IMS
Version 13

System Programming APIs
(November 5, 2018 edition)

<||I

IMS
Version 13

System Programming APIs
(November 5, 2018 edition)

<||I

Note
FBefore you use this information and the product it supports, read the information in ["Notices” on page 513

November 5, 2018 edition.

This edition applies to IMS Version 13 (program number 5635-A04), IMS Database Value Unit Edition, V13.1
(program number 5655-DSM), IMS Transaction Manager Value Unit Edition, V13.1 (program number 5655-TM2),
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. vii

Prerequisite knowledge Vi
IMS function names used in this 1nformat10n A
How new and changed information is identified . . vii
How to read syntax diagramsviid
Accessibility features for IMS Version 13 B
How to send your comments.X

Part 1. Common Queue Server (CQS) 1

Chapter 1. Writinga CQS client 3

Summary of CQS client requests. .
Sequence of CQS requests issued by a client for
queue structure . .
Considerations for coding CQS requests .
Environmental requirements for CQS .
Return codes and reason codes for CQS requests .
CQS clients and handling special events.1

[eM)

N O © U1 =~

Chapter 2. CQS client requests15

CQSBRWSE request N V4
CQSCHKPT request25
CQSCONN request.28
CQSDEL request.35
CQSDEREG request39
CQSDISC request41
CQSINFRM request45
CQSMOVE request.50
CQSPUT request54
CQSQUERY request6l
CQSREAD request70
CQSRECVR request76
CQSREG request80
CQSRSYNC request83
CQSSHUT request8
CQSUNLCK request91
CQSUPD request9

Part 2. Common Service Layer
(CsL)10

Chapter 3. Writing a CSL client. . . . 103

Event Control Blocks with CSL requests 103
Environmental requirements for SCI requests. . . 103
How to interpret CSL request return and reason
codes 105
Planning consrderatlons for wrltmg chents for the
csLo. 105
Registration of CSL managers wrth SCI 106
SCI registration. . . e [0/4
Registering an ODBM chent . . 107
Registering an OM command processmg chent 108
Registering an RM client 109

© Copyright IBM Corp. 1974, 2018

How to enable SCI ready state 109
Sequence for coding CSL requests 109
Requests common to all CSL components 110
CSLZQRY: query request110
CSLZSHUT: shutdown request 112

Chapter 4. CSL automated operator
programrequests 115

CSLOMCMD: command request 115
CSLOMI: APl request125
CSLOMQRY: query request. 134
CSL OM automated operator program chents .. 139
How AOP clients that run on the host
communicate with the CSLOM 140
How AOP clients that run on a workstation
communicate with the CSLOM 140
Processing AOP commands with a Command
processing client . . . B Y |
Interpreting CSL OM XML output oo 142

Chapter 5. Writing a CSL ODBM client 143

Sequence of ODBM client requests 143
CSL ODBM client requests 144
CSLDMDRG: ODBM client dereglstratron
request . . . 144

CSLDMI: ODBM apphcatlon program mterface 146
CSLDMREG: ODBM client registration request 157

Chapter 6. Writing a CSL OM client 161

CSL OM command processing client requests . . 161
CSLOMBLD: command registration build . . . 161
CSLOMDRG: command deregistration request 163
CSLOMOUT: unsolicited output request . . . 165
CSLOMRDY: ready request. 166
CSLOMREG: command registration request .. 168
CSLOMRSP: command response request . . . 171

CSLOMSUB: Subscribe to unsolicited messages . . 174
CSLOMUSB: Unsubscribe to unsolicited messages 177
CSL OM directives178

Chapter 7. Writing a CSL RM client 183
Sequence of RM client requests 183
Issue CSL RM requests to manage global resources 184
Issue CSL RM requests to coordinate IMSplex-wide

processes . . I £.7
CSLRMDEL: delete resources 185
CSLRMDRG: deregister clients 190
CSLRMPRI: process initiate. 191
CSLRMPRR: process respond 193
CSLRMPRS: process step19
CSLRMPRT: process terminate.201
CSLRMQRY: query resources203
CSLRMREG: register clients208
CSLRMUPD: update resources212

iii

CSL RM directives. . 217
CSL RM repopulate structure dlrectlve . 218
CSL RM structure failed directive . 218
CSL RM process step directive. . 219
CSL RM process step response dlrectlve . 220

Chapter 8. Writing a CSL SCI client 223

Sequence of CSL SCI requests . . 223

Advanced CSL SCI requests . 224

CSL SCI requests . . . 224
CSLSCBFR: buffer return request . 224
CSLSCDRG: deregistration request . . 226
CSLSCMSG: send message request . . 228
CSLSCQRY: query request . . 235
CSLSCQSC: quiesce request . 238
CSLSCRDY: ready request . . 239
CSLSCREG: registration request . . 240
CSLSCRQR request return request . 248
CSLSCRQS: send request . 251

Chapter 9. CSL Operations Manager

XML output . . . 257

CSLOMI XML output examples . . 257

CSLOMCMD output . . 260

CSLOMQRY output . . 261

CSLOMOUT output . . . 263

XML tags returned as CSL OM responses . . 263

Chapter 10. REXX SPOC API and the

CSL . 271

REXX SPOC API environment w1th the CSL OM 271
Setting up the REXX environment in a CSL . 271
Setting up the IMSplex environment. . 271
Issuing type-2 IMS commands. .. . 273
CSLULGTS: retrieving command responses in
XML . 273
CSLULOPT: mcludrng forrnat 1dent1f1ers in
command responses . . 273
CSLULGTP: retrieving command responses
directly to a REXX stem variable . . 274
REXX SPOC API within a transaction . . 280
Ending the IMS SPOC environment . . 281

Retrieving unsolicited messages . . 281
CSLULSUB request . 281
CSLULUSB request . 282
CSLULGUM request . . . 282
Sample program for subscrlbmg to OM . 282

REXX samples and examples . .o . 283
Sample REXX SPOC program . . 283
REXX SPOC batch job example . . 284
/DISPLAY command examples and format
identifiers o . 286
Autonomic computmg exarnples . 286

Part 3. Asynchronous data

propagation . 289

Chapter 11. Changed data Iog record 291

Elements of captured data . . 291

iv System Programming APIs

Reducing the amount of captured data . . 292
Example of logged data elements. . 293
Chapter 12. End of Job (EOJ) call Iog
record . 295
Chapter 13. SETS and ROLS call Iog
records . . 297
Chapter 14. Format of the data

capture log records. . 299
Data capture log record prefix. . 299
Changed data log record format . . 299
Format for data element header . . 300
CAPD block format (LOGID=X'00") . . 301
CAPD_DATA format (LOGID=X'0C") . 304
End of Job call log record format . . 305
SETS and ROLS call log record format . . 305
Part 4. Database resource adapter
(DRA) . 307
Chapter 15. Thread concepts . 309
Processing threads. . 309
Processing multiple threads . 310
CCTL multithread example. . 311
Chapter 16. Sync points. . 317
The two-phase commit protocol . . 318
In-doubt state during two-phase sync processmg 320
Chapter 17. DRA startup table . . 321
Chapter 18. Enable the DRA for a

CCTL. . 325
Chapter 19. Enabling the DRA for the
ODBA interface . 327
Chapter 20. Processing CCTL DRA
requests . 329
Chapter 21. Processing ODBA calls 331
Chapter 22. CCTL-initiated DRA

function requests . 333
INIT request. . 333
RESYNC request . . 336
TERM request . . 337
SCHED request. . 338
IMS request . . 341
SYNTERM request . 342
PREP request . 343
COMTERM request . 344
ABTTERM request . 345
TERMTHRD request . . 346

Chapter 23. Terminating the DRA. . . 347

Chapter 24. Designing the CCTL
recovery process. 349

Chapter 25. CCTL performance:

monitoring DRA thread TCBs 351
DRA thread statistics.35
DRA statistics353
DRA tracing. . . B 1o
Sending commands to IMS DB G o7
Problem diagnosis.354

Part 5. Database Recovery Control
(bBRC)357

Chapter 26. DBRC API 359
Structure of applications that access the DBRC API 359
How an application program establishes the

DBRC API environment. 360
How an application program ends the DBRC
API environment360
Addressing and residency mode 360
Address space control (ASC) mode and state 360
How the DBRC API uses registers 360
How to include equate (EQU) statements in
your DBRC API application360
API application. 361
Versions of the DBRC API macro. 362
The DBRC API token. 362
Macro forms of the DSPAPI macro 362
Query output block header. 364
Runtime considerations for the DBRC API . . . 365
DSPAPI macro access.2365
RECON data setaccess2365
RECON access authority 366
Time stamp format for DBRC requests 366
How DBRC uses the output dataset 367
Wildcard support for name parameters for
Query requests.367

Chapter 27. DBRC API security
features.369

Chapter 28. DBRC authorization

request(AUTH) 371
Syntax for the AUTH request371
Parameters for the AUTH request372
Return and reason codes for AUTH.373
APAUB_RsnCode for AUTH output block. . . . 375
AUTH output block mapping376
AUTH output block377

Chapter 29. DBRC command request

(COMMAND)379
Syntax for the COMMAND request N 74
Parameters for the COMMAND request 379

Return and reason codes for the COMMAND
request . . S 11 |
COMMAND output block mappmg 382

Chapter 30. DBRC query request

(QUERY) 385
Output from query requests .o . . 386
Backout query request (TYPE= BACKOUT) . . 386
Database query request (TYPE=DB) 390
DBDS query request (TYPE=DBDS) 412
Group query request (TYPE=*GROUP). . . . 418
Log query request (TYPE=LOG) 426
OLDS query request (TYPE=OLDS) 435

HALDB partition query request (TYPE=PART) 439
RECON status query request (TYPE=RECON) 445
Subsystem query request (TYPE=SUBSYS). . . 449

Chapter 31. DBRC release buffer

request (RELBUF) 455
Chapter 32. DBRC start request
(STARTDBRC)459
Chapter 33. DBRC stop request
(STOPDBRC)465
Chapter 34. DBRC unauthorization
request (UNAUTH) 467
Return and reason codes for UNAUTH 470
APAUB_RsnCode for UNAUTH output block 471
UNAUTH output block mapping. 472
UNAUTH output block . . . N V2

Part 6. Repository Server batch
interface (FRPBATCH) 473

Chapter 35. Commands for

FRPBATCH Y Y6
ADD command for FRPBATCH T 44
DELETE command for FRPBATCH 479
DSCHANGE command for FRPBATCH 479
LIST command for FRPBATCH 480
RENAME command for FRPBATCH 481
START command for FRPBATCH482
STOP command for FRPBATCH 483
UPDATE command for FRPBATCH. 484

Part 7. VTAM and SNA reference
information 487

Chapter 36. Bind parameters for SLU

PandLUG6.1.489
Finance communication system bmd parameters 489
IMS as primary half session491
IMS as secondary half session.496

Contents V

Chapter 37. Bind parameters for SLU
1and SLU 2.

SLU 1 bind parameters .
SLU 2 bind parameters .

Chapter 38. Format for CINIT user
data parameters .

Chapter 39. SNA character string
controls. C e e
Format controls. e
Control function code assignments .

vi System Programming APIs

. 501
. 501
. 503

. 507

. 509
. 509
. 510

Part 8. Appendixes 511
Notices . e e e . 513
Programming interface information 515
Trademarks . e . 515
Terms and conditions for product documentation 515
IBM Online Privacy Statement.516
Bibliography. . 519
Index.b21

About this information

These topics provide reference information for IMS system application
programming interface (API) calls for IMS Common Queue Server (CQS); IMS
Common Service Layer (CSL); IMS data propagation with IMS DataPropagator for
z/08S%; IMS Database Resource Adapter (DRA); IMS Database Recovery Control
(DBRC) APL; IMS Repository Server (FRPBATCH); and VTAM® and SNA.

