functions are not

described in detail in this document. For detailed information about the Eclipse

Workbench, see the Eclipse Workbench User Guide (Help → Help Contents).

© Copyright IBM Corp. 2003, 2006 1

2

Getting started

This section describes how to get started using the Designer for the first time.

Before you can start working on a form, you must first create:

v A workspace — A single directory where the projects, folders and files that you

create in the Designer are all stored. To open the Designer, you must first specify

the workspace.

v A project — Contains folders and files, and they can be opened, closed, or built.

When you open the Designer, the project’s contents are displayed in the

Navigator view.

v A form file — An XML document that conforms to the XFDL specification.

To start using the Designer:

1. Click Start → All Programs → IBM Workplace Forms Designer 2.6 → IBM

Workplace Forms Designer.

The Workspace Launcher window opens. You use this window to set up your

default workspace.

2. Click OK to accept the default workspace. You can change your workspace at a

later time.

Note: The Workspace Launcher window will appear every time you start the

Designer. If you do not want this window to appear, click Use this as

the default and do not ask again. The next time you start the Designer,

this window will not be displayed.

The Designer’s Welcome view opens.

Note: The Designer Welcome page uses your browser to display content. You

must have Internet Explorer 5.5 or higher or a Mozilla-based browser for

the Welcome page to display.

3. In the Welcome view, click the Create Form button to open the New Workplace

Form window.

4. Enter a File Name for the new form.

5. Click Finish to create the form.

A message appears asking if you want to switch to the Designer perspective.

6. Click Yes.

The Designer opens and the form is displayed in the Design editor.

Now, you are ready to build the form.

Planning a form

Before you begin designing a form, there are many things you need to consider:

v What information will the form collect?

v Are you duplicating an existing form (for example, a paper form)?

v In what order should the user enter the information?

v Will items be positioned on the page using absolute positioning or relative

positioning?

v Does the form need distinct sections? If so, how many?

© Copyright IBM Corp. 2003, 2006 3

v Should the form have more than one page? If so, what should go on each page?

v What page size do you require?

v Will the user need to print the form?

v Will the form need to verify user input (for example, for correct data type or

format) as the user fills out the form?

v Will the form need to perform calculations as the user fills out the form?

v What security features are necessary?

v Should the form support digital signatures?

v To whom or to where will users submit the form? Will any user input be

submitted into a database?

v When the form opens, will items need to be updated or pre-populated (for

example, by a database or via Smartfill)?

v Will you deliver the form to users via IBM Workplace Forms Server - WebForm

Server?

v Will you use a wizard style form?

v Should the form contain dynamic elements that appear or disappear as needed?

v How should the form connect to the rest of your application?

Designing a form

You can design a form in various ways:

v Create an entirely new form in the Designer (see below).

v Start with an existing paper form, scan it, and recreate it in the Designer using a

template image (see “Adding a background template image” on page 83).

v Start with a template form and modify/customize it in the Designer (see

“Creating forms” on page 17).

v Start with an existing sample Workplace Form and modify/customize it in the

Designer (see “Opening forms” on page 17 and “Upgrading forms” on page 18).

To create an entirely new form:

1. Create a project for your form. See “Projects” on page 13.

2. Create a blank form. See “Forms” on page 17.

3. Layout your form by inserting items onto the form. See “Laying out items on a

page” on page 29.

4. Set item properties to control their appearance and behavior. See “Setting item

properties” on page 51.

5. Preview the form in the Preview panel or in the Viewer. See “Editor” on page

6.

4

Interface

This section describes the parts of the Designer interface.

Perspectives

The Designer interface is comprised of several views such as the Instance and

Navigator views and an editor pane where you build forms. Taken together, these

views and the editor pane make up the Designer perspective.

A perspective is a combination of Eclipse Workbench views and editors that lets you

view and work with files. The Eclipse Workbench comes with several perspectives

and, much like the word implies, each perspective lets you view and manage your

work from a different angle, providing specific functionality intended to

accomplish particular tasks.

The Designer comes with two perspectives that are available by default: Designer

and Resource. The Designer perspective displays the views that are required to

build a form. The Resource perspective displays the views that are required to

manage your projects and files.

Perspectives control the contents of certain menus and toolbars. They define visible

action sets, that you can change to customize a perspective. You can save a

customized perspective. For detailed information about perspectives, see the Eclipse

Workbench User Guide (Help → Help Contents).

Tip: If you change a perspective by mistake, you can revert to the Designer

perspective by clicking Window → Open Perspective → Designer.

Selecting a perspective

Within the Designer, you can switch perspectives.

© Copyright IBM Corp. 2003, 2006 5

Note: Since the Designer perspective contains all the views and editors you need

to create and design forms, until you become comfortable working with the

Designer, you should work exclusively from the Designer perspective.

To select a perspective:

1. Click Window → Open Perspective → Other to open the Select Perspective

window.

2. Select a perspective from the list.

3. Click OK.

Designer displays your project from the perspective you selected.

To revert back to the Designer perspective, click Window → Open Perspective →

Designer.

Editor

When you create or open a form, it is displayed in the editor. The editor is

comprised of the following three tabbed panels:

v Design — A visual editor that you use primarily to design the appearance of

your form; this editor includes the canvas and the Palette.

v Source — A text editor that lets you view and edit your form’s source code.

v Preview — A form preview that lets you preview and test your form in an

embedded Viewer.

Note: You must have the Viewer installed to use the Preview panel.

You use these panels to create, edit and view forms. The panels can be displayed

by selecting the tab at the bottom of the editor.

Design panel

Use the Design panel to create and edit the visual components of your forms. The

Design panel consists of two parts:

v the Canvas — The area where you design the visual components of your forms.

v the Palette — Contains the items you can add to the form.

Source panel

Use the Source panel to view and edit your form’s XFDL source code.

Note: The Source panel has code validation; if your code has errors, in some cases

you will not be able to go back to the Design panel until the errors are

resolved.
When you switch from the Source panel to the Design panel, the Designer

validates the form against the XFDL schema. If the form does not comply with the

schema, the Designer prevents you from leaving the Source panel and displays a

list of errors in the Problems view.

For example, each option type is valid for some item types and invalid for other

item types. If you use the Source panel to change an item’s type and do not ensure

that all of its options are still valid for the item type, the form will no longer

comply with the XFDL schema and you will not be able to switch back to the

Design panel.

6

For detailed information on the Problems view, see “Problems view” on page 9.

Editing source code using code assist

Code assist provides you with a list of code options that are available to you at that

particular point in your code. You can use code assist when writing or editing

XFDL source code.

To use code assist:

1. Place your cursor in a valid position on a line of code and then press Ctrl +

space bar. Note: On Chinese operating systems, use Alt+/.

If the Designer finds valid code completion for this position, code assist

displays a list of possible suggestions in a popup window.

2. If there are multiple suggestions, you can type additional letters to narrow the

list.

3. Double-click the desired code fragment.

The code fragment is added to your form’s source code.

Preview panel

Use the Preview panel to view and test your forms. When you click the Preview

tab, the form opens in the Viewer.

Note:

v If you use a non-OpenType font, a non-TrueType font, or a vertical font in

your form, the Designer may display a warning message saying the font

is not available. You can ignore this message.

v Do not use the Save Form or Save As toolbar buttons in the Preview to

save the form within your workspace.

Palette

The Palette contains tools that let you create and select items.

Selection tools

For detailed information about the selection tools, see “Selecting items” on page 41.

Libraries

Creation tools are grouped within libraries. The Palette contains two default

libraries:

v Standard Library — Contains tools that let you create simple form items.

v Object Library — Contains tools that let you create complex pre-defined XFDL

objects that are composed of several items. For more details, see “Object Library

items” on page 35.

You can collapse or expand a library by clicking on the library name. For detailed

information about customizing the Palette, see “Customizing the Palette” on page

181.

Interface 7

Pinning Palette libraries

Palette libraries expand or collapse dynamically. If you open a library, other

libraries automatically close. If you do not want a library to close, you can pin a

library so that it does not collapse when you expand another library.

To pin a library:

Click the library.

The library will now remain expanded.

Hiding and showing the Palette

You can hide the Palette, giving you more space in the editor.

To hide the Palette:

On the Palette title bar, click

.

The Palette minimizes.

To show the Palette:

On the Palette title bar, click

.

Views

The Eclipse Workbench interface is comprised of views and an editor pane.

A view is a tabbed window that groups similar information together. For example,

the Properties view is a context-sensitive view that displays the properties of

whatever object is selected in the Designer, the Navigator view lists all the files

and folders associated with your project, and the Enclosures view displays all the

files that are enclosed within the form.

A view might appear by itself, or tabbed with other views.

Views have their own menus. To open the menu for a view, click

located to the

right of that view’s title bar. Some views have their own toolbars.

You can open and close views, and dock them in different positions in the

Workbench.

This section describes the main Designer views. For detailed information about

other views, see the Eclipse Workbench User Guide (Help → Help Contents).

Showing, minimizing, maximizing or closing views

You can show, minimize, maximize, or close views.

v To show a view, click Window → Show view.

v To minimize or maximize a view window, click

or

located at the right

of the view toolbar.

8

v To maximize the view, in the Workbench window double-click a view title bar.

v To close a view, click the X in the view tab.

Navigator view

The Navigator view lists the folders and files in your project.

Using this view, you can open files, copy, move or create new resources, select

resources for importing or exporting, and compare and replace resources. Most of

these operations can be accessed by right-clicking in the Navigator view.

For detailed information about the Navigator, see the Eclipse Workbench User Guide

(Help → Help Contents).

Outline view

The Outline view displays the hierarchical structure of your form. You can expand

or contract the outline to see more or less detail in the form.

Clicking an item in the Outline view highlights the item on the canvas or in the

Source panel, and displays its options in the Properties view.

Tip: The Outline view is very useful for accessing non-visible items in a form, such

as form and page globals. You can also use the Outline view to move to pages in a

multi-page form.

The Outline view’s contents and toolbar will vary depending on whether you are

working in the Design panel or Source panel.

For detailed information about the Outline view, see Outline view in the Eclipse

Workbench User Guide (Help → Help Contents).

Properties view

The Properties view displays the properties you can set for a selected form item or

object. The list of properties will vary depending on what is selected in the

Designer.

For detailed information about setting item properties, see “Setting item

properties” on page 51.

For detailed information about specific properties, see “Appendix B: Options” on

page 187.

Problems view

The Properties view displays errors, warnings, and other information whenever

you check your form or switch from the Source panel to the Design panel.

errors Errors are problems that make the form impossible to use. The Viewer

cannot open forms with these errors. When you receive an error message,

you will also be given information about which of the form’s items or

settings is causing the problem.

warnings

Warnings are reported when the Designer finds an item or property setting

that is either incorrect or not part of standard XFDL. For example, The

following problem was detected or Referenced item does not exist. The form can

be opened with these types of problems.

Interface 9

infos General tips and tricks information.

For detailed information about the Problems view, see the Eclipse Workbench User

Guide (Help → Help Contents).

Enclosures view

You can use the Enclosures view to enclose files within your form:

Data The Designer lets you specify which page of your form you can attach a

file to. The Data option lets you select the appropriate page. Images or

documents to be used with attachment features are added here. For

detailed information about adding images, see “Adding an image file to a

form” on page 81. For detailed information about attachments, see

“Attachments” on page 105.

JAR The Designer lets you enclose custom Java™ modules containing additional

form functions. For detailed information on jar files, see “Custom

functions” on page 101. For information about how to develop your own

Java modules (.jar files), see the Java API User’s Manual.

Schema

The Designer lets you enclose a schema file in your form. You can then use

the enclosed schema to create instances. You can also use an enclosed

schema to validate the information in the model. The schema validates all

data in the model in the target namespace for that schema.

WSDL

The Designer lets you enclose a Web Services Definition Language (WSDL)

document to your form. Once enclosed, you can use the WSDL to generate

an instance.

 For detailed information about Web Services, see “Web services” on page

127.

XForms Instances

The Designer lets you enclose an XML file that contains an XForms

instance.

Advanced views

The following advanced views are available:

Instance view

The Instance view is used to define the XML template for the data that will be

collected from the form. A data instance can be used to store input values,

pre-populated fields with data, or generate list selections.

For detailed information on instances, see “XForms data instances” on page 131.

XForms view

The XForms view is used to add XForms support and to manage XForms models.

Once you create an XForms model, you can use the XForms view to add, edit or

delete the XForms elements such as XForms models, instances, submissions, binds,

and schemas.

For detailed information about XForms, see “XForms” on page 129.

10

XML Model view

You use the XML Model view to create and manage an XML Model.

Note: The XML Model view is not part of the Designer perspective.

For detailed information about the XML model, see “XML Model” on page 173.

XML Model Instance view

The XML Model Instance view provides a listing of the XML data instances used

in your form.

Note: The XML Model Instance view is not part of the Designer perspective.

For more information about XML Model data instances, see “Adding data

instances to the XML Model” on page 174.

Interface 11

12

Projects

Projects are a way of organizing forms and resources.

Like folders, projects map to directories in the file system. (When you create a

project, you specify a location for it in the file system.)

For detailed information about projects, see Working with projects, files and folders in

the Eclipse Workbench User Guide (Help → Help Contents).

Creating projects

To create a project:

1. Click File → New → Project.

2. Expand Simple and click Project.

3. Click Next.

4. Click within the Project name field.

5. Type the name of the project.

6. Specify where the Project contents will be saved:

v To save your project into your default Workspace, select the Use default

checkbox.

v To select any directory, clear the Use default check box and click Browse.
7. Click Finish.

Opening and closing projects

A project is either open or closed. When a project is closed, it cannot be changed.

The resources of a closed project will not appear in the Navigator view, but the

resources continue to reside on the local file system. Closed projects require less

memory. When a project is open, the structure of the project can be changed and

you will see the contents.

In the Navigator view, the project’s icon is either an open folder or a closed folder.

Opening projects

To open a closed project:

1. In the Navigator view, select the project.

2. Select Projects → Open Project.

The project’s icon changes to an open folder.

Alternatively, you can right-click the project and select Open Project.

Closing projects

To close a project:

1. In the Navigator view, select a project folder.

2. Click Projects → Close Project.

© Copyright IBM Corp. 2003, 2006 13

The project’s icon changes to a closed folder.

Alternatively, you can right-click the project listed and select Close Project.

Creating project sub-folders

To create a folder within a project:

1. Click File → New Folder.

2. Select the parent folder from the list provided.

3. Click within the Folder name field.

4. Type the folder name.

5. Click Advanced.

6. Click Link to folder in the file system.

7. Type a file system path, or click Browse to select a folder in the file system.

8. Click Finish.

Linking resources to projects

Folders and files directly below projects can be linked to locations in the file

system outside of the project’s location. These special folders and files are called

linked resources.

To create a linked folder:

1. In the Navigator view, right-click the project in which you want to link to other

resources and click New → Other. A Select a wizard window is displayed.

2. Expand Simple and click Folder.

3. Click Next.

4. Click within the Folder name field.

5. Type the name of the folder as it will appear in the workbench. This name can

be different from the name of the folder in the file system.

6. Click Advanced.

7. Click Link to folder in the file system.

8. Type a file system path, or click Browse to select a folder in the file system.

9. Click Finish.

To create a linked file, follow the same steps as above, except choose New → File.

For detailed information about linked resources, see the Eclipse Workbench User

Guide (Help → Help Contents).

Renaming projects

To rename a project:

1. In the Navigator view, select the project.

2. Click File → Rename.

The project name is highlighted.

3. Type the new project name and press Enter.

Alternatively, right-click the project and select Rename Project.

14

Note: Projects are listed alphabetically in the Navigator view.

Deleting projects

To delete a project:

1. In the Navigator view, select a project to delete.

2. Click Edit → Delete. Alternatively, right-click the project and click Delete

Project.

3. Select one of the following:

v Also delete contents under “project path”.

v Do not delete contents.
4. Click Yes.

Projects 15

16

Forms

A Workplace Form is an electronic document or interface for collecting information

from people.

Note: Do not edit forms externally (for example, using a text editor) if the form is

part of a Designer project or is saved within a Designer workspace. If you

want to edit a form using a text editor, save the form to another location,

and remove it from any Designer projects or workspaces.

Creating forms

To create a form:

1. Select File → New → New Workplace Form to open the New Workplace Form

window.

Note: File → New → New Workplace Form is only available in the Designer

perspective. To create a form in any perspective, select File → New →

Other and select the Workplace Forms → New Workplace Form wizard.

2. Select the project for the new form.

3. In the File name field, type the name for the new form.

4. Click Next. The Choose Template window opens.

5. Within the Choose Template field, select a form template.

6. Click Finish.

The form with a watermark titled “Empty” is displayed in the canvas and listed in

the Navigator view. (You may need to expand the project in the Navigator view to

see the list of forms in the project.)

For detailed information on creating form templates, see “Creating form templates”

on page 20.

For detailed information about XForms, see “XForms” on page 129.

Opening forms

Opening a form displays the form in an Editor, allowing you to edit and preview

the form.

To open a form:

In the Navigator view, double-click the form name. If the form is not listed in the

Navigator view, you must import the form into a project (see “Importing forms”

on page 22).

If you open a form that is based on XFDL 6.x, the Designer will ask if you want to

upgrade the form to XFDL 7.0. You have the option of making a copy of the older

form and saving it to another location.

© Copyright IBM Corp. 2003, 2006 17

Upgrading forms

You can use the Designer to create and edit forms. Forms created in the Designer

are based on XFDL 7.0. To edit a form that is based on an earlier version of XFDL

(for example, a form created in an older version of the Designer), you must

upgrade the form to XFDL 7.0. You can only upgrade forms based on XFDL 6.0 or

higher.

Note: The Designer may encounter difficulty upgrading forms with complicated

formulas or custom information. Make sure you thoroughly test all

upgraded forms.

To upgrade a form:

1. Select File → New → Upgrade Workplace Form to open the Upgrade Workplace

Form window.

Note: File → New → Upgrade Workplace Form is only available in the Designer

perspective. To upgrade a form in any perspective, select File → New →

Other and select the Workplace Forms → Upgrade Workplace Form

wizard.

2. Select the forms to upgrade:

v To select form files, select Files in the File System and click Browse to select

the forms.

v To select a directory of forms, select A Directory in the File System and click

Browse to select the directory.

v To select forms from your projects, select Your Workspace and use the

navigation tree to select the forms.
3. Click Next to display the next page of the wizard.

4. Select the project for the new form.

5. In the File name field, type the name for the new form. The default filename is

the original filename plus _V70.xfdl.

6. If you want to open the new form, select the Open Form(s) After Finishing

checkbox.

7. If you want to overwrite an existing form, select the Overwrite existing form

checkbox.

8. Click Finish.

The Designer lists the upgraded form in the Navigator view. (You may need to

expand the project in the Navigator view to see the list of forms in the project.)

Saving forms

You can only save a form that has been edited since its last save. The Designer

indicates that a form has been modified by displaying an asterisk “*” beside the

form name in the Editor tab.

To save a form:

With the form open and active in the Editor, click File → Save.

18

Saving a form with a new name

To save a form with a new name:

1. With the form open and active in the Editor, click File → Save As to open the

Save As window.

2. Select a project for the form.

3. In the File name field, type a new name for the form.

4. Click Finish.

The Designer lists the new form in the Navigator view, closes the original form in

the Editor and opens the new form in the Editor. (You may need to expand the

project in the Navigator view to see the list of forms in the project.)

Compressing forms

By default, when you save a form it is saved as an uncompressed XFDL file. You

can also setup your form so it is saved as a compressed XFDL file. Compressed

XFDL files are compressed using a modified gzip format; this format is unique to

Workplace Forms. You cannot view a compressed file in a text editor, but you can

use the form in the Viewer and the Designer. Other compression software may not

be able to decompress the forms. You can use an uncompressed file in the Viewer,

the Designer, or a text editor.

To compress a form:

1. In the Outline view, expand globalpage and select Form Global.

2. In the top-right corner of the Properties view, click

and click Show

Advanced Properties.

3. Expand Miscellaneous.

4. Click within the saveformat value field.

5. Type application/vnd.xfdl;content-encoding=“base64-gzip” and press Enter.

The next time you save the form, it will be saved as a compressed XFDL file.

Renaming forms

To rename a form:

1. In the Navigator view, select the form name.

2. Click File → Rename.

3. Type a new name for the form and press Enter.

Setting global form properties

You can set the default properties for all pages and all items in a form by setting

the global form properties.

For example, if you want all items on your form to use the same font, you could

set the font in the global form properties. Whenever you insert an item onto your

form, it will have the default font specified in the global form properties.

The global form properties only affect the default properties of items. You can later

modify the properties of individual items.

Forms 19

To set global form properties:

1. In the Outline view, expand globalpage (at the top of the list) and select Form

Global.

2. In the Properties view, set the form’s global page properties. For detailed

information on setting properties, see “Setting item properties” on page 51.

Creating form templates

You can use forms as custom templates and share them with team members to

create several forms using the same layout and functionality.

To setup custom form templates:

 1. Click Window → Preferences to open the Preferences window.

 2. In the left column, expand Workplace Forms.

 3. Click Form Templates.

 4. Click New to open the Browse For Folder window.

 5. Browse to the directory of forms you want to use as templates and click OK.

You can use template forms saved to your own computer or stored on a

shared network drive.

 6. Click Apply and then OK. The forms in the directories you have selected will

display in the New Workplace Forms wizard.

 7. If you want to change the order that the form templates are listed in the New

Workplace Forms wizard, select the folder and click Up and Down.

 8. If you want to remove a directory of templates, select it and click Remove.

 9. If you want to use only the default templates, click Restore Defaults.

10. Click OK to close the Preference window.

Customize your template images and descriptions

When you add a new template to the Designer, you can also add a description and

a preview image of the form. These steps are optional, but can help you to quickly

identify each template if you are distributing your templates to other users in your

organization.

To add a new preview image:

1. Take a snapshot of your form.

You can do this using a variety of screen-capturing tools.

2. Size the image to 160 x 240 pixels.

The Designer will automatically scale any image to this size, but you will get

better image quality if you resize the image yourself before adding it to the

Designer.

3. Save the image so that the filename is the same as your template, and use one

of the following formats: jpg/jpeg, gif, bmp, png, wbmp.

For example, if your template is named governmentTemplate.xfd, save the

image as governmentTemplate.jpg.

4. Copy the image to the same template folder that contains the form it

represents.

Once you have added the image file, the Designer will automatically display

this image when the user selects the corresponding template.

20

To add a description to your own template.

To add a description to your template, you need to create a separate file that will

contain this information. This file has the following name:

form_file_name.properties

For example, governmentTemplate.properties

The file includes two settings:

v TemplateTitle — The title of the template form. You should limit this to a few

words.

v TemplateDescription — A text description of the form. This can be several lines

long.

The properties file is written as a standard text file using tag-value pairs, as shown:

TemplateTitle=your template name

TemplateDescription=Use this template for all government forms.

 It includes a toolbar and page navigation buttons.

Once you have created the properties file, copy it to the same template folder that

contains the form it describes. The Designer will access this file automatically, and

will display the description of the form when the user selects that template.

Recovering previous versions of a form

You can recover previous versions of a form by using local history.

Local history is a local file source control mechanism. Each time you edit and save a

file in the Designer, a copy of it is saved. This lets you compare your current form

to an older version, or replace the file with a previous version. Each version in the

local history is identified by the date and time the file was saved. This is helpful if

you delete a portion of your form that you want to restore, or to identify how your

form has changed.

For detailed information about local history, see Comparing resources with local

history in the Eclipse Workbench User Guide (Help → Help Contents).

To recover a previous version of a form:

1. Within the Design or Source editor, right-click and click Replace With → Local

History.

2. Select the version and click Replace.

Note: You can also access local history for your file from the Navigator view.

Right-click the desired file and click Compare With → Local History.

Closing forms

To close a form:

Click the X in the form’s Editor tab.

The Designer closes the form in the Editor.

Note: To close all open forms, click File → Close All.

Forms 21

Deleting forms

Before you delete a form, ensure the form is not open in the Editor.

To delete a form:

1. In the Navigator view, select the form name.

2. Click Edit → Delete.

Importing forms

You can import existing XFDL forms or XForms forms into a project. Importing a

form makes it available in the Navigator view and associates it with the project.

Importing an XForms form converts the form into an XFDL form with XForms.

Importing an XFDL form does not convert the form in any way. For example, if

you are importing an XFDL 6.x form, you will still need to upgrade the form (see

“Upgrading forms” on page 18).

To import a form:

1. Click File → Import to open the Import window.

2. Select the type of item to import:

v To import an XFDL form, click File system.

v To import an XForms form, click Import XForms as Workplace Form.
3. Click Next to display the next page of the wizard.

4. To the right of the From directory field, click Browse.

5. Select the directory that contains the forms to import. The forms in the selected

directory are displayed in the list.

6. To the right of the Into folder field, click Browse.

7. Click Finish.

The Designer lists the imported forms in the Navigator view.

Note: You can also import forms by dragging them from Windows® Explorer and

dropping them onto the project directory in the Navigator view.

Exporting forms

You can export forms from a project. This saves the form as a file to a location

outside your project. When you export an XForms form, the Designer strips away

all non-XForms elements and creates an XML file containing only XForms

elements.

 1. Click File → Export.

 2. Select the type of item to export:

v To export an XFDL form, click File system.

v To export an XForms form, click Export Workplace Form as XForms.
 3. Click Next.

 4. In the left pane, select the form directories you want to export. The list of

available forms is updated in the right pane.

 5. If you want to specify the files types listed, then click one of the following:

v Select By Type - Reduce selection to only files of specified types.

22

v Select All - Select all files in source directory.

v Deselect All- Deselect all files from source directory.
 6. In the right pane, select the forms you want to export.

 7. To the right of To directory, click Browse.

 8. Select the directory the forms will be exported into and click OK.

 9. If you want to specify export details, then set any of the following:

v Options: Overwrite existing files without warning.

v Options : Create directory structure for files.

v Options: Create only selected directories.
10. Click Finish.

The Designer exports the forms.

Forms 23

24

Pages

When you create a new form, by default it consists of one page. You can add as

many pages as you like to a form. However, it is best to keep the form as simple

as possible, so try not to add extra pages unless you need to. You may wish to use

more than one page for the following reasons:

v Screen-sized forms — Typically, users do not like to scroll. It’s often a good idea

to limit the size of each page to the size of the user’s screen. To convert a legal

sized paper form into a screen-sized form, you will need to create several pages,

and logically group the kinds of information you are collecting onto separate

pages.

v Screen and paper form system — If you want to provide an easy-to-use

on-screen form but also want to print out the collected user input, you can use a

multiple-page form to do both. Create the screen-sized forms for collecting

information from the user, and then create a final printing page that maps all

user input to items on the printing page. Then set up the form to print only the

printing page.

v Wizard forms — You may want to create a form that resembles a software

application wizard. This type of form consists of a sequence of several small

screens, each of which asks the user to answer a few questions.

What to consider when using more than one page:

When designing a form that uses more than one page, consider the following:

v Consistency — Consider providing some consistent elements from page to page

to give the user a sense of familiarity. Use the global form properties to set the

properties for all pages (for example, fonts, colors, and so on) to maintain

consistency. For detailed information on setting page properties, see “Setting

page properties” on page 26.

v Navigation — To allow the user move from page to page when viewing the

form in the Viewer, you must add a paging control (for example, a “Next Page”

button) to each page. Consider whether you want to allow both forward and

backward paging. Because you control the navigation, you can skip over pages,

or even set up the form to decide which page to display next, depending on

what the user has entered into the form. For detailed information on providing

navigation, see “Providing navigation between pages” on page 28.

Adding pages to a form

To add a page to a form:

1. In the Palette, click Page.

2. Click anywhere within the canvas or Outline view.

A new page is added to the form. The new page is listed in the Outline view (at

the bottom of the list) and is automatically selected and displayed in the canvas.

(Only one page can be displayed in the canvas.)

© Copyright IBM Corp. 2003, 2006 25

Moving between pages

If your form contains more than one page, you can move between pages in the

Designer (that is, display a specific page in the canvas).

Moving to any page

To move to any page:

In the Outline view, select the page.

Moving to the next page

To move to the next page:

Click View → Next Page.

Moving to the previous page

To move to the previous page:

Click View → Previous Page.

Sizing pages

To size a page:

1. In the Outline view, select the page’s Page Global item.

2. In the Properties view, expand Appearance.

3. Set pagesize to the page’s width and height (measured in pixels). Approximate

values for common page sizes are:

v A4 (ISO 216) — 932 x 1343

v B5 (ISO 216) — 800 x 1152

v Letter (US) — 960 x 1260

v Legal (US) — 960 x 1620

v Tabloid (US) — 1260 x 1980

v PA4 (proposed intermediary between A4 and US letter) — 930 x 1260

v 640 x 480 (screen display) — 600 x 265

v 800 x 600 (screen display) — 770 x 375

v 1024 x 768 (screen display) — 980 x 540

For detailed information about setting properties, see “Setting item properties”

on page 51.

Setting page properties

You can modify the appearance and behavior of pages by setting page properties.

Page properties also control the default properties of items that you insert onto

pages. For example, if you want all items on a page to use the same font, you

could set the font in the page properties. Whenever you insert an item onto the

26

page, it will have the default font specified in the page properties. The page

properties only affect the default properties of items. You can later modify the

properties of individual items.

Tip: Set the default font for the text on the form in the Window → Preference

settings (General > Appearances tab). This saves time if the majority of the text on

your form will be the same font, size and style

Setting properties for a single page

When you set the properties for a single page, the settings only apply to that

specific page.

To set properties for a single page:

1. In the Outline view, select the page’s Page Global item.

2. In the Properties view, set the property values. For detailed information about

setting properties, see “Setting item properties” on page 51.

Setting properties for all pages

When you set the properties for all pages, the settings apply to all pages in the

form.

Note: If you set the properties for all pages and set the properties for a specific

page, the settings for the specific page will take precedence.

To set properties for all pages:

1. In the Outline view, expand globalpage.

2. Click Form Global.

3. In the Properties view, set the property values. For detailed information about

setting properties, see “Setting item properties” on page 51.

Ordering pages

If your form contains more than one page, you can arrange the order of pages.

To order pages:

1. In the Outline view, select the page and drag it up or down in the hierarchy.

When the cursor is at a valid location, a horizontal black line appears in the

hierarchy. You can only move a page to a valid location.

2. When the cursor is at the location in the hierarchy where you want the page,

release the left mouse button.

Deleting pages

To delete a page:

1. In the Outline view, select the page.

2. In the Outline view toolbar, click the Delete button.

Pages 27

Providing navigation between pages

To allow the user to move from page to page when viewing your form in the

Viewer, you need to add paging controls. Usually, a paging control will be a

button. You need to make the following decisions about paging in your form:

v Do you want the user to be able to navigate both forward and backward?

Consider whether the user will try to page through the form initially to look at

its scope, try to clarify a confusing instruction, or need to fix an error. For

example, if the user enters something on page three that invalidates something

on page one, the user will need to return to page one to fix the error. Otherwise,

the Viewer will not allow the form to be submitted.

v Do you want to hide pages from the user? You may want to reformat the user’s

input for storage or printing on hidden pages in the form.

v Do you want to show different pages to different users, depending on what

they enter into the form? You can program the form to decide where the user

should go next, depending on what has been entered into the form. If you do

this, make sure to consider backward navigation as well.

v Do you want to direct the input focus to an item that is not the first item on a

page? You can program a paging control to direct the input focus to particular

items on new pages.

To insert a paging button:

1. In the Palette, click Button.

2. Click on the canvas to place the button on the page.

3. In the Properties view, expand General.

4. Set type to pagedone.

5. Set url to #PAGE0.global where PAGE0 is the name of the page to display (for

example, #PAGE3.global).

Note: To direct the input focus to an item that is not the first item on the page,

set url to #PAGE0.ITEM where PAGE0 is the name of the page to display

and ITEM is the name of the item to direct focus to (for example,

#PAGE3.FIELD2).

You could also provide paging controls using a popup, combobox, or list:

1. Create a popup, combobox, or list.

2. Insert a cell into the popup, combobox, or list.

3. Set the cell’s type and url as described above.

28

Laying out items on a page

An item is a single element in your form, like a button or field. To make a form,

you place visible items on the page. You can also insert hidden items in the form.

Hidden items add advanced features to your form.

Item types

A form can include the following general types of items.

Pages Each form can be composed of any number of pages, just like a paper

form. For detailed information about pages, see “Pages” on page 25.

Toolbars

A toolbar is a special area at the top of a form where you can place

headings and control buttons. For detailed information about toolbars, see

“Toolbars” on page 57.

Tables and panes (groups)

Tables and groups provide a way of grouping or associating related items.

This makes the data easier to interpret and forms easier to complete. For

detailed information about tables, see “XForms tables” on page 151.

Fields A field is an area on the form where the user can type in information, such

as names, dates, dollar amounts, and so on. For detailed information about

fields, see “Fields” on page 59.

Buttons and actions

Buttons let the user trigger actions (for example, saving a form). A form

can also contain automatic actions that occur without the user explicitly

triggering them (for example, submitting data to a database or server every

five minutes). For detailed information about buttons, see “Buttons” on

page 67.

Lists and choices

Lists are a way of presenting choices to users. For detailed information

about lists, see “Lists and choices” on page 75.

Graphics

Graphics like images, labels, lines, boxes and spacers help you define the

visual appearance of a form. For detailed information about images, see

“Images” on page 81. For detailed information about spacing items, see

“Spacing items” on page 45.

Objects

An object is a predefined item or a collection of items (for example, an

address block). For more details, see “Object Library items” on page 35

and “Exporting objects” on page 183.

Standard Library items

If your form contains XForms, then the Standard Library includes tools for creating

all XFDL and XForms items. If your form does not contain XForms, then the

Standard Library only includes tools for creating XFDL items.

© Copyright IBM Corp. 2003, 2006 29

Action

Creates an XFDL action that specifies form-initiated actions that executes

automatically. For example, you set an action such as select, display, print,

saveform or saveas.

 For detailed information about actions, see “Buttons and actions” on page

67.

Action (Non XForms)

See Action.

Action (Submit)

Creates an action associated with an xforms:submit option.

Action (Trigger)

Creates a button associated with an xforms:trigger option.

Box Creates as rectangular box on your form to display in the form

background. Typically you would set the background color for a box and

place it behind a group of items to logically divide items on your page.

Button

Creates a trigger button with actions. You can configure which action each

button triggers by setting its type option and other supporting options. Use

buttons to trigger actions such as transmitting, saving, or closing a form.

 For detailed information about buttons, see “Buttons” on page 67.

Button (Non-XForms)

See Button.

Button (Submit)

Creates a submit button associated with an xforms:submit option.

Button (Trigger)

Creates a trigger button associated with an xforms:trigger option.

Button (Upload)

Creates a button associated with an xforms:upload option.

Case Creates a case associated with an xforms:switch option.

Cell Creates a choice within a combo box, list or popup. They are not

themselves visible on the form, but do effect the appearance of lists to

which they are linked.

Cell (Non-XForms)

See Cell.

Check Creates a check box. Use check boxes when you have options that are

either true or false, or on or off. (The value option of this item type is

always either on or off.)

30

For detailed information about check boxes, see “Creating check box lists”

on page 76.

Check (Input)

Creates a check box associated with an xforms:input option.

Check (Non-XForms)

See Check.

CheckGroup (Select)

Creates a group of check boxes associated with an xforms:select option,

allowing the user to pick more than one item in a list.

CheckGroup (Select1)

Creates a group of exclusive check boxes that allow users to pick only one

item in the list. (xforms:select1 option)

Choice (Item)

Creates a single XForms:item within a choice of combobox, list, popup,

checkgroup or radiogroup.

Combobox

Creates a label and popup with a list of choices. The box is one or two

rows in height, depending on whether it has a built-in label. After the box

is selected, a list of choices “pops up” for the user. The user can select one

of these choices, or type in a choice not presented in the list. Alternatively,

the combo box can be configured to present the user with a calendar (See

Date Picker item).

 For detailed information about combo boxes, see “Creating combo box

lists” on page 78.

Combobox (Non-XForms)

See Combobox.

Combobox (Select1)

Creates a combobox associated with an xforms:select1 option, allowing the

user to pick only one item in the list or type in their own value.

Custom item

Creates items that are not part of standard XFDL. You define these items

yourself, and put them in another namespace, such as Custom. They are

never visible on the form but can be referenced by form computes and can

contain custom options. Use custom items to integrate the form with other

applications.

Laying out items on a page 31

For detailed information on custom items, see the Workplace Forms XFDL

Specification document.

Date Picker

Creates an XFDL combo box to select a date, in which case the user can

type in a date or select one from the calendar. If a built-in label is used, it

is visible to the user at all times.

 For detailed information about calendars, see “Creating calendars” on page

80.

Date Picker (Input)

Creates a date picker associated with an xforms:input option.

Date Picker (Non-XForms)

See Date Picker.

Field Creates a user input area on the form. Use fields to collect information

from the user, such as names, dates, dollar amounts, and so on.

 You can set up fields to check and restrict user’s entries, to flag errors and

omissions and provide help on how to correct them, to format user input

in a standard style, and to perform calculations and make logical decisions.

 For detailed information about formatting and controlling input, see

“Fields” on page 59.

Field (Non-XForms)

See Field.

Field with Label

Creates a user input area on the form with a label. The label is relatively

aligned to the left of the field. When you move the field, the label will also

move with it.

 For detailed information on relative alignment, see “Alignment types” on

page 44.

Field (Input)

Creates a single-line field associated with an xforms:input option. For

detailed information about Field (Input), see “Creating single line fields”

on page 140.

32

Field (Secret)

Creates a write-only field associated with an XForms secret. For detailed

information about Field (Secret), see “Creating password fields” on page

141.

Field (TextArea)

Creates a multi-line field associated with an xforms:textarea option. For

detailed information about Field (TextArea), see “Creating multi-line fields”

on page 141.

Help Stores the context-sensitive help messages you add to your form. They are

linked to specific items in the form, and the message they contain displays

when the user asks for help with that item.

 For detailed information about help, see “Help messages” on page 54.

Label Creates a field for text and images on the form. Use labels to display titles,

instructions, logos, and other graphics.

Label (Output)

Creates a label associated with an xforms:output option.

Label (Non-XForms)

See Label.

Line Creates a line on your form. Typically you would use the line to separate

items or to logically divide items on your page. They can be horizontal or

vertical, and of any thickness. Lines with a thickness of four pixels or more

will appear three-dimensional in the Viewer.

List Creates a predefined list of items to choose from. The user can select only

one choice.

 For detailed information about lists, see “Lists and choices” on page 75.

List (Non-XForms)

See List.

List (Select)

Creates a list associated with an xforms:select option, allowing the user to

pick more than one item in the list. For detailed information about lists, see

“XForms lists” on page 141.

List (Select1)

Creates a list associated with an xforms:select1 option, allowing the user to

pick only one item in the list. For detailed information about lists, see

“XForms lists” on page 141.

Page Like paper pages, form pages provide the surface on which you place form

items.

Laying out items on a page 33

For detailed information on pages, see “Pages” on page 25.

Pane (Group)

Creates a pane associated with an XForms:group option. A pane with a

group allows you to create a group of items that can be positioned or

made visible as a unit, and that can be given a common border or

background. (xforms:group option.)

Pane (Switch)

Creates a pane associated with an XForms:switch option. A pane with a

switch allows you to group items into cases and then display one case of

items at a time to the user. A case creates a set or group of times used with

a switch. For detailed information about Switches, see “XForms conditional

items” on page 148.

Popup Creates a popup list of choices. The list is a single row in height until

selected, at which point a list of choices “pops up” for the user. The user

can then select one of the choices. If a built-in label is used, it will be

visible only until the user selects a choice.

 For detailed information about popups, see “Creating popup lists” on page

77.

Popup (Non-XForms)

See Popup.

Popup (Select1)

Creates a popup list associated with an xforms:select1 option, allowing the

user to pick only one item in the list.

Radio

Creates an XFDL radio button that presents mutually exclusive choices.

The buttons are grouped together, and only one button from a group can

be selected at a time. The buttons are linked in a group by setting the

group option. Use radio buttons when you have a list of options, from

which the user may choose only one. (The value option of this item type is

always either on or off.)

