
© Copyright IBM Corporation 2021

© Copyright IBM Corporation 2021.

Supercharge IMS Business

Applications with Java

June 2021 Edition

2 Supercharge IMS Business Applications with Java

Note:

Before you use this information and the products discussed, read the information in

Notices” on p. 196.

3 © Copyright IBM Corporation 2021.

Table of Contents

Preface .. 13

Change history .. 14

1. Introduction... 15

1.1. Aligning IT strategies for the future ... 15

1.2. Java on IBM Z primer .. 16

1.2.1. IBM SDK for z/OS, Java Technology edition .. 16

1.2.2. Java object and native code compilation process .. 18

1.2.3. Java on IBM Z strength .. 21

1.3. Motivations and business values... 26

1.4. Decision guidance and checklist.. 28

1.5. Summary ... 30

1.6. Related resources ... 30

2. Architectural considerations .. 31

2.1. Application migration versus application integration ... 31

2.2. Application integration decisions ... 32

2.2.1. Java containers on z/OS ... 33

2.2.2. Integration depth, interaction intensity, and component granularity...................... 35

2.2.3. Integration programming pattern.. 37

2.2.3.1. A JNI-based language integration pattern .. 37

2.2.3.2. WOLA-based language integration pattern ... 39

2.2.3.2.1. Calls from IMS into WebSphere Application Server for z/OS 40

2.2.3.2.2. Calls from WebSphere Application Server for z/OS into IMS................ 41

2.2.3.2.3. User delegation: ... 41

2.2.3.2.4. Two-phase commit: .. 41

2.2.3.2.5. IMS outbound: COBOL to Java data flow with WOLA 43

2.2.3.2.6. IMS inbound: Java to COBOL data flow with WOLA 44

2.2.3.3. Network integration patterns ... 45

2.2.4. Data access pattern ... 45

2.2.4.1. Db2 access from Java .. 45

4 Supercharge IMS Business Applications with Java

2.2.4.2. IMS DB access.. 47

2.2.4.3. VSAM access ... 47

2.2.4.4. MVS data set access .. 47

2.2.5. Transaction or compensation model ... 47

2.3. Summary ... 48

3. Managing requirements and cost.. 49

3.1. Cost and savings .. 49

3.1.1. Requirements .. 52

3.1.2. Non-functional requirements ... 53

3.1.2.1. Availability, robustness, reliability, recovery and resiliency 53

3.1.2.2. Change and deployment ... 54

3.1.2.3. Maintainability .. 54

3.1.2.4. Manageability .. 54

3.1.2.5. People and skills ... 55

3.1.2.6. Performance and scalability .. 55

3.1.2.7. Security, auditability, and compliance .. 56

3.1.2.8. Usability ... 56

3.1.3. Functional requirements ... 56

3.2. Best-fit application placement.. 57

3.3. Summary ... 58

4. Application development ... 59

4.1. Development environments ... 59

4.2. Writing and testing Java applications outside IMS... 60

4.3. Bridging from Java to COBOL (or PL/I or Assembler) ... 60

4.3.1. Java calls COBOL.. 61

4.3.2. COBOL calls (invokes) Java .. 62

4.3.3. COBOL INVOKE v.s. JNI .. 62

4.3.4. Getting started with JNI? .. 63

4.3.5. Options to pass data between languages .. 63

4.3.5.1. Direct byte buffers .. 63

4.4. Accessing Db2 from mixed-language applications... 64

5 © Copyright IBM Corporation 2021.

4.5. Using pureQuery for SQL-like access to Db2 .. 65

4.6. Accessing IBM MQ from mixed-language applications... 66

4.7. COBOL Version 4, 5, and 6 considerations .. 68

4.7.1. Generating methods from Java to copybook structures ... 68

4.7.1.1. Strings ... 68

4.7.1.2. JZOS Record Generator .. 68

4.7.1.3. Rational CICS/IMS Data Binding Wizard (J2C) ... 69

4.8. Special application requirements... 70

4.8.1. Preload or initialization for Java objects on JVM startup ... 71

4.9. Summary ... 71

4.10. Related resources ... 71

5. Bridging from Java to business languages .. 73

5.1. What is JNI? .. 73

5.2. How JNI works... 73

5.2.1. JNI services and API .. 74

5.2.2. Making the connection .. 75

5.3. Connecting Java and COBOL ... 76

5.3.1. The main method.. 77

5.3.2. Working with 'wrapper' OO COBOL classes ... 77

5.3.3. Accessing JNI services ... 78

5.3.4. Compiling and linking for COBOL.. 79

5.3.4.1. Java and COBOL under z/OS UNIX .. 80

5.3.4.1.1. Java invoking OO COBOL with class definition on USS 80

5.3.4.1.2. OO COBOL application calling Java .. 81

5.3.4.2. Java and COBOL under MVS (JCL or TSO/E) .. 82

5.3.4.2.1. OO COBOL calling Java via INVOKE ... 83

5.4. Invoking Java from native COBOL ... 84

5.5. Considerations using native COBOL with JNI.. 84

5.5.1. Generating JNI code ... 85

5.5.2. Framework .. 85

5.5.3. Using static methods .. 86

6 Supercharge IMS Business Applications with Java

5.6. Connecting Java and PL/I ... 88

5.7. Examples ... 88

5.7.1. Example 1: “Hello world” from COBOL .. 88

5.7.2. Example 2: Java calling procedural COBOL with JNI service calls (USS) 89

5.7.3. Example 3: Java calling OO COBOL with class definition (USS) 92

5.7.4. Example 4: OO COBOL application invoking Java using INVOKE (USS) 95

5.7.5. Example 5: Java calling procedural COBOL (MVS) .. 96

5.7.6. Example 6: Java calling OO COBOL with class definition (MVS) 98

5.7.7. Example 7: COBOL invoking Java via INVOKE (MVS) ... 101

5.8. Summary ... 103

5.9. Related resources ... 104

6. Infrastructure, setup, and scenarios .. 106

6.1. Environment description .. 106

6.1.1. JVM startup ... 106

6.1.2. JVM persistency and abend penalties ... 106

6.1.3. Language Environment restrictions for Java interoperability 106

6.1.4. Abend and error handling .. 109

6.1.5. z/OS memory configuration (IEFUSI) ... 110

6.1.6. Is CANCEL_PGM required? ... 112

6.1.7. Unit of work and unit of recovery ... 114

6.2. IMS TM classic scenario .. 115

6.2.1. Data to collect for the initial configuration ... 115

6.2.2. IMS JVM configuration .. 116

6.2.2.1. IMS JVM environment member.. 116

6.2.2.2. IMS JVM configuration member .. 117

6.2.2.3. Alternate Environment and JVM configuration with STDENV..................... 118

6.2.2.4. IMS JVM configuration file.. 119

6.2.3. IMS JVM related Language Environment configuration .. 121

6.3. Db2, ESAF connection pooling, and plans ... 122

6.3.1. Db2 connection pooling for IMS .. 123

6.3.2. Sample IMS setup for using Db2 in a mixed mode environment 124

7 © Copyright IBM Corporation 2021.

6.4. IMS Connect ... 126

6.4.1. Security related to Db2 access and USS permissions .. 126

6.5. Language Environment .. 127

6.6. z/OS UNIX System Services (USS) .. 128

6.6.1. Threads and tasks ... 128

6.7. IMS DB and DL/I.. 128

6.8. Db2 Java stored procedures ... 129

6.9. IMS synchronous program switch .. 129

6.10. IMS Java Dependent Region resource adapter .. 129

6.11. WebSphere Optimized Local Adapters .. 130

6.12. Summary ... 130

7. Problem determination ... 131

7.1. Gathering data .. 131

7.1.1. IBM Support Assistant ... 131

7.1.2. IBM Health Center ... 132

7.1.3. IBM HeapAnalyzer .. 133

7.1.4. Rational Agent Controller, Rational Profiling, and HealthCenter plugin............... 136

7.1.5. JConsole ... 137

7.1.5.1. Starting and running JConsole: ... 137

7.1.5.2. JConsole New Connection wizard ... 137

7.2. Integrated tooling .. 139

7.2.1. IBM Developer for z/OS Java debugging .. 139

7.2.2. Debugging with IBM z/OS Debugger (successor of IBM Debug Tool for z/OS) ... 144

7.2.3. Looking at Performance with IBM Application Performance Analyzer for z/OS . 146

7.3. Understanding JNI problems ... 147

7.4. List of known problems and solutions ... 148

7.4.1. Recommended maintenance based on experiences .. 148

7.4.2. IGZ0032S at j9sl_close_shared_library with COBOL DLLs in call chain 149

7.5. Summary ... 149

8. Case study: Bringing Java to a COBOL-based banking system 150

8.1. Introducing Java in existing IMS MPRs and BMPs ... 150

8 Supercharge IMS Business Applications with Java

8.1.1. Strategies .. 150

8.1.2. Functional prerequisites .. 151

8.1.3. Technical overview of the existing IMS landscape that must be Java- enabled 151

8.1.3.1. High performance Transactions ... 151

8.1.3.2. Standard performance transactions ... 152

8.1.3.3. Batch processing (BMP) ... 152

8.2. Enabling IMS for Java: Experiences and how-to’s .. 152

8.2.1. How Java is embedded in classic IMS regions ... 152

8.2.2. Environment enablement .. 152

8.2.2.1. Minimizing I/Os on RACF datasets ... 152

8.2.2.2. POSIX(ON) and ALL31(ON) related issues .. 153

8.2.2.3. UNIX System Services settings ... 153

8.2.3. JVM ... 155

8.2.3.1. Setting a z/OS-wide default Java version .. 155

8.2.3.2. JVM version ... 156

8.2.3.3. IMS settings ... 156

8.2.3.3.1. IMS JVM settings for high-performance transactions 156

8.2.3.3.2. IMS JVM settings for standard transactions .. 157

8.2.3.3.3. IMS JVM settings for BMP regions ... 158

8.2.4. Message Processing Region settings .. 159

8.2.4.1. MPRs settings for high performance transactions (production settings) 159

8.2.4.1.1. LE (language Environment) .. 159

8.2.4.1.2. IMS-related region setting.. 160

8.2.4.2. MPRs settings for standard transactions (production settings) 160

8.2.4.2.1. Language Environment (LE) ... 160

8.2.4.2.2. Region settings ... 161

8.2.5. BMP settings .. 161

8.2.5.1. LE (Language Environment) ... 161

8.2.5.2. Region setting .. 162

8.2.6. Specific settings for development regions .. 162

8.2.7. JVM release management.. 162

9 © Copyright IBM Corporation 2021.

8.2.7.1. Simplifying system-wide JVM upgrades .. 163

8.2.8. JDBC driver and release management .. 163

8.2.8.1. JDBC driver .. 163

8.2.8.2. Simplifying system-wide JDBD driver upgrades ... 163

8.2.9. Defining a validation suite .. 164

8.2.10. IMS class/region concept ... 164

8.3. Connecting COBOL with Java ... 165

8.3.1. Sample for COBOL calling Java that conforms to our specifications 165

8.3.1.1. Coding the COBOL parts ... 165

8.3.1.1.1. COBMAIN.cbl ... 165

8.3.1.1.2. JNIFIND.cbl ... 172

8.3.1.1.3. JNIFINDI.cpy ... 177

8.3.1.1.4. JNIFINDO.cpy ... 177

8.3.1.2. Compiling the COBOL stuff .. 177

8.3.1.2.1. Procedure COMPJNI .. 177

8.3.1.2.2. Content of IGZCJAVA .. 179

8.3.1.2.3. Content of LIBJVM .. 180

8.3.1.3. Coding Java ... 183

8.3.1.3.1. JNIHelper.java ... 183

8.3.1.4. Lessons learned: Avoid using DLLs .. 184

8.3.1.5. Lessons learned: Avoid using INVOKE .. 184

8.3.2. Handling Java exceptions in COBOL .. 186

8.3.3. Wrapping JNI with our own static converters ... 187

8.3.3.1. Hiding the JNI complexity .. 187

8.3.3.2. Lessons learned ... 187

8.3.4. Wrapping JNI using a roll-your-own dynamic converter .. 188

8.3.4.1. Reasoning for writing and using a custom converter 188

8.3.4.2. Implementation ... 188

8.3.5. Other important information .. 189

8.3.5.1. Data type designations ... 189

8.3.5.2. Sample JNI in COBOL using FindClass .. 190

10 Supercharge IMS Business Applications with Java

8.4. Additional considerations for production usage .. 190

8.4.1. Error handling in production ... 191

8.4.2. Identifying CPU, zIIP, and zIIP on CPU (zICP) usage .. 191

8.4.2.1. Joboutpout statistics ... 191

8.4.2.2. Real-time alerting when thresholds are reached .. 192

8.4.2.3. Statistics view on IIP and ICP ... 192

8.4.3. Accounting: New SMF records 29 & 121 .. 193

8.5. Security considerations ... 193

8.5.1. Roles classification.. 193

8.5.2. Separation of concerns ... 194

8.5.3. Transaction execution security ... 194

8.5.4. Accessing Db2 ... 194

8.6. Summary ... 195

Notices .. 196

11 © Copyright IBM Corporation 2021.

Figures

Figure 1. Java compile ... 16

Figure 2. From interpretation to compilation... 19

Figure 3. Java compilation, runtime, and JVM: the full picture .. 20

Figure 4. Relationship and location of AOT and JIT code caches ... 21

Figure 5. Scalability of Java on IBM IBM Z Systems ... 23

Figure 6. Java performance improvements on IBM Z Systems ... 24

Figure 7. Major decisions to make on the integration path .. 33

Figure 8. Integration decision points that influence each other .. 34

Figure 9. Java deployment zones on z/OS .. 35

Figure 10. Integration, interaction, and granularity .. 36

Figure 11. A JNI-based integration pattern .. 38

Figure 12. IMS environment that supports the JNI programming pattern ... 39

Figure 13. Overview of WebSphere Optimized Local Adapter and IMS integration 40

Figure 14. Overview of WebSphere Optimized Local Adapter and IMS integration 43

Figure 15. Accessing Db2 via ESAF ... 46

Figure 16. Some major initial one-time cost ... 49

Figure 17. Expenses based on deployment model (Example) ... 50

Figure 18. Some important requirements ... 53

Figure 19. Example of a Fit for Purpose deliverable for a given application .. 57

Figure 20. Java calls to the LE languages through the JNI ... 61

Figure 21. CICS/IMS Java Data Binding Wizard in IBM Developer for z/OS 70

Figure 22. JNI environment pointer .. 74

Figure 23. Generating JNI calls for COBOL ... 85

Figure 24. Framework .. 86

Figure 25. Unit of work and unit of recovery... 115

Figure 26. Health Center profiling view in IBM Support Assistant ... 133

Figure 27. Select the heap dump pdf file location ... 135

Figure 28. Summary view of IBM HeapAnalyzer ... 136

Figure 29. Summary view from JConsole while running some workload .. 138

Figure 30. Debug Configurations window ... 140

file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062657
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062658
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062659
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062660
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062661
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062662
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062663
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062664
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062665
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062668
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062669
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062670
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062672
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062673
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062675
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062678
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062679
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062683
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062685

12 Supercharge IMS Business Applications with Java

Figure 31. Remote Java application properties .. 141

Figure 32. Remote debug connection .. 141

Figure 33. Suspended remote JVM execution .. 142

Figure 34. Suspended remote Java program with source code position and variable/object values

 ... 142

Figure 35. Context sensitive source code view of current variable/object values at

suspend/breakpoint time .. 143

Figure 36. Debug session suspended at breakpoint with source code view 144

Figure 37. Debug session with a COBOL program ... 146

Figure 38. IBM Application Performance Analyzer Eclipse plugin ... 147

Figure 39. Generating Java and COBOL wrapper code ... 187

Figure 40. Mapping framework for a custom converter .. 188

Figure 41. Generating COBOL and Java representations using the modelling language 189

Figure 42. Mapping FindClass to a COBOL call .. 190

Figure 43. Output from the IEFACTRT exit ... 191

Figure 44. Real-time alerting messages ... 192

Figure 45. EPV for z/OS ... 192

Figure 46. IIP eligible workload in EPV for z/OS .. 193

file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062695
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062696
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062698
file://///Users/jennyhuang/Library/Application%20Support/Box/Box%20Edit/Documents/842390582829/backup_format_pages_v55_fig9.docx%23_Toc79062699

13 © Copyright IBM Corporation 2021.

Preface

Java™ was introduced to the IBM® Z® and to IMS™ more than

ten years ago. The idea of taking advantage of the Java eco-system

to modernize, extend, and maximize the values of existing IMS

business applications and assets has been tested, measured,

implemented, and advocated. Much has been written about

mainframe modernization, with new tools and new capabilities

coming out on the market that facilitate the adoption of Java and

integration of existing IBM Z assets with new business

applications. This book is written with one focus-- to share the

insights in the entire integration and adoption process based upon

the authors’ experience working on various enterprise application

integration and modernization projects. From architecture decision

making, infrastructure setup, application development, Java

interoperability with COBOL, to problem determination, the

information will help IT architects and application developers

determine their integration approach and strategy, prepare for Java

adoption, and supercharge their IMS business applications with

Java!

Special thanks go to Fiducia & GAD IT AG, for sharing their

experience with us!

14 Supercharge IMS Business Applications with Java

Change history

Edition Major changes

May, 2021 • A case study chapter based on a recent modernization

project in Fiducia & GAD IT AG is added. From

functional requirements, infrastructure landscape,

environment settings, application development, to

security considerations, this chapter provides great

insight into the thought process, with information that

you will find helpful with your own modernization

project.

• Content related to ESAF connection pooling and JCC

statement caching support for Db2 access is added to

Chapter 6. Related APARs to support these functions

are added to the list of known problems and solutions

in Chapter 7.

15 © Copyright IBM Corporation 2021.

C H A P T E R 1
1. Introduction

Extending the reach of existing IMS™ applications through interoperation with

Java™ technology allows you to take advantage of the Java eco-system within

traditional business language containers. New applications can be created with

faster time to market, and organizations can expand and maximize the values

of existing IMS applications and business assets with the help of various tools

and frameworks that come with Java. This book will focus on the essential

tasks that help bridge between business languages and Java.

In this introduction chapter, a common understanding for Java on ® ® is

established through the discussions of the motivation and the business values

that Java™ brings to your mainframe environment, especially to your IMS

Transaction Manager.

The following topics are discussed:

• The motivations and business values to bring in Java to your environment

• Challenges and prerequisites

• Java overview and reasoning

• Options and associated cost

1.1. Aligning IT strategies for the future

Many mainframe shops experimented with Java™ on IBM Z. In most cases, the

results were very promising, leading to a strategic adoption of the Java runtime

on IBM Z Systems. Others left Java workloads to distributed systems, often

because Java was seen as being too slow, too resource consuming, or too

'distributed.' Even though Java is over twenty years old, mature, and well

proven, for some of us, it's still new and requires a major change in how we

think.

Some years ago, experts had been very skeptical when enterprises started

transforming from assembler to higher level languages such as COBOL or PL/I.

No one questions today if this move was the right thing to do. We cannot

imagine an assembler-only landscape today, and if we did, it would seem like a

nightmare. Are we at the same paradigm shift today when we discuss enabling

Java on z/OS®, for batch, online, or within classic transaction monitors like

IMS™ or CICS®?

Technological progress triggered the shift to higher level languages in the 80’s–

more powerful servers, mature run times, and optimizing compilers.

16 Supercharge IMS Business Applications with Java

Infrastructure enhancements have opened the door. However, no one migrated

to a high-level language with the expectation of a better throughput (or less

resource consumption). The move was driven by a need for higher application

programmer productivity. In other words, these businesses asked for a faster

time to market for their ideas and applications.

Today, response time and resource consumption are still key elements we need

to focus on when we align IT strategy for the future. Some non-functional

aspects we will touch upon in this document are:

• Programmer efficiency, time to market, and code reuse

• Resource consumption, performance, scalability, and response times

• Transactions and compensation

• Security

• Best fit for applications

1.2. Java on IBM Z primer

To understand the z/OS implications of Java, we must touch on at least three

relevant aspects:

• The programming language

• The compilation process

• The Java runtime itself

1.2.1. IBM SDK for z/OS, Java Technology edition

Java is a general purpose programming language that offers a simple class-

based, object-oriented and concurrent paradigm. Its syntax is similar to C++,

and it offers many developer-friendly features such as auto-boxing, generics,

and full stack traces on exceptions as part of its language specification.

The Java Software Development Kit (SDK) is the deliverable (a UNIX™

.pax.Z file or SMP/E package) that includes all components required to

execute Java code on the platform.

Major components of the SDK are as follows:

• javac: the Java compiler that converts source code into Java bytecodes.

Figure 1. Java compile

17 © Copyright IBM Corporation 2021.

• Java class libraries: The libraries that provide the implementations of

the extensive Java APIs that are part of the language specification.

• Java Virtual Machine (JVM) and Java Runtime Environment (JRE): JVMs,

Garbage Collector (GC), and Just in Time Compiler (JIT) technologies to

execute the Java bytecodes on a target platform.

On z/OS, JVMs are available natively in UNIX System Services. They can

run as started tasks, in batch jobs, or embedded in subsystems, and

therefore the application code is very portable between this most common

and certified standard. Execution actually takes place in JRE. IBM’s JVM

implementation is based on IBM’s J9 technology, and its SDK for Java is

fully compliant to Java Certification Kit (JCK).

• Tools that support development, debugging, security monitoring, and

more.

For z/OS, the IBM SDK for Java is the only Java SDK available. Starting from

Java 8, the IBM SDK's compiler (javac) and Java class libraries are based on

OpenJDK, the open source reference implementation of the Java platform.

Java source code needs to be compiled once to object code (bytecode

compilation to .class files via ‘javac’) on any development platform. These

.class files are typically packaged as part of .jar, .ear and .war modules. One can

then distribute these object codes and modules to any target platform, and it

would run there without further bytecode compilation in the JVM. Think of

this for now as if a common instruction set would be available on any platform,

or a virtual computer.

The internally used code page within the JVM is Unicode. As a result, Java

programs are platform neutral and highly portable. Externals, like

configuration files, are usually ASCII. One can configure the JVM to interact

with the hosting platform with a code page of your choice (e.g. EBCDIC).

Important features responsible for the language's success are:

• IP communication capabilities are an integral part of the implementation

and specification.

• Multithreading is used by the Java infrastructure itself (to parallelize

housekeeping, for example) and is also supported for applications that

execute in Java application servers, such as WebSphere® Application

Server for z/OS.

• Support for graphical interfaces is an integral part of the Java language.

Typically, the graphical interface that is generated for a server application

would be a browser-based frontend, such as in Web 2.0 style.

For z/OS, there are some very useful functions built in to the IBM delivery

(the SDK within the IBM Java for z/OS package):

18 Supercharge IMS Business Applications with Java

• MVS CONSOLE interface

• SAF interface

• Workload management (WLM) APIs to classify and create WLM work

units (for example, used by WebSphere Application Server to implement a

state-of-the-art WLM support for Java transactions and batches)

• Many other z/OS-related functions that allow you to use Java for accessing

a wide range of z/OS-specific functions and resources

• Access method generator for COBOL copybooks (available from IBM

alphaWorks in the IBM Experimental Version of the JZOS Batch Toolkit

community)

• Data access (VSAM, BSAM, QSAM, and HFS)

Data Access Accelerators (DAA) is a set of accelerated Data Access APIs for

native data manipulation. Because the Java specification does not support

direct operations on native structures, costly conversion into Java objects is

needed to achieve that goal. The IBM DAA API (com.ibm.dataaccess)

automatically optimizes the data manipulation on DirectByteBuffers for the

following conversions:

o Integer to packed decimal (PD)

o PD to integer

o Long to PD

o PD to long

The DAA API also supports ByteArrays with the following features:

o Many packed decimal operations

o BigDecimal and BigInteger conversions from and to external decimal

and Unicode decimal types

o Marshalling operations: marshalling and unmarshalling primitive types

(short, int, long, float, and double) to and from byte arrays

o The com.ibm.jzos.fields package of the IBM JZOS Batch Toolkit for z/OS

uses DAA by default for data marshalling and conversion

In addition, many z/OS subsystems (CICS and IMS, for example) deliver Java

APIs to access subsystem-specific functions comparable to what is available in

COBOL and PL/I.

1.2.2. Java object and native code compilation process

The Java compile process is a staged process and not really comparable to

traditional compile-and-link-edit process:

1. First, the source code gets compiled to bytecode. If you adhere to

standards, this code can be executed on any JVM on any platform. This is

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=2acdb076-7582-45b5-93a5-781f90169bd3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=2acdb076-7582-45b5-93a5-781f90169bd3

19 © Copyright IBM Corporation 2021.

what makes Java so special, as recompilation of the Java application is

generally not required when deploying across platforms, and/or

upgrades to newer levels of the SDKs.

2. The bytecodes of a Java method are interpreted by the JVM at execution

time, and is pretty slow compared to traditional compiled-and-link-edited

code. To speed up the code execution, several features have been built into

the z/OS JVM to optimize this code, manually or automagically, to bring

performance up to bare metal speed.

3. While the bytecode is interpreted and executing, the JVM monitors the code

execution. JVM's backend (the just-in-time compiler or JIT) optimizes and

compiles bytecode of hot methods on the fly, down to optimized native

instructions, exploiting any hardware and platform features available. The

compilation target is adjusted to the application's access patterns and to the

underlying hardware architecture. All this process is transparent and very

efficient.

4. In addition, the JVM has the ability to cache away meta-data about classes

and JIT compiled code. Subsequent JVM instances can benefit with

significantly better startup performance by simply loading the cached code,

instead of re-incurring the overhead of interpretation and compilation.

AOT has to be done only once after initial program load (IPL). The

compiled code is persistent for the LPAR lifetime until next IPL, and can be

shared between multiple JVMs (Java class sharing). Optionally, in Java 8

SR1 or later, the contents of the cache can be persisted onto disk and

reloaded after IPL. AOT can optimize applications and JVM code.

Figure 2. From interpretation to compilation

20 Supercharge IMS Business Applications with Java

If you enable AOT, every JVM takes care not to AOT something that already

has been AOT’d in the LPAR.

AOT can optimize applications and system classes and would need to be run

separately for different applications or JVM versions. As a result, several

versions of this code would have to be shared and cached.

Compiled AOT code is stored within the z/OS UNIX System Services

Interactive Problem Control System (IPCS) structures. An HFS file is used by

the ‘consuming’ JVMs to find the location of the appropriate classes.

Figure 4 shows the relationship between those code caches.

Note: With shared classes technology, Java classes metadata can be shared across

multiple JVM instances within an operating system image (LPAR/Guest). Given IMS

Java applications are single-threaded, when incoming arrival rate exceeds the

throughput that a single thread can manage, it is common to spin up additional JVM

instances. Each of these additional JVMs within your LPAR can then benefit from the

startup and footprint savings of these shared classes.

