IMS
Version 13

System Utilities
(November 5, 2018 edition)

<||I

IMS
Version 13

System Utilities
(November 5, 2018 edition)

<||I

Note
FBefore you use this information and the product it supports, read the information in ["Notices” on page 637/

November 5, 2018 edition.

This edition applies to IMS Version 13 (program number 5635-A04), IMS Database Value Unit Edition, V13.1
(program number 5655-DSM), IMS Transaction Manager Value Unit Edition, V13.1 (program number 5655-TM2),
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. vii
Prerequisite knowledge Vi
IMS function names used in this 1nformat10n A
How new and changed information is identified . . vii
How to read syntax diagramsviid
Accessibility features for IMS Version 13 B
How to send your comments.X

Part 1. Generation utilities. 1

Chapter 1. Application Control Blocks

Maintenance utility- . .3
Examples of the ACB Maintenance ut111ty I
Managing DOPT PSBs.13

Chapter 2. Database Descrlptlon (DBD)

Generation utility 15
DBD generation for database types 19
DBD generation input record structure (except
for DEDB DBDs)25
DEDB DBD generation mput record structure .27
DBD generation coding conventions28
DBDGEN statements28
DBD statements.30
DATASET statements50
AREA statement.65
SEGM statements68
LCHILD statements98
FIELD statements106
XDFLD statements126
DFSMARSH statements132
DFSMAP statements138
DFSCASE statements. . . R Y|
DBDGEN, FINISH, and END statements .. . 145
Examples of the DBDGEN utility. 146
Examples without secondary indexes or loglcal
relationships.146
Examples with logical relat1onsh1ps ... 154
Examples with secondary indexes 160
Running the DBDGEN procedure 166

Chapter 3. MFS Device Characteristics

Table utility (DFSUTB00) . 169
Running the DFSUTBOO utility 172
Chapter 4. MFS Language utility
(DFSUPAAO) . . . 175
Utility control statements and syntax rules . . . 181
Summary of control statements 184
Message definition statements. 186
Format definition statements 198
Partition set definition statements 251
Table definition statements. 254

© Copyright IBM Corp. 1974, 2018

Compilation statements . . . 256
Running the utility in standard mode . . 262
Running the utility in batch mode . 266
Running the utility in test mode . . 269
MEFS library backup procedure . 272
MFS restore procedure . 274
Chapter 5. Program Specification
Block (PSB) Generation ut|I|ty . 277
Utility control statements . 280

Alternate PCB statement. . 280

Full-function or Fast Path database PCB

statement. . 284

GSAM PCB statement . 297

SENSEG statement . 299

SENFLD statement . 302

PSBGEN statement . 304

END statement . . 308
Examples of the PSBGEN utlhty . 308
Running the PSBGEN procedure . . 326
Part 2. IMS catalog utilities . 329
Chapter 6. ACB Generation and
Catalog Populate utility (DFS3SUACB) . 331
Chapter 7. IMS Catalog Alias Names
utility (DFS3ALI0). . 343
Chapter 8. IMS Catalog Copy utilities
(DFS3CCEO0, DFS3CCIO0) . . 345
IMS Catalog Export utility (DFS3CCEO) . 345
IMS Catalog Import utility (DFS3CCIO). . 352
Chapter 9. IMS Catalog Partition
Definition Data Set utility (DFS3UCDO0) 363
Chapter 10. IMS Catalog Populate
utility (DFS3PU00) . 367
Chapter 11. IMS Catalog Record Purge
utility (DFS3PU10) . . 377
Part 3. Analysis utilities and
reports. . 389
Chapter 12. Fast Path Log Analysis
utility (DBFULTAO) . 391
Fast Path report types . 399

iii

Chapter 13. File Select and Formatting

Print utility (DFSERA10). 413
Examples of the DFSERA10 utility 422
DFSERA10 utility modules 428

Record Format and Print module (DFSERA30) 428
Program Isolation Trace Record Format and

Print module (DFSERA40) 436
DL/I Call Image Capture module (DFSERASO) 439
IMS Trace Table Record Format and Print

module (DFSERA60) 440
Enhanced Select module (DFSERA70) 440
OM Audit Trail Format and Print module

(CSLULALE)443

Chapter 14. IMS Monitor Report Print
utility (DFSUTR20) 445
Examples of the DFSUTR20 utility 447

Chapter 15. Log Transaction Analysis

utility (DFSILTA0). 449
Chapter 16. Offline Dump Formatter

utility (DFSOFMDO) 455
Running the DFSOFMDO utility 457

Chapter 17. Statistical Analysis utility

(DFSISTSO0) . T3
Examples of the DFSISTSO ut1hty L. ... L4669
Part 4. Log utilities 477
Chapter 18. Log Archive utility

(DFSUARCO).479
Examples of the DFSUARCO utlhty 489

Chapter 19. Log Merge utility

(DFSLTMGO) 491
Chapter 20. Log Recovery ut|I|ty

(DFSULTRO) 495
Examples of the DFSULTRO ut111tyb509
Part 5. Service utilities 515
Chapter 21. Batch SPOC utility