For detailed information about radio buttons, see “Creating radio lists” on

page 77.

Radio (Non-XForms)

See Radio.

RadioGroup (Select1)

Creates a group of radio buttons associated with an xforms:select1 option,

allowing the user to pick only one item in the list.

Spacer

Creates space between items on a form. They are most useful when used

with relative positioning. Because they are invisible when the form is

displayed in the Viewer, you can use them to insert blank space between

other items, or as invisible reference points for relative positioning. For

detailed information about spacers, see “Spacing items” on page 45.

34

Slider (Range)

Creates a slider that offers users a range of values.

Table (Repeat)

Creates an XForms table into which you can place items organized into

rows. For detailed information about tables, see “Creating XForms tables

manually” on page 153.

Table (Repeat) by Wizard

Starts a wizard that creates an XForms table of rows and columns with

specified display and configuration settings such as table lines, borders and

row formatting. For detailed information about tables, see “Creating

XForms tables using a wizard” on page 151.

Toolbar

Creates a distinct, fixed area at the top of a page where you can place

headings, images, and control buttons. Toolbars appear at the top of forms

when opened in the Viewer, but when the form is printed, the toolbar is

omitted. For detailed information about toolbars, see “Toolbars” on page

57.

Object Library items

You can add the following pre-made XFDL objects to your form:

CDN Address Block

Creates a Canadian address block containing a number of fields and a

popup with some constraints applied. Three fields are required to be filled

in by the user: First Name, Last Name and S.I.N. These fields are displayed

in yellow and will change to white once the data has been entered. A

number of the fields in this Canadian Address Block display error

messages when the user does not type a specified pattern. Help tooltips

are displayed, providing instructions on how to enter the correct data.

Phone Number (###) ###-####

Creates a phone number field with a label positioned to the left. The field

uses a (...)...-.... template. An error is displayed when the user does not

type the specified pattern. In addition, a help tooltip is displayed

providing instructions on how to enter the correct data.

 For detailed information on templates, see “Constraints types” on page 61.

Phone Number with patterns

Creates a phone number field with a label positioned to the left. This field

checks and restrict the user’s entries to type a phone number in one of the

following patterns:

v (###) ### - ####

v ###.###.####

v ###-###-####

v ##########

An error is displayed when the user does not type the specified pattern. In

addition, a help tooltip is displayed providing instruction on how to enter

the correct data.

Postal Code

Creates a Postal Code field with a label positioned to the left. This field

checks and restrict the user’s entries to type a A#A #A# pattern. An error is

Laying out items on a page 35

displayed when the user does not type the specified pattern. In addition, a

help tooltip is displayed providing instructions on how to enter the correct

data.

Province Popup

Creates a province popup list presenting the user with a list of provinces to

choose from. The list is a single row in height until selected, at which point

a list of choices “pops up” for the user. The user can then select one of the

choices. The built-in label, Select Province, is visible only until the user

selects a choice.

Province Popup (Abbreviated)

Creates a province popup list presenting the user with a list of abbreviated

names of provinces to choose from. The list is a single row in height until

selected, at which point a list of choices “pops up” for the user. The user

can then select one of the choices. The built-in label, Select Province, is

visible only until the user selects a choice.

SIN (###-###-###)

Creates a Social Insurance Number field with a label positioned to the left.

This field checks and restrict the user’s entries to type a ###-###-###

pattern. An error is displayed when the user does not type the specified

pattern. In addition, a help tooltip is displayed providing instructions on

how to enter the correct data.

SSN (#####-####)

Creates a Social Security Number field with label positioned to the left.

This field checks and restrict the user’s entries to type a #####-####

pattern. An error is displayed when the user does not type the specified

pattern. In addition, a help tooltip is displayed providing instructions on

how to enter the correct data.

State Popup

Creates a United States popup list presenting the user with a list of states

to choose from. The list is a single row in height until selected, at which

point a list of choices “pops up” for the user. The user can then select one

of the choices. The built-in label, Select State, is visible only until the user

selects a choice.

State Popup (Abbreviated)

Creates a United States popup list presenting the user with a list of

abbreviated names of states to choose from. The list is a single row in

height until selected, at which point a list of choices “pops up” for the

user. The user can then select one of the choices. The built-in label, Select

State, is visible only until the user selects a choice.

US Address Block

Creates a United States address block containing a number of fields and a

popup with some constraints applied. Three fields are required to be filled

in by the user: First Name, Last Name and S.S.N. These fields are displayed

in yellow and will change to white once the data has been entered. A

number of the fields in this US Address Block display error messages

when the user does not type a specified pattern. Help tooltips are

displayed, providing instructions on how to enter the correct data.

Zip Code

Creates an United States Zip Code field with label positioned to the left.

This field checks and restrict the user’s entries to type either a ##### or

#####-#### pattern. An error is displayed when the user does not type the

36

specified pattern. In addition, a help tooltip is displayed providing

instructions on how to enter the correct data.

 For detailed information on how to convert these items to XForms, see

“Converting XFDL items to XForms” on page 49.

Inserting items onto a page

You create the visible portion of a form by placing items from the Palette on the

page.

To insert an item onto a page:

1. In the Palette, click a button.

2. Insert the item onto the canvas by either:

v Moving the pointer over the canvas and clicking where you want to place

the item. The default item size is inserted.

v Moving the pointer over the canvas and click-dragging where you want to

place the item. A re-sized item is inserted.

By default, when you do not specify the width and height for an item, the size will

be determined by its value. A label’s width will be determined by the length of the

text that you provide, the width of a popup will be determined by the length of its

longest option, and so on. When the size of an item is defined by dragging the

mouse, the height and width are written into the XFDL code. The items will no

longer expand based on their data. They are now locked to their set dimensions.

It is often easier to create items using the default sizing because they will all be

created with the same dimensions. This will save you from adjusting the height or

width later.

For detailed information aboutPalette buttons, see “Standard Library items” on

page 29.

Arranging items on a page

There are many tools that can help you position and arrange items on a page.

Bounding boxes

Each item on the form has an invisible bounding box around it. Bounding boxes

include all the elements of the item such as built-in labels and borders. Bounding

boxes are not displayed in the Viewer, but you can view them in the Designer. This

box surrounds the item, and determines the space that the item takes up on the

form. This bounding box determines how items are positioned.

For example, if you place one item after another, those items are placed so that

their bounding boxes are almost touching. If you align one item left-to-right with

another, those items are placed so that their bounding boxes are touching.

This can be particularly important when using labels. The text or image a label

displays may be smaller than the label’s actual size, and without a visible

bounding box you might not be able to tell how big the label actually is.

To make the bounding boxes visible on your form:

Laying out items on a page 37

1. Click Window → Preferences.

2. From the left column, expand Workplace Forms and Designer View.

3. In the Design View preferences, select the Show Bounding Boxes around items

check box.

To set the size of a bounding box:

1. Select the item.

2. In the Properties view, click

and click Show Advanced Properties.

3. Expand General and size.

4. Click within the size value field.

5. Type the width and height values and press Enter. The bounding box

automatically updates in the canvas.

Note: Bounding box sizes can only be changed for Box, Button, Check,

Combobox, Field, Label, Line, List, Popup, Radio, Slider (Range), and

Spacer items.

Layout grids

The layout grid is an evenly spaced grid of horizontal and vertical lines that is

superimposed on the form. This grid helps you line up items on the form and

ensure uniform spacing.

Showing or hiding the grid

To show or hide the grid:

Click View → Show Grid.

Once set on, grids are displayed in each working session.

Changing the grid size

You can control the spacing between the lines of the grid, depending on how close

together you want your items to be.

To change the size of the grid:

1. Click Window → Preferences to open the Preferences window.

2. From the left column, expand Workplace Forms and Design View to open the

Design View preferences.

3. In the Enter space between grid on X axis field, type a new value.

4. In the Enter space between grid on Y axis field, type a new value.

5. Click Apply. The grid size automatically updates in the editor.

6. Click OK.

Changing the grid color

To change the grid color:

1. Click Window → Preferences to open the Preferences window.

2. From the left column, expand Workplace Forms, Design View and Colors.

3. In the Select Color for Grid color box, click to select a new color. A Color

window opens.

38

4. Select the color to use and click OK.

Snapping to the grid

Snapping to the grid forces an item to align automatically to a point on the grid as

you move the item. When you place an item on the form, it moves automatically

so that its top left corner is placed on the nearest grid point.

You must drag items a minimum distance (at least three pixels) before the

Designer repositions the item. This prevents accidental movement when double

clicking the item.

Note:

v When moving multiple items, the item in the top left of the group snaps

to the grid, and all other items maintain their position relative to the top

left item.

v When dragging the edge of an item to change its size, the item’s edge will

also snap to the grid.

To toggle grid snapping:

Click View → Snap To Grid.

Snapping to items

Snap To Geometry is similar to snap to grid except instead of the objects snapping

to the grid lines they snap to other objects on the canvas, allowing you to force an

item to align to another item. When moving an object, additional guidelines will

appear when its edge is inline with another item on the form. The edges that can

be used as snapping points are the top, left, right, bottom, and center.

To toggle item snapping:

Click View → Snap to Geometry.

Rulers and guides

Rulers and guides help you to measure the size and position of items on the form.

Rulers and guides are useful for creating a clean, symmetrical layout for your

form.

Rulers enable you to measure items in inches or pixels. Guides are thin red lines

that you can place directly on the form to help you align items manually.

Rulers appear automatically on the top and left borders of the form when you

create a new form.

Showing or hiding rulers

Use the rulers at the top and left sides of the canvas to accurately place items.

To show or hide rulers:

Click View → Show Rulers.

Once set on, rulers are displayed in each working session.

Laying out items on a page 39

Creating guides

A guide is a horizontal or vertical reference line that spans the form. They appear

as thin lines in the Designer, but are not visible when the form is opened in the

Viewer. You set up guides to assist in aligning items exactly.

To create a guide:

1. Click View → Show Rulers.

2. Click on the ruler and drag the guide to the desired position.

Note: Guides are not saved after closing the file.

Moving guides

To move a guide:

1. Click and hold on a guide marker. The guide displays horizontal or vertical

arrows, depending on which ruler the guide is positioned in.

2. Release the mouse button when you have dragged the guide to the appropriate

position.

Deleting guides

To delete a guide:

1. Within the ruler area, click on the guide you want to delete. The guide’s

marker becomes highlighted.

2. Press Delete. You can also drag the guide marker off the ruler.

Zooming and display

You can zoom your view of the canvas, show or hide page edges, and show or

hide items.

Zooming the canvas

Use the zoom function to zoom in or out of the form’s page.

To zoom the canvas:

Do one of the following:

v Click View → Zoom In.

v Click View → Zoom Out.

v Select a zoom level from the toolbar.

Showing or hiding page edges

You can show or hide lines within the canvas to indicate the edge of the page.

To show or hide page edges:

Click View → Show Page Size.

Showing or hiding items

You can show or hide items on the canvas. You may want to hide items to work

on elements of an item or items without disturbing the others on a page.

40

Note: This does not affect the visibility of the items in the final form.

To show or hide items:

1. In the Outline view, click the items you want to view on the canvas.

2. In the Outline view toolbar, click the Filter on Visible button. Only the items

you have selected display on the canvas.

To show all items on the canvas, click Filter on Visible.

Selecting items

To select an item, click on it. A bounding box displays around the item, indicating

that you selected it. Alternatively, click the item name in the Outline view.

To select multiple items:

Do one of the following:

v Hold down the Ctrl key and click on each item.

v To select individual items in a group, use the Marquee tool in the Palette. Hold

down the left mouse button and drag the pointer diagonally on the form to

surround the items.

To select all of the items on the form at once, click Edit → Select All.

Moving items

To move an item:

Do any of the following:

v Select the item and drag it. If you want the item to move in one direction only

(vertically, horizontally or diagonally), hold down the Shift key while you drag

it.

v To nudge an item by 1 pixel at a time, select the item and press an arrow key.

v To nudge an item by the grid spacing, select the item, hold down the Ctrl key

and press an arrow key.

v In the Properties view, expand General, itemlocation, Location List and set the

x and y values.

To undo a move, click Edit → Undo Move Object.

Resizing items

To resize an item:

1. Select the item.

2. Do one of the following:

v Click and drag its edges.

v In the Properties view, expand General, itemlocation, and Location List and

set the new values for x and y.

v Nudge or resize items by 1 pixel at a time.

a. Select the item.

b. Press the period key on your keyboard. The cursor changes to a two way

arrow on a side of the item.

Laying out items on a page 41

c. Move from one edge to another by pressing the period key on your

keyboard.

d. Once you have selected a side to resize, use the arrow keys on your

keyboard to nudge the size of the item in 1 pixel increments.

e. Press Enter to accept the new size of the item.

Changing the build order of items

When you insert items onto a page, the order in which they are created plays a

part in how you can position them. As you place items on the page, they form a

sequence. The first item you place on the page is the first item in the sequence, the

second item you place is the second item in the sequence, and so on. This

sequence is called the build order, since it is the order in which you build the form.

The build order seldom reflects the order in which the items actually appear on the

form, since the items can be moved anywhere once they have been created.

When you use relative positioning, you must be aware of this build order. If you

position an item, any item that you use as a reference must precede the item you

place in the build order. For example, if you created a label, then a field, and then

a button, you would be able to position the button in relation to either the field or

the label. However, you would not be able to position the label in relation to either

of the other items, because those items come after it in the build order.

The build order of items on a page is the same as the order that the items are

listed in the Outline view.

To change the build order of items:

1. In the Outline view, select an item and drag it up or down in the list.

2. When the cursor is at the location in the list where you want the item, release

the left mouse button.

Tab order

Tab order is the order in which the user can move from one item to another item

on a page using the Tab key. Filling in a form is much quicker and easier if the

user only has to press Tab to jump to the next item in a logical sequence.

Tab order is also referred to as next tab order. Previous tab order is the order in

which the user can move from item to item on a page by pressing Shift+Tab.

Previous tab order is often the opposite of next tab order; however, it is possible to

set up next tab order and previous tab order so they are unrelated to each other.

When you insert items onto a page, the Designer automatically defines the tab

order as the order in which you insert the items. (In other words, the default tab

order is the same as the build order. In addition, the default previous tab order is

the opposite of the default next tab order.) Unless you plan your form very well,

this tab order will rarely be ideal. However, you can modify the tab order at any

time.

Changing the tab order of items on a page

To change the tab order of items on a page:

1. Click View → Show Next Tab Order. Lines connect each item on the page with

arrows indicating the tab order:

42

v Grey lines indicate the default tab order between items.

v Blue lines indicate a user-defined tab order between items.

v Red lines indicate an error.

v For advanced users: Light blue lines indicate the tab order is based on the

first or last option of the item’s parent, and not the next or previous option

of the item.

The Connection Creation button is also displayed within the Palette.

2. Click Connection Creation.

3. Click the item that you want to be first in the tab order (that is, the item that

will receive focus when the form is opened first).

4. Click the item that you want to be second in the tab order. A blue line connects

the items, indicating the user-defined tab order between them.

5. Continue clicking pairs of items to define the tab order between them. By

default, when you set up a user-defined tab order, the corresponding previous

tab order is automatically set up.

v If you want to modify tab order connections directly, click Select and click

the line connecting the items to select the connection. Handles (black

squares) appear at each end of the connection. Drag a handle from one item

to another to modify the connection.

v If you want to delete a tab order connection between two items, click Select

and click the line connecting the items to select the connection. Then press

Delete.
6. Click View → Show Previous Tab Order.

v If you want change the tab order, repeat steps 2 through 5.
7. Click View → Hide Tab Order to hide the tab order lines. The Connection

Creation button also no longer displayed within the Palette.

Aligning items

You can align items so their edges or centers are lined up.

There are two types of align:

v relative align — Changes the position of items so they align with another item

(the reference item) and anchors the items to the reference item. If you later

move or resize the reference item, any items anchored to it will automatically

move in order to maintain alignment with the reference item.

v absolute align — Changes the position of items so they align with another item

(the reference item). The items will not automatically move if you later move or

resize the reference item.

Use relative align when the size or position of items on your form may vary (for

example, when your form is receiving data from a database or when sections of

your form are created dynamically).

To align items:

1. Select the items to move.

2. Select the reference item (that is, the item that will not move and that the other

items will align to). If you align items using relative align, the reference item

must be before the aligned items within the build order.

3. Right-click and select an alignment type from Absolute Expand or Relative

Expand.

Laying out items on a page 43

Alignment types

You can align items by using the following alignment types.

Above Moves the items above the reference item (leaving three pixels between

each item) and aligns their left edges.

After Moves the items to the right of the reference item (leaving three pixels

between each item) and aligns their top edges.

Before

Moves the items to the left of the reference item (leaving three pixels

between each item) and aligns their top edges.

Below Moves the items below the reference item (leaving three pixels between

each item) and aligns their top edges.

Top to Bottom

Moves the items so their top edges align with the bottom edge of the

reference item.

Top to Center

Moves the items so their top edges align with the center of the reference

item.

Top to Top

Moves the items so their top edges align with the top edge of the reference

item.

Left to Center

Moves the items so their left edges align with the center of the reference

item.

Left to Left

Moves the items so their left edges align with the left edge of the reference

item.

Left to Right

Moves the items so their left edges align with the right edge of the

reference item.

Right to Center

Moves the items so their right edges align with the center of the reference

item.

Right to Left

Moves the items so their right edges align with the left edge of the

reference item.

Right to Right

Moves the items so their right edges align with the right edge of the

reference item.

Bottom to Bottom

Moves the items so their bottom edges align with the bottom edge of the

reference item.

Bottom to Center

Moves the items so their bottom edges align with the center of the

reference item.

Bottom to Top

Moves the items so their bottom edges align with the top edge of the

reference item.

44

Center to Bottom

Moves the items so their centers align with the bottom edge of the

reference item.

Center to Left

Moves the items so their centers align with the left edge of the reference

item.

Center to Right

Moves the items so their centers align with the right edge of the reference

item.

Center to Top

Moves the items so their centers align with the top edge of the reference

item.

Horizontally Between

Moves the reference item horizontally so it is spaced equally between two

other items on the form.

Center to Center Horizontally

Moves the items horizontally so their centers align with the center of the

reference item.

Vertically Between

Moves the reference item vertically so it is spaced equally between two

other items on the form.

Center to Center Vertically

Moves the items vertically so their centers align with the center of the

reference item.

Spacing items

Because relative positioning relies on using other items as points of reference, you

will often need to include invisible points of reference in order to put space

between your items or position your items exactly where you want them. You can

use spacers to create these invisible points of reference and to create space between

items on your form.

For example, suppose you had a field that was positioned below a label, and you

wanted to put some space between the two items. All you would need to do is

create a spacer, position it below the label, and then position the field below the

spacer. You could then adjust the size of the spacer so that it kept the correct

amount of space between the other two items.

To use a spacers as invisible reference points for relative positioning:

1. In the Palette, click Spacer.

2. Click on the page.

3. Place another item on the page.

4. Hold the Shift key down and select a spacer to use as an reference.

5. Right-click and click Relative Align.

6. Select the modifier to position the spacer item.

Click Preview. Once the form is open, notice that the spacer is invisible.

Laying out items on a page 45

Removing relative alignment assignment

Relative positioning works by assigning locators to each item. Essentially, locators

are two or three words that tell the Viewer where to put the item. Each locator

consists of a modifier and either one or two item tags. The modifier describes how

the item should be placed, while the item tags give reference points.

Items can have any number of locators assigned to them. Often, there will be one

to set the horizontal position of the item, and another to set the vertical position.

When an item has several locators, the Designer applies them in the order they

were created.

To remove relative positioning settings assigned to an item:

1. Select the item you have applied relative positioning to.

2. In the Properties view, expand General, itemlocation, and Location List. X and

Y properties are listed as well as the assigned relative alignment choices. For

example, if you choose Relative Align Below, the alignment type Below is

listed under Location List.

3. In the value field adjacent to the alignment property, click

. The alignment

assignment is deleted.

Expanding items

You can simultaneously resize and align items by expanding them. This is a quick

way to resize items so that they line up with other items exactly. For example, you

can expand a label to the size of a field by using a Right to Right expansion. This

will lengthen the label until it is the same size as the field and align the right edge

of the label with the right edge of the field.

There are two types of expand:

v relative expand — Changes the size of items so they align with another item (the

reference item) and anchors the items to the reference item. If you later move or

resize the reference item, any items anchored to it will automatically change size

in order to maintain alignment with the reference item.

v absolute expand — Changes the size of items so they align with another item (the

reference item). The items will not automatically change size if you later move

or resize the reference item.

To expand items:

1. Select the items to expand.

2. Select the reference item (that is, the item that the other items expand to). If

you expand items using relative expand, the reference item must be before the

expanded items within the build order.

3. Right-click and select an expansion type from Absolute Expand or Relative

Expand.

Expansion types

You can simultaneously resize and align items using the following expansion

types:

Make Same Size

Resizes the items to the size of the reference item.

46

Make Same Width

Resizes the width of the items to match the width of the reference item.

Make Same Height

Expands/contracts the height of the items to the height of the reference

item.

Top to Bottom

Expands/contracts the top edge of the items to the bottom edge of the

reference item.

Top to Center

Expands/contracts the top edge of the items to the center of the reference

item.

Top to Top

Expands/contracts the top edge of the items to the top edge of the

reference item.

Left to Center

Expands/contracts the left edge of the items to the center of the reference

item.

Left to Left

Expands/contracts the left edge of the items to the left edge of the

reference item.

Left to Right

Expands/contracts the left edge of the items to the right edge of the

reference item.

Right to Center

Expands/contracts the right edge of the items to the center of the reference

item.

Right to Left

Expands/contracts the right edge of the items to the left edge of the

reference item.

Right to Right

Expands/contracts the right edge of the items to the right edge of the

reference item.

Bottom to Bottom

Expands/contracts the bottom edge of the items to the bottom edge of the

reference item.

Bottom to Center

Expands/contracts the bottom edge of the items to the center of the

reference item.

Bottom to Top

Expands/contracts the bottom edge of the items to the top edge of the

reference item.

Cutting, copying, pasting and deleting items

When designing your form, you can cut, copy and paste items to different

locations on a page, to another page, or to another form.

You can also cut and paste items to change the build order.

Laying out items on a page 47

Cutting items

Cutting an item removes the item from the page and saves it to the clipboard.

To cut selected items:

Click Edit → Cut.

Copying items

Copying an item saves the item to the clipboard.

To copy selected items:

Click Edit → Copy.

Pasting items

Pasting an item inserts the contents of the clipboard into the form. When you paste

an item, the Designer adds it to the build order immediately after the item that is

currently selected. If the page global is selected (by clicking the background of the

form), the item will be added to the end of the build order.

Note: When you copy a label or button using an image to another page in the

form, the image is referenced to the original file.

To paste cut/copied items:

Click Edit → Paste. If you paste the item onto another page, the item is pasted in

the same x and y location as the original item.

Deleting items

Deleting an item removes the item from the page.

To delete selected items:

Click Edit → Delete. Alternatively, press Delete.

If you are deleting an item (or items) that are referenced by formulas in other

items, a window opens asking whether you really want to delete the items. Click

Yes if you want to delete the item referenced by the formula. Click No if you do

not want to delete the referenced item, but do want to delete the other items you

selected. Click Cancel to not delete anything.

Visibility

Visibility properties allow you to set an item to be invisible in two scenarios: when

the form is displayed in the Viewer or when the form is printed. This allows you

to create hidden items on the form, or to strictly control which portions of the form

are printed. Regardless of these settings, you can always see invisible items when

working with a form in the Designer.

To set an item to be invisible:

48

1. Select the item.

2. In the Properties view, expand Appearance.

3. Set visible to off.

Tip: To hide the items in the Designer that have visible set to off, click Window →

Preferences , expand Workplace Forms and Design View. Select the Hide items

that have their visible property turned off check box.

Converting XFDL items to XForms

Certain XFDL items can be converted into XForms items. The XForms items

available will depend on the XFDL item that you want to convert. For example, an

XFDL Field can be converted into either an XForms Input, TextArea or Secret,

while an XFDL Label can only be converted into an XForms Output.

Note: You can only convert items to XForms items when XForms support is

enabled. For detailed information about adding XForms support to an

existing form, see “Adding XForms support to an existing form” on page

130.

To convert an XFDL item to XForms:

1. Select the XFDL item to convert.

2. Right-click and click Convert Item and then click the appropriate XForms item.

Laying out items on a page 49

50

Setting item properties

Each item in your form has various properties that control its appearance and

behavior (for example, the font of a text label, the action triggered by a button, and

so on). By setting item properties, you can control the appearance and behavior of

items.

Note: What is referred to as a property in the Designer, is referred to as an option in

XFDL.

To set item properties:

1. Select the item.

Tip: Press Shift to select several items and set their common properties to the

same values.

2. In the Properties view, click within the field of the property you want to set.

3. Do either of the following:

v For properties that accept text, type the value directly within the field, or

click the

button within the field to open a text editor.

v For properties that accept one of several choices (for example, on/off or

left/right/center), click the

button within the field and select the setting.

v For other properties (for example, fontinfo or fontcolor), click the

button within the field to open the editor for that type of property (for

example, a font selection window or a color selection window).

For detailed information about specific properties, see “Appendix B: Options” on

page 187.

Resetting a property to its default value

When you select an item, its properties are displayed in the Properties view.

Properties that are set to their default value are indicated by a

(white circle).

Properties that have been modified from their default value are indicated by a

(blue circle).

To reset a property to its default value:

1. Select the item.

2. In the Properties view, click

. The

changes to

.

Copying a property setting from one item to another

To copy a property setting from one item to another:

1. Select the item that contains the property setting you want to copy. The item’s

properties are displayed in the Properties view.

2. In the Properties view, click within the value field of the property you want to

copy.

3. Right-click and click Copy.

4. Select the item to copy the property setting to. The item’s properties are

displayed in the Properties view.

© Copyright IBM Corp. 2003, 2006 51

5. In the Properties view, click within the value field of the property you want to

replace.

6. Right-click and click Paste.

Changing colors

You can use color to improve your form’s appearance and to help the user fill

them out.

Colors are defined by three components: Red, Green and Blue. Each component

has a numerical value between 0 and 255. The exact color is determined by the

number value of the separate components. White (which consists of the maximum

values of every color) has a RGB value of 255, 255, 255. Black (which consists of no

color) has an RGB value of 0, 0, 0. Pure red has an RGB value of 255, 0, 0.

You do not need to know the exact RGB value of the color you want to use. If you

choose to use a custom color, you can select the color from the screen. Use the RGB

values for fine-tuning the color you want.

You may wish to avoid using the colors that the Viewer uses to flag errors or

mandatory items to users. These are the first two colors in the top row of the color

picker:

 Meaning Color RGB value

Mandatory Light yellow 255, 255, 208

Error Watermelon 255, 128, 128

Changing the background and text color

To change the color of the background and text used in your form:

1. In the Outline view, click Page Global.

2. In the Properties view, expand Appearance.

3. Click within the fontcolor or bgcolor value field.

4. Click

and select the color you want to use.

Note: backgroundimage enables you to use an image as a template to create your

form. The assigned image is not supported in print or preview.

For detailed information on these color properties, see the Workplace Forms XFDL

Specification document.

Changing the toolbar color

You can change the color of the form’s toolbar to make it stand out from the rest of

the form.

To change the color of a toolbar:

1. Click a blank area in the tool bar.

2. In the Properties view, expand Appearance.

3. Click

within the bgcolor value field.

4. Select a color and click OK.

52

Changing the color of an item

You can change the color of backgrounds, text, and borders for both items and

their built-in labels.

To change item colors:

1. Select the item.

2. In the Properties view, expand Appearance.

The following color properties are available:

v bgcolor

v fontcolor

v labelfontcolor

v labelbgcolor

v printfontcolor

v printbgcolor

v printlabelfontcolor

v printlabelbgcolor

Note: By default, the Properties view only shows the most commonly used

properties. To see advanced properties, see “Showing advanced

properties.” The Miscellaneous properties are then listed in the

Properties view.

3. Click within the property value field.

4. Click

and select the color you want to use.

Note: If you set the fontinfo option using the Font properties window, setting

Color or Strikethrough in the window will have no effect. To set the font

color, use the fontcolor option. Strikethrough text is not supported by XFDL.

For detailed information about these color properties, see the Workplace Forms

XFDL Specification document.

Showing or hiding categories

By default, properties are grouped into categories (for example, General,

Appearance, Format, and so on) within the Properties view. You can hide

categories so properties are displayed as a single list.

To show or hide categories:

In the top-right corner of the Properties view, click

and click Show Categories.

Showing advanced properties

By default, the Properties view only shows the most commonly used properties

and does not show less commonly used, or advanced, properties.

To show advanced properties:

Setting item properties 53

In the top-right corner of the Properties view, click

and click Show Advanced

Properties.

Sorting properties in alphabetical order

By default, the Properties view displays the most commonly used properties at the

top of the list.

To sort properties in alphabetical order:

In the top-right corner of the Properties view, click

and click Sort

Alphabetically.

Help messages

There are three kinds of help messages that you can set up for the users of your

forms:

v context-sensitive help messages

v error messages

v accessibility (audio help) messages.

Context-sensitive help messages are displayed when the user enters Help mode in

the Viewer. While in Help mode, the user can point to items on the form and

receive help messages you have written for those items. Each item on the form can

have its own help message.

Error messages are displayed when a user’s entry in a field or list does not match

the required formatting. These messages are best used to indicate which format to

use when entering information into a specific field. Each field and combobox on

the form can have its own error message.

Accessibility messages are played by screen reading software to describe each item

on a form to visually impaired users. The text entered in this option will not be

displayed in the Viewer. When the focus moves to the item, an active screen reader

will read this message. Note that screen readers vary in behavior, and may provide

additional information about the item.

Adding context-sensitive help to an item

Context-sensitive help messages are displayed when the user enters Help mode in

the Viewer. You can add a help message to the page and then assign it to one or

more items.

To add context-sensitive help to an item:

1. In the Palette, click Help.

2. Click on the canvas.

A help item is created and listed in the Outline view.

3. In the Outline view, click the help item you created (for example HELP1).

4. In the Properties view, expand General.

5. Click within the value field and type a help message.

6. Select the items you want the help message applied to.

54

7. In the Properties view, expand Help.

8. Within the Help value field, type the name of the help item (for example,

HELP1).

The Viewer will display the help message whenever the user asks for help with

that form item.

Tip: To see the help messages you create, users must click the button in the Viewer

toolbar with the arrow and question mark. You may want to remind your users of

this by placing a note somewhere on your form.

Creating an error message for a field or combo box

Error messages are displayed when a user’s entry in a field or list does not match

the required data. Use these messages to indicate the format and type of data the

user should enter. Each field and list on the form can have its own error message.

If you do not specify an error message, the user will see the default error message,

which says, This entry is invalid. Please try again.

To create an error message for a Field or Combobox:

1. Select the field or combo box which you want to create an error message.

2. In the Properties view, expand Format, format, and constraints.

3. Click within the message value field.

4. Type the error message in the message field.

Tip: The default error message for a field or combo box is: “This entry is incorrect.

Please try again.” You can use this if you do not want to customize the error

message.

Adding accessibility messages

This accessibility property lets you include a description of the item that will be

used by screen reading software. The text entered in this option will not be

displayed in the Viewer. When the focus moves to the item, an active screen reader

will read this message. Note that screen readers vary in behavior, and may provide

additional information about the item. If you are concerned about accessibility, be

sure to the test your form with the appropriate screen reading software.

To add an accessibility message:

1. Select the item.

2. In the Properties view, expand Help.

3. Click within the acclabel value field.

4. Click

to open the editor.

5. Type the message you would like the screen reader software to read aloud.

This message should contain additional information about the item to assist

users with vision impairments. For example, Mandatory field. Type your last

name, first name, and middle initial.

6. Click OK.

For detailed information about creating accessibility messages, see the Workplace

Forms Best Practices for Form Design document.

Setting item properties 55

56

Toolbars

Toolbars allow you to place headings and control buttons on your forms so they

are always visible for users. Toolbars appear at the top of forms when they are

opened in the Viewer, but when the form is printed, the toolbar is omitted. The

toolbar is not part of the printed area of the form, and can therefore be used for

items which do not need to be printed, such as control buttons.

You can add a toolbar to any page of your form. This toolbar creates an area at the

top of the page that will not scroll with the rest of the form, and will always be

visible to the user. This is useful if you have a number of buttons that you always

want the user to have access to, such as save or submit buttons, or if you have a

title that you always want to be visible.

Tips on setting up your Toolbar:

v Create a Toolbar with all the necessary buttons, images and text you need then

duplicate this toolbar to paste onto each of the additional pages.

v Make sure your buttons are set up properly before you start working with them.

Decide which buttons you will need, such as a Print button, a Save button, a

Submit button, and so on. Then use one button as the basis for aligning all the

others relative to one another on the form.

For detailed information see, “Buttons” on page 67, “Images” on page 81 and

“Aligning items” on page 43.

Adding a toolbar to a page

To add a toolbar to the current page:

1. In the Palette, click Toolbar.

2. Click on the canvas. A toolbar is placed at the top of the page.

Tip: When you create a toolbar, the Designer gives it a sid of TOOLBAR and

makes it the first item in the build order. Do not change the toolbar’s sid or

location in the build order. Toolbars must be the first item in the build order.

Adding items to a toolbar

To add items to a toolbar:

1. In the Palette, click an item.

2. Click within the toolbar area of the form.

Note: The Designer automatically resizes the toolbar so that the items fit.

Resizing a toolbar

The Designer automatically resizes the toolbar to fit the items you place in the

toolbar.

© Copyright IBM Corp. 2003, 2006 57

If you want to increase the size of the toolbar, simply move one of the items in the

toolbar down, so that part of it is past the lower edge of the toolbar. The Designer

will automatically adjust the size of the toolbar to fit the item.

Alternatively, click the baseline of the toolbar and drag it down to a new position.

The cursor changes to an up and down arrow icon. Release the mouse to set the

size.

Copying a toolbar from one page to another

You can copy a toolbar, including all of the items in the toolbar, to another page.

This is useful if you want to use the same toolbar on each page of your form.

To copy a toolbar to another page:

1. In the Outline view, expand the page containing the toolbar you want to copy.

2. Select the toolbar.

3. Right-click and click Copy.

4. Select the page you want to copy this toolbar to.

5. Right-click and click Paste.

58

Fields

A field is an area on the form where the user can type in information. Each field

has a built-in label that will display text. Fields can also be configured to perform

edit checks and to automatically format user input.

When to use fields:

v Use fields to collect information from the user, such as names, dates, dollar

amounts, and so on. You can set up fields to check and restrict user’s entries, to

flag errors and omissions and provide help on how to correct them, to format

user input in a standard style, and to perform calculations and make logical

decisions.

v To be efficient, your form should contain and display accurate data in

standardized formats. You can achieve this by controlling and formatting field

input.

Creating a field

To create a field:

1. In the Palette, click Field.

2. Click on the canvas to insert a default size button, or drag in the canvas to

insert a field of any size.

3. In the Properties view, click

and click Show Advanced Properties.

4. Set the properties for the field.

Creating a field with a label

The pre-made object, Field with Label, creates a user input area on the form with

a label relatively aligned to the left of the field.

To create a field with a label:

1. In the Palette, click Field with Label.

2. Click on the canvas to insert a default size button, or drag in the canvas to

insert a label of any size.

3. In the Properties view, click

and click Show Advanced Properties.

4. Set the properties for the field and label.

Specifying the type of data to accept

The default datatype for a field is string which allows the user to enter both

characters and numbers.

You can set up fields to accept only a specific kind of input, such as dates or dollar

values. If a user attempts to input data that the item does not accept, an error

message will appear and the field will turn red.

To specify the type of data to accept:

© Copyright IBM Corp. 2003, 2006 59

1. Select the field.

2. In the Properties view, expand Format, and format.

3. Set datatype to the type of input you want to apply.

For a list of the types of input you may specify, see “Data types.”

Data types

The types of data input you may specify are:

date_time

A date and time. For example, May 3, 2006 13:30 or May 3, 2006 1:30 PM.

currency

A number that includes up to two decimal places. For example, $30.05 or

$25.02.

 The default US currency symbol, $, is inserted before the number entered.

float A floating point number. For example, 134.0095.

integer

A whole number, including zero and positive and negative numbers.

month A month.

 The user can type three or more characters or a number between 1-12.

string A text field.

 The user can type characters and numbers.

time A time. For example, 13:30 or 1:30 PM.

 The user can type characters and numbers.

void Disables the entire format option (including data type, presentation, and

constraints)

 The user can type characters and numbers.

year A year, represented by 4 digits.

 The user can type 2 or 4 digits.

date A date. For example, 5 May 2006.

day_of_week

A day of the week. For example, Monday

 The user can type a number between 1-7 or three characters to represent

the day of the week.

day_of_month

A day of the month. For example, 18.

 The user can type 1-31.

For detailed information about presentation properties, see the Workplace Forms

Locale Specification for XFDL document.

60

Specifying the constraints on data

You can set up XFDL input items to accept only input formatted within certain

constraints.

For example, you can control how users enter their Postal/Zip code information.

In this scenario, setting constraints properties, such as setting patterns to @#@ #@#,

#####, #####-####, and setting the presentation property casetype to upper,

controls the type of data the user can enter. If done incorrectly, the user is asked to

re-enter the data.

To specify constraints on user input:

1. Select the item.

2. In the Properties view, expand Format, format, and constraints.

3. Set the constraints for the field.

For a list about the constraints you may apply to items, see “Constraints types”

For detailed information about constraints and presentation formatting properties,

see the Workplace Forms Locale Specification for XFDL document.

Constraints types

checks

Allows you to force the format check to fail, or to ignore all constraints

settings. Valid settings are:

 fail — Forces the format check to fail.

ignore — Ignores all constraint settings. Note that the data type and the

presentation settings are still respected.
none — Has no effect.
Default: none.

mandatory

The user is required to fill in data before proceeding.

range The entry must fall within the range you specify. This range can be

alphabetical or numeric. For example, if you set a range of Adams to Lee,

an entry of McAllister would fall outside the range you specified and the

input item would not accept it.

length The number of characters in the entry must fall within the limits you

specify. For example, if you specified a length limit of five to seven

characters, an entry of three characters would not be acceptable.

 When you specify a length, take into consideration any extra characters

that formatting, if specified, may add to the entry. When the input item

counts the number of characters in an entry, it includes the characters

added by formatting. For example, if you specified that a field should add

a dollar sign to the beginning of the entry, the field will consider the dollar

sign a character. Therefore, if you specify that the field should accept only

four characters, the user will be able to type only three, unless the first one

is a dollar sign.

patterns

Allows you to set one or more patterns for strings, dates, or numbers that

Fields 61

are valid as input. For example, you might want to constrain dates to the

following format: YYYY-MM-DD. You must define each pattern in its own

tag.

 Note that the pattern setting overrides both the style and

negativeindicator settings.

 For detailed information about templates and patterns formatting, see the

Workplace Forms Best Practices for Form Design and the Workplace Forms

Locale Specification for XFDL documents.

message

Sets the message that is displayed when the input is invalid. This can be

any text.

 The default is This entry is invalid. Please try again.

template

Allows you to display symbols in the input area before the user enters

their data. This is useful if you want to show formatting placeholders, such

as parentheses for the area code in a phone number.

 To create a template, use a period to represent any 1 character that the user

types in. All other characters are shown to the user as typed.

For example, if you create the following template: (...)...-.....
The user will see the following: () -

Setting a template in no way limits the user input. If you want to limit the

user input, you must also use the patterns setting. Futhermore, you can

only set one template for each item.

groupingseparator

Defines one or more symbols that are allowed to separate groups of

numbers (such as thousands in North America) during input. This is often

a comma, as shown: 1,000,000.

decimalseparator

Defines one or more symbols that are allowed to indicate the decimal

place. In North America this is often a period, as shown: 100.00.

Setting up a mandatory field

If you want to make sure users fill in a particular item, you can specify it as

mandatory.

When the user opens a form, all mandatory input items will appear with a

background of a pre-specified color, to signal to the user that they must be filled

in. If the user tries to tab past a mandatory input item, an error message will

appear. The default error message warns the user This entry is invalid. Please try

again. If the user tries to submit the form without filling in a mandatory input

item, the following warning is displayed: One or more of the items in this form

contains an invalid value. Do you wish to proceed anyway?