Figure 3. Java compilation, runtime, and JVM: the full picture

21 © Copyright IBM Corporation 2021.

The use of AOT speeds up startup and native (JIT) compilations, improves

overall throughput, and minimizes CPU consumption and memory footprint.

To summarize, from interpreted to pre-compiled and shared up to highly

optimized machine code, you can have various levels of automated code

optimization. This hierarchy of compilation strategies is applicable to all IBM

JVM implementations of the same release level (platform agnostic).

1.2.3. Java on IBM Z strength

To get the most out of the underlying platform for your Java applications, you

would need to run your code in a JVM implementation that explicitly exploits

your hardware architecture. On IBM Z, since there is only the IBM SDK to

choose from, you just need to ensure that the SDK you deploy supports the

hardware you use.

Note: For class sharing, the JVM uses z/OS UNIX System Services (USS) resources

defined in the parameters for the PARMLIB member BPXPRMxx:

MAXSHAREPAGES, IPCSHMSPAGES, IPCSHMMPAGES and IPCSHMNSEGS.

Note: JIT compilation is enabled by default. The use of AOT and class sharing is

enabled by default when you run in a WebSphere Application Server. If you run your

JVM native or in IMS, you can enable it using –Xshareclasses JVM options. AOT is

complementary to JIT.

Figure 4. Relationship and location of AOT and JIT code caches

22 Supercharge IMS Business Applications with Java

On IBM Z, especially on z/OS, we can enjoy some special benefits:

1. Pure Java application code and the JVM runtime itself are eligible to run

on the IBM z Application Assist Processor (zAAP) or IBM z Integrated

Information Processor (zIIP) engines. These engines offer an attractively

priced execution environment for Java applications that is generally more

cost effective than workloads running on general CPs.

2. On distributed systems, one would typically deploy a Java application in a

Java Runtime Environment (JRE), such as a web application server, and

interact with it using network protocols. On z/OS you could do the same.

However, you could further integrate Java artifacts in almost any

subsystem (IMS, CICS, Db2 for z/OS, or batch) and integrate those into

your existing assets. You could decide on the integration depth (ranging

from services- oriented component interaction to cross-memory

integration). This architectural freedom lets you minimize risk, protect

investments, and keep the existing service qualities delivered by the

subsystems to your applications.

3. Automatic JIT compilation means that your program is always compiled to

use all the available hardware features and instructions without the need to

change and test the application code. This behavior is in sharp contrast to

traditional languages such as COBOL, which must be manually recompiled

to use new hardware facilities. At most sites it is very unlikely that all

COBOL or PL/1 programs will be recompiled whenever a new machine is

installed or upgraded. Compared to the third-generation languages, this

paradigm shift allows much faster exploitation of the latest hardware and

software, meaning that you automatically get the benefits of the

throughput enhancements delivered by new hardware.

4. JIT code is not persistent, so you do not need to care about code versioning

if the same application is going to run on systems with different hardware

levels.

5. The fact that the IBM Z Systems architecture and the JVM backend

compiler are created by the same company leads to combined engineering

of both. In fact, significant hardware features have been co-designed with

the JVM teams specifically to accelerate Java performance on the platform.

Such innovations typically apply to both z/OS and Linux on IBM Z

Systems.

6. Significant performance enhancements have been made in each generation

Note: JIT is smart enough to identify the underlying platform and compiles

accordingly. One can force JIT to compile for a specific hardware, for example, when

the hardware support is new or experimental.

23 © Copyright IBM Corporation 2021.

of System IBM Z processors. A recent benchmark testing shows that the

hardware improvement, coupled with enhancements in multi-threaded

64-bit Java, resulted in 12x more throughput from Java V5 on IBM System

z9, to Java V7 on IBM System z EC12. This dramatic performance increase

is almost linear from single-threaded Java up to 16 threads.

For example, zEC12 delivered superior throughput compared to the prior

generation IBM System IBM Z, including:

o Up to 45 percent improvement for Java workloads,

o Up to 30 percent improvement for Db2 for z/OS operational

analytics, and

o More than 25% improvement for CPU intensive applications

Another more recent WebSphere benchmark testing shows that IBM Z

with Java 8 delivers more than 12 times aggregate software and

hardware performance improvement over Java 5 on IBM z9.

Figure 5. Scalability of Java on IBM IBM Z Systems

24 Supercharge IMS Business Applications with Java

7. IBM Z Systems design principle features a combination of non-uniform

memory access and large symmetrical multi-processor (NUMA/SMP) and

large caches in a 4-level hierarchy, which are a great fit for memory

intensive (Java) applications and mixed workloads.

8. On IBM Z Systems, IBM delivers special hardware support that is or can

be leveraged to further improve the execution rate to enable enterprise

class transaction rates and batch throughputs:

a. Special hardware support in classical Z hardware, like z Systems Application

Assist Processor (zAAP), z Systems Integrated Information Processor (zIIP),

instruction set, and class libraries to support special hardware functions (for

example, symmetric cryptography). Note that on current z System hardware

you would run zAAP workload on zIIP engines. That allows for better

utilization of the hardware and lowers the cost of acquisition.

b. Standard features such as large pages, hardware transactional memory, and

hardware run-time instrumentation allow further optimized usage of the

underlying hardware infrastructure.

Runtime instrumentation is enabled automatically, and transactional memory

can be exploited by middleware and applications.

Note: Large pages needs to be configured in the JVM (-Xlp) and also in z/OS

SYS1.PARMLIB(IEASYSxx) LFAAREA and PAGESCM parameters. Large page

requestor also needs access to RACF FACILITY profile IARRSM.LRGPAGES (or the

SAF equivalent). Supporting hardware such as EC12 or higher and/or Flash Express)

needs to be available for large pages. See the Configuring large page memory

allocation topic in the IBM SDK, Java Technology Edition product information in IBM

Knowledge Center.

Figure 6. Java performance improvements on IBM Z Systems

http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/user/alloc_large_page.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/user/alloc_large_page.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSYKE2/welcome_javasdk_family.html
http://www.ibm.com/support/knowledgecenter/SSYKE2/welcome_javasdk_family.html

25 © Copyright IBM Corporation 2021.

c. Additional accelerators for compression (zEDC), memory access (Flash

Express), cryptography (Crypto Express), and IP communication over remote

direct memory access (RDMA) over an Ethernet (RoCE) are supported by Java

at delivery time!

d. Since IBM Z Systems z13 zIIP engines can run in symmetric multi-threading

mode (SMT). The SMT mode will allow two threads to concurrently execute

on the same core, thereby, delivering for more throughput at no additional

cost. If an LPAR is running in SMT mode single thread performance might be

degraded but overall throughput enhanced. Given Java applications and the

JVM are multi-threaded applications, they generally benefit from SMT

enablement on zIIP engines. Care should be taken to assess impact on other

zIIP eligible workloads that are sharing the zIIP engines.

e. SIMD, single instruction / multiple data HW support is kind of a vector engine

(remember 3090 vector facility) supported by Java 8 and higher. The Java 8

JVM will transparently exploit SIMD instructions to accelerate various String

APIs, crypto and loops where possible. If your workload can benefit from

SIMD, it will experience a performance boost, again for no charge.

All these strengths make IBM Z the enterprise Java server with huge

capacity, brilliant performance, and huge potential.

Java allows you to move your code, without pain, from one platform to

another. This puts pressure on the vendors to stay competitive. Also, this kind

of code reusability allows one to move the business logic close to the data, or

the data to the logic, to allow for higher service levels and easier management

and by avoiding vendor lock-in.

The benefits that Java can provide should encourage rethinking of the classical

multi-tier blueprints that evolved due to the limitations of both mainframe and

distributed systems

Java integration layer

The implementation of the crucial platform integration (such as compilers to native

code) is left to the supplier of the SDK; in the case of IBM Z, it s IBM. On z/OS,

embedded Java Runtime Environments (middleware like WebSphere, IMS, and CICS)

allow very portable code to run in platform-optimized environments, delivering the

highest service levels and integration, while remaining very portable. Integration and

platform leverage takes place with adapter technology and application transparency

enablement, all through the use of configuration options. Without this concept of

platform independence, Java would be nowhere today!

Note: Your application might benefit from large page usage, but also important that

large page usage takes stress from the systems Translation Lookaside Buffer (TLB), so

the entire system will benefit from large page exploiters.

26 Supercharge IMS Business Applications with Java

1.3. Motivations and business values

Enabling Java within your existing mainframe application lifecycle

componentry is a task that touches on all areas of your application lifecycle. It

is an investment that needs some funding and sponsorship, even if many

building blocks for Java enablement come for free.

What does your business get out of this? Java enablement in an existing

mainframe business language (e.g. PL/I and COBOL) environment generates

value in various areas of your application food chain:

Business

• Reduce time to market. Java technology enables many assets, tools and

skills that drastically short your development cycles

• Protect investment. By adopting new technologies to existing assets,

investments in business applications can be leveraged and continue to

support your business as they did in the past. When needed, application

components can be renewed and exchanged without any risk.

• Facilitate integration of 3
rd

party products. Ready-made Java software

from 3
rd

parties could run instantly and be integrated into your existing

business application, allowing you to select standard packages when

needed.

Application architecture

• Open the toolbox for many frameworks and protocols.

• Support services naturally. Service enablement, including micro services

and RESTful services are more natural with Java.

• Eliminate additional compensation layers. Use of infrastructure

transaction services means there is no need to implement additional

compensation layers into the application, allowing significant

enhancements to surface throughout the entire application lifecycle.

• Enable an architecture based on mainstream componentry and

programming models. Current and widely used programming models

such as JDBC, Java persistence frameworks, SPARK, and Java adapter

technologies can be utilized and taken advantage of.

• Gain competitiveness. Java enrichment in your environment enables you

to leverage upcoming mainstream trends.

Application development

• Enable code reuse. Code from and for non-Z platforms can be reused.

• Utilize non-mainframe skills. It’s easier to encourage personnel with non-

mainframe skills in development tasks.

27 © Copyright IBM Corporation 2021.

• Utilize publicly available development tools. Many open source and

commercial tools are available to speed up and ease programming tasks.

IT operations

• Utilize publicly available operations management tools. Publicly

available tools can be used for managing, monitoring, analyzing and

properly adjusting the Java run time.

General IT

• Vitalize your mainframe landscape. Java enablement vitalizes your

mainframe landscape and people. In many IT shops, the mainframe is the

IT backbone for the business, so it is crucial that it evolves and keeps

pace with current market developments to guarantee its agility for the

present and future.

• Enable best delivery. Java runs almost everywhere. If one platform

(hardware, operating system, or software) does not deliver required

quality, the workload might run on the next (best) platform. This

challenge (or completion) keeps your vendor, your platform and your

team fighting for best results.

• Enable flexible placement option and best fit. As you have a choice to

run Java middleware and applications, you can place applications where

they fit best, delivering the best price and performance

• Utilize widely available skills. Java skills are widely available. By

opening up Java on the mainframe, you make the mainframe jobs more

attractive. With a larger pool of potential talents, it is easier to build up

critical skill areas. In addition, your Java experts can move around in your

enterprise more easily because their skill set fits for many platforms. The

more you shield platform specifics from application developers (e.g. with

framework encapsulation), the easier it is to reuse Java skills.

• Reduce risks. Java enrichment instead of application porting avoids any

porting project risk and allows for a seamless and soft forward migration or

integration

• Cut cost. Java workloads are highly discounted on z/OS, eligible to be

offloaded to specialty engines, tools even skills are cheaper to get than for

traditional programming environments.

• Open for more deployment options. Java runs on many platforms. This

gets you out of any vendor locking and enables you to take alternative

deployment options.

• Enhance agility. Java is supported by a vast community. Enabling Java™

inherits all this technology momentum for your existing assets

• Leverage hardware technologies. With traditional programming

28 Supercharge IMS Business Applications with Java

languages, it is necessary to explicitly recompile and redeploy code to get

something out of technology advances. With Java, hardware exploitation

comes automatically for most hardware features (Just-in-time code

caches, for example). Specific hardware accelerators (for example,

cryptography, compression, and networking) are very often supported

by Java on the first day.

There is a lot an enterprise can get out of Java for their existing mainframe

application landscape. Not-enabling this technology puts you into a position

where your IT cannot competitively support your business. We will touch

upon details of Java technology and its concrete benefits in the next section.

1.4. Decision guidance and checklist

Many enterprises have already adopted the Java technology in the distributed

server landscape, but still lack the enablement of Java on IBM Z Systems. As

we have seen above, there might be a lot of business value by embracing a

Java strategy for existing core business systems.

To understand if your enterprise can leverage on these values here are some

real and some rhetorical questions you should process in your mind to

understand the potential of the technology. The checklist in Table 1 would

help you with this mental exercise.

29 © Copyright IBM Corporation 2021.

Table 1. Decision checklist

❑
Is Java already used in the enterprise, and reuse of existing Java code on z/OS is therefore a viable option?

❑
This reuse and redeployment capability of code opens up for optimal placement of applications (for example, run

batches close to the data to be processed). Does this capability help you to run your IT more efficiently?

❑
Smart application placement can save you from having to implement compensation logic into the application and

allows that data integrity work to be done by a robust transaction monitor like IMS, CICS or WebSphere Application

Server for z/OS. Does this capability allow you to write better applications with less lines of code?

❑
You can use Java to enhance existing core business functions without the need to rewrite well-working applications. Do you

still maintain your existing assets written in classic business languages, and do you like to add new functionality to them?

❑
This code enhancement can minimize the well-known risk of rewriting applications in modernization projects. Is this risk

avoidance a value for your enterprise?

❑
Java integration enables you to leverage all the feature-rich functions, frameworks, and solutions in your traditional

(for example, IMS COBOL) environments. Would this new set of functions and frameworks help your business to get

new application features faster to market?

❑
Enhancing traditional applications over time and eventually resulting in zero COBOL or PL/I code allows you to move the

applications to almost any Java container on almost any platform. Does this freedom of application placement help your

enterprise in the long-term to make more flexible platform decisions?

❑
Java on z/OS opens up for interesting z/OS charging models with IBM, models that could minimize traditional

mainframe software bill. Is your enterprise interested in entering this space of new workload rebates? Do you need to

reduce software cost while delivering higher quality and more functions?

❑
Java runs for more than 90% on zIIP engines and therefore avoids monthly license charge (MLC). Do you have applications

that contribute to the four-hour rolling average that could be offloaded to Java?

❑
The Java community is adopting new technologies faster than any other runtime environment. Does this innovation

acceleration help you to deliver better applications and infrastructure services in a shorter time?

❑
Java is taught in schools and universities, thereby allowing organizations to hire standard skills from the market. Are you

experiencing skills issues and would benefit from employing readily available IT skills right away from the large talent

pool?

❑
Java is enabling programmers to crank out new applications for the mainframe much faster, because of the richness of tools

and readiness of APIs. Is slow time to market an existing issue for your business?

❑
Common and modern data access patterns (for example, JDBC, Hibernate, and JPA) are readily available in Java.

Would your mainframe application landscape benefit from the ability to build on those assets?

❑
Most of the open-source componentry and supporting tools for Java are available for z/OS. Open- source solutions often see

broad contributions and evolve very fast. Does your enterprise support use of open-source solutions to leverage the

communities and the progress?

❑
Java helps to open my mainframe environment for new readily-built solutions. Is your enterprise (interested in) buying ready-

made software to be able to select from a broader set of vendor applications for a broader set of platforms?

30 Supercharge IMS Business Applications with Java

If you checked some boxes and have yet to have a Java strategy for z Systems,

you should consider to act now.

1.5. Summary

In this introduction chapter, we discussed the motivation and business values

to bring in Java to your mainframe environment to expand and maximize the

values of your existing z/OS applications. We also discussed the challenges,

options, cost, and considerations involved when you engage in Java

enablement.

1.6. Related resources

The following list provides useful resources that contain more detailed

description of the topics that are covered in this section.

• IBM Redbook: New Ways of Running Batch Applications on z/OS

at http://www.redbooks.ibm.com/abstracts/sg248119.html

• Configuring large page memory allocation topic in the IBM SDK, Java

Technology Edition product information in IBM Documentation.

Java on IBM Z Systems can help drive vitality, reduce complexity, and might help to

prevent the forthcoming mainframe skill shortage problem. More importantly, by

speeding up the application development lifecycle, it creates a competitive advantage

for your business.

http://www.redbooks.ibm.com/abstracts/sg248119.html
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/user/alloc_large_page.html?lang=en
https://www.ibm.com/docs/en/sdk-java-technology?topic=SSYKE2/welcome_javasdk_family.html

31 © Copyright IBM Corporation 2021.

C H A P T E R 2

2. Architectural considerations

Java™ on z/OS® can execute in various target environments. You can run it

natively in the UNIX System Services (USS) environment, as a batch job within

a batch launcher (such as JZOS), or with a Java application server (such as

Apache Tomcat or IBM® WebSphere® Application Server for z/OS). You can

run it in, for example, IMS™, CICS®, or Db2® for z/OS, or use it to interact

with IBM MQ.

On z/OS, you typically do not run Java client applications with a graphical user

interface; rather, you run their server applications. Systems of engagement

(SoE) often embrace younger languages like Java, partly because they also have

rich rendering capabilities. Systems of record (SoR) typically rely on COBOL,

PL/I, and other matured languages for business logic. Many organizations find

themselves in a situation where business logic implemented in Java is allowed

to execute only in open systems, resulting in a spread of SOR logic over several

platforms.

Enabling Java on all platforms means an organization can deploy Java code

where it fits best, allowing for re-centralization and sensible grouping of

componentry.

If you plan to walk down the integration path further, more thoughts are

required to decide on the following aspects:

• The integration depth

• Programming model

• Data access pattern

• The target runtime container for Java

In this chapter we will discuss the major decision points from the application

and infrastructure perspective.

2.1. Application migration versus application integration

When thinking about modernizing existing business applications, you would

probably naturally think about replacing existing COBOL, PL/I, C or C++ code

with Java, or deploying a new application written entirely in Java.

To protect your assets and minimize risks, you also have the option to integrate

Java with different languages. If you need to add new functionality to existing

code, you can rewrite the entire application in Java, or leave it as is and just

add new Java functions to it.

32 Supercharge IMS Business Applications with Java

Migrating an existing application to Java by re-implementing existing code

might look like a clean solution. It enables new functionality (such as the Java

frameworks), creates higher portability, and could leave the underlying data

structures unchanged. However, if you already have a working business

application (e.g. COBOL), rewriting the existing business functions might

introduce unnecessary overhead, risk, and cost especially if you just want to

enrich its business functionality.

Another viable option to enrich an existing application with new functionality

is to bring in standards-based, off the shelf software written in Java. In this case

you will be dealing with a different set of migration issues, such as data and

data model migration, application interfaces, education for users and IT staff,

and how to embed the new software and its run time into the existing IT

processes.

Integrating Java code into existing application code would perfectly minimize

risks and efforts by leveraging existing service quality of the container, leaving

existing code, interfaces, and data mostly untouched. The tighter you integrate,

the more you gain in performance and subsystem qualities. When you link or

integrate languages tightly together, you do not have 100% pure Java code, and

your Java code would also have an integration and transformation layer, likely

written in C (using JNI). To keep everything nicely usable and portable, that

layer could be implemented by a code-generating framework.

2.2. Application integration decisions

Different techniques exist to couple your assets, each with its benefits and

drawbacks. It’s up to the enterprise and application architect to select the

integration technology for an application or even for the enterprise.

Note: If a business needs new functionality, most of the time the corresponding

applications are extended rather than re-developed. The effort to extend is so much

smaller than to re-implement. For that reason, usually an application would only be

re-implemented if is in a non-maintainable” state, which causes an extension to be

more expensive than a re-implementation. By non-maintainable,” we mean it is not

only difficult and costly to keep the code running, but also difficult and costly to

enhance or extend.

Adding Java componentry to existing applications truly opens up new options; it

allows you to pull in different programmers, enables code reuse, and speeds up

development time. You might even realize that re-implementation can be completely

avoided, because it might be easiest to implement certain functionality with Java than

in COBOL.

33 © Copyright IBM Corporation 2021.

Avoiding the risk and protecting existing asset consequently requires a lot

of thinking and planning. That might be one of the reasons why people often

choose to rewrite and redeploy. But again, be aware that larger rewriting

projects have a tendency to exceed their budgets or fall behind their

schedule, resulting in major delays or project incompletion.

2.2.1. Java containers on z/OS

IBM not only provides a complete Java SDK for z/OS and consequently full-

blown Java application servers, but also enables relevant middleware

subsystems (IMS TM, CICS, Db2 for z/OS) with Java technology. This opens

up a variety of choices for your application deployment. Some applications

are just a logical match to certain containers. For others, you would have a

variety of choices. Selecting the right container is in most cases quite easy and

natural. In Figure 7, the runtime selection is the last piece in the simplified

flow because the deployment ends here. In reality all those decisions influence

each other.

Note: The enterprise architects must identify the most suitable integration

technology pattern that fits best to existing applications and service level

requirements. This integration pattern (and framework) would guide application

programmers on how to add Java componentry to their existing business

applications. The right integration or extension has to be selected per application.

Figure 7. Major decisions to make on the integration path

34 Supercharge IMS Business Applications with Java

For example, if you set on a specific runtime, you might not have all options

regarding integration depth. If you decide on a specific integration depth (and

programming model), not all runtimes might be appropriate.

Figure 9 depicts the possible deployment zones where you can deploy Java or

Java-COBOL/PL1 constructs. IMS native online and batch environment with

COBOL and Java interoperability is the runtime environment that we will

focus most here.

Note: If you have the option to run Linux on IBM Z Systems you will add other

deployment and integration possibilities to the picture. You will be limited to IP based

connectivity between Java on Linux and COBOL/PL1 on z/OS. The IP connectivity can

be direct from LPAR to LPAR and therefore very fast, reliable and secure.

Figure 8. Integration decision points that influence each other

35 © Copyright IBM Corporation 2021.

2.2.2. Integration depth, interaction intensity, and component granularity

On the integration path you would need to decide on integration depth and

density. This is pretty much influenced by the size and interaction intensity of

the components. For example, if you integrate a high-speed Java “subroutine”

into an existing COBOL application, you would very likely not select a full-

blown web service approach for obvious reasons. Your decision on the

required integration depth, interaction and granularity requirements will

influence, again, the decisions on programming models and container

selection.

Figure 10 shows the levels of granularity and the responding process coupling

architecture.

Figure 9. Java deployment zones on z/OS

36 Supercharge IMS Business Applications with Java

Figure 10. Integration, interaction, and granularity

Table 2 provides some more details about the options and resulting qualities

and requirements for Java to core business components integration.

Table 2. Options to adopt Java

Scope Technology Granularity Benefits Downside

Migration

and

rework

• Porting or new

development

• Off-the-shelf product

• Monolithic; no

coupling

• 100% Java

• Vendor solution

possible

• High risk and

effort

Loose

coupling

• IP based-web

services

• RESTful

services

• Coarse

• Inter-system to

inter-process

• Very portable • Complex

• Performance

not as good

Tight

coupling

• Cross-memory

adapters-- WOLA

• Coarse- to

fine-grained

• Inter- to

intra-

process

• Portable

• Good

performance

• Asset

protection

• Skills issue

• 2nd run time

for Java

required

Full

integration

• Inter-language

communication via

JNI

• Very fine

• Intra-process

• Quality of service

• Best performance

• Asset protection

• Low risk

• JNI layer

shielding

requires

highly

skilled staff

• JNI-based

37 © Copyright IBM Corporation 2021. © Copyright IBM Corporation 2021.

To timely deliver a robust solution with minimum cost, a good solution design

is achieved through the following strategies:

• Choose the right technology for the given challenge.

• Place the component wisely for affinity to resources and interaction

efficiency.

• Consider component redeployment at a different location if appropriate.

• Hide coupling complexity.

• Protect existing assets.

• Allow for efficient and speedy application delivery.

2.2.3. Integration programming pattern

As seen above, there are many ways to couple application components written

in different languages. The integration programming pattern that you identify

will describe the how to glue the components together and how to pass data

back and forth between the application components. The pattern you choose is

heavily dependent on the following decisions and existing facts:

• Couple Java with COBOL or PL/I

• Middleware of choice to be deployed to

• Interaction intensity and required granularity

• Complexity of data structures (copybook)

• Requirement for transactional support

We will focus mostly on the JNI pattern here (such as tightest coupling and

intra-process communication), therefore this pattern is described in detail.

2.2.3.1. A JNI-based language integration pattern

Below you can see the componentry and the flow of one possible integration

pattern. There, of course, can be variations. Use the flow described in the JNI-

integration approach.

Use figure 11 to familiarize yourself with a JNI-based integration approach.

38 Supercharge IMS Business Applications with Java

Figure 11. A JNI-based integration pattern

Data flow for this pattern is as follows:

1. COBOL main program initializes; COBOL code executes. In a native IMS

environment, the JVM would be fully initialized before any user program

gets loaded.

2. COBOL code does SQL queries and fetches data into the work area.

3. COBOL code manipulates that data using .cpy structures.

4. JVM initialization in a non-IMS native environment would be done by

COBOL under the cover.

5. The JNI communication context JNIENV and JNIPTR would be initialized

under the cover in a COBOL environment. All other languages would need

to issue JNI calls GetCreatedJavaVMs and AttachCurrentThread.

6. COBOL uses JNI to allocate ByteArray in Java heap and pushes data from

work area into ByteArray within Java heap.

7. COBOL uses JNI to invoke Java methods to operate on that data.

8. Java uses getter/setter methods to operate on that data objects backed by

the ByteArray.

9. Many data manipulation types can be implemented (or generated) with

Data Access Acceleration (DAA) APIs and are accelerated on z/OS.

10. When data manipulation is finished and Java returns, COBOL uses JNI to

getByteArray back into work area.

11. COBOL uses SQL to persist manipulated data back into Db2 for z/OS table.

12. COBOL exits.

Running this pattern in IMS would require the configuration depicted below.

39 © Copyright IBM Corporation 2021.

2.2.3.2. WOLA-based language integration pattern

WebSphere Optimized Local Adapter (WOLA) is implemented as an external

subsystem to and from IMS, with the following characteristics:

• Allows bi-directional byte array component communication to and from

IMS.

• Usage is supported for Message Processing Programs (MPP), Batch

Message Processing programs (BMP), IMS Fast Path (IFP) and Batch DL/I

applications.

• Supports PL/I, COBOL, and Assembler.

• Delivers a clean API abstraction on both sides.

• WOLA is high speed, inter-process based.

• Supports IMS, CICS, Db2 for z/OS and JES batch containers.

• Requires WebSphere Application Server for z/OS (WASz) as a run time for

the Java components.

• WOLA over BBOxxx API is a direct and local interface. Cross-platform

functions (routing) might be handled by WASz.

• WOLA over OTMA can benefit from TCP/IP-based routing.