This information is available in [[BM® Knowledge Center|

Prerequisite knowledge

Before using this information, you should have knowledge of either IMS Database
Manager (DB) or IMS Transaction Manager (TM). You should also understand
basic z/OS and IMS concepts, your installation's IMS system, and have general
knowledge of the tasks involved in project planning.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in
[Knowledge Center|

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the [[BM Skills Gateway| and
search for IMS.

IMS function names used in this information

In this information, the term HALDB Online Reorganization refers to the
integrated HALDB Online Reorganization function that is part of IMS Version 13,
unless otherwise indicated.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:

* Only technical changes are marked; style and grammatical changes are not
marked.

* If part of an element, such as a paragraph, syntax diagram, list item, task step,
or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

* If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

© Copyright IBM Corp. 1974, 2018 vii

http://www-01.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www-03.ibm.com/services/learning/content/ites.wss/zz-en?pageType=page&c=a0011023

How to read syntax diagrams

viii

The following rules apply to the syntax diagrams that are used in this information:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line. The following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.

— The ---> symbol indicates that the syntax diagram is continued on the next
line.

— The >--- symbol indicates that a syntax diagram is continued from the
previous line.

— The --->< symbol indicates the end of a syntax diagram.
* Required items appear on the horizontal line (the main path).

»>—required_item ><

* Optional items appear below the main path.

v
A

»—required_item |_0 _|
ptional_item

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

|—optional_item—|
»—required_item

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

v
A

»>—required_i tem—Erequ ired_choicel
requi red_choiceZ—l

If choosing one of the items is optional, the entire stack appears below the main
path.

»>—required_item ><
i:gptional_choicel:‘
ptional_choice2

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

default choice
[Aesauttchotce™

v
A

»>—required_item
i:(o)ptional_choice:‘
ptional_choice

* An arrow returning to the left, above the main line, indicates an item that can be
repeated.

System Programming APIs

v

»>—required_item repeatable_item >«

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v

A\
A

»>—required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

* Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

»»—required i tem—| fragment-name i ><

fragment-name:

—required_item I
|—optz’onal_itemJ

In IMS, a b symbol indicates one blank position.

* Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

* Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

* Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

* Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS Version 13

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS Version 13. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers and screen magnifiers.
* Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or
keyboard shortcut keys.

About this information 1X

For information about navigating the IMS Version 13 ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information
Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at [www.ibm.com/able| for more
information about the commitment that IBM has to accessibility.

How to send your comments

X

Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:

* Click the Contact Us tab at the bottom of any [[BM Knowledge Center] topic.

* Send an email to imspubs@us.ibm.com. Be sure to include the book title and the
publication number.

To help us respond quickly and accurately, please include as much information as
you can about the content you are commenting on, where we can find it, and what
your suggestions for improvement might be.

System Programming APIs

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. Common Queue Server (CQS)

You can use this information to learn about writing a CQS client and CQS client
requests.

© Copyright IBM Corp. 1974, 2018

2 System Programming APIs

Chapter 1. Writing a CQS client

Your CQS client communicates with CQS through requests. You must write one or
more CQS clients in order to use CQS to manage resource and queue structures for
your product or service.

There are various considerations that you must take into account when writing a
Common Queue Server (CQS) client. The information in these topics is written
primarily for the programmer who writes the client, but also for CQS
administrators or system programmers who must become aware of some of the
issues involved in designing and writing a CQS client.

This topic contains General-use Programming Interface information.
Related concepts:

[Chapter 2, “CQS client requests,” on page 15|

Summary of CQS client requests

CQS client requests enable a client to access CQS or shared queues on coupling
facility list structures. Your primary tool for writing a CQS client is the set of client
request macros that CQS provides. You can use these requests to enable a client to
access CQS or the shared queues on coupling facility list structures.

The following list summarizes the CQS requests:

CQSBRWSE
Retrieves a copy of a data object from a queue
CQSCHKPT
Takes a checkpoint of internal tables or of all data objects on a structure
CQSCONN
Connects a client to one or more structures
CQSDEL
Deletes one or more data objects from a queue
CQOSDEREG
De-register a client from its CQS, terminating communication with it
CQSDISC
Disconnects a client from one or more structures
CQSINFRM

Registers client interest in one or more queues, notifying the client when
work exists on the queue

CQSMOVE
Moves one or more data objects from one queue to another

CQSPUT
Places a data object on a queue

CQSQUERY
Requests information about a queue or a structure

CQSREAD
Retrieves and locks a copy of a data object from a queue

© Copyright IBM Corp. 1974, 2018 3

CQSRECVR
Recovers data objects that were moved to the cold queue after a client or
CQS cold starts

CQSREG
Registers a client with a CQS, establishing communication

CQSRSYNC
Resynchronizes in-doubt data between the client and its CQS after a failure

CQSSHUT
Shuts down a CQS

CQSUNLCK
Unlocks a data object, making it available to any client

CQSUPD
Updates one or more uniquely named resources on a resource structure

Sequence of CQS requests issued by a client for queue structure

4

A client uses CQS requests to make use of CQS services and resources. Client
requests for CQS services must be in a particular sequence, which is outlined in
this table.

The client must issue certain requests to request CQS services, and some of the
requests must be in a particular sequence; the sequence for CQS requests is shown
in the following table. Other requests can be issued multiple times, in any order,
based on the processing requirements of the client.

Table 1. Sequence for CQS requests

Order Request Use for request

1 CQSREG To establish communications with CQS.

2 CQSCONN To connect to a particular structure.

3 CQSRSYNC To resolve indoubt work with CQS.

4 CQSRECVR! After a CQS cold start to recover specific data objects.

5 CQSINFRM To register interest in specific queue names.

6 Other CQS requests ~ To process work. Examples of these other requests
are CQSBRWSE, CQSPUT, and CQSREAD.

7 CQSDISC To disconnect from a structure.

8 CQSSHUT To request CQS to shutdown. The client could also
use CQSDISC ... CQSSHUT=YES to disconnect from a
structure and request a CQS shutdown, rather than
issuing only the CQSSHUT request.

9 CQSDEREG To end communications with CQS.

Note:

1. A client can issue the CQSRECVR and CQSINFRM requests in any order and at any
time following the CQSRSYNC request. The client should, however, issue both of these
requests before starting any real work with CQS.

System Programming APIs

Considerations for coding CQS requests

Various keywords, parameters, and variables are available for use with CQS
requests. The interface that you select for the client's state determines the allowed
environment for all subsequent CQS requests and all client exit routines driven by
CQs.

The usage topic for each request describes the detail for each of the keywords,
parameters, and variables for the CQS requests, but a few global usage
considerations apply to all of the requests.

Authorization for CQS

CQS provides two interfaces for its clients: the authorized interface and the
non-authorized interface. CQS automatically selects and initializes the correct
interface environment based on the client's state when the client issues a CQSREG
request. If the client is authorized (in supervisor state with PSW key 0 to 7), CQS
initializes the authorized interface environment. If the client is not authorized (in
problem state with key 8 or greater), CQS initializes the non-authorized interface
environment.

Which interface CQS assigns to the client determines the allowed environments for
all subsequent CQS requests and all client exit routines driven by CQS. In general,
when a client makes a CQS request, its PSW state and key must be the same as
they were when it issued the CQSREG request.

How CQS requests use registers

All CQS requests use registers R0, R1, R14, and R15 as work registers. When a
CQS request returns control to the caller, the contents of these registers are not the
same as they were before the macro call. R15 contains a return code, and RO
contains a reason code from the CQS interface. The contents of registers R2
through R13 remain unchanged after a CQS request, except for registers specified
as output parameters for the particular request.

All CQS requests require register R13 to point to a standard 72-byte save area. No
other registers are required to contain any particular value when a CQS request is
issued, except for registers specified as input parameters for the particular request.

Coding parameters for CQS requests

For all of the parameters (shown in the syntax diagrams as, for example, parameter)
that are not literals, CQS expects either an address or a value. For example, for the
cgstoken on a CQSREAD request, CQS expects the address of the 16-byte CQS
token, but for the buffersize, CQS expects a 4-byte buffer size.

To pass an address or a parameter value to CQS, you can code the parameter for
the CQS request in one of three ways:

1. Use a register

To use a register, you must load the address or the parameter value into one of
the general purpose registers, then use that register (enclosed in parentheses)
for the parameter in the CQS request.

Figure 1. Passing an address for register

Chapter 1. Writing a CQS client 5

LA 5, TOKEN
CQSREAD FUNC=READ,CQSTOKEN=(5),...

%OKEN DS XL16

Figure 2. Passing a value for register
L 4 ,MYBUFLEN
CQSREAD FUNC=READ,BUFSIZE=(4),...

MYBUFLEN DC F'00000024'
2. Use a symbol

To use a symbol name, you must define a symbol that contains the address or
the parameter value, then use that symbol for the parameter in the CQS
request.

Figure 3. Passing an address for symbol

CQSREAD FUNC=READ,CQSTOKEN=TOKENADR,...
TOKENADR DC A(TOKEN) TOKEN DS XL16
Figure 4. Passing a value for symbol
CQSREAD FUNC=READ,BUFSIZE=MYBUFLEN,...

MYBUFLEN DC F'00000024'
3. Use a symbol value

To use a symbol value, you must define a symbol or an equate that contains
the parameter value, then use that symbol (preceded by the at-sign, @, and
enclosed in parentheses) for the parameter in the CQS request.

Figure 5. Passing a value for symbol value

CQSREAD FUNC=READ,CQSTOKEN=@(TOKEN),...

.TOKEN DC XL16'0000A765B55CFF0O0"

Figure 6. Passing an equate for symbol value

CQSREAD FUNC=READ,BUFSIZE=@(MYBUFLEN),...

MYBUFLEN EQU 24

6 System Programming APIs

Literals for CQS requests

A number of CQS request macros have parameters that use a literal (for example,
the LOCAL parameter on the CQSREAD request macro). A macro invocation can
use either combinations of literal parameters or the OPTWORD1 parameter to pass
4 bytes containing flags that represent the literals. When you use the OPTWORD1
parameter, you obtain the literal equates by using the DSECT function of each
request macro. The equates that represent the literal values are added together in a
regular storage location.

Requirement: A macro invocation can use either the literal parameters or the
OPTWORDI1 parameter, not both. When a macro invocation includes the
OPTWORD1 parameter, the value passed on this parameter must include one
equate for each literal parameter supported by the macro. For example, the
CQSREAD request has three literal parameters: LOCAL, PARTIAL, and QPOS. The
value you pass on the OPTWORD1 parameter must include one equate for the
LOCAL parameter, one equate for the PARTIAL parameter, and one equate for the
QPOS parameter.

To code a CQSREAD request using a series of literal parameters, use CQSREAD
FUNC=READ,...,QPOS=FIRST,LOCAL=YES....

Coding CQSREAD with the OPTWORD1 parameter

To code the same CQSREAD request using the OPTWORD1 parameter, use the
example shown in the following example.

L R2,=A(CQSREAD_QPOSF+CQSREAD_LCLY+CQSREAD_PRTLY)
CQSREAD FUNC=READ,...,0PTWORD1=(R2),...

éQSREAD FUNC=DSECT = GENERATE CQSREAD EQUs
Event Control Blocks with CQS requests

Some requests allow you to use a z/OS event control block (ECB). If you specify
an ECB (ECB=ecbaddress), the client immediately receives control after issuing the
request, but must at some time be sure to wait for the request to post the ECB. If
you do not specify an ECB, CQS does not return control to the client until CQS
completes its processing for the request.