To set an input item as mandatory:

1. Select the item.

2. In the Properties view, expand Format, format, and constraints.

3. Set mandatory to on.

For detailed information about how to change a help message, see “Creating an

error message for a field or combo box” on page 55.

62

Reformatting input data

You can set up fields to reformat data that is entered into them. This helps you to

ensure consistency in the data that is submitted for processing. For example, you

can set up a date field to convert all dates to numeric format before the form is

submitted, regardless of the format in which the user originally entered them. Or

you can set up a label to convert all dates to long format before the form is

displayed, regardless of how the information appears in a database.

To reformat input:

1. Select the item.

2. In the Properties view, expand Format, and format.

3. Click within the datatype value field.

4. Set datatype to the type of data the field will accept. Depending on the type of

data you set the input item to accept, the Designer will let you choose different

formatting presentation options.

5. Set the presentation properties to apply.

For detailed information about presentation properties, see the Workplace Forms Best

Practices for Form Design and the Workplace Forms Locale Specification for XFDL

documents.

Presentation types

The formats you may apply are the following.

For detailed information about presentation properties, see the Workplace Forms Best

Practices for Form Design and the Workplace Forms Locale Specification for XFDL

documents.

Strings

For a datatype set to string, set casetype to one of the following:

lower Converts the entry to lower case characters.

upper Converts the entry to upper case characters.

title Converts the first letter of each word in the entry to an upper case

character.

Numbers and currency

For a datatype set to integer, float, or currency, set any of the following:

groupingseparator

The symbols used to separate groups of numbers (for example, thousands

in North America). This is often a comma, as shown: 1,000,000

 You can use any string, with the keyword none representing no separators

at all. However, you should not use strings that already have a meaning,

such as a period.

 The default for the en_US locale is a comma.

negativeindicator

Sets the symbols that are used to indicate a negative value. You can place

Fields 63

symbols both before and after the number by setting a prefix and a suffix.

To do this, you must set the prefix and suffix values in the Properties

view.

 The prefix and suffix are defined as strings. For example, if you set the

prefix to an open bracket and the suffix to a close bracket, you will get a

bracket negative. The following shows the bracket notation for negative

100: (100)

You can also leave either the prefix or suffix blank, so long as the other

setting has a value.

Note:

- The pattern setting overrides the negativeindicator setting.

- Do not use this setting with currency data types.
- Do not use symbols that already have meanings, such as a period.
The default for the en_US locale is a minus sign (-).

round Determines how values are rounded. Valid settings are:

 floor — Always rounds down. For example, 46.9 becomes 46.

 ceiling — Always rounds up. For example, 46.1 becomes 47.

 up — Rounds values greater than 5 up, and values less than 5 down. For

values equal to 5, it rounds up. For example, 46.5 becomes 47, while 46.4

becomes 46.

 down — Rounds values greater than 5 up, and values less than 5 down.

For values equal to 5, it rounds down. For example, 46.5 becomes 46, while

46.6 becomes 47.

 half_even — Rounds values greater than 5 up, and values less than 5

down. For values equal to 5, rounds up if the preceding digit is even, and

down if the preceding digit is odd. For example, 46.5 becomes 47, while

45.5 becomes 45.

 Note that if the significantdigits setting is used, then the round setting is

reset to half_even.

 The default is half_even.

pad Sets the number of digits to show, regardless of the value. For example,

setting a pad of 5 would result in all numbers having five digits, as shown:

 00002

 00100

 If the value has more characters than dictated by the pad setting, the value

is not changed and is displayed as entered.

 Use the padcharacter setting to control which character is used to pad the

value.

 The default is 0 (no padding imposed).

padcharacter

Sets the character to use for padding. For example, if you set the

padcharacter to a zero and the pad setting was 5, numbers would be

displayed as follows:

 00010

 01245

64

You may only specify a single character as the pad character. Furthermore,

you must use a pad character that is valid for your data type. For example,

you cannot use a Z in an integer value.

 Use the pad setting to control how many pad characters are used.

 The default for the en_US locale is 0.

 For detailed information about defaults for other locales, see the Workplace

Forms Locale Specification for XFDL document.

fractiondigits

Sets the number of digits shown after the decimal place. For example, a

setting of 3 would allow three digits after the decimal place, as shown:

 13.764

 All values are rounded according to the round setting. If no round setting

is specified, all values are rounded up. (See the round setting for an

explanation of rounding up.)

 fractiondigits is only valid for float and currency data types.

Note: Setting both fractiondigits and significantdigits may cause

conflicting formats. In this case, significantdigits takes precendence.

significantdigits

Sets the number of significant digits allowed. This is generally the total

number of digits allowed in the number. For example, 134.56 has five

significant digits.

 If the data entered exceeds the number of significant digits allowed, then

only the least significant digits are shown. For example, if you allow five

significant digits and 12,345.56 is entered, then only 345.56 is shown.

Note: Setting both fractiondigits and significantdigits may cause

conflicting formats. In this case, significantdigits takes precendence.

pattern

Allows you to set a pattern for number and date data types. This pattern is

used to display the data. For example, you might want all numbers to be

formatted with two digits after the decimal place.

Note: Pattern setting overrides both the style and negativeindicator

settings.

decimalseparator

Defines one or more symbols that are allowed to indicate the decimal

place. This is often a period, as shown: 100.00

 You can use any string, such as a comma or a comma followed by a space.

Note: The user must use the same separator in a given string. For

example, if you define both comma and space as valid separators,

the user must type either 1,000,000 or 1 000 000. Mixing the

separators, as in 1,000 000, is not allowed.

If this setting is empty, it inherits the decimalseparator defined in the

presentation settings.

 The default: is a comma.

Fields 65

Dates

For a datatype set to date_time, month, year, date, day_of_week, or

day_of_month set style to:

numeric

Converts dates to numeric format. For example 20060613 (yyyyMMdd).

short Converts dates to short format. For example 2006-06-13 (yyyy-MM-dd).

medium

Converts dates to medium format. For example, 13 Jun 2006 (d MMM

yyyy).

long Converts dates to long format. For example, June 13, 2006 (MMMM d,

yyyy).

full Converts the date to full format. For example, Tuesday, June 13, 2006

(EEEE, MMMM d, yyyy).

Changing scroll bars

When you add a field to your form, it allows users to enter more text than fits in

the visible field. You can set up fields to show scroll bars, wrap text, and restrict

users’ entries to the visible field. The options you may use are:

v scrollhoriz — This adds a horizontal scroll bar to the field, and allows the user

to make the text in the field wider than what is visible. To type a new line, the

user must press Enter. This option allows you to set the scroll bar to wrap text

to the next line if it is longer than the visible width of the field. The following

options are available:

never — permit scrolling using the cursor but display no horizontal scroll bar

always — permit scrolling and display a horizontal scroll bar

wordwrap — wrap field contents from line to line, inhibit scrolling and display

no horizontal scroll bar

v scrollvert — This adds a vertical scroll bar to the field, and allows the user to

type lines of text past the bottom of the visible field. The following settings are

available:

never — permit scrolling using the cursor but display no vertical scroll bar

always — permit scrolling and display a vertical scroll bar

fixed — inhibit scrolling and display no vertical scroll bars

To set up scrolling and input restrictions:

1. Select the field.

2. In the Properties view, expand General.

3. Set scrollhoriz to the setting you want.

4. Set scrollvert to the setting you want. For detailed information on scroll

options, see the Workplace Forms XFDL Specification document.

66

Buttons and actions

A form often contains buttons that let the user trigger actions (for example, saving

the form). A form can also contain automatic actions that occur without the user

explicitly triggering them (for example, submitting data to a database or server

every five minutes).

Buttons

Buttons are the most common way for users to trigger actions. You can also use

cells within a popup list, combo box list, or box list to trigger actions. (For detailed

information about presenting choices, see “Lists and choices” on page 75.)

You can use buttons or cells to let users perform the following actions.

cancel Closes the form. If any changes were made to the form since the last save

or submit, then the user is told the form has changed, and is allowed to

stop the cancellation.

display

Allows the user to view one or more attached files. For detailed

information about creating a display button, see “Creating attachment

buttons” on page 106.

done Submits form data and then closes the form.

enclose

Allows the user to attach one or more files in the form. For detailed

information about creating an enclose button, see “Creating attachment

buttons” on page 106.

extract Allows the user to extract a copy of one or more attachments to disk. For

detailed information about creating an extract button, see “Creating

attachment buttons” on page 106.

link Opens a file from the Internet or the user’s computer and displays it a new

window.

pagedone

Switches to a different page in the form.

print Prints the page or the form, depending on the controls you set up.

refresh

Refreshes the form. You may want users to refresh a form when viewing

the form via Webform Server.

remove

Allows the user to remove one or more attachments from the form. For

detailed information about creating a remove button, see “Creating

attachment buttons” on page 106.

replace

Opens a file from the Internet or the user’s computer and displays it in the

current window.

saveform

Saves the form to the current file.

© Copyright IBM Corp. 2003, 2006 67

saveas Saves the form, prompting the user for a filename and location.

select For buttons, lets you capture an event in order to run a formula (compute).

For example, you can setup a button that, when clicked, calls the duplicate

function to duplicate a row of items.

 For cells in a popup list, combo box list, or box list, records the user’s

selection.

 This is the default type for buttons and cells.

signature

For buttons only: allows the user to sign the form. For detailed information

about signatures, see “Signatures” on page 107

submit

Submits form data to a server and leaves the form open.

For detailed information on button types, see the type option in the Workplace

Forms XFDL Specification document.

Creating buttons

For detailed information on creating specific types of buttons, see:

v “Providing navigation between pages” on page 28.

v “Creating attachment buttons” on page 106.

v “Signatures” on page 107.

To create a button:

1. In the Palette, click Button.

2. Click on the canvas to insert a default size button, or drag on the canvas to

insert a button of any size.

3. In the Properties view, expand General.

4. In the value value field, type the text that you want to appear on the button.

(To display an image on the button, see “Adding an image to a button or label”

on page 82.)

5. In the type value field, click the action type you want to use. For detailed

information about button types, see “Buttons” on page 67).

6. In the Properties view, click

and click Show Advanced Properties.

7. Set the properties for the button.

Creating submit buttons

Submit buttons let the user submit their completed form by HTTP or e-mail. If you

are working in a server environment, you will probably want to use HTTP routing.

E-mail routing is most useful in environments where there is no server available,

or where the people using the form will not have access to Internet submissions.

There are two ways a user can submit a form via e-mail:

v Using the Mail Form button in the Viewer toolbar — If the user clicks the Mail

Form button in the Viewer toolbar, a blank address form is displayed. The user

can fill out the address form (for example, recipient, subject, cc, bcc, and

message) and send the e-mail. The transmitted form is sent as an attachment to

68

this e-mail. Before sending the e-mail, the user can add further attachments,

remove any attachments, or save any attachments to disk.

v Using a submit button within the form — You can setup a submit button

within your form that acts similar to the Mail Form button in the Viewer

toolbar. However, you can configure the button so that it automatically fills out

some or all of the address form. (For example, you could configure the button so

that it opens the address form and automatically addresses it to the correct

person.)

You can setup a submit button to submit the form as an uncompressed XFDL file,

a compressed XFDL file, or an HTML file.

Compressed XFDL files are compressed using a modified gzip format; this format

is unique to Workplace Forms. You cannot view a compressed file in a text editor,

but you can use the form in the Viewer and the Designer. Other compression

software may not be able to decompress the forms.

When you submit a form in HTML format, only items that take user input and

custom items are transmitted. Once a form is in HTML format, you cannot use the

form in the Viewer or the Designer.

To create a submit button:

1. Select the button on the form.

2. In the Properties view, expand General.

3. In the type value field, click one of the following:

v submit — to submit the form and keep the form open after submission

v done — to submit the form and close the form after submission.
4. In the url value field, type the URL or e-mail address to submit the form to, for

example:

v a URL with the format: scheme://host.domain[:port]/path/filename for files

and applications (where scheme is http or https)

v a URL with a mailto: format:

mailto:user@host.domain?cc=user2@host.domain&bcc=user3@

host.domain&subject=Timesheet&body=Form+is+attached

5. Click

and click Show Advanced Properties.

6. If you want to specify the format used when the form is transmitted, expand

Transmit.

7. In the transmitformat value field, click one of the following:

v application/vnd.xfdl — Transmits the form as an uncompressed XFDL file

v application/vnd.xfdl;content-encoding=″base64-gzip″ — Transmits the form

as a compressed XFDL file

v application/x-www-form-urlencoded — Transmits the form as an HTML file.

Sometimes it is useful for the form to be programmed to decide where it should go

next. For instance, in a workflow the form may need to be signed by several

people. Dynamically determining the recipient of the form via e-mail ensures the

smooth processing of the workflow. For example, suppose a form needs to be filled

in by Person 1, approved by Person 2, and finally received by Person 3. The logic

goes: If Person 1 is using the form, then submit it to Person 2; if Person 2 is using

the form, then submit it to Person 3. In this situation, you would set url to the

following:

Buttons and actions 69

return_address_field.value == ’Person1@acme.com’ ?

’mailto:Person2@acme.com’ : ’mailto:Person3@acme.com’

Filtering submissions

Filtering is an advanced feature that allows you to control which parts of a form

are sent when a transmission occurs. For example, you can filter all of the buttons

out of a form, or filter out everything but the buttons.

If you only have a basic knowledge of XFDL, or if you simply want to reduce the

size of your form, you should use compression rather than filtering. However, if

you need to reduce the size of your form further, or if the application that will

receive the transmission does not need all of the form information, you may want

to use filtering.

Filtering allows you to:

v Filter out all occurrences of an item type, such as all buttons or fields.

v Filter out groups of items or datagroups.

v Filter out all occurrences of a specific property, such as all background colors or

active settings.

v Filter out individual items.

v Filter out all elements in a particular namespace, such as the custom namespace.

You can set up filters on any user control (such as a button or list choice) that

causes the form to be transmitted, or in an automatic action that transmits the

form.

There are two ways you can control what the submission button will and will not

submit:

v You can specify the items that the button will submit. This is referred to as keep

filtering.

v You can specify the items that the button will not submit. This is referred to as

omit filtering.

To set up filtering for a submit button:

1. Select the button.

2. In the Property view, expand Transmit, and transmitdatagroup.

3. In the filter value field, click one of the following:

v keep — lets you specify which items to submit.

v omit — lets you specify which items to filter.

4. In the Refs value field, click

to add a datagroupref property.

5. In the datagroupref value field, type the name of the object to keep or omit.

For example :

v an item

v a property (option)

v a group of items

v a datagroup

v a namespace.
6. Continue adding datagroupref properties to keep or omit other objects.

70

Creating link or replace buttons

To create a link or replace button:

1. Select the button on the form.

2. In the Properties view, expand General.

3. In the type value field, click one of the following:

v link — lets the user open a file from the Internet or the user’s computer and

display it a new window.

v replace — lets the user open a file from the Internet or the user’s computer

and display it in the current window.
4. In the url value field, type the URL for the file to link or replace.

Creating save or cancel buttons

To create a save or cancel button:

1. Select the button on the form.

2. In the Properties view, expand General.

3. In the type value field, click one of the following:

v saveform — lets the user save the form to the current file.

v saveas — lets the user save the form and specify a filename and location for

it.

v cancel — lets the user close the form.

Creating print buttons

To create a print button:

1. Select the button on the form.

2. In the Properties view, expand General.

3. In the type value field, click print.

4. Click

and click Show Advanced Properties.

5. In the Properties view, expand Appearance.

6. In the printsettings value field, set the properties. For more details about print

settings, see Workplace Forms XFDL Specification.

Automatic actions

Automatic actions allow you to set your form to perform an action automatically,

such as submitting, without the user initiating the action. For example, you could

set your form to refresh a field from a database every five minutes.

Actions can be set to occur once after a set period of time, or to repeat themselves

continually. In general, the user has no control over these actions, and can only

prevent them from occurring by closing the form.

Actions are useful whenever you want to set up a behind-the-scenes process. For

example, you can use actions to have your form automatically open a file after five

minutes, or continually send information to a database or a server.

The following automatic actions are available:

cancel Closes the form. If any changes were made to the form since the last save

or submit, then the user is told the form has changed, and is allowed to

stop the cancellation.

Buttons and actions 71

display

Displays one or more attached files.

done Submits form data and then closes the form.

link Opens a file from the Internet or the user’s computer and displays it in a

new window.

pagedone

Switches to a different page in the form.

print Prints the page or the form, depending on the controls you set up.

refresh

Refreshes the form. You may want to refresh a form when deployed via

Webform Server.

replace

Opens a file from the Internet or the user’s computer and displays it in the

current window.

saveform

Saves the form to the current file.

saveas Saves the form, prompting the user for a filename and location.

select The action item’s active option goes from off to on to off again.

submit

Submits form data to a server and leaves the form open.

You can set automatic actions to occur once after a set amount of time, or to repeat

after a regular interval.

You will also have to set the delay interval. This is the number of seconds that

should pass before the action occurs, or between repetitions of the action. Be aware

that the count for the delay begins slightly before the form is actually visible on

the screen, and that you should test your delays to be sure they are correct.

Note: Actions will only occur if they are on the page of the form currently open in

the Viewer. Any actions on other pages will not occur until the user changes

to the appropriate page, and then only after the specified delay has passed.

Creating automatic actions

To create an automatic action:

1. In the Palette, click Action.

2. Do either of the following:

v In the Outline view, click on the page that you want to insert the action onto.

v If the page that you want to insert the action onto is displayed in the canvas,

click on the canvas.
3. In the Properties view, expand General.

4. In the type value field, click the type of action you want to apply. For detailed

information on action types, see “Automatic actions” on page 71.

5. In the Properties view, expand delay and interval.

6. In the type value field, click one of the following:

v once — The action will occur once, after a delay interval you specify.

v repeatedly — The action will occur repeatedly, waiting for an interval you

specify between repetitions.

72

7. In the interval value field, type a number for the frequency (measured in

seconds) of the repeated action (for repeating actions) or the delay before

performing the action (for actions occurring once).

Buttons and actions 73

74

Lists and choices

There are several ways of presenting a list of choices to users. You can also use a

list of choices to let users trigger actions (for example, attaching a file to a form).

v Check boxes

Use check boxes if you want the user to be able to select more than one of the

choices you present. For example, you may want the user to “check all that

apply” or present a single choice that the user can activate or deactivate.

v Radio buttons

Use radio buttons if you:

– Want the user to select only one choice.

– Want to show all of the possible choices at once.

– Want the user to have to click just once to select the choice.

– Have a small number of choices.
v Popups

A popup list appears as a single row on your form. It allows the user to select a

single choice.

v Combo boxes

A combo box list appears as a single row on your form. It allows the user to

type in a choice or choose one from a popup list. Alternately, you can configure

a combo box list to present a calendar to your users, with which they can pick a

date.

v Box lists

© Copyright IBM Corp. 2003, 2006 75

A box list can be any size and displays choices in a scrolling list.

Use box lists if you:

– Want the user to select only one choice

– Want to save space on your form

– Want to have your application dynamically generate a list of choices and

insert them into the form
v Calendars

A calendar displays a field for the user to type a date into and a calendar for the

user to select a date. In either case, the date is displayed in the format of your

choice.

Creating check box lists

Use check boxes if you want the user to be able to select more than one of the

choices you present. For example, you may want the user to ’check all that apply’

or present a single choice that the user can activate or deactivate.

To create a check box list:

1. In the Palette, click Check.

2. Click on the canvas to insert the check box.

3. In the Palette, click Label.

4. Click on the canvas, beside the check box you added.

5. In the Properties view, expand General.

6. Click within the value field.

7. Type the label name.

76

8. Repeat steps 1 through 7 to add more choices to the check box list.

Creating radio lists

Radio buttons allow you to present a group of choices to the user from which only

one choice can be selected at any time. For example, if you wanted to present the

user with a choice that required them to choose their salutation, you could create

three radio buttons, label them Mr, Mrs and Ms and put them in the same group.

A user could select one or the other, but not both.

To create a radio button:

 1. In the Palette, click Radio.

 2. Click on the canvas to insert the radio button.

 3. In the Palette, click Label.

 4. Click beside the radio button on the canvas.

 5. Double-click the label and type the label for the radio button.

 6. Repeat steps 1 through 5 to add more choices to the radio button list.

 7. Select all the radio buttons.

 8. In the Properties view, expand General.

 9. Click within the group value field.

10. Type the name for the radio button group. This name is applied to all selected

radio buttons.

Creating popup lists

Popup lists show only one choice at a time. The remaining choices are visible

when the user clicks the arrow at the right of the list. The selected choice is always

shown, but you can select a default choice to be visible before the user selects

anything. You can also display text that indicates what the user is meant to choose

from the list (for example, Select a percentage).

To create a popup list:

 1. In the Palette, click Popup.

 2. Click on the canvas to insert a popup list.

 3. In the Palette, click Cell.

 4. Click within the popup list on the canvas to add a choice to the popup list.

 5. In the Properties view, expand General.

 6. Click within the label value field.

 7. Type the label you want to display to the user. For example, 100%.

The label property shows the user either a single or multiple line text value.

 8. Click within the value field.

Lists and choices 77

9. Type the value that will be stored in the form when the user selects the

choice. For example, 100.

When the user selects the choice, the form will record the value, not the label

name. The popup lists will also display the value when it is selected. The

value does not apply to choices that trigger actions.

10. Repeat steps 3 through 9 to add other choices to the popup list.

Creating combo box lists

Combo box lists act as a combination of a field and a list. Users can enter text, or

choose from the list. Combo boxes can also have built-in labels. The following is an

example of a combo box ″expanded″ to show the list of choices.

To create a combo box list:

 1. In the Palette, click Combobox.

 2. Click on the canvas to insert the combo box list.

 3. In the Properties view, expand General.

 4. Click within the label value field.

 5. Type the Ccombo box label to appear at the top of the combo box list. For

example, Profession.

 6. In the Palette, click Cell.

 7. On the canvas, click within the combo box list to add a choice to the

combobox list. The cell’s group value is automatically set based on the name

of the combo box. All cells in the same combo box have the same group value.

 8. Click within the label value field.

 9. Type the label you want to display to the user. For example, Doctor.

The label property shows the user either a single or multiple line text value.

10. Click within the value field.

11. Type the value you want to store in the form when the user selects the choice.

For example, MD.

The value property refers to the contents of an item that will be stored in the

form when the user selects the choice. If you set the value and the user selects

the choice, then the form will record the value, not the label name. Also, in

combo box lists, the choice will display the value when it is selected.

12. Repeat steps 6 through 11 add other choices to the popup list.

78

Creating box lists

A box list is a box containing a list of choices. It differs from other lists in that you

can adjust the size of the box list to display more than one choice at a time. The

following is an example of a box list with a built-in label.

A box list can be as large as you want. If it contains more choices than can appear

in the box at once, it automatically generates scroll bars.

To create a box list:

 1. In the Palette, click List.

 2. Click on the canvas to insert the box list.

 3. In the Palette, click Cell.

 4. On the canvas, click within the box List to add a choice to the box list. The

cell’s group value is automatically set based on the name of the box list. All

cells in the same box list have the same group value.

 5. In the Properties view, expand General.

 6. Click within the label value field.

 7. Type the label you want to display to the user. For example, Doctor.

 8. Click within the value field.

 9. Type the value you want to store in the form when the user selects the choice.

For example, MD.

10. Repeat steps 3 through 9 to add other choices to your box list.

Tip: You can change the order of the choices in the list by opening the Outline

view, selecting an item and dragging it up or down in the list.

Lists and choices 79

Creating calendars

Date picker calendars let the user type a date into a field, or use the calendar to

select a date. In either case, the date is displayed in the format of your choice.

To create a calendar:

1. In the Palette, click Date Picker.

2. Click on the canvas to insert the calendar.

3. In the Properties view, expand General, Format, format, and presentation.

4. Set calender to a calender style. For detailed information on calendar styles, see

the Workplace Forms XFDL Specification document.

Using lists to trigger actions

Buttons are the most common way for users to trigger actions (for example, saving

the form). You can also use cells within a popup list, combo box list, or box list to

trigger actions.

Using lists to trigger actions is similar to using buttons to trigger actions. For

detailed information on buttons, see “Buttons and actions” on page 67.

For a list of actions that can be triggered by buttons and cells, see “Buttons” on

page 67.

To use a list to trigger actions:

1. Create a popup list, combo box list, or box list.

2. In the Outline view, select one of the list’s cells.

3. In the Properties view, expand General.

4. Set type to an action type from the list. For detailed information on action

types, see “Buttons” on page 67.

5. In the top-right corner of the Properties view, click

and click Show

Advanced Properties.

6. In the Properties view, expand Miscellaneous and Transmit.

7. Set the properties for the action.

80

Images

Use images on your forms to give them a unique look. You can use images to add

department or corporate logos to the title, customize buttons or labels, or add

small images like arrows to help users navigate through your form.

Note: You should consider the type, quantity, and size of the images you include

on your forms as they can make a form larger and therefore slower to

transmit, as well as have increased storage requirements. To help keep your

images small, most graphics editing applications provide you with the

ability to reduce file size by reducing the number of colors, reducing the

resolution, altering the compression, changing to either black and white or

gray scale.

The Designer supports the following image formats:

v Bitmap (.bmp)

v Joint Photographic Experts Group (.jpeg)

v Portable Network Graphics (.png)

v Graphics Interchange Format (.gif)

v Sun Raster (.rast)

Note:

v The Designer does not support transparency or animation and only

supports the 87a format for .gif graphic formats.

v The Viewer supports fewer types of JPEG images than the Designer

supports. A JPEG image that appears correctly in the Designer may not be

displayed in the Viewer. If you plan to use JPEG images in your form, test

one image in the Viewer to ensure that the JPEG type is supported.

v The Designer does not support progressive compression for JPEG images.

Adding an image file to a form

Before you can add an image to a form or to an item (such as a button or a label),

you need to enclose the image as a data file for a specific page in the Enclosures

view.

To enclose an image file:

1. In the Enclosures view, select a page under Data. By default, every form has

one page named PAGE1.

2. Right-click and select Enclose File.

3. Browse to the location of the image.

4. Select the file and click Open.

You can now add the image directly onto your form, or to label or button items on

your form. When you copy the label or button using an image to another page in

the form, the image is referenced to the original file.

© Copyright IBM Corp. 2003, 2006 81

Note: The information contained in Pages in the Enclosures view does not show

you where the enclosure is displayed; it shows you where the actual data

resides. Images are stored as data items. When you enclose a file, a data

item is created for that specific page.

Note: You can also add an image file to a form by dragging the file from your

Workspace or Windows Explorer onto the PAGE in the Enclosures view.

Adding an image to a button or label

The Designer lets you customize your form by adding images to buttons and

labels.

Before you can add an image to a button or label, you need to enclose the image

file within the form. For information about enclosing a file, see “Adding an image

file to a form” on page 81.

To add an image to a button or label:

1. Create a button or label.

2. In the Enclosures view, expand Data and the page that contains the image file

(see “Adding an image file to a form” on page 81).

3. Drag the image file from the Enclosures view onto the button or label on the

canvas. The image replaces any text on the button or label.

Note: You can create an image label by dragging an image file from the Enclosures

view directly onto the canvas.

To resize or crop the image to better fit within the button or label, see “Resizing

and cropping images on buttons and labels.”

To image map an image on a button, see “Image-mapping a button” on page 83.

Resizing and cropping images on buttons and labels

You can resize or crop an image so it better fits within a button or label.

To resize or crop an image:

1. Select the button or label.

2. In the Properties view, click

and click Show Advanced Properties.

3. In the Properties view, expand Appearance.

4. Set imagemode to:

v clip — If the image is smaller than the button/label, the image is centered on

the button/label. Otherwise, the top left corner of the image is positioned in

the top left corner of the button/label, and the parts of the image that extend

beyond the border of the button/label are cut off.

v resize — The image is resized to fit within and fill the button/label. The

aspect ratio of the original image may be altered.

v scale — The image is resized to fit within and fill the button/label. The

aspect ratio of the original image is preserved.

Note: When you change the imagemode property for a label or a button, you are

modifying how the image is displayed on the label or button, and not the

actual image (data item).

82

Image-mapping a button

When a user clicks a button that contains an image, the form automatically detects

where the user clicked the image. You can use this feature to specify that a button

performs a different action depending on where the user clicks the image.

This is an advanced feature. To use it, you must know how to hand-code formulas.

The form records the user’s click based on an invisible grid that overlies the image.

The points along each axis of the grid are numbered from zero through 1,000. The

top left corner of the image is (0,0) and the bottom right corner is (1,000, 1,000),

regardless of the size of the image. When the user clicks a button, the form

determines the point on the grid that is closest to where the user clicks.

To image-map a button:

1. Create a button with an image on it (see “Adding an image to a button or

label” on page 82 and “Creating buttons” on page 68).

2. Right-click the button and click Wizards → Compute Wizard.

3. From the Property to Set list, click url.

4. Click The value is set by a manually created formula.

5. Type the formula in the text area at the bottom of the window (see the

examples below).

6. Click Finish.

Examples

The following formula points to a different URL if the user clicks on the left half of

the button or the right half of the button

coordinates[0]>"500" ? "http://www.myserver.com/Type1.xfd" :

"http://www.myserver.com/Type2.xfd"

If the user clicks on the right half of the button (that is, the x-coordinate is greater

than 500), the URL points to Type1.xfd. Otherwise, the URL points to Type2.xfd.

coordinates[0]>″500″ indicates “if the x-coordinate is greater than 500”.

The following formula points to a different URL if the user clicks on the top half of

the button or the bottom half of the button

coordinates[1]>"500" ? "http://www.myserver.com/Type1.xfd" :

"http://www.myserver.com/Type2.xfd"

If the user clicks on the bottom half of the button (that is, the y-coordinate is

greater than 500), the URL points to Type1.xfd. Otherwise, the URL points to

Type2.xfd.

coordinates[1]>″500″ indicates “if the y-coordinate is greater than 500”.

Adding a background template image

If you have a paper form and are re-creating it in the Designer, you can scan the

form and use the scanned image as a background or template in the Designer. The

background image is only visible in the Designer; it is not visible in the Viewer

and will not print.

Images 83

Note: If you’re replicating a paper form, specify which template image you will be

using as a guide to assist you in laying out the form. Remember that the

template image will stay the same size even if you use a different-sized

window.

To add a background image to a form:

1. Scan a form and save it in one of the supported formats: JPEG, PNG, BMP, GIF,

or Sun Raster.

2. In the Outline view, expand the page you want to add a background image to

and select Page Global.

3. In the Properties view, expand Appearance.

4. Click within the backgroundimage value field.

5. Type the path and filename for the image (for example, c:\MyFile\MyImages\
MyScannedForm1.bmp) and press Enter.

6. Click within the backgroundimagealpha value field.

7. Type a value between 1 and 255 to set the transparency of the background

image. One (1) represents the lightest image background, and 255 the darkest.

84

Formulas

Formulas enable your form to do mathematical or logical operations quickly. In

addition to displaying calculations based on user input, formulas also allow your

form to make decisions based on the results yielded by other formulas.

Formulas can send a user to a different page, determine an e-mail address or URL

to which a form should be submitted, automatically calculate a compound interest

factor, and so on.

When to use formulas

Formulas are typically used in the following situations:

v When you need your form to act like a spreadsheet and perform mathematical

operations on the values entered by the user.

v When you need the form to make a decision based on the values entered by the

user. For instance, you may want the “dependents” section of a form to be made

active or inactive based on whether the user has children.

v When you want to add dynamic elements to your form.

Common situations in which formulas are used include:

v Copying information from one field to another.

v Changing the text displayed by an item, or setting the value of a field.

v Changing whether an item is active or inactive.

v Changing the URL associated with a button or choice list (for transmitting the

form).

For detailed information about formulas and items, see the Workplace Forms XFDL

Specification document.

Planning a formula

Before you create a formula in your form, review the following:

Establish what you want the formula to do.

Do you want the formula to perform basic mathematics, such as add,

subtract, divide, or multiply values?

 Do you want to use formulas to have your form make decisions based on

user input?

Establish where the data results will be written.

Will the data be seen by the user in another field on the form?

 Will the data be sent to a database, e-mail or URL?

Establish the characteristics of the form, page and items.

For example, the bgcolor property set at the form global level defines the

background color of all pages on the form, whereas a bgcolor option set at

the item level defines the background color for that specific item.

 For detailed information about options, see “Functions” on page 91.

© Copyright IBM Corp. 2003, 2006 85

Establish whether you will use a function.

For detailed information about functions, see “Operators and the order of

operations” on page 96.

Setting up simple formulas

The Compute Wizard allows you to perform the following basic mathematical

operations:

v The value is equal to another form item

v The value is equal to a function

v The value is set by a calculation of two values

v The value is equal to the sum of multiple fields on the form

v The value is determined by a decision.

Setting one value to equal another (assignment)

You can use an assignment formula to set any property. For instance, you can use

this to set the value of a field or label equal to a value that the user typed. You can

also use it to set a Submit button’s URL to an address that the user types in, or to

activate certain items at the user’s request.

To set the value of an item equal to the value of another item:

1. Select the item for which you want to set up a formula. (The formula will set

one of the item’s properties.)

2. Right-click the item and click Wizards → Compute Wizard.

3. From the Property to Set list, click value. For detailed information about other

properties, see “Appendix B: Options” on page 187.

4. Click The value is equal to another form item.

5. Click Next.

6. Click

. The canvas moves to the front for you to select an item.

7. Select the item you want to use as an input for the formula. The Compute

Wizard window reopens.

8. In the field below the

, click value.

9. Click Finish.

Performing a calculation based on two values (calculation)

You can use these formulas to calculate the numerical or text values of items on a

form.

Performing a calculation based on two numbers or text values

To perform calculations based on two numbers or text values:

 1. Right-click the item and click Wizards → Compute Wizard.

 2. From the Property to Set list, select the property of the item that you want to

set using a formula. For detailed information about properties, see “Appendix

B: Options” on page 187.

 3. Click The value is equal to the calculations of two values.

 4. Click Next.

86

5. From the First Value list, click Enter a number or text.

 6. Type the number or text you want to use.

 7. In the Function list, select the operator you want to use. For detailed

information about operators, see “Operators and the order of operations” on

page 96.

 8. From the Second value list, click Enter a number or text.

 9. Type the number or text you want to use.

10. Click Finish.

Performing a calculation based on two items on the form

To perform calculations based on two items on the form:

 1. Right-click the item and click Wizards → Compute Wizard.

 2. From the Property to Set list, select the property of the item that you want to

set using a formula. For detailed information about properties, see “Appendix

B: Options” on page 187.

 3. Click The value is set by a calculation of two values.

 4. Click Next.

 5. From the First Value list, click Choose an item on the form.

 6. Click

. The canvas moves to the front for you to choose an item.

 7. Within the field right of

, select a property. For detailed information

about properties, see “Appendix B: Options” on page 187.

 8. Select the item you want to use as an input for the formula. The Compute

Wizard window reopens.

 9. In the Function list, select the function you want to use. For detailed

information about functions, see “Functions” on page 91.

10. From the Second Value list, click Choose an item on the form.

11. Click

. The canvas moves to the front for you to choose an item.

12. Select the item you want to use. The Compute Wizard window reopens.

13. Within the field right of

, select a property. For detailed information

about properties, see “Appendix B: Options” on page 187.

14. Click Finish.

Performing a calculation based on an advanced calculation

To perform an advanced calculation:

 1. Right-click the item and click Wizards → Compute Wizard.

 2. From the Property to Set list, select the property of the item that you want to

set using a formula. For detailed information about properties, see “Appendix

B: Options” on page 187.

 3. Click The value is equal to the calculation of two values.

 4. Click Next.

 5. From the First Value list, click Choose a function. The Function window is

displayed.

 6. Click Function.

Formulas 87

7. From the Choose a Function list, select a function. Depending on what

function you choose, different Parameters, Descriptions, and Return Value

information are displayed. For detailed information about functions, see

“Functions” on page 91.

 8. When presented with Parameter options, select the appropriate settings.

 9. Click OK. The Compute Window is displayed.

10. From the Second Value list, click Choose a function. The Function window

reopens.

11. From the Choose a Function list, select a function. Depending on what

function you choose, different Parameters, Descriptions, and Return Value

information are displayed. For detailed information about functions, see

“Functions” on page 91.

12. Click Finish.

For detailed information on referencing paths, see “References: Referring to other

items and their options” on page 97.

Summing values

You can use a formula to add the values of a number of different fields on the

form and display the result in another field. This formula type is only useful for

setting field contents to display the sum of the contents of other fields.

To add multiple fields:

1. Right-click the field that will contain the total and click Wizards → Compute

Wizard.

2. From the Property to Set list, click value.

3. Click The value is equal to the sum of multiple fields on the form.

4. Click Next.

5. Click

. The canvas moves to the front so you can choose the items to use.

6. Hold down Ctrl and select the items you want to add together.

7. Once your selection is made, click Finish. To delete items from your selection,

highlight the item in the Compute Wizard list and click Delete.

8. In the Compute Wizard, choose the appropriate operator. For detailed

information on operators, see “Operators and the order of operations” on page

96.

9. Click Finish.

Setting an item value to equal a function

Functions are complex, preset formulas that make your form more powerful and

flexible. Functions allow forms to perform procedural logic, and also to perform

operations that would normally require complex conditional statements to achieve.

To set an item value to equal a function:

1. Right-click the item and click Wizards → Compute Wizard.

2. From the Property to Set list, click value.

3. Click The value is equal to a function.

4. Click Next.

5. Click Function to open the Function Call window.

88

6. From the Choose a Function list, select a function. Depending on what function

you choose, different Parameters, Description, and Return Value information

displays. For detailed information about functions, see “Functions” on page 91.

7. Review the Description to confirm that you have selected the appropriate

function.

8. Under Parameters, you can do either of the following:

v Enter a number or text: type the value into the parameter field

v Choose an item on the form: click

. The canvas moves to the front for

you to choose the item to use. Once chosen, select a parameter option and

click OK.
9. Click Finish.

Making decisions based on user input (if/then/else)

An if/then/else statement lets you set the property of an item based on user input.

For example, you can set up a field to display different information based on

whether a check box option is selected, or to set a button to be active if a radio

button option is selected.

To create an if/then/else statement:

1. Select the item that will contain the formula.

2. Right-click the item and click Wizards → Compute Wizard.

3. From the Property to Set list, select the property of the item that you want to

set using a formula. For detailed information about properties, see “Appendix

B: Options” on page 187.

4. Click The value is determined by a decision (If/Then/Else).

5. Click Next.

The Formula window is now configured to set up an if/then/else formula. You

can compare only combinations of numerical values, text, properties of items

on the form, and the results of function calls.

If you are setting up the formula to determine user input, set the first element

of the formula to the property of an item on the form.

To select an item on your form:

1. From the If list, click Choose an item on the form.

2. Click

.

3. Click the item that contains the property you want to use.

4. In the menu over the first field in the If statement, select the type of property

you would like the formula to check. For detailed information about properties,

see “Appendix B: Options” on page 187

5. Decide if you want the formula to check against a numerical value, text, the

result of a function or a property of another item.

v If you wish to check against a numerical value or text, click Enter number or

text from the menu above the last field in the If statement.

v If you wish to check against the result of a function, click Choose a function

from the menu, then in the Function window, choose the function you want

and type in the parameters.

v If you wish to check against the property of another item, click Choose an

item on the form and click

to choose the item from the form.

Formulas 89

v If you wish to check if the item is set, click on or off. For example, you may

want to apply this if statement to a Radio or Check item.
6. From the Then list, select what to assign the property if the If statement is true.

v If you wish to assign a numerical value or text, click a number or text from

the menu.

v If you wish to assign the result of a function, click a function from the menu,

then in the Function window, choose the function you want and type in the

parameters.

v If you wish to assign a property of another item, click Choose an item on

the form and click

to choose the item from the form.
7. In the menu above the field in the Then statement, choose what to assign the

property if the If statement is false.

v If you wish to assign a numerical value or text, click a number or text from

the menu.

v If you wish to assign the result of a function, click a function from the menu,

then in the Function window, choose the function you want and type in the

parameters.

v If you wish to assign a property of another item, click Choose an item on

the form and click

to choose the item from the form.

v If nothing happens after meeting the If argument, leave this field empty.
8. Click Finish.