Note: JNI needs to be implemented very carefully, because it could cause issues such

as abends, storage leaks, or uncaught exceptions. For broader usage, you should

shield all the JNI work from the Java and COBOL programmers by implementing a

framework.

Figure 12. IMS environment that supports the JNI programming pattern

40 Supercharge IMS Business Applications with Java

• Allows inter-process integration of 31-bit legacy with 64-bit Java code.

• Provides user delegation and transaction support.

• The external address space (not WASz), such as IMS, is responsible for the

WOLA registration and native WOLA API (BBOA1REG) calls through IMS

configuration, such as Extended Attach Facility (ESAF) or OTMA.

• WASz must be started before IMS does the registration (for example, via

system automation).

Figure 13 gives a high-level overview of IMS and WOLA integration options

for both inbound and output communications. See Figure 8 for a more detailed

view on a specific integration pattern.

2.2.3.2.1. Calls from IMS into WebSphere Application Server for z/OS

• Use the ESAF and WOLA native APIs.

Note: WOLA also delivers a 'remote mode' support. This provides proxying for client

remote calls in both directions (batch/CICS/IMS to a remote EJB -over the WOLA

proxy EJB installed in a locally running WebSphere Application Server for z/OS). This

same proxy implementation supports a client in WAS on a distributed server calling

remotely (over an IIOP-based interaction) through the WOLA proxy running on WAS

z/OS and then on to CICS/IMS/batch.

For more information on this please refer to the following documentation:

http://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.

nd.multiplatform.doc/ae/cdat_devmode_overview.html

http://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.

nd.multiplatform.doc/ae/cdat_ola_remotequest.html

Figure 13. Overview of WebSphere Optimized Local Adapter and IMS integration

http://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.nd.multiplatform.doc/ae/cdat_devmode_overview.html
http://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.nd.multiplatform.doc/ae/cdat_devmode_overview.html
http://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.nd.multiplatform.doc/ae/cdat_ola_remotequest.html
http://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.nd.multiplatform.doc/ae/cdat_ola_remotequest.html

41 © Copyright IBM Corporation 2021.

• Senders are IMS programs that use the WOLA APIs to invoke

WebSphere Application Server for z/OS.

• Receivers are stateless Enterprise JavaBeans (EJBs) that use the supplied

WOLA class libraries.

2.2.3.2.2. Calls from WebSphere Application Server for z/OS into IMS

• Use OTMA or direct calls.

o Direct calls mean a program in IMS uses native WOLA APIs to "host a

service."

o OTMA provides WOLA transparency to the IMS applications, but at a

cost of some overhead. The advantage is that no application changes

are required in IMS.

• Senders are Java programs (servlets or EJBs) that use the Common Client

Interface (CCI) of the WOLA JCA Resource Adapter.

• Receivers are IMS programs that use the WOLA APIs to register for and

receive data (direct calls approach).

Using the WOLA APIs in IMS applications reduces the overhead, resulting in

better performance and greater throughput.

2.2.3.2.3. User delegation:

• WebSphere Application Server for z/OS security must be set up to use

Local OS user registry at the server level.

• The WebSphere Application Server for z/OS server must be configured

to run with the SyncToThread option enabled.

• The IMS OTMA parameter OTMASE=FULL must be set.

• The RACF administrator must define a FACILITY class profile and

optional SURROGAT class profile to ensure that the Synch To OS

Thread Allowed option is utilized.

2.2.3.2.4. Two-phase commit:

• IMS or batch outbound:

The WebSphere variable ola_rrs_context_propagate is to be configured to

support two-phase commit (2PC) from external address spaces calling into

WebSphere Application Server for z/OS where they already have an RRS

context.

On the IMS or batch side, using BBOA1REG WOLA API register flag

reg_flag_trans, bit 30 needs to be set to 1 or true. When this flag is set, the

Tip: Using native WOLA APIs allows you to have the same application code in Batch

and Online so there is no need to manage duplicate source code. Two-phase commit

(2PC) transactions from a Batch application (native Batch or BMP) with RRS attach

facility are also allowed.

42 Supercharge IMS Business Applications with Java

adapter API attempts to register with the z/OS Resource Recovery Services

(RRS) and a global transaction supporting 2PC is created between

WebSphere Application Server and the API exploiter's environment.

• IMS inbound via OTMA:

The application to use a connection that is configured to use OTMA,

and the RRSTransactional managed connection factory attribute is set to

True (or 1). Setting the RRSTransactional attribute to True (or 1) enables

RRS transactions for connections. The WebSphere Application Server

for z/OS server is running with the ola_rrs_context_propagate_otma

environment variable installed and set to true (or 1).

The following figure depicts one recommended operational model for a

WOLA-based IMS COBOL/PCI to Java in WebSphere Application Server for

z/OS integration pattern. The IMS in- and outbound data flows and data

operations are also described to provide a better understanding of component

and code interaction.

Note: Starting with WebSphere Application Server Version 8.5.0.2, if you are running

in an IMS dependent region and set this flag to 1, make sure that you are running

your IMS environment with RRS=YES, and the server, or node-level environment

variable ola_rrs_context_propagate has been added to your configuration and is set to

true (or 1). Under IMS, the RRS context is in effect on the thread when the Invoke or

Send Request WOLA API call is propagated and asserted in the WebSphere

Application Server for z/OS EJB container

43 © Copyright IBM Corporation 2021.

2.2.3.2.5. IMS outbound: COBOL to Java data flow with WOLA

The following use case demonstrates the data flow when an IMS COBOL

transaction works on the same relational data as the Java program does.

1. WebSphere Application Server for z/OS server starts up. IMS Control

Region MPPs start up.

2. IMS MPP1 registers WOLA (by infrastructure, such as a step in region

startup job).

In this process, WOLA checks for the availability of the WebSphere

Application Server for z/OS server. It could address another WebSphere

Application Server for z/OS server if the original target is not available.

Shared Memory address space under WebSphere control is established.

WOLA provides connections (via connection factories) and shared memory

to operate on. The shared memory is 'assigned' to MPP1 (can deregister

and destroy) but managed by WebSphere Application Server for z/OS. If

Daemon stops, shared memory address space shuts down.

There is one register per MPP.

3. IMS TRAN1 does COBOL and SQL processing and reads Db2 data over

copybook structures into working storage.

4. IMS begins transaction.

5. IMS TRAN1 COBOL updates the table via static SQL bound plan.

6. IMS TRAN1 puts parameter for subsequent Java method into WOLA

request area (shared storage) with the getter method generated by Rational

Figure 14. Overview of WebSphere Optimized Local Adapter and IMS integration

44 Supercharge IMS Business Applications with Java

Application Developer.

WOLA INVOKE (BBOA1INV parameter) is called to operate on the data

based on request area information.

7. COBOL/IMS waits.

8. Java reads the table via JDBC into heap.

9. Java processes the data.

10. Java updates the table.

11. Java updates WOLA response area with results using J2C-generated setter

method.

12. COBOL gets control and processes WOLA response. COBOL can work

directly with the data in the response area.

As a best practice, COBOL would copy response back to COBOL working

storage and then works with the copybook structures on that data.

13. IMS ends the transaction.

14. IMS schedules next transaction.

Note the following:

• If the WebSphere Application Server for z/OS server restarts, any

registrations in use at the time with that server are re-activated

automatically. Only when WebSphere Daemon restarts, IMS Java

dependent region might need to be restarted too.

• Each IMS region is registered with a WebSphere Application Server for

z/OS daemon group and server with minimum and maximum connections.

Because IMS is single threaded it does not make sense to have more than 1

connection per registration for IMS outbound calls.

• ESAF and RRS support WOLA as a subsystem. Only RRS manages two-

phase commit between WOLA/WebSphere Application Server for z/OS and

Db2.

• Java can be 64 bit and multi-threaded. It can work on large amounts of

data. Therefore, Java is very good for batch.

• Security of the IMS transaction represented by an ACEE is carried forward

into WebSphere Application Server for z/OS as a Java subject and can also

be synced to a native Java thread identity by setting the EJB Sync To Thread

option. Sync to thread needs to be set also in the deployment artifact.

Registry must be Local OS. As a result, no security or auditing trail is

broken.

2.2.3.2.6. IMS inbound: Java to COBOL data flow with WOLA

The following use case demonstrates the data flow when a Java method

integrates with an IMS COBOL transaction to work on the same relational data.

45 © Copyright IBM Corporation 2021.

1. WebSphere Application Server for z/OS application (servlet or EJB) uses

CCI of the WOLA JCA Resource Adapter.

2. WOLA calls IMS TRAN2.

3. IMS TRAN2 executes and registers with a WASz daemon group and

server with a BBOA1REG call.

4. IMS TRAN2 receives data.

5. IMS TRAN2 moves the response to the response area.

6. WOLA sends the data in the response area to the servlet or EJB.

Again, the servlet or EJB can also call IMS via OTMA by specifying the IMS

OTMA server name, XCF group ID and transaction level as attributes on the

managed connection factory, or use the corresponding ConnectionSpecImpl

setter methods to provide this information.

2.2.3.3. Network integration patterns

For coarse-grained interaction between core business componentry and Java

artifacts, a TCP/IP-based coupling architecture can be the choice, and you also

have many options here. Typically, one would want to expose existing assets as

a service rather than consuming Java functionality from an existing asset.

Nevertheless, it is valid and possible to call, for example, RESTful services from

an existing application.

For consummation of RESTful services, you can use the z/OS Client Web

Enablement Toolkit.

If you want to REST-enable existing business components it is advised to

evaluate the z/OS Connect run time. z/OS Connect run time can technically use

the WOLA to IMS OTMA inbound pattern, but is very optimized for the

REST/JSON use case and comes with additional functions for that purpose.

2.2.4. Data access pattern

Your existing applications most likely access data from various sources. If you

are going to extend your core business applications with Java components, you

need to decide if the data access layer will stay in the existing applications, or

you will allow the Java components to act directly on that data. Db2 for z/OS,

IMS DB, VSAM, or MVS datasets might be the sources for some of that data.

2.2.4.1. Db2 access from Java

If you allow your Java components to interact with data stored in Db2 for

z/OS, you basically have two options: JDBC for dynamic queries or SQLJ for

static queries. Using the IBM PureQuery product, you might convert dynamic

queries to static SQLs on the fly.

46 Supercharge IMS Business Applications with Java

In the classic IMS environment (MPP/BMP), COBOL and Db2 for z/OS Universal JDBC

Driver (JCC) share the same connection under IMS External Subsystem Attach

Facility (ESAF) control. It is perfectly fine to mix dynamic with static queries;

you could even get transactional context managed by IMS.

Figure 15 provides a graphical view of the underlying components for this

scenario.

Figure 15. Accessing Db2 via ESAF

You must be aware that:

• Dynamic queries are not as fast as statically bound packages.

• The security model between static and dynamic queries is different. You

would need to decide how you grant access to the JDBC-driven SQLs

(DYNAMICRULES bind option for JDBC packages).

• IMS tries to reuse connections and responding threads in Db2 as much

as possible to keep the JDBC connection creation and destruction

overhead as low as possible. Make sure that you comply with the rules

for ESAF connection pool reuse.

• Do not break infrastracture resource reuse mechanism with

inappropriate programming models. Define a standard JDBC access

pattern and ensure that you can measure and see what is happening.

The following is a working example:

 <begin app>
 start-message-GU-loop

 IMS message GU call

 open JCC connection

 DB work

 end-message-GU-loop

 close JCC connection

<end app>

47 © Copyright IBM Corporation 2021.

2.2.4.2. IMS DB access

To access an IMS DB resource, you would need to enable the IMS Open

Database JDBC interface and connect to the IMS Database by using the JDBC

Data source or the IMS JDBC DriverManager Interface.

2.2.4.3. VSAM access

To access VSAM key-sequenced data sets (KSDS), use the APIs and samples

from the JZOS package, which is part of the z/OS Java SDK.

2.2.4.4. MVS data set access

To access classic MVS data sets, use the APIs and provided samples from the

JZOS package which is part of the z/OS JAVA SDK

2.2.5. Transaction or compensation model

To ensure data integrity and recoverability when data processing is

distributed, logic can be implemented by the application (compensation) or

delegated to the infrastructure (ACID transactions). Having the ability to do

the latter could help you avoid a lot of complexity, reduce investment, and

achieve better maintainability and faster time to market. Executing Java and

existing core business components in or next to a transaction monitor container

(IMS, CICS, or WebSphere) together with the appropriate programming and

data access pattern would delegate the transactional integrity to the

infrastructure. Furthermore, enabling this co-location or integration technology

might allow for redeployment of remote application with embedded

compensation logic into a transactional run time. This approach alleviates you

Note: Using JDBC from IMS classic regions requires the Db2 Universal JDBC Driver

(JCC) that delegates ACID (atomicity, consistency, isolation und durability) transaction

handling to ESAF. To enable two-phase commit transactional support, the driver

needs to use JDBC TYPE 2 connectivity (cross memory). Theoretically one could also

use JDBC TYPE4 (network) based connectivity from an IMS Java program. Be aware

that you then would lose the ability for IMS to roll back your JDBC Type 4-initiated

Db2 updates. If you need to use JDBC Type 4-based SQL, the following

recommendations apply:

* Any Db2 commit should happen at the very end of an IMS transaction.

* You would need to handle the Db2 commits around checkpoint/restarts as well.

In general, it is recommended to use JDBC Type 4 API set, as only the JCC V4 driver

would have the latest and greatest support embedded.

48 Supercharge IMS Business Applications with Java

from the burden of having to maintain compensation logic and opens up the

ability to delete the code segments from your application.

2.3. Summary

In this architecture considerations chapter, we discussed the various aspects for

considerations to arrive at an integration decision. We examined the target

runtime container for Java, integration depth, interaction intensity, component

granularity, programming patterns, data access pattern, and programming

models.

In the next chapter, we will discuss how to examine and manage requirements

and cost by considering both functional and non-functional requirements to

help you develop your integration architecture blueprint.

49 © Copyright IBM Corporation 2021.

C H A P T E R 3

3. Managing requirements and cost

As discussed in the previous chapter, application integration architecture

should be a blueprint for enriching and extending mainframe-based business

applications for new business needs. Additional aspects must also be taken

into considerations to ensure the new pattern would be able to fulfill those

requirements. The aspects include functional and non-functional requirements

and the cost.

3.1. Cost and savings

The cost of the solution architecture (implementing architecture plus

developing and deploying hybrid application) is one of the most important

drivers of your decisions. A perfect start would be a business requirement, or

an IT strategy to weight into the math.

One needs to implement most of the required functions and qualities (non-

functional requirements) for the least or given cost. Typically, compromises are

done, and everybody is interested in saving cost for a given project.

There will be initial cost and running expenses, altogether those will differ

according to the enterprise architecture you chose and depending on where

you deploy and run the application artifacts (if you have a choice).

Figure 16. Some major initial one-time cost

50 Supercharge IMS Business Applications with Java

You will have a wide range of influencing factors. You need to understand how

all your decisions influence cost and be able to articulate a major cost vs.

benefits view to the decision board, with alternative solutions factored in. This

high-level view might be one of the most crucial starting points to get buy-in

and support by your decision makers.

Cheap is sometimes expensive. At least in IT, money is not spent for fun. Total

cost of acquisition (TCA) and total cost of ownership (TCO) must be weighed

against the benefits you gain out of the solution. To help make the best

decision from a cost perspective, factor in the “global” cost depending on

where you run your application artifacts. For example, if you run a JDBC-

driving Java application on a distributed platform, you would be consuming

zero CPU instruction on the mainframe for the driving application. If the

accessed database is on Db2 for z/OS, you would run that query for a large

percentage on zIIP engines and that would save some cost. Be careful, though,

of the so-called pretzel logic. In the end you might end up consuming more

cycles on general processors on IBM Z Systems plus additional cycles on zIIPs

because the path length of a remote request can be easily 10 times higher than

Comparing cost: Estimating one-time cost and running expenses is one task.

Weighting those estimations against (maybe non-existing) alternative solutions adds

another level of complexity. You do have alternatives at various levels, coarse- or

fine-grained. For example, you can run a needed business function within Java on the

mainframe or somewhere else. Every coarse-grained decision is followed by many

fine-grained decisions (for example, integration depth).

IBM Z centralized

Figure 17. Expenses based on deployment model (Example)

51 © Copyright IBM Corporation 2021.

that of a local one. In addition, because you have a more complex solution,

investments and re-occurring cost for operations, security (such as SSL),

change management and such all add up. The message here is very simple: you

need to understand and articulate the whole picture, the alternative solutions,

and all associated cost aspects when you do your cost comparisons. So yes,

local JDBC calls on z/OS might drive additional CPU cycles, but at the same

time they also avoid additional cycles on the same system and related cost on

and off the platform. And we are not even considering performance-related

issues here.

Let’s touch on some of the aspects that have a direct influence on the cost

factor. The items listed here are only eye catchers. To seriously calculate cost,

including considerations of benefits and savings, you would need to execute a

formal TCO study.

• Development cost for implementing a new architecture and framework

Initial cost and any maintenance cost for the framework should be

considered.

• Developing against the new programming model

o Consider the initial cost for education and tooling and repeated cost per

development project.

o Running Java components together with existing applications in an

transaction monitoring run time avoids development time and cost for

alternative solutions (e.g. compensation logic).

o The ability to re-use applications or code artifacts for different platforms

can reduce development cost significantly.

• Cost of running the new infrastructure

o Complexity equals cost! Less complexity means less operational cost

(people, tools, procedures, security, auditing, and more).

o Offload to specialty engines lowers software bill from many vendors. Be

careful and do not blindly head for high specialty engine utilization,

which might become more expensive in the end

• Recovering applications and infrastructure

o Disaster recovery and normal recovery procedures might already be in

place for existing application landscape. You might inherit those

qualities for no charge when you just add Java to the mix.

o Less complexity leads to faster problem determination and error

handling and therefore can lower the cost and damage of outages.

• Availability of existing and enriched applications. If your underlying

infrastructure supports high availability for your existing applications, you

might inherit this high availability at no charge into the Java layer, too. If

you have more moving parts, you also need more spare parts readily

available.

• Managing cost by application placement

52 Supercharge IMS Business Applications with Java

o By writing artifacts in Java, you enable your application topology to the

“best fit” platform. For non-business critical applications, that could be

the lowest cost platform.

o Being able to deploy anywhere eliminates vendor stickiness.

o Running applications or artifacts where they fit best would allow you to

make the most out of your investments in infrastructure and

middleware.

• People cost. Java developers are likely easier and less expensive to get than

COBOL or PL/1 experts. However, a good and experienced Java

programmer might not be as cheap as you expect, especially if the

developer can write enterprise class applications.

• Benefits. This is the most crucial item on the list. By adding Java

components to existing business applications, you can significantly speed

up application development and time to market:

o Use the skills that are available

o Embed ready-made solutions and frameworks

o Write code on the platform of choice

o Enable agile programming paradigms

o Reuse what you have and avoid re-inventions

o Delegate as much as possible to the underlying infrastructure (such as

security, auditing, and transaction handling)

3.1.1. Requirements

The boundary between functional and non-functional requirements is not

always clear. Non-functional requirements (NFRs) describe more the

qualitative aspects of a solution. Service Level Agreements, for example, might

be the base for NFRs. Functional requirements describe what a system should

do. In the following we well touch on those requirements where we feel are

most relevant for this kind of integration projects.

Long term view

To make the cost picture complete, think about how your solution might rate in the

long term. Thinking through topics such as competitive advantage, vendor lock-in,

portability and reuse, time to market, strategic match, skills and flexibility might add

another layer to your blueprint.

53 © Copyright IBM Corporation 2021.

Figure 18. Some important requirements

3.1.2. Non-functional requirements

NFRs influence more than just your integration technology decisions; other

qualities also need to be considered. And again, you might want to satisfy

requirements for a full range of applications, so look at the more challenging

goals in the SLA to blaze a trail for an integration programming model and a

range of functions that will be implemented based on that model.

3.1.2.1. Availability, robustness, reliability, recovery and resiliency

The applications following a local integration scheme needs to support the

availability SLAs. Make sure that none of your decisions would break any of

those. In general, if you add Java to your IMS COBOL run time, most of the

availability measures in place are inherited, and disaster recovery would not

change. You might want to consider, though, if changes at the lower level

would cause changes to your availability and disaster recovery mechanics that

are in place:

• You might need more CPUs, different CPU, or more memory to run your

application. For disaster recovery you need to plan for sufficient resources

to cover workload on fallback machines.

• If you need to execute an emergency change, you might need to adjust

procedures. A “deployment unit” is no longer a compiled and linked

COBOL module, but very likely HFS objects that go along with it, such

54 Supercharge IMS Business Applications with Java

as .jar or .so files.

• You cannot load and destroy a JVM for every IMS transaction that is

scheduled. If you enable Java, the Language Environment (LE) and the

JVM stay up. That might cause issues if you are used to an automated

cleanup of your environment. You will need to consider the IMS

CANCEL_PGM=Y setting. With this setting, IMS will cancel candidate

programs at the end of each transaction message commit scope (that is,

the message GU processing or UOR boundary), which causes negative

performance impact on transaction throughput. You also might need to

initialize LE storage on each CANCEL to avoid unwanted behavior,

especially if your programmers have been a bit sloppy.

3.1.2.2. Change and deployment

Managing change that affects multiple platforms and multiple languages and

code versions is more challenging than managing a change on a single platform

with a “deployment unit” that integrates multiple application artifacts for one

run time. Still, the physical artifacts for deployment will change, and you might

want to touch up you code management systems and the attached

deployments procedures.

IBM Rational Team Concert and IBM UrbanCode Deploy are solutions that

support this kind of environments.

3.1.2.3. Maintainability

Keeping everything tidy and on current levels is much easier if you have less

moving parts. To apply fixes in a tightly integrated z/OS-based environment,

you have one-stop shopping with SMP/E.

If you have more moving parts that are not tightly integrated, you need to

ensure that all the pieces have compatible software levels at the same time. This

requires coordination via change processes.

3.1.2.4. Manageability

The solution needs to be run and managed. Tools and processes need to be

available to support it. Some areas to look into are:

• Monitoring and reporting

Java components need to be monitored in context with the corresponding

existing business applications. Some available solutions for Java on z/OS

are:

o OMEGAMON Monitoring for JVM on z/OS

o IBM Application Performance Analyzer for z/OS

o SMF Java Records for IMS (SMF 29), WebSphere (SMF 120) and JZOS

(SMF 121)

55 © Copyright IBM Corporation 2021.

o IBM Support Assistant tools, such as IBM Health Center for Java

o Many 3rd party and open source tools that plug into the JVM for that

purpose

• Debugging, fault analysis, and problem determination

o IBM Debug Tool for z/OS support COBOL, Java, and COBOL/Java

o IBM Fault Analyzer supports COBOL, Java, and COBOL/Java

o Java problem determination data (such as garbage collection, thread

dump, and heap dump) are all available on z/OS and also for an IMS

environment. You can use Java tools (in IBM Support Assistant) to

analyze those data. Java problem determination data is also available in

the typical dumps in z/OS. The data can be analyzed with z/OS tools,

such as the interactive problem control system (IPCS) or IBM Fault

Analyzer or extracted for distributed or command-line tools.

• Automation integration

An integrated solution does not require many changes to the automation.

The more you disintegrate, the more coordination of automated tasks is

required.

3.1.2.5. People and skills

If you add Java to the classic infrastructure, make sure that people understand

Java on the infrastructure and development side. Provide best practices and

training.

If you do it right, you can reuse available Java skills for mainframe-oriented

tasks. Java is Java, and good people are willing to learn the enterprise classic

environment. In the long run, you might consider having Java folks support all

Java platforms in your enterprise.

3.1.2.6. Performance and scalability

An integrated solution will perform best. Considerations to take into account

are listed here. More details on those are discussed in the Infrastructure, setup,

and scenarios chapter.

• Java is more expensive than COBOL. Remote Java is more expensive than

local Java.

• Dynamic SQL is more expensive than static SQL.

• Data marshalling and data transformation are expensive.

• For best performance, stay scheduled in IMS.

o Set the PROCLIM parameter higher than 1

o Use ESAF connection pooling and understand the options and

requirements (Keep Dynamic, Plan/Userid, Db2 bind RELEASE on

deallocate)

o Use the appropriate OTMA security model and the ACEE

enhancements (ESAF_SIGNON_ACEE) delivered in APAR PI64496.

56 Supercharge IMS Business Applications with Java

o Preload.

o Avoid automatic LE STOR initialization.

o Avoid RACF statistics on every Db2 for z/OS call.

• Make sure you understand the performance characteristics for the steps you

make. Good measurement tools are mandatory.

o IBM Application Performance Analyzer for z/OS does sampling for IMS

and Db2 and profiling for Java.

o A Java Profiler will help to understand Java behavior.

o IBM Health Center gives a high-level view on Java performance and on

the JVMs that are running in traditional IMS.

Set your performance goals and manage towards them.

3.1.2.7. Security, auditability, and compliance

An integrated solution does not need additional protocol protection between

its components, because there is no networking protocol. You can get an

auditing trail also for you Java pieces from SMF. The more you disintegrate

components, the more security measures you need to take, and the more you

need to invest in creating and correlating the individual audit trails.

3.1.2.8. Usability

An integrated solution has less moving parts and is less complex, more usable,

and more consumable. Nevertheless, the integration layers might be complex

and needed to be shielded from developers. This complexity is only seen in a

tightly integrated solution.

Typical development tools for Java (Eclipse) exist and might be used. IBM

Developer for z/OS Systems (formerly known as IBM Rational Developer for

z Systems), also supports classical host programming languages and

integrates nicely into the z/OS environment with an eclipse frontend.

3.1.3. Functional requirements

There might be additional requirements that the system needs to deliver. Your

environment might have different or additional requirements, but here are

some common ones:

• Batch capabilities. If your application needs to support running in a batch

run time, you will need to select a container that delivers the required

function. All IMS BMP capabilities are inherited to the Java run time. For

example, checkpoint processing is readily available.

• Online capability. If your integrated application is used for transaction

processing and minimal response time and transactional behavior is

required, it needs to run in the appropriate container. Running Java in a

classical IMS transaction monitor will inherit IMS transaction capabilities to

the Java run time.

57 © Copyright IBM Corporation 2021.

• Messaging and asynchronous communication. If you want to get called

from a messaging infrastructure, nothing changes if Java is running inside

IMS. If you want to initiate messaging from IMS, you can use JMS from

the Java layer. For sending JMS messages, the same rules that apply for

WebSphere MQ messages apply here.

3.2. Best-fit application placement

If you went through all that thinking and decided to enable Java on multiple

platforms, then frequently the ultimate question comes up: Now that I have

the choice, where should I place or deploy my Java application?

This is a challenging question to answer, and it gets more complex when you

add the middleware decision on top of the platform decision.