Lists in the CQS requests

Some of the CQS requests have a LIST keyword, which specifies the address of a
parameter list entry. This keyword specifies the address of the first list entry. If you
want to pass multiple list entries, you must ensure that they all reside in
contiguous storage, that is, the next entry must begin at the first byte following the
current entry. All lists must be contiguous, even if they are not aligned on word or
fullword boundaries.

Assembling a program with CQS requests

The CQS request macros are shipped with IMS and are included in the
IMS.ADFSMAC data set. When you assemble a program that includes CQS request
macros, you must tell the assembler to look for the macros in this data set. You can
also copy the members from the IMS data set to another data set, as necessary.

Chapter 1. Writing a CQS client 7

8

There are no special requirements for link editing a program that includes CQS
requests, but you do have to ensure that the IMS.SDFSRESL data set is
concatenated with your JOB or STEPLIB DD statement for the client job.

STEPLIB DD statement to concatenate IMS.SDFSRESL

To concatenate the IMS.SDFSRESL data set after your MYPROGS.SDFSRESL data
set, code your STEPLIB DD statement as shown in the following example.

STEPLIB DD DSN=MYPROGS.SDFSRESL,DISP=SHR
DSN=IMS.SDFSRESL,DISP=SHR

Related concepts:

[Chapter 2, “CQS client requests,” on page 15|

Related reference:

[# [2/08S: Initializing extended ECBs and ECB extensions|

Environmental requirements for CQS

Environmental requirements depend on the CQS interface assigned to the client for
CQS requests other than CQSREG and CQSDEREG requests.

The following table shows the environment for clients using the authorized CQS
interface:

Table 2. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the
authorized interface

Environment State

Authorization Supervisor state and PSW key 0-7 (PSW key
must match the PSW key when the CQSREG
request was issued)

Dispatchable unit mode Task

Cross memory mode Any, however, PASN must equal the primary
address space in which the CQSREG request
was issued

AMODE 31

ASC Mode Primary

Home address space Any

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The following table shows the environment for clients using the non-authorized
CQS interface:

Table 3. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the
non-authorized interface

Environment aspect State

Authorization Problem state or PSW key 8 (PSW key must
match the PSW key when the CQSREG
request was issued)

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/ecb.htm

Table 3. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the
non-authorized interface (continued)

Environment aspect State

AMODE 31

ASC Mode Primary

Home address space Address space in which CQSREG was issued
Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The environmental requirements for the CQS register and deregister requests
(CQSREG and CQSDEREGQG) are different from all of the other CQS requests.
Authorized clients must issue CQSREG and CQSDEREG requests in the
environment shown in the following table.

Table 4. Environment for CQSREG and CQSDEREG requests using the authorized interface

Environment aspect State

Authorization Supervisor state and PSW key 0-7
Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)
AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Non-authorized clients must issue CQSREG and CQSDEREG requests in the
environment shown in the following table.

Table 5. Environment for CQSREG and CQSDEREG requests using the non-authorized

interface

Environment aspect State

Authorization Problem state or PSW key 8
Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)
AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts
Control parameters In primary address space

Return codes and reason codes for CQS requests

CQS return and reason codes indicate the success or failure of sending the request
to the CQS address space and reflect the success or failure of the particular CQS
request that is being made.

Chapter 1. Writing a CQS client 9

With the exception of CQSREG and CQSDEREG, each CQS request returns two
sets of return and reason codes. One set is returned by the CQS interface, and
indicates the success or failure of sending the request to the CQS address space
(these are returned in R15 and RO0). The other set is returned by the CQS address
space, and reflects the success or failure of the particular CQS request being made
(these are returned in the fields indicated by the RETCODE and RSNCODE
parameters on the CQS request macro).

When you make a CQS request, the request must travel through the CQS interface
from the client address space to the CQS address space. The CQS interface returns
information about the success or failure of the sending of the request in registers
R15 and RO. After issuing a CQS request macro, have your code check the value in
R15 first. If the value in R15 is zero, then the CQS interface successfully sent the
request to the CQS address space. If R15 is not zero, the CQS interface was unable
to send the request to the CQS address space, and RO contains a reason code that
explains the error.

The return and reason codes from the CQS request itself are returned in the fields
specified with the RETCODE and RSNCODE parameters coded on the CQS
request macro. The values returned in these fields are valid only if the CQS
interface return code (R15) is zero. If the interface return code in R15 is not zero
after you issue a CQS request macro, then the values in the RETCODE and
RSNCODE fields are not predictable, and you should not use them.

For synchronous requests (that is, requests in which the ECB parameter was not
coded), the RETCODE and RSNCODE fields are set after your module receives
control back from the request macro, and you can use them immediately. For
asynchronous requests (that is, requests in which the ECB parameter was coded),
the RETCODE and RSNCODE fields are set only after the ECB is posted by CQS.
Do not check the RETCODE and RSNCODE fields until you have issued a WAIT
on the ECB you specified on the request, and that WAIT has returned.

The CQSREG and CQSDEREG requests are exceptions to this. CQSREG and
CQSDEREG register and deregister a client with the CQS interface, but do not
actually send a request across the interface to the CQS address space. CQSREG and
CQSDEREG have only a single set of return and reason codes, and these are
immediately available upon return from the register or deregister request. The
return code is set both in register 15 and in the field specified by RETCODE on the
request macro. The reason code is set both in register 0 and in the field specified
by RSNCODE on the request macro.

The CQS interface issues the return and reason codes shown in the following table.
Any CQS request can receive these return and reason codes. Because the CQS
interface performs more extensive checking for non-authorized clients, some of the
following return and reason codes can only be received if the client is a
non-authorized client.

Table 6. Return and reason codes for errors detected by the CQS interface

Return code Reason code Meaning

X'00000008' X'00000210' The cgstoken is invalid.

X'00000008' X'00000214' The connecttoken is invalid.

X'00000010' X'00000430' The CQS address space is not available.

X'00000014' X'00000600' The CQS interface is unable to access internal blocks.

10 System Programming APIs

Table 6. Return and reason codes for errors detected by the CQS interface (continued)

Return code Reason code Meaning

X'00000014' X'00000604' The client is running in problem state or is using an
incorrect PSW key.

X'00000014' X'00000608' The client passed an invalid function code to the CQS
interface.

X'00000014' X'0000060C' The client specified an invalid CQS request type.

X'00000014' X'00000610' CQS was unable to allocate storage to copy the
request parameters.

X'00000014' X'00000614' The total length of all request parameters passed was
less than the sum of all parameter lengths.

X'00000014' X'00000618' The value passed to the interface for the total length
of all parameters was either zero or negative.

X'00000014' X'0000061C' The value passed to the interface for the total
parameter count was either zero or negative.

X'00000014' X'00000620' The length of one of the request's parameters was
negative.

X'00000014' X'00000624' The length passed for the structure-call parameter list
was invalid.

X'00000014' X'00000628' Invalid request function code.

X'00000014' X'0000062C' Invalid request parameter list version number.

X'00000014' X'00000630' An incorrect number of parameters was passed for
the requested function.

X'00000014' X'00000634' A parameter was passed with an incorrect length.

X'00000014' X'00000638' A parameter was passed by value instead of by
address.

X'00000014' X'0000063C' A parameter was passed by address instead of by
value.

X'00000014' X'00000640' The CQS request abended before being sent to the
CQs.

X'00000014' X'00000644' The CQS request abended while CQS was copying
the request parameters. This error is usually caused
by the client's passing bad parameter data.

X'00000014' X'00000648' The interface parameter list version passed by the

CQS request macro was not valid. This error is
probably caused by a difference in versions between
the CQS client and the CQS address space the client
is trying to use.

All CQS requests have a DSECT function that you can use to include equate
statements in your program for all the return and reason codes for the request.

Recommendation: Write a program that specifies FUNC=DSECT for all CQS
requests so you can determine symbolic variable names to use for the return and
reason code values.

Chapter 1. Writing a CQS client 11

CQS clients and handling special events

12

A CQS client must be able to either initiate or participate in many different types
of events. You must be aware of what the CQS client can do in these events in
order to handle them appropriately.

A CQS client must be able either to initiate or to participate in many different
types of events. This topic describes some of these special events and what the
CQS client can or must do about them.

CQS cold start

When CQS cold starts after connecting to a structure that contains data, CQS looks
for unresolved work from CQSMOVE or CQSDEL requests. CQS backs out
CQSMOVE requests and completes CQSDEL requests. CQS then performs a system
checkpoint, and restart is complete.

CQS does not resolve work that is initiated using a COQSREAD request. As a result,
data objects might remain on the queues. The client can issue the CQSRSYNC
request to have CQS move these data objects to the cold queue and notify the
client that they exist. The client can then issue a CQSRECVR request to access
these data objects.

Recommendation: Complete all work initiated using CQSPUT requests because
CQS is not aware of these data objects.

Registering interest in queues with CQSINFRM

Use the CQSINFRM request to allow CQS to notify the client when a data object
exists on a queue or when the queue becomes non-empty. The client must register
interest in a queue before it is notified of work on that queue.

Working with objects on the cold queue using CQS requests

CQS places objects on the cold queue when either CQS or the client is cold started
while there are objects in active structures. A client can use the CQSBRWSE request
to examine objects on the cold queue, and then, using the cold-queue token and
UOW returned by this request, the client can use a CQSRECVR request to retrieve
or delete objects from the cold queue.

When writing a CQS client, you can use the following request to obtain
information about objects on the cold queue, including the qnames, data object
count, oldest data object time stamp, and newest data object time stamp:

CQSQUERY FUNC=QTYPE,QTYPENM=COLDQ

Initiating checkpoints using CQS requests

A CQS client can initiate a system checkpoint by issuing a CQSCHKPT
FUNC=CHKPTSYS request. A CQS client can initiate a structure checkpoint by
issuing a CQSCHKPT FUNC=CHKPTSTR request.

Shut down CQS

To shut down CQS, clients can either issue the CQSSHUT request or the CQSDISC
request with CQSSHUT=YES specified. In either case, CQS terminates when there
are no more structure connections. CQS continues to accept input and output

System Programming APIs

requests so that in-progress work can complete. Structure checkpoints are allowed
to be issued. New connections are allowed if the CQSDISC request is issued with
CQSSHUT=YES, but they are not allowed if the CQSSHUT request is issued.

Tuning to improve CQS performance

You can improve CQS performance by carefully selecting the parameters you use
with the CQSQUERY, CQSDEL, and CQSINFRM requests.

Related concepts:

[#* [CQS administration (System Administration)|
Related reference:

[“CQSQUERY request” on page 61

[“CQSDEL request” on page 35|

[“CQSINFRM request” on page 45|

Chapter 1. Writing a CQS client 13

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_cqsadministration.htm#ims_cqsadministration

14 System Programming APIs

Chapter 2. CQS client requests

CQS clients communicate with the CQS address space using a general-use interface
consisting of a number of assembler macros, called CQS requests. CQS clients use
these requests to communicate with the CQS and manipulate client data on shared
coupling facility structures. You can use these requests to write or maintain a CQS
client.

You do not need to use these requests if you are using an IBM-supplied client,
such as an IMS control region.

Some CQS requests support wildcard parameters. Wildcard parameters allow you
to specify multiple resources whose names match the wildcard parameter mask.
The size of a wildcard parameter can be from one character to the maximum
number of characters supported for the resource. The alphanumeric name can
include one or more specialized characters and an asterisk or percent sign. An
asterisk can be replaced by zero, one, or more characters to create a valid resource
name. A percent sign can be replaced by exactly one character to create a valid
resource name. The wildcard parameter asterisk (*) represents 'ALL'. However,
depending on the installation, other wildcard parameters can mean all. For
example, the wildcard parameter %%%% means ALL to an installation whose
resource names are all 4 characters long.