For detailed information about logical operators, see “If/then/else logical

operators.”

Review a sample of an If/Then statement — “Example of an if/then/else formula”

on page 91.

If/then/else logical operators

Logical formula operators allow you to compare values and evaluate the results.

When two values are compared using logical operators, the result is either true or

false.

The following logical operators are available in the Compute Wizard if/then/else

formula menu:

 Logical operator Description

> greater than

< less than

>= greater than or equal to

<= less than or equal to

== equal to (comparison)

!= not equal to

&& AND

and AND

|| OR

or OR

! NOT

90

When two values are compared using logical operators, the result is either true or

false. For instance, if you have a form with a check box, you can use the following

logical statement to see if the check box has been selected:

CHECK1.value == ’on’

You can then create a formula that will instruct the form to perform one action if

the logical statement evaluates to true, and another action if the logical statement

evaluates to false, such as this, which sets the text of a field:

CHECK1.value== ’on’ ? (’Check box is on’) : ’Check box is off’

You use logical operators in if/then/else formulas. The Designer can set up simple

if/then/else formulas, in which one logical statement, containing only one logical

operator, is evaluated. For detailed information about making decisions based on

user input (if/then/else), see “Making decisions based on user input

(if/then/else)” on page 89.

Example of an if/then/else formula

To create a compute that makes FIELD1 visible if CHECK1 is selected by a user:

 1. Right-click FIELD1 and click Wizards → Compute Wizard.

 2. From the Property to Set list, click visible.

 3. Click The value is determined by a decision.

 4. Click Next.

 5. From the If list, click Choose an item on the form.

 6. Click

and click CHECK1.

 7. When you return to the Compute Wizard window, click value.

 8. From the operators list, select == (equal to).

 9. From the list to the right of the options list, click on.

10. From the Then list, click on.

11. From the Else list, click off.

12. Click Finish.

Functions

Functions are complex, preset formulas that make your form more powerful and

flexible. Functions allow forms to perform procedural logic, and also to perform

operations that would normally require complex conditional statements to achieve.

Functions are compiled into packages (libraries), that must reside on the user’s

computer.

For detailed information about standard mathematical operations, string

manipulations, and logical operators used in formulas, see the XFDL Specification

and the Introduction to the Viewer Functions.

The following functions are available in the Compute Wizard.

abs Returns the absolute value of a number.

acos Returns the arc cosine of a number in radians.

annuity

Returns the annuity factor for a specified rate and number of periods.

Formulas 91

applicationName

Returns the name of the currently running application. Does not require

parameters.

applicationVersion

Returns the version of the currently running application in a string format.

Does not require parameters.

applicationVersionNum

Returns the version of the currently running application in numeric form.

Does not require parameters.

asin Returns the arc sine of a number in radians.

atan Returns the arc tangent of a number in radians.

ceiling

Returns the integer ceiling (the next highest whole number) of a number.

checkValidFormats

Returns the number of items in the form that have invalid formats.

compound

Returns the interest factor for a specified rate and number of periods.

cos Returns the cosine of a number in radians.

countChildren

Returns the number of children for the current node.

countDatagroupItems

Returns the number of items in a particular data group. The parameter

requires the name of the grouped item. The parameter requires the name

of the grouped item. Selecting non-grouped items will create a null entry.

countGroupedItems

Returns the number of items in a particular group. The parameter requires

the name of the grouped item. Selecting non-grouped items will create a

null entry.

countLines

Returns the number of lines that the string would occupy for a given

width.

countWords

Returns the number of words in the supplied string.

date Returns the current date in yyyymmdd format. Does not require

parameters.

dateToSeconds

Returns the number of seconds since 00:00:00 GMT, Jan. 1, 1970 for a

specified date and time.

day Returns the numeric day of the month. Does not require parameters.

dayOfWeek

Returns the numeric date of the week (Sunday is 1). Does not require

parameters.

decimal

Returns the decimal (base 10) version of a specified number in a specified

base.

92

deg2rad

Returns the number of radians in a number of degrees.

destroy

Destroys the specified form element.

duplicate

Duplicates the specified form element.

endOfMonth

Returns the number of seconds of an end-of-month day from 00:00:00

GMT, Jan. 1, 1970.

exp Returns the exponentiation of a number.

fact Returns the factorial of a given integer.

floor Returns the integer floor (the next lowest whole number) of a number.

for Counts through a series of numbers like a traditional for loop in

programming.

forLoop

Creates a loop that you can use to run a compute a number of times.

formatString

Returns a specified string with a specified format applied (for example,

dollar format).

generateUniqueName

Returns a unique name that can be assigned to a new form element, such

as a duplicated element.

get Returns the value of a specified form option.

getAttr

Returns the value of an attribute on a form element.

getDateByPath

Returns data associated with a DSOM object.

getGroupedItem

Returns the SID of an item in a particular group.

getInstanceRef

Returns the reference to a particular data instance in the form’s XML data

model.

getPosition

Returns a number that represents which child the item is. This count is

zero-based. For example, the first child of an item would return a 0, the

second child a 1, and so on.

getPref

Retrieves the preferences entry for the Viewer.

getReference

Returns the reference to the form element containing the function.

hour Returns the current hour in hh 24-hour format.

isValidFormat

Returns the result of comparing a string against an item format.

ln Returns the natural log of a number.

log Returns the log of a number to a specified base.

Formulas 93

minute

Returns the current minute in mm format. Does not require parameters.

mod Returns the modulus of a number with the specified divisor.

month Returns the current month in numeric format.

now Returns the number of seconds since 00:00:00 GMT, Jan. 1, 1970. Does not

require parameters.

pad Returns a string that is either padded (spaces added) or truncated.

pi Returns pi to six decimal places. Does not require parameters.

power Returns the number raised to the specified power.

rad2deg

Returns the number of degrees in a number of radians.

rand Returns a random integer between two bounds inclusively.

replace

Returns a string with a portion replaced by another string. The string is

treated as an array; the start and end points are identified by array element

numbers.

round Returns a decimal number rounded to a specified decimal place.

second

Returns the current second in ss format. Does not require parameters.

set Sets the value of an option in the form.

setAttr

Sets the attribute to ″1″ if the operation completed successfully or ″0″ if an

error occurred.

sin Returns the sine of a number of radians.

sqrt Returns the square root of a given number.

strlen Returns the length of a string.

strmatch

Determines if a wildcard string matches a regular string.

strpbrk

Returns the first position of any character from one string in another

string.

strrstr Returns the position of the last instance of one string in another string.

strstr Returns the position of the first instance of one string in another string.

substr Returns a substring of a string. The string is treated as an array; the start

and end points of the substring are specified by numbers corresponding to

array elements.

tan Returns the tangent of a number where the number is expressed in

radians.

time Returns the time specified (or current time if no time specified) in hh:mm

AM format.

toggle Detects transitions in a property. Toggle is frequently used to set the value

of a property based on radio button or check box selection, button click or

field entries.

94

tolower

Returns the lower case form of a string.

toupper

Returns the upper case form of a string.

trim Returns a string with all leading and trailing white space removed.

URLDecode

Returns the URL-Decoded form of a string. (For example, takes the % out

of URLs and replaces them with spaces.)

URLEncode

Returns the URL-Encoded form of a string. (For example, replaces spaces

with the % character.)

xmlModelUpdate

Updates the XML model in the form.

xmlModelValidate

Validates the XML model against schema referred to in the form or

provided as part of the form.

year Returns the current year in yyyy format. Does not require parameters.

viewer.addressBook

Uses MAPI to bring up your mail client’s address book.

viewer.env

Returns a string that contains the details of the environment in which the

Viewer is operating.

viewer.fileOpen

Returns the name of a file selected for saving through a file browser

window.

viewer.fileSave

Returns the name of a file selected for opening through a file browser

window.

viewer.getDefaultFilename

Returns the default name of the currently activated form.

viewer.getHeight

Returns the current height of the item in pixels or characters.

viewer.getHelpMode

Returns the current help mode setting of the Viewer.

viewer.getWidth

Returns the current width of the item in pixels or characters.

viewer.getX

Returns the current location of the item’s left edge in pixels.

viewer.getY

Returns the current location of the item’s top in pixels.

viewer.measureHeight

Calculates how tall an item would have to be to display all of its text.

viewer.messageBox

Displays a simple message box with a caption and message.

viewer.param

Returns the value of the HTML param element’s value attribute.

Formulas 95

viewer.setCursor

Sets the cursor to the given index and selects the text if a range is

provided. The cursor is set to the end of the field if no parameters are

provided.

viewer.setDefaultFilename

Sets Save/Mail default name of the activated form.

viewer.setHelpMode

Sets or clears viewer help mode.

viewer.showCalendar

Open a calendar widget that allows the user to select a date. This widget

appears attached to the item that contains the function call.

Operators and the order of operations

The following operators are available when setting a formula.

 Operator Description

+ addition (or concatenation, if text)

- subtraction (or negative, if placed in front of an integer)

* multiplication

/ division

^ exponentiation

% percentage

> greater than

< less than

>= greater than or equal to

<= less than or equal to

== equal to (comparison)

!= not equal to

&& AND

and AND

|| OR

or OR

! NOT

x?y:z if x then y, else z

= assignment

. structure membership

[] array membership

-> indirect membership

Order of Operations

Operations are evaluated in the following order:

1. Membership

2. Exponentiation

3. Multiplication, division, and unary minus

96

4. Addition and subtraction

5. Relational (greater than, less than, equal to, and so on)

6. Logical AND

7. Logical OR

8. Logical IF THEN ELSE

Creating custom formulas

There are an endless number of possibilities when using formulas. You can create

formulas that make decisions, add numbers, concatenate strings, or simply copy a

value from one field to another. The best way to master the possibilities is to

experiment. You can also use a custom formula to access a user’s choice list using

the indirect item reference.

Sometimes, you will need to set up formulas that contain more than one logical

operator, called a custom formula. When you use more than one logical operator in

a custom formula, you need to let the form know that the logical statement being

evaluated has more than one element, and the result, which the form uses to

determine the next action, comes from the combined statement.

For example, if you had two check boxes that need to be selected for an action to

occur, then the formula to set the action’s active property to “on” would be as

follows:

(CHECK1.value == ’on’ and CHECK2.value == ’on’) ? (’on’) : ’off’

This ensures that the form evaluates the entire statement before deciding what to

do.

If you want to enter formulas directly into the source code or Properties view, you

will need to refer to the XFDL Specification.

For detailed information about how to write formula references manually, see

“References: Referring to other items and their options” and “Custom functions”

on page 101.

References: Referring to other items and their options

For advanced users: If you write your own formula you need to be familiar with

how to reference other items on your form.

References allow you to identify a specific option by providing a “path” to it. This

means that you can refer to an option anywhere in the form.

There are two types of references:

direct reference

Refer directly to a specific option anywhere in the form.

 For example, to refer to the value of the field total_field on page 1 of the

form, you would use a direct reference: page1.total_field.value

indirect

Reference a choice made in a list.

Formulas 97

For example, to refer to the selected choice in a popup list called

dept_popup, you would use an indirect reference: dept_popup.value-
>value

A reference is constructed by combining the page tag, item tag, and option name

that references to the option you want.

page (Palette item)

The name, for example the sid, you have given to the page. This is only

necessary if the item you are referring to is on a different page.

item (Palette item)

The name, for example the sid, you have given to the item. This is only

necessary if the property you are referring to is in a different item.

[n] or [name] (Option names)

The position in the array of the array element, if you are referring to a

property that is defined by an array. This is either a number or a variable

name.

-> The dereference symbol (indirect membership). This is used when the

reference is to a list choice.

Sample References

The following samples illustrate how a reference might actually look. In each case,

assume the names in quotations are either page tags or item tags.

page_1.submit_button.value Indicates the value option for the “submit_button” on

“page_1”.

age_field.itemlocation[2] Indicates the second itemlocation (the “y” coordinate) for

the “age_field” on the current page.

popup_1.value->value Indicates the value of the list choice of “popup_1”.

Tip: To avoid confusion, always use the full path, including Page and item Sid.

Deleting a formula

To delete a formula:

1. Select the item that has the formula applied to it.

2. In the Properties view, expand Appearance and visible.

3. Click within the compute value field to highlight the contents.

4. Press Delete.

Formula examples

The following examples will help you in creating your own custom formula.

Automatically calculating compound interest factor

Learn how to create a form where the user, using the Viewer, can enter a dollar

figure for the starting amount of the loan in the first field, enter the period in the

second field, see the compound interest factor in the third field, and get the total

amount of the loan in the fourth field.

98

Workflow overview:

1. Set up items onto the form.

v Complete Steps One - Three
2. Use Compute Wizards to set the formulas.

v Complete Steps Four - Five

Step One: Create a new form

First, make sure that you have a blank form open in the Designer.

1. Click File → New → New Workplace Form.

For detailed information about creating forms, see “Creating forms” on page 17.

Step Two: Add items to the form

1. From the Palette, click Field and then click on the canvas to add this field to

the form.

2. Add three more fields below the first one.

Step Three: Set the properties for the first and second fields

1. Select the first field.

2. In the Properties view, expand General.

3. Click within the label value field

4. Type: Original Amount of Loan and press Enter.

5. In the Properties view, expand Format and datatype.

6. Set the datatype to Currency.

7. Select the second field and repeat steps 2 through 5 to label the second field

Period and set its datatype to float.

You have now set up the first two fields so the user can enter the starting amount

and the length of time for the loan in question.

Step Four: Set the third field to calculate the interest factor

 1. Right-click on the third field and click Wizard → Compute Wizard.

 2. From the Property to Set list, click value.

 3. Click The value is equal to a function and click Next.

 4. Click the Function button. The Function window opens.

 5. From the Function Call list, click compound.

 6. In the Parameters rate list, click Enter a number or text.

 7. Tab to the Enter the Value field and type the interest rate .07.

 8. In the Parameters period list, click Choose an item on the form .

 9. Click

to return to the canvas, and click on the field labeled Period.

10. Click OK to exit the Function Call window.

11. Click Finish to apply the formula to the field.

The third field will now calculate the compound interest factor based on a rate of

7% and a period of whatever number is entered into FIELD2.

Step Five: Set the fourth field to calculate the total value of the loan

Formulas 99

Set up the fourth field to show the total value of the loan by multiplying the

starting amount by the compound interest factor.

 1. Right-click on the forth field and click Wizard → Compute Wizard.

 2. From the Property to Set list, click value.

 3. Click The value is set by a calculation of two values and click Next.

 4. From the First Value list, click Choose an item on the form.

 5. Click

to go back to the form, and click on the first field.

 6. An option list is displayed. Click value from the option list.

 7. From the Function list, select * (multiplied by).

 8. From the Second Value list, click Choose an item on the form.

 9. Click

to go back to the form, and click on the third field.

10. An option list is displayed. Click value from the option list.

11. Click Finish to exit the Formula window.

Displaying the current date automatically

You can set up a field to automatically display the current date when the form

opens.

To display the current date automatically:

 1. Select the item.

 2. In the Properties view, expand Format, and format.

 3. Set datatype to date.

 4. Right-click the item and click Wizards → Compute Wizard.

 5. From the Property to Set list, click value.

 6. Click The value is equal to a function.

 7. Click Next.

 8. Click Function. The Function window is displayed.

 9. Set the Function call to date.

10. Click OK.

11. Click Finish.

100

Custom functions

Functions are complex, preset formulas that make your form more powerful and

flexible. They allow forms to perform procedural logic, and also to perform

operations that would normally require complex conditional statements to achieve.

The Designer includes two libraries of predefined functions called system and

viewer functions. In addition, the Designer allows you to use your own custom

functions. These functions can be executed when running the form in the Viewer,

on Webform Server or in API mode. For detailed information about functions

included with the Designer, see “Functions” on page 91.

Creating custom functions

Before trying to set up your own custom function, learn about references, formula

operators, the order of operations, and logical operators included with the

Designer.

If a custom function is required, a forms developer can create custom function

libraries to add additional functionality to a form. These custom functions can be

written in C or Java.

If the custom functions are written in Java, these functions must be saved in a

specialized compressed Java Archived file format (*.jar). The following contents are

enclosed in a JAR file:

v Manifest file — Used, during run-time, by the Viewer to locate the extension file.

v Extension file — Is the wrapper file that lets the Viewer access your custom

functions.

v Function definition file — Defines your functions.

JAR files can be either embedded into the form or distributed on all client

machines.

If the custom functions are written in C, these functions are saved in the

Interactive Financial eXchange file format (*.ifx) and installed on all client

computers using the form. IFX files are usually TIFF files and can often be opened

in an image editor.

For detailed information on how to develop your own custom functions, see the

Workplace Forms Java API User’s Manual.

Making custom functions available

Functions are compiled into packages (libraries). Custom functions can be used by

the form by using either of these methods:

v Call can be made to an install module on an individual computer(s) - IFX or

JAR file.

v Call can be made to an embed module in the form - JAR file.

v Call can be made to a Web service.

© Copyright IBM Corp. 2003, 2006 101

Note: Web services lets one application talk to another server using the Internet.

For example, using Web services you can create functions that let the Viewer

communicate with server-side applications and update information in a

form without the user having to submit the form. For detailed information

on Web services, see “Web services” on page 127.

Distributing IFX files

The Designer lets you reference an IFX file containing custom functions written in

C.

Install the *.ifx file on the client computer(s) in the Workplace Forms Viewer

extensions folder.

For example, C:\Program Files\IBM\Workplace Forms\Viewer\2.6\extensions\

Referring to these modules allows you to use custom functions in a form without

increasing the file size of the form itself. However, this requires you to distribute

the appropriate IFX file to all of your users. Using this method of distribution has

less security issues.

Embedding JAR file

The Designer lets you reference a JAR that is installed on a user’s machine or a

JAR that is embedded in a form.

Note: JAR files can be installed in the same extensions folder as IFX files.

Embedded custom function Java modules will increase the file size of your form

and add higher security checks.

To embed a custom function module:

1. From the Enclosures view, expand JAR.

2. Right-click on one of the pages in the form, for example PAGE1, and select

Enclose file.

3. Browse to find the *.jar file.

4. Click Open. The custom functions are available throughout the entire form.

Using custom functions in the Compute Wizard

In order to use the Compute Wizard to set up a call to a custom function, you

need to know the package name, function name and a list of parameters. For

example:

sample_package.convertDate(theDate.value, theLocale.value)

where sample_package is the package name, convertDate is the function name and

within the brackets is a list of parameters.

To set up a call to a custom function:

1. Right-click on the item you want to apply a custom function to and click

Wizards → Compute Wizard.

2. From the Property to Set list, select a value. For detailed information about

properties, see “Appendix B: Options” on page 187.

102

3. Click The value is set by a manually created formula.

4. Enter the formula containing the custom function call in the file provided.

5. Click Finish.

Note: To complete the above steps, the IFX file or JAR file does not need to be

installed on your machine or embedded within the form. The functions do

not need to be available to the form while the form is being designed.

Custom functions 103

104

Attachments

An attachment is a separate file that is attached to a form. An attachment could be

a Microsoft® Word document, an HTML document, an image, or any other type of

document or file. Attachments are useful in the following situations:

v Attaching a document to a form so users can easily access and view the

document. For example, an insurance application form may have an attached

brochure containing detailed information describing the available insurance

plans.

v Allowing users to attach documents to a form. For example, an employment

application form may require the user to attach their resume.

Attachments are not displayed on the form. Attachments are stored within the

actual form, unlike e-mail attachments which are separate files. After you attach a

file to a form, changes to the original file on the user’s computer will not affect the

file attached to the form.

Attachments are stored in file folders within the form. Before you design a form,

plan the folders you intend to use. For example, if you are creating an employee

form, you may want to create two folders: one for performance evaluations and

one for the employee’s history. You may also want to limit which folders users can

access. During form design, you define these folders as you attach files and setup

attachment buttons.

Attachment buttons let users attach files to a form, save attachments to their

computer, display attachments, or remove attachments from a form.

Attaching files to a form

To attach a file to a form:

1. In the Enclosures view, expand Data.

2. Select the page that will contain the attachment.

3. Right-click the page and click Enclose File.

4. Use the browser to select the file to attach and click Open. The attached file is

listed in the Enclosures view under the page.

5. Select the attached file.

6. In the Properties view, expand General and datagroup.

7. Click

within the Data Group Refs value field to add a datagroupref

property.

8. In the datagroupref field, type the name of the folder that will contain the

attachment.

9. If you want the attached file to belong to more than one folder, click within the

Data Group Refs field and click

to add additional datagroupref properties.

© Copyright IBM Corp. 2003, 2006 105

Creating attachment buttons

Attachment buttons let the user:

v attach a file to a form

v display an attachment (a file that is attached to a form)

v extract an attachment from a form and save it as a file

v remove an attachment from a folder or from the form.

Note: You can use cells, instead of buttons, to let users work with attachments.

The procedure for creating attachment cells is similar to the procedure for

creating attachment buttons. For detailed information on cells, see “Lists and

choices” on page 75.

Note: If your form uses XForms, you can also use the XForms Upload item to let

users attach a file to a form. For detailed information on XForms, see

“XForms” on page 129.

To create an attach, display, extract, or remove button:

1. Create a button and select it. For detailed information on creating buttons, see

“Creating buttons” on page 68.

2. In the Properties view, expand General.

3. Click in the type value field and click one of the following:

v enclose — attaches a file to a form

v display — displays an attachment (in an application determined by the

attachment’s MIME type)

v extract — extracts an attachment and saves it as a file

v remove — removes an attachment from a folder (if the attachment belongs to

more than one folder) or from the form (if the attachment belongs to only

one folder).
4. Expand the datagroup property.

5. Click within the Data Group Refs value field.

6. Click

to add a datagroupref property.

7. In the datagroupref value field, type the name of the folder that you want the

action to access. Folder names can include uppercase letters, lowercase letters,

numbers, and underscores.

8. To allow the action to access additional folders, click within the Data Group

Refs value field and click

to add additional datagroupref properties.

Otherwise, to setup the button to display, extract or remove a specific file that

is already attached to the form, set data to the name of the attachment.

You can use an enclose button in the Preview to attach files to a form; however,

the attachments will not be saved with the form when you return to Design view.

To save the attachments with the form, in the Preview, click the Save Form button.

106

Signatures

Electronic signatures essentially “lock” the data to the form, providing the

following services:

v An electronic signature provides security. This functionality is built into the

technology of the signatures themselves, which causes the signature to break if

the document is changed after it is signed.

v Similar to a handwritten signature, an electronic signature indicates agreement

with the document that is signed. When you sign a document, you are agreeing

to the contents of the document. For example, when you sign a withdrawal slip

at a bank, you are agreeing to withdraw a certain amount of money, and when

you sign an employment contract, you are agreeing to abide by the rules

established by your employer in that document.

v An electronic signature also identifies the signer. This identification occurs in a

number of ways, depending on the type of signature you use. However, in all

cases they provide a mechanism for tracing the signature back to the signer.

Note: While all electronic signatures satisfy these requirements in some way, some

do a better job than others. For detailed information about types of signature

engines, see “Signature types” on page 109.

Electronic signatures do not prevent people from tampering with a document; they

simply make it obvious when tampering occurs. Tampering with the signed data

causes the signature to break, which lets you know that you cannot trust the

document.

Signatures do this by storing a hash of the form when it is signed. You can think of

this hash as a snapshot of the form, showing exactly what the form looked like

when it was signed. The next time the form is opened, it compares its stored

snapshot to a new snapshot of the form, and determines if there are any changes.

If there are changes, the signature will break, making it obvious to the user that

some changes were detected and the form should not be trusted.

In an effort to reflect the intent of a signature, Workplace Forms Viewer actively

stops people from making changes to signed data. However, there is no way to

stop somebody from opening the form in a text editor and making changes to

signed data. In this case, although the change cannot be prevented, the signature

will break, alerting you to the change.

In addition, some of the forms you create may require signatures by more than one

person, contain several sections for different people to fill out and sign, or some

elements might be required to be excluded from signing altogether. You can use

signature filtering to configure forms for layered and incremental signing, and also

for the exclusion of elements (see “Creating a signature button that signs part of a

form” on page 122).

For more information on signatures, see the Workplace Forms Creating Signature

Buttons in XFDL document.

Note: In all cases, IBM strongly advises that you consult legal counsel to help

determine your particular requirements with respect to the use and

implementation of electronic signatures.

© Copyright IBM Corp. 2003, 2006 107

Electronic signatures versus encryption

Electronic signatures essentially lock the data on a form so that it is obvious when

tampering occurs. Tampering with the signed data causes the signature to break,

which lets you know that you should not trust the document. Electronic signatures

do not encrypt the data on a form in any way; they do not prevent people from

reading the information. In fact, this would defeat the purpose of the signature,

which is to indicate agreement with the information provided.

Note: If encryption is a concern, you must take other measures, such as

implementing SSL security on your web site, or creating a Viewer extension

that encrypts the form before it is submitted.

Signing a form

A user can sign a form by clicking a signature button on the form. You usually

design a signature button with some text or label that indicates its function (for

example, “Click to Sign”). Typically, signature buttons are also larger than other

buttons because they have to display the signer’s name after the form is signed.

When a user clicks a signature button, the Digital Signature Viewer opens. The

Digital Signature Viewer lets users sign forms, verify or delete existing signatures,

and view the details of what parts of the form were signed. Users click “Sign” to

sign the form. If they have more than one digital certificate installed on their

computer, a dialog box appears, displaying all of the available signatures from

which they can choose only one.

After the user selects a certificate, the form is signed and the Digital Signature

Viewer displays the details of the signature. The user can then return to the form.

In the form, the signature button changes to reflect the new signature. Typically, it

displays the name and e-mail address of the signer (although this depends on the

type of signature engine used). Once a form is signed, the Viewer prevents users

from changing any of the signed information. Furthermore, when the user mouses

over a signed item on a form, a tooltip indicates that the item is signed and cannot

be altered.

Notes: When a user clicks a signature button, the Viewer automatically creates the

following elements on the form:

v A signer option is added to the signature button. In general, this option

contains the signer’s name and e-mail address. However, the value

assigned to this option depends on the signature engine that was used to

sign the form.

v A signature item is created on the same page as the signature button.

This item is given the name indicated in the button’s signature option,

and is used to store the details of the signature. You do not need to

create the signature item yourself. The signature item will also include

any of the filtering options used in the signature button.

A form may require any number of signatures. For example, a purchase order form

may have two sections, one for the customer and one for an internal staff member

who processes the order. The customer might fill out the first half of the form, and

then add a signature that covers that portion of the form. The internal staff

member might then review the form, and add a second signature that covers the

entire form.

108

For detailed information about signing forms, see the Workplace Forms Viewer User’s

Manual document.

Signature types

Electronic signature refers to any signature that is created electronically, and it

describes a category of technology. Within that category, there are many types of

electronic signatures. The Designer supports a number of different signature types

(signature engines). When you create a signature button, you must configure it to

use a specific signature engine.

Digital signatures

Digital signatures are among the most secure electronic signatures. When you use

digital signatures, each user is given a digital certificate. This certificate is actually

a small file on a disk or on another device, such as a smart card. Each certificate

also contains a unique code, and the certificate imprints this code on each

signature you create with it. This means that all of your signatures can be traced

back to your certificate, and the certificate itself can be traced back to you. In this

way, digital signatures identify you through a clear chain of ownership.

Workplace Forms supports the following digital signature types:

v RSA standard signatures — These signatures are based on the RSA standard for

digital signatures. This is a public standard that is broadly supported by both

Public Key Infrastructure (PKI) and browser vendors. Workplace Forms products

rely on the security libraries in the Microsoft Internet Explorer and Netscape

browsers to provide support for RSA signatures.

v Entrust signatures — These signatures are based on a proprietary standard

developed by Entrust, Inc. These signatures are not broadly supported, and

require additional software from Entrust. This may take the form of client

software or a central server that processes online signature requests.

In general, decisions about whether to use RSA signatures or Entrust signatures

relies on individual preferences about their comparative strengths and features.

When to use digital signatures

Digital signatures are best used for controlled groups who require tight security.

Remember that each user must receive a certificate, and further that each user

must keep that certificate safe from theft and copying. This means that applications

for the general public are not normally good candidates for digital signatures

unless there is a large body already distributing certificates to the public (such as

the government).

Digital signatures also incur significant overhead. To issue and track digital

signatures, you need a Public Key Infrastructure (PKI), which can be costly and

time consuming to maintain. In general, most organizations will not adopt this sort

of system unless they have a strong security need (or are mandated through law).

For example, military organizations or other government agencies might use digital

signatures.

Generic RSA signatures

Generic RSA signatures are a type of digital signature (see “Digital signatures”).

The Generic RSA engine uses a standard encryption algorithm that supports both

Signatures 109

the Microsoft and Netscape signature engines. The Generic RSA signature uses

digital certificates from either your Microsoft Internet Explorer or your Netscape

certificate store.

Entrust signatures

Entrust signatures are a type of digital signature (see “Digital signatures” on page

109). Entrust signatures let the user sign the form using Entrust certificates.

Note: To create and access the Entrust signature, ensure that you have the

appropriate Entrust software installed and configured.

Microsoft CryptoAPI signatures

Microsoft CryptoAPI signatures are a type of digital signature (see “Digital

signatures” on page 109). Microsoft CryptoAPI signatures use the Microsoft

CryptoAPI signature engine. To use this type of digital signature, it is necessary for

the user to obtain a digital certificate.

Netscape signatures

Netscape signatures are a type of digital signature (see “Digital signatures” on

page 109). Netscape signatures use the Netscape encryption engine. To use this

type of digital signature, it is necessary for the user to obtain a digital certificate.

Netscape signatures use certificates located in the user’s Netscape certificate store.

Note: Workplace Forms products do not support the Netscape browser, but do

support digital certificates provided by the Netscape browser’s NSS

certificate store.

Signature Pad signatures

Signature pad signatures are a blending of electronic signatures and handwritten

signatures. You write your signature on a digital pad which captures your

handwriting and converts it into an electronic format. This signature is then added

to the form, along with a graphic that shows the handwriting. Thus, Signature Pad

signatures provide a familiar feel for the signing process.

Most Signature Pad solutions also offer biometric analysis of the signature. This

means that the software will examine the signature and compare it to a sample

signature that is on file. It will also study specific details of the signature, including

how hard the pen is pressed, the angle of the pen against the surface, the writing

speed, and so on. If the two signatures match, then the identity of the signer is

safely established.

Note: Workplace Forms do not support biometric analysis (the comparison of a

signature to a stored copy to detect differences between them) of signatures.

These signatures use a Signature Pad that plugs into your computer. The signature

pad allows the user to create a handwritten signature that is applied to the form.

Before you can use these signatures, you must have the following:

v The Signature Pad extension for the Workplace Forms Viewer

v A signature pad

v Software that enables the signature pad.

The Signature Pad extension is available as a separate install package that adds

support for signature pads to the Viewer. Signature pads and their supporting

110

software are available from a variety of vendors. Workplace Forms Viewer

supports the signature pads from Interlink, Topaz, and any WinTab compliant

signature pad company.

Signature pad signatures require you to install both hardware and software on the

end user’s computer. In addition, there is usually a server-side component that

stores the sample signatures and compares all new signatures to the samples.

When to use Signature Pad signatures

Signature Pad signatures are more useful than digital signatures; however, they

require a certain level of overhead to create and maintain.

In general, large organizations that require legal signatures from their customers,

such as banks, are good candidates for Signature Pad signatures.

Silanis signatures

Silanis Technology Inc. provides a signature type that blends a digital signature

and a Signature Pad signature. This means that an image of your signature is

captured using a Signature Pad, but the actual signature is created using a digital

certificate. A digital certificate is a file stored on a disk or other device, such as

smart card. You can think of this certificate as a digital pen that you use to create a

digital signature. The image of your handwritten signature is then stored as part of

the digital signature for later reference. This combines the familiar pen-based

signing process with the strength of digital certificates.

When to use Silanis signatures

Silanis signatures are best used in the same circumstances as digital signatures

because they are essentially digital signatures with additional features. The

decisions between digital signatures and Silanis signatures relies on individual

preferences about the usefulness of the handwritten component.

Clickwrap signatures

Clickwrap signatures are electronic signatures that do not require digital

certificates. While they still offer a measure of security due to an encryption

algorithm, Clickwrap signatures are not security tools. Instead, Clickwrap

signatures offer a simple method of obtaining electronic evidence of user

acceptance to an electronic agreement. The Clickwrap signing ceremony

authenticates users through a series of questions and answers, and records the

signer’s consent. Clickwrap style agreements are frequently found in licensing

agreements and other online transactions. Simply put, Clickwrap signatures gather

some information about you and then create a signature that contains that

information. For example, a Clickwrap signature might prompt you to specify any

or all of the following information:

v Your name

v Personal information, such as your mother’s maiden name that can be used to

verify your identity

v Repeat a statement to show that you agree with the document you are signing.

After you provide this information, it is then included in the signature itself, and

cannot be changed unless the signature is removed completely. Clickwrap

signatures provide the same tamper proofing as other signatures, but do not

Signatures 111

identify the signer as reliably as other signature types. However, they also do not

require any additional infrastructure, such as a PKI system or Signature Pad

hardware.

When to use Clickwrap signatures

Clickwrap signatures are useful for the low-value, web-based transactions that they

are based on. For example, you might use them to enroll members in a bonus

points program.

Authenticated Clickwrap signatures

Authenticated Clickwrap signatures are a blending of Clickwrap and digital

signatures. This enables users to securely sign a form without relying on an

extended PKI infrastructure. During normal use, the user signs the form by

entering an ID and secret, such as a password. When the form is sent to a server,

the server retrieves the user’s secret from a database and uses that secret to verify

the signature. Furthermore, the server can notarize the Authenticated Clickwrap by

signing it with a digital certificate, thereby creating a secondary digital signature.

This secondary signature shows that the server has confirmed the identity of the

signer, and ensures that the original signature can be trusted over time.

Authenticated Clickwrap signatures work like normal Clickwrap signatures, except

they also incorporate a shared secret. Typically, this shared secret is a user ID and

password. When you sign the form, you provide your shared secret as part of the

signature, using the typical Clickwrap question and answer system. When you

submit the form, the server then creates a second signature using its copy of the

shared secret, and compares it to the signature in the form. If the signatures match,

then the server has positively identified you as the signer, and the server then

countersigns the form with a digital signature.

This combines the ease-of-use of the Clickwrap signature with the inherent

strength of a digital signature and relies on a shared secret infrastructure that likely

already exists in the organization.

When to use authenticated Clickwrap signatures

Authenticated Clickwrap signatures are an effective solution for organizations that

cannot maintain an extensive PKI infrastructure, but continue to require a high

degree of security. Typically, they work best for organizations that currently make

use of user IDs and passwords, or some other shared secret.

Creating signature buttons

The following procedures outline how to set up each of the signature button types.

Note: You cannot place a signature button into a pane or table item’s template

(that is, the content of the xforms:group, xforms:repeat, or xforms:switch.

Although it is possible to do in the Designer, this button will not function

correctly in the Viewer. However, a signature button can sign any XFDL,

including panes and tables and the data to which their contained controls

bind.

Creating a Generic RSA signature button

To create a Generic RSA signature button:

1. Add a button to the form.

112

For detailed information about creating buttons, see “Creating buttons” on page

68.

2. Right-click the button and click Wizards → Signature Wizard.

3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
4. Click Next.

5. Under What type of signature is it?, click Generic RSA.

6. Click Finish.

7. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, do the following:

a. In the top-right corner of the Properties view, click

.

b. Click Show Advanced Properties.

c. In the Properties view, expand Signature.

d. Click within the signformat value field.

e. Add the following text to the end of the current signformat value:

;delete=″off″.

Creating a Microsoft CryptoAPI signature button

To create a Microsoft CryptoAPI signature button:

1. Add a button to the form. For detailed information about creating buttons, see

“Creating buttons” on page 68.

2. Right-click the button and click Wizards → Signature Wizard.

3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
4. Click Next.

5. Under What type of signature is it?, click Crypto API.

6. Click Finish.

7. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, do the following:

a. In the Properties view, click

.

b. Click Show Advanced Properties.

c. In the Properties view, expand Signature.

d. Add the following text to the end of the current signformat value:

;delete=″off″
8. By default, Microsoft CryptoAPI signature buttons use the Microsoft Base

Cryptographic Service Provider. If you want to use a different cryptographic

service provider (CSP), do the following:

a. Click the Properties view, click

.

Signatures 113

b. Click Show Advanced Properties.

c. In the Properties view, expand Signature.

d. Add the following text to the end of the current signformat value:

;csp=″yourcsp″;csptype=″yourcsptype″

where yourcsp is the CSP and yourcsptype is the type of CSP.

Creating a Clickwrap signature button

To create a Clickwrap signature button:

 1. Add a button to the form. For detailed information about creating buttons, see

“Creating buttons” on page 68.

 2. Right-click the button and click Wizards → Signature Wizard.

 3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
 4. Click Next.

 5. Under What type of signature is it?, click Clickwrap.

 6. Click Next.

 7. Set the Clickwrap Signature Details:

v Title — The title of the signing ceremony. This text describes the signing

ceremony, the company, or the title of the agreement.

v Prompt — Typically used to explain the signing ceremony to users.

v Main Text — Contains the main text of the agreement. For example, the

text of a licensing agreement. You can add as much text as necessary to this

parameter. The signing ceremony automatically displays scroll bars if the

text is longer than the display field.

v Question — Lets you prompt the user to ask from one to five questions

that help establish the identity of the user.

v Default Answer — These are the answers to the questions. To pre-populate

the answer fields that are displayed when the user signs the form, enter the

answers here. Otherwise, you can leave these fields blank.
 8. Click Finish.

 9. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, do the following:

a. Click the Properties view, click

.

b. Click Show Advanced Properties.

c. In the Properties view, expand Signature.

d. Add the following text to the end of the current signformat value:

;delete=″off″
10. If you want to customize the button, add the following attributes to the

signformat property using the method described in step 9:

v echoPrompt — Use this to instruct the user to echo the echoText. Generally,

if you include echoText, you might want to include the text: Please type the

following phrase to show that you understand and agree to this contract.

v echoText — This is the actual text that the user should echo, or re-type. For

example, I understand the terms of this agreement.

114

v buttonPrompt — This is an instruction line that appears above the Accept

and Reject buttons. The user must click the Accept button to sign, so the

prompt might read, Click Accept to sign this document. The default setting

is Click the Accept button to sign.

v acceptText — Sets the text that the Accept button displays. The default text

is Accept.

v rejectText — Sets the text that the Reject button displays. The default text is

Not Accept.

For example, to add an echo prompt, add the following text to the end of the

current signformat value:

;echoPrompt=″Please type the following phrase″

Creating an Authenticated Clickwrap signature button

To create an Authenticated Clickwrap signature button:

 1. Add a button to the form. For detailed information about creating buttons, see

“Creating buttons” on page 68

 2. Right-click the button and click Wizards → Signature Wizard.

 3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
 4. Click Next.

 5. Under What type of signature is it?, click Authenticated Clickwrap.

 6. Click Next.

 7. Set the Authenticated Clickwrap Signature Details:

v Title — The title of the signing ceremony. This text describes the signing

ceremony, the company, or the title of the agreement.

v Prompt — Typically used to explain the signing ceremony to users.

v Main Text — Contains the main text of the agreement. For example, the

text of a licensing agreement. You can add as much text as necessary to this

parameter; the signing ceremony automatically displays scroll bars if the

text is longer than the display field.

v Question — Lets you prompt the user to ask from one to five questions

that help establish the identity of the user.

v Default Answer — These are the answers to the questions. To pre-populate

the answer fields that are displayed when the user signs the form, enter the

answers here. Otherwise, you can leave these fields blank.

v Signer — Indicates which answer identifies the signer. Signer and Secret

cannot reference the same answer.

v Secret — Indicates which answer contains the secret. Signer and Secret

cannot reference the same answer.
 8. Click Finish.

