
IMS
Version 13

System Programming APIs
(November 5, 2018 edition)

SC19-3661-04

IBM

IMS
Version 13

System Programming APIs
(November 5, 2018 edition)

SC19-3661-04

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 513.

November 5, 2018 edition.

This edition applies to IMS Version 13 (program number 5635-A04), IMS Database Value Unit Edition, V13.1
(program number 5655-DSM), IMS Transaction Manager Value Unit Edition, V13.1 (program number 5655-TM2),
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information vii
Prerequisite knowledge vii
IMS function names used in this information . . . vii
How new and changed information is identified . . vii
How to read syntax diagrams viii
Accessibility features for IMS Version 13 ix
How to send your comments x

Part 1. Common Queue Server (CQS) 1

Chapter 1. Writing a CQS client 3
Summary of CQS client requests. 3
Sequence of CQS requests issued by a client for
queue structure 4
Considerations for coding CQS requests 5

Environmental requirements for CQS 8
Return codes and reason codes for CQS requests . 9

CQS clients and handling special events 12

Chapter 2. CQS client requests 15
CQSBRWSE request 17
CQSCHKPT request 25
CQSCONN request 28
CQSDEL request. 35
CQSDEREG request 39
CQSDISC request 41
CQSINFRM request 45
CQSMOVE request 50
CQSPUT request 54
CQSQUERY request 61
CQSREAD request 70
CQSRECVR request 76
CQSREG request 80
CQSRSYNC request 83
CQSSHUT request 89
CQSUNLCK request 91
CQSUPD request 96

Part 2. Common Service Layer
(CSL) 101

Chapter 3. Writing a CSL client 103
Event Control Blocks with CSL requests 103
Environmental requirements for SCI requests . . . 103
How to interpret CSL request return and reason
codes 105
Planning considerations for writing clients for the
CSL 105
Registration of CSL managers with SCI. 106

SCI registration. 107
Registering an ODBM client 107
Registering an OM command processing client 108
Registering an RM client 109

How to enable SCI ready state 109
Sequence for coding CSL requests 109

Requests common to all CSL components 110
CSLZQRY: query request 110
CSLZSHUT: shutdown request 112

Chapter 4. CSL automated operator
program requests 115
CSLOMCMD: command request 115
CSLOMI: API request 125
CSLOMQRY: query request. 134
CSL OM automated operator program clients . . 139

How AOP clients that run on the host
communicate with the CSL OM 140
How AOP clients that run on a workstation
communicate with the CSL OM 140
Processing AOP commands with a command
processing client 141
Interpreting CSL OM XML output 142

Chapter 5. Writing a CSL ODBM client 143
Sequence of ODBM client requests 143
CSL ODBM client requests 144

CSLDMDRG: ODBM client deregistration
request 144
CSLDMI: ODBM application program interface 146
CSLDMREG: ODBM client registration request 157

Chapter 6. Writing a CSL OM client 161
CSL OM command processing client requests . . 161

CSLOMBLD: command registration build . . . 161
CSLOMDRG: command deregistration request 163
CSLOMOUT: unsolicited output request . . . 165
CSLOMRDY: ready request 166
CSLOMREG: command registration request . . 168
CSLOMRSP: command response request . . . 171

CSLOMSUB: Subscribe to unsolicited messages . . 174
CSLOMUSB: Unsubscribe to unsolicited messages 177
CSL OM directives 178

Chapter 7. Writing a CSL RM client 183
Sequence of RM client requests 183
Issue CSL RM requests to manage global resources 184
Issue CSL RM requests to coordinate IMSplex-wide
processes 184
CSLRMDEL: delete resources 185
CSLRMDRG: deregister clients 190
CSLRMPRI: process initiate. 191
CSLRMPRR: process respond 193
CSLRMPRS: process step 195
CSLRMPRT: process terminate. 201
CSLRMQRY: query resources 203
CSLRMREG: register clients 208
CSLRMUPD: update resources 212

© Copyright IBM Corp. 1974, 2018 iii

CSL RM directives. 217
CSL RM repopulate structure directive 218
CSL RM structure failed directive 218
CSL RM process step directive. 219
CSL RM process step response directive . . . 220

Chapter 8. Writing a CSL SCI client 223
Sequence of CSL SCI requests 223
Advanced CSL SCI requests 224
CSL SCI requests 224

CSLSCBFR: buffer return request 224
CSLSCDRG: deregistration request 226
CSLSCMSG: send message request 228
CSLSCQRY: query request 235
CSLSCQSC: quiesce request 238
CSLSCRDY: ready request 239
CSLSCREG: registration request 240
CSLSCRQR request return request 248
CSLSCRQS: send request 251

Chapter 9. CSL Operations Manager
XML output 257
CSLOMI XML output examples 257
CSLOMCMD output 260
CSLOMQRY output 261
CSLOMOUT output 263
XML tags returned as CSL OM responses 263

Chapter 10. REXX SPOC API and the
CSL 271
REXX SPOC API environment with the CSL OM 271

Setting up the REXX environment in a CSL . . 271
Setting up the IMSplex environment. 271
Issuing type-2 IMS commands. 273
CSLULGTS: retrieving command responses in
XML 273
CSLULOPT: including format identifiers in
command responses 273
CSLULGTP: retrieving command responses
directly to a REXX stem variable 274
REXX SPOC API within a transaction 280
Ending the IMS SPOC environment 281

Retrieving unsolicited messages 281
CSLULSUB request 281
CSLULUSB request 282
CSLULGUM request 282
Sample program for subscribing to OM . . . 282

REXX samples and examples 283
Sample REXX SPOC program 283
REXX SPOC batch job example 284
/DISPLAY command examples and format
identifiers 286
Autonomic computing examples 286

Part 3. Asynchronous data
propagation 289

Chapter 11. Changed data log record 291
Elements of captured data 291

Reducing the amount of captured data 292
Example of logged data elements. 293

Chapter 12. End of Job (EOJ) call log
record 295

Chapter 13. SETS and ROLS call log
records 297

Chapter 14. Format of the data
capture log records. 299
Data capture log record prefix 299
Changed data log record format 299
Format for data element header 300
CAPD block format (LOGID=X'00') 301
CAPD_DATA format (LOGID=X'0C') 304
End of Job call log record format 305
SETS and ROLS call log record format 305

Part 4. Database resource adapter
(DRA) 307

Chapter 15. Thread concepts. 309
Processing threads. 309
Processing multiple threads 310
CCTL multithread example 311

Chapter 16. Sync points 317
The two-phase commit protocol 318
In-doubt state during two-phase sync processing 320

Chapter 17. DRA startup table 321

Chapter 18. Enable the DRA for a
CCTL 325

Chapter 19. Enabling the DRA for the
ODBA interface 327

Chapter 20. Processing CCTL DRA
requests 329

Chapter 21. Processing ODBA calls 331

Chapter 22. CCTL-initiated DRA
function requests 333
INIT request. 333
RESYNC request 336
TERM request 337
SCHED request. 338
IMS request 341
SYNTERM request 342
PREP request 343
COMTERM request 344
ABTTERM request 345
TERMTHRD request 346

iv System Programming APIs

Chapter 23. Terminating the DRA . . . 347

Chapter 24. Designing the CCTL
recovery process. 349

Chapter 25. CCTL performance:
monitoring DRA thread TCBs 351
DRA thread statistics 351
DRA statistics 353
DRA tracing 354
Sending commands to IMS DB 354
Problem diagnosis 354

Part 5. Database Recovery Control
(DBRC) 357

Chapter 26. DBRC API 359
Structure of applications that access the DBRC API 359

How an application program establishes the
DBRC API environment 360
How an application program ends the DBRC
API environment 360
Addressing and residency mode 360
Address space control (ASC) mode and state 360
How the DBRC API uses registers 360
How to include equate (EQU) statements in
your DBRC API application 360
API application. 361
Versions of the DBRC API macro 362
The DBRC API token 362
Macro forms of the DSPAPI macro 362
Query output block header 364

Runtime considerations for the DBRC API. . . . 365
DSPAPI macro access. 365
RECON data set access 365
RECON access authority 366
Time stamp format for DBRC requests 366
How DBRC uses the output data set 367
Wildcard support for name parameters for
Query requests 367

Chapter 27. DBRC API security
features 369

Chapter 28. DBRC authorization
request (AUTH) 371
Syntax for the AUTH request 371
Parameters for the AUTH request 372
Return and reason codes for AUTH 373
APAUB_RsnCode for AUTH output block 375
AUTH output block mapping 376
AUTH output block 377

Chapter 29. DBRC command request
(COMMAND) 379
Syntax for the COMMAND request 379
Parameters for the COMMAND request 379

Return and reason codes for the COMMAND
request 381
COMMAND output block mapping 382

Chapter 30. DBRC query request
(QUERY) 385
Output from query requests 386

Backout query request (TYPE=BACKOUT) . . 386
Database query request (TYPE=DB) 390
DBDS query request (TYPE=DBDS) 412
Group query request (TYPE=*GROUP) 418
Log query request (TYPE=LOG) 426
OLDS query request (TYPE=OLDS) 435
HALDB partition query request (TYPE=PART) 439
RECON status query request (TYPE=RECON) 445
Subsystem query request (TYPE=SUBSYS). . . 449

Chapter 31. DBRC release buffer
request (RELBUF) 455

Chapter 32. DBRC start request
(STARTDBRC) 459

Chapter 33. DBRC stop request
(STOPDBRC) 465

Chapter 34. DBRC unauthorization
request (UNAUTH) 467
Return and reason codes for UNAUTH. 470

APAUB_RsnCode for UNAUTH output block 471
UNAUTH output block mapping. 472
UNAUTH output block 472

Part 6. Repository Server batch
interface (FRPBATCH) 473

Chapter 35. Commands for
FRPBATCH 475
ADD command for FRPBATCH 477
DELETE command for FRPBATCH 479
DSCHANGE command for FRPBATCH 479
LIST command for FRPBATCH 480
RENAME command for FRPBATCH 481
START command for FRPBATCH 482
STOP command for FRPBATCH 483
UPDATE command for FRPBATCH 484

Part 7. VTAM and SNA reference
information 487

Chapter 36. Bind parameters for SLU
P and LU 6.1. 489
Finance communication system bind parameters 489
IMS as primary half session 491
IMS as secondary half session 496

Contents v

Chapter 37. Bind parameters for SLU
1 and SLU 2 501
SLU 1 bind parameters 501
SLU 2 bind parameters 503

Chapter 38. Format for CINIT user
data parameters 507

Chapter 39. SNA character string
controls. 509
Format controls. 509
Control function code assignments 510

Part 8. Appendixes 511

Notices 513
Programming interface information 515
Trademarks 515
Terms and conditions for product documentation 515
IBM Online Privacy Statement. 516

Bibliography. 519

Index 521

vi System Programming APIs

About this information

These topics provide reference information for IMS system application
programming interface (API) calls for IMS Common Queue Server (CQS); IMS
Common Service Layer (CSL); IMS data propagation with IMS DataPropagator for
z/OS®; IMS Database Resource Adapter (DRA); IMS Database Recovery Control
(DBRC) API; IMS Repository Server (FRPBATCH); and VTAM® and SNA.

This information is available in IBM® Knowledge Center.

Prerequisite knowledge
Before using this information, you should have knowledge of either IMS Database
Manager (DB) or IMS Transaction Manager (TM). You should also understand
basic z/OS and IMS concepts, your installation's IMS system, and have general
knowledge of the tasks involved in project planning.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in IBM
Knowledge Center.

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the IBM Skills Gateway and
search for IMS.

IMS function names used in this information
In this information, the term HALDB Online Reorganization refers to the
integrated HALDB Online Reorganization function that is part of IMS Version 13,
unless otherwise indicated.

How new and changed information is identified
New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:
v Only technical changes are marked; style and grammatical changes are not

marked.
v If part of an element, such as a paragraph, syntax diagram, list item, task step,

or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

v If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

© Copyright IBM Corp. 1974, 2018 vii

http://www-01.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www-03.ibm.com/services/learning/content/ites.wss/zz-en?pageType=page&c=a0011023

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

►► required_item ►◄

v Optional items appear below the main path.

►► required_item
optional_item

►◄

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

►►
optional_item

required_item ►◄

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

►► required_item
default_choice

optional_choice
optional_choice

►◄

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

viii System Programming APIs

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

►► required_item fragment-name ►◄

fragment-name:

required_item
optional_item

v In IMS, a b symbol indicates one blank position.
v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS Version 13
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS Version 13. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or
keyboard shortcut keys.

About this information ix

For information about navigating the IMS Version 13 ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information

Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more
information about the commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:
v Click the Contact Us tab at the bottom of any IBM Knowledge Center topic.
v Send an email to imspubs@us.ibm.com. Be sure to include the book title and the

publication number.

To help us respond quickly and accurately, please include as much information as
you can about the content you are commenting on, where we can find it, and what
your suggestions for improvement might be.

x System Programming APIs

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. Common Queue Server (CQS)

You can use this information to learn about writing a CQS client and CQS client
requests.

© Copyright IBM Corp. 1974, 2018 1

2 System Programming APIs

Chapter 1. Writing a CQS client

Your CQS client communicates with CQS through requests. You must write one or
more CQS clients in order to use CQS to manage resource and queue structures for
your product or service.

There are various considerations that you must take into account when writing a
Common Queue Server (CQS) client. The information in these topics is written
primarily for the programmer who writes the client, but also for CQS
administrators or system programmers who must become aware of some of the
issues involved in designing and writing a CQS client.

This topic contains General-use Programming Interface information.

Related concepts:
Chapter 2, “CQS client requests,” on page 15

Summary of CQS client requests
CQS client requests enable a client to access CQS or shared queues on coupling
facility list structures. Your primary tool for writing a CQS client is the set of client
request macros that CQS provides. You can use these requests to enable a client to
access CQS or the shared queues on coupling facility list structures.

The following list summarizes the CQS requests:

CQSBRWSE
Retrieves a copy of a data object from a queue

CQSCHKPT
Takes a checkpoint of internal tables or of all data objects on a structure

CQSCONN
Connects a client to one or more structures

CQSDEL
Deletes one or more data objects from a queue

CQSDEREG
De-register a client from its CQS, terminating communication with it

CQSDISC
Disconnects a client from one or more structures

CQSINFRM
Registers client interest in one or more queues, notifying the client when
work exists on the queue

CQSMOVE
Moves one or more data objects from one queue to another

CQSPUT
Places a data object on a queue

CQSQUERY
Requests information about a queue or a structure

CQSREAD
Retrieves and locks a copy of a data object from a queue

© Copyright IBM Corp. 1974, 2018 3

CQSRECVR
Recovers data objects that were moved to the cold queue after a client or
CQS cold starts

CQSREG
Registers a client with a CQS, establishing communication

CQSRSYNC
Resynchronizes in-doubt data between the client and its CQS after a failure

CQSSHUT
Shuts down a CQS

CQSUNLCK
Unlocks a data object, making it available to any client

CQSUPD
Updates one or more uniquely named resources on a resource structure

Sequence of CQS requests issued by a client for queue structure
A client uses CQS requests to make use of CQS services and resources. Client
requests for CQS services must be in a particular sequence, which is outlined in
this table.

The client must issue certain requests to request CQS services, and some of the
requests must be in a particular sequence; the sequence for CQS requests is shown
in the following table. Other requests can be issued multiple times, in any order,
based on the processing requirements of the client.

Table 1. Sequence for CQS requests

Order Request Use for request

1 CQSREG To establish communications with CQS.

2 CQSCONN To connect to a particular structure.

3 CQSRSYNC To resolve indoubt work with CQS.

4 CQSRECVR1 After a CQS cold start to recover specific data objects.

5 CQSINFRM To register interest in specific queue names.

6 Other CQS requests To process work. Examples of these other requests
are CQSBRWSE, CQSPUT, and CQSREAD.

7 CQSDISC To disconnect from a structure.

8 CQSSHUT To request CQS to shutdown. The client could also
use CQSDISC ... CQSSHUT=YES to disconnect from a
structure and request a CQS shutdown, rather than
issuing only the CQSSHUT request.

9 CQSDEREG To end communications with CQS.

Note:

1. A client can issue the CQSRECVR and CQSINFRM requests in any order and at any
time following the CQSRSYNC request. The client should, however, issue both of these
requests before starting any real work with CQS.

4 System Programming APIs

Considerations for coding CQS requests
Various keywords, parameters, and variables are available for use with CQS
requests. The interface that you select for the client's state determines the allowed
environment for all subsequent CQS requests and all client exit routines driven by
CQS.

The usage topic for each request describes the detail for each of the keywords,
parameters, and variables for the CQS requests, but a few global usage
considerations apply to all of the requests.

Authorization for CQS

CQS provides two interfaces for its clients: the authorized interface and the
non-authorized interface. CQS automatically selects and initializes the correct
interface environment based on the client's state when the client issues a CQSREG
request. If the client is authorized (in supervisor state with PSW key 0 to 7), CQS
initializes the authorized interface environment. If the client is not authorized (in
problem state with key 8 or greater), CQS initializes the non-authorized interface
environment.

Which interface CQS assigns to the client determines the allowed environments for
all subsequent CQS requests and all client exit routines driven by CQS. In general,
when a client makes a CQS request, its PSW state and key must be the same as
they were when it issued the CQSREG request.

How CQS requests use registers

All CQS requests use registers R0, R1, R14, and R15 as work registers. When a
CQS request returns control to the caller, the contents of these registers are not the
same as they were before the macro call. R15 contains a return code, and R0
contains a reason code from the CQS interface. The contents of registers R2
through R13 remain unchanged after a CQS request, except for registers specified
as output parameters for the particular request.

All CQS requests require register R13 to point to a standard 72-byte save area. No
other registers are required to contain any particular value when a CQS request is
issued, except for registers specified as input parameters for the particular request.

Coding parameters for CQS requests

For all of the parameters (shown in the syntax diagrams as, for example, parameter)
that are not literals, CQS expects either an address or a value. For example, for the
cqstoken on a CQSREAD request, CQS expects the address of the 16-byte CQS
token, but for the buffersize, CQS expects a 4-byte buffer size.

To pass an address or a parameter value to CQS, you can code the parameter for
the CQS request in one of three ways:
1. Use a register

To use a register, you must load the address or the parameter value into one of
the general purpose registers, then use that register (enclosed in parentheses)
for the parameter in the CQS request.

Figure 1. Passing an address for register

Chapter 1. Writing a CQS client 5

LA 5,TOKEN
CQSREAD FUNC=READ,CQSTOKEN=(5),...

...
TOKEN DS XL16

L 4,MYBUFLEN
CQSREAD FUNC=READ,BUFSIZE=(4),...

...
MYBUFLEN DC F’00000024’

2. Use a symbol
To use a symbol name, you must define a symbol that contains the address or
the parameter value, then use that symbol for the parameter in the CQS
request.

CQSREAD FUNC=READ,CQSTOKEN=TOKENADR,...

...
TOKENADR DC A(TOKEN) TOKEN DS XL16

CQSREAD FUNC=READ,BUFSIZE=MYBUFLEN,...

...
MYBUFLEN DC F’00000024’

3. Use a symbol value
To use a symbol value, you must define a symbol or an equate that contains
the parameter value, then use that symbol (preceded by the at-sign, @, and
enclosed in parentheses) for the parameter in the CQS request.

CQSREAD FUNC=READ,CQSTOKEN=@(TOKEN),...

...
TOKEN DC XL16’0000A765B55CFF00’

CQSREAD FUNC=READ,BUFSIZE=@(MYBUFLEN),...

...
MYBUFLEN EQU 24

Figure 2. Passing a value for register

Figure 3. Passing an address for symbol

Figure 4. Passing a value for symbol

Figure 5. Passing a value for symbol value

Figure 6. Passing an equate for symbol value

6 System Programming APIs

Literals for CQS requests

A number of CQS request macros have parameters that use a literal (for example,
the LOCAL parameter on the CQSREAD request macro). A macro invocation can
use either combinations of literal parameters or the OPTWORD1 parameter to pass
4 bytes containing flags that represent the literals. When you use the OPTWORD1
parameter, you obtain the literal equates by using the DSECT function of each
request macro. The equates that represent the literal values are added together in a
regular storage location.

Requirement: A macro invocation can use either the literal parameters or the
OPTWORD1 parameter, not both. When a macro invocation includes the
OPTWORD1 parameter, the value passed on this parameter must include one
equate for each literal parameter supported by the macro. For example, the
CQSREAD request has three literal parameters: LOCAL, PARTIAL, and QPOS. The
value you pass on the OPTWORD1 parameter must include one equate for the
LOCAL parameter, one equate for the PARTIAL parameter, and one equate for the
QPOS parameter.

To code a CQSREAD request using a series of literal parameters, use CQSREAD
FUNC=READ,...,QPOS=FIRST,LOCAL=YES....

Coding CQSREAD with the OPTWORD1 parameter

To code the same CQSREAD request using the OPTWORD1 parameter, use the
example shown in the following example.

L R2,=A(CQSREAD_QPOSF+CQSREAD_LCLY+CQSREAD_PRTLY)
CQSREAD FUNC=READ,...,OPTWORD1=(R2),...
.
.
.
.
CQSREAD FUNC=DSECT GENERATE CQSREAD EQUs

Event Control Blocks with CQS requests

Some requests allow you to use a z/OS event control block (ECB). If you specify
an ECB (ECB=ecbaddress), the client immediately receives control after issuing the
request, but must at some time be sure to wait for the request to post the ECB. If
you do not specify an ECB, CQS does not return control to the client until CQS
completes its processing for the request.

Lists in the CQS requests

Some of the CQS requests have a LIST keyword, which specifies the address of a
parameter list entry. This keyword specifies the address of the first list entry. If you
want to pass multiple list entries, you must ensure that they all reside in
contiguous storage, that is, the next entry must begin at the first byte following the
current entry. All lists must be contiguous, even if they are not aligned on word or
fullword boundaries.

Assembling a program with CQS requests

The CQS request macros are shipped with IMS and are included in the
IMS.ADFSMAC data set. When you assemble a program that includes CQS request
macros, you must tell the assembler to look for the macros in this data set. You can
also copy the members from the IMS data set to another data set, as necessary.

Chapter 1. Writing a CQS client 7

There are no special requirements for link editing a program that includes CQS
requests, but you do have to ensure that the IMS.SDFSRESL data set is
concatenated with your JOB or STEPLIB DD statement for the client job.

STEPLIB DD statement to concatenate IMS.SDFSRESL

To concatenate the IMS.SDFSRESL data set after your MYPROGS.SDFSRESL data
set, code your STEPLIB DD statement as shown in the following example.
STEPLIB DD DSN=MYPROGS.SDFSRESL,DISP=SHR

DSN=IMS.SDFSRESL,DISP=SHR

Related concepts:
Chapter 2, “CQS client requests,” on page 15
Related reference:

z/OS: Initializing extended ECBs and ECB extensions

Environmental requirements for CQS
Environmental requirements depend on the CQS interface assigned to the client for
CQS requests other than CQSREG and CQSDEREG requests.

The following table shows the environment for clients using the authorized CQS
interface:

Table 2. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the
authorized interface

Environment State

Authorization Supervisor state and PSW key 0-7 (PSW key
must match the PSW key when the CQSREG
request was issued)

Dispatchable unit mode Task

Cross memory mode Any, however, PASN must equal the primary
address space in which the CQSREG request
was issued

AMODE 31

ASC Mode Primary

Home address space Any

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The following table shows the environment for clients using the non-authorized
CQS interface:

Table 3. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the
non-authorized interface

Environment aspect State

Authorization Problem state or PSW key 8 (PSW key must
match the PSW key when the CQSREG
request was issued)

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

8 System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa800/ecb.htm

Table 3. Environment for CQS requests (excluding CQSREG and CQSDEREG) using the
non-authorized interface (continued)

Environment aspect State

AMODE 31

ASC Mode Primary

Home address space Address space in which CQSREG was issued

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The environmental requirements for the CQS register and deregister requests
(CQSREG and CQSDEREG) are different from all of the other CQS requests.
Authorized clients must issue CQSREG and CQSDEREG requests in the
environment shown in the following table.

Table 4. Environment for CQSREG and CQSDEREG requests using the authorized interface

Environment aspect State

Authorization Supervisor state and PSW key 0-7

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Non-authorized clients must issue CQSREG and CQSDEREG requests in the
environment shown in the following table.

Table 5. Environment for CQSREG and CQSDEREG requests using the non-authorized
interface

Environment aspect State

Authorization Problem state or PSW key 8

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Return codes and reason codes for CQS requests
CQS return and reason codes indicate the success or failure of sending the request
to the CQS address space and reflect the success or failure of the particular CQS
request that is being made.

Chapter 1. Writing a CQS client 9

With the exception of CQSREG and CQSDEREG, each CQS request returns two
sets of return and reason codes. One set is returned by the CQS interface, and
indicates the success or failure of sending the request to the CQS address space
(these are returned in R15 and R0). The other set is returned by the CQS address
space, and reflects the success or failure of the particular CQS request being made
(these are returned in the fields indicated by the RETCODE and RSNCODE
parameters on the CQS request macro).

When you make a CQS request, the request must travel through the CQS interface
from the client address space to the CQS address space. The CQS interface returns
information about the success or failure of the sending of the request in registers
R15 and R0. After issuing a CQS request macro, have your code check the value in
R15 first. If the value in R15 is zero, then the CQS interface successfully sent the
request to the CQS address space. If R15 is not zero, the CQS interface was unable
to send the request to the CQS address space, and R0 contains a reason code that
explains the error.

The return and reason codes from the CQS request itself are returned in the fields
specified with the RETCODE and RSNCODE parameters coded on the CQS
request macro. The values returned in these fields are valid only if the CQS
interface return code (R15) is zero. If the interface return code in R15 is not zero
after you issue a CQS request macro, then the values in the RETCODE and
RSNCODE fields are not predictable, and you should not use them.

For synchronous requests (that is, requests in which the ECB parameter was not
coded), the RETCODE and RSNCODE fields are set after your module receives
control back from the request macro, and you can use them immediately. For
asynchronous requests (that is, requests in which the ECB parameter was coded),
the RETCODE and RSNCODE fields are set only after the ECB is posted by CQS.
Do not check the RETCODE and RSNCODE fields until you have issued a WAIT
on the ECB you specified on the request, and that WAIT has returned.

The CQSREG and CQSDEREG requests are exceptions to this. CQSREG and
CQSDEREG register and deregister a client with the CQS interface, but do not
actually send a request across the interface to the CQS address space. CQSREG and
CQSDEREG have only a single set of return and reason codes, and these are
immediately available upon return from the register or deregister request. The
return code is set both in register 15 and in the field specified by RETCODE on the
request macro. The reason code is set both in register 0 and in the field specified
by RSNCODE on the request macro.

The CQS interface issues the return and reason codes shown in the following table.
Any CQS request can receive these return and reason codes. Because the CQS
interface performs more extensive checking for non-authorized clients, some of the
following return and reason codes can only be received if the client is a
non-authorized client.

Table 6. Return and reason codes for errors detected by the CQS interface

Return code Reason code Meaning

X'00000008' X'00000210' The cqstoken is invalid.

X'00000008' X'00000214' The connecttoken is invalid.

X'00000010' X'00000430' The CQS address space is not available.

X'00000014' X'00000600' The CQS interface is unable to access internal blocks.

10 System Programming APIs

Table 6. Return and reason codes for errors detected by the CQS interface (continued)

Return code Reason code Meaning

X'00000014' X'00000604' The client is running in problem state or is using an
incorrect PSW key.

X'00000014' X'00000608' The client passed an invalid function code to the CQS
interface.

X'00000014' X'0000060C' The client specified an invalid CQS request type.

X'00000014' X'00000610' CQS was unable to allocate storage to copy the
request parameters.

X'00000014' X'00000614' The total length of all request parameters passed was
less than the sum of all parameter lengths.

X'00000014' X'00000618' The value passed to the interface for the total length
of all parameters was either zero or negative.

X'00000014' X'0000061C' The value passed to the interface for the total
parameter count was either zero or negative.

X'00000014' X'00000620' The length of one of the request's parameters was
negative.

X'00000014' X'00000624' The length passed for the structure-call parameter list
was invalid.

X'00000014' X'00000628' Invalid request function code.

X'00000014' X'0000062C' Invalid request parameter list version number.

X'00000014' X'00000630' An incorrect number of parameters was passed for
the requested function.

X'00000014' X'00000634' A parameter was passed with an incorrect length.

X'00000014' X'00000638' A parameter was passed by value instead of by
address.

X'00000014' X'0000063C' A parameter was passed by address instead of by
value.

X'00000014' X'00000640' The CQS request abended before being sent to the
CQS.

X'00000014' X'00000644' The CQS request abended while CQS was copying
the request parameters. This error is usually caused
by the client's passing bad parameter data.

X'00000014' X'00000648' The interface parameter list version passed by the
CQS request macro was not valid. This error is
probably caused by a difference in versions between
the CQS client and the CQS address space the client
is trying to use.

All CQS requests have a DSECT function that you can use to include equate
statements in your program for all the return and reason codes for the request.

Recommendation: Write a program that specifies FUNC=DSECT for all CQS
requests so you can determine symbolic variable names to use for the return and
reason code values.

Chapter 1. Writing a CQS client 11

CQS clients and handling special events
A CQS client must be able to either initiate or participate in many different types
of events. You must be aware of what the CQS client can do in these events in
order to handle them appropriately.

A CQS client must be able either to initiate or to participate in many different
types of events. This topic describes some of these special events and what the
CQS client can or must do about them.

CQS cold start

When CQS cold starts after connecting to a structure that contains data, CQS looks
for unresolved work from CQSMOVE or CQSDEL requests. CQS backs out
CQSMOVE requests and completes CQSDEL requests. CQS then performs a system
checkpoint, and restart is complete.

CQS does not resolve work that is initiated using a CQSREAD request. As a result,
data objects might remain on the queues. The client can issue the CQSRSYNC
request to have CQS move these data objects to the cold queue and notify the
client that they exist. The client can then issue a CQSRECVR request to access
these data objects.

Recommendation: Complete all work initiated using CQSPUT requests because
CQS is not aware of these data objects.

Registering interest in queues with CQSINFRM

Use the CQSINFRM request to allow CQS to notify the client when a data object
exists on a queue or when the queue becomes non-empty. The client must register
interest in a queue before it is notified of work on that queue.

Working with objects on the cold queue using CQS requests

CQS places objects on the cold queue when either CQS or the client is cold started
while there are objects in active structures. A client can use the CQSBRWSE request
to examine objects on the cold queue, and then, using the cold-queue token and
UOW returned by this request, the client can use a CQSRECVR request to retrieve
or delete objects from the cold queue.

When writing a CQS client, you can use the following request to obtain
information about objects on the cold queue, including the qnames, data object
count, oldest data object time stamp, and newest data object time stamp:
CQSQUERY FUNC=QTYPE,QTYPENM=COLDQ

Initiating checkpoints using CQS requests

A CQS client can initiate a system checkpoint by issuing a CQSCHKPT
FUNC=CHKPTSYS request. A CQS client can initiate a structure checkpoint by
issuing a CQSCHKPT FUNC=CHKPTSTR request.

Shut down CQS

To shut down CQS, clients can either issue the CQSSHUT request or the CQSDISC
request with CQSSHUT=YES specified. In either case, CQS terminates when there
are no more structure connections. CQS continues to accept input and output

12 System Programming APIs

requests so that in-progress work can complete. Structure checkpoints are allowed
to be issued. New connections are allowed if the CQSDISC request is issued with
CQSSHUT=YES, but they are not allowed if the CQSSHUT request is issued.

Tuning to improve CQS performance

You can improve CQS performance by carefully selecting the parameters you use
with the CQSQUERY, CQSDEL, and CQSINFRM requests.
Related concepts:

CQS administration (System Administration)
Related reference:
“CQSQUERY request” on page 61
“CQSDEL request” on page 35
“CQSINFRM request” on page 45

Chapter 1. Writing a CQS client 13

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_cqsadministration.htm#ims_cqsadministration

14 System Programming APIs

Chapter 2. CQS client requests

CQS clients communicate with the CQS address space using a general-use interface
consisting of a number of assembler macros, called CQS requests. CQS clients use
these requests to communicate with the CQS and manipulate client data on shared
coupling facility structures. You can use these requests to write or maintain a CQS
client.

You do not need to use these requests if you are using an IBM-supplied client,
such as an IMS control region.

Some CQS requests support wildcard parameters. Wildcard parameters allow you
to specify multiple resources whose names match the wildcard parameter mask.
The size of a wildcard parameter can be from one character to the maximum
number of characters supported for the resource. The alphanumeric name can
include one or more specialized characters and an asterisk or percent sign. An
asterisk can be replaced by zero, one, or more characters to create a valid resource
name. A percent sign can be replaced by exactly one character to create a valid
resource name. The wildcard parameter asterisk (*) represents 'ALL'. However,
depending on the installation, other wildcard parameters can mean all. For
example, the wildcard parameter %%%% means ALL to an installation whose
resource names are all 4 characters long.

This topic contains General-use Programming Interface information.

Example of using a CQS request: CQSREAD

The following example shows how you can use a CQSREAD request for a client
subsystem.

* FUNCTION: USE CQSREAD REQUEST TO RETRIEVE A MESSAGE FROM SHARED *
* QUEUES. *
* *
* THE CALLER OF THIS MODULE PASSES THE ADDRESS AND SIZE OF *
* A BUFFER. IF THIS MODULE ENDS WITH RC=0, THAT BUFFER *
* HOLDS THE DATA OBJECT OR PARTIAL DATA. IF THIS MODULE *
* ENDS WITH A NON-ZERO RC, THE BUFFER’S CONTENTS ARE *
* UNPREDICTABLE. *
* *
* REGISTERS ON ENTRY: *
* *
* R2 - READ OBJECT BUFFER ADDRESS (BUFFER TO READ OBJECT INTO) *
* R3 - SIZE OF READ OBJECT BUFFER *
* R4 - CQS REGISTRATION TOKEN ADDRESS *
* R5 - CQS CONNECT TOKEN ADDRESS *
* R9 - ECB ADDRESS *
* R13 - SAVE AREA ADDRESS *
* R14 - RETURN ADDRESS *
* R15 - GETDOBJ ENTRY POINT ADDRESS *
* *
* REGISTERS DURING EXECUTION: *
* *
* R0 - WORK REGISTER *
* R1 - WORK REGISTER *
* R2 - CQSREAD PARMLIST AREA ADDRESS *
* R3 - WORK REGISTER *
* R4 - WORK REGISTER *
* R5 - WORK REGISTER *
* R6 - WORK REGISTER *
* R7 - WORK REGISTER *
* R8 - WORK REGISTER *
* R9 - ECB ADDRESS *
* R10 - WORK REGISTER *
* R11 - WORK REGISTER *
* R12 - BASE REGISTER *
* R13 - SAVE AREA ADDRESS *
* R14 - WORK REGISTER *
* R15 - WORK REGISTER *
* *
* MACROS REFERENCED: *
* WAIT *
* CQSREAD *
* *
* RETURN CODES: *

© Copyright IBM Corp. 1974, 2018 15

* R15 - RETURN CODE *
* X’00’ CQSREAD SUCCESSFUL/PARTIAL DATA RETURNED *
* X’08’ INTERFACE PROBLEM *
* X’0C’ NO MESSAGE FOR QNAME *
* X’10’ REQUEST IS UNSUCCESSFUL, UNEXPECTED RETURN OR REASON *
* CODE *
* *

STM R14,R12,12(R13) SAVE THE REGS
LR R12,R15 R12 = PROGRAM BASE REGISTER
USING GETDOBJ,R12 GETDOBJ CSECT
LA R14,SAVEAREA CHAIN SAVE AREAS
ST R13,4(,R14) THIS SAVEAREA BACKWARD PTR
ST R14,8(,R13) LAST SAVEAREA FORWARD PTR
LA R13,SAVEAREA THIS ROUTINE’S SAVEAREA
ST R2,RDRBUFA SAVE A(BUFFER TO READ INTO)
ST R3,RDRBUFSZ SAVE READ BUFFER SIZE
MVC RDRRQTK,0(R4) SAVE CQS REGISTRATION TOKEN
MVC RDRCONTK,0(R5) SAVE CQS CONNECT TOKEN
ST R9,RDRECBA SAVE A(ECB)
LA R2,RDRPARM LOAD A(PARAMETER AREA) INTO R2
XC RDRLCKTK,RDRLCKTK LOCKTOKEN=0 FOR FIRST CQSREAD
XC 0(4,R9),0(R9) CLEAR CALLER’S ECB

* RETRIEVE RECORD FROM IMS SHARED QUEUES

CQSREAD FUNC=READ, X
CQSTOKEN=@(RDRRQTK), A(REGISTRATION TOKEN) X
PARM=(R2), A(CQSREAD PARMLIST AREA) X
CONTOKEN=@(RDRCONTK), A(CONNECT TOKEN) X
ECB=RDRECBA, A(ECB) X
LCKTOKEN=@(RDRLCKTK), A(LOCK TOKEN) - RETURNED X
UOW=@(RDRUOW), A(UOW) - RETURNED X
LOCAL=NO, READ OBJECT FROM SHARED QUEUE X
QNAME=@(RDRQNAME), A(QUEUE NAME) X
QPOS=FIRST, READ FIRST OBJECT ON QUEUE X
OBJSIZE=@(RDROBJSZ), A(DATA OBJECT SIZE) - RETURNED X
RSNCODE=@(RDRRSN), A(REASON CODE) - RETURNED X
RETCODE=@(RDRRC), A(RETURN CODE) - RETURNED X
BUFFER=RDRBUFA, A(CLIENT’S READ BUFFER) X
BUFSIZE=@(RDRBUFSZ) CLIENT’S READ BUFFER SIZE

LTR R15,R15 TEST RETURN CODE FROM CQS INTERFACE
BZ CHECKRC ZERO - CQSREAD OK

* OTHER - RETURN R0, R15 IN PARM LIST
LA R15,RC08 CQS INTERFACE PROBLEM
B GOEXIT RETURN TO CALLER

* CHECK CQSREAD RETURN CODE

CHECKRC DS 0H

WAIT ECB=(R9) WAIT FOR CQSREAD TO COMPLETE

L R15,RDRRC RETURN CODE
LTR R15,R15 CQSREAD REQUEST SUCCESSFUL?
BZ GOEXIT YES - RETURN TO CALLER****

* CHECK FOR CQS WARNING RETURN CODE

CLC RDRRC,=AL4(RQRCWARN) CQSREAD WARNING?
BNE UNEXPECT NO - SET RC AND RETURN TO CALLER

* CQSREAD: WARNING RETURN CODE - CHECK WARNING REASON CODE
* CHECK FOR DATA OBJECT

CLC RDRRSN,=AL4(RRDNOOBJ) NO DATA OBJECT?
BNE PARTIAL NO, CHECK NEXT REASON CODE
LA R15,RC0C SET NO DATA OBJECT RETURN CODE
B GOEXIT RETURN TO CALLER

* CHECK PARTIAL DATA RETURNED
* PARTIAL DATA RETURNED - RETURN DATA OBJECT - RETURN CODE 0

PARTIAL DS 0H

CLC RDRRSN,=AL4(RRDPARTL) PARTIAL DATA RETURNED?
BNE UNEXPECT NO - SET RC AND RETURN TO CALLER
LA R15,RC00 SET RETURN CODE
B GOEXIT RETURN TO CALLER

* UNEXPECTED RETURN OR REASON CODE

UNEXPECT DS 0H

LA R15,RC10 UNEXPECTED RETURN OR REASON CODE
B GOEXIT RETURN TO CALLER

* STANDARD EXIT *

GOEXIT DS 0H

L 13,4(,13) GET PREVIOUS SAVE LEVEL
L 14,12(13) A(RETURN-TO-CALLER)
LM 0,12,20(13) RESTORE REGS
OI 15(13),X’01’ SET RETURN FLAG IN CALLER SAVE AREA
BR 14 RETURN TO CALLER

* CONSTANTS *

*
* GETDOBJ RETURN CODES
*
RC00 EQU 0 CQSREAD SUCCESSFUL -
RC08 EQU 8 INTERFACE PROBLEM

16 System Programming APIs

RC0C EQU 12 NO MESSAGE FOR QNAME
RC10 EQU 16 UNEXPECTED RETURN CODE*
* REGISTER EQUATES
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* VARIABLES *

DS 0F
SAVEAREA DS 18F

DS 0D
RDRRQTK DS XL16 CQS REGISTRATION TOKEN
RDRCONTK DS XL16 CQS CONNECT TOKEN
RDRLCKTK DS XL16 LOCKTOKEN (RETURNED)
RDRUOW DS XL32 UOW (RETURNED)

RDRQNAME DS 0XL16 QUEUE NAME
DC X’05’ CLIENT QUEUE TYPE 5
DC CL15’FFSTR01CF02CQ04’

RDROBJSZ DS F OBJECT SIZE (RETURNED)
RDRRSN DS F CQSREAD REASON CODE (RETURNED)
RDRRC DS F CQSREAD RETURN CODE (RETURNED)
RDRBUFA DS A A(READ OBJECT BUFFER)
RDRBUFSZ DS F SIZE OF READ OBJECT BUFFER
RDRECBA DS A A(ECB)
RDRPARM DS XL(CQSREAD_PARM_LEN) CQSREAD PARMLIST

* LITERALS *

LTORG
CQSREAD FUNC=DSECT CQSREAD DSECTS & EQUATES
END GETDOBJ

Related concepts:
Chapter 1, “Writing a CQS client,” on page 3

CQSBRWSE request
The CQSBRWSE request retrieves information from a specified queue or resource
structure.

Format

BROWSE function

Use the BROWSE function of a CQSBRWSE request to retrieve a copy of a data
object from a specific queue.

►► CQSBRWSE FUNC=BROWSE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress ►

► QNAME=queuenameaddress
A

BUFFER=bufferaddress BUFSIZE=buffersize ►

► OBJSIZE=dataobjectsizeaddress UOW=uowaddress ►

►
TIMESTAMP=timestampaddress ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

Chapter 2. CQS client requests 17

A:

QTYPE=COLD CLDTOKEN=coldqueuetokenaddress
QNAME=queuenameaddress

►

►
CLIENT=clientnameaddress

BRWSOBJS function

Use the BRWSOBJS function of a CQSBRWSE request to browse one or more
resource data objects of a specified type from a resource structure.

►► CQSBRWSE FUNC=BRWSOBJS CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress ►

► LIST=resourcelistaddress COUNT=resourcelistcount
LISTVER=1

LISTVER=listversion
►

► BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress ►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress
ECB=ecbaddress

►◄

COMPLETE function

Use the COMPLETE function of a CQSBRWSE request to indicate to CQS that a
CQSBRWSE request associated with a particular browse token is complete.

►► CQSBRWSE FUNC=COMPLETE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress ►

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

CONTINUE function of CQSBRWSE

Use the CONTINUE function of a CQSBRWSE request if a previous CQSBRWSE
request retrieved partial data and you want to retrieve the rest of the data object.

►► CQSBRWSE FUNC=CONTINUE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress BRWTOKEN=browsetokenaddress ►

► BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress ►

18 System Programming APIs

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

DSECT function

Use the DSECT function of a CQSBRWSE request to include equate (EQU)
statements in your program for the CQSBRWSE parameter list length and
CQSBRWSE return and reason codes.

►► CQSBRWSE FUNC=DSECT ►◄

Usage notes

A CQSBRWSE FUNC=BROWSE request retrieves a copy of a data object from a
specific queue on a queue structure. The first CQSBRWSE FUNC=BROWSE request
takes a snapshot of the data objects that meet the selection criteria and returns a
copy of the first data object. The data object is neither deleted nor locked, and can
be accessed by any subsequent CQS request. Each subsequent CQSBRWSE
FUNC=BROWSE request retrieves a copy of the next data object. The data object is
returned in the client buffer that is specified on the CQSBRWSE request. The size
of the data object is passed to the client.

A browse token maintains the cursor position of the data objects that are being
browsed. A CQSBRWSE FUNC=BROWSE request with a zero browse token returns
the first data object. A CQSBRWSE FUNC=BROWSE request with a non-zero
browse token retrieves the next data object on the queue that is associated with the
browse token. If the data object that is returned is the last data object on the queue,
CQS invalidates the browse token and frees any data structures associated with
that browse token.

When a CQSBRWSE FUNC=BROWSE request is issued and the buffer that is
passed is not large enough to hold the next data object, partial data is returned.
The buffer is filled with as much of the data object as can fit. The CQSBRWSE
FUNC=CONTINUE request retrieves the rest of the data object.

A CQSBRWSE FUNC=BRWSOBJS request retrieves information about one or more
data objects from a resource structure. The first CQSBRWSE FUNC=BRWSOBJS
request takes a snapshot of the data objects that meet the selection criteria and
returns information about one or more of those data objects. The request returns as
many data object entries as fit are returned in the client buffer that is specified on
the CQSBRWSE request. Each subsequent CQSBRWSE FUNC=BRWSOBJS request
retrieves the next set of data object entries. A browse token maintains the cursor
position of the data objects that are being browsed. A CQSBRWSE
FUNC=BRWSOBJS request with a zero browse token retrieves information about as
many data objects as fit in the buffer. A CQSBRWSE FUNC=BRWSOBJS request
with a non-zero browse token retrieves the next group of data object entries. If the
buffer contains information about the last data object being browsed, CQS
invalidates the browse token and frees any data structures associated with that
browse token.

A CQSBRWSE FUNC=COMPLETE request indicates to CQS that the CQSBRWSE
request that is associated with a browse token is complete. The browse token from
the prior CQSBRWSE request is required. CQS invalidates the browse token and

Chapter 2. CQS client requests 19

frees any data structures that are associated with it. The client should issue a
CQSBRWSE FUNC=COMPLETE request if it is not retrieving all of the data objects
on the specified queue.

The CQSBRWSE FUNC=CONTINUE request is not supported for a resource
structure because the CQSBRWSE FUNC=BRWSOBJS request does not return
partial data.

Attention:

v The cursor position of a CQSBRWSE FUNC=BROWSE or CQSBRWSE
FUNC=CONTINUE request can be lost due to a CQS restart, a client restart,
structure recovery, structure copy, or the browse table timing out. (The browse
table times out after approximately one hour.)

v A CQSBRWSE request is not recoverable across a CQS or client failure. The
client must reissue the CQSBRWSE request after such a failure.

v The data object is not locked on a CQSBRWSE request, so one or more of the
objects might be snapped by the first CQSBRWSE FUNC=BROWSE request and
no longer be available because of another CQSREAD or CQSDEL request.

v If overflow threshold processing occurs after the initial CQSBRWSE
FUNC=BROWSE request and the queue is moved to the overflow structure, any
subsequent CQSBRWSE FUNC=BROWSE request with browse token results in
an error that indicates that no objects were found. Reissue the CQSBRWSE
FUNC=BROWSE request with a browse token of zeroes, so that CQS can take a
snapshot of the queue on the overflow structure. QSMOVE request, or overflow
threshold processing. The CQSBRWSE FUNC=BROWSE simply skips objects that
are no longer available.

v If the current position is lost because a browse table times out, a CQSBRWSE
FUNC=CONTINUE request is rejected.

Parameters

BRWTOKEN=browsetokenaddress
Input and output parameter that specifies the address of the 16-byte browse
token. The browse token maintains the cursor position of the data objects that
are being browsed.

Set the browse token to zero on the initial CQSBRWSE request. Pass the
browse token that is returned by CQS on a CQSBRWSE FUNC=BROWSE or
FUNC=BRWSOBJS request as input on a subsequent CQSBRWSE=BROWSE,
CQSBRWSE=CONTINUE, CQSBRWSE=COMPLETE, or
CQSBRWSE=BRWSOBJS request.

On output, the browse token uniquely identifies the current data object that is
being browsed, which is returned in the buffer identified by the BUFFER
parameter.

For a CQSBRWSE FUNC=CONTINUE request, a CQSBRWSE
FUNC=COMPLETE request, or a subsequent CQSBRWSE FUNC=BROWSE
request, the BRWTOKEN parameter is an input parameter that specifies the
browse token returned by CQS on the prior CQSBRWSE FUNC=BROWSE
request.

BUFFER=bufferaddress
4-byte input parameter that specifies the address of a client buffer that holds
information that is retrieved about one or more data objects.

For a CQSBRWSE FUNC=BROWSE request, the client buffer contains a copy of
the data object retrieved from the queue on a queue structure.

20 System Programming APIs

For a CQSBRWSE FUNC=BRWSOBJS request, the client buffer contains the
count of data object entries and one or more data object entries. Each data
object entry contains information about one resource data object that is
retrieved from the resource structure. Each data object entry contains
information about a browsed data object such as the resource ID, the
completion code, resource ID status, version, owner, client data1, optional
client data2, and user data that was passed in the input list. If the size of the
information is greater than the buffer size passed by the client, the buffer is
filled with as many resource entries as can fit. The BUFFER is mapped by the
CQSBRWSB DSECT.

The resource ID status indicates how the resource ID in the data object entry is
associated with the input parameter. With this information, you can tie the
input parameter to the data object entries that are generated in the output
buffer. Possible resource ID statuses are:

Specific parameter
A specific resource ID. This data object entry contains the resource ID that
matches the input parameter.

Wildcard parameter
A wildcard parameter was specified. This data object entry contains the
wildcard parameter and a completion code. This data object entry does not
contain information about a specific resource ID. If the completion code is
zero, one or more wildcard match list entries follow.

Wildcard match
A wildcard parameter was specified. This data object contains information
about one resource ID that matches the input wildcard parameter. All
wildcard match list entries follow contiguously after a wildcard parameter
list entry.

Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000020'
The Resourceid parameter is invalid. The name type must be a decimal
number from 1 to 255.

X'00000024'
CQS internal error.

X'00000040'
No resources matching either resource ID, resource type, owner, or
some combination of these, were found.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the client buffer.

CLDTOKEN=coldqueuetokenaddress
Output parameter that specifies the address of the 16-byte cold-queue token for
the data object, which, along with the UOW, identifies an object on the cold
queue.

You can use the cold-queue token and unit of work (UOW) on a CQSRECVR
request to retrieve or delete objects on the cold queue.

CLIENT=clientnameaddress
4-byte output parameter that specifies the address of an 8-byte field to contain

Chapter 2. CQS client requests 21

the name of the client that locked the data object with a CQSREAD request.
This parameter is valid only when the QTYPE=COLD parameter is specified.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=resourcelistcount
4-byte input parameter that specifies the number of entries in the resource list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
4-byte input parameter that specifies the address of the z/OS event control
block (ECB) that is used for asynchronous requests. If ECB is specified, the
request is processed asynchronously; otherwise, it is processed synchronously.

LIST=resourcelistaddress
Address of a variable size input parameter that specifies a resource list that
contains one or more entries. Each entry is a separate browse request. The
client must initialize some fields in each entry before issuing the CQSBRWSE
request. Other fields are returned by CQS when the request completes.

The CQSBRWSL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following parameters:

resourceid
12-byte input field that contains the unique identifier of the resources to be
browsed. The resource ID can be a wildcard parameter. The resource ID is
unique in the IMSplex. The resource ID consists of a 1-byte name type,
followed by an 11-byte client-defined name. The name type ensures
uniqueness of client-defined names for resources with the same name type.
Resources of different resource types might have the same name type. A
valid value for the name type is a decimal number from 1 to 255. The
client-defined name has meaning to the client and consists of alphanumeric
characters. If you use a wildcard parameter to specify the resource ID, also
specify the resource type, to enhance performance. You must specify the
resource ID, resource type, or both.

resourcetype
1-byte input field that specifies the resource type. The resource type is a
client-defined physical grouping of resources on the resource structure.
Valid values for the resource type are decimal numbers from 1 to 255. If
the resource type is greater than the maximum number of resource types
defined by CQS (11), it is folded into one of the existing resource types.
You must specify the resource type, resource ID, or both.

reserved
3-byte reserved field.

owner
8-byte input parameter that identifies the owner of the resource data

22 System Programming APIs

objects to be browsed. The CQSBRWSE request returns only those resource
data objects that are owned by the specific owner. owner is an optional
parameter.

options
4-byte input parameter that specifies browse options. Possible options are:

X'80000000'
Return data2 for the browsed data objects.

userdata
Four-byte input parameter that specifies user data. This user data
is passed on output for each data object that matches the input
resource ID parameter.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. The default value
is 1. Use the DSECT function of a CQSBRWSE request to include equate (EQU)
statements in your program for the CQSBRWSE list versions.

OBJSIZE=dataobjectsizeaddress
Output parameter that specifies the address of a 4-byte area to store the size of
a data object or data object entry.

If a CQSBRWSE FUNC=BROWSE request is issued and the size of the data
object is greater than the buffer size passed by the client, the buffer is filled
with as much of the data object as fits. The request receives a return and
reason code indicating partial data returned. The size of the data object is
returned in the location specified by the OBJSIZE parameter. If the size of the
data object is less than or equal to the size of the buffer, the data object is
moved into the buffer and the remainder of the buffer is not changed.

If a CQSBRWSE FUNC=BRWSOBJS request is issued, as many data object
entries as can fit are moved into the buffer. The client must then issue a
subsequent CQSBRWSE FUNC=BRWSOBJS request to retrieve the next data
object entries. If the buffer is not large enough to hold the next data object
entry, the request receives a return and reason code indicating the buffer is too
small. The size of the next data object entry to be returned is saved in the
location specified by the OBJSIZE parameter.

PARM=parmaddress
4-byte input parameter that specifies the address of a parameter list used by
the request to pass parameters to CQS. The length of the storage area must be
at least equal to the EQU value CQSBRWSE_PARM_LEN (defined using the
FUNC=DSECT request).

QNAME=queuenameaddress
4-byte output parameter that specifies the address of a 16-byte queue name
field.

For a CQSBRWSE request that specifies the QTYPE=COLD and CLDTOKEN
parameters, the queue name field is an output field to contain the original
client queue name for the data object being returned. This client queue name
contained the data object before it was moved to the cold queue.

For all other CQSBRWSE requests, the queue name field is an input field that
specifies the queue name from which the data object is retrieved for all
CQSBRWSE requests.

Chapter 2. CQS client requests 23

QTYPE=COLD
Input parameter that specifies the queue type from which the data object is to
be retrieved. COLD Indicates that the data object is to be retrieved from the
cold queue.

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSBRWSE return code.

If the return code in register 15 is a non-zero value, the values in the return
and reason code fields are invalid, because the CQS interface detected an error
and was unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSBRWSE reason code.

TIMESTAMP=timestampaddress
4-byte output parameter that specifies the address of an 8-byte field to contain
the time stamp when the data object was placed on the queues.

UOW=uowaddress
Output parameter that specifies the address of a 32-byte area to hold the unit
of work (UOW) of the data object retrieved from the queue. The UOW is a
unique identifier generated by the client that stored the data object on the
queue (CQSPUT request).

Return and reason codes

The following table lists the return and reason code combinations that can be
returned for CQSBRWSE requests. Use a CQSBRWSE FUNC=DSECT request to
include equate (EQU) statements in your program for the return and reason codes.

Table 7. CQSBRWSE request return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the data object
size (dataobjectsize). Partial data is returned.

X'00000004' X'00000124' The buffer size (buffersize) is too small to contain the
next resource data object entry. No partial data is
returned.

X'00000004' X'00000128' No data object to retrieve on queue name (queuename)
specified.

X'00000004' X'0000012C' No partial data to return.

X'00000004' X'00000138' Request complete and the last data object is returned.

X'00000004' X'0000013C' No more data objects to return.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' browsetoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' buffer is invalid.

X'00000008' X'00000228' buffersize is invalid.

24 System Programming APIs

Table 7. CQSBRWSE request return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' browsetoken is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' A CQSBRWSE FUNC=BROWSE request is not
allowed for a resource structure. A CQSBRWSE
FUNC=CONTINUE request is not allowed for a
resource structure. No partial data is returned from a
resource structure.

X'00000008' X'00000280' A CQSBRWSE FUNC=BRWSOBJS request is not
allowed for a queue structure.

X'00000008' X'00000284' Parm listversion is invalid.

X'00000008' X'00000288' listversion is invalid.

X'00000010' X'00000400' A CQSRSYNC request is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000408' Current position lost. Reissue a CQSBRWSE request.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSCHKPT request
Use the CQSCHKPT request to initiate either a CQS system checkpoint or a
structure checkpoint.

Format for CQSCHKPT

CHKPTSTR function of CQSCHKPT

You use the CHKPTSTR function of a CQSCHKPT request to initiate a CQS
structure checkpoint for a queue structure. Structure checkpoint is not supported
for a resource structure.

►► CQSCHKPT FUNC=CHKPTSTR CQSTOKEN=cqstokenaddress PARM=parmaddress ►

► COUNT=count LIST=listaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress CQSCHKPT FUNC=CHKPTSTR CQSTOKEN=cqstokenaddress ►

► PARM=parmaddress COUNT=count LIST=listaddress
ECB=ecbaddress

►

Chapter 2. CQS client requests 25

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

LISTVER=listversion
►◄

CHKPTSYS function of CQSCHKPT

Use the CHKPTSYS function of a CQSCHKPT request to initiate a CQS system
checkpoint.

►► CQSCHKPT FUNC=CHKPTSYS CQSTOKEN=cqstokenaddress PARM=parmaddress ►

► COUNT=count LIST=listaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress CQSCHKPT FUNC=CHKPTSYS CQSTOKEN=cqstokenaddress ►

► PARM=parmaddress COUNT=count LIST=listaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

LISTVER=listversion
►◄

DSECT function of CQSCHKPT

Use the DSECT function of a CQSCHKPT request to include equate (EQU)
statements in your program for the CQSCHKPT parameter list length and
CQSCHKPT return and reason codes.

►► CQSCHKPT FUNC=DSECT ►◄

Usage of CQSCHKPT

For a structure checkpoint, CQS dumps the queues to DASD for each structure
specified in the checkpoint list. If the structure is currently in overflow mode, the
overflow structure is also dumped to DASD.

For a system checkpoint, CQS logs the internal tables for each structure specified
in the checkpoint list. If the structure is currently in overflow mode, CQS also logs
the internal tables for the overflow structure.

26 System Programming APIs

Parameter descriptions

COUNT=count
4-byte input parameter that specifies the number of entries in the checkpoint
list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
4-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LIST=listaddress
4-byte input parameter that specifies the address of the checkpoint list. The
checkpoint list should contain an entry for each of the structures for which the
client requests a checkpoint.

The CQSCHKPL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following parameters:

connecttoken
16-byte input parameter that specifies the connect token returned by
the CQSCONN request. The connect token uniquely identifies the
client's connection to a particular coupling facility structure managed
by this CQS. This parameter is required.

compcode
4-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Completed successfully.

X'00000004'
Connect token is invalid.

X'00000008'
CQS checkpoint request not allowed until CQS restart has
successfully completed a system checkpoint.

X'0000000C'
A CQSRSYNC is required for this structure.

X'00000010'
Checkpoint already in progress for structure.

X'00000014'
Structure is inaccessible. Retry request later.

X'00000018'
CQS internal error.

X'00000020'
CQSCHKPT FUNC=CHKPTSTR is invalid for a resource
structure.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT

Chapter 2. CQS client requests 27

function of a CQSCHKPT request to include equate (EQU) statements in your
program for the CQSCHKPT list versions.

PARM=parmaddress
4-byte input parameter that specifies the address of a parameter list used by
the request to pass parameters to CQS. The length of the storage area must be
at least equal to the EQU statement value CQSCHKPT_PARM_LEN (defined
using the FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCHKPT return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCHKPT reason code.

Return and reason codes for CQSCHKPT

The following table lists the return and reason code combinations that can be
returned for CQSCHKPT requests. Use a CQSCHKPT FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 8. CQSCHKPT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'0000040C' CQS shutdown is pending. Client-initiated
checkpoint requests are not allowed.

X'00000010' X'00000430' No CQS address space.

Related concepts:

Using CQS system checkpoint (System Administration)

CQSCONN request
The CQSCONN request connects a client to one or more coupling facility
structures.

28 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_usingcqscheckpoint.htm#ims_usingcqscheckpoint

Format for CQSCONN

CONNECT function of CQSCONN

You use the CONNECT function of a CQSCONN request to connect to one or
more coupling facility structures. The coupling facility structures can be queue
structures or resource structures.

►► CQSCONN FUNC=CONNECT CQSTOKEN=cqstokenaddress PARM=parmaddress ►

►
FCCQSSSN=fccqsssnaddress

COUNT=count LISTSIZE=listsize ►

► LIST=listaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress
LISTVER=1

LISTVER=listversion
►◄

DSECT function of CQSCONN

Use the DSECT function of a CQSCONN request to include equate (EQU)
statements in your program for the CQSCONN parameter list length and
CQSCONN return and reason codes.

►► CQSCONN FUNC=DSECT ►◄

Usage of CQSCONN

The CQSCONN request connects a client to one or more coupling facility
structures. The client specifies a connect list containing one or more list entries, for
which each entry is a separate connect request. If the connection to a structure is
successful, a connect token is returned to the client, representing the connection to
the structure. The client must specify this token on all subsequent CQS requests for
that structure. A maximum of 32 clients can use a CQS address space to connect to
a coupling facility structure.

Restriction: The CQSCONN request is not logged for resource structures and does
not support the FCCQSSSN keyword. The CQSCONN request does not support
the following connect list parameters for a resource structure:
v structureattributes

v overflowstructurename

v structureinformexit

v structureinformparm

v qtypecnt

v qtypelist

A CQSCONN FUNC=CONNECT request must be issued after a CQSREG
FUNC=REGISTER request and before any other CQS requests. Also, after a CQS

Chapter 2. CQS client requests 29

abnormal termination and restart, and after the client has reregistered with CQS, a
CQSCONN FUNC=CONNECT request is required before the client can issue any
other CQS requests.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of list entries in the
connect list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

FCCQSSSN=fccqsssnaddress
Four-byte input parameter that specifies the address of the failed client CQS
subsystem. When one client takes over for another client, this is the SSN of the
CQS that was connected to the failed client.

This keyword is not applicable to a resource structure.

LIST=listaddress
Four-byte input parameter that specifies the address of a connect list
containing one or more entries. Each entry is a separate request to connect a
client to a coupling facility structure. Some fields for each entry must be
initialized by the client prior to the CQSCONN request. Other fields are
returned by CQS upon completion of the CQSCONN request.

The CQSCONNL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Note: All fields in the CQSCONNL DSECT currently documented as “Not
Used” must be set to zero by the caller of CQSCONN.

Each list entry contains the following parameters:

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Client connection successful. A connect token is returned to the
client.

X'00000004'
The client is already connected to the structure through this
CQS. A connect token is returned to the client.

X'00000008'
structurename is invalid.

X'0000000C'
The Structure Event exit routine address was not specified.

X'00000010'
The client is already connected to the structure through
another CQS. A client can only be connected to a given

30 System Programming APIs

|
|

structure through one CQS. The client is not connected to the
structure through this CQS. This does not affect the status of a
client connection with another CQS.

X'00000014'
CQS internal error.

X'00000018'
The client specified the FCCQSSSN= parameter to connect to
the structure to take over work for a failed client. CQS could
not find a valid system-checkpoint log token for the CQS that
was connected to the failed client. CQS issued message
CQS0033A, to which the operator replied REJECT.

X'0000001C'
The user ID of the client address space is not authorized to
connect to the structure.

X'00000020'
structureinformexit was specified but is not allowed for a
resource structure.

X'00000024'
structureinformparm was specified but is not allowed for a
resource structure.

X'0000002C'
structureattributes was specified but is not allowed for a
resource structure.

X'00000030'
Qtype was specified but is not allowed for a resource structure.

X'00000034'
FCCQSSSN was specified but is not allowed for a resource
structure.

structureattributes
Four-byte input and output parameter field that contains the structure
attributes.

+0 Flag byte 1, with the following bits defined:

X'80' Indicates the specification of the structure “wait for
rebuild” attribute. The first client in the sysplex to connect
to a structure defines this attribute for all clients. It is
returned on the connect request to allow clients to verify
that the attribute is set correctly for their needs because it
might have been set by a prior client connection.

The value specified for structureattributes remains in effect
for the life of the structure, and cannot be changed.

When set to 0, indicates that client requests to write and
retrieve data objects from the structure do not wait for a
rebuild to complete.

When set to 1, indicates that client requests to write and
retrieve data objects from the structure must wait for a
rebuild to complete.

X’40’ Output flag returned by CQS. For queue structures only,
this flag indicates whether the structure is a

Chapter 2. CQS client requests 31

||
|

non-recoverable structure (whether RECOVERABLE=NO
was specified in the CQSSGxxx PROCLIB member for the
structure). This flag is set to 1 if the structure is a
non-recoverable structure; otherwise, it is set to 0.

This flag is not applicable to a resource structure.

The remaining bits in this byte are not used, and must be set to
zero.

+1 The next 3 bytes are not used, and must be set to zero.

structuretype
One-byte output parameter field that specifies the structure type as
either a queue structure or a resource structure.

structureversion
Eight-byte output parameter field that specifies the structure version of
the structure to which the client just connected.

structurename
Sixteen-byte input parameter field that contains the name of the
structure to which the client wants to connect. This parameter is
required.

overflowstructurename
Sixteen-byte output parameter field to receive the name of the
overflow structure, if one was defined to CQS in the CQS Global
Structure Definition PROCLIB member, CQSSGxxx.

This parameter is not applicable to a resource structure.

connecttoken
Sixteen-byte output parameter field to receive the connect token that
uniquely identifies the client's connection to a particular coupling
facility structure managed by this CQS.

structureeventexit
Four-byte input parameter field that contains the Structure Event exit
routine address. This parameter is required.

structureeventparm
Four-byte input parameter field that contains client data that CQS
passes to the Structure Event exit routine every time the exit is called.
This parameter is optional; set it to zero if you do not want to pass any
data to the exit routine.

structureinformexit
Four-byte input parameter field that contains the Structure Inform exit
routine address. This parameter is optional; set it to zero if you do not
have a Structure Inform exit routine.

This parameter is not applicable to a resource structure.

structureinformparm
Four-byte input parameter field that contains client data that CQS
passes to the Structure Inform exit routine every time the exit is called.
This parameter is optional; set it to zero if you do not want to pass any
data to the exit routine.

This parameter is not applicable to a resource structure.

qtypecnt
Four-byte input parameter field that contains the number of queue

32 System Programming APIs

|
|
|
|

|

type entries in the queue type list. This parameter is optional; set it to
zero if you do not have any entries in the queue type list.

This parameter is not applicable to a resource structure.

qtypelst
Variable length input area for the queue type list.

This parameter is not applicable to a resource structure.

The length of this area is equal to the value specified for qtypecnt. Each
queue type entry is a 1-byte value of a queue type that should not be
moved to the overflow structure if the primary structure goes into
overflow mode. This parameter is optional.

When using version 1 of the CQSCONN parameter list (the default),
build the queue type list starting at label CNLQTYPL in the
CQSCONNL DSECT, which maps the list entry. When using version 16
of the CQSCONN parameter list, build the queue type list starting at
label CNLQTYPL_V16.

After a queue type is defined, it remains in effect for the life of the
structure, and is not moved to the overflow structure.

If no queue types are listed, the default is for all queue types to be
eligible for overflow. This list should only be included if there are
certain queue types the client knows should not be moved (perhaps
based on the client's use of the queue types).

Recommendation: Clients should exclude from processing those queue
types that allow multiple objects with the same queue name and UOW.
CQS cannot recover multiple objects with the same queue name and
UOW that are allowed to be moved to the overflow structure.

logstreamname
Twenty-six-byte output parameter field to receive the name of the
z/OS log stream associated with the CQS structure. This field is set to
all blanks for non-recoverable queue structures and for resource
structures.

This field is present only for CQSCONN lists at version 16 or later.

logstreamstructurename
Sixteen-byte output parameter field to receive the name of the CF
structure associated with the z/OS log stream that is associated with
the CQS structure. This field is set to all blanks for non-recoverable
queue structures, resource structures, and structures with DASD-only
z/OS log streams.

This field is present only for CQSCONN lists at version 16 or later.

LISTSIZE=listsize
Four-byte input parameter that specifies the size of the connect list. listsize
specifies the total length of all entries in the list, not the length of a single
entry.

LISTVER=1 | listversion
Input parameter that specifies the parameter list version. Use the DSECT
function of the CQSCONN request to include equate (EQU) statements in your
program for the CQSCONN list versions and lengths. The following parameter
list versions are supported:

1 EQU symbol is CNL_LVER1. This is the default parameter list version.

Chapter 2. CQS client requests 33

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

||

This version of the parameter list includes all fields documented under the
LIST= parameter except for those that are specifically noted as being
present only in a higher list version. The minimum length of a version 1
parameter list entry is CNL_MINLNV1 bytes. Queue type entries, if
present, begin at label CNLQTYPL in the CQSCONNL DSECT, mapping
the list entry.

16 EQU symbol is CNL_LVER16. A version 16 parameter list contains
additional output fields beyond the fields present in a version 1 parameter
list. These additional fields are documented under the LIST= parameter
and are returned only when a version 16 format parameter list is passed.
The minimum length of a version 16 parameter list entry is
CNL_MINLNV16 bytes. Queue type entries, if present, begin at label
CNLQTYPL_V16 in the CQSCONNL DSECT, mapping the list entry.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSCONN_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCONN return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSCONN reason code.

Return and reason codes for CQSCONN

The following table lists the return and reason code combinations that can be
returned for CQSCONN requests. Use a CQSCONN FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 9. CQSCONN return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000100' The client was previously connected to one or more
of the specified structures through this CQS. Client is
connected to all structures.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000258' listsize is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for one but not all list entries. See
compcode for individual errors.

34 System Programming APIs

|
|
|
|
|
|

||
|
|
|
|
|
|

Table 9. CQSCONN return and reason codes (continued)

Return code Reason code Meaning

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'0000040C' CQS shutdown in progress (CQSSHUT). CQS is
waiting for all clients to disconnect, and no new
client connections are allowed.

X'00000010' X'00000410' The maximum number of clients are connected to
this CQS. This request would exceed the client
connection limit. No further client connections are
allowed.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSDEL request
A CQSDEL request deletes one or more data objects from a queue structure or a
resource structure.

Format for CQSDEL

DELETE function of CQSDEL

Use the DELETE function of a CQSDEL request to delete one or more data objects
from a queue structure or a resource structure.

►► CQSDEL FUNC=DELETE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count ►

► LIST=listaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress
LISTVER=1

LISTVER=listversion
►◄

DSECT function of CQSDEL

Use the DSECT function of a CQSDEL request to include equate (EQU) statements
in your program for the CQSDEL parameter list length and CQSDEL return and
reason codes.

►► CQSDEL FUNC=DSECT ►◄

Usage of CQSDEL

A CQSDEL request deletes one or more data objects from a queue structure or a
resource structure. The client specifies a delete list that contains one or more list

Chapter 2. CQS client requests 35

|||||||||
|

|
|||||||||
|

|
||||||||||||||
|

|
|||||||||||||||||

|

|

|
|
|

|||||||||
|

|

entries, for which each list entry is a separate delete request (either by lock token,
by queue name, by queue name and UOW, by resource ID, or by resource type
and owner). Each list entry is processed separately and receives its own completion
code.

Parameter description:

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=count
A 4-byte input parameter that specifies the number of list entries in the delete
list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
A 4-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise, it is processed synchronously.

LIST=listaddress
A 4-byte input parameter that specifies the address of a delete list containing
one or more entries. Each entry is a separate delete request. Some fields in
each entry must be initialized by the client prior to the CQSDEL request. Other
fields are returned by CQS upon completion of the request.

The CQSDELL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following parameters:

deletetype
One-byte input parameter field that contains the delete type. This is a
required parameter. deletetype can have one of the following values:

1 Delete by lock token.

2 Delete by queue name.

3 Delete by queue name and unit of work.

4 Delete by resource ID and version.

5 Delete by resource type with the specified owner.

Recommendation: For better performance, use delete type 1 or delete
type 2 because they are more efficient than delete type 3.

deleteqpos
One-byte input parameter field that specifies either that all data objects
are to be deleted or the position on the queue of data objects to be
deleted. This parameter is only used for delete type 2. deleteqpos can
have one of the following values:

1 Delete all data objects on the queue.

2 Delete the first data object on the queue.

36 System Programming APIs

3 Delete the last data object on the queue.

The locktoken, deleteqpos, and uow fields are mutually exclusive.

reserved
A 2-byte reserved field.

objdelcnt
A 4-byte output parameter field to receive the number of data objects
deleted.

compcode
A 4-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000004'
Invalid deleteqpos (Delete type 2).

X'00000008'
Invalid deletetype.

X'0000000C'
Invalid locktoken (Delete type 1).

X'00000010'
Invalid queuename (Delete type 2 or type 3).

X'00000014'
Invalid uow (Delete type 3).

X'0000001C'
Structure is inaccessible. Try the request again later.

X'00000020'
CQS internal error.

X'00000024'
Data object not found on queue (Delete type 2) or on
queuename for UOW (Delete type 3), or on resource structure
(Delete type 4). It is up to the client to determine whether this
case should be treated as an error or not.

X'00000028'
Delete type 1, 2, or 3 is invalid for a resource structure.

X'00000032'
Delete type 4 or 5 is invalid for a queue structure.

X'00000036'
Resourceid is invalid. The name type must be a decimal number
between 1 - 255.

X'00000040'
Version is invalid. The version must be a number greater than
zero.

X'00000044'
Version does not match that of an existing resource.

X'00000048'
Resourcetype is invalid. The resource type must be a decimal
number between 1 - 255.

Chapter 2. CQS client requests 37

|

|

|

|

|

locktoken
A 16-byte input parameter field that contains the lock token. The lock
token is returned by the CQSREAD request. This parameter is only
used for delete type 1.

The locktoken, deleteqpos, and uow fields are mutually exclusive. The
locktoken and queuename fields are also mutually exclusive.

queuename
A 16-byte input parameter field that contains the queue name. This
parameter is only used for delete types 2 and 3.

The locktoken and queuename fields are mutually exclusive.

uow A 32-byte input parameter that contains the unit of work. This
parameter is only used for delete type 3.

The locktoken, deleteqpos, and uow fields are mutually exclusive.

resourceid
A 12-byte input parameter that contains the unique identifier of the
resource data object to delete. This parameter is required for delete
type 4. The resourceid, locktoken, queuename, and resourceytpe fields are
mutually exclusive.

version
An 8-byte input and output parameter that contains the version of the
resource to be deleted. The version specified must match the version of
the resource for the delete request to succeed. The version is a count of
the number of times the resource has been updated. This parameter is
required for delete type 4. If the delete fails because of version
mismatch, the version is returned as output.

resourcetype
A 1-byte input parameter that contains the resource type. The resource
type is a client-defined physical grouping of resources on the resource
structure. Valid values for the resource type are decimal numbers from
1 to 255. If the resource type is greater than the maximum number of
resource types defined by CQS (11), it is folded into one of the existing
resource types. This parameter is required for delete types 4 and 5.
Specify zero to delete all resources of a resource type that are not
owned.

reserved
A 3-byte reserved field.

owner An 8-byte input parameter that specifies the owner for which to delete
resources of the specified resource type. This parameter is required for
delete type 5.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSDEL request to include equate (EQU) statements in your
program for the CQSDEL list versions.

PARM=parmaddress
A 4-byte input parameter that specifies the address of a parameter list used by
the request to pass parameters to CQS. The length of the storage area must be
at least equal to the EQU value CQSDEL_PARM_LEN (defined using the
FUNC=DSECT request).

38 System Programming APIs

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEL return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEL reason code.

Return and reason codes for CQSDEL

The following table lists the return and reason code combinations that can be
returned for CQSDEL requests. Use a CQSDEL FUNC=DSECT request to include
equate statements in your program for the return and reason codes.

Table 10. CQSDEL return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parameter list version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSDEREG request
The CQSDEREG request deregisters a client from CQS and invalidates the
CQSTOKEN.

Format for CQSDEREG

DEREGISTER function of CQSDEREG

A CQSDEL request deletes one or more data objects from a queue structure or a
resource structure.

►► CQSDEREG FUNC=DEREGISTER CQSTOKEN=cqstokenaddress PARM=parmaddress ►

Chapter 2. CQS client requests 39

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

DSECT function of CQSDEREG

Use the DSECT function of a CQSDEREG request to include equate (EQU)
statements in your program for the CQSDEREG parameter list length and
CQSDEREG return and reason codes.

►► CQSDEREG FUNC=DSECT ►◄

Usage of CQSDEREG

The CQSDEREG request deregister a client from CQS and invalidates the
CQSTOKEN. Prior to issuing this request, the client should issue the CQSDISC
request to disconnect from all structures to which the client has a connection.
When this request is successfully completed, no subsequent requests can be made
to CQS until a CQSREG request has been made to get a new CQSTOKEN.

Parameter Description:

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSDEREG_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEREG return code. The CQSDEREG return code is returned both in this
field and in register 15.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDEREG reason code. The CQSDEREG reason code is returned both in this
field and in register 0.

Return and reason codes for CQSDEREG

The following table lists the return and reason code combinations that can be
returned for CQSDEREG requests.

Table 11. CQSDEREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000104' Unable to free CQS's storage in client's address space.
The cqstoken is now invalid.

X'00000004' X'00000108' Unable to delete z/OS Resource Manager routine.
The cqstoken is now invalid.

X'00000008' X'00000210' cqstoken is invalid.

40 System Programming APIs

Table 11. CQSDEREG return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000248' The CQSDEREG parameter list version is invalid.
This error is probably caused by a difference in
versions between the CQS client and the CQS
address space the client is trying to use.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000434' Request is active.

X'00000014' X'00000500' CQS internal error. The cqstoken is now invalid.

X'00000014' X'00000504' Storage allocation error for work area.

X'00000014' X'00000518' CQS internal error (unable to create ESTAE).

X'00000014' X'0000053C' Unable to load CQS deregistration module
CQSREG10.

CQSDISC request
The CQSDISC request allows a client to disconnect from one or more coupling
facility structures.

Format for CQSDISC

DISCABND function of CQSDISC

You use the DISCABND function of a CQSDISC request while the client is
terminating abnormally to terminate client connections to all coupling facility
structures.

►► CQSDISC FUNC=DISCABND CQSTOKEN=cqstokenaddress PARM=parmaddress ►

►
A

OPTWORD1=optionwordvalue ECB=ecbaddress
►

►
RETCODE=returncodeaddress RSNCODE=reasoncodeaddress LISTVER=1

►◄

A:

CQSSHUT=YES

CQSSHUT=NO

DISCNORM function of CQSDISC

Use the DISCNORM function of a CQSDISC request while the client is terminating
normally to terminate client connections to one or more coupling facility structures.

►► CQSDISC FUNC=DISCNORM CQSTOKEN=cqstokenaddress PARM=parmaddress ►

Chapter 2. CQS client requests 41

► COUNT=count LIST=listaddress
A

OPTWORD1=optionwordvalue
►

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

►◄

A:

CQSSHUT=YES

CQSSHUT=NO

DSECT function of CQSDISC

Use the DSECT function of a CQSDISC request to include equate (EQU) statements
in your program for the CQSDISC parameter list length, CQSDISC return and
reason codes, and literals that can be used to build the OPTWORD1 parameter.

►► CQSDISC FUNC=DSECT ►◄

Usage of CQSDISC

Restriction: The CQSDISC request does not support structure attributes for
resource structures.

The CQSDISC request allows a client to disconnect from one or more coupling
facility structures. CQS disconnects client resources associated with the structures.
The client needs to issue a CQSDEREG request to completely disconnect from
CQS.

A CQSDISC FUNC=DISCABND request, used when the client is terminating
abnormally, terminates client connections to all coupling facility structures.

A CQSDISC FUNC=DISCNORM, used when the client is terminating normally,
terminates client connections to one or more coupling facility structures. The client
specifies a disconnect list containing one or more list entries, for which each entry
is a separate disconnect request. As each structure disconnect is completed, the
connect token for that structure is invalidated and can no longer be used by the
client.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of list entries in the
disconnect list.

CQSSHUT=YES | NO
Input parameter that indicates whether or not the CQS address space should
be shut down after all clients have disconnected.

42 System Programming APIs

If CQSSHUT=YES is specified, new clients continue to be allowed to issue
CQSCONN requests. The CQSSHUT FUNC=QUIESCE request can be used to
prevent new clients from issuing CQSCONN requests.

The CQSSHUT parameter cannot be used when the OPTWORD1 parameter is
specified. If you specify OPTWORD1 instead of CQSSHUT, you can use the
following equate (EQU) symbols to generate the value for the OPTWORD1
parameter:
CQSDISC_SHUTYEQX CQSSHUT=YES
CQSDISC_SHUTNEQX CQSSHUT=NO

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise the request is processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of a disconnect list
containing one or more entries. Each entry is a separate request to disconnect a
client from a coupling facility structure. Some fields in each entry must be
initialized by the client prior to the CQSDISC request. Other fields are returned
by CQS upon completion of the CQSDISC request.

The CQSDISCL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following:

connecttoken
Sixteen-byte input parameter that specifies the connect token that
uniquely identifies the client's connection to a particular coupling
facility structure managed by this CQS. The connect token is returned
by the CQSCONN request. This parameter is required.

structureattributes
Four-byte input parameter field that contains the structure attributes.

+0 Flag byte 1, with the following bits defined:

X'80' When set to 0, indicates that CQS should not perform a
structure checkpoint for the structure.

When set to 1, indicates that CQS should perform a
structure checkpoint for the structure.

X'40' When set to 0, indicates that CQS should not perform
disconnect processing for the structure if there is any
inflight work (locked objects) on the structure. If inflight
work is found, CQS will set completion code X'00000008' in
the compcode field, and will return a return code of
X'0000000C', and a reason code of either X'00000300' or
X'00000304' for the request.

When set to 1, indicates that CQS should disconnect from
the structure, even if there is inflight work (locked objects)
on the structure. If inflight work is found, CQS will set
completion code X'00000008' in the compcode field, and

Chapter 2. CQS client requests 43

will return a return code of X'00000004', and a reason code
of X'00000140' for the request, if no other errors in
disconnect processing occur. Note that the return and
reason code is a warning only; the disconnect processing is
still performed.

The remaining bits in this byte are not used, and must be set to
zero.

+1 The next 3 bytes are not used, and must be set to zero.

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000004'
connecttoken is invalid.

X'00000008'
The client has inflight work for the structure. If the X'40' bit in the
first byte of the structureattributes parameter was set to one, the
disconnect processing was successful for the structure, and this
completion code is informational.

If the X'40' bit was zero, the disconnect processing was not done
for this structure, and the CQS client should complete the inflight
work before continuing.

X'0000000C'
Structure attributes are not allowed for a resource structure.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSDISC request to include equate (EQU) statements in your
program for the CQSDISC list versions.

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This
parameter can be used instead of CQSSHUT. Equate (EQU) statements for the
literal values are listed under the description of the CQSSHUT parameter.
Equate statements can also be generated by using the DSECT function. The
OPTWORD1 parameter cannot be used if CQSSHUT is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value
that is composed of one equate value for each literal value supported by this
macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSDISC_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDISC return code.

44 System Programming APIs

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSDISC reason code.

Return and reason codes for CQSDISC

The following table lists the return and reason code combinations that can be
returned for CQSDISC requests. Use a CQSDISC FUNC=DSECT request to include
equate statements in your program for the return and reason codes.

Table 12. CQSDISC return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000130' Request completed successfully for the requested
structures. Client is still connected to additional
coupling facility structures.

X'00000004' X'00000140' Request completed successfully for the requested
structures. At least one structure had inflight work
for this client, but the client indicated that disconnect
processing was allowed with inflight work at
CQSDISC. The completion code field for those
structures contains X'00000008'.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'00000430' No CQS address space.

CQSINFRM request
The CQSINFRM request registers or deregisters interest for one or more queues on
a specific coupling facility structure.

Format for CQSINFRM

DSECT function of CQSINFRM

You use the DSECT function of a CQSINFRM request to include equate (EQU)
statements in your program for the CQSINFRM parameter list length and
CQSINFRM return and reason codes.

Chapter 2. CQS client requests 45

►► CQSINFRM FUNC=DSECT ►◄

INFORM function of CQSINFRM

Use the INFORM function of a CQSINFRM request to register a client's interest in
one or more queues on a specific coupling facility structure.

►► CQSINFRM FUNC=INFORM CQSTOKEN=cqstokenaddress PARM=parmaddress ►

► COUNT=count LISTSIZE=listsize LIST=listaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

LISTVER=listversion
►◄

UNINFORM function of CQSINFRM

Use the UNINFORM function of a CQSINFRM request to deregister a client's
interest in one or more queues on a specific coupling facility structure it previously
registered interest for.

►► CQSINFRM FUNC=UNINFORM CQSTOKEN=cqstokenaddress PARM=parmaddress ►

► COUNT=count LISTSIZE=listsize LIST=listaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

LISTVER=listversion
►◄

Usage of CQSINFRM

A client uses a CQSINFRM request to register or deregister interest for one or more
queues on a specific coupling facility structure. When a queue goes from empty to
non-empty, CQS notifies all clients that registered interest for the queue of the
change in status by scheduling the Structure Inform Client exit routine.

Restriction: The CQSINFRM request is not supported for resource structures.

The client can issue CQSREAD or CQSBRWSE requests to retrieve data from a
queue. A client can make data objects available on a queue using CQSPUT,
CQSMOVE, or CQSUNLCK requests.

46 System Programming APIs

A client that has registered interest in a queue is only notified when the queue
goes from empty to non-empty, or if a data object is available on the queue when
the CQSINFRM request is issued. The client does not receive notification when
additional data objects are placed on a non-empty queue.

After a client deregisters interest in a queue, it is no longer notified when one of
the queues goes from empty to non-empty. Because client notifications occur
asynchronously with CQSINFRM requests, the client should expect to be notified
about new data objects that arrive between the time the client issues the
CQSINFRM FUNC=UNINFORM request and the time CQS processes the request.

Parameter Description:

COUNT=count
Four-byte input parameter that specifies the number of structure list entries in
the structure list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of the structure list. The
structure list is built in contiguous storage, and the size of the list must be
specified using the LISTSIZE parameter. The structure list should contain an
entry for each coupling facility structure for which the client will register or
deregister interest. Each structure list entry must contain a list of the queues
for which the client will register or deregister interest.

Each connect token in a structure list entry and queue name in the queue list
entry must be initialized prior to the request. Upon completion of the request,
CQS returns the structure completion code for the structure list and the queue
completion code for the queue list.

The CQSINFL list entry DSECT maps the queue and structure list entries and
can be used by the client. Multiple list entries must reside in contiguous
storage.

Each structure list entry contains the following parameters:

connecttoken
Sixteen-byte input parameter that specifies the connect token that
uniquely identifies the client's connection to CQS and a specific
coupling facility structure. The connect token is returned by the
CQSCONN request. This parameter is required.

structurecompletioncode
Four-byte output field to receive the completion code for the
CQSINFRM request for the structure. Possible structure completion
codes are:

X'00000000'
Request completed successfully.

Chapter 2. CQS client requests 47

X'00000004'
Request completed successfully for all queues. At least one
queue has work on it. See the queue completion code to
determine which queues have work on them.

X'00000010'
connecttoken is invalid.

X'00000014'
queuelistcount is invalid.

X'00000018'
Inform exit routine does not exist. The Structure Inform exit
routine was not specified on CQSCONN request for structure.

X'00000020'
Request completed successfully for at least one, but not all
queues in queuelist. See queuecompletioncode for individual
errors.

X'00000024'
Request failed for all queues in queuelist. See
queuecompletioncode for individual errors or successes.

X'00000030'
A CQSRSYNC is required for this structure.

X'00000034'
CQSINFRM is not allowed for a resource structure.

queuelistcount
Four-byte input parameter that specifies the number of queues in the
queue list. This parameter is required.

Recommendation: For optimum performance, a client that registers
interest in many queues should issue multiple CQSINFRM requests, in
which each request lists no more than 1024 queues.

queuelist
Variable length input area that contains one or more queue lists. A
queue list, built by the client, should contain an entry for each queue
on the structure for which the client will register or deregister interest.
The queue names must be initialized prior to the request. This
parameter is required.

Each queue list entry contains the following:

queuename
Sixteen-byte input field that contains the name of the queue for
which the client is registering interest. This parameter is
required.

queuerequestflag
One-byte input field that contains flags specific to this queue
that can be set for this CQSINFRM request.

X'80' Call the client Inform exit routine if there are data
objects on the queue at the time the client issues the
CQSINFRM FUNC=INFORM request. Applies only to
CQSINFRM FUNC=INFORM requests.

48 System Programming APIs

queuecompletioncode
Four-byte output field to receive the completion code for the
specified queue. Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000040'
Work exists on queue.

X'00000044'
queuename is invalid.

X'00000048'
CQS internal error.

X'00000050'
Structure is full. No more event monitoring controls
(EMC)s are available for queue registration.

X'00000054'
Structure is inaccessible. Retry request.

LISTSIZE=listsize
Four-byte input parameter that specifies the size of the structure list. The client
builds the structure list and must specify the size of the structure list in this
field.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSINFRM request to include equate (EQU) statements in your
program for the CQSINFRM list versions.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSINFRM_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSINFRM return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSINFRM reason code.

Return and reason codes for CQSINFRM

The following table lists the return and reason code combinations that can be
returned for CQSINFRM requests. Use a CQSINFRM FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 13. CQSINFRM return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Chapter 2. CQS client requests 49

Table 13. CQSINFRM return and reason codes (continued)

Return code Reason code Meaning

X'00000004' X'00000134' Request completed successfully. One or more queues
have work.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000258' listsize is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list
entries. Check structurecompletioncode for individual
errors or successes.

X'0000000C' X'00000304' Request failed for all list entries. See
structurecompletioncode for individual errors.

X'00000010' X'00000430' No CQS address space.

Related reference:

CQS Client Structure Inform exit routine (Exit Routines)

CQSMOVE request
A CQSMOVE request moves one or all client data objects from one queue to
another. Data objects can be moved from the first or last position of the old queue
to the first or last position on the new queue.

Format for CQSMOVE

DSECT function of CQSMOVE

You use the DSECT function of a CQSMOVE request to include equate (EQU)
statements in your program for the CQSMOVE parameter list length, CQSMOVE
return and reason codes, and literals that can be used to build the OPTWORD1
parameter.

►► CQSMOVE FUNC=DSECT ►◄

MOVE function of CQSMOVE

Use the MOVE function of a CQSMOVE request to move one or all data objects
from one queue to another. You must code a macro invocation for each
combination of literal parameters.

MOVE Function of CQSMOVE using Literal Parameters

►► CQSMOVE FUNC=MOVE CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress ►

50 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_cqsclientstructure.htm#ims_cqsclientstructure

► PARM=parmaddress
OLDQPOS=FIRST

OLDQ=oldqueuenameaddress A
OLDQPOS=LAST

LCKTOKEN=locktokenaddress

►

►
NEWQPOS=LAST

NEWQ=newqueuenameaddress
NEWQPOS=FIRST ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

A:

COUNT=ONE

COUNT=ALL
MVCNT=movecountaddress

You can use the OPTWORD1 parameter to code a single invocation of the macro
and set the options at runtime. However, you cannot use the COUNT, NEWQPOS,
and OLDQPOS parameters if you use the OPTWORD1 parameter.

MOVE Function of CQSMOVE using OPTWORD1 Parameter

►► CQSMOVE FUNC=MOVE CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress ►

► PARM=parmaddress OLDQ=oldqueuenameaddress
MVCNT=movecountaddress

LCKTOKEN=locktokenaddress

►

► NEWQ=newqueuenameaddress OPTWORD1=optionwordvalue
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

Usage of CQSMOVE

Restriction: The CQSMOVE request is not supported for resource structures.

A CQSMOVE request moves one or all client data objects from one queue to
another. Data objects can be moved from the first or last position of the old queue
to the first or last position on the new queue. The client identifies the data objects
to be moved either by the old queue name and queue position, or by the lock
token. Do not move multiple objects with the same queue name and UOW;
otherwise CQS cannot recover the objects.

If CQS or the client fails before CQS responds to the client, the CQSMOVE request
might not complete. The client must reconnect to CQS after the failure and may
have to issue the CQSMOVE request again, in case the failure occurred before the
move was committed, or to resume a move with COUNT=ALL.

Parameter Description:

Chapter 2. CQS client requests 51

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=ONE | ALL
Input parameter that specifies the number of data objects on the old queue to
be moved; the client can move either one or all of them.

The COUNT parameter cannot be used when the OPTWORD1 parameter is
specified. If you specify the OPTWORD1 parameter instead of the COUNT
parameter, you can use the following equate (EQU) symbols to generate the
value for the OPTWORD1 parameter:
CQSMOVE_CNT1EQUX COUNT=ONE
CQSMOVE_CNT1EQUX COUNT=ALL

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LCKTOKEN=locktokenaddress
Input parameter that specifies the address of the 16-byte lock token for the
locked data object to be moved. The lock token uniquely identifies a data
object locked by a CQSREAD request.

MVCNT=movecountaddress
Output parameter that specifies the address of a 4-byte field to receive the
number of data objects that were moved. Even when the return or reason code
is non-zero, it is possible that CQS moved some data objects.

NEWQ=newqueuenameaddress
Input parameter that specifies the address of the 16-byte name of the new
queue to which the data object is to be moved.

NEWQPOS=FIRST | LAST
Input parameter that specifies the position on the new queue to which data
objects are moved, either first or last.

The NEWQPOS parameter cannot be used when the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is specified instead of NEWQPOS, you
can use the following equate (EQU) statements to generate the value for the
OPTWORD1 parameter:
CQSMOVE_NEWQFEQUX NEWQPOS=FIRST
CQSMOVE_NEWQLEQUX NEWQPOS=LAST

OLDQ=oldqueuenameaddress
Input parameter that specifies the address of the 16-byte name of the old
queue from which the data object is to be moved.

OLDQPOS=FIRST | LAST
Input parameter that specifies the position on the old queue from which data
objects are to be moved, either first or last.

52 System Programming APIs

The OLDQPOS parameter cannot be used when the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is specified instead of OLDQPOS, you
can use the following equate (EQU) statements to generate the value for the
OPTWORD1 parameter:
CQSMOVE_OLDQFEQUX OLDQPOS=FIRST
CQSMOVE_OLDQLEQUX OLDQPOS=LAST

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This
parameter can be used instead of COUNT, NEWQPOS, and OLDQPOS. Equate
(EQU) statements for the literal values are listed under the COUNT,
NEWQPOS, and OLDQPOS parameter descriptions. Equate statements can also
be generated by using the DSECT function. The OPTWORD1 parameter cannot
be used if COUNT, NEWQPOS, or OLDQPOS is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value
that is composed of one equate value for each literal value supported by this
macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSMOVE_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSMOVE return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSMOVE reason code.

Return and reason codes for CQSMOVE

The following table lists the return and reason code combinations that can be
returned for CQSMOVE requests. Use a CQSMOVE FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 14. CQSMOVE return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000128' No data object to move for queue name specified.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' locktoken is invalid.

X'00000008' X'00000220' Queue name is invalid.

X'00000008' X'00000224' Buffer address is invalid.

X'00000008' X'0000027C' CQSMOVE is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

Chapter 2. CQS client requests 53

Table 14. CQSMOVE return and reason codes (continued)

Return code Reason code Meaning

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000414' Unable to move the data object because the
destination queue is full. CQSMOVE requests for
other queues are allowed.

X'00000010' X'0000041C' Request pending. A structure recovery or CQS restart
might be required to complete.

X'00000010' X'00000430' No CQS address space.

X'00000010' X'00000440' Locked (nonrecoverable) data object lost due to
rebuild.

X'00000014' X'00000500' CQS internal error.

CQSPUT request
A CQSPUT request allows a client to place a data object on a queue. The data
object can be either the only one for a unit of work, or it can be one in a series for
a unit of work.

Format for CQSPUT

ABORT function of CQSPUT

Use the ABORT function of a CQSPUT request to remove all uncommitted data
objects from the queues that are associated with a recoverable unit of work.

►► CQSPUT FUNC=ABORT CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress ►

► PARM=parmaddress PUTTOKEN=puttokenaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

DSECT function of CQSPUT

Use the DSECT function of a CQSPUT request to include equate (EQU) statements
in your program for the CQSPUT parameter list length, CQSPUT return and
reason codes, and literals that can be used to build the OPTWORD1 parameter.

►► CQSPUT FUNC=DSECT ►◄

PUT function of CQSPUT

Use the PUT function of a CQSPUT request to place a data object on a queue.

►► CQSPUT FUNC=PUT CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress ►

54 System Programming APIs

► PARM=parmaddress PUTTOKEN=puttokenaddress UOW=uowaddress ►

► QNAME=queuenameaddress
A

OPTWORD1=optionwordvalue
►

► DATAOBJ=dataobjectaddress OBJSIZE=dataobjectsizeaddress ►

►
TIMESTAMP=timestampaddress ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

A:

QPOS=LAST

QPOS=FIRST
B

B:

RECOVERABLE=YES C

RECOVERABLE=NO

C:

COMMIT=YES D

COMMIT=NO

D:

LOCAL=NO

LOCAL=YES

Usage of CQSPUT

Restriction: The CQSPUT request is not supported for resource structures.

A CQSPUT request allows a client to place a data object on a queue. The data
object can be either the only one for a unit of work, or it can be one in a series for
a unit of work. The data object can be added to the beginning or to the end of the
queue. After the data object is on the queue, it is available to any client that has
access to that queue.

Chapter 2. CQS client requests 55

You can put multiple objects on the same queue for unit of work. Do not move
these objects (CQSMOVE request) or allow these objects to be moved to the
overflow structure (CQSCONN request); otherwise, CQS cannot recover the
objects.

If a unit of work consists of multiple data objects, and they are all on the same
queue, then when CQS places the first data object on the queue, it notifies other
clients that have registered interest in the queue, even though not all of the data
objects for the UOW are on the queue yet and the UOW has not yet been
committed.

Recommendation: To ensure that a client does not retrieve incomplete data, place
the last data object for a UOW on a different queue than any of the previous data
objects for the unit of work, and ensure the client only registers interest in that
queue.

The first request that places a data object on a queue for a unit of work determines
whether that unit of work is recoverable or nonrecoverable. The actions taken for a
data object when a client fails, CQS fails, a structure is copied, or a structure is
recovered depend on whether the unit of work is recoverable and, if so, whether it
has been committed. The following table shows the actions taken for each case.

When a data object is put on a queue, a time stamp is stored with the data object.
The source of the time stamp is based on whether TIMESTAMP= is used on the
CQSPUT= request. If TIMESTAMP= is specified on the CQSPUT request, the value
specified for TIMESTAMP= is stored with the data object. If TIMESTAMP= is not
specified on the CQSPUT request, a time stamp representing the current time is
generated and stored with the data object. The time stamp is returned on the
CQSQUERY FUNC=QTYPE request if it is associated with the oldest data object on
the queue or the newest data object on the queue.

Table 15. Actions taken for data objects as a result of failures or structure activity

Nonrecoverable Recoverable and uncommitted Recoverable and committed

Client Failure All data objects on the queues
for nonrecoverable units of
work are left on the queues.

All data objects on the queues
that belong to uncommitted units
of work are deleted when the
client terminates.

All data objects on the queues
for the unit of work remain on
the queues.

CQS Failure Any data objects for
nonrecoverable units of work
that were placed on the queues
successfully are left on the
queues. If CQS was in the
process of placing a data object
on a queue when the failure
occurred, that data object is not
recovered when CQS restarts.

All data objects on the queues
that belong to uncommitted units
of work are deleted when CQS
restarts.

All data objects on the queues
that belong to committed units
of work remain on the queues.
If CQS was in the process of
placing the final data object for
the unit of work on the queues
when the failure occurred, CQS
restart ensures the data object
is on the queues.

Structure Copy Data objects for nonrecoverable
units of work are copied to the
new structure.

All data objects for recoverable
units of work are copied to the
new structure whether the unit of
work is committed or not.

All data objects for recoverable
units of work are copied to the
new structure.

Structure
Recovery

Data objects placed on the
queues for nonrecoverable
units of work are not recovered
to the new structure.

All data objects that were placed
on the queues for recoverable
units of work are recovered to the
new structure whether or not the
unit of work was committed.

All data objects that were
placed on the queues for
recoverable units of work are
recovered to the new structure.

56 System Programming APIs

A CQSPUT FUNC=FORGET request terminates any CQSPUT FUNC=PUT
requests, and causes CQS to discard internal information CQS has about the unit
of work. The unit of work is identified by the put token. The client should make
this request after receiving a response from the final CQSPUT FUNC=PUT request
issued for the unit of work. The CQSPUT FUNC=FORGET request is rejected if the
unit of work is recoverable but not committed.

A CQSPUT FUNC=ABORT request removes from the queues all uncommitted data
objects associated with a recoverable unit of work. The unit of work is identified
by the put token. The request is rejected if the unit of work is nonrecoverable or if
the unit of work is recoverable, but already committed.

Examples: To put a single object for a unit of work on the queues, issue the
following requests:
CQSPUT FUNC=PUT,COMMIT=YES,......
CQSPUT FUNC=FORGET,...

To put multiple objects for a unit of work on the queues, issue the following
requests:
CQSPUT FUNC=PUT,COMMIT=NO,......
CQSPUT FUNC=PUT,COMMIT=NO,......
CQSPUT FUNC=PUT,COMMIT=YES,......
CQSPUT FUNC=FORGET,...

Parameter description:

COMMIT=YES | NO
Input parameter that indicates whether to commit a recoverable unit of work.
One or more data objects can be placed on the queues for a recoverable unit of
work.

The COMMIT= parameter applies only to recoverable units of work and is
only valid if RECOVERABLE=YES is specified. The parameter is ignored if
RECOVERABLE=NO is specified.

COMMIT=YES must be specified (either by itself or as part of OPTWORD1) for
the final (or only) CQSPUT FUNC=PUT request issued for a unit of work. If
more than one data object is placed on the queues for a unit of work,
COMMIT=NO must be specified on all except the final CQSPUT FUNC=PUT
request of the series. COMMIT=YES must be specified on the final CQSPUT
FUNC=PUT request.

The COMMIT parameter cannot be used if the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is used instead of COMMIT, you can
use the following equate (EQU) statements to generate the value for the
OPTWORD1 parameter:
CQSPUT_CMTYEQUX COMMIT=YES
CQSPUT_CMTNEQUX COMMIT=NO

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

Chapter 2. CQS client requests 57

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

DATAOBJ=dataobjectaddress
A 4-byte input parameter that specifies the address of the client data object to
be placed on the specified queue.

ECB=ecbaddress
A 4-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise, it is processed synchronously.

LOCAL=NO | N | YES | Y
Input parameter that indicates whether the client should keep a local copy of
the data.

NO Indicates the client wants CQS to place the data object on the specified
client queue and make the object available to other CQSs.

YES
Indicates that the client wants CQS to place the data object on the shared
queues and to lock the object. LOCAL=YES also indicates that the client
will keep a local copy of the data object in a local buffer.

By keeping a local copy of the data object, the client can reduce the
performance impact of using shared queues. By keeping the data object on
the shared queues, it can be recovered if the client fails. By locking the
data object, it is not available to any other client.

The client must issue the CQSREAD LOCAL=YES request to process the
data (retrieve the lock token for the data object and inform CQS that the
client is processing the data). The data object is not returned to the client
on a CQSREAD request because the client has the local copy. If the client
does not issue the CQSREAD LOCAL=YES request and the connection
between the client and CQS is lost, CQS unlocks the data object and makes
it available to any client.

The LOCAL parameter cannot be used if the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is used instead of LOCAL, you can use
the following equate (EQU) statements to generate the value for the
OPTWORD1 parameter:
CQSPUT_LCLYEQUX LOCAL=YES
CQSPUT_LCLNEQUX LOCAL=NO

OBJSIZE=dataobjectsizeaddress
Input parameter that specifies the address of a 4-byte area to hold the size of
the client data object to be placed on the queue. The maximum size that can be
specified is 61312 bytes (X'EF80').

OPTWORD1=optionwordvalue
A 4-byte input parameter that specifies the literals for this request. This
parameter can be used instead of COMMIT, LOCAL, QPOS, and
RECOVERABLE. Equate (EQU) statements for the literal values are listed
under the descriptions of the COMMIT, LOCAL, QPOS, and RECOVERABLE
parameters. Equate statements can be also generated by using the DSECT
function. The OPTWORD1 parameter cannot be used if COMMIT, LOCAL,
QPOS, or RECOVERABLE is specified.

58 System Programming APIs

Requirement: If you code the OPTWORD1 parameter, you must pass a value
that is composed of one equate value for each literal value supported by this
macro.

PARM=parmaddress
A 4-byte input parameter that specifies the address of a parameter list used by
the request to pass parameters to CQS. The length of the storage area must be
at least equal to the EQU value CQSPUT_PARM_LEN (defined using the
FUNC=DSECT request).

PUTTOKEN=puttokenaddress
A 4-byte input and output parameter that specifies the address of a 16-byte
token to be used by CQS to relate a series of CQSPUT requests for a unit of
work. The token must be zero for the initial CQSPUT request of a series. An
updated token is returned by CQS for each CQSPUT request. The updated
token must be returned to CQS on the next CQSPUT request for the unit of
work. The puttoken must also be returned to CQS for any CQSPUT
FUNC=FORGET or CQSPUT FUNC=ABORT requests.

QNAME=queuenameaddress
Input parameter that specifies the address of the 16-byte name of the queue on
which the data object is to be placed. The first byte of the queue name cannot
be zero because it is used to determine the queue type. If the value in the first
byte is greater than the maximum number of queue types defined by CQS, it is
folded into one of the existing queue types. If the last data object for a unit of
work is being put on the structure, the data object must be put on a different
queue than any of the previous data objects for that unit of work.

QPOS=LAST | FIRST
Input parameter that specifies the position on the queue at which to place the
client data object.

FIRST
The data object is added to the beginning of the queue.

LAST
The data object is added to the end of the queue.

The QPOS parameter cannot be used if the OPTWORD1 parameter is specified.
If the OPTWORD1 parameter is specified instead of QPOS, you can use the
following equate (EQU) statements to generate the value for the OPTWORD1
parameter:
CQSPUT_QPOSFEQUX QPOS=FIRST
CQSPUT_QPOSLEQUX QPOS=LAST

RECOVERABLE=YES | NO
Input parameter that specifies whether the unit of work is recoverable by CQS.
RECOVERABLE=NO indicates that the unit of work is nonrecoverable. Only
one data object can be placed on the queues for a nonrecoverable unit of work.
RECOVERABLE=YES indicates that the unit of work is recoverable. One or
more data objects can be placed on the queues for a recoverable unit of work.

The RECOVERABLE=YES parameter must be specified for each CQSPUT
FUNC=PUT request issued for the unit of work. The unit of work is not
committed until the final (or only) data object for the series is placed on the
queues (COMMIT=YES specified).

The RECOVERABLE parameter cannot be used if the OPTWORD1 parameter
is specified. If the OPTWORD1 parameter is specified instead of

Chapter 2. CQS client requests 59

RECOVERABLE, you can use the following equate (EQU) statements to
generate the value for the OPTWORD1 parameter:
CQSPUT_RECVYEQUX RECOVERABLE=YES
CQSPUT_RECVNEQUX RECOVERABLE=NO

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSPUT return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSPUT reason code.

TIMESTAMP=timestampaddress
A 4-byte input parameter that specifies the address of an 8-byte STCK value
that is stored with the data object as the time the data object was placed on the
queue. If the TIMESTAMP parameter is omitted, the current time is stored with
the data object.

UOW=uowaddress
Input parameter that specifies the address of a 32-byte area to hold the unit of
work. This parameter is required for the initial (or only) CQSPUT FUNC=PUT
request issued for a unit of work. It is ignored for all subsequent CQSPUT
FUNC=PUT requests issued for that unit of work.