This topic contains General-use Programming Interface information.

Example of using a CQS request: CQSREAD

The following example shows how you can use a CQSREAD request for a client
subsystem.

FUNCTION: USE CQSREAD REQUEST TO RETRIEVE A MESSAGE FROM SHARED
QUEUES.

THE CALLER OF THIS MODULE PASSES THE ADDRESS AND SIZE OF
A BUFFER. IF THIS MODULE ENDS WITH RC=0, THAT BUFFER
HOLDS THE DATA OBJECT OR PARTIAL DATA. IF THIS MODULE
ENDS WITH A NON-ZERO RC, THE BUFFER'S CONTENTS ARE
UNPREDICTABLE.

REGISTERS ON ENTRY:

R2
R3
R4
R5
R9
R13
R14
R15

READ OBJECT BUFFER ADDRESS (BUFFER TO READ OBJECT INTO)
SIZE OF READ OBJECT BUFFER

CQS REGISTRATION TOKEN ADDRESS

CQS CONNECT TOKEN ADDRESS

ECB ADDRESS

SAVE AREA ADDRESS

RETURN ADDRESS

GETDOBJ ENTRY POINT ADDRESS

REGISTERS DURING EXECUTION:

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

WORK REGISTER
WORK REGISTER
CQSREAD PARMLIST AREA ADDRESS
WORK REGISTER
WORK REGISTER
WORK REGISTER
WORK REGISTER
WORK REGISTER
WORK REGISTER

ECB ADDRESS

WORK REGISTER
WORK REGISTER
BASE REGISTER
SAVE AREA ADDRESS
WORK REGISTER
WORK REGISTER

MACROS REFERENCED:
WAIT
CQSREAD

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ok Kk ok kK ok ok kK ok ok ok ko b ok ko b ok kb ok kb ok ok kb ok ok kb ok kK b ok kX

RETURN CODES:

© Copyright IBM Corp. 1974, 2018 15

% R15 - RETURN CODE *
* X'00' CQSREAD SUCCESSFUL/PARTIAL DATA RETURNED *
* X'08' INTERFACE PROBLEM *
* X'0C' NO MESSAGE FOR QNAME *
* X'10' REQUEST IS UNSUCCESSFUL, UNEXPECTED RETURN OR REASON *
* CODE *
* *
STM R14,R12,12(R13) SAVE THE REGS
LR R12,R15 R12 = PROGRAM BASE REGISTER
USING GETDOBJ,R12 GETDOBJ CSECT
LA R14,SAVEAREA CHAIN SAVE AREAS
ST R13,4(,R14) THIS SAVEAREA BACKWARD PTR
ST R14,8(,R13) LAST SAVEAREA FORWARD PTR
LA R13,SAVEAREA THIS ROUTINE'S SAVEAREA
ST R2,RDRBUFA SAVE A(BUFFER TO READ INTO)
ST R3,RDRBUFSZ SAVE READ BUFFER SIZE
MVC RDRRQTK,O(R4) SAVE CQS REGISTRATION TOKEN
MVC RDRCONTK,O(R5) SAVE CQS CONNECT TOKEN
ST R9,RDRECBA SAVE A(ECB)
LA R2,RDRPARM LOAD A(PARAMETER AREA) INTO R2
XC RDRLCKTK,RDRLCKTK ~ LOCKTOKEN=0 FOR FIRST CQSREAD
XC 0(4,R9),0(R9) CLEAR CALLER'S ECB
e
* RETRIEVE RECORD FROM IMS SHARED QUEUES
sk
CQSREAD FUNC=READ,
CQSTOKEN=@ (RDRRQTK) , A(REGISTRATION TOKEN)
PARM= (R2) , A(CQSREAD PARMLIST AREA)
CONTOKEN=@ (RDRCONTK) , ~ A(CONNECT TOKEN)
ECB=RDRECBA, A(ECB)
LCKTOKEN=@ (RDRLCKTK), ~ A(LOCK TOKEN) - RETURNED
UOW=@ (RDRUOW) , A(UOW) - RETURNED
LOCAL=NO, READ OBJECT FROM SHARED QUEUE
QNAME=@ (RDRQNAME) , A(QUEUE NAME)
QPOS=FIRST, READ FIRST OBJECT ON QUEUE
0BJSIZE=@(RDROBJSZ), A(DATA OBJECT SIZE) - RETURNED
RSNCODE=@ (RDRRSN) , A(REASON CODE) - RETURNED
RETCODE=@ (RDRRC) , A(RETURN CODE) - RETURNED
BUFFER=RDRBUFA, A(CLIENT'S READ BUFFER)
BUFSIZE=@(RDRBUFSZ) CLIENT'S READ BUFFER SIZE
LTR R15,R15 TEST RETURN CODE FROM CQS INTERFACE
BZ CHECKRC ZERO - CQSREAD OK
* OTHER - RETURN RO, R15 IN PARM LIST
LA R15,RC0O8 CQS INTERFACE PROBLEM
B GOEXIT RETURN TO CALLER
e
* CHECK CQSREAD RETURN CODE

-
CHECKRC DS OH
WAIT ECB=(R9)

L R15,RDRRC

WAIT FOR CQSREAD TO COMPLETE

RETURN CODE

LTR RI15,R15 CQSREAD REQUEST SUCCESSFUL?
BZ GOEXIT YES - RETURN TO CALLER##*
* CHECK FOR CQS WARNING RETURN CODE
-
CLC RDRRC,=AL4(RQRCWARN) CQSREAD WARNING?
BNE UNEXPECT NO - SET RC AND RETURN TO CALLER
.
* CQSREAD: WARNING RETURN CODE - CHECK WARNING REASON CODE
* CHECK FOR DATA OBJECT
.
CLC RDRRSN,=AL4(RRDNOOBJ) NO DATA OBJECT?
BNE PARTIAL NO, CHECK NEXT REASON CODE
LA RI15,RCOC SET NO DATA OBJECT RETURN CODE
B GOEXIT RETURN TO CALLER
-
* CHECK PARTIAL DATA RETURNED
* PARTIAL DATA RETURNED - RETURN DATA OBJECT - RETURN CODE ©

ok

PARTIAL DS OH

CLC RDRRSN,=AL4(RRDPARTL) PARTIAL DATA RETURNED?
BNE UNEXPECT NO - SET RC AND RETURN TO CALLER
LA RI15,RC00 SET RETURN CODE
B GOEXIT RETURN TO CALLER

.

* UNEXPECTED RETURN OR REASON CODE

-

UNEXPECT DS OH
LA RI5,RC10 UNEXPECTED RETURN OR REASON CODE
B GOEXIT RETURN TO CALLER

* STANDARD EXIT

GOEXIT DS OH
L 13,4(,13)

L 14,12(13)

M 0,12,20(13)

01 15(13),X'01"

BR 14

GET PREVIOUS SAVE LEVEL
A(RETURN-TO-CALLER

RESTORE REGS

SET RETURN FLAG IN CALLER SAVE AREA
RETURN TO CALLER

* CONSTANTS

*
* GETDOBJ RETURN CODES
*

RCOO
RCO8

EQU ©
EQU 8

System Programming APIs

CQSREAD SUCCESSFUL -
INTERFACE PROBLEM

<3< > >< > > > >< > > > < > >

RCOC EQU 12 NO MESSAGE FOR QNAME
RC10 EQU 16 UNEXPECTED RETURN CODE=
* REGISTER EQUATES

*

RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
RS EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
RI13 EQU 13
R14 EQU 14
R15 EQU 15
* VARIABLES *
DS OF
SAVEAREA DS 18F
DS oD
RDRRQTK DS XL16 QS REGISTRATION TOKEN
RDRCONTK DS XL16 QS CONNECT TOKEN
RDRLCKTK DS XL16 LOCKTOKEN (RETURNED)
RDRUOW DS XL32 UOW (RETURNED)
RDRQNAME DS OXL16 QUEUE NAME
DC X'05' CLIENT QUEUE TYPE 5

DC CL15'FFSTRO1CFO2CQ04"

RDROBJSZ DS F OBJECT SIZE (RETURNED)

RDRRSN DS F CQSREAD REASON CODE (RETURNED)

RDRRC DS F CQSREAD RETURN CODE (RETURNED)

RDRBUFA DS A A(READ OBJECT BUFFER)

RDRBUFSZ DS F SIZE OF READ OBJECT BUFFER

RDRECBA DS A A(ECB)

RDRPARM DS XL(CQSREAD_PARM_LEN) CQSREAD PARMLIST

* LITERALS *
LTORG
CQSREAD FUNC=DSECT CQSREAD DSECTS & EQUATES

END GETDOBJ
Related concepts:
[Chapter 1, “Writing a CQS client,” on page 3|

CQSBRWSE request

The CQSBRWSE request retrieves information from a specified queue or resource
structure.

Format
BROWSE function

Use the BROWSE function of a CQSBRWSE request to retrieve a copy of a data
object from a specific queue.

»»—CQSBRWSE—FUNC=BROWSE—CQSTOKEN=cqstokenaddress >

»—CONTOKEN=connecttokenaddress—PARM=parmaddress—BRWTOKEN=browsetokenaddress——

>—|:(‘)NAME=queuenameaddress—|—BUFFER=bufferaddress—BU FSIZE=buffersize——»
A I
I

»—0BJSIZE=dataobjectsizeaddress—UOW=uowaddress >

v

I—TIMESTAMP=t imes tampaddr‘ess—| |—ECB=ecbaddress—|

A\
A

»—RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress

Chapter 2. CQS client requests 17

18

A:

|—QTYPE=COLD—CLDTOKEN=coquueuetokenaddress |_ _| >
QNAME=queuenameaddress

|—CLI ENT=clien tnameaddress—|

BRWSOBJS function

Use the BRWSOB]JS function of a CQSBRWSE request to browse one or more
resource data objects of a specified type from a resource structure.

»>—CQSBRWSE—FUNC=BRWSOBJS—CQSTOKEN=cqstokenaddress >
»—CONTOKEN=connecttokenaddress—PARM=parmaddress—BRWTOKEN=browsetokenaddress——»

LISTVER=1
|_

»—LIST=resourcelistaddress—COUNT=resourcelistcount

|—LISTVER=listversi0n—

»—BUFFER=bufferaddress—BUFSIZE=buffersize-0BJSIZE=dataobjectsizeaddress—— >

RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress——— >«

|—ECB=ecbaddress—|

COMPLETE function

Use the COMPLETE function of a CQSBRWSE request to indicate to CQS that a
CQSBRWESE request associated with a particular browse token is complete.

»»—CQSBRWSE—FUNC=COMPLETE—CQSTOKEN=cqstokenaddress >
»—CONTOKEN=connecttokenaddress—PARM=parmaddress—BRWTOKEN=browsetokenaddress——

RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress———»<

|—E(:B=ecbaddressJ

CONTINUE function of CQSBRWSE

Use the CONTINUE function of a CQSBRWSE request if a previous CQSBRWSE
request retrieved partial data and you want to retrieve the rest of the data object.

»»—CQSBRWSE—FUNC=CONTINUE—CQSTOKEN=cqstokenaddress >
»—CONTOKEN=connecttokenaddress—PARM=parmaddress—BRWTOKEN=browsetokenaddress——

»—BUFFER=bufferaddress—BUFSIZE=buffersize—OBJSIZE=dataobjectsizeaddress———— >

System Programming APIs

RETCODE=returncodeaddress—RSNCODE=reasoncodeaddres s——— >«

|—ECB=ecbaddr‘ess—|

DSECT function

Use the DSECT function of a CQSBRWSE request to include equate (EQU)
statements in your program for the CQSBRWSE parameter list length and
CQSBRWSE return and reason codes.