 9. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, do the following:

a. In the Properties view, expand Signature.

b. Add the following text to the end of the current signformat value:

;delete="off"

Signatures 115

10. If you want to customize the button, add any of the following attributes to the

signformat property using the method described in step 9:

v echoPrompt — Use this to instruct the user to echo the echoText. Generally,

if you include echoText, you might want to include the text: Please type the

following phrase to show that you understand and agree to this contract.

v echoText — This is the actual text that the user should echo, or re-type. For

example, I understand the terms of this agreement.

v buttonPrompt — This is an instruction line that appears above the Accept

and Reject buttons. The user must click the Accept button to sign, so the

prompt might read, Click Accept to sign this document. The default setting

is Click the Accept button to sign.

v acceptText — Sets the text that the Accept button displays. The default text

is Accept.

v rejectText — Sets the text that the Reject button displays. The default text is

Not Accept.

v readonly — Indicates which answers are read-only. This is useful if you

pre-populated the answers and want to ensure that certain answers cannot

be changed.
For example, to add an echo prompt, add the following text to the end of the

current signformat value:

;echoPrompt="Please type the following phrase"

Creating an Entrust signature button

To create an Entrust signature button:

 1. Add a button to the form. For detailed information about creating buttons, see

“Creating buttons” on page 68.

 2. Right-click the button and click Wizards → Signature Wizard.

 3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
 4. Click Next.

 5. Under What type of signature is it?, click Generic RSA.

 6. Click Finish.

 7. Click the Properties view, click

.

 8. Click Show Advanced Properties.

 9. In the Properties view, expand Signature.

10. In the signformat value field, change engine=″Clickwrap″ to engine=″Entrust″.

11. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, add the following text to the end of

the current signformat value: ;delete=″off″

Creating a Netscape signature button

To create a Netscape signature button:

 1. Add a button to the form. For detailed information about creating buttons, see

“Creating buttons” on page 68.

 2. Right-click the button and click Wizards → Signature Wizard.

116

3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
 4. Click Next.

 5. Under What type of signature is it?, click Generic RSA.

 6. Click Finish.

 7. Click the Properties view, click

.

 8. Click Show Advanced Properties.

 9. In the Properties view, expand Signature.

10. In the signformat value field, change engine=″Generic RSA″ to

engine=″Netscape″.

11. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, add the following text to the end of

the current signformat value:

;delete=″off″

Creating a Signature Pad signature button

To create a Signature Pad signature button:

 1. Add a button to the form. Make sure the button is large enough to display the

user’s signature after they sign the form. For detailed information about

creating buttons, see “Creating buttons” on page 68.

 2. Right-click the button and click Wizards → Signature Wizard.

 3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
 4. Click Next.

 5. Under What type of signature is it?, click Clickwrap.

 6. Click Next.

 7. Set the Clickwrap Signature Details:

v Title — The title of the signing ceremony. This text describes the signing

ceremony, the company, or the title of the agreement.

v Prompt — Typically used to explain the signing ceremony to users.

v Main Text — Contains the main text of the agreement. For example, the

text of a licensing agreement. You can add as much text as necessary to this

parameter. The signing ceremony automatically displays scroll bars if the

text is longer than the display field.

v Question — Lets you prompt the user to ask from one to five questions

that help establish the identity of the user.

v Default Answer — These are the answers to the questions. To pre-populate

the answer fields that are displayed when the user signs the form, enter the

answers here. Otherwise, you can leave these fields blank.
 8. Click Finish.

Signatures 117

9. Click the Properties view, click

.

10. Click Show Advanced Properties.

11. In the Properties view, expand Signature.

12. In the signformat value field, change engine=″Clickwrap″ to

engine=″SignaturePad″.

13. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, add the following text to the end of

the current signformat value:;delete=″off″

14. If you want to customize the button, add any of the following attributes to the

signformat property using the method described in step 11:

v echoPrompt — Use this to instruct the user to echo the echoText. Generally,

if you include echoText, you might want to include the text: Please type the

following phrase to show that you understand and agree to this contract.

v echoText — This is the actual text that the user should echo, or retype. For

example, I understand the terms of this agreement.

v buttonPrompt — This is an instruction line that appears above the Accept

and Reject buttons. The user must click the Accept button to sign, so the

prompt might read, Click Accept to sign this document. The default setting

is Click the Accept button to sign.

v acceptText — Sets the text that the Accept button displays. The default text

is Accept.

v rejectText — Sets the text that the Reject button displays. The default text is

Not Accept.

v readonly — Indicates which answers are read-only. This is useful if you

pre-populated the answers and want to ensure that certain answers cannot

be changed.

v tsp — Defines the preferred signature pad software/hardware to use:

Interlink, Topaz, or WinTab.

v startText — Text to display on the button that starts the signature capture.

v endText — Text to display on the button that ends the signature capture.

v penColor — The color to use when drawing the signature on the screen.

This is either a color name or a comma separated list of RGB values.

v backgroundColor — The color to use for the background of the signature

graphic. This is either a color name or a comma separated list of RGB

values.

For example, to add an echo prompt, add the following text to the end of the

current signformat value: ;echoPrompt=″Please type the following phrase″

15. In the Properties view, set signatureimage to any value. When the user signs

the form, the Viewer will store the image of their signature within the form as

an item. The name of the item will be the value of signatureimage. You will

use the signatureimage value in step 17 below.

16. Enclose two images within your form:

v The unsigned image will be displayed on the signature button when the

form is unsigned (that is, before the user signs the form). For example, the

image could contain the text, Click here to sign.

v The invalid image will be displayed on the signature button when the

signature is invalid. For example, the image could contain the text, Invalid

Signature.

118

For detailed information about enclosing images, see “Adding an image file to

a form” on page 81.

17. Setup a formula for the button’s image property that will determine which

image to display on the button:

v If the signer option is empty (meaning the form is unsigned), the button

will display the unsigned image.

v If the signer option is invalid (meaning the signature is invalid), the button

will display the invalid image.

v If the signer option is anything else (meaning the form is signed), the

button will display the signatureimage.

For detailed information about formulas, see “Formulas” on page 85.

18. In the Properties view, expand Appearance.

19. Set imagemode to control how signature images are modified to fit within the

button. For detailed information about re-sizing and cropping images on

buttons, see “Resizing and cropping images on buttons and labels” on page

82.

Creating a Silanis signature button

To create a Silanis signature button:

 1. Add a button to the form. Make sure the button is large enough to display the

user’s signature after they sign the form. For detailed information about

creating buttons, see “Creating buttons” on page 68.

 2. Right-click the button and click Wizards → Signature Wizard.

 3. Under What does the signature sign?, click either of the following:

v The complete form — The signature button will sign the entire form.

v Parts of the form — The signature button will sign part of the form. For

detailed information about creating a signature button that signs part of a

form, see “Creating a signature button that signs part of a form” on page

122.
 4. Click Next.

 5. Under What type of signature is it?, click Clickwrap.

 6. Click Next.

 7. Set the Clickwrap Signature Details:

v Title — The title of the signing ceremony. This text describes the signing

ceremony, the company, or the title of the agreement.

v Prompt — Typically used to explain the signing ceremony to users.

v Main Text — Contains the main text of the agreement. For example, the

text of a licensing agreement. You can add as much text as necessary to this

parameter; the signing ceremony automatically displays scroll bars if the

text is longer than the display field.

v Question — Lets you prompt the user to ask from one to five questions

that help establish the identity of the user.

v Default Answer — These are the answers to the questions. To pre-populate

the answer fields that are displayed when the user signs the form, enter the

answers here. Otherwise, you can leave these fields blank.
 8. Click Finish.

 9. In the Properties View, expand Signature.

10. In the signformat value field, change engine=″Clickwrap″ to engine=″Silanis″.

Signatures 119

11. By default, the user can delete a signature after signing a form. If you want to

prevent users from deleting the signature, do the following:

a. In the Properties view, expand Signature.

b. Add the following text to the end of the current signformat value:

;delete=″off″
12. In the Properties view, set signatureimage to any value. When the user signs

the form, the Viewer will store the image of their signature within the form as

an item. The name of the item will be the value of signatureimage. You will

use the signatureimage value in step 14 below.

13. Enclose two images within your form:

v The unsigned image will be displayed on the signature button when the

form is unsigned (that is, before the user signs the form). For example, the

image could contain the text, Click here to sign. Silanis provides a standard

image that you can use.

v The invalid image will be displayed on the signature button when the

signature is invalid. For example, the image could contain the text, Invalid

Signature.

For detailed information about enclosing images, see “Adding an image file to

a form” on page 81.

14. Setup a formula for the button’s image property that will determine which

image to display on the button:

v If the signer option is empty (meaning the form is unsigned), the button

will display the unsigned image.

v If the signer option is invalid (meaning the signature is invalid), the button

will display the invalid image.

v If the signer option is anything else (meaning the form is signed), the

button will display the signatureimage.

For detailed information about formulas, see “Formulas” on page 85.

15. In the Properties view, expand Appearance.

16. Set imagemode to control how signature images are modified to fit within the

button. For detailed information about resizing and cropping images on

buttons, see “Resizing and cropping images on buttons and labels” on page

82.

17. If you want to make the signature button a no-lock signature button or an

approval signature button, see “No-lock signatures and approval signatures.”

No-lock signatures and approval signatures

By default, a Silanis signature locks the data that it signs. Thereafter, you cannot

make changes to the signed data.

You can also create a no-lock Silanis signature button. Clicking this type of

signature button signs the form, but does not lock the data that it signs. You can

then make changes to the data even though it is signed. Making changes in this

way invalidates the signature, but you can then apply a second signature to

approve the changes.

For example, your form may include an employee section and a section for the

employee’s manager. The employee completes their section and signs the form

using a no-lock signature. The manager then reviews the form, makes corrections

to the employee section, and then signs the form using an approval signature to

approve the changes.

120

Similarly, your form may include a “public” section and an “office use only”

section.

An approval signature must sign all of the data covered by the no-lock signature,

including the no-lock signature itself. If not, the no-lock signature will not return to

a valid state when the approving signature is applied. The approval signature may

also cover additional data.

Creating no-lock signature buttons

To create a no-lock signature:

1. Select the signature button. For detailed information about creating Silanis

signature buttons, see “Creating a Silanis signature button” on page 119.

2. In the Properties view, expand Signature.

3. Click within the signformat value field.

4. Add to the end of the current value ;lock=″off″.

Notes:

v To prevent the no-lock signature from signing its signature image, use

the signitemrefs filter to omit the entire data item from the signature. If

your signature item already contains a signitemrefs filter that omits

items, add the signature image to the list of items. For detailed

information about this filter option, see “Signature filter properties” on

page 123.

v To prevent all approving signatures from signing the signature image for

the no-lock signature, use the signitemrefs filter option. You must add

this filter to all signatures that will sign the no-lock signature.

Creating approval signature buttons

For detailed information about creating an approval signature, see “Creating a

Silanis signature button” on page 119.

When you create an approving signature, you must:

v Prevent the no-lock signature from signing its own signature image.

v Prevent all approving signatures from signing the image for the no-lock

signature. This ensures that the signature image can change later if the state of

the signature changes (for example, if something happens to make the signature

invalid, then the image must change to reflect that).

Signing portions of forms

Forms are frequently signed by more than one person. For example, some forms

include a “For Office Use Only” section that requires an additional signature by

one of the staff processing the form, in addition to the person submitting the form.

In these cases, the office worker must be able to enter more information in the

unsigned portion of the form and then add their own signature.

Signature filters specify which parts of the form a particular signature will sign.

This means that you can create one signature that signs the entire form, or one that

only signs the first portion of the form, and then a second signature that signs the

second portion of the form.

Note: By, default, if you specify a signature button on a form and do not include

any signature filters, the entire form is signed.

Signatures 121

There are certain form items that you should always exclude from signatures. For

example, when you click a Submit button, the triggeritem option is automatically

set, recording the name of the button that triggered the submission. However, if a

signature is applied to the triggeritem option, the Viewer is unable to update the

option correctly.

In general, you should always exclude the following form elements from a

signature:

v The triggeritem option

v The coordinates option

v Any portion of the form that subsequent users will change

v Subsequent signatures and signature buttons

v The signature item that stores the information for the signature you are creating.

Types of filtering

When creating a signature button that signs part of a form, there are two ways you

can control what the signature button will and will not sign:

v You can specify the items that the button will sign (leaving the rest of the form

unsigned). This is referred to as keep filtering.

v You can specify the items that the button will not sign (making the rest of the

form signed). This is referred to as omit filtering.

A form is more secure if you use omit filtering. Doing so will ensure you do not

accidentally exclude items that should be signed, and will prevent malicious users

from adding to the form’s contents without breaking the signature.

If you use keep filtering, the signature button should only be used to sign another

signature that uses omit filtering.

Creating a signature button that signs part of a form

To set up a signature button that signs part of a form:

 1. Right-click the button and click Wizards → Signature Wizard.

 2. Under What does the signature sign?, click Parts of the form.

 3. Click Next.

 4. Under I want to configure the signature by defining, click either of the

following:

v Items not to sign — Lets you select the items not to sign

v Items to sign — Lets you select the items to sign
 5. Click Next.

 6. Use the controls to select the entire pages that will be Signed or Not Signed by

the signature button.

v To move all pages from Signed to Not Signed, click >>>.

v To move all pages from Not Signed to Signed, click <<<.

v To move a page from Signed to Not Signed, select the page from the list

and click >.

v To move a page from Not Signed to Signed, select the page from the list

and click <.
 7. Click Next.

122

8. Use the controls to select the individual items that will be Signed or Not

Signed by the signature button.

v To move all items from Signed to Not Signed, click >>>.

v To move all items from Not Signed to Signed, click <<<.

v To move an item from Signed to Not Signed, select the item from the list

and click >.

v To move an item from Not Signed to Signed, select the item from the list

and click <.

v To select items from the canvas, click

, select the items, and then click

Finished (in the top left corner of your screen).
 9. Click Next.

10. Select the type of signature:

v Generic RSA

v Crypto API

v Clickwrap

v Authenticated Clickwrap

11. Do either of the following:

v For Generic RSA or Crypto API signatures, click Finish.

v For Clickwrap or Authenticated Clickwrap signatures, click Next and set

the signature options. (For detailed information about setting Clickwrap and

Authenticated Clickwrap signature options, see “Creating a Clickwrap

signature button” on page 114 and “Creating an Authenticated Clickwrap

signature button” on page 115.) Then click Finish.

You can further customize the filtering of signature buttons by modifying the

signature properties. For detailed information about signature filtering properties,

see “Signature filter properties.”

Signature filter properties

Complex forms frequently require sophisticated filtering that you can setup by

editing the following signature properties directly. Signatures can include any

number filters.

Note: When using signatures, regardless of the signature filters in use, the

following rules apply:

v The mimedata option in a signature item is always omitted from the

signature that item represents.

v The mimedata option in a data item that stores a signature image (see the

signatureimage option) is always omitted from the signature that image

represents.

Signature filters are applied with an order of precedence so that filter properties

are always processed in a consistent manner. The following table lists the behavior

of the filter properties and the order in which the Viewer applies them. For

detailed descriptions of properties, see “Appendix B: Options” on page 187.

 Order Property Behavior if using the

Omit Filter

Behavior if using the

Keep Filter

Notes

Signatures 123

1. signinstance Omits only data in the

indicated instance;

throws them out.

Keeps only data in

the indicated

instance; throws

others out.

2. signnamespaces Omits only elements

and attributes in the

namespaces indicated;

throws them out.

Keeps only elements

and attributes in the

namespaces

indicated; throws

others out.

An element is

kept if any of its

children are

kept, even if it

is in the wrong

namespace.

3. signitems Omits only the types

listed; omitted items

are not signed.

Keeps only the types

listed; all other types

are not signed.

4. signoptions In the items that

remain (not omitted

by signitems) omits all

listed options.

Omitted options are

not signed.

In the items that

remain, keeps all

indicated options. All

other options remain

unsigned.

5. signpagerefs Omits the specified

pages. Overrides

settings in signitems

and signoptions.

Keeps the specified

pages. Respects

settings in signitems

and signoptions.

Omitted pages

are not

completely

deleted; the

page sid is

preserved.

6. signdatagroups

and signgroups

Omits the items in

that group, even if

they are of a type that

should be kept

according to a

signitems setting.

Keeps the items in

that group, even if

they are of a type

that should not be

kept according to a

signitems setting.

These settings

override those

in signpagerefs.

7. signitemrefs Omits the specified

items and overrides

previous settings.

Keeps the specified

items and overrides

previous settings.

Respects settings in

signoptions.

These settings

override

signitems,

signgroups,

signpagerefs,

and

signdatagroups.

8. signoptionrefs Omits the specified

options, overriding

any previous settings.

Keeps the specified

options, overriding

any previous settings.

If the item containing

the option has been

omitted, that item’s

sid and the specified

option are preserved.

This option’s

setting overrides

all other filter

options.

Specifying the display for a signature button

Signatures buttons can change between two states: unsigned and signed. When a

signature button is unsigned, it is generally good practice to have the button

display instructions, such as Click here to sign. When a signature button is signed,

it is generally good practice to show the identity of the person who signed the

form.

124

Since buttons display the text in their value option, you must set the value option,

depending on whether the button is unsigned or signed. To do this, you must use

a formula. The Compute Wizard relies on the button’s signer option. The signer

option is created by the Viewer when the button is signed. This means that there is

no signer option when the button is unsigned. If the signer option has no value (it

does not exist), then there is no signature and the button should read Click here to

sign. If the signer option has a value, then there is a signature and the button

should show the identity of the signer. Since the signer option stores the signer’s

identity, you can set the button’s value to equal that of the signer option.

To set the button’s text (value):

1. In the Properties view, expand General and value.

2. Click within the compute value field to highlight the contents. By default, the

Compute value displays the following initial code for the selected signature

button:

signer== ’’?’’ : signer

3. Change the code to the following:

signer==’’? ’Click to sign’ :signer’’

Making a signature button mandatory

Most signatures are required on documents; they often include a place to sign and

are not accepted or processed without a signature. Similarly, you may want to

make your signature buttons mandatory. When you make the signature button

mandatory, the Viewer prevents users from submitting the form until they have

signed it to ensure that you do not receive unsigned forms. To ensure that a user

signs a form before submitting it, you can make a signature button mandatory.

To make a single signature button mandatory:

1. Select the signature button.

2. In the Properties view, expand Format, format, and constraints.

3. Set mandatory to on.

Signature properties

Signature properties are grouped under Signature in the Properties view. You must

select Show Advanced Properties to display signature properties. For detailed

information about displaying Advanced Properties, see “Showing advanced

properties” on page 53.

For detailed information on specific properties, see “Appendix B: Options” on page

187.

Signatures 125

126

Web services

Web services let one application to talk to another server using the Internet. For

example, using Web services you can create functions that let the Viewer

communicate with server-side applications and update information in a form

without the user having to submit the form.

The Designer supports Web services by letting you embed any number of Web

Services Definition Language (WSDL) documents in your form. Once embedded,

you can access the document’s functions as though they were XFDL functions. For

detailed information about WSDL, see the Workplace Forms XFDL Specification

document.

Note: You must have a WSDL document ready before attempting to add Web

services to a form. For detailed information about WSDL, see

http://www.w3.org/TR/wsdl.

Adding Web services to a form

Before you can add Web services to your form, you must have a complete WSDL

document that defines the Web services you want to provide. You can get more

information about WSDL documents at the W3C web site.

Note: Web services must not include the underscore character (_) in either service

or port names, but can include underscores in operation names.

To add Web services to your form:

1. In the Enclosures view, expand WSDL.

2. Right-click WebServices and choose Enclose WSDL File.

3. In the Choose File window, browse to the WSDL file you want to enclose and

then click Open.

Now, you can generate instances from the WSDL file. For detailed information

about generating instances from a WSDL file, see “Creating instances from WSDL

messages” on page 134.

Deleting an enclosed WSDL file from a form

Once you have finished creating data instances from a WSDL file, you should

delete the enclosed WSDL file to decrease the size of your form, thereby improving

performance.

To delete a WSDL file from the form:

1. In the Enclosures view, select the WSDL file you want to delete.

2. Right-click and choose Delete.

3. Repeat steps 1 through 2 to delete additional WSDL files.

© Copyright IBM Corp. 2003, 2006 127

http://www.w3.org/TR/wsdl

128

XForms

XForms creates a separate data layer inside the form, letting you collect data from

the form and copy it into a separate block of XML that you can format as you like.

Separating the data layer from the presentation layer makes XForms device

independent. The data model can be used for all devices. The presentation can be

customized for different user interfaces, like mobile phones, handheld devices, and

Braille readers for the blind.

Since XForms is device independent and based on XML, it is also possible to add

XForms elements directly into other XML applications like VoiceXML (speaking

web data), WML (Wireless Markup Language), and SVG (Scalable Vector

Graphics).

Note: To effectively use XForms you must already be familiar with XForms and

have a thorough understanding of XML, data models and XPath. As well,

this document does not explain everything about XForms. For detailed

information about XForms, see http://www.w3.org/MarkUp/Forms/. For

detailed information about how XFDL is used in combination with XForms,

see the Workplace Forms XFDL Specification document.

Using XForms in the Designer

To use XForms, you use the Designer to define the following:

v XForms model — The data layer that describes the form’s data and logic. For

detailed information about XForms model, see “The XForms model” on page

130.

v XForms user interface (UI) items — The presentation layer that lets the user input

data that will be stored in the data layer. You can also use XForms UI items to

display data from the XForms model. For detailed information about XForms UI

items, see “XForms user interface” on page 138.

You bind the XForms model to the XForms UI items. For detailed information

about XForms binding, see “XForms binding” on page 161.

Finally, you must define the data that will be submitted. For detailed information

about XForms submissions, see “XForms submissions” on page 165.

When to use XForms

You can use XForms in any of the following scenarios.

XML Applications

XForms is most useful when integrating Workplace Forms with

applications that already use XML, especially if those applications already

offer XML interfaces. In these cases, you can design forms that will submit

the XML data directly to the application, without needing to program a

custom module that extracts the data from the form. Furthermore, you can

format the data to match any schema, and validate the data against the

schema before submission.

Non-XML Applications

Even if an application does not use XML, you can still benefit from using

© Copyright IBM Corp. 2003, 2006 129

http://www.w3.org/MarkUp/Forms/

XForms. The XForms model simplifies copying information from one page

to another, making wizard-style forms easier to create and manage.

Furthermore, although custom programming is still required for back-end

processing, the data model makes it far easier to extract data from a form.

Adding XForms support

Adding XForms support creates a default XForms model to which you can add

XForms instances, binds, and submissions.

When you create a new form, or open a non-XForms form, by default you do not

have access to any of the XForms elements. To work with XForms elements, you

must first enable XForms support.

You can add XForms support to a new or existing form.

Adding XForms support to a new form

To add XForms support to a new form:

1. Click File → New → New Workplace Form to open the New Workplace Form

window.

2. Select the project folder.

3. Type a File name.

4. Click Next.

5. Within the Choose Template field, click Default Empty Form - XForms.

6. Click Finish.

XForms elements are now available for you to use.

Adding XForms support to an existing form

When you add XForms support to an existing form that already contains XFDL

items, it is important to note that the XFDL items are not automatically converted

to XForms items.

To add XForms support to an existing form:

In the XForms view, right-click No Model Exists and click Add XForms Support.

An XForms model is added to the form and XForms elements are now available

for you to use.

Tip: If the XForms view is not open, click Windows → Show View → XForms.

The XForms model

The XForms model is a block of XML data that contains three core parts that work

together to create a complete model:

v Data Instances — Data instances are arbitrary blocks of XML. A data model

may contain any number of data instances, and each instance is normally

created to serve a particular purpose. For detailed information about XForms

data instances, see “XForms data instances” on page 131.

v Binds — The data layer and the presentation layer are connected by binds. For

detailed information about XForms binding, see “XForms binding” on page 161.

130

v Submissions — Each data instance may have an associated set of submission

rules. These rules control how a data instance is transmitted when it is

submitted for processing. This is an optional feature, and is only necessary when

you want to submit the data instance by itself, without the rest of the form.

There are many cases in which you may want to submit the entire form, and

then retrieve the data instance from the form during processing. This is

particularly true when you are using signatures on your forms. For detailed

information about signatures, see “Signatures” on page 107. For detailed

information about XForms submissions, see “XForms submissions” on page 165.

Note: It is recommended that a form contain only one XForms model, but multiple

models are allowed (though they have no ability to interact).

Naming an XForms model

The form’s first XForms model is the default model. A single model does not

require a name. However, if you are adding multiple XForms models, each must

have a unique name.

To name an XForms model:

1. In the XForms view, expand XForms.

2. Click the model you want to name.

3. In the Properties view, expand Identification.

4. Click within the id value field.

5. Type the model name and press Enter to set the model name.

XForms data instances

An XForms data instance defines the XML template for the data that will be

collected from the form. A data instance can be used to store input values,

pre-populate fields with data, or dynamically generate list selections.

An XForms model can have more than one data instance. For example, one data

instance can contain user information for a submission while another data instance

can contain user preference data. Additionally, you can link each data instance to a

button on the form that will trigger the submission of that instance.

It is a good idea to create each data instance, along with its associated binds and

submission rules following these steps:

1. Create a data instance — The first stage is to create a data instance. In this

stage, you model your data instance by adding elements, attributes and text

values to the data instance.

2. Bind the data instance to the form — The second stage is to bind the data

instance to the form. This maps individual data elements to one or more user

interface items, so that they share data. For detailed information on binding,

see “XForms binding” on page 161.

3. Set the submission rules — Finally, you must define the submission rules for

the instance if you intend to submit the data separately. These rules determine

what data is selected and sets other submission-related properties. For detailed

information on submissions, see “XForms submissions” on page 165.

XForms 131

Creating an XForms data instance

The Instance view has four button commands that you can use to create an

instance:

v

Create new data Instance from the current document — Use this method if

you have already created the visual, or presentation, layer of the form. For

detailed information on creating an instance from the current document, see

“Creating a data instance from the current document.”

v

Create a new empty Instance — Use this method if you want to begin

designing a form with the data layer. For detailed information on creating an

empty instance, see “Creating an empty data instance” on page 133.

v

Create a new Instance from a schema — Use this method if you want to

base the form on a schema. This method is also known as schema-based form

design. For detailed information on schema-based form design, see

“Schema-based form design” on page 133.

v

Create a new Instance from a WSDL Message — Use this method if you

want to base the instance on an enclosed WSDL message. For detailed

information on creating an instance from a WSDL message, see “Creating

instances from WSDL messages” on page 134.

You can use any of these methods to create an instance. Ultimately, the method

you choose will depend upon your form design approach and what resources you

have.

Creating a data instance from the current document

When you create a data instance from the current document, a data instance is

generated based on the XFDL and XForms user interface items displayed in the

form. The resulting data instance mirrors these user interface items. This is a quick

way of creating a basic data instance after you have completed the user interface

layer of the form. You can then use the auto-generated instance as is or modify it

as you like.

Note: If your form already has a data instance, you will not be able to create a

data instance from the current document.

To create an instance from the current document:

In the Instance view, click

Create a new data Instance from the current

document.

A data instance mirroring the structure of the current form is generated. You can

view the instance in the Instance view.

Note: The data instance nodes are automatically bound to the generated user

interface elements. You cannot create a data instance from the document

when there is an existing data instance. Doing so would break all existing

binds. If you want to create a new data instance based on your current

document, you must first delete existing data instances.

For example, a simple form has one page and two fields. The root level of the form

is represented by the document node that contains both a global node and a node

132

for each page. The page nodes contain the user interface item nodes. For detailed

information about nodes, see “Building XForms data instances” on page 134.

Each user interface item’s scope identifier (sid) defines the name of the node in the

instance.

The generated instance will be the following:

Creating an empty data instance

To create an empty data instance:

In the Instance view, click Create a new empty data Instance.

In the Instance view, the following default data instance is created:

An empty data instance is created with an undefined namespace attribute and a

<data> element. The <data> element is the root node of the data instance.

Next, you must build the data instance manually. For detailed information on

building a data instance, see “Building XForms data instances” on page 134.

Schema-based form design

If a schema is enclosed in a form, you can create a prototypical instance that

adheres to its rules.

To create a data instance from an enclosed schema:

In the Instance view, click Create a new Instance from a schema.

XForms 133

The instance is displayed in the Instance view.

If the form already has XForms items, you can bind them to nodes in the data

instance. For detailed information about binding, see “XForms binding” on page

161.

Creating instances from WSDL messages

Once you have added a WSDL file to your form, you can use its messages to

create instances.

To create an instance from a WSDL message:

1. In the Instance view, click

Creates a new Instance from a WSDL

Message.

The WSDL Message window is displayed, listing the available WSDL messages

from which you can create an instance.

Note: If your form has more than one XForms model, you must select the

model that you want to add the new WSDL-based instance to.

2. Click the message or messages you want to use to create an instance and then

click OK.

A separate instance is generated for each message you chose.

Naming a data instance

If you have more than one data instance in your form, you must give a unique

name to each instance. In a large form with multiple models and data instances,

giving meaningful names to the data instances reduces confusion.

Note: Instance names cannot contain special characters (such as spaces, <, >, &,

and so on.)

To name a data instance:

1. In the Instance view, click the data instance you want to name.

2. In the Properties view, expand Identification.

3. Click within the id value field.

4. Type the data instance id and press Enter.

Building XForms data instances

You build a data instance by adding elements to it. You can further define your

data instance by optionally adding attributes and text values to elements.

Nodes

The data instance’s elements and attributes are collectively referred to as nodes.

Since you will have to bind the form’s user interface items to the various nodes in

a data instance, it is important to understand node terminology.

Node terminology

The following data instance will be used as an example to describe the various

node types.

134

v root node — The root node is the single node that contains all other nodes. You

build your data instance by adding elements and attributes to the root node. A

data instance can only have one root node. In the example, the root node is

<credit_card>.

v parent node — The parent node is an element that has other elements added to

it. When a parent node contains more than one child element, it is also referred

to as a node set. In the example, a parent node is <credit_card>.

v child node — A child node is an element that is added to a parent element. In the

example, <credit_choice> is a child node of <credit_card>.

v sibling node — When you add more than one child to a parent, each child node

becomes a sibling node. You can add elements to a parent element as children or

as siblings. In the example, a sibling node is <credit_choice>.

Note: Typically, you would only add a sibling element to the data instance if

you forgot to add an element or the model has changed and needs to be

updated.

v attribute node — You can add attributes to an element. An attribute extends the

functionality of an element and is typically used in the following circumstances:

– You want to limit the size of data you will be storing.

– You have a group of items that you want to present to the user as a list of

items.

– You want to submit additional data related to the data entered by the user.

For example, you could add an attribute to hold a product id that the user

never sees but is submitted when the user picks the product.

In the example, the attribute node is abbrev.

Note: Node names cannot contain special characters (such as spaces, <, >, &, and

so on.)

Node text values

A node can also have a text value.

v element text value — You can add a text value to a child element. Once you

bind an element that has a text value to a user interface item, the text value is

displayed to the user in the bound user interface item. In the example, the

element text values are: American Express, Master Card, VISA.

XForms 135

Note: Once you add a text value to an element, it can no longer be a parent

node. In other words, you cannot add an element to an element that has a

text value.

v attribute text value — You can add a text value to an attribute. Once you bind

an attribute that has a text value to a user interface item property, the text value

is what will be submitted as the item’s value property. In the example, the

attribute text values are: ″am″, ″mc″, ″vi″. If ’Master Card’ is chosen by a user

from the credit card list, ’mc’ is submitted as the node value instead of ’Master

Card’.

Adding child elements

To add a child element to the parent element:

1. In the Instance view, click the parent element.

2. Right-click and click Add Element.

A new element is created beneath the parent element. If the parent already has

children, then the new child is added after the existing children.

3. Double-click the new element, name it and then press Enter.

Adding sibling elements

Adding a sibling element inserts an element before an existing element. Typically,

you would only add a sibling element to the data instance if you forgot to add an

element or the model has changed and needs to be updated.

Note: Siblings can only be added before an existing child element.

To add a sibling element:

1. In the Instance view, click a child element.

2. Right-click and click Insert Element Before.

A new sibling element is created above the selected child element.

3. Double-click the new element, name it and then press Enter.

Renaming elements

To rename an element:

1. In the Instance view, double-click the element you want to rename.

2. Type the new element name and then press Enter.

Important: If you have already bound an element you want to rename, you will

have to update the bind because the XPath is not automatically

regenerated. Otherwise, there will be an error.

Removing elements

To remove an element:

1. In the Instance view, click the data element you want to delete.

2. Do either of the following:

v Press Delete.

v Right-click the element and click Delete.

Adding a text value to an element

You add a text value to an element when you want to display a value in a user

interface item that is bound to the element. For example, if you want to inform a

user that an input field is to be used for typing their last name, you could add a

136

text value of ″Type your last name here.″ to the <last_name> element. Once the

<last_name> element is bound to the input field, the text value appears in the

field.

To add a text value to an element:

1. In the Instance view, right-click the element that you want to add a text value

to.

2. Click Add Text.

3. Double-click text, type the text value and then press Enter.

After you bind the element to an XForms user interface item, the text value

appears in the bound user interface item. For detailed information about binding,

see “XForms binding” on page 161.

Adding attributes to an element

An attribute extends the functionality of an element. Essentially, an attribute is

another tool you can use to model your instance. For example, you could add

three child elements to a <name> parent element: <first>, <middle> and <last>.

Alternatively, you could add three attributes to a <name> element: first, middle

and last.

You can add one or more attributes to an element. If an element has more than one

attribute, each attribute must have a unique name.

To add an attribute to an element:

1. In the Instance view, right-click the element that you want to add an attribute

to.

2. Click Add Attribute.

An attribute is added immediately beneath the element.

3. Double-click the newly-added attribute, type a descriptive name for the

attribute and then press Enter.

4. To add additional attributes, repeat steps 1 through 2.

Adding a value to an attribute

When you add a value to an attribute it creates an optional piece of data that is

associated with the node. This value can then be submitted. This is helpful when

you want to store a truncated value coming from the user interface or to submit

information that is associated with the user-selected data such as an internal

product code.

To add a text value to an attribute:

1. In the Instance view, right-click the attribute that you want to add a text value

to and click Edit.

2. Type the text value and then press Enter.

In the following scenario, each <credit_choice> element that can be bound to a

user interface item has a two-letter abbrev attribute. When the user selects a credit

card type on the form, the value that is submitted will be two letters long.

XForms 137

When you bind the element to an XForms user interface control, the attribute’s

value is what will be stored as the element value when a user chooses a value.

XPath and nodes

XPath referencing lets you bind the node or node set with XForms items in the

form, or with model item properties that calculate values or place limitations on

the nodes. For detailed information about binding, see “XForms binding” on page

161.

XForms user interface

On its own, the XForms model has no graphic components (user interface) or any

way to interact with users. This means that the XForms model must always be

contained within a host language that provides a user interface. The Designer

supports building XFDL documents that wrap XForms.

Note: The topics that comprise this section assume that your form is XForms

enabled and that you have already created and named your data instance.

XForms items

An XForms item is an XFDL-wrapped user interface (UI) item that you can bind to

a node in the data model or trigger an action based on how the user interacts with

the form.

The method you use to add an XForms item to a page is identical to adding an

XFDL item: on the Palette you click an XForms item and then click the canvas

where you want to place the item.

Since the XForms item is wrapped in XFDL, you can use all the XFDL properties

— such as itemlocation, and appearance — to alter and customize the XForms item

as desired.

XForms item properties

When you examine the XForms item’s properties in the Properties view, you can

see what differentiates an XForms item from an XFDL item. Aside from having

XFDL item properties such as a sid, itemlocation, and appearance properties, the

XForms item also has a set of XForms properties. It is the XForms properties that

138

define how the XForms item interacts with the form’s data layer.

Adding and binding XForms items - Quick reference

Note: This section assumes that you have already modelled the data layer of the

form.

XForms can be very complex. To reduce the confusion of adding XForms items to

your form and then binding them to the form’s data layer, you should follow these

steps:

1. In the Palette, expand the Standard Library.

2. Click the XForms item and then add it to the canvas.

3. Position the item on the form.

4. In the Properties view, expand General.

5. If your form is complex, you should name the item by giving the XForms item

a descriptive sid value. Alternatively, you can accept the auto-generated value.

6. If you want to add a label to the item, type a label value.

7. In the Instance view, drag the data node you want to bind to the XForms item.

v This binds the item to the data layer using the item’s ref property. To see this

bind, in the Properties view, expand XForms (option). For detailed

information on XForms binding, see “XForms binding” on page 161.

Creating XForms labels

Labels are normally used as titles or to identify or describe another XForms item

that requires user input, such as fields or check group items.

Since a label requires no user input, most of the time you can use an XFDL Label

item because it offers more flexibility for appearance and positioning. However,

unlike XFDL labels, an XForms label can get its content from a data node.

There are two kinds of XForms labels:

v A standalone text or image label.

v An XForms control label that describes a node in the data instance.

Standalone text or image labels are created using the Label (Output) XForms item,

while the XForms item labels are created by binding the XForms item’s label

properties to a node in the data instance.

Setting the XForms item’s label property

The label property is a mandatory property for most XForms items. It is intended

to provide text for the XForms item’s label. However, if you prefer to use an XFDL

Label item to label the XForms item, the content of the XForms item’s label

property may be left blank. If the XFDL label property for the item has a value, it

overrides the XForms label property.

To set the XForms item’s label property:

1. Select the XForms item that you want to add the label property to.

2. In the Properties view, expand General.

3. Click within the label value field.

4. Type the label name for the item and press Enter.

XForms 139

Creating standalone XForms labels

To create an XForms standalone label:

1. In the Palette, expand Standard Library.

2. Click Label (Output) and then add this item to the form.

3. In the Properties view, expand XForms (Output).

4. If you want to modify the label’s appearance and position, use the Properties

view to set the appearance and position properties. This could include the

label’s size, color, font, and positioning.

5. In the Instance view, drag the data node you want to bind to the label.

The label is bound to the data node using the item’s ref property.

Binding an XForms item label to a data node

Every XForms item has a set of label properties that lets you bind the XForms

item’s label to a node in the data instance. When the form is viewed in the

Workplace Forms Viewer, the content of the node is displayed as the XForms

item’s label.

Note: When you bind a label to a node, it overrides the item’s default label

property (found in the General properties).

To bind an XForms item label to a data element:

In the Instance view, click the data node you want to bind to the item’s label and

drag it to the label item.

The label is bound to the data node using the item’s ref property.

XForms fields

You use fields to collect information from the user, such as names, dates, dollar

amounts, and so on. You can set up fields to check and restrict users entries, to

flag errors and omissions and provide help on how to correct them, to format user

input in a standard style, and to perform calculations and make logical decisions.

Creating single line fields

You can use the Field (Input) to add a single line field to your form.

Note: While this procedure uses Field (Input), you can use the following steps to

configure any input option type control.

To create a single line field:

1. In the Palette, expand Standard Library.

2. Click Field (Input) and then add this item to the canvas.

3. If you want to modify the field’s appearance and position, use the Properties

view to set the appearance and position properties. This could include the

field’s size, color, font, and positioning.

4. In the Instance view, drag the data node you want to bind to the input field on

the canvas.

The input field is bound to the data node using the item’s ref property.

140

Creating multi-line fields

A multi-line field is not limited in the number of lines it can collect and display.

You use the XForms Field (TextArea) item to create a multi-line field.

To create a multi-line field:

1. In the Palette, expand Standard Library.

2. Click Field (TextArea) and then add this item to the canvas.

3. If you want to modify the field’s appearance and position, use the Properties

view to set the appearance and position properties. This could include the

field’s size, color, font, and positioning.

4. In the Instance view, drag the data node you want to bind to the multi-line

field on the canvas.

The multi-line field is bound to the data node using the item’s ref property.

Creating password fields

A password field lets a user enter a single line of write-only data. Any text typed

in a password field is displayed as a line of asterisks, preventing others from

seeing the user’s password.

To create password field, you must use the XForms Field (Secret) item.

Note: Information typed into an XForms Field (Secret) item is stored as plain text

so it does not provide security.

To create a password field:

1. In the Palette, expand Standard Library.

2. Click Field (Secret) and then add this item to the canvas.

3. If you want to modify the field’s appearance and position, use the Properties

view to set the appearance and position properties. This could include the

field’s size, color, font, and positioning.