When a value is specified for the UOW= parameter, PUTTOKEN=0 must also
be specified. The value specified for the UOW= parameter cannot be all zeroes,
and must be unique within the shared queues. The client is responsible for
ensuring that the value is unique.

Return and reason codes for CQSPUT

The following table lists the return and reason code combinations that can be
returned for CQSPUT requests. Use a CQSPUT FUNC=DSECT request to include
equate statements in your program for the return and reason codes.

Table 16. CQSPUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' puttoken is invalid.

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' dataobject is invalid.

X'00000008' X'00000228' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000238' The queue name is not unique. If more than one data
object is placed on the queues for a unit of work, the
queue name assigned to the last data object must be
unique for that unit of work.

60 System Programming APIs

Table 16. CQSPUT return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000260' A CQSPUT FUNC=PUT request was issued, but the
unit of work was already committed.

X'00000008' X'00000264' A CQSPUT FUNC=FORGET request was issued for a
recoverable unit of work, but the unit of work was
not committed.

X'00000008' X'00000268' A CQSPUT FUNC=ABORT request was issued for a
nonrecoverable unit of work.

X'00000008' X'0000026C' A CQSPUT FUNC=ABORT request was issued for a
recoverable unit of work but the unit of work was
already committed.

X'00000008' X'00000270' A subsequent CQSPUT FUNC=PUT request was
issued for a unit of work already known to CQS as
nonrecoverable. Only one data object can be placed
on the queues for a nonrecoverable unit of work.

X'00000008' X'00000274' RECOVERABLE=NO was specified for a unit of
work that was indicated as recoverable on a previous
CQSPUT FUNC=PUT request.

X'00000008' X'0000027C' CQSPUT is not allowed for a resource structure.

X'00000008' X'00000284' Parameter list version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Try the request again later.

X'00000010' X'00000414' Queue for queuename is full. No more data objects can
be inserted to the structure for this queue name.
CQSPUT requests for other queue names are still
allowed.

X'00000010' X'00000418' Structure is full. All CQSPUT requests are rejected.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSQUERY request
The CQSQUERY request retrieves information or status about one or more of the
structures managed by CQS.

Format for CQSQUERY

DSECT function of CQSQUERY

You use the DSECT function of a CQSQUERY request to include equate (EQU)
statements in your program for the CQSQUERY parameter list length and
CQSQUERY return and reason codes.

►► CQSQUERY FUNC=DSECT ►◄

QNAME function of CQSQUERY

Use the QNAME function of a CQSQUERY request to retrieve information about a
specific queue managed by CQS.

Chapter 2. CQS client requests 61

►► CQSQUERY FUNC=QNAME CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count ►

► LIST=listaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress
LISTVER=1

►◄

QRYOBJS function of CQSQUERY

Use the QRYOBJS function of a CQSQUERY request to retrieve the queue counts
for a specified list of queue names.

►► CQSQUERY FUNC=QRYOBJS CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count ►

► LIST=listaddress BUFFER=bufferaddress BUFSIZE=buffersize ►

► QDATASZ=querydatasizeaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress
LISTVER=1

LISTVER=listversion
►◄

QTYPE function of CQSQUERY

Use the QTYPE function of a CQSQUERY request to retrieve information about all
or some of the queues within the specified queue type.

►► CQSQUERY FUNC=QTYPE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress QTYPE=queuetypeaddress
QTYPENM=COLDQ

►

► BUFFER=bufferaddress BUFSIZE=buffersize
QAGE=queueagevalue

►

► QDATASZ=querydatasizeaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress
LISTVER=1

LISTVER=listversion
►◄

62 System Programming APIs

STATISTICS function of CQSQUERY

Use the STATISTICS function of a CQSQUERY request to retrieve status
information on all the queues managed by CQS.

►► CQSQUERY FUNC=STATISTICS CQSTOKEN=cqstokenaddress PARM=parmaddress ►

► COUNT=count LIST=listaddress BUFFER=bufferaddress BUFSIZE=buffersize ►

► STATSZAR=statisticssizeaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

LISTVER=listversion
►◄

STRSTAT function of CQSQUERY

Use the STRSTAT function of the CQSQUERY request to retrieve structure related
statistics. The STRSTAT function returns the same statistics data that is given to the
Structure Statistics user exit routine.

Attention: If the CQS that is processing the request is in the middle of a structure
checkpoint, the data returned for the current structure checkpoint might be
incomplete.

►► CQSQUERY FUNC=STRSTAT CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress BUFFER=bufferaddress ►

► BUFSIZE=buffersize QDATASZ=querydatasizeaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

LISTVER=listversion
►◄

Usage of CQSQUERY

The CQSQUERY request retrieves information or status about one or more of the
structures managed by CQS. A CQSQUERY FUNC=QNAME request retrieves
information about one or more specific queues managed by CQS. A CQSQUERY
FUNC=QRYOBJS request retrieves the queue counts for one or more specific
queues or queues whose names match a wildcard parameter. A CQSQUERY

Chapter 2. CQS client requests 63

FUNC=QTYPE request retrieves information about all or some of the queues
within the specified queue type. A CQSQUERY FUNC=STATISTICS request
retrieves status information for all queues managed by CQS. A CQSQUERY
FUNC=STRSTAT request retrieves structure statistics, such as checkpoint and
rebuild, without having to code a user exit.

Restriction: The CQSQUERY FUNC=QNAME, CQSQUERY FUNC=QRYOBJS, and
CQSQUERY FUNC=QTYPE requests are not supported for resource structures.

CQSQUERY FUNC=QNAME

For CQSQUERY FUNC=QNAME, the number of data objects for the queuename
specified in LIST= is returned.

CQSQUERY FUNC=QRYOBJS

For CQSQUERY FUNC=QRYOBJS, the number of data objects for the queuename
specified in LIST= is returned. Each queue name in the list can be up to 16 bytes
long. The first byte of the qname is treated as the QTYPE. The input list for each
qname also has 8 bytes of user data that are copied to the output for each entry
that is a match for the input queue name.

The CQSQUERY FUNC=QRYOBJS output is returned both in the input list and the
output buffer. The input list has the completion code for the queue name. If the
completion code is 0, then the queue names that match the input queue name and
their queue counts are returned in the output buffer. If the completion code is
non-zero, no data is passed for that queue name in the output buffer. The input list
has the total queue count found for the queue name. If the queue name is a
wildcard parameter, this queue count is the total queue counts of all the queue
names that match the wildcard parameter. An entry for each queue name that is a
match is passed in the output buffer along with the queue count for the queue
name. If the buffer size specified is too small, the data that fits in the buffer is
passed back, and the actual length required is passed back in the QDATASZ field.

Recommendation: Use the CQSQUERY FUNC=QRYOBJS request carefully,
because it causes CQS to read every data object on the queue type, and thus could
have a significant performance impact.

CQSQUERY FUNC=QTYPE

For CQSQUERY FUNC=QTYPE, information about all the queues in the queue
type is returned, including the queue name, data object count, oldest data object
time stamp, and newest data object time stamp.

Recommendation: Use the CQSQUERY FUNC=QTYPE request carefully, because it
causes CQS to read every data object on the queue type, and thus could have a
significant performance impact.

For CQSQUERY FUNC=QTYPE, CQS does the following if the buffer area is not
large enough to hold all of the requested data:
v Returns as many complete records that can fit into the buffer area
v Sets QDATASZ to the length that is needed to contain the statistics data in its

entirety
v Sets the reason code for 'Partial Data Returned'

64 System Programming APIs

The client program can then make another request with a larger buffer.

If the QAGE parameter is specified, only information for queues older than the
specified queue age is returned. If you are only interested in queue counts, you can
omit the QAGE parameter for better performance of the CQSQUERY request.

CQSQUERY FUNC=STATISTICS

For CQSQUERY FUNC=STATISTICS, CQS returns the following information in the
client buffer:
v Status on the current capacity of the primary structure
v Maximum capacity of the primary structure (if XES dynamic reconfiguration is

available)
v Current operation mode (normal, overflow, or rebuild)
v Elements-to-entries ratio (returned in the buffer passed by the client for this

request)

If an overflow structure is defined and the current operation mode for the primary
structure is overflow mode, CQS also returns the current and maximum capacity
for the associated overflow structure. If the primary structure is not in overflow
mode and an overflow structure is defined, CQS returns the overflow structure
name and a status indicating that the overflow structure is not in use.

If the buffer area is not large enough to contain the statistics data for all of the
requested structures, CQSQUERY FUNC=STATISTICS sets the STATSZAR field to
be the length of a single statistics entry, and sets the reason code to 'Buffer Size Too
Small.' The size of the buffer that is required to complete the request can be
obtained by multiplying the value returned in STATSZAR by the number of list
entries specified in the request.

CQSQUERY FUNC=STRSTAT

For CQSQUERY FUNC=STRSTAT, CQS returns the following information:
v Structure process statistics
v CQS request statistics
v Data object statistics
v Queue name statistics
v z/OS request statistics
v Structure rebuild statistics
v Structure checkpoint statistics

For this function, CQS does the following if the buffer area is not large enough to
hold all of the requested data: The client program can then make another request
with a larger buffer.
v Returns as many complete records that can fit into the buffer area
v Sets QDATASZ to the length that is needed to contain the statistics data in its

entirety
v Sets the reason code for 'Partial Data Returned'

The following keywords apply to the CQSQUERY macro. Note that some of the
information provided here applies to specific CQSQUERY functions.

Chapter 2. CQS client requests 65

BUFFER=bufferaddress
Four-byte input parameter that specifies the address of the buffer to hold
information passed to the client.

For CQSQUERY FUNC=QTYPE, the buffer is mapped by the CQSQRYQT
DSECT. For CQSQUERY FUNC=STATISTICS, the buffer is mapped by the
CQSQRYST DSECT. For CQSQUERY FUNC=STRSTAT, the buffer is mapped
by the CQSQSTAT DSECT. For CQSQUERY FUNC=QRYOBJS, the buffer is
mapped by the CQSQRYQO DSECT.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the buffer passed by the
client.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=count
Four-byte input parameter that specifies the number of entries in the list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of a list containing one or
more entries. For the CQSQUERY FUNC=QNAME and CQSQUERY
FUNC=QRYOBJS requests, this list contains queue names for which to retrieve
information. The list consists of input and output parameters. At least one list
item is required.

The CQSQRYL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

For a CQSQUERY FUNC=QNAME request, each list entry contains the
following:

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000004'
queuename is invalid.

X'00000020'
Structure is inaccessible. Retry request.

X'00000024'
CQS internal error.

66 System Programming APIs

clientdata
Eight-byte input parameter that specifies the client data field. This
parameter is optional. CQS does not use data stored in this entry.

queuename
Sixteen-byte input parameter that specifies the queue name for which
data object count information is to be retrieved. This parameter is
required.

qcnt Four-byte output parameter that specifies a field to contain the data
object count for the queue name specified.

For a CQSQUERY FUNC=STATISTICS request, each list entry contains the
following parameters:

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000008'
connecttoken is invalid.

X'0000000C'
A CQSRSYNC is required for this structure.

X'00000020'
Structure is inaccessible. Retry request.

X'00000024'
CQS internal error.

clientdata
Eight-byte input parameter that specifies the client data field. This
parameter is optional. CQS does not use data stored in this entry.

connecttoken
Sixteen-byte input parameter that specifies the connect token that
uniquely identifies the client's connection to a particular coupling
facility structure managed by this CQS. The connect token is returned
by the CQSCONN request. This parameter is required.

outputoffset
Four-byte output parameter that specifies the offset of the output data
area for this entry in the output buffer.

For a CQSQUERY FUNC=QRYOBJS request, each list entry contains the
following parameters:

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'0000'
Request completed successfully. A list of resources that match
the qname and their queue counts are returned in the output
buffer.

X'0004'
qname is invalid.

Chapter 2. CQS client requests 67

X'0010'
qname does not have any objects. The queue count is zero.

X'0020'
Retry error for the qname. Retry the CQSQUERY
FUNC=QRYOBJS to obtain the queue counts. The output
returned in the output buffer might be invalid.

X'0024'
CQS internal error. Retry the CQSQUERY FUNC=QRYOBJS to
obtain the queue counts. The output returned in the output
buffer might be invalid.

clientdata
Eight-byte input parameter that specifies the client data field. This
parameter is optional. CQS does not use data stored in this entry.

queuename
Sixteen-byte input parameter that specifies the queue name for which
data object count information is to be retrieved. This parameter is
required. The queuename can be a wildcard parameter.

qcnt Four-byte output parameter that specifies a field to contain the data
object count for the queue name specified. If the queuename is a
wildcard parameter, this parameter specifies a field to contain the total
queue counts of all qnames that match the wildcard parameter.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSQUERY request to include equate (EQU) statements in your
program for the CQSQUERY list versions.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSQUERY_PARM_LEN (defined using the
FUNC=DSECT request).

QAGE=queueageaddress
Input parameter that specifies the address of a 4-byte field to contain the
queue age in days. Valid values for queueage are from X'0' to X'16D' (0 to 365 in
decimal).

Definition: The queue age is determined by the age of its oldest message, in
number of days.

This parameter is used as a filter for determining which queues the
CQSQUERY FUNC=QTYPE request will process. The CQSQUERY request
returns information for queues containing data objects that are older than the
specified queueage. If you specify 0 for queueage, or omit the QAGE parameter,
the CQSQUERY request processes all queues for the queue type.

Important: Specifying QAGE causes all the data objects in the queue to be
read, which incurs additional performance overhead.

QDATASZ=querydatasizeaddress
Output parameter that specifies the address of a 4-byte field to contain the size
of the information returned to the client. If partial data is returned in the
buffer, this field contains the actual buffer size needed to hold the information.

68 System Programming APIs

QTYPE=queuetypeaddress
Input parameter that specifies the address of a 4-byte field that contains the
queue type. Valid values for the queue type are from 1 to 255 (decimal).

QTYPENM=COLDQ
Input parameter that indicates that the CQSQUERY request is for information
about the COLDQ.

This parameter enables a client to obtain the same type of information for the
cold queue as can be obtained for a client queue using the CQSQUERY
FUNC=QTYPE request with QTYPE=queuetypeaddress specified.

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSQUERY return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSQUERY reason code.

STATSZAR=statisticssizeaddress
Output parameter that specifies the address of a 4-byte field to contain the
length of a single statistics entry returned in the output buffer for a
CQSQUERY FUNC=STATISTICS request.

If partial data is returned, the size of the required buffer can be obtained by
multiplying the value returned in this field by the number of list entries
specified.

Return and reason codes for CQSQUERY

The following table lists the return and reason code combinations that can be
returned for CQSQUERY requests. Use a CQSQUERY FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 17. CQSQUERY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the query-data
size (querydatasize). Partial data is returned.
querydatasize points to the actual buffer size needed to
contain all the data.

X'00000004' X'00000124' buffersize is too small to contain data for number of
entries specified in list.

X'00000004' X'00000128' No data objects on queue type.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' statisticssize or querydatasize is invalid.

X'00000008' X'0000023C' queueage is invalid.

Chapter 2. CQS client requests 69

Table 17. CQSQUERY return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000240' queuetype is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' CQSQUERY FUNC=QNAME, CQSQUERY
FUNC=QTYPE, or CQSQUERY FUNC=QOBJS is not
allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request completed successfully for at least one, but
not all, list entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Retry request later.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSREAD request
The CQSREAD request retrieves a copy of the client data object from a specific
queue.

Format for CQSREAD

CONTINUE function of CQSREAD

You use the CONTINUE function of a CQSREAD request to retrieve the rest of a
data object after partial data is returned for a prior CQSREAD request.

►► CQSREAD FUNC=CONTINUE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress LCKTOKEN=locktokenaddress ►

► BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress ►

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

DSECT function of CQSREAD

Use the DSECT function of a CQSREAD request to include equate (EQU) statements
in your program for the CQSREAD parameter list length, CQSREAD return and
reason codes, and literals that can be used to build the OPTWORD1 parameter.

►► CQSREAD FUNC=DSECT ►◄

READ function of CQSREAD with LOCAL=NO

70 System Programming APIs

Use the CQSREAD request with the LOCAL=NO parameter to retrieve a copy of
the client data object from a specific queue and lock it.

►► CQSREAD FUNC=READ CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress ►

► PARM=parmaddress LCKTOKEN=locktokenaddress QNAME=queuenameaddress ►

►
A

OPTWORD1=optionwordvalue
BUFFER=bufferaddress BUFSIZE=buffersize ►

► OBJSIZE=dataobjectsizeaddress UOW=uowaddress ►

►
TIMESTAMP=timestampaddress ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

A:

QPOS=FIRST

QPOST=LAST

PARTIAL=YES

PARTIAL=NO

LOCAL=NO

READ function of CQSREAD with LOCAL=YES

Use the CQSREAD request with the LOCAL=YES parameter to retrieve the lock
token of a data object previously stored on the shared queues by a CQSPUT
LOCAL=YES request. Using this request ensures that the data object remains
locked, even in the event of client failure, structure rebuild, or CQS restart.

►► CQSREAD FUNC=READ CQSTOKEN=cqstokenaddress CONTOKEN=connecttokenaddress ►

► PARM=parmaddress LCKTOKEN=locktokenaddress QNAME=queuenameaddress ►

► UOW=uowaddress LOCAL=YES
OPTWORD1=optionwordvalue ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

REREAD function of CQSREAD

Use the REREAD function of a CQSREAD request to re-read a locked data object
that was read and locked on a prior CQSREAD FUNC=READ request.

►► CQSREAD FUNC=REREAD CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress LCKTOKEN=locktokenaddress ►

Chapter 2. CQS client requests 71

► BUFFER=bufferaddress BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress ►

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

Usage of CQSREAD

A CQSREAD request retrieves a copy of the client data object from a specific
queue. The data object is not deleted from the queue, but for a CQSREAD
FUNC=READ request it is locked, preventing the data object from being accessed
by subsequent CQS requests (except ones using the proper lock token). The data
object can be retrieved from the beginning or from the end of the queue. The data
object is returned in the client buffer provided for the CQSREAD request.

Restriction: The CQSREAD request is not supported for resource structures.

A lock token is returned to the client and identifies the data object. This token
must be passed to CQS for any requests that act on the locked data object (for
example, CQSDEL, CQSMOVE, CQSREAD, or CQSUNLCK).

If the size of the data object retrieved is greater than the size of the client buffer
and PARTIAL=YES is specified, the amount of data that fits in the client buffer is
returned to the client. A return or reason code is also returned, indicating a partial
data object is returned, as is the actual data object size.

If the size of the data object retrieved is greater than the size of the client buffer
and PARTIAL=NO is specified, no data object is returned. A return and reason
code is returned, indicating that no data object is returned because the client buffer
size is too small. The actual data object size is also returned to the client.

If the size of the data object retrieved is the same size as or smaller than the client
buffer, the complete data object is moved into the buffer, and the rest of the buffer
is not changed. The data object size is also returned to the client.

A CQSREAD FUNC=CONTINUE request retrieves the rest of the data object when
partial data is returned on a prior CQSREAD request.

Attention: This request could result in an error after a CQS restart because the
current position might be lost across CQS restart.

A CQSREAD FUNC=REREAD request re-reads a locked data object that was
previously read and locked (a prior CQSREAD FUNC=READ request). The data
object remains locked.

Related reading: See the following example of how to use a CQSREAD request for
a CQS client.

Parameter Description:

BUFFER=bufferaddress
Four-byte input parameter that specifies the address of the client buffer that
will hold the data object retrieved from the queue.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the client buffer.

72 System Programming APIs

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LCKTOKEN=locktokenaddress
Input and output parameter that specifies the address of the 16-byte lock token
for the data object that was locked by the CQSREAD request.

For a CQSREAD FUNC=READ request, the lock token is zero on input. It is
also used as an output area to hold the lock token returned to the client. For a
CQSREAD FUNC=REREAD or FUNC=CONTINUE request, this field is an
input area that contains the lock token returned on a prior CQSREAD request.

LOCAL=NO | YES
Input parameter that indicates whether or not the client should process a local
copy of the data object from the client address space.

NO Indicates the client wants CQS to return the data object from the specified
client queue and lock the data object. This causes CQS to access the
coupling facility to retrieve the data object.

YES
Indicates that the client is processing a local copy of a data object from its
local buffers. This request returns the lock token of the data object which
the client can use to access the copy of the data object on the shared
queues. The data object was placed on the shared queues by a CQSPUT
LOCAL=YES request.

By using a local copy of the data object, the client can reduce the
performance overhead of using shared queues. As long as the data object is
on the shared queues, it can be recovered if the client fails. As long as the
data object remains locked, it is not available to any other client.

The data object is not returned to the client on a CQSREAD request
because the client has the local copy. If the client does not issue the
CQSREAD LOCAL=YES request and the connection between the client and
CQS is lost, CQS unlocks the data object and makes it available to any
client.

Restriction: If you specify LOCAL=YES, you cannot use the TIMESTAMP
parameter.

The LOCAL parameter cannot be used when the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is specified instead of LOCAL, you
can use the following equate (EQU) statements to generate the value for
the OPTWORD1 parameter:
CQSREAD_LCLYEQUX LOCAL=YES
CQSREAD_LCLNEQUX LOCAL=NO

Chapter 2. CQS client requests 73

OBJSIZE=dataobjectsizeaddress
Output parameter to receive the address of a 4-byte field that holds the size of
the data object. If the data object size is greater than the client buffer size, this
field contains the actual data object size. If partial data is returned, the size of
the data object returned is the size of the client buffer specified.

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This
parameter can be used instead of LOCAL, PARTIAL, and QPOS. Equate (EQU)
statements for the literal values are listed in the descriptions for the LOCAL,
PARTIAL, and QPOS parameters. Equate statements can also be generated by
using the DSECT function. The OPTWORD1 parameter cannot be used if
LOCAL, PARTIAL, or QPOS is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value
that is composed of one equate value for each literal value supported by this
macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSREAD_PARM_LEN (defined using the
FUNC=DSECT request).

PARTIAL=YES | NO
Input parameter that specifies whether partial data is to be retrieved, and
whether the data object is to be locked if the data object size is greater than the
client buffer size.

YES
If the data object size is greater than the client buffer size, the data object is
locked and partial data is returned in the client buffer. The actual size of
the data object is returned in dataobjectsize.

NO If the data object size is greater than the client buffer size, the data object is
neither locked nor retrieved. The actual size of the data object is returned
in dataobjectsize.

The PARTIAL parameter cannot be used when the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is specified instead of PARTIAL, you
can use the following equate (EQU) statements to generate the value for the
OPTWORD1 parameter:
CQSREAD_PRTLNEQUX PARTIAL=NO
CQSREAD_PRTLYEQUX PARTIAL=YES

QNAME=queuenameaddress
Input parameter that specifies the address of the 16-byte queue name from
which the data object is to be retrieved. The first byte of the queue name
identifies the queue type.

QPOS=FIRST | LAST
Input parameter that specifies the position on the queue from which the data
object is to be retrieved.

FIRST
The data object is retrieved from the beginning of the queue.

LAST
The data object is retrieved from the end of the queue.

74 System Programming APIs

The QPOS parameter cannot be used when the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is specified instead of QPOS, you can
use the following equate (EQU) statements to generate the value for the
OPTWORD1 parameter:
CQSREAD_QPOSLEQUX QPOS=LAST
CQSREAD_QPOSFEQUX QPOS=FIRST

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSREAD return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSREAD reason code.

TIMESTAMP=timestampaddress
Four-byte output parameter that specifies the address of an eight-byte field to
contain the time stamp of when the data object was placed on the queues.

Attention: If LOCAL=YES is specified, CQS does not read the data object
from the structure, and the time stamp cannot be obtained.

UOW=uowaddress
Output parameter that specifies the address of a 32-byte area to hold the unit
of work (UOW) of the data object retrieved from the queue. The UOW was
generated by the client that put the data object on the queue using a CQSPUT
request.

Return and reason codes for CQSREAD

The following table lists the return and reason code combinations that can be
returned for CQSREAD requests. Use a CQSREAD FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 18. CQSREAD return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000120' The buffer size (buffersize) is less than the data object
size (dataobjectsize). Partial data is returned.
dataobjectsize contains the address of the actual data
object size.

X'00000004' X'00000124' The buffer size (buffersize) is less than the data object
size (dataobjectsize). No data is returned because
PARTIAL=NO was specified. dataobjectsize contains
the address of the actual data object size.

X'00000004' X'00000128' No data object to retrieve on queue name specified.

X'00000004' X'0000012C' No partial data to return.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'0000021C' locktoken is invalid.

Chapter 2. CQS client requests 75

Table 18. CQSREAD return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000220' queuename is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' Lock token address is invalid.

X'00000008' X'00000278' The request specified LOCAL=YES, but the requested
object was placed on the structure using
LOCAL=NO.

X'00000008' X'0000027C' CQSREAD is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure inaccessible. Retry request later.

X'00000010' X'00000408' Current position lost; cannot process CQSREAD
FUNC=CONTINUE request.

X'00000010' X'00000430' No CQS address space.

X'00000010' X'00000440' Object lost because of rebuild.

X'00000014' X'00000500' CQS internal error.

CQSRECVR request
The CQSRECVR request allows a client to recover locked data objects that were
moved to the CQS cold queue (a CQS private queue) because CQS or the client
was cold started.

Format for CQSRECVR

DELETE function of CQSRECVR

Use the DELETE function of a CQSRECVR request to delete one data object
associated with a UOW from the cold queue.

►► CQSRECVR FUNC=DELETE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress ►

► CLDTOKEN=coldqueuetokenaddress UOW=uowaddressaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

DSECT function of CQSRECVR

Use the DSECT function of a CQSRECVR request to include equate (EQU)
statements in your program for the CQSRECVR parameter list length, CQSRECVR
return and reason codes, and literals that can be used to build the OPTWORD1
parameter.

76 System Programming APIs

►► CQSRECVR FUNC=DSECT ►◄

RETRIEVE function of CQSRECVR

Use the RETRIEVE function of a CQSRECVR request to retrieve a copy of a data
object associated with a UOW from the cold queue.

►► CQSRECVR FUNC=RETRIEVE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress ►

► CLDTOKEN=coldqueuetokenaddress UOW=uowaddress BUFFER=bufferaddress ►

► BUFSIZE=buffersize OBJSIZE=dataobjectsizeaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

UNLOCK function of CQSRECVR

Use the UNLOCK function of a CQSRECVR request to unlock a data object
associated with a UOW on the cold queue.

►► CQSRECVR FUNC=UNLOCK CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress ►

► CLDTOKEN=coldqueuetokenaddress UOW=uowaddress
A

OPTWORD1=optionwordvalue
►

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

A:

QPOS=SYSTEM

QPOS=FIRST
QPOS=LAST

Usage of CQSRECVR

Restriction: The CQSRECVR request is not supported for resource structures.

A CQSRECVR FUNC=DELETE request deletes a data object associated with a
UOW from the cold queue. Only one data object is deleted.

A CQSRECVR FUNC=RETRIEVE request retrieves a copy of the data object
associated with a UOW from the cold queue. The data object remains on the cold

Chapter 2. CQS client requests 77

queue, and is available for other CQSRECVR requests. The data object is returned
in the client buffer specified for the CQSRECVR FUNC=RETRIEVE request.

If the data object is the same size as or smaller than the client buffer provided, the
data object is returned in the buffer, and the rest of the buffer is not changed. The
size of the data object is returned to the client.

If the size of the data object is greater than the size of the client buffer, the data
object is not returned. The size of the data object is returned to the client.

A CQSRECVR FUNC=UNLOCK request unlocks a data object associated with a
UOW on the cold queue. The data object is moved from the cold queue to the
original client queue, and is available for other CQS requests. The position to
which the data object should be moved can be specified by the client.

Parameter Description:

BUFFER=bufferaddress
Four-byte input parameter that specifies the address of the client buffer that
will hold the data object retrieved from the queue.

BUFSIZE=buffersize
Four-byte input parameter that specifies the size of the client buffer.

CLDTOKEN=coldqueuetokenaddress
Input parameter that specifies the address of a 16-byte cold-queue token,
which along with the UOW identifies the data object that is to be recovered
from the CQS cold queue (COLDQ).

The cold-queue token is passed to the client in the SEVX_RETOKEN field of
the Resync entry in the CQS Structure Event exit routine. This exit routine is
called for a CQS-initiated resynchronization when the UOW status is COLD.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of a 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

CQSTOKEN=cqstokenaddress
Input parameter that specifies address of the 16-byte CQS registration token
that uniquely identifies the client's connection to CQS. The registration token is
returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

OBJSIZE=dataobjectsizeaddress
Output parameter that specifies the address of a 4-byte area to hold the size of
the data object. If the data object size is greater than the client buffer size, this
field contains the actual data object size. If partial data is returned, the data
object returned is the size of the client buffer specified.

OPTWORD1=optionwordvalue
Four-byte input parameter that specifies the literals for this request. This
parameter can be used instead of QPOS. Equate (EQU) statements for the
literal values are listed in the description of the QPOS parameter. Equate

78 System Programming APIs

statements can also be generated by using the DSECT function. The
OPTWORD1 parameter cannot be used if QPOS is specified.

Requirement: If you code the OPTWORD1 parameter, you must pass a value
that is composed of one equate value for each literal value supported by this
macro.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSRECVR_PARM_LEN (defined using the
FUNC=DSECT request).

QPOS=SYSTEM | FIRST | LAST
Input parameter that specifies the position on the queue to which the unlocked
data object is to be added. The default is SYSTEM.

FIRST
Indicates the data object is unlocked and added to the beginning of the
queue.

LAST
Indicates the data object is unlocked and added to the end of the queue.

SYSTEM
Indicates the data object is unlocked and added to either the beginning or
the end of the queue, depending on its original position. If the CQSREAD
request that locked this data object obtained the data object from the
beginning of the queue, the data object is unlocked and added to the
beginning of the queue. If the CQSREAD request obtained the data object
from the end of the queue, the data object is unlocked and added to the
end of the queue.

The QPOS parameter cannot be used when the OPTWORD1 parameter is
specified. If the OPTWORD1 parameter is specified instead of QPOS, you can
use the following equate (EQU) statements to generate the value for the
OPTWORD1 parameter:
CQSRECVR_QPOSSEQUX QPOS=SYSTEM
CQSRECVR_QPOSFEQUX QPOS=FIRST
CQSRECVR_QPOSLEQUX QPOS=LAST

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSRECVR return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSRECVR reason code.

UOW=uowaddress
Input parameter that specifies the address of a 32-byte area to hold the unit of
work (UOW) of a data object. The UOW, together with the coldqueuetoken,
identifies the data object to be recovered from the cold queue.

The UOW is passed to the client in the SEVX_REUOW field of the Resync
entry in the CQS Structure Event exit routine. This exit routine is called for a
CQS-initiated resynchronization when the UOW status is COLD.

Chapter 2. CQS client requests 79

Return and reason codes for CQSRECVR

The following table shows the return and reason code combinations that can be
returned for CQSRECVR requests. Use a CQSRECVR FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 19. CQSRECVR return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000124' buffersize is too small.

X'00000004' X'00000128' Data object for UOW not found on cold queue.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000224' bufferaddress is invalid.

X'00000008' X'00000228' buffersize is invalid.

X'00000008' X'0000022C' dataobjectsize is invalid.

X'00000008' X'00000230' uow is invalid.

X'00000008' X'00000234' coldqueuetoken is invalid.

X'00000008' X'0000027C' CQSRECVR is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000404' Structure is inaccessible. Retry request later.

X'00000010' X'00000414' Unable to unlock the data object because the original
queue is full. No more data objects can be moved to
this queue. CQSRECVR FUNC=UNLOCK requests
for other queues are allowed.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSREG request
The CQSREG request registers a client to CQS.

Format for CQSREG

DSECT function of CQSREG

You use the DSECT function of a CQSREG request to include equate (EQU)
statements in your program for the CQSREG parameter list length and CQSREG
return and reason codes.

►► CQSREG FUNC=DSECT ►◄

Use the REGISTER function of a CQSREG request to register a client with a CQS.

►► CQSREG FUNC=REGISTER PARM=parmaddress CQSSSN=cqssubsystemnameaddress ►

80 System Programming APIs

► CLIENT=clientnameaddress EVENT=cqseventexit
EVENTPARM=eventparmaddress

►

► CQSTOKEN=cqstokenaddress VERSION=cqsversionaddress ►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

Usage of CQSREG

A CQSREG request registers a client to CQS. If the registration is successful, a CQS
token is returned. This token represents the client's registration with CQS and must
be used with all subsequent CQS requests to identify the client.

A CQSREG FUNC=REGISTER request must be the first CQS request a client
makes. Also, after a CQS abnormal termination and restart, a CQSREG
FUNC=REGISTER request is required before the client can resume issuing CQS
requests.

CLIENT=clientnameaddress
Input parameter that specifies the address of the 8-byte name of the client
registering to CQS. The client name must be unique among all clients that are
registered to the same CQS and to all the CQSs that are sharing the same
queues.

CQSTOKEN=cqstokenaddress
Output parameter that specifies the address of a 16-byte area to receive the
CQS registration token that uniquely identifies the client's connection to CQS.
The registration token is returned by a successful CQSREG request.

CQSSSN=cqssubsystemnameaddress
Input parameter that specifies the address of the 4-byte subsystem name of the
CQS to which the client would like to connect. This parameter should match
the SSN= parameter of the CQSIPxxx PROCLIB member for the CQS to which
the client would like to connect.

EVENT=cqseventexit
Four-byte input parameter that specifies the CQS Event exit routine address.

EVENTPARM=eventparmaddress
Input parameter that specifies the address of a 4-byte area that contains client
data that CQS passes to the CQS Event exit routine every time the exit is
called.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSREG_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSREG return code. The CQSREG return code is returned both in this field
and in register 15.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSREG reason code. The CQSREG reason code is returned both in this field
and in register 0.

Chapter 2. CQS client requests 81

VERSION=cqsversionaddress
Output parameter that specifies the address of a 4-byte area to receive the CQS
version number. The version number has the following format: 00vvrrmm.

00 This byte is reserved for future use. Currently, it is always 00.

vv Version number.

rr Release number.

mm Modification level or sub-release number.

For example, CQS version 1.1.0 is shown as X'00010100'.

Return and reason codes for CQSREG

The following table lists the return and reason code combinations that can be
returned for CQSREG requests.

Table 20. CQSREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000004' X'00000100' Client is already registered to CQS.

X'00000008' X'00000244' clientname is invalid.

X'00000008' X'00000284' The CQSREG parameter list version is invalid. This
error is probably caused by a difference in versions
between the CQS client and the CQS address space
the client is trying to use.

X'00000010' X'0000040C' CQS shutdown is pending.

X'00000010' X'00000430' The CQS address space is not active. The CQS
address space must be started.

X'00000010' X'00000438' Another address space is already registered with CQS
using the client ID (passed on a CQSREG request).

X'00000010' X'00000440' The user ID of the client address space is not
authorized to register with this CQS.

X'00000010' X'00000448' A registered client address space attempted to
register with CQS a second time.

X'00000014' X'00000500' CQS internal error.

X'00000014' X'00000504' Unable to obtain storage in client's address space for
CQS's use.

X'00000014' X'00000508' Unable to obtain storage (CCIB).

X'00000014' X'0000050C' Unable to obtain storage (CRET).

X'00000014' X'00000510' CQS internal error (Loc ASCB).

X'00000014' X'00000514' Unable to establish z/OS Resource Manager routine
to monitor CQS for the registering client.

X'00000014' X'00000518' CQS internal error (ESTAE add).

X'00000014' X'0000051C' CQS internal error (NmTkn Retrv).

X'00000014' X'00000520' CQS internal error (CGCT error).

X'00000014' X'00000524' CQS internal error (TTKN error).

X'00000014' X'00000528' CQS internal error (ALESERV error).

X'00000014' X'0000052C' CQS internal error (BPESVC error).

82 System Programming APIs

Table 20. CQSREG return and reason codes (continued)

Return code Reason code Meaning

X'00000014' X'00000530' Unable to establish z/OS Resource Manager routine
to monitor the client for CQS.

X'00000014' X'00000534' An abend occurred during CQSREG processing.

X'00000014' X'0000053C' Unable to load CQS registration module CQSREG00.

CQSRSYNC request
A CQSRSYNC request allows a client to resynchronize indoubt data for one
structure with CQS. This request must be the first request the client issues
following a CQSCONN request.

Format for CQSRSYNC

DSECT function of CQSRSYNC

You use the DSECT function of a CQSRSYNC request to include equate (EQU)
statements in your program for the CQSRSYNC parameter list length and
CQSRSYNC return and reason codes.

►► CQSRSYNC FUNC=DSECT ►◄

RSYNCCOLD function of CQSRSYNC

Use the RSYNCCOLD function of a CQSRSYNC request when the client is
performing a cold start and does not have information on unresolved UOWs.

►► CQSRSYNC FUNC=RSYNCCOLD CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress
ECB=ecbaddress

►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

►
LISTVER=1

LISTVER=listversion
►◄

RSYNCWARM function of CQSRSYNC

Use the RSYNCWARM function of a CQSRSYNC request when the client is
performing a warm or emergency restart and has information on unresolved
UOWs that need to be resolved with CQS.

►► CQSRSYNC FUNC=RSYNCWARM CQSTOKEN=cqstokenaddress ►

Chapter 2. CQS client requests 83

► CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count ►

► LIST=listaddress
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress
LISTVER=1

LISTVER=listversion
►◄

Usage of CQSRSYNC

A CQSRSYNC request allows a client to resynchronize indoubt data for one
structure with CQS. This request must be the first request the client issues
following a CQSCONN request.

Restriction: The CQSRSYNC request is not supported for resource structures.

A CQSRSYNC request is required even if the client does not have any indoubt
units of work (UOWs) to resolve, for example when the client performs a cold start
or a warm start after a normal termination. This request is required because CQS
might have information about a connection and have unresolved UOWs to process.

If there are unresolved UOWs, CQS calls the client's Structure Event exit routine as
part of resynchronization. CQS calls the routine to inform the client of UOWs that
CQS knows about and that the client did not pass on the CQSRSYNC request. This
process is referred to as CQS-initiated resynchronization.

The exit routine is called during client cold start or restart only if CQS has
unresolved UOWs. The Structure Event exit routine can be called more than once
for CQS-initiated resynchronization. For each UOW passed to the exit routine, the
client is responsible for taking the correct action to resolve the UOW based on the
status returned by CQS.

If CQS cold started, CQS has no knowledge of client UOWs. In this case, the
resynchronization list is not processed. CQS looks for CQSREAD requests that
were incomplete at the time CQS terminated. If there is incomplete work, the data
objects are moved to the cold queue and the Structure Event exit routine is called
to inform the client of the unresolved UOWs for the data objects.

After the CQSRSYNC request completes, some UOWs might have a deferred
resynchronization status. This status indicates that CQS is still resynchronizing the
UOW. When CQS completes resynchronization, the Structure Event exit routine is
called to indicate the state of the UOW. Deferred resynchronization only applies to
UOWs that CQS cannot resynchronize during the CQSRSYNC request, and does
not occur for a client cold start. The exit routine is called once for each deferred
UOW, and so the exit routine can be called multiple times for deferred
resynchronization.

Parameter Description:

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that

84 System Programming APIs

uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=count
Four-byte input parameter that specifies the number of entries in the resync
list.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of the resync list. Each
entry contains an indoubt UOW that the client needs to resolve. Some fields in
each entry must be initialized by the client prior to the CQSRSYNC request.
Other fields are returned by CQS upon completion of the CQSRSYNC request.

The CQSRSYNL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following:

clientdata
Four-byte input parameter that specifies the client data field. This
parameter is optional. CQS does not use data stored in this entry.

uow Thirty-two-byte input parameter that specifies the unit of work
identifier for the queue. This parameter is required and must be
initialized by the client prior to the CQSRSYNC request.

clientstatus
Two-byte input parameter that contains the status of the UOW. This
status represents the last action the client performed for this UOW.
This parameter is required and must be initialized by the client prior to
the CQSRSYNC request.

Possible values for the status are shown in the following table.

Table 21. UOW status from the client

Status Meaning

X'0010' Put Complete

The last (or only) CQSPUT request in a series of CQSPUT requests has been
issued for the UOW. All data objects for the UOW are assumed to be on the
coupling facility.

X'0020' Read

The data object for the UOW is assumed to be locked on the coupling facility.

X'0030' Unlock

A CQSUNLCK request with lock token was issued for the UOW. The data
object is assumed to have been unlocked and made available on the work
queue on the coupling facility.

Chapter 2. CQS client requests 85

Table 21. UOW status from the client (continued)

Status Meaning

X'0040' Move

A CQSMOVE request with lock token was issued for the UOW. The data object
is assumed to have been moved to a new queue on the coupling facility.

X'0050' Delete

A CQSDEL request with lock token was issued for the UOW. The data object is
assumed to have been deleted from the coupling facility.

cqsstate
Two-byte output parameter to receive the resulting state of the UOW
from CQS. This parameter is returned by CQS as a result of the
CQSRSYNC request.

Possible values for the status are shown in the following table.

Table 22. UOW status from CQS

Status Meaning

X'0010' Put Insync

Client status is Put Complete. CQS status is Put Complete. CQS knows about
the UOW and all data objects for the UOW are out on the coupling facility. A
put token is returned for the UOW. The client should use the put token to
issue a CQSPUT FUNC=FORGET request.

X'0012' Resync Deferred

Client status is Put Complete. CQS status is Indoubt. This status is only
returned for recoverable UOWs. CQS knows about the UOW but is still in the
process of determining its status. The client should wait until its Structure
Event exit routine is called by CQS. CQS will post the client's Structure Event
exit routine, passing the UOW and a status for the UOW. If the status is PUT
Insync, a put token for the UOW is also returned. The client should use the
put token to issue a CQSPUT FUNC=FORGET request.

If the status is PUT Failed, the client must reissue the CQSPUT FUNC=PUT
request. If the status is Unknown, the data object might or might not be on the
coupling facility.

X'0020' Read Insync

Client status is Read. CQS status is Read Complete. CQS found the data object
for the UOW to be locked. A lock token is returned for the UOW. The client
should use this lock token on subsequent CQS requests for the data object with
this UOW.

X'0030' Unlock Insync

Client status is Read Unlock. CQS status is Unlock Insync. CQS found the data
object for the UOW to be locked, and unlocked it. No further action is required
by the client.

X'0050' Delete Insync

Client status is Delete. CQS status is Delete Insync. CQS found the data object
for the UOW to be locked and deleted it. No further action is required by the
client.

86 System Programming APIs

Table 22. UOW status from CQS (continued)

Status Meaning

X'00F1' Locked

One of the following conditions exists:

v Client status is Delete. CQS status is Locked. CQS found the UOW to be
locked, but could not delete the data object from the structure. The data
object remains locked. A lock token is returned for the UOW. The client
should use this lock token and reissue the CQSDEL request.

v Client status is Move. CQS status is Locked. CQS found the data object for
UOW in Locked state. The CQSMOVE could not be completed because the
new queue name is not available. A lock token is returned for the UOW. The
client should use this lock token and reissue the CQSMOVE request.

v Client status is Unlock. CQS status is Locked. CQS found the UOW to be
locked, but could not unlock the data object. The data object remains locked.
A lock token is returned for the UOW. The client should use this lock token
and reissue the CQSUNLCK request.

X'00F2' Unknown

Client status is any valid client status. The UOW is unknown to CQS.

If the client believes the UOW to be in PUT Complete status, the client must
determine whether or not to reissue the CQSPUT request.

If the client believes the UOW to have a status of Delete, Move, Read, or
Unlock, the prior request could have completed.

resynctoken
Sixteen-byte output parameter to receive a token that the client uses to
complete processing for the UOW. When the state is Put Insync, this
field contains the put token. When the state is Locked, this field
contains the lock token. This field is returned by CQS as a result of the
CQSRSYNC request.

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
CQS successfully processed this UOW. Client and CQS are in
sync for this UOW. An Insync state is returned for this UOW.

X'00000004'
CQS successfully processed this UOW. Client and CQS are not
in sync for this UOW. CQS returns its known state for this
UOW.

X'00000008'
clientstatus is invalid. CQS could not resynchronize this UOW.
The cqsstate is not returned.

X'0000000C'
uow is invalid. CQS could not resynchronize this UOW. The
cqsstate is not returned.

X'00000010'
CQS internal error. CQS could not resynchronize this UOW.
The cqsstate is not returned.

Chapter 2. CQS client requests 87

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSRSYNC request to include equate (EQU) statements in your
program for the CQSRSYNC list versions.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSRSYNC_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSRSYNC return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSRSYNC reason code.

Return and reason codes for CQSRSYNC

The following table lists the return and reason code combinations that can be
returned for CQSRSYNC requests. Use a CQSRSYNC FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 23. CQSRSYNC return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully and all list entries are
in sync. The Structure Event exit routine is called for
CQS resync. The client can now issue CQS requests
to write or retrieve data for this structure.

X'00000004' X'00000110' CQS was cold started. No list entries were processed.
CQS did not find any unresolved UOWs. The
Structure Event exit routine is not called. The client
can now issue CQS requests to write or retrieve data
for this structure.

X'00000004' X'00000114' Client was cold started. CQS did not find any
unresolved UOWs. The Structure Event exit routine is
not called. The client can now issue CQS requests to
write or retrieve data for this structure.

X'00000004' X'00000118' CQS was cold started. No list entries were processed.
CQS did find some unresolved UOWs and marked
them as being in cold status. The Structure Event exit
routine is called to inform the client of the
unresolved UOWs. The client can now issue CQS
requests to write or retrieve data for this structure.

X'00000004' X'0000011C' Client was cold started. CQS did find some
unresolved UOWs. The Structure Event exit routine is
called to inform the client of the unresolved UOWs.
The client can now issue CQS requests to write or
retrieve data for this structure.

88 System Programming APIs

Table 23. CQSRSYNC return and reason codes (continued)

Return code Reason code Meaning

X'00000008' X'00000210' cqstoken is invalid. No list entries were processed. The
Structure Event exit routine is not called. The client
must reissue the CQSRSYNC request.

X'00000008' X'00000214' connecttoken is invalid. No list entries were processed.
The Structure Event exit routine is not called. The
client must reissue the CQSRSYNC request.

X'00000008' X'00000218' FUNC is invalid. The client must reissue the
CQSRSYNC request.

X'00000008' X'00000254' listaddress is invalid. No list entries were processed.
The Structure Event exit routine is not called. The
client must reissue the CQSRSYNC request.

X'00000008' X'0000027C' CQSRSYNC is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one, but not all, list
entries. At least one list entry is in sync. See compcode
in each list entry for individual errors. The Structure
Event exit routine is called for CQS resync. The client
can now issue CQS requests to write or retrieve data
for this structure.

X'0000000C' X'00000304' Request failed for all list entries. None of the list
entries are in sync. See compcode in each list entry for
individual errors. The Structure Event exit routine is
called for CQS resync. The client can now issue CQS
requests to write or retrieve data for this structure.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' CQS internal error.

CQSSHUT request
A CQSSHUT request notifies CQS to terminate after all clients have disconnected.

Format for CQSSHUT

DSECT function of CQSSHUT

You use the DSECT function of a CQSSHUT request to include equate (EQU)
statements in your program for the CQSSHUT parameter list length and
CQSSHUT return and reason codes.

►► CQSSHUT FUNC=DSECT ►◄

QUIESCE function of CQSSHUT

Use the QUIESCE function of a CQSSHUT request to terminate CQS.

►► CQSSHUT FUNC=QUIESCE CQSTOKEN=cqstokenaddress PARM=parmaddress ►

Chapter 2. CQS client requests 89

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

Usage of CQSSHUT

A CQSSHUT request notifies CQS to terminate after all clients have disconnected.
After the CQSSHUT request is issued, CQS stops accepting CQSCONN requests.
CQS continues to accept input or output requests, so that clients can complete
work in progress. In order to complete the shutdown process, clients must stop
working and issue CQSDISC requests to disconnect from CQS. After all clients
have disconnected, CQS terminates all tasks and returns control to z/OS.

Parameter Description:

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration
token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise, it is processed synchronously.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSSHUT_PARM_LEN (defined using the
FUNC=DSECT request).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSSHUT return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Four-byte output parameter that specifies the address of a field to contain the
CQSSHUT reason code.

Return and reason codes for CQSSHUT

The following table lists the return and reason code combinations that can be
returned for CQSSHUT requests. Use a CQSSHUT FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 24. CQSSHUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000010' X'00000444' CQS initialization is in progress. Reissue the
CQSSHUT request after initialization is complete.

90 System Programming APIs

CQSUNLCK request
A CQSUNLCK request unlocks one or more data objects and moves them into the
first or last position on the queue. You can also force an unlock by specifying
FUNC=FORCE.

Format for CQSUNLCK

DSECT function of CQSUNLCK

You use the DSECT function of a CQSUNLCK request to include equate (EQU)
statements in your program for the CQSUNLCK parameter list length and
CQSUNLCK return and reason codes.

►► CQSUNLCK FUNC=DSECT ►◄

UNLOCK function of CQSUNLCK

Use the UNLOCK function of a CQSUNLCK request to unlock one or more data
objects and move them to the end or beginning of the queue.

►► CQSUNLCK FUNC=UNLOCK CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress COUNT=count ►

► LIST=listaddress
LISTVER=1

LISTVER=listversion ECB=ecbaddress
►

► RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

FORCE function of CQSUNLCK

Use the FORCE function of a CQSUNLCK request to forcibly unlock data objects
read from the specified queue type by the specified failed CQS client and clean up
CQS's knowledge of the data objects.

►► CQSUNLCK FUNC=FORCE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress CLIENT=clientnameaddress ►

► COUNT=count QTYPE=queuetype
ECB=ecbaddress

RETCODE=returncodeaddress ►

► RSNCODE=reasoncodeaddress ►◄

Usage of CQSUNLCK

Restriction: The CQSUNLCK request is not supported for resource structures.

Chapter 2. CQS client requests 91

A CQSUNLCK FUNC=UNLOCK request unlocks one or more data objects and
moves them into the first or last position on the queue. The client passes an unlock
list that contains one or more list entries, where each entry is a separate unlock
request. A successful CQSUNLCK request invalidates the lock token and makes the
data object available to any client for a CQSBRWSE, CQSDEL, CQSMOVE, or
CQSREAD request.

The CQSUNLCK FUNC=FORCE request enables a CQS client to forcibly unlock
data objects read from the specified queue type by the specified failed CQS client,
so that the data objects do not remain on the LOCKQ until the failed CQS client
restarts. Force unlock also removes the CQS's knowledge of locked data objects, if
this CQS processed the CQSREAD requests that locked the data objects.

When a CQS client fails, its locked data objects remain on the LOCKQ until the
CQS client restarts, resyncs with CQS, and decides what to do with the locked data
objects, or until a CQS client forcibly unlocks the data objects. Locked data objects
are not accessible by other CQS clients.

Attention: CQS clients should use the CQSUNLCK FUNC=FORCE request with
caution. The CQS clients in an IMSplex must apply the following force unlock
rules consistently. If not used consistently, the CQSRSYNC request might fail, data
objects might remain on the lock queue, read tables might remain in CQS, or data
objects might be moved to the COLDQ. When using CQSUNLCK FUNC=FORCE,
apply the following rules:
v Define IMSplex with CSL.

The IMSplex must be defined with a Common Service Layer, so that CQS clients
are notified when a CQS client fails.

v Select queue type candidates.
Select one or more queue types whose data objects are candidates to be forcibly
unlocked. All of the data objects with the specified queue type are candidates.
There is no way to select specific data objects of a queue type to be forcibly
unlocked.

v Forcibly unlock another CQS client's data objects when CQS client fails.
When a CQS client fails, it may leave locked data objects on the LOCKQ.
Another CQS client should issue the CQSUNLCK FUNC=FORCE request, so
that data objects do not remain on the LOCKQ until the failed CQS client
restarts.
Issue a CQSUNLCK FUNC=FORCE request only to forcibly unlock data objects
of a CQS client that is currently not active. It is up to the CQS client issuing the
CQSUNLCK FUNC=FORCE request to ensure that the target CQS client is not
active.
It is up to the CQS clients in the IMSplex to ensure that only one CQS client
issues the CQSUNLCK FUNC=FORCE request. All members in an IMSplex
defined with a CSL are notified when a member fails. Multiple CQSUNLCK
FUNC=FORCE requests may have the following undesirable results:
– Unnecessary CF accesses.

The CQSUNLCK FUNC=FORCE request incurs multiple CF accesses to look
at data objects on the candidate queue type. If multiple CQSUNLCK
FUNC=FORCE requests are issued, each request makes the same numerous
CF accesses. These extra CF accesses are unnecessary and incur additional
performance overhead. If the performance overhead of unnecessary CF
accesses is unacceptable, it is up to the CQS clients in the IMSplex to ensure
that only one CQS client issues the CQSUNLCK FUNC=FORCE.

92 System Programming APIs

It is up to the CQS clients in the IMSplex to ensure that exactly one CQS
client issues the CQSUNLCK FUNC=FORCE request successfully. If a CQS
client issues the CQSUNLCK FUNC=FORCE request and a failure occurs,
such as CQSUNLCK error, structure failure, loss of link, and so on, then the
CQS clients in the IMSplex must ensure that the CQSUNLCK FUNC=FORCE
request is issued successfully after the error is corrected.

– Data objects incorrectly unlocked.
If a failed CQS client initializes right away, it might forcibly unlock its own
data objects, resync with CQS, and put new data objects on the queue
structure, before another CQS client attempts to forcibly unlock the failed
CQS client's data objects. The other CQS client could incorrectly unlock data
objects for UOWs that are in flight. It is up to the CQS clients in the IMSplex
to ensure that exactly one CQS client forcibly unlocks data objects for the
specified client.

v Forcibly unlock CQS client's own data objects when CQS client initializes.
When a CQS client initializes, it should forcibly unlock its own data objects
before issuing CQSRSYNC. This ensures that the CQS client's data objects are
unlocked before resync, in case no other CQS client was available at failure time
to do the force unlock. Force unlock also cleans up CQS's knowledge of the IMS
client's locked data objects, since this CQS processed the CQSREAD request that
locked the data objects.

v Resync with CQS, handling UOWs that are candidates for unlock force.
When building the resync list to pass to CQS on the CQSRSYNC request, mark
all candidates for the UNLOCK FORCE with a CQS client status of forced. CQS
resync checks for the client status of forced and sets the UOWs to a CQS status
of unlock in sync.

v Forcibly unlock other failed CQS clients' data objects when CQS client initializes.
When a CQS client initializes, it should forcibly unlock the data objects of failed
CQS clients, in case no other CQS client was available to do the force unlock
when the CQS clients failed. After an initializing CQS client resyncs with CQS, it
should issue one CQSUNLCK FUNC=FORCE request per failed CQS client, to
forcibly unlock data objects on the candidate queue types.

Parameter Description:

CLIENT=clientnameaddress
Eight-byte input field that specifies the CQS client for which to forcibly unlock
data objects. The client name is the same name specified on the CQSREG
request when the client registered to CQS. A CQS client can forcibly unlock its
own locked data objects before issuing the CQSRSYNC request. A CQS client
can forcibly unlock another CQS client's locked data objects after issuing the
CQSRSYNC request.

CONTOKEN=connecttokenaddress
Input parameter that specifies the address of the 16-byte connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by this CQS. The connect token is returned by the
CQSCONN request.

COUNT=count
Four-byte input parameter that specifies the number of list entries in the
unlock list or four-byte output parameter to receive the count of data objects
that were forcibly unlocked.

CQSTOKEN=cqstokenaddress
Input parameter that specifies the address of the 16-byte CQS registration

Chapter 2. CQS client requests 93

token that uniquely identifies the client's connection to CQS. The registration
token is returned by the CQSREG request.

ECB=ecbaddress
Four-byte input parameter that specifies the address of the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise it is processed synchronously.

LIST=listaddress
Four-byte input parameter that specifies the address of the unlock list. Each
entry is a separate CQSUNLCK request. Some fields in each entry must be
initialized by the client prior to the CQSUNLCK request. Other fields are
returned by CQS upon completion of the CQSUNLCK request.

The CQSUNLL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following:

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000004'
locktoken is invalid.

X'00000008'
Structure inaccessible. Retry request later.

X'0000000C'
Unable to unlock the data object, because the original queue
for the data object is full. No data objects can be moved to the
named queue, but CQSUNLCK requests for other queues are
allowed.

X'00000010'
CQS internal error.

X'00000014'
Data object was lost because the structure was rebuilt. The data
object was nonrecoverable and a rebuild occurred after the
data object was locked. The data object is now lost.

qpos One-byte input parameter that indicates the position on the queue to
which the unlocked element is to be added.

X'00' Original client queue position. If the CQSREAD request that
locked this data object read the first data object, this request
unlocks the data object and adds it to beginning of the queue.
If the CQSREAD request read the last data object, this request
unlocks the data object and adds it to the end of the queue.

X'01' End of queue.

X'02' Beginning of queue.

locktoken
Sixteen-byte input parameter that specifies the lock token that uniquely
identifies the data object locked by a CQSREAD request. This
parameter is required.

94 System Programming APIs

|

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSUNLCK request to include equate (EQU) statements in your
program for the CQSUNLCK list versions.

PARM=parmaddress
Four-byte input parameter that specifies the address of a parameter list used
by the request to pass parameters to CQS. The length of the storage area must
be at least equal to the EQU value CQSUNLCK_PARM_LEN (defined using
the FUNC=DSECT request).

QTYPE=queuetype
Four-byte input parameter that specifies the queue type from which the locked
data objects were read. Valid values for the queue type are from 1 to 255
(decimal).

RETCODE=returncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSUNLCK request return code.

If the return code in register 15 is nonzero, the values in the return and reason
code fields are invalid, because the CQS interface detected an error and was
unable to send the request to CQS.

RSNCODE=reasoncodeaddress
Output parameter that specifies the address of a 4-byte field to contain the
CQSUNLCK request reason code.

Return and reason codes for CQSUNLCK

The following table lists the return and reason code combinations that can be
returned for CQSUNLCK requests. Use a CQSUNLCK FUNC=DSECT request to
include equate statements in your program for the return and reason codes.

Table 25. CQSUNLCK return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' connecttoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000240' queuetype is invalid.

X'00000008' X'00000244' clientname is invalid.

X'00000008' X'00000250' count is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'0000027C' CQSUNLCK is not allowed for a resource structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all list entries. See compcode for
individual errors.

X'00000010' X'00000400' A CQSRSYNC is required for this structure.

X'00000010' X'00000430' No CQS address space.

Chapter 2. CQS client requests 95

CQSUPD request
The CQSUPD request creates or updates one or more uniquely named resources on
a resource structure. The CQSUPD request creates a resource if it does not exist, or
updates a resource if it does exist.

Format for CQSUPD

DSECT function of CQSUPD

You use the DSECT function of a CQSUPD request to include equate (EQU)
statements in your program for the CQSUPD parameter list length, the CQSUPD
return and reason codes, the CQSUPD parmlist version, and the CQSUPD list
version.

►► CQSUPD FUNC=DSECT ►◄

UPDATE function of CQSUPD

Use the UPDATE function of a CQSUPD request to create or update one or more
uniquely named resources on a resource structure. Each resource can optionally
include a small client data area (DATA1) or a large client data area (DATA2).

►► CQSUPD FUNC=UPDATE CQSTOKEN=cqstokenaddress ►

► CONTOKEN=connecttokenaddress PARM=parmaddress LIST=resourcelistaddress ►

► LISTSIZE=listsize
LISTVER=1

COUNT=resourcelistcount ►

►
ECB=ecbaddress

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►◄

Usage of CQSUPD

A CQSUPD creates or updates one or more uniquely named resources on a
resource structure. CQSUPD creates a resource if it does not exist, or updates a
resource if it does exist. A resource can be created or updated with or without
client data. Examples of resources include transactions and control blocks.

Parameter Description:

CONTOKEN=connecttokenaddress
Address of a 16-byte input parameter that specifies the connect token that
uniquely identifies the client's connection to a particular coupling facility
structure managed by CQS. The connect token is returned by the CQSCONN
request.

COUNT=resourcelistcount
Four-byte input parameter that specifies the number of entries in the list.

96 System Programming APIs

CQSTOKEN=cqstokenaddress
Address of a 16-byte input parameter that specifies the CQS registration token
that uniquely identifies the client's connection to CQS. The registration token is
returned by the CQSREG request.

ECB=ecbaddress
Address of a 4-byte input parameter that specifies the z/OS event control
block (ECB) used for asynchronous requests. If ECB is specified, the request is
processed asynchronously; otherwise, it is processed synchronously.

LISTSIZE=resourcelistsize
Four-byte input parameter that specifies the size of the resource list. The list
size must be specified because each entry in the list might have a variable
length.

LISTVER=1 | listversion
Input parameter that specifies an equate for the list version. Use the DSECT
function of a CQSUPD request to include equate (EQU) statements in your
program for the CQSUPD list versions.

LIST=resourcelistaddress
Address of an input parameter that specifies a variable size resource list
containing one or more entries. Each entry is a separate update request. Some
fields in each entry must be initialized by the client prior to the CQSUPD
request. Other fields are returned by CQS upon completion of the request.

The CQSUPDL list entry DSECT maps the list entries and can be used by the
client. Multiple list entries must reside in contiguous storage.

Each list entry contains the following fields:

listentrylength
Four-byte input field that specifies the length of the list entry. The list
entry length is variable, depending upon the data2 length, if specified.
This parameter is required.

resourceid
Twelve-byte input field that contains the unique identifier of the
resource to be created or updated on the resource structure. The
resource identifier is unique in the IMSplex. The resource identifier
consists of a 1-byte name type followed by an 11-byte client-defined
resource name. The name type ensures uniqueness of client-defined
names for resources with the same name type. Resources of different
resource types can have the same name type. Valid values for the name
type are decimal numbers from 1 to 255. The client-defined name has
meaning to the client and consists of alphanumeric characters. This
parameter is required.

resourcetype
One-byte field that specifies the resource type. The resource type is a
client-defined physical grouping of resources on the resource structure.
Valid values for the resource type are decimal numbers from 1 to 255.
If the resource type is greater than the maximum number of resource
types defined by CQS (11), it is folded into one of the existing resource
types. This parameter is required.

reserved
Three-byte reserved field.

Chapter 2. CQS client requests 97

options
Four-byte input field that specifies update options. This parameter is
optional. Possible options are:

X'80000000'
Return data1 and owner, if update fails because of a version
mismatch. This incurs the performance overhead of an additional
CF access.

X'40000000'
Return data2, data1, and owner if update fails because of version
mismatch. The data2 is returned if data2buffer and data2buffersize are
specified. This incurs the performance overhead of an additional
CF access.

X'20000000'
Delete data2.

compcode
Four-byte output field to receive the completion code from the request.
Possible completion codes are:

X'00000000'
Request completed successfully.

X'00000004'
Request succeeded successfully, but only partial data returned
in data2buffer.

X'00000020'
Resourceid is invalid. The name type must be a decimal number
from 1 to 255.

X'00000024'
CQS internal error.

X'00000028'
Version doesn't match that of existing resource.

X'00000030'
Resource already exists as a different name type.

X'00000034'
Structure is full.

X'00000038'
Resourcetype is invalid. The resource type must be a decimal
number from 1 to 255.

X'0000003C'
Listentrylength is invalid. The list entry length must be a
non-zero number greater than or equal to the minimum list
entry length. See the CQSUPDL DSECT.

X'00000040'
Structure is inaccessible.

X'00000044'
No CQS address space.

version
Eight-byte input and output field that specifies the version of a
resource. The version is the number of times the resource has been
updated. For the initial CQSUPD request to create the resource, version

98 System Programming APIs

must be zero on input. For a subsequent CQSUPD request to update
an existing resource, version must match the existing resource's version.
The CQSUPD request increments the version by 1, updates the resource
with the new version, and returns the new version as output. If a
CQSUPD request to update an existing resource fails because of a
version mismatch, CQS returns the correct version to the client as
output. This parameter is required. If the data object is created, version
is ignored on input and a version of 1 is returned as output.

owner Eight-byte input and output field that specifies the owner of a
resource. On input, owner is set for the resource. Specify zeroes to set
no owner of a resource. Only one owner is permitted. If the update
request fails because of a version mismatch and the option to return
the owner is specified, the owner of the existing resource is returned as
output. This parameter is required.

data1 Twenty-four-byte input and output field that specifies data1, a small
piece of client data for the resource to be updated. Specify zeroes to set
no client data in data1. If the CQSUPD request fails because of a
version mismatch and the option to return data1 is specified, data1 of
the existing resource is returned as output. The performance of
accessing the client data specified by data1 is faster than accessing
client data specified by data2. This parameter is required.

data2size
Four-byte input and output field that specifies the size of client data
data2 in data2buffer for the resource to be updated. Specify zero on
input, if there is no data2 to update. If the CQSUPD request fails
because of a version mismatch and the option to return data2 is set, the
data2 size of the existing resource is returned as output. This parameter
is optional.

data2buffersize
Four-byte input field that specifies the size of the data2buffer containing
the client data data2 for the resource to be updated or returned as
output. The maximum size that can be specified is 61312 bytes
(X'EF80'). Specify zero if data2 does not need to be updated or returned
as output. This parameter is optional.

data2buffer
Variable size input and output buffer that specifies data2, a large piece
of client data for the resource to be updated. If the CQSUPD request
fails because of a version mismatch and the option to return data2 is
specified, data2 of the existing resource is returned, as much as fits into
the data2buffer. This parameter is optional.

PARM=parmaddress
Address of an input parameter list used by the request to pass parameters to
CQS. The length of the storage area must be at least equal to the EQU value
CQSUPD_PARM_LEN (defined using the FUNC=DSECT request).

RETCODE=returncodeaddress
Address of a 4-byte output field to contain the CQSUPD return code. If the
return code in register 15 is non-zero, the values returned for returncodeaddress
and reasoncodeaddress are not valid because CQS detected an error and did not
process the request.

RSNCODE=reasoncodeaddress
Address of a 4-byte output field to contain the CQSUPD reason code.

Chapter 2. CQS client requests 99

Return and reason codes for CQSUPD

The following table lists the return and reason codes that can be returned for
CQSUPD requests. Use a CQSUPD=DSECT request to include equate statements in
your program for the return and reason codes.

Table 26. CQSUPD return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'00000008' X'00000210' cqstoken is invalid.

X'00000008' X'00000214' contoken is invalid.

X'00000008' X'00000218' FUNC is invalid.

X'00000008' X'00000250' resourcelistcount is invalid.

X'00000008' X'00000254' listaddress is invalid.

X'00000008' X'00000280' Request not allowed for a queue structure.

X'00000008' X'00000284' Parmlist version is invalid.

X'00000008' X'00000288' List version is invalid.

X'0000000C' X'00000300' Request succeeded for at least one but not all list
entries. See compcode for individual errors.

X'0000000C' X'00000304' Request failed for all entries. See compcode for
individual errors.

X'0000000C' X'00000308' Request failed for one or more list entries because of
version mismatch. Those resources already exist as
the resourcetype specified. All other entries were
successful.

X'00000010' X'00000430' No CQS address space.

X'00000014' X'00000500' Internal error.

100 System Programming APIs

Part 2. Common Service Layer (CSL)

The topics included in this information provide information about the CSL.

© Copyright IBM Corp. 1974, 2018 101

102 System Programming APIs

Chapter 3. Writing a CSL client

These topics describe the considerations for writing a CSL client. This information
is for the programmer who writes the client, but also for the CSL administrator or
IMS system programmer who must be aware of the issues involved in designing
and writing a CSL client.

Event Control Blocks with CSL requests
The event control block (ECB) is an optional parameter within a CSL request that
allows you to specify the address of the z/OS ECB.

Most CSL requests allow an ECB to be specified. The ECB parameter is optional
and specifies the address of the z/OS ECB. When a CSL request completes, the
ECB specified by the ECB parameter is posted. If the parameter is not included,
the requesting module does not receive control until the request completes.

If an ECB is specified, the invoker of the request must issue a WAIT (or equivalent)
after receiving control from the request before the invoker uses or examines any
data that is returned by this request (including the RETCODE and RSNCODE
fields). If the WAIT is not issued, the data might be invalid.

Environmental requirements for SCI requests
The environmental requirements for SCI requests depend on the SCI interface that
is assigned to the client.

The following table describes the environment for authorized SCI requests.

Table 27. Environment for SCI requests that use the authorized SCI interface

Environmental characteristic Requirement

Authorization Supervisor state (PSW key must match the
PSW key when the CSLSCREG request was
issued)

Dispatchable unit mode Task

Cross memory mode Any, however, PASN must equal the primary
address space where the CSLSCREG request
was issued

AMODE 31

ASC Mode Primary

Home address space Any

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The following table describes the environment for non-authorized SCI requests.

© Copyright IBM Corp. 1974, 2018 103

Table 28. Environment for SCI requests using the non-authorized interface

Environmental characteristic Requirement

Authorization Problem state (PSW key must match the PSW
key when the CSLSCREG request was
issued)

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Home address space Address space where CSLSCREG was issued

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The environmental requirements for the SCI register and deregister requests
(CSLSCREG and CSLSCDRG) are different from all of the other SCI requests.
Authorized clients must issue CSLSCREG and CSLSCDRG requests in the
environment shown in the following table:

Table 29. Environment for CSLSCREG and CSLSCDRG requests using the authorized
interface

Environmental Characteristic Requirement

Authorization Supervisor state

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Non-authorized clients must issue CSLSCREG and CSLSCDRG requests in the
environment described in the following table:

Table 30. Environment for CSLSCREG and CSLSCDRG requests using the non-authorized
interface

Environmental Characteristic Requirement

Authorization Problem state

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

104 System Programming APIs

How to interpret CSL request return and reason codes
Common Service Layer (CSL) return and reason codes indicate the success or
failure of sending the request to the CSL address space and reflect the success or
failure of the particular CSL request that is being made.

Each of the CSL requests receives a return and reason code that indicates the result
of the specified request. Because most of the requests involve more than one
component, return and reason codes can originate from any of the components
involved. For example, a Structured Call Interface (SCI) return and reason code can
be received because SCI is the communications mechanism for these requests. The
high order byte is used to help identify the component that set the return and
reason codes.

The possible values of the high-order byte and the meanings of each value are:

X'00' IMS set the return and reason code

X'01' SCI set the return and reason code

X'02' Operations Manager (OM) set the return and reason code

X'03' Resource Manager (RM) set the return and reason code

X'04' ODBM set the return and reason code

Each of the CSL requests have a table of return and reason codes. If you are unable
to find the return and reason code for the request that you issued, use the high
order byte in the return code to help identify the component that set the return
and reason code. For example, if the reason code is X'01' (SCI), you should start by
looking at the return and reason codes for the CSLSCMSG and CSLSCRQS macros.

ODBM reason codes are defined in the CSLDRR macro, OM reason codes are
defined in the CSLORR macro, RM reason codes are defined in the CSLRRR
macro, and SCI reason codes are defined in the CSLSRR macro. These macros can
be found in the IMS.SDFSMAC data set.
Related reference:
“CSLZQRY: query request” on page 110
“CSLZSHUT: shutdown request” on page 112

Planning considerations for writing clients for the CSL
Planning tasks are decisions that you must make to determine how you use the
CSL managers and CSL requests.

Planning tasks are decisions that you must make to determine how you use the
CSL managers. These decisions include:
v What authorization level to use

You must decide whether your program needs to run authorized (supervisor
state) or non-authorized (problem state). SCI initializes the appropriate
environment based on your program's state and PSW key when it registers with
SCI.

Note: A non-authorized client cannot register with RM, issue RM requests,
register commands with OM, or process requests issued using CSLSCRQS.

v Whether to use SCI exit routines

Chapter 3. Writing a CSL client 105

You must decide whether to use the SCI Input and Notify exit routines. An OM
command processing client, for example, must have the SCI Input exit to process
OM directives; it must have the SCI Notify exit to be notified when new OMs
join the IMSplex, so the OM command processing client can register to those
OMs.

v TCB association

SCI registration (with the CSLSCREG request) enables an IMSplex member to be
associated with a specific, different TCB. The authorization level you use must
also be considered regarding TCB association. SCI internally associates the
registration with the specified TCB. If no TCB is specified, SCI associates the
registration with the TCB from which the registration is issued. If the associated
TCB terminates without a deregistration being issued, SCI abnormally terminates
the registration and releases the associated storage that SCI allocated in the
member address space. If a subsequent SCI request is issued, an abend may
occur.

v Whether to use RM services, OM services, or ODBM services

You can choose to manage your own global resources. However, if you want to
access IMS global resources, you must code an RM client.
If you plan to develop your own command set and your own command
processing client (which would coordinate its own command registration and
security), you can write an OM command processing client. If you plan to
develop your own SPOC or AOP to enter your own commands, you can write
an OM AOP client. OM's role is to transport commands throughout an IMSplex
and to consolidate those command responses, in XML tags, for a SPOC or AOP.
For access to IMS databases managed by IMS DB in either the DBCTL or
DB/DC environment, you can write an ODBM client application program that
does not use IMS transactions. ODBM manages database connections in an
IMSplex, permitting application programs that use either the IMS Universal
drivers or the ODBA interface to access databases in an IMSplex. ODBM also
protects the IMS control region from the unexpected termination of application
programs that use the ODBA interface.

v Whether to use message or request protocol when issuing requests

Use message protocol either when you do not need a synchronous response, or
when you want an asynchronous response. IMSplex command responses that
are sent with message protocol are sent asynchronously.

v Whether to use the CSL OM audit trail

The CSL OM audit trail contains normal operating messages generated by active
CSL address spaces including RM, OM, and SCI, as well as operational messages
created by IMS components routing activity through a CSL component. CSL
client activity is also captured. The audit trail can be used for audit compliance
as well as for diagnostic tasks.

Related concepts:

CSL OM audit trail (System Administration)
Related reference:

BPE-based CSL SCI user exit routines (Exit Routines)

Registration of CSL managers with SCI
ODBM, OM, and RM clients must register with the Structured Call Interface (SCI).
You must complete several registration steps in order to use any of the CSL
managers.

106 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_cslomaudittrail.htm#ims_cslomaudittrail
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_cslsci.htm#ims_cslsci

To use any of the CSL managers, you must first complete registration steps.
ODBM, OM, and RM clients must register with the SCI. This topic describes SCI
registration and how ODBM, OM, and RM clients register with the SCI, how to set
SCI to a ready state, and the sequence in which CSL requests must be issued.

SCI registration
You must register to SCI in order to uniquely identify an IMSplex member's
connection to SCI that is used on all subsequent requests.

When you register to SCI, you identify:
v The name of the IMSplex.
v Your client name, which must be unique if it is an authorized client.
v Exit routines, if you elect to use them.
v Your type of address space.

Use a type of AOP or OTHER for the address space. Defining your address
space by a type that is not AOP or OTHER could interfere with IMS address
spaces. You can further identify your client by using the SUBTYPE parameter.

After you register to SCI, an SCI token is returned. The token uniquely identifies
an IMSplex member's connection to SCI and is used on all subsequent requests.
Save the token for future ODBM, OM, RM, and SCI requests.

Registering an ODBM client
To register with ODBM, a client must first register with the CSL SCI and then with
all active ODBMs in the IMSplex.

Application servers for application programs that use the IMS ODBA interface to
access IMS databases can register with ODBM as a client. ODBM manages
connections to databases owned by IMS DB systems in an IMSplex and protects
IMS control regions from the unexpected termination of the application program.

To register an ODBM client:
1. Identify the exit routines that are needed to drive interactions between the CSL

SCI and the client. The SCI handles communications between all CSL managers
in the IMSplex and their client applications.
a. Identify the SCI Notify exit for the client. A database connection can be

routed through any active ODBM in the IMSplex, so an ODBM client must
registered to all ODBMs. A SCI Notify exit is driven when a new ODBM
becomes active in the IMSplex and notifies the client with information about
the new ODBM. The client can then register to the new ODBM. The SCI
Notify exit is identified with the NOTIFYEXIT parameter of the CSLSCREG
request.

b. Identify the SCI Input exit for the client with the INPUTEXIT parameter of
the CSLSCREG request. An ODBM client must be able to receive ODBM
directives sent from any ODBM in the IMSplex. The SCI Input exit is driven
when there is a message or request for the client, so that the client can
receive and process it.

2. Issue the CSLSCREG request to SCI with the information gathered in step 1. A
client must register to the CSL SCI in the IMSplex before it can register with a
CSL manager such as ODBM.

3. Issue the CSLSCQRY request to SCI to determine which instances of ODBM are
active in the IMSplex. Before registering with the ODBMs for the first time, the

Chapter 3. Writing a CSL client 107

client must manually identify all active ODBMs with this request. Once
registered, the SCI Notify exit automatically informs the client when new
ODBMs become active.

4. Issue the CSLDMREG request to all ODBMs in the IMSplex that are reachable
and ready to accept registration requests.

Consult the sequence of ODBM client requests for more information about
managing the CSL registrations for an ODBM client.
Related concepts:
“Sequence of ODBM client requests” on page 143
Related reference:
“CSLSCREG: registration request” on page 240
“CSLDMREG: ODBM client registration request” on page 157

Registering an OM command processing client
An Operations Manager (OM) command processing client must register its
command with OM, whereas automated operator program (AOP) clients do not
have to register to OM.

Perform the following steps to register an OM command processing client in an
IMSPlex:
1. Identify the exit routines that are needed to drive interactions between the CSL

SCI and the client. The SCI handles communications between all CSL managers
in the IMSplex and their client applications.
a. Identify the SCI Notify exit for the client. A database connection can be

routed through any active OM in the IMSplex, so an OM command
processing client must registered to all OMs. A SCI Notify exit is driven
when a new OM becomes active in the IMSplex and notifies the client with
information about the new OM. The client can then register to the new OM.
The SCI Notify exit is identified with the NOTIFYEXIT parameter of the
CSLSCREG request.

b. Identify the SCI Input exit for the client with the INPUTEXIT parameter of
the CSLSCREG request. An OM command processing client must be able to
receive OM directives sent from any OM in the IMSplex. The SCI Input exit
is driven when there is a message or request for the client, so that the client
can receive and process it.

2. Issue the CSLSCREG request to SCI with the information gathered in step 1. A
client must register to the CSL SCI in the IMSplex before it can register with a
CSL manager such as OM.

3. Issue the CSLSCQRY request to SCI to determine which instances of OM are
active in the IMSplex. Before registering with the OMs for the first time, the
client must manually identify all active OMs with this request. Once registered,
the SCI Notify exit automatically informs the client when new OMs become
active.

4. Issue the CSLOMBLD request to build the command list that will be passed to
OM.

5. Issue the CSLOMREG request to all OMs in the IMSplex that are reachable and
ready to accept registration requests.

6. Issue the CSLOMRDY request to indicate that the client is ready to begin
processing commands from OM.

108 System Programming APIs

Consult the sequence of OM command processing client requests for more
information about managing the CSL registrations for an OM command processing
client.
Related reference:
“CSL OM command processing client requests” on page 161

Registering an RM client
Register RM clients to manage resources and access IMSplex-wide processes.

The following steps describe how to register an RM client first with the IMSPlex
Structured Call Interface (SCI), and then with the RMs active in the IMSPlex.
1. Identify the exit routines that are needed to drive interactions between the CSL

SCI and the client. The SCI handles communications between all CSL managers
in the IMSplex and their client applications.
a. Identify the SCI Notify exit for the client. A database connection can be

routed through any active RM in the IMSplex, so an RM client must
registered to all RMs. A SCI Notify exit is driven when a new RM becomes
active in the IMSplex and notifies the client with information about the new
RM. The client can then register to the new RM. The SCI Notify exit is
identified with the NOTIFYEXIT parameter of the CSLSCREG request.

b. Identify the SCI Input exit for the client with the INPUTEXIT parameter of
the CSLSCREG request. An RM client must be able to receive RM directives
sent from any RM in the IMSplex. The SCI Input exit is driven when there
is a message or request for the client, so that the client can receive and
process it.

2. Issue the CSLSCREG request to SCI with the information gathered in step 1. A
client must register to the CSL SCI in the IMSplex before it can register with a
CSL manager such as RM.

3. Issue the CSLSCQRY request to SCI to determine which instances of RM are
active in the IMSplex. Before registering with the RMs for the first time, the
client must manually identify all active RMs with this request. Once registered,
the SCI Notify exit automatically informs the client when new RMs become
active.

4. Issue the CSLRMREG request to all RMs in the IMSplex that are reachable and
ready to accept registration requests. To manage global resources, register the
resource type and associated name type.

How to enable SCI ready state
You use the CSLSCRDY request to enable an IMSplex member to receive messages
and requests that are routed by type.

With the SCI, there are two states: registered and ready. The CSLSCRDY request
enables an IMSplex member to receive messages and requests routed by type. An
IMSplex member that is registered but has not issued a CSLSCRDY request can
process only messages and requests that are specifically directed to it.

Sequence for coding CSL requests
Most Common Service Layer (CSL) requests must be issued in a certain sequence.

For more information about the sequence of issuing requests from various CSL
clients, see the table in each of the following topics:

Chapter 3. Writing a CSL client 109

v “How AOP clients that run on the host communicate with the CSL OM” on
page 140

v “How AOP clients that run on a workstation communicate with the CSL OM”
on page 140

v “Processing AOP commands with a command processing client” on page 141
v “Sequence of RM client requests” on page 183
v “Sequence of ODBM client requests” on page 143
Related concepts:
“CSL OM automated operator program clients” on page 139

Requests common to all CSL components
Two requests, CSLZSHUT and CSLZQRY, are common requests that can be
processed by all CSL components (OM, RM, and SCI).

CSLZQRY: query request
In an IMSplex, you might want to query statistics about one or more components
in the CSL. You can write an IMSplex member program, for example, an
automated operator program (AOP), that uses the CSLZQRY request to obtain
statistics. Any member of an IMSplex can issue the CSLZQRY request.

CSLZQRY syntax

CSLZQRY DSECT syntax

Use FUNC=DSECT to include equate (EQU) statements in your program for the
CSLZQRY parameter list length and the CSLZQRY return and reason codes.

►► CSLZQRY FUNC=DSECT ►◄

CSLZQRY STATS syntax

Use FUNC=STATS to request statistics from ODBM, OM, RM, or SCI. The information
that is returned from the CSLZQRY request is the same information that is passed
to the STATS exit for that particular ODBM, OM, RM, or SCI.

►► CSLZQRY FUNC=STATS A ►◄

A:

MBRNAME=mbrname OUTPUT=outputbuffer OUTLEN=outputbufferlen PARM=parm ►

►
ECB=ecb

RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken

CSLZQRY parameters

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies a z/OS event control block (ECB) used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB

110 System Programming APIs

is specified, the invoker of the request must issue a WAIT (or equivalent) after
receiving control from CSLZQRY and before using or examining any data
returned by this request (including the RETCODE and RSNCODE fields).

MBRNAME=symbol
MBRNAME=(r2-r12)

(Required) - A 4-byte input parameter that specifies the address of the 8-byte
CSL member name to which to send the query.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - A 4-byte output parameter that is used to receive the length of the
output buffer. When the request returns, this word contains the length of the
buffer pointed to by the OUTPUT= parameter. The output length is zero if no
output is built, for example, when an error is detected before any output can
be built. When the caller is done with this storage, it is the caller's
responsibility to release the storage by issuing a CSLSCBFR request.

OUTPUT=outputbuffer
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length
output returned by the CSLZQRY request. The output contains the results of
the CSLZQRY. The output length is returned in the OUTLEN= field. The
output address is zero if no output was built, for example, if an error was
detected before any output could be built. This buffer is not preallocated by
the caller. When the caller is done with this storage, it is the caller's
responsibility to release the storage by issuing a CSLSCBFR request.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLZQRY parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
ZQRY_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. This
can be returned by ODBM, OM, RM, or SCI. ODBM return codes are defined
in CSLDRR. OM return codes are defined in CSLORR. RM return codes are
defined in CSLRRR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. This
can be returned by ODBM, OM, RM, or SCI. ODBM reason codes are defined
in CSLDRR. OM reason codes are defined in CSLORR. RM reason codes are
defined in CSLRRR. SCI reason codes are defined in CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLZQRY return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLZQRY macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Chapter 3. Writing a CSL client 111

Table 31. CSLZQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'xx000008' X'00002050' The caller of the service attempted to pass an invalid
parameter list. The request is rejected. “xx” identifies
the component to set the return code.

Related concepts:
“How to interpret CSL request return and reason codes” on page 105

CSLZSHUT: shutdown request
CSLZSHUT is a programming interface that enables you to shut down one or more
CSL components from an authorized IMSplex member. Because CSLZSHUT is sent
as a message, control is returned to the program that issued the request after the
message is sent.

CSLZSHUT allows you to terminate:
v A single CSL manager (ODBM, OM, RM, or SCI)
v A CSL and all of its components on a single z/OS image
v A CSL and all of its components for an IMSplex across multiple z/OS images

The CSLZSHUT request is sent as a message, so control returns to the program
that issued the request after the request is sent.

To shut down a single CSL component, send the CSLZSHUT
FUNC=QUIESCE,SCOPE=CSLMEMBER message to the component you want to
shut down.

To shut down a CSL and all of its components on a single z/OS image, either:
v Send a CSLZSHUT FUNC=QUIESCE,SCOPE=CSLLOCAL message to the SCI

that is active on the z/OS image that contains the CSL to be shut down.
v Send a CSLZSHUT FUNC=QUIESCE,SCOPE=CSLLOCAL,OSNAME=xxxx

message to any SCI active in the IMSplex (where xxxx is the z/OS image where
the CSL to be shut down is active). SCI sends a CSLZSHUT request to all of the
CSL components to be shut down.

To shut down the CSL on an entire IMSplex, send a CSLZSHUT
FUNC=QUIESCE,SCOPE=CSLPLEX message to any SCI active in the IMSplex. SCI
sends a CSLZSHUT request to all the CSL components in the IMSplex.

CSLZSHUT syntax

Use FUNC=DSECT to include equate (EQU) statements in your program for the
CSLZSHUT parameter list length and the CSLZSHUT return and reason codes.

►► CSLZSHUT FUNC=DSECT ►◄

CSLZSHUT QUIESCE syntax

Use FUNC=QUIESCE to request that a CSL component shut down normally. Any work
that the CSL component is currently processing is completed, and then the
component shuts down. After processing the request, that component will not
accept any new work.

112 System Programming APIs

►► CSLZSHUT FUNC=QUIESCE A ►◄

A:

SCITOKEN=scitokenaddress SCOPE=CSLMEMBER MBRNAME=mbrnameaddress
SCOPE=CSLLOCAL

OSNAME=osnameaddress
SCOPE=CSLPLEX

►

► PARM=parmaddress RETCODE=returncodeaddress RSNCODE=reasoncodeaddress

If the component that is being shut down is an SCI, the IMSplex members that are
currently registered with that SCI are not deregistered before SCI terminates. This
can impact event notification. These IMSplex members cannot communicate with
other IMSplex members because their SCI is shut down. If one or more of the
“orphaned” members is shut down or fails, the other IMSplex members are not
notified of the shutdown or failure event until SCI comes back online.

Notification of the shutdown or failure depends on the authorization level of the
members. If the terminating member is non-authorized, other members are notified
when SCI restarts. If the terminating member is authorized, other authorized
members, including orphaned authorized members, are notified before SCI restarts.

CSLZSHUT parameters

MBRNAME=symbol MBRNAME=(r2-r12)
(Required if SCOPE=CSLMEMBER) - Specifies the 8-byte CSL member name to
which to send the shutdown request.

OSNAME=symbol
OSNAME=(r2-r12)

(Optional if SCOPE=CSLLOCAL) - Specifies the 8-byte name of the CSL,
running on the z/OS image, that is to be shut down. If the OSNAME
parameter is specified and the SCI is not active on the z/OS image specified,
the command will not be processed.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLZSHUT parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
ZSHUT_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI
return codes are defined in CSLSRR. Possible return codes are described in the
following table.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI
reason codes are defined in CSLSRR. Possible return codes are described in the
following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

Chapter 3. Writing a CSL client 113

uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

SCOPE=CSLMEMBER | CSLLOCAL | CSLPLEX
(Required) - Specifies the scope of the CSL termination. Valid values for the
SCOPE parameter are:

CSLMEMBER
This requests the CSL component receiving the request to shut itself
down. CSLMEMBER can be processed by any CSL component.

CSLLOCAL
This requests that the CSL components on a single z/OS image be shut
down. If the OSNAME parameter is also specified, the CSL
components on that particular z/OS image are shut down. If the
OSNAME parameter is specified and the SCI is not active on the z/OS
image specified, the command will not be processed. If the OSNAME
parameter is not specified, the SCI receiving the message shuts down
the CSL on the local z/OS image. Only an SCI can process a
SCOPE=CSLLOCAL request. If this request is sent to other CSL
components, it is ignored.

CSLPLEX
This requests that the CSL components in an entire IMSplex be shut
down. Only an SCI can process a SCOPE=CSLPLEX request. If this
request is sent to other CSL components, it is ignored.

CSLZSHUT return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLZSHUT macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 32. CSLZSHUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'xx000008' X'00002050' The caller of the service attempted to pass an invalid
parameter list. The request is rejected. “xx” identifies
the component to set the return code.

Related concepts:
“How to interpret CSL request return and reason codes” on page 105

114 System Programming APIs

Chapter 4. CSL automated operator program requests

Certain CSL requests can be used by AOP clients such as TSO SPOC in order to
automate some of your operator programs. The following topics describe these
requests in detail.

CSLOMCMD: command request
By using the CSLOMCMD request, your AOP client application that is running on
the host can issue requests and send commands to OM.

Commands which are submitted through the OM API or REXX SPOC API use the
address space identifier (ASID) USERID for authorization.

Commands which are submitted from a program using the OM API while
executing in a TSO session use the TSO USERID for authorization.

Commands which are submitted from a program using the OM API while
executing in a message processing program (MPP) region or batch message
processing program (BMP) region use the IMS MPP/BMP dependent region
USERID for authorization. In this environment, the actual transaction userid can be
used for authorization if the user's installation uses the IMS Build Security
Environment exit routine (DFSBSEX0) or OTMA/APPC SECURITY FULL (for
example, the user's installation issues the /SECURE OTMA/APPC FULL
command).

CSLOMCMD syntax

The syntax for CSLOMCMD can vary depending on what the automated operator
client intends to perform.

DSECT syntax

Use the DSECT function of a CSLOMCMD request to include equate (EQU)
statements in your program for the CSLOMCMD parameter list length and return
and reason codes.

►► CSLOMCMD FUNC=DSECT ►◄

Request protocol syntax

For automation clients that want to wait for the output from the OM request, use
this syntax.

►► CSLOMCMD FUNC=COMMAND
ECB=ecb

CMD=cmdinput CMDLEN=cmdinputlen ►

© Copyright IBM Corp. 1974, 2018 115

►
OPTION=aopoutput

OUTPUT=output OUTLEN=outputlen ►

►
ROUTE=routelist ROUTELEN=routelistlen RQSTTKN1=requesttoken1

►

►
TIMEOUT=300

TIMEOUT=timeoutvalue USERID=userid
PARM=parm

PROTOCOL=RQST
►

► RETCODE=returncode RSNCODE=reasoncode
RETNAME=returnname

►

►
RETTOKEN=returntoken

SCITOKEN=scitoken ►◄

The response is passed back to the client after the request is completed.

Message protocol syntax

For automation clients that want to receive command output through their user
exit, use this syntax.

►► CSLOMCMD FUNC=COMMAND CMD=cmdinput CMDLEN=cmdinputlen ►

►
OPTION=aopoutput ROUTE=routelist ROUTELEN=routelistlen

►

►
RQSTTKN1=requesttoken1

TIMEOUT=300

TIMEOUT=timeoutvalue USERID=userid
►

► PARM=parm PROTOCOL=MSG RETCODE=returncode RSNCODE=reasoncode ►

►
RETNAME=returnname RETTOKEN=returntoken

SCITOKEN=scitoken ►◄

The response is passed back to the client using the SCI Input exit. The client must
have specified an SCI Input exit (INPUTEXIT=) on the SCI registration request
(CSLSCREG) to receive a response.

CSLOMCMD parameters

CMD=symbol
CMD=(r2-r12)

(Required) - Specifies the command input buffer. This can be any IMS
command that can be specified through the OM API. The first character of the
command does not need to be a command recognition character (for example,
/). The command recognition character does not control command routing in

116 System Programming APIs

|

|

OM. The ROUTE= keyword controls which IMSplex members receive a
command. If a command recognition character is entered in the command
string it is ignored. The first character in the command is considered a
command recognition character if it is not a character between A-Z (either
uppercase or lowercase).

CMDLEN=symbol
CMDLEN=(r2-r12)

(Required) - Specifies the length of the command input buffer.

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for
asynchronous requests. When the request is complete, the ECB specified is
posted. If an ECB is not specified, the task is suspended until the request is
complete. If an ECB is specified, the invoker of the macro must issue a WAIT
(or equivalent) after receiving control from CSLOMCMD before using or
examining any data returned by this macro (including the RETCODE and
RSNCODE fields).

OPTION=aopoutput
OPTION=(r2-r12)

(Optional) - Use OPTION to return the format identifiers (FID) in the output
from command processing clients. For example, when a type-1 /DISPLAY
command is sent to an IMS command processing client, you can request that
the FID be returned in each output line. The FID indicates to an AOI program
how to map the line of output. The FID can be useful if you are converting
existing AOI programs to OM AOI programs.

If OPTION is specified as a register, the register must contain the option value.
For example, the value of AOPOUTPUT is 1. Therefore, the register must
contain a 1.

The CSLOMCMD request contains the equate for the value of AOPOUTPUT.
The DSECTS for the output of CSLOMCMD when OPTION=AOPOUTPUT are
described in the DISPLAY macro in the IMS.SDFSMAC data set.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the
output returned by the CSLOMCMD request. OUTLEN contains the length of
the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the address of the
variable length output returned by the CSLOMCMD request. The output
contains the command response output. The output length is returned in the
OUTLEN= field.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The output buffer is not preallocated by the caller. After the request returns it,
this word contains the address of a buffer containing the update output. It is
the caller's responsibility to release this storage by issuing the CSLSCBFR

Chapter 4. CSL automated operator program requests 117

FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLOMCMD parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
OCMD_PARMLN.

PROTOCOL=RQST
PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.
v RQST - Send command to OM using the SCI request protocol.
v MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM
return codes are defined in the CSLORR. SCI return codes are defined in
CSLSRR.

The return code can be from OM (CSLOMCMD) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. All return codes contain the SCI member type indicator for either SCI,
OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is
the CSL member name of the target address space to which SCI sent the
request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token
returned to the caller. This is the OM SCI token for the target address space to
which the request was sent.

ROUTE=symbol
ROUTE=(r2-r12)

(Optional) - Specifies a route list that identifies OM clients (for example, IMS
control regions) in the IMSplex to which the command is sent. If you do not
specify ROUTE, OM routes to all clients that are registered and ready to
process commands. If the route list specified consists of a SYSID of an OM
client that is not registered for the specified command, then the command will
fail with return and reason codes indicating the client is not registered for the
command. For example, if a QUERY IMSPLEX command with ROUTE=IMS1 is
processed by the OM address space and the IMS control region IMS1 is not
registered for this command, then the command fails.
v To explicitly route the command to all command processing clients that have

registered for and are ready to process commands, specify ROUTE=*.
v To route the command to the first command processing client which is

READY and has MASTER capability, specify ROUTE=%. With ROUTE=%,
OM routes the command to only one command processing client that OM
chooses.

Note: Use commas to separate a list of client names.

ROUTELEN=symbol

118 System Programming APIs

ROUTELEN=(r2-r12)
(Optional) - Specifies the length of the list specified in the ROUTE= parameter.

RQSTTKN1=symbol
RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to
associate the request response with the request for asynchronous processing.
RQSTTKN1 can include A-Z, 0-9, or printable characters (not case sensitive),
except &, <, and >. OM returns the request token encapsulated in the
<rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data
to periods (.) before returning XML output to the client. For PROTOCOL=MSG
requests, OM also returns the address of this token in the OM Directive
parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.
This parameter must be 16 bytes and, if necessary, padded with blanks.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM
reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

TIMEOUT=timeoutvalue
TIMEOUT=symbol
TIMEOUT=(r2-r12)

(Optional) - Specifies a 4-byte command timeout value in seconds. If the
TIMEOUT value is reached during OM command processing and before all
clients have responded to the command, OM terminates the command and
returns all available responses. If too small a value is specified, an incomplete
response is returned. The TIMEOUT value ensures a response is returned even
if a client processing the command is unable to respond. The TIMEOUT
keyword is ignored if no CMD keyword is specified. If a command is
requested but no timeout value is specified, a timeout value of 5 minutes is
used.

If TIMEOUT is specified as a symbol, the symbol must be an EQU symbol
equated to the timeout value. If TIMEOUT is specified as a number, the
number must be the timeout value.

USERID=symbol
USERID=(r2-r12)

(Optional) - Specifies the 8-byte user ID to be used by RACF® or an equivalent
security product. Use this parameter only if your client address space has been
authorized for this request. If your client is unauthorized, the user ID is
obtained automatically from z/OS control blocks. This user ID is intended for
use by authorized system management address spaces that can issue an OM
request on behalf of another address space or remote client. In this case, the
user ID of the client address space is not the user ID of the actual client, so it
must be passed to OM. This parameter must be 8 bytes, left-aligned, and, if
necessary, padded with blanks.

Chapter 4. CSL automated operator program requests 119

Table 33. CSLOMCMD return and reason codes.

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000004' Any code This return code indicates a warning. All or part of the
request might have completed successfully. Additional
information is returned with the response to the
request.

X'00001000' The command timed out before all of the command
response information could be collected. One or more
clients might not be responding or a client might have
needed more time to process the command. If you
specified the TIMEOUT option, make sure that the
interval is long enough to allow the command to
process. All command response information that is
collected prior to the timeout is returned.

This reason code is also returned if CSL members such
as SCI or RM are not active on the local or remote
z/OS image and cannot process the request or return
a response. To obtain more information, issue QUERY
IMSPLEX to determine which CSL members are
inactive. Restart those members and re-issue the
request.

If this reason code is returned after an INIT OLC or
TERM OLC command, issue QUERY MEMBER to
determine the online change status of the IMS systems
participating in the online change and take action
based on their status.

X'00001004' The INPUT exit rejected the command specified in the
CMD field. The command was not processed.

X'00001008' The client (specified in the corresponding XML
<mbr></mbr> tags in the <cmderr> section) was
specified in the ROUTE list for the command specified
in the CMD field. The command was not routed to the
command processing client because the client is not
the master.

x'00001014' Command completed with warnings. Check return
codes. At least one client member returned return
code 4 to the Operations Manager. All other clients
returned a return code not greater than 4. Refer to the
completion codes returned on the request for further
information.

If the command was successfully processed by one
command processing client as designed, but all other
command processing clients to which the command
was routed either explicitly (in other words, the user
specified a route list) or implicitly (in other words, the
user did not specify a route list so the command was
routed to ALL) received reason code x'00001000'
(IRSN_NOTMSTR) for return code x'00000004', then
the overall OM return/reason codes will be
WARNING (02000004) / WARNING (00001014)

120 System Programming APIs

Table 33. CSLOMCMD return and reason codes (continued).

Return code Reason code Meaning

X'02000008' Any code This return code indicates a parameter error. The
request was not processed due to the error.

X'00002000' The command specified in the CMD field is invalid.

X'00002004' The command specified in the CMD field contains a
keyword that is invalid with that command.

X'00002028' The command string specified in the CMD field
contains an invalid keyword.

X'0000202C' BPE detected an unknown positional parameter in the
command string specified in the CMD field.

X'00002030' The command string specified in the CMD field
contains a keyword with an equals sign when a sublist
was expected. For example, keyword= was specified
instead of keyword().

X'00002034' The command string specified in the CMD field
contains an incomplete keyword or keyword
parameter.

X'00002038' The command string specified in the CMD field is
missing a keyword.

X'0000203C' The command string specified in the CMD field
contains an invalid keyword parameter.

X'00002040' The command string specified in the CMD field
contains a duplicate keyword.

X'00002044' The command contains invalid syntax. Text containing
the syntax error is returned in the
<message></message> XML tags in the error log.

X'00002050' The caller of the service attempted to pass an invalid
parameter list. The request is rejected.

Chapter 4. CSL automated operator program requests 121

Table 33. CSLOMCMD return and reason codes (continued).

Return code Reason code Meaning

X'0200000C' Any code This return code indicates a list error. The request
might or might not have processed. Refer to the
<cmderr> section and the completion codes for each
command processing client listed in the <cmdrspdata>
section.

X'00003000' The command was routed to multiple clients. At least
one client was able to process the request successfully
and return either command response data or a
response message to the SPOC. Refer to the
completion codes, CC field, for further information.

X'00003004' The command was routed to multiple clients. None of
the clients were able to process the request
successfully. No command response data or response
messages were returned.

X'00003008' The command was routed to multiple clients. None of
the clients that processed the command returned a
return code and reason code to the OM. At least one
command client returned either command response
data or a response message.

X'0000300C' The command was routed to multiple clients. Not all
of the clients that processed the command returned a
return code 0 and reason code 0 to the OM. Also, at
least one client returned a return code 4. Refer to the
completion codes returned on the request for
additional information.

X'00003010' There are no active clients in the route list. Refer to
message CSLN022I.

122 System Programming APIs

Table 33. CSLOMCMD return and reason codes (continued).

Return code Reason code Meaning

X'02000010' Any code This return code indicates an environmental error. The
request could not be processed due to the current
environment. This condition might be temporary.

X'00004000' The command specified in the CMD field could not be
processed by the client indicated in the corresponding
<mbr></mbr> tags in the <cmderr> section because
the client was not yet ready to process commands.

X'00004004' The command specified in the CMD field could not be
processed by the client indicated in the corresponding
XML <mbr></mbr> tags in the <cmderr> section
because the client was not registered for the
command.

X'00004008' The command specified in the CMD field could not be
processed by the client indicated in the corresponding
XML <mbr></mbr> tags in the <cmderr> section
because the client is not active in the IMSplex.

X'0000400C' The command specified in the CMD field could not be
processed by the client indicated in the corresponding
XML <mbr></mbr> tags in the <cmderr> section
because the client registered for the command with an
invalid PADEF grammar.

X'00004010' The command specified in the CMD field could not be
processed. The client that issued the command is not
authorized. Examine the <cmdsecerr> section in the
error log to determine why the client is not
authorized.

X'00004020' This version of the parameter list is invalid.

Chapter 4. CSL automated operator program requests 123

Table 33. CSLOMCMD return and reason codes (continued).

Return code Reason code Meaning

X'02000014' Any code This return code indicates a system error. An internal
error occurred. The command was not processed.

X'00005000' An internal OM error occurred while allocating a
CMD block for processing of the command specified
in the CMD field. Contact IBM Software Support.

X'00005004' An internal OM error occurred while allocating a
CRSP block to process the command specified in the
CMD field. Contact IBM Software Support.

X'00005008' An internal OM error occurred while allocating the
command input buffer to process the command
specified in the CMD field. Contact IBM Software
Support.

X'0000500C' An internal OM error occurred while processing of the
command specified in the CMD field. Contact IBM
Software Support.

X'00005010' An internal OM error occurred while obtaining
storage for the parsed output blocks to parse the
command specified in the CMD field. Contact IBM
Software Support.

X'00005014' An internal OM error occurred while adding the CMD
block to the command instance hash table during
processing of the command specified in the CMD
field. Contact IBM Software Support.

X'00005018' An internal OM error occurred while accessing the
CMD block in the command instance hash table
during processing of the command specified in the
CMD field. Contact IBM Software Support.

X'0000501C' An internal OM error occurred while scanning for the
CMD block in the command instance hash table
during processing of the command specified in the
CMD field. Contact IBM Software Support.

X'00005020' An internal OM error occurred while processing the
command specified in the CMD field. The command
was not processed by the command processing client.
See the <cmderr> section of the error log for the
member name of the command processing client, and
contact IBM Software Support.

X'00005024' An internal OM error occurred while processing the
command specified in the CMD field. The command
was not processed by the command processing client.
See the <cmderr> section for the member name of the
command processing client, and contact IBM Software
Support.

X'00005028' An internal OM error occurred while parsing the
command specified in the CMD field. Contact IBM
Software Support.

Related reference:
“CSLSCREG: registration request” on page 240
Chapter 9, “CSL Operations Manager XML output,” on page 257

124 System Programming APIs

CSLOMI: API request
With the CSLOMI request, your AOP client can communicate with a z/OS address
space that acts as an OM AOP client. You can then issue OM requests and send
QUERY commands to OM.

With the CSLOMI request, a z/OS automated operator client can issue an IMS
command to or request OM-specific information from an OM. The CSLOMI macro
interface is designed for use by system management address spaces that receive
input from a workstation or other z/OS address space and must pass the request
to OM. In this case the workstation application builds the input string and passes
it to the z/OS address space. The z/OS address space passes the input string to
OM on the INPUT= parameter.

Commands which are submitted through the OM API or REXX SPOC API use the
address space identifier (ASID) USERID for authorization.

Commands which are submitted from a program using the OM API while
executing in a TSO session use the TSO USERID for authorization.

Commands which are submitted from a program using the OM API while
executing in a message processing program (MPP) region or batch message
processing program (BMP) region use the IMS MPP/BMP dependent region
USERID for authorization. In this environment, the actual transaction userid can be
used for authorization if the user's installation uses the IMS Build Security
Environment exit routine (DFSBSEX0) or OTMA/APPC SECURITY FULL (for
example, the user's installation issues the /SECURE OTMA/APPC FULL
command).

CSLOMI syntax

The syntax for CSLOMI can vary, depending on how the automated operator client
wants to receive the command response. If the client does not have an input exit
and wants to receive the command output as a response, use the request syntax. If
the client does have an input exit and wants to receive the command output as a
message, use the message syntax.

CSLOMI request protocol syntax

For automated clients that want to wait for output from the OM request, use this
syntax.

►► CSLOMI FUNC=OMAPI
ECB=ecb

INPUT=input INLEN=inputlen ►

► OUTPUT=output OUTLEN=outputlen
USERID=userid

►

►
RQSTTKN1=requesttoken1

PARM=parm
PROTOCOL=RQST

RETCODE=returncode ►

Chapter 4. CSL automated operator program requests 125

► RSNCODE=reasoncode
RETNAME=returnname RETTOKEN=returntoken

►

► SCITOKEN=scitoken ►◄

After control is returned to the client (if ECB is not specified), or the ECB is posted
(if an ECB is specified), the response is available to the client.

CSLOMI message protocol syntax

For automated clients that want to receive command output through their user
exit, use this syntax:

►► CSLOMI FUNC=OMAPI INPUT=input INLEN=input
USERID=userid

►

►
RQSTTKN1=requesttoken1

PARM=parm PROTOCOL=MSG RETCODE=returncode ►

► RSNCODE=reasoncode
RETNAME=returnname RETTOKEN=returntoken

►

► SCITOKEN=scitoken ►◄

The response is passed back to the client using the SCI Input exit. The client must
have specified an SCI Input exit (INPUTEXIT=) on the SCI registration request
(CSLSCREG) to receive a response.

CSLOMI Input= parameter syntax

For other applications or workstations that do not communicate directly with OM,
use this syntax.

►► A
B
C

RQSTTKN2(requesttoken2)
►◄

A:

CMD(command)
OPTION(AOPOUTPUT)

▼

(*)
ROUTE (client)

,

(client)

►

►
(300)

TIMEOUT (timeoutvalue)

126 System Programming APIs

|

B:

QUERY(CMDCLIENTS)

C:

QUERY(CMDSYNTAX)
CMDLANG(cmdlang)

This syntax is used for the INPUT= parameter. The application builds the
command or query, and passes it to a z/OS address space that communicates with
OM directly.