»>—CQSBRWSE—FUNC=DSECT

A\
A

Usage notes

A CQSBRWSE FUNC=BROWSE request retrieves a copy of a data object from a
specific queue on a queue structure. The first CQSBRWSE FUNC=BROWSE request
takes a snapshot of the data objects that meet the selection criteria and returns a
copy of the first data object. The data object is neither deleted nor locked, and can
be accessed by any subsequent CQS request. Each subsequent CQSBRWSE
FUNC=BROWSGE request retrieves a copy of the next data object. The data object is
returned in the client buffer that is specified on the CQSBRWSE request. The size
of the data object is passed to the client.

A browse token maintains the cursor position of the data objects that are being
browsed. A CQSBRWSE FUNC=BROWSE request with a zero browse token returns
the first data object. A CQSBRWSE FUNC=BROWSE request with a non-zero
browse token retrieves the next data object on the queue that is associated with the
browse token. If the data object that is returned is the last data object on the queue,
CQS invalidates the browse token and frees any data structures associated with
that browse token.

When a CQSBRWSE FUNC=BROWSE request is issued and the buffer that is
passed is not large enough to hold the next data object, partial data is returned.
The bulffer is filled with as much of the data object as can fit. The CQSBRWSE
FUNC=CONTINUE request retrieves the rest of the data object.

A CQSBRWSE FUNC=BRWSOBJS request retrieves information about one or more
data objects from a resource structure. The first CQSBRWSE FUNC=BRWSOB]S
request takes a snapshot of the data objects that meet the selection criteria and
returns information about one or more of those data objects. The request returns as
many data object entries as fit are returned in the client buffer that is specified on
the CQSBRWSE request. Each subsequent CQSBRWSE FUNC=BRWSOB]JS request
retrieves the next set of data object entries. A browse token maintains the cursor
position of the data objects that are being browsed. A CQSBRWSE
FUNC=BRWSOB]JS request with a zero browse token retrieves information about as
many data objects as fit in the buffer. A CQSBRWSE FUNC=BRWSOB]JS request
with a non-zero browse token retrieves the next group of data object entries. If the
buffer contains information about the last data object being browsed, CQS
invalidates the browse token and frees any data structures associated with that
browse token.

A CQSBRWSE FUNC=COMPLETE request indicates to CQS that the CQSBRWSE

request that is associated with a browse token is complete. The browse token from
the prior CQSBRWSE request is required. CQS invalidates the browse token and

Chapter 2. CQS client requests 19

20

frees any data structures that are associated with it. The client should issue a
CQSBRWSE FUNC=COMPLETE request if it is not retrieving all of the data objects
on the specified queue.

The CQSBRWSE FUNC=CONTINUE request is not supported for a resource
structure because the CQSBRWSE FUNC=BRWSOB]JS request does not return
partial data.

Attention:

The cursor position of a CQSBRWSE FUNC=BROWSE or CQSBRWSE
FUNC=CONTINUE request can be lost due to a CQS restart, a client restart,
structure recovery, structure copy, or the browse table timing out. (The browse
table times out after approximately one hour.)

A CQSBRWSE request is not recoverable across a CQS or client failure. The
client must reissue the CQSBRWSE request after such a failure.

The data object is not locked on a CQSBRWSE request, so one or more of the
objects might be snapped by the first CQSBRWSE FUNC=BROWSE request and
no longer be available because of another CQSREAD or CQSDEL request.

If overflow threshold processing occurs after the initial CQSBRWSE
FUNC=BROWSE request and the queue is moved to the overflow structure, any
subsequent CQSBRWSE FUNC=BROWSE request with browse token results in
an error that indicates that no objects were found. Reissue the CQSBRWSE
FUNC=BROWSE request with a browse token of zeroes, so that CQS can take a
snapshot of the queue on the overflow structure. QSMOVE request, or overflow
threshold processing. The CQSBRWSE FUNC=BROWSE simply skips objects that
are no longer available.

If the current position is lost because a browse table times out, a CQSBRWSE
FUNC=CONTINUE request is rejected.

Parameters
BRWTOKEN=browsetokenaddress

Input and output parameter that specifies the address of the 16-byte browse
token. The browse token maintains the cursor position of the data objects that
are being browsed.

Set the browse token to zero on the initial CQSBRWSE request. Pass the
browse token that is returned by CQS on a CQSBRWSE FUNC=BROWSE or
FUNC=BRWSOB]JS request as input on a subsequent CQSBRWSE=BROWSE,
CQSBRWSE=CONTINUE, CQSBRWSE=COMPLETE, or
CQSBRWSE=BRWSOB]JS request.

On output, the browse token uniquely identifies the current data object that is
being browsed, which is returned in the buffer identified by the BUFFER
parameter.

For a CQSBRWSE FUNC=CONTINUE request, a CQSBRWSE
FUNC=COMPLETE request, or a subsequent CQSBRWSE FUNC=BROWSE
request, the BRWTOKEN parameter is an input parameter that specifies the
browse token returned by CQS on the prior CQSBRWSE FUNC=BROWSE
request.

BUFFER=bufferaddress

4-byte input parameter that specifies the address of a client buffer that holds
information that is retrieved about one or more data objects.

For a CQSBRWSE FUNC=BROWSE request, the client buffer contains a copy of
the data object retrieved from the queue on a queue structure.

System Programming APIs

For a CQSBRWSE FUNC=BRWSOBJS request, the client buffer contains the
count of data object entries and one or more data object entries. Each data
object entry contains information about one resource data object that is
retrieved from the resource structure. Each data object entry contains
information about a browsed data object such as the resource ID, the
completion code, resource ID status, version, owner, client datal, optional
client data2, and user data that was passed in the input list. If the size of the
information is greater than the buffer size passed by the client, the buffer is
filled with as many resource entries as can fit. The BUFFER is mapped by the
CQSBRWSB DSECT.

The resource ID status indicates how the resource ID in the data object entry is
associated with the input parameter. With this information, you can tie the
input parameter to the data object entries that are generated in the output
buffer. Possible resource ID statuses are:

Specific parameter
A specific resource ID. This data object entry contains the resource ID that
matches the input parameter.

Wildcard parameter
A wildcard parameter was specified. This data object entry contains the
wildcard parameter and a completion code. This data object entry does not
contain information about a specific resource ID. If the completion code is
zero, one or more wildcard match list entries follow.

Wildcard match
A wildcard parameter was specified. This data object contains information
about one resource ID that matches the input wildcard parameter. All
wildcard match list entries follow contiguously after a wildcard parameter
list entry.

Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000020'
The Resourceid parameter is invalid. The name type must be a decimal
number from 1 to 255.

X'00000024'
CQS internal error.

X'00000040'
No resources matching either resource ID, resource type, owner, or
some combination of these, were found.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the client buffer.

CLDTOKEN=coldqueuetokenaddress
Output parameter that specifies the address of the 16-byte cold-queue token for
the data object, which, along with the UOW, identifies an object on the cold
queue.

You can use the cold-queue token and unit of work (UOW) on a CQSRECVR
request to retrieve or delete objects on the cold queue.

CLIENT=clientnameaddress
4-byte output parameter that specifies the address of an 8-byte field to contain

Chapter 2. CQS client requests 21

the name of the client that locked the data object with a CQSREAD request.
This parameter is valid only when the QTYPE=COLD parameter is specified.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=resourcelistcount
4-byte input parameter that specifies the number of entries in the resource list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
4-byte input parameter that specifies the address of the z/OS event control
block (ECB) that is used for asynchronous requests. If ECB is specified, the
request is processed asynchronously; otherwise, it is processed synchronously.

LIST=resourcelistaddress
Address of a variable size input parameter that specifies a resource list that
contains one or more entries. Each entry is a separate browse request. The
client must initialize some fields in each entry before issuing the CQSBRWSE
request. Other fields are returned by CQS when the request completes.

The CQSBRWSL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following parameters:

resourceid
12-byte input field that contains the unique identifier of the resources to be
browsed. The resource ID can be a wildcard parameter. The resource ID is
unique in the IMSplex. The resource ID consists of a 1-byte name type,
followed by an 11-byte client-defined name. The name type ensures
uniqueness of client-defined names for resources with the same name type.
Resources of different resource types might have the same name type. A
valid value for the name type is a decimal number from 1 to 255. The
client-defined name has meaning to the client and consists of alphanumeric
characters. If you use a wildcard parameter to specify the resource ID, also
specify the resource type, to enhance performance. You must specify the
resource 1D, resource type, or both.

resourcetype
1-byte input field that specifies the resource type. The resource type is a
client-defined physical grouping of resources on the resource structure.
Valid values for the resource type are decimal numbers from 1 to 255. If
the resource type is greater than the maximum number of resource types
defined by CQS (11), it is folded into one of the existing resource types.
You must specify the resource type, resource ID, or both.

reserved
3-byte reserved field.

owner
8-byte input parameter that identifies the owner of the resource data

22 System Programming APIs

objects to be browsed. The CQSBRWSE request returns only those resource
data objects that are owned by the specific owner. owner is an optional
parameter.

options
4-byte input parameter that specifies browse options. Possible options are:

X'80000000'
Return data2 for the browsed data objects.

userdata
Four-byte input parameter that specifies user data. This user data
is passed on output for each data object that matches the input
resource ID parameter.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. The default value
is 1. Use the DSECT function of a CQSBRWSE request to include equate (EQU)
statements in your program for the CQSBRWSE list versions.

0BJSIZE=dataobjectsizeaddress
Output parameter that specifies the address of a 4-byte area to store the size of
a data object or data object entry.

If a CQSBRWSE FUNC=BROWSGE request is issued and the size of the data
object is greater than the buffer size passed by the client, the buffer is filled
with as much of the data object as fits. The request receives a return and
reason code indicating partial data returned. The size of the data object is
returned in the location specified by the OBJSIZE parameter. If the size of the
data object is less than or equal to the size of the buffer, the data object is
moved into the buffer and the remainder of the buffer is not changed.

If a CQSBRWSE FUNC=BRWSOB]JS request is issued, as many data object
entries as can fit are moved into the buffer. The client must then issue a
subsequent CQSBRWSE FUNC=BRWSOB]JS request to retrieve the next data
object entries. If the buffer is not large enough to hold the next data object
entry, the request receives a return and reason code indicating the buffer is too
small. The size of the next data object entry to be returned is saved in the
location specified by the OBJSIZE parameter.

PARM=parmaddress
4-byte input parameter that specifies the address of a parameter list used by
the request to pass parameters to CQS. The length of the storage area must be
at least equal to the EQU value CQSBRWSE_PARM_LEN (defined using the
FUNC=DSECT request).

QNAME=queuenameaddress
4-byte output parameter that specifies the address of a 16-byte queue name
field.

For a CQSBRWSE request that specifies the QTYPE=COLD and CLDTOKEN
parameters, the queue name field is an output field to contain the original
client queue name for the data object being returned. This client queue name
contained the data object before it was moved to the cold queue.

For all other CQSBRWSE requests, the queue name field is an input field that
specifies the queue name from which the data object is retrieved for all
CQSBRWSE requests.

Chapter 2. CQS client requests 23

24

QTYPE=COLD
Input parameter that specifies the queue type from which the data object is to
be retrieved. COLD Indicates that the data object is to be retrieved from the
cold queue.

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSBRWSE return code.

If the return code in register 15 is a non-zero value, the values in the return
and reason code fields are invalid, because the CQS interface detected an error
and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSBRWSE reason code.

TIMESTAMP=timestampaddress
4-byte output parameter that specifies the address of an 8-byte field to contain
the time stamp when the data object was placed on the queues.