4. In the Instance view, drag the data node you want to bind to the password

field on the canvas.

The password field is bound to the data node using the item’s ref property.

Creating fields from instances

To create a field with a label from an instance:

In the Instance view, drag the instance element on the canvas. The label text is the

name of the element.

XForms lists

A list displays a group of related list items as list choices and lets a user choose

either one or more list choices.

Lists and form design considerations

The type of list you add to your form will depend on how many list items you

want the user to choose (select or select1) and what type of user interface items

XForms 141

your users are used to working with, as well as any space limitations on your

page. For example, a popup list takes up less space than does a group of check

boxes or radio buttons.

The following are some general suggestions for list design:

v Check boxes — Use a CheckGroup (Select) to display all list choices to a user

and let the user select one or more check boxes.

v Radio buttons — Use RadioGroup (Select1) if you:

– Want the user to select only one choice.

– Want to show all of the possible list choices at once.

– Want the user to have to click just once to select the list choice.

– Have a limited number of list choices.
v Lists — Use List (Select1) lists if you:

– Want to limit the user to select only one list choice.

– Want to save space on your form.

– Have your form dynamically generate list choices from the data model and

insert them into the form.

Additionally, you can choose from three kinds of lists:

v Popup List — A popup list appears as a single field on your form. It allows the

user to select a single choice.

v Combo box list — A combo box list appears as a single field on your form. It

allows the user to type in a choice or choose one from a popup list.

v Box list — A box list can be any size and displays list items in a scrolling list.

The type of list you use will depend on the user data you want to collect from the

list and form design considerations.

Creating XForms lists

You can use the Designer to create XForms lists using one of the following

methods:

v Displaying the list items from a data node — The list items are dynamically

generated from a data instance node set. There is an associated data node for

each choice in the list. For detailed information about displaying list items from

a data node, see “Displaying list items from a data node set.”

v Defining list items in the user interface — In this type of list, you create

individual list items in the select or select1 list. This type of list is associated to a

single data node that stores the user’s selection. For detailed information about

defining list items in the user interface, see “Defining list items in the user

interface” on page 144.

Displaying list items from a data node set

You can display list choices from a node set in the data instance. When you use

this method to create a list, the child nodes are dynamically displayed as list items.

The advantage to using this method to display list choices is that if you need to

update the list, you only have to update the data instance.

While this procedure uses an XForms List (Select1) item as an example, you can

also apply this procedure to the following XForms items:

v List (Select)

v Combobox (Select1)

142

v Popup (Select1)

To display list choices from a node set, you must have a node set (parent node)

with child nodes that represent each list choice to be displayed in the list. The

following sample data instance will be used.

To add a list to the form:

1. Add a List (Select1) to the canvas.

2. In the Properties view, click within the label value field.

3. Type the label for the list and press Enter.

Next, you must set the List (Select1) item’s nodeset property which binds the list

item to the data element node set.

Binding an XForms list to a node set:

To bind the list to a node set:

1. In the Instance view, right-click the node that contains the nodes you want to

display as list choices and click Copy Reference. From example data instance,

you would select <credit_choice>.

2. On the canvas, click the XForms List (Select1) item.

3. In the Properties view, expand XForms (select1), and itemset.

4. Click within the nodeset value field.

5. Right-click and click Paste.

Next, you must set the itemset, label, ref property. This property binds the data

nodes to the list, displaying them as list items.

Displaying list items in an XForms list:

To display the list items in the list:

1. On the canvas, click the XForms List (Select1) item.

2. In the Properties view, expand XForms (select1), itemset, and label.

3. Click within the ref value field.

4. Type . (period)

Defining the ref value as . (period) displays all the text values of the data

nodes defined in the nodeset property.

XForms 143

Note: If the data node uses an attribute to define its value, the XPath reference

would be: @attribute

You must now define the list’s value property. The value property is the user’s

selection from the list.

Setting the value selected from an XForms list:

To set the value selected from the list:

1. On the canvas, click the XForms List (Select1) item.

2. In the Properties view, expand XForms (select1), itemset, and value.

3. Click within the ref value field.

4. Type the path of the node that will store the chosen list item value.

Almost always, the ref value will be . (period). In this example, you would set

ref to @abbrev to store the credit card’s abbreviation instead of the full credit

card name.

Next, you must define where the value will be stored in the data layer.

Storing the XForms list choice in the data layer:

To store the XForms list choice in the data layer:

1. On the canvas, click the XForms List (Select1) item.

2. In the Properties view, expand XForms (select1).

3. Click within the ref value field.

4. Type the XPath of the data element that will store the user’s list item choice.

Defining list items in the user interface

You can define and display list choices in the XForms. Defining your list choices in

the Choice (Item) lets you minimize the number of nodes in your data instance.

Instead of creating data nodes, you add an item to the list for every list choice you

want to offer. The XForms Choice (Item) is then associated with a single data node

that records the user’s selection.

You can define list choices in the user interface using XForms Choice (Item).

For detailed information about adding items to a check group or radio group,

“Creating a list using XForms CheckGroup.”

For detailed information about adding items to a list, “Creating a list using List

(Select1)” on page 146.

Creating a list using XForms CheckGroup

You use the XForms Select or Select1 CheckGroup item to present list items to the

user as check boxes.

While this procedure uses CheckGroup (Select1) as an example, you can also

apply this procedure to the following XForms items:

v RadioGroup (Select1)

To create a check group list and bind it to the data node that will store the user’s

choice:

1. Add a CheckGroup (Select1) to the canvas.

144

2. In the Instance view, click the data node that will store the user’s choice from

the list and drag it to the CheckGroup (Select1) .

The CheckGroup (Select1) is bound to the data node.

Since you are not linking the individual list choices to data nodes, you must

now turn off the itemset property.

3. Click the itemset property value button to turn it off.

Next, you must add one or more check group items to the check group. Each

check group item represents a list choice.

Adding check group items to an XForms CheckGroup list:

You add Choice (Item) to a CheckGroup to present the user with check box list

items.

While this procedure uses Choice (Item), you can also use this procedure to:

v add Choice (Item) to a RadioGroup

To add check group items to a CheckGroup (Select1):

1. Add a Choice (Item) to the CheckGroup (Select1).

Note: If you created a RadioGroup (Select1) instead of a CheckGroup

(Select1), you add one or more Choice (Item).

2. In the Properties view, expand XForms (item), and label.

3. Click within the Text value field.

4. Type the label text for the check box and press Enter.

5. If you want to set the item’s value property, see “Setting a list item’s value

property.”

6. Repeat steps 1 through 4 to add and label the remaining check boxes to the

check group.

Setting a list item’s value property:

To set a list item’s value property, you must first add an XForms list to the canvas

and then add items to the list.

You can optionally set a list item’s value property. This property lets you define

the value that is passed to the form’s data layer. Typically, you would set this

property if the item label is long and you want to save storage space. For example:

an item with a label of ’American Express’ could have a value of ’AMEX’.

Note: You can apply this procedure to all XForms list items.

To set an item’s value property:

1. On the canvas, click the XForms list.

2. In the Properties view, expand XForms (select) or (select1), and Item.

The list’s items are displayed.

3. Expand the item property of the item whose value property you want to set.

4. Click within the Text value field.

5. Type the text and press Enter to set the value.

XForms 145

Creating a list using List (Select1)

You can create a select or select1 list and then add and define the list items to the

list.

While this procedure uses List (Select1) as an example, you can also apply this

procedure to the following XForms items:

v List (Select)

v Popup (Select1)

v ComboBox (Select1)

To create a List (Select1):

 1. Add a List (Select1) to the canvas.

 2. In the Properties view, click within the sid value field.

 3. Type the sid value and press Enter to set the value.

 4. Click within the label value field.

 5. Type the label for the List (Select1) and then press Enter.

Since you are not connecting the list to a data node set, you must turn off the

itemset property.

 6. Expand XForms (select1), and itemset.

 7. Turn off the itemset property.

 8. Expand XForms (select1), and itemset.

 9. Click within the XForms (Select1), ref value field.

10. Type the XPath of the node that you want to bind the list to.

11.

You must now set the property that will store the user’s choice form the list.

12. Expand XForms (select1), itemset, and value.

13. Click within the ref value filed and type the XPath of the node that will store

the chosen list item value.

Almost always, the ref value will be . (period).

Next, you add items to the list. Each item you add will be displayed to the user as

a list item choice.

Adding list items to a List (Select1):

You can add list items to a List (Select1). Each item you add will be displayed to

the user as a list item.

While this procedure uses List (Select1) as an example, you can also apply this

procedure to the following XForms items:

v List (Select)

v Popup (Select1)

v ComboBox (Select1)

To add an item to a List (Select1):

 1. On the canvas, select the List (Select1) item that you want to add the list

choices to.

 2. In the Properties view, expand XForms (select1).

 3. Click within the Item value field. (This cell has <empty> as a value.)

146

v A drop down arrow button and a plus sign button appear.
 4. Click the plus sign button.

v An item is added to the list.

You must now set the list item’s label value. This value will be what the user

sees in the list.

 5. Expand the Item,item, and label.

 6. Click within the Text value field.

 7. Type the list item name and press Enter.

You must now set the item’s value property. The value’s Text property value

defines what data is passed to the form’s data layer.

 8. Expand value.

 9. Click within the Text value field.

10. Type the value and then press Enter.

11. Repeat steps 3 through 10 to add the remaining list items to the list.

Reordering list items in a Select or Select1 list

List items appear in the list at run time in the order in which they were added to

the list. You can reorder the list items that appear in a list.

To reorder list items:

1. On the canvas, click the XForms List (Select) or List (Select1) list.

2. In the Properties view, expand XForms (select) (or XForms (select1)), and Item.

3. Click

or

to move an item up or down in the list.

Deleting list items from a Select or Select1 list

To delete a list item from a Select or Select1 list:

1. On the canvas, select the XForms List (Select) or List (Select1) list.

2. In the Properties view, expand XForms (select) (or XForms (select1)), and Item.

3. Click

to delete the list item.

Setting the appearance of a Select (List)

This topic assumes that you have already added and configured a Select (List)

XForms control to your form.

The list’s appearance property determines how the select and select1 option lists

are displayed to the user. There are three possible settings for appearance:

v full — Expands the list so that the entire list is always visible.

v compact — Displays the list as a framed box list. Use with box lists only.

v minimal — Limits the list to one row in height unless it is being accessed by a

user.

The appearance setting is dictated by the type of list you add to your form:

v checkgroups and radiogroups can only appear as full

v popups and comoboxes can only appear as minimal

v select1 lists can only appear as compact

The only list type appearance you can change is a Select (List). You can set the

appearance to compact or minimal.

XForms 147

To set the List (Select) option type’s appearance:

1. On the canvas, click the List (Select) control.

2. In the Properties view, expand XForms (select).

v By default, the select option list’s appearance is compact.
3. Click within the appearance value field.

4. Click the drop down arrow and select the either compact or minimal.

XForms conditional items

Conditional items are items that are not displayed unless a pre defined condition is

met. For example, consider a form that needs to be rendered in several languages.

You could have three labels (English, French, and Spanish) for each field, or you

could create the labels and fields as conditional items and allow the user to select

their language of preference.

Creating conditional items

Three XForms items are needed to create conditional items:

v Switch — Specifies what information is conditional. It also groups a set of Case

XForms items. When you create a switch, a default pane and case is also created.

A pane is an XFDL item that acts as a container for other items. You can see

these objects in the Outline view.

v Case — Contains the different data options.

v Trigger (Button) — Lets you toggle between cases.

Conditional items and the data model

When you create a Switch item that contains conditional items, you must associate

it with a parent data node.

Associating a Switch item with a parent node indicates that its child nodes have

conditional associations. In other words, these nodes may be referenced by

multiple conditional items in the user interface, but only retain the data provided

by the active condition. The name of this node is entirely arbitrary, but it should be

unique and reflect the purpose to which it will be used. You must also create the

child nodes. You must make one child node for each item that will appear in the

pane.

Switch language example

In this example, conditional items provide text in different languages for fields that

collect the user’s name and address.

If you want a case to contain fields that will display and contain name, street, city,

and country information, the <switch_language> node will need to have four child

nodes; one for each piece of data:

148

Adding an XForms Switch item

You use a Pane (Switch) to group one or more Case items.

To add a Pane (Switch) item and bind it to the form’s data layer:

1. Add a Pane (Switch) to the canvas.

2. In the Instance view, click the data node set that you want to bind to the switch

and drag it to the switch.

The Ambiguous drop window is displayed.

3. Click Button (Update).

The switch is bound to the data node set.

Next, you can add more Case items to the Pane (Switch) or you can add items to

the default Case.

Adding Cases to a Switch

You can add one of more cases to a Pane (Switch). Each Case contains a set of

conditional user interface items that are displayed when the proper conditions are

met.

You need to create a separate case for each set of conditional items.

Note: When you add a switch, a default case is added to your form.

To add a case to a switch:

1. Add a Case to the switch.

Note: You will not be able to see the case in the Design editor. To select and

work with a case, you must use the Outline view.

2. In the Properties view, expand Identification.

3. Click within the id value field.

4. Type the id for the case and then press Enter.

5. Repeat steps 1 through 4 to add as many cases to the switch as required.

Next, you must add the items that will display each case’s conditional items.

XForms 149

Adding items to a case

The items you add to a case represent the conditional items that will be displayed

when the case is activated. For example, if you want to present three language

choices to a user and you want to display and collect the user’s name, street

address, city and country, you would add four Field (Input) items to each of the

three cases.

Note: You can add both XFDL and XForms items to a case.

To add items to a case:

1. In the Outline view, right-click the case that you want to add items to and click

Active case → The name of the case.

2. Add the item to the case.

3. Position the item.

4. If the item you added is an XForms item, in the Instance view, drag the data

node to the item that you want to bind.

The item is bound to the data node.

5. Repeat step 2 for each XFDL item that you want to add to the case.

6. Repeat steps 2 through 4 for each XForms item that you want to add to the

case. Using the switching languages example in “XForms conditional items” on

page 148, you would add four Field (Input) items and bind each item to the

appropriate child node.

Next, you must add and configure a toggle case button for each case so that when

a user clicks the button, the correct items in the case are displayed. For detailed

information on creating a toggle case button, see “Creating toggle case buttons.”

Setting the default case

The default case is the set of conditional items that appears in your form by

default. For example, if you know that the majority of your form’s users are

Spanish speaking, you can set the case that contains the Spanish conditional items

to be displayed as the default case.

To set the default case:

1. In the Outline view, click the case that you want to use as the default case.

2. In the Properties view, expand XForms (case).

3. Set the selected property to true.

4. Make sure that the other cases have their selected property to false.

Creating toggle case buttons

A toggle case button lets users select which case they want to use. Clicking a

toggle button displays the case associated with the toggle button.

Each case requires a toggle case button. For example, if you want to present three

language choices to a user you would add three toggle buttons.

Important: If you are going to add a toggle case button to a case, thoroughly test

your form’s logic to ensure that the correct buttons are always visible

to the user.

To create a toggle case button:

150

1. Add a Button (Trigger) to the form.

2. Position the button where you want it to appear. Make sure that the button is

not in the case, otherwise, it will not be visible to users.

3. In the Properties view, expand XForms (trigger), and label.

4. Click within the Text value field.

5. In the Text property, type the button name that you want the user to see and

then press Enter. Using the language example, you could type the language

name.

6. Repeat steps 1 though 5 to create a toggle button for each case you want to

conditionally display.

Next, you must change the button to a toggle case button and then link it to a case

so that when the user clicks it, the button displays the case’s items.

Adding a toggle action to a toggle case button:

This procedure assumes that you have already added a Button (Trigger) to your

form.

You must change the button to a toggle case button and then link it to a case so

that when the user clicks it, the button displays the case’s items.

To add a toggle action to toggle between cases:

1. On the canvas, click the Button (Trigger) you want to change into a toggle

button.

2. Expand XForms (trigger), Actions, and action.

3. Click within the Actions value field.

The drop down arrow

and Add

buttons are displayed.

4. Click the drop down arrow button

and select toggle.

5. Click the add button

.

6. Expand Actions, and toggle.

7. Click within the case value field.

8. Type the name of the case you want to display when a user clicks the toggle

action button.

9. Repeat steps 1 through 8 for each Button (Trigger) you want to add to the

form.

Note: You should have one toggle case button for each case on the page.

XForms tables

The following methods are available to create XForms tables:

v Wizard — by using Table (Repeat) by Wizard.

v Manual — by using Table (Repeat).

Creating XForms tables using a wizard

An XForms table lets you arrange data into rows of items, making data easier to

interpret and forms easier to complete.

The following table wizard methods are available:

XForms 151

v Simple Setup — Enables you to create a complete table. All the necessary

background work is done for you. An XForms data instance is created for you to

collect the data from the form. You simply specify the number of columns and

rows to display in the table.

v Advanced Setup (using existing data) — Enables you to use an existing

instance in the form or another instance on your computer or shared network

directory (xml file format). You specify the number of columns and rows to

display in the table.

The wizard allows you to choose general display and configuration settings such

as “+” and “-” buttons for the user to add or delete rows, table lines, borders, and

row formatting.

For detailed information on how to use the table wizard, see “Creating a simple

XForms table using the wizard” and “Creating an advanced XForms table using

the wizard” on page 153.

Note: Do not insert a table wizard object inside another table wizard object.

References to the “+” and “-” buttons will not work correctly. To create this

table layout, see “Creating XForms tables manually” on page 153.

Creating a simple XForms table using the wizard:

By choosing Simple Setup, you can create a table that allows the user to add or

delete rows of information.

To complete a simple XForms table setup:

 1. In the Palette, click Table (Repeat) by Wizard.

 2. Click on the canvas where you want the table to be positioned.

The Table Wizard opens with Simple Setup selected.

 3. Click Next.

 4. Within the New Element Name field, type the column name you want to

display in your table.

 5. Click

to add to the list.

 6. Repeat steps 4 through 5 for each element name used to control the column

data in the table.

To remove an element name from the list, select the element and click

.

To change the order of the element names, select the element and click the up

arrow button or thedown arrow button.

 7. In the Enter Number of Initial Rows field, type a number.

 8. If you want to create a new instance or use an existing instance, click

Advanced and set the options.

 9. Click Next.

10. In the Display Columns list, select a column name listed.

11. Set any of the following Details for each column name:

v Display as — Set the display to either Text (Read/Write) or Text (Read).

v Include Header — Select or clear the check box to display or hide the

column header name.

v Header — Type the column name you want displayed on the table.

v Width (Pixels) — Set the width of the selected column. The default is 100

pixels.

152

v Show Border — Turn on or off the borders. Default is on.
12. Click Next.

13. Set any of the display and configuration settings.

14. Click Finish.

Creating an advanced XForms table using the wizard:

By choosing the Advanced Setup (Using Existing Data) you can use an existing

instance in the form or use another instance (xml file format) on your computer or

shared network directory.

To complete the Advanced XForms table setup:

 1. In the Palette, click Table (Repeat) by Wizard.

 2. Click on the canvas.

The Table Wizard Setup opens.

 3. Click Advanced Setup (Using Existing data).

 4. Click Next.

 5. Select the instance you want to use to control the data in the table:

v To use an instance already being used in your form, in the Instance column

select the instance

v To use an instance saved on your computer or network, click Add Instance

and select the file. Then in the Instance column, select the instance.
 6. In the Instance Data column, select the instance data to use.

An XForms data instance defines the XML template for the data that will be

collected from the form.

 7. Click Next.

 8. Set the configure details.

v Available Columns — The available child elements for the instance data

selected. You can reuse the elements. By adding them to your table you are

adding columns to your table.
v Display Columns — The column titles displayed.
v Details — The following options are available:

– Display as — Set the display to either Text (Read/Write) or Text (Read).

– Include Header — Select or clear the check box to display or hide the

column header name.

– Header — Type the column name you want displayed on the table.

– Width (Pixels) — Set the width of the selected column. The default is

100 pixels.

– Show Border — Turn on or off the borders. The Default is on.
 9. Click Next.

10. Set any of the display and configuration settings.

11. Click Finish.

Creating XForms tables manually

To create an XForms table manually in the user interface, you use the repeat item.

You then add XFDL and XForms items to the repeat item to create a template row.

You can then create an Insert Row button and a Delete Row button to add or

remove rows from the table.

XForms 153

Binding XForms tables to the data model

You must bind the repeat item to a node set (parent node) in your data model. You

must also bind each XForms item in the template row to the child nodes of the

node set you bound to the repeat item.

XForms table example

The topics that comprise this section will use the following scenario to develop an

XForms table.

Scenario:

You want to collect and display the first, middle and last names of customers.

Table node set:

In this example, the following data instance will be used:

Note: You may want to create this data instance so that you can develop the

example XForms table. For detailed information about creating data

instances, see “Creating an XForms data instance” on page 132.

Table User Interface:

To mirror the node set, we will make a table consisting of three XForms Field

(Input) items that will contain and display the person’s first, middle, and last

names in one table row.

Note: The steps to create the template row are discussed in “Adding items to an

XForms table” on page 155.

Binding an XForms table:

You must bind the XForms table to the appropriate node set in the data instance.

154

To bind an XForms table:

1. In the Instance view, click the node set that you want to bind to the XForms

table and drag it to the repeat item.

The Ambiguous drop window is displayed.

2. Click Update.

The repeat is bound to the node set. Using the example, the nodeset value is

instance(’customers’)/people/person.

3. If you want to set which table row gets focus when the form is opened, set the

startindex property.

The index starts with 1, rather than 0. If startindex is not used, the focus

defaults to the first row in the table.

Next, you must add items to the repeat item.

Adding items to an XForms table:

You can add XFDL and XForms items to an XForms Repeat. The items you add to

the Repeat form the table’s template, or repeating row. Each time a user clicks the

Insert Row button, all the items you added to the template row will be repeated in

a new row.

To add items to a table:

1. Add the item that you want to add to the Table (Repeat) item.

2. Position the item where you want it to be displayed in the template row. For

detailed information about positioning items, see “Alignment types” on page

44.

3. If you want to add a label to the item:

a. In the Properties view, expand General.

b. Click within the label value field.

c. Type the label text for the item and press Enter.
4. If you added an XForms item:

a. In the Instance view, drag the appropriate data node to the item. The item

is bound to the node.
5. Repeat steps 1 through 4 to add all of the items that you want to include in the

template row. Using the section example, you would add three XForms Field

(Input) items to the repeat item. Bind the first input field to <first_name>. Bind

the second input field to <middle_name>. Bind the third input field to

<last_name>.

Following the example, your form should resemble the following:

Next, you can add an Insert Row button.

Adding an Insert Row button:

XForms 155

An Insert table row button inserts a template row at the bottom of an XForms

table.

To add and position an Insert Row button:

1. Add a Button (Trigger) to the canvas.

2. Use relative positioning to position the button below the table. For detailed

information about relative positioning, see “Aligning items” on page 43.

The button repositions itself immediately under the table.

Note: If the button does not reposition itself immediately below the table, there

may be an issue with your build order. If the button does not come after

the table in the build order, then the button cannot refer to the table. In

the Outline view, make sure that the button is listed immediately

beneath (and not inside) the table.

For detailed information about build order, see “Changing the build order of

items” on page 42.

3. In the Properties view, expand XForms (trigger) and label.

4. Click within the Text value field.

5. Type the label for the button and press Enter.

Next, you must configure the Button (Trigger) so that when it is clicked by the

user, a template row is inserted into the table.

Configuring an Insert Row button:

The Insert Row button is a configured XForms Button (Trigger) item that adds a

template row to a table.

In order for the Insert Row button to create additional table rows when it is clicked

by the user, it must contain two XForms actions:

v insert — The insert action adds the new node by cloning the final node in a

node set.

v setindex — The setindex action specifies the position of the focus in the index.

The index is the method used by each repeat item to keep track of which item of

the form’s repeat item currently has the focus.

Configuring the Insert Row button insert action:

To configure the Insert Row button insert action:

1. On the canvas, click the button that you want to use to insert a row.

2. In the Properties view, expand XForms (trigger), Actions, and action.

3. Click within the Actions value field.

The drop down arrow

and add

buttons are displayed.

156

4. Click the drop down arrow button

and select insert.

5. Expand Actions, and insert.

6. Set at to index(’table XForms id value’)

7. Set position to after.

8. Set nodeset to the path of the node set you want to clone.

The insert action’s properties should resemble the following.

Next, you must add and configure the setindex action.

Configuring the Insert Row button setindex action:

To configure the Insert Row button setindex action:

1. In the Properties view, expand XForms (trigger),Actions, and action.

2. Click within the Actions value field.

The drop down arrow

and add

buttons are displayed.

3. Click the drop down arrow button

and select setindex.

4. Click the add button

.

5. Expand setindex.

6. Set index to index(’table XForms id value’) - if(index(’table XForms id

value’)=count(parent_node/child_node), 1, 0)

7. Set repeat to the path to the node set you want to repeat.

The Insert Row button’s actions should resemble the following.

XForms 157

Now, you can add a Delete Row button.

Creating a Delete Row button:

You must first add an Insert Row button to the form. For detailed information on

adding an Insert Row button, see “Adding an Insert Row button” on page 155.

A Delete Row button removes the XForms table row that has focus.

To add and position a Delete Row button:

1. Add a Button (Trigger) to the form.

2. Use relative positioning to position the button after the Insert Row button. For

detailed information about relative positioning, see “Aligning items” on page

43.

3. In the Properties view, expand XForms (trigger), and label.

4. Click within the Text value field.

5. Type Delete Row and press Enter.

Next you must add the delete action to the button.

Configuring the Delete Row button delete action:

To configure the Delete Row button delete action:

1. On the canvas, click the button that you want to use to delete a row.

2. In the XForms (trigger) properties, expand Actions and action.

3. Click within the Actions value field.

The drop down arrow

and add

buttons are displayed.

4. Click the drop down arrow button

and select delete. Next, you must set the

delete action’s properties.

5. Expand Actions and then delete.

6. Set at to index(’table_id_name’)

7. Set nodeset to instance(’instance_name’)/.../node set)

The Delete Row button’s delete action should resemble the following.

158

XForms help messages

XForms help messages let you use dynamic data from your instance to create

additional help or warning messages for your forms.

If you want to add help and accessibility messages to your XForms items, you

have three options:

v Alert

v Help

v Hint

You can also use the following XFDL help messages to provide assistance to your

users:

v Help

v Acclabel

v Message (in the Format, format, constraints property group)

For detailed information about XFDL help messages, see “Help messages” on page

54.

Adding an XForms alert message

An XForms alert message is displayed to the user if they enter invalid information.

This is equivalent to the message property in the XForms item’s Format, format,

constraints property. If both an alert and a message are provided for the XForms

item, then the XFDL message overrides the alert.

XForms 159

To add an XForms alert message:

1. On the canvas, select the XForms item to which you want to add an alert

message.

2. In the Properties view, expand XForms (option type).

3. Click the Alert property’s On button.

4. Expand alert.

5. Click within the Text value field.

6. Type the alert message and press Enter.

Adding an XForms help message

Help provides a message that is displayed to the user if they enter help mode. This

message is generally longer than a hint message, and is intended to provide

detailed help to the user. Although there is no direct equivalent in XFDL, XForms

help is treated like the help option, and is displayed as a tooltip when the user

enters help mode. If an item contains both an XForms hint and an XForms help

message, then the help is appended to the hint. Futhermore, if an item contains

both an XForms help and an XFDL help option, then the XFDL help option

overrides the XForms help.

To add an XForms help message:

1. In the canvas, select the XForms item to which you want to add a help

message.

2. In the Properties view, expand XForms (option type).

3. Click the Help property’s On button.

4. Expand help.

5. Click within the Text value filed.

6. Type the help message and press Enter.

Adding an XForms hint message

A hint message provides a message that is displayed to the user if they enter help

mode. This message is generally a short instruction, such as telling the user what

format is valid for a specific field, and is displayed as a tooltip. This is equivalent

to the help option. If an item contains both an XForms hint and an XFDL help

option, then the XFDL help option overrides the XForms hint.

To add an XForms hint message:

1. In the canvas, select the XForms item to which you want to add a hint

message.

2. In the Properties view, expand XForms (option type).

3. Click the Hint property’s On button.

4. Expand hint.

5. Click within the Text value field.

6. Type the hint message and then press Enter.

Converting XFDL items to XForms items

You can convert an existing XFDL item to an XForms item, allowing you to bind it

to the data layer. If you convert an existing XFDL form to XForms, you must

convert the items individually.

160

To convert an XFDL item:

On the canvas, right-click an existing XFDL item and select Convert ItemXForms

item .

To see the converted item’s XForms properties:

1. Select the item you just converted.

2. In the Properties view, expand XForms (item name).

Remember to bind the converted item to a data node.

XForms binding

Binding is a link between the data layer and the form’s user interface (UI) layer.

Binding lets you:

v Synchronize the data model with the form presentation layer; if the value of one

changes, the other linked elements are updated to reflect the changes.

v Place constraints, calculations, validations and limitations on what data the user

enters.

You can bind UI controls to the data instance using one of two methods:

v ref or nodeset — Creates a direct link between a UI element and a data element

in the XForms instance using an XPath reference.

v bind — Creates an indirect link between a UI element and a data element in the

XForms data instance using a model bind.

Binding using ref or nodeset

With the exception of the XForms repeat items, each XForms item has a ref

property that you can set to bind the XForms item directly to a single node in a

data instance using the node’s XPath reference.

XForms repeat, select and select1 items have a nodeset property. Unlike ref —

which limits the bind to a single node — the nodeset property lets you bind a

repeat, select or select1 items to a set of nodes using the node set’s XPath

reference.

Binding using the ref property

When you use the XForms item’s ref property to create a bind, you create a direct

link between an XForms item, such as an Field (Input), and a data node in the

data instance using an XPath reference.

Note: Binding a data node to an XFDL item automatically converts it to an

XForms item.

To bind an item to a data node using the ref property:

1. In the Instance view, click the node that you want to bind.

2. With your mouse, drag the node to the item that you want to bind.

The XPath bind is displayed in the item’s ref property.

To see the ref property value:

1. Select the item on the canvas.

XForms 161

2. In the Properties view, expand XForms (option type)

The bind appears in the ref property value.

Binding using the nodeset property

The following XForms items have nodeset properties:

v Select list types

v Select1 list types

v Repeat.

These items are containers that hold other XForms items. Similarly, in the data

layer a node set (or parent node) is a container for child nodes.

To create a relationship between the presentation and data layers you bind the

XForms container item to the node set using the nodeset property. Then you bind

the XForms items inside the container to the child nodes inside the parent node

using the ref property.

For detailed information on how to bind an XForms Select item list using the

nodeset property, see “Displaying list items from a data node set” on page 142.

For detailed information on how to bind an XForms Repeat item using the nodeset

property, see “Binding using ref or nodeset” on page 161.

Binding using bind

Each XForms item has a bind property that lets you bind the item to a model bind.

The bind property creates an indirect link between an XForms item and a data

node in the XForms data instance.

Binding using the bind property

To bind an XForms item to a model bind, you must have an existing model bind.

For detailed information on model binds, see “Creating model binds” on page 164.

When you use the XForms item’s bind property to create a bind, you create an

indirect bind between an XForms item and a data node in the XForms data

instance using a model bind. This binding is then automatically extended to the

data element that the bind affects.

Note: You cannot bind to nested binds. You can only bind to the outermost bind in

any nested structure.

To bind an XForms item to the data instance using the bind property:

1. On the canvas, select the XForms item that you want to bind.

2. In the Properties view, expand XForms (option type).

3. In the bind property value, select the bind id from the list.

v The bind is displayed in the XForms item’s bind property.

XForms model binds

Once you have created a data instance, you can set the properties of its nodes. This

is done using a model bind.

You use a model bind to perform special calculations or place limitations on user

data. For example, you might want to perform a calculation on a certain node or

ensure that supplying certain data is mandatory.

162

Each XForms model can have one or more associated model binds.

Model bind properties

Every model bind contains one or more model item properties. These properties

describe the way the model bind modifies its associated node. These modifications

include determining the value of nodes, their validity, or relevancy.

Model bind properties let you:

v Name the model bind (optional)

v Determine the node or nodeset that is affected by the model bind (required)

v Describe the way the model bind effects the element (required)

id Lets you give a globally unique name to your model bind. This property is

optional, but necessary if you want to refer to the model bind elsewhere in

your form.

nodeset

Identifies which element is affected by the model bind, it must refer to a

node in a data instance. Every model bind is associated with a nodeset,

either directly, or in the case of nested binds, through inheritance from a

parent bind.

Model Item Properties

Every model bind contains one or more model item properties. These

properties describe the way the model bind modifies its associated node.

These modifications include determining the value of nodes, their validity,

or relevancy and are the following:

Calculate

The calculate property defines a calculation that determines the

value of the associated node. It lets you add mathematical

formulas and computed logic to your data instance. The essential

elements of the calculation are XPath expressions combined with

normal mathematical expressions.

 The essential elements of the calculation are XPath expressions

combined with normal mathematical expressions.

Constraint

The constraint property determines whether an associated node is

valid.

 For example, if you wanted to ensure that a field contains a

number higher than 0 but less than 10, you would use constraint

to prevent the form from accepting a value that was outside of that

range.

 You can use both relational and logical operators. Relational

operators are character sets that describe how one thing relates to

another. For example, the greater than and less than signs are

relational operators. Logical operators let you create more complex

computes with logical or and logical and.

Readonly

The readonly property determines whether the data in the

associated node can be changed.

 Readonly accepts any XPath expression as its setting, but the result

is always converted to either true() or false().

XForms 163

The default value of readonly is false(), as most nodes will accept

input from the user. However, if the model bind includes a

calculate property, the node automatically has a readonly of true(),

as the value of the node will be based on a calculation, and not

directly on input from the user. Furthermore, if a node is set to

readonly, then all of its child nodes automatically inherit the

readonly setting.

Relevant

The relevant property determines whether a node is displayed to

the user or included in XForms submissions.

Required

The required property determines whether a node requires

mandatory user input.

Type The type property sets the data node to be a particular data type.

Creating model binds

To create a model bind:

1. In the XForms view, select the model that you want to add the model bind to.

2. Right-click and select Create Bind.

3. In the Properties view, expand Identification.

4. Type a descriptive, unique bind name in the id value.

The id property is optional, but necessary if you want to refer to the bind

elsewhere in your form.

Note: IDs are only allowed on parent binds. They are not supported on binds

nested inside another bind.

5. Expand the General property node.

6. In the nodeset property value, type the path location of the node set whose

elements you want to bind.

The nodeset value identifies which element is affected by the model bind and

must refer to a node in a data instance. Every model bind is associated with a

node set, either directly, or in the case of nested binds, through inheritance

from a parent bind.

If necessary, you can create multiple model binds for a single node set.

Next, you must define the model item properties. For detailed information on

model item properties, see “Model bind properties” on page 163.

Highlighting bound XForms items

You can analyze the XForms items you have in the Design editor to see if they

have been bound. You can do this from the View menu:

v View → Highlight Items with XForms Binds — Use this option to highlight

XForms items that are associated with XML instance elements.

v View → Highlight Missing XForms Binds — Use this option to highlight

XForms items that do not reference XML instance elements.

v View → Turn off Highlight Mode — Use this option to turn off the highlighting

for XForms items with/without references. These options rotate through a

three-way state change in the View menu.

Note: The highlight color can be customized in the Designer’s preferences.

164

XForms submissions

A submission is a set of rules that defines what form data is submitted, how the

data is submitted, and where the data goes.

When submitting data from a form that contains an XForms model, you can

submit a particular data instance. Submitting a data instance makes it possible to

send your data instance directly to processing applications, rather than having to

parse the complete form and extract the data instance.

In addition to defining the submission’s rules, you must also create a submission

button that is linked to the submission.

If your form has more than one model, you can create a set of submission rules for

each model. Additionally, you can create a set of submission rules for each data

instance.

Adding submissions to an XForms model

You can add one or more submissions to an XForms model. The number of

submissions you add to a form will depend on how your form collects data from

the presentation layer to the data layer and how many different submissions you

want the user to make.

To add a submission to an XForms model:

1. In the XForms view, select the model that you want to add the submission to.

2. Right-click and select Create Submission.

v The Designer creates a submission.

Adding a submission to an XForms data instance

To add a submission to an XForms instance:

1. Select the XForms view.

2. Select the instance that you want to add the submission to.

3. Right-click and select Create Submission.

v The Designer adds a submission to the XForms model and the data instance

id appears in the submission’s XForms instance property value.

Naming submissions

To name a submission:

1. In the XForms view, select the submission. You might need to expand the

model to see the submission.

2. In the Properties view, expand Identification and then name the submission by

entering an id value.

Setting which data is submitted

When submitting a form that contains an XForms data model, you can submit

either the entire form or just a particular data instance. This makes it possible to

send your data instance directly to processing applications, rather than having to

parse the complete form to extract the data instance.

XForms 165

By default, the first data instance in an XForms form is submitted. If you want to

submit something other than the entire first data instance, you must provide one of

the following:

v An XPath expression that specifies a node (and its children) for submission.

v The name of a bind that references the node set you want to submit.

Specifying nodes

You can choose to submit an entire data instance or only a portion of the instance.

This is done using the submission’s ref property.

When submitting only a portion of a data instance, you must identify the root

element of the submission. The root element determines which portion of the

instance is submitted, since only the root element and its children are sent.

For example, consider the following data instance.

If you wanted to submit the entire instance, you would need to select the root

node of the instance. The first tag in an instance is its root node.

If you wanted to select only a portion of the instance, you would have to select the

root node of the data portion you wanted to submit. For example, if you only

wanted to submit the <Borrower> information, you would reference the

<Borrower> node.

Specifying a parent node includes all of its child nodes in the submission. In the

following example, the ref property indicates that the submission data should

consist of the <Borrower> node and its child nodes, <Name> and <Address>:

instance(’loan’)/Borrower

The submission’s ref property also lets you use an XPath expression that computes

the node that will be submitted. The default value of ref is / (forward slash).

166

Specifying a bind

Another way of stipulating which data you want to submit is by referencing a

model bind. This is done using the submission’s bind property.

By referencing a model bind, you specify the bind’s node set as the data you want

to submit. Furthermore, all of the limitations you placed on the bind are relevant

to the submission data. For example, if the bind indicates that certain of its nodes

are not valid, then those nodes would not be included in the submission, even

though they were part of the indicated node set.

You can specify a particular bind by referring to its id attribute. For example, if the

bind’s id property is loan_history, then the submission’s bind property should be

loan_history.

Setting which data is submitted using ref

To set the data to be submitted using ref:

1. In the XForms view, select the submission. You might need to expand the

model to see the submission.

2. In the Properties view, expand XForms and then click the ref property’s On

button.

3. Enter the reference.

Tip: In the Instance view, select the node that you want to use as the reference,

right-click and select Copy Reference. Paste the reference in the ref property.

Using the following instance as an example.

Borrower is a child node of LoanRecord. If you want to submit the Borrower node,

the ref value would be: instance(’loan’)/Borrower

Setting which data is submitted using bind

To set the data to be submitted using bind:

1. In the XForms view, select the submission. You might need to expand the

model to see the submission.

XForms 167

2. In the Properties view, expand XForms.

3. Click the bind property’s On button.

4. Enter the bind id. Remember, the submission id is the name of the submission.

The bind id is the name of the bind that contains the node set you want to

submit.

Setting the submission type

You must also set each submission’s method property. This property describes how

the submission will be performed. The method property can have either of three

values:

v post — Serializes the data and sends it as XML.

v get — Serializes the data and sends it as URL encoded data.

v put — Serializes the data and saves it as a file instead of submitting it.

To set the submission type:

1. In the XForms view, select the submission. You might need to expand the

model to see the submission.

v The submission’s properties are displayed in the Properties view.
2. In the Properties view, expand XForms and then from the method list, select

the submission method.

Setting the target URL for a submission

You set the submission’s target URL in the submission’s action property.

Note: The Designer supports both http: and https: protocols. If you are using the

put method and want to save your submission as a file, you must use the

file: scheme. This indicates the directory and file in which the submission

will be saved. For example: file:C:\Documents and Settings\curchen\
xforms\PO\instance.xml

There are some limitations on where you can save submission data. Put

submissions will fail if you try to save them to the following locations:

v The Program Files directory.

v The system drive, the Windows directory, or the Windows System

directory.

v Temporary directories.

v A directory outside the folder sub tree containing the originating file.