CSLOMI request and message parameters

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for
asynchronous requests. When the request is complete, the ECB specified is
posted. If an ECB is not specified, the task is suspended until the request is
complete. If an ECB is specified, the invoker of the macro must issue a WAIT
(or equivalent) after receiving control from CSLOMI before using or examining
any data returned by this macro (including the RETCODE and RSNCODE
fields).

INLEN=symbol
INLEN=(r2-r12)

(Required) - Specifies the length of the input buffer.

INPUT=symbol
INPUT=(r2-r12)

(Required) - Specifies the address of the input buffer.

The following shows an example of the input buffer that is passed to CSLOMI.
The input buffer is the character field MYINPUT and specifies three
parameters: a command string of QRY TRAN SHOW(ALL), a timeout value of 360
seconds, and a route list consisting of one element, IMSA:
CSLOMI FUNC=OMAPI,INPUT=MYINPUT,INLEN=INPUTLEN
INPUTLEN DC A(MYINPUTL)
MYINPUT DC C’CMD (QRY TRAN SHOW(ALL) TIMEOUT(360) ROUTE(IMSA)’
MYINPUTL EQU *-MYINPUT

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the
output returned by the CSLOMI request. OUTLEN contains the length of the
output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

OUTPUT=symbol
OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by
the CSLOMI request. The output contains the command response output. The
output length is returned in the OUTLEN= field.

Chapter 4. CSL automated operator program requests 127

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The output buffer is not preallocated by the caller. After the request returns it,
this word contains the address of a buffer containing the update output. It is
the caller's responsibility to release this storage by issuing the CSLSCBFR
FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMI parameter list. The length of the parameter
list must be equal to the parameter list length EQU value defined by
OI_PARMLN.

PROTOCOL=RQST
PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.
v RQST - Send command to OM using the SCI request protocol.
v MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM
return codes are defined in the CSLORR. SCI return codes are defined in
CSLSRR.

The return code can be from OM (CSLOMI) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. All return codes contain the SCI member type indicator for either SCI,
OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is
the CSL member name of the target address space to which SCI sent the
request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token
returned to the caller. This is the OM SCI token for the target address space to
which the request was sent.

RQSTTKN1=symbol
RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to
associate the request response with the request for asynchronous processing.
RQSTTKN1 can include A-Z, 0-9, or printable characters (not case sensitive),
except &, <, and >. OM returns the request token encapsulated in the
<rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data
to periods (.) before returning XML output to the client. For PROTOCOL=MSG
requests, OM also returns the address of this token in the OM Directive
parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.
This parameter must be 16 bytes and, if necessary, padded with blanks.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

128 System Programming APIs

reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR. Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

USERID=symbol
USERID=(r2-r12)

(Optional) - Specifies the 8-byte user ID that should be used for security
checking for the command and keyword combination. This user ID is used
only if the client address space is an authorized caller. If the client address
space is unauthorized, the user ID is obtained from z/OS control blocks. This
user ID is intended for use by authorized system management address spaces
that can issue an OM request on behalf of another address space or remote
client. In this case, the user ID of the client address space is not the user ID of
the actual client, so it must be passed to OM. This parameter must be 8 bytes,
left-justified, and, if necessary, padded with blanks.

CSLOMI Input= parameters

The parameters for the CSLOMI input option are for applications and workstations
that do not communicate directly with OM.

CMD(command)
(Required if QUERY is not specified) - Specifies the command input buffer.
This can be any IMS command that can be specified through the OM API. The
first character of the command does not need to be a command recognition
character (for example, /). The command recognition character does not
control command routing in OM. The ROUTE keyword is used to control
which IMSplex members receive a command. If a command recognition
character is entered in the command string, it is ignored. The first character in
the command is considered a command recognition character if it is not a
character between A-Z (either uppercase or lowercase).

CMDLANG(cmdlang)
The language to be used for IMS command text that is returned on the request.
This value defaults to the default established for the OM system specified on
the OM startup parameter CMDLANG=. Currently the only accepted value is
ENU for US English. If an invalid language is specified text in the OM default
language is returned.

OPTION(AOPOUTPUT)
(Optional, valid only for CMD()) - Specify the AOPOUTPUT option to return
the format identifiers (FID) in the output from command processing clients.
For example, when a type-1 /DISPLAY command is sent to an IMS command
processing client, you can request that the FID be returned in each output line.
The FID indicates to an AOI program how to map the line of output. The FID
can be useful if you are converting existing AOI programs to OM AOI
programs.

QUERY(querytype)
Type of query to be performed by OM.

CMDCLIENTS
Requests that OM return a list of all clients (for example, IMS control
regions) that have registered to OM for command processing.

Chapter 4. CSL automated operator program requests 129

|
|
|
|
|
|
|
|

The list of clients is returned encapsulated in <cmdclients> </cmdclients>
tags. querytype can be one of the following.
v <mbr name=membername>

The member name is the name of the client address space.
– <typ> </typ>

The member type is the type of the client address space.
– <styp> </styp>

The member subtype is the subtype of the client address space.
– <vsn> </vsn>

The member version is the version of the client address space.
– <jobname> </jobname>

The client jobname is the jobname or the started task for the client
address space.

v </mbr>

CMDSYNTAX
Requests that OM return a list of the XML representing the command
syntax for selected commands registered with OM. Additionally, the
translatable text associated with the command syntax is returned.

The command syntax XML is returned encapsulated in <cmdsyntax>
</cmdsyntax> tags. The command syntax DTD is returned encapsulated in
<cmddtd> </cmddtd> tags. The command syntax translatable text is
returned encapsulated in <cmdtext> </cmdtext> tags.

ROUTE(routelist)
(Optional) - Specifies a route list that identifies OM clients (for example, IMS
control regions) in the IMSplex to which the command is sent. In the list, the
clients are separated by commas. If you do not specify ROUTE, OM routes to
all clients that are registered and ready to process commands.
v To explicitly route the command to all command processing clients that have

registered for and are ready to process commands, specify ROUTE(*).
v To route the command to the first command processing client which is

READY and has MASTER capability, specify ROUTE(%). With ROUTE(%),
OM routes the command to only one command processing client that OM
chooses.

RQSTTKN2(requesttoken2)
(Optional) - Specifies a 16-byte user generated request token that is used to
associate the request response with the request for asynchronous processing.
RQSTTKN2 can include A-Z, 0-9, or printable characters (not case sensitive),
except &, <, and >. OM returns the request token encapsulated in the
<rqsttkn2></rqsttkn2> tags in the XML output. OM converts any invalid data
to periods (.) before returning XML output to the originating client. For
PROTOCOL=MSG requests, OM also returns the address of this token in the
OM Directive parameter list (mapped by CSLOMDIR macro) in the field
ODIR_CQRT2PTR.

TIMEOUT(timeoutvalue)
(Optional) - Specifies a 4-byte command timeout value in seconds. If the
TIMEOUT value is reached during OM command processing before all clients
have responded to the command, OM terminates the command and returns all
available responses. If too small a value is specified, an incomplete response is
returned. The TIMEOUT value ensures a response is returned even if a client
processing the command cannot respond. The TIMEOUT keyword is ignored if

130 System Programming APIs

no CMD keyword is specified. If a command is requested but no timeout value
is specified, a timeout value of 5 minutes is used.

CSLOMI return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLOMI macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 34. CSLOMI return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000004' Any code This return code represents a warning. All or part of
the request might have completed successfully.
Additional information is returned with the response to
the request.

X'00001000' The specified command timed out before all of the
command response information could be collected. One
or more clients might not be responding, or a client
might have needed more time to process the command.
If a TIMEOUT value is specified, ensure the value is
long enough to allow for the command to be
processed. All command response information that is
collected prior to the timeout is returned.

X'00001004' The INPUT exit rejected the command contained in the
CMD field. The command was not processed.

X'00001008' The client (specified in the corresponding XML
<mbr></mbr> tags in the <cmderr> section) was
specified in the ROUTE list for the command specified
in the CMD field. The command was not routed to the
command processing client because the client is not the
master.

X'00001010' The text file could not be loaded in the language
specified on the CMDLANG parameter. The default
language is used.

X'00001014' The command completed with warnings. Check the
return codes. At least one client member returned a
return code 4 to the Operations Manager. All other
clients returned a return code not greater than 4.

If the command was successfully processed by one
command processing client as designed, but all other
command processing clients to which the command
was routed received reason code X'00001000'
(IRSN_NOTMSTR) for return code X'00000004', then
the overall OM return and reason codes will be:

v WARNING (X'02000004')

v WARNING (X'00001014')

Refer to the completion codes returned on the request
for further information.

X'02000008' Any code This return code represents a parameter error. The
request was not processed due to the error.

X'00002000' The command specified in the CMD field is invalid.

Chapter 4. CSL automated operator program requests 131

Table 34. CSLOMI return and reason codes (continued)

Return code Reason code Meaning

X'00002004' The primary keyword specified in the CMD field is
invalid with the command specified.

X'00002028' An invalid keyword was specified in the CMD field.

X'0000202C' BPE detected an unknown positional parameter in the
command in the CMD field.

X'00002030' A keyword was specified with an equal sign
(KEYWORD=) when a sublist was expected
(KEYWORD()) in the command in the CMD field.

X'00002034' An incomplete keyword or keyword parameter was
specified in the command in the CMD field.

X'00002038' A keyword is missing from the command in the CMD
field.

X'0000203C' The value of a keyword parameter specified in the
command was invalid.

X'00002040' A duplicate keyword was specified in the command in
the CMD field.

X'00002044' Text containing the syntax error is returned in the XML
<message></message> tags.

X'00002048' More than one filter was specified.

X'00002050' The caller of the service attempted to pass an invalid
parameter list. The request is rejected.

X'0200000C' Any code This return code represents a list error. The request
might or might not have been processed due to the
error. Refer to the XML tag <cmderr> section and the
completion codes for each command processing client
listed in the XML tag <cmdrspdata> section.

X'00003000' The command was routed to multiple clients. At least
one client was able to process the request successfully
and return either command response data or a
response message. Refer to the completion codes
returned on the request for further information.

X'00003004' The command was routed to multiple clients. None of
the clients was able to process the request successfully.
No command response data or response messages were
returned by any client.

X'00003008' The command was routed to multiple clients. None of
the clients that processed the command returned a
return code 0 and reason code 0 to OM. At least one
command client returned either command response
data or a response message.

X'0000300C' The command was routed to multiple clients. Not all of
the clients that processed the command returned a
return code 0 and reason code 0 to the OM. Also, at
least one client returned a return code 4. Refer to the
completion codes returned on the request for
additional information.

X'02000010' Any code This return code represents an environmental error.
The request could not be processed at this time due to
the current environment. This condition might be
temporary.

132 System Programming APIs

Table 34. CSLOMI return and reason codes (continued)

Return code Reason code Meaning

X'00004000' The command contained in the CMD field could not be
processed by the client indicated in the corresponding
XML <mbr></mbr> tags in the <cmderr> section
because the client was not yet ready to process
commands.

X'00004004' The command contained in the CMD field could not be
processed by the client indicated in the corresponding
XML <mbr></mbr> tags in the <cmderr> section
because the client was not registered for the command.

X'00004008' The command contained in the CMD field could not be
processed by the client indicated in the corresponding
XML <mbr></mbr> tags in the <cmderr> section
because the client is not active in the IMSplex.

X'0000400C' The command contained in the CMD field could not be
processed by the client indicated in the corresponding
XML <mbr></mbr> tags in the <cmderr> section
because the client registered for the command with
invalid PADEF grammar.

X'00004010' The command contained in the CMD field could not be
processed. The client that issued the command is not
authorized. Examine the <cmdsecerr> section in the
XML file to determine why the client is not authorized.

X'00004014' A data set allocation error occurred; the data set
specified by the CMDTEXT= DSN parameter could not
be allocated.

X'00004018' A data set read error occurred; a member in the data
set specified by the CMDTEXT= DSN could not be
read. The member name is CSLOT concatenated with
the 3-character CMDLANG value.

X'00004020' The parameter list version is invalid.

X'02000014' Any code This return code represents a system error. An internal
error occurred, and the command was not processed.

X'00005000' An OM internal error occurred. Due to a storage
shortage, OM was unable to allocate a CMD block to
process the command in the CMD field.

X'00005004' An OM internal error occurred. Due to a storage
shortage, OM was unable to allocate a CRSP block to
process the command in the CMD field.

X'00005008' An OM internal error occurred. Due to a storage
shortage, OM was unable to allocate the command
input buffer to process the command in the CMD field.

X'0000500C' An OM internal error occurred. OM was unable to
obtain the VERB latch while processing the command
in the CMD field.

X'00005010' An OM internal error occurred. Due to a storage
shortage, OM was unable to obtain storage for the
parsed output blocks to parse the command in the
CMD field.

X'00005014' An OM internal error occurred. OM was unable to add
the CMD block to the command instance hash table
while processing the command in the CMD field.

Chapter 4. CSL automated operator program requests 133

Table 34. CSLOMI return and reason codes (continued)

Return code Reason code Meaning

X'00005018' An OM internal error occurred. OM was unable to find
the CMD block in the command instance hash table
while processing the command in the CMD field.

X'0000501C' An OM internal error occurred. OM was unable to scan
for the CMD block in the command instance hash table
while processing the command in the CMD field.

X'00005020' An OM internal error occurred. OM was unable to
obtain a system AWE while processing the command
in the CMD field. The command was not processed by
the command processing client. Refer to the <cmderr>
section in the XML file for the member name of the
command processing client.

X'00005024' An OM internal error occurred. OM was unable to
queue a system AWE while processing the
commanding the CMD field. The command was not
processed by the command processing client. Refer to
the <cmderr> section of the XML file for the member
name of the command processing client.

X'00005028' An OM internal error occurred. OM was unable to
parse the command contained in the CMD field due to
a BPEPARSE internal error.

X'0000502C' An OM internal error occurred. The command output
header allocation failed.

X'00005030' An OM internal error occurred. The command output
response allocation failed.

X'00005034' An OM internal error occurred. The OUTPUT buffer
allocation failed.

X'00005038' An OM internal error occurred. The VERB hash table
add failed.

X'0000503C' An OM internal error occurred. The CLNT block could
not be obtained.

X'00005040' An OM internal error occurred. The CSLSCQRY
request failed.

X'00005044' An OM internal error occurred. OM could not obtain
storage to pass a copy of the command grammar to the
BPEPARSE service.

Related reference:
“CSLSCREG: registration request” on page 240
Chapter 9, “CSL Operations Manager XML output,” on page 257
“CSL OM directives” on page 178

CSLOMQRY: query request
With the CSLOMQRY request, any AOP client that is running on the host can
request OM-specific information.

134 System Programming APIs

||
|
|

CSLOMQRY syntax

The syntax for CSLOMQRY can vary depending on what the automated operator
client intends to perform. Parameter descriptions for each syntax example are
provided in the following section.

DSECT syntax

Use the DSECT function of a CSLOMQRY request to include equate (EQU)
statements in your program for the CSLOMQRY parameter list length and return
and reason codes.

►► CSLOMQRY FUNC=DSECT ►◄

Request protocol syntax

For automation clients that want to wait for the output from the OM request, use
this syntax.

►► CSLOMQRY FUNC=QUERY OUTPUT=output OUTLEN=outputlen
ECB=ecb

►

►
RQSTTKN1=requesttoken1

TYPE= CMDCLIENTS
CMDSYNTAX

CMDLANG=cmdlang

►

► PARM=parm
PROTOCOL=RQST

RETCODE=returncode RSNCODE=reasoncode ►

►
RETNAME=returnname RETTOKEN=returntoken

SCITOKEN=scitoken ►◄

The response is passed back to the client after the request is completed.

Message protocol syntax

For automation clients that want to send a message to OM to process an OM
request, use this syntax.

►► CSLOMQRY FUNC=QUERY
RQSTTKN1=requesttoken1

►

► TYPE= CMDCLIENTS
CMDSYNTAX

CMDLANG=cmdlang

PARM=parm PROTOCOL=MSG ►

► RETCODE=returncode RSNCODE=reasoncode
RETNAME=returnname

►

►
RETTOKEN=returntoken

SCITOKEN=scitoken ►◄

Chapter 4. CSL automated operator program requests 135

The response is passed back to the client using the SCI Input exit. The client must
have specified an SCI Input exit (INPUTEXIT=) on the SCI registration request
(CSLSCREG) to receive a response.

CSLOMQRY parameters

CMDLANG=cmdlang
(Optional) - The language to be used for IMS command text that is returned on
the request. This value defaults to the default established for the OM system
specified on the OM startup parameter CMDLANG=. Currently the only
accepted value is ENU for US English. If an invalid language is specified in
OM, the default language is returned.

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for
asynchronous requests. When the request is complete, the ECB specified is
posted. If an ECB is not specified, the task is suspended until the request is
complete. If an ECB is specified, the invoker of the macro must issue a WAIT
(or equivalent) after receiving control from CSLOMQRY before using or
examining any data returned by this macro (including the RETCODE and
RSNCODE fields).

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the
output returned by the CSLOMQRY request. OUTLEN contains the length of
the output pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by
the CSLOMQRY request. The output contains the command response output.
The output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The output buffer is not preallocated by the caller. After the request returns it,
this word contains the address of a buffer containing the update output. It is
the caller's responsibility to release this storage by issuing the CSLSCBFR
FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Four-byte input parameter that specifies the address of the storage
used by the request to pass the parameters to SCI. The length of the parameter
list must be equal to the parameter list length EQU value defined by
OQRY_PARMLN.

PROTOCOL=RQST
PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.
v RQST - Send command to OM using the SCI request protocol.
v MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol

136 System Programming APIs

RETCODE=(r2-r12)
(Required) - Specifies a 4-byte field to receive the return code on output. OM
return codes are defined in the CSLORR. SCI return codes are defined in
CSLSRR.

The return code can be from OM (CSLOMQRY) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. All return codes contain the SCI member type indicator for either SCI,
OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is
the CSL member name of the target address space to which SCI sent the
request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token
returned to the caller. This is the OM SCI token for the target address space to
which the request was sent.

RQSTTKN1=symbol
RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to
associate the request response with the request for asynchronous processing.
RQSTTKN1 can include A-Z, 0-9, or printable characters (not case sensitive),
except &, <, and >. OM returns the request token encapsulated in the
<rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data
to periods (.) before returning XML output to the client. For PROTOCOL=MSG
requests, OM also returns the address of this token in the OM directive
parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.
This parameter must be 16 bytes and, if necessary, padded with blanks.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM
reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR. Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

TYPE=CMDCLIENTS
TYPE=CMDSYNTAX

(Required) - Four-byte input parameter that specifies the type of query to be
performed by OM.

CMDCLIENTS
Requests that OM return a list of all clients (for example, IMS control
regions) that have registered to OM for command processing.

The clients are returned encapsulated in <cmdclients> </cmdclients> tags.
v <mbr name=membername>

The member name is the name of the client address space.
– <typ> </typ>

Chapter 4. CSL automated operator program requests 137

The member type is the type of the client address space.
– <styp> </styp>

The member subtype is the subtype of the client address space.
– <vsn> </vsn>

The member version is the version of the client address space.
– <jobname> </jobname>

The client jobname is the jobname or the started task for the client
address space.

v </mbr>

CMDSYNTAX
Requests that OM return a list of the XML representing the command
syntax for selected commands registered with OM. Additionally, the
translatable text associated with the command syntax is returned.

The command syntax XML is returned encapsulated in <cmdsyntax>
</cmdsyntax> tags. The command syntax DTD is returned encapsulated in
<cmddtd> </cmddtd> tags. The command syntax translatable text is
returned encapsulated in <cmdtext> </cmdtext> tags.

The command syntax and translatable text that is returned as a result of
the CSLOMQRY QUERY TYPE(CMDSYNTAX) request includes
information for type-2 commands.

CSLOMQRY return and reason codes

The following table lists the return and reason code combinations that can be
returned on a CSLOMQRY request and that are unique to the CSLOMQRY request.
Also included is the meaning of a reason code (that is, what possibly caused it).

Table 35. CLSOMQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000004' Any code This return code represents a warning. All or part of
the request might have completed successfully.
Additional information is returned with the response to
the request.

X'00001010' The text file could not be loaded in the language
specified on the CMDLANG parameter. The default
language is used.

X'02000008' X'00002050' The caller of the service attempted to pass an invalid
parameter list. The request is rejected.

X'02000010' Any code This return code represents an environmental error.
The request could not be processed at this time due to
the current environment. This condition might be
temporary.

X'00004014' A data set allocation error occurred; the data set
specified by the CMDTEXTDSN= parameter in the OM
Initialization PROCLIB member (CSLOIxxx) could not
be allocated.

138 System Programming APIs

Table 35. CLSOMQRY return and reason codes (continued)

Return code Reason code Meaning

X'00004018' A data set read error occurred; a member in the data
set specified by the CMDTEXTDSN= parameter in the
OM Initialization PROCLIB member (CSLOIxxx) could
not be read. The member name is 'CSLOT'
concatenated with the 3-character CMDLANG value.

X'00004020' The parameter list version is invalid.

Related reference:
“CSLSCREG: registration request” on page 240
Chapter 9, “CSL Operations Manager XML output,” on page 257
“CSL OM directives” on page 178
“CSLOMQRY output” on page 261

CSL OM automated operator program clients
OM provides an API interface for application programs that automate operator
actions known as automated operator programs (AOP). You can use an AOP to
issue commands that are embedded in an OM API request to an OM.

OM provides an application programming interface (API) for application programs
that automate operator actions. These programs are called automated operator
programs (AOP). An AOP issues commands that are embedded in an OM API
request to an OM. The responses to those commands are returned to the AOP
embedded in XML tags.

If you want to use OM to manage commands and command responses in an
IMSplex for your own product or service, you can use an AOP client, such as each
of these clients:
v The IMS-supplied AOP client, TSO single point of control (SPOC), which runs

on the host. With the TSO SPOC, an automated operator can issue commands to
the IMSplex and receive responses to those commands interactively.

v An AOP client that runs on a workstation (called a workstation SPOC).
v A command processing client, such as IMS.

An OM client uses OM requests to communicate with OM. Each OM client must
register to SCI before it can issue OM requests.

If you intend to write AOPs, you can write them in either assembler or REXX.
Assembler applications issue requests to the OM API; REXX applications issue
REXX host commands to communicate with OM.

IMS provides a REXX SPOC API, which is a REXX program interface to a SPOC
application. Your existing REXX applications can use this REXX SPOC API to
interact with OM.
Related concepts:
“CSL SCI requests” on page 224
“Sequence for coding CSL requests” on page 109
Related reference:
Chapter 9, “CSL Operations Manager XML output,” on page 257

Chapter 4. CSL automated operator program requests 139

How AOP clients that run on the host communicate with the
CSL OM

Automated operator program (AOP) clients that run on the host can communicate
directly with Operations Manager (OM). After a z/OS AOP is registered with SCI,
it can issue an OM command (CSLOMCMD) or query (CSLOMQRY) requests.
When the z/OS AOP is ready to terminate, it must deregister with SCI using the
CSLSCDRG macro. Each of the requests can be sent directly to OM or SCI.

The following table lists the sequence of requests that are issued from an AOP that
is running on the host. The request is listed with its purpose.

Table 36. Sequence of requests for an AOP OM client running on the host

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM
through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by
client type.

CSLOMxxx Issues OM requests (CSLOMCMD, CSLOMQRY) to send commands to
OM.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

Note: Although not required for an AOP executing on the host, CSLSCRDY and
CSLSCQSC are recommended for clients that want to receive messages routed by
TYPE.

An OM client uses OM requests to access and use OM services and resources.
Some SCI and OM requests must be issued by the client to request OM services.
Some of those requests must be issued in a particular sequence, as shown in
Table 36. Other requests can be issued multiple times, in any order, based on the
processing requirements of the client.

How AOP clients that run on a workstation communicate with
the CSL OM

A workstation automated operator program (AOP) client cannot communicate
directly with Operations Manager (OM). Instead, it must communicate with a
z/OS address space that acts as an OM AOP client.

Instead of issuing CSLOMCMD or CSLOMQRY requests, the z/OS address space
issues CSLOMI, which passes the prebuilt string that it received from the
workstation to OM. For example, if the workstation wants to query the command
processing clients to see how many exist in the IMSplex, it can send the string
QUERY(CMDCLIENTS) to the z/OS address space, which would then use
CSLOMI to send the query to OM for command processing.

If the workstation wants to issue a QRY TRAN command to the IMSplex, it can
send the following string to the z/OS address space:
CMD(QUERY TRAN NAME) ROUTE(IMSA) TIMEOUT(10) RQSTTKN2(QTRANCMD)

140 System Programming APIs

The z/OS address space would then use CSLOMI to send the string to OM for
command processing. The z/OS address space should pass the user ID associated
with the workstation application to ensure correct authorization processing by OM.

The following table illustrates the sequence of requests issued by a proxy AOP
client, executing on z/OS, that is communicating with OM on behalf of a
workstation AOP. The request is listed with its purpose.

Table 37. Sequence of requests for AOP running on the workstation

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM
through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by
client type.

CSLOMI Issues OM requests (CMD(), QUERY()) to send commands to OM.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

Note: Although not required for an AOP executing on the workstation,
CSLSCRDY and CSLSCQSC are recommended for clients that want to receive
messages routed by TYPE.

Processing AOP commands with a command processing
client

A command processing client, such as an IMS control region, is a system that
provides a command processor to accept and process commands entered by an
automated operator program (AOP).

A command processing client must register to OM in addition to registering with
SCI. The command processing client registers with OM by passing a list of
commands to OM that it can process.

After successful command registration, the client must inform OM that it is ready
to process commands.

Because AOP commands can be routed through any active OM in an IMSplex, a
command processing client must register its command list and ready status with
all active OMs. Registering with all OMs in the IMSplex ensures that any AOP
command intended for the command processing client will be routed correctly,
regardless of the OM that routes that command.

Like the AOP clients, command processing clients must issue requests in a
particular sequence. This sequence, and the purpose of the request, is listed in
Table 38.

Table 38. Sequence of requests for a command processing client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM
through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by
client type.

Chapter 4. CSL automated operator program requests 141

Table 38. Sequence of requests for a command processing client (continued)

Request Purpose

CSLOMREG Registers the command list to OM.

CSLOMRDY Readies OM client to OM. Client is now ready to process commands.

CSLOMRSP Sends the command response output back to OM after receiving and
processing a command from OM.

CSLOMDRG Deregisters from OM. The client no longer wants to process commands.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

Interpreting CSL OM XML output
Command responses that are returned through the OM API are embedded in XML
tags. XML output is generated for responses to the CSLOMI, CSLOMCMD, and
CSLOMQRY requests. The DSECTS for the output of CSLOMCMD and CSLOMI
when OPTION=AOPOUTPUT are described in the DISPLAY macro in the
IMS.SDFSMAC data set.

For example, with the CSLOMI request, the QUERY parameter allows you to query
all clients that are registered to OM. The clients are returned embedded in
<cmdclients></cmdclients> tags.

The list of XML tags and the descriptions of each tag are provided in “XML tags
returned as CSL OM responses” on page 263.

142 System Programming APIs

Chapter 5. Writing a CSL ODBM client

You can write your own ODBM clients that register with Open Database Manager
(ODBM) and use the CSLDMI interface to pass DL/I calls to databases that are
managed by IMS DB in DBCTL and DB/TM systems within an IMSplex.

IMS Connect, which provides TCP/IP connection management and routing
services for the IMS Universal drivers, is an example of an ODBM client. IMS
Connect and the IMS Universal drivers are delivered with IMS and you do not
need to code any CSL ODBM requests to use them with ODBM.

Other ODBM clients can be application servers, such asWebSphere® Application
Server for z/OS or Db2 for z/OS, that run application programs that access IMS
databases through the IMS ODBM API.

To write an ODBM client, you can use the set of client requests provided by
ODBM. These requests allow the ODBM client, a z/OS application program
written in the assembler programming language, to access IMS databases in an
IMSplex that are managed by IMS DB systems configured for the IMS DBCTL or
DB/TM environments. An example of an ODBM client is IMS Connect.

ODBM clients submit CSLDMI requests to register with ODBM, interact with IMS
databases, and manage syncpoint processing for local or global transactions.

The ODBM CSLDMI API uses the IMS ODBA interface to communicate with IMS
DB and therefore supports only the DL/I calls that the ODBA interface supports.
ODBM clients pass the DL/I calls to IMS DB by using the ODBMCI function of the
CSLDMI API.

Sequence of ODBM client requests
Some requests to Open Database Manager (ODBM) from an ODBM client must be
issued in a particular sequence, such as when enabling or disabling communication
with ODBM.

An ODBM client issues SCI and ODBM requests to request ODBM services. Some
of the requests must follow a particular sequence. Other requests can be issued
multiple times, in any order, based on the processing requirements of the client.

Before an ODBM client can issue ODBM requests, it must register with SCI and all
active ODBMs in the IMSplex.

The following table shows the basic sequence of requests that an ODBM client
issues. The CSLSCREG, CSLSCRDY, and CSLDMREG requests must be issued in
the order shown. The CSLSCBFR, CSLDMDRG, and CSLSCDRG requests must
also be issued in the order shown. The sequence order of the CSLDMI requests can
vary depending on the requirements of the ODBM client and syncpoint processing.

Table 39. Sequence of requests for an ODBM client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to
send ODBM requests to ODBM through SCI.

© Copyright IBM Corp. 1974, 2018 143

Table 39. Sequence of requests for an ODBM client (continued)

Request Purpose

CSLSCRDY Readies the ODBM client to SCI, which
routes messages to the client by client type.

CSLDMREG Registers client to ODBM to enable
communication with ODBM.

CSLDMI FUNC=ODBMCI DLIFUNC Allocates and deallocates PSBs. Passes DL/I
calls to IMS DB through ODBM.

CSLDMI FUNC=COMMIT For a local unit of work, commits the
updates associated with a single APSB call.

CSLDMI FUNC=BACKOUT For a local unit of work, backs out the
updates associated with a single APSB call.

CSLDMI FUNC=READYSYNCPT For a global unit of work, prepares one of
multiple APSB calls for syncpoint processing.

CSLSCBFR Releases the output buffer returned by the
request, if any.

CSLDMDRG Deregisters client from ODBM to end
communications with ODBM.

CSLSCQSC Quiesces the ODBM client to SCI. SCI will no
longer route to the client by client type.

CSLSCDRG Deregisters from SCI.

Related tasks:
“Registering an ODBM client” on page 107
Related reference:
“CSLDMREG: ODBM client registration request” on page 157

CSL ODBM client requests
ODBM clients submit requests to register with ODBM, interact with IMS databases,
and commit or backout database updates.

CSLDMDRG: ODBM client deregistration request
The CSLDMDRG request deregisters an ODBM client with ODBM.

An ODBM client issues the CSLDMDRG request when the ODBM client is finished
sending ODBA calls through ODBM. The deregister request cleans up the internal
control blocks that ODBM stores for the ODBM client.

CSLDMDRG DSECT syntax

Use the DSECT function of a CSLDMDRG request to include equate (EQU)
statements in your program for the CSLDMDRG parameter list length and return
and reason codes.

►► CSLDMDRG FUNC=DSECT ►◄

CSLDMDRG request protocol syntax

144 System Programming APIs

►► CSLDMDRG FUNC=DEREGISTER ECB=ecb ODBMNAME=odbmname PARM=parm ►

► RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLDMDRG parameters

The CSLDMDRG parameters specify the ODBM values required for deregistration
with ODBM.

The addresses can be specified as either a symbol or a register from 2 to 12.

The CSLDMDRG request includes the following parameters:

ODBMNAME=symbol
ODBMNAME=(r2-r12)

(Required) - Specifies the 8-byte ODBM name to which to send the command
deregistration request.

If the value of ODBMNAME is specified as a symbol, the symbol must be the
label of the ODBM field. If the value of ODBMNAME is specified as a register,
the register must contain the address of the ODBM name field.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLDMDRG parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
DDRG_PARMLN.

If the value of PARM is specified as a symbol, the symbol must denote the
start of the parameter list storage. If the value of PARM is specified as a
register, the register must contain the address of the parameter list.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output.
ODBM return codes are defined in the CSLDRR. SCI return codes are defined
in CSLSRR.

The return code can be from ODBM (CSLDMDRG) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. All return codes contain the SCI member type indicator for either SCI
or ODBM in the high order byte (X'01' for SCI and X'04' for ODBM).

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output.
ODBM reason codes are defined in the CSLDRR. SCI reason codes are defined
in CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLDMDRG return and reason codes

The return and reason codes in the following table can be returned on a
CSLDMDRG macro request.

Chapter 5. Writing a CSL ODBM client 145

Table 40. CSLDMDRG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The CSLDMDRG request completed successfully.

X'04000010' X'00004004' The client is not registered.

X'00004020' The parameter list version of the parameter list
specified on the PARM= parameter is invalid.

CSLDMI: ODBM application program interface
Application programs written in assembler and running on z/OS can access IMS
databases managed by IMS DB in DBCTL and DB/DC systems in an IMSplex by
using the CSL Open Database Manager (ODBM) CSLDMI API.

The CSLDMI API supports all of the DL/I calls supported by the IMS ODBA
interface, global and local transaction processing, and security.

Prior to issuing the CSLDMI request, the ODBM client must first register with
ODBM by issuing the CSLDMREG request.

The CSLDMI API includes the following function calls:

BACKOUT
Backs out a local unit of work for local transactions. A local unit of work
consists of a single APSB call that has work, such as DL/I calls, associated
with the APSB thread.

COMMIT
Commits a local unit of work for local transactions. A local unit of work
consists of a single APSB call that has work, such as DL/I calls, associated
with the APSB thread.

DSECT
Includes equate (EQU) statements in an application program for the length of a
CSLDMI parameter list and for CSLDMI return and reason codes.

ODBMCI
To issue DL/I calls to IMS databases, use the ODBMCI function. DL/I calls are
passed to IMS by using the DLIFUNC parameter of the ODBMCI function.

Prior to issuing an ODBMCI function call, you must ensure that the AIB fields
are coded appropriately for the DL/I calls that are being passed in the
DLIFUNC parameter.

The following parameters are specific to the ODBMCI function and cannot be
specified on other CSLDMI function calls:
v AIB
v CLIENTID
v CLIENTIDLEN
v CTXTOKEN
v DLIFUNC
v GROUPNAME=
v GROUPNAMELEN=
v IOAREA
v IOAREALEN
v PCB

146 System Programming APIs

v PCBLEN
v SECTKNLEN
v SECTOKEN
v SSA1 through SSA15
v SSA1LEN through SSA15LEN
v URTOKEN
v USERID=
v USERIDLEN=

READYSYNCPT
Prepares for syncpoint processing for each of the multiple APSB calls within a
global unit of work.

The READYSYNCPT function of the CSLDMI API must called before initiating
syncpoint processing for global transactions, such as those that contain
multiple APSB threads within a single unit of work. The ODBM client must
issue FUNC=READYSYNCPT for each APSB that is represented by an
APSBTOKEN in a global unit of work (UOW). This pertains to the URTOKEN
parameter. See the URTOKEN parameter for more description.

Before initiating syncpoint processing, the caller must issue
FUNC=READYSYNCPT for each APSB call in the global UOW. CSLDMI uses
an APSB token (APSBTOKEN) to represent each APSB call.

Subsections:
v “CSLDMI FUNC=BACKOUT syntax”
v “CSLDMI FUNC=COMMIT syntax”
v “CSLDMI FUNC=DSECT syntax” on page 148
v “CSLDMI FUNC=ODBMCI syntax” on page 148
v “CSLDMI FUNC=READYSYNCPT syntax” on page 149
v “CSLDMI function parameters” on page 149
v “CSLDMI return and reason codes” on page 155

CSLDMI FUNC=BACKOUT syntax

►► CSLDMI FUNC=BACKOUT APSBTOKEN=apsb_token
ECB=ecb

►

► ODBMNAME=odbm_name PARM=parm ►

►
RQST

RQSTTKN1=request_token
PROTOCOL=

MSG

RETCODE=return_code ►

► RSNCODE=reason_code SCITOKEN=sci_token ►◄

CSLDMI FUNC=COMMIT syntax

►► CSLDMI FUNC=COMMIT APSBTOKEN=apsb_token
ECB=ecb

ODBMNAME=odbm_name ►

Chapter 5. Writing a CSL ODBM client 147

► PARM=parm
RQST

RQSTTKN1=request_token
PROTOCOL=

MSG

►

► RETCODE=return_code RSNCODE=reason_code SCITOKEN=sci_token ►◄

CSLDMI FUNC=DSECT syntax

►► CSLDMI FUNC=DSECT ►◄

CSLDMI FUNC=ODBMCI syntax

►► CSLDMI FUNC=ODBMCI AIB=aib APSBTOKEN=apsb_token ►

►
CLIENTID=client_id CLIENTIDLEN=client_id_length

►

►
CTXTOKEN=CTX_private_context_token

DLIFUNC=dli_call
ECB=ecb

►

►
GROUPNAME=group_nm GROUPNAMELEN=group_nm_length

►

►
IOAREA=io_area IOAREALEN=io_area_length

ODBMNAME=odbm_name PARM=parm ►

►
PCB=pcb PCBLEN=pcb_length

►

►
RQST

RQSTTKN1=request_token
PROTOCOL=

MSG

RETCODE=return_code ►

► RSNCODE=reason_code SCITOKEN=sci_token ►

148 System Programming APIs

►
SECTOKEN=security_token SECTKNLEN=token_length

►

► ▼

,

SSAn=SSAn_address SSAnLEN=SSAn_length URTOKEN=RRS_UR_token
►

►
USERID=user_id USERIDLEN=user_id_length

►◄

CSLDMI FUNC=READYSYNCPT syntax

►► CSLDMI FUNC=READYSYNCPT APSBTOKEN=apsb_token
ECB=ecb

►

► ODBMNAME=odbm_name PARM=parm ►

►
RQST

RQSTTKN1=request_token
PROTOCOL=

MSG

RETCODE=return_code ►

► RSNCODE=reason_code SCITOKEN=sci_token ►◄

CSLDMI function parameters

The CSLDMI parameters specify the ODBM values required for communicating
with ODBM and accessing IMS databases.

The addresses can be specified as either a symbol or a register from 2 to 12.

Parameters that are supported only when the ODBMCI function is specified are
noted in the description of the parameters. Parameters that are not noted as being
supported by ODBMCI only, can be specified on all CSLDMI functions other than
DSECT.

The following parameters can be specified on one or more functions of the
CSLDMI API:

AIB=symbol | (r2-r12)
(Required) - Specifies the address of the application interface block (AIB). The
AIB parameter is required on both input to and output from ODBM. This
parameter is supported only on the ODBMCI function call.

When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI
request, ODBM returns the address of the AIB in the DDIR_DMIRAIBPTR field
of the ODBM directive parameter list, which is mapped by the CSLDMDIR
macro.

Prior to issuing CSLDMI FUNC=ODBMCI, the AIB fields required by each
DL/I call being passed on the DLIFUNC parameter must be set. The fields of

Chapter 5. Writing a CSL ODBM client 149

the AIB are mapped by the DFSAIB macro and described in “Specifying the
AIB mask for ODBA applications” in IMS Version 13 Application Programming.

If the AIB is specified as a register, the register must contain the address of the
AIB area. If the AIB is specified as a symbol, the symbol must be the label of
the AIB area.

APSBTOKEN=symbol | (r2-r12)
(Required) - Specifies an address for a 16-byte ODBM APSB token. An APSB
token is returned by CSLDMI on the initial APSB thread request and is
required on all subsequent calls targeted to this thread.

On an APSB request, APSBTOKEN specifies the address of the field to receive
the token from ODBM. The length of APSBTOKEN field must be 16 bytes as
defined by DMI_APSBTKNLEN in the CSLDMI macro.

For all subsequent requests associated to this thread, APSBTOKEN specifies the
address of this 16-byte token.

When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI
request, ODBM returns the address of the APSB token in the
DDIR_DMIRAPSBTPTR field of the ODBM directive parameter list, which is
mapped by the CSLDMDIR macro.

If the APSBTOKEN parameter is specified as a register, the register must
contain the address of the token field. If the APSBTOKEN parameter is
specified as a symbol, the symbol must be the label of the token field.

CLIENTID=symbol | (r2-r12)
(Optional) - Specifies the end user client application ID as defined by the end
user client.

If the CLIENTID parameter is specified as a register, the register must contain
the address of the client ID field. If the CLIENTID parameter is specified as a
symbol, the symbol must be the label of the client ID field.

CLIENTIDLEN=symbol | (r2-r12)
(Required when CLIENTID is specified) - Specifies the length of the client ID.

If the CLIENTIDLEN parameter is specified as a register, the register must
contain the length of the client ID. If the CLIENTIDLEN parameter is specified
as a symbol, the symbol must be the label of a fullword containing the length
of the client ID.

CTXTOKEN=symbol | (r2-r12)
(Optional) - Specifies a 16-byte private context token obtained by calling the
Begin_Context service (CTXBEGC) of the z/OS recoverable resource
management services (RRMS) context services. This parameter is supported
only on the ODBMCI function call.

CTXTOKEN can be used to setup a global unit of work made up of multiple
APSB calls within one commit scope on a single LPAR. When specified, each
initial APSB call within the global unit of work must include the same
CTXTOKEN.

The ODBM client must ensure that the private context token specified on
CTXTOKEN has been disassociated from any dispatchable unit, such as a TCB,
prior to passing the private context token to ODBM. The ODBM client is also
responsible for initiating syncpoint processing using the appropriate z/OS
Resource Recovery Services services, such as ATRAPRP, ATRACMT,
ATRABCK, ATRCMIT, ATRBACK, and so forth.

150 System Programming APIs

The ODBM client must establish an RRS unit of work identifier (UWID) if
needed. Usually, the UWID is an XID. ATRSWID2 is used to set a work
identifier. The UWID is set based on the context token specified on this
CTXTOKEN parameter.

If the CTXTOKEN parameter is specified as a register, the register must contain
the address of the private context token field. If the CTXTOKEN parameter is
specified as a symbol, the symbol must be the label of the private context
token field.

DLIFUNC=symbol | (r2-r12)
(Required) - Specifies the 4-byte DL/I call. Any DL/I call that is supported by
the Open Database Access (ODBA) callable interface can be specified. This
parameter is supported only on the ODBMCI function call.

Prior to issuing CSLDMI FUNC=ODBMCI DLIFUNC, the AIB fields required
by each DL/I call being passed on the DLIFUNC parameter must be set. The
fields of the AIB are mapped by the DFSAIB macro and described in
“Specifying the AIB mask for ODBA applications” in IMS Version 13 Application
Programming.

If the DLIFUNC parameter is specified as a register, the register must contain
the address of the DLI function code. If the DLIFUNC parameter is specified as
a symbol, the symbol must be the label of the DLI function code.

ECB=symbol | (r2-r12)
(Optional) - Specifies an MVS™ event control block (ECB) that is used for
asynchronous requests. When the request is complete, the ECB specified is
posted.

If an ECB is not specified, the task is suspended until the request is complete.
If an ECB is specified, the ODBM client that invokes the CSLDMI macro must
invoke the z/OS WAIT macro (or equivalent) after receiving control from
CSLDMI before using or examining any data returned by CSLDMI, including
the RETCODE and RSNCODE fields.

If the ECB parameter is specified as a register, the register must contain the
address of the ECB. If the ECB parameter is specified as a symbol, the symbol
must denote the start of the ECB storage.

GROUPNAME=symbol | (r2-r12)
(Optional) - Specifies a group name for RACF or an equivalent security
product. The group name pertains to the APSB call only (DLIFUNC=APSB)
and is ignored for all other DL/I calls.

If the GROUPNAME parameter is specified as a register, the register must
contain the address of the group name field. If the GROUPNAME parameter is
specified as a symbol, the symbol must be the label of the group name field.

GROUPNAMELEN=symbol | (r2-r12)
(Required when GROUPNAME is specified) - Specifies the length of the group
name.

If the GROUPNAMELEN parameter is specified as a register, the register must
contain the length of the group name. If the GROUPNAMELEN parameter is
specified as a symbol, the symbol must be the label of a fullword containing
the length of the group name.

IOAREA=symbol | (r2-r12)
(Conditionally required) - Specifies an I/O area that is used for the input or
output data related to a database DL/I call. The IOAREA and IOAREALEN
parameters are required only when a DL/I call that requires input data or that

Chapter 5. Writing a CSL ODBM client 151

returns output data is specified on the DLIFUNC parameter. This parameter is
supported only on the ODBMCI function call.

When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI
request, ODBM returns the address of the I/O area in the DDIR_DMIRIOAPT
field of the ODBM directive parameter list, which is mapped by the
CSLDMDIR macro.

If the IOAREA parameter is specified as a register, the register must contain
the address of the I/O area. If the IOAREA parameter is specified as a symbol,
the symbol must be the label of the I/O area.

IOAREALEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the I/O area specified by the
IOAREA parameter. The IOAREA and IOAREALEN parameters are required
only when a DL/I call that requires input or that returns output is specified on
the DLIFUNC parameter. This parameter is supported only on the ODBMCI
function call.

The length specified on the IOAREALEN parameter must also be specified on
the AIBOALEN field of the AIB mask. For information about the AIB mask, see
Specifying the AIB mask (Application Programming) .

If the IOAREALEN parameter is specified as a register, the register must
contain the length of the I/O area. If the IOAREALEN parameter is specified
as a symbol, the symbol must be the label of a fullword containing the length
of the I/O area.

ODBMNAME=symbol | (r2-r12)
(Required) - Specifies the 8-byte ODBM name to which to the CSLDMI request
is to be sent.

If the ODBMNAME parameter is specified as a symbol, the symbol must be
the label of the ODBM field. If the ODBMNAME parameter is specified as a
register, the register must contain the address of the ODBM name field.

PARM=symbol | (r2-r12)
(Required) - Specifies the address CSLDMI parameter list. The length of the
parameter list must be at least as long as the value assigned to DMI_PARMLN in
the CSLDMI macro.

Use CSLDMI FUNC=DSECT to include equate (EQU) statements in your
application program for the length of the CSLDMI parameter list

If the value of PARM is specified as a register, the register must contain the
address of the parameter list. If the value of PARM is specified as a symbol,
the symbol must denote the start of the parameter list storage.

PCB=symbol | (r2-r12)
(Optional) - An output parameter that specifies the address of a fullword
storage area to receive the address of the program communication block (PCB)
returned by IMS after processing a DL/I call. The PCB contains the status
codes related to a DL/I call and other fields. This parameter is supported only
on the ODBMCI function call.

The PCB storage is not preallocated by the caller. Upon return from the
request, the address in the PCB parameter contains the address of a storage
buffer that contains the PCB. After the ODBM client is finished with the PCB,
the ODBM client must release the PCB storage buffer by issuing the SCI
request CSLSCBFR FUNC=RELEASE.

152 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_imsdbspecifyingaib.htm#ims_imsdbspecifyingaib

When the SCI message protocol (PROTOCOL=MSG) is specified on a CSLDMI
request, ODBM returns the address of the PCB storage in the
DDIR_DMIRPCBPTR field of the ODBM directive parameter list, which is
mapped by the CSLDMDIR macro.

If specified as a register, the register must contain the address of a fullword to
contain the address of the PCB. If specified as a symbol, the symbol must be
the label of a fullword to contain the address of the PCB.

PCBLEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the PCB returned by DL/I call
processing. The PCBLEN parameter is required when the PCB parameter is
specified. This parameter is supported only on the ODBMCI function call.

If specified as a register, the register must contain the address of a fullword to
contain the length of the PCB. If specified as a symbol, the symbol must be the
label of a fullword to contain the length of the PCB.

PROTOCOL=MSG | RQST
(Optional) - Specifies the SCI protocol for sending the request to ODBM.

MSG
Specifies that CSLDMI sends input requests to ODBM by using the SCI
message protocol, which uses a one-way send of the data to the other
IMSplex members and does not support output parameters. The ODBM
client does not wait for output from ODBM and any output generated by
the requests that use the MSG protocol is handled asynchronously.

RQST
Specifies that CSLDMI sends input requests to ODBM by using the SCI
request protocol. The SCI request protocol supports both input and output
parameters. The ODBM client waits for output from ODBM and process it
synchronously. RQST is the default.

RETCODE=symbol | (r2-r12)
(Required) - Specifies a 4-byte field to receive the return code on output.
ODBM return codes are defined in the CSLDRR. SCI return codes are defined
in CSLSRR.

The return code can be from ODBM (CSLDMI) or SCI (CSLSCMSG or
CSLSCRQS). If an ECB is specified, the value of RETCODE is not valid until
the ECB is posted. All return codes contain the SCI-member-type indicator for
either SCI or ODBM in the high order byte (X'01' for SCI or X'04' for ODBM).

RQSTTKN1=symbol | (r2-r12)
(Conditionally optional) - Specifies a 16-byte user-generated request token that
correlates an output response to its associated input request for asynchronous
processing. ODBM returns the address of this token in the
DDIR_DMIRQT1PTR field of the ODBM directive parameter list that is
mapped by CSLDMDIR.

RQSTTKN1 is supported only when the SCI message protocol is specified by
PROTOCOL=MSG.

If specified as a register, the register must contain the address of the request
token field. If specified as a symbol, the symbol must be the label of the
request token field. The request token field must be 16 bytes in length, left
justified, and padded with blanks if necessary.

Chapter 5. Writing a CSL ODBM client 153

RSNCODE=symbol | (r2-r12)
(Required) - Specifies a 4-byte field to receive the reason code on output.
ODBM reason codes are defined in the CSLDRR macro. SCI reason codes are
defined in CSLSRR.

SCITOKEN=symbol | (r2-r12)
(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

If the SCITOKEN parameter is specified as a register, the register must contain
the address of the SCI token field. If the SCITOKEN parameter is specified as a
symbol, the symbol must be the label of the SCI token field.

SECTKNLEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the security token. The
SECTKNLEN parameter is required when the SECTOKEN parameter is
specified. This parameter is supported only on the ODBMCI function call.

If the SECTKNLEN parameter is specified as a register, the register must
contain the length of the security token. If the SECTKNLEN parameter is
specified as a symbol, the symbol must be the label of a fullword containing
the length of the security token.

SECTOKEN=symbol | (r2-r12)
(Conditionally optional) - Specifies the address of a variable length security
token that is used for security checking by RACF or an equivalent security
product. The security token applies only to the APSB DL/I call that is specified
by DLIFUNC=APSB. The security token is ignored for all other DL/I calls.
This parameter is supported only on the ODBMCI function call. This security
token is used only if the client address space is an authorized caller. If the
client address space is unauthorized, the user ID is obtained automatically
from z/OS control blocks.

The security token must be a security object. For example, if RACF is used, the
security token must be a RACO (RACF Object). ODBM invokes RACROUTE
REQUEST=VERIFY,ENVIR=CREATE with ENVRIN= to establish a security
environment with a RACF accessor environment element (ACEE) for the APSB
thread. IMS uses the ACEE during ODBA or RAS security authorization for the
PSB.

If the SECTOKEN parameter is specified as a register, the register must contain
the address of the security token field. If the SECTOKEN parameter is
specified as a symbol, the symbol must be the label of the security token field.

SSAn=symbol | (r2-r12)
(Optional) - Specifies the segment search arguments (SSAs) for a DL/I call. A
maximum of 15 SSAs can be specified: SSA1 through SSA15. This parameter is
supported only on the ODBMCI function call.

If the parameters SSA1 through SSA15 are specified as registers, each register
must contain the address of an SSA. If the parameters SSA1 through SSA15
parameters are specified as symbols, each symbol must be the label of a
fullword that contains the address of an SSA.

SSAnLEN=symbol | (r2-r12)
(Conditionally required) - Specifies the length of the corresponding SSA list
area. For every SSAn parameter specified, a corresponding SSAnLEN
parameter is required, specified as SSA1LEN up through SSA15LEN. This
parameter is supported only on the ODBMCI function call.

154 System Programming APIs

If the parameters SSA1LEN through SSA15LEN are specified as registers, the
registers must contain the length of the SSA list areas. If the parameters
SSA1LEN through SSA15LEN are specified as symbols, the symbols must be
the labels of a fullword containing the length of the SSA list areas.

URTOKEN=symbol | (r2-r12)
(Optional) - Specifies a 16-byte RRS parent unit of recovery (UR) token. The
token is obtained by calling the RRS Express_UR_Interest service (ATREINT5).
A URTOKEN is required to setup a global unit of work that spans multiple
APSB calls within one commit scope on more than one LPAR. If specified, the
same URTOKEN must be included on each initial APSB call within the global
unit of work. This parameter is supported only on the ODBMCI function call.

The ODBM client must be a z/OS authorized program running in supervisor
state, running with PSW key 0-7, or both and cannot be running in problem
state.

The ODBM client is responsible for initiating syncpoint processing by using the
appropriate RRS services, such as ATRAPRP, ATRACMT, ATRABCK,
ATRCMIT, ATRBACK, and so forth. Before initiating syncpoint processing, the
ODBM client must issue FUNC=READYSYNCPT for each APSB call in the
global UOW. CSLDMI uses an APSB token to represent each APSB call.

If needed, the ODBM client must establish an RRS unit-of-work identifier
(UWID). Usually, the UWID is an XID. ATRSWID2 is used to set a UWID. The
UWID is based on the parent UR token specified on this URTOKEN parameter.

If the URTOKEN parameter is specified as a register, the register must contain
the address of the RRS UR token field. If the URTOKEN parameter is specified
as a symbol, the symbol must be the label of the RRS UR token field.

USERID=symbol | (r2-r12)
(Optional) - Specifies the user ID to be used by RACF or an equivalent security
product. Use this parameter only if your client address space has been
authorized for this request. If your client is not authorized, the user ID is
obtained automatically from z/OS control blocks. The user ID pertains to the
APSB call only (DLIFUNC=APSB) and is ignored for all other DL/I calls.

If the USERID parameter is specified as a register, the register must contain the
address of the user ID field. If the USERID parameter is specified as a symbol,
the symbol must be the label of the user ID field.

USERIDLEN=symbol | (r2-r12)
(Required when USERID is specified) - Specifies the length of the user ID.

If the USERIDLEN parameter is specified as a register, the register must
contain the length of the user ID. If the USERIDLEN parameter is specified as
a symbol, the symbol must be the label of a fullword containing the length of
the user ID.

CSLDMI return and reason codes

The return and reason codes in the following table can be returned on a CSLDMI
macro request.

Table 41. CSLDMI return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The CSLDMI request completed successfully.

X'04000004' X'00001004' The Input user exit rejected the request.

Chapter 5. Writing a CSL ODBM client 155

Table 41. CSLDMI return and reason codes (continued)

Return code Reason code Meaning

X'04000008' X'00002018' Invalid AIB parameter.

X'0000201C' Invalid value is specified in the AIBRSNM1 field of the
AIB mask.

X'00002020' Unsupported DL/I function.

X'00002024' The Input user exit incorrectly set the AIBOALEN field
of the IAB mask to a value that is greater than the
value that is specified on the IOAREALEN parameter.

X'04000010' X'00004000' Unable to locate the alias name.

X'00004004' The client is not registered.

X'00004008' The data store was not acquired.

X'04000014' X'00005004' Unable to obtain an APSB control block.

X'00005008' Unable to obtain an AIB control block.

X'00005014' Hash table ADD failed for APSB block.

X'00005034' OUTPUT buffer allocation failed.

X'00005040' RRS0_ASSOCCTX failed.

X'00005044' RRS0_DISCTX failed.

X'00005048' RRS0_COMMIT3_DMIR failed.

X'0000504C' RRS0_SUSI failed.

X'00005050' RRS0_BACKOUT3_DMIR failed.

X'00005054' APSB token length error.

X'00005058' APSB hash table RELEASE failed.

X'0000505C' RRS0_ASSOCCTX3 failed.

X'00005060' RRS0_CASCADE3 failed.

X'00005064' RRS0_GETCTX2 failed.

X'00005068' RRS0_ENDCTX2 failed.

X'0000506C' SEC0_CREATE call failed.

X'00005070' SEC0_DELETE call failed.

X'00005074' An APSB call failed to schedule a PSB.

X'00005078' PSB Name error.

X'00005080' PAPL block allocation failed.

X'00005084' RRS not active for global transaction.

X'0000507C' Failed to obtain DMI IOA storage.

X'00005094' BPETCBSW to an ORRS TCB failed.

X'00005098' BPETCBSW to an ODRA TCB failed.

X'0000509C' Failed to obtain an ORRS TTE.

Related reference:

Specifying the AIB mask for ODBA applications (Application Programming)

Database management (Application Programming APIs)

Database management call summary (Application Programming APIs)

156 System Programming APIs

||

||

||

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_imsdbspecifyingaibforodba.htm#ims_imsdbspecifyingaibforodba
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_dlicallsfordbmanagement.htm#ims_dlicallsfordbmanagement
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_dbmanagementcallsummary.htm#ims_dbmanagementcallsummary

CSLDMREG: ODBM client registration request
The CSLDMREG request registers an ODBM client with ODBM.

With the CSLDMREG request, an ODBM client, such asWebSphere Application
Server for z/OS or Db2 for z/OS, can register with an instance of ODBM.

The CSLDMREG request registers an application program with ODBM as an
ODBM client. The register command must be the first request that a client issues to
ODBM.

Use the CSLSCQRY request to obtain the names of all ODBMs in the IMSplex.

CSLDMREG DSECT syntax

Use the DSECT function of a CSLDMREG request to include equate (EQU)
statements in your program for the CSLDMREG parameter list length and return
and reason codes.

►► CSLDMREG FUNC=DSECT ►◄

Request protocol syntax

►► CSLDMREG FUNC=REGISTER ECB=ecb ODBMNAME=odbmname OUTLEN=outlen ►

► OUTPUT=output PARM=parm RETCODE=returncode
RETNAME=odbmname

►

► RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLDMREG parameters

The CSLDMREG parameters specify the ODBM values required for registration
with ODBM.

The addresses can be specified as either a symbol or a register from 2 to 12.

The CSLDMREG command includes the following parameters:

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for
asynchronous requests. When the request is complete, the ECB specified is
posted. If an ECB is not specified, the task is suspended until the request is
complete. If an ECB is specified, the invoker of the macro must issue a WAIT
(or equivalent) after receiving control from CSLDMREG before using or
examining any data returned by this macro (including the RETCODE and
RSNCODE fields).

If the value of ECB is specified as a symbol, the symbol must denote the start
of the ECB storage. If the value of ECB is specified as a register, the register
must contain the address of the ECB.

ODBMNAME=symbol

Chapter 5. Writing a CSL ODBM client 157

ODBMNAME=(r2-r12)
(Optional) - Specifies the 8-byte ODBM name to which to send the command
registration request.

Either the ODBMNAME parameter or the RETNAME parameter, but not both,
must be specified on a CSLDMREG request.

Use the ODBMNAME parameter to connect the ODBM client to a specific,
known instance of ODBM.

If the value of ODBMNAME is specified as a symbol, the symbol must be the
label of the ODBM field. If the value of ODBMNAME is specified as a register,
the register must contain the address of the ODBM name field.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned
by the CSLDMREG request. OUTLEN contains the length of the output
pointed to by the OUTPUT= parameter.

If no output is built, the output length is zero, as is the case when an error is
detected before building the output.

If the value of OUTLEN is specified as a register, the register must contain the
address of the output length field. If the value of OUTLEN is specified as a
symbol, the symbol must be the label of the output length field.

OUTPUT=symbol
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the variable length output
returned by the CSLDMREG request. The output length is returned in the
OUTLEN= field.

If no output is built, the output address is zero, as is the case when an error is
detected before building the output.

The CSLDREGO macro maps the output that is returned. The output buffer
contains the ODBM version, count of the aliases, and a list of the 4-byte alias
names.

The output buffer is not preallocated by the caller. Upon return from the
request, this word contains the address of a buffer containing the update
output.

After the ODBM client no longer needs the buffer storage, the ODBM client
must release the storage by issuing the CSLSCBFR FUNC=RELEASE request.

If the value of OUTPUT is specified as a register, the register must contain the
address of a field to contain the output address. If the value of OUTPUT is
specified as a symbol, the symbol must be the label of a field to contain the
output.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the address of the CSLDMREG parameter list. The length
of the parameter list must be equal to the parameter list length EQU value
defined by DREG_PARMLN.

If the value of PARM is specified as a symbol, the symbol must denote the
start of the parameter list storage. If the value of PARM is specified as a
register, the register must contain the address of the parameter list.

RETCODE=symbol

158 System Programming APIs

RETCODE=(r2-r12)
(Required) - Specifies a 4-byte field to receive the return code on output.
ODBM return codes are defined in the CSLDRR. SCI return codes are defined
in CSLSRR.

The return code can be from ODBM (CSLDMREG) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. All return codes contain the SCI member type indicator for either SCI
or ODBM in the high order byte (X'01' for SCI and X'04' for ODBM).

If the value of RETCODE is specified as a symbol, the symbol must be the
label of the return code field. If the value of RETCODE is specified as a
register, the register must contain the address of the return code field.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies the eight-byte output field to receive the ODBM name.
This is the CSL member name of the target address space to which SCI sent
the request.

Either the RETNAME parameter or the ODBMNAME parameter, but not both,
must be specified on a CSLDMREG request.

Use the RETNAME parameter if you do not know the name of an ODBM
instance or if the ODBM client does not require a connection to a specific
instance of ODBM. When RETNAME is specified, SCI connects to any
available instance of ODBM and returns the name of that ODBM in the
RETNAME output field.

If the value of OUTPUT is specified as a register, the register must contain the
address of a field to contain the output address. If the value of OUTPUT is
specified as a symbol, the symbol must be the label of a field to contain the
output.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output.
ODBM reason codes are defined in the CSLDRR. SCI reason codes are defined
in CSLSRR.

If the value of RSNCODE is specified as a symbol, the symbol must be the
label of the reason code field. If the value of RSNCODE is specified as a
register, the register must contain the address of the reason code field.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

If the value of SCITOKEN is specified as a register, the register must contain
the address of the SCI token field. If the value of SCITOKEN is specified as a
symbol, the symbol must be the label of the SCI token field.

CLSDMREG return and reason codes

The return and reason codes in the following table can be returned on a
CSLDMREG macro request. The hexadecimal value 04 represents the SCI member
type for ODBM.

Chapter 5. Writing a CSL ODBM client 159

Table 42. CSLDMREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The CSLDMREG request completed successfully.

X'04000010' X'0000401C' The client is already registered.

X'00004020' The parameter list version of the parameter list
specified on the PARM= parameter is invalid.

X'04000014' X'0000502C' Unable to obtain a CSLDREGO feedback area.

X'0000503C' Unable to obtain a CLNT control block.

Related concepts:
“Sequence of ODBM client requests” on page 143
Related tasks:
“Registering an ODBM client” on page 107

160 System Programming APIs

Chapter 6. Writing a CSL OM client

These topics describe the client requests and directives for writing an OM client.

CSL OM command processing client requests
The following topics describe the requests that are made by command processing
clients.

If you are writing your own command processing client, ensure that the access
authority you provide on the RACF PERMIT command matches the access
authority with which the command is registered.
Related tasks:
“Registering an OM command processing client” on page 108

CSLOMBLD: command registration build
With the CSLOMBLD request, you can build the command registration list that is
passed to OM on the CSLOMREG request.

This list identifies the commands for which the IMS system can be called. The list
contains a set of statements starting with a CSLOMBLD FUNC=BEGIN statement
and ending with a CSLOMBLD FUNC=END statement.

Any number of CSLOMBLD FUNC=DEFVRB statements can be provided, each
one defining the command verb. Following each DEFVRB statement are
CSLOMBLD FUNC=DEFKEY statements, which identify keywords valid for the
previously defined command verb.

The set of CSLOMBLD statements can be defined either in a separate data-only
assembler module, or in a static data section of an executable assembler module.
Refer to the documentation in the CSLOMBLD macro.

CSLOMBLD is used to build the command registration list; it does not have an
input parameter list.

CSLOMBLD syntax

CSLOMBLD BEGIN

Use the BEGIN function statement to identify the beginning of the set of command
statements.

►► CSLOMBLD FUNC=BEGIN ►◄

CSLOMBLD DEFVRB

Use the DEFVRB function statement to identify a command that the OM client or
IMS system will support. You can specify a short form of the command verb.

© Copyright IBM Corp. 1974, 2018 161

►► CSLOMBLD FUNC=DEFVRB VERB=verbname NORM=shortverbname ►◄

CSLOMBLD DEFKEY

Use the DEFKEY function statement to identify a keyword that is valid for the
previously defined command. You can also specify command routing and required
RACF authorization with this statement.

►► CSLOMBLD FUNC=DEFKEY KEYW=keyword ROUTE=ANY|ALL SEC=READ|UPDATE ►◄

CSLOMBLD DEFGMR

Use the DEFGMR function statement to identify the beginning of the statements
that describe the output parsing grammar.

Note: This function is for internal IBM use only.

►► CSLOMBLD FUNC=DEFGMR ►◄

CSLOMBLD ENDGMR

Use the ENDGMR function statement to designate the end of the statements that
describe the output parsing grammar.

Note: This function is for internal IBM use only.

►► CSLOMBLD FUNC=ENDGMR ►◄

CSLOMBLD END

Use the END function statement to designate the end of the list of command
statements.

►► CSLOMBLD FUNC=END ►◄

CSLOMBLD parameters

KEYW=keyword
Specifies a valid keyword for the command verb that immediately precedes
this parameter. For a null keyword, use blanks; for example, 'KEYW= '. This
parameter is required for FUNC=DEFKEY.

NORM=shortverbname
Specifies the short form of the command being defined. This parameter is
required for FUNC=DEFVRB.

ROUTE=ANY | ALL
Specifies the override routing for the command being defined. This parameter
is required for FUNC=DEFKEY.

SEC=READ | UPDATE
Specifies the required RACF authorization for KEYW. This parameter is
required for FUNC=DEFKEY.

162 System Programming APIs

VERB=verbname
Specifies the long form of the command being defined. This parameter is
required for FUNC=DEFVRB.

CSLOMBLD example

The following shows an example of a set of CSLOMBLD statements.

CSLOMBLD FUNC=BEGIN
CSLOMBLD FUNC=DEFVRB,VERB=ACTIVATE,NORM=ACT
CSLOMBLD FUNC=DEFKEY,KEYW=LINK,SEC=UPDATE
CSLOMBLD FUNC=DEFKEY,KEYW=NODE,SEC=UPDATE
CSLOMBLD FUNC=END

Overriding CSL OM command routing with the ROUTE parameter

CSLOMBLD allows the command processing client to override the routing that
you specify when you enter a command. There are a few commands that specify
command routing overrides. OM overrides command routing when two command
processing clients specify different routing overrides for the same command if:
v At least one command processing client specifies an override of ROUTE=ALL,

then OM routes the command to all registered command processing clients.
v At least one command processing client specifies an override of ROUTE=ANY,

and no command processing client has specified ROUTE=ALL, then OM routes
the command to one of the registered command processing clients.

v No command processing clients have specified an override of ROUTE=ALL or
ROUTE=ANY, then OM routes the command as specified by the user that
entered the command.

When an OM command has a ROUTE parameter, IMS chooses the highest level
IMS in the route list as the command master. For example, in an IMSplex
configuration that includes an IMS Version 13 system with an IMS Version 13 CQS,
and another IMS system with a previous version SCI, if an INIT OLC command
(which is a ROUTE=ANY command) is issued, the IMS Version 13 system is
selected as the command master.

For a list of the commands that can be issued with the ROUTE parameter, see
Commands and keywords supported by the OM API (Commands).
Related reference:

/SECURE command (Commands)
“CSLOMREG: command registration request” on page 168

CSLOMDRG: command deregistration request
With the CSLOMDRG request, a command processing client like the IMS control
region tells OM that it no longer wants to process commands. All client
information from the OM command registration table is removed and OM stops
sending further commands to the client.

CSLOMDRG syntax

DSECT syntax

Figure 7. CSLOMBLD example statements

Chapter 6. Writing a CSL OM client 163

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmdsintro/ims_cmdsuppomapi.htm#ims_cr1cmdsuppomapi
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_secure.htm#ims_cr2secure

Use the DSECT function of a CSLOMDRG request to include equate (EQU)
statements in your program for the CSLOMDRG parameter list length and return
and reason codes.

►► CSLOMDRG FUNC=DSECT ►◄

Request protocol syntax

►► CSLOMDRG FUNC=DEREGISTER PARM=parm RETCODE=returncode ►

► RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLOMDRG parameters

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMDRG parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
ODRG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output.
Possible return codes are described in the following table.

The return code can be from OM (CSLOMDRG) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. The value of the high-order byte in the return code identifies whether
SCI (X'01') or OM (X'02') provided the return code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM
reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR. Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLOMDRG return and reason codes

The return and reason codes in following table can be returned on a CSLOMDRG
macro request. Also included is the meaning of a reason code (that is, what
possibly caused it).

Table 43. CLSOMDRG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

164 System Programming APIs

CSLOMOUT: unsolicited output request
The CSLOMOUT request is issued by a command processing client that wants to
send a message indirectly in response to a command. The message can be
additional information as a result of a command issued after the initial command
response is returned to OM, or an informational message as a result of an event in
the system. OM sends the unsolicited message to the OM Output user exit.

CSLOMOUT syntax

DSECT syntax

Use the DSECT function of a CSLOMOUT request to include equate (EQU)
statements in your program for the CSLOMOUT parameter list length and return
and reason codes.

►► CSLOMOUT FUNC=DSECT ►◄

Request protocol syntax

►► CSLOMOUT FUNC=MESSAGE
CMD=cmdinput CMDLEN=cmdinputlen

►

► MSGDATA=msgdata MSGDATALEN=msgdatalen
OMNAME=omname

►

►
RQSTTKN=requesttoken

PARM=parm RETCODE=returncode RSNCODE=reasoncode ►

► SCITOKEN=scitoken ►◄

CSLOMOUT parameters

CMD=symbol
CMD=(r2-r12)

(Optional) - Specifies the command input buffer. This can be any IMS
command that can be specified through the OM API. This parameter represents
the original command input.

CMDLEN=symbol
CMDLEN=(r2-r12)

(Optional) - Specifies the length of the command input buffer.

MSGDATA=symbol
MSGDATA=(r2-r12)

(Required) - Specifies the command response message buffer.

MSGDATALEN=symbol
MSGDATALEN=(r2-r12)

(Required) - Specifies the length of the command response message buffer.

OMNAME=symbol
OMNAME=(r2-r12)

(Optional) - Specifies the 8-byte OM name to which to send the unsolicited
output message when the message is an asynchronous response to a command.

RQSTTKN=symbol

Chapter 6. Writing a CSL OM client 165

RQSTTKN=(r2-r12)
(Optional) - Specifies the 32-byte request token that was passed to the
command processing client on an OM command directive. This represents the
RQSTTKN1 and RQSTTKN2 fields that are entered on either or both the
CSLOMI and CSLOMCMD requests.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMOUT parameter list. The length of the
parameter list must be equal to the parameter list length EQU value that is
defined by OOUT_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output.
Possible return codes are described in the following table.

The return code can be from OM (CSLOMOUT) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. The value of the high-order byte in the return code identifies whether
SCI (X'01') or OM (X'02') provided the return code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM
reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR. Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLOMOUT return and reason codes

The return and reason codes in the following table can be returned on a
CSLOMOUT macro request. The following table lists the return and reason codes
that can be returned on a CSLOMI macro request. Also included is the meaning of
a reason code (that is, what possibly caused it).

Table 44. CLSOMOUT return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

CSLOMRDY: ready request
With the CSLOMRDY request, command processing clients like the IMS control
region notify OM that they are ready to process commands. OM does not send
commands to a client until this request is processed.

CSLOMRDY syntax

CSLOMRDY DSECT syntax

166 System Programming APIs

Use the DSECT function of a CSLOMRDY request to include equate (EQU)
statements in your program for the CSLOMRDY parameter list length and return
and reason codes.

►► CSLOMRDY FUNC=DSECT ►◄

CSLOMRDY request protocol syntax

►► CSLOMRDY FUNC=READY
OMNAME=omname MASTER=NO|YES

PARM=parm ►

► RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLOMRDY parameters

MASTER=NO
MASTER=YES

(Optional) - Specifies whether or not the client should be chosen as the
command master. If a client specifies MASTER=YES, OM can select that client
to be the command master. If the client specifies MASTER=NO, OM selects it
to be the command master only if no other client has specified MASTER=YES.

OMNAME=symbol
OMNAME=(r2-r12)

(Optional) - Specifies the 8-byte OM name to which to send the command
ready request. If an OM name is not specified, the ready request is sent to all
OM address spaces registered in the IMSplex.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLOMRDY parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
ORDY_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output.
Possible return codes are described in the following table.

The return code can be from OM (CSLOMRDY) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. The value of the high-order byte in the return code identifies whether
SCI (X'01') or OM (X'02') provided the return code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM
reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR. Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

Chapter 6. Writing a CSL OM client 167

CSLOMRDY return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLOMRDY macro request. Also included is the meaning of the reason code (that
is, what possibly caused it).

Table 45. CLSOMRDY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

Related concepts:

CSL OM command routing (System Administration)

CSLOMREG: command registration request
With the CSLOMREG request, a command processing client like the IMS control
region can register commands with an OM. The registration tells OM which
commands that a client can process.

CSLOMREG must be the first request that a command processing client issues to
OM. A command processing client must register with all OM address spaces in the
IMSplex. If a client is registered with only one OM in an IMSplex, and that OM
goes down, the client's commands are not routed to another OM in the IMSplex.
Use the CSLSCQRY request to obtain the names of all OMs in the IMSplex. The
client must be authorized to issue a CSLOMREG request. This authorization is
from SCI, which notifies OM that the client can issue requests.

CSLOMREG syntax

CSLOMREG DSECT syntax

Use the DSECT function of a CSLOMREG request to include equate (EQU)
statements in your program for the CSLOMREG parameter list length and return
and reason codes.

►► CSLOMREG FUNC=DSECT ►◄

CSLOMREG request protocol syntax

The syntax for the CSLOMREG request follows.

►► CSLOMREG FUNC=REGISTER CMDLIST=cmdlistaddr CMDLISTLEN=cmdlistlen ►

►
ECB=ecbaddress

OMNAME=omnameaddr ►

►
OUTPUT=outputaddr OUTLEN=outputlen

PARM=parmaddr ►

► RETCODE=returncodeaddr RSNCODE=reasoncodeaddr SCITOKEN=scitokenaddr ►◄

CSLOMREG parameters

CMDLIST=symbol

168 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_omcommandrouting.htm#ims_omcommandrouting

CMDLIST=(r2-r12)
(Required) - Specifies the command definition list.

The command list is built using the CSLOMBLD macro.

CMDLISTLEN=symbol
CMDLISTLEN=(r2-r12)

(Required) - Specifies the length of the command definition list buffer.

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for
asynchronous requests. When the request is complete, the ECB specified is
posted. If an ECB is not specified, the task is suspended until the request is
complete. If an ECB is specified, the invoker of the macro must issue a WAIT
(or equivalent) after receiving control from CSLOMREG before using or
examining any data returned by this macro (including the RETCODE and
RSNCODE fields).

OMNAME=symbol
OMNAME=(r2-r12)

(Required) - Specifies the 8-byte OM name to which to send the command
registration request.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Optional) - Specifies a 4-byte field to receive the length of the output returned
by the CSLOMREG request. OUTLEN contains the length of the output
pointed to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

OUTPUT=outputaddr
OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by
the CSLOMREG request. The output length is returned in the OUTLEN= field.

The output is mapped by the CSLOREGO macro and is built only if there was
an error registering one or more commands. The output contains a header and
one or more list entries. Refer to the CSLOREGO macro for the output fields.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The output buffer is not preallocated by the caller. After the request returns it,
this word contains the address of a buffer containing the update output. It is
the caller's responsibility to release this storage by issuing the CSLSCBFR
FUNC=RELEASE request when it is finished with the storage. The length of
the output is returned in the OUTLEN=field.

PARM=symbol
PARM=(r2-r12)

(Required) - Four-byte input parameter that specifies the address of the storage
used by the request to pass the parameters to SCI. The length of the parameter
list must be equal to the parameter list length EQU value defined by
OREG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on
output.Possible return codes are described in the following table.

Chapter 6. Writing a CSL OM client 169

The return code can be from OM (CSLOMREG) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. The value of the high-order byte in the return code identifies whether
SCI (X'01') or OM (X'02') provided the return code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM
reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR. Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

CLSOMREG return and reason codes

The return and reason codes in the following table can be returned on a
CSLOMREG macro request.

Table 46. CLSOMREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'0200000C' X'00003000' The request might or might not have been processed
completely. If the OUTPUT parameter is provided on
the request, refer to completion codes in the output
buffer for error conditions. Completion codes indicate
the reason for the error with the resource name. The
completion codes that can be returned are described in
the following table

X'02000010' X'00004010' The client that issued the command is not authorized.

X'00004020' The parameter list version is invalid.

X'02000014' X'00005034' An OM internal error occurred. OM was unable to
obtain storage for the output buffer.

X'00005038' An OM internal error occurred. OM was unable to add
the VERB block to the command verb hash table
during command processing.

X'0000503C' An OM internal error occurred. OM was unable to
allocate a CLNT block for the client during command
processing.

The completion codes in the following table can be returned on a CSLOMREG
request. They are returned in the ORGE_CC field of the CSLOREGO macro, which
maps the OUTPUT= area if an error occurred during command registration.

Table 47. CLSOMREG completion codes

Completion Code Meaning

X'00000104' OM was unable to allocate a VERB block for the resource.

X'00000108' OM was unable to allocate a KWD block for the resource.

X'0000010C' OM was unable to allocate an MUID block for the resource.

170 System Programming APIs

Table 47. CLSOMREG completion codes (continued)

Completion Code Meaning

X'00000160' OM was unable to obtain a latch for the resource.

Related reference:
“CSLOMBLD: command registration build” on page 161

CSLOMRSP: command response request
The CSLOMRSP request is issued by a command processing client in response to a
command. Command response information is consolidated and sent to OM.

A command processing client issues the CSLOMRSP request in response to a
command. All command response information from an individual command
processing client is consolidated by the client and sent to OM in one request. OM
consolidates the responses from multiple clients into one response for the
automated operator program client.

CSLOMRSP syntax

CSLOMRSP DSECT syntax

Use the DSECT function of a CSLOMRSP request to include equate (EQU)
statements in your program for the CSLOMRSP parameter list length and return
and reason codes.

►► CSLOMRSP FUNC=DSECT ►◄

CSLOMRSP request protocol syntax

►► CSLOMRSP FUNC=RESPOND
CMD=cmdinput CMDLEN=cmdinputlen

CMDTOKEN=cmdtoken ►

►
CMDHDR=cmdhdr CMDHDRLEN=cmdhdrlen CMDDATA=cmddata CMDDATALEN=cmddatalen

►

►
MSGDATA=msgdata MSGDATALEN=msgdatalen

PARM=parm OMNAME=omname ►

► RETCODE=returncode RSNCODE=reasoncode RQSTRC=requestrc RQSTRSN=requestrsn ►

►
RQSTTKN=requesttoken

SCITOKEN=scitoken ►◄

CSLOMRSP parameters

CMD=symbol
CMD=(r2-r12)

(Optional) - Specifies the command input buffer. This can be any IMS
command that can be specified through the OM API.

This parameter is optional; what you provide here will be included in the
input tags that are returned as XML output.

CMDDATA=symbol
CMDDATA=(r2-r12)

(Optional) - Specifies the command response data buffer.

Chapter 6. Writing a CSL OM client 171

CMDDATALEN=symbol
CMDDATALEN=(r2-r12)

(Optional) - Specifies the length of the command response data buffer.

CMDHDR=symbol
CMDHDR=(r2-r12)

(Optional) - Specifies the command response header buffer.

CMDHDRLEN=symbol
CMDHDRLEN=(r2-r12)

(Optional) - Specifies the length of the command response header buffer.

CMDLEN=symbol
CMDLEN=(r2-r12)

(Optional) - Specifies the length of the command input buffer.

CMDTOKEN=symbol
CMDTOKEN=(r2-r12)

(Required) - Specifies a 32-byte field to contain the command token. This token
uniquely identifies the command instance that the client has processed. The
command token is passed to the client on an OM command directive. The
address of the token is passed to the client in the ODIR_CMDTKPTR field in
the OM command directive parameter list.

MSGDATA=symbol
MSGDATA=(r2-r12)

(Optional) - Specifies the command response message buffer.

MSGDATALEN=symbol
MSGDATALEN=(r2-r12)

(Optional) - Specifies the length of the command response message buffer.

PARM=symbol
PARM=(r2-r12)

(Required) - Four-byte input parameter that specifies the address of the storage
used by the request to pass the parameters to SCI. The length of the parameter
list must be equal to the parameter list length EQU value defined by
ORSP_PARMLN.

OMNAME=symbol
OMNAME=(r2-r12)

(Required) - Specifies the 8-byte OM name to which to send the command
registration request.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output.
Possible return codes are described in the following table.

The return code can be from OM (CSLOMRSP) or SCI (CSLSCMSG or
CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is
posted. The value of the high-order byte in the return code identifies whether
SCI (X'01') or OM (X'02') provided the return code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

RQSTRC=symbol
RQSTRC=(r2-r12)

(Required) - Specifies a 4-byte field to contain the reason code to be passed to
the originator of the command. This reason code is defined by the command

172 System Programming APIs

processing client and indicates the result of the command. Non-zero reason
codes are passed back to the client in the <cmderr> section of the command
response.

RQSTRSN=symbol
RQSTRSN=(r2-r12)

(Required) - Specifies a 4-byte field to contain the reason code to be passed to
the originator of the command. This reason code is defined by the command
processor client and indicates the result of the command. Non-zero reason
codes are passed back to the client in the <cmderr> section of the command
response.

RQSTTKN=symbol
RQSTTNK=(r2-r12)

(Optional) - Specifies the 32-byte request token that was passed to the
command processing client on an OM command directive. This parameter
represents the RQSTTKN1 and RQSTTKN2 fields that are entered on either or
both the CSLOMI and CSLOMCMD requests.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM
reason codes are defined in the CSLORR. SCI reason codes are defined in
CSLSRR. Possible reason codes are described in the following table.

RSNTEXT=symbol
RSNTEXT=(r2-r12)

(Optional) - Specifies a register that must contain the address of the reason text
buffer; if specified as a symbol it must be the label of the reason text buffer.
The buffer consists of a two-byte length field followed by the reason text. This
token allows an OM client to pass a text description of the reason code in a
command response.

RSNTEXTLEN=symbol
RSNTEXTLEN=(r2-r12)

(Optional) - Specifies a register that must contain the address of the reason text
buffer; if specified as a symbol it must be the label of the reason text buffer.
The buffer consists of a two-byte length field followed by the reason text. This
token allows an OM client to pass a text description of the reason code in a
command response.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token is returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLOMRSP return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLOMRSP macro request. Also included is the meaning of the reason code (that
is, what possibly caused it).

Table 48. CLSOMRSP return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

Related reference:

Chapter 6. Writing a CSL OM client 173

Chapter 9, “CSL Operations Manager XML output,” on page 257

CSLOMSUB: Subscribe to unsolicited messages
With the CSLOMSUB request, single point of control (SPOC) clients can subscribe
to OM in order to receive unsolicited output messages from a command processing
client, such as IMS.

A message is defined as unsolicited when it is not generated as a response to an
input message. For example, system informational messages are unsolicited
messages. In an IMS Version 13 IMSplex environment, a command response is
considered an unsolicited message if it is returned to a SPOC from which the
command did not originate.

All unsolicited output messages are routed to the OM's Output exit routine, which
can modify the output. SPOCs can subscribe to the OM using the CSLOMSUB
request to have the unsolicited output messages, modified or not, routed to them.
To identify unsolicited output messages that should not be directed to OM, you
can edit a table that includes messages from OM, RM, SCI, CQS, and the IMS
control region that should be ignored.

You must specify an SCI Input exit routine on the SCI registration request
(CSLSCREG) to receive unsolicited output messages.

To understand if OM has terminated, specify an SCI Notify exit routine on the SCI
registration request, specifying either the RETNAME or RETTOKEN parameter.
The SCI Notify exit is called whenever there is a change in status of any member
of the IMSplex. Save the RETNAME or RETTOKEN value from the SCI registration
and use it to look for a match that indicates that the OM has terminated. The
SPOC client can then subscribe to another OM.

This request is supported in Assembler and PLX.

CSLOMSUB syntax

CSLOMSUB FUNC-DSECT syntax

Use the DSECT function of the CSLOMSUB request to include equate (EQU)
statements in your logic for the CSLOMSUB parameter list length and return and
reason codes.

►► CSLOMSUB FUNC = DSECT ►◄

CSLOMSUB request syntax

With this syntax, SPOC clients can subscribe to OM to receive unsolicited output
messages.

►► CSLOMSUB FUNC=SUBSCRIBE PARM=parm ▼

,

MBRLIST=memberlist
►

174 System Programming APIs

►
MBRLISTLEN=memberlistlen

▼

,

TYPELIST=typelist
►

►
TYPELISTLEN=typelistlen RETNAME=omname RETTOKEN=omscitoken

►

► RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLOMSUB request parameters

PARM=parm
PARM=(r1-r12)

Specifies the CSLOMSUB parameter list. The length of the parameter list must
be equal to the parameter list length equate (EQU) value that is defined by
OSUB_PARMLN.

MBRLIST=memberlist
MBRLIST=(r1-r12)

Specifies a member list that identifies the command processing clients (such as
IMS control regions) in the IMSplex from which to receive unsolicited output
messages. Do not specify the MBRLIST= parameter if you specify the
TYPELIST parameter. If you do not specify either the TYPELIST or MBRLIST
parameter, the default member list is all the command processing clients in the
IMSplex.

Use commas to separate the client names.

MBRLISTLEN=memberlistlen
MBRLISTLEN=(r1-r12)

Specifies the length of the member list that is specified on the MBRLIST
parameter.

TYPELIST=typelist
TYPELIST=(r1-r12)

Specifies a type list that identifies the valid IMSplex member types from which
to receive unsolicited output messages. Do not specify the TYPELIST
parameter if you specify the MBRLIST parameter. For valid IMSplex member
types, see the TYPE= parameter description in “CSLSCREG: registration
request” on page 240. If you do not specify either TYPELIST or MBRLIST
parameter, the default list is all command processing clients in the IMSplex.

Use commas to separate the client names.

TYPELISTLEN=typelistlen
TYPELISTLEN=(r1-r12)

Specifies the length of the type list that is specified by the TYPELIST=
parameter.

RETNAME=omname
RETNAME=(r1-r12)

Specifies an 8-byte output field to receive the name of the OM to which the
subscription request is sent.

RETTOKEN=omscitoken

Chapter 6. Writing a CSL OM client 175

RETTOKEN=(r1-r12)
Specifies a 16-byte output field to receive the OM SCI token that is returned to
the caller. This is the SCI token for the target OM address space to which SCI
sent the request.

RETCODE=returncode
RETCODE=(r1-r12)

Specifies a 4-byte field to receive the output return code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

OM or SCI provides the return code. The value of the high-order byte in the
return code identifies whether SCI (X'01') or OM (X'02') provided the return
code.

RSNCODE=reasoncode
RSNCODE=(r1-r12)

Specifies a 4-byte field to receive the output reason code. OM return codes are
defined in the CSLORR. SCI return codes are defined in the CSLSRR.

SCITOKEN=scitoken
SCITOKEN=(r1-r12)

Specifies a 16-byte field that contains the SCI token, which uniquely identifies
this connection to SCI. The SCI token is returned by a successful CSLSCREG
FUNC=REGISTER request.

CSLOMSUB return and reason codes

The return and reason codes shown in the following table can be returned on a
CSLOMSUB request.

Table 49. CSLOMSUB request return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000014' X'00005044' Unable to obtain OSUB block.

X'00005048' Unable to obtain storage for member list.

X'0000504C' Unable to obtain storage for type list.

Usage notes

If a SPOC subscribes to OM to receive unsolicited output messages, the default is
to send all messages to that subscriber. You can prevent IMS, CQS, and CSL
messages from being sent as unsolicited output by populating and maintaining a
table of messages by using the following macros.

Macro Description

CSLZUMT
Use this macro to populate table CSLZUMTU with CSL messages that
should not be routed to subscribers as unsolicited messages.

CQSUOMT
Use this macro to populate table CQSUOMTU with CQS messages that
should not be routed to subscribers as unsolicited messages.

DFSUOMT
Use this macro to populate table DFSUOMTU with IMS messages that
should not be routed to subscribers as unsolicited messages.

176 System Programming APIs

Samples of the CQSUOMTU, CSLZUMTU, and DFSUOMTU tables are provided in
the IMS sample library.

An example of the CSLZUMT macro is shown in the following example. In this
example, messages CSL2020I and CSL2021E are added to the CSLZUMTU table,
and are therefore prevented from being sent as unsolicited output messages to
subscribed clients.
CSLZUMT MESSAGE=CSL2020I
CSLZUMT MESSAGE=CSL2021E

You can also specify MESSAGE=SUPPRESS in the CQSUOMTU, CSLZUMTU, and
DFSUOMTU tables. For example, if the you code the following in message table
DFSUOMTU, messages DFSxxxxx and DFSyyyyy will be sent to OM, message
DFSzzzzz will not be sent to OM, and any other messages will not be sent to OM
because of the MESSAGE=SUPPRESS statement:
DFSUOMT MESSAGE=DFSxxxxx,SEND=YES
DFSUOMT MESSAGE=DFSyyyyy,SEND=YES
DFSUOMT MESSAGE=DFSzzzzz,SEND=NO
DFSUOMT MESSAGE=SUPPRESS

Another way to control which unsolicited output messages are sent to OM from
IMS is to use the new UOM=MTO | NONE | ALL parameter for the DFSDFxxx
and DFSCGxxx IMS PROCLIB members.
v With UOM=MTO specified, messages that are destined for the MTO only or

system console (or both) only will be sent to OM. Messages being sent to other
destinations, such as end user terminals, will not be sent to OM.

v With UOM=NONE specified, no messages will be sent to OM.
v With UOM=ALL specified, all messages will be sent to OM.

CSLOMUSB: Unsubscribe to unsolicited messages
With the CSLOMUSB request, SPOC clients can unsubscribe to OM and stop
receiving unsolicited output messages from a command processing client, such as
IMS.

This request is supported in Assembler and PLX.

CSLOMUSB syntax

CSLOMUSB FUNC-DSECT syntax

Use the DSECT function of the CSLOMUSB request to include equate (EQU)
statements in your logic for the CSLOMUSB parameter list length and return and
reason codes.

►► CSLOMUSB FUNC=DSECT ►◄

CSLOMUSB request syntax

With this syntax, SPOC clients can unsubscribe from OM to stop receiving
unsolicited output messages.

►► CSLOMUSB FUNC=UNSUBSCRIBE PARM=parm RETCODE=returncode ►

Chapter 6. Writing a CSL OM client 177

► RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLOMUSB parameters

PARM=parm
PARM=(r1-r12)

Specifies the CSLOMUSB parameter list. The length of the parameter list must
be equal to the parameter list length equate (EQU) value that is defined by
OUSB_PARMLN.

RETCODE=returncode
RETCODE=(r1-r12)

Specifies a 4-byte field to receive the output return code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

OM or SCI provides the return code. The value of the high-order byte in the
return code identifies whether SCI (X'01') or OM (X'02') provided the return
code.

RSNCODE=reasoncode
RSNCODE=(r1-r12)

Specifies a 4-byte field to receive the output reason code. OM return codes are
defined in the CSLORR. SCI return codes are defined in CSLSRR.

SCITOKEN=scitoken
SCITOKEN=(r1-r12)

Specifies a 16-byte field that contains the SCI token, which uniquely identifies
this connection to SCI. The SCI token is returned by a successful CSLSCREG
FUNC=REGISTER request.

CSLOMUSB return and reason code

The return and reason codes shown in the following table can be returned on a
CSLOMUSB request:

Table 50. CSLOMUSB request return and reason code

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

CSL OM directives
An OM directive is a function that OM defines that can be sent as a message to
OM clients to inform the OM clients of work to be processed. Any command
processing client that has registered commands to OM can be selected to perform
an OM directive.

OM directives are always issued in message protocol (PROTOCOL=MSG), that is,
asynchronously; OM therefore expects no response from the OM client, and it
continues processing without waiting for a response. The OM client is responsible
for determining whether or not to take any action in response to the directive.

When a client issues PROTOCOL=MSG, SCI sends the XML output from OM to
the client's SCI Input exit. The SCI Input exit routine's INXP_MBRPLPTR field
points to the CSLOMDIR parameter list.

178 System Programming APIs

When a client issues CSLOMI PROTOCOL=RQST, the XML output stream from
OM is sent directly to the client in the OUTPUT= parameter.

The SCI Input exit routine is responsible for notifying the client of the directive.
The client should code their SCI Input exit routine to support OM directives. The
client is responsible for determining where the function and function code are to
be defined. After the client is finished using the CSLOMDIR parameter list, it must
release the storage by issuing CSLSCBFR.

OM directives are defined in the CSLOMDIR macro, which includes:
v Command directive (ODIR_CMDD)
v CSLOMI response directive (ODIR_OMIRESPD)
v Command response directive (ODIR_CMDRESPD)
v Query response directive (ODIR_QRYRESPD)

The directives and their parameters are described in this topic.

CSL OM command directive

The OM command directive, ODIR_CMDD, is sent to a command processing client
when a command is available for processing.

The parameters for the OM command directive follow. They are passed to the SCI
Input Exit:

ODIR_COMMAND
Identifies the start of the command directive.

ODIR_CMDTKLEN=length
Contains the length of the OM command token. It is used only by OM to
identify the command instance.

ODIR_CMDTKPTR=address
Contains the address of the OM command token.

ODIR_INPUTLEN=length
Contains the length of the command input string that you enter.

ODIR_INPUTPTR=address
Contains the address of the command input string.

ODIR_VERBLEN=length
Contains the length of the command verb in normalized form.

ODIR_VERBPTR=address
Contains the address of the command verb.

ODIR_KWDLEN=length
Contains the length of the command keyword.

ODIR_KWDPTR=address
Contains the address of the command keyword.

ODIR_PARSELEN=length
Contains the length of the parsed command block.

ODIR_PARSEPTR=address
Contains the address of the parsed command block.

ODIR_CUIDLEN=length
Contains the length of the user ID that originated the command.

Chapter 6. Writing a CSL OM client 179

ODIR_CUIDPTR=address
Contains the address of the user ID that originated the command.

ODIR_CNAMELEN=length
Contains the length of the name of the client that originated the command
(that is, the name that was registered to SCI).

ODIR_CNAMEPTR=address
Contains the address of the name of the client that originated the command
(that is, the name that was registered to SCI).

ODIR_CTYPE=client type
Contains the type of client that originated the command. This is the value from
the TYPE= parameter as defined to SCI. This parameter is passed by value; the
length field is always zero.

ODIR_CSTYPLEN=length
Contains the subtype of the client that originated the command. This is the
value from the SUBTYPE= parameter as defined to SCI.

ODIR_CSTYPPTR=length
Contains the address of the subtype of the client that originated the command.

ODIR_CFLAGS=flags
Contains the OM command processing flags. These parameters are passed by
value; the length field is always zero.

ODIR_CRQTKLEN=length
Contains the length of the user request token; this parameter is used only by
the program that originated the command to identify the command instance.

ODIR_CRQTKPTR=address
Contains the address of the user request token; this parameter is used only by
the program that originated the command to identify the command instance.

ODIR_TIMEOUT=timeoutvalue
Contains the command timeout value as specified on the command. This
parameter is passed by value; the length field is always zero.

ODIR_CMDLN
The command directive length EQU.

CSL OM response directives

There are three response directives in CSLOMDIR:
v CSLOMI response (ODIR_OMIRESPD)

The CSLOMI response directive returns a response to a client regarding a
CSLOMI call. The response is sent when an error occurs and it is unclear if the
response is for a CSLOMI CMD or CSLOMI QUERY call.

v Command response (ODIR_CMDRESPD)
The command response directive returns a command response to a client that
results from a CSLOMI CMD or CSLOMCMD call.

v Query response (ODIR_QRYRESPD)
The query response directive returns a query response to a client that results
from a CSLOMI QUERY or CSLOMQRY call.

The parameters for the OM response directives are identical.

ODIR_CQRESP
Identifies the start of the command or query response.

180 System Programming APIs

ODIR_CQRSPRC=returncode
Contains the return code of the command or query response.

ODIR_CQRSPRSN=reasoncode
Contains the reason code of the command or query response.

ODIR_CQXMLLEN=length
Contains the length of the XML output being returned.

ODIR_CQXMLPTR=address
Contains the address of the XML output being returned.

ODIR_CQRT1LEN=length
Contains the length of request token 1 (RQSTTKN1).

ODIR_CQRT1PTR=address
Contains the address of request token 1 (RQSTTKN1).

ODIR_CQRT2LEN=length
Contains the length of request token 2 (RQSTTKN2).

ODIR_CQRT2PTR=address
Contains the address of request token 2 (RQSTTKN2).

ODIR_CQRSPLN
The response directive length EQU.

CSL UOM directive

The OM unsolicited output message (UOM) directive, ODIR_UOM, is sent to any
OM client that subscribes to OM. You define this directive in CSLOMDIR.

The parameters for the UOM directive are passed to the OM client's SCI Input exit
routine.

ODIR_UOM
Identifies the start of the UOM directive parameters.

ODIR_UOMXMLLEN=length
Contains the length of the XML output that is sent.

ODIR_UOMXMLPTR=address
Contains the address of the unsolicited output message, wrapped in XML
tags.

ODIR_UOMLN
The UOM directive length equate (EQU) value.

ODIR_UOMCR
Identifies the start of the command response UOM directive parameters, which
inform the subscribing client that this is a command response sent as an
unsolicited message.

ODIR_UOMXMLLEN=length
Contains the length of the XML output that is sent.

ODIR_UOMXMLPTR=address
Contains the address of the unsolicited output message, wrapped in XML
tags.

ODIR_UOMLN
The UOM directive length equate (EQU) value.

Related reference:

Chapter 6. Writing a CSL OM client 181

“CSLOMI: API request” on page 125
“CSLOMQRY: query request” on page 134

BPE-based CSL SCI user exit routines (Exit Routines)

182 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_cslsci.htm#ims_cslsci

Chapter 7. Writing a CSL RM client

The topics in this section describe the client requests and directives for writing an
RM client.

Sequence of RM client requests
If you want to use RM to manage global resources in an IMSplex for your own
product or service, you have to write one or more RM clients. An RM client uses
RM requests issued in a particular sequence to communicate with RM.

To write an RM client, you can use the set of client requests provided by RM.
These requests allow a client to access RM or resources on a resource structure, or
to coordinate an IMSplex-wide process. One example of an RM client is IMS. You
can write an RM client in assembler language.

An RM client uses RM requests to make use of RM services and resources. A client
issues SCI and RM requests to request RM services. Some of the requests must
follow a particular sequence. Other requests can be issued multiple times, in any
order, based on the processing requirements of the client.

Before an RM client can issue RM requests, it must register:
v To SCI
v To each active RM in the IMSplex, so any RM can process an RM request
v Its own resource types and associated name types to RM

The following table lists the sequence of requests issued by an RM client. The
request is listed with its purpose.

Table 51. Sequence of requests for an RM client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send RM requests to
RM through SCI.

CSLSCRDY Readies the RM client to SCI, which routes messages to the client
by client type.

CSLRMREG Registers client to RM to enable communication with RM. The
client should register to each active RM in the IMSplex, so any RM
can process an RM request. The client can also register its own
resource types and associated name types to RM.

CSLRMxxx Issues RM resource requests such as CSLRMUPD, CSLRMDEL,
CSLRMQRY to manipulate resources on a resource structure.

CSLRMPxx Issues RM process requests such as CSLRMPRI, CSLRMPRS,
CSLRMPRR, and CSLRMPRT to participate in an IMSplex-wide
process.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLRMDRG Deregisters client from RM to end communications with RM.

CSLSCDRG Deregisters from SCI.

© Copyright IBM Corp. 1974, 2018 183

The following table lists the sequence of requests issued by an RM client that is
participating in IMSplex-wide processes. The request is listed with its purpose.

Table 52. Sequence of requests for an RM client participating in IMSplex-wide process

Request Purpose

CSLRMPRI Initiate an IMSplex-wide process.

CSLRMPRS Process a step in an IMSplex-wide process. A process can have
zero, one, or more process steps. The client that initiates the
process step is the master of the step.

CSLRMPRR Respond to a process step.

CSLRMPRT Terminate an IMSplex-wide process.

Related reference:
“CSLRMREG: register clients” on page 208

Issue CSL RM requests to manage global resources
Before a client can access or change global resource information, it must register to
SCI using the CSLSCREG request. After the client registers to SCI, it must register
to RM using the CSLRMREG request. The client must issue an SCI registration
request for every IMSplex with which it intends to communicate.

Before a client can access or change global resource information, it must register to
SCI using the CSLSCREG request.

After the client registers to SCI, it must register to RM using the CSLRMREG
request.

When the client is ready to terminate, it must deregister from RM using the
CSLRMDRG request and then deregister from SCI using the CSLSCDRG request.
Related reference:
“CSLSCREG: registration request” on page 240
“CSLRMDEL: delete resources” on page 185
“CSLRMDRG: deregister clients” on page 190
“CSLRMPRI: process initiate” on page 191
“CSLRMPRR: process respond” on page 193
“CSLRMPRS: process step” on page 195
“CSLRMPRT: process terminate” on page 201
“CSLRMQRY: query resources” on page 203
“CSLRMREG: register clients” on page 208
“CSLRMUPD: update resources” on page 212

Issue CSL RM requests to coordinate IMSplex-wide processes
You can use RM-supplied requests to coordinate IMSplex-wide processes. All
clients that are to participate in the process register to RM using the RM client
registration request (CSLRMREG). After the clients are registered, several different
requests can be utilized to coordinate processes.

One client initiates the process using the RM process initiate request (CSLRMPRI).
The same or a different client initiates a step using RM process step request
(CSLRMPRS). The initiating client is called the master of the step. One RM

184 System Programming APIs

processes the request and sends RM directives to the other clients to perform the
process step. All the other clients process the step, build output, and then respond
to the step using the RM process respond request (CSLRMPRR). RM consolidates
the responses from all the clients into one output, and then returns the output to
the master of the process step. If there are more steps in the process, a client
initiates a step, and the clients perform processing and respond. Any client
terminates the process using the RM process terminate request (CSLRMPRT).
Clients can deregister using the RM client deregistration request (CSLRMDRG) if
required.

Some failures can cause RM to lose all knowledge of an IMSplex-wide process.
These include resource structure failure (and its duplex, if applicable) and failure
of all RMs. If this type of failure occurs, each RM client should clean up
knowledge of the process locally, and a master RM should terminate the process.
The first RM client to detect a problem can initiate a clean up process step by
issuing the CSLRMPRS request with the force option to enable RM to force the
process step, regardless of the error. The clients participating in the process step
clean up the process locally. The master of this process step then terminates the
process with the CSLRMPRT request.

The CSLRMPRI, CSLRMPRR, CSLRMPRS, and CSLRMPRT requests can be used to
coordinate IMSplex-wide processes.
Related reference:
“CSLRMPRI: process initiate” on page 191
“CSLRMPRR: process respond” on page 193
“CSLRMPRS: process step” on page 195
“CSLRMPRT: process terminate” on page 201

CSLRMDEL: delete resources
You can issue the CSLRMDEL request to delete one or more uniquely named
resources, or all resources by owner for a specific resource type on a resource
structure.

This request is supported in assembler language.

CSLRMDEL syntax

CSLRMDEL DSECT syntax

Use the DSECT function of a CSLRMDEL request to include the following
resources in your program:
v Equate (EQU) statement for the CSLRMDEL parameter list length
v The CSLRMDEL return codes, reason codes, and completion codes
v The CSLRDELL DSECT to map the input delete list
v The CSLRDELO DSECT to map the delete output

►► CSLRMDEL FUNC=DSECT ►◄

CSLRMDEL DELETE syntax

Use the DELETE function of a CSLRMDEL request to delete one or more uniquely
named resources on a resource structure.

Chapter 7. Writing a CSL RM client 185

►► CSLRMDEL FUNC=DELETE PARM=parm LIST=deletelist ►

► LISTLEN=deletelistlength OUTPUT=output OUTLEN=outputlength ►

►
ECB=ecb RETNAME=returnname

►

► RETCODE=returncode
RETTOKEN=returntoken

►

► RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLRMDEL parameters

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the request must issue a WAIT (or equivalent) after
receiving control from CSLRMDEL before using or examining any data
returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the delete resource list built by the caller. Each list entry
is a separate delete request. The list length can vary, depending on the number
of list entries.

CSLRDELL maps the delete resource list entry. The list contains a header and
one or more list entries. The list entries must reside in contiguous storage. Each
delete list entry contains information about what to delete.

For delete by resource name, to delete a uniquely named resource:
v Resource name - the client-defined name of the resource.
v Resource type - a client-defined physical grouping of resources on the

resource structure. Valid values are 1-255.
v Version - resource version, which is the number of times the resource has

been updated.

For delete by owner, to delete all resources owned by a particular owner for a
resource type, regardless of the resource version:
v Resource type - a client-defined physical grouping of the resources on the

resource structure. Valid values are 1-255.
v Owner - resource owner.

LISTLEN=symbol
LISTLEN=(r2-r12)

(Required) - Specifies the 4-byte delete resource list length.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned
by the CSLRMDEL request. OUTLEN contains the length of the output pointed
to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

186 System Programming APIs

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length
output returned by the CSLRMDEL request. The output contains a header and
one or more delete entries for resource deletes that were attempted. The output
length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The CSLRDELO macro maps the output that is returned. The output contains a
header and one or more list entries.

The output header contains the following parameters:
v Eyecatcher
v Output length
v CSLRDELO version
v CSLRDELO header length (offset to start of entries)
v CSLRDELO entry length
v Resource entry count

Each output entry represents a resource delete that failed. Each entry contains
the following parameters:
v Output entry length - the list entry length
v Name type - a client-defined value associated with a resource type that

ensures uniqueness of client-defined resource names within a name type.
Valid values are 1-255.

v Resource name
v Resource type
v Delete type
v Version - resource version of an existing resource if the delete request failed

because of a version mismatch.
v Owner - resource owner of an existing resource if the delete failed because

of a version mismatch and the option to read the owner was set.
v Completion code for the delete request. Completion codes are mapped by

CSLRRR.

Possible completion codes are:

X'00000008'
Invalid resource type.

X'00000010'
Version mismatch. The version specified on input does not match the
resource's version, so delete fails.

X'00000018'
Resource type is not registered. The resource type must be registered by
using a CSLRMREG request.

X'00000024'
Resource structure is unavailable.

X'00000038'
Delete failed because of CQS internal error.

X'0000003C'
Delete failed because RM incorrectly built the CQSDEL list entry.

Chapter 7. Writing a CSL RM client 187

The output buffer is not preallocated by the caller. After being returned from
the request, this word contains the address of a buffer containing the delete
output. It is the caller's responsibility to release this storage by issuing the
CSLSCBFR FUNC=RELEASE request when it is through with the storage. The
length of the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - specifies the CSLRMDEL parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RDEL_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM
return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.
Possible return codes are described in the following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the
caller. This is the CSL member name of the target RM address space to which
SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the
caller. This is the SCI token for the target RM address space to which SCI sent
the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM
reason codes are defined in CSLRRR. SCI reason codes are defined in CSLSRR.
Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLRMDEL return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLRMDEL request. Also included is the meaning of a reason code (that is, what
possibly caused it).