If you look at an application, its interaction with other systems or services, its

API set, its non-functional requirements etc., your guts will probably tell you

where to run it. Very likely you would need a more scientific approach to make

that decision process transparent. A selection approach, one that is sanctioned

by all possible (and appropriate) infrastructure providers in your enterprise,

seems to be the golden bullet here. You might end up describing the

application requirements and map platform capabilities to those requirements

and weigh them. Then route it through your steering or architecture boards to

determine the best-fit platform.

If you need help in this process, call your IBM representative. IBM Z System

Client Architects are armed with a methodology that is called Fit for Purpose,

an approach that would provide a good starting point for that exercise.

Figure 19. Example of a Fit for Purpose deliverable for a given application

58 Supercharge IMS Business Applications with Java

Alternatively, you can make this decision by discussing placement benefits and

tradeoffs within an architecture board and document their decision or create a

decision guidance for the management.

As a rule of thumb, the following criteria would suggest that there is a very

good fit for your Java application on z/OS:

• The application relies heavily on data that sits on the mainframe.

• The application topology could be drastically simplified when the

application is moved to the mainframe (e.g. remove IP connections,

encryption, protocol switches, and tiers).

• The redeployment on z would simplify application logic (e.g. remove

compensation).

• The application has high security and audit requirements that can be

satisfied by z/OS.

3.3. Summary

In this chapter, we discussed how to examine and manage requirements and

cost by considering both functional and non-functional requirements to help

you develop your integration architecture blueprint.

© Copyright IBM Corporation 2021.

59 © Copyright IBM Corporation 2021.

 C H A P T E R 4

4. Application development

In this chapter, we will discuss application development for mixed-language

applications, as well as Java™-only applications. A high-level discussion on

how a batch application can use COBOL and Java with interoperability will be

provided. We will also discuss how IMS applications can access IMS™ DB,

Db2® for z/OS®, or IBM® MQ, and how you can generate access methods

from COBOL copybook data structures.

The target audience of this chapter is application developers as well as

personnel responsible for setting up and supporting the development

environments.

4.1. Development environments

In many cases, the development and versioning for Java applications is

different from what is used in the mainframe environment, for example, for

COBOL applications.

There are different approaches for developing Java applications on the

mainframe or for Java interoperability:

• Use of Eclipse for mixed-language applications with Java.

Some mainframe vendors have already enhanced their products for

software versioning and life cycle management so that they can also be

used from the Eclipse environment. This allows the coding of both Java and

traditional languages within Eclipse.

• Use of existing infrastructure for traditional languages to coexist with

existing Java development environment and the build and versioning

infrastructure for Java.

For example, IBM® Rational® Team Concert can be used from within IBM

Developer for z/OS®. At client sites, Eclipse-based development

environments with Maven builds have been used in addition to Concurrent

Versions System (CVS) or subversion as versioning and team infrastructure.

• Standalone development of Java-only applications with existing tooling for

Java on distributed platforms with no difference to deployment on z/OS.

There are software products from IBM, vendors, and open source tools that can

suit the needs of development, teaming, versioning, and building the

infrastructure for enterprise use. The approach, requirements, and features

should be carefully evaluated for your specific environment.

60 Supercharge IMS Business Applications with Java

4.2. Writing and testing Java applications outside IMS

Today, Java application programmers prefer developing and testing in an

integrated environment. In this section, we will discuss some hints and tips on

how to write IMS™ applications in an environment such as Eclipse, which

allows for testing without the need to run on z/OS® in an IMS region and

provides database access to IMS DB and Db2® for z/OS.

The simplest approach is to treat the future IMS Java application as a Java main

program or a Plain Old Java Object (POJO). If the application can run outside a

Java Platform, Enterprise Edition (Java EE, previously known as J2EE)

application server and IMS, with no message queue access and no system calls,

you can set up remote connections to IMS DB using IMS Open Database

Manager. In addition, for Db2 access you can use the Java Database

Connectivity (JDBC) drivers in Db2 on z/OS. For further details on how to use

JDBC to access IMS data, refer to IBM Redbook publications IMS 11 Open

Database (SG24-7856) [1] or IMS Integration and Connectivity Across the

Enterprise [2]. Open Database was introduced in IMS 11, and the concepts and

techniques discussed in these books apply to later versions of IMS. There are

also similar publications for Db2 on z/OS.

With this approach, programming and unit testing can be done in Eclipse, and

the integration tests are usually done on the mainframe. When tests outside the

mainframe are completed, the connection URL for IMS DB and Db2 needs to be

changed to use the IMS Universal JDBC type 2 drivers for running the code

inside an IMS region. In addition, for Java-only applications, the code to access

the IMS message queue (a getUnique call before a getNext + insert loop)

needs to be added. For mixed-language applications, this is usually done in

the calling language part, e.g. COBOL or PL/I. This approach might not fit all

scenarios, but data access and data manipulation services can be developed

and tested without the need to write and to deploy on z/OS to run in an IMS

region.

Integration tests, such as interaction with other batch workloads or with the

IMS message queue (queuing messages or triggering transaction), still need to

be done on the mainframe with z/OS and IMS.

4.3. Bridging from Java to COBOL (or PL/I or Assembler)

In this section we will provide a high-level discussion on how a batch

application can use COBOL and Java with interoperability. A deep-dive into

Java Native Interface (JNI) and Java interoperability with detailed examples

and steps to compile and run them in UNIX System Services (USS) and MVS

http://www.redbooks.ibm.com/abstracts/sg247856.html?Open
http://www.redbooks.ibm.com/abstracts/sg247856.html?Open
http://www.redbooks.ibm.com/abstracts/sg248174.html?Open
http://www.redbooks.ibm.com/abstracts/sg248174.html?Open

© Copyright IBM Corporation 2021.

61 © Copyright IBM Corporation 2021.

are provided in the “Bridging from Java to business languages” chapter.

Most of the statements in this section also apply to other languages such as PL/I

or Assembler, but the INVOKE syntax to call Java methods is unique to COBOL.

Java has the option to call and to be called from other languages by providing

APIs and the JNI interface. JNI was developed for the C/C++ languages, but on

z/OS it is available for all Language Environment (LE) compliant languages.

Java invoking COBOL and vice versa are the two possible execution

environments.

4.3.1. Java calls COBOL

In this scenario, a Java main method starts the application and calls COBOL.

Cascading calls from Java to COBOL to Java and to COBOL are possible. The

runtime environment is an IMS Java dependent region, such as the Java Batch

Processing (JBP) region.

• Due to LE requirements, the COBOL code (first COBOL module in the

calling chain) that is invoked from Java is required to be object-oriented

(OO) COBOL classes, but has the option of implementing CALL statements

to procedural COBOL modules. It can do static or dynamic calls to

procedural COBOL modules, although dynamic calls can only be made to

DLL-compiled COBOL modules. A statically-linked Wrapper module for a

NODLL module also meets this requirement.

Figure 20. Java calls to the LE languages through the JNI

62 Supercharge IMS Business Applications with Java

4.3.2. COBOL calls (invokes) Java

In this scenario, a COBOL main application starts and calls one or more Java

methods. Cascading calls from COBOL to Java to COBOL and back to Java are

possible. The runtime environment can be a message processing program

(MPP) or batch message processing (BMP) program.

Due to LE requirements, if the COBOL INVOKE syntax is used, the COBOL

code that calls Java is required to be mixed-case, with support for long field

names as well as DLL-compiled COBOL code. Actually, only the program

names need to be mixed-case. PGMNAME(LONGMIXED) is the required

compiler option and all other items can be short and upper case, but in most

cases that might not be practical, especially with mixed case constants for Java

class and method names.

If the caller is NODLL-compiled, a statically linked wrapper module for a DLL

module is required. DLL-compiled COBOL code is not required if JNI calls

only are coded and no INVOKE is used.

These options also apply to other languages, for example, for the LE-

conforming assembler (DLLs) and Enterprise PL/I applications. The difference

with COBOL is that the JNI calls and its function pointers in PL/I are more

difficult to implement due to the fact that there is no built-in support for

interfacing with Java. For example, a DLL can be created with LE Assembler

Macros and with PL/I, but the Java wrapper stub source is only generated by

the COBOL compiler and has to be manually created for the PL/I and

Assembler-based DLLs.

The CEEENTRY assembler macro allows the creation of LE-compliant DLLs

written in assembler. Please refer to the documentation for more information

about how to create an LE-compliant DLL with CEEENTRY and its required

options in https://www.ibm.com/docs/en/zos/2.1.0?topic=wdc-writing-your-

language-environment-conforming-assembler-dll-code [3]. By manually

creating a Java class as the JNI wrapper, it is possible to call an Assembler DLL

from Java.

4.3.3. COBOL INVOKE v.s. JNI

The IBM Enterprise COBOL compilers introduced a new syntax pattern in

Version 3 that allows Java methods to be invoked with a COBOL statement

called INVOKE. This allows a simple way to invoke Java without coding JNI

calls, yet with some limitations.

The syntax for the COBOL INVOKE statement and examples can be found in

the Enterprise COBOL for z/OS product documentation [4].

https://www.ibm.com/docs/en/zos/2.1.0?topic=wdc-writing-your-language-environment-conforming-assembler-dll-code
https://www.ibm.com/docs/en/zos/2.1.0?topic=wdc-writing-your-language-environment-conforming-assembler-dll-code
https://www.ibm.com/docs/en/cobol-zos/6.1?topic=statements-invoke-statement

© Copyright IBM Corporation 2021.

63 © Copyright IBM Corporation 2021.

4.3.4. Getting started with JNI?

To get your hands on JNI, see the “Bridging from Java to business languages”

chapter for Java and COBOL samples with detailed steps to compile and run

them in UNIX System Services (USS) and MVS.

In general, JNI programming is not simple and requires quite a bit of

knowledge. There are not many COBOL-based samples out there, but it is

possible to look up C-based samples on the web to get an idea about how the

JNI calls should be used.

4.3.5. Options to pass data between languages

Since not all data can be passed as a String or simple types, it is best to pass

byte arrays that represent byte-compatible data in the COBOL application

between COBOL and Java. In addition, because Java methods can return only

one data item, it is not possible to return more than one String, byte array, or

simple type.

For parameters that are input to the Java method, they can be overwritten if the

caller (COBOL) has allocated them in a way that makes them accessible. For

example, the following Java method cannot return a string:

javaMethod(new String(“Hello”));

But the following code can return a string because you can access mySTring

after the Java call.

String myString = new String("Hello");

javaMethod(myString);

Use the JNI functions such as GetByteArrayRegion and

SetByteArrayRegion to transform a COBOL structure into a byte array and

vice versa. The called Java method is defined as accepting a byte array and

returning a byte array. The marshalling of transformation from COBOL to Java

type and back is then done when the data is accessed using a getter or setter

method from within Java. This approach has been proven successful in several

client cases and performance tests as the most efficient way of passing data

back and forth between Java and traditional LE languages.

4.3.5.1. Direct byte buffers

Using the directBytebuffer object, it is possible for Java and traditional

languages such as COBOL and PL/I to share the same storage areas for byte

arrays.

There are basically two ways to achieve that:

64 Supercharge IMS Business Applications with Java

• Call the NewByteBuffer JNI function with a pointer address and length of

the COBOL copybook structure (or storage area) that is to be shared. It

returns a jobject containing the java.nio.ByteBuffer reference.

• Call the Java methods with the ByteBuffer as an input/output parameter.

When Java uses put or get methods to read or write to ByteBuffer, it also

changes the data that COBOL has access to.

In this scenario the ByteBuffer is allocated outside the Java heap, so the

Bytebuffer is not backed by a Java byte array. This means that if the byte array

should be used (for example with a J2C Wizard generated Record structure and

its getter and setter methods), a copy from the ByteBuffer to a byte array is

needed and the byte array needs to be copied back to the ByteBuffer, which has

no advantage over using SetByteArrayRegion and GetByteArrayRegion for a

data exchange with ByteArrays from COBOL or PL/I.

The advantage is there only if not all data of the copybook structure is needed

to be accessed and the put and get methods of the ByteBuffer can be used, then

it saves CPU.

4.4. Accessing Db2 from mixed-language applications

IMS applications can access IMS DB and Db2 for z/OS data. For mixed-

language applications, each of the languages (e.g. Java and COBOL) can access

Db2, and IMS ensures that the updates from all languages are within the same

unit of work or transaction boundary. Furthermore, static and dynamic SQL

can be mixed as required. It is also possible to call Db2 stored procedures in

addition to SQL queries.

Modernization is usually started with existing COBOL or PL/I applications that

use static SQL and the traditional EXEC SQL calls. Moving to dynamic SQL

requires user/caller authorization against the database object, whereas for static

SQL, the authorization is against the package.

For Java to use the Db2 Universal JDBC Driver, the following three .jar files are

required in the IMS region’s classpath:

• db2jcc.jar

• db2jcc_javax.jar

• db2jcc_license_cisuz.jar

You also need to use a compatible connection URL, such as:

String url = "jdbc:db2os390sqlj:";

The connection to the Db2 subsystem for the Db2 JDBC Driver is configured as

Resource Recovery Services (RRS) connectivity type for IMS Java dependent

regions (JMP or JBP) and as External Subsystem Attach Facility (ESAF)

connectivity type for all other Java-capable IMS regions (message processing

© Copyright IBM Corporation 2021.

65 © Copyright IBM Corporation 2021.

program, or MPP, and batch message program, or BMP).

Currently modules that have the Db2 stub statically linked can be used in

either ESAF or RRSAF environments, but not in both. Modules serving the

same purpose or implementing the same functionality must have different

names, one for the ESAF and the other for the Resource Recovery Services

attachment facility (RRSAF) environment.

The connection definition for an IMS application is done by using subsystem

member (SSM) definitions with two entries, as shown in the following

example, one for ESAF and the other for RRS.

Example 1. IMS subsystem definition for Db2 with both ESAF and RRS

SST=DB2,SSN=DSNA,LIT=SYS1,ESMT=DSNMIN10,REO=R,CRC=-

SST=DB2,SSN=DSNA,COORD=RRS

If there is a requirement to allow Java programmers to use dynamic SQL with

JDBC but to use the authorization schema of static SQL, then using IBM

Optim™ pureQuery to query Db2 can be considered as a solution. Dynamic

JDBC calls can be recorded and turned into a static package, and the

pureQuery runtime executes those calls as if the source code had static SQL.

4.5. Using pureQuery for SQL-like access to Db2

In addition to allowing the capture of dynamic JDBC calls that can be turned

into a package with static SQL, pureQuery also works when you are running

Java in any IMS region. From the IMS side, the .jar files for pureQuery need to

be in the classpath of the JVM running in the IMS region.

pureQuery allows dynamic JDBC applications to use statically bound

packages. This capability allows Db2 administrators to use a single

authorization environment, while static SQL is authorized for the package and

dynamic SQL is authorized for the object. Requiring only one authorization for

a single application is a benefit when you have mixed-language applications

that interoperate with Java.

It is possible to capture the dynamic JDBC calls, most parts of the application,

and run it static. Then to define the additional dynamic JDBC statements which

have not been recorded during the capture phase and should be executed,

rejected, or recorded and later bound to the static package, the incremental

recording.

pureQuery also provides the following functions:

Note: Due to restrictions in the usage of the Db2 stub linkage, the connection type

needs to be different for Java and non-Java IMS regions.

66 Supercharge IMS Business Applications with Java

• Fix dirty programming, for example, to not use parameter markers for

WHERE clauses, which cause the optimizer to calculate the path for every

SQL statement.

• Allow you to bind a WHERE abc=? SQL statement to the package and

execute all WHERE=value statements that have been created in Java as the

result of string concatenations as if it were prepared statements with

parameter markers.

• Together with IBM Data Studio, it allows for some impact analysis. For

example, you can analyze what happens when the name of a column in

table xyz is changed or which SQLs runs against column abc.

In order to exploit pureQuery in an IMS environment, install either of the

following:

• IBM Data Studio, which provides an integrated, modular environment for

database development. It can be downloaded for free at:

http://www.ibm.com/products/ibm-data-studio

• The Eclipse based products can be installed standalone or in an existing

Eclipse IDE, including Rational Developer for System z (RDz) and Rational

Application Developer (RAD).

Details on pureQuery, its configuration, and how to make it work are

discussed in Using Integrated Data Management To Meet Service Level

Objectives, SG24-7769 [5].

4.6. Accessing IBM MQ from mixed-language applications

When accessing IBM MQ in traditional languages, with either ESAF for MPP

and BMP or with RRS for JMP and JBP, it is a matter of the definition in the

IMS SSM member. The use of the WebSphere MQ Java classes are not currently

are not supported. The IBM MQ Java classes lack the support for ESAF because

it is not implemented. But with the use of RRS in IMS Java dependent regions,

the IBM MQ Java classes can be configured to work and be part of the IMS unit

of work.

See the example below for a sample code that works in a JMP. It is required to

use the option MQPMO_SYNCPOINT for the IBM MQ calls to belong to the

IMS unit of work.

The following example is just a code excerpt and not a complete Java class to be

executed.

Example 2. MQ sample
...

private static final String qManager = "QM01";

private static final String qName = "TEST.QL1";

private static MQQueueManager qMgr = null;

http://www.redbooks.ibm.com/abstracts/sg247769.html
http://www.redbooks.ibm.com/abstracts/sg247769.html
http://www.redbooks.ibm.com/abstracts/sg247769.html

© Copyright IBM Corporation 2021.

67 © Copyright IBM Corporation 2021.

int openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF | MQConstants.MQOO_OUTPUT;

MQQueue queue = qMgr.accessQueue(qName, openOptions);

MQMessage msg = new MQMessage();

msg.writeUTF("Hello, World!");

MQPutMessageOptions pmo = new MQPutMessageOptions();

pmo.options = MQConstants.MQPMO_SYNCPOINT;

queue.put(msg, pmo);

MQMessage rcvMessage = new MQMessage();

MQGetMessageOptions gmo = new MQGetMessageOptions();

gmo.options = MQConstants.MQGMO_ACCEPT_TRUNCATED_MSG + MQConstants.MQGMO_SYNCPOINT;

gmo.matchOptions = MQConstants.MQMO_NONE;

queue.get(rcvMessage, gmo);

String msgText = rcvMessage.readLine();

System.out.println("The message is: " + msgText);

queue.close();

qMgr.disconnect();

}

catch (MQException ex) {

System.out.println("A WebSphere MQ Error occured : Completion Code " +

ex.completionCode + " Reason Code " + ex.reasonCode);

ex.printStackTrace();

for (Throwable t = ex.getCause(); t != null; t = t.getCause()) {

System.out.println("... Caused by ");

t.printStackTrace();

}

}

catch (java.io.IOException ex) {

System.out.println("An IOException occurred while writing to the message buffer: " +

ex);

ex.printStackTrace();

}

return;

Subsystem member definition is required to use the IBM MQ Java classes with

RRS (See Example 3). The RRS environment is currently only usable with IMS

JBP and JMP regions. All other environments use ESAF as attach facility to IBM

MQ.

Example 3. Subsystem member definition to use IBM MQ Java for RRS

SST=DB2,SSN=WMQA,COORD=RRS

In addition to the classes required for IMS Java-based applications and for

access to Db2, the following .jar files need to be in the IMS region’s classpath

in order for the above example to work.

68 Supercharge IMS Business Applications with Java

• com.ibm.mq.headers.jar

• com.ibm.mq.pcf.jar

• jta.jar

• connector.jar

• com.ibm.mq.commonservices.jar

• com.ibm.mq.jar

• com.ibm.mq.jmqi.jar

• com.ibm.ffdc.jar

IBM MQ V9 for z/OS allows ESAF environments for transactional access by

Java applications that run in IMS based on Java Message Service (JMS).

4.7. COBOL Version 4, 5, and 6 considerations

In COBOL V4 and earlier, you need to have the LIB option in effect to handle

copybooks. Starting with COBOL Version 5, the LIB compiler is always on, and

does not need to be specified.

4.7.1. Generating methods from Java to copybook structures

This section discusses the different options to pass data between COBOL and

Java.

4.7.1.1. Strings

Some customers prefer to simply pass variable-length strings such as key-value

pairs between the languages. This generally can be done in two ways:

• Use APIs that create string objects in the JVM based on EBCDIC data

(NewStringPlatform) to pass the strings to the JVM

• Create null terminated EBCDIC strings based on references to string objects

from the JVM (GetStringPlatform).

4.7.1.2. JZOS Record Generator

JZOS Record Generator is the most common tool for passing data between

COBOL and Java, where copybooks are treated as byte arrays and passed to

Java. The un-marshalling into Java fields and data types is done in Java. The

JZOS solution can be used from IMS to exploit built-in native JVM functions,

which are faster than pure Java data conversions. Although other solutions use

the new z/OS batch container, they still do marshalling and un-marshalling

when passing data between COBOL and Java.

The JZOS Record Generator uses the ADATA output from the COBOL

compiler.

A step-by-step guide for using both JZOS and the J2C approaches is included

in the JZOS for z/OS SDKs Cookbook [6].

https://www.ibm.com/services/forms/preLogin.do?source=zossdkcookbook

© Copyright IBM Corporation 2021.

69 © Copyright IBM Corporation 2021.

The JZOS Record Generator also allows conversion of assembler CSECTs

into Java records, and as such, can be quite useful for processing data that is

defined in z/OS as assembler source only. It uses the ADATA output from the

assembler.

Unfortunately at the time of writing this book, the generated records only

accept Java Byte Arrays as input, so there is no or limited CPU benefit in

using Direct Byte Buffers to pass data between Java and traditional

languages, because a Java Byte Array copy needs to be created from the

Direct Byte Buffer to use the generated records and copied back to the Direct

Byte Buffer after a possible change of the data.

4.7.1.3. Rational CICS/IMS Data Binding Wizard (J2C)

The J2C wizards for creating a CICS/IMS Data Binding are part of either

IBM Rational Application Developer for Java or IBM Rational Developer for

System z with Java (RDz). The standalone RDz does not have the wizards

packaged.

Note that the trial version of the latest Rational Developer for System z that

you can download for an evaluation period of 90 days from

http://www.ibm.com/developerworks/downloads/r/rdz/ do not have these

wizards packaged.

The following steps outlines how to start the J2C wizard and generate the

Java classes:

1. The J2C wizard is invoked with the menu option: File -> New -> Other

and then select J2C -> CICS/IMS Java Data Binding.

A screen shot of the CICS/IMS Java Data Binding Wizard starting with

the source data import screen is shown in the following figure.

http://www.ibm.com/developerworks/downloads/r/rdz/

70 Supercharge IMS Business Applications with Java

Figure 21. CICS/IMS Java Data Binding Wizard in IBM Developer for z/OS

2. Go through the wizard to create:

• CICS/IMS data binding

• Import, for example, the COBOL 01 record type

• Generate the Java class

3. Then the Java class needs to be populated with the byte array that was

passed to the Java method from COBOL. For other languages such as, C or

PL/I, the process is identical.

Unfortunately, at the time of writing this book, the generated records only

accept Java Byte Arrays as input, so there is no or limited CPU benefit in using

Direct Byte Buffers to pass data between Java and traditional languages,

because a Java Byte Array copy needs to be created from the Direct Byte Buffer

to use the generated records and copied back to the Direct Byte Buffer after a

possible change of the data.

4.8. Special application requirements

© Copyright IBM Corporation 2021.

71 © Copyright IBM Corporation 2021.

Depending on application scenarios or functional equivalents that the LE

runtime, z/OS, or its subsystems (such as IMS and CICS) provide, there are

special application requirements.

4.8.1. Preload or initialization for Java objects on JVM startup

Unlike for LE modules, there is no special functionality to allow functions like

preload or pre-initialization on the Java side. However, it is possible to run

some Java code on IMS region initialization with the -javaagent parameter

that points to a .jar file. This parameter is there to allow for instrumentation of

byte code, but when its premain method is called, it can run any Java code it

wants.

This .jar file requires a manifest that points to a class with a premain method

(public static void premain(String args, Instrumentation inst)). As the

name indicates, this method is invoked before the first call to execute a main or

other method in the JVM.

Note that in the JDK for z/OS, the Premain-Class parameter needs to be

specified with the exact case as printed here. Otherwise, the JVM ends with the

message that it cannot find the Premain-Class parameter in the manifest.

4.9. Summary

In this chapter we discussed application development approaches for mixed-

language applications, as well as Java™-only applications. A high-level

discussion on how a batch application can use COBOL and Java with

interoperability was provided, including options to pass data between

languages and how to access Db2 data or WebSphere MQ. Tools for

generating access methods from COBOL copybook data structures were also

discussed.

4.10. Related resources

The following list provides useful resources that provide more detailed

description of the topics that are covered in this section.

1. IMS 11 Open Database (SG24-7856-00)

http://www.redbooks.ibm.com/abstracts/sg247856.html?Open

2. IBM Redbook: IMS Integration and Connectivity Across the Enterprise

http://www.redbooks.ibm.com/redbooks/pdfs/sg248174.pdf

3. Writing your Language Environment-conforming assembler DLL code:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.z

os.v2r1.ceea200/leasdll.htm

4. The syntax for the COBOL INVOKE statement and examples can be found

in the Enterprise COBOL for z/OS product documentation.

http://www.redbooks.ibm.com/abstracts/sg247856.html?Open
http://www.redbooks.ibm.com/redbooks/pdfs/sg248174.pdf
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ceea200/leasdll.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ceea200/leasdll.htm

72 Supercharge IMS Business Applications with Java

Enterprise COBOL for z/OS product documentation

5. Using Integrated Data Management To Meet Service Level Objectives

(SG24-7769)

http://www.redbooks.ibm.com/abstracts/sg247769.html

6. JZOS for z/OS SDKs Cookbook at:

https://www.ibm.com/services/forms/preLogin.do?source=zossdkcoo

kbook

https://www.ibm.com/docs/en/cobol-zos/6.1?topic=statements-invoke-statement
http://www.redbooks.ibm.com/abstracts/sg247769.html
https://www.ibm.com/services/forms/preLogin.do?source=zossdkcookbook
https://www.ibm.com/services/forms/preLogin.do?source=zossdkcookbook

© Copyright IBM Corporation 2021.

73 © Copyright IBM Corporation 2021.

C H A P T E R 5

5. Bridging from Java to business languages

In this chapter we will discuss in greater details how bridging between Java™

and business languages is done via Java Native Interface (JNI) with concrete

examples.

The target audience of this chapter is application developers writing Java

applications that call COBOL applications or vice versa.

5.1. What is JNI?

JNI is a native programming interface that is part of the Java Software

Development Kit (SDK). This interface defines the infrastructure between Java

and other languages, such as C and C++, COBOL, PL/I and assembly. While JNI

was developed for C/C++ languages, it is available on z/OS® for all Language

Environment-compliant languages.

JNI provides the solution for two-way communications. It defines a method for

Java to invoke native methods and a method, via a defined API, for native code

to invoke Java code. With the defined API, the native code can manipulate Java

objects, call Java methods, and share data with Java.

Enterprise COBOL introduced the concept of Object-Oriented (OO) COBOL

that simplifies the interactions between Java and COBOL. Using OO COBOL is

now the easiest and most convenient way to create OO applications, in

particular when crossing the boundary between Java and COBOL is required.