(CSLUSPOC). 517
Examples of the Batch SPOC ut1hty51

Chapter 22. Database Recovery
Control utility (DSPURX00) 521

Examples of the DSPURXO00 utility 524
Invoking the utility using entry point DSPURXRT 524

iv System Utilities

Chapter 23. Dynamic SVC utility

(DFSUSVCO0). . . 527
Examples of the DFSUSVCO utlhty . . 529
Chapter 24. Global Online Change

utility (DFSUOLCO) 531
Examples of the DFSUOLCO utility . . 536
Chapter 25. MFS Service utility
(DFSUTSAO) . C e e . 539
Chapter 26. Multiple Systems

Verification utility (DFSUMSV0). . 555
Chapter 27. Online Change Copy

utility (DFSUOCUO) . . . 567
OLCUTL procedure . . . 573
Initializing the IMS. MODSTAT data set . 574
Chapter 28. Spool SYSOUT Print

utility (DFSUPRTO) . . . 577
Examples of the DFSUPRTO utility . . 580
Chapter 29. Time-Controlled

Operations Verification utility

(DFSTVERO) . . . 581
Examples of the DFSTVERO utlhty . . 583
Part 6. Dynamic resource

definition utilities. . 587
Chapter 30. Repository to RDDS utility
(CSLURP20) 589
Examples of the CSLURP20 utlllty . . 592

Chapter 31. RDDS to Reposnory ut|I|ty

(CSLURP10) . .
Examples of the CSLURPlO ut111ty .

Chapter 32. Copy RDDS ut|I|ty
(DFSURCPO). .
Examples of the DFSURCPO ut111ty .

Chapter 33. Create RDDS from Log

Records utility (DFSURCLO) .
Examples of the DFSURCLO utility .

Chapter 34. Create RDDS from
MODBLKS utility (DFSURCMO) .
Examples of the DFSURCMO utility .

Chapter 35. DRD IMS SYSGEN stage 1

pre-parser utility (DFSURSTO) .
Examples of the DFSURSTO utility .

. 593
. 596

. 599

. 601

. 603

. 607

. 613

. 617

. 621

. 625

Chapter 36. RDDS Extraction utiIity

(DFSURDDO). . 629
Examples for the DFSURDDO utlllty . 632
Part 7. Appendixes . . 635
Notices . - e . 637
Programming interface mformatlon . . 639

Trademarks639
Terms and conditions for product documentatlon 640
IBM Online Privacy Statement. 640

Bibliography. 643

Index.645

Contents V

vi System Utilities

About this information

These topics provide reference information for the utilities that you can use with
the IMS system to generate IMS resources, work with the IMS catalog, analyze IMS
activity, manage IMS logging, run the IMS Database Recovery Control (DBRC)
facility, maintain IMS networking services, and use dynamic resource definition
(DRD).

This information is available in [[BM® Knowledge Center|

Prerequisite knowledge

Before using this information, you should understand z/ 0S®, and with IMS
concepts, facilities, and access methods. The prerequisite publications are:

e IMS Version 13 Communications and Connections
e IMS Version 13 Database Administration
* IMS Version 13 System Administration

You can learn more about z/OS by visiting the “z/OS basic skills” topics in
[Knowledge Center

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the [BM Skills Gateway|and
search for IMS.

IMS function names used in this information

In this information, the term HALDB Online Reorganization refers to the
integrated HALDB Online Reorganization function that is part of IMS Version 13,
unless otherwise indicated.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:

* Only technical changes are marked; style and grammatical changes are not
marked.

* If part of an element, such as a paragraph, syntax diagram, list item, task step,
or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

* If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

© Copyright IBM Corp. 1974, 2018 vii

http://www-01.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www-03.ibm.com/services/learning/content/ites.wss/zz-en?pageType=page&c=a0011023

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

How to read syntax diagrams

viii

System Ultilities

The following rules apply to the syntax diagrams that are used in this information:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line. The following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.

— The ---> symbol indicates that the syntax diagram is continued on the next
line.

— The >--- symbol indicates that a syntax diagram is continued from the
previous line.

— The --->< symbol indicates the end of a syntax diagram.
* Required items appear on the horizontal line (the main path).

»>—required _item >

* Optional items appear below the main path.

»>—required_item |_0 _|
ptional item

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

ptional item
»>—required_item |—0 —l

v
A

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»—required_i tem—Erequ ired_choicel ><
requi red_choiceZ—l

If choosing one of the items is optional, the entire stack appears below the main
path.

»>—required item >
i:optional_choicel:‘
optional_choicez

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

|—de faul t_choice—|

ptional_choice:‘

»>—required_item izo
optional_choice

* An arrow returning to the left, above the main line, indicates an item that can be
repeated.

v

»>—required item repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v

»>—required_item

repeatable_item

A\
A

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

* Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

A\
A

»—required_z'tem—| fragment-name i

fragment-name:

—required_item I
I—optz’onal_itemJ

* In IMS, a b symbol indicates one blank position.

* Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

* Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

* Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

* Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS Version 13

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS Version 13. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers and screen magnifiers.
* Customization of display attributes such as color, contrast, and font size.