Table 53. CSLRMDEL return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002100' The delete list length is invalid.

X'00002108' The delete list address is invalid.

188 System Programming APIs

Table 53. CSLRMDEL return and reason codes (continued)

Return code Reason code Meaning

X'00002110' The version in the list header (DELL_PVER) is zero,
which is invalid. The list version must be set in the list
header to the maximum list version
(DELL_PVERMAX).

X'00002114' The list header length is invalid. The list header length
cannot be zero or greater than the list length that was
passed in. The list header length (DELL_HDRLEN)
must be set in the list header to the list header length.

X'00002200' One of the list entries contains an invalid resource
type, such as zero. RM assumes that the rest of the list
is invalid.

X'0000220C' One of the list entries contains one or more invalid
delete options. RM assumes that the rest of the list is
invalid.

X'00002210' A resource name or owner is required.

X'00002214' The version is invalid.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one, but not all, list
entries. Check the completion code in each list entry in
the OUTPUT buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion
code in each list entry in the OUTPUT buffer for
individual errors.

X'00003008' The request failed for one or more list entries and all
failures were version mismatches. Check the
completion code in each list entry in the OUTPUT
buffer for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the
request again, which attempts to route the request to a
different RM with an available CQS.

X'00004100' The requested version is not supported. The client
compiled with a version of CSLRMDEL that is not
supported by RM. All RMs must be migrated to a new
release before IMS is migrated to a new release that
uses a new CSLRMDEL function.

X'00004104' The list version is not supported. The client created the
delete list at a version that is not supported by RM. All
RMs must be migrated to a new release before the
client is migrated to a new release that uses a new
CSLRMDEL function.

X'03000014' X'00005000' Storage allocation for the delete output buffer failed.

X'00005120' Storage allocation for the CQSDEL buffer failed.

X'00005200' The CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built
the request input.

Related concepts:
“Issue CSL RM requests to manage global resources” on page 184

Chapter 7. Writing a CSL RM client 189

CSLRMDRG: deregister clients
The deregister request is issued by a client when the client no longer wants to
process resource requests or IMSplex-wide process requests from RM. The
deregister request removes client information from RM and stops RM from
sending new resource requests to the client. Some information about the client is
retained that can affect IMSplex-wide processes.

This request is issued by resource processing clients such as the IMS control region.

This request is supported in assembler.

CSLRMDRG syntax

CSLRMDRG DSECT syntax

CSLRMDRG deregister syntax

Use the DEREGISTER function of a CSLRMDRG request to deregister from RM.

►► CSLRMDRG FUNC=DEREGISTER PARM=parm
OPTWORD1=deregisteroptions

►

► RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLRMDRG parameters

OPTWORD1=symbol
OPTWORD1=(r2-r12)

(Optional) - Specifies a 4-byte field containing deregistration options.
CSLRMDRG FUNC=DSECT generates the equates for deregistration options.

X'80000000'
Remove client from IMSplex. Delete all knowledge of the client.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMDRG parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RDRG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. RM
return codes are defined in CSLRRR. RM does not return a response to the
CSLRMDRG request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI
reason codes are defined in CSLSRR. RM does not return a response to the
CSLRMDRG request.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

190 System Programming APIs

Related concepts:
“Issue CSL RM requests to manage global resources” on page 184

CSLRMPRI: process initiate
With the CSLRMPRI request, a client can initiate a process across an IMSplex. RM
ensures that only one IMSplex-wide process of a type can be in progress at one
time. The process initiation fails if any other IMSplex-wide process of the type is in
progress.

This request is supported in assembler language.

CSLRMPRI syntax

CSLRMPRI DSECT syntax

Use the DSECT function of a CSLRMPRI request to include equate (EQU)
statements in your program for the length of the CSLRMPRI parameter list.

►► CSLRMPRI FUNC=DSECT ►◄

CSLRMPRI INITIATE syntax

Use the INITIATE function of a CSLRMPRI request to initiate an IMSplex-wide
process.

►► CSLRMPRI FUNC=INITIATE PARM=parm PRCNAME=processname ►

► PRCTOKEN=processtoken PRCTYPE=processtype
ECB=ecb

►

►
RETNAME=returnname RETTOKEN=returntoken

RETCODE=returncode ►

► RSNCODE=reasoncode SCITOKEN=scitoken UOWTOKEN=uowtoken ►◄

CSLRMPRI parameters

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the request must issue a WAIT (or equivalent) after
receiving control from CSLRMPRI before using or examining any data returned
by this request (including the RETCODE and RSNCODE fields).

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRI parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RPRI_PARMLN.

PRCNAME=symbol
PRCNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the process name. The process

Chapter 7. Writing a CSL RM client 191

name is client defined and has no meaning to RM. RM uses the process name
and the process type to ensure that only one instance of a process of a
particular process type is in progress at one time.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field to receive the process token returned to
the caller. The process token uniquely identifies the process instance. The
process token returned is zero, if the IMSplex is defined with a resource
structure. The process token is non-zero, if the IMSplex is not defined with a
resource structure. The process token must be specified as input on any
subsequent CSLRMPRS, CSLRMPRR, or CSLRMPRT request.

PRCTYPE=symbol
PRCTYPE=(r2-r12)

(Required) - Specifies a 1-byte client-defined process type. Only one process of
a particular type can be in progress at any one time. The process type can be 1
through 255.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. RM
return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.
Possible return codes are described in the following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the
caller. This is the CSL member name of the target RM address space to which
SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the
caller. This is the SCI token for the target RM address space to which SCI sent
the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM
reason codes are defined in CSLRRR. SCI reason codes are defined in CSLSRR.
Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

UOWTOKEN=symbol
UOWTOKEN=(r2-r12)

(Required) - specifies a 16-byte field containing the unit of work token. The
UOW token uniquely identifies an instance of this process and ties all of the
process steps together. The UOW token must be specified on the RM process
step request, CSLRMPRS. The UOW token is client-defined and has no
meaning to RM.

192 System Programming APIs

CSLRMPRI return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLRMPRI request. Also included is the meaning of a reason code (that is, what
possibly caused it).

Table 54. CSLRMPRI return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002208' The process type is invalid.

X'00002310' The UOW token is invalid.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the
request to attempt routing the request to another RM
with an available CQS.

X'00004100'
The requested version is not supported. The client
compiled with a version of CSLRMPRI that is not
supported by RM. All RMs must be migrated to a new
release before IMS is migrated to a new release that
uses a new CSLRMPRI function.

X'00004120' A process of the same type is already in progress. This
process initiation request is rejected. Try the process
again later.

X'0000412C' A different process of the same type is already in
progress. This process initiation request is rejected. Try
the process again later.

X'03000014' X'00005114' The process block allocation failed.

X'00005200' The CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built
the request input.

X'00005208' The resource structure is not available.

X'0000520C' The resource structure is full.

X'00005210' RM is unable to add the process block to hash table.

X'00005218' RM is unable to scan the process block in hash table.

X'00005220' RM is unable to get the process latch.

Related concepts:
“Issue CSL RM requests to manage global resources” on page 184
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 184

CSLRMPRR: process respond
By issuing the CSLRMPRR request, a client can respond to a step in an
IMSplex-wide process.

This request is supported in assembler language.

CSLRMPRR syntax

CSLRMPRR DSECT syntax

Chapter 7. Writing a CSL RM client 193

Use the DSECT function of a CSLRMPRR request to include equate (EQU)
statements in your program for the length of the CSLRMPRR parameter list.

►► CSLRMPRR FUNC=DSECT ►◄

CSLRMPRR RESPOND syntax

Use the RESPOND function of a CSLRMPRR request to respond to a step in an
IMSplex-wide process.

►► CSLRMPRR FUNC=RESPOND PARM=parm PRCTOKEN=processtoken ►

► RMNAME=rmname
OUTPUT=output OUTLEN=outputlength

►

► RETCODE=returncode RSNCODE=reasoncode RQSTRC=processreturncode ►

► RQSTRSN=processreasoncode SCITOKEN=scitoken ►◄

CSLRMPRR parameters

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte input field that contains the length of the
process step output buffer. OUTLEN= contains the length of the output
pointed to by the OUTPUT= parameter.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field that contains the address of the output
buffer built by the caller. The output is client-defined and contains the results
from this client's processing of the step. The output length is returned in the
OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRR parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RPRR_PARMLN.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field that contains the process token that
uniquely identifies the process. This token was returned on a successful
CSLRMPRI FUNC=INITIATE request.

If the IMSplex is defined with a resource structure, the process token is zero.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI
return codes are defined in CSLSRR. RM does not return a response to
CSLRMPRR.

RMNAME=symbol
RMNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the RM name to which to send
the process step response. This is the RM that originated the process step.

194 System Programming APIs

RQSTRC=symbol
RQSTRC=(r2-r12)

(Required) - Specifies a 4-byte field that contains the return code to be passed
to the originator of the process step on output. The return code is defined by
the process step originating client and indicates the result of the process step.

RQSTRSN=symbol
RQSTRSN=(r2-r12)

(Required) - Specifies a 4-byte field that contains the reason code to be passed
to the originator of the process step on output. The reason code is defined by
the process step originating client and indicates the result of the process step.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM
reason codes are defined in CSLRRR. RM does not return a response to
CSLRMPRR.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLRMPRR return and reason codes

CSLRMPRR is sent to the target client address space using the SCI message
protocol; RM does not return codes to CSLRMPRR. All return and reason codes
that are applicable to the CSLSCMSG request can be returned on a CSLRMPRR
request.
Related concepts:
“Issue CSL RM requests to manage global resources” on page 184
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 184

CSLRMPRS: process step
By issuing the CSLRMPRS request, a client can perform a step in an IMSplex-wide
process that can consist of zero, one, or more steps.

This request is supported in assembler language.

CSLRMPRS syntax

CSLRMPRS DSECT syntax

Use the DSECT function of a CSLRMPRS request to include equate (EQU)
statements in your program for the length of the CSLRMPRS parameter list and
the process step request options.

►► CSLRMPRS FUNC=DSECT ►◄

CSLRMPRS PROCESS syntax

Use the PROCESS function of a CSLRMPRS request to perform a step in an
IMSplex-wide process.

Chapter 7. Writing a CSL RM client 195

►► CSLRMPRS FUNC=PROCESS PARM=parm PRCNAME=processname ►

► PRCTOKEN=processtoken PRCTYPE=processtype STEPNAME=processstepname ►

► LIST=list LISTLEN=listlength ►

►
CDATA=clientdata CDATALEN=clientdatalength

OUTPUT=outputaddress ►

► OUTLEN=outputlength UOWTOKEN=uowtoken
TIMEOUT=300

TIMEOUT=timeoutvalue
►

►
OPTWORD1=processstepoptions RETNAME=returnname

►

►
RETTOKEN=returntoken ECB=ecb

RETCODE=returncode ►

► RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLRMPRS parameters

CDATA=symbol
CDATA=(r2-r12)

(Optional) - Specifies a variable length area that contains client data to send to
clients participating in the IMSplex-wide process step. The client data has
meaning to clients, not to RM.

CDATALEN=symbol
CDATALEN=(r2-r12)

(Optional) - Specifies a 4-byte input field that contains the client data length. If
this parameter is specified, CDATA= must also be specified.

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the request must issue a WAIT (or equivalent) after
receiving control from CSLRM PRS before using or examining any data
returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the variable length input list that contains the list of
clients to which to send the process step.

The process step list contains a list header and one or more list entries. The list
header contains the list header length, the parameter list version, the list entry
length, the list entry count, and a user data area. The list header user data area
is passed back to the requestor in the list header of the process step output.
Each list entry contains the client name and an optional user data area. The

196 System Programming APIs

user data area is passed back to the requestor in a list entry in the process step
output. The list entries must reside in contiguous storage.

The CSLRPRSL macro maps the process step list.

LISTLEN=symbol
LISTLEN=(r2-r12)

(Required) - Specifies a 4-byte input field that contains the process step list
length.

OPTWORD1=symbol
OPTWORD1=(r2-r12)

(Optional) - Specifies a 4-byte field containing the process step options.
CSLRMPRS FUNC=DSECT maps the process step options.

X'80000000'
Force process step after error. Take over a process step in progress, if a
process step is already in progress for an IMSplex member that is not
active. Initiate a process and perform a process step if no process is known
to be in progress due to an error such as resource structure failure.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output buffer
returned by the CSLRMPRS request. After being returned by request, this word
contains the length of the buffer pointed to by the OUTPUT= parameter. If no
output is built, the output buffer length is zero. This can occur if an error is
detected before any output can be built.

It is the caller's responsibility to release this storage by issuing the CSLSCBFR
FUNC=RELEASE request when it is through with the storage.

OUTPUT=outputaddress
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length
output buffer returned by the CSLRMPRS request. The output buffer contains
the client-defined data from each participating client and indicates the results
of the process step. The output buffer length is returned in the OUTLEN=
field.

If no output is built, the output buffer address is zero. This can occur if an
error is detected before any output can be built.

The CSLRPRSO macro maps the output buffer that is returned. The output
buffer header contains an eyecatcher, the output buffer length, the CSLRPRSO
version, the header length (offset to start of the process list entries), the list
entry minimum size, the process list entry count, a user data area, and the
CSLRPRSO create time stamp. The user data area contains the user data passed
in the input process step list header.

Each output buffer entry represents the results from a client that participated
in a process step. Each entry contains the following:
v Entry length
v Client name
v User data - the user data passed in the input process step list
v Process step response length
v Process step response
v Completion code (CSLRRR) - possible completion codes are:

Chapter 7. Writing a CSL RM client 197

X'00000000'
Client processes step successfully.

X'00000044'
Client did not respond before the process step timed out.

X'00000048'
The client was not sent the process step request because the client is not
registered to RM.

This buffer is not preallocated by the caller. After the request returns it, this
word contains the address of a buffer containing information from the IMSplex
members participating in the process. It is the caller's responsibility to release
this storage by issuing the CSLSCBFR FUNC=RELEASE request when it is
through with the storage.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRS parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RPRS_PARMLN.

PRCNAME=symbol
PRCNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the process name. The process
name is client defined and has no meaning to RM. RM uses the process name
and type to ensure that only one instance of a process, with a particular
process type, is in progress at one time.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field that contains the process token that
uniquely identifies the process. This token was returned on a successful
CSLRMPRI FUNC=INITIATE request.

If the IMSplex is defined with a resource structure, the process token is zero.

PRCTYPE=symbol
PRCTYPE=(r2-r12)

(Required) - Specifies a 1-byte client-defined process type. Only one process of
a particular type can be in progress at any one time. The process type can be 1
through 255.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI
return codes are defined in CSLSRR. SCI return codes are defined in CSLSRR.
Possible return codes are described in the following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the
caller. This is the CSL member name of the target RM address space to which
SCI sent the request.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the
caller. This is the CSL member name of the target RM address space to which
SCI sent the request.

198 System Programming APIs

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM
reason codes are defined in CSLRRR. SCI reason codes are defined in CSLSRR.
Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

STEPNAME=symbol
STEPNAME=(r2-r12)

(Required) - Specifies an 4-byte field containing the process step name. The
process step name is client-defined and has no meaning to RM. Each process
step must have a different name.

TIMEOUT=timeoutvalue
TIMEOUT=symbol
TIMEOUT=(r2-r12)

(Optional) - Specifies a 4-byte field containing the process step timeout value
in seconds. If the timeout value is reached during the processing of the step,
before all of the participants have responded to the process step, RM
terminates the process step and returns the available responses. If the specified
timeout value is too small, an incomplete response is returned. The TIMEOUT
value ensures a response is returned even if a client processing the step is
unable to respond.

The default timeout value is 5 minutes (300 seconds). Specify a negative one
(-1) value if no timeout is required for the request.

The TIMEOUT value is the shortest possible time value that can cause the
process step to time out. RM internally sets a timer to pop every 5 seconds.
When the RM timer pops, RM checks to see if any process step timeout value
has expired. When the process step timeout value is less than the RM timer
value, the actual length of step processing can be longer than the user specified
TIMEOUT value.

UOWTOKEN=symbol
UOWTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the unit of work token. The
UOW token uniquely identifies an instance of this process and ties all of the
process steps together. The UOW token must match the UOW token specified
on the CSLRMPRI FUNC=INITIATE request. The UOW token is client-defined
and has no meaning to RM.

CSLRMPRS return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLRMPRS request. Also included is the meaning of a reason code (that is, what
possibly caused it).

Table 55. CSLRMPRS return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

Chapter 7. Writing a CSL RM client 199

Table 55. CSLRMPRS return and reason codes (continued)

Return code Reason code Meaning

X'00002110' The list version in the list header (PRSL_PVER) is zero,
which is invalid. The list version must be set in the list
header to the maximum list version
(PRSL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header
length (PRSL_HDRLEN) must be set in the list header
to the list header length.

X'00002140' The client data length cannot be zero or greater than
256.

X'00002208' The process type is invalid.

X'0000220C' The process step options are invalid.

X'00002300' The process token is invalid.

X'00002310' The UOW token is invalid.

X'0300000C' X'00003000' The process step succeeded for at least one client, but
not all. Check the completion code in each list entry in
the OUTPUT buffer for individual errors.

X'00003004' The request failed for all clients. Check the completion
code in each list entry in the OUTPUT buffer for
individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the
request to attempt routing the request to another RM
with an available CQS.

X'00004100' The requested version is not supported. The client
compiled with a version of CSLRMPRS that is not
supported by RM. All RMs must be migrated to a new
release before IMS is migrated to a new release that
uses a new CSLRMPRS function.

X'00004104' The version of the list is not supported. The client
created the process step list at a version that is not
supported by RM. All RMs must be migrated to a new
release before the client is migrated to a new release
that uses a new CSLRMPRS function.

X'00004108' The SCI address space is unavailable. SCI was available
to send the CSLRMPRS request to RM. RM tried
coordinating the process step by sending SCI messages
to the active clients. The SCI request to send a message
to SCI failed for one or more active clients that did not
have an SCI active on the system. Some of the clients
might have successfully processed the step.

X'00004124' A process is not in progress. The process step is
rejected.

X'00004128' A process step is already in progress. The process step
is rejected. If a process step is already in progress
because an error occurred while a previous process
step was in progress, and the owner of that process
step is still active, the next process step must be
specified by the owner of the process step with the
FORCE option.

X'03000014' X'00005000' Storage allocation for the output buffer failed. The
process step might or might not have succeeded.

200 System Programming APIs

Table 55. CSLRMPRS return and reason codes (continued)

Return code Reason code Meaning

X'00005114' The process block allocation failed.

X'00005118' The process step response block allocation failed.

X'00005200' The CQS request resulted in an unexpected error.

X'00005204' The CQS request failed because RM incorrectly built
the request input.

X'00005208' The resource structure is not available.

X'00005210' RM is unable to add the process block to hash table.

X'00005214' RM is unable to find the process block in hash table.

X'00005218' RM is unable to scan the process block in hash table.

X'00005300' An SCI error was encountered. SCI was available to
send the CSLRMPRS request to RM. RM tried
coordinating the process step by sending SCI messages
to the active clients. The SCI request to send a message
to SCI failed with an error for one or more active
clients. Some of the clients might have successfully
processed the step.

Related concepts:
“Issue CSL RM requests to manage global resources” on page 184
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 184

CSLRMPRT: process terminate
You can issue the CSLRMPRT request to terminate an IMSplex-wide process. Any
client that is participating in the process can issue a CSLRMPRT FUNC=
TERMINATE request to terminate the process.

This request is supported in assembler language.

CSLRMPRT syntax

The syntax for the CSLRMPRT request follows.

DSECT syntax

Use the DSECT function of a CSLRMPRT request to include equate (EQU)
statements in your program for the length of the CSLRMPRT parameter list.

►► CSLRMPRT FUNC=DSECT ►◄

TERMINATE syntax

Use the TERMINATE function of a CSLRMPRT request to terminate an
IMSplex-wide process.

►► CSLRMPRT FUNC=TERMINATE
OPTWORD1=processtermoptions

PARM=parm ►

Chapter 7. Writing a CSL RM client 201

► PRCNAME=processname PRCTOKEN=processtoken PRCTYPE=processtype ►

► UOWTOKEN=uowtoken
RETNAME=returnname RETTOKEN=returntoken

►

► RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLRMPRT parameters

OPTWORD1=symbol
OPTWORD1=(r2-r12)

(Optional) - Specifies a 4-byte field containing the process terminate options.
CSLRMPRT FUNC=DSECT maps the process terminate options. OPTWORD1
can have a value of X'80000000'.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMPRT parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RPRT_PARMLN.

PRCNAME=symbol
PRCNAME=(r2-r12)

(Required) - Specifies an 8-byte field containing the process name. The process
name is client defined and has no meaning to RM. RM uses the process name
and the process type to ensure that only one instance of a process of a
particular process type is in progress at one time.

PRCTOKEN=symbol
PRCTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field that contains the process token that
uniquely identifies the process. This token was returned on a successful
CSLRMPRI FUNC=INITIATE request.

If the IMSplex is defined with a resource structure, the process token is zero.

PRCTYPE=symbol
PRCTYPE=(r2-r12)

(Required) - Specifies a 1-byte client-defined process type. Only one process of
a particular type can be in progress at any one time. The process type can be 1
through 255.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI
return codes are defined in CSLSRR. RM does not return a response to
CSLRMPRT.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the name of the RM address
space to which SCI sent the process terminate request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive the SCI token of the RM address
space to which SCI sent the process terminate request.

RSNCODE=symbol

202 System Programming APIs

RSNCODE=(r2-r12)
(Required) - Specifies a 4-byte field to receive the reason code on output. SCI
reason codes are defined in CSLSRR. RM does not return a response to the
CSLRMPRT request.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

UOWTOKEN=symbol
UOWTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the unit of work token. The
UOW token uniquely identifies an instance of this process and ties all of the
process steps together. The UOW token must match the UOW token specified
on the CSLRMPRI FUNC=INITIATE request. The UOW token is client-defined
and has no meaning to RM.

CSLRMPRT return and reason codes

CSLRMPRT is sent to the target client address space using the SCI message
protocol. All return and reason codes that are applicable to the CSLSCMSG request
can be returned on a CSLRMPRT request. CSLRMPRT does not issue any
additional return and reason codes.
Related concepts:
“Issue CSL RM requests to manage global resources” on page 184
“Issue CSL RM requests to coordinate IMSplex-wide processes” on page 184

CSLRMQRY: query resources
You can issue the CSLRMQRY request to query one or more uniquely named
resources on a resource structure.

This request is supported in assembler language.

CSLRMQRY syntax

CSLRMQRY DSECT syntax

Use the DSECT function of a CSLRMQRY request to include the following inputs
and outputs in your program:
v Equate (EQU) statements for the length of the CSLRMQRY parameter list
v The CSLRMQRY return codes, reason codes, and completion codes
v The CSLRQRYL DSECT to map the input query list
v The CSLRQRYO DSECT to map the query output

►► CSLRMQRY FUNC=DSECT ►◄

CSLRMQRY QUERY syntax

Use the QUERY function of a CSLRMQRY request to query one or more uniquely
named resources on a resource structure.

Chapter 7. Writing a CSL RM client 203

►► CSLRMQRY FUNC=QUERY PARM=parm LIST=querylist ►

► LISTLEN=querylistlength
RETNAME=returnname

►

► OUTPUT=output OUTLEN=outputlength
RETTOKEN=returntoken

►

►
PROTOCOL=RQST

RETCODE=returncode
ECB=ecb

►

► RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLRMQRY parameters

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the request must issue a WAIT (or equivalent) after
receiving control from CSLRM QRY before using or examining any data
returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the query resource list built by the caller. Each list entry
is a separate query request. The list length can vary, depending upon the
number of list entries.

The list contains a header and one or more list entries. The list entries must
reside in contiguous storage. Each query list entry contains the following:
v Resource name - the client-defined name of the resource. The resource name

can be a wildcard name. If it is a wildcard name, all resources that match
the wildcard name are returned.

v Resource type - the resource type is a client-defined physical grouping of
resources on the resource structure. Valid values are 1-255.

v Query options (optional) - options that indicate special processing to
perform for the query.

v Owner (optional) - the owner of the resource. If you specify the owner, the
resource is returned only if the resource name and owner match a resource
on the resource structure. Specify binary zeroes to omit the owner, and the
query returns the owner name in the RQYO_OWNER field in the output list
entry.

v User (optional) - a user field set by the caller, which is passed back in the
output list entry associated with the input list entry.

LISTLEN=symbol
LISTLEN=(r2-r12)

(Required) - Specifies the 4-byte query resource list length.

OUTLEN=symbol

204 System Programming APIs

OUTLEN=(r2-r12)
(Required) - Specifies a 4-byte field to receive the length of the output buffer
returned by the CSLRMQRY request. OUTLEN contains the length of the
output buffer pointed to by the OUTPUT parameter. The length of the output
data (header and entries) is passed in the output header data, mapped by
CSLRQRYO.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length
output returned by the CSLRMQRY request. The output contains a header and
one or more query entries for resource queries that were attempted. The output
length is returned in the OUTLEN field.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The CSLRQRYO macro maps the output that is returned. The output contains
a header and one or more list entries. The header contains the following:
v an eyecatcher
v the output length
v CSLRQRYO version
v CSLRQRYO header length (offset to start of entries)
v minimum entry length (offset to DATA2)
v resource entry count
v time stamp

Each output entry represents a resource query that was attempted. Each entry
contains the following parameters:
v Output entry length - the list entry length can vary, depending upon

whether DATA2 is returned.
v Name type - the name type is a client-defined value associated with a

resource type that ensures uniqueness of client-defined resource names
within a name type. Valid values are 1-255.

v Resource name - client-defined name of the resource.
v Resource type - the resource type is a client-defined physical grouping of

resources on the resource structure. Valid values are 1-255.
v Version - the resource version, which is the number of times the resource has

been updated.
v DATA2 flag byte - flag byte indicating if DATA2 was read.
v Resource name status flag - the resource name status indicates how the

resource name in the query output list entry is associated with the input
resource parameter. This enables you to tie the input resource parameter to
the output query list entries that are generated. The following resource name
status are possible:

Specific parameter
A specific resource name was specified. This query list entry contains the
resource name that matches the input parameter.

Wildcard Parameter
A wildcard parameter was specified. This query list entry contains the
wildcard parameter and a completion code. This query list entry does
not contain information about a specific resource. If the completion code
is zero, one or more wildcard match list entries follow.

Wildcard match
A wildcard parameter was specified. This entry contains information

Chapter 7. Writing a CSL RM client 205

about one resource that matches the input wildcard parameter. All
wildcard match list entries follow contiguously after a wildcard
parameter list entry.

v Owner - owner of a resource.
v DATA1- a small piece of client data (fixed length, contained in the adjunct

area of a data entry) associated with an existing resource.
v DATA2 length - length of a large piece of client data associated with an

existing resource, if DATA2 exists and the option to read DATA2 was set.
v Optional User field - optional 4 byte user field passed back to the caller in

the output list entry associated with the input list entry.
v DATA2 - a large piece of client data (variable length, contained in one or

more data elements of a data entry) associated with an existing resource, if
DATA2 exists, and the option to read DATA2 was set. The maximum size of
DATA2 is 61312 bytes (X'EF80').

v Completion code for the query request - completion codes are mapped by
CSLRRR. Possible completion codes are:

X'00000000'
Query request succeeded. At least one resource matching the query
parameters is returned in the output buffer specified by OUTPUT=.

X'00000004'
No resources found.

X'00000008'
Invalid resource type.

X'0000000C'
Invalid name type.

X'00000024'
Resource structure is unavailable.

X'00000034'
Invalid options specified.

X'00000038'
Query failed because of CQS internal error.

X'0000003C'
Query failed because RM incorrectly built the CQSBRWSE list entry.

The output buffer is not preallocated by the caller. After the request returns it,
this word contains the address of a buffer containing the query output. It is the
caller's responsibility to release this storage by issuing the CSLSCBFR
FUNC=RELEASE request when it is through with the storage. The length of
the buffer is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMQRY parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RQRY_PARMLN.

PROTOCOL=RQST
(Optional) - SCI protocol for sending the request to RM. RQST sends the query
request using SCI request interface.

RETCODE=symbol

206 System Programming APIs

RETCODE=(r2-r12)
(Required) - specifies a 4-byte field to receive the return code on output. RM
return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.
Possible return codes are described in the following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the
caller. This is the CSL member name of the target RM address space to which
SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the
caller. This is the SCI token for the target RM address space to which SCI sent
the request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM
reason codes are defined in CSLRRR. SCI reason codes are defined in CSLSRR.
Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLRMQRY return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLRMQRY request. Also included is the meaning of a reason code (that is, what
possibly caused it).

Table 56. CSLRMQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000004' X'00001000' No resources were found.

X'03000008' X'00002000' The client is not registered.

X'00002100' The query-list length is invalid.

X'00002108' The query-list address is invalid.

X'00002110' The list version in the list header (QRYL_PVER) is
zero, which is invalid. The list version must be set in
the list header to the maximum list version
(QRYL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header
length (QRYL_HDRLEN) must be set in the list header
to the list header length.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one list entry, but
not all. Check the completion code in each query list
entry in the OUTPUT buffer for individual errors.

Chapter 7. Writing a CSL RM client 207

Table 56. CSLRMQRY return and reason codes (continued)

Return code Reason code Meaning

X'00003004' The request failed for all entries. Check the completion
code in each query list entry in the OUTPUT buffer for
individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the
request again to attempt routing the request to another
RM with an available CQS.

X'00004100' The requested version is not supported. The client
compiled with a version of CSLRMQRY that is not
supported by RM. All RMs must be migrated to a new
release before IMS is migrated to a new release that
uses a new CSLRMQRY function.

X'00004104' The list version is not supported. The client created the
query list at a version that is not supported by RM. All
RMs must be migrated to a new release before the
client is migrated to a new release that uses a new
CSLRMQRY function.

X'03000014' X'00005000' Storage allocation for the query output buffer failed.

X'00005108' Storage allocation for the CQSBRWSE buffer failed.

X'00005200' The CQS request resulted in an unexpected error.

X'00005204' The CQS request failed because RM incorrectly built
the request input.

Related concepts:
“Issue CSL RM requests to manage global resources” on page 184

CSLRMREG: register clients
You use the CSLRMREG request to register a client to RM and, optionally, to
register the client's resource types and associated name types. The client being
registered to RM must be authorized to issue a CSLRMREG request. However, you
cannot register a client if an IMSplex-wide process is in progress.

You must register a client to RM before the client can issue any other RM requests.
After the client is registered, it must participate in any IMSplex-wide processes that
are performed. You must register the client to all RMs that are active in the
IMSplex. If registration to an RM fails, you must deregister the client from any
RMs to which the client had successfully registered. If an RM fails, register with it
when it restarts.

You can register the same client multiple times. For example, you might need to
specify the resource list for the client after the client is already registered.
Optionally, register resource types to RM along with the client to define the
resource types to RM and associate a name type with each resource type. You must
register resource types before you can specify them in other requests. You cannot
register the client if the resource type and name type associations do not match
those already registered previously.

Resource-processing clients, such as the IMS control region, issue this request.

This request is supported in assembler language.

208 System Programming APIs

CSLRMREG syntax

CSLRMREG DSECT syntax

Use the DSECT function of a CSLRMREG request to include the following inputs
and outputs in your program:
v Equate (EQU) statements for the length of the CSLRMREG parameter list
v The CSLRMREG return codes, reason codes, and completion codes
v The CSLRREGL DSECT to map the input registration list
v The CSLRREGO DSECT to map the register output

►► CSLRMREG FUNC=DSECT ►◄

CSLRMREG REGISTER syntax

Use the CSLRMREG request to register a client to RM and, optionally, to register
the client's resource types and associated name types to RM.

►► CSLRMREG FUNC=REGISTER RMNAME=rmname OUTLEN=outputlength ►

► OUTPUT=output
LIST=reglist LISTLEN=reglistlength

►

► PARM=parm RETCODE=returncode
ECB=ecb

►

► RSNCODE=reasoncode SCITOKEN=scitoken ►◄

CSLRMREG parameters

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the request must issue a WAIT (or equivalent) after
receiving control from CSLRMREG before using or examining any data
returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Optional) - Specifies the registration list built by the caller. Each list entry is a
separate resource type registration. If a registration list is specified when no
resource structure is defined, it is ignored.

The CSLRREGL macro maps the registration list entry. The list contains a
header and one or more list entries. The list entries must reside in contiguous
storage. Each registration list entry contains the following:
v Resource type
v Name type

LISTLEN=symbol
LISTLEN=(r2-r12)

(Optional) - Specifies the 4-byte registration list length. LISTLEN is required if
LIST is specified.

Chapter 7. Writing a CSL RM client 209

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned
by the CSLRMREG request. OUTLEN contains the length of the output pointed
to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length
output returned by the CSLRMREG request. The output contains a header and
zero, one, or more registration entries for registrations that were attempted.
The output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The CSLRREGO macro maps the output that is returned. The output contains a
header and zero, one, or more list entries. The output header contains the
following:
v Eyecatcher
v Output length
v CSLRREGO version
v CSLRREGO header length (offset to start of entries)
v CSLRREGO entry length
v Registration list count
v Time stamp
v Registration status
v Structure version

Each output entry represents a registration request that was attempted. Each
entry contains the following:
v Resource type
v Name type
v Completion code for the registration request. Completion codes are mapped

by CSLRRR. Possible completion codes are:

X'00000000'
Register succeeded.

X'00000008'
Invalid resource type. The resource type cannot be zero.

X'0000000C'
Invalid name type. The name type cannot be zero, or the resource type is
already defined with a different name type.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMREG parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RREG_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM

210 System Programming APIs

return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.
Possible return codes are described in the following table.

RMNAME=symbol
RMNAME=(r2-r12)

(Required) - Specifies an 8-byte RM name to which to send the registration
request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM
reason codes are defined in CSLRRR. SCI reason codes are defined in CSLSRR.
Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLRMREG return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLRMREG request. Also included is the meaning of a reason code (that is, what
possibly caused it).

Table 57. CSLRMREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000004' X'00001100' The request completed successfully but the LIST is
ignored. No resource structure is defined.

X'03000008' X'00002100' The registration-list length is invalid.

X'00002108' The registration-list address is invalid.

X'00002110' The list version in the list header (REGL_PVER) is zero,
which is invalid. The list version must be set in the list
header to the maximum list version
(REGL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header
length (REGL_HDRLEN) must be set in the list header
to the list header length.

X'0300000C' X'00003000' The request is valid for at least one list entry, but not
all. The registration for the valid list entries is not
performed and the client registration is rejected. Check
the completion code in each list entry in the OUTPUT
buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion
code in each list entry in the OUTPUT buffer for
individual errors.

X'03000010' X'00004010' The client is not authorized.

X'00004100' The requested version is not supported. The client
compiled with a version of CSLRMREG that is not
supported by RM. All RMs must be migrated to a new
release before IMS is migrated to a new release that
uses a new CSLRMREG function.

Chapter 7. Writing a CSL RM client 211

Table 57. CSLRMREG return and reason codes (continued)

Return code Reason code Meaning

X'00004104' The list version is not supported. The client created the
registration list at a version that is not supported by
RM. All RMs must be migrated to a new release before
the client is migrated to a new release that uses a new
CSLRMREG function.

X'03000014' X'00005000' Storage allocation for the register output buffer failed.

X'00005100' Storage allocation for CQSUPD buffer failed.

X'00005200' CQS request resulted in an unexpected error.

X'00005204' CQS request failed because RM incorrectly built
request input.

X'00005110' The client block allocation failed.

Related concepts:
“Sequence of RM client requests” on page 183
“Issue CSL RM requests to manage global resources” on page 184

CSLRMUPD: update resources
By issuing the CSLRMUPD request, you can create a resource if it does not exist,
or update a resource if it does exist (as long as the version specified matches the
version of the resource). A resource can be created or updated with or without
client data.

This request is supported in assembler language.

CSLRMUPD syntax

CSLRMUPD DSECT syntax

Use the DSECT function of a CSLRMUPD request to include the following inputs
and outputs in your program:
v Equate (EQU) statements for the length of the CSLRMUPD parameter list
v The CSLRMUPD return codes, reason codes, and completion codes
v The CSLRUPDL DSECT to map the input update list
v The CSLRUPDO DSECT to map the update output

►► CSLRMUPD FUNC=DSECT ►◄

CSLRMUPD UPDATE syntax

Use the CSLRMUPD request to create or update a uniquely named resource on a
resource structure.

►► CSLRMUPD FUNC=UPDATE PARM=parm LIST=updlist LISTLEN=updlistlength ►

► OUTPUT=output OUTLEN=outputlength
ECB=ecb RETNAME=returnname

►

212 System Programming APIs

► RETCODE=returncode RSNCODE=reasoncode
RETTOKEN=returntoken

►

► SCITOKEN=scitoken ►◄

CSLRMUPD parameters

ECB=symbol
ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the request must issue a WAIT (or equivalent) after
receiving control from CSLRM UPD before using or examining any data
returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol
LIST=(r2-r12)

(Required) - Specifies the update resource list built by the caller. Each list entry
is a separate update request. The list length can vary, depending upon the
number of list entries and whether they contain DATA2.

The CSLRUPDL macro maps the update resource list entry. The list contains a
header and one or more list entries. The list entries must reside in contiguous
storage. Each update list entry contains the following:
v Entry length - the update list entry length. The list entry length can vary,

depending upon whether DATA2 is specified.
v Resource name - client-defined name of the resource.
v Resource type - the resource type is a client-defined physical grouping of

resources on the resource structure. Valid values are 1-255.
v Update options - options that indicate special processing to perform for the

update.
v Version - the resource version, which is the number of times the resource has

been updated. The version must match the resource's version for an existing
resource for the update to succeed. The version must be zero to create a
resource.

v Owner - owner of the resource.
v DATA1 - a small piece of client data (fixed length, contained in the adjunct

area of a data entry) for the resource to be updated.
v DATA2 length - DATA2 length, if DATA2 is specified.
v DATA2 - a large piece of client data (variable length, contained in one or

more data elements of a data entry) associated with the resource to be
updated. DATA2 is optional. The maximum size of DATA2 is 61312 bytes
(X'EF80').

LISTLEN=symbol
LISTLEN=(r2-r12)

(Optional) - Specifies the 4-byte update resource list length. LISTLEN is
required if LIST is specified.

OUTLEN=symbol
OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned
by the CSLRMUPD request. OUTLEN contains the length of the output
pointed to by the OUTPUT= parameter.

Chapter 7. Writing a CSL RM client 213

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

OUTPUT=output
OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable length
output returned by the CSLRMUPD request. The output contains a header and
one or more update entries for resource updates that were attempted. The
output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The CSLRUPDO macro maps the output that is returned. The output contains
a header and one or more list entries. The output header contains the
following:
v Eyecatcher
v Output length
v CSLRUPDO version
v Time stamp
v Resource entry count
v CSLRUPDO header length (offset to start of entries)
v Minimum entry length (offset to DATA2)

Each output entry represents a resource update that was attempted. Each entry
contains the following:
v Output entry length - the list entry length can vary, depending upon

whether DATA2 is returned.
v Resource type
v Name type - the name type is a client-defined value associated with a

resource type that ensures uniqueness of client-defined resource names
within a name type. Valid values are 1-255.

v Resource name
v Version - new resource version, if update succeeded, or the resource version

of an existing resource, if the failed because of a version mismatch.
v Owner - resource owner of an existing resource, if the update failed because

of a version mismatch and the option to read the owner was set.
v DATA1 - a small piece of client data (fixed length, contained in the adjunct

area of a data entry) associated with an existing resource, if the update failed
because of a version mismatch and the option to read DATA1 was set.

v DATA2 length - length of large piece of client data associated with an
existing resource, if the update failed because of a version mismatch, DATA2
exists, and the option to read DATA2 was set.

v DATA2 - a large piece of client data (variable length, contained in one or
more data elements of a data entry) associated with an existing resource, if
the update failed because of a version mismatch, DATA2 exists, and the
option to read DATA2 was set. The maximum size of DATA2 is 61312 bytes
(X'EF80').

v Completion code for the update request - completion codes are mapped by
CSLRRR. Possible completion codes are:

X'00000000'
Update request succeeded.

214 System Programming APIs

X'00000008'
Invalid resource type.

X'00000010'
Version mismatch. Resource already exists and version specified on input
did not match.

X'00000014'
Resource already exists as a different resource type.

X'00000018'
Resource type is not registered. The resource type must be registered using
a CSLRMREG request.

X'0000001C'
Resource structure is full.

X'00000024'
Resource structure is unavailable.

X'00000038'
Update failed because of CQS internal error.

X'0000003C'
Update failed because RM incorrectly built the CQSUPD list entry.

X'00000040'
Version mismatch. The resource already exists and the version specified on
input did not match. The requestor requested that DATA2 be passed back,
but RM encountered an error reading DATA2.

The output buffer is not preallocated by the caller. After the request returns it,
this word contains the address of a buffer containing the update output. It is
the caller's responsibility to release this storage by issuing the CSLSCBFR
FUNC=RELEASE request when it is through with the storage. The length of
the output is returned in the OUTLEN= field.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the CSLRMUPD parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
RUPD_PARMLN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM
return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.
Possible return codes are described in the following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the
caller. This is the CSL member name of the target RM address space to which
SCI sent the request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM's SCI token returned to the
caller. This is the SCI token for the target RM address space to which SCI sent
the request.

RSNCODE=symbol

Chapter 7. Writing a CSL RM client 215

RSNCODE=(r2-r12)
(Required) - Specifies a 4-byte field to receive the reason code on output. RM
reason codes are defined in CSLRRR. SCI reason codes are defined in CSLSRR.
Possible reason codes are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLRMUPD return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLRMUPD request. Also included is the meaning of a reason code (that is, what
possibly caused it).

Table 58. CSLRMUPD return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002100' The update-list length is invalid.

X'00002108' The update-list address is invalid.

X'0000210C' One of the list entries contains one of the following
invalid list entry lengths:

v Zero length

v Smaller than the minimum list entry length

v Beyond the end of the list passed in

v Not on a fullword boundary

RM assumes that the rest of the list is invalid.

X'00002110' The list version in the list header (UPDL_PVER) is
zero, which is invalid. The list version must be set in
the list header to the maximum list version
(UPDL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than
the list length that was passed in. The list header
length (UPDL_HDRLEN) must be set in the list header
to be the list header length.

X'00002200' One of the list entries contains an invalid resource
type, such as zero. RM assumes the rest of the list is
invalid.

X'0000220C' One of the entries in the list contains one or more
invalid update options. RM assumes the rest of the list
is invalid.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one list entry, but
not all. Check the completion code in each list entry in
the OUTPUT buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion
code in each list entry in the OUTPUT buffer for
individual errors.

216 System Programming APIs

Table 58. CSLRMUPD return and reason codes (continued)

Return code Reason code Meaning

X'00003008' The request failed for one or more list entries and all
failures were version mismatches. Check the
completion code in each list entry in the OUTPUT
buffer for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the
request to attempt routing the request to another RM
with an available CQS.

X'00004100' The requested version is not supported. The client
compiled with a version of CSLRMUPD that is not
supported by RM. All RMs must be migrated to a new
release before IMS is migrated to a new release that
uses a new CSLRMUPD function.

X'00004104' The list version is not supported. The client created the
update list at a version level that is not supported by
RM. All RMs must be migrated to a new release before
the client is migrated to a new release that uses a new
CSLRMUPD function.

X'03000014' X'00005000' Storage allocation for the output buffer failed. The
resource updates might or might not have succeeded.

X'00005100'
Storage allocation for CQSUPD buffer failed.

X'00005200'
CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built
the request input.

Related concepts:
“Issue CSL RM requests to manage global resources” on page 184

CSL RM directives
An RM directive is a function that RM defines that can be sent as a message to RM
clients, informing the RM clients of work to be processed. After a resource
processing client is registered to RM, RM can direct that client to perform RM
functions, or directives, by issuing the CSLSCMSG request. A resource processing
client is any system that manages resources and uses RM to manage global
information about those resources.

RM directives are always issued in message protocol (PROTOCOL=MSG), that is,
asynchronously; RM therefore expects no response from the RM client, and it
continues processing without waiting for a response. The RM client is responsible
for determining whether or not to take any action in response to the directive. If
the client does not respond, the directive times out.

The CSLRMDIR macro maps the RM directives. The SCI Input exit routine's
INXP_MBRPLPTR field points to the CSLRMDIR parameter list.

The following RM directives are defined in the CSLRMDIR macro:
v Repopulate structure (RDIR_STRPOPD)
v Structure failed (RDIR_STRFAILD)
v Process step (RDIR_PRSTEPD)

Chapter 7. Writing a CSL RM client 217

v Process step response (RDIR_PRRESPD)
Related reference:

CSL SCI Input exit routine (Exit Routines)

CSL RM repopulate structure directive
The repopulate structure directive is sent to all resource processing clients after an
RM detects a structure failure and the structure is reallocated. The client then
repopulates the structure and can receive this directive from all RMs that it is
registered to.

If the client receives directives from multiple RMs to repopulate the structure after
having already done so, it can ignore those requests after confirming that the
directives apply to the same structure name and version.

Repopulate structure parameters

RDIR_STRPOP
Identifies the start of the repopulate structure directive.

RDIR_STNAMLEN=length
Contains the length of the structure name.

RDIR_STNAMPTR=address
Contains the address of the structure name.

RDIR_STVERLEN=length
Contains the length of the structure version.

RDIR_STVERPTR=address
Contains the address of the structure version.

RDIR_STRPOPLN=length
Contains the length of the repopulate structure.

CSL RM structure failed directive
The structure failed directive is sent to a resource processing client when the
resource structure fails and cannot be reallocated. The client cannot make any more
resource requests until the problem is corrected.

A client can receive this directive from all RMs to which it is registered. If the
client receives directives from multiple RMs, it can ignore duplicate requests after
confirming that the directives apply to the same structure name and version.

Structure failed parameters

RDIR_STRFAIL
Identifies the start of the structure failed directive.

RDIR_SFNAMLEN=length
Contains the length of the structure name.

RDIR_SFNAMPTR=address
Contains the address of the structure name.

RDIR_SFVERLEN=length
Contains the length of the structure version.

RDIR_SFVERPTR=address
Contains the address of the structure version.

218 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_cslsci_input.htm#ims_cslsci_input

RDIR_STRFAILN=length
Contains the length of the structure failed directive.

CSL RM process step directive
The Process Step directive is sent to a resource processing client when a process
step needs to be performed.

Process step parameters

RDIR_PRSTEP
Identifies the start of the Process Step directive.

RDIR_PSTKNLEN=length
Contains the length of the process token (PRCTOKEN), which uniquely
identifies the IMSplex-wide process. PRCTOKEN is returned after the
CSLRMPRI FUNC=INITIATE request successfully completes. PRCTOKEN can
be specified on CSLRMPRS FUNC=PROCESS, CSLRMPRR FUNC=RESPOND,
and CSLRMPRT FUNC=TERMINATE requests.

RDIR_PSTKNPTR=address
Contains the address of the PRCTOKEN.

RDIR_PSUOWLEN=length
Contains the length of the UOWTOKEN, a client-defined UOW that uniquely
identifies a process instance. UOWTOKEN also unites the PROCESS INITIATE,
PROCESS RESPOND, and PROCESS TERMINATE steps. UOWTOKEN is
defined by the CSLRMPRI FUNC=INITIATE request and can be specified on
CSLRMPRS FUNC=PROCESS requests.

RDIR_PSUOWPTR=address
Contains the address of the UOWTOKEN.

RDIR_PRCNMLEN=length
Contains the length of the process name (PRCNAME), which is defined by the
CSLRMPRI FUNC=INITIATE request. It can also be specified on the CSLRMPRS
FUNC=PROCESS and CSLRMPRT FUNC=TERMINATE requests.

RDIR_PRCNMPTR=address
Contains the address of the PRCNAME.

RDIR_PRCTYPE
The process type is defined by the CSLRMPRI FUNC=INITIATE request. It can
be specified on the CSLRMPRS FUNC=PROCESS and CSLRMPRT
FUNC=TERMINATE requests. This parameter is passed by value; the length
field is always zero.

RDIR_PSNAME
Contains the process step name, which is defined by the CSLRMPRS
FUNC=PROCESS request. This parameter is passed by value; the length field
is always zero.

RDIR_PSDATLEN=length
Contains the length of the process step client data (CDATALEN). The client
data is passed to the participants in the process step. CDATALEN is specified
on the CSLRMPRS FUNC=PROCESS request.

RDIR_PSDATPTR=address
Contains the address of the process step client data (CDATA).

Chapter 7. Writing a CSL RM client 219

RDIR_CNAMLEN=length
Contains the length of the client name that was registered to SCI by the client
that originated the process step (the process step master).

RDIR_CNAMPTR=address
Contains the address of the client name that was registered to SCI by the client
that originated the process step (the process step master).

RDIR_CTYPE
Identifies the client type that was registered to SCI by the client that originated
the process step (the process step master). This parameter is passed by value;
the length field is always zero.

RDIR_CSTYPLEN
Contains the length of the client subtype that was registered to SCI by the
client that originated the process step (the process step master).

RDIR_CSTYPPTR
Contains the address of the client subtype that was registered to SCI by the
client that originated the process step (the process step master).

RDIR_PRSTEPLN
Contains the length of the process step directive.

CSL RM process step response directive
The Process Step Response directive is sent to RM by a client that is responding to
a process step with a CSLRMPRR request.

Process step response parameters

RDIR_PRRESP
Identifies the start of the process step response directive.

RDIR_PRTKNLEN=length
Contains the length of the process token (PRCTOKEN), which uniquely
identifies the IMSplex-wide process. PRCTOKEN is returned after the
CSLRMPRI FUNC=INITIATE request successfully completes. PRCTOKEN can
be specified on CSLRMPRS FUNC=PROCESS, CSLRMPRR FUNC=RESPOND,
and CSLRMPRT FUNC=TERMINATE requests.

RDIR_PRTKNPTR=address
Contains the address of the PRCTOKEN.

RDIR_PROUTLEN=length
Contains the length of the process step response output (OUTPUT). The
response output is passed back to the originator of the process step. OUTPUT
is specified on the CSLRMPRR FUNC=RESPOND request.

RDIR_PROUTPTR=address
Contains the address of the response output (OUTPUT).

RDIR_PRRCLEN=length
Contains the process step response return code (RQSTRC). The return code is
specified by the CSLRMPRR FUNC=RESPOND request.

RDIR_PRRCPTR=address
Contains the address of the process step response return code (RQSTRC).

RDIR_PRRSNLEN=length
Contains the length of the process step response reason code (RQSTRSN),
which is specified by the CSLRMPRR FUNC=RESPOND request.

220 System Programming APIs

RDIR_PRRSNPTR=address
Contains the address of the process step response reason code (RQSTRSN).

Chapter 7. Writing a CSL RM client 221

222 System Programming APIs

Chapter 8. Writing a CSL SCI client

You must establish a connection to SCI (Structured Call Interface) in order to write
a program that participates in an IMSplex (such as an AOP) and allows your
IMSplex member to communicate with other IMSplex members. Without a
connection to SCI, a program cannot participate in an IMSplex and communicate
with other IMSplex members.

To establish a connection with SCI, you can use a subset of the SCI requests. These
requests establish or terminate a connection with SCI and optionally indicate to
SCI that the IMSplex member is in a ready state. When a member is in a ready
state, it can have requests and messages routed to it by type.

SCI requests are also used by an IMSplex member to communicate with other
IMSplex members and to find out information about those members. IMSplex
members communicate with other members by using SCI requests to send
messages, requests, and responses to requests. A query request can be used to find
out information about the other members of the IMSplex.
Related reference:
“CSLSCQRY: query request” on page 235

Sequence of CSL SCI requests
Structured Call Interface (SCI) requests must be issued in a particular sequence in
order to successfully register to SCI, ready the member, release storage allocated
for the member, quiesce the member, and deregister the member from SCI.

The first SCI request is CSLSCREG. The member can then issue CSLSCRDY to tell
SCI that it is ready to receive messages and requests that are routed by member
type. If a member has storage that is allocated by SCI (for example, a message or
an SCI allocated output parameter is received), the SCI buffer release request,
CSLSCBFR, is issued to release the storage.

When a member is ready to terminate, the SCI quiesce request, CSLSCQSC, is used
to tell SCI that the member does not want to receive messages and requests that
are routed by member type. After the SCI deregistration request, CSLSCDRG, is
used to terminate the connection with SCI, the member can no longer participate
in the IMSplex.

The following table lists the sequence of requests issued by an SCI client. The
request is listed with its purpose.

Table 59. Sequence of requests for SCI client

Request Purpose

CSLSCREG Register to SCI, which establishes the connection with SCI and enables
the member to communicate within the IMSplex.

CSLSCRDY Readies the member to SCI, which allows SCI to route messages and
requests that are routed by member type to this member.

CSLSCBFR Releases storage allocated for the member by SCI (for example, message
data or parameters allocated by SCI from a request).

© Copyright IBM Corp. 1974, 2018 223

Table 59. Sequence of requests for SCI client (continued)

Request Purpose

CSLSCQSC Quiesces the member to SCI, which tells SCI not to route messages and
requests that are routed by member type to this member.

CSLSCDRG Deregisters the member from SCI which ends the member's connection
with SCI.

Advanced CSL SCI requests
After connecting to Structured Call Interface (SCI), an IMSplex member can use
advanced SCI requests to request services from and find out information about
other IMSplex members. Each advanced request has its own purpose.

After establishing the connection with SCI, an IMSplex member can use advanced
SCI requests to:
v Communicate, or request services, from other IMSplex members.

A message protocol and a request protocol are provided to facilitate
communication among IMSplex members. A message is a one-way
communication with another IMSplex member. A request requires that a
response be returned to the requesting member.

v Find out information about the other members in the IMSplex.
A query request, CSLSCQRY, allows an IMSplex member to find out who the
other members of the IMSplex are and to obtain information about those
IMSplex members.

The following table lists the advanced SCI requests with their purpose. These
requests can be issued without regard to sequence; however, the IMSplex member
issuing the request must have registered to SCI.

Table 60. Advanced SCI requests for IMSplex members

Request Purpose

CSLSCMSG Sends a one-way message to another IMSplex member.

CSLSCRQS Sends a request to another IMSplex member. SCI expects a response to
the request.

CSLSCRQR Sends a response to a previously issued request.

CSLSCQRY Issues a query to SCI to find out information about members of the
IMSplex.

CSL SCI requests
SCI requests can be issued by an IMSplex member. Any member can also receive
messages from any other IMSplex member after a connection is established.
Related concepts:
“CSL OM automated operator program clients” on page 139

CSLSCBFR: buffer return request
The CSLSCBFR request releases the storage that the Structured Call Interface (SCI)
allocated for an IMSplex member. This storage is allocated to receive either an
input message sent from another IMSplex member with the CSLSCMSG request, or
an output parameter generated from a CSLSCRQS request.

224 System Programming APIs

Another macro can invoke the CSLSCRQS request as part of the code generated by
the macro which, in turn, can return an SCI data type. The storage allocated for
these parameters must be released with the CSLSCBFR macro. The CSLSCQRY
macro is an example of an SCI macro that does this. The OUTPUT parameter
specifies the address in storage to receive the address of the buffer that contains
the output from the CSLSCQRY macro. Release this storage by using the
CSLSCBFR request.

Syntax

DSECT syntax

Use the DSECT function of a CSLSCBFR request to include equate (EQU)
statements in your program for the CSLSCBFR parameter list length and the
CSLSCBFR request return and reason codes.

►► CSLSCBFR FUNC=DSECT ►◄

RELEASE syntax

Use the RELEASE function of the CSLSCBFR request to release an SCI message
buffer or SCI data type buffer. The SCI data type buffer is used for selected output
parameters of the CSLSCRQS request for which SCI allocates storage.

►► CSLSCBFR FUNC=RELEASE PARM=parm SCITOKEN=scitoken BUFFER=buffer
BUFFERPTR=buffer

►

► RETCODE=returncode RSNCODE=reasoncode ►◄

For messages generated from a CSLSCMSG request, the buffer address is the
address of the member parameter list that is specified to the member input exit in
the INXP_MBRPLPTR field in the input exit parameter list.

For a response generated from a CSLSCRQS request that uses an SCI data type
buffer, the storage is allocated when the request is returned to the IMSplex member
that initiated the original request. The buffer address is the address of this storage,
which is returned in the field specified by the member on the request.

After the CSLSCBFR request is complete, the storage contained in the message
buffer or request response is no longer accessible by the IMSplex member.

For non-authorized members, the storage must be released from a TCB that is
under the JOBSTEP TCB from which the SCI registration call was made. The
release fails if it is done from a TCB that is not under the registered JOBSTEP TCB.

Parameters

BUFFER=symbol
BUFFER=(r1-r12)

4-byte parameter that contains the address of a buffer that is to be released.

Either BUFFER or BUFFERPTR is required.

BUFFERPTR=symbol

Chapter 8. Writing a CSL SCI client 225

BUFFERPTR=(r1-r12)
4-byte parameter that contains the address of a word in storage that contains
the address of the buffer that is to be released.

Either BUFFER or BUFFERPTR is required.

PARM=symbol
PARM=(r1-r12)

Specifies the CSLSCBFR parameter list. The length of the parameter list must
be equal to the parameter list length EQU value defined by SBFR_PARMLN.

RETCODE=symbol
RETCODE=(r1-r12)

Specifies a 4-byte field to receive the return code on output. The SCI return
codes are defined in CSLSRR. Possible return codes for CSLSCBFR are
described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

Specifies a 4-byte field to receive the reason code on output. The SCI reason
codes are defined in CSLSRR. Possible reason codes for CSLSCBFR are
described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

Specifies a 16-byte field containing the SCITOKEN. This token uniquely
identifies this IMSplex member's connection to SCI. The SCI token was
returned by a successful CSLSCREG FUNC=REGISTER request.

Return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCBFR macro request.

Table 61. CSLSCBFR request return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'01000008' X'00002014' The buffer being released is not an SCI buffer.

X'00002018' Invalid SCI token.

X'00002038' Parameter list version is invalid.

X'00002054' The buffer being released is not an allocated buffer.

X'01000010' X'00004FFF' Function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005074' Buffer prefix is damaged on a CSLSCBFR call.

X'00005078' STORAGE RELEASE failed for SCI buffer on a
CSLSCBFR call.

X'00005500' An abend occurred during CSLSCBFR processing.

CSLSCDRG: deregistration request
By issuing the CSLSCDRD request, you can terminate the connection between the
IMSplex member and SCI. After successful completion of this request, the SCI
token is no longer valid.

226 System Programming APIs

To make subsequent SCI requests, the IMSplex member must create a new
connection with SCI with a CSLSCREG request.

CSLSCDRG syntax

CSLSCDRG DSECT syntax

Use the DSECT function of a CSLSCDRG request to include equate (EQU)
statements in your program for the CSLSCDRG parameter list length and the
CSLSCDRG return and reason codes.

►► CSLSCDRG FUNC=DSECT ►◄

CSLSCDRG DEREGISTER syntax

The CSLSCDRG FUNC=DEREGISTER request deregisters the IMSplex member
from SCI. After successful completion of the CSLSCDRG FUNC=DEREGISTER
request, the SCITOKEN is invalid.

►► CSLSCDRG FUNC=DEREGISTER PARM=parm SCITOKEN=scitoken ►

► RETCODE=returncode RSNCODE=reasoncode ►◄

CSLSCDRG parameters

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCDRG parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
SDRG_LN.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCDRG
return code. The SCI return codes are defined in CSLSRR. Possible return
codes for CSLSCDRG are described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCDRG
reason code. The SCI reason codes are defined in CSLSRR. Possible reason
codes for CSLSCDRG are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCITOKEN. This token
uniquely identifies this IMSplex member's connection to SCI. The SCI token
was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLSCDRG return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCDRG macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Chapter 8. Writing a CSL SCI client 227

Table 62. CSLSCDRG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000004' X'00001010' z/OS cross-system coupling facility leave for member
failed.

X'01000008' X'00002018' Invalid SCI token.

X'00002038' Parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004014' CSLSDR00 could not be loaded.

X'00004018' There are still outstanding requests during
deregistration.

X'00004FFF' Function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' SCI was unable to add the ESTAE routine.

X'00005008' A BPE SVC error occurred.

X'00005020' An ENQ resource error occurred.

X'00005500' An abend occurred during CSLSCDRG processing.

CSLSCMSG: send message request
By issuing the CSLSCMSG request, you can send a message to one or more other
IMSplex members. The target members are specified by SCITOKEN, member
name, or member type.

CSLSCMSG syntax

CSLSCMSG DSECT syntax

Use the DSECT function of a CSLSCMSG request to include equate (EQU)
statements in your program for the CSLSCMSG parameter list length, the IMSplex
types, and the CSLSCMSG return and reason codes.

►► CSLSCMSG FUNC=DSECT ►◄

CSLSCMSG SEND MESSAGE syntax

The syntax of the CSLSCMSG FUNC=SEND request is shown below:

►► CSLSCMSG FUNC=SEND SCITOKEN=scitoken PARM=parm MBRPARM=mbrparmlist ►

► MBRPCNT=mbrparmcount MBRFUNC=mbrfunctioncode ►

►
MBRSFUNC=mbrsubfunctioncode FUNCTYPE=DEST

FUNCTYPE=SENDER

►

228 System Programming APIs

► LISTLEN=listlength TOKENLIST=tokenlist
NAMELIST=namelist
TYPELIST=typelist B

TOKEN=scitoken
NAME=membername

A

RETCODE=returncode ►

► RSNCODE=reasoncode
RETNAME=returnname RETTOKEN=returntoken

►◄

A:

TYPE=membertypecode
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

B

B:

ROUTE=ANY

ROUTE=ALL
ROUTE=LOCAL

CSLSCMSG parameters

FUNCTYPE=SENDER
FUNCTYPE=DEST

(Optional) - Specifies that the MBRFUNC and MBRSFUNC are defined by the
DEST (destination) of this message or the SENDER of the message. This
indicator is passed to the recipient of the message in the SCI Input exit
parameter list.

LISTLEN=<numeric literal>
LISTLEN=symbol
LISTLEN=(r1-r12)

(Required if NAMELIST, TOKENLIST or TYPELIST is specified) - Specifies the
length of the routing list. The routing list consists of a header and one or more
list entries, each entry describing a single message destination (NAMELIST and
TOKENLIST) or set of destinations (TYPELIST).

If LISTLEN is a numeric literal, all characters must be numbers. If any
character is alphabetic, the parameter will be considered a symbol.

MBRFUNC=symbol
MBRFUNC=(r1-r12)

(Required) - Specifies a 4-byte member function code that is passed to the
destination of the message in the SCI Input exit parameter list. This function
code, along with the MBRSFUNC, identifies the message that is being sent.

Chapter 8. Writing a CSL SCI client 229

If MBRFUNC is a symbol, the symbol points to a 4-byte area of storage that
contains the function code.

MBRPARM=symbol
MBRPARM=(r1-r12)

(Required) - Specifies the address of a prebuilt parameter list. This parameter
list must be built by the messaging module and consists of sets of pairs. Each
pair describes a single parameter in the member parameter list and consists of
the following:

parameter length
Four-byte parameter that specifies the length of the member parameter.

parameter address
Four-byte parameter that specifies the address of the member
parameter.

The two methods for passing parameters in a parameter list are by address and
by value. Both of these methods can be used when passing parameters in a
CSLSCMSG request. The pair must be setup so that SCI will handle the
parameter properly.
v By address

To pass a parameter by address, the address of the parameter must be
passed in parameteraddress and the length of the parameter must be passed in
parameterlength. SCI will obtain the parameter from parameteraddress.

v By value
To pass a parameter by value, the parameter must be passed in
parameteraddress and zero must be passed in parameterlength. When the length
is zero, SCI will copy the value contained in parameteraddress to the
destination.

Member Parameter List: The user parameters specified here are presented to
the IMSplex member that receives the message in the member parameter list,
the address of which is contained in the Input exit parameter area field
INXP_MBRPLPTR. Each parameter is represented by eight bytes, the first four
bytes contain parameterlength and the second four bytes contain parameteraddress
(if parameteraddress is an address, the second four bytes point to storage in the
local address space, not the requesting address space).

Null Parameters: In some cases, the message processing module expects a set
number of parameters with a defined order. If a message is to be sent that does
not contain all the parameters, null parameters must be sent to ensure the data
buffer contains everything that is expected. Null parameters can be sent by
specifying zero for parameterlength and parameteraddress. The eight bytes that
represent the parameter in the data buffer will contain zeros.

MBRPCNT=symbol
MBRPCNT=(r1-r12)

(Required) - Specifies a 4-byte field that contains the number of member
parameters that are included in MBRPARM.

MBRSFUNC=symbol
MBRSFUNC=(r1-r12)

(Optional) - Specifies a 4-byte member subfunction code that is passed to the
destination of the message in the SCI Input exit parameter list. This
subfunction code, along with the MBRFUNC, identifies the message that is
being sent.

230 System Programming APIs

If MBRSFUNC is a symbol, the symbol points to a 4-byte area of storage that
contains the subfunction code.

NAME=symbol
NAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte member name of the destination
of this message. This name can be obtained from the Notify exit (when the
member joins the IMSplex) or by issuing a CSLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,
TOKENLIST or TYPELIST) must be included.

To route by NAME, the destination member must be authorized. If the
member is not authorized, the message is not sent.

NAMELIST=symbol
NAMELIST=(r1-r12)

(Optional) - Specifies the address of a list of member names to which this
message is to be routed. This list consists of a header and one or more list
entries, each entry defining a single member name. If NAMELIST is specified,
LISTLEN must also be specified.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,
TOKENLIST or TYPELIST) must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is
CSLSNMLE. These DSECTs are defined in CSLSCMAP.

For a message to be routed to a member using NAMELIST, that member must
be an authorized member. If a member name for a non-authorized member is
included in NAMELIST, the name will not be found and the message will not
be sent to that member.

The NAMELIST is sent to SCI for processing. Then, control is returned to your
program. A response of “Request completed successfully” does not mean that
the message was sent to all names in the list; it means that the list was
successfully sent to SCI. Errors could occur while the list is processed and the
message is sent. Possible errors include:
v Name not found
v Name found, but the member terminated before message is sent
v SCI abended

These errors are not returned to your program.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the address of a parameter list used by the message to
pass the parameters to SCI. The length of the storage must be at least equal to
the value of SMSG_LN. The storage must begin on a word boundary.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCMSG
return code. The SCI return codes are defined in CSLSRR.

RETNAME=symbol
RETNAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the
IMSplex member to which the message was sent. If the message is sent to
more than one destination, nothing is returned in this field.

Chapter 8. Writing a CSL SCI client 231

RETTOKEN=symbol
RETTOKEN=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the token of the
IMSplex member to which the message was sent. If the message is sent to
more than one destination, nothing is returned in this field.

ROUTE=ANY
ROUTE=ALL
ROUTE=LOCAL

(Optional) - Specifies how the message should be routed to the type specified
in the TYPE parameter or the types specified in the TYPELIST parameter. This
parameter is valid only if TYPE or TYPELIST is specified.

ANY
Routes the message to a single member of the types specified. SCI selects
the member that will receive the message. TYPE=ANY is not valid with
TYPELIST.

ALL
Routes the message to all members of the specified types.

LOCAL
Routes the message to all members of the specified types that are active on
the local z/OS image.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCMSG
reason code. The SCI reason codes are defined in CSLSRR.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies the address of a 16-byte field that contains the SCI token
of the member making the request. The token was returned on the CSLSCREG
request.

TOKEN=symbol
TOKEN=(r1-r12)

(Optional) - Specifies the address of the 16-byte SCI token of the destination of
this message. This token can be obtained from the Notify exit (when the
member joins the IMSplex) or by issuing a CSLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,
TOKENLIST or TYPELIST) must be included.

TOKENLIST=symbol
TOKENLIST=(r1-r12)

(Optional) - Specifies the address of a list of SCI tokens that represent members
to which this message is to be routed. This list consists of a header and one or
more list entries, each entry defining a single SCI token. If TOKENLIST is
specified, LISTLEN must also be specified.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,
TOKENLIST or TYPELIST) must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is CSLSTKLE.
These DSECTs are defined in CSLSCMAP.

The TOKENLIST is sent to SCI for processing. Then, control is returned to
your program. A response of “Request completed successfully” does not mean
that the message was sent to all SCI tokens in the list; it means that the list

232 System Programming APIs

was successfully sent to SCI. Errors could occur while the list is processed and
the message is sent. Possible errors include:
v Token not found
v Token found but member terminated before message is sent
v SCI abended

These errors are not returned to your program.

TYPE=symbol
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

(Optional) - TYPE specifies the SCI type of the destination of this message. SCI
routes the message to one or more members of the specified type (depending
on the value of the route parameters). If there are no members of the specified
type, an error is returned.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,
TOKENLIST or TYPELIST) must be included.

If this parameter is passed as a literal, the literal must be enclosed in single
quotation marks. If this parameter is passed as a symbol or register, the symbol
or register must contain the member type code. The member type code can be
obtained by using the CSLSTPIX macro.

TYPELIST=symbol
TYPELIST=(r1-r12)

(Optional) - Specifies the address of a list of member types to which this
message is to be routed. This list consists of a header and one or more list
entries, each entry defining a single SCI token. If TYPELIST is specified,
LISTLEN must also be specified.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,
TOKENLIST or TYPELIST) must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is CSLSTPLE.
These DSECTs are defined in CSLSCMAP.

The TYPELIST is sent to SCI for processing. Then, control is returned to your
program. A response of “Request completed successfully” does not mean that
the message was sent to all types in the list; it means that the list was
successfully sent to SCI. Errors could occur while the list is processed and the
message is sent. Possible errors include:
v No members of the specified type are active
v A member of the specified type was found but terminated before the

message is sent
v SCI abended

These errors are not returned to your program.

Chapter 8. Writing a CSL SCI client 233

CSLSCMSG return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCMSG macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 63. CSLSCMSG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' An invalid function was passed to the SCI interface PC
routine.

X'00002008' The number of parameters passed was either less than
or equal to zero, or greater than the maximum allowed.

X'00002010' An invalid type was passed.

X'00002018' The SCI token was invalid.

X'00002024' The PHDR length was invalid.

X'00002028' The routing data length was invalid.

X'00002034' The length of the parameters is too large for a
non-authorized caller.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'0000400C' The destination IMSplex member is not active. The
requested member might have been specified by name,
token, or type.

X'0000401C' The calling member is in the process of deregistering
from SCI.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005024' An error in the SRB routine occurred.

X'00005028' The routing type was invalid.

X'0000502C' The member could not be found due to an internal
BPE hash table services error.

X'00005030' An SCI buffer could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be
obtained for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; the SRB could not be
scheduled to the target address space.

X'0000504C' The message SRB key 7 parameter area could not be
obtained.

X'00005500' An abend occurred during CSLSCMSG processing.

X'00005504' An abend occurred when the member parameters were
copied to the target address space.

Related reference:
“CSLSCMSG: send message request” on page 228
“CSLSCRDY: ready request” on page 239

234 System Programming APIs

CSLSCQRY: query request
By issuing the CSLSCQRY request, an IMSplex member can obtain information
about the members of the IMSplex.

CSLSCQRY syntax

CSLSCQRY DSECT syntax

Use the DSECT function of a CSLSCQRY request to include equate (EQU)
statements in your program for the CSLSCQRY parameter list length, the IMSplex
types and the CSLSCQRY return and reason codes.

►► CSLSCQRY FUNC=DSECT ►◄

CSLSCQRY QUERY syntax

Use the following syntax to issue the CSLSCQRY service request. The output is
returned to the caller when the request is complete.

►► CSLSCQRY FUNC=QUERY SCITOKEN=scitoken PARM=parm OUTPUT=output ►

► OUTLEN=outputlength
ECB=ecb

SCOPE=IMSPLEX

SCOPE=LOCAL
SCOPE=TYPE A

RETCODE=returncode ►

► RSNCODE=reasoncode ►◄

A:

TYPE=membertypecode
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

SUBTYPE=subtype PROTOCOL=RQST

CSLSCQRY parameters

ECB=symbol
ECB=(r1-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the macro must issue a WAIT (or equivalent) after
receiving control from CSLSCQRY, before using or examining any data
returned by this macro (including the RETCODE and RSNCODE fields).

Chapter 8. Writing a CSL SCI client 235

OUTLEN=symbol
OUTLEN=(r1-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned
by the CSLSCQRY request. OUTLEN receives the length of the output pointed
to by the OUTPUT= parameter.

The output length is zero if no output is built, for example, if an error is
detected before any output can be built.

OUTPUT=output
OUTPUT=(r1-r12)

(Required) - Specifies a field to receive a pointer to the variable length output
returned by the CSLSCQRY request. The output length is returned in the
OUTLEN= field.

The output address is zero if no output was built, for example, if an error was
detected before any output could be built.

The CSLSQRYO macro maps the output that is returned. The output contains a
header and one or more list entries.

The output buffer is not preallocated by the caller. After being returned by the
request, this word contains the address of a buffer containing the query output.
It is the caller's responsibility to release this storage by issuing the CSLSCBFR
FUNC=RELEASE request when it is through with the storage.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCQRY parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
SQRY_PARMLN.

PROTOCOL=RQST
(Optional) - SCI protocol for sending the request to SCI. RQST indicates that
the SCI request interface protocol is to be used for the request.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCQRY
return code. SCI return codes are defined in CSLSRR. Possible return codes for
CSLSCQRY are described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI
reason codes are defined in CSLSRR. Possible reason codes for CSLSCQRY are
described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

SCOPE=IMSPLEX
SCOPE=LOCAL
SCOPE=TYPE

(Optional) - Specifies the scope of information that is being requested.

IMSPLEX
This option returns data for all of the members in the IMSplex.

236 System Programming APIs

LOCAL
This option returns information for all of the members on the local z/OS
image.

TYPE
This option returns information for all of the members that are of the
specified IMSplex member type (and optionally subtype).

SUBTYPE=symbol
SUBTYPE=(r1-r12)

(Optional) - Four-byte input parameter that specifies the address of an 8-byte
subtype that further qualifies the IMSplex member type about which
information is being requested. This subtype is defined by the IMSplex
member and was specified on the CSLSCREG request.

This parameter is valid only when SCOPE=TYPE.

TYPE=symbol
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

(Optional) - Specifies the IMSplex member type for which the query is being
issued. SCI will return information for all of the members that are of the
specified IMSplex member type (and, optionally, subtype). This parameter is
required when SCOPE=TYPE.

If this parameter is passed as a literal, the literal must be enclosed in single
quotation marks. If it is passed as a symbol, the symbol points to a word in
storage that contains the code for the member type. If it is passed as a register,
the register contains the member type code in the low-order half word of the
register.

The code for the member type can be obtained by using the CSLSTPIX macro.

CSLSCQRY return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCQRY macro request. Also included is the meaning of a reason code (that is,
what possibly caused it). In addition, CSLSCQRY can return any of the return
codes listed in the following table.

Table 64. CSLSCQRY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

X'01000008' X'00002050' The caller of the service attempted to pass an invalid
parameter list. The request is rejected.

X'0100000C' X'00003004' No member data was returned for the request.

X'01000014' X'00005048' SCI was unable to obtain storage for the output area of
the request.

Chapter 8. Writing a CSL SCI client 237

Related reference:
Chapter 8, “Writing a CSL SCI client,” on page 223
“CSLSCREG: registration request” on page 240

CSLSCQSC: quiesce request
The SCI Quiesce request tells SCI to stop routing messages and requests that have
been routed by TYPE to the issuing IMSplex member. After this request has
successfully completed, the only messages and requests that are routed to the
member are those that are routed directly by SCITOKEN or by NAME.

Note: Because of the asynchronous nature of the processes within the IMSplex
and z/OS, messages and requests routed by TYPE might still be received by the
IMSplex member after successful completion of the CSLSCQSC FUNC=QUIESCE
request. The potential for this occurring is small, but it can happen. The IMSplex
member must be able to handle a message or request coming in after the
CSLSCQSC FUNC=QUIESCE has successfully completed.

CSLSCQSC syntax

CSLSCQSC DSECT syntax

Use the DSECT function of a CSLSCQSC request to include equate (EQU)
statements in your program for the CSLSCQSC parameter list length and the
CSLSCQSC return and reason codes.

►► CSLSCQSC FUNC=DSECT ►◄

CSLSCQSC QUIESCE syntax

The CSLSCQSC FUNC=QUIESCE request quiesces the connection between SCI and
the IMSplex member. After the successful completion of the request, only messages
and requests that are routed directly by SCITOKEN or by NAME are sent to this
IMSplex member.

►► CSLSCQSC FUNC=QUIESCE PARM=parm SCITOKEN=scitoken RETCODE=returncode ►

► RSNCODE=reasoncode ►◄

CSLSCQSC parameters

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCQSC parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
SQSC_PARMLN.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI
return codes are defined in CSLSRR. Possible return codes for CSLSCQSC are
described in the following table.

RSNCODE=symbol

238 System Programming APIs

RSNCODE=(r1-r12)
(Required) - Specifies a 4-byte field to receive the reason code on output. SCI
reason codes are defined in CSLSRR. Possible reason codes for CSLSCQSC are
described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLSCQSC return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCQSC macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 65. CSLSCQSC return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'01002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

Related reference:
“CSLSCMSG: send message request” on page 228

CSLSCRDY: ready request
The SCI ready request enables the IMSplex member to receive messages and
requests that are routed by TYPE. After the CSLSCREG request is issued and until
CSLSCRDY is issued, the IMSplex member can only receive requests that are
routed directly to a single target address space. The IMSplex member can send
messages and requests that are routed by any method.

Note: The IMSplex member must be ready to process messages and requests that
have been routed by TYPE when CSLSCRDY is issued. Because of the
asynchronous nature of an IMSplex, the member might receive a message or
request that has been routed by TYPE before control is returned after issuing
CSLSCRDY.

CSLSCRDY syntax

DSECT syntax

Use the DSECT function of a CSLSCRDY request to include equate (EQU)
statements in your program for the CSLSCRDY parameter list length and the
CSLSCRDY return and reason codes.

►► CSLSCRDY FUNC=DSECT ►◄

READY syntax

Chapter 8. Writing a CSL SCI client 239

The CSLSCRDY FUNC=READY request tells SCI that the IMSplex member is now
ready to receive messages and requests that are routed by an IMSplex member
type.

►► CSLSCRDY FUNC=READY SCITOKEN=scitoken PARM=parm RETCODE=returncode ►

► RSNCODE=reasoncode ►◄

CSLSCRDY parameters

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCRDY parameter list. The length of the
parameter list must be equal to the parameter list length EQU value defined by
SRDY_PARMLN.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI
return codes are defined in CSLSRR. Possible reason codes for CSLSCRDY are
described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRDY
reason code. SCI reason codes are defined in CSLSRR. Possible reason codes
for CSLSCRDY are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLSCRDY return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCRDY macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 66. CSLSCRDY return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

Related reference:
“CSLSCMSG: send message request” on page 228

CSLSCREG: registration request
The Structured Call Interface (SCI) registration request is used to create a
connection between an IMSplex member and SCI. Before SCI can be used for

240 System Programming APIs

communication within the IMSplex, an IMSplex member must issue the
CSLSCREG request and receive an SCI token when the request completes in order
to be recognized by SCI.

This token is used with all subsequent SCI requests. If SCI terminates while the
IMSplex member is active, the member is still registered when SCI becomes active
again. The SCI token that the member received on the initial CSLSCREG request is
still valid.

Restrictions:

v CSLSCREG is not supported when the caller's address space has been marked
non-swappable by a SYSEVENT DONTSWAP call. Issuing a CSLSCREG in this
environment produces unpredictable results. A caller that issued a SYSEVENT
DONTSWAP must issue a SYSEVENT OKSWAP before registering with SCI.

v A single address space may register with SCI more than once. However, all
registrations from a single address space must be made in the same PSW key
and state (supervisor or problem) as the first active registration.

CSLSCREG syntax

CSLSCREG DSECT syntax

Use the DSECT function of a CSLSCREG request to include equate (EQU)
statements in your program for the CSLSCREG parameter list length, the IMSplex
types and the CSLSCREG return and reason codes.

►► CSLSCREG FUNC=DSECT ►◄

CSLSCREG REGISTER syntax

The CSLSCREG FUNC=REGISTER request establishes a connection between an
IMSplex member and SCI. An SCI token is returned on successful completion of
this request. This token must be used on all subsequent SCI requests. Until the
CSLSCRDY FUNC=READY request is issued, the IMSplex member receives only
messages and requests that are routed directly to it (by SCITOKEN or by NAME).
Messages and requests that are routed by TYPE are not routed to this member.
Messages and requests routed by any method can be sent by this member when
the CSLSCREG FUNC=READY request has been successfully completed. The
syntax for the REGISTER function of the CSLSCREG request follows.

►► CSLSCREG FUNC=REGISTER PARM=parm IMSPLEX=imsplex MBRNAME=membername ►

Chapter 8. Writing a CSL SCI client 241

►
MBRVSN=memberversion

TYPE=membertypecode
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

SUBTYPE=subtype
►

►
NOTIFYEXIT=notifyexit

NOTIFYPARM=notifyparm

►

►
INPUTEXIT=inputexit

INPUTPARM=inputparm

SCITOKEN=scitoken ►

►
SCIVSN=sciversion JOBNAME=jobname

ABNDSTAT=NO

ABNDSTAT=YES
►

►
TCB=CURRENT

TCB=PARENT
TCB=JOBSTEP
TCB=tcb

RETNAME=returnname RETTOKEN=returntoken
►

► RETCODE=returncode RSNCODE=reasoncode ►◄

CSLSCREG parameters

ABNDSTAT=NO
ABNDSTAT=YES

(Optional) - Indicates if SCI is to keep track of the member if the member
abnormally terminates. If ABNDSTAT=YES is specified, SCI will retain an entry
for the member with a status of ABTERM. If the member normally terminates
or if the member abnormally terminates after a successful CSLSCDRG, SCI
does not keep a record of the member.

This parameter is ignored for non-authorized IMSplex members.

IMSPLEX=symbol
IMSPLEX=(r2-r12)

(Required) - Specifies the address of a 1- to 5-character IMSplex name. The
IMSPlex name identifies the SCI to which this request is directed. If specified
as a symbol, the symbol references storage that contains the IMSplex name.

INPUTEXIT=symbol
INPUTEXIT=(r2-r12)

(Optional) - Specifies the address of the SCI input exit routine. The input exit is
called each time there is a message or request for the member.

242 System Programming APIs

INPUTPARM=symbol
INPUTPARM=(r2-r12)

(Optional) - Specifies the address of an 8-byte area that contains member data.
This data is passed to the input exit routine each time it is called. If specified
as a symbol, the symbol references storage that contains the member data.

JOBNAME=symbol
JOBNAME=(r2-r12)

(Optional) - Specifies the address of an 8-byte area to receive the SCI jobname.

MBRNAME=symbol
MBRNAME=(r2-r12)

(Required) - Specifies the address of an 8-byte name of the IMSplex member
registering with SCI. For an authorized member, this name must be unique
within the IMSplex. For a non-authorized member, this name does not need to
be unique. If it is specified as a symbol, the symbol refers to storage that
contains the IMSplex member name. Valid characters for the name are A-Z, 0-9,
and special characters @, #, and $.

MBRVSN=symbol
MBRVSN=(r2-r12)

(Optional) - Specifies the address of a 4-byte version of the IMSplex member
registering with SCI. This version number is passed in the parameter list of the
SCI Notify exit when this IMSplex member is the subject of the event. It is also
passed in the parameter list of the SCI Input exit for messages and requests
that originate from this member. If MBRVSN is not specified, the version
number in the exit parameter list is set to zeros. If it is specified as a symbol,
the symbol references storage that contains the IMSplex member version.

SCI does not validate this field; however, the field can be output on the QRY
IMSPLEX command. It is assumed to have the following format: X'00vvrrmm'.
v 00 - this byte is ignored
v vv - version number
v rr - release number
v mm - modification level or subrelease number

For example, X'00080100' would be output as 8.1.0.

NOTIFYEXIT=symbol
NOTIFYEXIT=(r2-r12)

(Optional) - Specifies the address of the SCI Notify exit routine. The Notify exit
is driven whenever there is a change of status of an IMSplex member.

NOTIFYPARM=symbol
NOTIFYPARM=(r2-r12)

(Optional) - Specifies the address of an 8-byte area that contains member data.
This data is passed to the Notify exit routine each time it is called. If it is
specified as a symbol, the symbol references storage that contains the member
data.

PARM=symbol
PARM=(r2-r12)

(Required) - Specifies the address of a parameter list used by the request to
pass the parameters to SCI. The length of the storage must be at least equal to
the value of SREG_LN.

RETCODE=symbol
RETCODE=(r2-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCREG

Chapter 8. Writing a CSL SCI client 243

return code. SCI return codes are defined in CSLSRR. Possible return codes for
CSLSCREG are described in the following table.

RETNAME=symbol
RETNAME=(r2-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the
SCI that processes the registration request.

RETTOKEN=symbol
RETTOKEN=(r2-r12)

(Optional) - Specifies the address of a 16-byte field to receive the SCI token of
the SCI that processes the registration request.

RSNCODE=symbol
RSNCODE=(r2-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCREG
reason code. SCI reason codes are defined in CSLSRR. Possible reason codes
for CSLSCREG are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

SCIVSN=symbol
SCIVSN=(r2-r12)

(Optional) - Specifies the address of a 4-byte field to receive the SCI version
number. The version number has the following format: 00vvrrmm.

00 This byte is reserved for future use. Currently, it is always 00.

vv Version number.

rr Release number.

mm Modification level or subrelease number.

Example: SCI version 1.1.0 is shown as X'00010100'.

SUBTYPE=symbol
SUBTYPE=(r2-r12)

(Optional) - Specifies the address of the 8-byte subtype of the member
registering with SCI. The subtype is defined by the user and can be any eight
characters. If it is specified as a symbol, the symbol references storage that
contains the subtype. If not specified, this parameter is set to blanks. If
SUBTYPE is not specified, it will be set to blanks.

The subtype can contain alphanumeric characters (A-Z, 0-9), or printable
characters (not case sensitive), with the exception of the characters &, <, and >.
OM converts any invalid data placed in this field to periods (.) before sending
the XML output to the client.

TCB=CURRENT
TCB=JOBSTEP
TCB=PARENT
TCB=symbol
TCB=(r2-r12)

(Optional) - Specifies the TCB with which the new SCI connection is
associated. The SCI connection persists until one of the following occurs:
v The member deregisters by using CSLSCDRG.
v The TCB associated with the connection terminates.

244 System Programming APIs

All callers of CSLSCREG can specify the following values for the TCB
parameter:

CURRENT
Associates the SCI connection with the currently executing TCB. This is the
default.

JOBSTEP
Associates the SCI connection with the JOBSTEP TCB of the TCB under
which the CSLSCREG request is issued. This TCB is specified by
TCBJSTCB.

PARENT
Associates the SCI connection with the TCB that attached the
currently-executing TCB.

For non-authorized callers, the indicated TCB must have the same storage key
associated with it as the caller's current PSW key (that is, TCBPKF must match
the current PSW key).

Authorized callers can, in addition, identify an explicit TCB by specifying a
symbol or register. If specified as a symbol, the symbol must be the label on a
word of storage containing the address of the TCB. If specified as a register,
the register must contain the TCB address.

TYPE=membertypecode
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

(Required) - Specifies the SCI member type of the address space that is
registering with SCI.

If this parameter is passed as a literal, the literal must be enclosed in single
quotation marks. If this parameter is passed as a symbol or register, the symbol
or register must contain the member type code.

The code for the member type can be obtained by using the CSLSTPIX macro.
Member types include:

AOP This SCI type is an automated operator program. It interacts with OM
by sending commands and receiving responses to the commands.

Batch This SCI type is an IMS batch region. It interacts as an IMS DL/I batch
or utility region.

CQS This SCI type is an IMS Common Queue Server. It provides access to a
set of common queues within the IMSplex.

DBRC This SCI type is an IMS Database Recovery Control Region.

IMS This SCI type is an IMS region. It can include the database manager,
transaction manager, and FDBR (an IMS control region that recovers

Chapter 8. Writing a CSL SCI client 245

database resources when an IMS database manager fails). SUBTYPE is
used to further qualify a particular control region (for example, DBDC,
DBCTL, DCCTL, or FDBR).

IMSCON
This SCI type is a connector to IMS. It acts as an interface between IMS
and protocols that are not supported by IMS directly (such as TCP/IP).

ODBM
This SCI type is an IMS Open Database Manager, which is part of the
CSL. It receives requests to access and manipulate IMS databases from
clients, such as IMS Connect or an ODBA application, and routes the
requests to the IMS DB systems in the IMSplex that manage the
database. When ODBM is used in support of IMS Connect and the IMS
Universal drivers, ODBM translates the incoming database access
requests from the low-level DRDA protocol into the DL/I calls used by
IMS and back again on output.

OM This SCI type is an IMS Operations Manager, which is part of the CSL.
It receives commands from AOPs, routes the commands to other
members of the IMSplex that have registered for the command,
consolidates the responses to the command, and sends the output back
to the originating AOP.

Other This SCI type is any other address space that does not fall into one of
the defined SCI types.

RM This SCI type is an IMS Resource Manager, which is part of the CSL. It
manages resources within the IMSplex and coordinates IMSplex-wide
processes. SUBTYPE is used to further qualify whether there is a single
RM in the IMSplex (SNGLRM) or there are multiple RMs in the
IMSplex (MULTRM).

SCI This SCI type is an IMS SCI, which is part of the CSL. It manages
communications within the IMSplex.

CSLSCREG return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCREG macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 67. CSLSCREG return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000004' X'00001000' The member is already registered. If the member is
authorized, the member name is already registered to
this SCI and the SCI token is returned. If the member
is not authorized, there are three registrations from the
current TCB and no more registrations are allowed.
One of the SCI tokens is returned.

X'01000008' X'00002010' An invalid type was passed

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004004' CSLSRG00 could not be loaded.

X'00004008' The user ID of the member address space is not
authorized to register with this SCI.

246 System Programming APIs

Table 67. CSLSCREG return and reason codes (continued)

Return code Reason code Meaning

X'00004010' The member name, membername, is not unique for the
authorized client. The registration is rejected.

X'00004028' A non-authorized member tried to register as an
authorized system SCI type.

X'0000402C' Either the caller key or state does not match the key or
state of the existing registration.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005008' A BPE SVC error occurred.

X'0000500C' A z/OS Name/Token retrieve error occurred.

X'00005010' An error occurred while establishing ResMgr.

X'00005014' An error occurred while obtaining storage.

X'00005018' An error occurred while obtaining a TTOKEN.

X'0000501C' An ALESERV error occurred.

X'00005020' An ENQ resource error occurred.

X'00005050' A BPECGBET error occurred in CSLSRGS0.

X'00005054' An ALESERV error occurred in CSLSRGS0.

X'00005058' A BPEHTADD error occurred in CSLSRGS0.

X'00005064' A BPEHTFND token error occurred in CSLSRGS0.

X'00005070' The SCI buffer manager could not be initialized.

X'00005080' The z/OS cross-system coupling facility join for the
member failed.

X'00005084' A non-authorized member specified an explicit
connection TCB.

X'00005088' The connection TCB key does not match the
CSLSCREG caller's key.

X'0000508C' The TCB type code passed on the CSLSCREG request
is invalid.

X'00005090' Error enqueuing registration AWE. This is an internal
error.

X'00005094' Error scheduling SRB to SCI. This is an internal error.

X'00005500' An abend occurred during CSLSCREG processing.

Related concepts:
“Issue CSL RM requests to manage global resources” on page 184
Related tasks:
“Registering an ODBM client” on page 107
Related reference:
“CSLOMCMD: command request” on page 115
“CSLOMI: API request” on page 125
“CSLOMQRY: query request” on page 134
“CSLSCQRY: query request” on page 235

Chapter 8. Writing a CSL SCI client 247

CSL SCI Notify Client exit routine (Exit Routines)
“CSLSCRQS: send request” on page 251

CSLSCRQR request return request
Issuing the CSLSCRQR request returns a request to the IMSplex member from
which the request originated. The return request should be issued when the server
has completed the request and is ready to return the output from the request.

CSLSCRQR returns a request to the IMSplex member from which the request
originated. It should be issued when the server has completed the request and is
ready to return the output from the request. It copies the output back to the
requestor's address space.

Only request servers can issue CSLSCRQR because an IMSplex member cannot
issue the macro without first receiving a request. A request server must be
authorized and running key 7.

CSLSCRQR syntax

CSLSCRQR DSECT syntax

Use the DSECT function of a CSLSCRQR request to include equate (EQU)
statements in your program for the CSLSCRQR parameter list length and the
CSLSCRQR return and reason codes.

►► CSLSCRQR FUNC=DSECT ►◄

CSLSCRQR RETURN syntax

The syntax for the CSLSCRQR FUNC=RETURN request follows.

►► CSLSCRQR FUNC=RETURN SCITOKEN=scitoken PARM=parm
NOCPYABN=N

NOCPYABN=Y
►

► RQSTTKN=requesttoken
RQSTRC=requestreturncode

►

►
RQSTRSN=requestreasoncode

RETCODE=returncode RSNCODE=reasoncode ►◄

CSLSCRQR parameters

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the CSLSCRQR parameter list. The length of the
parameter list must be at least equal to the basic parameter list length of
SRQR_PARMLN. However, if you code certain parameters on CSLSCRQR, you
must provide a longer parameter list. Use the following table to decide if you
must provide a parameter list of a longer length. If you are using more than
one parameter listed, and the parameters have different minimum length
values, always use the one that ends with the largest numeric value.

248 System Programming APIs

|

|||||||||||||||||||||
|

|
||||||||||||
|

|
||||||||||||||||

|

|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_cslsci_notifyclient.htm#ims_cslsci_notifyclient

Table 68. Parameters that require a parameter list length larger than SRQR_PARMLN

Length EQU Parameters that require this length

SRQR_PRMLV2 NOCPYABN

You can also define your parameter list to have a length of SRQR_PRMLMX
bytes. This EQU is set to the length of the longest CSLSCRQR parameter list
version, and the parameter list will always be long enough for any
combination of macro parameters. However, this maximum length might
change because of maintenance or across IMS releases.

NOCPYABN=N | Y
(Optional) - Specifies how SCI should handle an abend during the copy phase
of the request return process.

N SCI will take a dump and issue a message as determined by the logic in
the ARR or FRR. NOCPYABDN=N is the default.

Y SCI will not take a dump or issue a message if an abend is encountered
while it attempts to copy data back to the requestor. SCI will only write an
entry to the LOGREC data set.

This parameter was added as part of the Version 2 parameter list. If you
include this parameter, your parameter list must be at least equal to the value
specified by SQRQ_PRMLV2.

RQSTRC=symbol
RQSTRC=(r1-r12)

(Optional) - Specifies the return code that is associated with the request being
returned. This return code will be given to the requesting member in the
storage pointed to by the RETCODE parameter of the CSLSCRQS that
originated this request. If this parameter is not specified, a return code of zero
will be given to the requesting member.

If specified as a symbol, the symbol references storage that contains the return
code.

RQSTRSN=symbol
RQSTRSN=(r1-r12)

(Optional) - Specifies the reason code that is associated with the request being
returned. This reason code will be given to the requesting member in the
storage pointed to by the RSNCODE parameter of the CSLSCRQS that
originated this request. If this parameter is not specified, a reason code of zero
will be given to the requesting member.

If specified as a symbol, the symbol references storage that contains the return
code.

RQSTTKN=symbol
RQSTTKN=(r1-r12)

(Required) - Specifies the request token that is associated with the request
being returned. This request token can be obtained from the input exit
parameter list (INXP_RQSTTKN) when the request was presented to the
request processing member.

If specified as a symbol, the symbol references storage that contains the return
code.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQR

Chapter 8. Writing a CSL SCI client 249

||

||

||
|

|
|
|
|
|

|
|
|

||
|

||
|
|

|
|
|

return code. SCI return codes are defined in CSLSRR. Possible return codes for
CSLSCRQR are described in the following table.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQR
reason code. SCI reason codes are defined in CSLSRR. Possible reason codes
for CSLSCRQR are described in the following table.

SCITOKEN=symbol
SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

CSLSCRQR return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCRQR macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 69. CSLSCRQR return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' The function passed to the SCI interface PC routine
was invalid.

X'00002018' The SCI token is invalid.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'0000400C' The target member is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'0000502C' The member could not be found due to an internal
BPE hash table services error.

X'00005030' An SCI buffer could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be
obtained for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; SRB could not be
scheduled to the target address space.

X'00005040' The request is not outstanding and cannot be returned.

X'00005044' An SCI-allocated output buffer could not be obtained.

X'00005500' An abend occurred during the processing of an SCI
request.

X'00005504' An abend occurred when the member parameters were
copied to the target address space.

X'00005508' An abend occurred when the member parameters were
copied to the target address space, but the dump and
message were suppressed because NOCPYABN=Y was
specified.

250 System Programming APIs

||
|
|
|

CSLSCRQS: send request
By issuing the CSLSCRQS request, an IMSplex member can send a request to
another member in the IMSplex. The target member can be specified by
SCITOKEN, member name, or member type.

A request in an IMSplex can contain both input and output data (from the target
member's perspective). This contrasts to a message that can only contain input data
(again, from the target member's perspective). The data of a request is copied to
the target member's address space. The function is processed, and the output is
returned to the requestor's address space. If the request included an ECB, control is
returned to the requesting module after the request has been processed by SCI. The
requestor must then wait on the ECB.

The ECB is posted when the request processing has completed. The requestor then
looks at the RETCODE and RSNCODE fields to determine the outcome of the
request. If no ECB is included in the request, the RETCODE and RSNCODE fields
can be used to determine the outcome of the request when the requesting module
gets control back from SCI.

Note: Before issuing CSLSCRQS, the requester should clear the fields that will
receive the address and length of the SCI Allocated Output parameters. If the
request is not sent to the destination because of an error, or if there is no data to
output, SCI will not update the length and address fields.

CSLSCRQS syntax

DSECT syntax

Use the DSECT function of a CSLSCRQS request to include equate (EQU)
statements in your program for the CSLSCRQS parameter list length, the IMSplex
types and the CSLSCRQS return and reason codes.

►► CSLSCRQS FUNC=DSECT ►◄

SEND REQUEST syntax

The syntax for the CSLSCRQS FUNC=SEND request follows.

►► CSLSCRQS FUNC=SEND SCITOKEN=scitokenaddress PARM=parmaddress ►

► MBRPARM=mbrparmlistaddress MBRPCNT=mbrparmcount MBRFUNC=mbrfunctioncode ►

►
MBRSFUNC=mbrsubfunctioncode

FUNCTYPE=DEST

FUNCTYPE=SENDER ECB=ecbaddress
►

► TOKEN=tokenaddress
NAME=nameaddress

A

RETCODE=returncodeaddress RSNCODE=reasoncodeaddress ►

Chapter 8. Writing a CSL SCI client 251

►
RETNAME=returnnameaddress RETTOKEN=returntokenaddress

►◄

A:

TYPE=membertypecode
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

SUBTYPE=subtypeaddress

CSLSCRQS parameters

ECB=symbol
ECB=(r1-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous
requests. When the request is complete, the ECB specified is posted. If an ECB
is not specified, the task is suspended until the request is complete. If an ECB
is specified, the invoker of the macro must issue a WAIT (or equivalent) after
receiving control from CSLSCRQS, before using or examining any data
returned by this macro (including the RETCODE and RSNCODE fields).

FUNCTYPE=DEST
FUNCTYPE=SENDER

(Optional) - Specifies that the MBRFUNC and MBRSFUNC are defined by the
DEST (destination) of this request or the SENDER of the request. This indicator
is passed to the recipient of the request in the SCI Input exit parameter list.

MBRFUNC= symbol
MBRFUNC= (r1-r12)

(Required) - Specifies a 4-byte member function code that is passed to the
destination of the request in the SCI Input exit parameter list. This function
code, along with the MBRSFUNC, identifies the request that is being sent.

If MBRFUNC is a symbol, the symbol points to a four-byte area of storage that
contains the function code.

MBRPARM= symbol
MBRPARM= (r1-r12)

(Required) - Specifies the address of a pre-built parameter list. This parameter
list must be built by the requesting module and consists of sets of triplets. Each
triplet describes a single parameter in the member parameter list and consists
of:

parameterlength
Four-byte parameter that specifies the length of the member parameter.

parameteraddress
Four-byte parameter that specifies the address of the member
parameter.

252 System Programming APIs

datatype
Four-byte parameter that specifies how this parameter is to be handled
by SCI. Equates are provided for each type (included with
CSLSCODE). These equates can be used to set the value of data type.
Possible values are:

IN The parameter is an input parameter. It is copied to the
destination address space with the request.

OUT The parameter is an output parameter. It is copied back to the
requesting address space when the request is completed by the
server. The storage for the parameter must be allocated before
the request is issued.

IO The parameter is both an input and an output parameter. It is
copied to the target address space with the request and it is
copied back to the requesting address space when the request
is complete.

SCI The parameter is an SCI allocated output parameter. The
storage for the parameter is allocated in the requestor's address
space when the request is complete. The address of the storage
will be returned in the parameter address field and the length
will be returned in the parameter length field. The storage
must be released by the requestor using the CSLSCBFR
request. The eight bytes immediately in front of the address
returned for an SCI-allocated output parameter are available
for use by the requestor. These eight bytes are not cleared, and
might contain residual data from a prior use of the buffer.

The two methods for passing parameters in a parameter list are by address and
by value. Both of these methods can be used when passing parameters in a
CSLSCRQS request. The triplet must be setup so that SCI will handle the
parameter properly.
v By address

To pass a parameter by address, the address of the parameter must be
passed in parameteraddress and the length of the parameter must be passed in
parameterlength. SCI will get the parameter from parameteraddress for data
type IN and IO and will store the parameter at parameteraddress for data type
OUT and IO. The address at which the parameter is stored and its length is
returned for data type SCI.

v By value
To pass a parameter by value, the parameter must be passed in
parameteraddress and zero must be passed in parameterlength. When the length
is zero, SCI will copy the value contained in parameteraddress to the
destination for data type IN. All other data types must be passed by address
since SCI requires an address to store any output parameters.

Member Parameter List: The user parameters specified here are presented to
the program that receives the request in the member parameter list, the
address of which is contained in the Input Exit Parm area field
INXP_MBRPLPTR. Each parameter is represented by eight bytes, the first four
bytes contain parameterlength and the second four bytes contain parameteraddress
(if parameteraddress is an address, the second four bytes point to storage in the
local address space, not the requesting address space). If the parameter's data
type is SCI, the first four bytes will contain a length of four and the second
word's value is unpredictable.

Chapter 8. Writing a CSL SCI client 253

Null Parameters: In some cases a request processing module expects a set
number of parameters with a defined order. If a request is to be sent that does
not contain all the parameters, null parameters must be sent to ensure the data
buffer contains everything that is expected. Null parameters can be sent by
specifying zero for parameterlength and parameteraddress. The eights bytes that
represent the parameter in the data buffer will contain zeros. This is true for
any data type (IN, OUT, IO or SCI) or method of passing parameters (by
address or by value).

MBRPCNT=symbol
MBRPCNT=(r1-r12)

(Required) - Specifies a 4-byte field that contains the number of member
parameters that are included in MBRPARM.

MBRSFUNC=symbol
MBRSFUNC=(r1-r12)=

(Optional) - Specifies a 4-byte member subfunction code that is passed to the
destination of the request in the SCI input exit parameter list. This subfunction
code, along with the MBRFUNC, identifies the request that is being sent.

If MBRSFUNC is a symbol, the symbol points to a 4-byte area of storage that
contains the sub-function code.

NAME=symbol
NAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte member name of the destination
of this request. This name can be obtained from the Notify exit (when the
member joins the IMSplex) or by issuing a CSLSCQRY request.

Note: One of the routing parameters (NAME, TOKEN or TYPE) must be
included.

PARM=symbol
PARM=(r1-r12)

(Required) - Specifies the address of a parameter list used by the request to
pass the parameters to SCI. The length of the storage must be at least equal to
the value of SRQS_LN.

RETCODE=symbol
RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQS
return code. SCI return codes are defined in CSLSRR. Possible return codes for
CSLSCRQS are described in the following table.

RETNAME=symbol
RETNAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the
SCI that processes the request.

RETTOKEN=symbol
RETTOKEN=(r1-r12)

(Optional) - Specifies the address of a 16-byte field to receive the SCI token of
the SCI that processes the request.

RSNCODE=symbol
RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQS
reason code. SCI reason codes are defined in CSLSRR. Possible reason codes
for CSLSCRQS are described in the following table.

SCITOKEN=symbol

254 System Programming APIs

SCITOKEN=(r1-r12)
(Required) - Specifies a 16-byte field containing the SCI token. This token
uniquely identifies this connection to SCI. The SCI token was returned by a
successful CSLSCREG FUNC=REGISTER request.

TOKEN=symbol
TOKEN=(r1-r12)

(Optional) - Specifies the address of the 16-byte SCI token of the destination of
this request. This token can be obtained either from the Notify exit (when the
member joins the IMSplex) or by issuing a SLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE) must be
included.

TYPE=symbol
TYPE=(r1-r12)
TYPE='AOP'
TYPE='BATCH'
TYPE='CQS'
TYPE='DBRC'
TYPE='IMS'
TYPE='IMSCON'
TYPE='ODBM'
TYPE='OM'
TYPE='OTHER'
TYPE='RM'
TYPE='SCI'

Input parameter that specifies the IMSplex member type of the IMSplex
member to which this request should be routed. The IMSplex member type
routing can be further qualified by using the SUBTYPE parameter. If TYPE is
specified, SCI chooses the IMSplex member of the requested type to which the
request is sent.

If member type is specified as a literal, the literal must be enclosed in single
quotes. If this parameter is passed as a symbol or register, the symbol or
register must contain the member type code. The member type code can be
obtained by using the CSLSTPIX macro.

Note: One of the routing parameters (NAME, TOKEN, TYPE) must be
included.

CSLSCRQS return and reason codes

The following table lists the return and reason codes that can be returned on a
CSLSCRQS macro request. Also included is the meaning of a reason code (that is,
what possibly caused it).

Table 70. CSLSCRQS return and reason codes

Return code Reason code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' The function passed to the SCI interface PC routine is
invalid.

X'00002008' The number of parameters passed was either less than
or equal to zero, or greater than the maximum allowed.

X'00002010' An invalid type was passed.

X'00002018' This SCI token is invalid.

Chapter 8. Writing a CSL SCI client 255

Table 70. CSLSCRQS return and reason codes (continued)

Return code Reason code Meaning

X'00002024' The PHDR length is invalid.

X'00002028' The routing data length is invalid.

X'0000202C' The request target member is not key 7.

X'00002030' The request target member is not authorized.

X'00002034' The length of the parameters is too large for a
non-authorized caller.

X'00002038' The parameter list version is invalid.

X’0000203C’ CSLSCRQS was called in SRB mode for a synchronous
request (no ECB= coded).

X'01000010' X'00004000' SCI is not active.

X'0000400C' The destination member is not active. The destination
member might have been designated by name, token,
or type.

X'0000401C' The calling member is in the process of deregistering
from SCI.

X'00004020' The request timed out.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005024' An SRB routine error occurred.

X'00005028' The routing type is invalid.

X'0000502C' The member could not be found due to an internal
BPE hash table services error.

X'00005030' A buffer in the destination member's address space
could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be
obtained for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; an SRB could not be
scheduled to the target address space.

X'0000503C' MRT could not be expanded.

X'00005044' An SCI-allocated output buffer could not be obtained.

X'0000504C' A message SRB key 7 parameter area could not be
obtained.

X'0000507C' An IXCMSGO error occurred.