To set the target URL for a submission:

1. In the XForms view, select the submission. You might need to expand the

model to see the submission.

2. In the Properties view, expand XForms and then click the action property’s On

button.

3. Type the full path of the target URL (including the http:// prefix).

Note: You can only list one URL in the action attribute.

168

Creating a Submission button

A submission button lets the user submit the instance data to a processing server.

The button triggers the submission, and the data submitted is determined by

combining the filters for the button with the submission rules in the data model.

To create a submission button:

1. In the Palette, expand Standard Library.

2. Click Button (Submit).

3. Add the button to the page.

4. In the Properties view, expand XForms.

5. Expand submit.

6. Click the submission property’s On button and from the drop down list, select

the submission name.

For detailed information about XForms buttons, see the Workplace Forms XFDL

Specification document.

XForms Smartfill

Smartfill automatically fills out portions of a form in the Viewer. This is

accomplished by storing commonly used information, such as the user’s name and

address, on the user’s computer. The Viewer can then access this information at

any time, using it to automatically complete sections of forms that require it.

The first time the Viewer opens a Smartfill form, the user submits instance data

from the form which is then saved as an XML file on the user’s computer.

Thereafter, each time the Viewer encounters a form — be it the same form or a

new form — that uses the same instance, the Viewer retrieves the saved XML file

and automatically completes that section of the form for the user.

By default, when data is returned by the submission, it replaces the submitted

form. For example, when a user submits a form, the server often returns a reply

that indicates that the submission was received. Generally, this notice entirely

replaces the submitted form.

Instead of using Smartfill to simply replace the entire form, you can replace a

single instance or even ignore the returned data. This is done using the

submission’s replace property. This property indicates whether the returned data

should replace the entire form, a data instance, or be ignored.

Replace has three possible options:

v all — The returned data replaces the entire form.

v instance — The returned data only replaces the submitted instance.

v none — The returned data is ignored.

Using XForms Smartfill

In order to use Smartfill, you need the following:

In the form that will collect and submit Smartfill data:

v XForms items to store the data inputted by the user.

v A data instance to store the Smartfill data.

v A submission to collect user data and then store it on the user’s local machine.

XForms 169

v A Submit button to trigger the submission of the user data to be stored.

In the form that will display Smartfill data:

v XForms items to display the data previously inputted by the user.

v A data instance identical to the form that submitted the Smartfill data.

v A submission to retrieve and display the data stored on the user’s local machine.

Collecting and submitting Smartfill data

Smartfill automatically fills out portions of a form in the Viewer by retrieving

previously submitted data stored on a user’s local machine. Prior to using Smartfill

to display data, you need to create a form that collects and submits user inputted

data.

To collect and submit Smartfill data:

1. In the Instance view, design the data instance that will collect the Smartfill data.

2. Design the form’s presentation layer by adding the XForms items that will

collect the Smartfill data.

3. Bind the XForms items to the appropriate data nodes.

4. In the XForms view, create a submission.

5. In the Properties view, define the following submission properties:

a. Identification -> id = unique submission name

b. XForms -> ref = the name of the instance you created in step 1

c. XForms -> action = file:\\\[LocalHost] For example: file:\\\C:\temp\
name.xml

d. XForms -> method = put
6. Add a Trigger (Submit) button to your form.

7. In the Properties view, define the following submission button properties:

a. XForms -> submission = the id of the submission you named in step 5, a.

b. General -> sid = the button name

Next, you must create a form that will display the Smartfill data.

 Related concepts

 “XForms data instances” on page 131

 “XForms items” on page 138

 “XForms binding” on page 161

 “XForms submissions” on page 165

Displaying Smartfill data

Once you have designed and configured the form that collects and submits the

Smartfill data, you can create the form the will display the Smartfill data.

To display Smartfill data:

 1. In the Instance view, design the data instance that will display the Smartfill

data.

Note: This data instance must be identical to the instance that collects the

Smartfill data.

 2. Design the form’s presentation layer by adding the XForms items that will

display the Smartfill data.

170

3. Bind the XForms items to the appropriate data nodes.

 4. In the XForms view, create a submission.

 5. In the Properties view, expand Identification → id.

 6. Type a unique submission name.

 7. Expand XForms and in the ref property enter the name of the instance you

created in step 1.

 8. In the action property, type the value of the submitted file.

v The action value has to be identical to that of the submission that submitted

the Smartfill data. For example file:\\\C:\temp\name.xml
 9. In the method property, select get.

10. In the replace property, select replace.

11. In the XForms view, right-click the model and select Actions → Create send. If

your form contains more than one model, select the model that contains the

instance you designed in step 1.

v A send action is added to the model.
12. In the Properties view, expand XForms.

13. In the send action’s submission property, type the id of the submission you

named in step 6.

14. In the send action’s event property, select xforms-ready.

XForms 171

172

XML Model

Note: If you are creating a new form and want to add a data layer to it, you may

wish to consider using the W3C XForms 1.0 standard, supported by

Workplace Forms 2.6 and newer. For detailed information on XForms, see

“XForms” on page 129.

The XML Model separates the form’s data layer from the presentation (user

interface) layer. This is very useful because rather than having to parse an entire

XFDL form and then extract the user data you want to collect from the form, you

can use the XML Model to define what data to pre-populate in the form and what

user data to collect from the form.

Furthermore, you can bind individual nodes in the XML Model to one or more

XFDL items. This binding causes the layers to share data. If the value in one layer

changes, the other layer is updated to mirror that change.

Once submitted, the XML block that results from the XML Model can be easily

integrated with other XML processors.

To effectively use the XML Model you should have a thorough understanding of

both XML and your data model. As well, this document does not explain

everything about the XML Model. For detailed information about the XML Model,

see the Workplace Forms Using the XML Data Model and the Workplace Forms XFDL

Specification documents.

Note: You cannot have both an XML Model and an XForms model in the same

form; they are mutually exclusive.

XML Model components

The XML Model contains three core components:

v Data Instances — Data instances are arbitrary blocks of XML. An XML Model

may contain any number of data instances, and each instance is created to serve

a particular purpose. Additionally, each data instance can be linked to a button

on the form that will trigger the submission of that instance, stripping away the

rest of the form description. For detailed information about designing XML data

instances, see “Designing data instances” on page 175.

v Bindings — Each data instance has associated bindings. Bindings are used to

bind a data element to form items, ensuring that the two are synchronized; if the

value of one element changes, the other bound elements are updated to reflect

the changes. For detailed information about XML model binding, see “XML

Model binding” on page 177.

v Submissions — Each data instance may have an associated set of submission

rules. These rules control how a data instance is transmitted when it is

submitted for processing. This is an optional feature, and is only necessary when

you want to submit the data instance by itself, without the rest of the form.

There are many cases in which you may want to submit the entire form, and

then retrieve the data instance from the form during processing. This is

particularly true when you are using signatures on your forms. For detailed

information about XML model submissions, see “XML Model submissions” on

page 178.

© Copyright IBM Corp. 2003, 2006 173

Displaying XML Model views

You use the XML Model and XML Model Instance views to create a form using

XML model. However, the Designer’s default perspective does not display these

views.

To display the XML Model and XML Model Instance views:

1. Close the XForms and Instance views.

2. Click Window → Show View → XML Model.

3. Repeat steps 1 through 2, only this time select XMLModel Instance.

4. If you want to, drag and resize the views.

Tip: You can save this combination of views as a user-defined perspective. The

advantage of doing this is that you can easily alternate between the Designer

perspective (that has XForms views) and this perspective (that has XML Model

views). For detailed information about creating a user-defined perspective, see

“Creating user defined perspectives” on page 182.

Creating an XML Model

When creating an XML Model, it is a good idea to create each data instance, along

with its associated bindings and submission rules, in turn, following these steps:

1. Define the data instance — The first stage is to define the structure of the data

instance. In this stage, you define the structure of the data instance by adding

elements and attributes to it. You must thoroughly understand XML and the

data structure you want to create to complete this stage.

2. Bind the data instance elements to the form — The second stage is to bind the

data instance to the form. This maps individual data elements to one or more

form items, so that they share data.

3. Set the submission rules — Finally, you can define the submission rules for

the instance if you intend to submit the data separately. These rules determine

whether the form is filtered, and sets other submission-related properties.

Adding an XML Model to a form

In the XML Model view, right-click No XML Model Exists and click Adds XML

Model to the form.

The Designer adds an XML Model and a data instance to the form.

Adding data instances to the XML Model

When you add an XML Model to a form, by default a data instance is also added.

Depending on what data you want the form to collect and submit, you might need

to add more data instances to the XML Model. For example, one data instance can

contain all the user-inputted information that is to be submitted, while another

data instance can contain the user preference data.

To add another data instance to the XML Model:

In the XML Model Instance view, right-click and click Create XML Model

Instance.

174

The Designer adds an instance to the XML Model.

Since your form now has more than one data instance, you must name the new

instance by giving it a unique id. For detailed information about naming data

instances, see “Naming data instances.”

Naming data instances

You name a data instance by giving it an id value.

The form’s first data instance is the default data instance and does not require an

id; however, any additional data instances must have a unique id. An instance id

cannot contain special characters (such as spaces, <, >, &, and so on).

To name a data instance:

1. In the XML Model view, choose the data instance you want to name.

2. In the Properties view, expand Miscellaneous.

3. Click within the id value field.

4. Type the name and press Enter.

Deleting a data instance

To delete a data instance:

In the XML Model Instance view, right-click the data instance you want to delete

and click Deletes the selected element.

Designing data instances

You design XML Model data instances in the XML Model Instance view.

Note: When you create an XML Model data instance, the instance is prefixed by

xforms. For example: xforms:instance ID =instance1. It is important to note

that this prefix standard was added to XML Model instances while W3C

XForms was in development; it is not the official W3C XForms 1.0 standard.

Prior to building your data instance, you should fully map the elements.

For example, if your form has two fields, a popup and a button:

- <instance id = yourInstanceName>

 - <document> node

 - form <global> node

 - <page> node

 - <field1> node

 - <value> node

 - <field2> node

 - <value> node

 - <popup> node

 - <popup result> node

Note: The button does not need to be mapped because it does not collect data

from the user.

XML Model 175

Adding elements to a data instance

To build your model, you add elements and attributes to the data instance.

To add an element to a data instance:

In the XML Model Instance view, right-click the data instance and select Add

Element.

An element — named instance1 — is added to your data instance.

Next, you would typically rename the element. Once you have done this, you can

continue to build the data instance by adding more elements to the data instance,

adding elements to this element or adding attributes to this element.

Renaming data instance elements

When you add an element to a data instance, the Designer generates an

auto-incremental element id. To make the elements of the data instance more

meaningful, you should rename the element’s id property value.

Note: An element id cannot contain special characters (such as spaces, <, >, &, and

so on).

To rename an XML Model data instance element:

1. In the XML Model Instance view, right-click the element and click Rename.

2. Type the value and press Enter.

Adding child elements to an element

You can continue to build your model by adding elements to other elements. An

element that is added to another element is considered a child element, while the

element that has the element added to it is known as the parent element.

To add a child element to a parent element:

1. In the XML Model Instance, right-click the element that you want to add the

child element to and click Add Element.

A child element is added to the parent element.

2. Repeat this process for every child element you want to add to the parent.

Now, you can continue to build the data instance by adding more child elements

to this child element, adding attributes to this child element or naming this child

element.

Deleting data instance elements

To delete a data instance element:

In the XML Model Instance view, right-click the element you want to delete and

click Deletes the selected element.

176

Changing the namespace of data instance elements

If you want to validate an element against a certain schema or your server expects

the element to be in a certain schema, you can change the element’s namespace.

To change the namespace of an element:

1. In the XML Model Instance view, right-click the element whose namespace you

want to change and click Change Namespace.

The schemas you can choose are listed.

2. From the list, select the namespace.

Adding attributes to data instance elements

To add an attribute to a data instance element:

In the XML Model Instance view, right-click the element that you want to add an

attribute to and click Add Attribute.

Now, you can either rename the attribute or add a value to the attribute.

Renaming attributes

To rename an attribute:

1. In the XML Model Instance view, right-click the attribute you want to rename

and click Rename.

2. Type a name for the attribute and press Enter.

Note: An attribute id cannot contain special characters (such as spaces, <, >, &,

and so on).

Adding a value to an attribute

To add a value to an attribute:

1. In the XML Model Instance view, double-click the attribute that you want to

add a value to.

2. Type a value and then press Enter.

Converting an attribute to a namespace attribute

If you want to define a namespace to create elements in that namespace, you can

convert an attribute into a namespace attribute.

To convert an attribute to a namespace attribute:

In the XML Model Instance view, right-click the attribute you want to convert and

click Convert to Namespace Attribute.

XML Model binding

Once you have completed modelling the data instance, each data node in the data

instance can be mapped to one or more XFDL items in the form. This creates a

bind between the data node and the XFDL item, ensuring that they are

synchronized; if the value of one changes, the other bound elements are updated

to reflect the changes.

XML Model 177

Binding a data instance node to the form

To bind a node to the form:

1. In the XML Model Instance view, select the data node (element or attribute)

you want to bind.

2. Drag it to the XFDL item that you want to bind.

The form item is now bound to the data node.

To view the bind:

In the XML Model view, expand bindings.

Once you have bound the data nodes to the form items, you can set the

submission rules if you want to submit the data instance separately.

Deleting the bindings for an instance

To delete a binding:

In the XML Model view, right-click the binding you want to delete and click

Deletes the selected element.

XML Model submissions

When submitting a form that contains an XML Model, you can submit either the

entire form or just a particular data instance. This makes it possible to send your

data instance directly to processing applications, rather than having to parse the

complete form and extract the data instance.

There are many cases in which you may want to submit the entire form, and then

retrieve the data instance from the form during processing. This is particularly true

when you are using signatures on your forms.

If you want to submit a data instance, you must create a set of submission rules.

These rules help determine what data is submitted, how the data is submitted, and

where the data goes. In addition to submission rules, you must also create a

submission button that is linked to the rules.

Each data instance may have an associated set of submission rules.

Adding submissions to an XML Model

To add a submission to an XML Model:

1. In the XML Model view, right-click XML Model and select Create

Submissions.

2. Right-click submissions and click Create submission.

The Designer adds a submission to your XML Model.

Now, you can name the submission’s rules by setting the submission properties.

Setting the submission rules

The submission rules define what data is submitted, how the data is submitted,

and where the data goes. You define submission rules by setting the submission’s

properties.

To set the submission rules:

178

1. In the XML Model view, select the submission whose rules you want to set.

2. In the Properties view, expand Miscellaneous.

3. Set the submission’s properties. For detailed information about submission

properties, see “Submission properties.”

Deleting submissions

To delete a submission:

In the XML Model view, right-click the submission you want to delete and click

Deletes the selected element.

Submission properties

You name the submission rules by setting the submission’s properties. Once set,

the rules determine what data is submitted, how the data is submitted, and where

the data goes. The submission properties are the following:

id Optional: Names the submission rule. If your form has more than one

submission, the id must be unique. When you add a submission to the

XML model, the Designer auto-generates an id, however, you should give

the rename the id a descriptive name to avoid confusion.

instanceid

Optional: Defines the instance to be submitted. By default, the first data

instance in a form is submitted. If you want to submit a different data

instance, you must define that instance using this property.

action Optional: Defines the target URL for the submission. You can only list one

URL in the action attribute. If you do not provide an action attribute, the

submission is sent to the first URL listed in the url property of the linked

submission button.

mediatype

Optional: Sets the content type of the HTTP submission. If you do not

provide a media type, it defaults to application/xml.

includenamespace

Optional: Restricts the inherited namespaces that are included in the

submission. By default, when you submit a data instance, the instance

includes all of the namespaces that it inherits. If you want to restrict the

data instance’s inherited namespaces, add them to this property.

ref Optional: Determines which portion of the instance is submitted. You can

also choose to submit the entire data instance or only a portion of the

instance. When submitting only a portion of the data instance, you must

use the ref property to identify the root element of the submission.

Adding an XML submission button

You must create an XML Model before you can set up an XML submission button.

A submission button is only necessary if you want to submit a data instance

without the rest of the form. The button triggers the submission, and the data

submitted is determined by combining the filters for the button with the

submission rules in the data model.

To add and configure an XML submission button:

 1. Add a button to your form.

XML Model 179

2. In the top-right corner of the Properties view, click

.

 3. Click Show Advanced Properties.

 4. In the Properties view, expand General.

 5. Click within the value field.

 6. Type the value you want to store in the form when the user selects the choice

and press Enter. This value will display as the button label

 7. Set type to submit or done.

 8. Click within the url value field.

 9. Type the URL to which the data will be submitted. This must be a complete

URL, and may use any of the following schemes: http, https, or file.

10. Expand Transmit.

11. Set transmitformat to application/xml;id=″SubmissionID″.

12. Within the SubmissionID quotes, enter the id of the submission.

By including the name of the appropriate submission rules, you link the

button to that set of rules.

180

Customizing the Designer interface

You can customize many Designer elements including:

v Hot keys

v The Palette

v Perspectives

v Exporting custom objects.

For detailed information on customizing the Eclipse Workbench, see Customizing

the Workbench in the Eclipse Workbench User Guide (Help → Help Contents).

Customizing hot keys

For detailed information about customizing shortcut keys, see Keys in the Eclipse

Workbench User Guide (Help → Help Contents).

Customizing the Palette

You can customize the following Palette features:

v The layout of the button icons

v The button icon size

v Add a User Object Library

Selecting a Palette layout

The Palette’s layout setting controls how the icons and names of the item buttons

are displayed in the Palette’s libraries. You can choose one of the following layout

options:

v Columns — Icons and names are displayed in two columns.

v List — Icons and names are displayed in a list.

v Icons Only — Only the icons are displayed.

v Details — Icons, names and descriptions are displayed in a list.

Note: The Palette’s current layout is marked by a check.

To change the Palette layout:

Right-click the Palette, point to Layout and then choose the desired layout. To

revert to the smaller icon size, clear the check box.

Using large button icons

You can increase the default button icon size, making the icons easier to see.

To use large button icons:

Right-click the Palette and click Use large icons.

© Copyright IBM Corp. 2003, 2006 181

Creating your own custom library

You can create your own custom library containing commonly used items to drag

and drop onto your canvas. These saved items or group of items are saved as

objects and can then be reused in any forms you are developing.

This is useful if you use an item or group of items often and you want to maintain

design standards in another form.

1. Click Windows → Preferences to open the Preferences window.

2. In the left column, expand Workplace Forms.

3. Click Form Object Library.

4. Click New to add Directories of object items to add to the palette User Object

Library.

5. Browse to the directory of object items you want to use.

Multiple directories can be used from your local drive and shared network

computers.

6. Click OK.

v If you want to change the order of the object libraries displayed in the

palette, click Up and Down.

v If you want to remove a directory of object libraries listed in the palette,

select the directory and then click Remove.

v If you want to restore directories of your object items listed in the palette,

click Restore Defaults.

7. Click OK to close the Preference window.

Note: If you currently have a form open, you must reopen that form before seeing

the changes in the palette.

Tips:

If you want to convert these objects into XForms objects, see “Adding XForms

support to an existing form” on page 130.

To expand or collapse Palette libraries, see “Pinning Palette libraries” on page 8

For detailed information about exporting objects, see “Exporting objects” on page

183.

Creating user defined perspectives

The Designer’s default perspective is the Designer perspective. If you have

modified a perspective by adding, deleting, or moving (docking) views, you can

save your changes as a user-defined perspective for future use. For detailed

information about perspectives, see Eclipse Workbench User Guide (Help → Help

Contents).

To create a user-defined perspective:

1. Modify the Designer perspective by adding, deleting or moving views.

2. Select Window → Save Perspective As.

3. Name the perspective and then click OK.

182

The Designer perspective was designed to include the views and editors that are

required for form design using XFDL and XForms. If you use XML model, you

could create an XML Model perspective that includes the XML Model and XML

Model Instance views but excludes the XForms and Instance views.

Exporting objects

You can save an item or group of items as an object. You can then reuse that object

in any forms you are developing, simply by importing the object into your form.

This is useful if you use an item or group of items often.

To export an object:

1. On the canvas, select the items you want to export as an object.

2. Click Edit → Export Objects to open the Exporting Objects window.

3. Click the Form Object Library Path field’s Browse button.

4. Browse to the directory containing the object items. You can use either:

v local directories

v shared network directories

Note: Users can change what object items are stored in these directories by

opening an Explorer window and adding or removing files. These

changes are reflected in the Palette library the next time you open a

form.

5. In the Form Object File Name field, type the name the object you want to

export. This name will be placed on the library button.

6. The rest of the Exporting Objects window’s fields are optional.

7. Click OK to create the object. A new library is displayed on the Palette and

your new object is available in that library.

Note: If you want to use your own icons, use the following specifications:

v Small Icon — 16 x 16 pixels

v Large Icon — 24 x 24 pixels

If you do not specify a Palette Drawer Name the object item will be

placed into the User Object Library.

For detailed information about

For detailed information about creating your own object library, see

“Creating your own custom library” on page 182.

Customizing the Designer interface 183

184

Appendix A: Accessibility

The Designer includes a number of features that make it more accessible for people

with disabilities.

Keyboard input and navigation

v Keyboard focus — The position of the keyboard focus is highlighted, indicating

which view window is active.

v Toolbar icons — Each view has its own toolbar. All toolbar controls display

tooltips. Icon images used in toolbars and menus are consistent.

Keyboard shortcut keys

Use the keyboard to access functions.

In general, keyboard access conforms to standard Microsoft Windows guidelines.

Mnemonics for functions such as menu items are underlined; you can access such

functions by holding down the Alt key and pressing the underlined letter key. For

example, you can open the File menu from the keyboard by holding down the Alt

key and pressing F.

The Designer allows you to customize your keyboard shortcuts by selecting

Windows → Preferences and expanding General → Editors → Keys. A full listing of

functions is listed. For detailed information on customizing keyboard shortcuts, see

the Eclipse Workbench User Guide (Help → Help Contents).

Features for accessibility display

A number of features enhance the user interface and improve accessibility for users

with low vision. These enhancements include support for the following:

v High-contrast mode — The Designer supports the high-contrast mode option

that is provided by the operating system. This feature supports a higher contrast

between background and foreground colors.

v Font settings — The Designer inherits the operating systems settings that you

specify for the color, size, and font of text in menus and dialog windows.

v Color settings — The Designer inherits the operating system settings for view or

window toolbar colors.

Accessible documentation

This document is available in XHTML format within an IBM Eclipse Help System

(information center) at: http://publib.boulder.ibm.com/infocenter/wf/v2r6m1/
index.jsp. For detailed information on accessibility features of the information

center, see the information center Welcome page.

© Copyright IBM Corp. 2003, 2006 185

http://publib.boulder.ibm.com/infocenter/wf/v2r6m1/index.jsp
http://publib.boulder.ibm.com/infocenter/wf/v2r6m1/index.jsp

186

Appendix B: Options

What is referred to as a property in the Designer, is referred to as an option in

XFDL.

For detailed information about all options, see the Workplace Forms XFDL

Specification document.

acclabel

Defines a message that is available to active screen readers. When the focus

shifts to the item containing the acclabel, the message is read aloud by the

screen reader. The message should contain additional information about

the item to assist users with vision impairments. The text entered in this

option will not be displayed in the Viewer.

activated, focused, and mouseover

Are not usually declared by the form developer. Instead, they are set for

each item by forms viewer software based on system events. Under certain

circumstances activated and focused can be set by the form developer.

active Specifies whether an item is active or inactive. Inactive items do not

respond to user input and, if possible, appear dimmed. For example, an

inactive check box will be dimmed and the user will not be able to select

or deselect the box.

bgcolor, fontcolor, labelbgcolor, and labelfontcolor

Specifies the colors for an item or its label using either predefined names

or RGB (Red Green Blue) triplets.

border and labelborderwidth

Defines whether an item or its label is displayed with a border. Borders are

drawn as a three dimensional effect.

colorinfo

Records the colors used to draw the form when a user signs it. This option

is only created if the user is allowing the operating system colors to

override the color settings in the form. This is most common for users with

vision disabilities who may set the operating system colors to provide

better contrast between elements on the screen. When the operating system

colors override those set by the form itself, it is useful to create a record of

those colors so that the appearance of the document, when signed, can be

recreated.

constraints

This property group can be used to force user input to meet certain

criteria. For example, you can specify that an entry must fall within a

certain range, be a certain length, match a template you create, or be in the

appropriate case.

coordinates

Records the position of the mouse pointer on an image. The image must

exist in a button item. The recording occurs when a user selects (i.e. clicks)

the button using the mouse pointer. The position is an intersection on an

unseen grid overlaying the image. The points along each axis of the grid

range from zero (0) through 1000 with position 0, 0 occurring in the

button’s top left corner. The coordinates map the intersection closest to the

mouse pointer’s position.

© Copyright IBM Corp. 2003, 2006 187

data Stores an information object such as an image, a sound, or an enclosed file

in an XFDL form. Whenever any of these objects are added to a form, the

data that describes the object is stored in a data item. A data item can only

store the data from a single object. Data in data items must be encoded in

base64 format. Data items are created automatically when files are enclosed

in a form. Enclose files using items with a type option setting of enclose.

datagroup

Provides a way of associating related data items to each other and to

certain other items. There are two ways of using this option. In the first

case, it enables you to create a group of data items, called a datagroup. In

the second case, this option enables you to reference such a datagroup

from button, action, or cell items. This option is most often used to group

file enclosures. For example, you can use this feature to create folders with

which users can organize their enclosures. Each enclosed file can belong to

several datagroups, and each datagroup can contain several enclosed files.

datatype

This property determines what kind of information the item should accept.

For example, if you set a field’s datatype to Dollar, then it will accept only

dollar values (whole or decimal numbers) as input.

delay Delays the execution of an automatic action or specifies an automatic

action repeat factor. Repeated actions stop when the page containing the

action definition closes. Define automatic actions using an action item.

dirtyflag

Alerts the form viewing program to the changed status of the form.

Dirtyflag records whether the form has been updated since the last save or

submission. If the user attempts to close the form when the dirtyflag is set

to on, the user will first be prompted to save their changes.

 The dirtyflag is set to on whenever the user makes a change to the form.

Such changes include typing information into the form, selecting choices in

lists or with radio buttons, and so on. The dirtyflag is set to off whenever

the user saves or submits the form.

 Note that the dirtyflag is not set by computed changes to the form. For

example, if the user clicks a button that triggers a compute, and that

compute copies information to a field in the form, the dirtyflag would not

be set. In these cases, the form should include additional computes that set

the dirtyflag.

 If necessary, the save prompt can be disabled by using a compute to set the

dirtyflag to off.

 This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is

maintained only during display or processing.

excludedmetadata

This option allows additional data about a signature to be included, but

never signed. This makes it possible to store the notarization of signatures

without interfering with other, overlapping signatures.

 For example, if Signer1 signs a form and then Signer2 affixes an

overlapping signature, you could not modify the first signature without

breaking the second. In this case, you would not be able to notarize the

first signature, since affixing the notarization would change the mimedata

of that signature and break the second signature.

188

The excludedmetadata provides a place to store the notarization for the

first signature without breaking the second signature. You can add

information to this option at any time, since the excludedmetadata option

is never signed.

filename

Identifies the name of an enclosed file. This name appears in the list of

enclosed files.

focused

Specifies whether an item, page, or form currently has the input focus. This

option is usually set by code outside XFDL, but can also be set by a

compute, provided that the compute is setting the focus of an item to on,

the item is on the same page, and the item receiving the focus is capable of

doing so. This option is not saved or transmitted as part of the form.

Instead, it is automatically created each time the form is read into memory,

and is maintained only during display or processing.

focuseditem

Specifies which item in the page currently has the focus. This option is not

saved or transmitted as part of the form. Instead, it is automatically created

each time the form is read into memory, and is maintained only during

display or processing.

fontinfo and labelfontinfo

Defines the character set, font name, point size, and font characteristics for

the text portion of an item’s value or label. Note that the font selected for

an item influences the item’s size.

Note: If you set the fontinfo option using the Font properties window,

setting Color or Strikethrough in the window will have no effect. To

set the font color, use the fontcolor option. Strikethrough text is not

supported by XFDL.

format

Allows edit checks and formatting options for field, label, list, popup, and

combobox items to be specified. It allows a mandatory status for signature

button items to be specified. For detailed information about button item

descriptions, see the Workplace Forms XFDL Specification document.

formid

Defines a unique identifier for the form, such as a serial number.

fullname

Used in a signature item to record the fully qualified name of the signer.

This name is retrieved from the digital certificate used to the sign the form.

group

Provides a way of associating related items. There are two ways of using

this option. In the first case, it enables you to create groups of cells or

radio buttons. In the second case, the group option enables you to

populate lists, popups, and comboboxes by referencing a group of cells.

Items with the same group reference are considered members of the same

group.

help Lets you create context-sensitive help for each visible item in a form. When

a user opens the form in the Viewer and moves their mouse pointer over

the item, the help message will appear. The item reference identifies the

help item containing the help message. There can be many items pointing

to the same help message.

Appendix B: Options 189

image

Associates an image with an item. The item reference identifies the data

item containing the image. This image replaces any text label if the viewer

is able to display images.

imagemode

Defines how the image will be displayed in the item. The image may be

clipped, resized, or scaled to fit the item.

itemfirst

Identifies the first item on the page, excluding the global item. An item is

first when it appears first in the build order (in other words, it is first in

the XFDL text). This option is not saved or transmitted as part of the form.

Instead, it is automatically created each time the form is read into memory,

and is maintained only during display or processing.

itemlast

Identifies the last item on the page, excluding the global item. An item is

last when it appears last in the build order (in other words, it is last in the

XFDL text). This option is not saved or transmitted as part of the form.

Instead, it is automatically created each time the form is read into memory,

and is maintained only during display or processing.

itemlocation

Serves two purposes:

v It specifies the location of an item in the page layout.

v It lets you set the size of the item, either in relation to another item, or

in absolute terms.

Itemlocation offers three ways to position items on the page: absolute

positioning, relative positioning, and offset positioning. Absolute

positioning anchors the top left corner of an item to a particular location

on the page, using an x-y coordinate. For example, you might place an

item 10 pixels in from the left margin, and 10 pixels down from the top of

the page. Relative positioning places items on the page in relation to one

another. For example, it might place one item below another. Finally, offset

positioning allows you to place an item on the page relative to another

item, and then move it a set amount. For example, you might place an

item below another, and then move it 10 pixels to the right.

 Itemlocation also provides two ways to the set the size for an item: relative

positioning and extent sizing. Relative positioning allows you set the size

of an item relative to another item on the page. For example, you might

expand an item so that its right edge lines up with the right edge of a

different item. Extent sizing allows you to set the absolute size of an item

in the pixels. For example, you might set an item to be 100 pixels wide and

30 pixels tall.

 Note that you can also combine these methods for positioning and sizing.

For example, you might place an item on the form using absolute

positioning, and then place a second item below the first using relative

positioning.

itemnext

Identifies the next item on the page, excluding the global item. An item is

next when it appears next in the build order (in other words, it is next in

the XFDL text). This option is not saved or transmitted as part of the form.

Instead, it is automatically created each time the form is read into memory,

and is maintained only during display or processing.

190

itemprevious

Identifies the previous item on the page, excluding the global item. An

item is previous when it immediately precedes the current item in the

build order (in other words, it comes immediately before the current item

in the XFDL text). This option is not saved or transmitted as part of the

form. Instead, it is automatically created each time the form is read into

memory, and is maintained only during display or processing.

Note: Avoid using a compute that references itemprevious from within an

item that directly follows a container item (for example, a pane or

table) or a controlled item (for example, a checkgroup or

radiogroup) in the form’s build order . Instead, use an explicit

reference to the item. If you do use an itemprevious compute in this

situation, the Designer will not evaluate the compute in the same

way that the Viewer will.

justify

Controls whether text in the item should be left, center, or right justified.

keypress

Contains the last keystroke made by the user in the focused item, page, or

form. A keypress option is ignored if no keypress has been established at

the level of focus. If the value of a keypress option is ignored at the item

level, it passes up to the page level, and if ignored at the page level, it

passes up to the form level. This option allows for the creation of a default

button (shortcut key) on a page or a form. This option is not saved or

transmitted as part of the form. Instead, it is automatically created each

time the form is read into memory, and is maintained only during display

or processing.

label Defines a static text message or an image to display on the form. If both an

image and a text message are defined for the label, the image takes

precedence in viewers able to display images.

labelborder

Defines whether there is a border around the label specified in the label

option.

last Identifies the last item in a repeat, group, or switch. This is the item that

receives the focus when the user tabs backward into a group, a particular

case, or a new row in a repeat.

 This option affects the tab order in the following ways:

 — When the user tabs backward into a table or pane, the focus goes to this

item. In the case of a table, the focus goes to this item in the last row.

 — When the user tabs backward from the beginning of a row, the focus

goes to this item in the previous row or to the item that precedes the table

or pane.

 — When the user tabs forward from this item, the focus goes to the next

row or to the item that follows the table or pane.

layoutinfo

This option records location information for all visible signed items. A hash

is taken of each page containing a signed item, and this hash includes

positioning information for all the signed items relative to each other in

those pages.

Appendix B: Options 191

linespacing

This option adjusts the spacing between lines of text. This sets on offset

value, which will add to or subtract from the default spacing. For example,

a value of 1 will add one pixel to the space between each line, while a

value of -1 will remove one pixel from the space between each line.

mimedata

Contains the actual data associated with a data item or a signature item. It

can be binary data or the contents of an enclosed file. The data is encoded

in base64 format, so that even forms containing binary data can be viewed

in a text editor. When the data is needed by the form, it is decoded

automatically from base64 back to its native format. Data may also be

compressed before base64 encoding, allowing an item to store a larger

block of data.

mimetype

Defines the MIME type of the data stored in a data item.

next Identifies the item to receive focus when a user tabs ahead from the

current item. If a user tabs ahead from the last item on the page, the tab

cycles within the same page, beginning with the first item on the page.

Only modifiable or read only items can receive focus.

pageid

Defines a unique identifier for a page, such as a serial number.

pagefirst

Stores a reference to the global item on the first page of the form,

excluding the global page. A page is first when it appears first in the build

order (in other words, it is first in the XFDL text).

 This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is

maintained only during display or processing.

pagelast

Stores a reference to the global item in the last page of the form, excluding

the global page. A page is last when it appears last in the build order (in

other words, it is last in the XFDL text).

 This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is

maintained only during display or processing.

pagenext

Stores a reference to the global item in the next page in the form, excluding

the global page. A page is next when it appears next in the build order (in

other words, it is next in the XFDL text).

 This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is

maintained only during display or processing.

pageprevious

Stores a reference to the global item in the previous page in the form,

excluding the global page. A page is previous when it immediately

precedes the current page in the build order (in other words, it is

immediately previous in the XFDL text).

 This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is

maintained only during display or processing.

192

presentation

This property group formats how the data is displayed. For example, if the

data type is Dollar, you can set the presentation property to add a dollar

sign.

previous

Identifies the item to receive focus when a user tabs backwards, using

Shift+ Tab, from the current item. If the current item has a previous option,

the item indicated in that option is next in the reverse tab order. If the

current item has no previous option, the previous item in the build order

that can receive the input focus is next in the reverse tab order.

printbgcolor

Enables the form to be printed with a specific background color on a color

printer. This color can be the same as or different from the background

color shown on the screen. On black and white printers, grayscaling is

used.

printing

Indicates whether the form is currently printing. This value toggles from

off to on just before printing. Any computes that rely on this option are

updated before the form prints. This allows you to make computed

changes to the form just before it is printed.

 This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is

maintained only during display or processing.

printfontcolor

Enables the item to be printed with a specific font color on a color printer.

This color can be the same as or different from the font color shown on the

screen. On black and white printers, grayscaling is used.

printlabelbgcolor

Enables an item’s built-in label to be printed with a specific background

color on a color printer. This color can be the same as or different from the

background color shown on the screen. On black and white printers,

grayscaling is used.

printlabelfontcolor

Enables an item’s built-in label to be printed with a specific font color on a

color printer. This color can be the same as or different from the font color

shown on the screen. On black and white printers, grayscaling is used.

printsettings

Determines the settings that will be used when the form is printed. The

user can be allowed to change these defaults, or the form can be set so that

it will always follow the defaults.

printvisible

Determines whether an item should be visible when the form is printed.

Has no effect on the visibility of the item on the screen.

readonly

Sets the item to be read only, so that users can read information in the item

but cannot change that information.

requirements

Specifies one or more requirements that must be satisfied before the form

will function properly. For example, a form may require a Java Virtual

Machine to run correctly. You can use the requirements feature to check for

Appendix B: Options 193

the availability of a particular class, function call, or Java Virtual Machine.

If the requirement is not met, the user will receive a customizable error

message that explains the problem.

rtf Stores the rich text value for rich text fields.

Note: Do not use the editor associated with the rtf property/option (that

is, within the Properties view, the editor displayed when you click

within the rtf field). The rtf option is for storing the rich text

information entered by the end-user. Do not set this property/option

in the Designer.

saveformat

Specifies the format a form will be saved in. An XFDL form may be saved

in XFDL format or HTML format. Furthermore, the XFDL format may be

compressed using ASCII compression. The formats work as follows:

 — XFDL format saves the entire form definition, including the user input.

 — HTML format saves the form as a series of assignment statements for

each modifiable item, equating the item reference with the item’s value.

The only items included in the save are custom items and the following

modifiable items: check, field, list, popup, combobox and radio.

scrollhoriz and scrollvert

Control whether a text field item has horizontal and vertical scrollbars or

whether it wordwraps, allows vertical sliding, and so on.

signature

Contains a signature and the data necessary to verify the authenticity of a

signed form. It is created by a form viewer or other program when a user

signs a form (usually using a signature button). The signature item

contains an encrypted hash value that makes it impossible to modify the

form without changing the hash value that the modified form would

generate. To verify, one can generate the hash value and then see if it

matches the one in the signature.

signatureimage

Points to a data item, identifying it as the data item into which the

captured signature image is placed. Used only with image-based digital

signatures (such as Silanis).

signdatagroups

Specifies one or more datagroups, as defined by the datagroup option, that

the signature will either keep or omit. This filters data items belonging to

that datagroup, but does not filter any action, button, or cell items. For

example, if you had an enclosure button containing references, you might

set a filter to omit the References datagroup, which would omit all data

items in that group.

 signdatagroups has the following properties:

v filter — Specifying keep will include datagroups in the datagroup

reference list (Refs) with the signature and omit those that are not in the

list. Omit will not include the datagroups specified in the datagroup

references list from the signature; however, it will include all of those

that are not in the Refs list.

v Refs — A string that identifies a datagroup whose data items will be

filtered. In the Properties view, click

to add a datagroupref item.

194

signdetails

Specifies which certificate attributes are shown to the user when they are

choosing a certificate to sign the form, and defines the filters used to select

the available certificates when the user is signing a form. For example, the

signdetails option could specify that only those certificates with a common

name that begins with “Bob” are shown, and that only the owner’s

common name and e-mail address are shown.

 signdetails has the following properties:

v datacolumns — Specifies a list of certificate attributes that the user sees

as they select a certificate to sign a form.

v filteridentity — Specifies a list of certificate attributes (tag) and values

(value) that filters certificates to determine which certificates are

available to the user for signing purposes. In the Properties view, click

in the Value column for Filter List property to add a filter property.

tag is a string that contains the names of the attribute you want to use to

filter the available certificates. Value is a string used to compare with the

tag. Use an asterisk character (“*”) as a wildcard for multiple characters

and a question mark character (“?”) as a wildcard for a single character.

The following is a list of case-sensitive attributes for common certificates:

– Version — The version of the specification that the certificate follows.

– Serial — The certificate’s serial number.

– SignatureAlg — The algorithm used by the certificate Authority to

sign the certificate.

– BeginDate — The date the certificate became valid.

– EndDate — The expiry date for the certificate.

– PublicKey — The certificate’s public key.

– FriendlyName — The certificate’s friendly name.

– Subject: CN — The certificate owner’s common name.

– Subject: E — The certificate owner’s e-mail address.