About this information 1X

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the IMS Version 13 ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information
Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able| for more
information about the commitment that IBM has to accessibility.

How to send your comments

X

System Utilities

Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:

* Click the Contact Us tab at the bottom of any [[BM Knowledge Center] topic.

* Send an email to imspubs@us.ibm.com. Be sure to include the book title and the
publication number.

To help us respond quickly and accurately, please include as much information as
you can about the content you are commenting on, where we can find it, and what
your suggestions for improvement might be.

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. Generation utilities

Use the generation utilities to generate and configure an IMS system.

Each topic introduces how the utility works, defines requirements and restrictions
for its use, and provides examples.

© Copyright IBM Corp. 1974, 2018

2 System Utilities

Chapter 1. Application Control Blocks Maintenance utility

Use the Application Control Blocks (ACB) Maintenance utility to save instruction
execution and direct-access wait time and improve performance in application
scheduling.

It provides a facility for pre-building the required application control blocks offline;
so that when the application is scheduled, its application control blocks can be
read directly, and control can be passed promptly to the application program.

When an application program is scheduled for execution, IMS must first have
available database descriptor and PSB control blocks previously created. These
control blocks can be created by the DBDGEN and PSBGEN procedures.

These control blocks must then be merged and expanded into an IMS internal
format called application control blocks (ACBs). The merge and expansion process is
called block building.

Application control blocks required for the DB/DC environment must be prebuilt,
except for application programs that use a GPSB. It is optional for the batch
environment. Using IMS.ACBLIB in a batch environment requires less virtual
storage than building the ACBs dynamically from PSBLIB and DBDLIB.

The ACB Maintenance utility maintains the prebuilt blocks (ACB) library
(IMS.ACBLIB). The ACB library is a consolidated library of program (PSB) and
database (DBD) descriptions. Through control statements, you can direct the
maintenance utility to build all control blocks for all PSBs, for a specific PSB, or for
all PSBs that reference a specific DBD.

The ACB Maintenance utility does not populate the IMS catalog. To populate the
IMS catalog after the ACB Maintenance utility builds the ACBs, use the IMS
Catalog Populate utility (DFS3PUOO0).

As an alternative to running both the ACB Maintenance utility and the IMS
Catalog Populate utility, you can use the ACB Generation and Catalog Populate
utility (DFS3UACB), which builds the ACBs and populates the IMS catalog in a
single job step.

Subsections:

* [“Restrictions” on page 4|

+ [“Prerequisites” on page 5|

* [“Requirements” on page 5|

* [“Recommendations” on page 5|

+ [“Input and output” on page 5|

[“JCL specifications” on page 7|

[“Utility control statements” on page 9|

[‘Return codes” on page 12|

© Copyright IBM Corp. 1974, 2018 3

4

System Utilities

Restrictions

You do not need to run ACB generation if your application program requires only
an I/0 PCB and one modifiable alternate PCB. Such applications, typically used in
a DCCTL environment, can use GPSBs to define the resources necessary for
execution.

You cannot predefine GSAM PSBs and DBDs using ACB generation because the
control blocks for GSAM are different from the standard IMS data set control
blocks. PSBs that reference GSAM, as well as non-GSAM databases, can be
predefined using ACB generation to build the control block for the non-GSAM
databases.

The ACB Maintenance utility uses some IMS system resources but not the total
system. IMS.PSBLIB and IMS.DBDLIB are shared data sets. IMS.ACBLIB must be
used exclusively. The utility can only be executed using an ACB library which is
not concurrently allocated to an active IMS system.

IMS.ACBLIB is modified and cannot be used for any other purpose during
execution of this program. IMS.ACBLIB is a partitioned data set and carries
required linkage information in the directory. You can use the operating system
(IEHMOVE) and data set (IEBCOPY) utilities for maintenance purposes.

Do not add FP DBDs to the active ACBLIB between an abnormal termination and
/ERE. FP DBDs added to the active ACBLIB after abnormal termination of IMS are
inaccessible after /ERE.

A Fast Path secondary index database supports only symbolic pointers. The ACB
Maintenance utility issues message DFS2292E when PTR=SYMB is not specified on
a LCHILD statement for a HISAM or SHISAM secondary index database. The
primary DEDB database and its secondary index databases are deleted from the
ACBLIB.

A user partition group for a Fast Path secondary index must contain all HISAM
secondary index databases or all SHISAM secondary index databases in the same
user partition group. The LCHILD statement contains both HISAM and SHISAM
secondary index databases in the same user partition group identified in the DBD
dbdname in the message. The primary DEDB database and its secondary index
databases are deleted from the ACBLIB.

When a SENSEG statement for a segment that is other than a direct parent
segment of the target segment along the physical path from the root segment or a
child segment of the target segment in the PCB with the PROCSEQD operand is
specified, the ACB Maintenance utility detects the invalid SENSEG statement
specification. The ACB Maintenance utility issues a message DFS2295E. The PSB
identified in message DFS2295E is deleted in the ACBLIB.