We will next explain the basics of JNI in the context of Java-COBOL

interoperability in z/OS. The same concepts apply to other native and business

languages and other platforms. Then, we will describe the main considerations

for COBOL and Java interoperability with emphasis on Enterprise COBOL (OO

COBOL).

5.2. How JNI works

JNI provides a means for Java code to call native code. This interaction is useful

in cases when native capabilities are more efficient than Java or when the

specific code is already available in native and you want to use it. JNI provides

JNI services (also referred as functions) via the JNI API to act on the Java data

and use Java features.

The JNI also provides the native code with means to embed a JVM in the native

code and to access Java features, without having to link with the JVM.

74 Supercharge IMS Business Applications with Java

5.2.1. JNI services and API

JNI provides many services for the native code to access Java features, such as

class operations, calling methods, string and array operations, etc. It also

provides services via the Invocation API to embed a JVM in the native

application.

The JNI APIs are defined under a language-specific file that holds all API

functions and the type mapping for the Java JNI types. For COBOL, the APIs are

defined in the JNI copybook called JNI.cpy, which is typically located under

the /usr/lpp/cobol/include directory. To use the JNI services, the JNI copybook

needs to be included.

There are two main JNI structures defined in the JNI APIs that are key to the JNI

execution:

1. The “JNI environment” structure-- the JNI service API.

Accessing the JNI environment structure is done via two levels of

indirection using an interface pointer (in COBOL, it is the special register,

JNIEnvPtr). This pointer points to a per-thread JNI environment pointer

(JNIEnv, in COBOL it is declared in the JNI copybook) that points to an

array of JNI function pointers (a function table named JNINativeInterface)

for accessing the callable service functions. The JNI environment pointer is

thread-specific and cannot be passed from one thread to another. See the

following figure:

2. The “JavaVM” structure-- the JNI Java VM service API that allows to create

and destroy the JVM.

The JavaVM structure is accessed via an interface pointer, JavaVMPtr. This

pointer points to a pointer that points to an array of JNI function pointers (a

function table named JNIInvokeInterface) for accessing callable “invocation

interface” functions.

Java for the z/OS platform provides an extended API to deal with strings due

to the encoding differences. It defines the following extensions:

NewStringPlatform, GetStringPlatformLength, GetStringPlatform.

Figure 22. JNI environment pointer

© Copyright IBM Corporation 2021.

75 © Copyright IBM Corporation 2021.

These EBCDIC services are packaged as a dynamic link library (DLL) file that is

part of the IBM® Java SDK. They are called directly and not dereferenced from

the JNIEnv pointer (the JNIEnvPtr). This extended API is resolved through the

libjvm.x DLL side file, provided with your IBM Java SDK, which needs to be

included in the link-edit step.

The section provides the programming guidance for accessing the JNI services

from COBOL code.

5.2.2. Making the connection

When an application starts with native code and requires to call Java features

via JNI APIs, it first needs to load a JVM using the JNI API, unless it is using

OO COBOL. With OO COBOL invoking Java, COBOL will start the JVM for

you.

When an application starts with Java, it calls the native language via native

methods.

The native methods called from Java are declared in the Java code and

implemented in the native language. The name of the native method follows

the JNI naming rules. In the simple case, the method would be in the format of

Java_classname_methodname. See the JNI Specification [1] for more detailed

information regarding native method names and arguments.

As part of the JNI calling convention, the native method has two hidden

arguments that are not seen on the Java declaration. Those arguments are

predefined by the JNI:JNIEnv interface pointer and jobject. In COBOL, the

JNIEnv interface pointer is the JNIEnvPtr and it is used to dereference the JNI

service. The jobject is a pointer to the class in case the class is static, or to the

instance of the class if it is not static.

You can use the javah tool to generate .h header files that can be inspected for

the signature of the native method generated. These header files are used by C

and C++ compilers, not by the COBOL compiler, but you might find them

useful for checking the naming of native methods. Although generating the .h

files is optional, it has great value in providing the expected signature.

Once the native code is compiled and linked, the native methods are accessed

via an executable DLL module that is loaded on the Java side. There are two

ways for Java to load the executable DLL module:

• Using System.loadLibrary(“Name”)

In this case the DLL name needs to be in the format of libName.so.

• Using System.load("<absolutePath>/Name")

In this case there is no restriction on the name of the library.

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html

76 Supercharge IMS Business Applications with Java

For proper loading and binding, the executable DLL needs to reside on the

z/OS UNIX side, have the right attributes (executable) and follow naming rules.

Example 1: “Hello world” from COBOL” (in the section at the end) provides a

sample of Java code invoking a native COBOL method that prints “Hello from

COBOL”. The example has no parameters passed to nor no return data from

the native method. This example's objective is to demonstrate fundamental

building blocks of using JNI to create a healthy Java-native communication.

Here are the steps for running this application:

1. Declare the native method in the Java code.

2. Compile the Java code using javac to generate a .class file.

3. Generate the native code.

There are two main parts that need special attention: the program-id and the

procedure division's parameters and return value. The program-id should

follow the JNI rules and match the native method name as declared on the

Java side. In this case, following the Java_classname_methodname convention,

the program-id is Java_HelloTest_printHello. The native method declared

has no arguments but the COBOL procedure division declares the two

'hidden' arguments required for JNI, even though they are not used in the

procedure (as we do not facilitate the JNI services). Note that there is no use

of JNI services. Therefore the JNI copybook is not included.

4. Compile the COBOL code with the required options given in the example.

These compilation options are described in the “” section.

5. Link-edit step to generate the executable DLL module (following naming

rules to allow proper loading). The required options are described in the “”

section.

6. Run the Java program.

If the System.loadLibrary(“Name”) method is used, the Java will search a file

of the type libName.so in the library path provided via the -

Djava.library.path option. If you use the System.load(...) method, the

path points to the library file.

5.3. Connecting Java and COBOL

This section provides specific information for connecting Java and COBOL. It

assumes basic knowledge of the COBOL language including object-oriented

(OO) COBOL, and compiling and linking jobs under z/OS UNIX and MVS.

We will first discuss the basics of JNI and how to use it to make the Java-

COBOL connection. This methodology does not require the OO COBOL

capabilities and thus it also works with legacy COBOL. We will focus on

Enterprise COBOL as it provides an extended way to deal with interoperability

between Java and COBOL via the OO COBOL.

© Copyright IBM Corporation 2021.

77 © Copyright IBM Corporation 2021.

Enterprise COBOL provides Java-oriented capabilities in addition to the basic

OO capabilities available directly in the COBOL language. For example, it

allows creation of Java and COBOL classes and invocation of methods on Java

and COBOL objects using the INVOKE statement. For basic Java-object

capabilities, using the OO capabilities is sufficient for the Java-COBOL

interoperability. For additional Java-object capabilities you need the JNI

services.

There are several ways to structure the OO application. You can either have

COBOL invoking Java or Java invoking COBOL. When starting with COBOL,

use the INVOKE statement to invoke a Java method. It is possible to start with

COBOL program from both the z/OS UNIX side and the MVS. See the

“Communicating with Java methods” topic in the Enterprise COBOL for z/OS

programming guide [2].

5.3.1. The main method

To start with Java, there needs to be a 'main' method written. It can be written

in Java or as a compiled COBOL class definition that contains a factory method

called 'main' with the appropriate arguments.

Typically, when using OO COBOL, the easiest way for Java to invoke COBOL

is via an OO COBOL 'wrapper' class, which calls the procedural COBOL logic

and thus “wraps” it.

Since Java resides on the z/OS UNIX side, if you start with Java, all the

application components (classes and executable DLL modules) must reside on

the HFS. To launch Java, you can use the shell command prompt (running the

java command) or with the BPXBATCH utility from JCL or TSO/E.

5.3.2. Working with 'wrapper' OO COBOL classes

A COBOL source file that contains a class definition is often the gateway

between Java and COBOL. For details on OO COBOL and class definition see

Writing object-oriented programs in the Enterprise COBOL for z/OS

Programming Guide [3].

Once this COBOL source file is compiled, a Java file is generated on the USS

side. This Java file contains the native method declaration based on the JNI

rules. If, for example, the class had a method foo, then the generated Java code

will have a declaration of a native method named Java_classname_foo. The

generated Java code (.java file) needs to be compiled on the USS side by using

the javac compiler to produce the .class file.

When using OO COBOL with class definition, there are these naming rules:

• The name of the resulting DLL module needs to match the expected class

http://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/tasks/tpjav01.html
http://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/tasks/tpoot02.html

78 Supercharge IMS Business Applications with Java

name. If ClassName is the external class name, then the name of the DLL

module must be libClassName.so, as this is the name expected in the

generated Java file (as it uses System.loadLibrary method to load the DLL).

• If the class is part of a package and thus there are periods in the external

class name, the periods should be changed to underscores in the DLL

module name (based on JNI naming rules).

5.3.3. Accessing JNI services

In COBOL the JNI API is defined in the JNI copybook called JNI.cpy. As

mentioned earlier in the “” section, the JNI copybook contains the definition of

JNINativeInterface, the COBOL group structure that maps the JNI

environment structure, which contains an array of function pointers for the JNI

callable services. To facilitate access to JNI services, the JNI.cpy file should be

defined in COBOL program under the LINKAGE SECTION. For example, if

the file is named JNI :

Linkage section.

COPY “JNI”

Before you reference the contents of the JNI environment structure, you must

code the following statements to establish its addressability:

Procedure division.

Set address of JNIEnv to JNIEnvPtr

Set address of JNINativeInterface to JNIEnv

The code sets the address of JNIEnv, a pointer data item that JNI.cpy

provides, and JNIEnvPtr, the COBOL special register that contains the

environment pointer. The JNIEnvPtr is implicitly defined as USAGE POINTER

and should not be used as a receiving data item. Use this special register

JNIEnvPtr to reference the JNI environment pointer to obtain the address for

the JNI environment structure.

After the pointers are set, the JNI callable services can be accessed with CALL

statements that reference the function pointers. The JNIEnvPtr special register

is the first argument to the services that require the environment pointer, as

shown in the following example:

01 InputArrayObj usage object reference jlongArray.

01 ArrayLen pic S9(9) comp-5.

. . .

Call GetArrayLength using by value JNIEnvPtr

InputArrayObj

 returning ArrayLen

© Copyright IBM Corporation 2021.

79 © Copyright IBM Corporation 2021.

5.3.4. Compiling and linking for COBOL

To compile COBOL source code that uses JNI services or contains OO syntax

such as INVOKE statements or class definitions (that is, COBOL code that

directly communicates with Java):

• Use the following compiler options: RENT, DLL, THREAD, and DBCS.

The RENT and DBCS options are IBM-supplied defaults.

• Set PGMNAME(LONGMIXED) for long name support.

• Set the RECURSIVE attribute on COBOL classes and methods or on

COBOL programs that invoke Java methods.

Compiling the COBOL with DLL affects the overall COBOL program structure.

In general, DLL-linkage-built COBOL programs can only call out to other

external DLL-linkage-built programs. Similarly, dynamic call-built COBOL

programs can only call out to other external dynamic call built programs.

However, static linking of objects with two of these external program call

mechanisms is allowed. This provides the bridging between the DLL linkage

that Java requires and the traditional COBOL dynamic call. For more

information regarding the DLL consideration see:

• “DLL considerations for COBOL and Java“ in the z/OS Batch Runtime

Planning and User's Guide [4].

• Section 2.9.1 in “How Java can call COBOL and vice versa” in “New Ways of

Running Batch Applications on z/OS: Vol 4 IBM IMS” [5].

The link step creates an executable DLL module. It is required to link the object

file with the following two DLL side files:

• libjvm.x, which is provided with your IBM Java SDK.

• igzcjava.x, which is provided in the lib/ subdirectory of the COBOL

directory in the HFS. The typical complete path is

/usr/lpp/cobol/lib/igzcjava.x.

This DLL side file is also available as the member IGZCJAVA in the

SCEELIB PDS (part of Language Environment).

If the application starts with a Java program or the main factory method of a

COBOL class, the XPLINK environment is automatically started by the java

command that starts the JVM and runs the application.

If an application starts with a COBOL program that invokes methods on

COBOL or Java classes, you must specify the XPLINK(ON) runtime option

so that the XPLINK environment is initialized. XPLINK(ON) is not

Note: Pass all arguments to the JNI callable services by value.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.iean500/blddll.htm
http://www.redbooks.ibm.com/redbooks/pdfs/sg248119.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248119.pdf

80 Supercharge IMS Business Applications with Java

recommended as a default setting. Use XPLINK(ON) only for applications

that specifically require it.

In older versions of COBOL, using the COPY statement required the compiler

option 'lib'. This option is not required in Enterprise COBOL v5 and up, and it

is always in effect.

For more information, see Compiling, linking, and running OO applications in

the Enterprise COBOL for z/OS Programming Guide [6].

5.3.4.1. Java and COBOL under z/OS UNIX

When you compile, link, and run OO applications in a z/OS UNIX

environment, application components reside in the HFS. The compilation and

linking is done using z/OS UNIX shell commands, and application is launched

via a shell command prompt or with the BPXBATCH utility from JCL or

TSO/E.

Compiling and linking options are as mentioned in “”: RENT, DLL, THREAD,

and DBCS (RENT and DBCS are IBM-supplied defaults), and long name

support (longmixed).

For compilation use: cob2 -c -qdll,thread

For linking use: cob2 -bdll

The -bdll option specifies that the executable module is to be a DLL and also:

• The COBOL compiler uses the compiler options DLL, EXPORTALL, and

RENT, which are required for DLLs.

• The link step produces a DLL definition side file that contains IMPORT

control statements for each of the names exported by the DLL.

You need to specify the include subdirectory of the JNI.cpy by using the -I

option of the cob2 command or by setting the SYSLIB environment variable.

The JNI.cpy resides under the include subdirectory of the COBOL install

directory (typically, /usr/lpp/cobol/include).

See “Example 2: Java calling procedural COBOL with JNI service calls (USS)”

on page 89 for Java calling procedural COBOL with JNI service calls.

5.3.4.1.1. Java invoking OO COBOL with class definition on USS

When you compile a COBOL class definition, there are two output files

generated:

• The object file (.o file) for the class definition.

• A Java source program (.java) that contains a class definition that

corresponds to the COBOL class definition.

http://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/tasks/tpooo01.html?lang=en

© Copyright IBM Corporation 2021.

81 © Copyright IBM Corporation 2021.

Compile the generated Java source with the Java compiler to create a class file

(.class).

The class file generated and the DLL module generated (after linking) are the

executable components of the OO COBOL application, and are generated in the

current working directory.

If you change the COBOL class definition, you must regenerate both the object

file and the Java class definition by recompiling the updated COBOL class

definition.

When Java classes are involved, set the CLASSPATH environment variable to

contain the path to the necessary classes.

For OO applications that start with Java, you need the LIBPATH environment

variable to contain the path to the executable DLL module.

For more details see “Compiling, linking, and running OO applications under

z/OS UNIX” in Enterprise COBOL for z/OS 6.1.0 Programming Guide [7].

See “Example 3: Java calling OO COBOL with class definition (USS)” on page

92 for an application that starts with Java and has OO COBOL with class

definition.

5.3.4.1.2. OO COBOL application calling Java

For COBOL applications calling Java, you need the LIBPATH to point to the

path for the Java libraries.

LIBPATH=/usr/lpp/java/IBM/J7.1/bin/classic:$LIBPATH

Also, use the _CEE_RUNOPTS environment variable to set the

XPLINK(ON) option :

_CEE_RUNOPTS="XPLINK(ON)"

Exporting _CEE_RUNOPTS="XPLINK(ON)" so that it is in effect for the entire

z/OS UNIX shell session is not recommended, however. Suppose for example

that an OO COBOL application starts with a COBOL program called App1.

One way to limit the effect of the XPLINK option to the execution of the App1

application is to set the _CEE_RUNOPTS variable on the command-line

invocation of App1Driver as follows:

_CEE_RUNOPTS="XPLINK(ON)" App1

See “Example 4: OO COBOL application invoking Java using INVOKE (USS)”

on page 95 for OO COBOL application calling Java using INVOKE.

http://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/tasks/tpooo02.html
http://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/tasks/tpooo02.html

82 Supercharge IMS Business Applications with Java

5.3.4.2. Java and COBOL under MVS (JCL or TSO/E)

Many customers have their COBOL code on the MVS side. Here we provide

the details of performing compilation/linking and running the application

under MVS using JCL. Similarly one can use TSO/E for compiling/linking

steps. For more information, see “Compiling, linking, and running OO

applications in JCL or TSO/E” in Enterprise COBOL for z/OS 6.1.0

Programming Guide [8].

Compiling and linking options are as mentioned in “”: RENT, DLL, THREAD,

and DBCS. Again, RENT and DBCS are defaults and specify long name

support (longmixed).

To facilitate and exploit access to JNI services, copy the file JNI.cpy from the

HFS to a PDS or PDSE member called JNI, identify that library with a SYSLIB

DD statement, and use a COPY statement of the form COPY “JNI” in the

COBOL source.

The generated object file is written, as usual, to the data set that has ddname

SYSLIN or SYSPUNCH.

Link the load module for the COBOL program into a PDSE. COBOL programs

that contain object-oriented syntax must be link-edited with AMODE 31.

To link with the DLL side files libjvm.x and igzcjava.x when binding the

object deck for the main program specify INCLUDE control statements. For

example:

INCLUDE '/usr/lpp/java/IBM/J7.1/bin/classic/libjvm.x'

INCLUDE '/usr/lpp/cobol/lib/igzcJava.x'

See “Example 5: Java calling procedural COBOL (MVS)” on page 96 for Java

calling procedural COBOL on MVS.

When compiling a COBOL class definition, there are two outputs generated:

1. The object module for the COBOL class definition – on the MVS side

2. A Java source program (.java) that contains a class definition that

corresponds to the COBOL class definition. Ensure that the .java file for OO

COBOL reside on the HFS. Use the SYSJAVA ddname to write the

generated Java source file to a file in the HFS. Make sure to name the Java

file with Classname.java where Classname is the COBOL class defined (this

is expected by the Java) and have the right file permissions. For example:

//SYSJAVA DD PATH='/u/userid/java/Classname.java',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU,

// FILEDATA=TEXT

http://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/tasks/tpooo06.html
http://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/tasks/tpooo06.html

© Copyright IBM Corporation 2021.

83 © Copyright IBM Corporation 2021.

Compile Java class definitions by using the javac command from a z/OS UNIX

shell command prompt, or by using the BPXBATCH utility.

If you change the COBOL class definition, you must regenerate both the object

file and the Java class definition by recompiling the updated COBOL class

definition.

When Java classes are involved, set the CLASSPATH environment variable to

contain the path to the necessary classes.

For OO COBOL with class definitions the executable DLL module needs to

reside in the HFS. Use the SYSLMOD option with PATH parameter. Also,

make sure to follow the naming rules for the module as discussed in the “”

section, and have the right file attributes, and access privilege to the file. For

example:

//SYSLMOD DD PATH='/u/userid /java/libTSTJNI.so',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIWUSR,SIRGRP)

See “Example 6: Java calling OO COBOL with class definition (MVS)” on page

98 for an application that starts with Java and has OO COBOL with class

definition.

5.3.4.2.1. OO COBOL calling Java via INVOKE

When you run an OO application that starts with a COBOL program, use the

_CEE_ENVFILE environment variable to indicate the location of a file that

contains the environment variable settings required by Java. Set

_CEE_ENVFILE by using the ENVAR runtime option. Also specify the

POSIX(ON) and XPLINK(ON) runtime options. For example:

// PARM=' /ENVAR("_CEE_ENVFILE=/u/userid/ENV")

// XPLINK(ON) POSIX(ON)'

Environment variable required for Java, such as PATH, LIBPATH and

CLASSPATH are set in a file on the HFS side. To customize the initialization of

the JVM that will be used by the application, you can set the

COBJVMINITOPTIONS environment variable in the same file. For example, a

/u/userid/javaenv file might look as follows:

PATH=/bin:/usr/lpp/java/IBM/J7.1/bin

LIBPATH=/lib:/usr/lib:/usr/lpp/java/IBM/J7.1/bin:/usr/lpp/java/IBM/J7.1

/bin/classic:/u/userid/applications

CLASSPATH=.:/u/userid/applications

COBJVMINITOPTIONS="-Xms10000000 -Xmx20000000 -verbose:gc"

84 Supercharge IMS Business Applications with Java

Also, use DD statements to specify files in the HFS for the standard input,

output, and error streams for Java:

• JavaIN DD for the input from statements such as c=System.in.read();

• JavaOUT DD for the output from statements such as

System.out.println(string);

• JavaERR DD for the output from statements such as
System.err.println(string);

Ensure that the SCEERUN2 and SCEERUN load libraries are available in the

system library search order, for example, by using a STEPLIB DD statement.

See “Example 7: COBOL invoking Java via INVOKE (MVS)” on page 101 for an

OO COBOL application calling Java using INVOKE.

5.4. Invoking Java from native COBOL

If you can’t use OO COBOL or DLL in your environment because of

restrictions in the LE (e.g. calling the same program from non-DLL and DLL)

or simply because of the fact that you need to make a static call, all you need to

do is replace the INVOKE statement. This is the only statement that requires

the DLL option.

However, without the INVOKE statement, you need to call Java another way.

That means you have to use JNI services such as FindClass, GetStaticMethodID

and GetMethodID.

The downside of not using the INVOKE statement is, you will have to write a

lot more code with JNI calls and handle the encoding from EBCDIC to UTF-8

by yourself.

On the other hand, you can now cache the references of your classes and

methods so you don’t need to make unnecessary JNI calls, which INVOKE

does every time.

5.5. Considerations using native COBOL with JNI

The complexity of JNI calls can be a little bit overwhelming for an average

programmer. You should consider taking this complexity to a framework,

generate your JNI code, or generate both COBOL and Java code according to

information that is stored in a metadata repository. If you choose the last

approach to generate both COBOL and Java code based on some metadata, you

must develop your own solution because there are no existing products that

would do the generation for you.

© Copyright IBM Corporation 2021.

85 © Copyright IBM Corporation 2021.

5.5.1. Generating JNI code

Generating the JNI calls for COBOL is one way to hide the complexity. You

could use Java classes with annotations to fill necessary information for the

generator, or you generate the COBOL as well as the Java classes via your own

domain-specific language.

The disadvantage of this method is, you generate many artifacts that you have

to manage. If you want to, for example, change something in your generated

code, you would have to keep track of all your generated applications with JNI

calls, generate your new code, and test it.

5.5.2. Framework

Another way to hide complexity is to write some framework code to take the

complexity from the programmers.

The biggest challenge doing this is the mapping of the COBOL copybooks and

the Java objects. The best solution in this case is to model the data types and

generate copybooks, Java objects, and the associated mapper.

Figure 23. Generating JNI calls for COBOL

86 Supercharge IMS Business Applications with Java

Figure 24. Framework

5.5.3. Using static methods

Use static methods instead of object methods because creating objects via JNI is

a more troublesome task than simply calling a static method.

As an example, we try to call a method with no parameters or return values.

What you now need to do first is the same procedure regardless of static or no

static (except that for the JNI service you need to call GetStaticMethodID or

GetMethodID), you need to get the references for the class and the method you

want to call via JNI services.

Now if you want to call the static method, congratulations-- you have

everything you need. Just use the JNI service CallStatic<type>Method with the

right references, and the method will be executed. In the following example,

<type> is replaced with Void because there is no return value.

Call CallStaticVoidMethod

Using By Value JNIEnvPtr

Class-Ref

Static-Method-Ref

If you don’t want to call the static method, then you need some additional

work. First you need to create an object from the class. An object is created

when you call the constructor from this specific class. To call the constructor

you have to get the reference via JNI service GetMethodID with the method

name “<init>” and the right signature.

Move '<init>' To Method-Name

* No parameters for constructor => (),

* return value always V => void

Move '()V' To Signature

* Now convert from EBCDIC to UTF-8

…

© Copyright IBM Corporation 2021.

87 © Copyright IBM Corporation 2021.

Call GetMethodID

Using By Value JNIEnvPtr

Class-Ref

Method-Name-UTF8-Ptr

Signature-UTF8-Ptr

returning Constructor-Ref

When you have the constructor you have to create a new object with the NewObject service,

which needs the constructor and the parameters.

Call NewObject

Using By Value JNIEnvPtr

Class-Ref

Constructor-Ref

returning Local-Object-Ref

* Add constructor parameters here if needed

After these steps you can finally call the method by using the JNI service

Call<type>Method (just like the Call<type>StaticMethod, here we replace <type>

with Void).

Call CallVoidMethod

Using By Value JNIEnvPtr

Object-Ref

Method-Ref

Call NewGlobalRef

Using By Value JNIEnvPtr

Local-Object-Ref

Returning Object-Ref

…

Call DeleteLocalRef

Using By Value JNIEnvPtr

Local-Object-Ref

Note: If you want to use your Object again you should make it global via the JNI

service NewGlobalRef and remove the local reference with DeleteLocalRef

because local references are freed after the return of the native method.

88 Supercharge IMS Business Applications with Java

5.6. Connecting Java and PL/I

The connection between PL/I and Java is a bit different compared to COBOL.

There is no implicit attachment to the JVM, so some of the things that the

COBOL run time does need to be coded explicitly by the PL/I programmer.

The main difference for PL/I in comparison to COBOL is that PL/I distinguishes

between main and sub modules. Since the JVM in IMS regions is brought up as

part of a CEEPIPI environment, only PL/I subs are allowed in JVM-enabled

IMS dependent regions. This applies also to the “main” program.

This means that current PL/I main module will fail to execute in an IMS region

that is configured to include a JVM. On the other hand, “main” PL/I programs

that are compiled as subroutine modules will fail to execute in an IMS region

without the JVM. The LE enclave will be built by the application and therefore

is required to be a PL/I main module.

5.7. Examples

This section contains all the examples discussed in this chapter. Each example

includes a COBOL program, a Java program, and the commands to compile,

link, and run the programs.

5.7.1. Example 1: “Hello world” from COBOL

The following is a simple COBOL program that prints “Hello from COBOL “.

helloTest.cbl

Process pgmname(longmixed),lib,dll,thread

IDENTIFICATION DIVISION.

PROGRAM-ID. "Java_HelloTest_printHello" is recursive.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 ENV-PTR USAGE POINTER.

01 OBJECT-REF PIC S9(9) BINARY.

PROCEDURE DIVISION USING BY VALUE ENV-PTR

OBJECT-REF.

Display " >> Hello from COBOL ".

GOBACK.

HelloTest.java
public class HelloTest

{

public native void printHello();

© Copyright IBM Corporation 2021.