X'00005500' An abend occurred during CSLSCRQS processing.

X'00005504' An abend occurred while the member parameters were
copied to the target address space.

Related reference:
“CSLSCREG: registration request” on page 240

256 System Programming APIs

|||
|

Chapter 9. CSL Operations Manager XML output

Command responses that are returned through the OM API are embedded in XML
tags using codepage 037. XML output is generated for responses to the CSLOMI,
CSLOMCMD, and CSLOMQRY requests.

Note: The OM response is intended as a programming interface, not as an
interface that produces prebuilt messages to be displayed on a screen. For OM
requests, the output is passed back in the OUTPUT= buffer. For messages, the
output is returned to the SCI input exit. The OM response is returned encapsulated
in XML tags.
Related concepts:
“CSL OM automated operator program clients” on page 139
Related reference:
“CSLOMCMD: command request” on page 115
“CSLOMI: API request” on page 125
“CSLOMQRY: query request” on page 134
“CSLOMRSP: command response request” on page 171

CSLOMI XML output examples
Each of the command syntax examples contain a sample of CSLOMI XML output.
The examples present different scenarios that generate XML output based on the
commands that are used in the example.

CSLOMI XML output

One or more of the sets of tags in the following output example is returned on
each CSLOMI request.
<imsout>

<ctl>
<omname> </omname>
<omvsn> </omvsn>
<xmlvsn> </xmlvsn>
<statime> </statime>
<stotime> </stotime>
<staseq> </staseq>
<stoseq> </stoseq>
<rqsttkn1> </rqsttkn1>
<rqsttkn2> </rqsttkn2>
<rc> </rc>
<rsn> </rsn>

<rsnmsg> </rsnmsg>
</ctl>
<cmdclients>
<mbr name="membername">

<typ> </typ>
<styp> </styp>
<vsn> </vsn>
<jobname> </jobname>

</mbr>
</cmdclients>
<cmdsyntax> </cmdsyntax>
<cmddtd> </cmddtd>
<cmdtext> </cmdtext>

© Copyright IBM Corp. 1974, 2018 257

<cmderr>
<mbr name="membername">

<typ> </typ>
<styp> </styp>
<rc> </rc>
<rsn> </rsn>

</mbr>
</cmderr>
<cmdsecerr>
<exit>

<rc> </rc>
<userdata> </userdata>

</exit>
<saf>

<rc> </rc>
<racfrc> </racfrc>
<racfrsn> </racfrsn>

</saf>
</cmdsecerr>
<cmd>

<master> </master>
<userid> </userid>
<verb> </verb>
<kwd> </kwd>
<input> </input>

</cmd>
<cmdrsphdr>

<hdr ... />
</cmdrsphdr>
<cmdrspdata>

<rsp> </rsp>
</cmdrspdata>
<msgdata>
<mbr name="membername">

<msg> </msg>
</mbr>

</msgdata>
</imsout>

Issue IMS command example

The following examples are CSLOMI XML output. In the following command
example, the QUERY TRAN command was routed to IMSA with a timeout value
of 10 seconds.
OM API Input:
CMD(QUERY TRAN) NAME(SKS*)) ROUTE(IMSA) TIMEOUT(10) RQSTTKN2(QTRANCMD)

OM API Output:
<imsout>

<ctl>
<omname>OM1</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>1999.341 12:52:44.46</statime>
<stotime>1999.341 12:52:44.46</stotime>
<staseq>B342BCC72A34D206</staseq>
<stoseq>B342BCC75CD52208</stoseq>
<rqsttkn2>QTRANCMD</rqsttkn2>
<rc>0</rc> <rsn>0</rsn>

</ctl>
<cmd>
<master>IMS1</master>
<verb>QRY</verb>
<kwd>TRAN</kwd>
<input>QUERY TRAN</input>

</cmd>

258 System Programming APIs

<cmdrsphdr>
<hdr slbl="TRAN" llbl="TranCode" scope="LCL" sort="a" key="1" scroll="no"
len="8" dtype="CHAR" align="left" />

<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4" scroll="no"
len="8" dtype="CHAR" align="left" />

<hdr slbl="CC" llbl="CC" scope="LCL" key="0" scroll="YES" len="4" dtype="INT"
align="right" />

</cmdrsphdr>
<cmdrspdata>
<rsp> TRAN(SKS1) MBR(IMSA) CC(0) </rsp>
<rsp> TRAN(SKS2) MBR(IMSA) CC(0) </rsp>
<rsp> TRAN(SKS3) MBR(IMSA) CC(0) </rsp>
<rsp> TRAN(SKS4) MBR(IMSA) CC(0) </rsp>
<rsp> TRAN(SKS5) MBR(IMSA) CC(0) </rsp>

</cmdrspdata>
</imsout>

Query client list example

In the following client list example, the Operations Manager (OM) returns a list of
client names that are currently registered for command processing.
OM API Input:
QUERY(CMDCLIENTS) RQSTTKN2(CLIENTLIST)
OM API Output:
<imsout>

<ctl>
<omname>OM1</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>1999.341 12:52:44.46</statime>
<stotime>1999.341 12:52:44.46</stotime>
<staseq>B342BCC72A34D206</staseq>
<stoseq>B342BCC75CD52208</stoseq>
<rqsttkn2>CLIENTLIST</rqsttkn2>
<rc>0</rc> <rsn>0</rsn>

</ctl>
<cmdclients>
<mbr name=IMSA>

<typ>DBDC</typ>
<vsn>0800</vsn>
<jobname>IMSJOB01</jobname>

</mbr>
<mbr name=IMSB>

<typ>DBDC</typ>
<vsn>0800</vsn>
<jobname>IMSJOB02</jobname>

</mbr>
</cmdclients>

</imsout>

Query command syntax example

The following command syntax example returns the command syntax for currently
registered commands. In this example, the QUERY TRAN command is the only
command that is registered to OM, and the keyword NAME is associated with it.
OM API Input:
QUERY(CMDSYNTAX) RQSTTKN2(CMDLIST)
OM API Output:
<imsout>

<ctl>
<omname>OM1</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>1999.341 12:52:44.46</statime>

Chapter 9. CSL Operations Manager XML output 259

<stotime>1999.341 12:52:44.46</stotime>
<staseq>B342BCC72A34D206</staseq>
<stoseq>B342BCC75CD52208</stoseq>
<rqsttkn2>CMDLIST</rqsttkn2>
<rc>0</rc> <rsn>0</rsn>

</ctl>

<cmdsyntax>
<root>

<resource name="TRAN">
<verb name="QUERY">

<keyword name="NAME">
<var name="tranname*"/>

</keyword>
</verb>

</resource>
</root>

</cmdsyntax>

<cmdtext>
NEXT "Next"
BACK "Back"
FINISH "Finish"
CANCEL "Cancel"
SUMMARY "Summary"
TRAN_NAME "Transaction"
TRAN_QUERY_NAME "Query"
TRAN_QUERY_NAME_NAME "Name"
TRAN_QUERY_NAME_TEXT "Name of transaction."
TRAN_QUERY_NAME_VAR "tranname*"

</cmdtext>
</imsout>

Related reference:
“XML tags returned as CSL OM responses” on page 263

QUERY TRAN command (Commands)

CSLOMCMD output
The command syntax example contains a sample of CSLOMCMD XML output.
The example presents a scenario that generates XML output based on the
commands that are used in the example.

CSLOMCMD XML output

The tags in the following output example can be returned as a result of a
CSLOMCMD request.
<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>

<ctl>
<omname> </omname>
<omvsn> </omvsn>
<xmlvsn> </xmlvsn>
<statime> </statime>
<stotime> </stotime>
<staseq> </staseq>
<stoseq> </stoseq>
<rqsttkn1> </rqsttkn1>
<rc> </rc>
<rsn> </rsn>

</ctl>
<cmderr>

<mbr name="membername">

260 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querytran.htm#ims_cr2querytran

<typ> </typ>
<styp> </styp>
<rc> </rc>
<rsn> </rsn>

</mbr>
</cmderr>
<cmdsecerr>

<exit>
<rc> </rc>
<userdata> </userdata>

</exit>
<saf>

<rc> </rc>
<racfrc> </racfrc>
<racfrsn> </racfrsn>

</saf>
</cmdsecerr>
<cmd>

<master> </master>
<userid> </userid>
<verb> </verb>
<kwd> </kwd>
<input> </input>

</cmd>
<cmdrsphdr>

<hdr ... /hdr>
</cmdrsphdr>
<cmdrspdata>

<rsp> </rsp>
</cmdrspdata>
<msgdata>

<mbr name="membername">
<msg> </msg>

</mbr>
</msgdata>

</imsout>

CSLOMQRY output
Each of the command syntax examples contain a sample of CSLOMQRY XML
output. The examples present different scenarios that generate XML output based
on the commands that are used in the example.

CSLOMQRY XML output

The tags in the following output example can be returned as a result of a
CSLOMQRY request.

The command syntax and translatable text that is returned as a result of the
CSLOMQRY QUERY TYPE(CMDSYNTAX) request includes information for type-2
commands.
<imsout>

<ctl>
<omname> </omname>
<omvsn> </omvsn>
<xmlvsn> </xmlvsn>
<statime> </statime>
<stotime> </stotime>
<staseq> </staseq>
<stoseq> </stoseq>
<rqsttkn1> </rqsttkn1>
<rc> </rc>
<rsn> </rsn>

</ctl>

Chapter 9. CSL Operations Manager XML output 261

<cmdclients>
<mbr name="membername">

<typ> </typ>
<styp> </styp>
<vsn> </vsn>
<jobname> </jobname>

</mbr>
</cmdclients>
<cmdsyntax> </cmdsyntax><cmddtd>

<!ELEMENT imsout (ctl, cmdclients?, cmdsyntax?, cmddtd?,
cmdtext?, cmderr?, cmd, cmdrsphdr, cmdrspdata?, msgdata?)>
<!ELEMENT ctl (omname?, omvsn?, xmlvsn?, stattime, stotime,
statseq, stoseq, rqsttkn1?, rqsttkn 2?, rc, rsn)>
<!ELEMENT omname (#PCDATA) >
<!ELEMENT omvsn (#PCDATA) >
<!ELEMENT xmlvsn (#PCDATA) >
<!ELEMENT statime (#PCDATA) >
<!ELEMENT stotime (#PCDATA) >
<!ELEMENT staseq (#PCDATA) >
<!ELEMENT stoseq (#PCDATA) >
<!ELEMENT rqsttkn1 (#PCDATA) >
<!ELEMENT rqsttkn2 (#PCDATA) >
<!ELEMENT rc (#PCDATA) >
<!ELEMENT rsn (#PCDATA) >
<!ELEMENT cmdclients (mbr+)>
<!ELEMENT cmdsyntax (#PCDATA) >
<!ELEMENT cmddtd (#PCDATA) >
<!ELEMENT cmdtext (#PCDATA) >
<!ELEMENT cmderr (mbr*)>
<!ELEMENT MBR ((TYP, STYP, ((VSN, JOBNAME) | (rc, rsn))) | msg)>

<!ELEMENT typ (#PCDATA) >
<!ELEMENT styp (#PCDATA) >
<!ELEMENT vsn (#PCDATA) >
<!ELEMENT jobname (#PCDATA) >
<!ELEMENT msg (#PCDATA) >
<!ELEMENT cmdsecerr (exit, saf)>
<!ELEMENT exit (rc, userdata) >
<!ELEMENT saf (rc, racfc, racfrsn)>
<!ELEMENT userdata (#PCDATA) >
<!ELEMENT racfc (#PCDATA) >
<!ELEMENT racfrsn (#PCDATA) >
<!ELEMENT cmd (master?, userid?, verb, kwd, input)>
<!ELEMENT master (#PCDATA) >
<!ELEMENT userid (#PCDATA) >
<!ELEMENT verb (#PCDATA) >
<!ELEMENT kwd (#PCDATA) >
<!ELEMENT input (#PCDATA) >
<!ELEMENT cmdrsphdr (hdr*) >
<!ELEMENT hdr (#PCDATA) >
<!ELEMENT cmdrspdata (rsp*) >
<!ELEMENT rsp (#PCDATA) >
<!ELEMENT msgdata (mbr) >
<!ATTLIST hdr slbl CDATA #REQUIRED >
<!ATTLIST hdr llbl CDATA #REQUIRED >
<!ATTLIST hdr scope CDATA #REQUIRED >
<!ATTLIST hdr sort CDATA #REQUIRED >
<!ATTLIST hdr key CDATA #REQUIRED >
<!ATTLIST hdr scroll CDATA #REQUIRED >
<!ATTLIST hdr len CDATA #REQUIRED >
<!ATTLIST hdr dtype CDATA #REQUIRED >
<!ATTLIST hdr align CDATA #REQUIRED >

</cmddtd>
<cmdtext> </cmdtext>
</imsout>

Related reference:
“CSLOMQRY: query request” on page 134

262 System Programming APIs

CSLOMOUT output
The command syntax example contains a sample of CSLOMOUT XML output. The
example presents a scenario that generates XML output based on the commands
that are used in the example.

Unsolicited output message encapsulated in XML tags

The tags in the following output example can be returned as a result of a
CSLOMOUT request.
<imsout>

<ctl>
<omname></omname>
<omvsn></omvsn>
<xmlvsn></xmlvsn>
<statime></statime>
<staseq></staseq>
<uom>UOM</uom>

</ctl>
<msgdata>

<mbr name="membername">
<typ></typ>
<styp></styp>
<msg></msg>

</mbr>
<msgdata>

</imsout>

XML tags returned as CSL OM responses
Different XML tags can be returned as CSL OM responses. Each tag name is
delimited by the characters < and >. Tags can be nested within parent tags to
encapsulate related information.

Data or other sets of tags are contained between these start and end tags. In the list
of tags, indentation indicates that the tags are nested within the parent tags.

<?xml version "1.0"?>
The version of XML used in this output.

<!DOCTYPE imsout SYSTEM "imsout.dtd">
The DOCTYPE tag identifies the file that contains the document type
definition (DTD). The DTD describes the structure that is supported for
this type of XML document. Users of z/OS can find the DTD information
in the CSLOMDTD member, located in the IMS.SDFSRESL data set.

<imsout> </imsout>
The <imsout> </imsout> tags encapsulate the output from OM. These tags
are returned on every request.

<ctl> </ctl>
The <ctl> </ctl> tags encapsulate the control information that is returned
by OM. These tags are returned on every request and include the following
control information:

<omname>om name</omname>
Indicates the name of the OM that processed this request. The
name is specified on the OMNAME= execution parameter of the
CSLOIxxx PROCLIB member.

Chapter 9. CSL Operations Manager XML output 263

<omvsn>om version number</omvsn>
Indicates the OM version number.

<xmlvsn>xml version number</xmlvsn>
Indicates the XML version number.

<statime>starttime</statime>
Indicates the time that OM started processing the request. The field
is in the following format: yyyy.ddd hh:mm:ss.th

<stotime>stoptime</stotime>
Indicates the time that OM completed request processing. The field
is in the following format: yyyy.ddd hh:mm:ss.th

<staseq>startsequence</staseq>
Indicates the sequence value when OM started processing the
request. This value can be used for sorting and is in printable
EBCDIC hexadecimal format.

<stoseq>stopsequence</stoseq>
Indicates the sequence value when OM stopped processing the
request. This value can be used for sorting and is in printable
EBCDIC hexadecimal format.

<rqsttkn1>requesttoken1</rqsttkn1>
Indicates the user-specified RQSTTKN1 value that is associated
with the response. OM converts unprintable characters to periods
(.) in the output.

<rqsttkn2>requesttoken2</rqsttkn2>
Indicates the user-specified RQSTTKN2 value that is associated
with the response. OM converts unprintable characters to periods
(.) in the output.

<rc>returncode</rc>
The return code for the request in printable EBCDIC hexadecimal
format.

<rsn>reasoncode</rsn>
The reason code for the request in printable EBCDIC hexadecimal
format.

<uom>unsolicited output message</uom>
Indicates that the XML is for an unsolicited output message

<cmdclients> </cmdclients>
Encapsulates information about OM clients. These tags can be returned on
a QUERY(CMDCLIENTS) request.

<mbr name="membername"></mbr>
Indicates the name of the IMSplex member that is registered for
commands.

<typ>membertype</typ>
Indicates the type of IMSplex member.

<styp>membersubtype</styp>
Indicates the IMSplex member subtype. OM converts
unprintable characters to periods (.) in the output.

<vsn>memberversion</vsn>
Indicates the member version number.

264 System Programming APIs

<jobname>memberjobname</jobname>
Indicates the member job name.

<cmddtd> </cmddtd>
Encapsulates the Document Type Definition (DTD) that are defined by OM
for command syntax and OM output XML. These tags can be returned on
a QUERY(CMDSYNTAX) request.

<cmdsyntax> </cmdsyntax>
Encapsulates the XML definitions for the commands that are registered to
OM from all of its clients. These tags can be returned on a
QUERY(CMDSYNTAX) request.

<cmdtext> </cmdtext>
Encapsulates the translatable text strings that are associated with the XML
command syntax tags. These tags can be returned on a
QUERY(CMDSYNTAX) request.

<cmd> </cmd>
Encapsulates the command information that was passed to OM. These tags
can be returned on a command request. The output returned in these tags
is what was provided on the CMD= parameter on the CSLOMBLD macro.
The following tags are included within the <cmd> tags:

<master> </master>
Encapsulates the name of the command processing client that was
tagged as the master when sending the command. This
information will not be present unless the command was
successfully sent to at least one command processing client.

<userid> </userid>
Encapsulates the user ID of the originator of the command.

<verb> </verb>
Encapsulates the short form of the command verb that was
processed by OM. The verb might have been passed to OM in a
long form.

<kwd> </kwd>
Encapsulates the command keyword that was processed by OM.

<input> </input>
Encapsulates the actual input command string that was passed to
OM. The following characters are converted to periods (.) to
maintain the validity of the output XML:
v Greater than signs (>)
v Less than signs (<)
v Ampersands (&)
v Non-printable characters

<cmdrsphdr> </cmdrsphdr>
Encapsulates the command header information that describes the data
fields returned in the command response. These tags can be returned on a
command request.

<hdr ... />
Defines the attributes of columns of data fields.

The command response header information is in the format shown
in the following format example:

<hdr slbl="ss" llbl="llll" scope="c" sort="d" key="e" scroll="f" len="g" dtype="h" align="i" skipb="no"/>

Chapter 9. CSL Operations Manager XML output 265

slbl Short label used to match data description with data value
that is returned by the <cmdrspdata> tag.

The short label values vary by command. Refer to the
documentation for each command to determine what
values can be returned for a specific command.

llbl Long label that can be used as the table column header.

The long label values vary by command. Refer to the
documentation for each command to determine what
values can be returned for a specific command.

scope Indicates if the data is global or local.

GBL Indicates that the data is global. For query output,
global data applies to all resources of the same
name, but is returned only once in the command
response for a specific resource name. Global
information applies to other rows of the same
resource name for different IMSplex member
names. The resource name is the data field
identified by a KEY="1" attribute. If an application
chooses to transform the command response data
into a table to be displayed for a user, the global
data value can be propagated to other rows for the
same resource name.

LCL Indicates that the data is local. For query output,
local data applies only to a specific resource name
in a specific IMS. Different IMS systems can return
different values for local data fields. Each IMS
returns its local value when it is available. If an
application chooses to transform the command
response data into a table to be displayed for a
user, the local data value should not be propagated
to other rows for the same resource name.

sort Indicates whether or not this field should be sorted or the
sort direction.

A Sort in ascending order.

D Sort in descending order.

N Do not sort field.

key Indicates the sort priority for this field.

0 Field is not sorted.

1 The highest priority sort field.

2 The second highest priority sort field.

n The n the priority sort field.

The priority value indicated on KEY= in the <cmdrsphdr>
tag has been predetermined. Some command responses can
specify multiple sort fields. Several fields are listed within
the <cmdrsphdr> tags with their sort priorities:
v Trancode - 1
v MbrName - 4
v CC - 0

266 System Programming APIs

v PSBname - 0
v QCnt - 2
v LCls - 0
v LQCnt - 3

The following code example causes the command results to
be sorted with the following priority:
1. Trancode
2. Qcnt
3. LQcnt
4. MbrName

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1 </xmlvsn>
<statime>2002.261 18:33:56.425140</statime>
<stotime>2002.261 18:33:56.487941</stotime>
<staseq>B8400987409B4A0E</staseq>
<stoseq>B84009874FF05409</stoseq>
<rqsttkn1>USRT002 10113356</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS2 </master>
<userid>USRT002 </userid>
<verb>QRY </verb>
<kwd>TRAN </kwd>
<input>QRY TRAN NAME(ADD*) SHOW(PSB,QCNT,CLASS) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4"
scroll="no" len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" />
<hdr slbl="PSB" llbl="PSBname" scope="LCL" sort="n" key="0"
scroll="yes" len="8" dtype="CHAR" align="left" />
<hdr slbl="Q" llbl="QCnt" scope="GBL" sort="d" key="2"
scroll="yes" len="8" dtype="INT" align="right" />
<hdr slbl="LCLS" llbl="LCls" scope="LCL" sort="n" key="0"
scroll="yes" len="3" dtype="INT" align="right" />
<hdr slbl="LQ" llbl="LQCnt" scope="LCL" sort="d" key="3"
scroll="yes" len="8" dtype="INT" align="right" /></cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(ADDPART) MBR(IMS2) CC(0) PSB(DFSSAM04) LCLS(4)
LQ(0) </rsp>
<rsp>TRAN(ADDINV) MBR(IMS2) CC(0) PSB(DFSSAM04) LCLS(4)
LQ(0) </rsp>
<rsp>TRAN(ADDPART) MBR(IMS2) CC(0) Q(0) </rsp>
<rsp>TRAN(ADDINV) MBR(IMS2) CC(0) Q(0) </rsp>
<rsp>TRAN(ADDPART) MBR(SYS3) CC(0) PSB(DFSSAM04) LCLS(4)
LQ(0) </rsp>
<rsp>TRAN(ADDINV) MBR(SYS3) CC(0) PSB(DFSSAM04) LCLS(4)
LQ(3) </rsp>
</cmdrspdata>
</imsout>

If two records have the same Trancode, they are sorted by
Qcnt. If they also have the same Qcnt, they are sorted by

Chapter 9. CSL Operations Manager XML output 267

LQcnt. If they have the same LQcnt value, they are sorted
by MbrName, and so on, until the nth sort field is used.

The results of the XML in the previous code are displayed
in the following code sample.
Response for: QRY TRAN NAME(ADD*) SHOW(PSB,QCNT,CLASS)

Trancode MbrName CC PSBname QCnt LCls LQCnt
ADDINV IMS2 0 0
ADDINV SYS3 0 DFSSAM04 4 3
ADDINV IMS2 0 DFSSAM04 4 0
ADDPART IMS2 0 0
ADDPART IMS2 0 DFSSAM04 4 0
ADDPART SYS3 0 DFSSAM04 4 0

Depending on which fields were selected using the SHOW
parameter of the QUERY command, not all intermediate
priority value fields will be displayed. That is, the results
could display fields whose priority values were set at 1
and 4, but not display fields whose priority values were set
at 2 and 3. A program might leave the records in the
original order, sort them using the predetermined priority
values, or sort by other fields using criteria set locally by
the user.

scroll Indicates whether this field is scrolled off of the screen
when TSO SPOC shifts the screen to the right.

NO Do not scroll the field.

YES Allow the field to scroll off the screen.

len Maximum length of data (data returned could contain
fewer characters). If a table of data is being created from
the output response, this value can be used to determine
the width of the column that is displayed for this attribute.
If the value for this field is '*', this is a variable length field.

dtype Describes the original data type. All data is returned in
character format. However, some fields represent numeric
data. Data that originated as integer might need to be
converted from character to integer in order to perform
mathematical calculations.

CHAR
The output field represents character data.

INT The output field is the character representation of
integer data.

align Indicates recommended column alignment if data is to be
formatted into columns.

RIGHT
Data is right-aligned, for example, numeric data.

CENTER
Data is centered.

LEFT Data is left-aligned, for example, character data.

skipb

no The column is displayed on the TSO SPOC output,

268 System Programming APIs

even if no client returned any information for this
column. This is the default.

yes The column is not displayed on the TSO SPOC
output if no client returned any information for
this column.

<cmdrspdata> </cmdrspdata>
Encapsulates the command response detail information. These tags can be
returned on a command request. The tags contain the actual data that is
described by the <cmdrsphdr> </cmdrsphdr> tags.

Refer to the documentation for each command to determine what values
can be returned for a specific command.

<rsp>response data</rsp>

Contains a logical line of command response output for a
particular resource. The response data contains various tags in the
form name(value). The name maps to short label (slbl=) values in
the <hdr> tag. This is shown in the following example, with the
values TRAN and PSB.
<cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode"... />
<hdr slbl="PSB" llbl="PSBname" ... />
</cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(A) PSB(A11) </rsp>
<rsp>TRAN(B) PSB(B22) </rsp>
<rsp>TRAN(C) PSB(C33) </rsp>
</cmdrspdata>

The <hdr> tag includes a long label value (llbl=), which can be
used as column headings. This is shown in the following output
example, specifically Trancode and PSBname.
Trancode PSBname
A A11
B B22
C C33

The values included in the response data propagate the data
columns of the SPOC output. Other tags in the <hdr> tag describe
formatting attributes for values in that column.

<msgdata> </msgdata>
Encapsulates pre-built IMS messages. The messages can be of any type
including informational, warning, or error messages. These tags can be
returned on a command request.

<mbr name="membername"></mbr>
Indicates the name of the IMSplex member that returned the
message.

<msg>message data</msg>
Contains a logical command response output for a resource
in a message format. The message starts with a message
number (for example, DFSnnnnI). There is no LL field or
X'15' new line character.

<cmderr> </cmderr>
Encapsulates the return and reason code information returned by OM or a
command processing client. These tags are returned on command requests

Chapter 9. CSL Operations Manager XML output 269

when an error specific to a command processing client must be returned.
For each IMSplex member with an error, the following information is
returned.

<mbr name="membername"></mbr>
Indicates the name of the IMSplex member for which an error was
detected.

<typ>membertype</typ>
Indicates the type of IMSplex member.

<styp>membersubtype</styp>
Indicates the IMSplex member subtype. OM converts
unprintable characters to periods (.) in the output.

<rc>returncode</rc>
Indicates the return code for the IMSplex member in
printable EBCDIC hexadecimal format.

<rsn>reasoncode</rsn>
Indicates the reason code for the IMSplex member in
printable EBCDIC hexadecimal format.

<cmdsecerr> </cmdsecerr>
Encapsulates the return and reason code information returned by the OM
security exit, SAF and RACF, or equivalent. If the OM security exit rejected
the command for any reason, the user data from the security exit is also
encapsulated here.

<exit> </exit>
Encapsulates the return code and user data from the OM security
exit.

<rc>returncode</rc>
Indicates the return code from the OM security exit in
printable EBCDIC hexadecimal format.

<userdata>userdata</userdata>
Indicates the user data returned from the OM security exit
in the OSCX_USERDATA field of the OM Command
Security user exit parameter list (CSLOSCX). OM converts
unprintable characters to periods (.) in the output.

<saf> </saf>
Encapsulates the return and reason codes from the SAF and RACF
or an equivalent.

<rc>returncode</rc>
Indicates the return code from the SAF in printable
EBCDIC hexadecimal format.

<racfrc>racfreturncode</racfrc>
Indicates the return code from RACF or equivalent security
product in printable EBCDIC hexadecimal format.

<racfrsn>racfreasoncode</racfrsn>
Indicates the reason code from RACF or equivalent
security product in printable EBCDIC hexadecimal format.

Related reference:
“CSLOMI XML output examples” on page 257

270 System Programming APIs

Chapter 10. REXX SPOC API and the CSL

The REXX SPOC API allows REXX programs to submit commands to OM and to
retrieve the command responses.

REXX SPOC API environment with the CSL OM
The REXX SPOC API allows REXX programs to set up the IMSplex environment,
submit commands to OM, and to retrieve the command responses.

There are three phases related to using the REXX SPOC API with the CSL OM:
1. Set up the REXX environment
2. Set up the IMSplex environment and issue commands
3. Retrieve the command responses

Setting up the REXX environment in a CSL
By issuing the ADDRESS command, you can call the program CSLULXSB to set up
the REXX environment. This program establishes the REXX subcommand
environment for the REXX SPOC API.

►► ADDRESS LINK 'CSLULXSB' ►◄

Note: Other forms of the ADDRESS command might not work in the Tivoli®

NetView® for z/OS environment.

Setting up the IMSplex environment
By switching the default host command to IMSSPOC and issuing the ADDRESS
command, you can set up the IMSplex environment. After you set the default host
command to IMSSPOC, IMSSPOC executes subsequent host commands issued by
the REXX program that is running.

►► ADDRESS IMSSPOC ►◄

After you set the default host command to IMSSPOC, IMSSPOC executes
subsequent host commands issued by the REXX program that is running. You can
switch to other host commands by using the ADDRESS command with other
hosts. For example:
ADDRESS TSO
ADDRESS MVS
ADDRESS ISPEXEC

You can then issue commands that are specific to those environments.

Note: If you issue commands other than the subcommands described here in the
REXX environment, they are sent to OM for processing.

© Copyright IBM Corp. 1974, 2018 271

IMS subcommand

The IMS subcommand establishes the name of the IMSplex. You must issue the
IMS subcommand to establish the IMSplex name before any other commands can
be issued. A prefix of “CSL” is automatically added to the name that you specify.

►► IMS IMSplex_name ►◄

ROUTE subcommand

Use the ROUTE subcommand to set the name of the command processors. The
command processors are the specific systems that will execute subsequent IMS
commands. If you do not specify a command processor:
v the previous routing value is removed
v commands are routed to all members of the IMSplex. This is the default.

If “*” is specified, the command is routed to all registered command processing
clients in the IMSplex. If “%” is specified, the command is routed to only one
command processing client in the IMSplex that is registered for the command and
that has MASTER capability. The Operations Manager chooses the command
processing client.

The ROUTE subcommand is optional.

►► ROUTE ▼

,

command_processor
*
%

►◄

CART subcommand

Use the Command and Response Token (CART) subcommand to set the name of
the command and response token. This 16-character text string token is used to
retrieve the command response.

You must issue the CART subcommand before you can issue any IMS commands.

►► CART token_name ►◄

WAIT subcommand

Use the WAIT subcommand to provide a timeout value to OM. The time value
must be in the form MMM:SS or ssss. The maximum value you can specify is
999:59. The WAIT subcommand is optional.

►► WAIT time_value ►◄

272 System Programming APIs

Issuing type-2 IMS commands
You issue IMS commands, including type-2 commands, by including them in the
REXX program stream as quoted strings or as REXX variables that resolve to
quoted strings.

Examples of type-2 commands
"QUERY IMSPLEX SHOW(ALL)"

"DIS ACT"

tranlist = "PETER1,MATT1"
"QUERY TRAN NAME("tranlist")"

CSLULGTS: retrieving command responses in XML
By issuing the CSLULGTS request, you can retrieve command responses. The
CSLULGTS command puts the command responses to a stem variable so that
REXX can access them.

►► CSLULGTS(stem_name,token_name, "wait_time") ►◄

stem_name
After the CSLULGTS command completes successfully, the stem variable
contains XML statements. Each row of the stem variable contains one XML
statement. If the beginning and ending XML tags are adjacent (that is, no other
XML tags exist between them), they are placed in the same row of the stem
variable. A single row of a stem variable might look like this:
<rsp>TRAN(VIDB) MBR (IMS2) CC(0) </rsp>

token_name
The name of the command and response token (CART). It should match the
name specified on the CART subcommand.

wait_time
A timeout value for the CSLULGTS command. The CSLULGTS command
waits until the command completes, but the wait lasts only as long as the time
specified. The wait time is in the format MMM:SS or ssss. The maximum
timeout value is 999:59. Enclose this value in quotes.

Note: This timeout value is not the same as the timeout value for the WAIT
subcommand; however, this wait_time should be at least as long as the value
specified on the WAIT subcommand. Otherwise, no command response are
received for long running commands.

If no response is received the first time, you can issue the CSLULGTS
command again.

CSLULOPT: including format identifiers in command
responses

By issuing the CSLULOPT request, you can specify whether a command response
should contain format IDs. Automated operator programs (AOPs) use format
identifiers (FID) to identify the record format of specific lines of a command
response.

Invoke CSLULOPT before you issue the IMS operator command. The setting you
select on CSLULOPT is in effect for this REXX program until you explicitly change
it.

Chapter 10. REXX SPOC API and the CSL 273

►►
FID

MYVAR=CSLULOPT(NOFID)
'LRECL=number' WRAP

'F= BYCOL '
BYRSC

►◄

F Specifies an output option. The possible options are:

BYCOL
Group lines by column.

BYRSC
Group lines by resource.

WRAP
Wrap individual lines (default).

FID
Specifies that the command response includes the FID. The default is FID.

LRECL
Specifies the logical record length as a numeric value.

NOFID
Specifies that the command response does not include the FID.

MYVAR
A variable that you can specify that contains the return code.

Related reference:

REXX SPOC return and reason codes (Messages and Codes)

CSLULGTP: retrieving command responses directly to a REXX
stem variable

By issuing the CSLULGTP request, you can retrieve command responses from OM
and put the command response into a REXX stem variable. The REXX program
then refers to the information in the stem variable directly, rather than parsing
XML statements, as it does with the CSLULGTS request.

►► CSLULGTP (stem_name , token_name , "wait_time") ►◄

stem_name
After the CSLULGTP request completes successfully, the REXX stem variable is
populated with the command response that is returned by OM. The REXX
program can then refer to the command response and take appropriate action.

token_name
The name of the command and response token (CART). The token name
should match the name specified on the CART subcommand.

wait_time

A timeout value for the CSLULGTP command. The CSLULGTP command
waits until the command completes, but the wait lasts only as long as the time
specified. The wait time is in the format MMMMM:SS or ssssss. Enclose this
value in quotes.

The maximum timeout value is 99999:59. If you do not specify a value for this
parameter, the command times out after a very short delay of less than one
tenth of a second.

274 System Programming APIs

|

|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/compcodes/ims_rexxspoccodes.htm#ims_rexxspoccodes

IMS checks whether the command completed or timed out every 0.01 seconds
if the value of wait_time is less than ten seconds. If the value is larger than ten
seconds, IMS checks every second instead.

This timeout value is not the same as the timeout value for the WAIT
subcommand; however, the value of wait_time should be at least as long as
the value specified on the WAIT subcommand. Otherwise, no command
response are received for long running commands.

If no response is received the first time, you can issue the CSLULGTP
command again.

Intermittent results can occur when stem_name, token_name, and wait_time
parameters are not coded on the CSLULGTP call.

Sample code for retrieving command responses using the
CSLULGTP request

The following examples provide a code sample of the CSLULGTP request.

Example #1: In the example, the IMS command QRY TRAN NAME(A) is issued,
and the CSLULGTP request is used to retrieve the command response.
Address LINK ’CSLULXSB’
Address IMSSPOC
"ims PLEX1"
"wait 5:00"
cartid = ’PROD12’
"CART" cartid
"QRY TRAN NAME(A*)"
results = cslulgtp(’qinfo.’, cartid,"5:00")
If qinfo.ctl.rc = 0 Then
Do

say "OM name =("qinfo.ctl.omname")"
say "command master =("qinfo.cmd.master")"

End

Example #2: This program issues the IMS UPD PGM command and processes the
command responses. The following actions are taken based on the completion
code:

0 - OK - say command complete for program ’program name’
10 - not found - issue CRE PGM command
73 - PSB scheduled - issue /DIS ACT REG command
other completion code - say invalid CC for program

/*---
| Establish IMS rexx environment. |
---*/
Address LINK ’CSLULXSB’
Address IMSSPOC
"IMS PLEX1"
"WAIT 5:00"
"CART CMDTOKEN"

/*---
| Issue an IMS command |
---*/

"UPD PGM NAME(APOL1,BMP255,PGMX,PGMY) SET(SCHDTYPE(SERIAL))"

/*---
| Get command responses |
---*/
spoc_rc = CSLULGTP(’stem1.’,’CMDTOKEN’,"59")

Chapter 10. REXX SPOC API and the CSL 275

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*---
| Get some data for diag |
---*/
Say ’*DATA: ’
Say ’*CMD issued = ’ stem1.cmd.input
Say ’*SPOC rc = ’ spoc_rc
Say ’*Command rc = ’ stem1.ctl.rc
Say ’*Command rsn= ’ stem1.ctl.rsn
row = 1
if stem1.cmderr.0 > 0 then do

Say ’*Num of errors =’ stem1.cmderr.0
Say ’*CMD error RC =’ stem1.cmderr.row.rc
Say ’*CMD error RSN =’ stem1.cmderr.row.rsn

end /* if */
if stem1.rsp.0 > 0 then do

Say ’*Num of rsp rows =’ stem1.rsp.0
end /* if */
if stem1.rsp.0 > 0 then do
/* print each line of the stem.report */
Do n = 1 to stem1.report.0
Say stem1.report.n
End
end /* if */
say ’ ’

/*---
| Process responses |
---*/
spoc_rc = left(spoc_rc,2)
if spoc_rc >< ’08’ then do /* process response if GTP ran ok */

/*---
| Process the stem response if IMS return code is |
| X’00000000’ or X’00000004’ or X’0000000C’. |
--*/
row = 1
imsrc = left(stem1.cmderr.row.rc,2)
If (imsrc = 00) | (imsrc = 04) | (ims.rc = 0C) then do

if stem1.RSP.0 > 0 then do
cccol = 3 /* set col num for CC */
cctxtcol = 4 /* set col num for CCtext */

do row = 1 to stem1.RSP.0
stem_cc.row = stem1.RSP.row.cccol
stem_cctxt.row = stem1.RSP.row.cctxtcol
say ’*Completion code on row ’row ’: ’stem_cc.row
say ’*Completion code text on row ’row ’: ’stem_cctxt.row
stem_cc.row = stem1.RSP.row.cccol
stem_cctxt.row = stem1.RSP.row.cctxtcol
select
/*---
| Process case 1 |
--*/
when left(stem_cc.row,2) = 0 then do

say ’Command complete for program’ stem1.RSP.row.1
say ’ ’

end

/*---
| Process case 2. |
| When completion code is X’10’, resource not found, issue |
| a CREATE PGM command to create a program like the default |
| descriptor. |
--*/
when left(stem_cc.row,2) = 10 then do

say ’Issue CREATE PGM command for’ stem1.RSP.row.1

276 System Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

arg1 = stem1.rsp.row.1 /* extract pgmname to arg1 */
"CREATE PGM NAME("arg1")" /* issue CRE cmd with arg1 */
spoc_rc1 = CSLULGTP(’stem2.’,’CMDTOKEN’,"59")
if stem2.rsp.0 > 0 then do

/* print each line of the stem.report */
Do n = 1 to stem2.report.0

Say stem2.report.n
End
say ’ ’

end /* if */
end /* when */

/*---
| Process case 3 |
| When completion code is X’73’, program scheduled, issue |
| a DISPLAY ACTIVE REGION command to see the active regions. |
| The region needs to be stopped and the UPD command retried. |
--*/
when left(stem_cc.row,2) = 73 then do

say ’Program ’ stem1.RSP.row.1 ’is scheduled’
"/DISPLAY ACT REGION"
spoc_rc2 = CSLULGTP(’stem3.’,’CMDTOKEN’,"59")
/* print the response from each IMS */
if stem3.MSGDATA.MSG.1.0 > 0 then do

do x = 1 TO stem3.MSGDATA.NAME.0
SAY stem3.MSGDATA.NAME.X
do y = 1 TO stem3.MSGDATA.MSG.X.0
SAY stem3.MSGDATA.MSG.X.Y

end/*end do y loop */
end /* end do x loop */

end /* end if */
say ’Issue /STOP REGION commnd and retry UPD cmd’
say ’ ’

end /* when */

/*---
| For all other completion codes print the error compcode. |
--*/
otherwise do

say ’Invalid CC for program’ stem1.RSP.row.1
say ’ ’

end /* otherwise */

end /* select */
end /* do loop */

end /* if (imsrc = 00) | . . .*/

/*---
| Print IMS rc and rsn for all other error rc/rsn. |
--*/
Else do

say ’*IMS RC & RSN = ’ stem1.ctl.rc stem1.ctl.rsn
end /* else */

end /* if spoc_rc >< ’08’ */

/*---
| Exit program |
--*/
"END" /* SPOC */

EXIT /* REXX */

Chapter 10. REXX SPOC API and the CSL 277

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The say instructions in the previous example refer to elements of the REXX stem
variable. The CSLULGTP request sets the suffix of the stem variable. The following
table shows the possible suffix variable names that are set when the CSLULGTP
request creates the stem variable.

Table 71. Suffix variable names set by the CSLULGTP command

XML tag Variable name

<?xml version="1.0"?> stem.xmlversion

<!DOCTYPE imsout SYSTEM "imsout.dtd"> stem.dtd

<imsout> N/A

<ctl> N/A

<omname> </omname> stem.ctl.omname

<omvsn> </omvsn> stem.ctl.omvsn

<xmlvsn> </xmlvsn> stem.ctl.xmlvsn

<statime> </statime> stem.ctl.statime

<stotime> </stotime> stem.ctl.stotime

<rqsttkn1> </rqsttkn1> stem.ctl.rqsttkn1

<rc> </rc> stem.ctl.rc

<rsn> </rsn> stem.ctl.rsn

<rsnmsg> </rsnmsg> stem.ctl.rsnmsg

<rsntxt> </rsntxt> stem.ctl.rsntxt

</ctl> N/A

<cmderr> stem.cmderr.0

<mbr name="membername"> stem.cmderr.x.name

<typ> </typ> stem.cmderr.x.typ

<styp> </styp> stem.cmderr.x.styp

<rc> </rc> stem.cmderr.x.rc

<rsn> </rsn> stem.cmderr.x.rsn

<rsntxt> </rsntxt> stem.cmderr.x.rsntxt

</mbr> N/A

</cmderr> N/A

<cmdsecerr> N/A

<exit> N/A

<rc> </rc> stem.cmdsecerr.exit.rc

<userdata> </userdata> stem.cmdsecerr.exit.userdata

</exit> N/A

<saf> N/A

<rc> </rc> stem.cmdsecerr.saf.r

<racfrc> </racfrc> stem.cmdsecerr.saf.racfrc

<racfrsn> </racfrsn> stem.cmdsecerr.saf.racfrsn

</saf> N/A

</cmdsecerr> N/A

<cmd> N/A

278 System Programming APIs

||

||

||

Table 71. Suffix variable names set by the CSLULGTP command (continued)

XML tag Variable name

<master> </master> stem.cmd.master

<userid> </userid> stem.cmd.userid

<verb> </verb> stem.cmd.verb

<kwd> </kwd> stem.cmd.kwd

<input> </input> stem.cmd.input

</cmd> N/A

<cmdrsphdr> N/A

<hdr></hdr> stem.hdr.0 (number of columns)
stem.hdr.x.slbl
stem.hdr.x.llbl
stem.hdr.x.scope
stem.hdr.x.sort
stem.hdr.x.key
stem.hdr.x.scroll
stem.hdr.x.len
stem.hdr.x.dtype
stem.hdr.x.align

</cmdrsphdr> N/A

<cmdrspdata> N/A

<rsp> </rsp> stem.rsp.0 (number of rows)
stem.rsp.x.0 (number of cols)
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y
stem.rsp.x.y

</cmdrspdata> N/A

<msgdata> N/A

<mbr name="membername"> stem.msgdata.name.0 (num of systems)
stem.msgdata.name.y (1 member name)

<msg> </msg> stem.msgdata.msg.y.0 (num of msgs /sys)
stem.msgdata.msg.y.x (1 message line)

</mbr> N/A

</msgdata> N/A

</imsout> N/A

N/A stem.report.0 (number of lines)
stem.report.x (1 line of report)

Where the suffix variables:

stem user-defined stem name

x row number of command response

y column number of command response

Chapter 10. REXX SPOC API and the CSL 279

|

||

||

The CSLULGTP function creates a report as part of the stem variable. The stem is
any user provided value; the suffix is “report”.
"QRY TRAN SHOW(PSB,QCNT)"
results = cslulgtp(’friday_status.’, cartid,"1:30")
If friday_status.report.0 > 0 Then
Do
say friday_status.report.0
Do x = 1 to friday_status.report.0
say friday_status.report.x
End
End

The program would have results like this, where each line of the stem has a line of
a formatted report.
6
Response for: QRY TRAN SHOW(PSB,QCNT)
Trancode MbrName CC PSBname QCnt LQCnt
ADDINV IMS2 0 0
ADDINV IMS2 0 DFSSAM04 2
ADDINV SYS3 0 DFSSAM04 1
ADDPART IMS2 0 0

Handling errors when using the CSLULGTP function

The CSLULGTP function will not set the “ctl.rc” and “ctl.rsn” stem variables if an
error is encountered in the function itself. It is therefore highly recommended that
any REXX program that uses the CSLULGTP function first check the IMSRC and
IMSREASON REXX variables before any other processing continues to determine
whether the function completed successfully.

If the IMSRC variable is nonzero, and the error was encountered in CSLULGTP
itself, the value in IMSRC will begin with “08”. In this case, the “ctl.rc” and
“ctl.rsn” stem variables are not set and no data is returned in the stem variables.

The IMSRC and IMSREASON errors that can be returned are documented in the
macro CSLUXRR.

For other errors (where the IMSRC variable is nonzero and does not begin with
“08”), the “ctl.rc” and “ctl.rsn” stem variables will contain the command return
code and reason code, and some of the other stem variables are set based on the
command response. For example, if an invalid verb was entered, no command
response data will be returned, but the “ctl.rc” and “ctl.rsn” stem variables as well
as the REXX IMSRC and IMSREASON variables will be set.

REXX SPOC API within a transaction
Transactions can be written in the REXX language. A REXX EXEC runs as an IMS
application and has characteristics similar to other IMS-supported programming
languages. The REXX SPOC API can be used to issue commands from a
transaction and to examine the command responses.

In the IMS Adapter for REXX environment, the OM API command authorization is
performed with the MPP user ID. To use the transaction origin user ID rather than
MPP user ID, a user exit must be utilized. The Build Security Environment user
exit (BSEX) is called for non-OTMA/non-APPC input messages. The exit can
request that IMS build a security environment in the MPP region when a message
is scheduled (an accessor environment element (ACEE) will be anchored on
TCBSENV). After use of the exit, the transaction origin user ID is used for OM API

280 System Programming APIs

|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

security checking. OTMA/APPC messages are not supported unless
SECURITY=FULL or SECURITY=PROFILE, and the selection for the input message
is FULL.
Related concepts:

IMS Adapter for REXX reference (Application Programming APIs)

Ending the IMS SPOC environment
By issuing the END subcommand, you can end the IMS SPOC environment when
you no longer want to execute IMS commands and signify that the SPOC
environment is no longer needed.

Use the END subcommand to signify that the SPOC environment is no longer
needed. After the END subcommand is issued, the control blocks associated with
the SPOC environment are freed.

END is a valid IMS command. If you specify the END command with no
operands, it is treated as an IMS SPOC subcommand. If you specify the END
command with parameters, it is sent to the IMSplex for processing as an IMS
command.

►► END ►◄

Retrieving unsolicited messages
After you set up the environment with CSLULXSB, you can use the CSLULSUB,
CSLULUSB, and CSLULGUM functions to subscribe to OM for unsolicited output
messages.

CSLULSUB request
By issuing the CSLULSUB request, you can start the subscription and monitor OM
for unsolicited messages.

►► CSLULSUB (IMS plex_name , member_list , type_list) ►◄

Parameters for the CSLULSUB request

IMS plex_name
Name of the IMSplex. Do not use the 'CSL' prefix.

member_list
Specifies a list of member names of command processing clients in the
IMSplex (such as IMS control regions) from which this OM client will
receive unsolicited output messages. Do not specify this parameter if you
specify the type list parameter. If you do not specify a member list or a
type list, this OM client subscribes to all of the command processing clients
in the IMSplex. Enclose the list in quotes and separate names with
commas.

type_list
Specifies a type list of command processing client types (such as OM, RM,
and IMS) from which this OM client will receive unsolicited output
messages. Do not specify this parameter if you specify the member list
parameter. If you do not specify either a member list or a type list, this

Chapter 10. REXX SPOC API and the CSL 281

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_adapterforrexx.htm#ims_adapterforrexx

OM client subscribes to all of the command processing clients in the
IMSplex. Enclose the list in quotes and separate names with commas.

CSLULUSB request
By issuing the CSLULUSB request you can end the subscription. If a subscription
does not exist, OM is no longer monitored for unsolicited messages.

►► CSLULUSB (IMS plex_name) ►◄

Parameters for the CSLULUSB request

IMS plex_name
Name of the IMSplex. Do not use the 'CSL' prefix.

CSLULGUM request
By issuing the CSLULGUM request you can copy unsolicited output messages to
the REXX program variable named stem_name. The REXX program can then
examine the messages and take appropriate action.

►► CSLULGUM (IMS plex_name , stem_name) ►◄

Parameters for the CSLULGUM request

IMS plex_name
Name of the IMSplex. Do not use the 'CSL' prefix.

stem_name
Name of a REXX variable that contains any unsolicited messages that are
received. A stem variable is an array of values, with the '.0' element (for
example 'mystem.0') indicating how many elements are in the array.

Sample program for subscribing to OM
This REXX SPOC API sample program uses CSLULSUB, CSLULBGUM, and
CSLULUSB to subscribe to OM and to retrieve unsolicited messages. The program
shows how you can invoke unsolicited output message functions.
/* rexx */
/*---
| REXX SPOC API example to invoke unsolicited output message |
| functions. |
---*/

/*---
| tuning parameter: check every 10 seconds |
---*/
interval = 10

/*---
| We want to make syscalls, that is, sleep |
---*/
Call syscalls ’ON’

/*---
| Establish IMS rexx environment |
---*/
Address LINK ’CSLULXSB’
If rc = 0 Then
Do

282 System Programming APIs

Address IMSSPOC
/*---
| Subscribe to messages from IMSplex named ’PLEX1’ |
---*/

continu = 1
Do while(continu)

subrc = CSLULSUB(’PLEX1’)
say ’subrc=(’subrc’)’
If subrc = ’01000010X’ Then
Do

Say time()
Address syscall "sleep" interval
End

Else
continu = 0

End

Do a = 1 To 25
/*---
| wait a little before checking for new messages |
---*/

Address syscall "sleep" interval

/*---
| Check if any unsolicited messages are present. |
---*/

results = CSLULGUM(’PLEX1’,’xml.’)
say ’a=’a ’results=(’results’)’

If xml.0 /= ’’ Then
Do

/*---
| Display any messages in unsolicited message array. |
---*/

say ’xml.’0’ = (’xml.0’)’
Do idx = 1 To xml.0
say ’xml.’idx’=(’xml.idx’)’

End

End
End

/*---
| Unsubscribe to unsolicited messages. |
---*/

usbrc = CSLULUSB(’PLEX1’)

/*---
| clean up REXX SPOC API |
---*/

"END"
End
Exit

REXX samples and examples
These topics provide both sample programs and examples for REXX SPOC
environments.

Sample REXX SPOC program
The following sample REXX program issues the IMS operator command /DIS
TRAN PART and displays the command response.

Chapter 10. REXX SPOC API and the CSL 283

Sample REXX program
Address LINK ’CSLULXSB’

Address IMSSPOC
/*---
| ’ims’ defines the IMSplex that receives the commands |
| |
| ’route’ defines which IMSplex members in the IMSplex |
| receives the commands. If ROUTE is not specified or if |
| ROUTE * is specified, commands are routed to all IMSplex |
| members. |
| |
| ’wait’ provides a timeout value to OM. The time is in |
| mmm:ss format (or ssss if no colon is specified). |
| |
| ’cart’ establishes the command response token for subsequent |
| commands. |
| |
| ’end’ frees control blocks |
| |
--*/
"IMS IPLX4"
"ROUTE IMS1,IMSB"

"WAIT 5:00"

"CART DISTRAN"
"/DIS TRAN PART"

/*---
| The cslulgts function retrieves data associated with a |
| a specific token and fills in a REXX stem variable. In |
| this example, it waits 59 seconds. |
| |
| The XML statements returned are put in the stem variable |
| specified by the user. |
| |
--*/
spoc_rc = cslulgts(’DISINFO.’,’DISTRAN’,"59")
do z1 = 1 to DISINFO.0

/* display each line of XML information */
Say disinfo.z1

end
"END"

REXX SPOC batch job example
These examples provide a sample batch job, a sample REXX SPOC program, and
job output from the REXX SPOC example.

Sample REXX SPOC batch job

The batch job shown in the following figure calls the batch TSO command
processor to get a response that contains all transactions that start with the letter V.

//REXXSPOC JOB ,
// MSGCLASS=H,NOTIFY=USRT002,USER=USRT002,TIME=(,30)
//*
//SPOC EXEC PGM=IKJEFT01,DYNAMNBR=45
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPROC DD DISP=SHR,DSN=LOCAL.IMS.CLIST
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *

%REXXSPOC QRY TRAN NAME(V*)
/*EOF

284 System Programming APIs

The DD names in this batch job include:

STEPLIB
Contains the load modules.

SYSPROC
Contains the REXX programs.

SYSTSPRT
Contains the output produced by the REXX program.

SYSTSIN
Contains the command to execute, including its parameters.

The QRY TRAN command in the JCL is passed as an argument to the following
sample REXX program. The command is issued, and the response is sent to the
SYSTSPRT file.

REXX SPOC sample program

The following figure shows the sample REXX program, REXXSPOC.
/* rexx */
parse upper arg theIMScmd
Address LINK ’CSLULXSB’
if rc = 0 then
do
Address IMSSPOC
"IMS plex1" ; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason
"route ims2"; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason
cartid = "TEST13"
"cart" cartid ; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason
"WAIT 1:00" ; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason
theIMScmd
if rc > 0 then say ’rc=’rc ’imsrc=’imsrc ’reason=’imsreason

do
results = cslulgts(’TEMP.’, cartid,"1:30")
say ’results=’results ’ imsrc=’imsrc ’ reason=’imsreason
if temp.0 /= ’’ then

do
say ’temp.’0’=(’temp.0’)’
do idx = 1 to temp.0
say ’temp.’idx’= ’temp.idx

end
end

end
"END"
End
exit

Sample output

The output from the REXXSPOC sample program is shown in the following output
example.
READY
%REXXSPOC QRY TRAN NAME(V*)
results=00000000X imsrc=00000000X reason=00000000X
temp.0=(30)
temp.1= <imsout>
temp.2= <ctl>
temp.3= <omname>OM1OM </omname>
temp.4= <omvsn>1.1.0</omvsn>
temp.5= <xmlvsn>1 </xmlvsn>
temp.6= <statime>2001.198 16:08:39.944953</statime>
temp.7= <stotime>2001.198 16:08:40.271944</stotime>

Chapter 10. REXX SPOC API and the CSL 285

temp.8= <staseq>B625CACD49AF914A</staseq>
temp.9= <stoseq>B625CACD99848CC6</stoseq>
temp.10= <rqsttkn1>TEST13 </rqsttkn1>
temp.11= <rc>00000000</rc>
temp.12= <rsn>00000000</rsn>
temp.13= </ctl>
temp.14= <cmd>
temp.15= <master>IMS2 </master>
temp.16= <userid>USRT002 </userid>
temp.17= <verb>QRY </verb>
temp.18= <kwd>TRAN </kwd>
temp.19= <input>QRY TRAN NAME(V*)</input>
temp.20= </cmd>
temp.21= <cmdrsphdr>
temp.22= <hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a"
key="1" scroll="no" len="8" dtype=" CHAR" align="left" />
temp.23= <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a"
key="4" scroll="no" len="8" dtype="CHAR" align="left" />
temp.24= <hdr slbl="CC" llbl="CC" scope="LCL" sort="n"
key="0" scroll="yes" len="4" dtype="INT" align="right" />
temp.26= </cmdrsphdr>
temp.26= <cmdrspdata>
temp.27= <rsp>TRAN(VIDB) MBR(IMS2) CC(0) </rsp>
temp.28= <rsp>TRAN(VIDA) MBR(IMS2) CC(0) </rsp>
temp.29= </cmdrspdata>
temp.30= </imsout>
READY
END

/DISPLAY command examples and format identifiers
This example illustrates how format identifiers (FID) can be returned when the
REXX program issues the operator commands, /DISPLAY ACT and /DISPLAY
STATUS.

This example shows how format identifiers (FID) can be returned on operator
commands. The REXX program issues two commands: /DISPLAY ACT and
/DISPLAY STATUS.
ADDRESS LINK ’CSLULXSB’
ADDRESS IMSSPOC
"IMS PLEX1"
"CART DISCART1"
"DISPLAY ACT"
RSP_RC1= CSLULGTS(’DISCART1’,’ACT1.’)

In this example using /DISPLAY ACT, the command response includes the FIDs,
because the default is to provide the FIDs.

In the example that follows using /DISPLAY STATUS, the CSLULOPT function is
invoked before the command is issued. The CSLULOPT function specifies that
FIDs are not to be included in the command response. In the command response,
no FIDs are included.
OPT_RC = CSLULOPT(’NOFID’)
"CART DISCART2"
"DISPLAY STATUS"
RSP_RC2= CSLULGTS(’DISCART1’,’STAT1.’)

Autonomic computing examples
These examples illustrate autonomic computing capabilities associated with the
REXX SPOC API. Autonomic indicates that the code is responsive and can take
certain actions to correct what it determines to be incorrect.

286 System Programming APIs

Autonomic example 1

In the following example, a transaction is queried. If the transaction is stopped, the
REXX SPOC API attempts to start it. The REXX SPOC API examines the
information returned by CSLULGTS, looking specifically for the line that refers to
the transaction of interest.
/* autonomic computing example 1 */
"CART qrytran12"
"qry tran name(CDEBTRN3) show(status)"
results = cslulgts("resp.","qrytran12","3:15")

Do idx = 1 to resp.0
/* find which IMS and the status of tran */
parse var resp.idx . "TRAN(CDEBTRN3" . ,

"MBR(" imsname ")" . ,
"LSTT(" status ")" .

/* if tran is stoppped, try to start it */
If pos(’STOSCHD’, status) > 0 Then
Do

/* send command to IMS that needs to restart tran */
"ROUTE" imsname
"UPD TRAN NAME(CDEBTRN3) START(SCHD)"

End
End

Autonomic example 2

In the following example, the QUERY command is used to determine the queue
count (qcnt) of a transaction. A qcnt with a value greater than 5 is considered a
problem. The REXX SPOC API attempts to resolve the problem by starting another
region and changing the transaction to a different class.
/* autonomic computing example 2 */
"CART qrytran13"
"qry tran name(sks1) show(qcnt)"
results = cslulgts("resp.", "qrytran13", "3:15")
Do idx = 1 to resp.0

parse var resp.idx . "TRAN(SKS1" . "Q(" count ")" .
If count ¬= ’’ &,

count > 5 Then
Do

"CART strtrgn05"
"START REGION IMSRG5"
start? = cslulgts("strt.", "strtrgn05", "10:00")
if imsrc = ’00000000X’ then

Do
"CART updtran14"
"update tran name(SKS1) set(class(5))"

End
End

End
"END"

Chapter 10. REXX SPOC API and the CSL 287

288 System Programming APIs

Part 3. Asynchronous data propagation

You can propagate captured data asynchronously as an alternative to using the
data capture exit routine. You can use this option to capture database changes for
selected segment types and environment information in IMS data capture log
records.

This alternative is available with the addition of a logging option on the EXIT=
parameter of the DBDGEN utility. You can use the logging option to capture
database changes for selected segment types and environmental information in
IMS data capture log records. Captured information is compressed by using z/OS
compression services to minimize the space that is needed to store the captured
data on the IMS online data sets (OLDSs). After it is stored, the captured data is
available for use; for example, to propagate to a Db2 for z/OS environment.

The data capture log records use the X'99' log code and have the following data
capture subcodes to indicate the type of record that is being logged:

X'04' Changed data

X'28' End of job (EOJ)

X'30' SETS call

X'34' ROLS call

All data capture log records contain a common prefix, the Data Capture Log prefix,
that contains the subcode that defines the type of record being logged. End of job
records and SETS and ROLS call records consist entirely of this log record prefix
and contain no additional information. Changed data log records, however, contain
information in addition to the prefix and can span multiple physical log records to
contain all of the captured data.
Related concepts:

IMS Configuration Manager for z/OS V2.2

Data Capture exit routines (Database Administration)
Related reference:

DBD statements (System Utilities)

© Copyright IBM Corp. 1974, 2018 289

http://www.ibm.com/support/knowledgecenter/SSF2ZH_2.2.0/gplu-overview.dita
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_datacapexit.htm#ims_datacapexit
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt

290 System Programming APIs

Chapter 11. Changed data log record

To retrieve all the data logged for a particular call, you must examine the physical
log records to determine where the logical log record begins and ends. You can
examine the changed data log record to view the captured data captured for a
DL/I call.

For each DL/I call, there is one logical log record that comprises all the data
requested for that call. However, because all the data might not fit in one log
buffer, one logical log record can actually be composed of several physical log
records. To retrieve all the data logged for a particular call, you must examine the
physical log records to determine where the logical log record begins and ends.

The data captured for a DL/I call is stored as elements within the changed data
log record. For each DL/I call, there are multiple data elements recorded in the
changed data log record. The details of the data elements are described in the
following topics.

Elements of captured data
Each data element contains a 4-byte header with metadata the describes the type
and length of the data that follows the header.

The captured data elements are logged in the DCAP_DATA field within the
changed data log record. The format of data elements is broken down into the
header information and the actual logged data. See “Format for data element
header” on page 300 for the format of the log record header.

Each data element contains a 4-byte header. The header contains a 1-byte LOGID
field describing the type of data being logged in this element, a 1-byte LOG_FLAG
and a 2-byte LOG_LL field. The LOG_LL field contains the length of the data that
follows the header. This length is used to locate the header for the next element.
The header is followed by the actual data defined in the LOGID field. The data is
compressed using the z/OS/ESA compression services, if such services are
available. If so, the COMPR_ALGORITHM field in LOG_DCAP_DATA indicates
the algorithm used to compress the data.

If FLAG_1 of the changed data log record contains X'60' or X'E0' (FIRST_RECORD
and FIRST_CALL flags set), the next data element is LOG_INQY_DATA. This
element is only present in the first physical record of the logical log record.

The type of data element is identified in the LOGID field of the header and can be
one of the following values:

LOGID X'00'
There is a CAPD block for each EXIT= logging request.

LOGID X'04'
The DBD version for the data base, as specified on the VERSION=
parameter of the DBD macro during DBDGEN. A character string of up to
63 characters.

© Copyright IBM Corp. 1974, 2018 291

LOGID X'08'
The concatenated key for the segment in the CAPD. The format of the
physical concatenated key is a character string of up to 3,824 (255 x 15)
characters.

LOGID X'0C'
The capture data segment data block (CAPD_DATA). This block is used for
captured segment data, which can be path data, segment data, or
before-image data. There is a CAPD_DATA block for each segment that
was captured for the call. The blocks are logged in the following order:
path data, segment data, before-image data (replace), twin data (insert).

LOGID X'10'
The segment data for the path or segment data deleted, inserted, or
replaced (for a replace, this data would represent the after-image). The
length of the segment data is a character string of up to 30,700 characters.

LOGID X'14'
The before-image of the segment data changed by the replace operation.
Only the first changed byte through the last changed byte is logged. The
unchanged beginning and ending portions of the segment are
reconstructed from the after-image contained in segment data. The
before-image data is a halfword offset value (the offset of the changed data
within the segment) followed by a character string of up to 30,700
characters. Only the actual before-image is compressed. The halfword
offset value is not compressed. Within the changed data log record, there
can be one before-image for every changed segment.

If all the data elements do not fit in a single log record, the next log record
(with the same PST_NUMBER) contains the remaining data elements,
starting where the previous record left off. Before-image data, however, is
unique in that the offset (2 bytes) of the data in the segment is logged
preceding the changed data. Therefore, the length of the data in
DCAP_DATA (LOG_LL) is 2 bytes greater than the actual length of the
data logged. The offset field is not compressed.

Related reference:
“CAPD_DATA format (LOGID=X'0C')” on page 304
“CAPD block format (LOGID=X'00')” on page 301

Reducing the amount of captured data
If the internal area of the changed data log record is not large enough to hold all of
the data, the ERROR_LOG flag is set in the log record to indicate that the data is
not complete. You can specify CASCADE,KEY,NODATA,NOPATH in the EXIT=
parameter in the DBDGEN if cascade is required.

The changed data log record can contain a large amount of data for cascade
deletes, especially when path data is requested. The data is staged in an internal
area prior to logging. If this internal area is not large enough to hold all of the
data, the ERROR_LOG flag is set in the log record to indicate that the data is not
complete, although, the IMS data is committed and the call completes normally.

To avoid large amounts of data being written to the log and possible incomplete
log records, specify CASCADE,KEY,NODATA,NOPATH in the EXIT= parameter in
the DBDGEN if cascade is required. This specification results in just the
concatenated key being written to the log during DLET operations, which
significantly reduces the amount of data that is captured during a cascade delete.

292 System Programming APIs

|
|
|
|
|

For data propagation to Db2 for z/OS where the primary key is derived from the
concatenated key, the segment data is not required for the delete in Db2 for z/OS.

Example of logged data elements
Changed data log records contain many data elements as a result of a call. This
topic provides an example where a third-level segment is replaced and path data is
requested to be logged.

Changed data log records contain many data elements as a result of a call.
Consider a situation where a third-level segment is replaced and path data is
requested to be logged (Root segment is A, second-level segment is B, and the
replaced segment is C). In this situation, the data elements are logged in the
following order:
1. CAPD
2. DBD Version ID
3. Physical concatenated key
4. CAPD_DATA block for A
5. Segment data for A
6. CAPD_DATA block for B
7. Segment data for B
8. CAPD_DATA block for C
9. Segment data for C

10. CAPD_DATA block for C (before data)
11. Before-image data for C

If path data had not been requested, the CAPD_DATA blocks and segment data
elements for A and B would not be logged.

Chapter 11. Changed data log record 293

294 System Programming APIs

Chapter 12. End of Job (EOJ) call log record

The EOJ call log record (X'28' subcode) is written when a batch DL/I program that
has written changed data log records terminates normally. The record is written to
indicate that the updates have been committed, because a commit record is not
written to the log when a batch job terminates.
Related reference:
“End of Job call log record format” on page 305

© Copyright IBM Corp. 1974, 2018 295

296 System Programming APIs

Chapter 13. SETS and ROLS call log records

The SETS (X'30' subcode) and the ROLS (X'34' subcode) call log records are written
whenever an application that might cause data to be captured issues a SETS or
ROLS call using a token.

The log records are written to indicate that any changed data log records written
after the SETS call for the token used in the ROLS call will have been aborted
(backed out). The records are written even if exits are defined without a logging
request.
Related reference:
“SETS and ROLS call log record format” on page 305

© Copyright IBM Corp. 1974, 2018 297

298 System Programming APIs

Chapter 14. Format of the data capture log records

The topics in this section describe the format of the data capture log records.

Data capture log record prefix
The data capture log record prefix contains fields that describe the length, data
capture subcode, recovery token, and CPU store clock time stamp of the log
record.

The following table lists the prefix for data capture log records.

Table 72. Prefix for data capture log records

Field name Data type Field description

LL H The length of the log record, including an 8-byte log sequence number
added by IMS to the end of the record

ZZ H Always zero

LOGCODE XL1 X'99' log record code

SUBCODE XL1 Data capture subcode

PST_NUMBER H PST number

RECOVTKN XL16 The recovery token for the unit-of-recovery, which is used to associate the
commit log records or the abort log records for this unit-of-recovery

STORE_CLOCK XL8 The CPU store clock time stamp of the time the call completed and the log
record was written

Changed data log record format
The changed data log record contains fields that describe the first and last log
records written for the call, the user ID for the call, the data element that is being
logged, and other information regarding the log record.

The following table lists the record formats for changed data log records.

Table 73. Format for changed data log records

Field name Data type Field description

FLAG_1 XL1 Flag 1: Bit definitions follow:

LAST_RECORD X'80' The last log record written for this call. If this bit is not on, the remaining
data for this DL/I call is in the log records that follow.

FIRST_RECORD X'40' The first log record written for this call. If this bit is not on, the data
logged at LOG_DATA_OFFSET is the data that would not fit in the
preceding record.

FIRST_CALL X'20' The first log record written for this unit-of-recovery, so LOG_INQY_DATA
is present in this log record. (FIRST_RECORD is on.)

X'10' Reserved for future use.

X'08' Reserved for future use.

ERROR_LOG X'04' This log record is not complete because there was an error during the
processing of the log records for this call. Data for the call might not have
been logged.

© Copyright IBM Corp. 1974, 2018 299

Table 73. Format for changed data log records (continued)

Field name Data type Field description

DBLEWORD_SEQNUM X'02' The log sequence number is a doubleword.

STCK_AT_END X'01' Store clock at end of the log record.

FLAG_2 XL1 Flag 2: Bit definitions follow:

V11_9904_FORMAT X'80' The CAPD_DATA blocks in this log record contain SEGMENT_RBA_64
and SEGMENT_RBA_64H.

V11_9904_PARTNM X'40' Partition name in the X'9904' log record.

V13_9904_DBVER X'20' The database version number is logged in this X'9904' log record.

V13_9904_POSDATA X'10' Positioning data is captured in this X'9904' log record.

LOG_DATA_OFFSET H The offset in the log record where the DCAP_DATA elements start. When
FIRST_RECORD is not on (indicating a split log record), this field is the
offset to the continuation of the data from the previous log record.

COMPR_ALGORITHM XL1 The z/OS compression algorithm used to compress DCAP_DATA.

XL1 Reserved for future use.

LOCK_SEQ_NUM CL6 The IRLM lock sequence number used when IRLM SCOPE=GLOBAL
used for block-level data sharing.

LOG_INQY_DATA The following LOG_INQY_DATA fields are logged when FIRST_CALL is
on.

PSBNAME CL8 The application PSB name.

TRANNAME CL8 The application transaction name.

USERID CL8 The user ID for the call. For a batch job, if the JOB statement has the
USER= keyword, the USERID is the RACF ID. For an online application,
the USERID is either PSBNAME or RACFID.

RACF ID CL8 The value from the USER= keyword from the JOB statement.

RACFID or PSB name CL8 The value for online applications.

DCAP_DATA CL0 The data element being logged.

Related concepts:

z/OS: Data compression and expansion services

Format for data element header
The data element header contains fields that describe the type and length of data
being logged as well as options for z/OS compression services.

The following table lists the format for data element headers.

Table 74. Format for log record header

Field name Data type Field description

LOGID XL1 The type of data being logged.

X'00'- CAPD block

X'04'- DBD Version ID

X'08'- Physical concatenated key

X'0C'- CAPD_DATA

X'10'- Segment data

X'14'- Before-image data

300 System Programming APIs

|
|

|||

|||

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa600/using.htm

Table 74. Format for log record header (continued)

Field name Data type Field description

LOG_FLAGS XL1 Flags. Bit definitions follow:

COMPR_DATA X'20' The data is compressed using z/OS compression services.

X'10' Reserved for future use.

X'08' Reserved for future use.

X'04' Reserved for future use.

X'02' Reserved for future use.

X'01' Reserved for future use.

LOG_LL H Length of LOG_DATA.

LOG_DATA CL0 Log data that is compressed if the z/OS services are available. The 4-byte
data element header is followed by the type of data that is being logged:

X'00' CAPD block

X'04' The log data is the DBD Version ID.

X'08' The log data is the physical concatenated key.

X'0C' CAPD_DATA

X'10' The log data is the Segment data.

X'14' The log data is the Before-image data.

Before-image data is preceded by a halfword offset of the changed data
within the segment. The halfword offset is not compressed.

Related reference:
“CAPD block format (LOGID=X'00')”
“CAPD_DATA format (LOGID=X'0C')” on page 304

CAPD block format (LOGID=X'00')
The CAPD block contains fields that describe the name of the exit routine that is to
be given control, the name of the physical database, the segment code, and other
information that relates to the log record.

The following table lists the CAPD block format.

Table 75. Format for CAPD block (LOGID = X'00')

Field name Data type Field description

NEXT_PTR AL4 Internal use only. Not valid.

PREVIOUS_PTR AL4 Internal use only. Not valid.

USER_EXIT_NAME CL8 The name of the exit routine that is to be given control
when an exit routine is requested in addition to logging.
Blanks if the exit routine is not defined or is logged by
DBCTL.

DATABASE_NAME CL8 The name of the physical database.

DBD_VERSION_PTR AL4 Internal use only. Not valid.

SEGMENT_NAME CL8 The name of the physical segment that was updated and for
which the log data was requested.

SEGMENT_CODE XL1 Segment code for compare.

Chapter 14. Format of the data capture log records 301

Table 75. Format for CAPD block (LOGID = X'00') (continued)

Field name Data type Field description

FLAGS XL1 Flag: Bit definition follows:

DEDB_DB X'80' DEDB database.

KEY_NEEDED X'40' Concatenated key needed.

DATA_NEEDED X'20' Segment data needed.

PATH_NEEDED X'10' Path data needed.

X'08' Reserved for IMS.

X'04' Reserved for IMS.

X'02' Reserved for future use.

X'01' Reserved for future use.

XL1 Reserved for IMS.

CALL_SEGMENT_LEVEL XL1 Reserved for future use.

CALL_FUNCTION CL4 Call function of request:

REPL Replace call.

ISRT Insert call.

DLET Delete call.

FLD Field call resulted in this update. Physical function
will be “REPL”.

CASC Cascade delete as result of application delete call.

DLLP Delete of a logical parent segment through its
logical path because:

v It was marked as previously deleted from its
physical path.

v It is vulnerable to delete from both the physical
and logical paths.

v The last logical child segment is being deleted.

Gxxx When subset pointer updates are being captured,
this is the get call (for example, GHU, GHNP) that
was done.

PHYS_FUNCTION CL4 Physical function performed by DL/I:

REPL Segment physically replaced.

ISRT Segment physically inserted.

DLET Segment physically deleted.

DLPP Delete this segment on its physical path, but do
not physically remove because logical paths to the
segment from a logical child still exist.

SSPU SSP is updated when segment is physically
retrieved or segment is not updated in path ISRT
or REPL.

CALL_TIMESTAMP XL8 STCK time stamp of call completion.

AREA_NAME CL8 The AREA name for a DEDB database.

LOWEST_LVL_KEY_OR_DATA XL1 The lowest level number for which path data or a part of
the concatenated key is added.

XL39 Reserved for future use.

302 System Programming APIs

||
|

||
|
|

||
|
|

|||

Table 75. Format for CAPD block (LOGID = X'00') (continued)

Field name Data type Field description

COMMAND_CODES 0XL12 Command codes.

CMD_CODE_SNGL XL1 Single-character command codes.

CMD_CODE_F X'80' Command code F.

CMD_CODE_L X'40' Command code L.

XL1 Reserved for future use.

CMD_CODE_DBL 0XL10 Double-character command codes.

CMD_CODE_M XL1 Subset pointer command codes M1 through M8. (*)

CMD_CODE_R XL1 Subset pointer command codes R1 through R8. (*)

CMD_CODE_S XL1 Subset pointer command codes S1 through S8. (*)

CMD_CODE_W XL1 Subset pointer command codes W1 through W8. (*)

CMD_CODE_Z XL1 Subset pointer command codes Z1 through Z8. (*)

XL5 Reserved for future use

DB_VERSION AL4 Database version number.

PART_NAME CL8 HALDB partition name.

SAVED_DLTWA AL4 Saved DLTWA for compare.

PHYSICAL_ROOT_RBA AL4 RBA of root segment.

STORAGE_SIZE F Internal use only. Not valid.

CONC_KEY_PTR AL4 Internal use only. Not valid.

CONC_KEY_LENGTH H Length of physical concatenated key.

ROOT_KEY_LENGTH XL1 Length of root key.

CAPD_DATA_DIMENSION XL1 Dimension of data array. This value reflects the number of
CAPD_DATA Block elements that will be logged for this
call. If path data is requested, the first CAPD_DATA block
element will be for the root segment, followed by
CAPD_DATA block elements for each segment in the path.
The next CAPD_DATA block element (first if no path data)
is for the segment associated with this request, followed by
the CAPD_DATA block element (if any) associated with the
before-image data (physical replace operations).

CAPD_DATA_PTR(16) 16AL4 Internal use only. Not valid.

(*): Each bit represents whether the corresponding command code number was
specified. For example, if CMD_CODE_S is X'A0', it means that S1S3 was specified
on the SSA.

Note: If PATH is specified on the EXIT= statement, it will be ignored for any
X'9904' log record that is generated from FLD calls because path data for FLD calls
is unreliable.
Related concepts:
“Elements of captured data” on page 291

Chapter 14. Format of the data capture log records 303

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|
|
|

|
|
|

CAPD_DATA format (LOGID=X'0C')
The CAPD_DATA block contains fields that describe the name of the physical
segment that is captured, the type of data being captured, the length and offset of
the segment's key, and other information that pertains to the log record.

The following table lists the format for CAPD_DATA.

Table 76. Format for CAPD_DATA (LOGID = X'0C')

Field name Data type Field description

NEXT_PTR AL4 Internal use only. Not valid.

CL4 Reserved for future use.

AL8 Reserved for IMS.

SEGMENT_NAME CL8 Physical segment name.

SEGMENT_LEVEL XL1 Level of physical segment.

CMD_CODE_R XL1 Subset pointer command codes R1 through R8. (*)

DATA_TYPE XL1 The type of data being captured:

X'00' Segment

X'01' Before data

X'02' Cascade data

X'03' Segment path data

X'04' Segment data of the twin that follows the segment being
inserted.

DATA_FLAGS XL1 Flag byte: Bit definitions follow:

DATA_USER_IO X'80' Data in user I/O area.

DELETED_ON_PHYS_PATH X'40' Segment is deleted on physical path.

X'20' Reserved for future use.

X'10' Reserved for future use.

X'08' Reserved for future use.

X'04' Reserved for future use.

X'02' Reserved for future use.

X'01' Reserved for future use.

LP_KEY_LENGTH H The length of the segment's logical parent key concatenated in front of
the segment data. Zero if segment is not a logical child.

KEY_LENGTH H The length of the segment's key. Zero if the segment does not have a
key.

KEY_OFFSET H The offset of the segment's key. Zero if the segment does not have a key.

SEGMENT_LENGTH H The length of the segment data.

SEGMENT_PTR AL4 Internal use only. Not valid.

(*): Each bit represents whether the corresponding command code number was
specified. For example, if CMD_CODE_R is X'20', it means that R3 was specified
on the SSA.
Related concepts:
“Elements of captured data” on page 291

304 System Programming APIs

|||

||
|

|
|
|

End of Job call log record format
The end of job call log record contains various fields that describe the length of the
record, the recovery token, and the CPU store clock time stamp.

The following table lists the end of job call log record formats.

Table 77. Format for EOJ call

Field name Data type Field description

LL H The length of the log record, including a 4-byte log sequence number added
by IMS to the end of the record.

ZZ XL2 Always zero.

LOGCODE XL1 X'99' log record code.

SUBCODE XL1 X'28' log subcode.

PST_NUMBER H PST number.

RECOVTKN XL16 The recovery token for the unit-of-recovery, which is used to associate the
commit log records or the abort log records for this unit-of-recovery.

STORE_CLOCK XL8 The CPU store clock time stamp of the time that the program terminated
and wrote the log record.

Related concepts:
Chapter 12, “End of Job (EOJ) call log record,” on page 295

SETS and ROLS call log record format
The SETS and ROLS call log record contains various fields that describe the length
of the record, the recovery token, and the CPU store clock time stamp.

The following table lists the format for the SETS and ROLS call log records.

Table 78. Format for SETS and ROLS call

Field name Data type Field description

LL H The length of the log record, including a 4-byte log sequence number added
by IMS to the end of the record.

ZZ XL2 Always zero.

LOGCODE XL1 X'99' log record code.

SUBCODE XL1 X'30' log subcode for SETS call; X'34' log subcode for ROLS call.

PST_NUMBER H PST number.

RECOVTKN XL16 The recovery token for the unit-of-recovery, which is used to associate the
commit log records or the abort log records for this unit-of-recovery.

STORE_CLOCK XL8 The CPU store clock time stamp of the time the call completed and the log
record written.

TOKEN CL4 The SETS/ROLS token used by the call.

Related concepts:
Chapter 13, “SETS and ROLS call log records,” on page 297

Chapter 14. Format of the data capture log records 305

306 System Programming APIs

Part 4. Database resource adapter (DRA)

The DRA is an interface to IMS DB full-function databases and data entry
databases (DEDBs). Your application designer can create a program so that the
DRA can be used by a coordinator controller (CCTL) or a z/OS application
program that uses the Open Database Access (ODBA) interface.

These topics are intended for the designer of a CCTL or an z/OS application
program. If you want more information about a specific CCTL's interaction with
IMS DB or DB/DC, see the documentation for that CCTL.
Related concepts:

Writing ODBA application programs (Application Programming)
Related tasks:

Accessing IMS databases through the ODBA interface (Communications and
Connections)

© Copyright IBM Corp. 1974, 2018 307

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_writingodbaapps.htm#ims_writingodbaapps
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_odba_config_01.htm#ims_odba_config_01
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_odba_config_01.htm#ims_odba_config_01

308 System Programming APIs

Chapter 15. Thread concepts

A DRA thread is a DRA structure that connects a CCTL task or a z/OS application
program task with an IMS DB task that can process those calls. A single DRA
thread is associated with every CCTL or ODBA thread. CCTL threads cannot
establish a connection with more than one DRA thread at a time.

A DRA thread is a DRA structure that connects:
v A CCTL task (which makes database calls to IMS DB) with an IMS DB task that

can process those calls. A CCTL thread is a CCTL task that issues IMS DB
requests using the DRA.

v A z/OS application program task (which makes database calls to IMS DB) with
an IMS DB task that can process those calls. An ODBA thread is a z/OS task
that issues IMS DB calls using the DRA.

A single DRA thread is associated with every CCTL or ODBA thread. CCTL
threads cannot establish a connection with more than one DRA thread at a time.

When the DRA Open Thread option is used, threads sign on to IMS when they are
scheduled for a request. This behavior causes the IMS commands /DISPLAY
CCTL, /DISPLAY ACTIVE REGION and /DISPLAY ACTIVE THREAD to show
different values for the MINTHRD output field compared to a non-Open Thread
system configuration. Because thread TCBs are not attached, MINTHRD does not
apply to the number of threads attached at DRA initialization. However, it does
indicate how many thread structures IMS allocates during initialization. After IMS
begins scheduling PSBs, those threads appear in the command output as normal.

Processing threads
The way that the DRA processes a CCTL thread is different from how it processes
an ODBA thread. In each case, the CCTL or z/OS application program issues a
request through the creation of a DRA thread or the allocation of a DRA thread
block, respectively.

Processing a CCTL thread

When a CCTL application program needs data from an IMS DB database, a CCTL
task must issue a SCHED request for a PSB. To process the SCHED request, the
DRA must create a DRA thread. To do this, the DRA chooses an available DRA
thread TCB and assigns to it the CCTL thread token (a unique token that CCTL
puts in the SCHED PAPL PAPLTTOK) and its own IMS DB task, which schedules
the PSB. If the scheduling is successful, the DRA thread connection is considered
complete because it now connects a CCTL thread to an IMS DB task using a
specific DRA thread TCB.

Subsequent DRA requests from this CCTL thread must use the same CCTL thread
token in order to ensure that the request goes to the correct DRA thread. When the
application program finishes and the CCTL thread no longer needs the services of
the DRA thread, the CCTL issues a TERMTHRD (Terminate Thread) request to
remove the CCTL thread token from the DRA thread TCB and terminates the DRA
thread. The thread TCB can then become part of a new DRA thread.

© Copyright IBM Corp. 1974, 2018 309

|
|
|
|
|
|
|
|

Processing an ODBA thread

When a z/OS application program needs data from an IMS database, an ODBA
task must issue an APSB call to initialize the ODBA environment. To process the
APSB call, the DRA allocates a DRA thread block and assigns to it the ODBA
thread and its own IMS DB task, which schedules the PSB. If the scheduling is
successful, the DRA thread connection is considered complete because it now
connects an ODBA thread to an IMS DB task using a specific DRA thread block.

When the application program finishes and the ODBA thread no longer needs the
services of the DRA thread, the ODBA application issues a DPSB call to terminate
the DRA thread. The thread block can then become part of a new DRA thread.

Processing multiple threads
The ability of the DRA to process more than one thread at the same time is known
as multithreading. Multithreading means that multiple CCTL or ODBA threads can
be using the DRA at the same time. Multithreading applies to all DRA requests
and ODBA calls.

Processing multiple CCTL threads

Multiple CCTL TCBs in a single address space can be used to process multiple
CCTL threads. CCTL can dispatch each CCTL thread for a different CCTL TCB,
and each CCTL TCB can call the DRA Startup/Router routine (DFSPRRC0) to
process DRA requests.

To use the multithreading capability:
v The DRA must be initialized with more than one thread TCB. To initialize the

DRA with more that one thread TCB, specify the MAXTHRD parameters (in the
DRA Startup Table) as greater than one.

v The CCTL must be capable of processing its CCTL threads concurrently.
v The CCTL must have Suspend and Resume exit routines. The DRA uses these

routines to notify the CCTL of the status of thread processing.

Important: : The Suspend exit routine can start executing before or after the
Resume exit routine to starts executing, but the Suspend exit routine cannot
finish executing before the Resume exit routine starts executing. When you
design the Suspend and Resume exit routines, ensure that the Suspend exit
routine can determine whether the Resume exit has started or completed
execution. If the Suspend exit routine determines that the Resume exit routine
has not started executing, the Suspend exit routine must not return to the caller.
If the Suspend exit routine determines that the Resume exit routine has started
or completed execution, the Suspend exit routine should return to the Suspend
exit caller and consider the suspend request complete.

Processing multiple ODBA threads

To use the multithreading capability, the DRA must be initialized with more than
one DRA thread. To do this, specify the MAXTHRD parameters (in the DRA
Startup Table) as greater than one.

310 System Programming APIs

CCTL multithread example
This example illustrates the concept of concurrent processing in a multithreading
system.

Events in a multithreading system are shown in chronological order from top to
bottom in the following example. To illustrate the concept of concurrent processing,
the figure is split into two columns.

There are two CCTL threads and two DRA threads in the example. CCTLRTNA is
the module name (for this example) of the CCTL routine that builds PAPLs and
calls DFSPRRC0 to process DRA requests.

Important: In the following example, only one CCTL TCB is used. However,
multiple CCTL TCBs in a single address space can be used to process multiple
CCTL threads. CCTL can dispatch each CCTL thread for a different CCTL TCB,
and each CCTL TCB can call the DRA Startup/Router routine (DFSPRRC0) to
process DRA requests.

Table 79. Example of events in a multithreading system

CCTL TCB events DRA TCB events

Application program1 needs a PSB, so CCTL
thread1 is created.
CCTL thread1 events:

v CCTLRTNA builds the SCHED PAPL and
calls DFSPRRC0.

v DFSPRRC0 creates a DRA thread, and the
thread token (PAPLTTOK) is assigned to
DRA thread TCB1.

v DFSPRRC0 activates thread TCB1.

v DFSPRRC0 calls the Suspend exit routine.

v The Suspend exit routine suspends CCTL
thread1.

DRA thread TCB1 events:

v The DRA processes the SCHED request
and asks IMS DB to perform a schedule
process.

v Scheduling is in progress.
CCTL can now dispatch other CCTL threads
for the CCTL TCB.
Application program2 needs a PSB, so CCTL
thread2 is created.
CCTL thread2 events:

v CCTLRTNA builds the SCHED PAPL and
calls DFSPRRC0.

v DFSPRRC0 creates a DRA thread, and a
new thread token (PAPLTTOK) is assigned
to DRA thread TCB2.

v DFSPRRC0 activates thread TCB2.

v DFSPRRC0 calls the Suspend exit routine.
The Suspend exit routine suspends CCTL
thread2.

DRA thread TCB2 events:

Chapter 15. Thread concepts 311

Table 79. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

v The DRA processes the SCHED request
and asks IMS DB to perform a schedule
process.

v Scheduling is in progress.
Both threads are now suspended. The CCTL
TCB is inactive until one of the threads
resumes execution.

TCB2 scheduling finishes first.

DRA thread TCB2 events:

v Scheduling completes in IMS DB, and the
PAPL is filled in with the results.

v The DRA calls the Resume exit routine and
passes the PAPL back to the CCTL.

Thread2 can resume immediately because the
CCTL TCB is idle. Execution resumes directly
after the point at which the thread was
suspended by the Suspend exit routine.

v The Resume exit routine sees the thread
token (PAPLTTOK) and flags CCTL
thread2 as 'ready to resume'.

v The Resume exit routine returns to the
DRA, and TCB2 becomes inactive.

TCB1 scheduling completes.

DRA thread TCB1 events:

v Scheduling completes in IMS DB and the
PAPL is filled in with the results.

v The DRA calls the Resume exit routine and
passes the PAPL back to the CCTL.

Thread1 must wait until the Resume exit
routine is available because thread2 has just
resumed.

v The Resume exit routine sees the thread
token (PAPLTTOK) and flags CCTL
thread1 as 'ready to resume'.

v The Resume exit routine returns control to
the DRA and TCB1 becomes inactive.

CCTL thread2 events:

v The Suspend exit routine returns to its
caller, DFSPRRC0.

v DFSPRRC0 returns to CCTLRTNA.

v CCTLRTNA gets the results from the
SCHED PAPL and gives them to the
application program2.

v CCTLRTNA finishes the thread2 SCHED
request.

After thread2 completes in CCTL TCB, the
CCTL can dispatch thread1, which is
currently waiting.

CCTL thread1 events:

v The Suspend exit routine returns to its
caller, DFSPRRC0.

v DFSPRRC0 returns to CCTLRTNA.

312 System Programming APIs

Table 79. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

v CCTLRTNA gets the results from the
SCHED PAPL and gives them to the
application program1.

v CCTLRTNA finishes the thread1 SCHED
request.

CCTL thread2 events:

v CCTLRTNA builds the DL/I PAPL and
calls DFSPRRC0.

v DFSPRRC0 finds the correct DRA thread.

v DFSPRRC0 activates thread TCB2.

v DFSPRRC0 calls the Suspend exit routine.

v The Suspend exit routine suspends CCTL
thread2.

CCTL thread1 events:

v CCTLRTNA builds the DL/I PAPL and
calls DFSPRRC0.

v DFSPRRC0 finds the correct DRA thread.

v DFSPRRC0 activates thread TCB1.

v DFSPRRC0 calls the Suspend exit routine.

v The Suspend exit routine suspends CCTL
thread1.

Application program2 completes. The CCTL
makes sync-point requests to IMS DB to
commit the processing of this UOR. The
CCTL flags the UOR for application
program2 as in-doubt prior to issuing a
phase 1 request. The CCTL keeps a record of
this in-doubt UOR until the CCTL can make
a successful phase 2 call to IMS DB.

DRA thread TCB1 events:

v The DL/I call is in progress.

v The DRA processes the DL/I PAPL and
asks IMS DB to perform a DL/I process.

CCTL thread2 events:

v CCTLRTNA issues a PREP request and
calls DFSPRRC0.

v DFSPRRC0 activates thread TCB2.

v DFSPRRC0 calls the Suspend exit routine.

v The Suspend exit routine suspends CCTL
thread2.

DRA thread TCB2 events:

v The DRA sends the PREP request to IMS
DB.

v IMS DB logs Phase 1 complete. This IMS
DB UOR is now in-doubt.

Chapter 15. Thread concepts 313

Table 79. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

v The PREP request completes successfully
and calls the Resume exit routine.

The PREP request results are returned to
CCTLRTNA (by the PREP PAPL), and
thread2 becomes inactive.

DRA thread TCB1 events:

v IMS DB detects a DL/I failure. This failure
results in termination of this DRA thread
and a termination of this thread TCB.

v Since this thread was in a schedule state,
the DRA calls the Status exit routine and
passes the DL/I PAPL back to the CCTL
after putting UPSTOR information in it.

v The Status exit routine associates UPSTOR
with a CCTL thread, and the routine
passes the PAPL to the DRA.

v The DRA calls the Resume exit routine.

v The DRA takes an SDUMP and terminates
thread TCB1.

CCTL thread1 events:

v After thread1 has been resumed, control is
passed back to CCTLRTNA.

v The CCTL notices that the DL/I request
failed (returning PAPLRETC=4) and takes
a diagnostic dump that includes UPSTOR.

v The CCTL terminates this CCTL thread
and frees UPSTOR because thread1 failed.

Before CCTL sends a commit request for
thread2, IMS DB fails.

DRA TCB events:

v The DRA calls the Control exit routine to
notify the CCTL that IMS DB failed.

v The Control exit routine returns a code
(PAPLRETC=8) that tells the DRA to
reconnect to IMS DB.

v The DRA terminates any existing thread
TCBs. If the CCTL makes any subsequent
requests to these terminated DRA threads,
the DRA will respond with a return code
indicating that the request cannot be
processed.

v After IMS DB has been restarted, the DRA
successfully connects to IMS DB.

v The DRA calls the Control exit routine to
notify the CCTL that it successfully
connected to IMS DB.

The CCTL creates a new task to resolve this
in-doubt status because there is an entry in
the resynchronization list for the IMS DB
in-doubt UOR.

v The DRA passes the address of the
resynchronization list (PAPLRST) to the
CCTL. The list contains one entry for the
IMS DB indoubt UOR for CCTL thread2.

314 System Programming APIs

Table 79. Example of events in a multithreading system (continued)

CCTL TCB events DRA TCB events

v The Control exit routine returns a code
(PAPLRETC=0) that tells the DRA to
continue running.

v The DRA completes the setup process by
creating new DRA thread TCBs

CCTL thread3 events:

v The CCTL matches the in-doubt UOR in
the re synchronization list with an
in-doubt UOR in its own list. The CCTL
in-doubt UOR is flagged for commit
processing as its Phase 2 action.

v CCTLRTNA issues a RESYNC request to
DFSPRRC0 asking for commit processing.
RESYNC is a DRA request, not a thread
request.

v DFSPRRC0 activates the DRA TCB to
process the request and calls the Suspend
exit routine.

v DRA calls IMS DB to commit its UOR.

v After successful processing, DRA calls the
Resume exit routine.

v After thread3 has been resumed,
CCTLRTNA receives a return code of
PAPLRETC=0.

v The CCTL discards its indoubt UOR
because the RESYNC request was
successful.

Chapter 15. Thread concepts 315

316 System Programming APIs

Chapter 16. Sync points

Sync point processing finalizes changes to resources. Sync point requests specify
actions to take place for the resource changed (for example, commit or abort). A
sync point is when IMS DB actually processes the request.

Each sync point is based on a unit of recovery (UOR). A UOR covers the time
during which database resources are allocated and can be updated until a request
is received to commit or abort any changes. Normally, the UOR starts with a CCTL
SCHED (schedule a PSB) request or an ODBA APSB call and ends with a sync
point request. Other DRA thread requests can also define the start and end of a
UOR.

A CCTL UOR is identified by a recovery token (PAPLRTOK) that is received as
part of a thread request that creates a new UOR. It is 16 bytes in length. The first 8
bytes contain the CCTL identification. This identification is the same as the CCTL
ID that was a final DRA startup parameter determined from USERID or
PAPLUSID in INIT request. The second 8 bytes must be a unique identifier
specified by the CCTL for each UOR.

Related Reading: See the request descriptions under Chapter 22, “CCTL-initiated
DRA function requests,” on page 333 for more information on the DRA thread
requests.

IMS DB expects the CCTL or the ODBA application to make the sync point
decision and the resulting request. In the case of a CCTL, the CCTL is the sync
point manager and coordinates the sync point process with all of the database
resource managers (including those other than IMS DB) that are associated with a
UOR. In the case of an ODBA application, z/OS Resource Recovery Services is the
sync point manager and coordinates all the resource managers (including those
other than IMS) that are associated with the UOR.

A CCTL working with a single resource manager may request a sync point in a
single request or can use the two-phase sync point protocol which is required for a
CCTL working with multiple resource managers. The single-phase sync point
request can be issued when the CCTL has decided to commit the UOR, and when
IMS DB owns all of the resources modified by the UOR.

An ODBA application must use the two-phase sync point protocol for committing
changes to the IMS database.
Related reference:
“SCHED request” on page 338
“SYNTERM request” on page 342
“PREP request” on page 343
“COMTERM request” on page 344
“ABTTERM request” on page 345

© Copyright IBM Corp. 1974, 2018 317

The two-phase commit protocol
The two-phase sync point protocol consists of two requests issued by the sync
point manager to each of the resource managers involved in the UOR. Each of the
UOR states, in-flight and in-doubt, define what happens to the UOR in the event
of a thread failure.

Phase 1
The sync point manager asks all participants if they are ready to commit a
UOR.

Phase 2
The sync point manager tells each participant to commit or abort based on
the response to the request issued in phase 1.

A UOR has two states: in-flight and in-doubt. The UOR is in an in-flight state from
its creation time until the time IMS DB logs the phase 1 end (point C in the
following two tables). The UOR is in an in-doubt state from (point C) until IMS DB
logs phase 2 (point D in the following two tables).

The in-doubt state for a single-phase sync point request is a momentary state
between points C and D in Table 1.

The in-flight and in-doubt states are important because they define what happens
to the UOR in the event of a thread failure. If a thread fails while its IMS DB UOR
is in-flight the UOR database changes are backed out. If a thread fails when its
IMS DB UOR is in-doubt, during single-phase commit, the UOR database changes
are kept for an individual thread abend, but are not kept for a system abend. If a
thread fails when its IMS DB UOR is in-doubt during two-phase commit, the
database changes are kept.

Thread failure refers to either of these cases:
v Individual thread abends.
v System abends: IMS DB failure, CCTL failure, ODBA application failure, or z/OS

failure (which abends all threads).

The following code shows the system events that occur when CCTL is used for
single-phase sync point processing.
Time →
–––A–––B––––––C–––D–––E––––

Table 80. CCTL single-phase sync point processing

Points In Time System Events

A CCTL phase 1 send
B IMS DB phase 1 receive
C IMS DB log phase 1 end
D IMS DB log phase 2
E CCTL phase 2 receive

The following table shows the system events that occur when CCTL is used for
two-phase sync point processing.
Time →
–––A–––B–––––C–––D–––E–––––––––––F–––G––––H––––––J–––K––––––––

318 System Programming APIs

Table 81. CCTL two-phase sync point processing

Points in time System events

A CCTL phase 1 send
B IMS DB phase 1 receive
C IMS DB log phase 1 end
D IMS DB phase 1 respond
E CCTL phase 1 receive
F CCTL phase 2 send
G IMS DB phase 2 receive
H IMS DB log phase 2
J IMS DB phase 2 respond
K CCTL phase 2 receive

The following figure shows the system events that occur when two-phase sync
point processing is completed using ODBA.

Note:

Figure 8. ODBA two-phase sync point processing

Chapter 16. Sync points 319

1. The ODBA application and IMS DB make a connection using the ODBA
interface.

2. IMS expresses protected interest in the work started by the ODBA application.
This informsz/OS Resource Recovery Services that IMS will participate in the
two-phase commit process.

3. The ODBA application makes a read request to an IMS resource.
4. The ODBA application updates a protected resource.
5. Control is returned to the ODBA application following its update request.
6. The ODBA application requests that the update be made permanent by

issuing the SRRCMIT call.
7. RRS calls IMS to do the prepare (phase 1) process.
8. IMS returns to RRS with its vote to commit.
9. RRS calls IMS to do the commit (phase 2) process.

10. IMS informs RRS that it has completed phase 2.
11. Control is returned to the ODBA application following its commit request.

In-doubt state during two-phase sync processing
A IMS DB UOR remains in the in-doubt state until a phase 2 request is received.
This process is called “resolving the in-doubt”. While a UOR is in-doubt, the
database resources owned by that UOR are inaccessible to other requests. It is vital
that in-doubts are resolved immediately.

CCTL example

If in-doubt UORs are created because IMS DB failed, the following sequence must
occur to resolve the in-doubt UORs.
1. After restarting IMS DB, the CCTL should identify itself to IMS DB using an

INIT request.
2. If identification is successful, the DRA notifies the CCTL control exit, passing to

it a list of IMS DB UORs that are in-doubt.
3. The CCTL must resolve each in-doubt by making a RESYNC call, which causes

a phase 2 action, commit or abort.
4. For CCTL to resolve a IMS DB in-doubt UOR, the CCTL must have a record of

this UOR and the appropriate phase 2 action it must take. In this example, the
CCTL record of a possible IMS DB in-doubt UOR is called a transition UOR.

5. The CCTL must define a transition UOR for the interval A-K (refer to Table 81
on page 319). Because this interval encompasses the IMS DB in-doubt period
C-H, CCTL can resolve any in-doubts.

If a CCTL defines a transition UOR as interval E-K and if IMS DB fails while a
thread is between C and D, IMS DB has an in-doubt UOR for which CCTL has no
corresponding transition UOR, even though the phase 1 call failed. CCTL cannot
resolve this UOR during the identify process. The only way to resolve this
in-doubt is by using the IMS DB command, /CHANGE CCTL.

For ODBA, all in-doubts are resolved through z/OS Resource Recovery Services.

320 System Programming APIs

Chapter 17. DRA startup table

The database resource adapter (DRA) Startup Table contains values used to define
the characteristics of the DRA. You must make the required changes to these
modules to correctly specify the DRA parameters.

The DRA Startup Table is created by assembling:
v The DFSPZPxx module for a CCTL's use.
v The DFSxxxx0 module for ODBA's use.

The CCTL or ODBA system programmer must make the required changes to these
modules to correctly specify the DRA parameters. The DRA parameters are
specified as keywords on the DFSPRP macro invocation.

Sample DFSPZP00 source code
DFSPZP00 CSECT

DFSPRP DSECT=NO,FPBUF=10,FPBOF=5,CNBA=60,MINTHRD=3,MAXTHRD=6,DSNAME=IMS.SDFSRESL
END

DFSPRP macro keywords

Keyword
Description

AGN= This keyword is no longer used. If specified, it is ignored.

CNBA=
Total Fast Path NBA buffers for the CCTL's or ODBA's use.

DBCTLID=
The four-character name of the IMS DB or DB/DC region. This is the same
as the IMSID parameter in the DBC procedure. The default name is SYS1.

DDNAME=
A 1-to-8 character ddname used with the dynamic allocation of the IMS DB
execution library. The default ddname is CCTLDD.

DSNAME=
A 1-to-44 character data set name of the IMS DB execution library, which
must contain the DRA modules and must be z/OS authorized. The default
DSNAME is IMS.SDFSRESL. This library must contain the DRA modules.

FPBOF=
The number of Fast Path DEDB overflow buffers allocated per thread. The
default is 00.

FPBUF=
The number of Fast Path DEDB buffers allocated and fixed per thread. The
default is 00.

FUNCLV=
Specifies the DRA level that the CCTL or ODBA supports. The default is 3.

GENSNAP=
Specifies whether to produce or suppress SNAP output in DFSPAT20
during thread termination.

© Copyright IBM Corp. 1974, 2018 321

|

|
|
|

YES Produces SNAP output in DFSPAT20 during thread termination.
YES is the default.

NO Suppresses the generation of SNAP output by DFSPAT20 during
thread termination.

IDRETRY=
The number of times a z/OS application region is to attempt to IDENTIFY
(or attach) to IMS after the first IDENTIFY attempt fails. The maximum
number 255. The default is 0.

IMSPLEX=
A 1- to 5-character user-specified identifier that is concatenated to 'CSL' to
create the z/OS cross-system coupling facility CSL IMSPLEX group name.
The value specified here must match the IMSPLEX NAME= value specified
in the SCI startup procedure. The IMS ODBA interface uses this XCF CSL
IMSPLEX group to register with SCI using the CSLSCREG interface; the
target ODBM address space must specify the same XCF CSL IMSPLEX
group name when registering with SCI. If you specify this parameter, the
IMS ODBA interface routes calls to the ODBM address space rather than
directly to IMS. If IMSPLEX= is not specified, ODBA calls are routed
directly to IMS.

This parameter is required for applications that route ODBA calls through
the ODBM address space. There is no default value.

MAXTHRD=
The maximum number of DRA thread TCBs available at one time. The
maximum number is 4095. The default is number 1.

MINTHRD=
The minimum number of DRA thread TCBs available at one time. The
maximum number is 4095. The default is number 1.

When the DRA Open Thread TCB option is active, this value refers to the
number of DRA threads that are signed on to IMS.

When the DRA Open Thread TCB option is inactive, this value refers to
the number of DRA thread TCBs that remain attached and signed on to
IMS.

ODBMNAME=
Specifies the name of the ODBM address space to which the ODBA
interface registers using the CSLDMREG request, and to which the ODBA
calls are routed using the CSLDMI interface. This is an optional parameter.
There is no default. If ODBMNAME= is not specified, the ODBA interface
selects which ODBM address space all ODBA calls are routed.

OPENTHRD=
Specifies whether or not to enable DRA Open Thread support processing.
When enabled and using CICS® 4.2 or higher, this option directs the DRA
not to attach dedicated IMS DRA thread task control blocks (TCBs). CICS
TCBs are used instead, which are intended for increased parallelism within
the CICS/DRA environment.

CCTL Open Thread processing is enabled.

DISABLE
Open Thread processing is disabled. This is the default.

SOD= The output class used for a SNAP DUMP of abnormal thread terminations.
The default is A.

322 System Programming APIs

||
|

||
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

||

|
|

TIMEOUT=
(CCTL only). The amount of time (in seconds) a CCTL waits for the
successful completion of a DRA TERM request. Specify this value only if
the CCTL application is coded to use it. This value is returned to the CCTL
upon completion of an INIT request.

TIMER=
The time (in seconds) between attempts of the DRA to identify itself to
IMS DB or DB/DC during an INIT request. The default is 60 seconds.

TIMETHREADCPU=
Specifies whether the DRA monitors and reports the CPU usage statistics,
that are related to DRA threads, when DRA Open Thread support is
enabled. The time is reported in IMS 07 log record DLRTIME field, and to
the CCTL in DRA thread statistics field PAPLCTM1.

YES The DRA monitors and reports the CPU usage statistics. A value of
YES overrides any value that is specified by the CCTL. YES is the
default.

NO The DRA does not monitor and report the CPU usage statistics. A
value of NO overrides any value that is specified by the CCTL.

CLIENT
The DRA uses the setting that is specified by the DRA client
through the INIT call (YES or NO) . If the client does not specify a
setting, YES is the default.

USERID=
An 8-character name of the CCTL or ODBA region. This keyword is
ignored for an ODBA Region.

Related concepts:

Designing a DEDB or MSDB buffer pool (Database Administration)
Related reference:

DBC procedure (System Definition)

Chapter 17. DRA startup table 323

|
|
|
|
|

||
|
|

||
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_designdedbmsdbbuffpool.htm#ims_designdedbmsdbbuffpool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dbc_procedure.htm#ims_dbc_procedure

324 System Programming APIs

Chapter 18. Enable the DRA for a CCTL

Two main steps are required to enable the DRA for a CCTL. After both steps are
completed, the DRA is capable of handling other requests.

This section describes the two steps required to enable the DRA.
1. The coordinator controller (CCTL) system must load the DRA Startup/Router

routine (DFSPRRC0) into a CCTL load library. Although DFSPRRC0 is shipped
with the IMS product, it runs in the CCTL address space. Also, The version of
the IMS DRA modules that are used by the CCTL must be the same version as
the IMS with which the CCTL is communicating.