User partitioning is requested for Fast Path HISAM secondary index databases or
Fast Path SHISAM secondary index databases. However, the user partition
database specified in the PROCSEQD= parameter on the PCB statement is not the
first user partition in the user partition group as defined in the NAME= parameter
on the LCHILD statement in the primary DEDB database DBD. The ACB
Maintenance utility issues message DFS2366E. The primary DEDB database and its
secondary index databases are deleted in the ACBLIB.

A PSB has the PSELOPT= parameter specified on a PCB statement for a primary
DEDB database and there is no user partitioning requested. The primary DEDB
database has only one secondary index database specified in the NAME=
parameter on a LCHILD statement in the primary DEDB DBD. The ACB
Maintenance utility issues message DFS2367E. The PSB identified in the message is
deleted in the ACBLIB.

Prerequisites

The ACB Maintenance utility does not change the PSB in IMS.PSBLIB or the DBD
in IMS.DBDLIB. If changes are made in either PSBs or DBDs that require changes
in the associated PSB or DBD, you must make these changes before running the
utility. You can make additions, changes, and deletions to IMS.ACBLIB without
stopping IMS, by using the Online Change utility and commands.

Changes in PSBs might also require modifications to the affected application
programs. For example, if a DBD has a segment name changed, all PSBs which are
sensitive to that segment must have their SENSEG statements changed.

Application programs which use this database might also need to be modified.
Requirements

IMS conforms to z/OS rules for data set authorization. If an IMS job step is
authorized, all libraries used in that job step must be authorized. To run an IMS
batch region as unauthorized, a non-authorized library must be concatenated to
IMS.SDFSRESL.

Recommendations

If the IMS catalog is enabled in your IMS system, specify an output data set with
the ACBCATWK DD statement so that the ACB Maintenance utility records a list
of the ACB members it generates during the current execution. Providing this
record of generated ACB members as input to the DFS3PUO0 utility significantly
reduces the time required to populate the IMS catalog.

Input and output

The following figure shows the functional relationship of the I/O data sets and
their naming requirements. The ACB Maintenance utility receives input from
IMS.DBDLIB data set, IMS.PSBLIB data set, SYSIN control statements, COMPCTL
IEBCOPY control statements, and SYSPRINT messages. The ACB Maintenance
utility outputs to the SYSUT3 and SYSUT4 IEBCOPY utility data sets, and the
IMS.ACBLIB data set.

In IMS systems that have enabled the IMS catalog, the ACB Maintenance utility
can optionally output a list of the generated ACB members to a data set referenced
by the ACBCATWK DD statement. The DFS3PUOQO utility reads the list of
generated ACB members as input to significantly reduce the time required to
populate the IMS catalog.

Chapter 1. Application Control Blocks Maintenance utility 5

Input Output

SYSPRINT
Messages

3 SYSUT3

o ﬂ IEBCOPY
— E Utility
IMS. Data Sets

DBDLIB

— Application) SYSUT4

IMS. ——»| ControlBlocks |— IEBCOPY
PSBLIB E Maintenance E Utility
Data Sets

(J ‘ DFSUACBO

SYSIN —

Control
Statements ﬂ IMS.
E ACBLIB
COMPCTL
IEBCOPY

Control Statement

Figure 1. ACB Maintenance utility input and output

ACB generation procedure

The procedure shown in the following figure is created as a part of system
definition. It is placed into the IMS.PROCLIB procedure library by stage two of
IMS system definition.

The following example shows the procedure for ACBLIB maintenance.

// PROC SOUT=A,COMP=,RGN=4M, SYS2=
/16 EXEC PGM=DFSRRCOO,PARM="'UPB,&COMP"',
// REGION=&RGN

//SYSPRINT DD SYSOUT=&SOUT

//STEPLIB DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR
//DFSRESLB DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR
//IMS DD DSN=IMS.&SYS2.PSBLIB,DISP=SHR

// DD DSN=IMS.&SYS2.DBDLIB,DISP=SHR
//IMSACB DD DSN=IMS.&SYS2.ACBLIB,DISP=0LD
//SYSUT3 DD UNIT=SYSDA,SPACE=(80,(100,100))
//SYSUT4 DD UNIT=SYSDA,SPACE=(256,(100,100)),

// DCB=KEYLEN=8
//COMPCTL DD DISP=SHR,
// DSN=IMS.&SYS2.PROCLIB(DFSACBCP)

In the figure, the high-level qualifier of the IMS data sets is IMS. This high-level
qualifier is the default provided by IMS generation. However, if the default value
was not used in IMS generation at your installation, the high-level qualifier for the
IMS data set names might not be IMS.

ACB generation JCL statements

6 System Utilities

The following is a sample of the JCL statements that can be used to invoke the
ACB generation procedure.

//ACBGEN JOB

// EXEC ACBGEN
//SYSIN DD *
BUILD PSB=(MYPSB)

The ACB generation procedure uses the following symbolic variables:

SouT=
Specifies the SYSOUT class. The default is A.

CoMP=
PRECOMP,POSTCOMP, in any combination, cause the required in-place
compression. The default is none.