89 © Copyright IBM Corporation 2021.

public static void main(String argv[]) throws Exception

{

System.loadLibrary("Hello");

HelloTest newHelloTest = new HelloTest();

newHelloTest.printHello();

return;

}

}

The COBOL program is compiled and linked as follows, where a typical

installation path for COBOL is /usr/lpp/cobol and a typical installation

path for Java is /usr/lpp/java Replace with your own paths for your

environment.

5.7.2. Example 2: Java calling procedural COBOL with JNI service calls

(USS)

stringTest.cbl

Process pgmname(longmixed),lib,dll,thread

IDENTIFICATION DIVISION.

PROGRAM-ID. "Java_StringTest_printStrings" is recursive.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

DATA DIVISION.

Local-storage section.

01 I pic s9(9) binary.

01 P pointer.

01 SAelement pic s9(9) binary.

01 SAelementlen pic s9(9) binary.

01 Sbuffer pic X(50) .

/usr/lpp/cobol/bin/cob2 -c -qdll,thread helloTest.cbl

/usr/lpp/cobol/bin/cob2 -bdll -o libHello.so helloTest.o

/usr/lpp/java/IBM/J7.1/bin/j9vm/libjvm.x /usr/lpp/cobol/lib/igzcjava.x

helloTest.cbl

/usr/lpp/java/IBM/J7.1/bin/javac HelloTest.java

/usr/lpp/java/IBM/J7.1/bin/java -Djava.library.path=. HelloTest

90 Supercharge IMS Business Applications with Java

01 rc Pic s9(9) Comp-5.

LINKAGE SECTION.

01 SA PIC S9(9) BINARY.

01 SAlen pic s9(9) binary. 01 ENV-PTR USAGE POINTER.

01 OBJECT-REF PIC S9(9) BINARY.

COPY JNI SUPPRESS.

PROCEDURE DIVISION USING BY VALUE ENV-PTR //two JNI 'hidden' parms

 OBJECT-REF

 SA

 RETURNING SAlen.

Set address of JNIEnv to ENV-PTR

Set address of JNINativeInterface to JNIEnv

Call GetArrayLength using by value ENV-PTR SA

 returning SAlen

Display " >> COBOL method entered array len: " SAlen

Perform varying I from 0 by 1 until I = SAlen

 Call GetObjectArrayElement

 using by value ENV-PTR SA I

 returning SAelement

 Call "GetStringPlatformLength"

 using by value ENV-PTR

 SAelement

 address of SAelementlen

 0

 returning rc

Display "Returned from GetStringPlatformLength"

If rc Not = zero Then

Display "Error occurred retrieving len of jstring object"

Stop run

Else

Display "The length of returned string is:"

SAelementlen

End-if

Call "GetStringPlatform"

© Copyright IBM Corporation 2021.

91 © Copyright IBM Corporation 2021.

using by value ENV-PTR

SAelement

address of Sbuffer

length of Sbuffer

0

Display Sbuffer(1:SAelementlen)

End-perform

.

GOBACK.

StringTest.java

class StringTest

{

static {

System.loadLibrary("StringTest");

}

static native int printStrings(java.lang.String[] SA);

public static void main(String argv[]) throws Exception

{

int i;

String[] a = new String[3];

a[0] = "John";

a[1] = "White";

a[2] = "1234567890";

StringTest st = new StringTest();

i = StringTest.printStrings(a);

System.out.println("Number of elements printStrings read:" +i);

return;

}

}

The COBOL program is compiled and linked as follows, where a typical

installation path for COBOL is /usr/lpp/cobol and a typical installation

path for Java is /usr/lpp/java Replace with your own paths for your

environment.

/usr/lpp/cobol/bin/cob2 -c -qdll,thread -I /usr/lpp/cobol/include

stringTest.cbl

92 Supercharge IMS Business Applications with Java

5.7.3. Example 3: Java calling OO COBOL with class definition (USS)

TSTJNI.cbl

cbl dll,thread,lib,pgmname(longmixed)

Identification division.

Class-id. TSTJNI inherits Base.

Environment Division.

Configuration section.

Repository.

Class Base is "java.lang.Object"

Class stringArray is "jobjectArray:java.lang.String"

Class jstring is "java.lang.String"

Class TSTClass is "TSTJNI".

Identification Division.

Factory.

Procedure division.

Identification Division.

Method-id. "foo".

Data division.

Local-storage section.

01 I pic s9(9) binary.

01 P pointer.

01 SAelement object reference jstring.

01 SAelementlen pic s9(9) binary.

01 Sbuffer pic X(50) .

01 rc Pic s9(9) Comp-5.

Linkage section.

01 SA object reference stringArray.

01 SAlen pic s9(9) binary.

/usr/lpp/cobol/bin/cob2 -bdll -o libStringTest.so stringTest.o

/usr/lpp/java/IBM/J7.1/bin/j9vm/libjvm.x /usr/lpp/cobol/lib/igzcjava.x

-I /usr/lpp/cobol/include stringTest.cbl

/usr/lpp/java/IBM/J7.1/bin/javac StringTest.java

/usr/lpp/java/IBM/J7.1/bin/java -Djava.library.path=. StringTest

COPY JNI.

© Copyright IBM Corporation 2021.

93 © Copyright IBM Corporation 2021.

Procedure division using by value SA

returning SAlen.

Set address of JNIEnv to JNIEnvPtr

Set address of JNINativeInterface to JNIEnv

Call GetArrayLength using by value JNIEnvPtr SA

returning SAlen

Display " >> COBOL method entered array len: " SAlen

Perform varying I from 0 by 1 until I = SAlen

Call GetObjectArrayElement

using by value JNIEnvPtr SA I

returning SAelement

Call "GetStringPlatformLength"

using by value JNIEnvPtr

SAelement

address of SAelementlen

0

returning rc

Display "Returned from GetStringPlatformLength"

If rc Not = zero Then

Display "Error occurred retrieving len of jstring object"

Stop run

Else

Display "The length of returned string is:"

SAelementlen

End-if

Call "GetStringPlatform"

using by value JNIEnvPtr

SAelement

address of Sbuffer

length of Sbuffer

0

Display Sbuffer(1:SAelementlen)

End-perform

.

End method "foo".

End factory.

End class TSTJNI.

94 Supercharge IMS Business Applications with Java

CallingCobol.java

class CallingCobol

{

public static void main(String argv[]) throws Exception

{

int i;

String[] a = new String[3];

a[0] = "John";

a[1] = "White";

a[2] = "1234567890";

System.out.println("In Java main, before calling cobol");

i = TSTJNI.foo(a);

System.out.println("Number of elements foo read:" + i);

System.out.println("In Java main, after calling cobol.");

return;

}

}

The COBOL program is compiled and linked as follows, where a typical

installation path for COBOL is /usr/lpp/cobol and a typical installation

path for Java is /usr/lpp/java Replace with your own paths for your

environment.

/usr/lpp/cobol/bin/cob2 -c -qdll,thread -I /usr/lpp/cobol/include

TSTJNI.cbl

/usr/lpp/cobol/bin/cob2 -bdll -o libTSTJNI.so TSTJNI.o

/usr/lpp/java/IBM/J7.1/bin/j9vm/libjvm.x /usr/lpp/cobol/lib/igzcjava.x

-I /usr/lpp/cobol/include TSTJNI.cbl

/usr/lpp/java/IBM/J7.1/bin/javac TSTJNI.java

/usr/lpp/java/IBM/J7.1/bin/javac CallingCobol.java

/usr/lpp/java/IBM/J7.1/bin/java -Djava.library.path=. CallingCobol

© Copyright IBM Corporation 2021.

95 © Copyright IBM Corporation 2021.

5.7.4. Example 4: OO COBOL application invoking Java using INVOKE

(USS)

helloTest.cbl

Process thread,pgmname(longmixed)

IDENTIFICATION DIVISION.

PROGRAM-ID. "HELLOWORLD" is recursive.

*

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. RM-COBOL.

OBJECT-COMPUTER. RM-COBOL.

Repository.

Class HelloJ is "HelloJ".

DATA DIVISION.

FILE SECTION.

PROCEDURE DIVISION.

MAIN-LOGIC SECTION.

BEGIN.

DISPLAY " " .

INVOKE HelloJ "sayHello".

DISPLAY "Hello world!".

STOP RUN.

MAIN-LOGIC-EXIT.

EXIT.

HelloJ.java

class HelloJ {

public static void sayHello() {

System.out.println("Hello World, from Java!");

}

}

The COBOL program is compiled and linked as follows, where a typical

installation path for COBOL is /usr/lpp/cobol and a typical installation

path for Java is /usr/lpp/java. Replace with your own paths for your

environment.

/usr/lpp/cobol/bin/cob2 -c -qthread,dll helloTest.cbl

96 Supercharge IMS Business Applications with Java

5.7.5. Example 5: Java calling procedural COBOL (MVS)

//TSTJNI JOB ,

// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,REGION=100M,

// NOTIFY=&SYSUID

//*

// SET COBPRFX='SHARE.IGY410'

// SET LIBPRFX='CEE'

//*

//COMPILE EXEC PGM=IGYCRCTL,

// PARM='RENT,PGMN(LM),DLL,EXPORTALL'

//SYSLIN DD DSNAME=IBARON.REDBOOK.OBJECT(TSTJNI),DISP=SHR

//SYSLIB DD DSN=IBARON.REDBOOK.SOURCE,DISP=SHR

//JNI copy book location

//SYSPRINT DD SYSOUT=*

//STEPLIB DD DSN=&COBPRFX..SIGYCOMP,DISP=SHR

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSIN DD *

Process dll,thread,lib,pgmname(longmixed)

/usr/lpp/cobol/bin/cob2 -bdll helloTest.cbl -o hello

/usr/lpp/java/IBM/J7.1/bin/j9vm/libjvm.x

/usr/lpp/cobol/lib/igzcjava.x -I /usr/lpp/cobol/include

/usr/lpp/java/IBM/J7.1/bin/javac HelloJ.java

export _CEE_RUNOPTS="XPLINK(ON)"

export

LIBPATH=/usr/lpp/java/IBM/J7.1/bin:/usr/lpp/java/IBM/J7.1/bin/classic:

$LIBPATH

export CLASSPATH=<path to Class>:$CLASSPATH

© Copyright IBM Corporation 2021.

97 © Copyright IBM Corporation 2021.

IDENTIFICATION DIVISION.

PROGRAM-ID. "Java_Hello_dis" is recursive.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

COPY JNI.

01 ENV-PTR USAGE POINTER.

01 OBJECT-REF PIC S9(9) BINARY.

PROCEDURE DIVISION USING BY VALUE ENV-PTR

OBJECT-REF.

DISPLAY "Hello from COBOL".

GOBACK.

/*

//LKED EXEC PGM=IEWL,

// PARM='RENT,LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)'

//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR

// DD DSN=&LIBPRFX..SCEELKEX,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//OBJMOD DD DSN=IBARON.REDBOOK.OBJECT,DISP=SHR

//SYSLMOD DD PATH='/u/ibaron/sandbox/Redbook/JavaCobol/libTSTJNI.so',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIWUSR,SIRGRP)

//SYSLIN DD *

INCLUDE OBJMOD(TSTJNI)

INCLUDE '/usr/lpp/java/IBM/J7.1/bin/classic/libjvm.x'

INCLUDE '/usr/lpp/cobol/igy410/lib/igzcjava.x'

Hello.java

class Hello {

static {

System.loadLibrary("TSTJNI");

}

static native void dis();

98 Supercharge IMS Business Applications with Java

 public static void main(String[] args) {

Hello hello = new Hello();

hello.dis();

}

}

The Java program is compiled and run as follows, where a typical installation

path for Java is /usr/lpp/java Replace with your own path for your

environment.

5.7.6. Example 6: Java calling OO COBOL with class definition (MVS)

//TSTJNI JOB ,

// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,REGION=100M,

// NOTIFY=&SYSUID

//*

// SET COBPRFX='SHARE.IGY410'

// SET LIBPRFX='CEE'

//*

//COMPILE EXEC PGM=IGYCRCTL,

// PARM='SIZE(5000K)'

//SYSLIN DD DSNAME=IBARON.REDBOOK.OBJECT(TSTJNI),DISP=SHR

//SYSLIB DD DSN=IBARON.REDBOOK.SOURCE,DISP=SHR

//SYSPRINT DD SYSOUT=*

//STEPLIB DD DSN=&COBPRFX..SIGYCOMP,DISP=SHR

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

// DD DSN=IBARON.REDBOOK.SOURCE,DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSJAVA DD PATH='/u/ibaron/sandbox/Redbook/JavaCobol/TSTClass.java',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU,

/usr/lpp/java/IBM/J7.1/bin/javac Hello.java

/usr/lpp/java/IBM/J7.1/bin/java -Djava.library.path=. Hello

© Copyright IBM Corporation 2021.

99 © Copyright IBM Corporation 2021.

// FILEDATA=TEXT

//SYSIN DD *

cbl dll,thread,lib,pgmname(longmixed)

Identification division.

Class-id. TSTClass inherits Base.

Environment Division.

Configuration section.

Repository.

Class Base is "java.lang.Object"

Class stringArray is "jobjectArray:java.lang.String"

Class jstring is "java.lang.String"

Class TSTClass is "TSTClass".

Identification Division.

Factory.

Procedure division.

*

Identification Division.

Method-id. "foo".

Data division.

Local-storage section.

01 I pic s9(9) binary.

01 P pointer.

01 SAelement object reference jstring.

01 SAelementlen pic s9(9) binary.

01 Sbuffer pic X(50) .

01 rc Pic s9(9) Comp-5.

Linkage section.

01 SA object reference stringArray.

01 SAlen pic s9(9) binary.

Copy "JNI" suppress.

Procedure division using by value SA

returning SAlen.

Set address of JNIEnv to JNIEnvPtr

Set address of JNINativeInterface to JNIEnv

Call GetArrayLength using by value JNIEnvPtr SA

returning SAlen

Display " >> COBOL method entered array len: " SAlen

Perform varying I from 0 by 1 until I = SAlen

Call GetObjectArrayElement

using by value JNIEnvPtr SA I

returning SAelement

100 Supercharge IMS Business Applications with Java

Call "GetStringPlatformLength"

using by value JNIEnvPtr

SAelement

address of SAelementlen

0

returning rc

Display "Returned from GetStringPlatformLength"

If rc Not = zero Then

Display "Error occurred retrieving len of jstring object"

Stop run

Else

Display "The length of returned string is:"

SAelementlen

End-if

Call "GetStringPlatform"

using by value JNIEnvPtr

SAelement

address of Sbuffer

length of Sbuffer

0

Display Sbuffer(1:SAelementlen)

End-perform

.

End method "foo".

End factory.

End class TSTClass.

/*

//LKED EXEC PGM=IEWL,PARM='RENT,LIST,LET,DYNAM(DLL),CASE(MIXED)'

//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR

// DD DSN=&LIBPRFX..SCEELKEX,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//OBJMOD DD DSN=IBARON.REDBOOK.OBJECT,DISP=SHR

//SYSLMOD DD PATH='/u/ibaron/sandbox/Redbook/libTSTClass.so',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIWUSR,SIRGRP)

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSDEFSD DD DUMMY

//SYSLIN DD *

INCLUDE OBJMOD(TSTJNI)

© Copyright IBM Corporation 2021.

101 © Copyright IBM Corporation 2021.

INCLUDE '/usr/lpp/java/IBM/J7.0/bin/classic/libjvm.x'

INCLUDE '/usr/lpp/cobol/igy410/lib/igzcjava.x'

CallingCobol.java

class CallingCobol

{

public static void main(String argv[]) throws Exception

{

int i;

String[] a = new String[3];

a[0] = "John";

a[1] = "White";

a[2] = "1234567890";

System.out.println("In Java main, before calling cobol");

i = TSTClass.foo(a);

System.out.println("Number of elements foo read:" + i);

System.out.println("In Java main, after calling cobol.");

return;

}

}

Submit job on MVS. Two files are generated on the USS: TSTClass.java and
libTSTClass.so

5.7.7. Example 7: COBOL invoking Java via INVOKE (MVS)

//TSTHELLO JOB ,

// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,REGION=0M,

// NOTIFY=&SYSUID

//*

// SET COBPRFX='SHARE.IGY410'

// SET LIBPRFX='CEE'

//*

//COMPILE EXEC PGM=IGYCRCTL,

/usr/lpp/java/IBM/J7.1/bin/javac CallingCobol.java

/usr/lpp/java/IBM/J7.1/bin/javac TSTClass.java

/usr/lpp/java/IBM/J7.1/bin/java -Djava.library.path=. CallingCobol

102 Supercharge IMS Business Applications with Java

// PARM='SIZE(5000K),LIB'

//SYSLIN DD DSNAME=IBARON.REDBOOK.OBJECT(TSTHELLO),DISP=SHR

//SYSPRINT DD SYSOUT=*

//STEPLIB DD DSN=&COBPRFX..SIGYCOMP,DISP=SHR

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSIN DD *

cbl dll,thread,lib,pgmname(longmixed)

Identification division.

Program-id. "TSTHELLO" recursive.

Environment division.

Configuration section.

Repository.

Class HelloJ is "HelloJ".

Data Division.

Procedure division.

Display "COBOL program TSTHELLO entered"

Invoke HelloJ "sayHello"

Display "Returned from java sayHello to TSTHELLO"

Goback.

End program "TSTHELLO".

/*

//LKED EXEC PGM=IEWL,PARM='RENT,LIST,DYNAM(DLL),CASE(MIXED)'

//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR

// DD DSN=&LIBPRFX..SCEELKEX,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//OBJMOD DD DSN=IBARON.REDBOOK.OBJECT,DISP=SHR

//SYSLMOD DD DSNAME=IBARON.REDBOOK.GOSET(TSTHELLO),DISP=SHR

//SYSDEFSD DD DUMMY

//SYSLIN DD *

INCLUDE OBJMOD(TSTHELLO)

INCLUDE '/usr/lpp/java/IBM/J8.0/bin/classic/libjvm.x'

INCLUDE '/usr/lpp/cobol/igy410/lib/igzcjava.x'

/*

//GO EXEC PGM=TSTHELLO,

// PARM=' /ENVAR("_CEE_ENVFILE=/u/ibaron/sandbox/ENV"),

// XPLINK(ON) POSIX(ON)'

© Copyright IBM Corporation 2021.

103 © Copyright IBM Corporation 2021.

//STEPLIB DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

// DD DSN=IBARON.REDBOOK.GOSET,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD DUMMY

//JAVAOUT DD PATH='/u/ibaron/sandbox/javaout',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP)

//JAVAERR DD PATH='/u/ibaron/sandbox/javaerr',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP)

HelloJ.java

class HelloJ {

public static void sayHello() {

System.out.println("Hello World, from Java!");

}

}

1. Compile the Java program.

2. Prepare the ENV file

• PATH=/usr/lpp/java/IBM/J8.0/bin:$PATH

• LIBPATH=/usr/lpp/java/IBM/J8.0/bin:/usr/lpp/java/IBM/J8.0/bin/cl assic

• CLASSPATH=.:<PathToClass>

3. Submit job in MVS.

5.8. Summary

In this chapter we described how JNI defines the infrastructure between Java

and LE- compliant languages, and discussed the main considerations in the

context of Java and COBOL interoperability in z/OS. Main considerations were

discussed for both Enterprise COBOL and native COBOL. Specific COBOL

and Java examples are provided to demonstrate the techniques.

Interoperability with PL/I was also discussed.

/usr/lpp/java/IBM/J7.1/bin/javac HelloJ.java

104 Supercharge IMS Business Applications with Java

5.9. Related resources

The following list provides useful resources that provide more detailed

description of the topics that are covered in this section.

1. The Java Native Interface

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html

2. Enterprise COBOL for z/OS Programming Guide: Developing object-

oriented programs - Communicating with Java methods:

p607, https://www.ibm.com/docs/en/SS6SG3_4.2.0/com.ibm.entcobol.

doc_4.2/PGandLR/igy3pg50.pdf

3. Enterprise COBOL for z/OS Programming Guide: Developing object-

oriented programs - Writing object-oriented programs:

p561, https://www.ibm.com/docs/en/SS6SG3_4.2.0/com.ibm.entcobol.

doc_4.2/PGandLR/igy3pg50.pdf

4. z/OS 2.1.0 - z/OS MVS- z/OS Batch Runtime Planning and User's Guide -

Application structure and build considerations for COBOL and Java -DLL

considerations for COBOL and Java considerations for COBOL and Java:

https://www.ibm.com/docs/en/zos/2.1.0?topic=java-dll-considerations-cobol

5. New Ways of Running Batch Applications on z/OS: Vol 4 IBM IMS Section

2.9.1: How Java can call COBOL and vice versa

http://www.redbooks.ibm.com/redbooks/pdfs/sg248119.pdf

6. Enterprise COBOL for z/OS Programming Guide: Compiling and

debugging your program - Compiling, linking, and running OO

applications:

https://www.ibm.com/docs/en/cobol-zos/6.1?topic=program-compiling-

linking-running-oo-applications

7. Enterprise COBOL for z/OS 4.2.0 - Programming Guide -Compiling and

debugging your program - Compiling, linking, and running OO

applications - Compiling, linking, and running OO applications under z/OS

UNIX:

https://www.ibm.com/docs/en/cobol-zos/6.1?topic=clroa-compiling-linking-

running-oo-applications-under-zos-unix

8. Enterprise COBOL for z/OS 6.1.0 - Programming Guide -Compiling and

debugging your program - Compiling, linking, and running OO

applications - Compiling, linking, and running OO applications in JCL or

TSO/E:

https://www.ibm.com/docs/en/cobol-zos/6.1?topic=clroa-compiling-linking-

running-oo-applications-in-jcl-tsoe

http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://www.ibm.com/docs/en/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/PGandLR/igy3pg50.pdf
https://www.ibm.com/docs/en/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/PGandLR/igy3pg50.pdf
https://www.ibm.com/docs/en/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/PGandLR/igy3pg50.pdf
https://www.ibm.com/docs/en/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/PGandLR/igy3pg50.pdf
https://www.ibm.com/docs/en/zos/2.1.0?topic=java-dll-considerations-cobol
http://www.redbooks.ibm.com/redbooks/pdfs/sg248119.pdf
https://www.ibm.com/docs/en/cobol-zos/6.1?topic=program-compiling-linking-running-oo-applications
https://www.ibm.com/docs/en/cobol-zos/6.1?topic=program-compiling-linking-running-oo-applications
https://www.ibm.com/docs/en/cobol-zos/6.1?topic=clroa-compiling-linking-running-oo-applications-under-zos-unix
https://www.ibm.com/docs/en/cobol-zos/6.1?topic=clroa-compiling-linking-running-oo-applications-under-zos-unix
https://www.ibm.com/docs/en/cobol-zos/6.1?topic=clroa-compiling-linking-running-oo-applications-in-jcl-tsoe
https://www.ibm.com/docs/en/cobol-zos/6.1?topic=clroa-compiling-linking-running-oo-applications-in-jcl-tsoe

© Copyright IBM Corporation 2021.

105 © Copyright IBM Corporation 2021.

9. The Java Native Interface: Programming Guide and Specification. Sheng Liang,

1999.

10. Essential JNI: Java Native Interface. Rob Gordon, 1998.

106 Supercharge IMS Business Applications with Java

 C H A P T E R 6

6. Infrastructure, setup, and scenarios

In this chapter, we will cover the configuration considerations and provide

configuration examples for existing workloads when IMS™ regions are JVM-

enabled to allow for Java interoperability. We will examine and share our

experience about JVM setup in the IBM® Language Environment®, JVM

configuration for a classic IMS TM environment, setup for external access to

Db2® data, and related scenarios when IMS Java™ Dependent Region resource

adapter and WebSphere® optimized local adapters are involved.

6.1. Environment description

First we will consider the environment restrictions and requirements for

language interoperability to run in z/OS®.

6.1.1. JVM startup

Unlike in the initial implementations of JVMs in IMS regions, at the time of this

writing, the JVM is fully initialized after starting the IMS dependent region.

There is no difference if it’s a Java Dependent Region (JBP, JMP), BMP or MPP

region. The penalty for the first transaction to suffer from the JVM startup is

not applicable anymore.

6.1.2. JVM persistency and abend penalties

The JVM in IMS regions is made persistent, which implies a couple of

considerations, such as a persistent Language Environment (LE) enclave and a

possible need for CANCEL_PGM to simulate the LE enclave termination when

an IMS schedule (after processing one or more IMS messages) ends.

Be aware of the impact abends, rollbacks, and pseudo abends have in a JVM-

enabled IMS region. If an IMS abend (including pseudo-abends such as IMS

U0777 abends) occurs, the LE enclave is terminated and, as a result, the JVM is

destroyed and needs to be rebuilt. If there are workloads that frequently create

abends or pseudo-abends in the IMS message processing regions, there will be

a lot more CPU usage than before, because the JVM is initialized after the

abend.

6.1.3. Language Environment restrictions for Java interoperability

There are some known restrictions for COBOL/Java interoperability. One is

that it requires the IBM LE setting XPLINK(ON). But AMODE24 and VS

© Copyright IBM Corporation 2021.

107 © Copyright IBM Corporation 2021.

COBOL modules will not work with XPLINK(ON) and produces a runtime

exception including a message.

An example of the message for a call to VS COBOL module with XPLINK(ON)

is the IGZ0186S message:

IGZ0186S An attempt was made to run a VS COBOL II program with
the run-time option XPLINK(ON). The program name is program-
name.

At one client site, the conversion of the remaining 30 AMODE24 assembler

modules to AMODE31 took about two weeks. They did no separate testing,

since testing of the AMODE31 assembler routines was part of the tests for

COBOL and Java interoperability.

In order to support languages other than COBOL, such as PL/I or Assembler, it

is required to have a LE compatible version of PL/I and/or a LE

compatible/enabled assembler routine as the caller (this is true only for the

module that is invoked by IMS to run the transaction; usually IMS PSB name is

the module name). IMS has added a new diagnostic message in case there are

non-LE compliant routines:

DFS650E NON-LE COMPLIANT PROGRAM IN PERSISTENT JVM ENVIRONMENT,
NAME=entry_point

This message should help you find the module that is not LE-compliant. In

most cases the entry_point is equal to the module name.

It can be very difficult to find occurrences of old modules still used in

production, especially if the modules are object code only and the source is not

available in the shop. Some modules have been used for decades. An easy way

(but perhaps not the best way) is to enable the JVM in the IMS regions in the

test environment and wait for abends. A customer, for example, had an

assembler stub that linked to every IMS Enterprise COBOL main program,

which caused the actual LE-enabled module to be treated as non-LE program

by the run time. This basically shows that getting rid of these inheritances from

old days might not be as easy as it sounds.

Please note, that in some cases also ISV or IBM tools that use the IDENTIFY

function cause the message above, but only show the name of the entry point.

There was a case where a checkpoint restart tool with its main method caused

the DFS650E message above, but the name shown was the name of the main

IMS program, which was LE complaint. It was necessary to look at the dump to

discover, that the checkpoint restart tool in use was the causer of that problem.