Recommendations:

v Concatenate the IMS.SDFSRESL library to the CCTL step library so the
correct version of the DRA Startup/Router routine (DFSPRRC0) is loaded
into the CCTL load library.

v Ensure that the DRA Startup Table (DFSPZPxx) points to the correct version
of IMS.SDFSRESL.

2. The system programmer must put the DFSPZPxx load module in a load library.
The DRA is now ready to be initialized.

The CCTL starts the initialization process as a result of the CCTL application
program issuing an initialization (INIT) request. At this point in time, the CCTL
loads DFSPRRC0 and then calls the DRA to process the INIT request.

As part of the initialization request, the CCTL application program specifies the
startup table name suffix (xx). The default load module, DFSPZP00, is in the
IMS.SDFSRESL library.

After processing the INIT request, the DRA identifies itself to IMS DB. The DRA is
then capable of handling other requests.

DFSPZP00 contains default values for the DRA initialization parameters. If you
want to specify values other than the defaults, write your own module (naming it
DFSPZPxx), assemble it, and load it in the CCTL load library. Use the supplied
module, DFSPZP00, as an example.

The remainder of the DRA modules reside in a load library that is dynamically
allocated by DFSPRRC0. The DDNAME and DSNAME of this load library are
specified in the startup table. The default DSNAME (IMS.SDFSRESL) contains all
the DRA code and is specified in the default startup table, DFSPZP00.
Related reference:

Database resource adapter startup table for CCTL regions (System Definition)
“INIT request” on page 333

© Copyright IBM Corp. 1974, 2018 325

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_database_resource_adapter_startup_table.htm#ims_database_resource_adapter_startup_table

326 System Programming APIs

Chapter 19. Enabling the DRA for the ODBA interface

Four steps are required to enable the DRA before an ODBA interface can use it.
The first step is to create the ODBA DRA startup table.

There are four steps required to enable the DRA before an ODBA interface can use
it:
1. Create the ODBA DRA Startup Table.
2. Verify that the ODBA and DRA modules reside in the STEPLIB or JOBLIB in

the z/OS application region.
3. Link the ODBA application programs with DFSCDLI0.
4. Configure security.

The ODBA interface starts the initialization process after the ODBA application
program issues either a CIMS INIT request or, if the ODBA application requires
connections to multiple IMS systems, a CIMS CONNECT request. The CIMS INIT
and CIMS CONNECT requests establish the ODBA environment in the address
space. APSB requests then call the DRA to process the PSB schedule request with
the IMS DB specified in DFSxxxx0, where xxxx is the DRA startup table name
specified on the APSB call in the AIBRSNM2 field of the AIB.

After processing the CIMS INIT request or the CIMS CONNECT request, the DRA
identifies itself to IMS DB if the optional xxxx value is passed on the CIMS INIT or
CIMS CONNECT call. The DRA is then capable of handling other requests. The
DRA's structure at this time is shown in the following figure.

The remainder of the DRA modules reside in a load library that is dynamically
allocated by DFSAERA0. The DDNAME and DSNAME of this load library are
specified in the startup table. The default DSNAME (IMS.SDFSRESL) contains all
the DRA code.
Related reference:

Database resource adapter startup table for CCTL regions (System Definition)

Figure 9. DRA component structure with the ODBA interface

© Copyright IBM Corp. 1974, 2018 327

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_database_resource_adapter_startup_table.htm#ims_database_resource_adapter_startup_table

328 System Programming APIs

Chapter 20. Processing CCTL DRA requests

The CCTL communicates with IMS DB through DRA requests that are passed from
the CCTL to the DRA using a participant adapter parameter list (PAPL). To make a
DRA request the CCTL must pass control to the DRA Startup/Router Routine
DFSPRRC0, and have register 1 point to a PAPL.

Multiple CCTL TCBs in a single address space can be used to process multiple
CCTL threads. CCTL can dispatch each CCTL thread for a different CCTL TCB,
and each CCTL TCB can call the DRA Startup/Router routine (DFSPRRC0) to
process DRA requests.

Before passing control to DFSPRRC0, the CCTL must fill in the PAPL according to
the request. These requests are specified by a function code in the PAPLFUNC
field.

To specify a thread function request, put the PAPLTFUN value into the
PAPLFUNC field.

The function requests are further broken down into many subfunctions. A thread
function request is referred to by its subfunction name (for example, a thread
request with a schedule subfunction is referred to as a SCHED request).
Non-thread function requests are referred to by function name (for example, an
initialization request is called an INIT request).

The term “DRA request” applies to both thread and non-thread function requests.

Once the PAPL is built and the DRA Startup/Router routine is loaded, the CCTL
passes control to DFSPRRC0. The contents of the registers upon entry to
DFSPRRC0 are:

Register
Contents

1 Address of the PAPL

13 Address of a standard 18-word save area

14 Return address of the calling routine

The DRA Startup/Router routine puts itself into 31-bit addressing mode and will
return to the calling routine in the caller's original addressing mode with all its
registers restored. Register 15 is always returned with a zero in it.

The return code for the request is in the PAPLRETC field of the PAPL.

© Copyright IBM Corp. 1974, 2018 329

330 System Programming APIs

Chapter 21. Processing ODBA calls

An ODBA application program communicates with IMS DB using the AERTDLI
interface. The AERTDLI call interface processes DL/I calls from the ODBA
application and also returns the results of those calls back to the ODBA using an
AIB.

Unlike a CCTL's use of the PAPL, an ODBA application program communicates
with IMS DB using the AERTDLI interface. The AERTDLI call interface processes
DL/I calls from the ODBA application and also returns the results of those calls
back to the ODBA using an AIB.
Related reference:

Specifying the AIB mask for ODBA applications (Application Programming)

© Copyright IBM Corp. 1974, 2018 331

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_imsdbspecifyingaibforodba.htm#ims_imsdbspecifyingaibforodba

332 System Programming APIs

Chapter 22. CCTL-initiated DRA function requests

Certain requests are available to the CCTL that allow it to communicate with
DBCTL. For all DRA requests, there are PAPL fields that the CCTL must fill in. The
PAPLUSER field is a field to be used at the CCTL's discretion. One possible use for
it is to pass data to exit routines.

This topic contains General-use Programming Interface information.

For all DRA requests, there are PAPL fields that the CCTL must fill in. When the
DRA completes the request, there are some output PAPL fields that the DRA fills
in. Some fields in the returned PAPL might contain the original input value.

(The PAPLTTOK and PAPLUSER fields retain the original input values.)

The PAPLUSER field is a field to be used at the CCTL's discretion. One possible
use for it is to pass data to exit routines.

The DRA returns a code (in the PAPLRETC field) to the CCTL after processing a
DRA request. The code indicates the status of the request and can be either an IMS
code, a DRA code, or a z/OS code. Failed DRA requests return a nonzero value in
the PAPLRETC field.

To use the default Suspend exit routine and Resume exit routine, each DRA request
must have the field PAPLTECB set with the address of a CCTL ECB to be used if
the thread is waited or posted. If your CCTL does not provide Suspend and
Resume exit routines, the DRA default exit routines will be used.
Related concepts:
“Problem diagnosis” on page 354
Related reference:

DBCTL return codes (Messages and Codes)

INIT request
You can use the INIT request to initialize the DRA. The DRA startup parameter
table contains all of the required parameters that you need to define the DRA. You
can use the parameters given in the default module, DFSPZP00, or you can write
your own module and bind it into the IMS.SDFSRESL data set.

The INIT PAPL also contains some parameters needed to initialize the DRA. If the
same parameter appears in both the INIT PAPL and in the DRA startup parameter
table, the specification in the INIT PAPL will override that in the startup table.

In addition to the required parameters of INIT PAPL, the optional parameters
include:

Field Contents

PAPLFUNC
PAPLINIT

PAPLSUSP
The address of the Suspend exit routine

© Copyright IBM Corp. 1974, 2018 333

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/compcodes/ims_dbctlretcodes.htm#ims_dbctlretcodes

PAPLRESM
The address of the Resume exit routine

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

PAPLCNTL
The address of the Control exit routine

PAPLTSTX
The address of the Status exit routine

After the INIT request and the startup table have been processed, the DRA returns
the following data to the CCTL in the INIT PAPL:

Field Contents

PAPLDBCT
The IMS DB identifier (this is the IMSID parameter from system definition)

PAPLCTOK
The request token that identifies the CCTL to the DRA

PAPLTIMO
DRA TERM request timeout value (in seconds)

PAPLRETC
A code returned to the CCTL specifying the status of the request

PAPLDLEV
A flag indicating to CCTL which functions the DRA supports. (For the
latest version of PAPL mapping format see the IMS. library; member name
is DFSPAPL.)

INIT request, identify to DBCTL

To make the DRA functional, the DRA must identify itself to IMS DB, thus
establishing a link between IMS DB and the CCTL. The identify process occurs in
two cases:
v As a direct result of an INIT request.
v As part of a terminate/reidentify request from a Control exit routine invocation.

The DRA identifies itself to the IMS DB subsystem specified in the final DRA
startup parameters. The identify process executes asynchronously to the INIT
process. Therefore, it is possible for the INIT request to complete successfully while
the identify process fails. In this case, the Control exit routine notifies the CCTL
that the connection to IMS DB failed.

If IMS DB is not active, the console operator will receive a DFS690 message (a code
of 0 was returned in the PAPLRETC field). You must reply with either a CANCEL
or WAIT response. If you reply with WAIT, the DRA waits for a specified time
interval before attempting to identify again. The waiting period is necessary
because the identify process will not succeed until the DBCTL restart process is
complete. You specify the length of the waiting period on the TIMER DRA startup
parameter. If subsequent attempts to identify fail, the console operator will receive
message DFS691, WAITING FOR IMS DB.

334 System Programming APIs

If the DRA cannot identify to IMS DB because the subsystem does not reach a
restart complete state, there are two ways to terminate the identify process:
v The Control exit routine is called with each identify failure. This sets a PAPL

return code of 4 or 8, terminating the identify process.
v The CCTL can issue a TERM request.

If you reply with CANCEL to message DFS690, control is passed to the Control
exit routine, and the DRA acts upon the routine's decision.

After the identify process successfully completes, the DRA makes the CCTL
address space non-swappable and calls the Control exit routine with a list of
in-doubt UORs. If no in-doubt UORs exist, a null list is passed. The CCTL can use
the RESYNC request to resolve any in-doubt UORs that do exist.

The INIT request attempts to create the MINTHRD number of thread TCBs. The
actual number of TCBs created might be less than this value due to storage
constraints.

INIT request after a previous DRA session termination

If a prior DRA session ended with a TERM request that received a PAPL return
code=0, this INIT request must specify PAPLCTOK=0. If PAPLCTOK other than 0
is sent, the INIT request fails.

The INIT request must pass the PAPLCTOK value of the prior session in the
current PAPLCTOK field if a DRA session ended because of:
v A nonzero return code from a TERM request.
v An internal TERM request from a Control exit routine request.
v A DRA failure.

INIT request to use the DRA open thread TCB option

The DRA open thread TCB allows the CCTL to direct the DRA not to attach
dedicated DRA thread TCBs. Instead, DRA thread requests are processed on the
CCTL application TCB.

The DRA open thread TCB option is either in use or not in use for the duration of
the DRA instance.

To request activation of the DRA open thread TCB, set the following fields for the
INIT request:

PALPFNCL
3 (PAPLFNC3)

PAPLOOTT
Set this bit (X’08’) to activate the open thread TCB.

You can verify that the TCB open thread is in use for the DRA by examining the
PAPLDLEV flag field in the CCTL in INIT PAPL that the DRA returns after the
INIT call. If the PAPLOTCB (X’08’) flag is set to 1, the open thread TCB option is
in use.

Chapter 22. CCTL-initiated DRA function requests 335

INIT request to use the DRA open thread TCB option

When DRA open thread support processing is enabled, the DRA will or will not
monitor and report the CPU time usage statistics that are related to the DRA
thread processing based on the value specified for TIMETHREADCPU= on the
DFSPRP macro in DFSPZPxx member.

If anything other that TIMETHREADCPU=CLIENT is specified in the DFSPZPxx
member, the DRA ignores what is specified on the INIT call.

To request the DRA not to monitor CPU time usage statistics, set the following
fields for the INIT request:

PALPFNCL
3 (PAPLFNC3)

PAPLOTCN
Set this bit (X'20') in field PAPLDROP to disable DRA thread CPU time
usage statistics monitoring.

To determine if CPU usage statistics are being monitored for DRA thread
processing, check the PAPLDLEV flag field in the CCTL INIT PAPL that the DRA
returns after the INIT call. CPU usage statistics is not being monitored and
reported if the PAPLOTCF (x'40') flag is set to 1.
Related concepts:
Chapter 18, “Enable the DRA for a CCTL,” on page 325

RESYNC request
You can use the RESYNC request to tell IMS DB what to do with in-doubt UORs.
Four different subfunction values indicate possible actions for IMS DB to take for
the UOR.

The following subfunction values indicate possible actions:

PAPLRCOM
Commit the in-doubt UOR.

PAPLRABT
Abort the in-doubt UOR. Changes made to any recoverable resource are
backed out.

PAPLSCLD
The UOR was lost to the transaction manager due to a coldstart.

PAPLSUNK
The in-doubt UOR is unknown to the CCTL. This can occur when the
CCTL's in-doubt period does not include the start of phase 1. (See Table 81
on page 319 for an illustration of in-doubt periods.)

You must fill in the following input fields of the PAPL:

Field Contents

PAPLCTOK
Request token

336 System Programming APIs

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

This token identifies the CCTL to the DRA. The DRA establishes the token
and returns it to the CCTL in the parameter list on the startup INIT
request. The request token must be passed on to the DRA for all RESYNC
requests.

PAPLRTOK
Recovery token

This 16-byte token is associated with a UOR. The first 8 bytes must be the
transaction manager subsystem ID. The second 8 bytes must be unique for
one CCTL thread. This is one of the in-doubt recovery tokens passed to the
Control exit routine.

PAPLFUNC
PAPLRSYN

PAPLSFNC
This field must contain PAPLRCOM, PAPLRABT, PAPLSCLD, or
PAPLSUNK.

In addition to the required input parameters, the optional input parameters
include:

Field Contents

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

TERM request
You can use the TERM request to terminate the IMS DB/CCTL connection and a
remove the DRA from the CCTL environment. The DRA terminates after all
threads have been resolved. No new DRA or thread requests are allowed, and
current requests in progress must complete.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC
PAPLTERM, DRA terminate function code

PAPLCTOK
The DRA request token (output from an INIT request)

In addition to the required input parameters, the optional input parameters
include:

Field Contents

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

Chapter 22. CCTL-initiated DRA function requests 337

After receiving the TERM request results, the CCTL might remove DFSPPRC0.

The fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC
The return code

PAPLMXNB
The number of times the maximum thread count was encountered during
this DRA session

PAPLMTNB
The number of times the minimum thread count was encountered during
this DRA session

PAPLHITH
The largest number of thread TCBs that were scheduled during this DRA
session

PAPLTIMX
The elapsed time at maximum thread for this DRA session

SCHED request
You can use the SCHED request to schedule a PSB in IMS DB. The first SCHED
request made by a CCTL thread requires a new DRA thread. Existing DRA thread
TCBs are used if they are not currently processing a DRA thread.

If no TCBs are available, the DRA either creates a new thread TCB (until the
maximum number of threads as specified by the MAXTHRD parameter in the
INIT request is reached), or makes the SCHED request wait until a thread becomes
available.

The value in the PAPLWCMD field indicates whether the thread to which the
SCHED request applies is a short or long thread. The type of thread determines the
action that IMS takes when a database command is entered for a database
scheduled to the thread. The /STOP DATABASE, /DBDUMP DATABASE, or
/DBRECOVERY DATABASE command issued against a database scheduled on a
short thread will wait for the database to be unscheduled. IMS rejects these
commands if they are entered for a database scheduled on a long thread.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC
PAPLTFUN, thread function code

PAPLSFNC
PAPLSCHE, schedule request subfunction code

PAPLCTOK
The DRA request token (output from an INIT request)

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
The 16-byte UOR token (RTOKEN).

338 System Programming APIs

The first 8 bytes contain the CCTL identification. This identification is the
same as the CCTL ID that was a final DRA startup parameter determined
from USERID or PAPLUSID in INIT request; the USERID parameter is
found in the DFSPRP macro used to generate the DFSPZPxx module. The
second 8 bytes contain the unique identifier specified by the CCTL for each
UOR.

PAPLPSB
The PSB name

PAPLWRTH
Deadlock Worth Value

If this thread hits a deadlock condition with any other DRA thread or with
any IMS region, DBCTL collapses the thread with the lower deadlock
worth value.

PAPLWCMD
This bit defines the thread as either a short or long thread which
determines what action IMS takes on a /STOP DATABASE, /DBDUMP
DATABASE, or /DBRECOVERY DATABASE command for a database
scheduled to the thread.

If the bit is set on (X'80'), the database is scheduled on a short thread; if the
bit is set off, the database is scheduled for a long thread.

PAPLFTRD
Fast Path Trace Option

If this bit is on (X'40'), Fast Path tracing in IMS DB is activated.

PAPLKEYP
Public Key Option

If this bit is set (X'10'), DBCTL builds UPSTOR area in a special subpool so
that applications running in public key can fetch the UPSTOR area.

PAPLLKGV
Lockmax Option

If this bit is set (X'08'), DBCTL uses the value in PAPLLKMX as the
maximum number of locks that this UOR can hold. Exceeding the
maximum results in a U3301 abend.

PAPLLKMX
Lockmax Value, 0 to 255

This value overrides any LOCKMAX parameter specified on the PSBGEN
for the PSB referenced in the SCHED request.

PALPUFXT
DRA open thread indicator.

Set PAPLUFXT to 1 for the SCHED call to indicate to the DRA that the
thread TCB might not be the same TCB for the duration of the thread. The
TCB might change between the time that the PSB is scheduled and the
time that the PSB is unscheduled and the thread is terminated.

PAPLALAN
Application language type

Specifying the following input field is optional:

Field Contents

Chapter 22. CCTL-initiated DRA function requests 339

PAPLSTAT
Address of an area where scheduled statistical data is returned to the
CCTL.

If you do not want to allocate an address, enter 0.

PAPLPBTK
Address of the token for the z/OS Workload Manager performance block
obtained by the CCTL.

You must specify this field for z/OS Workload Manager support for DRA
threads.

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC
The return code

PAPLCTK2
The thread request token number 2. This is another DRA token required on
future DRA requests originating from this thread.

PAPLPCBL
The address of the PCB list. There is one entry in the list for each PCB in
the PSB that was scheduled, even if the PCB cannot be used with IMS DB.

The address of the PCB list is above the 16 MB line if either the
PCBLOC=31 is set on the DFSPRP macro, or PAPLLPSO=31 is specified on
the INIT request.

PAPL1PCB
The address of the PCBLIST entry pointing to the first database PCB

PAPLIOSZ
The size of the maximum I/O area

PAPLPLAN
The language type of the PSB

PAPLMKEY
The maximum key length

PAPLSTAT
The address of the schedule statistical data area. This address must be
specified on the input field.

CCTLs currently using the IMS Database Manager and migrating to DBCTL will
experience a change in the PCBLIST and user PCB area on a schedule request. The
first PCB pointer in the PCBLIST contains the address of an I/O PCB. The I/O
PCB is internally allocated during the schedule process in a DBCTL environment.
The I/O PCB is normally used for output messages or to request control type
functions to be processed. The PCBLIST and the PCBs reside in a contiguous

340 System Programming APIs

storage area known as UPSTOR. If the PSB was generated with LANG=PLI, the
PCBLIST points to pointers for the PCBs. If LANG= was not PLI, the PCBLIST
points to the PCBs directly.
Related concepts:
Chapter 16, “Sync points,” on page 317
“DRA tracing” on page 354
Chapter 25, “CCTL performance: monitoring DRA thread TCBs,” on page 351

IMS request
You can use the IMS request to make an IMS or Fast Path database request against
the currently scheduled PSB.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLDLI, DL1 request subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token that is part of the
output from a SCHED request.

PAPLTTOK
Thread token set up by the CCTL

PAPLRTOK
RTOKEN

A 16-byte UOR token.

PAPLCLST
The address of an IMS call list.

PAPLALAN
Application language type. This must reflect how the call list is set up. If
PAPLALAN=‘PLI', the DRA expects the call list to contain pointers to the
PCB's pointers. For any other programming language, the DRA expects
direct pointers.

PAPLALAN does not have to match PAPLPLAN which schedules request
returns. For example, if PAPLPLAN=PLI, the PCBLIST in UPSTOR points
to an indirect list. If specified, the CCTL can use this to create a PCBLIST
that application programs use. If the application programs are written in
COBOL, the CCTL may create a new PCBLIST without pointers as long as
the new list actually points to PCBs in UPSTOR. The application program
IMS call lists can specify PAPLALAN=COBOL, and the DRA will not
expect pointers in the call list.

In addition to the required input parameters, the optional input parameters
include:

Field Contents

Chapter 22. CCTL-initiated DRA function requests 341

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC
Code returned

PAPLSEGL
Length of data returned

Related concepts:
Chapter 16, “Sync points,” on page 317
Related reference:

Program communication block (PCB) lists (Application Programming)

SYNTERM request
You can use the SYNTERM request to make a single-phase sync point request to
commit the UOR or to release the PSB.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLSTRM, sync point commit/terminate subfunction code

PAPLCTOK
DRA request token (output from INIT request)

PAPLCTK2
The thread request token number 2. This DRA token is the output from the
SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

You can specify the following, optional input fields:

Field Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the
CCTL.

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a

342 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_pcblists.htm#ims_pcblists

CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC
Code returned

PAPLSSCC
State of the single-phase sync point request at the time of the thread
failure. This field is set if PAPLRETC is not equal to zero.

PAPLSTAT
The address of the transaction statistical data area. The address must be
specified on the input field.

Related concepts:
Chapter 16, “Sync points,” on page 317

PREP request
You can use the PREP request to make a phase 1 sync-point request to ask IMS DB
if it is ready to commit this UOR.

You must fill in the following input fields of the PAPL:

Field Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLPREP, sync-point prepare subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token which is output
from a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

PAPLSDPL
A one-bit flag. Set this bit to 1 to indicate to IMS that this thread is part of
a distributed unit of work.

In addition to the required input parameters, the optional input parameters
include:

Field Contents

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a

Chapter 22. CCTL-initiated DRA function requests 343

CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

The following are output fields that are returned in the PAPL to the:

Field Contents

PAPLRETC
Code returned

PAPLSTCD
Fast Path status code

If the value in the PAPLRETC field is decimal 35, the PAPLSTCD field
contains a status code that further describes the error.

Related concepts:
Chapter 16, “Sync points,” on page 317

COMTERM request
You can use the COMTERM request to make a phase 2 sync-point request to
commit the UOR or to release the PSB. You must issue a PREP request prior to
issuing a COMTERM request.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLCTRM, sync-point commit/terminate subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token that is output from
a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

Specifying the following input field is optional:

Field Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the
CCTL

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

344 System Programming APIs

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC
Code returned

PAPLSTAT
The address of the transaction statistical data area. This address must be
specified on the input field.

Related concepts:
Chapter 16, “Sync points,” on page 317

ABTTERM request
You can use the ABTTERM request to make a phase 2 sync-point request to abort
processing and release the PSB. The ABTTERM request does not require a
preceding PREP request.

You must fill in the following input fields of the PAPL:

Field Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLATRM, sync-point abort/terminate subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token, which is output
from a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

PAPLRTOK
A 16-byte UOR token (RTOKEN).

Specifying the following input field is optional:

Field Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the
CCTL.

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC
Code returned

Chapter 22. CCTL-initiated DRA function requests 345

PAPLSTAT
The address of the transaction statistical data area. This address must be
specified on the input field.

Related concepts:
Chapter 16, “Sync points,” on page 317

TERMTHRD request
You can use the TERMTHRD request to terminate the DRA thread.

You must fill in the following input fields of the PAPL:

Field Contents

PAPLFUNC
PAPLTFUN

PAPLSFNC
PAPLTTHD, thread terminate subfunction code

PAPLCTOK
DRA request token (output from an INIT request)

PAPLCTK2
Thread Token number 2. This is the DRA request token that is output from
a SCHED request.

PAPLTTOK
The thread token set up by the CCTL

Specifying the following input field is optional:

Field Contents

PAPLSTAT
Address of an area where transaction statistical data is returned to the
CCTL

PAPLTECB
To use the default Suspend exit routine and Resume exit routine, each
DRA request must have the field PAPLTECB set with the address of a
CCTL ECB to be used if the thread is waited or posted. If your CCTL does
not provide Suspend and Resume exit routines, the DRA default exit
routines will be used.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC
Code returned

PAPLSTAT
The address of the transaction statistical data area. This address must be
specified on the input field.

346 System Programming APIs

Chapter 23. Terminating the DRA

Termination isolation means that a failure of the IMS DB subsystem does not cause
a direct failure of any attached CCTL subsystem or ODBA application and vice
versa.

Termination isolation should be one of your primary considerations when you
design a CCTL subsystem or an ODBA application.

Although IMS DB was designed to prevent failure between connecting subsystems,
a termination of a CCTL subsystem can cause IMS DB failure. If a DRA thread TCB
terminates while IMS DB is processing a thread DL/I call on the CCTL's behalf,
IMS DB fails with a U0113 abend.

The conditions that cause a thread TCB to terminate while IMS DB processes a
DL/I call are:
v A DRA thread abend due to code failure. This can be corrected by fixing the

failing code.
v The CCTL TCB collapses while a thread TCB still exists. The thread TCB

collapses with an S13E or S33E abend and can result from three situations: a
CCTL abend, a cancel command, or a shutdown.

v A DRA thread abend due to a IMS DB /STOP REGION CANCEL command initiated
by CCTL.

An IMS DB U0113 abend can be prevented by designing the CCTL recovery
process so that it issues a TERM request and waits for the request to complete.
This allows the DRA and thread TCBs to terminate before the CCTL TCB
terminates.
Related concepts:
Chapter 24, “Designing the CCTL recovery process,” on page 349

© Copyright IBM Corp. 1974, 2018 347

348 System Programming APIs

Chapter 24. Designing the CCTL recovery process

You should consider CCTL operations and installation requirements when
designing your CCTL. For example, a CCTL might have a means of allowing its
own shutdown, but CCTL threads or BMPs should not have long-running UORs.

Under the conditions of a nonrecoverable z/OS abend, a DRA TERM request lets
all threads collapse and U0113 is possible. To reduce the number of nonrecoverable
abends of the CCTL, IMS DB intercepts any operator CANCEL of a CCTL that is
connected to IMS DB, and converts it to a S08E recoverable abend of the CCTL. If
you want a CANCEL to be converted to an S08E abend, you must specify
CCTCVCAN=Y on IMS startup parameters.

You can also as a last resort, force a CCTL to shut down. If an operator enters a
FORCE command after CANCEL has been entered (and converted to S08E), IMS
DB converts FORCE into a z/OS cancel command. Subsequent FORCE attempts
are not intercepted by IMS DB. In these cases of nonrecoverable abends, a U0113 is
possible.

A CCTL might have a means of allowing its own shutdown. The CCTL shutdown
logic should issue a DRA TERM request and wait for the request completion to
prevent a U0113 abend in IMS DB. The DRA TERM request waits for current
thread requests to complete. One thing that can prevent a current thread DL/I call
from completing normally is if the call has to wait in IMS DB for a database
segment to become available. The reason the segment might not be available is that
it is held by another UOR, either in a thread belonging to another CCTL or in an
IMS dependent region (for example, a BMP). The solution is to not have CCTL
threads or BMPs that have long-running UORs.

Recommendation: BMPs should take frequent checkpoints.

No matter how you choose to prevent or discourage long-running CCTL threads,
you must decide how long to wait for the DRA TERM request to complete
(TIMEOUT). In most cases, it is undesirable to get a U113 abend in IMS DB during
a CCTL termination, so the timeout value should be greater than the longest
possible UOR. If the CCTL has a means of limiting the UOR time or allowing the
installation to specify this time limit, the DRA TERM timeout value can be
determined. This timeout value can be specified in the DRA startup table and is
returned to the CCTL in the INIT PAPL.

Recommendation: CCTL should use this DRA TERM timeout value when waiting
for the DRA TERM request to complete. At the very least, by using the DRA TERM
timeout value, you can control whether CCTL terminations cause IMS DB failures
with respect to the UOR time length of the applications that run in a given IMS
DB/CCTL session.

CCTL Operations Recommendation:
v Avoid using CANCEL or FORCE commands against CCTL regions that are

connected to IMS DB.

CCTL Design Recommendations:

© Copyright IBM Corp. 1974, 2018 349

v The CCTL should issue a DRA TERM request during recoverable abend
processing.

v CCTL shutdown functions should issue a DRA TERM request.
v Whenever a DRA TERM request is issued, wait for it to complete. If this time

must have an upper limit, use the TIMEOUT value specified in the DRA startup
table.

v The CCTL should prevent long-running UORs in its threads using IMS DB.

User Installation Recommendations:
v Have BMPs take frequent checkpoints.
v Limit long-running UOR applications.
v Set the TIMEOUT startup parameter as high as possible, preferably longer than

the longest running UOR.
Related concepts:
Chapter 23, “Terminating the DRA,” on page 347

350 System Programming APIs

Chapter 25. CCTL performance: monitoring DRA thread TCBs

You can evaluate the status of DRA thread TCBs from the output of the /DISPLAY
CCTL ALL command in most cases. If there are no thread failures, the output
might show fewer thread TCBs than the MINTHRD value because of internal short
lived conditions.

Requirement: The DRA initialization process requires a minimum and maximum
value (MINTHRD and MAXTHRD) for DRA thread TCBs. The value of MINTHRD
and MAXTHRD determine the number of multithreading executions that can occur
concurrently. These values also define the range of thread TCBs that the DRA will
maintain under normal conditions with no thread failures. The number of TCBs
can go below the MINTHRD value when the following thread failures occur:
v An abend.
v A nonzero DRA thread request return code that causes the thread TCB to

collapse.
v Termination using a IMS DB /STOP REGION command.

Failed thread TCBs are not automatically recreated. The thread TCB number
increases again if a new thread is created to process a SCHED request. If the
number of thread TCBs is greater than the MINTHRD value and all thread activity
ceases normally, the number of thread TCBs left in the DRA will be the
MINTHRDD value.

During CCTL processing, the number of active DRA threads occupying thread
TCBs varies from 0 to the MAXTHRD number. Active DRA threads indicate that at
least one SCHED request has been made but not any TERMTHRD requests. If the
number of non-active thread TCBs becomes too large, the DRA automatically
collapses some thread TCBs to release IMS DB resources.

The status of DRA thread TCBs can be evaluated from the output of the /DISPLAY
CCTL ALL command, except for one case.

If there were no thread failures, the output might show fewer thread TCBs than
the MINTHRD value because of internal short lived conditions. In fact, the actual
number of thread TCBs equals the MINTHRD.
Related concepts:

z/OS: STIMER macro description
Related reference:
“SCHED request” on page 338

/DISPLAY CCTL command (Commands)

DRA thread statistics
DRA thread statistics are returned for a SCHED request and for any DRA requests
that terminate a UOR. The statistics are in a CCTL area that is pointed to by the
PAPLSTAT field.

The PAPL listing maps this area, as shown in the following table. The statistics also
appear in the IMS DB log records X'08' (SCHED) and X'07' (UOR terminate).

© Copyright IBM Corp. 1974, 2018 351

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaa900/stimer.htm
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_displaycctl.htm#ims_cr1displaycctl

Table 82. Information provided for the schedule process

PAPL field
Field length
(Hexadecimal) Contents

PAPLNPSB 8 PSB name

PAPLPOOL 8 Elapsed wait time for pool space (packed:
microseconds)

PAPLINTC 8 Elapsed wait time - intent conflict (packed:
microseconds)

PAPLSCHT 8 Elapsed time for schedule process (packed:
microseconds)

PAPLTIMO 8 Elapsed time for DB I/O (packed: microseconds)

PAPLTLOC 8 Elapsed time for DI locking (packed:
microseconds)

PAPLDBIO 4 Number of DB I/Os

Table 83. Information provided at UOR termination

PAPL field
Field length
(Hexadecimal) Contents

PAPLGU1 4 Number of database GU calls issued

PAPLGN 4 Number of database GN calls issued

PAPLGNP 4 Number of database GNP calls issued

PAPLGHU 4 Number of database GHU calls issued

PAPLGHN 4 Number of database GHN calls issued

PAPLGHNP 4 Number of database GHNP calls issued

PAPLISRT 4 Number of database ISRT calls issued

PAPLDLET 4 Number of database DLET calls issued

PAPLREPL 4 Number of database REPL calls issued

PAPLTOTC 4 Total number of DL/I database calls

PAPLTENQ 4 Number of test enqueues

PAPLWTEQ 4 Number of WAITS on test enqueues

PAPLTSDQ 4 Number of test dequeues

PAPLUENQ 4 Number of update enqueues

PAPLWUEQ 4 Number of WAITs on updates and enqueues

PAPLUPDQ 4 Number of update dequeues

PAPLEXEQ 4 Number of exclusive enqueues

PAPLWEXQ 4 Number of WAITs on exclusive enqueues

PAPLEXDQ 4 Number of exclusive dequeues

PAPLDATS 8 STCK time schedule started

PAPLDATN 8 STCK time schedule completed

PAPLDECL 2 Number of DEDB calls

PAPLDERD 2 Number of DEDB read operations

PAPLMSCL 2 Reserved for Fast Path

PAPLOVFN 2 Number of overflow buffers used

PAPLUOWC 2 Number of UOW contentions

352 System Programming APIs

Table 83. Information provided at UOR termination (continued)

PAPL field
Field length
(Hexadecimal) Contents

PAPLBFWT 2 Number of WAITs for DEDB buffers

PAPLUSSN 4 Unique schedule sequence number

PAPLCTM1 4 Elapsed UOR CPU time (for thread TCB)

DRA statistics
DRA statistics are contained in the returned PAPL as a result of a DRA TERM
request, or in the Control exit routine's PAPL when it is called for DRA
termination. This routine is called when the DRA fails or when a previous Control
exit routine invocation resulted in return code 4.

The DRA statistics in the returned PAPL are:
1. The number of times the MAXTHRD value was reached.
2. The number of times the MINTHRD value was reached (only includes the

times the value is reached when the thread TCB number is decreasing.)
3. The largest number of thread TCBs ever reached during this DRA session. (This

is the number of TCBs, not the number of DRA threads, so it is at least the
minimum thread value.)

4. The time (in seconds) during which the DRA thread TCB count was at the
MAXTHRD value.

You can find the field names for the previous statistics in the PAPL extensions for
the TERM PAPL and control exit routine PAPL.

Before attempting to evaluate the statistics DRA performance, remember:
v If the DRA is using the maximum number of threads (MAXTHRD), when the

DRA receives any new SCHED requests it will make these requests wait until a
thread is available.

v As active threads become available (for example, as a result of TERMTHRD call),
some of the available threads might be collapsed.

These factors can adversely affect performance, but both improve IMS DB resource
availability because fewer DRA threads require fewer IMS DB resources. The IMS
DB resources (PSTs) are then available for other BMPs or other CCTLs to use.

Statistics 1, 2, and 4 can serve as a measurement of the two factors, and will help
you decide how to balance performance and resource usage. For the sake of this
discussion, these statistics are presented solely from a performance point of view
(for example, assume only 1 CCTL connected to a IMS DB).

Evaluating the DRA statistics

If statistics 1 and 4 are high, a SCHED request had to wait for an available thread
many times. To improve performance, raise the MAXTHRD value.

The impact of statistic 2 on performance can only be estimated if thread activity
history is known (the DRA does not provide this history but the CCTL can). If
activity is steady, little thread collapsing occurs and statistic 2 is meaningless. If
activity fluctuates a lot, statistic 2 can be useful.

Chapter 25. CCTL performance: monitoring DRA thread TCBs 353

v If statistic 2 is 0, thread collapsing might have occurred, but the MINTHRD
value was never reached.

v If statistic 2 is not zero, the MINTHRD value was reached and thread collapsing
was stopped at those points, thus enhancing performance. Therefore, if you have
highly fluctuating thread activity, you can improve performance by raising
MINTHRD until statistic 2 has a nonzero value.

Finally, statistic 3 can be useful for adjusting your MAXTHRD value.

Note: These statistics are useful in determining MINTHRD and MAXTHRD
definitions. When MINTHRD=MAXTHRD, these statistics are of no value.

DRA tracing
Tracing (logging) of activity does not occur in the DRA, but there is tracing in IMS
DB of DL/I and Fast Path activity. The setup and invocation of DL/I tracing for
IMS DB is the same as for IMS. The output trace records for CCTL threads contain
the recovery token.

Fast Path tracing in IMS DB is different from IMS. Fast Path tracing in IMS DB is
activated when a SCHED request to the DRA has the PAPLFTRD equal to ON
(Fast Path trace desired for this UOR).

When this UOR completes, a trace output file is closed and sent to SYSOUT Class
A.

If a thread request fails during Fast Path processing, the DRA might return the
PAPL with the PAPLFTRR field equal to ON. This recommends to the CCTL that it
request the PAPLFTRD field be equal to ON (Fast Path trace desired) in the
SCHED PAPL if this failing transaction is run again by the CCTL.
Related reference:
“SCHED request” on page 338

Sending commands to IMS DB
In an IMS DB warm standby or IMS XRF environment, a CCTL can use a z/OS
SVC 34 to broadcast an emergency restart command to an IMS DB alternate, or a
SWITCH command to an IMS XRF alternate in order to have the IMS alternate
system become the primary IMS system.

These are the only IMS commands that can be done using this interface. The
command verb can be preceded by either the command recognition character or
the 4-character IMS identification that is in the PAPLDBCT field of the INIT PAPL.

Problem diagnosis
Diagnostic information is provided by the DRA in the form of an SDUMP, or a
SNAP data set output. For X'80', the SDUMP is attempted first. If it fails, SNAP is
done.

Failed DRA requests have a nonzero value in the PAPLRETC field of the PAPL
returned to the CCTL. The format of PAPLRETC is:
HHSSSUUU

Where: HH= X'00'- No output

354 System Programming APIs

UUU IMS DB return codes

X'88'- No output

SSS All z/OS non-retrievable abend codes (for example, 222, 13E) or,

UUU IMS abend codes (775, 777, 844, 849, 2478, 2479, 3303)

X'84'- SNAP only

UUU IMS abend codes (260, 261, 263)

X'80'- SDUMP/SNAP provided

SSS All the z/OS abend codes that can be tried again

UUU All IMS abend codes besides those that are listed for the format of
PAPLRETC

Diagnostic information is provided by the DRA in the form of an SDUMP, or a
SNAP data set output. For X'80', the SDUMP is attempted first. If it fails, SNAP is
done. For X'84', no SDUMP is attempted, but a SNAP is attempted.

A z/OS or IMS abend code failure results in DRA thread termination and thread
TCB collapse. An IMS DB return code has no affect on the DRA itself or the thread
TCB.

DRA thread TCB failures that occur when not processing a thread request result in
a SDUMP/SNAP process. DRA control TCB failures that occur when not
processing a DRA request result in a SDUMP/SNAP process and the Control exit
routine is called. For a thread request of type SCHED, a failure with X'80' or X'84'
can result in either SNAP or SDUMP.

SDUMP

SDUMP output contains:
v The IMS control region.
v DLISAS address space.
v Key 0 and key 7 CSA.
v Selected parts of DRA private storage, including the address space control block

(ASCB), task control block (TCB), and request blocks (RBs).

You can format the IMS control blocks by using the Offline Dump Formatter
(ODF).

The ODF will not format DRA storage. You can use IPCS to format the z/OS
blocks in CCTL private storage.

DRA SDUMPS have their own SDUMP options. As a result, any CHNGDUMP
specifications cannot cause sections of DRA SDUMPs to be omitted. If these
specifications are not in the DRA list of options, they can have an additive effect
on DRA SDUMPS.

SNAP

The SNAP dump data sets are dynamically allocated whenever a SNAP dump is
needed. A parameter in the DRA Startup Table defines the SYSOUT class.

Chapter 25. CCTL performance: monitoring DRA thread TCBs 355

The SNAP output contains:
v Selected parts of DRA private storage, including the ASCB, TCB, and RBs.
v IMS DB control blocks.
Related reference:

Offline Dump Formatter utility (DFSOFMD0) (System Utilities)

356 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsofmd0.htm#ims_dfsofmd0

Part 5. Database Recovery Control (DBRC)

You can use DBRC to record and manage information that is stored in a set of
VSAM data sets that are collectively called the RECovery CONtrol (RECON) data
set. Based on this information, you can use DBRC to advise IMS about how to
proceed for certain IMS actions.

© Copyright IBM Corp. 1974, 2018 357

358 System Programming APIs

Chapter 26. DBRC API

Your applications can obtain services from Database Recovery Control (DBRC)
through the DBRC application programming interface (API), a release-independent,
assembler macro interface. The application obtains these services by issuing DBRC
API requests to DBRC, and DBRC returns the results to an area in storage where
the application can retrieve them.

The DBRC API is provided with IMS in the DSPAPI macro. A sample application
program (DSPAPSMP) that uses the DBRC API is included in the IMS.ADFSSMPL
(also known as IMS.SDFSSMPL) library.

Important: All DBRC API requests must be issued under the same TCB where the
DBRC start request (STARTDBRC) was issued. Any request that is issued under a
different TCB fails with reason code X'C900000A'.

To write a program that uses the DBRC API, you must have a working knowledge
of:
v Assembler language programming
v z/OS and the services it supplies
v IMS
v DBRC
Related concepts:

z/OS: HLASM Language Reference

z/OS: HLASM Programmer's Guide
“Output from query requests” on page 386
Related reference:
Chapter 28, “DBRC authorization request (AUTH),” on page 371
Chapter 29, “DBRC command request (COMMAND),” on page 379
Chapter 30, “DBRC query request (QUERY),” on page 385
Chapter 31, “DBRC release buffer request (RELBUF),” on page 455
Chapter 32, “DBRC start request (STARTDBRC),” on page 459
Chapter 33, “DBRC stop request (STOPDBRC),” on page 465
Chapter 34, “DBRC unauthorization request (UNAUTH),” on page 467
“Database query request (TYPE=DB)” on page 390
“DBDS query request (TYPE=DBDS)” on page 412

Structure of applications that access the DBRC API
Your applications must follow a general structure in order to access the DBRC API.

The general structure of an application that uses the DBRC API is as follows:
1. Include the API DSECTS (DSPAPI FUNC=DSECT)
2. Initialize the API, start DBRC, establish a connection to the RECON data sets,

and receive the API token (DSPAPI FUNC=STARTDBRC)
3. Issue one or more Query requests (DSPAPI FUNC=QUERY)
4. Process the information that is returned from the Query requests

© Copyright IBM Corp. 1974, 2018 359

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.asma400/toc.htm
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.asma100/toc.htm

5. Return buffer storage (DSPAPI FUNC=RELBUF)
6. Terminate DBRC and the DBRC API (DSPAPI FUNC=STOPDBRC)

How an application program establishes the DBRC API
environment

Your application program establishes the application programming interface (API)
environment by using the DSPAPI FUNC=STARTDBRC macro. This macro
function initializes the API, creates a connection to the Database Recovery Control
(DBRC) RECON data sets, and returns the API token.

Requirements:

v The API token must be specified for all subsequent API calls.
v All API requests must be issued under the same task control block (TCB) where

the FUNC=STARTDBRC was issued.
Related concepts:
“The DBRC API token” on page 362

How an application program ends the DBRC API environment
After it has completed its work with DBRC, your application program must end
the API environment using the DSPAPI FUNC=STOPDBRC macro. This macro
function allows DBRC to terminate, deallocates any data sets that DBRC had
allocated, and frees storage allocated to the API environment.

Addressing and residency mode
Your application must invoke the DBRC API in 31-bit addressing mode and can
reside either above or below the 16 MB line.

Parameter addresses passed to the API can be above or below the 16 MB line
unless otherwise stated in a macro description. Parameter addresses returned to
the user by the API likewise can be above or below the 16 MB line.

Address space control (ASC) mode and state
Your application must be in primary ASC mode to invoke the API services.

Cross memory mode is not supported. The application can run in either problem
program state or supervisor state, and can also run as an APF authorized program.

How the DBRC API uses registers
General purpose registers 0, 1, 14, and 15 can be changed by the DBRC API.
Register 13 must contain the address of a standard (18 word) save area. The
contents of registers 2-13 are unchanged by the DBRC API.

How to include equate (EQU) statements in your DBRC API
application

You can use the DSECT function of a DSPAPI request to include equate (EQU)
statements and constants used by the DSPAPI macro in your program.

The following syntax is for the DSECT function of a DSPAPI request.

►► DSPAPI FUNC=DSECT ►◄

360 System Programming APIs

API application
Parameters that are specified on the DSPAPI macro are either literals, addresses, or
values. You can pass an address or a parameter value by using a register, a symbol,
or a literal. You can specify literal values in mixed case.

Use a register
To use a register, you must load the address of a symbol or value into one
of the general purpose registers, and then use that register (enclosed in
parentheses) for the parameter in the DSPAPI request. Use only registers in
the range 2-12. Register notation does not work with MF=L because this
form does not produce executable code.

The following example shows how to pass an address using a register:
LA 5,OUTPUTAD
DSPAPI FUNC=QUERY,OUTPUT=(5),...

.

.

.
OUTPUTAD DS A

The previous example generates the following instruction:
ST 5,DSPAPI_Plist_Output

Use a symbol name
To use a symbol name, you must define a named area of storage that either
contains the desired value, or will receive a returned address or value, and
then use that symbol name for the parameter in the DSPAPI request.

The following example shows how to pass an address using a symbol
name:
DSPAPI FUNC=QUERY,OUTPUT=OUTPUTAD,..

.

.

.
OUTPUTAD DS A

The previous example generates the following instructions:
LA 0,OUTPUTAD
ST 0,DSPAPI_Plist_Output

Use a literal
You can use literals for certain parameter values, such as time stamps. To
use a literal, pass the literal as a hexadecimal string for the parameter in
the DSPAPI request. Literals can also be mixed-case.

The following example shows how to pass a value using a literal:
72

DSPAPI FUNC=QUERY,TYPE=LOG, C
STARTIME==XL12’1980030F191212009999028D’

The previous example generates the following instructions:
LA 0,=XL12’198030F191212009999028D’
ST 0,DSPAPI_Plist_Startime

Unless specifically noted, name fields are 8 characters long, left justified, and
padded with blanks.

Chapter 26. DBRC API 361

Versions of the DBRC API macro
Because parameter lists can change from one release of IMS to the next, the
functions provided by the DSPAPI macro have a version associated with them. You
must specify that version number or a later version to use the functions or
parameters that are associated with a version.

If parameters have a version dependency, the parameter descriptions in each
request type identify the minimum version number that is required.

The output block version number of the DBRC API is:
v 5.0 for IMS Version 13
v 4.0 for IMS Version 12
v 3.0 for IMS Version 11

The DBRC API token
The DBRC API token is a 4 byte field that is used to relate a series of API requests.

Your program receives this token when a DSPAPI FUNC=STARTDBRC macro is
issued. This token must be supplied with all other macro calls that are associated
with this instance of the STARTDBRC macro. The token is no longer valid after a
DSPAPI FUNC=STOPDBRC macro call. Your program does not receive a token if
the macro encounters a severe error (return code X'0000000C'). If the function
receives a warning error (return code X'00000004'), find the meaning of the
accompanying reason code in Chapter 32, “DBRC start request (STARTDBRC),” on
page 459 to determine what action is needed.
Related concepts:
“How an application program establishes the DBRC API environment” on page
360

Macro forms of the DSPAPI macro
There are four different macro forms for the DSPAPI macro: Standard (S), List (L),
Modify (M), and Execute (E), with two variations, COMPLETE and NOCHECK.
The List, Modify, and Execute forms are usually used in combinations when
writing reentrant programs or when the application issues multiple requests.

Defaults are taken where necessary and less validity checking is performed than
for the Standard Form. The following are explanations about when and why to use
each form.

Standard form (default)
Use the standard form of the macro (MF=S or MF=S,list) to generate and
modify an inline parameter list. If your program is reentrant, do not use
the standard form of the macro because reentrant code cannot be modified.
With few exceptions, if you use the standard form of the macro in writing
reentrant code, the execution of the code results in an abend. The standard
form of the macro serves three functions:
v Creates an inline parameter list
v Modifies the parameter list with the parameters specified on the request
v Sends the request to the API

Using the standard form, you can optionally assign a label to the generated
parameter list by specifying MF=(S,list) where list specifies the name of the

362 System Programming APIs

|

|

|

|

label assigned to the parameter list created by this form of the macro. The
standard MF=S form of the macro is the default.

List form
Use the list form of the macro (MF=L,list) to generate a labeled, inline
parameter list. This list is populated with the parameter values specified
on the macro. The list form does not modify an existing list and does not
send a request to the API. In effect, the list form creates a template that can
be used as the target of a modify form or an execute form (the real list you
plan to use). If the parameter list is generated in reentrant code, it cannot
be modified. Therefore, you must obtain enough storage to hold the
parameter list and use this storage as the target of the modify or list form.

list specifies the name of the label assigned to the parameter list created by
this form of the macro.

Register notation is not compatible with the List Form of the macro.
Instead, an ADCON of zero is generated.

Modify form
Use the modify form of the macro (MF=M,list,COMPLETE | NOCHECK)
to change the values specified on the macro in the parameter list specified
by the list parameter. The modify form does not generate a parameter list
and does not issue requests to DBRC.

list A symbol or a general purpose register in the range 2 to 12 that
specifies the address of the parameter list to be modified.

COMPLETE
Specifies that DBRC uses defaults (for the parameters that have
defaults) for all parameters that are not in the list and performs
validity checking for the parameters that are specified in the list.

NOCHECK
Specifies no defaults are set and the existing parameter list is used.
Validity checking is minimal. However, invalid keyword
combinations are flagged in error.

Execute form
Use the Execute form of the macro (MF=E,list,COMPLETE | NOCHECK)
to:
v Modify a parameter list (generated by the list form) with new and

additional allowable parameters you might not have specified on the
List form

v Issue a request to the API

You can change the parameters on the macro with each subsequent
invocation of the execute form of the macro.

list Can be a symbol or a general purpose register in the range 2 to 12
and specifies the address of the parameter list to be used.

COMPLETE
Specifies that DBRC uses defaults (for the parameters that have
defaults) for all parameters that are not in the list, and performs
validity checking for the parameters that are specified in the list.

NOCHECK
Specifies no defaults are set and the existing parameter list is used.
Validity checking is minimal. However, invalid keyword
combinations are flagged in error.

Chapter 26. DBRC API 363

The following syntax is a summary of the macro forms:

MF=S | L | M | E
Specifies the macro form:

MF=S | MF=(S,list)
Specifies the standard form of the macro. MF=S is the default.

MF=(L,list)
Specifies the list form of the macro.

MF=(M,list,COMPLETE |NOCHECK)
Specifies the modify form of the macro.

MF=(E,list,COMPLETE|NOCHECK)
Specifies the execute form of the macro.

Related reference:
“Parameters for the AUTH request” on page 372
“Parameters for the COMMAND request” on page 379
“Backout query request (TYPE=BACKOUT)” on page 386
“Log query request (TYPE=LOG)” on page 426
“OLDS query request (TYPE=OLDS)” on page 435
“RECON status query request (TYPE=RECON)” on page 445
“Subsystem query request (TYPE=SUBSYS)” on page 449
Chapter 31, “DBRC release buffer request (RELBUF),” on page 455
Chapter 33, “DBRC stop request (STOPDBRC),” on page 465
Chapter 32, “DBRC start request (STARTDBRC),” on page 459
Chapter 34, “DBRC unauthorization request (UNAUTH),” on page 467

Query output block header
This example illustrates the general format of the output from a Query request.
The sample DSECT that follows this figure describes in detail the fields of the
storage blocks and their relationship to each other.

For STARTDBRC, SSID is the optionally specified subsystem ID. For STOPDBRC,
SSID is the subsystem ID that is specified on the STARTDBRC request.

DSPAPxx length
block
type

dependent
pointer

next
pointer

block
offset

version

block data

.(DSPAPQHD)

(DSPAPQxx)

OUTPUT

00 SP

Figure 10. General format of the query output request

364 System Programming APIs

DSPAPQHD - QUERY output block header
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 32 DSPAPQHD
0 (0) CHARACTER 8 APQHD_EYECATCHER Output area eyecatcher
8 (8) SIGNED 4 APQHD_LENGTH Block length, hdr + data

12 (C) SIGNED 2 APQHD_BLKTYPE Block type
14 (E) UNSIGNED 2 * Reserved
15 (F) UNSIGNED 1 APQHD_SUBPOOL Subpool ID
16 (10) ADDRESS 4 APQHD_DEPPTR Ptr to block dependent
20 (14) ADDRESS 4 APQHD_NEXTPTR Ptr to next block of the same type
24 (18) UNSIGNED 4 APQHD_BLKOFFSET Offset to block data
28 (1C) SIGNED 4 APQHD_VERSION Version of output block

Runtime considerations for the DBRC API
There are various considerations that you must address while the DBRC API is
running such as DSPAPI and RECON access and how the API operates in an
IMSplex.

DSPAPI macro access
In order to provide DBRC API (DSPAPI) macro access, your application must
allocate IMS.SDFSRESL as either a JOBLIB or STEPLIB in your program's JCL
because the DSPAPI is distributed with IMS.

RECON data set access
While the DBRC API is running, it uses up to three RECON data sets, which are
allocated using the DD names RECON1, RECON2, and RECON3, or their
respective alternate DD names. MDA members must be created for the data sets
before the DBRC API can allocate RECONs.

The RECONs can be allocated:
v Dynamically by the API when the DSPAPI FUNC=STARTDBRC request is

issued–this is the recommended method
v Dynamically by your application program
v Through your JCL

If the DBRC API allocates the RECONs, they are deallocated when the DSPAPI
FUNC=STOPDBRC request is issued. Before the DBRC API can allocate the
RECONs, MDA members must have been created for RECON1, RECON2, and
RECON3. or their respective alternate DD names. The MDA members must exist
either in a library allocated as //IMSDALIB, or in the //JOBLIB or //STEPLIB
libraries. The DBRC API first searches in //IMSDALIB, if it exists, for the MDA
members.

The IMS libraries concatenated to JOBLIB or STEPLIB are usually APF Authorized.
If your program runs APF Authorized and the library containing the MDA
members is not APF Authorized, allocate it using IMSDALIB as the DD name.

Requirement: All jobs accessing a set of RECON data sets must allocate the same
data set by the same DD name. For example, RECON1=dsn1, RECON2=dsn2, and
RECON3=dsn3. Failure to follow this convention causes serious damage to the
RECONs.

Chapter 26. DBRC API 365

The API uses only one set of RECONs between a FUNC=STARTDBRC request and
its associated FUNC=STOPDBRC request. Your program, however, can use
multiple sets of RECONs by deallocating the RECONs after the FUNC=STOPDBRC
request and then allocating a new set of RECONs before issuing the next
FUNC=STARTDBRC request. In order for this to work, your program must
dynamically allocate the RECONs.
Related reference:

DFSMDA macro (System Definition)

RECON access authority
You can set three levels of access control for DBRC. Each level provides different
permissions to users that access the RECON data sets.

DBRC allows three levels of access control:
v Users who delete and define information in the RECON data sets require ALTER

authority.
v Users who only update the RECON data sets require UPDATE authority.
v Users who do not update the RECON data sets, but who want to query

information from the RECON data sets, require READ authority.

The READONLY keyword for the DBRC Start API request (STARTDBRC) allows a
user to specify a READONLY option. READONLY is also a JCL EXEC PARM on
the Database Recovery Control utility (DSPURX00). READONLY specifies that the
job is not allowed to make any updates to the RECON data sets. READONLY is
necessary if the user submitting the job does not have UPDATE (or higher)
authority for the data sets. When READONLY is specified, there is no recovery
action taken when an error occurs on a RECON data set. Instead of swapping in a
spare data set, the job is terminated.

Time stamp format for DBRC requests
Time stamps that are associated with DBRC requests (either input or output)
follow a packed decimal UTC time format. DBRC ignores the value of the offset
field in time stamps that are provided on Query requests.

The time stamp is in the following format:
yyyydddFhhmmssthmijufqqs

Where:
yyyy year (0000 to 9999)
ddd day (000 to 366)
F Hexadecimal character for padding purposes (X'F')
hh hour (0 to 23)
mm minute (0 to 59)
ss second (0 to 59)
thmiju

millionths of a second (microseconds, 000000 to 999999)
fqqs Time zone offset:

f Flag bits, normally 0 for UTC representation
qq Quarter hours (32/4=8)
s Sign (D is negative, C is positive)

366 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsmda_macro.htm#ims_dfsmda_macro

How DBRC uses the output data set
While running under the DBRC API, DBRC might output messages and other
information to a data set defined by the DD name SYSPRINT, or by a DD name
you specify. If your program already uses the DD name SYSPRINT, you can
specify an alternate DD name for the API to use.

This output data set might be on tape, DASD, a printer, or routed through the
output stream (SYSOUT). The data set might be allocated by your program
through JCL or dynamically allocated prior to invoking the DBRC API. The
attributes for this data set are RECFM=FBA, LRECL=121. Do not specify the block
size because DBRC will use a system determined block size (the system determines
an optimal blocksize for the device).

Wildcard support for name parameters for Query requests
For more flexible Query requests, you can use a wildcard (an asterisk) in several
keyword parameters that specify names. This wildcard support enables you to
specify a name pattern for your query, expanding some queries and filtering
others.

The asterisk can be used in two formats:
v Use the asterisk alone to request information for all DB names, groups, or

subsystems, depending on the query type.
v Use the asterisk at the end of a name to request information for DB names,

groups, or subsystems whose names match the patterns. In this case, the asterisk
must be preceded by at least one alphabetic character.

Use of wildcards is supported in the following parameters:

Table 84. Parameters for DBRC QUERY with wildcard support

Parameter name Query type Syntax

DBNAME DB DBNAME=dbname | dbname*

GROUP All xxxxGROUP GROUP= * | name | name*

NAME All xxxxGROUP NAME= * | name | name*

NAME=*

SSID v BACKOUT

v OLDS

v SUBSYS

SSID= * | symbol | symbol*

Chapter 26. DBRC API 367

368 System Programming APIs

Chapter 27. DBRC API security features

You might want to limit access to the RECON data set to certain users. With the
DBRC API, you can give installation control to individual DBRC API requests that
users might issue.

The following table lists the DBRC API requests and the resource profiles used by
the security product to protect each request. The symbol * indicates a wildcard
value.

Table 85. DBRC API requests and resource profiles.

Function Type Parameter Resource

STARTDBRC or
STOPDBRC

N/A No parameter specified hlq.STDBRC

This resource is used if no ssid is
specified.

SSID=ssid
hlq.STDBRC.ssid

For STARTDBRC, ssid is the optionally
specified subsystem ID.

For STOPDBRC, ssid is the subsystem
ID specified on the STARTDBRC
request.

RELBUF N/A N/A N/A

QUERY RECON N/A hlq.LIST.RECON

QUERY DB DBNAME=name hlq.LIST.DB.name

DBNAME=name* hlq.LIST.DB.ALL

DBLIST=dblist hlq.LIST.DB.ALL

LOC=FIRST | NEXT hlq.LIST.DB.ALL

QUERY PART DBNAME=name hlq.LIST.DB.name

PARTNAME=name hlq.LIST.DB.name

QUERY DBDS DBNAME=name hlq.LIST.DBDS.name

GROUP=grpname hlq.LIST.DBDS.grpname

QUERY LOG STARTIME hlq.LIST.LOG.STARTIME

FROMTIME | TOTIME hlq.LIST.LOG.ALL

QUERY OLDS SSID=ssid | ssid*| * hlq.LIST.LOG.ALLOLDS

QUERY SUBSYS SSID=ssid hlq.LIST.SUBSYS.ssid

SSID=ssid* hlq.LIST.SUBSYS.ALL

SSID=* hlq.LIST.SUBSYS.ALL

SSTYPE=ALL hlq.LIST.SUBSYS.ALL

SSTYPE=BATCH hlq.LIST.SUBSYS.BATCH

SSTYPE=ONLINE hlq.LIST.SUBSYS.ONLINE

SSTYPE=DBRCAPI hlq.LIST.SUBSYS.DBRCAPI

© Copyright IBM Corp. 1974, 2018 369

Table 85. DBRC API requests and resource profiles (continued).

Function Type Parameter Resource

QUERY BACKOUT SSID=ssid hlq.LIST.BKOUT.ssid

SSID=ssid* hlq.LIST. BKOUT.ALL

SSID=* hlq.LIST. BKOUT.ALL

QUERY DBDSGROUP GROUP=grpname hlq.LIST.DBDSGRP.grpname

GROUP=*|grpname* hlq.LIST.DBDSGRP.ALL

QUERY DBGROUP GROUP=grpname hlq.LIST.DBDSGRP.grpname

GROUP=*|grpname* hlq.LIST.DBDSGRP.ALL

QUERY RECOVGROUP GROUP=grpname hlq.LIST.DBDSGRP.grpname

GROUP=*|grpname* hlq.LIST.DBDSGRP.ALL

QUERY CAGROUP GROUP=grpname hlq.LIST.CAGRP.grpname

GROUP=*|grpname* hlq.LIST.CAGRP.ALL

QUERY GSGROUP GROUP=grpname hlq.LIST.GSG.grpname

GROUP=*|grpname* hlq.LIST.GSG.ALL

COMMAND N/A N/A Use current command resources.

AUTH UNAUTH N/A AUTHLIST=list hlq.AUTH.dbname

Each dbname in the list is verified.

370 System Programming APIs

Chapter 28. DBRC authorization request (AUTH)

You can use the DBRC authorization request to ensure that an invalid data sharing
environment is not created. Database authorization is the process of requesting
permission to access and use a database. In this context, the database is either a
DL/I database or a Fast Path DEDB area.

The type of access requested can be:
v Exclusive (EX) control of the resource. Exclusive access is granted if the database

is not currently authorized. After access is granted, any and all other
authorization requests are not allowed. This type of authorization is used
typically by a recovery utility.

v Read (RD) access to the database (also called read with integrity). Read access is
granted if the database is not currently authorized as exclusive or update. After
this access is granted, other authorization request for exclusive or update fails.
This type of authorization is typically used by utilities that take non-concurrent
(clean) image copies.

v Read-only (RO) access to the database (also called dirty read). Read-only access
is granted unless the database is currently authorized as exclusive. Once
granted, other authorization request for exclusive fail. Read-only access does not
prevent the database from being updated while the application is reading it.
This type of access is typically used by utilities that take concurrent image
copies.

An application must register with DBRC when it initializes in order to use this
function. The requested database must be registered with DBRC.

The database is unauthorized explicitly by the DSPAPI FUNC=UNAUTH macro, or
implicitly by the DSPAPI FUNC=STOPDBRC macro.

You can specify one or more database names for the authorization and
unauthorization functions. Databases do not have to be unauthorized in the same
order that they are authorized. For instance, if multiple databases in a list are
authorized, they can be unauthorized one at a time in any order. To change the
type of access, unauthorize the database and then authorize the database again.

There are some situations in which standard database authorization is denied, such
as when the "Prohibit Authorization" flag is on for a database, or if one or more of
its DBDSs require an image copy. If the intent of the application is database image
copy, recovery or reorganization, you can grant the authorization by using the
UTILITY keyword on the FUNC=AUTH request.
Related concepts:
Chapter 26, “DBRC API,” on page 359

Syntax for the AUTH request
You can use this syntax diagram to understand the format of the DBRC AUTH
request.

© Copyright IBM Corp. 1974, 2018 371

►►
name

DSPAPI FUNC=AUTH TOKEN=address AUTHLIST=name
ACCESS=EX

ACCESS=RD
ACCESS=RO

►

► OUTPUT=output
SUBPOOL=0

SUBPOOL=number

UTILITY=NONE

UTILITY=IC
UTILITY=RECOV
UTILITY=REORG

RETCODE=returncode
►

►
RSNCODE=reasoncode

MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

VERSION=2.0

VERSION=number
►◄

Parameters for the AUTH request
You can use this information to understand the parameters for the DBRC AUTH
request. Each parameter is explained as it relates to the AUTH request syntax
diagram.

name name
Begin the name in column 1.

TOKEN=address | (2-12)
Specifies the address of the API token that was returned on the
FUNC=STARTDBRC macro.

AUTHLIST=name | (2 - 12)
Specifies the list of database names or Fast Path areas to be authorized.
The list consists of a fullword that contains the number of elements in the
list, a fullword that contains the length of an element, followed by one or
more elements. Each element consists of an 8-character DB name or Fast
Path DEDB name and 8 characters of blanks (X'40') or a Fast Path area
name.

ACCESS=EX | RD | RO
Specifies exclusive (EX), read (RD) or read-only (RO) authorization is
requested. The default is EX.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the authorization output block
DSPAPAUB.

The output address is 0 if no output was built. This can happen if nothing
in the RECON data set satisfies the request or if an error occurs before any
output could be built.

The storage for the output blocks is not preallocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) specifying the returned output address.

372 System Programming APIs

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

UTILITY=IC | RECOV | REORG | NONE
Specifies the intended utility function of the application. The functions
include image copy (IC), database recovery (RECOV), database
reorganization (REORG), or NONE. The default is NONE, indicating a
normal database authorization request.

RETCODE=return code | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reason code | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
macro.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

The valid version number for the FUNC=AUTH request is 2.0 (the default).
Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:
“AUTH output block” on page 377

Return and reason codes for AUTH
You can use this table to search for reason and return codes for the DBRC AUTH
request. Each code is accompanied by the code type and an explanation of the
code.

Reason and return codes for the AUTH request

Table 86. DSPAPI FUNC=AUTH return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Chapter 28. DBRC authorization request (AUTH) 373

Table 86. DSPAPI FUNC=AUTH return and reason codes (continued)

Code type Return code Reason code Meaning

Warning X'00000008' X'C1000001' One or more entries in the AUTHLIST can
not be processed. A reason code has to be set
in the corresponding entry in the AUTH
output block.

Severe error -
No AUTH
block
returned

X'0000000C' X'C1000001' Application is not signed on to DBRC.

X'0000000C' X'C1000002' DBRC AUTH processing cannot complete
because the application is not signed, and no
subsystem record is found. This should not
occur under normal conditions because an
earlier check indicated that the subsystem
was signed on.

X'0000000C' X'C1000003' RSR authorization processing error. This
should not occur since authorization as a
tracker is not supported.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC
service was issued.

Storage error X'00000028' X'C1000001' Error obtaining storage for the AUTH output
block.

Internal error X'0000002C' X'C1000001' Error attempting to start RECON multiple
update processing.

X'0000002C' X'C1000002' Error attempting to end RECON multiple
update processing.

X'0000002C' X'C1000003' Entry in AUTH output block could not be
found. This should not occur.

X'0000002C' X'C1000004' Internal error encountered during DBRC
authorization processing.

X'0000002C' X'C1000005' Internal error encountered during DBRC
authorization processing - invalid
parameters.

Parameter
error

X'00000030' X'C1000001' No AUTHLIST passed.

X'00000030' X'C1000002' AUTHLIST passed with no entries

X'00000030' X'C1000003' Duplicate elements in AUTHLIST.

X'00000030' X'C1000004' Missing or invalid OUTPUT parameter.

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the
field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

374 System Programming APIs

Table 86. DSPAPI FUNC=AUTH return and reason codes (continued)

Code type Return code Reason code Meaning

X'00000030' X'C9000003' Invalid RETCODE address. The address of
the field containing the API RETCODE failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE address. The address of
the field containing the API RSNCODE failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the
field containing the API OUTPUT failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C900000A' An incorrect VERSION value was specified
for the requested function (FUNC).

X'00000030' X'C900001A' Invalid AUTHLIST address. The address of
the field containing the API AUTHLIST
failed validity checking. The address specifies
storage not owned by the calling program.

Related reference:
“APAUB_RsnCode for AUTH output block”

DBRC request return codes (Messages and Codes)

APAUB_RsnCode for AUTH output block
You can use this table to search for APAUB_RsnCode values for AUTH request
return and reason codes. Each code is accompanied by an explanation of the code.

When an AUTH output block (DSPAPAUB) is returned, one of the following
reason codes is set in field APAUB_RsnCode for each element in the list of DBs or
Areas in the request.

Table 87. APAUB_RsnCode values for AUTH request return and reason codes

APAUB_RsnCode Meaning

X'00000000' Request completed successfully.

X'C1000100' Security error. SAF or the DBRC command authorization exit
(DSPDCAX0) has determined that the user is not authorized to
perform the request for this database or area.

X'C1000201' The requested state and the current authorization state are
incompatible. The database is authorized by another active or
abnormally terminated IMS subsystem, and its authorization state is
incompatible with the current authorization request.

X'C1000202' The database is not registered in the RECON data set. You may also
have set up your AUTHLIST incorrectly. For Fast Path, you must
specify the DEDB name and the area name. For non-Fast Path the
element is an eight-character DB name and eight characters of blanks.

X'C1000203' The database is marked as prohibiting further authorization for one
of the following reasons: a global /DBR, a global /STOP, an
UPDATE DB STOP, or a CHANGE.DB(NOAUTH) command.

Chapter 28. DBRC authorization request (AUTH) 375

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes

Table 87. APAUB_RsnCode values for AUTH request return and reason codes (continued)

APAUB_RsnCode Meaning

X'C1000204' The database is authorized only if the requested state is "READ" or
"READ-GO" because of a global /DBDUMP or an UPDATE DB
STOP(UPDATES) command.

X'C1000205' The database is marked as needing an image copy.

X'C1000206' The database is marked as needing recovery.

X'C1000207' The database is marked as needing backout.

X'C100020A' The database has been previously authorized to the subsystem

X'C100020B' An invalid parameter is found during the DB usage compatibility
evaluation process. Possibly, the database record in the RECON data
set is bad.

X'C100020C' The current authorization state in DBRC is invalid because of an
unauthorization error.

X'C100020D' An error occurred in DBRC while trying to process an authorization
request.

X'C100020F' The database is already authorized to an active IMS subsystem. All
subsystems must be abnormally terminated.

X'C1000214' DB authorization failed because the DB was not registered with
DBRC and the RECON FORCER option is in effect, which requires
that all databases must be registered.

X'C100021E' The DB or area is covered but the requesting subsystem is not signed
on to the covering GSG.

X'C1000220' The HALDB needs to be initialized.

X'C1000221' An attempt has been made to authorize the HALDB master.
Authorization can only be requested at the partition level.

X'C1000223' The DB partition cannot be authorized until a high key is defined. A
key is required because the HALDB master does not use a Partition
Selection Routine.

X'C1000224' Image copy not allowed during HALDB OLR processing.

X'C1000225' Loading into an M-V DBDS of a partition database is not allowed

X'C1000226' Offline reorganization is not allowed when HALDB OLR is active
and the HALDB OLR is owned by an IMS subsystem.

X'C1000228' Database is being reorganized.

X'C1000229' Batch update, recovery utility, and reorganization utility are not
allowed when DB Quiesce is in progress.

X'C100022A' Image copy utility is not allowed when DB Quiesce is in progress
and DB Quiesce Held state is not yet achieved.

X'C10003xx' An authorization reason code was received that should not apply to a
DBRC application. xx is the hexadecimal equivalent to the FxFx
reason returned. This reason code is useful for diagnostics.

AUTH output block mapping
You can use this figure to understand the format of the output from a
TYPE=AUTH request. The output block for the TYPE=AUTH request begins with a
standard header that is mapped by the DSPAPQHD. The data portion of this
output block is mapped by DSPAPAUB.

376 System Programming APIs

The following figure illustrates the format of the output from a TYPE=AUTH.

AUTH output block
This example contains the output block that is returned by the AUTH request. The
output block contains an array of authorized databases and indicates if the AUTH
request was successful.

Example of output block mapped by the DSPAPAUB
==
DSPAPAUB

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===========================

0 (0) STRUCTURE 8 DSPAPAUB AUTH/UNAUTH block
0 (0) UNSIGNED 4 APAUB_OFFSET Offset to first element
4 (4) SIGNED 4 APAUB_ELCOUNT Number of elements in list

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===========================

0 (0) STRUCTURE 24 APAUB_ELEMENT
0 (0) UNSIGNED 4 APAUB_OFFNEXT Offset to next element
4 (4) SIGNED 4 APAUB_RSNCODE Reason code
8 (8) CHARACTER 8 APAUB_DBNAME Database or DEDB name
16 (10) CHARACTER 8 APAUB_AREANAME

Area name or blanks

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===========================

8 CHARACTER DSPAPAUB APAUB_EYECATCHER

Related reference:
“Parameters for the AUTH request” on page 372

... Reason
code

00000000

First elemnet
offset

Next element
offset

Number of
elements

Reason
code

Database or
DEDB name

Area name
or blanks

DSPAPAUB length AUB
dependent
pointer

next
pointer

block
offset

version00 SP

Figure 11. Format for a TYPE=AUTH output

Chapter 28. DBRC authorization request (AUTH) 377

378 System Programming APIs

Chapter 29. DBRC command request (COMMAND)

You can use the DSPAPI FUNC=COMMAND request to issue a DBRC utility
command from your application program. All DBRC commands are accepted on
this request, except for the LIST command.

All output generated by the DBRC command request is returned in an API output
block rather than sent to SYSPRINT. If DBRC command authorization is enabled,
commands entered through the API are produce the same results as the commands
executed through the DBRC utility. An IMS DD statement might be required. If
GENJCL commands are executed, both a JCLPDS DD statement (or the DD name
you supply with the JCLPDS parameter) and a JCLOUT DD statement (or the DD
name you supply with the JCLOUT parameter) are required.
Related concepts:
Chapter 26, “DBRC API,” on page 359

Syntax for the COMMAND request
You can use this syntax diagram to understand the format of the Database
Recovery Control (DBRC) COMMAND request.

►►
name

DSPAPI FUNC=COMMAND COMMAND=command TOKEN=address ►

► OUTPUT=output
SUPPRESS=NO

SUPPRESS=YES

BUFFERLENGTH=4096

BUFFERLENGTH=length

SUBPOOL=0

SUBPOOL=number
►

►
RETCODE=returncode RSNCODE=reasoncode

►

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

VERSION=2.0

VERSION=number
►◄

Parameters for the COMMAND request
You can use this information to understand the parameters for the DBRC
COMMAND request. Each parameter is explained as it relates to the COMMAND
request syntax diagram.

name Specifies the name parameter. If used, begins in column 1.

COMMAND=symbol | (2 - 12)
Specifies the address of a DBRC utility command to execute. The command

© Copyright IBM Corp. 1974, 2018 379

consists of a header followed by a DBRC command. The header is a full
word that contains the length (in bytes) of the following command. The
DBRC command must conform to DBRC command syntax, except that the
command cannot be continued. Separators, which are blanks, a comma or
a comment, are allowed anywhere in the command where a separator is
needed and may validly appear at the beginning of the command.

TOKEN=symbol | (2 - 12)
Specifies the address of a 4-byte field to receive the API token. This token
must be included in all subsequent requests that are associated with this
DSPAPI request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the block that contains the
information for the command.

SUPPRESS= | NO | YES
Specifies whether or not the command output is to be returned.
SUPPRESS=YES indicates that command output is to be returned only if
the command does not complete successfully (return code is not zero).
SUPPRESS=NO indicates that command output is always returned.
SUPPRESS=NO is the default.

BUFFERLENGTH=4096 | number | (2 - 12)
Specifies the length of a buffer to receive the output that is generated by
executing the command. If a register is specified, the register must contain
the desired length. The maximum length allowed is 32 760. If necessary,
the length is rounded up to a double-word boundary. The default and
minimum value is 4096.

SUBPOOL=0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

RETCODE=return code | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reason code | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted for processing and an error message is
issued at assembly time. If parameters have a version dependency, the
parameter descriptions with each request type identify the version number
required.

380 System Programming APIs

The default version is 2.0.
Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:

DBRC command syntax (Commands)

Introduction to the DBRC commands (Commands)

Return and reason codes for the COMMAND request
You can use this table to search for reason and return codes for the DBRC
COMMAND request. Each code is accompanied by the code type and an
explanation of the code.

Table 88. DSPAPI FUNC=COMMAND return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully. The DBRC
command completed with return code 0.

Partial
success

X'00000004' X'C3000001' The DBRC command completed with a
non-zero return code.

Severe error X'0000000C' X'C3000001' The LIST command is not allowed. Use the
Query function.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed is
not recognized as a TOKEN created by a
FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

Storage error X'00000028' X'C3000001' Error obtaining storage for a Command block.

Parameter
error

X'00000030' X'C3000001' Missing or invalid COMMAND parameter.

X'00000030' X'C3000002' Invalid command length. Must be greater than
zero.

X'00000030' X'C3000003' Missing or invalid OUTPUT parameter

X'00000030' X'C3000004' Invalid BUFFERLENGTH value. Must be >= 0
and <= 32760.

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list is invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the
field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE address. The address of the
field containing the API RETCODE failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE address. The address of the
field containing the API RSNCODE failed
validity checking. The address specifies
storage not owned by the calling program.

Chapter 29. DBRC command request (COMMAND) 381

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_dbrccomsyn.htm#ims_cr3dbrccomsyn
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_introdbrc.htm#ims_cr3introdbrc

Table 88. DSPAPI FUNC=COMMAND return and reason codes (continued)

Code type Return code Reason code Meaning

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the
field containing the API OUTPUT failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C900000A' An incorrect VERSION value was specified for
the requested function (FUNC).

X'00000030' X'C9000019' Invalid COMMAND address. The address of
the field containing the API COMMAND
failed validity checking. The address specifies
storage not owned by the calling program.

COMMAND output block mapping
These examples illustrate output block mapping for the DBRC command request.
You can use the examples to understand how the DSPAPCMD output block header
is structured and how the output appears.

The following figure illustrates command output block mapping.

Example of storage block mapped by the DSPAPCMD

Each storage block begins with a standard header that is mapped by the
DSPAPQHD. The data portion of this output block is mapped by DSPAPCMD, as
illustrated in the following example.
DSPAPCMD

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===========================

0 (0) STRUCTURE 24 DSPAPCMD
0 (0) SIGNED 4 APCMD_RETCODE DBRC command return code
4 (4) SIGNED 4 * Reserved
8 (8) SIGNED 4 APCMD_CMDLEN Length of command entered
12 (C) SIGNED 4 APCMD_BUFFLEN Length of command output
16 (10) UNSIGNED 4 APCMD_CMDOFF Offset to command buffer
20 (14) UNSIGNED 4 APCMD_BUFFOFF Offset to command output

OFFSET OFFSET

DSPAPCMD length CMD
dependent
pointer

next
pointer

block
offset

version00 SP

CMD
return code

00000000 CMD
length

output
buffer
offset

CMD
entered

CMD
output

output
buffer
length

CMD
offset

0 0

Figure 12. Mapping of command output block

382 System Programming APIs

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======= ======== ========= ======== ============== ============================

0 (0) STRUCTURE * APCMD_COMMAND Command as entered

Example of DSPAPCMD output block header

In the following example, the DSPAPCMD output block header contains the status
of the request, returns an echo of the command, and any command output. The
following example describes the DSECT for the DBRC command output.

Each output line is mapped by the following structure
==

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===================

0 (0) STRUCTURE 5 APCMD_OUTPUT_LINES
0 (0) SIGNED 2 APCMD_OUTPUT_LINELEN Length of line
2 (2) SIGNED 2 * Reserved
4 (4) CHAR VARY 1 APCMD_OUTPUT_DATA Output data

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===================

8 CHARACTER DSPAPCMD APCMD_EYECATCHER

Related reference:
“DBDS query request (TYPE=DBDS)” on page 412

Chapter 29. DBRC command request (COMMAND) 383

384 System Programming APIs

Chapter 30. DBRC query request (QUERY)

You can use the DBRC Query request (DSPAPI FUNC=QUERY) along with the
TYPE parameter to retrieve various types of information from the RECON data set.
v Backout (TYPE=BACKOUT)
v Database (TYPE=DB) - This variation of QUERY returns database registration

and status information for:
– Full-function databases
– Fast Path databases
– HALDB databases
– DBDS or area information and supporting recovery-related information for

each DBDS or area (allocation, image copy, recovery, and reorganization)
v Database partitioning (TYPE=PART)
v DBDS or area information (TYPE=DBDS)
v Group and member information for the following group types:

– Change Accumulation (TYPE=CAGROUP). CA execution information can also
be returned.

– DBDS (TYPE=DBDSGROUP)
– Database (TYPE=DBGROUP)
– Recovery (TYPE=RECOVGROUP)
– Global Service Group (TYPE=GSGROUP)

v Log, Recovery and System Log Data Set (TYPE=LOG)
v Online Log Data Set (TYPE=OLDS)
v RECON status (TYPE=RECON) - This variation of QUERY returns RECON

header information, as well as the status of the RECON configuration.
v Subsystem (TYPE=SUBSYS)

Output from query requests are time consistent and access to the RECON data set
is restricted during the processing of the request.

If you enable parallel RECON access, then the Query API request returns output as
if you specified LIST.xxx STATIC (the RECON data set is not accessible while
DBRC processes the Query request).
Related concepts:
Chapter 26, “DBRC API,” on page 359
Related reference:
“Backout query request (TYPE=BACKOUT)” on page 386
“Database query request (TYPE=DB)” on page 390
“HALDB partition query request (TYPE=PART)” on page 439
“DBDS query request (TYPE=DBDS)” on page 412
“Group query request (TYPE=*GROUP)” on page 418
“Log query request (TYPE=LOG)” on page 426
“OLDS query request (TYPE=OLDS)” on page 435
“RECON status query request (TYPE=RECON)” on page 445
“Subsystem query request (TYPE=SUBSYS)” on page 449

© Copyright IBM Corp. 1974, 2018 385

Output from query requests
Requested information is returned to the calling application in a chain of one or
more blocks in storage. The pointer to the beginning of this chain is returned in the
area specified by the OUTPUT parameter of the Query request.

The storage for these blocks is not preallocated by the calling application. DBRC
will acquire private storage for these blocks. It is the responsibility of the calling
application to free this storage using the Buffer Release request (DSPAPI
FUNC=RELBUF).

Each storage block begins with a standard header mapped by the DSPAPQHD.
Related concepts:
Chapter 26, “DBRC API,” on page 359

Backout query request (TYPE=BACKOUT)
You can use the Backout query (DSPAPI FUNC=QUERY TYPE=BACKOUT) request
to retrieve backout information from the RECON data set for a specific subsystem
or all subsystems.

Syntax for the TYPE=BACKOUT query request

►►
name

DSPAPI FUNC=QUERY TYPE=BACKOUT TOKEN=address ►

►
SSID=*

SSID=subsystem_ID
SSID=subsystem_ID*

MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

OUTPUT=output ►

►
SUBPOOL=0

SUBPOOL=number RETCODE=returncode RSNCODE=reasoncode
►

►
VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=BACKOUT query request

name If used, begins in column 1.

TYPE=BACKOUT
Specifies that backout information is requested.

TOKEN=symbol | (2 - 12)
Specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

SSID=* | symbol | symbol* | (2 - 12)
Specifies the subsystem name for the backout being queried. You can use

386 System Programming APIs

the wildcard keyword * (an asterisk) alone to request information about all
groups (SSID=*, which is the default). You can also add it at the end of a
name to query all subsystems whose names match the pattern. In this case,
the asterisk must be preceded by at least one alphabetic character.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Required parameter that specifies a field to receive a pointer to the first
block of backout information blocks.

The output address is 0 if no output was built. This can occur if nothing in
the RECON satisfies the request or if an error occurs before any output
could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list that is generated by this
macro.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

Valid version numbers for the FUNC=QUERY TYPE=BACKOUT request
are 1.0 and 2.0.

Return and reason codes for the TYPE=BACKOUT query request

Table 89. Return and reason codes for TYPE=BACKOUT query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D87000001' No backout records exist.

Chapter 30. DBRC query request (QUERY) 387

Table 89. Return and reason codes for TYPE=BACKOUT query requests (continued)

Code type Return codes Reason codes Meaning

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8700100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Storage error X'00000028' X'D87000001' Error obtaining storage for BACKOUT block.

X'00000028' X'D91000001' An error occurred processing the request.
DBRC will release storage that was obtained
up to this point. However, another error was
encountered during the attempt to release
storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8700001' Failure locating the first or the specified
backout record.

X'0000002C' X'D8700002' Failure locating the next backout record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the
field containing the SSID failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'D80000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D80000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8700100' When using a wildcard, at least one
alphabetic character must precede the
asterisk.

X'00000030' X'D8700101' When using a wildcard, the asterisk must be
the last character.

388 System Programming APIs

Output for TYPE=BACKOUT QUERY request

DSECT of DSPAPQBO

The following example is a sample DSECT describes in detail the fields of the
storage blocks and their interrelationship.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===========================

0 (0) STRUCTURE 48 DSPAPQBO
0 (0) CHARACTER 8 APQBO_SSID Subsystem identifier
8 (8) UNSIGNED 4 APQBO_FIRSTUOR Offset of first UOR entry
12 (C) UNSIGNED 4 APQBO_LASTUOR Offset of last UOR entry
16 (10) CHARACTER 12 APQBO_TIMEFIRST Earliest UOR time
28 (1C) CHARACTER 12 APQBO_TIMELAST Latest UOR time
40 (28) BIT(8) 1 APQBO_FLAGS Backout flags

1... APQBO_SAVER SAVUOR call during restart
41 (29) CHARACTER 3 * Reserved
44 (2C) SIGNED 4 APQBO_UORCOUNT Number of UORs

==
The following structure maps the unit of recovery entries.
There is one such entry for each unit of recovery (that is, there
are apqbo_UORcount entries). Each unit of recovery entry
contains the offset within the backout block to the previous
and following entries. Field apqbo_PrevUOR is the offset of
the previous entry and apqbo_NextUOR is the offset of the
following entry. For the first unit of recovery (UOR) entry,
apqbo_PrevUOR will be zero. Similarly, apqbo_NextUOR will be
zero for the last entry. Addressability to the first UOR entry
is given by:

rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_FirstUOR)
Addressability to the last UOR entry is given by:

rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_LastUOR)
Addressability to the next UOR entry, if one exists (that is:
apqbo_NextUOR not equal to 0), is given by:

rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_NextUOR)
Similarly, to address the previous entry (when apqbo_PrevUOR
not equal to 0):

rfy apqbo_UORentry based(addr(DSPAPQBO) + apqbo_PrevUOR)
Once addressability has been established to a UOR entry,
addressability to the ith database for this UOR is given by:

rfy apqbo_DBent
based(addr(apqbo_UORentry) + apqbo_DBoffset

+ (i-1) apqbo_DBLength)
==

0

Backout data
(DSPAPQBO)

UOR data
(APQBO_UORENTRY)

UOR DB entriesUOR data

DSPAPQBO length BACKOUT
dependent
pointer

next
pointer

block
offset

version

. . .

UOR DB entries
(APQBO_DBENT)

. . .

00 SP

(DSPAPQxx)

Figure 13. Format of the output from QUERY TYPE=BACKOUT output request

Chapter 30. DBRC query request (QUERY) 389

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== =============================

0 (0) STRUCTURE 64 APQBO_UORENTRY Unit of Recovery entry
0 (0) CHARACTER 64 APQBO_PREFIX Prefix section
0 (0) UNSIGNED 4 APQBO_NEXTUOR Offset of next UOR entry
4 (4) UNSIGNED 4 APQBO_PREVUOR Offset of previous UOR entry
8 (8) UNSIGNED 4 APQBO_DBOFFSET Offset to DB entries
12 (C) CHARACTER 12 APQBO_UORTIME Time stamp for this UOR
24 (18) CHARACTER 8 APQBO_UORPSB PSB name
32 (20) BIT(16) 2 APQBO_UORFLAGS

1... APQBO_DEFBO Deferred backout - dynamic
backout failure

.1.. APQBO_INFLT Inflight UOR

..1. APQBO_INDOU Indoubt UOR

...1 APQBO_BMP BMP UOR

.... 1... APQBO_BOCAN BBO identified candidate

.... .1.. APQBO_COLDN Cold start ended for UOR

.... ..1. APQBO_BBOK Backed out OK by BBO

.... ...1 APQBO_CMD UOR modified by command
33 (21) 1... APQBO_BATCH Batch IMS UOR
34 (22) CHARACTER 6 * Reserved
40 (28) CHARACTER 16 APQBO_RTOKN Recovery token
40 (28) CHARACTER 8 APQBO_RTSSID SSID for this token
48 (30) CHARACTER 8 APQBO_UORID Unique UOR ID
56 (38) SIGNED 4 APQBO_DBCOUNT Number of DBs for this UOR
60 (3C) UNSIGNED 2 APQBO_DBLENGTH Length of each DB entry
62 (3E) CHARACTER 2 * Reserved

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 16 APQBO_DBENT Database entry
0 (0) CHARACTER 8 APQBO_DBNAME Database name
8 (8) BIT(8) 1 APQBO_DBFLAGS Flags

1... APQBO_DBOUT UOR backed out for this DB
.1.. APQBO_DBDEF Dyn backout failure this DB

9 (9) CHARACTER 7 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQBO APQBO_EYECATCHER

Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385

Database query request (TYPE=DB)
You can use the Database Query request (DSPAPI FUNC=QUERY TYPE=DB) to
retrieve information from the RECON concerning one or more registered
databases.

This information includes the following database types:
v Full function
v Fast Path DEDB
v HALDB (returns information about the HALDB master and all of its partitions)

390 System Programming APIs

Optionally, you can request data set and area information. If you request this
information, you can also request recovery-related information for the data set or
area, including allocation, image copy, recovery, and reorganization information.

Subsections:
v “Syntax for the TYPE=DB query request”
v “Parameters for the TYPE=DB query request” on page 392
v “Return and reason codes for the TYPE=DB query request” on page 394
v “Output for TYPE=DB query request” on page 397
v “Full function output” on page 397
v “DSECT of DSPAPQDB” on page 397
v “DSECT of DSPAPQSL” on page 398
v “Fast Path DEDB output” on page 399
v “DSECT of DSPAPQFD” on page 399
v “DSECT of DSPAPQAR” on page 400
v “DSECT of DSPAPQEL” on page 402
v “HALDB (master and all partitions) output” on page 402
v “DSECT of DSPAPQHB” on page 403
v “DSECT of DSPAPQHP” on page 403
v “DBDS output” on page 406
v “DSECT of DSPAPQDS” on page 406
v “Recovery Information (RCVINFO) output” on page 408
v “DSECT of DSPAPQRI” on page 408
v “DSECT of DSPAPQAL” on page 409
v “DSECT of DSPAPQIC” on page 409
v “DSECT of DSPAPQRV” on page 411
v “DSECT of DSPAPQRR” on page 411
v “Database not found output” on page 412
v “DSECT of DSPAPQNF” on page 412

Syntax for the TYPE=DB query request

►►
name

DSPAPI FUNC=QUERY TYPE=DB TOKEN=address
DDN=NULL

DDN=ddname
DDN=*

►

►
LIST=NONE

LIST=(ALLOC)
IC
RECOV
REORG

LIST=ALL

LOC=SPEC
DBNAME=dbname

LOC=NEXT
DBNAME=dbname*
DBLIST=namelist
LOC=FIRST

►

Chapter 30. DBRC query request (QUERY) 391

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

OUTPUT=output
SUBPOOL=0

SUBPOOL=number
►

►
RETCODE=returncode RSNCODE=reasoncode

VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=DB query request

name If used, begins in column 1.

TYPE=DB
Specifies that RECON information for one or more databases is requested.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

DBNAME=symbol | symbol* | (2 - 12)
Specifies the name of the database whose information is being queried.
This name can be the name of a full-function database, a Fast Path DEDB,
or a HALDB. You can use the wildcard keyword * (an asterisk) at the end
of a name to query databases whose names match the pattern. In this case,
the asterisk must be preceded by at least one alphabetic character.

You must specify a DBNAME or DBLIST if you do not specify LOC=FIRST.

DBLIST=namelist | (2 - 12)
Specifies the list of database names whose information is being queried.
Each name in the list can be the name of a Full Function database, a Fast
Path DEDB, or a HALDB.

The list consists of a header and one or more eight-character list entries.
The header consists of a fullword containing the number of entries in the
list. The name entries are left-aligned and are padded with blanks.

You must specify a DBNAME or DBLIST if you do not specify LOC=FIRST.

DDN=ddname | (2 - 12) | NULL
Specifies the DD name of the data set or area. An asterisk (*) can be
specified to return information about all DBDSs or areas for the database.
If a specific DD name is specified with DBLIST or a DBNAME that
specifies a HALDB, the specific DD name is ignored and treated as if
DDN=* was specified.

If you specify DDN=NULL, no DBDS or area information is returned.
DDN=NULL is the default.

LIST=(ALLOC | IC | RECOV | REORG) | ALL | LIST=NONE
Specifies the type (or types) of supporting information to be included in
the query output for the specified DBDS or area.

If DDN is not specified, this information is returned for all DBDSs or areas
in the database.

392 System Programming APIs

One or more of the specific values, separated by commas, can be included
in the list: ALLOC (allocation records), IC (image copy records), RECOV
(recovery records), or REORG (reorganization records). LIST=ALL specifies
that all supporting information is requested.

To view information about HALDB online alter processing, specify
LIST(REORG). The information about alter processing is included with the
information about any other reorganization processes.

If you specify LIST=NONE, no supporting information is returned.
LIST=NONE is the default.

LOC=FIRST | NEXT | SPEC
Specifies that the request is for either the specified, the first, or the next
database defined in the RECON.

DBNAME=dbname is required when you specify LOC=NEXT or
LOC=SPEC, but it is not allowed for LOC=FIRST.

Databases are in alphanumeric order. The next database might not
necessarily be of the same type as the database name specified in the
DBNAME parameter. The value in the DBNAME parameter is used as the
base of the search and does not need to be a name of a database registered
in the RECON.

LOC=SPEC is the default.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of
database information blocks.

The output address is zero if no output was built. This can occur if nothing
in the RECON satisfies the request or if an error occurs before any output
could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

Chapter 30. DBRC query request (QUERY) 393

|
|
|

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

Valid version numbers for the FUNC=QUERY TYPE=DB request are 1.0
and 2.0.

Return and reason codes for the TYPE=DB query request

Table 90. Return and reason codes for TYPE=DB query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Partial
success

X'00000004' X'D8200001' One or more databases in DBLIST is not
registered in the RECON. A “DB not found”
data block with an eyecatcher of DSPAPQNF
is built for each database that was not found.
The block is in the chain of blocks returned.

Warning X'00000008' X'D8220001' No partitions are registered in RECON data
set for the HALDB. No information blocks
are returned.

X'00000008' X'D8200001' None of the databases in the DBLIST are
registered in the RECON. No information
blocks are returned.

X'00000008' X'D8220002' The specified partition is not registered in
RECON. No information blocks are returned.

X'00000008' X'D8200002' The specified database is not registered in the
RECON. No information blocks are returned.
If the request specified LOC=NEXT, you have
reached the end of the list of databases
registered in the RECON.

X'00000008' X'D8200003' No DBs with the specified wildcard name
pattern are registered in RECON. No
information blocks are returned.

X'00000008' X'D8210002' The specified DBDS or Area is not registered
in the RECON. No information blocks are
returned.

X'00000008' X'D8220003' A partition preceding the specified partition
does not exist in the RECON data set. No
information blocks are returned.

X'00000008' X'D8220004' A partition following the specified partition
does not exist in the RECON data set. No
information blocks are returned.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

394 System Programming APIs

|
|
|
|
|

Table 90. Return and reason codes for TYPE=DB query requests (continued)

Code type Return codes Reason codes Meaning

X'0000000C' X'D8200100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Storage error X'00000028' X'D8200001' Error obtaining storage for IMSDB block.

X'00000028' X'D8200002' Error obtaining storage for HALDB block.

X'00000028' X'D8200003' Error obtaining storage for FPDEDB block.

X'00000028' X'D8200004' Error obtaining storage for DB not found
block (DBNOTFND).

X'00000028' X'D8210001' Error obtaining storage for DBDS block.

X'00000028' X'D8210002' Error obtaining storage for AREA block.

X'00000028' X'D8210003' Error obtaining storage for RCVINFO block.

X'00000028' X'D8210004' Error obtaining storage for ALLOC block.

X'00000028' X'D8210005' Error obtaining storage for IC block.

X'00000028' X'D8210006' Error obtaining storage for REORG block.

X'00000028' X'D8210007' Error obtaining storage for RECOV block.

X'00000028' X'D8220001' Error obtaining storage for PART block.

X'00000028' X'D9100001' An error occurred processing the request.
DBRC will release storage that was obtained
up to this point. Another error was
encountered, however, during the attempt to
release storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8200001' DB record locate failure processing DBLIST.

X'0000002C' X'D8200002' DB record locate failure processing single
database request.

X'0000002C' X'D8200003' DB record locate failure processing database
request using a wildcard.

X'0000002C' X'D82021xx' Internal Query DBDS call returned RC=X'30'
RSN=X'D82100xx', a parameter error.

X'0000002C' X'D82022xx' Internal Query PART call returned RC=X'30'
RSN=X'D82200xx', a parameter error.

X'0000002C' X'D8210001' Failure locating the specified DBDS record.

X'0000002C' X'D8210002' Failure locating the next DBDS record.

X'0000002C' X'D8210003' Failure locating the first DBDS record.

X'0000002C' X'D8210004' Failure locating the first Area AUTH record.

X'0000002C' X'D8210005' Failure locating the first ALLOC record.

X'0000002C' X'D8210006' Failure locating the next ALLOC record.

X'0000002C' X'D8210007' Failure locating the first IC record.

X'0000002C' X'D8210008' Failure locating the next IC record.

X'0000002C' X'D8210009' Failure locating the first REORG record.

X'0000002C' X'D821000A' Failure locating the next REORG record.

X'0000002C' X'D821000B' Failure locating the first RECOV record.

Chapter 30. DBRC query request (QUERY) 395

Table 90. Return and reason codes for TYPE=DB query requests (continued)

Code type Return codes Reason codes Meaning

X'0000002C' X'D821000C' Failure locating the next RECOV record.

X'0000002C' X'D8220001' Failure locating the first HALDB partition
record.

X'0000002C' X'D8220002' Failure attempting to locate the DB record
associated with the HALDB partition being
processed.

X'0000002C' X'D8220003' Failure locating the next HALDB partition
record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000008' Invalid DBNAME or DBLIST address. The
address of the field containing the DBNAME
or DBLIST failed validity checking. The
address specifies storage not owned by the
calling program.

X'00000030' X'C9000009' Invalid DDN address. The address of the
field containing the DDN failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8200001' LOC parameter is not allowed with DBLIST.

X'00000030' X'D8220001' The DBNAME or PARTNAME is required.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8200002' DBNAME parameter is not allowed with
LOC=FIRST.

X'00000030' X'D8220002' The LOC=FIRST | LAST is required with the
DBNAME.

X'00000030' X'D8200003' DBNAME parameter is required with
LOC=NEXT.

X'00000030' X'D8220003' The LOC=FIRST | LAST is not allowed with
the PARTNAME.

X'00000030' X'D8200004' DBNAME or DBLIST is required.

396 System Programming APIs

Table 90. Return and reason codes for TYPE=DB query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'D8200005' Count of databases in DBLIST is zero.

X'00000030' X'D8200006' Database information is being requested for a
HALDB partition. DBNAME or DBLIST
contains a partition name.

X'00000030' X'D8200007' DBNAME wildcard not allowed with
LOC=NEXT

X'00000030' X'D8200100' When using a wildcard, at least one
alphabetic character must precede the
asterisk.

X'00000030' X'D8200101' When using a wildcard, the asterisk must be
the last character.

Output for TYPE=DB query request

The following figures illustrate the format of output from QUERY TYPE=DB
requests. The sample DSECTs that follow the figures describe in detail the fields of
the storage blocks and their relationship.

Full function output

The following shows the fields of the DSPAPQDB block.

The DBDS information is returned only if DDN is specified.

DSECT of DSPAPQDB

The following example describes the fields contained in the DSPAPQDB block
shown in Figure 14.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 96 DSPAPQDB
0 (0) CHARACTER 8 APQDB_DBNAME Database name

DB record data
(DSPAPQDB)

SS data
(DSPAPQSL)

DBDS Output
(DSPAPQDS)

DSPAPQDB length IMSDB
dependent
pointer

next
pointer

block
offset

version

. . .

00 SP

Figure 14. Format of QUERY TYPE=DB (full function) output

Chapter 30. DBRC query request (QUERY) 397

8 (8) UNSIGNED 4 APQDB_SSLIST Offset to SS list (DSPAPQSL), zero
is no SS auth’d

12 (C) SIGNED 4 *(3) Reserved
24 (18) UNSIGNED 2 APQDB_IRCNT IC receive needed counter
26 (1A) BIT(8) 1 APQDB_AUFLAG Authorization flags

1... APQDB_BKFLG Backout needed flag
.1.. APQDB_PAFLG Prohibit authorization
..1. APQDB_RDFLG Read only SS auth
...1 APQDB_NONRV nonrecoverable
.... 1... APQDB_DBREORGI Reorg intent
.... .1.. APQDB_DBQUI Quiesce in progress
.... ..1. APQDB_DBQUIH Quiesce held

27 (1B) CHARACTER 5 APQDB_IRLMAU IRLMID of auth SS
32 (20) SIGNED 2 APQDB_RCVCTR Recovery needed count
34 (22) SIGNED 2 APQDB_ICCTR IC needed count
36 (24) SIGNED 2 APQDB_ICRECCTR IC recommended counter
38 (26) UNSIGNED 1 APQDB_SHRLVL Share level of DB
39 (27) UNSIGNED 1 APQDB_HELDAU Held auth state

1... APQDB_HAUBIT High order bit flag
40 (28) UNSIGNED 2 APQDB_DMBNUM Global DMB number
42 (2A) SIGNED 2 APQDB_SSNUM # of SS auth DB
44 (2C) UNSIGNED 2 APQDB_SSENTLEN Length of each SS entry
46 (2E) UNSIGNED 1 APQDB_CACCSS Access state for chg auth
47 (2F) UNSIGNED 1 APQDB_CANCDD Encode state for chg auth
48 (30) UNSIGNED 1 APQDB_CAHELD Held state for chg auth
49 (31) CHARACTER 3 * Reserved
52 (34) UNSIGNED 2 APQDB_EQECNT Total EQE count
54 (36) BIT(16) 2 APQDB_RSRFLG Flags

1... APQDB_RCVTRK Recovery level tracking
.1.. APQDB_TRKSPN Tracking is suspended
..1. APQDB_PURBIT Suspended by time
...1 APQDB_ICNDIS IC needed disabled option

56 (38) CHARACTER 8 APQDB_GSGNAME Global Service Group name
64 (40) UNSIGNED 4 APQDB_USID Last alloc USID
68 (44) UNSIGNED 4 APQDB_AUSID Last authorized USID
72 (48) UNSIGNED 4 APQDB_RUSID Last received USID
76 (4C) UNSIGNED 4 APQDB_HUSID Hardened by tracker USID
80 (50) UNSIGNED 4 APQDB_RNUSID Receive needed USID
84 (54) CHARACTER 8 APQDB_RECOVGRP Recovery Group name
92 (5C) CHARACTER 4 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQDB APQDB_EYECATCHER

DSECT of DSPAPQSL

The following example describes the fields contained in the SS data (DSPAPQSL).
DSPAPQSL

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 16 DSPAPQSL
0 (0) CHARACTER 16 APQSL_SSINFO Subsystem list entry
0 (0) CHARACTER 8 APQSL_SSNAME Subsystem ID
8 (8) UNSIGNED 1 APQSL_ACCESS Access intent
9 (9) UNSIGNED 1 APQSL_NCDDST Encoded state

10 (A) BIT(8) 1 APQSL_SSFLGS Flags
1... APQSL_SSROLE 0 - Active SS, 1 - Tracking SS
.1.. APQSL_SSXRFC 1 - XRF Capable
..1. APQSL_SSBAT 1 - Batch SS
...1 APQSL_SSIC 1 - IC SS

11 (B) BIT(8) 1 * Reserved

398 System Programming APIs

12 (C) CHARACTER 4 APQSL_BKINFO Backout information
12 (C) SIGNED 2 APQSL_BKCTR Backout needed count
14 (E) SIGNED 2 APQSL_BKNUM Backout done count

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

Possible access intent values (apqsl_ACCESS)
==

1 HEX 01 APQSL_ACCRO READ-GO
1 HEX 02 APQSL_ACCRD READ
1 HEX 03 APQSL_ACCUP UPDATE
1 HEX 04 APQSL_ACCEX EXCLUSIVE

Fast Path DEDB output

The area information is returned only if DDN is specified. Recovery information
(RCVINFO) is only returned if the LIST parameter is specified.

DSECT of DSPAPQFD

The following example describes the fields contained in the DSPAPQFD and
DSPAPQAR blocks shown in Figure 15.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ============================
0 (0) STRUCTURE 38 DSPAPQFD
0 (0) CHARACTER 8 APQFD_DBNAME Database name
8 (8) SIGNED 4 *(4) Reserved

AAUTH/DBDS
record data
(DSPAPQAR)

EEQE list
(DSPAPQEL)

ADS list
(APQAR_ADSLT)

SS data
(DSPAPQSL)

DB record data
(DSPAPQFD)

RCVINFO Output
(DSPAPQRI)

DSPAPQFD

DSPAPQAR

length

length

FPDEDB

AREA

dependent
pointer

dependent
pointer

next
pointer

next
pointer

block
offset

block
offset

version

version

. . .

. . .