RGN=
Specifies the region size for execution of the ACB utility. This region size
depends on the size of the blocks to be generated and typically varies from 100
to 150 KB. The default is 4 MB.

SYS2=
Specifies an optional second-level dsname qualifier. When specified, the
parameter must include a trailing period and be enclosed in quotes, for
example:

SYS2="'IMSA. "
JCL specifications
EXEC statement

The first part of the EXEC statement must be in the form:
PGM=DFSRRCO0

A parameter field must be in the form:
PARM="UPB, PRECOMP,POSTCOMP'

where PRECOMP requests the IMS.ACBLIB data set be compressed before blocks
are built, and POSTCOMP requests compression after the blocks are built. 'UPB'
indicates that the block maintenance utility is to receive control. This parameter is
required. PRECOMP and POSTCOMP are optional and can be used in any
combination.

DD statements

ACBCATWK
Defines an optional work data set that contains a list of the ACB members that
are written to the ACB library during ACB generation.

The ACBCATWK data set is an output data set for the ACB Maintenance
utility and an input data set for the DFS3PUOQ0 utility.

Specify the ACBCATWK data set to improve the performance of the DFS3PU00
utility. The DFS3PUOQO utility uses the list of names to determine which records
in the IMS catalog need to be inserted or updated. If you do not specify the
ACBCATWK data set, the DFS3PUQO utility processes all members in the ACB
libraries that are referenced in the IMSACBxx DD statements.

Chapter 1. Application Control Blocks Maintenance utility 7

8

System Utilities

COMPCTL DD
Defines the control input data set to be used by IEBCOPY if PRECOMP or
POSTCOMP is specified.

If both PRECOMP and POSTCOMP are requested on the EXEC statement
parameters, this data set must be capable of being closed with a reread option.

This data set must contain the following control statement of the form:
COPY INDD=IMSACB,OUTDD=IMSACB

DFSRESLB DD
Points to an authorized library that contains the IMS SVC modules. For IMS
batch, SDFSRESL and any data set that is concatenated to it on the DFSRESLB
DD statement must be authorized through the Authorized Program Facility
(APF). This DD statement provides an authorized library for the IMS SVC
modules, which must be in an authorized library. The JOBLIB or STEPLIB
statement does not need to be authorized for IMS batch.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD
Defines a single ACB library data set.

Restriction: This data set is modified and cannot be shared with other jobs.

STEPLIB DD
Points to IMS.SDFSRESL, which contains the IMS nucleus and required IMS
modules. If STEPLIB is unauthorized by having unauthorized libraries that are
concatenated to IMS.SDFSRESL, you must include a DFSRESLB DD statement.

SYSIN DD
Defines the input control statement data sets. They can be on a tape volume,
direct-access device, card reader, or be routed through the input stream. The
input can be blocked as multiples of 80. During execution, this utility can
process as many control statements as required.

SYSPRINT DD
Defines the output message data set.

When the SYSPRINT DD statement refers to a DASD or tape data set, you can
control the block size of this data set with the BLKSIZE subparameter of the
DCB parameter. If specified, the BLKSIZE value must be an exact multiple of
121 or a system ABENDO013-20 can result. Omitting BLKSIZE from a DASD
data set causes a system-determined block size to be used. Regardless of what
value is specified for the LRECL parameter, the utility always uses a record
length of 121.

SYSUT3 DD
Defines a work data set that is required if either PRECOMP or POSTCOMP is
specified on the EXEC statement.

SYSUT4 DD
Same function as SYSUTS3.

DFSACBCP control statement

The following control statement is created as a part of system definition and is
placed in the IMS.PROCLIB procedure library by stage two of IMS system
definition.

COPY INDD=IMSACB,OUTDD=IMSACB

The ACB generation procedure uses DFSACBCP to compress ACBLIB.
Utility control statements

You specify control statements in the utility JCL to build or delete ACB members.
The control statements must conform to the following guidelines:

* A statement is coded as a card image and is contained in columns 1 - 71.
* The control statement can optionally contain a name, starting in column 1.

* To continue a statement, enter a non-blank character in column 72 and begin the
statement on the next line starting in column 16.

* The operation field must be preceded and followed by one or more blanks.

* The parameter is composed of one or more PSB or DBD names and must also be
preceded and followed by one or more blanks.

* Commas, parentheses, and blanks can be used only as delimiting characters.

* Comments can be written following the last parameter of a control statement,
separated from the parameter by one or more blanks.

ACB Maintenance utility syntax: BUILD format

> >

I—name—l

(1) [

»—BUILD. PSB=——(——psbname—-)
—EALL4|

|_’ ,BLDPSB=YES
DBD=(—Y—dbdname []

)
L, sLopsp=no—!
[[[BLOPSB=YES——
PSB= —Y_psbname——) ,—DBD=(—-dbdname—-)

(
ALL (2)
,BLDPSB=NO

»><

Notes:

1 There is no first in, first out (FIFO) process for the ACB Maintenance utility
SYSIN input control statements. If both the BUILD PSB= and BUILD DBD=
parameters are specified in the same application control block (ACB)
generation job SYSIN control statement, DBD= operands are passed to the
block builder utility program first. DFS0586I is issued if the DBD is not
already in the ACBLIB data sets, regardless of where DBD= operands are
entered in the SYSIN control statements.