– Subject: T — The certificate owner’s title.

– Subject: L — The certificate owner’s locality.

– Subject : ST — The certificate owner’s state of residence.

– Subject: O — The organization to which the certificate owner belongs.

– Subject: OU — The name of the organizational unit to which the

certificate owner belongs.

– Subject: C — The certificate owner’s country of residence.

– Subject: STREET — The certificate owner’s street address.

– Subject: ALL — The certificate owner’s complete distinguished name.

– Issuer: CN — The certificate issuer’s common name.

– Issuer: E — The certificate issuer’s e-mail address.

– Issuer: T — The certificate issuer’s title.

– Issuer: L — The certificate issuer’s locality.

– Issuer: ST — The certificate issuer’s state of residence.

– Issuer: O — The organization to which the certificate issuer belongs.

– Issuer: OU — The name of the organizational unit to which the

certificate issuer belongs.

– Issuer: C — The certificate issuer’s country of residence.

– Issuer: STREET — The certificate issuer’s street address.

Appendix B: Options 195

– Issuer: ALL — The certificate issuer’s complete distinguished name.

signer It is automatically generated and records the identity of the person who

signed the form. The setting of the signer option varies according to the

engine type used.

 v ClickWrap — The signer setting uses Accepted.

v CryptoAPI — The signer setting uses common name and e-mail.

v Entrust — The signer’s login identity.

v Generic RSA — The signer setting uses common name and e-mail.

v HMAC-ClickWrap — The value of the answer indicated by the

HMACsigner tag in the signformat option.

v Netscape — The signer setting uses common name and e-mail.

v signaturePad

v Silanis

signformat

Sets the details of the signature, including the mimetype to encode it, the

signature engine to create it, and special settings for the signature engine.

MIMEtype;engine;verifier;cval;delete;parameters

MIMEtype

Required. The MIME type used to store the signature information.

Typically, you should use application/vnd.xfdl.

engine

Required. The name of the signing engine to use (the default is Generic

RSA if nothing is specified). The types of signature engines you can

specify are: ClickWrap, CryptoAPI, Entrust, Generic RSA,

HMAC-ClickWrap, Netscape, signaturePad, and Silanis. The Generic

RSA signature engine includes CryptoAPI and Netscape. The

HMAC-ClickWrap refers to the Authenticated Clickwrap signature

engine.

verifier

Optional. A string that indicates which identifier to use when verifying

certificate chains during digital signature operations: Basic or DODJ12.

v Basic — Performs basic certificate verification. Basic is the default.

v DODJ12 — Performs strict certificate verification that complies with

the US Department of Defense requirements.

cval

Optional. Indicates whether the current value of computed operations

on the form are signed. Use this parameter when you want to sign

formulas, but not the value calculated by the formula. The default is

that they are signed (“on”). If you do not want them signed, set this

parameter to “off”.

delete

Optional. This flag sets whether the user can delete the signature. By

default, users can delete all signatures (“on”). If you want to prevent a

signature from being deleted, set this to “off”.

parameters

Depending on the signature engine you specify, your engine may

include additional parameters.

signgroups

Specifies one or more groups, as defined by the group option, that the

196

signature will either keep or omit. This filters any radio buttons or cells

belonging to that group, but does not filter list, popup, or combo box

items. For example, if you had a popup containing a cell for each State,

you might set the filter to omit the State group, which would omit all cells

in that group.

 signgroups has the following properties:

v filter — Specifying keep will include groups of cells in the groupref

reference list (Refs) with the signature and omit those that are not in the

list. Omit will not include the grouprefs specified in the group references

list from the signature; however, it will include all of those that are not

in the Refs list.

v Refs — A string that identifies a group whose cell items will be filtered.

In the Properties view, click

to add a groupref item.

signinstance

Specifies what XForms instance data is filtered for a particular signature.

Filtering instances means keeping or omitting specific data from each data

instance. For example, you might set the filter to omit any data that is not

sent to the server.

 When instance data is omitted from a signature but the associated user

interface elements are signed, the user can still enter data into those

elements. Furthermore, the overlap and layout tests are not performed on

those items. This leaves them free to change certain characteristics, such as

size (for expanding tables or fields), to accommodate the user input. This

facilitates signing the presentation layer of a form while leaving the actual

data open to change.
signinstance has the following properties:

v filter — Specifying keep will include groups of cells in the Dataref

reference list (Refs) with the signature and omit those that are not in the

list. Omit will not include the groups of cells specified in the references

list from the signature; however, it will include all of those that are not

in the Refs list.

v Refs — A string that identifies a type (element tag name) of items that

will be filtered. In the Properties view, click

to add an itemtype

item. This data reference has a model ID and an XPath. The XPath

reference is to the root of the data where to want to filter.

signitemrefs

Specifies individual items that are filtered for a particular signature.

Filtering an item reference means keeping or omitting specific items, rather

than all items of a particular type (see signitems). For example, you might

set the filter to omit BUTTON1 on PAGE1.

signitems

 Specifies which types of items filtered for a particular signature. Filtering

an item means keeping or omitting all items of a particular type, rather

than specific items (see signitemrefs). For example, you might set the filter

to omit all button items from the signature.

 signitems has the following properties:

v filter — Specifying keep will include types of options in the optiontype

reference list (Refs) with the signature and omit those options that are

not in the list. Omit will not include the optionstypes specified in the

optionstypes references list from the signature; however, it will include

all of those options that are not in the Refs list.

Appendix B: Options 197

v Refs — A string that identifies a type (element tag name) of options that

will be filtered. In the Properties view, click

to add an optiontype

item.

signnamespaces

Specifies which namespaces are filtered for a particular signature. Filtering

a namespace means keeping or omitting all of the form elements and

attributes that are in the specified namespace.

 For example, if a signnamespaces option specifies that the

http://www.PureEdge.com/XFDL/Custom namespace should be kept,

then all elements in that namespace are signed.
signnamespaces has the following properties:

v filter — Specifying keep includes all form items in the namespace URL

list with the signature. It omits all of those items not in the list. omit will

omit all form items that are not in the namespaces in the namespace

URL list from the signature, and it will only include those that are not in

the list.

v Refs — A string that identifies a namespace whose items will be filtered.

signoptions

Specifies which types of options are filtered for a particular signature.

Filtering options means keeping or omitting all options of a particular

type, rather than specific options (see signoptionrefs).

 signoptions has the following properties:

v filter — Specifying keep will include types of items in the itemtype

reference list (Refs) with the signature and omit those that are not in the

list. Omit will not include the itemtypes specified in the itemtypes

references list from the signature; however, it will include all of those

that are not in the Refs list.

v Refs — A string that identifies a type (element tag name) of items that

will be filtered. In the Properties view, click

to add a itemtype item.

signoptionrefs

Specifies individual options that are filtered for a particular signature.

Filtering option references means keeping or omitting specific options,

rather than all options of a particular type (see signoptions). For example,

you might set the filter to omit BUTTON1.value on PAGE1.

 signoptionrefs has the following properties:

v filter — Specifying keep will include options in the optiontype reference

list (Refs) with the signature and omit those that are not in the list. Omit

will not include the optiontypes specified in the option types references

list from the signature; however, it will include all of those that are not

in the Refs list.

v Refs — A string that identifies the option to be filtered. In the Properties

view, click

to add a Refs item.

signpagerefs

Specifies individual pages that are filtered for a particular signature.

Filtering pages means keeping or omitting a page and all of its contents.

 signnamespaces has the following properties:

v filter — Specifying keep includes all pages in the page reference list

with the signature. It omits all of those items not in the list. omit will

omit all pages that are not in the page reference list from the signature,

and it will only include those that are not in the list.

198

v Refs — A string that specifies the page to be filtered.

size Specifies an item’s size. It does not include external labels, borders, or

scroll bars. These are part of the bounding box size which is calculated

automatically. Examples of item size are the input area in a field item or

the height and width of the label in label and button items.

suppresslabel

Suppresses the built-in label for some items, so that the label is not shown

even if the label option or xforms:label option is set.

 This is most useful when you are using XFDL to wrap an XForm control

that includes labels that are not necessary in the visual presentation. For

example, you might not want to display the labels of items in a table.

 When the label is suppressed, the item is both displayed and printed as if

no label were present at all. This means that both the appearance and size

match an equivalent item with no label.

texttype

Sets whether a field contains plain text or rich text

thickness

Specifies the thickness of a line item. The unit of measurement is pixels.

transmitformat

Specifies the format of the form data submitted to a processing application.

An XFDL form can submit data in XFDL format or in HTML format.

Furthermore, the XFDL format may be compressed using ASCII

compression.

 XFDL format submits the entire form definition, including user input.

 HTML format submits just an assignment statement for each item equating

the item reference with the item’s value. The only items included are

modifiable items, custom items, and items with a transmit option setting of

all.

transmitdatagoups, transmitformat, transmitgroups, transmititiemrefs,

transmititems, transmitnamespaces, transmitoptionrefs, transmitoptions, and

transmitpagerefs

Work together to allow you to transmit form submissions.

triggeritem

Set in the form globals to identify which action, button, or cell activated a

form transmission or cancellation.

type Specifies whether the action, button, or cell item will perform a network

operation, print, save, digitally sign, and so on.

url Provides the url to a target, such as a file or application. Items containing

this option must have a type option setting of link, replace, submit, done,

or pagedone.

 The object identified must be one of the following:

 File — Used with a type option of link or replace. The file identified is

downloaded, and either displayed or saved. Examples of such files are

images, word processing documents, and XFDL forms.

 Application — Used with a type option of submit or done. The application

identified is initiated. A form processing application, such as a cgi or a

servlet, is an example of such an application.

Appendix B: Options 199

Item — Used with a type option of pagedone. The item identified, on the

page identified, receives focus. The item must be on another page.

 Form or Page Globals — Used with a type option setting of pagedone. The

focus moves to the first item on the page when the new form or page

appears. The form globals reference is global.global. The page globals

reference is <page sid> global for another page

 E-mail Address — Used with a type option of submit, done, link, or

replace. With a submit or done type, the form is attached to an e-mail

message, and that message is sent to the address in the url. With a link or

replace type, an e-mail message is created and sent, but the form is not

attached to the message. Depending on the settings you use, the user may

be able to add additional information to the e-mail.

value Reflects the contents of an item. Visually, this can take several forms,

depending on the item to which it applies. For example, the value option

in label items contains the label text; the value option in radio items

contains a status indicator; and the value option in list items contains the

scope identifer (sid) of the most recently selected cell (if it was a select

cell). An item’s contents will be stored in the form whenever a user saves

the form or submits it for processing. This is true even for inactive items

and items using the default value option setting (in this case, a value

option containing the default setting is added to the item’s definition).

visible

Determines whether the item should be shown to the user or made

invisible.

webservices

Defines the name of the Web services used by the form.

writeonly

Sets a field to be write only. This means that the user can type into the

field, but cannot read what is typed. Instead, each character is replaced by

a uniform symbol (such as an asterisk).

 This is useful if you are creating a password field.

custom option

Allows form designers to add application specific information to the form

definition. This is useful when submitting forms to applications requiring

non-XFDL information. An example of non-XFDL information might be an

SQL query statement. Custom options must not be in the XFDL

namespace.

200

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 201

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

202

Index

A
accessibility

adding help messages 55

actions 67

automatic 71

delete 158

insert 156

setindex 156, 157

submissions (XML Model) 179

toggle 151

Add Element (XML Model) 176

adding
a help message (XForms) 160

a hint message (XForms) 160

a value to an attribute (XForms) 137

an alert message (XForms) 159

attributes to an element (XML

Model) 177

attributes to elements (XForms) 137

bind to a model (XForms) 164

cases to a Switch 149

child elements (XForms) 136

child elements to an instance (XML

Model) 176

Choice (Item) 145

data instances (XML Model) 174

elements to an instance (XML

Model) 176

items (XForms), best practices 138

items to a case (XForms) 150

items to a table (XForms) 155

list items to List (Select) 146

list items to List (Select1) 146

sibling elements (XForms) 136

submissions (XForms) 165

submissions (XML Model) 178

Switch 149

table row (XForms) 156

text value to elements (XForms) 136

value to an attribute (XML

Model) 177

Web services to form 127

XForms 130

XML Model 174

advanced properties 53

alert message (XForms)
adding 159

aligning
aligning items 43

bounding box 37

expanding items 46

removing relative positioning 46

snapping to items 39

snapping to the grid 39

types defined 44

Appearance properties
visibility on/off 48

approval signatures 120

attachments 105

buttons 106

attributes
nodes (XForms) 134

attributes (XForms)
adding a value 137

overview 134

attributes (XML Model)
adding to a value 177

adding to an element 177

binding 178

converting namespace 177

renaming 177

audio help
adding messages 55

Help properties 54

Authenticated Clickwrap signatures 112

Authenticated Clickwrap signatures

button 115

automatic actions 71

B
background images 83

best practices
adding items (XForms) 138

binding items (XForms) 138

bind
adding to a model 164

binding (XForms) 162

bind property (XForms binding)
overview 162

binding
attribute (XML Model) 178

elements (XML Model) 178

items (XForms), best practices 138

label property (XForms) 140

nodes (XML Model) 178

repeat item 154

using the bind property

(XForms) 162

using the nodeset property

(XForms) 162

using the ref property (XForms) 161

XForms label property 140

XForms lists to a node set 143

XForms overview 161

XForms table 154

XML Model 177

binding (XML Model)
deleting 178

Bitmap 81

bound items (XForms)
highlighting 164

bounding box
aligning items 37

build order
changing order 42

pasting items 48

building
data instances (XForms) 134

data instances (XML Model) 175

buttons 67

buttons (continued)
about radio buttons 77

adding images 82

attachment 106

compress XFDL file 68

create radio button (XFDL) 77

delete table row 158

image-mapping 83

insert table row 156

link or replace 71

print 71

save or cancel 71

submission (XForms) 169

submission (XML Model) 179

submit 68

toggle between cases 150

types 67

C
C language

custom functions 101

Calculate property (XForms) 163

calendar
create 80

case
adding items (XForms) 150

adding to a Switch 149

Make Active 150

setting the default 150

cell
add to radio button (XFDL) 77

changing
namespace (XML Model) 177

Palette appearance 181

check box (XFDL)
create 76

when to use 75

check group list
displaying list choices 144

child elements (XForms)
adding 136

overview 134

child elements (XML Model)
adding to an instance 176

child nodes (XForms) 134

choice
adding to a CheckGoup 145

adding to a RadioGoup 145

calendar 80

Combobox 78

create a check button 76

creating box list 79

Palette items 75

popup lists 77

radio button (XFDL) 77

Clickwrap signatures 111, 114

Clickwrap, Authenticated 112

Clickwrap, Authenticated button 115

clipping images 82

© Copyright IBM Corp. 2003, 2006 203

closing
form 21

projects 13

views 8

code assist
editing source code 7

color
apply to item 53

background 52

grid 38

RGB 52

text 52

toolbar 52

Viewer error color 52

Viewer mandatory item color 52

Combobox
create list 78

compress
XFDL files 68

compressing
forms 19

Compute Wizard
assignment formula 86

calculation formula 86

calling custom functions 102

custom formula 97

function formula 88

functions defined 91

if/then/else formula 89

logical operators 90

using custom functions 101

conditional items (XForms)
overview 148

configuring
delete table row button 158

insert table row button 156

Constraint property (XForms) 163

constraints (XFDL)
defined 61

on data input fields 61

specifying data restrictions 61

context-sensitive help
adding to an item 54

Help properties 54

converting
namespace attributes (XML

Model) 177

XFDL items to XForms items 160

copying
data to another field 86

items 48

property settings 51

Create Submission (XForms) 165

creating
a table template row (XForms) 155

conditional items (XForms),

overview 148

data instance from schema

(XForms) 133

data instances (XForms) 132

delete table row button (XForms) 158

empty data instance (XForms) 133

forms 17

insert table row button (XForms) 156

labels (XForms) 139, 140

List (Select1) 146

model binds 164

creating (continued)
model binds (XForms) 164

multi-line fields (XForms) 141

password fields (XForms) 141

projects 13

single line fields (XForms) 140

submission button (XForms) 169

submissions (XML Model) 178

tables (XForms) 151

user defined perspective 182

XML Model Instance 174

XML Model, overview 174

creating data instances
from WSDL message 134

creating data instances (XForms)
from document 132

cropping images 82

CryptoAPI, Microsoft 110, 113

currency
formatting types 60

customizing
Designer 181

hot keys 181

Palette 181

perspectives 181

shortcut keys 181

cutting
items 48

D
data

constraints 61

copy data to another field 86

displaying, submitted 170

planning formulas 85

reformatting 63

data instances (XForms)
adding submissions 165

naming 134

overview 131

data instances (XML Model)
adding 174

building 175

deleting 175

naming 175

data submission (XForms)
overview 165

using bind property 167

using ref property 167

datagroupref 105

datatype
formatting input fields 59

date
create calendar 80

display current date 100

formatting types 60

default case
setting 150

defining
absolute align 43

absolute expand 46

alignment types 44

constraints 61

datatypes 60

expansion types 46

formula functions 91

defining (continued)
formula operators 96

formula reference types 97

if/then/else operators 90

list choices in the XForms list

item 144

presentation properties 63

relative align 43

relative expand 46

submissions rules (XML Model) 178

delete
action 158

deleting
binding (XML Model) 178

creating a delete table row

button 158

data instances (XML Model) 175

elements from an instance (XML

Model) 176

forms 22

formula 98

guides 40

items on form 48

list items in a Select (List) 147

list items in a Select1 (List) 147

projects 15

selected element (XML Model) 178

submission rules (XML Model) 179

table row 158

WSDL file 127

descriptions
form templates 20

Designer
canvas defined 6

customize 181

interface, overview 5

introduction 3

perspectives 5

designing
data instances (XForms),

overview 134

data instances (XML Model) 175

lists tips (XForms) 141

digital signatures 109

displaying
bound items (XForms) 164

list choices from a node 142

list choices in check group list 144

list items (XForms) 143

submission data 170

XML Model Instance view 174

XML Model views 174

dynamically displaying
list choices 142

E
e-mail

transmission of forms 68

editing source code
code assist 7

editors
Design 6

overview 6

Preview 6

Source 6

204

elements (XForms)
adding attributes to 137

adding text value to 136

removing 136

renaming 136

elements (XML Model)
adding to an instance 176

binding 178

deleting from an instance 176

renaming 176

enclosures
creating attachments 105

image file 81

view overview 10

encryption 108

Entrust signatures 110, 116

error messages
creating 55

Help properties 54

mandatory field 62

Problems view 9

example
display current date 100

formula 98

XForms table 153

expansion types
defined 46

exporting
forms 22

objects 183

F
field (XFDL)

formatting input fields 59

fields (XForms)
overview 140

file/folder
creating a project 13

linking to project 14

filtering
submissions (keep/omit) 70

types for signature 121

form
adding XForms support 130

changing build order 42

closing 21

compressing 19

compression 68

creating 17

creating project folders 13

cutting items 48

deleting 22

deleting items 48

embedding JAR file 102

exporting 22

importing 22

installing IFX files 102

opening 17

pasting items 48

planning formulas 85

recover previous version 21

renaming 19

route 68

routing 68

saving new name 19

setting global properties 19

form (continued)
transmission 68

upgrading 18

formatting
input data types defined 60

mandatory fields 62

presentation properties defined 63

specifying constraints 61

specifying type of data accepted 59

visibility 48

formula
advanced calculation 87

calculate items 87

calculate number or text 86

create custom function 97

delete 98

functions defined 91

if/then/else 89

if/then/else example 91

if/then/else operators 90

operators defined 96

planning 85

reference item types 97

sample 98

simple 86

sum 88

value equal to a function 88

when to use 85

functions
custom 101

custom overview 97

custom, planning 101

equal to 88

IFX install location 102

libraries 101

using custom functions 102

G
Generic RSA signatures 109, 112

get
submission type (XForms) 168

getting started 3

GIF 81

global form properties 19

grid
changing color 38

changing size 38

layout tool 38

showing 38

snapping 39

grouping
radio buttons (XFDL) 77

guides
creating 40

deleting 40

inserting onto a ruler 40

moving 40

overview 39

gzip
compress XFDL file 68

H
help

adding 160

help (continued)
adding audio help 55

adding context-sensitive help 54

adding message (XForms) 160

creating error messages 55

hint message (XForms) 160

message types 54

hiding
grid 38

items 40

page size 40

ruler 39

the Palette 8

highlighting
bound items (XForms) 164

hot keys
customizing 181

HTTP
transmission of a form 68

I
icons

closing project 13

large Palette 181

opening project 13

id
data instances (XML Model) 175

element (XML Model) 176

renaming attributes (XML

Model) 177

submissions (XML Model) 179

XForms Model 131

IFX
custom functions 101

install location 102

images
adding to button 82

adding to page 81

background image 83

changing modes 82

clipping 82

considerations 81

enclosing a file 81

enclosing an image file 81

form templates 20

mapping buttons 83

resizing 82

scaling 82

supported types 81

importing
forms 22

includenamespace
submissions (XML Model) 179

insert
action 156

insert action 156

inserting
creating table row button

(XForms) 156

guides on a ruler 40

item on page 37

Instance view
overview 10

instanceid
submissions (XML Model) 179

Index 205

interface
overview 5

invisible
items 48

items
adding context-sensitive help 54

aligning 43

changing build order 42

copying 48

copying property setting 51

creating error messages 55

cutting 48

displaying items to user 40

expanding/resizing 46

inserting onto a page 37

Palette types 29

pasting 48

resizing 41

selecting 41

setting properties 51

showing advanced properties 53

showing/hiding 40

snapping to 39

specifying type of data accepted 59

user object library 182

XForms 138

J
JAR

custom functions 101

embedding into form 102

install location 102

Java language
custom functions 101

JPEG 81

K
keep filtering 70, 122

L
label (XFDL)

formatting 59

labels (XForms)
binding 140

creating 139, 140

layout
bounding box 37

constraints defined 61

converting XFDL to XForms 49

copying items 48

creating guides 40

cutting items 48

deleting guides 40

deleting items 48

formatting input 59

grid color 38

grid size 38

layout overview 29

mandatory fields 62

moving guides 40

Palette item types 29

planning formulas 85

presentation properties 63

layout (continued)
reformatting users data 63

rulers and guides overview 39

showing grid 38

showing/hiding ruler 39

snapping to grid 39

snapping to item 39

specifying accepted data types 59

using grids 38

using spacers 45

visibility 48

libraries
calling custom functions 101

palette 7

pinning 8

system libraries 101

Viewer functions 101

link buttons 71

linking
resources to projects 14

List (Select)
creating 146

reordering list items 147

List (Select1)
adding list items 146

creating 146

reordering list items 147

list choices (XForms)
defining list items 144

displaying from a node 142

storing 144

list items
deleting 147

list items (XForms)
deleting 147

displaying 143

reordering 147

lists
create box lists 79

creating popup lists 77

formatting 59

types 75

when to use (XFDL) 75

lists (XForms)
binding to a node set 143

creating, overview 142

designing tips 141

overview 141

setting the selected value 144

logical operators
if/then/else 90

M
Make Active

case 150

mandatory fields
setting 62

mandatory signatures 125

maximizing
views 8

mediatype
submissions (XML Model) 179

Microsoft CryptoAPI signatures 110, 113

minimizing
views 8

model (XForms)
adding submissions 165

model binds (XForms)
overview 162

model item properties
overview 163

moving
guides 40

items 41

multi-line fields (XForms)
creating 141

N
namespace (XML Model)

changing 177

converting attributes (XML

Model) 177

naming
data instances (XForms) 134

data instances (XML Model) 175

submissions (XForms) 165

XForms Model 131

navigating
between pages 28

closing project 13

in projects 13

opening project 13

Navigator view
overview 9

Netscape signatures 110, 116

network
share form templates 20

no-lock signatures 120

node (XML Model)
binding 178

nodes (XForms)
overview 134

nodeset
binding (XForms) 162

numbers
formatting types 60

O
object library

users create 182

objects
exporting 183

omit filtering 70, 122

opening
forms 17

older form 17

projects 13

operators
formula operations 96

if/then/else 90

outline view
build order 42

selecting items 41

overview
bind (XForms) 162

bind property (XForms binding) 162

creating an XML Model 174

creating XForms lists 142

data submission (XForms) 165

206

overview (continued)
editors 6

Enclosures view 10

help messages (XForms) 159

Instance view 10

interface 5

interface views 8

model bind (XForms) 162

model item properties 163

Navigator view 9

nodeset property (XForms

binding) 161

Outline view 9

Problems view 9

Properties view 9

submission rules (XForms) 165

submissions (XForms) 165

submissions (XML Model) 178

tables (XForms) 153

XForms view 10

XML Model 173

XML Model components 173

XML Model Instance view 11

XML Model view 11

P
pages

adding images 81

design tips 25

hiding page size 40

inserting item 37

planning info 25

setting the size 26

showing page size 40

zooming 40

Palette 6

add user object library 182

bounding box around item 37

changing layout 181

choice items 75

customizing 181

hiding 8

icons, large 181

items types 29

libraries overview 7

pinning open libraries 8

showing 8

spacer item 45

parent nodes (XForms) 134

password fields
creating 141

pasting
items 48

perspectives
creating user defined 182

Designer 5

selecting 5

pixels
sizing/expanding items 46

planning
custom functions 101

form workflow 4

items on a form 3

visibility 48

when to use formulas 85

PNG 81

popup lists
creating 77

posting
submission type (XForms) 168

preferences
form templates 20

presentation
reformatting data 63

Preview 7

overview 6

printing
creating print buttons 71

Problems view
overview 9

projects
close/open 13

closing 13

creating 13

deleting 15

linking file or folder 14

navigator 13

opening 13

overview 13

renaming 14

Properties
copy settings 51

help message types 54

resetting to default 51

setting global properties 19

setting items 51

show/hide categories 53

showing advanced properties 53

submissions (XML Model) 179

view overview 9

XForms label 139

put
submission type (XForms) 168

R
radio button (XFDL)

creating 77

how they work 77

when to use 75

Readonly property (XForms) 163

recovering
form 21

ref
binding 161

submission (XML Model) 179

ref property
overview (XForms binding) 161

reference
formula types 97

relative align
defined 43

relative expand
defined 46

relative positioning
bounding box 37

Relevant property (XForms) 163

removing
elements (XForms) 136

items from form 48

relative positioning 46

renaming
attributes (XML Model) 177

renaming (continued)
elements (XForms) 136

forms 19

instance elements (XML Model) 176

projects 14

reordering
list items in a list (XForms) 147

Repeat 151, 153

repeat item
binding 154

replace buttons 71

replacing
submitted data 169

Required property (XForms) 163

resizing
expanding items 46

images 82

items 41

resource
linking to projects 14

returning
submitted data 169

root elements (XForms)
overview 134

root nodes (XForms) 134

routing
forms 68

RSA signatures 109, 112

rulers
inserting guides 40

overview 39

showing/hiding 39

S
sample

display current date 100

formula 98

save buttons 71

saving
forms 18

new file name 19

scaling images
imagemode property 82

schema based form design (XForms) 133

screen reader
adding help messages 55

select
XForms 141

Select (List)
deleting list items 147

setting the appearance 147

Select1 (List)
deleting list items 147

selecting
cases 150

items 41

Palette layout 181

perspectives 5

setindex
action 157

setindex action 156

setting
appearance XForms lists 147

bind properties (XForms) 162

data to be submitted using bind

(XForms) 167

Index 207

setting (continued)
data to be submitted using ref

(XForms) 167

default case 150

Select (List) appearance 147

submission rules (XML Model) 178

submission type (XForms) 168

target URL submission (XForms) 168

value from a list (XForms) 144

XForms label properties 139

shortcut keys
customizing 181

Show Advanced Properties 9

showing
items 40

page size 40

Palette 8

ruler 39

tab order 42

views 8

sibling elements (XForms)
adding 136

overview 134

sibling nodes (XForms) 134

sid
toolbar 52

Signature Pad signatures 117

signatures 107

approval 120

Authenticated Clickwrap 112

Authenticated Clickwrap button 115

Clickwrap 111, 114

digital 109

engines 109

Entrust 110, 116

filtering 121

Generic RSA 109, 112

mandatory 125

Microsoft CryptoAPI 110, 113

Netscape 110, 116

no-lock 120

properties 125

Signature Pad 110, 117

Silanis 111, 119

types 109

signing a form 108

Silanis signatures 111, 119

single line fields
creating 140

sizing
items in pixels 46

pages 26

Smartfill
overview 169

XForms 169

snapping
to grid 39

to item 39

source panel
overview 6

spacer
Palette item 45

standalone
labels (XForms) 140

starting up 3

storing
list choice (XForms) 144

string
formatting types 60

submission bind property (XForms)
submitting data 167

submission button
XML Model 179

submission button (XForms)
creating 169

submission ref property (XForms)
submitting data 167

submission rules (XML Model)
deleting 179

setting 178

submission type (XForms)
setting 168

submissions (XFDL)
filtering 70

submissions (XForms)
adding to a data instance 165

adding to a model 165

naming 165

overview 165

setting target URL 168

specifying binds 165

specifying nodes 165

submissions (XML Model)
action 179

adding 178

id 179

includenamespace 179

instanceid 179

mediatype 179

overview 178

properties 179

ref 179

submit button (XForms) 169

submit buttons (XFDL) 68

submitted data
displaying 170

submitting data (XForms)
using bind property 167

using ref property 167

sum
formula 88

SunRaster 81

support 130

Switch
adding 149

switching
between cases 150

perspectives 5

system libraries
shipped functions 101

T
tab order

changing build order 42

showing form flow 42

tab order overview 42

view menu 42

tables
XForms 151

tables (XForms) 151

creating 151

overview of manual setup 153

template
creating row (XForms) 155

images 83

object items 182

templates
description 20

preview image 20

using form templates 20

testing your form 7

text values (XForms)
overview 134

time
formatting types 60

toggle action 151

toggle between cases 150, 151

toggle case button 150, 151

creating 150

toolbar
build order 52

color 52

transmissions
HTTP or E-mail forms 68

transmitformat 179

Trigger (Button)
toggle between cases 150

Type property (XForms) 163

U
undo

moving item 41

upgrading
forms 18

uploading
attachments 105

URL
setting target (XForms) 168

user interface
Designer overview 5

XForms 138

V
viewing your form 7

views
close 8

Enclosures 10

Instance 10

maximize 8

minimize 8

Navigator 9

Outline 9

overview 8

Problems 9

Properties 9

show 8

XForms 10

XML Model 11

XML Model Instance 11

visibility
display items in Viewer 48

print items 48

visually impaired
adding audio help 55

208

W
warnings

Problems view 9

Web services
adding to form 127

overview 127

wizard
Compute Wizard 86

WSDL
adding to form 127

overview 127

WSDL messages
creating data instances 134

deleting 127

X
XFDL

changing Format constraints 61

compress format 68

converting to XForms 49

converting to XForms items 160

Format constraints defined 61

presentation properties defined 63

XForms
adding support to new form 130

adding to form 130

conditional items 148

converting XFDL items 49

creating 142

creating a table by wizard 151

creating empty data instance 133

creating tables manually 151

data instances, creating 132

data instances, creating from

document 132

data instances, creating from WSDL

message 134

data instances, overview 131

deleting WSDL file 127

fields, overview 140

items 138

label properties 139

lists 141

lists, overview 142

overview 129

schema based form design 133

Smartfill 169

support 130

table, adding items 155

user interface, overview 138

visibility 48

when to use 129

XForms Model
id 131

naming 131

overview 130

XForms view
overview 10

XML Model
adding 174

binding 177

Instance view overview 11

overview 173

submission button 179

view overview 11

XML Model views
displaying 174

Z
zooming

in/out of the page 40

Index 209

210

����

Program Number: 5724-N07

Printed in USA

S325-2589-00

	Contents
	Introduction
	Getting started
	Planning a form
	Designing a form

	Interface
	Perspectives
	Selecting a perspective

	Editor
	Design panel
	Source panel
	Editing source code using code assist

	Preview panel

	Palette
	Pinning Palette libraries
	Hiding and showing the Palette

	Views
	Showing, minimizing, maximizing or closing views
	Navigator view
	Outline view
	Properties view
	Problems view
	Enclosures view
	Advanced views
	Instance view
	XForms view
	XML Model view
	XML Model Instance view

	Projects
	Creating projects
	Opening and closing projects
	Opening projects
	Closing projects

	Creating project sub-folders
	Linking resources to projects
	Renaming projects
	Deleting projects

	Forms
	Creating forms
	Opening forms
	Upgrading forms
	Saving forms
	Saving a form with a new name
	Compressing forms
	Renaming forms
	Setting global form properties
	Creating form templates
	Customize your template images and descriptions
	Recovering previous versions of a form
	Closing forms
	Deleting forms
	Importing forms
	Exporting forms

	Pages
	Adding pages to a form
	Moving between pages
	Moving to any page
	Moving to the next page
	Moving to the previous page

	Sizing pages
	Setting page properties
	Setting properties for a single page
	Setting properties for all pages

	Ordering pages
	Deleting pages
	Providing navigation between pages

	Laying out items on a page
	Item types
	Standard Library items
	Object Library items

	Inserting items onto a page
	Arranging items on a page
	Bounding boxes
	Layout grids
	Showing or hiding the grid
	Changing the grid size
	Changing the grid color
	Snapping to the grid
	Snapping to items

	Rulers and guides
	Showing or hiding rulers
	Creating guides
	Moving guides
	Deleting guides

	Zooming and display
	Zooming the canvas
	Showing or hiding page edges
	Showing or hiding items

	Selecting items
	Moving items
	Resizing items
	Changing the build order of items

	Tab order
	Changing the tab order of items on a page

	Aligning items
	Alignment types
	Spacing items
	Removing relative alignment assignment

	Expanding items
	Expansion types

	Cutting, copying, pasting and deleting items
	Cutting items
	Copying items
	Pasting items
	Deleting items

	Visibility
	Converting XFDL items to XForms

	Setting item properties
	Resetting a property to its default value
	Copying a property setting from one item to another
	Changing colors
	Changing the background and text color
	Changing the toolbar color
	Changing the color of an item

	Showing or hiding categories
	Showing advanced properties
	Sorting properties in alphabetical order
	Help messages
	Adding context-sensitive help to an item
	Creating an error message for a field or combo box
	Adding accessibility messages

	Toolbars
	Adding a toolbar to a page
	Adding items to a toolbar
	Resizing a toolbar
	Copying a toolbar from one page to another

	Fields
	Creating a field
	Creating a field with a label
	Specifying the type of data to accept
	Data types

	Specifying the constraints on data
	Constraints types
	Setting up a mandatory field

	Reformatting input data
	Presentation types

	Changing scroll bars

	Buttons and actions
	Buttons
	Creating buttons
	Creating submit buttons
	Filtering submissions

	Creating link or replace buttons
	Creating save or cancel buttons
	Creating print buttons

	Automatic actions
	Creating automatic actions

	Lists and choices
	Creating check box lists
	Creating radio lists
	Creating popup lists
	Creating combo box lists
	Creating box lists
	Creating calendars
	Using lists to trigger actions

	Images
	Adding an image file to a form
	Adding an image to a button or label
	Resizing and cropping images on buttons and labels
	Image-mapping a button

	Adding a background template image

	Formulas
	When to use formulas
	Planning a formula
	Setting up simple formulas
	Setting one value to equal another (assignment)
	Performing a calculation based on two values (calculation)
	Performing a calculation based on two numbers or text values
	Performing a calculation based on two items on the form
	Performing a calculation based on an advanced calculation

	Summing values
	Setting an item value to equal a function
	Making decisions based on user input (if/then/else)
	If/then/else logical operators
	Example of an if/then/else formula

	Functions
	Operators and the order of operations
	Creating custom formulas
	References: Referring to other items and their options

	Deleting a formula
	Formula examples
	Automatically calculating compound interest factor
	Displaying the current date automatically

	Custom functions
	Creating custom functions
	Making custom functions available
	Distributing IFX files
	Embedding JAR file

	Using custom functions in the Compute Wizard

	Attachments
	Attaching files to a form
	Creating attachment buttons

	Signatures
	Signing a form
	Signature types
	Digital signatures
	Generic RSA signatures
	Entrust signatures
	Microsoft CryptoAPI signatures
	Netscape signatures
	Signature Pad signatures
	Silanis signatures
	Clickwrap signatures
	Authenticated Clickwrap signatures

	Creating signature buttons
	Creating a Generic RSA signature button
	Creating a Microsoft CryptoAPI signature button
	Creating a Clickwrap signature button
	Creating an Authenticated Clickwrap signature button
	Creating an Entrust signature button
	Creating a Netscape signature button
	Creating a Signature Pad signature button
	Creating a Silanis signature button
	No-lock signatures and approval signatures
	Creating no-lock signature buttons
	Creating approval signature buttons

	Signing portions of forms
	Creating a signature button that signs part of a form
	Signature filter properties

	Specifying the display for a signature button
	Making a signature button mandatory
	Signature properties

	Web services
	Adding Web services to a form
	Deleting an enclosed WSDL file from a form

	XForms
	Adding XForms support
	Adding XForms support to a new form
	Adding XForms support to an existing form

	The XForms model
	Naming an XForms model

	XForms data instances
	Creating an XForms data instance
	Creating a data instance from the current document
	Creating an empty data instance
	Schema-based form design
	Creating instances from WSDL messages
	Naming a data instance

	Building XForms data instances
	Adding child elements
	Adding sibling elements
	Renaming elements
	Removing elements
	Adding a text value to an element
	Adding attributes to an element
	Adding a value to an attribute
	XPath and nodes

	XForms user interface
	XForms items
	Creating XForms labels
	Setting the XForms item’s label property
	Creating standalone XForms labels
	Binding an XForms item label to a data node

	XForms fields
	Creating single line fields
	Creating multi-line fields
	Creating password fields
	Creating fields from instances

	XForms lists
	Creating XForms lists
	Displaying list items from a data node set
	Defining list items in the user interface
	Creating a list using XForms CheckGroup
	Creating a list using List (Select1)
	Reordering list items in a Select or Select1 list
	Deleting list items from a Select or Select1 list
	Setting the appearance of a Select (List)

	XForms conditional items
	Adding an XForms Switch item
	Adding Cases to a Switch
	Adding items to a case
	Setting the default case
	Creating toggle case buttons

	XForms tables
	Creating XForms tables using a wizard
	Creating XForms tables manually

	XForms help messages
	Adding an XForms alert message
	Adding an XForms help message
	Adding an XForms hint message

	Converting XFDL items to XForms items

	XForms binding
	Binding using ref or nodeset
	Binding using the ref property
	Binding using the nodeset property

	Binding using bind
	Binding using the bind property

	XForms model binds
	Model bind properties
	Creating model binds

	Highlighting bound XForms items

	XForms submissions
	Adding submissions to an XForms model
	Adding a submission to an XForms data instance
	Naming submissions
	Setting which data is submitted
	Setting which data is submitted using ref
	Setting which data is submitted using bind
	Setting the submission type
	Setting the target URL for a submission
	Creating a Submission button

	XForms Smartfill
	Collecting and submitting Smartfill data
	Displaying Smartfill data

	XML Model
	Displaying XML Model views
	Creating an XML Model
	Adding an XML Model to a form
	Adding data instances to the XML Model
	Naming data instances
	Deleting a data instance

	Designing data instances
	Adding elements to a data instance
	Renaming data instance elements
	Adding child elements to an element
	Deleting data instance elements
	Changing the namespace of data instance elements
	Adding attributes to data instance elements
	Renaming attributes
	Adding a value to an attribute
	Converting an attribute to a namespace attribute

	XML Model binding
	Binding a data instance node to the form
	Deleting the bindings for an instance

	XML Model submissions
	Adding submissions to an XML Model
	Setting the submission rules
	Deleting submissions
	Submission properties
	Adding an XML submission button

	Customizing the Designer interface
	Customizing hot keys
	Customizing the Palette
	Selecting a Palette layout
	Using large button icons
	Creating your own custom library

	Creating user defined perspectives
	Exporting objects

	Appendix A: Accessibility
	Keyboard input and navigation
	Keyboard shortcut keys
	Features for accessibility display
	Accessible documentation

	Appendix B: Options
	Appendix. Notices
	Trademarks

	Index