00

00

SP

SP

Figure 15. Format of QUERY TYPE=DB (Fast Path DEDB) output

Chapter 30. DBRC query request (QUERY) 399

|
|
|
|
|
|

24 (18) SIGNED 2 APQFD_RCVCTR Recovery Needed Counter
26 (1A) SIGNED 2 APQFD_ICCTR IC Needed Counter
28 (1C) SIGNED 2 APQFD_ICRECCTR IC Recommended Counter
30 (1E) UNSIGNED 2 APQFD_DMBNUM Global DMB number
32 (20) UNSIGNED 2 APQFD_EQECNT Total EEQE count
34 (22) SIGNED 2 APQFD_AUTHDAREAS Number of Areas authorized
36 (24) UNSIGNED 1 APQFD_SHRLVL Share Level
37 (25) BIT(8) 1 APQFD_FLAGS Flags

1... APQFD_PAFLG Prohibit authorization
.1.. APQFD_NONRV nonrecoverable
..1. APQFD_ICNDIS IC needed disabled option
...1 APQFD_USRRV user-recoverable (VERSION=1.01)
.... 1... APQFD_FULLSEG_DEFAULT Default full segment logging

setting for areas (VERSION=4.0)
38 (26) UNSIGNED 2 APQFD_ALTER# FP DEDB alter status

(VERSION=5.0)
40 (28) CHARACTER 8 APQFD_RANDOMIZER Randomizer name

(VERSION=5.01)
CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ==============================

8 CHARACTER DSPAPQFD APQFD_EYECATCHER

DSECT of DSPAPQAR

The following example describes the fields contained in the DSPAPQFD and
DSPAPQAR blocks shown in Figure 15 on page 399.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============= =============================

0 (0) STRUCTURE 196 DSPAPQAR
0 (0) CHARACTER 8 APQAR_DBNAME Database name
8 (8) CHARACTER 8 APQAR_AREANAME Area name

16 (10) UNSIGNED 4 APQAR_EEQELIST Offset to EEQE list
(DSPAPQEL), zero if no EEQEs

20 (14) UNSIGNED 4 APQAR_SSLIST Offset to SS list (DSPAPQSL),
zero if no SS auth’d

24 (18) UNSIGNED 4 APQAR_ADSLIST Offset to ADS list, zero if
none registered

28 (1C) SIGNED 4 * Reserved
32 (20) UNSIGNED 1 APQAR_SHRLVL Share level of DB
33 (21) UNSIGNED 1 APQAR_HELDAU Held auth state

1... APQAR_HAUBIT High order bit flag
34 (22) UNSIGNED 2 APQAR_DMBNUM Global DMB number
36 (24) SIGNED 2 APQAR_SSNUM # subsytems authd to Area
38 (26) UNSIGNED 2 APQAR_SSENTLEN Length of each SS entry
40 (28) UNSIGNED 1 APQAR_CACCSS Access state for CHG AUTH
41 (29) UNSIGNED 1 APQAR_CANCDD Encoded state for CHG AUTH
42 (2A) UNSIGNED 1 APQAR_CAHELD Held state for CHG AUTH
43 (2B) CHARACTER 5 APQAR_IRLMAU IRLMID of auth SS
48 (30) BIT(16) 2 APQAR_FLAGS

1... APQAR_RECYC REUSE image copies
.1.. APQAR_ICREC Image Copy Recommended
..1. APQAR_IC Image Copy Needed
...1 APQAR_ICNDIS IC needed disabled option 1 =

IC Needed Disabled
.... 1... APQAR_RECOV Recovery needed
.... .1.. APQAR_INPRO HSSP CIC in progress
.... ..1. APQAR_GT240 M/C FP GT240 area DEDB
.... ...1 APQAR_VSO VSO flag

49 (31) 1... APQAR_PREOP PREOPEN flag
.1.. APQAR_PRELD PRELOAD flag
..1. APQAR_LKASD VSO CF buffer lookaside
...1 APQAR_MAS VSO area resides in multi-area

CF structure

400 System Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

.... 1... APQAR_RRGAL REORG since last ALLOC, only
set if RSR-covered

.... .1.. APQAR_TSRAL TS recov since last ALLOC, only
set if RSR-covered

.... ..1. APQAR_FULLSEG Full segment logging in effect
(VERSION=4.0)

50 (32) BIT(8) 1 APQAR_RSRFLAGS Remote Site Recovery flags
1... APQAR_RCVTRK Recovery Level Tracking
.1.. APQAR_TRKSPN Tracking was suspended
..1. APQAR_PURBIT Suspended by time
...1 APQAR_RCVRQ Receive Required

51 (33) BIT(8) 1 APQAR_AUFLAG Authorization flags
1... APQAR_PAFLG Prohibit authorization
.1.. APQAR_NONRV nonrecoverable
..1. APQAR_DBQUI Quiesce in progress
...1 APQAR_DBQUIH Quiesce held
.... 1... APQAR_DBQUICMD HALDB/DEDB on command

52 (34) BIT(8) 1 APQAR_DSORG Data set organization
1... APQAR_VSAM 1 = VSAM, 0 = NON-VSAM
.1.. APQAR_INDEX 0 = Non-indexed (OSAM or ESDS),

1 = Indexed(ISAM or KSDS)
..11 1111 * Reserved - zeroes

The following example describes the fields contained in the DSPAPQFD and
DSPAPQAR blocks shown in Figure 15 on page 399.

53 (35) CHARACTER 1 APQAR_DBORG IMS DB organization
54 (36) CHARACTER 8 APQAR_GSGNAME GSG Name
62 (3E) CHARACTER 2 * Reserved
64 (40) UNSIGNED 4 APQAR_USID Last ALLOC USID
68 (44) UNSIGNED 4 APQAR_AUSID Last authorized USID
72 (48) UNSIGNED 4 APQAR_RUSID Last received USID
76 (4C) UNSIGNED 4 APQAR_HUSID Hardened USID
80 (50) UNSIGNED 4 APQAR_RNUSID Receive needed USID
84 (54) CHARACTER 8 APQAR_RECOVGRP Recovery Group name
92 (5C) CHARACTER 8 APQAR_CAGRPNAME Change Accum group name

100 (64) UNSIGNED 2 APQAR_GENMX Max number of ICs that
may be predefined for this area

102 (66) UNSIGNED 2 APQAR_GENNO Number of available ICs for this area
104 (68) UNSIGNED 2 APQAR_USDIC Number of ICs used
106 (6A) SIGNED 2 APQAR_EEQECOUNT EEQE count
108 (6C) UNSIGNED 2 APQAR_EEQELENGTH EEQE entry length
110 (6E) UNSIGNED 1 APQAR_NOADS # of ADS in the area
111 (6F) UNSIGNED 1 APQAR_AVADS # of available ADS
112 (70) UNSIGNED 2 APQAR_ADSLENGTH ADS entry length
114 (72) CHARACTER 2 * Reserved
116 (74) CHARACTER 40 APQAR_JCL GENJCL members
116 (74) CHARACTER 8 APQAR_ICJCL Image copy member
124 (7C) CHARACTER 8 APQAR_OIJCL Online IC member
132 (84) CHARACTER 8 APQAR_RCJCL Recovery member
140 (8C) CHARACTER 8 APQAR_DFJCL DEFLTJCL member
148 (94) CHARACTER 8 APQAR_RVJCL Receive JCL member
156 (9C) UNSIGNED 2 APQAR_RTPRD IC retention period
158 (9E) UNSIGNED 2 APQAR_DSID IMS data set ID
160 (A0) UNSIGNED 4 APQAR_DSSN Data set sequence number
164 (A4) CHARACTER 16 APQAR_CFST1 VSO CF Structure 1
180 (B4) CHARACTER 16 APQAR_CFST2 VSO CF Structure 2

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============= ============================
0 (0) STRUCTURE 56 APQAR_ADSLT Area Data Set List
0 (0) CHARACTER 8 APQAR_ADSDD DDNAME of the ADS
8 (8) CHARACTER 44 APQAR_ADSDN DSN of the ADS

52 (34) BIT(8) 1 APQAR_ADSBT
1... APQAR_ADSAV Avail status of ADS
.1.. APQAR_ADSFM Format status of create util

Chapter 30. DBRC query request (QUERY) 401

..1. APQAR_ADSCP Copy status of create util
53 (35) CHARACTER 3 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ============================

8 CHARACTER DSPAPQAR APQAR_EYECATCHER

DSECT of DSPAPQEL
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 13 DSPAPQEL
0 (0) CHARACTER 13 APQEL_EEQEENTRY EEQE descriptor entry
0 (0) BIT(8) 1 APQEL_EQEFG EEQE flags

1... APQEL_ERTL Toleration error
.1.. APQEL_ERRD Read error
..1. APQEL_ERWT Write error
...1 APQEL_ERUS DBRC user modified
.... 1... APQEL_ERPM DBRC permanent error
.... .1.. APQEL_INDT Indoubt EEQE
.... ..1. APQEL_CIIND Index CI indicator

1 (1) CHARACTER 4 APQEL_EQE EEQE
5 (5) CHARACTER 8 APQEL_SSID SSID which owns the EEQE

HALDB (master and all partitions) output

The DBDS information is returned only if DDN is specified.

DB record data
(DSPAPQHB)

DSPAPQHB

DSPAPQHP

length

length

HALDB

PART

dependent
pointer

dependent
pointer

next
pointer

next
pointer

block
offset

block
offset

version

version

. . .

. . .

00

00

SP

SP

DBDS Output
(DSPAPQDS)

Part DB and
Partition
record data
(DSPAPQHP)

DS Group Info
(APQHP_DSGINFO)

Key/String
(APQHP_PSTRING)

SS data
(DSPAPQSL)

Figure 16. Format of QUERY TYPE=DB (HALDB master and partitions) output

402 System Programming APIs

DSECT of DSPAPQHB

The following two examples describe the fields contained in the DSPAPQHB and
DSPAPQHP blocks shown in Figure 16 on page 402. Refer to Figure 17 on page 406
for an illustration of the fields of the DBDS output.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 60 DSPAPQHB
0 (0) CHARACTER 8 APQHB_DBNAME HALDB name
8 (8) SIGNED 4 *(4) Reserved

24 (18) BIT(8) 1 APQHB_FLAGS Flags
1... APQHB_NONRV nonrecoverable
.1.. APQHB_ICNDIS IC needed disabled
..1. APQHB_OLRCAP HALDB is OLR capable

...1 APQHB_OSAM8G HALDB OSAM is 8GB addressability
25 (19) BIT(8) 1 APQHB_ORG DB organization

1... APQHB_PSINDEX PSINDEX DB
.1.. APQHB_PHIDAM PHIDAM DB
..1. APQHB_PHDAM PHDAM DB
...1 APQHB_OSAM OSAM DB
.... 1111 * Reserved

26 (1A) UNSIGNED 1 APQHB_SHRLVL Share level
27 (1B) UNSIGNED 1 APQHB_DSGCNT # DS Group members
28 (1C) UNSIGNED 2 APQHB_DMBNUM Global DMB number
30 (1E) UNSIGNED 2 APQHB_PARTID Current Partition ID
32 (20) SIGNED 2 APQHB_PART# Number of parts in HALDB
34 (22) UNSIGNED 2 APQHB_VERSION# Version number
36 (24) CHARACTER 8 APQHB_PSNAME Name of Part Sel Routine
44 (2C) CHARACTER 8 APQHB_GSGNAME GSG name
52 (34) CHARACTER 8 APQHB_RECOVGRP Recovery Group name
60 (3C) UNSIGNED 2 APQHB_ALTER# The total number of partitions

to be altered in an online
HALDB database

62 (3E) UNSIGNED 2 APQHB_ALTCMP# The number of partitions that
an active alter operation has
completed at the time the
query call was processed

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQHB APQHB_EYECATCHER

DSECT of DSPAPQHP
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 192 DSPAPQHP
0 (0) CHARACTER 8 APQHP_HALDBNAME HALDB name
8 (8) CHARACTER 8 APQHP_PARTNAME Partition name

16 (10) UNSIGNED 4 APQHP_SSLIST Offset to SS list (DSPAPQSL),
zero if no SS auth’d

20 (14) UNSIGNED 4 APQHP_KEYSTRING Offset to KEYSTRING
(apqhp_PString), zero is no
key/string

24 (18) UNSIGNED 4 APQHP_DSGINFOOFFSET Offset to data set group
information

28 (1C) SIGNED 4 APQHP_ALTERINFOOFFSET Offset of HALDB Alter
information structure,
APQHP_ALTERINFO, if present.
Value is 0 if not present.

32 (20) CHARACTER 44 *
32 (20) CHARACTER 37 APQHP_DSNBASE Base Partition DSN

Chapter 30. DBRC query request (QUERY) 403

|

|
|
|
|
|
|
|

|
|
|
|

76 (4C) CHARACTER 18 APQHP_HDAM PHDAM fields
76 (4C) CHARACTER 8 APQHP_RMNAME Randomizing module name
84 (54) SIGNED 4 APQHP_RBN Max relative block number
88 (58) SIGNED 4 APQHP_BYTES Max # of bytes
92 (5C) UNSIGNED 2 APQHP_ANCHR # of root anchor points
94 (5E) UNSIGNED 1 APQHP_FBFF Free block frequency factor
95 (5F) UNSIGNED 1 APQHP_FSPF Free space percentage factor
96 (60) UNSIGNED 2 APQHP_PARTID Partition ID
98 (62) SIGNED 2 APQHP_PSTLN Length of Part Key/String,

apqhp_PString
100 (64) UNSIGNED 2 APQHP_DSGINFOLEN

Length of each
aphp_DSGinfo entry

102 (66) UNSIGNED 1 APQHP_DSGCNT DSG count
103 (67) BIT(8) 1 APQHP_FLAGS Flags

1... APQHP_PINIT Partition must be initialized
.1.. APQHP_ORDBDS 0=A-J/1=M-V DBDS active
..1. APQHP_OLRON OLR active
...1 APQHP_DISAB Partition Disabled
.... 1... APQHP_MVDBDS 1 = M-V DBDS exist
.... .1.. APQHP_OLRCAP Partition is OLR capable
.... ..1. APQHP_OLRREL 1 = RELEASE OLR OWNER

.... ...1 APQHP_OSAM8G 8GB OSAM addressability
==
If the Partitioned DB uses high keys, that is, no Partition
Selection routine, the next two fields are used to sort the
partitions in key sequence.

==
104 (68) CHARACTER 8 APQHP_PREV DDN of previous partition
112 (70) CHARACTER 8 APQHP_NEXT DDN of next partition
120 (78) CHARACTER 8 APQHP_OLRIMS Owning IMS for OLR
128 (80) UNSIGNED 2 APQHP_IRCNT IC receive needed counter
130 (82) BIT(8) 1 APQHP_AUFLAG Authorization flags

1... APQHP_BKFLG Backout needed
.1.. APQHP_PAFLG Prohibit authorization
..1. APQHP_RDFLG Read only SS auth
...1 APQHP_NONRV nonrecoverable
.... 1... APQHP_DBREORGI Reorg intent
.... .1.. APQHP_DBQUI Quiesce in progress
.... ..1. APQHP_DBQUIH Quiesce held
.... ...1 APQAR_DBQUICMD HALDB/DEDB on command

131 (83) CHARACTER 5 APQHP_IRLMAU IRLM ID of auth SS
136 (88) SIGNED 2 APQHP_RCVCTR Recovery needed count
138 (8A) SIGNED 2 APQHP_ICCTR IC needed count
140 (8C) UNSIGNED 1 APQHP_SHRLVL Share level of DB
141 (8D) UNSIGNED 1 APQHP_HELDAU Held auth state

1... APQHP_HAUBIT High order bit flag
142 (8E) UNSIGNED 2 APQHP_DMBNUM Global DMB number
144 (90) SIGNED 2 APQHP_SSNUM # of SS auth DB
146 (92) UNSIGNED 2 APQHP_SSENTLEN Length of each SS entry
148 (94) UNSIGNED 1 APQHP_CACCSS Access state for chg auth
149 (95) UNSIGNED 1 APQHP_CANCDD Encode state for chg auth
150 (96) UNSIGNED 1 APQHP_CAHELD Held state for chg auth
151 (97) CHARACTER 1 * Reserved
152 (98) UNSIGNED 2 APQHP_EQECNT Total EQE count
154 (9A) BIT(16) 2 APQHP_RSRFLG Flags

1... APQHP_RCVTRK Only recov level trackng
.1.. APQHP_TRKSPN Tracking is suspended
..1. APQHP_PURBIT Suspended by time
...1 APQHP_ICNDIS IC needed disabled option
.... 1... APQHP_NOHKEY High key required
.... .1.. APQHP_ALTER Partition being altered
.... ..1. APQHP_ALTCMP Partition alter completed;

partition ready for online
change

156 (9C) CHARACTER 8 APQHP_GSGNAME GSG name
164 (A4) UNSIGNED 4 APQHP_USID Last alloc USID

404 System Programming APIs

|

|
|
|
|

168 (A8) UNSIGNED 4 APQHP_AUSID Last authorized USID
172 (AC) UNSIGNED 4 APQHP_RUSID Last received USID
176 (B0) UNSIGNED 4 APQHP_HUSID Hardened by tracker USID
180 (B4) UNSIGNED 4 APQHP_RNUSID Receive needed USID
184 (B8) SIGNED 2 APQHP_ICRECCTR IC Recommended Counter
186 (BA) UNSIGNED 2 APQHP_VERSION# Version number
188 (BC) UNSIGNED 1 APQHP_OLRACTHARDCTR

OLR curs active count
189 (BD) UNSIGNED 1 APQHP_OLRINACTHARDCTR

OLR curs inact count
190 (BE) UNSIGNED 2 APQHP_REORG# Partition reorg #
192 (C0) CHARACTER 8 APQHP_OLRBytes OLR Bytes moved
200 (C8) CHARACTER 8 APQHP_OLRSegs OLR Segments moved
208 (D0) CHARACTER 4 APQHP_OLRRoots OLR Root Segments
212 (D4) UNSIGNED 2 APQHP_ALTERINFOLEN Length of each

apqhp_AlterInfo entry
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 2 APQHP_DSGINFO Data set group information
0 (0) UNSIGNED 2 APQHP_BLKSZ DS block size, OSAM only

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE * APQHP_PSTRING Partition Key/String

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 2 APQHP_ALTERINFO DB Alter information

Structure present only when an
alter operation is in progress

0 (0) UNSIGNED 2 APQHP_ALTERSZ If alter changes block or CI
sizes, ALTERSZ contains the
OSAM block size or VSAM CI size
for the output data sets of an
alter operation

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= ================ ===============================

8 CHARACTER DSPAPQHP APQHP_EYECATCHER

Chapter 30. DBRC query request (QUERY) 405

|
|

|
|
|
|
|
|
|
|
|
|
|

DBDS output

Recovery information (RCVINFO) is returned only if the LIST parameter is
specified.

DSECT of DSPAPQDS

The following example and “DSECT of DSPAPQEL” on page 402 describe the
fields contained in the DSPAPQDS block shown in Figure 17. Refer to Figure 18 on
page 408 for an illustration of the Recovery Information output fields.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 160 DSPAPQDS
0 (0) CHARACTER 8 APQDS_DBNAME Database name
8 (8) CHARACTER 8 APQDS_DDNAME DD name

16 (10) UNSIGNED 4 APQDS_EEQELIST Offset to EEQE list
(DSPAPQEL), zero if no EEQEs

20 (14) SIGNED 4 *(3) Reserved
32 (20) CHARACTER 44 APQDS_DSN Data set name
76 (4C) UNSIGNED 2 APQDS_RTPRD IC retention period
78 (4E) UNSIGNED 2 APQDS_DSID Data set ID number
80 (50) UNSIGNED 4 APQDS_DSSN Data set sequence number
84 (54) UNSIGNED 4 APQDS_RUSID Recovered-to USID(trkr)
88 (58) BIT(8) 1 APQDS_FLAGS BINARY ZEROS

1... APQDS_RECYC REUSE image copies
.1.. APQDS_ICREC Image Copy Recommended
..1. APQDS_RCVRQ Receive required
...1 APQDS_IC Image Copy Needed
.... 1... APQDS_RECOV Recovery Needed
.... .1.. APQDS_NONRV nonrecoverable

89 (59) BIT(8) 1 APQDS_DSORG Data set organization
1... APQDS_VSAM 1 = VSAM, 0 = NON-VSAM
.1.. APQDS_INDEX 0 = Non-indexed (OSAM or ESDS),

1 = Indexed(ISAM or KSDS)
..11 1111 * Reserved - zeroes

90 (5A) CHARACTER 1 APQDS_DBORG IMS DB organization
91 (5B) UNSIGNED 1 * Reserved
92 (5C) UNSIGNED 2 APQDS_GENMX Max number of ICs that may be

predefined for this area
94 (5E) UNSIGNED 2 APQDS_AVAILIC#

Number of available ICs for

DBDS data
(DSPAPQDS)

EEQE list
(DSPAPQEL)

RCVINFO Output
(DSPAPQRI)

DSPAPQDS length DBDS
dependent
pointer

next
pointer

block
offset

version

. . .

00 SP

Figure 17. Format of QUERY TYPE=DB (DBDS) output

406 System Programming APIs

this area
96 (60) UNSIGNED 2 APQDS_USEDIC# Number of ICs used
98 (62) SIGNED 2 APQDS_EEQECOUNT

EEQE count
100 (64) UNSIGNED 2 APQDS_EEQELENGTH

EEQE entry length
102 (66) BIT(8) 1 APQDS_FLG1 Flags

1... APQDS_RRGAL REORG since last ALLOC, only
set if RSR-covered

.1.. APQDS_TSRAL TS recov since last ALLOC, only
set if RSR-covered

103 (67) BIT(8) 1 APQDS_FLG2 DBDS type flags
1... APQDS_PART TYPEPART record
.1.. APQDS_PDATA TYPEPART subtype DATA
..1. APQDS_PILE TYPEPART subtype ILE
...1 APQDS_PINDX TYPEPART subtype Index

104 (68) CHARACTER 8 APQDS_CAGRPNAME
Change Accum group name

112 (70) CHARACTER 40 APQDS_JCL GENJCL members
112 (70) CHARACTER 8 APQDS_ICJCL Image copy member
120 (78) CHARACTER 8 APQDS_OIJCL Online IC member
128 (80) CHARACTER 8 APQDS_RCJCL Recovery member
136 (88) CHARACTER 8 APQDS_DFJCL DEFLTJCL member
144 (90) CHARACTER 8 APQDS_RVJCL Receive JCL member
152 (98) CHARACTER 8 APQDS_ODDN OLR partner DBDS

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= ================ ===============================

8 CHARACTER DSPAPQDS APQDS_EYECATCHER

Chapter 30. DBRC query request (QUERY) 407

Recovery Information (RCVINFO) output

Recovery information (RCVINFO) is returned only if the LIST parameter is
specified. The pointers are zero if either the specific information does not exist or it
was not requested.

DSECT of DSPAPQRI

The following DSECT example describes the fields that are contained in the
DSPAPQRI block as shown in Figure 18.

0

0

0

0

0

0

ALLOCDB name DD name IC RECOV REORG

DSPAPQRR

DSPAPQRV

DSPAPQIC

DSPAPQAL

DSPAPQRI

length

length

length

length

length

REORG

RECOV

IC

ALLOC

RCVINFO

block
offset

block
offset

version

version

version

version

version

REORG data
(DSPAPQRR)

RECOV data
(DSPAPQRV)

IC data
(DSPAPQIC)

ALLOC data
(DSPAPQAL)

block
offset

block
offset

block
offset

. . .

. . .

. . .

. . .

dependent
pointer

dependent
pointer

dependent
pointer

dependent
pointer

dependent
pointer

next
pointer

next
pointer

next
pointer

next
pointer

next
pointer

00

00

00

00

00

SP

SP

SP

SP

SP

Figure 18. Format of QUERY TYPE=DB (RCVINFO) output

408 System Programming APIs

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 32 DSPAPQRI
0 (0) CHARACTER 8 APQRI_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQRI_DDNAME DD name
8 (8) CHARACTER 8 APQRI_AREANAME Area name

16 (10) ADDRESS 4 APQRI_ALLOCPTR ptr to ALLOC chain
20 (14) ADDRESS 4 APQRI_ICPTR ptr to IC chain
24 (18) ADDRESS 4 APQRI_RECOVPTR ptr to RECOV chain
28 (1C) ADDRESS 4 APQRI_REORGPTR ptr to REORG chain

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQRI APQRI_EYECATCHER

DSECT of DSPAPQAL

The following DSECT example describes the fields that are contained in the
DSPAPQAL block as shown in Figure 18 on page 408.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 88 DSPAPQAL
0 (0) CHARACTER 8 APQAL_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQAL_DDNAME DD name or
8 (8) CHARACTER 8 APQAL_AREANAME Area name

16 (10) CHARACTER 12 APQAL_ALLOCTM Allocation time
28 (1C) CHARACTER 12 APQAL_DALTM Deallocation time
40 (28) CHARACTER 12 APQAL_STRTM Log start time
52 (34) UNSIGNED 4 APQAL_DSSN Field for DSSN value
56 (38) UNSIGNED 4 APQAL_USID Update set identifier
60 (3C) CHARACTER 8 APQAL_ALRID LRID of begin-upd rec
68 (44) CHARACTER 8 APQAL_DLRID LRID of end-upd rec
76 (4C) CHARACTER 8 APQAL_SLRID Last LRID applied if suspended
84 (54) BIT(8) 1 APQAL_FLAGS Flags

1... APQAL_TSUSP Tracking is suspended
.1.. APQAL_NAPPL No records applied
..1. APQAL_CICPT Fuzzy ic purge time
...1 APQAL_DBQUI Quiesce caused deallocation

85 (55) CHARACTER 3 * Reserved
CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQAL APQAL_EYECATCHER

DSECT of DSPAPQIC

The following DSECT example describes the fields that are contained in the
DSPAPQIC block as shown in Figure 18 on page 408.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== =============================
0 (0) STRUCTURE 64 DSPAPQIC
0 (0) CHARACTER 8 APQIC_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQIC_DDNAME DD name or
8 (8) CHARACTER 8 APQIC_AREANAME Area name

16 (10) CHARACTER 12 APQIC_STARTIME IC start time, packed decimal

Chapter 30. DBRC query request (QUERY) 409

28 (1C) CHARACTER 12 APQIC_STOPTIME IC stop time, packed decimal
40 (28) BIT(8) 1 APQIC_TYPE IMAGE COPY TYPE

1... APQIC_BATCH BATCH
.1.. APQIC_CIC CONCURRENT
..1. APQIC_USERIC USER IMAGE COPY
...1 APQIC_ONLINE ONLINE
.... 1... APQIC_SMSIC SMS IC w/ DB exclusive
.... .1.. APQIC_SMSCC SMS IC w/ DB shared
.... ..1. APQIC_SMSOF FastRep IC w/ DB exclusive

(VERSION=2.00)
.... ..1 APQIC_SMSON FastRep IC w/ DB shared

(VERSION=2.00)
41 (29) BIT(8) 1 APQIC_STATUS IC status flags

1... APQIC_AVAIL Available IC
.1.. APQIC_IC1 Image Copy 1 exists
..1. APQIC_IC2 Image Copy 2 exists
...1 APQIC_ERR1 Error on image 1
.... 1... APQIC_ERR2 Error on image 2
.... .1.. APQIC_EMP2 Image 2 defined and unused

42 (2A) BIT(8) 1 APQIC_FLAGS
1... APQIC_HSINP HSSP CIC in progress
.1.. APQIC_CAT Catalogued IC (HSSP)

43 (2B) CHARACTER 1 APQIC_MoreTYPEs More Image Copy types
1... APQIC_UserCIC User Concurrent Image Copy

(VERSION=2.0)
44 (2C) CHARACTER 2 *
44 (2C) UNSIGNED 2 APQIC_OFF1 Offset to image 1 data
44 (2C) UNSIGNED 2 APQIC_OFFU Offset to user IC data
46 (2E) UNSIGNED 2 APQIC_OFF2 Offset to image 2 data
48 (30) UNSIGNED 4 APQIC_CNT12 Record count
52 (34) UNSIGNED 4 APQIC_USID Update set ID
56 (38) CHARACTER 2 *
56 (38) UNSIGNED 2 APQIC_LEN12 Length of image 1/2 data
56 (38) UNSIGNED 2 APQIC_LENU Length of user IC data
58 (3A) CHARACTER 6 * Reserved
64 (40) UNSIGNED 2 APQIC_OFFUD Offset to user data (Version=4.0)
66 (42) UNSIGNED 2 APQIC_LENUD Length of user data (Version=4.0)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ==========================

0 (0) STRUCTURE 64 APQIC_IC12 Data for image 1 or 2
0 (0) CHARACTER 44 APQIC_DSN12 Data set name

44 (2C) UNSIGNED 2 APQIC_FILE File sequence number
46 (2E) CHARACTER 8 APQIC_RUT12 Unit device type
54 (36) UNSIGNED 2 APQIC_VOLCT # of volumes predefined
56 (38) UNSIGNED 2 APQIC_VOLUS # of volumes used
58 (3A) UNSIGNED 2 APQIC_VOLLISTLEN Length of each volume list

entry in apqic_VOLS
60 (3C) UNSIGNED 4 APQIC_VOLLISTOFFSET Offset to volume list

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) CHARACTER 6 APQIC_VOLS List of VOLSERs

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 80 APQIC_USER Data for user IC
0 (0) CHARACTER 80 APQIC_UDATA User supplied data

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

1 DECIMAL 255 APQIC_MAXV max # volumes
8 CHARACTER DSPAPQIC APQIC_EYECATCHER

410 System Programming APIs

DSECT of DSPAPQRV

The following DSECT example describes the fields that are contained in the
DSPAPQRV block as shown in Figure 18 on page 408.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ==============================
0 (0) STRUCTURE 49 DSPAPQRV
0 (0) CHARACTER 8 APQRV_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQRV_DDNAME DD name or
8 (8) CHARACTER 8 APQRV_AREANAME Area name

16 (10) CHARACTER 12 APQRV_RUNTIME The time at which the DBDS was
recovered

28 (1C) CHARACTER 12 APQRV_ENDTIME Partial recovery only, the time
to which the DBDS was restored

40 (28) UNSIGNED 4 APQRV_FUSID First undone USID
44 (2C) UNSIGNED 4 APQRV_LUSID Last undone USID
48 (30) BIT(8) 1 APQRV_FLAGS Flags

1... APQRV_PITR Point In Time Recovery
.1.. 1 APQRV_EXTCM External command (Version=4.0)

49 (31) UNSIGNED 1 * Reserved
50 (32) UNSIGNED 2 APQRV_OFFUD Offset to user data (Version=4.0)
52 (34) UNSIGNED 2 APQRV_LENUD Length of user data (Version=4.0)
54 (33) UNSIGNED 2 APQRV_PREORG Prior reorg number (Version=4.0)
56 (36) UNSIGNED 2 APQRV_NREORG New reorg number (Version=4.0)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 80 APQRV_USER Data for user data
0 (0) CHARACTER 80 APQRV_UDATA User supplied data (VERSION=4.0)

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQRV APQRV_EYECATCHER

DSECT of DSPAPQRR

The following DSECT example describes the fields that are contained in the
DSPAPQRR block as shown in Figure 18 on page 408.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 60 DSPAPQRR
0 (0) CHARACTER 8 APQRR_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQRR_DDNAME DD name or
8 (8) CHARACTER 8 APQRR_AREANAME Area name

16 (10) CHARACTER 12 APQRR_RUNTIME The time at which the DBDS was
reorganized

28 (1C) CHARACTER 12 APQRR_STOPTIME Stoptime of online reorg
40 (28) BIT(8) 1 APQRR_FLAGS

1... APQRR_ONL 1=ONLINE/0=OFFLINE reorg
.1.. APQRR_RECOV 1=May be used for recovery
..1. APQRR_ALTER 1=HALDB structure altered by

an online reorganization
41 (29) CHARACTER 3 * Reserved
44 (2C) UNSIGNED 4 APQRR_USID Associated USID
48 (30) CHARACTER 12 APQRR_PITR Stoptime moved - PITR
60 (3C) UNSIGNED 4 APQRR_PRAPs Total number of RAPs processed
64 (40) UNSIGNED 4 APQRR_Roots Total number of roots processed
68 (44) UNSIGNED 2 APQRR_OFFUD Offset to user data (VERSION=4.0)
70 (46) UNSIGNED 2 APQRR_LENUD Length of user data (VERSION=4.0)

Chapter 30. DBRC query request (QUERY) 411

|
|

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 80 APQRR_USER Data for user data
0 (0) CHARACTER 80 APQRR_UDATA User supplied data (VERSION=4.0)

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQRR APQRR_EYECATCHER

Database not found output

This output block is returned when some of the databases specified in the DBLIST
block could not be found in the RECON. One block is returned for each database
that could not be found. The database name is included in the data area of this
block.

When a database is not found, the macro call receives a return code of four
(RC=4). If none of the databases in the list are found (RC=8), no output blocks are
returned.

DSECT of DSPAPQNF

The following example describes the fields contained in the DSPAPQNF block
shown in Figure 19.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 8 DSPAPQNF
0 (0) CHARACTER 8 APQNF_DBNAME DB name

Related concepts:
Chapter 26, “DBRC API,” on page 359
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385
“DBDS query request (TYPE=DBDS)”
“HALDB partition query request (TYPE=PART)” on page 439

DBDS query request (TYPE=DBDS)
You can use the DSPAPI FUNC=QUERY TYPE=DBDS request to retrieve
information from the RECON data set for one or more DBDSs in a non-HALDB

DBNAME

. . .

length
block
offset

version
dependent
pointer

next
pointer00 SPDSPAPQNF DBNOTFND

Figure 19. Format of QUERY TYPE=DB (database not found) output

412 System Programming APIs

database, a HALDB partition, a DBDS group, or a CA group. You can also request
recovery related information for the data set, including allocation, image copy,
recovery, and reorganization information.

Syntax for the TYPE=DBDS query request

►►
name

DSPAPI FUNC=QUERY TYPE=DBDS TOKEN=address ►

►

DDN=*
LOC=SPEC

DBNAME=name DDN=ddn
LOC=NEXT

LOC=FIRST
GROUP=name ▼

LIST=NONE

,

LIST=(ALLOC)
IC
RECOV
REORG

LIST=(ALL

►

►
RETCODE=returncode RSNCODE=reasoncode

OUTPUT=output ►

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

SUBPOOL=0

SUBPOOL=number

VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=DBDS query request

name If used, begins in column 1.

TYPE=DBDS
Specifies that RECON information for a DBDS or area is requested.

Specifying DBDS with the TYPE parameter requires that you also specify a
minimum version number of VERSION=2.0.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field to receive the API token. This token
must be included in all subsequent requests associated with this
FUNC=STARTDBRC request.

DBNAME=name | (2 -12)
Specifies the database name (non-HALDB) or partition name of the DBDS
being queried. This parameter is used when you are interested in a specific
DBDS of a database or partition. Specifying a HALDB name is not allowed.

DBDNAME OR PARTNAME must be specified.

Chapter 30. DBRC query request (QUERY) 413

GROUP=name | (2 -12)
Specifies the name of a DBDS group or CA group containing the names of
the DBDSs being queried. The LOC or DDN parameters are not allowed
with this parameter.

DBNAME or GROUP must be specified. Database and recovery group
names are not allowed.

The wildcard GROUP=* can be used for all TYPE=xxxxGROUP queries,
but not for TYPE=DBDS. However, it can be used for TYPE=DBDSGROUP.

DDN=ddname | (2 -12)
Specifies the DD name of the data sets or areas. This parameter is used in
conjunction with the DBNAME parameter and the LOC parameter to
query a specific data set or the next or previous data set in the database or
partition. DDN=* returns information for all of the data sets or areas of the
database. DDN=* is the default when DBNAME is specified without
LOC=FIRST.

DDN must be specified with LOC=SPEC|NEXT.

When querying the next or previous data set, the value in the DDN
parameter is used as the base of the search and does not need to be a DD
name of a DBDS registered in RECON for the database or partition.

LIST=NONE | LIST=({ALLOC},{IC},{RECOV},{REORG}) | LIST=ALL
Specifies the types of supporting information to be included in the query
output for the returned DBDS. One or more of the specific values is
included in the list - ALLOC (allocation records), IC (image copy records),
RECOV (recovery records), or REORG (reorganization records). LIST=ALL
is specified if all supporting information is requested. LIST=NONE is
specified if no supporting information is requested.

LIST=NONE is the default.

LOC=FIRST | NEXT | SPEC
(Optional) - Specifies that the request is for the specified partition (SPEC),
the first, or the next DBDS defined in RECON for the database or partition.
DBNAME is required with the LOC parameter. DDN, with no wildcard, is
required with LOC=NEXT|SPEC. DDN is not allowed with LOC=FIRST.
LOC=SPEC is the default when a specific DDN is specified. LOC is not
allowed with GROUP.

Specify DDN=* to also request data set or area information. If you specify
a specific DDN (DDN=ddn), the specified DDN is ignored and all data set
or area information is returned.

Partitions are returned in high key order if the HALDB uses high keys.
Otherwise, partitions are returned in alphanumerical order.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

414 System Programming APIs

|
|

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first of a possible chain of blocks
that contain the information for the partition.

The output address is zero if no output was built. This result can occur if
nothing in the RECON satisfies the request or if an error occurs before any
output could be built.

The storage for the output blocks is not preallocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Optional parameter that specifies the subpool number for the storage being
obtained. If not specified, the default is the subpool specified by the
FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Optional parameter that specifies the version number of the parameter list
to be generated by this macro.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

The default version is 2.0.

Note: TYPE=DBDS requires that you specify a minimum version number
of API VERSION=2.0.

Return and reason codes for the TYPE=DBDS query request

Table 91. DSPAPI FUNC=QUERY TYPE=DBDS query return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8210001' No DBDSs or areas for the DB are registered
in the RECON data set. No information
blocks are returned.

X'00000008' X'D8210002' The specified DBDS or area is not registered
in the RECON data set. No information
blocks are returned.

X'00000008' X'D8210003' The specified DBNAME is a HALDB.
DBNAME must specify a non-HALDB or a
HALDB partition name. No information
blocks are returned.

X'00000008' X'D8210004' The specified group is not registered in the
RECON data set. No information blocks are
returned.

X'00000008' X'D8210005' The specified group is not a DBDS or CA
group. No information blocks are returned.

Chapter 30. DBRC query request (QUERY) 415

Table 91. DSPAPI FUNC=QUERY TYPE=DBDS query return and reason codes (continued)

Code type Return code Reason code Meaning

X'00000008' X'D8210006' The specified DBNAME is not registered in
RECON. No information blocks are returned.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8210001' SAF or the DBRC cmd auth exit (DSPDCAX0)
has determined that the user is not
authorized to perform the request.

Storage error X'00000028' X'D8210001' Error obtaining storage for DBDS block.

X'00000028' X'D8210002' Error obtaining storage for AREA block.

X'00000028' X'D8210003' Error obtaining storage for RCVINFO block.

X'00000028' X'D8210004' Error obtaining storage for ALLOC block.

X'00000028' X'D8210005' Error obtaining storage for IC block.

X'00000028' X'D8210006' Error obtaining storage for REORG block.

X'00000028' X'D8210007' Error obtaining storage for RECOV block.

X'00000028' X'D9100001' An error occurred processing the request.
DBRC releases any storage obtained up to
this point. However, another error was
encountered during the attempt to release
storage.

Internal error X'0000002C' X'D8000001' Failure opening the RECON data set.

X'0000002C' X'D8210001' Failure locating the first DBDS record.

X'0000002C' X'D8210002' Failure locating the specified DBDS record.

X'0000002C' X'D8210003' Failure locating the next DBDS record.

X'0000002C' X'D8210004' Failure locating the first Area Auth record.

X'0000002C' X'D8210005' Failure locating the first ALLOC record.

X'0000002C' X'D8210006' Failure locating the next ALLOC record.

X'0000002C' X'D8210007' Failure locating the first IC record.

X'0000002C' X'D8210008' Failure locating the next IC record.

X'0000002C' X'D8210009' Failure locating the first REORG record.

X'0000002C' X'D821000A' Failure locating the next REORG record.

X'0000002C' X'D821000B' Failure locating the first RECOV record.

X'0000002C' X'D821000C' Failure locating the next RECOV record.

X'0000002C' X'D821000D' Failure locating the specified group record
(DBDS group).

X'0000002C' X'D821000E' Failure locating the specified group record
(CA group).

X'0000002C' X'D821000F' Failure locating a DBDS from the specified
group record.

X'0000002C' X'D8210010' Failure locating the DB record with the
specified DBNAME.

416 System Programming APIs

Table 91. DSPAPI FUNC=QUERY TYPE=DBDS query return and reason codes (continued)

Code type Return code Reason code Meaning

X'0000002C' X'D8210011' Failure attempting to locate the first AVAIL
IC record.

X'0000002C' X'D8210012' Failure attempting to locate the next AVAIL
IC record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list that is passed to the API is
invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage that is not owned by the calling
program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage that is not owned by the calling
program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage that is not owned by the calling
program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage that is not owned by the calling
program.

X'00000030' X'C9000008' Invalid DBNAME or GROUP address. The
address of the field containing the DBNAME
or GROUP failed validity checking. The
address specifies storage that is not owned by
the calling program.

X'00000030' X'C9000009' Invalid DDN address. The address of the
field containing the DDN failed validity
checking. The address specifies storage that is
not owned by the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8000003' Query TYPE=DBDS requires a minimum API
version of 2.0.

X'00000030' X''D8210001' The DBNAME or GROUP is required.

X'00000030' X'D8210002' DDN specified with invalid LOC value. Only
LOC=NEXT|SPEC can be entered.

X'00000030' X'D8210003' Invalid LOC value. When no DDN is
specified only LOC=FIRST can be used.

X'00000030' X'D8210004' The DDN parameter is not allowed with
GROUP parameter.

X'00000030' X'D8210005' The LOC is not allowed with GROUP
parameter.

Chapter 30. DBRC query request (QUERY) 417

The following block mappings relate to the TYPE=DB and TYPE=DBDS request:
v DSPAPQAR – Fast Path AREA block
v DSPAPQDS – DBDS block
v DSPAPQEL – EEQE List
v DSPAPQSL – Subsystem List (Fast Path only)
v DSPAPQRI – Recovery Information (RCVINFO) block
v DSPAPQAL – Allocation block
v DSPAPQIC – Image Copy block
v DSPAPQRV – Recovery block
v DSPAPQRR – Reorganization block
Related concepts:
Chapter 26, “DBRC API,” on page 359
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385
“Database query request (TYPE=DB)” on page 390
“COMMAND output block mapping” on page 382

Group query request (TYPE=*GROUP)
You can use the Group query (DSPAPI FUNC=QUERY TYPE=*GROUP) request to
retrieve group and member information for various types of groups that are
registered in the RECON data set.

The following list outlines the groups that you can retrieve information for through
the Group query (DSPAPI FUNC=QUERY TYPE=*GROUP) request:
v DBDS group (TYPE=DBDSGROUP)
v DB group (TYPE=DBGROUP)
v Recovery group (TYPE=RECOVGROUP)
v CA group (TYPE=CAGROUP)
v Global service group (TYPE=GSGROUP)

Subsections:
v “Syntax for the TYPE=*GROUP query request”
v “Parameters for the TYPE=*GROUP query request” on page 419
v “Return and reason codes for the TYPE=*GROUP query request” on page 420
v “Output for the TYPE=*GROUP query request” on page 422
v “Output for QUERY TYPE=DBDSGROUP, DBGROUP, and RECOVGROUP” on

page 422
v “DSECT of DSPAPQDG” on page 422
v “Output for QUERY TYPE=CAGROUP” on page 423
v “DSECT of DSPAPQCG” on page 424
v “DSECT of DSPAPQCA” on page 424
v “Output for QUERY TYPE=GSGROUP” on page 425
v “DSECT of DSPAPQGG” on page 425

Syntax for the TYPE=*GROUP query request

418 System Programming APIs

►►
name

DSPAPI FUNC=QUERY TYPE=DBDSGROUP
TYPE=DBGROUP
TYPE=RECOVGROUP

CAINFO=NO
TYPE=CAGROUP

CAINFO=YES
TYPE=GSGROUP

►

► TOKEN=address
GROUP=*

GROUP=name*
GROUP=name
NAME=*
NAME=name*
NAME=name

MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

►

► OUTPUT=output
SUBPOOL=0

SUBPOOL=number RETCODE=returncode
►

►
RSNCODE=reasoncode

VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=*GROUP query request

name Optional symbol you can specify. If used, begins in column 1.

TYPE=DBDSGROUP | DBGROUP | RECOVGROUP | CAGROUP |
GSGROUP

Specifies the type of group for which information is requested.

CAINFO= YES | NO
Specifies whether CA execution information is to be included with the
CAGROUP information. CAINFO is valid only with TYPE=CAGROUP.
CAINFO defaults to NO when TYPE=CAGROUP is specified, indicating
that only the CA group member information is requested.

If CAINFO=NO is specified or if CAINFO=YES is specified and no CA
execution information exists, the block-dependent pointer (apqhd_depptr)
in the header of the CAGROUP block is 0.

TOKEN=symbol | (2 - 12)
Specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

GROUP= * | symbol | symbol* | (2 - 12)
Specifies the name of the group being queried. You can use the wildcard
keyword * (an asterisk) alone to request information about all groups. You
can also use the wildcard at the end of a name, in which case the asterisk
must be preceded by at least one alphabetic character. The default is
GROUP=*.

Either the GROUP keyword or the NAME keyword can be used. GROUP
is preferred. NAME is accepted for compatibility.

Chapter 30. DBRC query request (QUERY) 419

NAME= * | symbol | symbol* | (2 - 12)
See the GROUP parameter.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of
group information blocks. See “Output for the TYPE=*GROUP query
request” on page 422 for a detailed description of the information blocks
returned.

The output address is zero if no output was built which can occur if
nothing in the RECON satisfies the request or if an error occurs before any
output could be built.

The storage for the output blocks is not preallocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

Valid version numbers for the FUNC=QUERY TYPE=xxxxGROUP request
are 1.0 and 2.0.

Return and reason codes for the TYPE=*GROUP query request

The following table contains most of the return and reason codes for
TYPE=*GROUP query requests.

420 System Programming APIs

Table 92. Return and reason codes for TYPE=*GROUP query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8300001' No group records of the requested type exist
in the RECON data set.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8300100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Storage error X'00000028' X'D8300001' Error obtaining storage for CAGROUP block.

X'00000028' X'D8300002' Error obtaining storage for GSG block.

X'00000028' X'D8300003' Error obtaining storage for DBDSGRP,
DBGRP, or RECOVGRP block.

X'00000028' X'D8310001' Error obtaining storage for CA block.

X'00000028' X'D9100001' An error occurred processing the request.
DBRC releases storage that was obtained up
to this point. However, another error was
encountered during the attempt to release
storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8300001' Failure locating a specific group record or the
first group record of the requested group
type.

X'0000002C' X'D8300002' Failure locating the next group record of the
requested group type.

X'0000002C' X'D8300003' Failure locating a CA record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

Chapter 30. DBRC query request (QUERY) 421

Table 92. Return and reason codes for TYPE=*GROUP query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000008' Invalid GROUP or NAME field address. The
address of the field containing the group
name failed validity checking. The address
specifies storage not owned by the calling
program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8300001' CAINFO=YES is only allowed with
TYPE=CAGROUP.

X'00000030' X'D8300100' When using a wildcard, at least one
alphabetic character must precede the
asterisk.

X'00000030' X'D8300101' When using a wildcard, the asterisk must be
the last character.

Output for the TYPE=*GROUP query request

The next few figures illustrate the format of the output from a QUERY
TYPE=*GROUP requests. Following the figures that graphically describe the layout
of the output are sample DSECTs that describe in detail the fields of the storage
blocks and their relationship to each other.

Output for QUERY TYPE=DBDSGROUP, DBGROUP, and
RECOVGROUP

DSECT of DSPAPQDG
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ============================

0 (0) STRUCTURE 32 DSPAPQDG
0 (0) CHARACTER 8 APQDG_GROUPNAME Group name
8 (8) UNSIGNED 4 APQDG_MEMBERINFO Offset to group member list

12 (C) UNSIGNED 2 APQDG_MEMBERLEN Length of group member entry
14 (E) SIGNED 2 APQDG_MEMBERCOUNT Number of group members
16 (10) SIGNED 4 *(3) Reserved
28 (1C) CHARACTER 4 * Reserved

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ============================

0

Group data
(DSPAPQDG)

Member info
(APQDG_MEMBER)

DSPAPQDG length
DBDSGRP,
DBGRP, or
RECOVGRP

dependent
pointer

next
pointer

block
offset

version

. . .

00 SP

Figure 20. Format for QUERY TYPE=DBDSGROUP, DBGROUP, RECOVGROUP output

422 System Programming APIs

0 (0) STRUCTURE 16 APQDG_MEMBER List of group members
0 (0) CHARACTER 16 *
0 (0) CHARACTER 16 APQDG_DBDSG DBDS group
0 (0) CHARACTER 8 APQDG_DBDSG_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQDG_DBDSG_DDNAME DD name or
8 (8) CHARACTER 8 APQDG_DBDSG_AREANAME AREA name
0 (0) CHARACTER 16 APQDG_DBG DB group
0 (0) CHARACTER 8 *
0 (0) CHARACTER 8 APQDG_DBG_DBNAME Database name or
0 (0) CHARACTER 8 APQDG_DBG_AREANAME AREA name
8 (8) CHARACTER 8 * Not used
0 (0) CHARACTER 16 APQDG_RECOVG Recovery group
0 (0) CHARACTER 8 APQDG_RECOVG_DBNAME Database name
8 (8) CHARACTER 8 APQDG_RECOVG_AREANAME AREA name, null if

not Fast Path

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQDG APQDG_EYECATCHER

Output for QUERY TYPE=CAGROUP

The CA block is only returned when CAINFO=YES is specified and records of a
change accumulation exist in the RECON.

CA group members
(APQCG_MEMBER)

0

CA data
(DSPAPQCA)

CA member data
(APQCA_MEMBER)

Volume info
(APQCA_VOL_DATA)

VOLSER list
(APQCA_VOLSER)

CA Group data
(DSPAPQCG)

RCVINFO Output
(DSPAPQRI)

DSPAPQCG

DSPAPQCA

length

length

CAGROUP

CA

dependent
pointer

dependent
pointer

next
pointer

next
pointer

block
offset

block
offset

version

version

. . .

. . .

00

00

SP

SP

Figure 21. Format for QUERY TYPE=CAGROUP output

Chapter 30. DBRC query request (QUERY) 423

DSECT of DSPAPQCG
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 48 DSPAPQCG
0 (0) CHARACTER 8 APQCG_GROUPNAME Group name
8 (8) UNSIGNED 4 APQCG_MEMBERINFO Offset to group member list

12 (C) UNSIGNED 2 APQCG_MEMBERLEN Length of group member entry
14 (E) SIGNED 2 APQCG_MEMBERCOUNT Number of group members
16 (10) SIGNED 4 *(2) Reserved
24 (18) SIGNED 2 APQCG_GRPMAX Maximum number of CAs that may

be predefined for this CA group
26 (1A) SIGNED 2 APQCG_AVAILCA# Number of available CA data

sets for this group
28 (1C) SIGNED 2 APQCG_USEDCA# Number of used CA data sets
30 (1E) BIT(8) 1 APQCG_FLAGS Flags

1... APQCG_REUSE Reuse CA data sets
31 (1F) CHARACTER 1 * Reserved
32 (20) CHARACTER 8 APQCG_CAJCL GENJCL CAJCL member name
40 (28) CHARACTER 8 APQCG_DFJCL DEFLTJCL member name
48 (30) SIGNED 2 APQCG_RECOVPD Retention Period (Version=4.0)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 16 APQCG_MEMBER List of group members
0 (0) CHARACTER 8 APQCG_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQCG_DDNAME DD name or
8 (8) CHARACTER 8 APQCG_AREANAME AREA name

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQCG APQCG_EYECATCHER

DSECT of DSPAPQCA
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 96 DSPAPQCA
0 (0) CHARACTER 8 APQCA_GROUPNAME Group name
8 (8) UNSIGNED 4 APQCA_MEMBERINFO Offset to group member list

12 (C) UNSIGNED 2 APQCA_MEMBERLEN Length of each member entry
14 (E) SIGNED 2 APQCA_MEMBERCOUNT Number of group members
16 (10) UNSIGNED 4 APQCA_VOLINFO Offset to volume information
20 (14) SIGNED 4 * Reserved
24 (18) CHARACTER 44 APQCA_DSN Data set name
68 (44) CHARACTER 12 APQCA_STOPTIME Packed decimal date/time - for

predefined datasets, represents
record creation time.
Otherwise, it is the stoptime
of the last logtape volume used
as input to the Change
Accumulation utility that
produced this CA as output. If
the CA run included an
’incomplete log subset’ it is
the start time of the first
truncated log volume.

80 (50) CHARACTER 12 APQCA_RUNTIME CA run time
92 (5C) BIT(8) 1 APQCA_FLAGS Flags

1... APQCA_ERROR Error on data set
.1.. APQCA_SUBSET Subset of logs used for CA
..1. APQCA_COMMAND SUBSET/COMP has been set or

424 System Programming APIs

reset with an external cmd
...1 APQCA_AVAIL Available CA indicator

93 (5D) CHARACTER 3 * Reserved
96 (60) UNSIGNED 4 APQCA_OFFUD Offset to user data (VERSION=4.0)

100 (64) UNSIGNED 2 APQCA_LENUD Length of user data (VERSION=4.0)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 80 APQIC_USER Data for user IC
0 (0) CHARACTER 80 APQRV_UDATA User supplied data (VERSION=4.0)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 56 APQCA_MEMBER List of group members
0 (0) CHARACTER 8 APQCA_MEM_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQCA_MEM_DDNAME DD name or
8 (8) CHARACTER 8 APQCA_MEM_AREANAME AREA name

16 (10) UNSIGNED 4 APQCA_MEM_DSSN Data Set sequence number
20 (14) UNSIGNED 4 APQCA_MEM_USID USID of last change

accumulated
24 (18) CHARACTER 8 APQCA_MEM_LRID LRID of last change accumulated
32 (20) CHARACTER 12 APQCA_MEM_PURGETIME Purge time
44 (2C) CHARACTER 6 APQCA_MEM_LSN Lock sequence number
50 (32) BIT(8) 1 APQCA_MEM_FLAGS Member flags

1... APQCA_MEM_NOCHG No changes accumulated
.1.. APQCA_MEM_INDOUBT Indoubt EEQEs accumulated
..1. APQCA_MEM_INCOMP Incomplete CA

51 (33) CHARACTER 5 * Reserved

Output for QUERY TYPE=GSGROUP

DSECT of DSPAPQGG
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 80 DSPAPQGG
0 (0) CHARACTER 8 APQGG_GROUPNAME Group name
8 (8) UNSIGNED 4 APQGG_MEMBERINFO Offset to group member list

12 (C) UNSIGNED 2 APQGG_MEMBERLEN Length of group member entry
14 (E) SIGNED 2 APQGG_MEMBERCOUNT Number of group members
16 (10) SIGNED 4 *(2) Reserved
24 (18) UNSIGNED 4 APQGG_SDSN# SLDS DSN sequence number
28 (1C) UNSIGNED 4 APQGG_PTOKEN Current PRILOG token
32 (20) UNSIGNED 4 APQGG_MPTOK Min required PRILOG token
36 (24) UNSIGNED 4 APQGG_TTOKN Planned takeover token
40 (28) CHARACTER 12 APQGG_LOGTIME Current log start time
52 (34) CHARACTER 12 APQGG_HITIME Highest time ever received from

0

Global Service
group data
(DSPAPQGG)

Member info
(APQGG_MEMBER)

DSPAPQGG length GSG
dependent
pointer

next
pointer

block
offset

version

. . .

00 SP

Figure 22. Format for QUERY TYPE=GSGROUP output

Chapter 30. DBRC query request (QUERY) 425

the active site
64 (40) CHARACTER 8 APQGG_TSNAME Tracking subsystem ID
72 (48) BIT(8) 1 APQGG_FLAGS

1... APQGG_ACTTKO Active takeover in progress
.1.. APQGG_1STSIGNON Indicates the first signon of

an active subsystem after an
RSR takeover

..1. APQGG_TRKTKO Tracker takeover in progress

...1 APQGG_RESET RESET.GSG issued
73 (49) CHARACTER 7 * Reserved

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 16 APQGG_MEMBER List of group members
0 (0) CHARACTER 8 APQGG_SGNAME Service group name
8 (8) CHARACTER 1 APQGG_SGROLE Role ’A’ OR ’T’
9 (9) BIT(8) 1 APQGG_SGFLAGS Flags

1... APQGG_SGLOCAL 1 = local SG
10 (A) CHARACTER 6 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQGG APQGG_EYECATCHER

Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385

DBRC request return codes (Messages and Codes)

Log query request (TYPE=LOG)
You can use the Log query (DSPAPI FUNC=QUERY TYPE=LOG) request to
retrieve log information from RECON for a specific instance of a subsystem.

If the request is for non-RSR logs or RSR active subsystem logs, information from
the following RECON data sets is returned:
v PRILOG
v LOGALL
v SECLOG (if applicable)
v PRISLDS (if applicable)
v SECSLDS (if applicable)

If the request is for RSR tracking subsystem logs, information from the following
RECON data sets is returned:
v PRITSLDS
v SECTSLDS (if applicable)

The log query request can also return log information for subsystems that started
in a specified time range. This request can also be used for a specific subsystem.

Subsections:
v “Syntax for the TYPE=LOG query request” on page 427
v “Parameters for the TYPE=LOG query request” on page 427
v “Return and reason codes for the TYPE=LOG query request” on page 429

426 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes

v “Output for the TYPE=LOG query request” on page 431
v “Log information output” on page 432
v “DSECT of DSPAPQLI” on page 432
v “TYPE=LOG output for PRILOG, SECLOG, PRISLDS, SECSLDS, PRITSLDS, and

SECTSLDS” on page 433
v “DSECT of DSPAPQLG” on page 433
v “TYPE=LOG output for LOGALL” on page 434
v “DSECT of DSPAPQLA” on page 434

Syntax for the TYPE=LOG query request

►►
name

DSPAPI FUNC=QUERY TYPE=LOG TOKEN=address ►

►
LOC=SPEC

STARTIME=time
LOC=PREV
LOC=NEXT SSID=subsystem_ID

FROMTIME=time
TOTIME=time SSID=subsystem_ID

TOTIME=time
SSID=subsystem_ID

►

►
TRACKER=NO

TRACKER=YES SSID=subsystem_ID RETCODE=returncode
►

►
RSNCODE=reasoncode

OUTPUT=output
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

►

►
SUBPOOL=0

SUBPOOL=number

VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=LOG query request

name Optional symbol you can specify. If used, begins in column 1.

TYPE=LOG
Specifies that log information is requested.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

STARTIME=time | (2-12)
Specifies the time stamp field that contains the start time of the requested
log. The time is a packed decimal time stamp in UTC format.

Chapter 30. DBRC query request (QUERY) 427

FROMTIME=time | (2-12)
Specifies the time stamp field that limits the logs requested to those whose
subsystem started at, or after, the specified time. The time is a packed
decimal time stamp in UTC format.

If you specify this parameter, you must also specify a minimum version
number of DBRC API VERSION=2.0.

TOTIME=time | (2-12)
Specifies the time stamp field that limits the logs requested to those whose
subsystem started at, or before, the specified time. The time is a packed
decimal time stamp in UTC format. This parameter may be used along
with the FROMTIME parameter.

If you specify this parameter requires that you also specify a minimum
version number of API VERSION=2.0.

SSID=subsystem_ID | (2-12)
Specifies the subsystem name for the log being queried.

SSID is required for RSR tracking subsystem log queries (TRACKER=YES).
Otherwise you can specify the SSID parameter only when requesting the
previous or next log of a specific subsystem, for example, when LOC
previous or next is specified, or a range of logs for a specific subsystem
using the FROMTIME or TOTIME parameters.

LOC=PREV | NEXT | SPEC
Specifies that the request is for the log with a specified start time
(LOC=SPEC), a start time preceding the specified start time (LOC=PREV),
or a start time following the specified start time (LOC=NEXT). The
STARTIME parameter is used as the base of the search and does not need
to be the start time of a login RECON.

LOC=SPEC is the default.

TRACKER=NO | YES
Specifies whether log information is being requested for an RSR tracking
subsystem or not. Specify TRACKER=YES to request the RSR tracker's log
information. Specify TRACKER=NO to request log information from a
non-RSR subsystem or an active subsystem of an RSR system.
TRACKER=NO is the default.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of
log information blocks.

The output address is zero if no output was built. This can occur if nothing
in the RECON satisfies the request or if an error occurs before any output
could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

428 System Programming APIs

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

VERSION=2.0|number
Specifies the version number of the parameter list that is generated by this
macro.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

Valid version numbers for the FUNC=QUERY TYPE=LOG request are 1.0
and 2.0.

Return and reason codes for the TYPE=LOG query request

Table 93. Return and reason codes for TYPE=LOG query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8400001' No log record of the requested log type
(PRILOG or PRITSLDS) exists. The request
was the previous or next log or logs within a
time range specified by FROMTIME or
TOTIME.

X'00000008' X'D8400002' The specified log record of the requested log
type - PRILOG or PRITSLDS - does not exist.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8400100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Storage error X'00000028' X'D8400001' Error obtaining storage for LOGINFO block.

X'00000028' X'D8400002' Error obtaining storage for PRILOG,
SECLOG, PRISLDS, SECSLDS, PRITSLDS, or
SECTSLDS block.

X'00000028' X'D8400003' Error obtaining storage for LOGALL block.

Chapter 30. DBRC query request (QUERY) 429

Table 93. Return and reason codes for TYPE=LOG query requests (continued)

Code type Return codes Reason codes Meaning

X'00000028' X'D9100001' An error occurred processing the request.
DBRC will release storage that was obtained
up to this point. However, another error was
encountered during the attempt to release
storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8400001' Failure locating the previous or next log
record of the requested log type - PRILOG or
PRITSLDS.

X'0000002C' X'D8400002' Failure locating the specified log record of the
requested log type - PRILOG or PRITSLDS.

X'0000002C' X'D8400003' Failure locating the corresponding SECTSLDS
record.

X'0000002C' X'D8400004' Failure locating the LOGALL record that
corresponds to the PRILOG record.

X'0000002C' X'D8400005' The LOGALL record that corresponds to the
PRILOG record does not exist.

X'0000002C' X'D8400006' Failure locating the corresponding SECLOG
record.

X'0000002C' X'D8400007' Failure locating the corresponding PRISLDS
record.

X'0000002C' X'D8400008' No PRISLDS record exists for the online log.

X'0000002C' X'D8400009' Failure locating the corresponding SECSLDS
record.

X'0000002C' X'D840000A' Failure occurred in DBRC Time Services
processing FROMTIME.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the
field containing the SSID failed validity
checking. The address specifies storage not
owned by the calling program.

430 System Programming APIs

Table 93. Return and reason codes for TYPE=LOG query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000011' Invalid STARTIME field address. The address
of the field containing the STARTIME failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000012' Invalid FROMTIME field address. The
address of the field that contains the
FROMTIME parameter failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'C9000013' Invalid TOTIME field address. The address of
the field that contains the TOTIME parameter
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8400001' The STARTIME, FROMTIME, or TOTIME
parameter is required.

X'00000030' X'D8400002' SSID is required with TRACKER=YES.

X'00000030' X'D8400003' The SSID parameter is not allowed when
querying a specific active log (LOC=SPEC
and TRACKER=NO).

X'00000030' X'D8400006' The FROMTIME parameter value must be
less than the TOTIME parameter value.

X'00000030' X'D8400007' STARTIME cannot be specified with
FROMTIME | TOTIME.

X'00000030' X'D8400008' LOC cannot be specified with FROMTIME or
TOTIME.

X'00000030' X'D8400010' The value passed in the FROMTIME
parameter is not a valid time

Output for the TYPE=LOG query request

The following figures illustrate the format of output from a QUERY TYPE=LOG
requests. The sample DSECTs that follow the figures describe in detail the fields of
the storage blocks and their relationship to each other.

Chapter 30. DBRC query request (QUERY) 431

Log information output

DSECT of DSPAPQLI
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 48 DSPAPQLI
0 (0) CHARACTER 8 APQLI_SSID Log SSID
8 (8) CHARACTER 12 APQLI_STARTTIME Log start time

20 (14) ADDRESS 4 APQLI_PRILOGPTR ptr to PRILOG block
24 (18) ADDRESS 4 APQLI_LOGALLPTR ptr to LOGALL block
28 (1C) ADDRESS 4 APQLI_SECLOGPTR ptr to SECLOG block
32 (20) ADDRESS 4 APQLI_PRISLDSPTR ptr to PRISLDS block
36 (24) ADDRESS 4 APQLI_SECSLDSPTR ptr to SECSLDS block
40 (28) ADDRESS 4 APQLI_PRITSLDSPTR ptr to PRITSLDS block
44 (2C) ADDRESS 4 APQLI_SECTSLDSPTR ptr to SECTSLDS block

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQLI APQLI_EYECATCHER

PRILOG block

LOGALL block

SECLOG block

PRISLDS block

SECSLDS block

PRITSLDS block

SECTSLDS block

0

DSPAPQLI

PRILOGSSID STARTTIME

length

LOGALL

LOGINFO

SECLOG

dependent
pointer

PRISLDS

next
pointer

SECSLDS

block
offset

PRITSLDS

version

SECTSLDS

. . .

00 SP

Figure 23. Format for QUERY TYPE=LOG log information output

432 System Programming APIs

TYPE=LOG output for PRILOG, SECLOG, PRISLDS, SECSLDS,
PRITSLDS, and SECTSLDS

DSECT of DSPAPQLG
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 96 DSPAPQLG
0 (0) UNSIGNED 4 APQLG_FIRSTLOGDS Offset to first log DS entry
4 (4) UNSIGNED 4 APQLG_LASTLOGDS Offset to last log DS entry
8 (8) SIGNED 4 *(2) Reserved
16 (10) CHARACTER 8 APQLG_SSID Subsystem ID
24 (18) CHARACTER 12 APQLG_STARTTIME Log start time
36 (24) CHARACTER 12 APQLG_ENDTIME Log end time
48 (30) SIGNED 4 APQLG_DSNCOUNT Number of data sets
52 (34) UNSIGNED 1 APQLG_RELVL Log Release Level

1... APQLG_ONLINE Online log - PRILOG and SECLOG only
.1.. APQLG_LSTAR Last OLDS has been archived - PRILOG and PRITSLDS only
..1. APQLG_LSTNA Last OLDS has not been archived - PRILOG and PRITSLDS only
...1 APQLG_GAP There is a gap in this log
.... 1... APQLG_PRGAP There is a gap in a prev log

53 (34) UNSIGNED 1 APQLG_FLAGS1 Flags
1... APQLG_ONLINE Online log - PRILOG and SECLOG only
.1.. APQLG_LSTAR Last OLDS has been archived – PRILOG

and PRITSLDS only
..1. APQLG_LSTNA Last OLDS has not been archived –

PRILOG and PRITSLDS only
...1 APQLG_GAP There is a gap in this log
.... 1... APQLG_PRGAP There is a gap in a prev log
.... .1.. APQLG_BPE BPE-based subsystem (VERSION=4.0)

54 (36) BIT(8) 1 APQLG_FLAGS2 Flags
1... APQLG_TRKNG Tracking log data set
.1.. APQLG_NTERM IMS subsystem has terminated normally
..1. APQLG_BKLOG Batch backout log

55 (37) CHARACTER 1 * Reserved
56 (38) CHARACTER 8 APQLG_FIRSTLRID Id of first log record
64 (40) UNSIGNED 4 APQLG_PTOKEN PRILOG token
68 (44) CHARACTER 8 APQLG_GSGNAME GSG name
76 (4C) CHARACTER 12 APQLG_CHKPT0 Checkpoint 0 time
88 (58) CHARACTER 8 * Reserved OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ==============================

0 (0) STRUCTURE 120 APQLG_DS_ENTRY Data set entry
0 (0) UNSIGNED 4 APQLG_DS_NEXT Offset to next log DS entry
4 (4) UNSIGNED 4 APQLG_DS_PREV Offset to prev log DS entry
8 (8) UNSIGNED 4 APQLG_DS_VOLINFO Offset to DS volume info
12 (C) CHARACTER 44 APQLG_DS_DSNAME Data set name
56 (38) CHARACTER 12 APQLG_DS_STARTTIME DS start time
68 (44) CHARACTER 12 APQLG_DS_ENDTIME DS end time
80 (50) BIT(8) 1 APQLG_DS_FLAGS1 Flags

0 00

DSPAPQLG length

PRILOG,
SECLOG,
PRISLDS,
SECSLDS,
PRITSLDS,
or
SECTSLDS

dep
ptr

next
ptr

block
offset

version

Log data
(DSPAPQLG)

Log DS entry data
(APQLG_DS_ENTRY)

Log
volumes

Log DS
entry Data

Log volumes
(APQLG_DSVOLUME)

. . .

00 SP

Figure 24. Format for QUERY TYPE=LOG output for PRILOG, SECLOG, PRISLDS, SECSLDS, PRITSLDS, and
SECTSLDS

Chapter 30. DBRC query request (QUERY) 433

1... APQLG_DS_ERR I/O Error
.1.. APQLG_DS_DUMMY Log compressed, 1st DS dummy
..1. APQLG_DS_RSTBG Restart begin
...1 APQLG_DS_RSTEN Restart end
.... 1... APQLG_DS_COLD Cold start
.... .1.. APQLG_DS_NOBMP ERE NOBMP
.... ..1. APQLG_DS_SAVER Backout UORs saved
.... ...1 APQLG_DS_NOID Backouts not identified

81 (51) BIT(8) 1 APQLG_DS_FLAGS2 Flags
1... APQLG_DS_TRKARCH Tracking log DS archived
.1.. APQLG_DS_TRKFEOV Tracking log closed FEOV

82 (52) CHARACTER 2 APQLG_DS_DFLG3 Reserved
84 (54) CHARACTER 8 APQLG_DS_FLRID First log record ID
92 (5C) CHARACTER 8 APQLG_DS_LLRID Last log record ID
100 (64) UNSIGNED 4 APQLG_DS_LASTBLKSEQNO Last block seq number
104 (68) CHARACTER 8 APQLG_DS_UNITTYPE Unit type name
112 (70) UNSIGNED 2 APQLG_DS_FILESEQ File sequence no
114 (72) UNSIGNED 2 APQLG_DS_VOLCOUNT Number of volumes
116 (74) UNSIGNED 1 APQLG_DS_CKPTCOUNT Number of chkpts on DSN
117 (75) BIT(8) 1 APQLG_DS_CHKPTTYPES CHKPT types.

1... APQLG_DS_SIMPL SIMPLE checkpoint
.1.. APQLG_DS_SNAPQ SNAPQ checkpoint
..1. APQLG_DS_DUMPQ DUMPQ checkpoint
...1 APQLG_DS_PURGE PURGE checkpoint
.... 1... APQLG_DS_FREEZ FREEZE checkpoint

118 (76) UNSIGNED 2 * Reserved
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 48 APQLG_DSVOLUME Volume information
0 (0) UNSIGNED 4 APQLG_DSVOL_NEXT Offset to next volume
4 (4) CHARACTER 6 APQLG_DSVOL_SER VOLSER
10 (A) UNSIGNED 1 APQLG_DSVOL_CKPTCT Volume chkpt count
11 (B) CHARACTER 1 * Reserved
12 (C) CHARACTER 12 APQLG_DSVOL_ENDTIME Volume end time
24 (18) CHARACTER 12 APQLG_DSVOL_CPTID Checkpoint ID
36 (24) CHARACTER 6 APQLG_DSVOL_LOCKSN Lock Sequence Number
42 (2A) CHARACTER 6 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQLG APQLG_EYECATCHER

TYPE=LOG output for LOGALL

DSECT of DSPAPQLA
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 48 DSPAPQLA
0 (0) UNSIGNED 4 APQLA_DBDSAREAINFO Offset to allocated

DBDS/Area list
4 (4) SIGNED 4 *(3) Reserved
16 (10) CHARACTER 12 APQLA_PRILOGTIME PRILOG time
28 (1C) BIT(8) 1 APQLA_FLAGS Flags

1... APQLA_NONREGD Non-registered DB updated
29 (1D) UNSIGNED 3 APQLA_DBDSAREACOUNT Number of DBDS/Areas

0 0

LOGALL data
(DSPAPQLA)

DBDS/Area list
(APQLA_DBDSAREA)

DSPAPQLA length LOGALL
dependent
pointer

next
pointer

block
offset

version00 SP

Figure 25. Format for QUERY TYPE=LOG output for LOGALL

434 System Programming APIs

allocated on this log
32 (20) UNSIGNED 4 APQLA_DBDSAREALEN Length of DBDS/Area entry
36 (24) CHARACTER 12 APQLA_EARLIESTALLOC Earliest ALLOC time for

this log

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 32 APQLA_DBDSAREA List of allocated DBDSs and
areas

0 (0) CHARACTER 8 APQLA_DBNAME Database name
8 (8) CHARACTER 8 *
8 (8) CHARACTER 8 APQLA_DDNAME DD name or
8 (8) CHARACTER 8 APQLA_AREANAME AREA name
16 (10) CHARACTER 12 APQLA_FIRSTALLOC Earliest ALLOC time for this

DBDS/Area on this log
28 (1C) SIGNED 2 APQLA_ALLNO Number of ALLOCs for this

DBDS/Area on this log
30 (1E) CHARACTER 2 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQLA APQLA_EYECATCHER

Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385

OLDS query request (TYPE=OLDS)
You can use the OLDS query (DSPAPI FUNC=QUERY TYPE=OLDS) request to
retrieve online log data set information from the RECON for a specific subsystem
or all subsystems.

Syntax for the TYPE=OLDS query request

►►
name

DSPAPI FUNC=QUERY TYPE=OLDS TOKEN=address ►

►
SSID=*

SSID=subsystem_ID*
SSID=subsystem_ID

MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

OUTPUT=output ►

►
SUBPOOL=0

SUBPOOL=number RETCODE=returncode RSNCODE=reasoncode
►

►
VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=OLDS query request

name Optional symbol you can specify. If used, begins in column 1.

Chapter 30. DBRC query request (QUERY) 435

TYPE=OLDS
Specifies that online log data set information is requested.

TOKEN=symbol | (2 - 12)
Specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

SSID=* | symbol*| symbol | (2 - 12)
Specifies the subsystem name for the backout being queried. You can use
the wildcard keyword * (an asterisk) alone to request all of the OLDS
information (SSID=*, the default). You can also use it at the end of a name
to query subsystem names that match the pattern. In this case, the asterisk
must be preceded by at least one alphabetic character.

MF=S | L | M | E
Specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of
OLDS information blocks.

The output address is zero if no output was built. This can occur if nothing
in the RECON satisfies the request or if an error occurs before any output
could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

Valid version numbers for the FUNC=QUERY TYPE=OLDS request are 1.0
and 2.0 (default).

436 System Programming APIs

Return and reason codes for the TYPE=OLDS query request

Table 94. Return and reason codes for TYPE=OLDS query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8500001' No PRIOLDS records exist.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8500100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Storage error X'00000028' X'D8500001' Error obtaining storage for OLDS block.

X'00000028' X'D9100001' An error occurred processing the request.
DBRC will release storage that was obtained
up to this point. However, another error was
encountered during the attempt to release
storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8500001' Failure locating the first or the specified
PRIOLDS record.

X'0000002C' X'D8500002' Failure locating the corresponding SECOLDS
record.

X'0000002C' X'D8500003' Failure locating the next PRIOLDS record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the
field containing the SSID failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

Chapter 30. DBRC query request (QUERY) 437

Table 94. Return and reason codes for TYPE=OLDS query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'D8500100' When using a wildcard, at least one
alphabetic character must precede the
asterisk.

X'00000030' X'D8500101' When using a wildcard, the asterisk must be
the last character.

Output for the TYPE=OLDS query request

The following figure illustrates the format of the output from a QUERY
TYPE=OLDS request. The following DSECT sample describes in detail the fields of
the storage blocks and their relationship to each other.

DSECT of DSPAPQOL
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 48 DSPAPQOL
0 (0) UNSIGNED 4 APQOL_OLDSINFO Offset to OLDS list
4 (4) SIGNED 4 *(3) Reserved

16 (10) CHARACTER 8 APQOL_SSID Subsystem ID
24 (18) UNSIGNED 2 APQOL_OLDSLEN Length of OLDS entry
26 (1A) SIGNED 2 APQOL_OLDSCOUNT Number of OLDS entries
28 (1C) CHARACTER 12 APQOL_CHKPT0 Checkpoint 0 time
40 (28) CHARACTER 8 * Reserved

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 128 APQOL_OLDSENTRY OLDS entry

0 0

OLDS data
(DSPAPQOL) OLDS DD entries

DSPAPQOL length SECOLDS block
offset

version

OLDS data
(DSPAPQOL)

OLDS DD entries
(APQOL_OLDSENTRY)

DSPAPQOL length PRIOLDS
dependent
pointer

dependent
pointer

next
pointer

next
pointer

block
offset

version

. . .

00 SP

00 SP

Figure 26. Format for QUERY TYPE=OLDS output

438 System Programming APIs

0 (0) CHARACTER 8 APQOL_DDNAME OLDS DD name
8 (8) CHARACTER 44 APQOL_DSNAM OLDS data set name

52 (34) CHARACTER 12 APQOL_OPENTIME OLDS open time
64 (40) CHARACTER 12 APQOL_CLOSETIME Close time
76 (4C) CHARACTER 12 APQOL_PRILOGTIME Start time of associated

PRILOG
88 (58) CHARACTER 8 APQOL_FLSN LSN of first record in OLDS
96 (60) CHARACTER 8 APQOL_LLSN LSN of last record in OLDS

104 (68) BIT(8) 1 APQOL_FLAG1
1... APQOL_RSTBG Restart begin
.1.. APQOL_RSTEN Restart end
..1. APQOL_COLD Cold start
...1 APQOL_NOBMP ERE NOBMP
.... 1... APQOL_SAVER Backout UORs saved
.... .1.. APQOL_NOID Backouts not identified
.... ..1. APQOL_TRKNG OLDS created by tracking SS

105 (69) BIT(8) 1 APQOL_FLAG2 OLDS flags
1111 APQOL_STAT OLDS status
1... APQOL_INUSE OLDS is in use
.1.. APQOL_ARNED Archive needed
..1. APQOL_ARSCH Archive scheduled (GENJCL)
...1 APQOL_ARSTD Archive job started
.... 1... APQOL_CLERR Close error on OLDS
.... .1.. APQOL_FEOV Force EOV at archive
.... ..1. APQOL_DUMMY OLDS not used due to I/O err
.... ...1 APQOL_PRVCE Close error on previous OLDS

106 (6A) UNSIGNED 1 APQOL_RELVL Log release level
107 (6B) UNSIGNED 1 APQOL_GAVER GENJCL.ARCHIVE version
108 (6C) BIT(32) 4 APQOL_BLOCKSEQNO Block sequence number
112 (70) CHARACTER 8 APQOL_ARJOB Name of the archive job

Generated by GENJCL.ARCHIVE
120 (78) CHARACTER 6 APQOL_LOCKSEQNO Lock sequence number
126 (7E) CHARACTER 2 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQOL APQOL_EYECATCHER

Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385

HALDB partition query request (TYPE=PART)
You can use the DSPAPI FUNC=QUERY TYPE=PART request to retrieve
information for a particular HALDB partition from the RECON data set. You can
request data set information for a specific DBDS or all DBDSs in the partition, and
can optionally request recovery-related information for the data set, including
allocation, image copy, recovery, and reorganization information.

Syntax for the TYPE=PART query request

►►
name

DSPAPI FUNC=QUERY TYPE=PART TOKEN=address ►

Chapter 30. DBRC query request (QUERY) 439

►
LOC=ALL

DBNAME=name
LOC=FIRST
LOC=LAST

LOC=SPEC
PARTNAME=name

LOC=PREV
LOC=NEXT

DDN=NULL

DDN=ddname
DDN=*

LIST=NONE

LIST=(ALLOC)
IC
RECOV
REORG

LIST=ALL

►

►
RETCODE=returncode RSNCODE=reasoncode

OUTPUT=output ►

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

SUBPOOL=0

SUBPOOL=number

VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=PART query request

name Optional symbol you can specify. If used, begins in column 1.

TYPE=PART
Required parameter that specifies that RECON data set information for a
HALDB partition is requested.

When you specify the TYPE=PART, you must also specify a minimum
DBRC API version number of VERSION=2.0.

DBNAME=name | (2 - 12)
Specifies the HALDB name of the partition being queried. You can
optionally specify the LOC parameter, which indicates that you are
interested in either the first partition, last partition, or all partitions of the
specified HALDB. If the HALDB uses high keys, the request is for the
partition with the lowest or highest high key. Otherwise, the first or last
alphanumerical partition is returned. LOC=SPEC|PREV|NEXT may not be
specified.

PARTNAME=name | (2 - 12)
Required parameter that specifies the name of a HALDB partition being
queried.

The LOC parameter indicates the partition of interest:
v The default LOC=SPEC indicates a request for the specified partition.

This partition might be available or disabled.
v LOC=PREV indicates a request for the active partition in the HALDB

that is before the specified partition. If the HALDB uses high keys, the
request is for the partition with the lower high key. Otherwise, the
previous alphanumerical partition within the HALDB is returned. The
partition name specified must be the name of an active partition
registered in the RECON. This is required in order to ensure that the
previous partition is within the same HALDB

440 System Programming APIs

v LOC=NEXT indicates a request for the active partition in the HALDB
that is after the specified partition. If the HALDB uses high keys, the
request is for the partition with the higher high key. Otherwise, the next
alphanumerical partition within the HALDB is returned. The partition
name specified must be the name of an active partition registered in the
RECON. This is required to ensure that the next partition is within the
same HALDB.

v LOC=FIRST|LAST can not be specified with PARTNAME.

To use this parameter, you must also specify a minimum version number
of API VERSION=2.0.

DDN=NULL | (2 - 12) | * | ddname
Specifies the DD name of a DBDS set within the partition. An asterisk (*
without quotes) can also be specified indicating that information about all
DBDSs is requested. If a specific DDN is requested and the request is not
for a specific partition information is returned for all DBDSs of the
partition.

DDN=NULL indicates that no DBDS information is requested. This is the
default.

LIST=({ALLOC},{IC},{RECOV},{REORG}) | LIST=ALL | LIST=NONE
Specifies the types of supporting information to be included in the query
output for the specified DBDS. If DDN is not specified, this information is
returned for all DBDSs in the partition. One or more of the specific values
is included in the list: ALLOC (allocation records), IC (image copy records),
RECOV (recovery records), or REORG (reorganization records). LIST=ALL
requests all supporting information. LIST=NONE requests no supporting
information.

LOC=ALL | FIRST | LAST | PREV | NEXT | SPEC

The optional parameter specifies that the request is for the specified
partition (SPEC), or for the first, last, previous, next or all active partitions
defined in RECON for the HALDB. LOC=SPEC may return an active or
disabled partition. DBNAME is required with LOC=FIRST|LAST|ALL, but
is not allowed with LOC=PREV|NEXT|SPEC. Conversely, PARTNAME is
required with LOC=PREV|NEXT|SPEC, but is not allowed with
LOC=FIRST|LAST|ALL. LOC=ALL is the default with DBNAME.
LOC=SPEC is the default with PARTNAME.

Partitions are returned in high key order if the HALDB uses high keys.
Otherwise, partitions are returned in alphanumerical order.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field to receive the API token. This token
must be included in all subsequent requests associated with this
FUNC=STARTDBRC request.

RETCODE=returncode | (2 - 12)
Specifies a location in storage to receive the return code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the return code is placed in register 15.

RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the reason code is placed in register 0.

Chapter 30. DBRC query request (QUERY) 441

OUTPUT=output | (2 - 12)
Required parameter that specifies a field to receive a pointer to the first of
a possible chain of blocks that contain the information for the partition.

The output address is 0 if no output is built. This can happen if nothing in
the RECON data set satisfies the request or if an error occurs before any
output is built.

The storage for the output blocks is not pre-allocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Optional parameter that specifies the subpool number for the storage being
obtained. If not specified, the default is the subpool specified by the
FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Optional parameter that specifies the version number of the parameter list
that is generated by this request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted for processing and an error message is
issued at assembly time. If parameters have a version dependency, the
parameter descriptions with each request type identify the version number
required.

The default version is 2.0.

Note: TYPE=PART requires that you specify a minimum version number
of API VERSION=2.0.

Return and reason codes for the TYPE=PART query request

The following table contains most of the return and reason codes for TYPE=PART
query requests. The other possible return and reason codes relate to DBRC, not the
query request.

Table 95. Return and reason codes for TYPE=PART query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8210002' The specified DBDS or Area is not registered
in RECON. No information blocks are
returned.

X'00000008' X'D8220001' No partitions are registered in RECON for
the HALDB. No information blocks are
returned.

X'00000008' X'D8220002' The specified partition is not registered in
RECON. No information blocks are returned.

X'00000008' X'D8220003' A high key partition preceding the specified
partition does not exist in RECON. No
information blocks are returned.

442 System Programming APIs

Table 95. Return and reason codes for TYPE=PART query requests (continued)

Code type Return codes Reason codes Meaning

X'00000008' X'D8220004' A high key partition following the specified
partition does not exist in RECON. No
information blocks are returned.

X'00000008' X'D8220005' The DBNAME specified is not registered in
RECON. No information blocks are returned.

X'00000008' X'D8220006' No active partitions found while searching
for the FIRST or LAST partition of the
HALDB.

X'00000008' X'D8220007' No active partitions found while searching
for the PREV or NEXT partition.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8220100' Security error. SAF or the DBRC cmd auth
exit (DSPDCAX0) has determined that the
user is not authorized to perform the request.

Storage error X'00000028' X'D8210001' Error obtaining storage for DBDS block.

X'00000028' X'D8210002' Error obtaining storage for AREA block.

X'00000028' X'D8210003' Error obtaining storage for RCVINFO block.

X'00000028' X'D8210004' Error obtaining storage for ALLOC block.

X'00000028' X'D8210005' Error obtaining storage for IC block.

X'00000028' X'D8210006' Error obtaining storage for REORG block.

X'00000028' X'D8210007' Error obtaining storage for RECOV block.

X'00000028' X'D8220001' Error obtaining storage for PART block.

X'00000028' X'D9100001' An error occurred processing the request.
DBRC will release storage that was obtained
up to this point. However, another error was
encountered during the attempt to release
storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8210001' Failure locating the first DBDS record.

X'0000002C' X'D8210002' Failure locating the specified DBDS record.

X'0000002C' X'D8210003' Failure locating the next DBDS record.

X'0000002C' X'D8210004' Failure locating the first Area Auth record.

X'0000002C' X'D8210005' Failure locating the first ALLOC record.

X'0000002C' X'D8210006' Failure locating the next ALLOC record.

X'0000002C' X'D8210007' Failure locating the first IC record.

X'0000002C' X'D8210008' Failure locating the next IC record.

X'0000002C' X'D8210009' Failure locating the first REORG record.

X'0000002C' X'D821000A' Failure locating the next REORG record.

X'0000002C' X'D821000B' Failure locating the first RECOV record.

X'0000002C' X'D821000C' Failure locating the next RECOV record.

Chapter 30. DBRC query request (QUERY) 443

Table 95. Return and reason codes for TYPE=PART query requests (continued)

Code type Return codes Reason codes Meaning

X'0000002C' X'D8220001' Failure locating the first HALDB partition
record.

X'0000002C' X'D8220002' Failure locating the DB record associated with
the HALDB partition being processed.

X'0000002C' X'D8220003' Failure locating the next HALDB partition
record.

X'0000002C' X'D8220004' Failure locating the specified HALDB
(DBNAME).

X'0000002C' X'D8220005' Failure locating the first or last active
partition.

X'0000002C' X'D8220006' Failure locating the first or last high key
partition.

X'0000002C' X'D8220007' Failure locating the previous or next high key
partition.

X'0000002C' X'D8220008' Failure locating the PART record
corresponding to an existing Part DB record.

X'0000002C' X'D8220009' Failure locating the previous or next partition
of HALDB that uses a part selection routine.

X'0000002C' X'D822000A' Failure locating the HALDB record for the
specified partition.

X'0000002C' X'D822000B' Failure locating the Part DB record for the
specified PARTNAME.

X'0000002C' X'D822000C' Neither the PART record nor the Part DB
record is passed to ProcessPART.

X'0000002C' X'D822000D' Failure locating the PART record associated
with the HALDB partition being processed.

X'0000002C' X'D82221xx' Internal Query DBDS call returned RC=X'30'
RSN=X'D82100xx', a parameter error.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

444 System Programming APIs

Table 95. Return and reason codes for TYPE=PART query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000008' Invalid DBNAME or PARTNAME address.
The address of the field containing the
DBNAME or PARTNAME failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'C9000009' Invalid DDN address. The address of the
field containing the DDN failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8000003' TYPE=PART requires at least VERSION=2.0.

X'00000030' X'D8220002' LOC=FIRST|LAST|ALL cannot be used with
PARTNAME.

X'00000030' X'D8220003' LOC=PREV|NEXT cannot be used with
DBNAME.

X'00000030' X'D8220004' Explicit name must be specified in DBNAME
or PARTNAME. An asterisk cannot be used.

X'00000030' X'D8220005' DBNAME specified is not a HALDB.

X'00000030' X'D8220006' The partition name specified with
LOC=PREV|NEXT must be an active
partition.

X'00000030' X'D8220007' PARTNAME must specify the name of a
partition.

Output for TYPE=PART queries

The following mappings are used for the TYPE=PART query:
v DSPAPQHP - HALDB Partition block
v DSPAPQSL - Subsystem List
Related concepts:
Chapter 26, “DBRC API,” on page 359
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385
“Database query request (TYPE=DB)” on page 390
“DBDS query request (TYPE=DBDS)” on page 412

DBRC request return codes (Messages and Codes)

RECON status query request (TYPE=RECON)
You can use the RECON status query (DSPAPI FUNC=QUERY TYPE=RECON)
request to retrieve information pertaining to the RECON data sets, including
RECON header information as well as the status of each RECON data set.

Syntax for the TYPE=RECON query request

►►
name

DSPAPI FUNC=QUERY TYPE=RECON TOKEN=address ►

Chapter 30. DBRC query request (QUERY) 445

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

OUTPUT=output
SUBPOOL=0

SUBPOOL=number
►

►
RETCODE=returncode RSNCODE=reasoncode

VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=RECON query request

name Optional symbol you can specify. If used, begins in column 1.

TYPE=RECON
Specifies that RECON status information is requested.

TOKEN=symbol | (2 - 12)
Required parameter that specifies the address of a 4-byte field that was
returned on the FUNC=STARTDBRC request.

MF=S | L | M | E
Optional parameter that specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the RECON status information
block.

The output address is zero if no output was built. This can occur if nothing
in the RECON satisfies the request or if an error occurs before any output
could be built.

The storage for the output blocks is not preallocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Optional parameter that specifies the subpool number for the storage being
obtained. If not specified, the default is the subpool specified by the
FUNC=STARTDBRC request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

446 System Programming APIs

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

Valid version numbers are 1.0 and 2.0.

Return and reason codes for the TYPE=RECON query request

Table 96. Return and reason codes for TYPE=RECON queries

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8100100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Storage error X'00000028' X'D8100001' Error obtaining storage for the RECON block.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8100001' Failure attempting to locate the RECON
header record.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

Chapter 30. DBRC query request (QUERY) 447

|

|

|

|

Output for the TYPE=RECON query request

The following figure illustrates the format of the output from a QUERY
TYPE=RECON request. The following DSECT sample describes in detail the fields
of the storage blocks and their relationship to each other.

DSECT of DSPAPQRC
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 560 DSPAPQRC
0 (0) CHARACTER 44 APQRC_DATA Initialized with "RECOVERY

CONTROL DATASET"
44 (2C) UNSIGNED 4 APQRC_RECONINFO Offset to RECON data set

info
48 (30) SIGNED 4 *(2) Reserved
56 (38) UNSIGNED 2 APQRC_RECONINFOLEN Length of each RECON dataset info element
58 (3A) UNSIGNED 1 APQRC_RECONCOUNT # of RECON dataset elements
59 (3B) CHARACTER 1 * Reserved
60 (3C) BIT(8) 1 APQRC_FLAGS Process flags...

1... APQRC_NOCHK 1= NOCHECK log tape dsn check
.1.. APQRC_CHK17 1= CHECK17 log tape dsn check
..1. APQRC_CHK44 1= CHECK44 log tape dsn check
...1 APQRC_LSTLG 1= list log DSN
.... 1... APQRC_INUPG Upgrade in progress.
.... .1.. APQRC_REORGV Reorg verification

61 (3D) BIT(8) 1 APQRC_FLAG2 More flags...
1... APQRC_FORCE 1 = FORCER, 0 = NOFORCER
.1.. APQRC_CATDS 1=CA|IC|LOGS cataloged
..1. APQRC_TRACE 1 = ext. GTF trace on
...1 APQRC_CMDSAF SAF enabled
.... 1... APQRC_CMDEXIT Cmd auth exit enabled
.... .1.. APQRC_PRA Parallel RECON Access in use (VERSION=2.0)
.... ..1. APQRC_LISTFUZZY PRA Concurrent LIST active (VERSION=2.0)

62 (3E) CHARACTER 2 * Reserved
64 (40) CHARACTER 136 APQRC_CLEAN Fields needed for cleanup
64 (40) SIGNED 4 APQRC_CSET 0 = updates not in progress,

>0 = update in progress
68 (44) SIGNED 4 APQRC_TYPE Type of update
72 (48) CHARACTER 32 APQRC_OKEY Key of original record

104 (68) CHARACTER 32 APQRC_BKEY Key of base record that is in
the process of being changed

136 (88) CHARACTER 32 APQRC_NKEY Key of new record
168 (A8) CHARACTER 16 APQRC_DBID DBID of DBDS
168 (A8) CHARACTER 8 APQRC_DBD DBD name
176 (B0) CHARACTER 8 APQRC_DDN DD name
184 (B8) CHARACTER 8 APQRC_CAGRP CA group name
192 (C0) CHARACTER 8 APQRC_DDNEW New DBDS DD name
200 (C8) UNSIGNED 2 APQRC_DMBNO DMB sequence number
202 (CA) UNSIGNED 2 APQRC_LASTREUSEDDMB# Last reused DMB number, valid

RECON
header data
(DSPAPQRC)

RECON DS information
(APQRC_RECONDS_INFO)

DSPAPQRC length IMSDB
dependent
pointer

next
pointer

block
offset

version00 SP

0 0

Figure 27. Format for QUERY TYPE=RECON output

448 System Programming APIs

only when apqrc_DMBNO is 32767
204 (CC) CHARACTER 7 APQRC_INITTOKEN Recon init. token
211 (D3) CHARACTER 8 APQRC_CMDHLQ Cmd auth high lvl qual
219 (DB) UNSIGNED 1 APQRC_MVERS Minimum IMS version
220 (DC) BIT(8) 1 APQRC_NWFLG Fields needed for RECON I/O

error(s)

1... APQRC_NEW 1=STARTNEW, 0=NONEW
221 (DD) CHARACTER 3 * Reserved
224 (E0) CHARACTER 8 APQRC_SSIDN SSID for DASD
232 (E8) CHARACTER 8 APQRC_DASDU Unit type for DASD
240 (F0) CHARACTER 8 APQRC_TAPEU Unit type for tape
248 (F8) CHARACTER 24 APQRC_TIME
248 (F8) CHARACTER 2 APQRC_TZDEF Input offset default
250 (FA) CHARACTER 5 APQRC_TMFMT Time format options
255 (FF) CHARACTER 1 * Reserved
256 (100) SIGNED 2 APQRC_TPREC Time-stamp precision
258 (102) CHARACTER 12 APQRC_LOGRT Minimum log retention period
270 (10E) SIGNED 2 APQRC_TZNUM Number of entries in time zone label table
272 (110) CHARACTER 8 APQRC_TZTBL(32) Time zone label table
528 (210) BIT(16) 2 APQRC_TROPT DBRC trace options
530 (212) CHARACTER 5 APQRC_IMSPLEX IMSplex name
535 (217) CHARACTER 5 * Reserved
540 (21C) UNSIGNED 4 APQRC_SIZW_DSNUM SIZEALERT dsnum
544 (220) UNSIGNED 4 APQRC_SIZW_VOLNUM SIZEALERT volnum
548 (224) UNSIGNED 4 APQRC_SIZW_PERCENT SIZEALERT percent
552 (228) UNSIGNED 4 APQRC_LOGW_DSNUM LOGALERT dsnum
556 (22C) UNSIGNED 4 APQRC_LOGW_VOLNUM LOGALERT volnum
560 (230) UNSIGNED 44 APQRC_CMDRNQ CMDAUTH RECON qual
604 (25C) UNSIGNED 8 APQRC_DBCOUNT REGISTERED DBCOUNT

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 53 APQRC_RECONDS_INFO
0 (0) CHARACTER 8 APQRC_RECONDS_DDNAME RECON DD name
8 (8) CHARACTER 44 APQRC_RECONDS_DSNAME RECON DS name

52 (34) BIT(8) 1 APQRC_RECONDS_STATUS RECON DS status
1... APQRC_RECONDS_COPY1 COPY 1
.1.. APQRC_RECONDS_COPY2 COPY 2
..1. APQRC_RECONDS_SPARE Spare
...1 APQRC_RECONDS_DISCARDED Discarded
.... 1... APQRC_RECONDS_UNAVAIL Unavailable

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQRC APQRC_EYECATCHER

Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385

Subsystem query request (TYPE=SUBSYS)
You can use the Subsystem query (DSPAPI FUNC=QUERY TYPE=SUBSYS) request
to retrieve subsystem information from the RECON data set for a specific
subsystem or all subsystems.

Syntax for the TYPE=SUBSYS query request

Chapter 30. DBRC query request (QUERY) 449

►►
name

DSPAPI FUNC=QUERY TYPE=SUBSYS TOKEN=address ►

►

SSTYPE=ALL
TRACKER=NO

SSTYPE=ONLINE
SSTYPE=BATCH

SSID=* SSTYPE=DBRCAPI

SSID=subsystem_ID* TRACKER=YES

TRACKER=NO
SSID=subsystem_ID

TRACKER=YES

►

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

OUTPUT=output
SUBPOOL=0

SUBPOOL=number
►

►
RETCODE=returncode RSNCODE=reasoncode

VERSION=2.0

VERSION=number
►◄

Parameters for the TYPE=SUBSYS query request

name Optional symbol you can specify. If used, begins in column 1.

TYPE=SUBSYS
Specifies that subsystem information is requested.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

450 System Programming APIs

SSID= * | name* | name | (2 - 12)
Specifies the name of the subsystem being queried. You can use the
wildcard keyword * (an asterisk) alone to request information about all
subsystems (SSID=*, the default). You can also use it at the end of a name
to query subsystems whose names match the pattern. In this case, the
asterisk must be preceded by at least one alphabetic character.

SSYTYPE=ALL | ONLINE | BATCH | DBRCAPI
Specifies the type of subsystem for which information is being requested.
You cannot specify this parameter if you also specify a specific subsystem
name for the SSID parameter or if you specify TRACKER=YES.
SSTYPE=DBRCAPI requires that you specify a minimum version number
of VERSION=2.0. SSTYPE=ALL is the default.

TRACKER=YES |NO
Specifies whether log information is being requested for an RSR tracking
subsystem. Specify TRACKER=YES to request the RSR tracker log
information. Specify TRACKER=NO to request log information from a
non-RSR subsystem or an active subsystem of an RSR system.
TRACKER=NO is the default.

MF=S | L | M | E
Optional parameter that specifies the macro form of the request.

OUTPUT=output | (2 - 12)
Specifies a field to receive a pointer to the first block of a possible chain of
subsystem information blocks.

The output address is 0 if no output was built which can occur if nothing
in the RECON satisfies the request or if an error occurs before any output
is built.

The storage for the output blocks is not preallocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. The caller
must free this storage using the Buffer Release service (DSPAPI
FUNC=RELBUF) and specify the returned output address.

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. If not
specified, the default is the subpool specified by the FUNC=STARTDBRC
request. Otherwise, subpool 0 is the default.

RETCODE=returncode | (2 - 12)
Specifies a place in storage to receive the return code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the return code is placed in register 15.

RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the reason code is placed in register 0.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error

Chapter 30. DBRC query request (QUERY) 451

message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

Valid version numbers for the FUNC=QUERY TYPE=SUBSYS request are
1.0 and 2.0.

Return and reason codes for the TYPE=SUBSYS query request

Table 97. Return and reason codes for TYPE=SUBSYS query requests

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'D8600001' No subsystem record of the requested type,
active or tracker, exists.

X'00000008' X'D8600002' No batch or online subsystem records exist.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

X'0000000C' X'D8600100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Storage error X'00000028' X'D8600001' Error obtaining storage for SUBSYS block.

X'00000028' X'D9100001' An error occurred processing the request.
DBRC will release storage that was obtained
up to this point. However, another error was
encountered during the attempt to release
storage.

Internal error X'0000002C' X'D8000001' RECON open failure.

X'0000002C' X'D8600001' Failure attempting to locate the first or the
specified subsystem record of the requested
type, active or tracker.

X'0000002C' X'D8600002' Failure attempting to locate the next
subsystem record of the requested type,
active or tracker.

Parameter
error

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

452 System Programming APIs

Table 97. Return and reason codes for TYPE=SUBSYS query requests (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'C9000005' Invalid OUTPUT field address. The address
of the field to contain the OUTPUT address
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000010' Invalid SSID field address. The address of the
field containing the SSID failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'D8000001' Missing or invalid OUTPUT parameter.

X'00000030' X'D8000002' Invalid value specified for TYPE parameter.

X'00000030' X'D8600001' SSTYPE=ONLINE|BATCH|DBRCAPI cannot
be specified on requests for a specific SSID or
for a tracking subsystem request
(TRACKER=YES).

X'00000030' X'D8600100' When using a wildcard, at least one
alphabetic character must precede the
asterisk.

X'00000030' X'D8600101' When using a wildcard, the asterisk must be
the last character.

Output for the TYPE=SUBSYS query request

The following figure illustrates the format of the output from a QUERY
TYPE=SUBSYS request. The following DSECT sample describes in detail the fields
of the storage blocks and their relationship to each other.

DSECT of DSPAPQSS
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 64 DSPAPQSS
0 (0) CHARACTER 8 APQSS_SSID Subsystem identifier
8 (8) UNSIGNED 4 APQSS_AUTHLIST Offset to authd DB/Area list

12 (C) SIGNED 4 APQSS_AUTHCOUNT Number of authorized DB/Areas
16 (10) UNSIGNED 2 APQSS_AUTHLEN Length of auth entry
18 (12) CHARACTER 6 * Reserved
24 (18) CHARACTER 12 APQSS_LOGTIME Start time of log
36 (24) UNSIGNED 1 APQSS_RELLVL Subsystem release level

’71’X=V7R1,’81’X=V8R1
’91’X=V9R1, etc.

Subsystem data
(DSPAPQSS)

Authorized DB/Area list
(APQSS_AUTHNAME)

DSPAPQSS length SUBSYS
dependent
pointer

next
pointer

block
offset

version00 SP

0 0

Figure 28. Format for QUERY TYPE=SUBSYS output

Chapter 30. DBRC query request (QUERY) 453

37 (25) CHARACTER 1 APQSS_COEXLVL Coexistence level
38 (26) UNSIGNED 1 APQSS_IRLMCT IRLM status count
39 (27) CHARACTER 1 * Reserved
40 (28) CHARACTER 8 APQSS_GSGNAME Global Service Group name
48 (30) CHARACTER 5 APQSS_IRLMID IRLM ID of SS
53 (35) CHARACTER 5 APQSS_IRLMBK IRLM ID of backup SS
58 (3A) BIT(8) 1 APQSS_FLAGS Flags

1... APQSS_TYPE 1=Online | 0=batch
.1.. APQSS_ABTERM Abnormal termination
..1. APQSS_RCVPRC Recovery processing started
...1 APQSS_BKSIGN Backup SS signed on
.... 1... APQSS_IRLMFL IRLM failure
.... .1.. APQSS_COMMFL COMM failure
.... ..1. APQSS_SYSFL SYS failure
.... ...1 APQSS_ACTVST Status of active SS when backup exists, 1=abterm

59 (3B) BIT(8) 1 APQSS_FLAGS2 FLAGS 2
1... APQSS_SHRING Sharing covered DBs
.1.. APQSS_TRKER Subsystem is a Tracker
..1. APQSS_TRKTRM TRACKER has terminated
...1 APQSS_TRCKED SSID is tracked
.... 1... APQSS_FRSTSO 1ST signon after RSR takeover is in progress
.... .1.. APQSS_XRFCAP SS is XRF capable
.... ..1. APQSS_DBRCAPI SS is a DBRC application

(VERSION=2.0)
.... ...1 APQSS_BPE BPE-based subsystem (VERSION=4.0)
.... ..11 * Reserved

60 (3C) SIGNED 2 APQSS_BCKTKN Backup recovery token
62 (3E) CHARACTER 2 * Reserved

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 32 APQSS_AUTHNAME Names of authd DB/Areas
0 (0) CHARACTER 8 APQSS_DBNAME DB name
8 (8) CHARACTER 8 APQSS_AREANM If FP, Area name

16 (10) UNSIGNED 1 APQSS_SHRLVL Share level
17 (11) UNSIGNED 1 APQSS_DBACCS Access intent
18 (12) UNSIGNED 1 APQSS_DBNCOD Encoded state
19 (13) UNSIGNED 1 APQSS_DBSTAT DB status flags
20 (14) UNSIGNED 2 APQSS_DBEQCT DB EQE count
22 (16) SIGNED 2 APQSS_GLBDMB Global DMB number
24 (18) BIT(8) 1 APQSS_AUTHFLAGS Flags

1... APQSS_NRDBUP Nonrecov DB/Area updated
.1.. APQSS_COVRD DB covered by GSG
..1. APQSS_NRECV nonrecoverable DB/Area
...1 APQSS_ORDBDS 0=A-J/1=M-V ACTIVE
.... 1... APQSS_OLRON 0 = no OLR active
.... .1.. APQSS_OLROWR 0 = no OLR owner
.... ..1. APQSS_OLROWD 0 OLR not owned by SS

25 (19) CHARACTER 7 * Reserved

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

8 CHARACTER DSPAPQSS APQSS_EYECATCHER

Related concepts:
“Macro forms of the DSPAPI macro” on page 362
Related reference:
Chapter 30, “DBRC query request (QUERY),” on page 385

454 System Programming APIs

Chapter 31. DBRC release buffer request (RELBUF)

You can use the DBRC release buffer request (DSPAPI FUNC=RELBUF) to release
storage that was acquired as a result of DBRC query, command, authorization, and
unauthorization requests.

Each request returns a chain of one or more blocks containing the requested
information. It is the caller's responsibility to ensure that the storage DBRC
allocated for these blocks is freed.

Syntax for the RELBUF request

►►
name

DSPAPI FUNC=RELBUF TOKEN=address BUFFER=buffer ►

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

RETCODE=returncode
►

►
RSNCODE=reasoncode

VERSION=2.0

VERSION=number
►◄

Parameters for the RELBUF request

name Optional symbol you can specify. If used, begins in column 1.

TOKEN=address | (2 - 12)
Required parameter that specifies the address of a 4-byte field that was
returned on the FUNC=STARTDBRC request.

BUFFER=buffer | (2 - 12)
Specifies a field containing the address of the first block of a chain of one
or more information blocks to release. This storage was acquired by DBRC
in order to satisfy another DBRC request.

RETCODE=returncode | (2 - 12)
Specifies a place in storage to receive the return code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the return code is placed in register 15.

RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the reason code is placed in register 0.

© Copyright IBM Corp. 1974, 2018 455

MF=S | L | M | E
Specifies the macro form of the request.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted for processing and an error message is
issued at assembly time. If parameters have a version dependency, the
parameter descriptions with each request type identify the version number
required.

Return and reason codes for RELBUF

Table 98. Return and reason codes for RELBUF

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Partial
success

X'00000004' X'D9000001' There was no storage to free. An address of
zero was passed in the BUFFER parameter.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC
request was issued.

Storage error X'00000028' X'D9100001' An error occurred attempting to release
storage.

Parameter
error

X'00000030' X'C9000001' Parameter error. The function (FUNC)
specified in the parameter list passed to the
API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000007' Invalid BUFFER address. The address of the
BUFFER to be released failed validity
checking. The address specifies storage not
owned by the calling program.

X'00000030' X'D9100001' The header of a storage block to be freed is
invalid.

X'00000030' X'D9100002' The length of a storage block to be freed is
not greater than zero.

Related concepts:

456 System Programming APIs

Chapter 26, “DBRC API,” on page 359
“Macro forms of the DSPAPI macro” on page 362

Chapter 31. DBRC release buffer request (RELBUF) 457

458 System Programming APIs

Chapter 32. DBRC start request (STARTDBRC)

You can use the DBRC start request (STARTDBRC) to initialize the DBRC API and
to start DBRC.

Syntax for the STARTDBRC request

►►
name

DSPAPI FUNC=STARTDBRC TOKEN=address
SYSPRINT=ddname

►

►
READONLY=NO SSID=NULL

GSGNAME=NULL
SSID=name

GSGNAME=name
SSID=NULL

READONLY=YES

RECON1=ddname
►

►
RECON2=ddname RECON3=ddname IMS=ddname

SUBPOOL=0

SUBPOOL=number
►

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

RETCODE=returncode
►

►
RSNCODE=reasoncode

VERSION=2.0

VERSION=number
►◄

Parameters for STARTDBRC

name Optional symbol you can specify. If used, begins in column 1.