2 If you specify the parameters PSB=ALL and BLDPSB=NO in the same
statement, IMS builds all of the PSBs (BLDPSB=NO is ignored). Similarly, if
you specify the BLDPSB=NO parameter for one DBD and the BLDPSB=YES
parameter on another DBD in the same ACBGEN job, IMS builds all the PSBs
that refer to the changed DBDs and ignores the BLDPSB=NO specification.

In the following example, all of the PSBs that are associated with the CUSTOMER
and ORDER DBDs are rebuilt, even though BLDPSB=NO is specified for the
CUSTOMER DBD:

BUILD DBD=(CUSTOMER) ,BLDPSB=NO
BUILD DBD=(ORDER),BLDPSB=YES

Chapter 1. Application Control Blocks Maintenance utility 9

10

System Utilities

ACB Maintenance utility syntax: DELETE Format

i |

DBD=(——dbdname—

v
A

PSB=(—psbname—

ACB Maintenance utility parameters

BUILD
Specifies that blocks are built for the named PSBs, which refer to the named
DBDs.

DELETE
Specifies that blocks are deleted from the ACBLIB data set. The named PSBs
and all PSBs that refer to the named DBDs are deleted.

Deleting a block from the ACBLIB data set does not delete the corresponding
record in the IMS catalog.

PSB=ALL
Specifies that blocks are built for all PSBs that currently reside in IMS.PSBLIB.
You use this parameter to create an initial IMS.ACBLIB. When the PSB=ALL
parameter is specified, all PSBs and DBDs (and any other modules) are deleted
from the ACBLIB data set and their space is available for reuse. Then an ACB
generation is executed for every PSB in the PSBLIB data set. Do not use this
parameter with a DELETE statement.

Restriction: When you specify the BUILD PSB=ALL parameter on a SYSIN
control statement, all PSBs must reside in a single PSBLIB data set. No
concatenated PSBLIBs are recognized on the IMS DD statement.

PSB=(psbname)
Specifies that blocks are built or deleted for all PSBs that are named on this
control statement. As many of this type of control statement as required can be
submitted. This parameter adds a new PSB to IMS.ACBLIB or delete a PSB no
longer in use. You can omit the parentheses if you supply a single parameter.

DBD=(dbdname)
Specifies that blocks are built or deleted for this DBD and for all PSBs that
reference this DBD either directly or indirectly through logical relationships.
The DBD to be built must already exist in the IMS.ACBLIB data set. The
referencing PSBs must already exist in the IMS.ACBLIB data set. PSBs that are
newly added to the IMS.PSBLIB data set must be referenced by PSB operands.
Because deleting a PSB does not delete any DBDs referenced by the PSB, this
parameter can be used to delete specific DBDs. However, deleting or building
a DBD causes every PSB in the IMS.ACBLIB data set that references the named
DBD to be rebuilt or deleted based on the request type. You can omit the
parentheses if you supply a single parameter.

Example 1: PSB-a references DBD-a and DBD-b. A DBDGEN was done for
DBD-a and DBD-b and the updated DBDs are in DBDLIB (but not ACBLIB
yet). By specifying DBD-a in an ACB generation, DBD-a is rebuilt in ACBLIB
and any referencing PSBs (in this case PSB-a) are also rebuilt. Even though
PSB-a has been rebuilt, the ACBLIB is not usable because DBD-b was not
specifically rebuilt in ACBLIB. For DBD-b to be rebuilt in ACBLIB, it must be
explicitly specified in the ACB generation. Although the referencing PSB is
completely updated, the updated DBDs must be explicitly specified in the ACB
generation.

Every PSB processed by this program generates a member in the IMS.ACBLIB
data set. DBDs referenced by PSBs generate a member the first time the
specific DBD is processed or any time a DBD name appears on a control
statement. All PSBs that reference the same DBD carry information in their
directory entries to connect the PSB to the referenced DBDs.

Logical DBDs do not have members in IMS.ACBLIB and cannot be referenced
on BUILD or DELETE control statements.

Example 2: The following examples illustrate uses of the BLDPSB parameter:
* The DBD named CUSTOMER was changed and all of the PSBs that refer to
CUSTOMER need to be rebuilt:
BUILD DBD=CUSTOMER,BLDPSB=YES

¢ The DBDs named ORDER and INVENTORY are changed and all of the PSBs
that refer to these DBDs need to be rebuilt:

BUILD DBD=(ORDER,INVENTORY),BLDPSB=YES

When a DBD is replaced in IMS.DBDLIB, it must also be included in a BUILD
DBD control statement. This is the only valid way the DBD can be replaced in
IMS.ACBLIB without doing a BUILD PSB=ALL.