UOW=uowaddress
Output parameter that specifies the address of a 32-byte area to hold the unit
of work (UOW) of the data object retrieved from the queue. The UOW is a
unique identifier generated by the client that stored the data object on the
queue (CQSPUT request).

Return and reason codes

The following table lists the return and reason code combinations that can be
returned for CQSBRWSE requests. Use a CQSBRWSE FUNC=DSECT request to
include equate (EQU) statements in your program for the return and reason codes.

Table 7. CQSBRWSE request return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the data object
size (dataobjectsize). Partial data is returned.

X'00000004" X'00000124' The buffer size (buffersize) is too small to contain the
next resource data object entry. No partial data is
returned.

X'00000004" X'00000128' No data object to retrieve on queue name (queuename)
specified.

X'00000004' X'0000012C' No partial data to return.

X'00000004' X'00000138' Request complete and the last data object is returned.

X'00000004' X'0000013C' No more data objects to return.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' browsetoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' buffer is invalid.

X'00000008' X'00000228' buffersize is invalid.

System Programming APIs

Table 7. CQSBRWSE request return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' browsetoken is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' A CQSBRWSE FUNC=BROWSE request is not

allowed for a resource structure. A CQSBRWSE
FUNC=CONTINUE request is not allowed for a
resource structure. No partial data is returned from a
resource structure.

X'00000008' X'00000280' A CQSBRWSE FUNC=BRWSOB]JS request is not
allowed for a queue structure.

X'00000008' X'00000284' Parm listversion is invalid.

X'00000008' X'00000288' listversion is invalid.

X'00000010' X'00000400' A CQSRSYNC request is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000408' Current position lost. Reissue a CQSBRWSE request.

X'00000010' X'00000430' No CQS address space.

X'00000014" X'00000500' CQS internal error.

CQSCHKPT request

Use the CQSCHKPT request to initiate either a CQS system checkpoint or a
structure checkpoint.

Format for CQSCHKPT

CHKPTSTR function of CQSCHKPT

You use the CHKPTSTR function of a CQSCHKPT request to initiate a CQS
structure checkpoint for a queue structure. Structure checkpoint is not supported

for a resource structure.

»»>—CQSCHKPT—FUNC=CHKPTSTR—CQSTOKEN=cgstokenaddress—PARM=parmaddres s———

»—COUNT=count—LIST=listaddress RETCODE=returncodeaddress——»

|—ECB=ecbaddr‘e$s—|

»—RSNCODE=reasoncodeaddress—CQSCHKPT—FUNC=CHKPTSTR—CQSTOKEN=cgstokenaddress——»

»—PARM=parmaddress—COUNT=count—LIST=listaddress |_ _| >
ECB=ecbaddress

Chapter 2. CQS client requests 25

26

»—RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress

\/

LISTVER=1
|_

v
A

|—LISTVER=Z istversion—

CHKPTSYS function of CQSCHKPT

Use the CHKPTSYS function of a CQSCHKPT request to initiate a CQS system
checkpoint.

»»—CQSCHKPT—FUNC=CHKPTSYS—CQSTOKEN=cqstokenaddress—PARM=parmaddres s—— >

»—COUNT=count—LIST=listaddress RETCODE=returncodeaddress——»

|—ECB=ecbaddress—|
»—RSNCODE=reasoncodeaddress—CQSCHKPT—FUNC=CHKPTSYS—CQSTOKEN=cqgstokenaddress——

»—PARM=parmaddress—COUNT=count—LIST=listaddress |_ _| >
ECB=ecbaddress

»—RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress >

LISTVER=1
|_

v
A

|—LISTVER=l istversion—

DSECT function of CQSCHKPT

Use the DSECT function of a CQSCHKPT request to include equate (EQU)
statements in your program for the CQSCHKPT parameter list length and
CQSCHKPT return and reason codes.

»»—CQSCHKPT—FUNC=DSECT

v
A

Usage of CQSCHKPT

For a structure checkpoint, CQS dumps the queues to DASD for each structure
specified in the checkpoint list. If the structure is currently in overflow mode, the
overflow structure is also dumped to DASD.

For a system checkpoint, CQS logs the internal tables for each structure specified
in the checkpoint list. If the structure is currently in overflow mode, CQS also logs
the internal tables for the overflow structure.

System Programming APIs

Parameter descriptions

COUNT=count
4-byte input parameter that specifies the number of entries in the checkpoint
list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
4-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LIST=1listaddress
4-byte input parameter that specifies the address of the checkpoint list. The
checkpoint list should contain an entry for each of the structures for which the
client requests a checkpoint.

The CQSCHKPL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following parameters:

connecttoken
16-byte input parameter that specifies the connect token returned by
the CQSCONN request. The connect token uniquely identifies the
client's connection to a particular coupling facility structure managed
by this CQS. This parameter is required.

compcode
4-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Completed successfully.

X'00000004'
Connect token is invalid.

X'00000008'
CQS checkpoint request not allowed until CQS restart has
successfully completed a system checkpoint.

X'0000000C"

A CQSRSYNC is required for this structure.
X'00000010'

Checkpoint already in progress for structure.
X'00000014'

Structure is inaccessible. Retry request later.
X'00000018'

CQS internal error.
X'00000020'

CQSCHKPT FUNC=CHKPTSTR is invalid for a resource

structure.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT

Chapter 2. CQS client requests 27

function of a CQSCHKPT request to include equate (EQU) statements in your
program for the CQSCHKPT list versions.

PARM=parmaddress
4-byte input parameter that specifies the address of a parameter list used by
the request to pass parameters to CQS. The length of the storage area must be
at least equal to the EQU statement value CQSCHKPT_PARM_LEN (defined
using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCHKRPT return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCHKPT reason code.

Return and reason codes for CQSCHKPT

The following table lists the return and reason code combinations that can be
returned for CQSCHKPT requests. Use a CQSCHKPT FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 8. CQSCHKPT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254"' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'0000040C' CQS shutdown is pending. Client-initiated
checkpoint requests are not allowed.

X'00000010' X'00000430' No CQS address space.

Related concepts:

[# [Using CQS system checkpoint (System Administration)|

CQSCONN request

The CQSCONN request connects a client to one or more coupling facility
structures.

28 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_usingcqscheckpoint.htm#ims_usingcqscheckpoint

Format for CQSCONN

CONNECT function of CQSCONN

You use the CONNECT function of a CQSCONN request to connect to one or
more coupling facility structures. The coupling facility structures can be queue

structures or resource structures.

»»—CQSCONN—FUNC=CONNECT—CQSTOKEN=cqstokenaddress—PARM=parmaddress——

COUNT=count—LISTSIZE=listsize >

|—FCCQSSSN=fccqsssnaddress—|

»—LIST=listaddress RETCODE=returncodeaddress >

|—ECB=ecbaddress—|

LISTVER=1
|_

v
A

»—RSNCODE=reasoncodeaddress

|—LISTVER=l istversion—

DSECT function of CQSCONN

Use the DSECT function of a CQSCONN request to include equate (EQU)
statements in your program for the CQSCONN parameter list length and
CQSCONN return and reason codes.

»>—CQSCONN—FUNC=DSECT

A\
A

Usage of CQSCONN

The CQSCONN request connects a client to one or more coupling facility
structures. The client specifies a connect list containing one or more list entries, for
which each entry is a separate connect request. If the connection to a structure is
successful, a connect token is returned to the client, representing the connection to
the structure. The client must specify this token on all subsequent CQS requests for
that structure. A maximum of 32 clients can use a CQS address space to connect to
a coupling facility structure.

Restriction: The CQSCONN request is not logged for resource structures and does
not support the FCCQSSSN keyword. The CQSCONN request does not support
the following connect list parameters for a resource structure:

* structureattributes

* overflowstructurename
s structureinformexit

* structureinformparm
* gtypecnt

* gtypelist

A CQSCONN FUNC=CONNECT request must be issued after a CQSREG
FUNC=REGISTER request and before any other CQS requests. Also, after a CQS

Chapter 2. CQS client requests 29

30

abnormal termination and restart, and after the client has reregistered with CQS, a
CQSCONN FUNC=CONNECT request is required before the client can issue any
other CQS requests.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of list entries in the
connect list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

FCCQSSSN=fccqsssnaddress
Four-byte input parameter that specifies the address of the failed client CQS
subsystem. When one client takes over for another client, this is the SSN of the
CQS that was connected to the failed client.

This keyword is not applicable to a resource structure.

LIST=listaddress
Four-byte input parameter that specifies the address of a connect list
containing one or more entries. Each entry is a separate request to connect a
client to a coupling facility structure. Some fields for each entry must be
initialized by the client prior to the CQSCONN request. Other fields are
returned by CQS upon completion of the CQSCONN request.

The CQSCONNL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Note: All fields in the CQSCONNL DSECT currently documented as “Not
Used” must be set to zero by the caller of CQSCONN.

Each list entry contains the following parameters:

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Client connection successful. A connect token is returned to the
client.

X'00000004'
The client is already connected to the structure through this
CQS. A connect token is returned to the client.

X'00000008'
structurename is invalid.

X'0000000C'
The Structure Event exit routine address was not specified.

X'00000010'
The client is already connected to the structure through
another CQS. A client can only be connected to a given

System Programming APIs

structure through one CQS. The client is not connected to the
structure through this CQS. This does not affect the status of a
client connection with another CQS.

X'00000014'
CQS internal error.

X'00000018'
The client specified the FCCQSSSN= parameter to connect to
the structure to take over work for a failed client. CQS could
not find a valid system-checkpoint log token for the CQS that
was connected to the failed client. CQS issued message
CQS0033A, to which the operator replied REJECT.

X'0000001C'
The user ID of the client address space is not authorized to
connect to the structure.

X'00000020'
structureinformexit was specified but is not allowed for a
resource structure.

X'00000024'
structureinformparm was specified but is not allowed for a
resource structure.

X'0000002C'
structureattributes was specified but is not allowed for a
resource structure.

X'00000030'
Qtype was specified but is not allowed for a resource structure.

X'00000034'
FCCQSSSN was specified but is not allowed for a resource
structure.

structureattributes
Four-byte input and output parameter field that contains the structure
attributes.

+0 Flag byte 1, with the following bits defined:

X'80' Indicates the specification of the structure “wait for
rebuild” attribute. The first client in the sysplex to connect
to a structure defines this attribute for all clients. It is
returned on the connect request to allow clients to verify
that the attribute is set correctly for their needs because it
might have been set by a prior client connection.

The value specified for structureattributes remains in effect
for the life of the structure, and cannot be changed.

When set to 0, indicates that client requests to write and
retrieve data objects from the structure do not wait for a
rebuild to complete.

When set to 1, indicates that client requests to write and
retrieve data objects from the structure must wait for a
rebuild to complete.

X’40" Output flag returned by CQS. For queue structures only,
this flag indicates whether the structure is a

Chapter 2. CQS client requests 31

System Programming APIs

non-recoverable structure (whether RECOVERABLE=NO
was specified in the CQSSGxxx PROCLIB member for the
structure). This flag is set to 1 if the structure is a
non-recoverable structure; otherwise, it is set to 0.

This flag is not applicable to a resource structure.

The remaining bits in this byte are not used, and must be set to
Zero.

+1 The next 3 bytes are not used, and must be set to zero.

structuretype
One-byte output parameter field that specifies the structure type as
either a queue structure or a resource structure.

structureversion
Eight-byte output parameter field that specifies the structure version of
the structure to which the client just connected.

structurename
Sixteen-byte input parameter field that contains the name of the
structure to which the client wants to connect. This parameter is
required.

overflowstructurename
Sixteen-byte output parameter field to receive the name of the
overflow structure, if one was defined to CQS in the CQS Global
Structure Definition PROCLIB member, CQSSGxxx.