TOKEN=address | (2 - 12)
Specifies the address of a 4-byte field to receive the API token. This token
must be included in all subsequent requests associated with this
STARTDBRC request.

SYSPRINT= ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name of an
output data set to be used for messages. If omitted, the default name
SYSPRINT is used.

READONLY=NO | YES
Specifies whether (YES) or not (NO) the application needs read only access
to the DBRC information. READONLY=NO requires that the application
has a minimum of UPDATE level authority to the RECON data sets.

© Copyright IBM Corp. 1974, 2018 459

To use this parameter, you must specify API VERSION=2.0 or later.

SSID=NULL | name
Specifies the address of an 8-byte field that contains the subsystem name
that is used to register with DBRC. If you specify SSID=NULL, registration
with DBRC is not done. Do not specify both READONLY=YES and
SSID=symbol.

The default is SSID=NULL. To use this parameter, you must specify API
VERSION=2.0 or later.

GSGNAME=name | (2 - 12)
Specifies the address of an 8-byte field that contains the name of a global
service group (GSG). The GSG name must be known to DBRC. The default
name is NULL, which specifies no GSG.

To use this parameter, you must also specify API VERSION=2.0 or later.

RECON1=ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name that is
used in place of the default DD name RECON1.

If omitted, the default name RECON1 is used. To use this parameter, you
must specify API VERSION=2.0 or later.

RECON2=ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name that is
used in place of the default DD name RECON2.

If omitted, the default name RECON2 is used. To use this parameter, you
must specify API VERSION=2.0 or later.

RECON3=ddname | (2 - 12)
Specifies the address of an 8-byte field that contains the DD name that is
used in place of the default DD name RECON3.

If omitted, the default name RECON3 is used. To use this parameter, you
must specify API VERSION=2.0 or later.

IMS=IMS | ddname
Specifies the address of an 8-byte field that contains the DD name that is
used in place of the default DD name IMS.

The default is IMS=IMS. To use this parameter, you must also specify API
VERSION=2.0 or later.

SUBPOOL=0 | number
Specifies the default subpool number that is to be used for all requests (for
example QUERY and AUTH) that return storage. For information on valid
subpools for your program, see the z/OS MVS Assembler Services Guide.

SUBPOOL=0 is the default for the request if SUBPOOL is not specified
here or on the request.

MF=S | L | M | E
Specifies the macro form of the request.

RETCODE=returncode | (2 - 12)
Specifies a place in storage to receive the return code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the return code is placed in register 15.

460 System Programming APIs

RSNCODE=reasoncode | (2 - 12)
Specifies a place in storage to receive the reason code. If specified as a
symbol, the symbol must be the label of a word of storage. If specified as a
register, the register must contain the address of a word of storage. If not
specified, the reason code is placed in register 0.

VERSION=2.0 | number
Specifies the version number of the parameter list that is generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted for processing and an error message is
issued at assembly time. If parameters have a version dependency, the
parameter descriptions with each request type identify the required version
number.

Return and reason codes for STARTDBRC

Table 99. Return and reason codes for the STARTDBRC request

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000004' X'E2000001' The RECON data sets are not initialized. The
only function allowed is an INIT.RECON
command.

X'00000004' X'E2000002' The RECON data sets are not upgraded. The
only function allowed is a CHANGE.RECON
UPGRADE command.

Severe error X'0000000C' X'C9000002' DBRC could not successfully initialize during
phase 0 of DBRC initialization.

X'0000000C' X'C9000003' DBRC could not successfully initialize during
phase 1 of DBRC initialization.

X'0000000C' X'C9000004' A z/OS LOAD failed for the DBRC module
DSPCRTR0.

X'0000000C' X'C9000005' STORAGE request failure. The API cannot
obtain storage necessary to complete the
request.

X'0000000C' X'C9000012' STARTDBRC has been previously issued
without an intervening STOPDBRC.

X'0000000C' X'C9D40001' DSPAPI macro load failed for DBRC module
DSPAPI00.

X'0000000C' X'E2000001' The RECON data sets are not initialized.
STARTDBRC fails because an SSID was
supplied and SIGNON cannot be performed.

X'0000000C' X'E2000002' The RECON data sets are not upgraded.
STARTDBRC fails because an SSID was
supplied and SIGNON cannot be performed.

X'0000000C' X'E2000003' STARTDBRC specified READONLY.
However, an SSID was supplied and
SIGNON cannot be performed.

X'0000000C' X'E200000A' RECON is either not initialized or not
upgraded and V1 is the caller.

Chapter 32. DBRC start request (STARTDBRC) 461

||||
|

Table 99. Return and reason codes for the STARTDBRC request (continued)

Code type Return codes Reason codes Meaning

X'0000000C' X'E2000100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

X'0000000C' X'E210nnnn' Error attempting to sign on the application.
'nnnn' is the return code from DBRC Signon
module, DSPSSIGN.

Internal error X'00000028' X'C9000001' DBRC internal error. Failure writing the
subsystem record.

Parameter
error

X'00000030' X'C9000001' Parameter error. The function (FUNC)
specified in the parameter list passed to the
API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field to contain the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000006' Invalid SYSPRINT field address. The address
of the field containing the SYSPRINT DD
name failed validity checking. The address
specifies storage not owned by the calling
program.

X'00000030' X'C900000A' Invalid IMS field address. The address of the
field that contains the IMS DD name failed
validity checking.

X'00000030' X'C900000B' Invalid GDGNAME field address. The
address of the field that contains the
GSGNAME name failed validity checking.
The address specifies storage that is not
owned by the calling program.

X'00000030' X'C900000C' Invalid RECON1 field address. The address
of the field that contains the RECON1 DD
name failed validity checking. The address
specifies storage that is not owned by the
calling program.

X'00000030' X'C900000D' Invalid RECON2 field address. The address
of the field that contains the RECON2 DD
name failed validity checking. The address
specifies storage that is not owned by the
calling program.

X'00000030' X'C900000E' Invalid RECON3 field address. The address
of the field that contains the RECON3 DD
name failed validity checking. The address
specifies storage that is not owned by the
calling program.

462 System Programming APIs

Table 99. Return and reason codes for the STARTDBRC request (continued)

Code type Return codes Reason codes Meaning

X'00000030' X'E2100001' An SSID of zeroes or blanks was specified.

Related concepts:
Chapter 26, “DBRC API,” on page 359
“Macro forms of the DSPAPI macro” on page 362

Chapter 32. DBRC start request (STARTDBRC) 463

464 System Programming APIs

Chapter 33. DBRC stop request (STOPDBRC)

You can use the STOPDBRC request to terminate the DBRC application and to stop
DBRC.

If the application registered to DBRC by supplying an SSID on the STARTDBRC
request, a subsystem record for the application was recorded in RECON. The
STOPDBRC request automatically deregisters the application, unauthorizing any
authorized databases and deleting the subsystem record.

Syntax for the STOPDBRC request

►►
name

DSPAPI FUNC=STOPDBRC TOKEN=address ►

►
MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

RETCODE=returncode
►

►
RSNCODE=reasoncode

VERSION=1.0

VERSION=number
►◄

Parameters for STOPDBRC

name Optional symbol you can specify. If used, begins in column 1.

TOKEN=symbol | (2 - 12)
Specifies the address of a 4-byte field that was returned on the
FUNC=STARTDBRC request.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

MF=S | L | M | E
Specifies the macro form of the request.

© Copyright IBM Corp. 1974, 2018 465

VERSION=1.0 | number
Specifies the version number of the parameter list to be generated by this
request.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted for processing and an error message is
issued at assembly time. If parameters have a version dependency, the
parameter descriptions with each request type identify the version number
required.

Return and reason codes for STOPDBRC

Table 100. Return and reason codes for the STOPDBRC request

Code type Return codes Reason codes Meaning

X'00000000' X'00000000' Request completed successfully.

Severe error X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC
request was issued.

X'0000000C' X'E220nnnn' Error attempting to sign off the application.
'nnnn' is the return code from DBRC Signoff
module, DSPSSIGN.

X'0000000C' X'E2000100' Security error. SAF or the DBRC Command
Authorization exit routine (DSPDCAX0)
determined that the user is not authorized to
perform the request.

Parameter
error

X'00000030' X'C9000001' Parameter error. The function (FUNC)
specified in the parameter list passed to the
API is invalid.

X'00000030' X'C9000002' Invalid TOKEN field address. The address of
the field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000003' Invalid RETCODE field address. The address
of the field to contain the API RETCODE
failed validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE field address. The address
of the field to contain the API RSNCODE
failed validity checking. The address specifies
storage not owned by the calling program.

Related concepts:
Chapter 26, “DBRC API,” on page 359
“Macro forms of the DSPAPI macro” on page 362

466 System Programming APIs

Chapter 34. DBRC unauthorization request (UNAUTH)

You can use the UNAUTH request to explicitly remove authorization to a database
or area. Authorization by an application is implicitly removed by the STOPDBRC
request. UNAUTH is the opposite of FUNC=AUTH.

Syntax for the UNAUTH request

►►
name

DSPAPI FUNC=UNAUTH TOKEN=address AUTHLIST=name OUTPUT=output ►

►
SUBPOOL=0

SUBPOOL=number RETCODE=returncode RSNCODE=reasoncode
►

►
VERSION=2.0

VERSION=number

MF=S

MF=(S,list)
MF=(L,list)

,COMPLETE
MF=(M,list)

,NOCHECK
,COMPLETE

MF=(E,list)
,NOCHECK

►◄

Parameters for the UNAUTH request

name name
Optional parameter. Begin name in column 1.

TOKEN=address | (2-12)
Specifies the address of the API token which was returned on the
FUNC=STARTDBRC macro.

AUTHLIST=name | (2 - 12)
Specifies the list of database names or Fast Path areas to be unauthorized.
The list consists of a fullword containing the number of elements in the
list, a fullword containing the length of an element, followed by one or
more elements. Each element consists of an 8 character DB name or Fast
Path DEDB name and 8 characters of blanks (X'40') or a Fast Path area
name.

OUTPUT=output | (2-12)
Specifies a field to receive a pointer to the authorization output block
DSPAPAUB.

The output address is zero if no output was built. This can happen if an
error occurs before any output could be built.

The storage for the output blocks is not pre-allocated by the caller. DBRC
acquires storage from the specified subpool for these blocks. It is the
responsibility of the caller to free this storage using the Buffer Release
service (DSPAPI FUNC=RELBUF) specifying the returned output address.

© Copyright IBM Corp. 1974, 2018 467

SUBPOOL= 0 | number
Specifies the subpool number for the storage being obtained. See the z/OS
MVS Programming: Assembler Services Guide for information on valid
subpools for your program. If not specified, the default is the subpool
specified by the FUNC=STARTDBRC request. Otherwise, subpool 0 is the
default.

RETCODE=returncode | (2-12)
If specified as a symbol, specifies the label of a word of storage to receive
the return code. If specified as a register, the register must contain the
address of a word of storage to receive the return code. Regardless of
whether RETCODE is specified, register 15 contains the return code.

RSNCODE=reasoncode | (2-12)
If specified as a symbol, the symbol must be the label of a word of storage
to receive the reason code. If specified as a register, the register must
contain the address of a word of storage to receive the reason code.
Regardless of whether RSNCODE is specified, register 0 contains the
reason code.

VERSION=2.0 | number
Specifies the version number of the parameter list to be generated by this
macro.

To use the parameters associated with a version, you must specify the
number of that version or a later version. If you specify an earlier version
level, the parameter is not accepted by macro processing, and an error
message is issued at assembly time. If parameters have a version
dependency, the parameter descriptions with each request type identify the
version number required.

The valid version number for the FUNC=UNAUTH request is 2.0 (the
default).

MF=S | L | M | E
Specifies the macro form of the request.

Return and reason codes for UNAUTH

Table 101. DSPAPI FUNC=UNAUTH request return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'C1000001' One or more entries in the AUTHLIST could
not be processed. A reason code has be set in
the corresponding entry in the UNAUTH
output block.

Severe error X'0000000C' X'C1000001' Application is not signed on to DBRC.

X'0000000C' X'C1000004' UNAUTH processing could not complete
because the application is not signed; no SS
rcd was found. This should not occur under
normal conditions since an earlier check of
the GDB indicated the SS was signed on.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

468 System Programming APIs

Table 101. DSPAPI FUNC=UNAUTH request return and reason codes (continued)

Code type Return code Reason code Meaning

Storage error X'00000028' X'C1000001' Error obtaining storage for the UNAUTH
output block.

Internal error X'0000002C' X'C1000001' Error attempting to start RECON multiple
update processing.

X'0000002C' X'C1000002' Error attempting to end RECON multiple
update processing.

X'0000002C' X'C1000006' Entry in UNAUTH output block could not be
found. This should not occur.

X'0000002C' X'C1000007' Internal error encountered during DBRC
unauthorization processing.

X'0000002C' X'C1000008' Internal error encountered during DBRC
unauthorization processing–invalid
parameters.

Parameter
error

X'00000030' X'C1000001' No AUTHLIST passed.

X'00000030' X'C1000002' AUTHLIST passed with no entries.

X'00000030' X'C1000003' Duplicate elements in AUTHLIST.

X'00000030' X'C1000004' Missing or invalid OUTPUT parameter.

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the
field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program

X'00000030' X'C9000003' Invalid RETCODE address. The address of
the field containing the API RETCODE failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE address. The address of
the field containing the API RSNCODE failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the
field containing the API OUTPUT failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C900000A' An incorrect VERSION value was specified
for the requested function (FUNC).

X'00000030' X'C900001A' Invalid AUTHLIST address. The address of
the field containing the API AUTHLIST failed
validity checking. The address specifies
storage not owned by the calling program.

Related concepts:
Chapter 26, “DBRC API,” on page 359
“Macro forms of the DSPAPI macro” on page 362
Related reference:
“APAUB_RsnCode for UNAUTH output block” on page 471

Chapter 34. DBRC unauthorization request (UNAUTH) 469

DBRC request return codes (Messages and Codes)

Return and reason codes for UNAUTH
You can use this table to search for reason and return codes for the DBRC
UNAUTH request. Each code is accompanied by the code type and an explanation
of the code.

Table 102. DSPAPI FUNC=UNAUTH request return and reason codes

Code type Return code Reason code Meaning

X'00000000' X'00000000' Request completed successfully.

Warning X'00000008' X'C1000001' One or more entries in the AUTHLIST could
not be processed. A reason code has be set in
the corresponding entry in the UNAUTH
output block.

Severe error X'0000000C' X'C1000001' Application is not signed on to DBRC.

X'0000000C' X'C1000004' UNAUTH processing could not complete
because the application is not signed; no SS
rcd was found. This should not occur under
normal conditions since an earlier check of
the GDB indicated the SS was signed on.

X'0000000C' X'C9000001' Invalid TOKEN. The TOKEN block passed to
the API is not recognized as a TOKEN
created by a FUNC=STARTDBRC call.

X'0000000C' X'C900000A' The TCB address is not the same as the TCB
address under which the STARTDBRC service
was issued.

Storage error X'00000028' X'C1000001' Error obtaining storage for the UNAUTH
output block.

Internal error X'0000002C' X'C1000001' Error attempting to start RECON multiple
update processing.

X'0000002C' X'C1000002' Error attempting to end RECON multiple
update processing.

X'0000002C' X'C1000006' Entry in UNAUTH output block could not be
found. This should not occur.

X'0000002C' X'C1000007' Internal error encountered during DBRC
unauthorization processing.

X'0000002C' X'C1000008' Internal error encountered during DBRC
unauthorization processing–invalid
parameters.

Parameter
error

X'00000030' X'C1000001' No AUTHLIST passed.

X'00000030' X'C1000002' AUTHLIST passed with no entries.

X'00000030' X'C1000003' Duplicate elements in AUTHLIST.

X'00000030' X'C1000004' Missing or invalid OUTPUT parameter.

X'00000030' X'C9000001' The function (FUNC) specified in the
parameter list passed to the API is invalid.

X'00000030' X'C9000002' Invalid TOKEN address. The address of the
field containing the API TOKEN failed
validity checking. The address specifies
storage not owned by the calling program

470 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes

Table 102. DSPAPI FUNC=UNAUTH request return and reason codes (continued)

Code type Return code Reason code Meaning

X'00000030' X'C9000003' Invalid RETCODE address. The address of
the field containing the API RETCODE failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000004' Invalid RSNCODE address. The address of
the field containing the API RSNCODE failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C9000005' Invalid OUTPUT address. The address of the
field containing the API OUTPUT failed
validity checking. The address specifies
storage not owned by the calling program.

X'00000030' X'C900000A' An incorrect VERSION value was specified
for the requested function (FUNC).

X'00000030' X'C900001A' Invalid AUTHLIST address. The address of
the field containing the API AUTHLIST failed
validity checking. The address specifies
storage not owned by the calling program.

Related reference:

DBRC request return codes (Messages and Codes)

APAUB_RsnCode for UNAUTH output block
You can use this table to search for APAUB_RsnCode values for UNAUTH request
return and reason codes. Each code is accompanied by an explanation of the code.

When an UNAUTH output block (DSPAPAUB) is returned, one of the following
reason codes will be set in field APAUB_RsnCode for each element in the list of
DBs or Areas in the request.

Table 103. APAUB_RsnCode values for UNAUTH request return and reason codes

APAUB_RsnCode Meaning

X'00000000' Request completed successfully.

X'C1000100' Security error. SAF or the DBRC command authorization exit
(DSPDCAX0) has determined that the user is not authorized to
perform the request for this database or area.

X'C1000408' Database not registered in RECON.

X'C1000410' Subsystem not authorized to use the database.

X'C1000414' One of the following actions occurred:

v Internal DBRC unauthorization error – Database and subsystem
records do not match.

v Previously active subsystem calling for unauthorization after a
takeover occurred.

X'C1000418' Internal DBRC or IMS unauthorization error– Held state could not be
computed by the IMS compatibility evaluation routine.

Related reference:
Chapter 34, “DBRC unauthorization request (UNAUTH),” on page 467

Chapter 34. DBRC unauthorization request (UNAUTH) 471

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/compcodes/ims_dbrcrequestretcodes.htm#d2hsrcims_dbrcrequestretcodes

UNAUTH output block mapping
This figure illustrates the format of the output from a TYPE=UNAUTH request.
The output block for the TYPE=UNAUTH request begins with a standard header
that is mapped by the DSPAPQHD. The data portion of this output block is
mapped by DSPAPAUB.

UNAUTH output block
This figure illustrates the output block that is returned by the UNAUTH request.
The output block contains an array of authorized databases and indicates if the
UNAUTH request was successful.

Example of output block mapped by the DSPAPAUB
==
DSPAPAUB

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===========================

0 (0) STRUCTURE 8 DSPAPAUB AUTH/UNAUTH block
0 (0) UNSIGNED 4 APAUB_OFFSET Offset to first element
4 (4) SIGNED 4 APAUB_ELCOUNT Number of elements in list

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===========================

0 (0) STRUCTURE 24 APAUB_ELEMENT
0 (0) UNSIGNED 4 APAUB_OFFNEXT Offset to next element
4 (4) SIGNED 4 APAUB_RSNCODE Reason code
8 (8) CHARACTER 8 APAUB_DBNAME Database or DEDB name
16 (10) CHARACTER 8 APAUB_AREANAME

Area name or blanks

CONSTANTS

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===========================

8 CHARACTER DSPAPAUB APAUB_EYECATCHER

... Reason
code

00000000

First elemnet
offset

Next element
offset

Number of
elements

Reason
code

Database or
DEDB name

Area name
or blanks

DSPAPAUB length AUB
dependent
pointer

next
pointer

block
offset

version00 SP

Figure 29. Format for a TYPE=UNAUTH output

472 System Programming APIs

Part 6. Repository Server batch interface (FRPBATCH)

The Repository Server (RS) address space batch interface (FRPBATCH) is a batch
interface to manage the RS and the repositories.

© Copyright IBM Corp. 1974, 2018 473

474 System Programming APIs

Chapter 35. Commands for FRPBATCH

The Repository Server (RS) address space batch interface (FRPBATCH) is invoked
from JCL as an executable job step program, and accepts commands through the
SYSIN input stream.

Some MODIFY (F) and FRPBATCH commands are equivalent.

Table 104. Equivalent Modify (F) and FRPBATCH commands

MODIFY (F) FRPBATCH Note

-- ADD

ADMIN DISPLAY LIST

ADMIN START START

ADMIN STOP STOP Stops the IMSRSC repository

-- RENAME

-- DELETE

ADMIN DSCHANGE DSCHANGE

-- UPDATE

AUDIT -- Changes the audit level

SECURITY -- Refreshes in-storage profiles

SHUTDOWN -- Stops the RS. Similar to the
STOP command through the
z/OS STOP (P) interface.

The job control statements are:

EXEC
Specifies the program name (PGM=FRPBATCH) and the program parameters.
The parameters must be comma delimited and can be supplied in any order.
Each parameter is in the format of parameter=value.

XCFGROUP
The name of the XCF group in which the RS is located. The value of this
parameter is the same as the value of the XCF_GROUP_NAME parameter
in the FRPCFG member of the IMS PROCLIB data set.

LANG
The language for output messages. Only ENU is supported. If this
parameter is omitted, ENU is used.

The following example is an EXEC statement:
EXEC PGM=FRPBATCH,PARM=('XCFGROUP=FRPGRUP1','LANG=ENU')

SYSPRINT DD
Defines a data set for general messages and information. DCB attributes for
this data set are RECFM=FBM and LRECL=133.

FRPLIST DD
Defines a data set for the LIST command output. If this statement is omitted,
the output of the LIST command is written to the SYSPRINT DD output data
set. DCB attributes for this data set are RECFM=FBM and LRECL=133.

© Copyright IBM Corp. 1974, 2018 475

The commands to be processed are specified on the SYSIN control cards. The
SYSIN control cards must be entered in columns 1 - 72 of the input stream. Each
statement has the following general form:
command_name parameter1 parameter2(value) /*inline comment
*Full-line comment

The following rules apply:
v The command_name is the first item of a command. It is followed by a space (),

and one or more parameters.
v If a command contains more than one parameter, each parameter must be

separated by one or more spaces (), a comma (,), or both.
v A parameter can have a value. The value of a parameter is enclosed in

parentheses ().
v Command names, parameters, and values are converted by the program to

uppercase.
v To enter an inline comment, type a forward slash followed by an asterisk (/*).

Subsequent characters on the same line are ignored by the program.
v To enter a full-line comment, type an asterisk (*) in column 1. All characters on

that line are ignored by the program.
v To break a command over multiple lines, use one of the following continuation

characters:
– Use a hyphen (-) to separate parameters for the same command across

multiple lines. The hyphen does not delete the leading separator from
continued lines. For example:
RENAME REPOSITORY(REPOSITORY_NAME) -
REPOSITORYNEW(REPNEWNAME)

– Use a plus sign (+) to enter a single parameter and its value on multiple lines.
It deletes the leading separator from continued lines. The plus sign must
immediately follow the last character on a line. For example:
START REPOSITORY
(REPOSIT+
ORY_NAME)

The following sample is JCL that runs the FRPBATCH interface with the various
FRPBATCH commands:
//FRPBAT EXEC PGM=FRPBATCH,PARM=’XCFGROUP=FRPGRUP1’
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
//*
ADD REPOSITORY(IMSRSC_REPOSITORY)+

REPDSN1RID(IMSTESTS.REPO.IMSPRI.RID)+
REPDSN1RMD(IMSTESTS.REPO.IMSPRI.RMD)+
REPDSN2RID(IMSTESTS.REPO.IMSSEC.RID)+
REPDSN2RMD(IMSTESTS.REPO.IMSSEC.RMD)+
REPDSN3RID(IMSTESTS.REPO.IMSSPR.RID)+
REPDSN3RMD(IMSTESTS.REPO.IMSSPR.RMD)+
AUTOOPEN(YES)

//*
START REPOSITORY(IMSRSC_REPOSITORY)+

MAXWAIT(30,CONTINUE)

//*
LIST REPOSITORY(IMSRSC_REPOSITORY)

//*

476 System Programming APIs

STOP REPOSITORY(IMSRSC_REPOSITORY)+
MAXWAIT(30,CONTINUE)

//*
RENAME REPOSITORY(IMSRSC_REPOSITORY) REPOSITORYNEW(IMSRSC_TEST_REPOSITORY)

//*
UPDATE REPOSITORY (IMSRSC_TEST_REPOSITORY) -
REPDSN1RID(IMSTESTS.TESTREPO.IMSPRI.RID) -
REPDSN1RMD(IMSTESTS.TESTREPO.IMSPRI.RMD) -
AUTOOPEN(NO)

//*
DELETE REPOSITORY(IMSRSC_TEST_REPOSITORY)

FRPBATCH commands provide the following functions:
Related concepts:

Overview of the IMSRSC repository (System Definition)

IMSRSC repository administration (System Administration)

Starting and stopping the IMSRSC repository (Operations and Automation)

Opening the IMSRSC repository (Operations and Automation)
Related reference:

F reposervername,ADMIN (Commands)

FRPCFG member of the IMS PROCLIB data set (System Definition)

ADD command for FRPBATCH
Use the ADD FRPBATCH command to add an IMSRSC repository to the
Repository Server (RS) catalog repository data sets.

Subsections:
v “Syntax”
v “Keywords” on page 478

Syntax

►► ADD REPOSITORY(repository_name) REPDSN1RID(ds1_rid_dsname) ►

► REPDSN1RMD(ds1_rmd_dsname) REPDSN2RID(ds2_rid_dsname) ►

► REPDSN2RMD(ds2_rmd_dsname) ►

►
REPDSN3RID(NULL) REPDSN3RMD(NULL)

REPDSN3RID(ds3_rid_dsname) REPDSN3RMD(ds3_rmd_dsname)

AUTOOPEN(YES)

AUTOOPEN(NO)
►

►
SECURITYCLASS(NULL)

SECURITYCLASS(securityclassname)
►◄

Chapter 35. Commands for FRPBATCH 477

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_admin_repo.htm#ims_admin_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_startingandstoppingtheimsrepository.htm#startingandstoppingtheimsrepository
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_openingandclosingtheimsrepository.htm#opening_imsrsc_repo
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_reposervername_admin.htm#ims_cr3reposervername_admin
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_frpcfgxxx_proclib.htm#ims_frpcfgxxx_proclib

Keywords

REPOSITORY()
This is a required keyword. The name of the repository. The name can be up to
44 characters long. Valid characters are A-Z (uppercase only), 0-9, and the
following symbols: number sign (#), dollar sign ($), at sign (@), period (.), and
underscore (_). All lower case characters are converted to uppercase.

A repository name of CATALOG cannot be used, because it is reserved for RS
usage.

REPDSN1RID()
This is a required keyword. The primary repository index data set (RID). A
valid existing VSAM key sequenced data set (KSDS) name is required for the
repository to initialize.

REPDSN1RMD()
This is a required keyword. The primary repository member data set (RMD). A
valid existing VSAM KSDS name is required for the repository to initialize.

REPDSN2RID()
This is a required keyword. The secondary RID. A valid existing VSAM KSDS
name is required for the repository to initialize.

REPDSN2RMD()
This is a required keyword. The secondary RMD. A valid existing VSAM KSDS
name is required for the repository to initialize.

REPDSN3RID()
This keyword is optional. The spare RID. If this parameter is not specified, the
spare data set is set to NONE. If specified, it must be a valid VSAM KSDS data
set name or NULL. Setting the REPDSN3 data set pair to NULL results in its
status being set to NONE. The spare is not allocated until data set recovery
processing is initiated.

REPDSN3RMD()
This keyword is optional. The spare RMD. If this parameter is not specified,
the spare data set is set to NONE. If specified, it must be a valid VSAM KSDS
data set name or NULL. Setting the REPDSN3 data set pair to NULL results in
its status being set to NONE. The spare is not allocated until data set recovery
processing is initiated.

AUTOOPEN(YES | NO)
This keyword is optional. Specifies when repository data sets are allocated.

YES
Repository data sets are allocated when the repository is started. This is the
default.

NO Repository data sets are allocated when you first connect to the repository.

SECURITYCLASS(NULL | securityclassname)
This keyword is optional. Specifies the name of the security class to be used
for the user repository. The name must be left-aligned, an 8-byte name with
trailing contiguous spaces. The first character must be alphabetic and
subsequent name characters alphanumeric.

If this parameter is omitted, or if NULL is specified, there is no security for
this user repository. The name specified can be the same name as the value for
SAF_CLASS specified for the RS address space in the FRPCFG member of the
IMS PROCLIB data set.

Related concepts:

478 System Programming APIs

Overview of the IMSRSC repository (System Definition)

IMSRSC repository and RS catalog repository data sets (System Definition)

Related tasks:

Restricting access to the RS catalog repository and IMSRSC repository (System
Administration)

Allocating the IMSRSC repository data sets (System Definition)
Related reference:

FRPCFG member of the IMS PROCLIB data set (System Definition)

DELETE command for FRPBATCH
Use the DELETE FRPBATCH command to remove an IMSRSC repository from the
Repository Server (RS) catalog repository data sets.

Note: When you remove a repository from the RS catalog repository, its data sets
are not deleted. To delete the data sets, use the z/OS Access Method Services
(IDCAMS) utility or a similar method after you have removed the repository from
the RS catalog repository.

Subsections:
v “Syntax”
v “Keywords”

Syntax

►► DELETE REPOSITORY(repository_name) ►◄

Keywords

REPOSITORY()
This is a required keyword. The name of the repository to be removed.
"CATALOG" is reserved for internal use and cannot be deleted.

Related concepts:

Overview of the IMSRSC repository (System Definition)
Related tasks:

Removing an IMSRSC repository from the RS catalog repository (System
Administration)
Related reference:

z/OS: DFSMS Access Method Services for Catalogs

DSCHANGE command for FRPBATCH
Use the DSCHANGE FRPBATCH command to change the status of an IMSRSC
repository data set pair to either DISCARD or SPARE.

Subsections:
v “Syntax” on page 480
v “Keywords” on page 480

Chapter 35. Commands for FRPBATCH 479

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_allocrepo.htm#allocrepo
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_secur_restrict_repo.htm#restrictingaccesstotherepositoryserver
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_secur_restrict_repo.htm#restrictingaccesstotherepositoryserver
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_allocrepo_client.htm#ims_allocrepo_client
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_frpcfgxxx_proclib.htm#ims_frpcfgxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_remove_repo_from_catalog.htm#remove_repo_from_catalog
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_remove_repo_from_catalog.htm#remove_repo_from_catalog
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.idai200/toc.htm

Syntax

►► DSCHANGE REPOSITORY(repository_name) RDS(1) ACTION(SPARE)
2 DISCARD
3

►◄

Keywords

REPOSITORY()
This is a required keyword. The name of the repository to be changed.
"CATALOG" is reserved and cannot be changed.

RDS(1 | 2 | 3)
This is a required keyword. A number in the range of 1-3 to identify the
repository data set pair to which the requested DSCHANGE action is to be
applied.

1 The primary repository data set pair (COPY1).

2 The secondary repository data set pair (COPY2).

3 The spare repository data set pair (SPARE).

ACTION(SPARE | DISCARD)
This keyword is required. The action to be applied to the repository data sets
that are specified in the RDS parameter.

SPARE
Request to change the repository data set pair disposition to SPARE status.
The SPARE action can only be executed against a repository data set pair
with DISCARD status. The SPARE repository index data sets (RIDs) and
the SPARE repository member data sets (RMDs) must be empty.

DISCARD
Request to change the repository data set pair disposition to DISCARD
status. The DISCARD action can be executed against either of the active
repository data sets (the COPY1 or COPY2) or the SPARE repository data
sets. A data set must be set to DISCARD status before a new data set can
be defined. The repository must be in a stopped state for this request to
process the DISCARD action against COPY1 or COPY2. The repository is
not required to be stopped to process the DISCARD against the SPARE.

Related concepts:

Overview of the IMSRSC repository (System Definition)

IMS repository data set states (System Definition)

LIST command for FRPBATCH
Use the LIST FRPBATCH command to list information about one IMSRSC
repository or all repositories that are defined to the Repository Server (RS) catalog
repository data sets.

Subsections:
v “Syntax” on page 481
v “Keywords” on page 481

480 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_repo_datasets_states.htm#ims_repo_datasets_states

Syntax

►► LIST REPOSITORY(repository_name)
STATUS

►◄

Keywords

REPOSITORY()
List details for a specific repository that is defined to the RS catalog repository
data sets. The name of the repository for which to list information.

STATUS
List the details for all the repositories that are defined to the RS catalog
repository data sets.

The following information is returned:
v Name of the repository
v Status of the repository
v Date when the repository was last updated and the user ID of the user who

updated it
Related concepts:

Overview of the IMSRSC repository (System Definition)
Related tasks:

Viewing IMSRSC repository definitions and status (System Administration)

RENAME command for FRPBATCH
Use the RENAME FRPBATCH command to rename an IMSRSC repository.

Subsections:
v “Syntax”
v “Keywords”

Syntax

►► RENAME REPOSITORY(repository_name) REPOSITORYNEW(repository_new_name) ►◄

Keywords

REPOSITORY()
This is a required keyword. The current name of the repository to be renamed.
"CATALOG" is reserved for internal use and cannot be renamed.

REPOSITORYNEW()
This is a required keyword. The new name of the repository to be renamed.
The name can be up to 44 characters long. Valid characters are A-Z (uppercase
only), 0-9, and the following symbols: period (.), underscore (_), number sign
(#), dollar sign ($), and at sign (@). All lowercase characters are converted to
uppercase.

A repository name of "CATALOG" cannot be used, because it is reserved for
Repository Server (RS) usage.

Related concepts:

Chapter 35. Commands for FRPBATCH 481

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_list_repo_status.htm#list_repo_status

Overview of the IMSRSC repository (System Definition)

Updating IMSRSC repository specifications in the RS catalog repository
(System Administration)

START command for FRPBATCH
Use the START FRPBATCH command to start an IMSRSC repository.

Subsections:
v “Syntax”
v “Keywords”

Syntax

►► START REPOSITORY(repository_name)
OPEN(NO)

OPEN(YES)
►

►
MAXWAIT(5,CONTINUE)

CONTINUE
MAXWAIT(seconds,)

ABORT
IGNORE

►◄

Keywords

REPOSITORY()
This is a required keyword. The name of the repository data set to be started.
The Repository Server (RS) catalog repository data sets cannot be started using
the START command.

OPEN(NO | YES)
This keyword is optional. Specifies whether to open the repository data sets
immediately after the repository is started.

NO Repository data sets are opened when a user first connects to the
repository, or immediately if AUTOOPEN=Y is defined for the repository
with the ADD FRPBATCH command. This is the default.

YES
Repository data sets are allocated and opened when the repository is
started.

MAXWAIT(5 | seconds , CONTINUE | IGNORE | ABORT)
This keyword is optional. The maximum number of seconds (0-9999) that the
utility waits for the START operation to complete. The default is 5 seconds. A
value of 0 means that the utility does not wait and returns a code immediately.
MAXWAIT also specifies the action to take if the START operation is not
complete when the MAXWAIT period expires (when the request to the server
to start the user repository is successful but the batch utility is not able to
confirm that the repository is in the requested state).

CONTINUE
Command processing continues even when the MAXWAIT period expires.
The return code is set to 4.

482 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_update_repo_definitions.htm#update_repo_definitions
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_update_repo_definitions.htm#update_repo_definitions

IGNORE
Command processing continues even when the MAXWAIT period expires.
No return code is set.

ABORT
Command processing is terminated when the MAXWAIT period expires.
The return code is set to 8.

Related concepts:

Overview of the IMSRSC repository (System Definition)

STOP command for FRPBATCH
Use the STOP FRPBATCH command to stop an IMSRSC repository that is defined
to the Repository Server (RS) catalog repository data sets.

Subsections:
v “Syntax”
v “Keywords”

Syntax

►► STOP REPOSITORY(repository_name)
MAXWAIT(5,CONTINUE)

CONTINUE
MAXWAIT(seconds,)

ABORT
IGNORE

►◄

Keywords

REPOSITORY()
This is a required keyword. The name of the repository data set to be stopped.
The RS catalog repository data set cannot be stopped using the STOP
command.

Requests that the RS stop this repository, preventing further connections to it.
If the repository data sets are allocated, the server deallocates the data sets
after all write operations are completed and closes the repository.

MAXWAIT(5 | seconds , CONTINUE | IGNORE | ABORT)
This keyword is optional. The maximum time (0-9999) in seconds that the
utility waits for the STOP operation to be completed. The default is 5 seconds.
A value of 0 means that the utility does not wait and returns a code
immediately. MAXWAIT also specifies the action to be taken if the STOP
operation has not been completed when the MAXWAIT period expires (when
the request to the server to stop the user repository is successful but the batch
utility is not able to confirm that the repository is in the requested state).

CONTINUE
Command processing continues even when the MAXWAIT period expires.
The return code is set to 4.

IGNORE
Command processing continues even when the MAXWAIT period expires.
No return code is set.

Chapter 35. Commands for FRPBATCH 483

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview

ABORT
Command processing is terminated when the MAXWAIT period expires.
The return code is set to 8.

Related concepts:

Overview of the IMSRSC repository (System Definition)

UPDATE command for FRPBATCH
Use the UPDATE FRPBATCH command to update an IMSRSC repository
definition in the Repository Server (RS) catalog repository data sets. Use this
command to change the IMSRSC repository data sets or the AUTOOPEN
specification of a repository.

Subsections:
v “Syntax”
v “Keywords”

Syntax

►► UPDATE REPOSITORY(repository_name) ►

►
REPDSN1RID(ds1_rid_dsname) REPDSN1RMD(ds1_rmd_dsname)

NULL NULL

►

►
REPDSN2RID(ds2_rid_dsname) REPDSN2RMD(ds2_rmd_dsname)

NULL NULL

►

►
REPDSN3RID(ds3_rid_dsname) REPDSN3RMD(ds3_rmd_dsname)

NULL NULL

►

►
AUTOOPEN(YES)

AUTOOPEN(NO)

SECURITYCLASS(NULL)

SECURITYCLASS(securityclassname)
►◄

Keywords

REPOSITORY()
This is a required keyword. The name of the repository to be updated.
"CATALOG" is reserved and cannot be updated.

REPDSN1RID()
This is an optional keyword. The name of the primary repository index data
set (RID). If this parameter is omitted, or if NULL is specified, the data set is
not updated.

If you specify REPDSN1RMD, but do not want to update this parameter, you
still must specify this parameter (with NULL).

484 System Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview

REPDSN1RMD()
This is an optional keyword. The name of the primary repository member data
set (RMD). If this parameter is omitted, or if NULL is specified, the data set is
not updated.

If you specify REPDSN1RID(), but do not want to update this parameter, you
still must specify this parameter (with NULL).

REPDSN2RID()
This is an optional keyword. The name of the secondary RID. If this parameter
is omitted, or if NULL is specified, the data set is not updated.

If you specify REPDSN2RMD(), but do not want to update this parameter, you
still must specify this parameter (with NULL).

REPDSN2RMD()
This is an optional keyword. The name of the secondary RMD. If this
parameter is omitted, or if NULL is specified, the data set is not updated.

If you specify REPDSN2RID(), but do not want to update this parameter, you
still must specify this parameter (with NULL).

REPDSN3RID()
This keyword is optional. The name of the spare RID. If this parameter is
omitted, or if NULL is specified, the data set is not updated.

If you specify REPDSN3RMD(), but do not want to update this parameter, you
still must specify this parameter (with NULL).

REPDSN3RMD()
This keyword is optional. The name of the spare RMD. If this parameter is
omitted, or if NULL is specified, the data set is not updated.

If you specify REPDSN3RID(), but do not want to update this parameter, you
still must specify this parameter (with NULL).

AUTOOPEN(YES | NO)
This keyword is optional. Specifies when repository data sets are allocated.

YES
Repository data sets are allocated when the repository is started. This is the
default.

NO Repository data sets are allocated when you first connect to the repository.

SECURITYCLASS(NULL | securityclassname)
This keyword is optional. Specifies the name of the security class to be used
for the user repository. The name must be left-aligned, an 8-byte name with
trailing contiguous spaces. The first character must be alphabetic and
subsequent name characters alphanumeric.

If this parameter is omitted, or if NULL is specified, there is no security for
this user repository. The name specified can be the same name as the
SECURITYCLASS specified for the RS address space in the FRPCFG member
of the IMS PROCLIB data set.

Related concepts:

Overview of the IMSRSC repository (System Definition)

Updating IMSRSC repository specifications in the RS catalog repository
(System Administration)
Related reference:

FRPCFG member of the IMS PROCLIB data set (System Definition)

Chapter 35. Commands for FRPBATCH 485

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_update_repo_definitions.htm#update_repo_definitions
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_update_repo_definitions.htm#update_repo_definitions
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_frpcfgxxx_proclib.htm#ims_frpcfgxxx_proclib

486 System Programming APIs

Part 7. VTAM and SNA reference information

The topics in this section provide reference information about VTAM and SNA.

© Copyright IBM Corp. 1974, 2018 487

488 System Programming APIs

Chapter 36. Bind parameters for SLU P and LU 6.1

You can search these topics for the session parameters that IMS specifies when
establishing connection using the VTAM OPNDST macro instruction. These
parameters define the rules that a logical unit must follow when communicating
with IMS.

Restriction: A VTAM restriction exists on the OUTBUF and RECANY buffer sizes
for logical units requiring a bind from IMS.

The following outbound (from IMS to the SLU) BIND formats apply to the device
types indicated in the following topics.
Related reference:
Chapter 38, “Format for CINIT user data parameters,” on page 507

Finance communication system bind parameters
You can use this table to search for the session parameters that are defined as
UNITYPE=FINANCE or UNITYPE=SLUTYPEP on the TYPE macro or an Extended
Terminal Option (ETO) logon descriptor for a Finance Communication System.

Table 105. Finance communication system bind parameters.

Byte Bit Content BIND FORMAT description

0 X'31'

1 X'01' Format=0; BINDTYPE=COLD1

2 X'04' FM Profile 4

3 X'04' TS Profile 4

4 Primary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'11' Any response

4-5 B'00' Reserved

6 B'0' No compression

7 B'1' Primary can send EB

5 B'1' Secondary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'11' Any response

4-5 B'00' Reserved

6 B'0' No compression

7 B'1' Secondary can send EB

© Copyright IBM Corp. 1974, 2018 489

Table 105. Finance communication system bind parameters (continued).

Byte Bit Content BIND FORMAT description

6 X'60' Common NAU protocol

0 B'0' Reserved

1 B'1' Message headers are allowed

2 B'1' Brackets to be used

3 B'0' Bracket termination rule 2 (unconditional)

4 B'0' No alternate code

5-7 B'000' Reserved

7 X'80' Common NAU protocol

0-1 B'10' FM transmission mode - HDX flip/flop

2 B'0' Primary ERP responsibility

3 B'0' Secondary station is the first speaker

4-5 B'00' Reserved

6 B'0' No related chains

7 B'0' Contention resolution

8 Reserved: X'00' should be specified

9 SLU receive pacing count: Not changed by IMS2

10 SLU max. RU send size: Set to maximum receive
any buffer size from IMS system definition1, 3, 4

11 PLU max. RU send size: Set from output buffer
size specified on IMS system definition1, 4

12-13 Reserved: X'0000' should be specified

14 LU TYPE: X'00' should be specified

15-26 Reserved: XL11'00' should be specified

27 PLU name length2

28-35 PLU name: IMS ACB name2

36 X'0B' User data length

37-47 User data5

37 X'00' Structured data indicator

38 X'09' Length of USERVAR segment

39 X'03' USERVAR segment indicator

40-47 XRF
USERVAR

USERVAR

490 System Programming APIs

Table 105. Finance communication system bind parameters (continued).

Byte Bit Content BIND FORMAT description

Notes:

1. Bytes 1 through 7, 10, and 11 are set to the indicated values set by IMS and cannot be
changed by the user. The pacing parameter is defined in the VTAM list LU definition or
through the mode table entry for the LU (VTAM DLOGMOD parameter).

2. Bytes 0, 9, and 27 through 35 are set by VTAM.

3. The receive-any buffer size is determined by the user-supplied value for size on the
RECANY keyword parameter of the COMM macro statement, less 28 bytes.

4. IMS does not set the buffer size for the 4701/4702.

5. When the BIND data issued is an XRF system that uses the USERVAR instead of MNPS,
the following structured user segment is included:

Length of USERVAR segment - X'09'

USERVAR segment indicator - X'03'

USERVAR (8 bytes) - USERVAR of the XRF system

Related reference:

z/OS: Request unit (RU) formats

IMS as primary half session
A specific bind format is sent by IMS during an IMS-to-other session initiation. If
the mode table entry indicates negotiated bind, IMS overrides the mode table
primary NAU protocol field with the indicated values prior to sending the bind.

IMS allows some parameters to be optionally set by a VTAM mode table entry or
negotiated bind response. IMS then operates within the indicated constraints. For a
non-negotiated bind, IMS checks the parameters for validity before sending the
bind. For negotiated bind, IMS checks the parameters for validity prior to sending
the BIND request and upon receipt of the bind response, because the secondary
half session can modify parameters within the constraints indicated in the
following table.

Table 106. Logical unit type 6.1 bind parameters.

Byte Bit Content BIND FORMAT description1

0 X'31' Bind request code

1 0-3 B'0000' FORMAT: TYPE 0

4-7 B'0000', B'0001'
BIND TYPE:
0000 - negotiated
0001 - non-negotiated

2 0-7 X'12' FM Profile 18

3 0-7 X'04' TS Profile 4

Chapter 36. Bind parameters for SLU P and LU 6.1 491

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istprg0/rufs.htm

Table 106. Logical unit type 6.1 bind parameters (continued).

Byte Bit Content BIND FORMAT description1

4 Primary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3
B'10', B'11'
(B'11' set for
negotiated BIND)

10-Definite response chains

11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

7 B'1' 0-Primary cannot end bracket

1-Primary can send end bracket

5 Secondary NAU protocol

0 B'1' 0-Single RU chains, 1-Multiple RU
chains

1 B'0' Immediate request

01-Exception response chains

10-Definite response chains

2-3 B'10', B'11' 11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

0-Secondary cannot end bracket

7 B'0', B'1' 1-Secondary can send end bracket

6 Common NAU protocol

0 B'0' Reserved

1 B'1' Function management headers allowed

Bracket state

0 - Bracket state mgr reset to in-bracket
state

2 B'0',B'1' 1 - Bracket state mgr reset to
between-bracket state2

3 B'1' Conditional bracket termination

4 B'0' No alternate code

5
B'0' Sequence

numbers not available
B'1' Sequence

numbers available

STSN request flag

6
B'0' BIS not sent
B'1' BIS sent

BIS sent flag

7 B'0' Reserved

492 System Programming APIs

Table 106. Logical unit type 6.1 bind parameters (continued).

Byte Bit Content BIND FORMAT description1

7 0-1 B'10' FM transaction mode, HDX-FF

2 B'1' Sender ERP

3 B'0' Secondary is first speaker

4-6 B'0000' Reserved

If byte 6 bit 2 is 0, then

0-Secondary speaks first after data
traffic active state

7 B'0', B'1' 1-Primary speaks first after data traffic
active state2

8 0-7 Unchanged Secondary send pacing count

9 0-7 Unchanged Secondary receive pacing count

10 0-7 Set from user Define
receive-any

SLU max send RU size3

11 0-7 Set from user Define
outbuffer size

PLU max send RU size

12 0-7 Unchanged Primary send pacing count

13 0-7 Unchanged Primary receive pacing count

Presentation Services

14 0-7 X'06' LU profile (LUTYPE6)

15 0-7 X'00' Reserved Function management header subset

16 0 Reserved Primary half-session flags

1 Reserved

2 1 - FMH6: Receive

SYSMSG supported

3 1 - Receive SCHEDULER

model supported

4 1 - Receive QMODEL
supported

5 0 - Linear file model ignored

6 0 - DL/I model ignored

7 Reserved

17 Reserved

18-19 Reserved

Chapter 36. Bind parameters for SLU P and LU 6.1 493

Table 106. Logical unit type 6.1 bind parameters (continued).

Byte Bit Content BIND FORMAT description1

20 0 Reserved Secondary half-session flags

1 Reserved

2 1 - Receive SYSMSG
supported

3 0 - Receive SCHEDULER

not supported4

1 - Receive SCHEDULER

model supported

4 0 - Receive QMODEL

ignored1 - Receive QMODEL

supported

5 0 - linear file model ignored

6 0 - DL/I model ignored

7 Reserved

21 Reserved

22-26 Reserved

27 0-7 Length of PLU name

28-M PLU name

M+1 0-7 X'00' No user data present Length of user data

M+2-N X'00' Structured fields follow

X'00' First byte of
unstructured user data5

User data

M+3-N Remainder of unstructured
user data

For unstructured user data

M+3-N Structured fields For structured user data6

N+1 0-7 Structured fields, request
correlation (URC) field

X'00' = no URC present

Length of URC7

N+2-P End-user-defined identifier URC4

P+1 0-7 X'00'=no secondary name Length of secondary LU name4

P+2-R 0-7 Secondary LU name Secondary LU name4

494 System Programming APIs

Table 106. Logical unit type 6.1 bind parameters (continued).

Byte Bit Content BIND FORMAT description1

Notes:

1. The length of the BIND RU cannot exceed 256 bytes; otherwise, a negative response is
returned.

2. Set to indicate possible in-bracket or process restart. Set by IMS on bind when response
mode output remains on the queue or when IMS is in conversational mode. Can also be
sent on a negotiated bind response by the other half session.

3. The receive-any buffer size is determined by the user-supplied value for size on the
RECANY keyword parameter of the COMM macro statement, less 28 bytes.

4. When the bind indicates that the other half session does not support the SCHEDULER
process, IMS sends all unsolicited and asynchronous output using ATTACH.

5. Unstructured user data is ignored and not provided by IMS.

6. Structured user data formats. A structured field contains architected or
subsystem-defined information and provides a means for subsystems to communicate
data. Each structured field contains a field identifier (subfield number) and length. A
structured data field can contain unstructured data.

If structured field (M+3-N) is X'00', it contains unstructured data as follows:

1 Length of unstructured data field (including subfield key field). If zero, this
field can be omitted entirely.

2 Subfield key: X'00'

3-N Unstructured data. If the structured subfield number is X'03', an 8-byte
USERVAR name follows the subfield.

If the structured field (M+3-N) is X'01', it contains a session qualifier as follows:

1 Length of session qualifier field (including subfield key field). If zero, this field
can be omitted entirely.

2 Subfield key: X'01'

3 Length of primary resource qualifier (X'00' means no primary source qualifier is
present). Values 0 to 8 are valid.

4-N Primary resource qualifier

N+1 Length of secondary resource qualifier (X'00' means no secondary resource
qualifier is present). Values 0 to 8 are valid.

N+2-M Secondary resource qualifier

M+1 Length of password (X'00' means no password is present). Values 0 to 8 are
valid.

M+2-P Password. Ignored on bind or bind reply from IMS and is not sent on bind or
bind reply. IMS indexes structured fields to find field X'01', a session-qualifier
field, when these parameters are required for session initiation using parallel
sessions.

M+3-N If the structured field has a subfield of X'02', IMS interprets the field as an MSC
partner ID. If bind is issued in an XRF environment that uses USERVAR instead
of MNPS, an additional structured segment is included in the user data. The
format of this segment is:

1 Length of USERVAR segment, X'09'

2 Subfield key, X'03'

3-10 8-byte field containing USERVAR of the XRF complex

7. The URC and secondary LU name are not used by IMS but are shown for compatibility
purposes.

Chapter 36. Bind parameters for SLU P and LU 6.1 495

Related reference:

z/OS: Request unit (RU) formats

IMS as secondary half session
A specific bind format can be received by IMS during an IMS-to-other session
initiation. If the bind parameters that are received indicate a negotiated BIND
request, IMS overrides the secondary NAU protocol field with the indicated values
before sending the bind response.

IMS allows some parameters to be optionally set using the bind and operates
within the indicated constraints.

Table 107. IMS-to-other secondary half session

Byte Bit Content BIND FORMAT description 1

0 X'31' Bind Request Code

1 0-3 B'0000' Format: TYPE 0

4-7 B'0000', B'0001' Bind type:
0000 - negotiated
0001 - non-negotiated

2 0-7 X'12' FM profile 18

3 0-7 X'04' TS profile 4

4 Primary NAU Protocol

0 B'0', B'1'
B'0' Single RU chains

B'1' Multiple RU chains

1 B'01', B'10' Immediate request:

B'01' Exception response chains

B'10' Definite response chains

2-3 B'01', B'10', B'11' 11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

7 B'0', B'1' 0-Primary cannot end bracket

1-Primary can send end bracket

5

Secondary NAU Protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'10', B'11'
(B'11' set for
negotiated bind)

10-Definite response chains

11-Exception/Definite response chains

4 B'0' Cannot send prepare

5 B'0' Reserved

6 B'0' No compression

7 B'1' 0-Secondary cannot send end bracket

1-Secondary can send end bracket

496 System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istprg0/rufs.htm

Table 107. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

6 Common NAU Protocol

0 B'0' Reserved

1 B'1' Function Management headers
allowed

2 B'0', B'1' Bracket state:

B'0' Bracket state manager reset to
in-bracket state

B'1' Bracket state manager reset to
between-bracket state2

3 B'1' Conditional bracket termination

4 B'0' No alternate code

5 B'0', B'1' STSN required flag:

B'0' Sequence numbers not
available

B'1' Sequence numbers available

6 B'0', B'1' BIS sent flag:

B'0' BIS not sent

B'1' BIS sent

7 B'000' Reserved

7 0-1 B'10' FM transaction mode, HDX-FF

2 B'1' Sender ERP

3-6 B'0000' Reserved

7 B'0', B'1' IF byte 6 bit 2 is 0:
0 - Secondary speaks first

after data traffic active
state

1 - Primary speaks first
after data traffic active
state2

8 0-7 Unchanged Secondary send pacing count

9 0-7 Unchanged Secondary receive pacing count

10 0-7 Must ≥ defined outbuffer
size

SLU max send RU size

11 0-7 Must be ≤ define receive-any
size

PLU max send RU size3

12 0-7 Unchanged Primary send pacing count

13 0-7 Unchanged Primary receive pacing count

14 0-7 X'06' LU profile (LUTYPE6)

15 0-7 X'00' Reserved Function Management header subset

Chapter 36. Bind parameters for SLU P and LU 6.1 497

Table 107. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

16

0 Reserved Primary half-session flags

1 Reserved

2 1 - Receive SYSMSG
supported

3 0 - Receive SCHEDULER

model not supported4

1 - Receive SCHEDULER

model supported

4 0 - Receive QMODEL

not supported

1 - Receive QMODEL
supported

5 0 - linear file model

not supported

6 0 - DL/I model

not supported

7 Reserved

17 Reserved

18-19 Reserved

20

0 Reserved Secondary half-session flags

1 Reserved

2 1 - FMH6: Receive

SYSMSG supported

3 1 - Receive schedule

model supported

4 1 - Receive QMODEL

supported

5 0 - linear file model

not supported

6 0 - DL/I model

not supported

7 Reserved

21 Reserved

22-26 Reserved

27 0-7 Length of PLU name

28-M PLU name

M+1 0-7 X'00' No user data present Length of user data

498 System Programming APIs

Table 107. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

M+2-N X'00' Structured fields follow

X'00' first byte of
unstructured user data5

User data

M+3-N Remainder of unstructured
user data

For unstructured user data

M+3-N Structured fields6 For structured user data

N+1 0-7 Length of user request
correlation (URC) field X'00'
= no URC present

Length of URC7

N+2-P URC: end-user defined
identifier

URC7

P+1 0-7 X'00'=no secondary name Length of secondary LU name7

P+2-R 0-7 Secondary LU name Secondary LU name7

Chapter 36. Bind parameters for SLU P and LU 6.1 499

Table 107. IMS-to-other secondary half session (continued)

Byte Bit Content BIND FORMAT description 1

Notes:

1. The length of the BIND RU cannot exceed 256 bytes; otherwise, a negative response is
returned.

2. Set to indicate possible in-bracket or process restart. Set by IMS on bind when response
mode output remains on the queue or when IMS is in conversational mode. Can also be
sent on a negotiated bind response by the other half session.

3. The receive-any buffer size is determined by the user-supplied value for size on the
RECANY keyword parameter of the COMM macro statement, less 28 bytes.

4. When the bind indicates that the other half session does not support the SCHEDULER
process, IMS sends all unsolicited or asynchronous output using ATTACH.

5. Unstructured user data is ignored and not provided by IMS.

6. Structured user data formats. A structured field contains architected or
subsystem-defined information and provides a means for subsystems to communicate
data. Each structured field contains a field identifier (subfield number) and length. A
structured data field can contain unstructured data.

If structured field (M+3-N) is X'00', it contains unstructured data as follows:

1 Length of unstructured data field (including subfield key field). If zero, this
field can be omitted entirely.

2 Subfield key: X'00'

3-N Unstructured data If the structured subfield number is X'03', an 8-byte
USERVAR name follows the subfield.

If the structured field (M+3-N) is X'01', it contains a session qualifier as follows:

1 Length of session qualifier field (including subfield key field). If zero, this field
can be omitted entirely

2 Subfield key: X'01'

3 Length of primary resource qualifier (X'00' means no primary source qualifier is
present). Values 0 to 8 are valid.

4-N Primary resource qualifier

N+1 Length of secondary resource qualifier (X'00' means no secondary resource
qualifier is present). Values 0 to 8 are valid.

N+2-M Secondary resource qualifier

M+1 Length of password (X'00' means no password is present). Values 0 to 8 are
valid.

M+2-P Password (ignored on bind or bind reply received by IMS and not sent on bind
or bind reply. IMS indexes structured fields to find field X'01', a session-qualifier
field, when these parameters are required for session initiation using parallel
sessions.

When the BIND data issued is an XRF system that uses USERVAR instead of
MNPS, the following structured user segment is included:

Length of USERVAR segment - X'09'

USERVAR segment indicator - X'03'

USERVAR (8 bytes) - USERVAR of the XRF system

7. The URC and secondary LU name are not used by IMS but are shown for compatibility
purposes.

Related reference:

z/OS: Request unit (RU) formats

500 System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istprg0/rufs.htm

Chapter 37. Bind parameters for SLU 1 and SLU 2

IMS specifies different session parameters when establishing connection with SLU
1 and SLU 2. These parameters define the rules that a logical unit must follow
when communicating with IMS.

The following outbound (from IMS to the SLU) BIND formats apply to the device
types indicated in this section.
Related reference:
Chapter 38, “Format for CINIT user data parameters,” on page 507

SLU 1 bind parameters
You can use this table to search for SLU 1 bind parameters.

Table 108. SLU 1 bind parameters

Byte Bit Content Description

0 X'01' Format=0; BINDTYPE=COLD

1 X'03' FM Profile 3

2 X'03' TS Profile 3

3 PRIMARY LU PROTOCOLS

0 B'1' Multiple RU chains

1 B'0' Immediate Request Mode

2-3 B'11' Chain Response Protocol: Any

4-5 B'00' Reserved

6 B'0' No Compression

7 B'1' Primary can send End Bracket

4 SECONDARY LU PROTOCOLS

0 B'1' Multiple RU Chains

1 B'0' Immediate Request Mode

2-3 Note1 Chain Response Protocol

4-5 B'00' Reserved

6 B'0' No Compression

7 B'0' Secondary does not send End Bracket

5 COMMON LU PROTOCOLS (FIRST
BYTE)

0 B'0' Reserved

1 Note2 FM Headers

2 B'1' Brackets can be used

3 B'1' Bracket Termination Rule 1 (Conditional)

4 B'0' EBCDIC (No Alternate Code)

5-7 B'000' Reserved

© Copyright IBM Corp. 1974, 2018 501

Table 108. SLU 1 bind parameters (continued)

Byte Bit Content Description

6 COMMON LU PROTOCOLS (SECOND
BYTE)

0-1 B'10' Half-Duplex Flip-Flop

2 B'0' Primary ERP Responsibility

3 B'0' Secondary is First Speaker

4-6 B'000' Reserved

7 B'0' Secondary is Contention Winner

7 0-1 B'00' Reserved

2-7 SLU Send Pacing Count (Set by VTAM)3

8 0-1 B'00' Reserved

2-7 SLU Receive Pacing Count (Set by VTAM)3

9 0-7 Set from
user-defined receive
any

SLU to PLU RU Size

10 0-7 Set from
user-defined outbuf
size

PLU to SLU RU Size

11 0-1 B'00' Reserved

2-7 PLU CPMGR Send Pacing Count (Set by
VTAM)3

12 0-1 B'00' Reserved

2-7 PLU CPMGR Receive Pacing Count (Set by
VTAM)3

13 0-7 X'01' LU Profile (LUTYPE1)

14-35 See Notes Remainder of Bind Area

502 System Programming APIs

Table 108. SLU 1 bind parameters (continued)

Byte Bit Content Description

Notes:

1. IMS forces flip-flop mode.

2. The preceding bind (bytes 0-6 and 13) overrides anything that might be in a logmode
entry.

3. You can do this by coding the VPACING parameter on the VTAM list LU definition or
by specifying the appropriate mode table entry on the LU definition by using the VTAM
DLOGMOD parameter.

4. The remainder of the bind (bytes 14-35) can be specified if it is required by the device. It
is taken from the logmode entry.

5. Unattended operation must be specified in the logmode entry using the following:

BYTE 18

Bit 0

0 Initiates attended

1 Initiates unattended

Bit 1

0 Does not alternate from attended/unattended during session

1 Alternates from attended/unattended during session

IMS forces attended mode if the node is defined as the master terminal.

6. IMS users should make the logmode entry according to the IMS definition.

7. If the terminal sends SCS2 transparent fields (identified by a X'35' followed by one byte
containing the field's length, followed by the transparent field), the bind image bit
BINPDSB1=BINTRNDS (offset 17=01) must be set. IMS processes these fields by deleting
the X'35' and length byte, and by passing the unaltered transparent field to the editing
routine.

8. IMS accepts a setting of B'10' (definite response), B'01' (exception response), or B'11'
(either response). If a setting of B'00' is found, IMS sets B'01' if only the first component
is defined, and B'10' if more than one component is defined.

9. IMS leaves this bit on (FM headers allowed). If off, IMS leaves it off (FM headers not
allowed) if only one component is defined, and sets it on if more than one component
are defined.

SLU 2 bind parameters
You can use this table to search for the bind parameters for SLU 2 devices.

Table 109. SLU 2 bind parameters.

Byte Bit Content Description

0 X'01' Format=0; BINDTYPE=COLD

1 X'03' FM Profile 3

2 X'03' TS Profile 3

Chapter 37. Bind parameters for SLU 1 and SLU 2 503

Table 109. SLU 2 bind parameters (continued).

Byte Bit Content Description

3 Primary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'11' Any response

4-5 Reserved

6 B'0' No compression

7 B'1' Primary can send EB

4 Secondary NAU protocol

0 B'1' Multiple RU chains

1 B'0' Immediate request

2-3 B'01' Exception response

4-5 Reserved

6 B'0' No compression

7 B'0' Secondary cannot send EB

5 Common NAU protocol

0 Reserved

1 B'0' Message headers are not allowed

2 B'1' Brackets to be used

3 B'1' Bracket termination rule 1 (conditional)

4 B'0' No alternate code

5-7 Reserved

6 Common NAU protocol

0-1 B'10' FM transmission mode: HDX flip/flop

2 B'0' Primary ERP responsibility

3 B'0' Secondary station is the first speaker

4-6 xxx Reserved

7 B'0' For HDX-FF mode, secondary sends first
when leaving data traffic reset state

7 SLU Send Pacing count: Not changed by
IMS

8 SLU Receive Pacing count: Not changed by
IMS

9 SLU MAX RU send size: Set to Max receive
any buffer size from IMS system definition

10 PLU MAX RU send size: Set from output
buffer size specified at IMS system
definition

11-12 Reserved: X'0000' should be specified

13 LU TYPE: Set to X'02' by IMS

14-18 Reserved: X'00' should be specified

19-20 User specified screen size if 3274/3276
device. Otherwise not changed.

504 System Programming APIs

Table 109. SLU 2 bind parameters (continued).

Byte Bit Content Description

21-22 Alternate screen size, X'00' should be
specified.

23 Set to X'7E' if 3274/3276 NDS device or
X'02' if non-NDS 3270 master terminal.
Otherwise should be X'00'.

24-25 User specified: should be X'00'

26 PLU Name length

27-34 PLU name: IMS ACB name

35 User data length: Not supported, X'00'
must be specified

Notes:

1. Bytes 0-6, 9, and 10 are set to the indicated values by IMS and cannot be changed by the
user.

2. Byte 8 and bytes 26 through 34 are set by VTAM. You should set the remaining bytes to
0 (zero), but it is not mandatory.

Chapter 37. Bind parameters for SLU 1 and SLU 2 505

506 System Programming APIs

Chapter 38. Format for CINIT user data parameters

This topic describes the CINIT user data parameters and the syntax rules for them.

For all non-MSC VTAM terminal types, IMS can receive user data parameters from
the following sources:
v IMS (/OPNDST command)
v IMS autologon request
v User logon (such as SNA INITSELF command)
v Installation Logon exit routine (DFSLGNX0)
v Signon exit routine (DFSSGNX0)
v Destination Creation exit routine (DFSINSX0)

User data parameters are optional for migration purposes. However, when a match
must be made between the terminal and user for session initiation, user data
parameters are required for:
v ISC parallel session (LU 6.1 architecture)
v Finance (3601) and SLU P terminals, when used with ETO

All parameters, optional and required, appear in the CINIT user data field and are
available to IMS when the VTAM Logon exit routine is scheduled.

During logon and signon processing, IMS performs minimal processing on CINIT
user data parameters before calling the Installation Logon exit routine (DFSLGNX0)
and the Signon exit routine (DFSSGNX0). If the Logon or Signon exit routines are
not supplied, IMS assumes a default user data format.

User data format

The format for the CINIT user data is shown in the following syntax diagram.

►►
LOGOND = lname userid

USERD = uname userdata

►◄

For these parameters, blanks are required and are the only recognized delimiters.
Do not use more than one blank to delimit parameters.

Parameters

LOGOND=lname
Specifies logon descriptor name to be used for the terminal attempting to log
on to IMS. lname is one to eight bytes in length. The LOGOND and USERD
parameters are valid only for Extended Terminal Operation (ETO).

userid
Specifies the 1- to 8-byte user ID of the user logging on to IMS. The userid
parameter indicates that the user associated with this ID will also sign on to
IMS.

© Copyright IBM Corp. 1974, 2018 507

The userid parameter is required for Finance, SLU P, ISC, and output-only
devices (such as printers).

Restriction: ISC is restricted to only the user ID that translates to the ISC
SUBPOOL name (SNA PHS/SHS qualifier). For ISC parallel sessions, the
DFSLGNX0 exit routine receives only the user ID that translates to the ISC
subpool name (SNA PHA/SHA qualifier).

USERD=uname
Specifies the 1- to 8-byte user descriptor name to be used to create the user
control block structure at signon.

userdata
Specifies additional data for the Signon exit routine (DFSSGNX0) or the Sign
On/Off Security exit routine (DFSCSGN0) and security products, such as
RACF. For the exit routines, your installation defines the format of the userdata
fields.

For RACF, the format of the userdata is:

userpw
Identifies the 1- to 8-byte user password that is associated with the
previously entered userid. No keyword precedes the user password.

GROUP groupname
Identifies groupname as the 1- to 8-byte group name that is associated with
the userid parameter. The GROUP keyword and associated parameter are
optional.

NEWPW nuserpw
Identifies nuserpw as a new user password that replaces the current
password, userpw.

The ETO logon descriptor name, lname, applies to IMS logon processing. All
remaining optional parameters, however supplied, are passed to ETO user
allocation, signon processing, and the security product, such as RACF. If a security
product is used, all parameters not applicable to that product must be deleted
before it is called. The parameters can be deleted in the DFSLGNX0, DFSSGNX0,
and DFSCSGN0 exit routines.
Related concepts:

z/OS Communications Server SNA Programmer's LU 6.2 Guide
Related reference:
Chapter 36, “Bind parameters for SLU P and LU 6.1,” on page 489
Chapter 37, “Bind parameters for SLU 1 and SLU 2,” on page 501

508 System Programming APIs

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istp620/toc.htm

Chapter 39. SNA character string controls

SNA character string controls (SCS) describe specific functions for the EBCDIC
control codes. You can use the primary functions that are described to format a
printed page or an alphanumeric display screen.

Functions are also defined for codes that set modes of device operation, define
data to be used in a unique fashion, or are used for communication between a
device operator and an application program (where the specific function associated
with the code is defined in a protocol established between a program and an
operator).

An SCS data stream consists of a sequential string of control and data characters.
Control function characters in the form of SCS-defined control codes can be
intermixed with graphic data characters. Other data types (such as binary and
packed decimal) are permitted only in conjunction with the transparent (TRN)
control.

SCS control codes appear within the data portion of the request unit (RU). A
function management (FM) header can precede SCS data within an RU. Functions
such as component selection are performed by FM header functions and are not
included as SCS functions.

SCS functions do not include data flow control functions, even when these
functions are available to a keyboard operator through keys on the keyboard. For
example, CANCEL is a data flow control request that can be initiated by a key on
the keyboard.

Format controls
Formatting control functions format the output media at the device on a line and
page basis. In addition to these controls, a device using SCS also automatically
formats the character string to fit the line length of the device.

Automatic new line generation eliminates device line length dependencies from
those applications in which a specific output format is not required. Therefore, the
same character string is sent to devices with varying line length capabilities
without the requirement to reformat the character string.

Where specific line and page formats are required, the formatting control functions
are used. The automatic new line feature is always active; however, a character
string formatted for a given line length can be presented on a device with a shorter
line length without loss of data, but the format is lost. When the situation is
reversed, where a character string constructed for a maximum presentation
position is less than the line length of the device to which it is directed, use of the
smaller maximum presentation position allows the string to be presented without
loss of format.

© Copyright IBM Corp. 1974, 2018 509

Control function code assignments
You can search this table for SCS control functions that are assigned to EBCDIC
codes.

Table 110. Control function code assignments.

EBCDIC
code Function

Function
abbreviation

04 Vertical Channel Select VCS1

05 Horizontal Tab HT

0B Vertical Tab VT

0C Form Feed FF

0D Carrier Return CR

14 Enable Presentation ENP

15 New Line NL

16 Back Space BS

17 Program Operator POC1

24 Inhibit Presentation INP

25 Line Feed LF

2B Format FMT1

34 Presentation Position PP1

35 Transparent TRN1

Note:

1. Functions with parameters

Parameters in SCS can be one of two types:
v Function parameters extend the function defined by the function code. For

example, the PP control function has a function parameter to explicitly define
the positioning function performed. The form for a function parameter is a
single EBCDIC character.

v Value parameters specify a numeric value for the function. For example, the PP
function also has a value parameter for it. If the move is relative to the current
position, the value parameter specifies the number of columns or lines the
presentation position is to be moved from its current position. If the move is
absolute, the value parameter specifies the absolute column or line number to
which the presentation position is to move. The form for a value parameter is a
1-byte binary number.

510 System Programming APIs

Part 8. Appendixes

© Copyright IBM Corp. 1974, 2018 511

512 System Programming APIs

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1974, 2018 513

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

514 System Programming APIs

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
The information in these topics is intended to help you customize IMS
environments. This information documents General-use Programming Interface
and Associated Guidance Information provided by IMS.

General-use programming interfaces allow the customer to write programs that
obtain the services of IMS. General-use Programming Interface and Associated
Guidance Information is identified where it occurs, either by an introductory
statement to a section or topic or by a General-use programming interface label.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Notices 515

http://www.ibm.com/legal/copytrade.shtml

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

516 System Programming APIs

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 517

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

518 System Programming APIs

Bibliography

This bibliography lists all of the publications in the IMS Version 13 library,
supplemental publications, publication collections, and accessibility titles cited in
the IMS Version 13 library.

Title Acronym Order number
IMS Version 13 Application Programming APG SC19-3646
IMS Version 13 Application Programming APIs APR SC19-3647
IMS Version 13 Commands, Volume 1: IMS
Commands A-M

CR1 SC19-3648

IMS Version 13 Commands, Volume 2: IMS
Commands N-V

CR2 SC19-3649

IMS Version 13 Commands, Volume 3: IMS
Component and z/OS Commands

CR3 SC19-3650

IMS Version 13 Communications and Connections CCG SC19-3651
IMS Version 13 Database Administration DAG SC19-3652
IMS Version 13 Database Utilities DUR SC19-3653
IMS Version 13 Diagnosis DGR GC19-3654
IMS Version 13 Exit Routines ERR SC19-3655
IMS Version 13 Installation INS GC19-3656
IMS Version 13 Licensed Program Specifications LPS GC19-3663
IMS Version 13 Messages and Codes, Volume 1: DFS
Messages

MC1 GC19-4240

IMS Version 13 Messages and Codes, Volume 2:
Non-DFS Messages

MC2 GC19-4241

IMS Version 13 Messages and Codes, Volume 3: IMS
Abend Codes

MC3 GC19-4242

IMS Version 13 Messages and Codes, Volume 4: IMS
Component Codes

MC4 GC19-4243

IMS Version 13 Operations and Automation OAG SC19-3657
IMS Version 13 Release Planning RPG GC19-3658
IMS Version 13 System Administration SAG SC19-3659
IMS Version 13 System Definition SDG GC19-3660
IMS Version 13 System Programming APIs SPR SC19-3661
IMS Version 13 System Utilities SUR SC19-3662

Supplementary publications

Title Order number
Program Directory for Information Management System Transaction
and Database Servers V13.0

GI10-8914

Program Directory for Information Management System Transaction
and Database Servers V13.0 Database Value Unit Edition V13R1

GI10-8966

Program Directory for Information Management System Transaction
and Database Servers V13.0 Transaction Manager Value Unit Edition
V13R1

GI10-9001

IRLM Messages and Codes GC19-2666

© Copyright IBM Corp. 1974, 2018 519

Publication collections

Title Format Order number
IMS Version 13 Product Kit CD SK5T-8864

Accessibility titles cited in the IMS Version 13 library

Title Order number
z/OS TSO/E Primer SA22-7787
z/OS TSO/E User's Guide SA22-7794
z/OS ISPF User's Guide Volume 1 SC34-4822

520 System Programming APIs

Index

Special characters
/DISPLAY 286

A
accessibility

features ix
keyboard shortcuts ix

ADD batch command 477
AOP client

running on host 140
AOP clients 139
AOP commands 141
application programming interface

DBRC (Database Recovery Control)
accessing RECON data sets 365
addressing and residency 360
coding parameters 361
command request 379
DSPAPI macro 359
ending the environment 360
establishing the environment 360
how to access 359
overview 359
prerequisite knowledge

required 359
QUERY request 385
READONLY access 366
runtime considerations 365
security 369
services available 359
token 362
use of registers 360
using EQU statements 360
wildcard support 367

assembling a client program 5
Asynchronous Data Capture 289

changed data log record 291
End of Job call log record 295

AUTH query
overview 371

AUTH request
output block 377
parameters 372, 467
reason codes 375
return codes 373
syntax 371

authorization
requests 5

authorization level 105
authorized clients

environmental requirements 103
automated operator program clients 139
automated operator program

requests 115
autonomic computing 287

B
BACKOUT query

description 386
output 386
parameters 386
return codes 386
syntax 386

bind
parameters 496

Finance Communication
System 489

ISC, IMS as primary half
session 491

ISC, IMS as secondary half
session 491

LU 6.1 489
SLU 1 501
SLU 2 503
SLU P 489

buffer return request 225

C
CAPD

block format 301
DATA format 304

captured data
reducing the amount 292

captured data elements 291
CART 271
CCTL (coordinator controller)

design recommendation 349
multithread example 311
performance considerations

thread monitoring 351
CCTL function requests

INIT 333
Changed data log record 289
changed data log records

format 299
character string controls 509
checkpoint

client initiating 12
CINIT user data parameters 507
clean up process 184
client

AOP 139
command processing 139
interface

authorized 5
non-authorized 5

planning considerations 105
registering an ODBM client 107
registering an OM command

processing client 108
registering an RM client 109
running on host 139
TSO SPOC 139
workstation 139, 140
workstation SPOC 139

client (continued)
writing for CSL 105
writing your own 105

client program
assembling 5
writing 3

client requests 115
assembling a program 5
authorization 5
coding 5
CQSBRWSE 17
CQSCHKPT 25
CQSCONN 29
CQSDEL 35
CQSDEREG 39
CQSDISC 41
CQSINFRM 45
CQSMOVE 50
CQSPUT 54
CQSQUERY 61
CQSREAD 70
CQSRECVR 76
CQSREG 80
CQSRSYNC 83
CQSSHUT 89
CQSUNLCK 91
CQSUPD 96
DSECTs, using 10
ECB, using 5
environmental requirements 8
example 15
introduction 3
lists, using 5
literals, coding 5
literals, using 5
parameters, coding 5
requests

CQSCONN 29
return and reason codes 10
sample 15
sequence of 4

coding requests 5
command and response token 271
command deregistration request 163
command directive 178
command header

XML output 263
command output block mapping 382
command override 161
command processing client requests 161
command processing clients 141
command request

overview 379
COMMAND request

return codes 381
command response

including format IDs 273
command response directive 178
command response request 171
commands

ADDRESS 271

© Copyright IBM Corp. 1974, 2018 521

commands (continued)
CSLULGTP 273, 274
REXX subcommands 271

CART 271
END 281
IMS 271
ROUTE 271
WAIT 271

sending to IMS DB 354
type-2 273

common queue server 3
Common Service Layer (CSL)

clients 103
requests

sequence to issue 109
coordinating IMSplex-wide

processes 184
CQS (Common Queue Server) 3

clients 15
CQSBRWSE request

BROWSE function 17
BRWSOBJS function 17
COMPLETE function 17
CONTINUE function 17
DSECT function 17
functions 17
parameters 17
return and reason codes 17
syntax 17
usage 17

CQSCHKPT request
CHKPTSTR function 25
CHKPTSYS function 25
DSECT function 25
format 25
parameters 25
return and reason codes 25
syntax 25
usage 25

CQSCONN request
CONNECT function 29
DSECT function 29
format 29
parameters 29
restrictions 29
return and reason codes 29
syntax 29
usage 29

CQSDEL request
DELETE function 35
DSECT function 35
format 35
parameter 35
return and reason codes 35
syntax 35
usage 35

CQSDEREG request
DEREGISTER function 39
DSECT function 39
format 39
parameters 39
return and reason codes 39
syntax 39
usage 39

CQSDISC request
DISCABND function 41
DISCNORM function 41

CQSDISC request (continued)
DSECT function 41
format 41
parameters 41
return and reason codes 41
syntax 41
usage 41

CQSINFRM request
DSECT function 45
format 45
INFORM function 45
parameters 45
return and reason codes 45
syntax 45
UNINFORM function 45

CQSMOVE request
DSECT function 50
format 50
MOVE function 50
parameters 50
return and reason codes 50
syntax 50
usage 50

CQSPUT request
ABORT function 54
actions 54
DSECT function 54
format 54
parameters 54
PUT function 54
return and reason codes 54
syntax 54
usage 54

CQSQUERY request
DSECT function 61
format 61
parameters 61
QNAME function 61
QRYOBJS function 61
QTYPE function 61
return and reason codes 61
STATISTICS function 61
STRSTAT function 61
syntax 61
usage 61

CQSREAD request
CONTINUE function 70
DSECT function 70
example 15
format 70
functions 70
parameters 70
READ function 70
REREAD function 70
return and reason codes 70
syntax 70
usage 70

CQSRECVR request
DELETE function 76
DSECT function 76
format 76
functions 76
parameters 76
RETRIEVE function 76
return and reason codes 76
syntax 76
UNLOCK function 76

CQSRECVR request (continued)
usage 76

CQSREG request
DSECT function 80
functions 80
parameters 80
REGISTER function 80
return and reason codes 80
syntax 80
usage 80

CQSRSYNC request
DSECT function 83
format 83
functions 83
parameters 83
return and reason codes 83
RSYNCCOLD function 83
RSYNCWARM function 83
syntax 83
usage 83

CQSSHUT request
DSECT function 89
format 89
functions 89
parameters 89
QUIESCE function 89
return and reason codes 89
syntax 89
usage 89

CQSUNLCK request
DSECT function 91
FORCE function 91
format 91
functions 91
parameters 91
return and reason codes 91
syntax 91
UNLOCK function 91

CQSUPD request
DSECT function 96
format 96
functions 96
parameters 96
return and reason codes 96
syntax 96
UPDATE function 96
usage 96

csl
return and reason 105

CSL (Common Service Layer) 103
clients 103
requests 161

sequence to issue 109
writing an RM client 183
writing an SCI client 223

CSL managers
registering to SCI 107

CSL OM API
XML output 263

csl request
codes 105

CSLDMDRG 144
CSLDMI 146
CSLDMREG 157

parameters 157
return and reason codes 159
syntax 157

522 System Programming APIs

CSLOMBLD 161
CSLOMBLD command override 161
CSLOMCMD 115
CSLOMCMD output 260
CSLOMI

input buffer, example 125
output 257
response directive 178

CSLOMOUT 165
CSLOMOUT output 263
CSLOMQRY 135
CSLOMQRY output 261
CSLOMRDY request 166
CSLOMRSP 171
CSLOMSUB 174
CSLOMUSB 177
CSLOREGO 168
CSLRMDEL 185
CSLRMDRG 190
CSLRMPRI 191
CSLRMPRR 193
CSLRMPRS 195
CSLRMQRY 203
CSLRMREG 208
CSLRMUPD 212
CSLSCBFR 225
CSLSCDRG 227

environmental requirements 103
CSLSCMSG 228
CSLSCQRY 235
CSLSCQSC 238
CSLSCREG 241

environmental requirements 103
restrictions 241

CSLSCRQR 248
CSLSCRQS 251
CSLULGTP 274
CSLULGTS 273
CSLULGUM request 282
CSLULOPT 273
CSLULSUB request 281
CSLULUSB request 282
CSLULXCB 271
CSLZQRY request 110

description 110
parameters 110
syntax 110

CSLZSHUT request 110
description 112
parameters 112
syntax 112

D
data capture log records 299

prefix 299
Data Capture, asynchronous

support 289
data element headers 300
data sets

IMS.ADFSMAC 5
Database Recovery Control (DBRC)

application programming interface
macro version 362

database resource adapter (DRA) 307

Database Resource Adapter (DRA)
enabling

CCTL 325
initializing

CCTL 325
DB query

output 390
overview 390
parameters 390
return codes 390
syntax 390

DB2, propagating DL/I updates to 289
DBDS query

overview 413
parameters 413
return codes 413
syntax 413

DBRC (Database Recovery Control) 359
application programming interface

accessing RECON data sets 365
addressing and residence 360
coding parameters 361
command request 379
DSPAPI macro 359
ending the environment 360
establishing the environment 360
how to access 359
macro version 362
overview 359
QUERY request 385
READONLY access 366
runtime considerations 365
security 369
services available 359
tokens 362
use of registers 360
using EQU statements 360
wildcard support 367

AUTH query
overview 371
return codes 373
syntax 371, 372, 467

BACKOUT query
output 386
return codes 386

COMMAND request 379
parameters 379
return codes 381

data sets
READONLY access to

RECON 366
use of output data set 367

DB query
output 390
overview 390
parameters 390
return codes 390
syntax 390

DBDS query
overview 413
parameters 413
return codes 413
syntax 413

GROUP query
output 418
overview 418
parameters 418

DBRC (Database Recovery Control)
(continued)

GROUP query (continued)
return codes 418
syntax 418

LOG query
output 426
overview 426
parameters 426
return codes 426
syntax 426

OLDS query
output 435
overview 435
parameters 435
return codes 435
syntax 435

PART query
overview 439
parameters 439
return codes 439
syntax 439

QUERY request
BACKOUT 386

RECON status query
output 445
overview 445
parameters 445
return codes 445
syntax 445

RELBUF query
overview 455
return codes 455
syntax 455

request time stamp format 366
STARTDBRC request

overview 459
parameters 459
return codes 459
syntax 459

STOPDBRC request
overview 465
parameters 465
syntax 465

SUBSYS query
output 449
overview 449
parameters 449
return codes 449
syntax 449

UNAUTH query
overview 467
return codes 467, 470
syntax 467

DELETE batch command 479
deleting resources 185
deregistering clients 190
deregistration request

ODBM (Open Database Manager)
client requests 144, 146

Open Database Manager
(ODBM) 144, 146

DFSPRP macro keywords 321
DFSPSP00 (DRA startup table) 321
directives

OM 178
RM 217

Index 523

directives (continued)
process step 219
process step response 220
repopulate structure 218
structure failed 218

DRA (database resource adapter)
CCTL function requests

description 333
INIT 333
RESYNC 336
TERM 337

CCTL recovery process 349
description 307
DRA statistics 353
enabling

CCTL 325
ODBA 327

initializing
CCTL 325
ODBA 327

macro keywords 321
multithreading 310
problem determination 354
processing

CCTL requests 329
ODBA calls 331

startup table
description 321
DFSPZPxx 321

sync point processing
description 317

sync-point processing
in-doubt state 320
protocol 318

termination 347
thread

ODBA 309
processing 309
structure 309

thread function requests
ABTTERM 345
COMTERM 344
IMS 341
PREP 343
SCHED 338
SYNTERM 342
TERMTHRD 346

thread statistics 351
tracing 354

DSCHANGE batch command 479
DSECTs

DSPAPCMD 382
DSPAPQAL 390
DSPAPQAR 390
DSPAPQCG 418
DSPAPQDB 390
DSPAPQDG 418
DSPAPQDS 390
DSPAPQEL 390
DSPAPQFD 390
DSPAPQHB 390
DSPAPQHP 390
DSPAPQIC 390
DSPAPQLA 426
DSPAPQLG 426
DSPAPQLI 426
DSPAPQOL 435

DSECTs (continued)
DSPAPQRC 445
DSPAPQRI 390
DSPAPQRR 390
DSPAPQRV 390
DSPAPQSL 390
DSPAPQSS 449

DSECTS
DSPAPQCA 418
DSPAPQGG 418

DSPAPI
accessing 365
forms

execute 362
list 362
modify 362
standard 362

versions 362
DSPAPI macro

overview 359
duplicating DL/I updates 289

E
ECB 103
ECB (z/OS event control block), using

with client request 5
editing options

MFS-SCS1 509
End of Job log record 293, 305
environment

CQS deregister request 8
CQS register request 8
CQS requests, authorized interface 8
CQS requests, non-authorized

interface 8
environmental requirements 103
environments

client requests 8
example

coding CQSREAD with
OPTWORD1 5

CQSREAD request 15
passing a value

for register 5
for symbol 5
for symbol value 5

passing an address
for register 5
for symbol 5

passing an equate for symbol
value 5

STEPLIB DD statement to concatenate
IMS.SDFSRESL 5

examples
REXX SPOC API

autonomic 287

F
failures with Resource Manager 184
FID

including in command responses 273
Finance Communication System

session parameters 489

format IDs
including in command responses 273

FRPBATCH commands 475
ADD 477
DELETE 479
DSCHANGE 479
LIST 480
RENAME 481
START 482
STOP 483
UPDATE 484

G
global resource information

macros 184
maintaining 184

global resources
managing your own 105

GROUP query
output 418
overview 418
parameters 418
return codes 418
syntax 418

I
IMS.ADFSMAC data set 5
IMSplex

coordinating processes using
macros 184

preparing for REXX SPOC API 271
querying statistics 110

IMSSPOC environment 281
initiate a process 191
interface

authorization 5

K
keyboard shortcuts ix

L
legal notices

notices 513
trademarks 513, 515

LIST batch command 480
lists, using with client request 5
literals

using 5
LOG query

output 426
overview 426
parameters 426
return codes 426
syntax 426

logging
DRA (database resource adapter) 354

524 System Programming APIs

M
macro

DSPAPI
accessing 365
forms 362
overview 359
versions 362

macros
CSLOREGO 168

message
CQS0033A 29

message protocol 105
messages

routing by TYPE 139, 140

N
non-authorized clients

environmental requirements 103

O
ODBM (Open Database Manager)

client requests 144
ODBM requests, sequence of 143
registering a client 107
writing an ODBM client 143

ODBM (Open Database Manager) client
requests

requests
client deregistration 144, 146
client registration 157
CSLDMDRG 144
CSLDMI 146
CSLDMREG 157

ODBM client
writing for CSL 105

OLDS query
output 435
overview 435
parameters 435
return codes 435
syntax 435

OM
client 139
directives 178

OM (Operations Manager)
See also Operations Manager (OM)
AOP clients 140
registering a client 108
requests issued by AOP clients 140

OM client
writing for CSL 105

OM directives
and SCI Input exit routine 178
command 178
command response 178
CSLOMI response 178
query response 178
UOM 178

Open Database Manager (ODBM)
client requests 144
ODBM requests, sequence of 143
registering a client 107
requests

client deregistration 144, 146

Open Database Manager (ODBM)
(continued)

requests (continued)
client registration 157
CSLDMDRG 144
CSLDMI 146
CSLDMREG 157

writing an ODBM client 143
Operations Manager

requests
command deregistration 163
command response 171
CSLOMCMD 115
CSLOMQRY 135

Operations Manager (OM)
AOP clients 140
client requests 115
interpreting output 142
output 142
registering a client 108
requests

CSLOMI 125
CSLOMREG 168
unsolicited output 165

requests issued by AOP clients 140
XML output 142, 257

OPTWORD1 parameter 5

P
parameter

allocated output 251
OPTWORD1 5

parameters
coding for DSPAPI macro 361
DBRC application programming

interface 361
PART query

overview 439
parameters 439
return codes 439
syntax 439

passing a value
for register 5
for symbol 5
for symbol value 5

passing an address
for register 5
for symbol 5

passing an equate for symbol value 5
performance tuning 12
planning considerations 105
prerequisite knowledge vii
problem state 103
process step directive 219
process step response directive 220
program

CSLULXCB 271
program, assembling 5
Propagating captured data

asynchronously
IMS support for 289

protocol
message 105
request 105

Q
QUERY request

general format of output 364
output

BACKOUT 386
DB 390
GROUP 418
LOG 426
OLDS 435
RECON status 445
SUBSYS 449

output from 386
overview 385

SUBSYS 449
parameters

BACKOUT 386
DB 390
DBDS 413
GROUP 418
LOG 426
OLDS 435
PART 439
RECON status 445
SUBSYS 449

return codes
BACKOUT 386
DB 390
DBDS 413
GROUP 418
LOG 426
OLDS 435
PART 439
RECON status 445
SUBSYS 449

syntax
BACKOUT 386
DB 390
DBDS 413
GROUP 418
LOG 426
OLDS 435
PART 439
RECON status 445
SUBSYS 449

types
BACKOUT 386
DB 390
DBDS 413
GROUP 418
LOG 426
OLDS 435
PART 439
RECON status 445

query resources 203
query response directive 178
querying statistics 110
queues

object on the cold queue 12
registering interest in 12

quiesce request 238

R
ready request 239
ready state 109

Index 525

reason codes
CSLRMDEL 185
CSLRMPRI 191
CSLRMPRR 193
CSLRMPRS 195
CSLRMPRT 201, 203
CSLRMQRY 203
CSLRMREG 208
CSLRMUPD 212
CSLSCBFR 225
CSLSCDRG 227
CSLSCMSG 228
CSLSCQRY 235
CSLSCQSC 238
CSLSCRDY 239
CSLSCREG 241
CSLSCRQR 248
CSLSCRQS 251
CSLZQRY 110
CSLZSHUT 112

RECON data set
accessing with DSPAPI 365

RECON status query
output 445
overview 445
parameters 445
return codes 445
syntax 445

registered state 109
registering clients 208
registers

client requests 5
using 5

registration request
ODBM (Open Database Manager)

client requests 157
Open Database Manager

(ODBM) 157
RELBUF query

overview 455
RELBUF request

parameters 455
return codes 455
syntax 455

RENAME batch command 481
repopulate structure directive 218
Repository Server

batch interface (FRPBATCH) 475
FRPBATCH commands 475

ADD 477
DELETE 479
DSCHANGE 479
LIST 480
RENAME 481
START 482
STOP 483
UPDATE 484

request protocol 105
requests

authorization 5
CQSUPD 96
CSLZQRY

description 110
parameters 110
syntax 110

CSLZSHUT 112
description 112

requests (continued)
CSLZSHUT (continued)

parameters 112
syntax 112

DBDS Query
group 413

DBRC AUTH request
return codes 373

DBRC AUTH Request 372
DBRC command 379
DBRC Query 385

backout 386
database 390
group 418, 439
log 426
OLDS 435
RECON status 445
subsystem 449

DBRC Release Buffer 371, 455, 467
return codes 455, 467, 470
syntax 455, 467

DBRC Start Request
overview 459
parameters 459
return codes 459
syntax 459

DBRC Stop Request
overview 465
parameters 465
syntax 465

environmental requirements 8, 103
literals, coding 5
ODBM (Open Database Manager)

client requests
client deregistration 144, 146
client registration 157
CSLDMDRG 144
CSLDMI 146
CSLDMREG 157

Open Database Manager (ODBM)
client deregistration 144, 146
client registration 157
CSLDMDRG 144
CSLDMI 146
CSLDMREG 157

Operations Manager
command deregistration 163
command registration 168
command response 171
CSLOMCMD 115
CSLOMI 125
CSLOMQRY 135
CSLOMREG 168
unsolicited output 165

planning considerations 105
protocol 105
Resource Manager

CSLRMDRG 190
CSLRMPRI 191
CSLRMPRS 195
CSLRMPRT 201
CSLRMQRY 203
deleting resources 185
query resources 203
sequence in which to issue 183

sequence of 139
sequence of for AOP clients 140

requests (continued)
sequence to issue 109
Structured Call Interface

buffer return 225
CSLSCQSC 238
CSLSCRDY 239
CSLSCREG 241
CSLSCRQR 248
CSLSCRQS 251
deregistration 227
query 235
send message 228

symbol name, using 5
Resource Manager

clean up process 184
coordinating IMSplex-wide

processes 184
master 184
requests

CSLRMPRR 193
CSLRMPRS 195
CSLRMPRT 201
CSLRMUPD 212
registering clients 208
sequence in which to issue 183

Resource Manager (RM)
deregistering clients 190
failures 184
registering a client 109
requests

CSLRMDRG 190
CSLRMPRI 191
CSLRMQRY 203
CSLRMREG 208
deleting resources 185
maintaining global resource

information 184
process respond 193
process step 195
terminate process 201
updating resources 212

respond to a process 193
return and reason codes

client requests 10
CQSBRWSE request 17
CQSCHKPT request 25
CQSCONN request 29
CQSDEL request 35
CQSDEREG request 39
CQSDISC request 41
CQSINFRM request 45
CQSMOVE request 50
CQSPUT request 54
CQSQUERY request 61
CQSREAD request 70
CQSRECVR request 76
CQSREG request 80
CQSRSYNC request 83
CQSSHUT request 89
CQSUNLCK request 91
CQSUPD request 96

return codes
CSLRMDEL 185
CSLRMPRI 191
CSLRMPRR 193
CSLRMPRS 195
CSLRMPRT 201, 203

526 System Programming APIs

return codes (continued)
CSLRMQRY 203
CSLRMREG 208
CSLRMUPD 212
CSLSCBFR 225
CSLSCDRG 227
CSLSCMSG 228
CSLSCQRY 235
CSLSCQSC 238
CSLSCRDY 239
CSLSCREG 241
CSLSCRQR 248
CSLSCRQS 251
CSLZQRY 110
CSLZSHUT 112

REXX SPOC API 139, 271
autonomic computing 287
batch job 284
examples 283
preparing the environment 271
retrieving command responses 273
retrieving unsolicited messages 281
sample program 282
samples 283
setting up the IMSplex 271
subcommands 271
within a transaction 280

REXX SPOC program, sample 284
RM (Resource Manager)

registering a client 109
RM client

writing for CSL 105

S
SCI (Structured Call Interface)

CSL managers registering to 107
environmental requirements 103
exit routines

whether to use 105
ready state 109
registered state 109
registering to 107
requests, advanced 224
sequence of requests 223
TCB association 105

SCS (SNA character string) controls
format controls 509
function code assignments 510

secondary half session 496
sequence of requests 4
SETS and ROLS Call log record 295
SETS and ROLS call log records 297, 305
shutting down CQS 12
SLU 1

bind parameters 501
SLU 2

bind parameters 503
SLU P

session parameters 489
SNA (systems network architecture)

character string (SCS) controls 509
SNA reference information 489
special events, handling 12
START batch command 482
STARTDBRC request

overview 459

STARTDBRC request (continued)
parameters 459
return codes 459
syntax 459

stem variable 273, 274
STEPLIB DD statement to concatenate

IMS.SDFSRESL 5
STOP batch command 483
STOPDBRC request

overview 465
parameters 465
syntax 465

structure failed directive 218
Structured Call Interface

requests
advanced 224
CSLSCDRG 227
CSLSCMSG 228
CSLSCQSC 238
CSLSCREG 241
CSLSCRQR 248
ready request 239
send message 228
send request 251

sequence of requests 223
Structured Call Interface (SCI)

allocated output parameter 251
CSL managers registering to 107
environmental requirements 103
exit routines

whether to use 105
ready state 109
registered state 109
registering to 107
requests 224

buffer return 225
CSLSCRDY 239
deregistration 227
query 235
registration 241

TCB association 105
SUBSYS query

output 449
overview 449
parameters 449
return codes 449
syntax 449

supervisor state 103
SWITCH command 354
symbol name, using 5
symbol value, using 5
syntax diagram

how to read viii

T
TCB association 105
terminate process 201
time stamp

format for DBRC requests 366
Tivoli NetView environment 271
tracing

DRA (database resource adapter) 354
trademarks 513, 515
TSO

starting CSLULXCB program 271
TSO SPOC 139

type-2 IMS commands 273

U
UNAUTH query

overview 467
UNAUTH request

output block 472
reason codes 471
return codes 467, 470
syntax 467

unsolicited output request 165
UOM directive 178
UPDATE batch command 484
updating resources 212

V
VTAM reference information 489

W
workstation SPOC 139
writing a CQS client 3

X
XML output 257

and OM directives 178
command header 263
CSLOMCMD 260
CSLOMOUT 263
CSLOMQRY 261
tag descriptions 263

Index 527

528 System Programming APIs

IBM®

Product Number: 5635-A04
5655-DSM
5655-TM2

Printed in USA

SC19-3661-04

Sp
in
e
in
fo
rm
at
io
n:

IM
S

Ve
rs

io
n

13
Sy

st
em

 P
ro

gr
am

m
in

g
AP

Is
I
B

M

	Contents
	About this information
	Prerequisite knowledge
	IMS function names used in this information
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS Version 13
	How to send your comments

	Part 1. Common Queue Server (CQS)
	Chapter 1. Writing a CQS client
	Summary of CQS client requests
	Sequence of CQS requests issued by a client for queue structure
	Considerations for coding CQS requests
	Environmental requirements for CQS
	Return codes and reason codes for CQS requests

	CQS clients and handling special events

	Chapter 2. CQS client requests
	CQSBRWSE request
	CQSCHKPT request
	CQSCONN request
	CQSDEL request
	CQSDEREG request
	CQSDISC request
	CQSINFRM request
	CQSMOVE request
	CQSPUT request
	CQSQUERY request
	CQSREAD request
	CQSRECVR request
	CQSREG request
	CQSRSYNC request
	CQSSHUT request
	CQSUNLCK request
	CQSUPD request

	Part 2. Common Service Layer (CSL)
	Chapter 3. Writing a CSL client
	Event Control Blocks with CSL requests
	Environmental requirements for SCI requests
	How to interpret CSL request return and reason codes
	Planning considerations for writing clients for the CSL
	Registration of CSL managers with SCI
	SCI registration
	Registering an ODBM client
	Registering an OM command processing client
	Registering an RM client
	How to enable SCI ready state
	Sequence for coding CSL requests

	Requests common to all CSL components
	CSLZQRY: query request
	CSLZSHUT: shutdown request

	Chapter 4. CSL automated operator program requests
	CSLOMCMD: command request
	CSLOMI: API request
	CSLOMQRY: query request
	CSL OM automated operator program clients
	How AOP clients that run on the host communicate with the CSL OM
	How AOP clients that run on a workstation communicate with the CSL OM
	Processing AOP commands with a command processing client
	Interpreting CSL OM XML output

	Chapter 5. Writing a CSL ODBM client
	Sequence of ODBM client requests
	CSL ODBM client requests
	CSLDMDRG: ODBM client deregistration request
	CSLDMI: ODBM application program interface
	CSLDMREG: ODBM client registration request

	Chapter 6. Writing a CSL OM client
	CSL OM command processing client requests
	CSLOMBLD: command registration build
	CSLOMDRG: command deregistration request
	CSLOMOUT: unsolicited output request
	CSLOMRDY: ready request
	CSLOMREG: command registration request
	CSLOMRSP: command response request

	CSLOMSUB: Subscribe to unsolicited messages
	CSLOMUSB: Unsubscribe to unsolicited messages
	CSL OM directives

	Chapter 7. Writing a CSL RM client
	Sequence of RM client requests
	Issue CSL RM requests to manage global resources
	Issue CSL RM requests to coordinate IMSplex-wide processes
	CSLRMDEL: delete resources
	CSLRMDRG: deregister clients
	CSLRMPRI: process initiate
	CSLRMPRR: process respond
	CSLRMPRS: process step
	CSLRMPRT: process terminate
	CSLRMQRY: query resources
	CSLRMREG: register clients
	CSLRMUPD: update resources
	CSL RM directives
	CSL RM repopulate structure directive
	CSL RM structure failed directive
	CSL RM process step directive
	CSL RM process step response directive

	Chapter 8. Writing a CSL SCI client
	Sequence of CSL SCI requests
	Advanced CSL SCI requests
	CSL SCI requests
	CSLSCBFR: buffer return request
	CSLSCDRG: deregistration request
	CSLSCMSG: send message request
	CSLSCQRY: query request
	CSLSCQSC: quiesce request
	CSLSCRDY: ready request
	CSLSCREG: registration request
	CSLSCRQR request return request
	CSLSCRQS: send request

	Chapter 9. CSL Operations Manager XML output
	CSLOMI XML output examples
	CSLOMCMD output
	CSLOMQRY output
	CSLOMOUT output
	XML tags returned as CSL OM responses

	Chapter 10. REXX SPOC API and the CSL
	REXX SPOC API environment with the CSL OM
	Setting up the REXX environment in a CSL
	Setting up the IMSplex environment
	Issuing type-2 IMS commands
	CSLULGTS: retrieving command responses in XML
	CSLULOPT: including format identifiers in command responses
	CSLULGTP: retrieving command responses directly to a REXX stem variable
	REXX SPOC API within a transaction
	Ending the IMS SPOC environment

	Retrieving unsolicited messages
	CSLULSUB request
	CSLULUSB request
	CSLULGUM request
	Sample program for subscribing to OM

	REXX samples and examples
	Sample REXX SPOC program
	REXX SPOC batch job example
	/DISPLAY command examples and format identifiers
	Autonomic computing examples

	Part 3. Asynchronous data propagation
	Chapter 11. Changed data log record
	Elements of captured data
	Reducing the amount of captured data
	Example of logged data elements

	Chapter 12. End of Job (EOJ) call log record
	Chapter 13. SETS and ROLS call log records
	Chapter 14. Format of the data capture log records
	Data capture log record prefix
	Changed data log record format
	Format for data element header
	CAPD block format (LOGID=X'00')
	CAPD_DATA format (LOGID=X'0C')
	End of Job call log record format
	SETS and ROLS call log record format

	Part 4. Database resource adapter (DRA)
	Chapter 15. Thread concepts
	Processing threads
	Processing multiple threads
	CCTL multithread example

	Chapter 16. Sync points
	The two-phase commit protocol
	In-doubt state during two-phase sync processing

	Chapter 17. DRA startup table
	Chapter 18. Enable the DRA for a CCTL
	Chapter 19. Enabling the DRA for the ODBA interface
	Chapter 20. Processing CCTL DRA requests
	Chapter 21. Processing ODBA calls
	Chapter 22. CCTL-initiated DRA function requests
	INIT request
	RESYNC request
	TERM request
	SCHED request
	IMS request
	SYNTERM request
	PREP request
	COMTERM request
	ABTTERM request
	TERMTHRD request

	Chapter 23. Terminating the DRA
	Chapter 24. Designing the CCTL recovery process
	Chapter 25. CCTL performance: monitoring DRA thread TCBs
	DRA thread statistics
	DRA statistics
	DRA tracing
	Sending commands to IMS DB
	Problem diagnosis

	Part 5. Database Recovery Control (DBRC)
	Chapter 26. DBRC API
	Structure of applications that access the DBRC API
	How an application program establishes the DBRC API environment
	How an application program ends the DBRC API environment
	Addressing and residency mode
	Address space control (ASC) mode and state
	How the DBRC API uses registers
	How to include equate (EQU) statements in your DBRC API application
	API application
	Versions of the DBRC API macro
	The DBRC API token
	Macro forms of the DSPAPI macro
	Query output block header

	Runtime considerations for the DBRC API
	DSPAPI macro access
	RECON data set access
	RECON access authority
	Time stamp format for DBRC requests
	How DBRC uses the output data set
	Wildcard support for name parameters for Query requests

	Chapter 27. DBRC API security features
	Chapter 28. DBRC authorization request (AUTH)
	Syntax for the AUTH request
	Parameters for the AUTH request
	Return and reason codes for AUTH
	APAUB_RsnCode for AUTH output block
	AUTH output block mapping
	AUTH output block

	Chapter 29. DBRC command request (COMMAND)
	Syntax for the COMMAND request
	Parameters for the COMMAND request
	Return and reason codes for the COMMAND request
	COMMAND output block mapping

	Chapter 30. DBRC query request (QUERY)
	Output from query requests
	Backout query request (TYPE=BACKOUT)
	Database query request (TYPE=DB)
	DBDS query request (TYPE=DBDS)
	Group query request (TYPE=*GROUP)
	Log query request (TYPE=LOG)
	OLDS query request (TYPE=OLDS)
	HALDB partition query request (TYPE=PART)
	RECON status query request (TYPE=RECON)
	Subsystem query request (TYPE=SUBSYS)

	Chapter 31. DBRC release buffer request (RELBUF)
	Chapter 32. DBRC start request (STARTDBRC)
	Chapter 33. DBRC stop request (STOPDBRC)
	Chapter 34. DBRC unauthorization request (UNAUTH)
	Return and reason codes for UNAUTH
	APAUB_RsnCode for UNAUTH output block

	UNAUTH output block mapping
	UNAUTH output block

	Part 6. Repository Server batch interface (FRPBATCH)
	Chapter 35. Commands for FRPBATCH
	ADD command for FRPBATCH
	DELETE command for FRPBATCH
	DSCHANGE command for FRPBATCH
	LIST command for FRPBATCH
	RENAME command for FRPBATCH
	START command for FRPBATCH
	STOP command for FRPBATCH
	UPDATE command for FRPBATCH

	Part 7. VTAM and SNA reference information
	Chapter 36. Bind parameters for SLU P and LU 6.1
	Finance communication system bind parameters
	IMS as primary half session
	IMS as secondary half session

	Chapter 37. Bind parameters for SLU 1 and SLU 2
	SLU 1 bind parameters
	SLU 2 bind parameters

	Chapter 38. Format for CINIT user data parameters
	Chapter 39. SNA character string controls
	Format controls
	Control function code assignments

	Part 8. Appendixes
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