If a BUILD PSB is performed that references a modified DBD on DBDLIB, the
PSB replaced on ACBLIB will contain the updated version of the DBD. If this
BUILD PSB occurs before a BUILD DBD for the changed DBD, ACBLIB will
contain PSBs with different versions of the DBD. The PSBs specified in the
BUILD PSB will contain the updated DBD, while those not built will reference
the old DBD. When a DBD for a PSB on ACBLIB does not match the accessed
database, the results will be unpredictable. (For example, U852 abend occurs
because segment codes have been added or deleted in the changed DBD).
Therefore, when DBDGEN is run for later use, do not build a PSB that refers to
the changed DBD unless the database reflects the change.

When a physical DBD is changed and is referenced in a BUILD DBD
statement, all physical DBDs that are logically related to the one that was
changed (including primary indexes and secondary indexes) must also be
referenced in a BUILD DBD statement. However, DBDs that are logically
related to these DBDs do not need to be rebuilt.

The following figure illustrates the relationships between some physical
databases, where A is the changed DBD. The following relationships exist:
* B and C are logically related to A.

* D is logically related to B.

* Eis logically related to C.

* D and E are not referenced in the BUILD DBD statement because they are
not logically related to A.

Chapter 1. Application Control Blocks Maintenance utility 11

12

System Utilities

B C
— —
o T _L¢
— —
— —

Figure 2. Example of logically related physical databases

BLDPSB=YES | NO
Specifies whether ACBGEN rebuilds all PSBs that reference a changed DBD in
the BUILD DBD=(dbdname) statement.

YES
Indicates that ACBGEN rebuilds all PSBs that reference the changed DBD
on the BUILD DBD=(dbdname) statement. The default is BLDPSB=YES.

NO Indicates that ACBGEN does not rebuild PSBs that reference the changed
DBD if the changed DBD does not change the physical structure of the
database. For Fast Path DEDBs, the PSBs are rebuilt only when the number
of segments, the number of fields within the segments of the database, or
both are changed. For Fast Path MSDBs, the referencing PSBs are not
rebuilt even if the database has physical structure changes.

Return codes

The ACB generation procedure returns the following codes:

Code Meaning

0 Successful completion of all operations
4 One or more warning messages issued
8 One or more blocks could not be built
16 Program terminated due to severe errors

Related concepts:

[[Building the application control blocks (ACBGEN) (Database Administration)|

[[Allocating ACBLIB data sets (System Definition)|
Related reference:

Chapter 6, “ACB Generation and Catalog Populate utility (DFS3UACB),” on page|
331

[Chapter 10, “IMS Catalog Populate utility (DFS3PU00),” on page 367]

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_buildacbgen.htm#ims_buildacbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_allocatingacblibdatasets.htm#allocatingacblibdatasets

Examples of the ACB Maintenance utility

These examples show how to use the ACB Maintenance utility to create or delete
blocks for PSBs.

Example of creating blocks for all PSBs

In this example, all blocks currently existing in IMS.ACBLIB are deleted and their
space is reused to create new blocks for all PSBs that currently reside in
IMS.PSBLIB. This option will normally be used for initial creation of the
IMS.ACBLIB data set. If space is not yet allocated for ACBLIB, there should be a
space parameter and a DISP=NEW on the IMSACB DD statement.

//BLDBLKS JOB
/1*
//STEP EXEC ACBGEN, SOUT=A
//SYSIN DD *
BUILD PSB=ALL
/*

Example of creating blocks for specific PSBs

This example creates blocks for PSB1, PSB2, and PSB3. All other PSBs in
IMS.ACBLIB remain unchanged. If any DBDs referenced by these PSBs do not exist
in IMS.ACBLIB, they are added. In addition, DBD5 and DBD6 are deleted from
ACBLIB. IMS.ACBLIB is compressed after the blocks are built, and deletions are
performed.

//BLDBLKS JOB
/1%
//STEP EXEC ACBGEN,SOUT=A,COMP=POSTCOMP
//SYSIN DD *
BUILD PSB=(PSB1,PSB2,PSB3)
DELETE DBD=(DBD5,DBD6)
/*

Example of deleting a PSB and rebuilding blocks

This example deletes PSB1 from the IMS.ACBLIB data set and causes all PSBs in
the IMS.ACBLIB data set that reference DBD4 to have their blocks rebuilt. If PSB1
referenced DBD4, it will not be rebuilt, since PSB1 had just been deleted from
IMS.ACBLIB. PSB1 is not deleted from IMS.PSBLIB. The IMS.ACBLIB is
compressed before and after the blocks have been built.

//BLDBLKS JOB
/1*
//STEP EXEC ACBGEN,SOUT=A,COMP="'PRECOMP,POSTCOMP'
//SYSIN DD *
DELETE PSB=PSB1
BUILD DBD=DBD4
/*

Managing DOPT PSBs

Using dynamic option (DOPT) PSBs requires concatenation of a primary ACBLIB
data set. The first or primary data set in the ACBLIB data set concatenation should
contain the blocks for all non-dynamic (non-DOPT) PSBs. A subsequent DOPT
ACBLIB data set should contain blocks for all dynamic option (DOPT) PSBs.

Chapter 1. Application Control Blocks Maintenance utility 13

14

System Utilities

Note: You must ensure that the active and inactive DOPT ACBLIB data sets have
different names to ensure that online change finds the changes made to the DOPT
ACBLIB data sets.