This parameter is not applicable to a resource structure.

connecttoken
Sixteen-byte output parameter field to receive the connect token that
uniquely identifies the client's connection to a particular coupling
facility structure managed by this CQS.

structureeventexit
Four-byte input parameter field that contains the Structure Event exit
routine address. This parameter is required.

structureeventparm
Four-byte input parameter field that contains client data that CQS
passes to the Structure Event exit routine every time the exit is called.
This parameter is optional; set it to zero if you do not want to pass any
data to the exit routine.

structureinformexit
Four-byte input parameter field that contains the Structure Inform exit
routine address. This parameter is optional; set it to zero if you do not
have a Structure Inform exit routine.

This parameter is not applicable to a resource structure.

structureinformparm
Four-byte input parameter field that contains client data that CQS
passes to the Structure Inform exit routine every time the exit is called.
This parameter is optional; set it to zero if you do not want to pass any
data to the exit routine.

This parameter is not applicable to a resource structure.

qtypecnt
Four-byte input parameter field that contains the number of queue

type entries in the queue type list. This parameter is optional; set it to
zero if you do not have any entries in the queue type list.

This parameter is not applicable to a resource structure.

qtypelst
Variable length input area for the queue type list.

This parameter is not applicable to a resource structure.

The length of this area is equal to the value specified for gtypecnt. Each
queue type entry is a 1-byte value of a queue type that should not be
moved to the overflow structure if the primary structure goes into
overflow mode. This parameter is optional.

When using version 1 of the CQSCONN parameter list (the default),
build the queue type list starting at label CNLQTYPL in the
CQSCONNL DSECT, which maps the list entry. When using version 16
of the CQSCONN parameter list, build the queue type list starting at
label CNLQTYPL_V16.

After a queue type is defined, it remains in effect for the life of the
structure, and is not moved to the overflow structure.

If no queue types are listed, the default is for all queue types to be
eligible for overflow. This list should only be included if there are
certain queue types the client knows should not be moved (perhaps
based on the client's use of the queue types).

Recommendation: Clients should exclude from processing those queue
types that allow multiple objects with the same queue name and UOW.
CQS cannot recover multiple objects with the same queue name and
UOW that are allowed to be moved to the overflow structure.

logstreamname
Twenty-six-byte output parameter field to receive the name of the
z/0S log stream associated with the CQS structure. This field is set to
all blanks for non-recoverable queue structures and for resource
structures.

This field is present only for CQSCONN lists at version 16 or later.

logstreamstructurename
Sixteen-byte output parameter field to receive the name of the CF
structure associated with the z/OS log stream that is associated with
the CQS structure. This field is set to all blanks for non-recoverable
queue structures, resource structures, and structures with DASD-only
z/0S log streams.

This field is present only for CQSCONN lists at version 16 or later.

LISTSIZE=listsize
Four-byte input parameter that specifies the size of the connect list. listsize
specifies the total length of all entries in the list, not the length of a single
entry.

LISTVER=1 | listversion
Input parameter that specifies the parameter list version. Use the DSECT
function of the CQSCONN request to include equate (EQU) statements in your
program for the CQSCONN list versions and lengths. The following parameter
list versions are supported:

1 EQU symbol is CNL_LVERI. This is the default parameter list version.

Chapter 2. CQS client requests 33

34

This version of the parameter list includes all fields documented under the
LIST= parameter except for those that are specifically noted as being
present only in a higher list version. The minimum length of a version 1
parameter list entry is CNL_MINLNV1 bytes. Queue type entries, if
present, begin at label CNLQTYPL in the CQSCONNL DSECT, mapping
the list entry.

16 EQU symbol is CNL_LVER16. A version 16 parameter list contains
additional output fields beyond the fields present in a version 1 parameter
list. These additional fields are documented under the LIST= parameter
and are returned only when a version 16 format parameter list is passed.
The minimum length of a version 16 parameter list entry is
CNL_MINLNV16 bytes. Queue type entries, if present, begin at label
CNLQTYPL_V16 in the CQSCONNL DSECT, mapping the list entry.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSCONN_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCONN return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCONN reason code.

Return and reason codes for CQSCONN

The following table lists the return and reason code combinations that can be
returned for CQSCONN requests. Use a CQSCONN FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 9. CQSCONN return and reason codes

Return code Reason code Meaning
X'00000000' X'00000000' Request completed successfully.
X'00000004' X'00000100' The client was previously connected to one or more

of the specified structures through this CQS. Client is
connected to all structures.

X'00000008' X'00000210' cgstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000258' listsize is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for one but not all list entries. See

compcode for individual errors.

System Programming APIs

Table 9. CQSCONN return and reason codes (continued)

Return code Reason code Meaning

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'0000040C' CQS shutdown in progress (CQSSHUT). CQS is

waiting for all clients to disconnect, and no new
client connections are allowed.

X'00000010 X'00000410' The maximum number of clients are connected to
this CQS. This request would exceed the client
connection limit. No further client connections are

allowed.
X'00000010' X'00000430' No CQS address space.
X'00000014' X'00000500' CQS internal error.

CQSDEL request

A CQSDEL request deletes one or more data objects from a queue structure or a
resource structure.

Format for CQSDEL
DELETE function of CQSDEL

Use the DELETE function of a CQSDEL request to delete one or more data objects
from a queue structure or a resource structure.

»»—CQSDEL—FUNC=DELETE—CQSTOKEN=cqstokenaddress

v

»—CONTOKEN=connecttokenaddress—PARM=parmaddress—COUNT=count >
»—LIST=listaddress |_ _| RETCODE=returncodeaddress >
ECB=ecbaddress
|—LISTVER=1
»—RSNCODE=reasoncodeaddress >«

|—LISTVER=l istversion—

DSECT function of CQSDEL

Use the DSECT function of a CQSDEL request to include equate (EQU) statements
in your program for the CQSDEL parameter list length and CQSDEL return and
reason codes.

»>—CQSDEL—FUNC=DSECT

A\
A

Usage of CQSDEL

A CQSDEL request deletes one or more data objects from a queue structure or a
resource structure. The client specifies a delete list that contains one or more list

Chapter 2. CQS client requests 35

36

entries, for which each list entry is a separate delete request (either by lock token,
by queue name, by queue name and UOW, by resource 1D, or by resource type
and owner). Each list entry is processed separately and receives its own completion
code.

Parameter description:

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=count
A 4-byte input parameter that specifies the number of list entries in the delete
list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
A 4-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise, it is processed synchronously.

LIST=listaddress
A 4-byte input parameter that specifies the address of a delete list containing
one or more entries. Each entry is a separate delete request. Some fields in
each entry must be initialized by the client prior to the CQSDEL request. Other
fields are returned by CQS upon completion of the request.

The CQSDELL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following parameters:

deletetype
One-byte input parameter field that contains the delete type. This is a
required parameter. deletetype can have one of the following values:

1 Delete by lock token.

2 Delete by queue name.

3 Delete by queue name and unit of work.

4 Delete by resource ID and version.

5 Delete by resource type with the specified owner.
Recommendation: For better performance, use delete type 1 or delete
type 2 because they are more efficient than delete type 3.

deleteqpos
One-byte input parameter field that specifies either that all data objects
are to be deleted or the position on the queue of data objects to be
deleted. This parameter is only used for delete type 2. deleteqpos can
have one of the following values:

1 Delete all data objects on the queue.
2 Delete the first data object on the queue.

System Programming APIs

3 Delete the last data object on the queue.
The locktoken, deletegpos, and uow fields are mutually exclusive.

reserved
A 2-byte reserved field.

objdelcnt
A 4-byte output parameter field to receive the number of data objects
deleted.

compcode
A 4-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000004'
Invalid deleteqpos (Delete type 2).

X'00000008'
Invalid deletetype.

X'0000000C'
Invalid locktoken (Delete type 1).

X'00000010'
Invalid queuename (Delete type 2 or type 3).

X'00000014'
Invalid uow (Delete type 3).

X'0000001C"
Structure is inaccessible. Try the request again later.

X'00000020'
CQS internal error.

X'00000024'
Data object not found on queue (Delete type 2) or on
queuename for UOW (Delete type 3), or on resource structure
(Delete type 4). It is up to the client to determine whether this
case should be treated as an error or not.

X'00000028'
Delete type 1, 2, or 3 is invalid for a resource structure.

X'00000032'
Delete type 4 or 5 is invalid for a queue structure.

X'00000036'
Resourceid is invalid. The name type must be a decimal number
between 1 - 255.

X'00000040'
Version is invalid. The version must be a number greater than
zero.

X'00000044'
Version does not match that of an existing resource.

X'00000048'
Resourcetype is invalid. The resource type must be a decimal
number between 1 - 255.

Chapter 2. CQS client requests 37

38

locktoken

A 16-byte input parameter field that contains the lock token. The lock
token is returned by the CQSREAD request. This parameter is only
used for delete type 1.

The locktoken, deletegpos, and uow fields are mutually exclusive. The
locktoken and queuename fields are also mutually exclusive.

queuename

uow

A 16-byte input parameter field that contains the queue name. This
parameter is only used for delete types 2 and 3.

The locktoken and queuename fields are mutually exclusive.

A 32-byte input parameter that contains the unit of work. This
parameter is only used for delete type 3.

The locktoken, deleteqpos, and uow fields are mutually exclusive.

resourceid

version

A 12-byte input parameter that contains the unique identifier of the
resource data object to delete. This parameter is required for delete
type 4. The resourceid, locktoken, queuename, and resourceytpe fields are
mutually exclusive.

An 8-byte input and output parameter that contains the version of the
resource to be deleted. The version specified must match the version of
the resource for the delete request to succeed. The version is a count of
the number of times the resource has been updated. This parameter is
required for delete type 4. If the delete fails because of version
mismatch, the version is returned as output.

resourcetype

A 1-byte input parameter that contains the resource type. The resource
type is a client-defined physical grouping of resources on the resource
structure. Valid values for the resource type are decimal numbers from
1 to 255. If the resource type is greater than the maximum number of
resource types defined by CQS (11), it is folded into one of the existing
resource types. This parameter is required for delete types 4 and 5.
Specify zero to delete all resources of a resource type that are not
owned.

reserved

owner

A 3-byte reserved field.

An 8-byte input parameter that specifies the owner for which to delete
resources of the specified resource type. This parameter is required for
delete type 5.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSDEL request to include equate (EQU) statements in your
program for the CQSDEL list versions.

PARM=parmaddress
A 4-byte input parameter that specifies the address of a parameter list used by
the request to pass parameters to CQS. The length of the storage area must be
at least equal to the EQU value CQSDEL_PARM_LEN (defined using the
FUNC=DSECT request).

System Programming APIs

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEL return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEL reason code.

Return and reason codes for CQSDEL

The following table lists the return and reason code combinations that can be
returned for CQSDEL requests. Use a CQSDEL FUNC=DSECT request to include
equate statements in your program for the return and reason codes.

Table 10. CQSDEL return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parameter list version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSDEREG request

The CQSDEREG request deregisters a client from CQS and invalidates the
CQSTOKEN.

Format for CQSDEREG
DEREGISTER function of CQSDEREG

A CQSDEL request deletes one or more data objects from a queue structure or a
resource structure.

»»—CQSDEREG—FUNC=DEREGISTER—CQSTOKEN=cqstokenaddress—PARM=parmaddres s ——

Chapter 2. CQS client requests 39

v
A

»—RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress

DSECT function of CQSDEREG

Use the DSECT function of a CQSDEREG request to include equate (EQU)
statements in your program for the CQSDEREG parameter list length and
CQSDEREG return and reason codes.