To restate the above, non-LE modules can be used in that environment, but

they cannot be the first module to be called by IMS. The reason for this is, that

CEEPIPI is used to make the JVM persistent and reusable across IMS

108 Supercharge IMS Business Applications with Java

transactions and schedules, the CEEPIPI subfunction add_sub is used to add

and start a module. add_sub is only supported with LE-compliant modules

and subroutines. Since COBOL modules compiled by Enterprise COBOL

compiler are both MAIN and SUB, there is nothing to do on the COBOL side.

However, since LE-compliant assembler and PL/I modules can only be either

MAIN or SUB, they are required to be SUBs in Java interoperable

environments that use CEEPIPI, such as IMS regions. In addition the calling

chain is for example LE COBOL -> non LE assembler and return to the caller

works, but the call sequence LE COBOL -> non LE assembler -> LE COBOL

will not work in the JVM environment.

If library routine retention (LRR) is used, then XPLINK(ON) requires to use the

CEELRRXP version in the IMS PREINIT PROCLIB member. Otherwise the IMS

region will abend.

The LE ERRCOUNT parameter needs to be set to 0. The reason is, that the JVM

for z/OS sometimes generates TRAP instructions, which cause the LE error

count to increase and cause abends when the error count is reached.

See also the following doc on JVM restrictions:

• Known issues and limitations, IBM SDK, Java Technology Edition V7:

https://www.ibm.com/docs/en/sdk-java-technology/7?topic=reference-

known-issues-limitations

• Known issues and limitations, IBM SDK, Java Technology Edition V8:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=support-

known-issues-limitations

Since LE only supports interoperability or dynamic calls to 31-bit modules, a

64-bit JVM cannot be used as at the time of this writing. When setting up the

environment paths, you should made sure that the paths point to a 31-bit JVM

on z/OS.

In addition, it is not possible to dynamically call a DLL at all, if it was already

dynamically called by a program which was not compiled with the DLL

compiler option (which also happens when called from non-LE or no DLL

assembler routines). You would get an IGZ0176S error, indicating that a call

from a COBOL program compiled with the DLL compiler option failed because

the program program-name was previously dynamically called by a COBOL

program compiled without the DLL compiler option.

Program mask (from Processor Status word) and exception handling bits might

be different if additional languages (a COBOL DLL also treated as new

language, Java is written in C so this also applies here) are used. For example, if

an existing COBOL calls Assembler scenario is moved to a JVM environment

and enhanced with JNI calls this will likely cause the program mask to be

different. In this case the result was as follows:

https://www.ibm.com/docs/en/sdk-java-technology/7?topic=reference-known-issues-limitations
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=reference-known-issues-limitations
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=support-known-issues-limitations
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=support-known-issues-limitations

© Copyright IBM Corporation 2021.

109 © Copyright IBM Corporation 2021.

1. Language Environment neither saves nor restores the program mask setting

across calls to Language Environment services or calls within the Language

Environment.

https://www.ibm.com/docs/en/zos/2.1.0?topic=environment-program-

mask-conventions

2. The call from NODLL Cobol to the DLL COBOL was treated as new

language (causing IGZCFCC calling CEEBADDM service to add a new

member).

The maskable program exceptions are enabled for all member languages

represented in the root or main load module during Language

Environment initialization. Each member language informs Language

Environment of its program mask requirements, and Language

Environment ORs all of the requirements together and sets the program

mask during initialization. During termination, the program mask is reset

by Language Environment to its value upon entry to Language

Environment initialization.

3. While the enclave is running, the program mask is influenced by the

callable service, CEE3SPM, and by members' requirements that are newly-

added as a result of a dynamic call or fetch; this is handled by the CWI

service CEE3ADDM.

4. If a program expects to work with a specific program mask, it needs to set it

to the values it requires and reset it back, because of 1. This basically means,

in an unlucky mix or with new compilers/languages, the program mask

might be different than it was before.

6.1.4. Abend and error handling

If JVM is present in an IMS region, by default it registers many signal handlers.

You need to make sure that all variables or structures are initialized in

subroutines that are called many times during the lifetime of the IMS region

containing the JVM. The LE enclave in JVM-enabled environments is persistent

and only destroyed at abends or exceptions. We have seen badly initialized

routines that resulted in rare 0C4 abends without a trace to help identify what

caused them.

If there is a 0C9 (numeric exception) in the COBOL code, by default there is no

0C9 abend. Rather, there is a language environment abend such as U4038, or an

IMS user abend such as a U101. When an error like this occurs, in order to turn

that behavior off and produce a 0C9 abend message, the JVM requires a switch

that disables the registration of POSIX handlers by the JVM.

This implementation also ensures that IMS abends such as 0476 and 0711 make

it to the user without the LE and JVM handlers catching it. This allows the

continued use of the abend and error handler mechanisms that are in place or

used without the JVM being present.

https://www.ibm.com/docs/en/zos/2.1.0?topic=environment-program-mask-conventions
https://www.ibm.com/docs/en/zos/2.1.0?topic=environment-program-mask-conventions

110 Supercharge IMS Business Applications with Java

Tools such as IBM Fault Analyzer can be used to display the root cause of the

error, which is not easy for some LE abends.

Some clients have registered custom LE abend handlers, and if the use in

mixed mode environments needs to be continued, then turning off the POSIX

handler registration by the JVM is preferred. A recent IMS PTF that handles

these types of errors was changed to better suit the needs of a production

environment. Make sure you have the latest IMS maintenance applied.

Refer to the manuals for IBM 31-bit SDK for z/OS, Java Technology Edition, V8

and the SDK Guide at this link:

https://www.ibm.com/support/pages/java-sdk-products-zos#v8

6.1.5. z/OS memory configuration (IEFUSI)

JVMs require a large amount of storage. Limitations such as 32 MB will lead to

JVMs not being able to start up at all or to fail. A JVM requires at least 128 MB

to run basic Java code, so make sure that the address spaces where the JVMs

run get enough main storage.

In one case where a customer ran the JVM in the production environment, JNI

programming errors led to out-of-storage conditions in the JVM- enabled IMS

regions. These regions then failed a normal region termination (MEMTERM)

and entered a state where they could not be stopped by using IMS or z/OS

commands, including FORCE. The main reason for this problem was that the

modules required for doing the region termination could not be loaded into

private storage.

A PMR that was opened to address this issue suggested to implement an

IEFUSI exit to reserve 512k storage below 16MB to allow the region termination

modules to be loaded. While this increased the chances for the successful

region termination it is not a guarantee for region termination.

The recommendations from the PMR are shown in Example 2-15. It is

suggested to use as a base the sample IEFUSI exit provided in member IEEUSI

in SYS1.SAMPLIB and replace the statements.

Sample IEFUSI exit

From:

Important: In order to get an abend with the real abend cause, for example 0C9, it is

required to turn off the JVM’s standard registration of POSIX handlers. This is done

by using the -Xsignal:userConditionHandler-percolate JVM command

line option.

https://www.ibm.com/support/pages/java-sdk-products-zos#v8

© Copyright IBM Corporation 2021.

111 © Copyright IBM Corporation 2021.

 USING REGION,R07 ADDRESSABILITY FOR REGION DSECT

 OI REGFLAGS,X'80' SET THAT IEFUSI CONTROLS

REGIONS

 TM 0(R08),X'80' V=R JOB?

 BO EXIT YES USE DEFAULT VALUES

 L R10,REGSZREQ GET REQUESTED REGION SIZE

 LTR R10,R10 IS IT ZERO

 BZ EXIT YES USE DEFAULT VALUES

 AL R10,N64K ADD N64K TO REGION SIZE BELOW

 ST R10,REGLIMB SET IT AS REGION LIMIT BELOW

 MVC REGSIZB,REGSZREQ SET REGION BELOW

 MVC REGSIZA,REG32MB SET REGION SIZE ABOVE TO 32MB

To:

 MVC REGLIMA,REG32MB SET REGION LIMIT ABOVE TO 32MB

By using the sample below:

 USING REGION,R07 ADDRESSABILITY FOR REGION DSECT

 OI REGFLAGS,X'80' SET THAT IEFUSI CONTROLS
REGIONS

 TM 0(R08),X'80' V=R JOB?

 BO EXIT YES USE DEFAULT VALUES

 L R09,16(R0) Obtain CVT Pointer

 L R11,560(R09) Obtain GDA Pointer

 L R09,164(R11) Obtain Region Size below

 L R11,REDUCLIM Load subtract value

 SR R09,R11 Subtract by 512KB

 L R10,REGSZREQ GET REQUESTED REGION SIZE

 CR R09,R10 Is Requested size bigger

 BNH CHNGLIM Yes do the change

 LTR R10,R10 IS IT ZERO

 BZ CHNGLIM Yes do the change

 B EXIT Go to exit no change to req

 CHNGLIM ST R9,REGLIMB Store REGLIMB to Parmlist

 SR R09,R11 Subtract another 512KB

 ST R09,REGSIZB Store REGSIZB to Parmlist

 *

And then add in the constants section the 512KB subtraction value:

REDUCLIM DC X'00080000'

There is also a change of the REGION SIZE BELOW value because this value is

being used for programs that do a variable getmain and tend to use all available

storage.

112 Supercharge IMS Business Applications with Java

For an example you can refer to the informational APAR II05315 with

the title: ABEND878 OR ABEND40D DURING SMP/E WITH

REGION=0M OR REGION=0K OR REGION=32M WITH NO IEFUSI.

6.1.6. Is CANCEL_PGM required?

Default setting when Java is enabled is CANCEL_PGM=N. Ensure that you

understand what this means for your applications! Cancel is done on a unit of

recovery level. For an explanation, refer to the section “Unit of work and unit

of recovery”.

For default IMS processing, the LE enclave is created after the IMS application

program is started. Depending on the IMS program configuration such as the

PROCLIM parameter, the IMS application program processes one or more IMS

messages and then either remains loaded in wait status (WAIT for Input/WFI,

or Pseudo Wait for Input/PWFI=Y), or terminates immediately after the last

IMS message was processed by giving back the QC status code. In both cases,

IMS expects the application to end the loop-around GU call and to terminate

(with GOBACK not EXIT). For the first case, the enclave termination occurs

right after the transaction ends with GOBACK; for WFI/PWFI, it occurs when

IMS decides to schedule a different transaction/module to the IMS region.

Enclave termination will clean up everything and force a fresh module load for

the next IMS unit of work.

Due to the fact that the JVM needs to be made persistent, when Java is enabled,

the LE enclave (as a carrier for the JVM) has to stay up for the lifetime of the

IMS region. This forces somehow a reusable environment, even if the code or

modules are not reusable or working storage is not initialized. This basically

means that the module needs to function correctly if working storage is not

initialized to zeros when the routine is entered. So with the JVM there is only a

single IMS schedule or unit of work for the whole lifetime of the JVM.

Different artifacts might also behave differently (for example, memory

management for COBOL, Java, and JNI). Some common rules and generic

settings do apply if you mix high-level languages with Java in Java-enabled

regions.

With Java enablement, the region lifecycle changes (long-living LE enclave). In

particular, the following constructs would survive program termination and

need to be considered:

Disclaimer: Since only some basic function testing has been performed for the code sample

above, extensive testing should be done to the complete EXIT functionality before it is used in a

production environment. The sample is provided as is.

© Copyright IBM Corporation 2021.

113 © Copyright IBM Corporation 2021.

• Working storage. The storage lives as long as the LE enclave is up. Release

of storage is enabled in CANCEL_PGM=Y environments, but only for

cancelled modules.

• COBOL externals. COBOL externals live as long as the LE enclave is up.

• LE Heap storage requests. LE Heap storage requested by CEEGTST service

lives as long as the LE enclave does. Check your application-based heap

management for possible leaks. They would likely surface in this

environment.

• Allocated storage through other methods, e.g. from stateless Assembler

routines that do STORAGE OBTAIN and save it in COBOL working

storage. Release of Storage is not enabled in CANCEL_PGM=Y

environments, it will cause memory leaks there, since the COBOL working

storage is released, without freeing the storage obtained in Assembler.

There is no exit available to release this storage.

In addition CANCEL_PGM=Y also means that all modules that have been

loaded during the last IMS transaction execution go through COBOL CANCEL

processing (basically an IGZCXCC call). IMS code implements an LE load exit

to track all loaded modules. This also means that if you bypass LE load with

Assembler programs that do LOAD EP=MODULE, those modules will not be

cancelled. The CANCEL progress is driven at syncpoint time. This could be

during GU processing. It is not allowed to do COBOL CANCEL on active

modules. A subroutine that implements the GU IOPCB meets that requirement,

because it is in the active calling chain during syncpoint (MAIN -> GUIOPCB

module). This module needs to be added to the CANCEL_PGM EXCLUDE list

in order to avoid the U4038 abend that is accompanied by an IGZ0032S error

message, which terminates the LE enclave.

The COBOL CANCEL statement will perform program cleanup before deleting

the load module from the virtual storage. In particular, it will:

• Release the load module from the running LE enclave.

• Close all open files that are internal to the program.

• Free all program class storage associated with the program, which includes

the program WORKING STORAGE, any internal control blocks, special

registers, and others. However, it will not free external data records that are

referenced by the program.

• Repeat the above program cleanup logic for all programs that are contained

within the load module.

• Delete the load module from the virtual storage.

The net effect of this is, if the same program is called again with the COBOL

CALL statement, the program will be entered in its initial state.

Please note that if modules with large working storage (e.g. 60M) are cancelled,

this can lead to Out of Memory conditions due to LE Heap fragmentation. In

114 Supercharge IMS Business Applications with Java

this case, consider using the FREE parameter instead of KEEP for the LE option

that defines the initial HEAP and the increments for expansion (HEAP option).

Basically there are the following Options (1M, 1M, KEEP,...), (100M, 1M,

KEEP,...), (1M, 100M, FREE,...), (1M, 100M, FREE,...) and (100M, 100M,

FREE,...). Current testing shows there are advantages starting with a large

initial Heap size and then increments that are freed (so use the FREE

parameter).

There are, however, some exceptions, with the following four reasons for why

a program will not get cancelled on a UOR level:

1. Program name is in the EXCLUDE list.

2. Program is active.

3. Transact PROCLIM is set to 0 or 1 (this check was added in APAR PI07418)

4. The program is a non-message driven BMP.

IMS preload is affected by CANCEL_PGM=Y. At cancel time, the module is

removed from the LE enclave and needs to be copied/loaded into the LE

enclave again on next usage/call. If there are programs that are frequently used

and if there are no other reasons for them to be cancelled (e.g. no initialization

of working storage), those modules should be added to the CANCEL_PGM

Exclude list in order to avoid cancellation and reload and the accompanied

I/Os. Enabling the CANCEL_PGM=Y environment should also be accompanied

by a review of I/Os and a possible move of libraries to the linklist in order to

exploit VLF/LLA to save I/Os.

Cancelling modules that aquire storage with other methods like explicit

getHeap, getMain or storage obtain requests can cause memory leaks, if the

modules are cancelled before the freeHeap, freeMain or storage release is

issued for that main memory area. Cancel PGM or enclave termination does

not free memory that was obtained via the storage or getmain macro.

6.1.7. Unit of work and unit of recovery

Basically, an IMS transaction is a unit of recovery and an IMS schedule is a unit

of work.

© Copyright IBM Corporation 2021.

115 © Copyright IBM Corporation 2021.

Figure 25. Unit of work and unit of recovery

The Cancel implementation in IMS is done at the unit of recovery level, so you

need to ensure that modules that are expected not to be canceled during the

IMS schedule (unit of work) are in the exclude list. An example would be a

subroutine that implements the GU to IOPCB and saves in the working storage

some values that are expected to survive the unit of recovery boundary.

6.2. IMS TM classic scenario

In this section we will look at the classic IMS TM scenario with BMP and MPP.

This section does not cover JMP and JBP.

To use Java in IMS, you need to configure two members in the IMS PROCLIB

data set for JVM configuration. To do so, start by collecting the information

required for your initial configuration.

6.2.1. Data to collect for the initial configuration

IMS needs the following information for applications that use Java. In order to

set up the configuration properly, gather the following information for your

environment:

• JAVA_HOME: Path to the ZFS directory containing a 31-bit Java SDK for

z/OS

• DB2_JDBC_HOME: Path to ZFS directory pointing to the DB2 JDBC

“QC“?

Yes

EXIT PROGRAM

GU IOPCB

ISRT IOPCB

Process message

GU IOPCB

Here ends the unit of recovery / CANCEL

Here ends the LE-Enclave / CANCEL

Loop

No

116 Supercharge IMS Business Applications with Java

libraries for the Db2 version and SMP/E maintenance level that IMS is

connected to. The path usually contains the version number and “jdbc”in

the name, such as /usr/lpp/db2/db2a10_jdbc

• IMS_JAVA_HOME: Path to ZFS directory pointing to the IMS TM and IMS

JDBC libraries for the IMS version and SMP/E maintenance level that is in

use. The path usually contains the version number and “imsjava” in the

name, such as /usr/lpp/ims/ims14/imsjava

• APP_HOME: Path to the ZFS directory that contains the Java libraries (.jar

files) that make up the application implementation or middleware classes.

• APP_JARnn: Names of the actual application .jar files. Unfortunately there

is no way to just specify a single directory; instead, it is required to

explicitly name all application .jar files in the JVM configuration.

In the following configuration sample, the bold placeholders enclosed in “< >”

are to be replaced with the actual values. At the time of this writing, there is no

feature available that allows to set those variables globally.

6.2.2. IMS JVM configuration

There are two members in the IMS PROCLIB data set that are required to be set

up:

• The environment member ENVIRON for the UNIX environment variables

• The JVM configuration member JVMOPMAS, which either directly

contains the JVM settings (with length limitations) or points to a ZFS file

that contains the JVM settings.

6.2.2.1. IMS JVM environment member

The IMS Message Region JCL points to this member by using the ENVIRON=

execute parameter. Attached is the sample contents:

Example: ENVIRON Member

PATH=/bin:<JAVA_HOME>/bin:.

LIBPATH=/lib:/usr/lib:>

<JAVA_HOME>/bin/classic:>

<JAVA_HOME>/bin/j9vm:>

<DB2_JDBC_HOME>/lib

DB2JCC_CONN_REUSE=Y

UMASK=002

*UMASK=000

*CANCEL_PGM=Y,EXCLUDE=EXCLUDE

*DEBUG=Y

*DB2JCC_ESAF_THREAD_NOTIFICATION=YES

*ESAF_SIGNON_ACEE=YES

_CEE_DMPTARG=/SYSTEM/tmp/IMS

© Copyright IBM Corporation 2021.

117 © Copyright IBM Corporation 2021.

TMPDIR=/SYSTEM/tmp

JAVA_DUMP_TDUMP_PATTERN=GAEBLER.JVMDUMP.%job.D%y%m%d.T%H%M%S

JAVA_DUMP_OPTS=ONANYSIGNAL(JAVADUMP,SYSDUMP,HEAPDUMP,CEEDUMP)

Comments start with an asterisk.

For more information about the IMS related options, such as CANCEL_PGM,

refer to the IMS docs:

https://www.ibm.com/docs/en/ims/15.2.0?topic=set-dfsjvmev-jvm-

environment-settings-member

In addition, for JVM dump specific environment options, refer to the JVM docs:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-

xdump#filefilename

The CANCEL_PGM setting is required only if there are modules that do not

initialize their working storage and rely on storage being zeroed out after

module load. This is already discussed earlier in “Is CANCEL_PGM required?”

section.

The UMASK setting is the mask for files created by the JVM, this includes logs

and the temporary files that the JVM creates for the shared class loader cache.

The default is UMASK=022 and as such the JVM creates files with permission

755. Since they are created with the userid that is active with the first use (first

transaction user), they usually lead to the fact, that they cannot be used by

other users. So UMASK can be set to 002 or 000, leading to file permissions of

775 or 777, which might be required to allow all users that run in that IMS

regions to write or access those log and temporary files.

6.2.2.2. IMS JVM configuration member

The IMS Message Region JCL points to this member by using the JVMOPMAS=

execute parameter. Below is the sample contents:

Sample JVMOPMAS member

-Xoptionsfile=/some/path/dfsjvmoptionsAPPx

In this example the configuration member just points to a file in ZFS.

One of the advantages of using a ZFS file is that a long classpath can be put

into a single line instead of having to concatenate the records from the IMS

PROCLIB. Furthermore, there is a limit on concatenation lengths, and the limit

can only be bypassed by using the ZFS file. Often times as Java is adopted and

integrated into an environment, the classpath is short and classpath length is

not a problem, but as soon as the classpath gets larger, you would need to

https://www.ibm.com/docs/en/ims/15.2.0?topic=set-dfsjvmev-jvm-environment-settings-member
https://www.ibm.com/docs/en/ims/15.2.0?topic=set-dfsjvmev-jvm-environment-settings-member
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xdump#filefilename
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-xdump#filefilename

118 Supercharge IMS Business Applications with Java

switch to a ZFS file. Therefore it is recommended to use the ZFS configuration

for Java options from the beginning.

6.2.2.3. Alternate Environment and JVM configuration with STDENV

Beginning with IMS V14 there is the choice to use a JVM configuration similar

to how the JZOS Java launcher defines environment variables and classpath.

The implementation is like this, that in case STDENV DD statement is present

in the IMS dependent region JCL and this IMS region is Java enabled through

the presence of a JVMOPMAS= and ENVIRON= parameter. The data from

STDENV DD input is read, a shell script is launched and executed and on

successful termination all present environment variables are taken as the input

to the IMS JVM launcher as if they were specified in the ENVIRON member.

Attached is an example of how the STDENV DD statement can possibly be

used:

Sample STDENV DD statement for IMS JVM configuration

//STDENV DD *

This is a shell script which configures variables

. /etc/profile

Customize below to match your installation:

JAVA_HOME - The location of the SDK

export JAVA_HOME=/local/java/J8.0

export PATH=/bin:"$äJAVA_HOMEü"/bin:

export LIBPATH=/lib:/usr/lib:"$äJAVA_HOMEü"/bin

export LIBPATH="$LIBPATH":"$äJAVA_HOMEü"/bin/classic

export LIBPATH="$LIBPATH":"$äJAVA_HOMEü"/bin/j9vm

export LIBPATH="$LIBPATH":/local/db2/db2a10_jdbc/lib

export LIBPATH="$LIBPATH":/local/ims/ims14/imsjava/lib

export LIBPATH="$LIBPATH":/local/mqm/V7R1M0/java/lib

#export JZOS_JVM_OPTIONS="$OPTS"

Add the JZOS alphaWorks jars to the classpath

#for i in "$äJZOSAW_HOMEü"/*.jar; do

#CLASSPATH="$CLASSPATH":"$i"

#done

#export CLASSPATH="$CLASSPATH":/u/gaebler/CJ01imsdb2.jar

Use this variable to supply additional arguments to main

#export JZOS_MAIN_ARGS=""

Configure JVM options

export IBM_JAVA_OPTIONS="-Xoptionsfile=/u/gaebler/dfsjvmoptions"

IMS Specific Options

export DB2JCC_CONN_REUSE=Y

© Copyright IBM Corporation 2021.

119 © Copyright IBM Corporation 2021.

Using this option allows to use other variables as part of the CLASSPATH or

LIBPATH which do not need to be explicitly specified.

6.2.2.4. IMS JVM configuration file

The JVMOPMAS configuration member might point to this file. Attached is the

sample contents:

Sample JVM options file pointed to by the JVMOPMAS Member

-Djava.class.path=<DB2_JAVA_HOME>/classes/db2jcc.jar:...

################ JVM Properties

################

-Xgcpolicy:gencon

-Xmx128M

-Xmso512k

-Xss256k

-Xms32M

-Xsignal:userConditionHandler=percolate

-Xnoagent

-Djzos.merge.sysout=true

Since this is a standard JVM on z/OS, all supported JVM options are allowed.

For more information refer to the Java documentation for z/OS:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-

specifying

As mentioned earlier, for the classpath it is required to specify and explicitly

name all application .jar files that are required and used by the application:

Sample Java classpath

-

Djava.class.path=<IMS_JAVA_HOME>/imsjava/imsudb.jar:<IMS_JAVA_HOME>/ims

java/imsutm.jar:

<DB2_JAVA_HOME>/classes/db2jcc.jar:<DB2_JAVA_HOME>/classes/db2jcc_javax

.jar:<DB2_JAVA_HOME>/classes/db2jcc_license_cisuz.jar:<APP_HOME>/APP_JA

R01.jar:<APP_HOME>/APP_JAR02.jar:<APP_HOME>/APP_JAR03.jar:<APP_HOME>/AP

P_JARnn.jar

Furthermore, all -D options that might be required can be specified here, such

as, but not limited to, the options shown in the following sample.

Sample JVM Options File that were in use

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-specifying
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=options-specifying

120 Supercharge IMS Business Applications with Java

#-javaagent:/u/gaebler/imsstartup.jar

#-verbose

#-Dfile.encoding=UTF-8

#-verbose:gc

#-Xverbosegclog:/tmp/IMS/gclog.txt

#-Ddb2.jcc.override.currentSchema=DENIS

#-Ddb2.jcc.propertiesFile=/u/gaebler/DB2JccConfiguration.properties

#-

Ddb2.jcc.pdqProperties=captureMode(ON),executionMode(DYNAMIC),pureQuery

Xml(capture.pdqxml)

#-

Ddb2.jcc.pdqProperties=captureMode(OFF),executionMode(STATIC),allowDyna

micSQL(FALSE),pureQueryXml(capture.pdqxml)

-Xmaxf0.8

-Xminf0.3

-Xmx256M

#-Ddb2.jcc.traceLevel=-1

#-Ddb2.jcc.traceFileAppend=false

#-Ddb2.jcc.traceFile=/tmp/imsdb2jcctrace.trc

#-Xmn3M

#-Xmo13M

profiling

#-agentlib:JPIBootLoader=JPIAgent:server=enabled;CGProf

#-agentlib:JPIBootLoader=JPIAgent:server=enabled;HeapProf

-Xmso512k

-Xss256k

-Xms32M

-Xsignal:userConditionHandler=percolate

#Xtrace:maximal={j9prt.422-423,j9scar.67-68,j9scar.141-

142,j9scar.159,j9scar.201-202,j9prt.423-424},output=/tmp/signal.trc

#-Xdump:java+heap+snap:events=vmstart+user

#-Xdebug

#-Xdump:heap:events=user,opts=PHD

#Xdump:system+java+heap+snap:events=user,opts=PHD,request=exclusive+pre

pwalk+compact

#-Xnoagent

#-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=7778

#-

Xrunjdwp:transport=dt_socket,server=n,suspend=n,address=172.17.36.87:80

01

#** Other JVM Settings

-Xcodecache10M

-Xshareclasses:name=cobolims1

-Xscmx64M

-Xscminaot16M

-Xhealthcenter:port=9020

© Copyright IBM Corporation 2021.

121 © Copyright IBM Corporation 2021.