The primary ACBLIB data set is the first DD statement of the concatenation. To
BUILD a PSB or DBD into the concatenated data sets, supply only one DD
statement to the ACB Maintenance utility.

At system initialization time, all non-dynamic PSBs and all DBDs must have been
built into either the primary or DOPT ACBLIB data sets.

By transaction schedule time, the DOPT PSBs being scheduled must be built into
the DOPT ACBLIB data sets. Never build DOPT PSBs into the primary ACBLIB
data sets.

If all PSBs in the system are DOPT PSBs, the primary ACBLIB should be a dummy
PDS data set. The DOPT ACBLIB should contain blocks for all DBDs and PSBs. Set
the DIRCA size parameter in the BMP, MPP, or IFP JCL.

If some, but not all, PSBs in the system are DOPT PSBs, both ACBLIB data sets
will contain blocks for DBDs and PSBs. When you BUILD a PSB into one ACBLIB
data set, the blocks for the DBDs referenced by the PSB are also built into that data
set. If the DBD was already built into another ACBLIB data set, you will have two
sets of blocks for the DBD. When DL/I does a BLDL to use the blocks for the
DBD, it uses the set of blocks in the primary ACBLIB.

During the termination process of a program using DOPT PSBs, the PSBs are
deleted from the PSB pool.

Related reference:

[[DBLDL= parameter for procedures (System Definition)|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_proc_parms_dbldl.htm#ims_proc_parms_dbldl

Chapter 2. Database Description (DBD) Generation utility

Use the Database Description Generation (DBDGEN) utility to define a database so
that it can be used by an application program.

A database description (DBD) is a DL/I control block containing all of the database
information needed by an application program.

You create a database description (DBD) by coding special macro instructions.
These macros become the input to the DBDGEN utility.

You can use only one physical DBD to describe each physical database; otherwise,
a user abend, such as 0850, 0852, or 0853 occurs. At execution time, DL/I uses the
DBD to create a set of internal control blocks.

The DBDGEN utility defines each DBD with the following database information:
* Segment types

* Physical and logical relationships between segment types

* Database organization and access method

* Physical characteristics of the database

* Define the name and data options of selected exit routines

* Metadata that describes the database and the data stored in the database

Subsections:

¢ |“Restrictions”
e [“Prerequisites”

* [“Requirements”]

* [“Recommendations”]

[“Input and output” on page 16|

Restrictions

Currently, no restrictions are documented for the DBDGEN utility.
Prerequisites

Currently, no prerequisites are documented for the DBDGEN utility.
Requirements

There are strict rules for structuring DBDGEN input. A separate input set is
required for each database.

Recommendations

If your IMS system does not manage runtime application control blocks (ACB) by
using the catalog, you must regenerate DBDs by using the DBDGEN utility after
you import resources into z/OS by using IMS Explorer. For example, if you import
a COBOL copybook definition or a new database definition to z/OS, you must use
the DBDGEN utility to regenerate your database descriptions.

© Copyright IBM Corp. 1974, 2018 15

16

System Utilities

Input and output

The DBDGEN program accepts several types of control statements.
* The DBD statement names the database being described and provides DL/I with
information concerning database organization.

* The DATASET statement is used only in non-DEDB DBDGEN input record
structures. The DATASET statement defines a data set group within a database.
One or more DATASET statements follow the DBD statement.

* The AREA statement is used only in DEDB DBDGEN input record structures.
The AREA statement defines an area within a database. One or more AREA
statements follow the DBD statement.

* The SEGM statement defines the segments of the specified database. The SEGM
statement is used with the following statements:

- FIELD

- XDFLD

- LCHILD

- DFSMARSH
— DFSMAP

— DFSCASE

Each statement defines different aspects of a segment or the fields in a segment.
* The DBDGEN statement indicates the end of DBDGEN control statements.
+ FINISH is an optional statement retained in the input stream for compatibility.

* The END statement indicates to the z/OS assembler that the end of the input
statements has been reached.

Three types of printed output and a load module, which becomes a member of the
partitioned data set named IMS.DBDLIB, are produced by a DBD generation. Each
of these outputs is described in the following sections.

Control statement listing
This is a listing of the input statement images to this job step.
Diagnostics

Errors discovered during the processing of each statement result in diagnostic
messages. These messages are printed immediately following the image of the last
statement that is read. The message can reference either the statement immediately
preceding it or the preceding group of statements. It is also possible that more than
one message could be printed for each statement.

In this case, these messages follow each other on the output listing. After all the
statements have been read, a further check is made of the reasonableness of the
entire deck. This might result in one or more additional diagnostic messages.

Any discovered error results in the diagnostic messages being printed, the
statements being listed, and the other outputs being suppressed. However, all the
statements are read and checked before the DBD generation execution is
terminated. The bind step of DBD generation is not processed if a statement error
has been found.

Assembler listing

An assembler language listing of the DBD macro expansion created by DBD
generation execution is provided. You can eliminate a printout of this listing by
including an assembler language PRINT NOGEN statement.

If the DBD generation is for a database that