»»—CQSDEREG—FUNC=DSECT ><

Usage of CQSDEREG

The CQSDEREG request deregister a client from CQS and invalidates the
CQSTOKEN. Prior to issuing this request, the client should issue the CQSDISC
request to disconnect from all structures to which the client has a connection.
When this request is successfully completed, no subsequent requests can be made
to CQS until a CQSREG request has been made to get a new CQSTOKEN.

Parameter Description:

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSDEREG_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEREG return code. The CQSDEREG return code is returned both in this
field and in register 15.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEREG reason code. The CQSDEREG reason code is returned both in this
field and in register 0.

Return and reason codes for CQSDEREG

The following table lists the return and reason code combinations that can be
returned for CQSDEREG requests.

Table 11. CQSDEREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000104' Unable to free CQS's storage in client's address space.
The cqstoken is now invalid.

X'00000004' X'00000108' Unable to delete z/OS Resource Manager routine.
The cgstoken is now invalid.

X'00000008' X'00000210' cgstoken is invalid.

40 System Programming APIs

Table 11. CQSDEREG return and reason codes (continued)
Return code Reason code Meaning

X'00000008' X'00000248' The CQSDEREG parameter list version is invalid.
This error is probably caused by a difference in
versions between the CQS client and the CQS
address space the client is trying to use.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000434' Request is active.

X'00000014" X'00000500' CQS internal error. The cgstoken is now invalid.

X'00000014' X'00000504' Storage allocation error for work area.

X'00000014' X'00000518' CQS internal error (unable to create ESTAE).

X'00000014' X'0000053C' Unable to load CQS deregistration module
CQSREG10.

CQSDISC request

The CQSDISC request allows a client to disconnect from one or more coupling
facility structures.

Format for CQSDISC

DISCABND function of CQSDISC

You use the DISCABND function of a CQSDISC request while the client is
terminating abnormally to terminate client connections to all coupling facility

structures.

»»—CQSDISC—FUNC=DISCABND—CQSTOKEN=cgstokenaddress—PARM=parmaddres s——

Wk .

|—0PTWORD1=optz'onwor‘dvalue— |—ECB=ecbaddr‘ess—|

». [

|—RETCODE=retur‘ncodeaddress—| |—RSNCODE=reasoncodeaddress—l |—LISTV ER=1—|

CQSSHUT=YES
e]

|—CQSSHUT=N0J

DISCNORM function of CQSDISC

Use the DISCNORM function of a CQSDISC request while the client is terminating
normally to terminate client connections to one or more coupling facility structures.

»»—CQSDISC—FUNC=DISCNORM—CQSTOKEN=cqgstokenaddress—PARM=parmaddres s—— XXX

Chapter 2. CQS client requests 41

il
»—COUNT=count—LIST=listaddress |_
OPTWORD1=optionwordvalue—

v

RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress——— >

\

|—ECB=ecbaddress—|

v
v
A

|—LISTVER=1—|

A:

CQSSHUT=YES
-]

|—CQSSHUT=N0J

DSECT function of CQSDISC

Use the DSECT function of a CQSDISC request to include equate (EQU) statements
in your program for the CQSDISC parameter list length, CQSDISC return and
reason codes, and literals that can be used to build the OPTWORDI1 parameter.

»»—CQSDISC—FUNC=DSECT

v
A

Usage of CQSDISC

Restriction: The CQSDISC request does not support structure attributes for
resource structures.

The CQSDISC request allows a client to disconnect from one or more coupling
facility structures. CQS disconnects client resources associated with the structures.
The client needs to issue a CQSDEREG request to completely disconnect from
CQs.

A CQSDISC FUNC=DISCABND request, used when the client is terminating
abnormally, terminates client connections to all coupling facility structures.

A CQSDISC FUNC=DISCNORM, used when the client is terminating normally,
terminates client connections to one or more coupling facility structures. The client
specifies a disconnect list containing one or more list entries, for which each entry
is a separate disconnect request. As each structure disconnect is completed, the
connect token for that structure is invalidated and can no longer be used by the
client.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of list entries in the
disconnect list.

CQSSHUT=YES | NO
Input parameter that indicates whether or not the CQS address space should
be shut down after all clients have disconnected.

42 System Programming APIs

If CQSSHUT=YES is specified, new clients continue to be allowed to issue
CQSCONN requests. The CQSSHUT FUNC=QUIESCE request can be used to
prevent new clients from issuing CQSCONN requests.

The CQSSHUT parameter cannot be used when the OPTWORD1 parameter is
specified. If you specify OPTWORDI instead of CQSSHUT, you can use the
following equate (EQU) symbols to generate the value for the OPTWORD1
parameter:

CQSDISC_SHUTYEQX CQSSHUT=YES
CQSDISC_SHUTNEQX CQSSHUT=NO

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise the request is processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of a disconnect list
containing one or more entries. Each entry is a separate request to disconnect a
client from a coupling facility structure. Some fields in each entry must be
initialized by the client prior to the CQSDISC request. Other fields are returned
by CQS upon completion of the CQSDISC request.

The CQSDISCL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following:

connecttoken
Sixteen-byte input parameter that specifies the connect token that
uniquely identifies the client's connection to a particular coupling
facility structure managed by this CQS. The connect token is returned
by the CQSCONN request. This parameter is required.

structureattributes
Four-byte input parameter field that contains the structure attributes.

+0 Flag byte 1, with the following bits defined:

X'80' When set to 0, indicates that CQS should not perform a
structure checkpoint for the structure.

When set to 1, indicates that CQS should perform a
structure checkpoint for the structure.

X'40' When set to 0, indicates that CQS should not perform
disconnect processing for the structure if there is any
inflight work (locked objects) on the structure. If inflight
work is found, CQS will set completion code X'00000008' in
the compcode field, and will return a return code of
X'0000000C', and a reason code of either X'00000300" or
X'00000304' for the request.

When set to 1, indicates that CQS should disconnect from
the structure, even if there is inflight work (locked objects)
on the structure. If inflight work is found, CQS will set
completion code X'00000008' in the compcode field, and

Chapter 2. CQS client requests 43

will return a return code of X'00000004', and a reason code
of X'00000140' for the request, if no other errors in
disconnect processing occur. Note that the return and
reason code is a warning only; the disconnect processing is
still performed.

The remaining bits in this byte are not used, and must be set to
Zero.

+1 The next 3 bytes are not used, and must be set to zero.

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000004'
connecttoken is invalid.

X'00000008"
The client has inflight work for the structure. If the X'40' bit in the
first byte of the structureattributes parameter was set to one, the
disconnect processing was successful for the structure, and this
completion code is informational.

If the X'40' bit was zero, the disconnect processing was not done
for this structure, and the CQS client should complete the inflight
work before continuing.

X'0000000C'
Structure attributes are not allowed for a resource structure.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSDISC request to include equate (EQU) statements in your
program for the CQSDISC list versions.

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This
parameter can be used instead of CQSSHUT. Equate (EQU) statements for the
literal values are listed under the description of the CQSSHUT parameter.
Equate statements can also be generated by using the DSECT function. The
OPTWORDI1 parameter cannot be used if CQSSHUT is specified.

Requirement: If you code the OPTWORDI1 parameter, you must pass a value
that is composed of one equate value for each literal value supported by this
macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSDISC_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDISC return code.

44 System Programming APIs

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDISC reason code.

Return and reason codes for CQSDISC

The following table lists the return and reason code combinations that can be
returned for CQSDISC requests. Use a CQSDISC FUNC=DSECT request to include
equate statements in your program for the return and reason codes.

Table 12. CQSDISC return and reason codes

Return code Reason code Meaning
X'00000000' X'00000000' Request completed successfully.
X'00000004' X'00000130' Request completed successfully for the requested

structures. Client is still connected to additional
coupling facility structures.

X'00000004' X'00000140' Request completed successfully for the requested
structures. At least one structure had inflight work
for this client, but the client indicated that disconnect
processing was allowed with inflight work at
CQSDISC. The completion code field for those
structures contains X'00000008'.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010 X'00000430' No CQS address space.

CQSINFRM request

The CQSINFRM request registers or deregisters interest for one or more queues on
a specific coupling facility structure.

Format for CQSINFRM
DSECT function of CQSINFRM
You use the DSECT function of a CQSINFRM request to include equate (EQU)

statements in your program for the CQSINFRM parameter list length and
CQSINFRM return and reason codes.

Chapter 2. CQS client requests 45

46

v
A

»>—CQSINFRM—FUNC=DSECT

INFORM function of CQSINFRM

Use the INFORM function of a CQSINFRM request to register a client's interest in
one or more queues on a specific coupling facility structure.

»»—CQSINFRM—FUNC=INFORM—CQSTOKEN=cqstokenaddress—PARM=parmaddress——

»—COUNT=count—LISTSIZE=listsize—LIST=Ilistaddress |_ _| >
ECB=ecbhaddress

»—RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress >

LISTVER=1
|_

|—LISTVER=Z istversion—

UNINFORM function of CQSINFRM
Use the UNINFORM function of a CQSINFRM request to deregister a client's
interest in one or more queues on a specific coupling facility structure it previously

registered interest for.

»»—CQSINFRM—FUNC=UNINFORM—CQSTOKEN=cgstokenaddress—PARM=parmaddres s——

»—COUNT=count—LISTSIZE=1listsize—LIST=listaddress |_ _| >
ECB=ecbhaddress

»—RETCODE=returncodeaddress—RSNCODE=reasoncodeaddress >

LISTVER=1
|_

|—LISTVER=Z istversion—

Usage of CQSINFRM

A client uses a CQSINFRM request to register or deregister interest for one or more
queues on a specific coupling facility structure. When a queue goes from empty to
non-empty, CQS notifies all clients that registered interest for the queue of the
change in status by scheduling the Structure Inform Client exit routine.

Restriction: The CQSINFRM request is not supported for resource structures.
The client can issue CQSREAD or CQSBRWSE requests to retrieve data from a

queue. A client can make data objects available on a queue using CQSPUT,
CQSMOVE, or CQSUNLCK requests.

System Programming APIs

A client that has registered interest in a queue is only notified when the queue
goes from empty to non-empty, or if a data object is available on the queue when
the CQSINFRM request is issued. The client does not receive notification when
additional data objects are placed on a non-empty queue.

After a client deregisters interest in a queue, it is no longer notified when one of
the queues goes from empty to non-empty. Because client notifications occur
asynchronously with CQSINFRM requests, the client should expect to be notified
about new data objects that arrive between the time the client issues the
CQSINFRM FUNC=UNINFORM request and the time CQS processes the request.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of structure list entries in
the structure list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LIST=1listaddress
Four-byte input parameter that specifies the address of the structure list. The
structure list is built in contiguous storage, and the size of the list must be
specified using the LISTSIZE parameter. The structure list should contain an
entry for each coupling facility structure for which the client will register or
deregister interest. Each structure list entry must contain a list of the queues
for which the client will register or deregister interest.

Each connect token in a structure list entry and queue name in the queue list
entry must be initialized prior to the request. Upon completion of the request,
CQS returns the structure completion code for the structure list and the queue
completion code for the queue list.

The CQSINFL list entry DSECT maps the queue and structure list entries and
can be used by the client. Multiple list entries must reside in contiguous
storage.

Each structure list entry contains the following parameters:

connecttoken
Sixteen-byte input parameter that specifies the connect token that
uniquely identifies the client's connection to CQS and a specific
coupling facility structure. The connect token is returned by the
CQSCONN request. This parameter is required.

structurecompletioncode
Four-byte output field to receive the completion code for the
CQSINFRM request for the structure. Possible structure completion
codes are:

X'00000000'
Request completed successfully.

Chapter 2. CQS client requests 47

X'00000004'
Request completed successfully for all queues. At least one
queue has work on it. See the queue completion code to
determine which queues have work on them.

X'00000010'
connecttoken is