#-Xjit:optlevel=scorching

#-Xgc:splitheap

#-Xgcthreads4

#-Xdump:java+heap+system:events=throw,filter=java/lang/OutOfMemoryError

#-verbose:gc

#-Xverbosegclog:/tmp/verboseGC.log

#-Xgcpolicy:optavgpause

-Xgcpolicy:gencon

#-Xtgc:parallel

#-Xcheck:jni:all,trace,pedantic

#-Xcheck:jni:all,nowarn,noadvice

#-Xcheck:jni:trace

#-Xtrace:trigger=tpnid{j9jvmti.69,ceedump},iprint=j9jvmti.69

 #-Xtrace:maximal={j9vm,mt},methods={*.*()},iprint=mt

#-Xtrace:trigger=tpnid{j9vm.138-141,jstacktrace},iprint=j9vm.138-141

#-verbose:jni

-Djzos.merge.sysout=true

#-agentlib:hprof=cpu=times

#-XsamplingExpirationTime600

-Djavax.management.builder.initial=

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.port=1099

Unfortunately there is limited space here to cover all of the options. Most of the

options are used for tracing or debugging purposes; others are for function

enablement (remote debugging, profiling, JConsole, Health Center, etc.) or

product configuration (pureQuery, JVM performance options, etc.). In most

cases, using your favorite search engine should help you uncover the purpose

of the settings. In some cases, tracing for PMRs involves specific -Xtrace

settings, so they should only be used or switched on when directed to do so by

IBM Software Support.

6.2.3. IMS JVM related Language Environment configuration

Bringing the JVM into the IMS environment causes implicit setting of some

z/OS Language Environment options that cannot be turned off. Those are, for

Note: The classpath can be defined in multiple places, but it is recommended to place

it in the IMS JVM configuration file when it is used or the IMS JVM configuration

member.

122 Supercharge IMS Business Applications with Java

example, POSIX(ON) and XPLINK(ON), and XPLINK(ON) in turn forces

ALL31(ON).

Those settings lead to most of the restrictions that are mentioned earlier (such

as VS COBOL II modules not working or AMODE24 routines not working).

More information about Language Environment options can be found in the

“Language Environment restrictions for Java interoperability” section.

6.3. Db2, ESAF connection pooling, and plans

Db2 access from IMS is discussed here.

When Java comes into play in IMS regions, it basically uses the same physical

database connection and required resources to connect to Db2 as traditional

languages do. This means a Db2 plan with the same name of the IMS PSB is

required, unless a resource translation table (RTT) module is used to map the

PSB into a Db2 plan in other ways. A Db2 plan defines the Db2 resources that

an application accesses. Each IMS application is associated with a plan name.

Since Java uses dynamic SQL, the JDBC dynamic SQL packages SYSxyznn are

required to be bound into the existing plan as well. Unfortunately, Db2 for

z/OS documentation does not provide details about the packages, but the Db2

for Linux, Unix and Windows has a reference:

https://www.ibm.com/docs/en/db2/11.5?topic=environment-bind-files-

package-names

Some more information about the number of statements that can be supported

and the number of packages and how to generate it can be found in the Db2 for

z/OS documentation for the Db2Binder utility:

https://www.ibm.com/docs/en/db2-for-zos/12?topic=installation-db2binder-

utility

As a starter, for the test and development environment with little JDBC usage,

only the SYSSTAT, SYSLH200 and SYSLN200 packages were needed (with the

NULLID qualifier unless other current schema or collections were used and

set).

IMS uses External Subsystem Attach Facility (ESAF) to use two-phase

Note: Since Db2 JDBC just uses the existing physical Db2 connection, it is not allowed

to create more than one JDBC Connection object in Java (subsequent getConnection

calls will fail). It is recommended to create a Java singleton class that creates the

Connection object if it is null or marked as closed and otherwise returns the existing

JDBC Connection object.

https://www.ibm.com/docs/en/db2/11.5?topic=environment-bind-files-package-names
https://www.ibm.com/docs/en/db2/11.5?topic=environment-bind-files-package-names

© Copyright IBM Corporation 2021.

123 © Copyright IBM Corporation 2021.

commit capable access to Db2. When adding Java to IMS, the same

configuration is used (SSM member in IMS PROCLIB). By default IMS uses

the DSNMIN10 module, which basically means that a CREATE THREAD

plus SIGNON and TERMINATE THREAD are driven for every processed

IMS message (unit of recovery), unless special options are used

(MODE=MULT). This is a huge overhead compared to the way Java EE

application servers use database connections, but this is due to the fact that

the RACF user id is bound to the Db2 connection for security reasons.

As mentioned earlier, the Db2 JDBC driver uses the same physical connection

to Db2 as traditional workloads (e.g. COBOL, PL/I) do. The Db2 JDBC driver

just creates Java objects that provide logical access for Java to the existing

physical connection. In order to conform to the JDBC standard, the physical

connection has no callback into the Java objects. This means that if the physical

connection changes, such as change of user id, the Java Db2 JDBC objects are

not implicitly notified of the change. Therefore, IMS code has to call a reset

method from the Db2 JDBC driver to inform the JDBC driver during sync point

processing. This also causes the Java Db2 JDBC Connection object not to be

reusable from the Java language. Since all SQL statements that are created by

the Db2 JDBC driver are reset at TERMINATE THREAD time, all statement

objects that were created based on the Java Db2 JDBC Connection object are

invalidated, and the Db2 JDBC Connection object is marked as closed (it will

not be null). This process again is a huge overhead.

The calling of the reset method of the Db2 JDBC driver is also known to cause

some vendor monitor applications to report increased CPU usage as part of the

IMS sync point processing or GU calls. Some monitor applications also report

the CPU usage for the JDBC reset operation as part of the next transaction

(which starts before the GU) and as such do not provide correct chargeback

numbers.

6.3.1. Db2 connection pooling for IMS

There is an enhancement for IMS to pool connections to Db2 and to avoid

doing the CREATE THREAD and TERMINATE THREAD for every IMS

transaction (UOR). This enhancement will add JDBC Type 4-like connection

pooling to the IMS TM environment.

In order to enable this functionality, the required maintenance (See the section

Recommended Maintenance based on experiences in the Problem

Determination Chapter) need to be applied and the DSNMIN20 module has to

be used in the IMS subsystem configuration member.

DSNMIN20 provides Db2 pooling support for Db2 IMS attachment facility

threads. The pool contains a maximum of 50 pool entries for the threads. Each

pool entry is keyed off of a Db2 plan name plus the active user name. The pool

124 Supercharge IMS Business Applications with Java

is scoped at the IMS dependent region level.

If Db2 JDBC is to be used, the Db2 JDBC driver also has to be notified about

connection pooling. This requires the new parameter

DB2JCC_ESAF_THREAD_NOTIFICATION=YES to be added to the JVM

environment configuration member. The Db2 connection pooling function also

adds the reuse capability to the Db2 JDBC Java objects, which in turn also

provides additional CPU savings in the mixed Java environment in IMS.

There are a couple of settings to configure. The maxStatements property in

com.ibm.db2.jcc.DB2BaseDataSource should be set to a value greater than 0,

and optionally set the KEEPDYNAMIC option to yes to use the DataSource

interface for the JDBC connection to Db2. Check the product documentation for

the settings.

Moreover, since the connection pool is now provided by the Db2 JDBC driver,

using the singleton Java class that returns the same Db2 JDBC Connection

object is no longer a good choice. Rather, every time a Db2 connection is

needed, the DataSource getConnection() method should be called.

6.3.2. Sample IMS setup for using Db2 in a mixed mode environment

The subsystem member (SSM) member needs to set up in the IMS PROCLIB

data set for IMS to initiate contact with the external subsystem.

Sample SSM member (no pooling)

SST=DB2,SSN=DB10,LIT=SYS1,ESMT=DSNMIN10,REO=R,CRC=-

Next step is to add the Db2 loadlibs to the IMS Control region.

Excerpt from IMS Control region for Db2 libraries

//******** EXTERNAL SUBSYSTEM STATEMENTS *************

//*

//* USER MAY OPTIONALLY ADD THE DFSESL DD CARD

//* FOR EXTERNAL SUBSYSTEM CONNECTION.

//*

//DFSESL DD DISP=SHR,DSN=SYS1.IMS.V14.DYNALLOC

// DD DISP=SHR,DSN=SYS1.IMS.V14.SDFSRESL

// DD DISP=SHR,DSN=DSN1010.SDSNEXIT

// DD DISP=SHR,DSN=SYS1.DSN.V100.SDSNLOAD

//*

Last but not least, the SSM member name needs to be added to the IMS

dependent region JCL.

Excerpt from IMS dependent region member

© Copyright IBM Corporation 2021.

125 © Copyright IBM Corporation 2021.

//*

//IVP11M11 EXEC PROC=DFSMPR,TIME=(1440),

// NBA=6,

// OBA=5,

// SSM=SSM, SUBSYS CONNECTION

// SOUT='*', SYSOUT CLASS

// CL1=015, TRANSACTION CLASS 1

// TLIM=10, MPR TERMINATION LIMIT

// SOD=, SPIN-OFF DUMP CLASS

// IMSID=IMSA, IMSID OF IMS CONTROL REGION

// PREINIT=DC, PROCLIB DFSINTXX MEMBER

// PRLD=DC, PROCLIB DFSMPLXX MEMBER

// PWFI=Y, PSEUDO=WFI

// JVMOPMAS=DFSJVMMC, PSEUDO=WFI

// ENVIRON=DFSJVMEV PSEUDO=WFI

//*

For completeness, the Db2 loadlibs need to be added to the IMS dependent

region procedure.

Excerpt from IMS dependent region procedure member

//STEPLIB DD DSN=SYS1.IMS.V14.&SYS2.DYNALLOC,DISP=SHR

// DD DSN=GAEBLER.FU508T.PGMLIB,DISP=SHR

//* DD DSN=SYS1.IMS.V14.&SYS2.PGMLIB.PDSE,DISP=SHR

// DD DSN=SYS1.IMS.V14.&SYS2.SDFSRESL,DISP=SHR

// DD DSN=SYS1.IMS.V14.&SYS2.SDFSJLIB,DISP=SHR

// DD DISP=SHR,DSN=DSN1010.SDSNEXIT

// DD DISP=SHR,DSN=SYS1.DSN.V100.SDSNLOAD

// DD DISP=SHR,DSN=SYS1.DSN.V100.SDSNLOD2

// DD DISP=SHR,DSN=SYS1.SCEERUN

// DD DISP=SHR,DSN=SYS1.SCEERUN2

//DFSESL DD DISP=SHR,DSN=SYS1.IMS.V14.&SYS2.DYNALLOC

// DD DISP=SHR,DSN=SYS1.IMS.V14.&SYS2.SDFSRESL

// DD DISP=SHR,DSN=DSN1010.SDSNEXIT

// DD DISP=SHR,DSN=SYS1.DSN.V100.SDSNLOAD

// DD DISP=SHR,DSN=SYS1.DSN.V100.SDSNLOD2

// DD DISP=SHR,DSN=SYS1.SCEERUN

// DD DISP=SHR,DSN=SYS1.SCEERUN2

//*

Make sure to check that the IMS procedures were updated for use of the

ENVIRON and JVMOPMAS parameters.

126 Supercharge IMS Business Applications with Java

6.4. IMS Connect

For some customers, IMS Connect has become the main entry point of calling

IMS transactions. While this gateway is not directly related to Java

interoperability in IMS, there are some options that affect processing in IMS

and in combination with access to Db2, especially the OTMA security options.

6.4.1. Security related to Db2 access and USS permissions

Enabling Java in IMS allows JDBC calls out of your IMS transactions. Typically

one would use static SQL from COBOL with package-based authorization.

JDBC, however, behaves different. Users need to be granted to a package that

enables JDBC as such. Further authorization is done by checking the

authenticated user within Db2 if she has access to the requested resource. If the

transaction comes in through OTMA and IMS Connect, it is necessary that a

reusable access control environment element (ACEE) is set up to enable

secondary authorization in Db2, such as based on the connected RACF group.

When this function is enabled, IMS will internally force OTMA security level to

FULL for any dependent region with a persistent JVM environment and with

defined ESAF/Db2 capability. This allows you to keep /SECURE OTMA

CHECK enabled for the IMS system.

Also, the reusable ACEE feature adds the APPL= parameter to the RACROUTE

calls issued by OTMA security (DFSYRAC0). The APPL= parameter is now set

to the IMSID instead of blanks. This would allow the RACF admin to limit

RACF LOGON statistics for that APPL to whatever is appropriate instead of

syncing RACF DB for every incoming OTMA request. Syncing RACF DB for

every incoming OTMA request has caused serious IMS throughput

degradation in some customer environments.

The reusable ACEE feature forces OTMA security level FULL in Db2/ESAF

capable persistent JVM regions only (i.e. Java-enabled regions with ENVIRON=

and JVMOPMAS= startup parameters specified).

• The implementation here is that the ACEE will be cloned into the IMS

dependent region by IMS and made available to Db2 in field TCBSENV so

that Db2 does not have to issue a RACROUTE call to create the ACEE. Db2

should just use the ACEE in field TCBSENV.

• We want to allow administrators to specify daily statisticss for applications

which include APPL= on their verify request by using the APPL profile

• To save I/O to the RACF database, specify RACF-INITSTATS(DAILY)

anywhere in the APPLDATA field of appropriate APPL class profile.

o If APPLDATA has RACF-INITSTATS(DAILY) and this is not the user’s

first logon of the day, skip recording statistics.

o If no RACF-INITSTATS(DAILY) in APPLDATA, record statistics as

directed by the SETROPTS INITSTATS setting.

© Copyright IBM Corporation 2021.

127 © Copyright IBM Corporation 2021.

• The APPL class must be active and RACLIST’ed to have consistent

results due to ACEE caching.

o RACLIST is the current recommendation for the APPL class.

• OTMA Full forces ACEE of the dependent region to change for

authorization reasons. This situation can result in RACF violations, because

system resource is now accessible without started task (STC) identities. For

example, this situation requires the userid that runs the IMS transaction to

be allowed to write dump datasets or to be allowed to read .jar files. In

addition, log files are created with a permission of 755 by the first userid

that uses them. As a consequence, no other user can write to it. This

restriction was removed with the UMASK parameter added by PTF for

APAR PI63800.

• Java dumps are created by default with the high-level qualifier (HLQ) of

the active user in the format of

%uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S. You might use the

JAVA_DUMP_TDUMP_PATTERN option to specify the appropriate HLQs

for the dumps.

In Db2, at a minimum, the default Db2 security exit must be active in order to

support the SecAutId mechanism.

6.5. Language Environment

There are several requirements by the JVM for options to be used in Language

Environment, such as storage tuning (given the fact that the JVM needs

something around 100MB of heap size to even come up) and side effects such

as the trap instructions generated during the JVM JIT compilation, which cause

abends when the LE ERRCOUNT is set to something other than 0.

See the known issues and limitations in the documentation:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=support-known-

issues-limitations

Below is a list of options that was used in a customer production environment:

Sample CEEOPTS DD statement with LE options

//CEEOPTS DD *

ANYHEAP(2M,1M,ANY,KEEP)

HEAP(80M,4M,ANY,KEEP,1M,512K)

HEAPPOOLS(ON,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,

10,0,10,0,10,0,10,0,10)

STACK(64K,64K,ANY,KEEP,512K,256K)

STORAGE(00,NONE,NONE,8K)

THREADSTACK(OFF,64K,16K,ANY,KEEP,128K,128K)

TERMTHDACT(UAIMM)

ERRCOUNT(0)

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=support-known-issues-limitations
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=support-known-issues-limitations

128 Supercharge IMS Business Applications with Java

RPTOPTS(OFF)

RPTSTG(OFF)

//*

Please note this is an example for a CANCEL_PGM=Y environment, where

STORAGE(00,…) causes the storage to be zeroed out on a get heap request,

which is usually not required if working storage and local storage were written

to have initial values. For those environments the STORAGE option should be

set to STORAGE(NONE,…).

For more information about the meaning of those options refer to the z/OS

Language Environment documentation:

https://www.ibm.com/docs/en/zos/2.4.0?topic=options-using-language-

environment-runtime

The options XPLINK(ON) and POSIX(ON) are set by the IMS runtime and do

not need to be specified.

6.6. z/OS UNIX System Services (USS)

For USS, some of the parameters in the BPXPRMxx member of the

SYS1.PARMLIB data set affect successful Java operation by imposing limits on

resources that are required. We will not discuss them here, but make sure you

check the following documentation:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=systems-bpxprm-

settings-zos-only

6.6.1. Threads and tasks

While IMS work is single-threaded, when adding the JVM to an IMS region,

there will be two task control blocks (TCBs) in the address space. In addition,

since the JVM uses POSIX threads and they need to be dubbed into the UNIX

environment, z/OS monitors will show those threads and there is a small CPU

overhead for managing those threads.

Some dump management tools will also struggle with dumps created in this

environment, so check carefully if existing dump handling and debugging

tools for traditional languages provides the necessary functionality when JVM

is added to IMS regions.

6.7. IMS DB and DL/I

There is no special requirements for IMS DB access and IMS DB calls in a

mixed-language environment. The only thing to watch out for is the fact that

when switching between Java and the traditional language, such as DL/I, the

https://www.ibm.com/docs/en/zos/2.4.0?topic=options-using-language-environment-runtime
https://www.ibm.com/docs/en/zos/2.4.0?topic=options-using-language-environment-runtime
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=systems-bpxprm-settings-zos-only
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=systems-bpxprm-settings-zos-only

© Copyright IBM Corporation 2021.

129 © Copyright IBM Corporation 2021.

other language might change or have changed the database position. So

never rely on the DB position from the previous method invocation when

accessing IMS DB.

For more information about IMS DB access from Java refer to:

https://www.ibm.com/docs/en/ims/15.2.0?topic=drivers-programming-ims-

universal-jdbc-driver

6.8. Db2 Java stored procedures

By creating Db2 Java stored procedures and calling them from traditional IMS

applications, there is a possibility to mix COBOL and Java. This scenario is a

viable option when there is just a small portion of Java code that needs to be

executed, which doesn’t justify the resource and environment setup work

required to add a JVM to IMS regions.

It is still necessary to marshall between the copybook and its byte array

representation that is passed to the Java code. This could be done by using

simple SQL types, Strings or byte arrays.

Until Db2 V11 or if the 31-bit JVM is used for the Db2 Java stored procedures,

NUMTCB is equal to the number of JVMs in the z/OS Workload Manger-

managed stored procedure address space. With Db2 V11 and using the 64-bit

JVM, a single JVM can be used to exploit worker threads.

6.9. IMS synchronous program switch

With IMS Version 13 and later, there is a feature called IMS synchronous

program switch, which allows an IMS transaction to call another IMS

transaction (such as a Java-only IMS transaction running in a JMP region) and

wait until that transaction finishes before continuing with the traditional

language.

Refer to the IMS documentation for more information:

https://www.ibm.com/docs/en/ims/15.2.0?topic=data-implementing-

synchronous-callout-function

There is still the requirement to marshall between the copybook and its byte

array representation that is passed to the Java code.

6.10. IMS Java Dependent Region resource adapter

When interfacing with Java, all the functionality from the IMS Java Dependent

resource adapter, such as Java wrappers for most of the IMS DB, TM and

System calls, can be used in a mixed environment with Java.

https://www.ibm.com/docs/en/ims/15.2.0?topic=drivers-programming-ims-universal-jdbc-driver
https://www.ibm.com/docs/en/ims/15.2.0?topic=drivers-programming-ims-universal-jdbc-driver
https://www.ibm.com/docs/en/ims/15.2.0?topic=data-implementing-synchronous-callout-function
https://www.ibm.com/docs/en/ims/15.2.0?topic=data-implementing-synchronous-callout-function

130 Supercharge IMS Business Applications with Java

However, please note that accessing a PCB from other languages might

change the values associated with it, such as the destination for a modifiable

alternate PCB or positioning for an IMS DB PCB.

6.11. WebSphere Optimized Local Adapters

By using WebSphere Optimized Local Adapters (WOLA) and EJBs and calling

them from traditional IMS applications, there is also a possibility to mix

COBOL and Java. This scenario is a viable option if there is just a small portion

of Java code that needs to be executed, which doesn’t justify the resource and

environment setup work required to add a JVM to IMS regions. Furthermore,

this option is also the first choice in case the Java code requires a special

container with Java EE or EJB functionality because IMS is, from Java’s point of

view, just a J2SE container without Java EE capabilities.

There is still the requirement to marshall between the copybook and its byte

array representation that is passed to the Java code.

For more information, refer to the WOLA section in the architecture chapter.

6.12. Summary

In this chapter, we shared our experience from working with clients about

configuration considerations for IMS regions that are Java-enabled. Key

configuration requirements or potential pitfalls are also discussed for various

scenarios, from JVM setup in LE and in a classic IMS TM environment, to setup

for external access to Db2® data, and to scenarios when use of Db2 stored

procedures, IMS Java Dependent Region resource adapter, or WebSphere

Application Server is involved.

© Copyright IBM Corporation 2021.

131 © Copyright IBM Corporation 2021.

 C H A P T E R 7

7. Problem determination

IBM® provides a set of monitoring and diagnostic tools in IBM Support

Assistant to assist in the understanding, monitoring, and problem diagnosis of

applications and deployments for Java runtime environments.

IBM® Developer for z/OS, formerly known as IBM Rational® Developer for z

Systems (RDz), as well as IBM Rational Application Developer (RAD) have

an integrated Java™ debugging perspective that allows a developer to

connect to a remote JVM and do interactive debugging of the application.

The IMS™ Batch Terminal Simulator tool also supports IMS Java batch

applications (JBPs). Therefore, the debugging of DL/I calls is possible with the

same tool that has existed for traditional IMS batch applications. The new

version of IMS Batch Terminal Simulator has a new Eclipse-based graphical

user interface that allows for more integration, for example, when the Java code

is developed by using an Eclipse-based GUI.

For further details on IBM IMS Batch Terminal Simulator for z/OS refer to:

https://www.ibm.com/products/ims-batch-terminal-simulator

7.1. Gathering data

The key step to troubleshooting and determining the root cause of a problem is

data gathering. We will cover some commonly used tools that can help you

gather diagnostic data.

7.1.1. IBM Support Assistant

IBM Support Assistant is a web-based application that helps you gather,

organize, analyze, and diagnose issues with software. Additional tools can be

installed as plug-ins into IBM Support Assistant.

For more information about installing and using IBM Support Assistant, see

the documentation at:

https://www.ibm.com/docs/en/support-assistant/5.0.0?topic=start-overview

Please note that there is still the out of service IBM Support Assistant V4.1

available for download, which is a Java fat client application and can be used

and installed directly on a workstation and does not require a server. Users are

encouraged to adopt IBM Support Assistant V5 Team Server as a replacement

for the IBM Support Assistant V4 Workbench. The screenshots in this book are

from the V4 Workbench version.

https://www.ibm.com/products/ims-batch-terminal-simulator
https://www.ibm.com/docs/en/support-assistant/5.0.0?topic=start-overview

132 Supercharge IMS Business Applications with Java

The Health Center can be used as a diagnostic tool for applications running in

7.1.2. IBM Health Center

The Health Center can be used as a diagnostic tool for applications running in

the Java virtual machine (JVM). You can also use the Health Center to monitor

the JVM. For installation information, see: https://www.ibm.com/docs/en/mon-

diag-tools?topic=monitoring-diagnostic-tools-health-center

The configuration is simple. A port is defined in the JVM configuration, which

is then used by the Windows-based tool to connect to the JVM. One drawback

is the need for a different port for every IMS region. There is no management

console or variable support to achieve this, so the best way is for every IMS

Java region to have a separate configuration member that has a specific,

hardcoded port number.

The z/OS JVM parameter -Xhealthcenter is used to configure the port. Select

a port of choice and add this parameter to the Java configuration:

-Xhealthcenter:port=1982

The IMS region job log should then print this message:

UTE115: Trace buffer discarded. The count of discarded buffers
is printed at VM shutdown.

To connect from the Health Center to the port, the following steps are required:

● Install IBM Support Assistant Workbench

● Install and enable IBM Health Center plug-in

● Start IBM Support Assistant

● Launch activity: Analyze problem

● Select IBM Health Center

● Connect to the JVM of a specific IMS region

The first two steps can be skipped, when the Health Center is already installed.

The Health Center profiling view is displayed.

https://www.ibm.com/docs/en/mon-diag-tools?topic=monitoring-diagnostic-tools-health-center
https://www.ibm.com/docs/en/mon-diag-tools?topic=monitoring-diagnostic-tools-health-center

© Copyright IBM Corporation 2021.

133 © Copyright IBM Corporation 2021.

Figure 26. Health Center profiling view in IBM Support Assistant

7.1.3. IBM HeapAnalyzer

You can use IBM HeapAnalyzer to analyze heap memory leaks in Java

applications. Possible failures in that situation could be either S0D4 abends or

java.lang.OutOfMemoryError exceptions. You can download HeapAnalyzer

and find the instructions for how to use it in IBM Support at:

https://www.ibm.com/support/pages/ibm-heapanalyzer.

A heap dump in an IMS JVM-enabled environment can be generated with the

standard procedures for generating heap dumps in UNIX or z/OS

environments.

In order to do an analysis, it is required to generate a heap dump of the JVM

while the workload that is causing the problem is running.

Here are the steps:

1. Set the -Xdump option as shown in the following example.

Note: The Health Center is not a monitoring tool. It can only connect to and analyze

data from one JVM or one IMS region. There is no aggregation functionality available.

https://www.ibm.com/support/pages/ibm-heapanalyzer

134 Supercharge IMS Business Applications with Java

Example 3. Option to let create a heap dump in phd format by a user event

-Xdump:heap:events=user,opts=phd

2. In the environment member, add the option shown in the following example.

Example 4. Environment variable to be put into DFSJVMEV to enable Java heap dumps

IBM_HEAPDUMP=true

3. Use the kill -3 or kill -QUIT command followed by the process ID of the JVM

and a heap dump can be produced.

The PTF for APAR PM50971 prints the process ID (PID) for the JVM in the

IMS job log as shown in the following example.

Example 5. Sample output from the IMS job log printing the JVM PID

DFSJVM00:

DFSJVM00:

DFSJVM00:

-Xmaxf0.8

-Xminf0.3

-Xmx64M

DFSJVM00: -Xmso512k

DFSJVM00: -Xss256k

DFSJVM00: -Xms32M

DFSJVM00: -Xcodecache10M

DFSJVM00: -Xshareclasses:name=cobolims1

DFSJVM00: -Xscmx64M

DFSJVM00: -Xscminaot16M

DFSJVM00: +++

DFSJVM00: ++ End Contents of -Xoptionsfile ++

DFSJVM00: +++

DFSJVM00: JVM initialization started: Fri Apr 20 17:22:59.793 2012

DFSJVM00: JVM initialization complete: Fri Apr 20 17:23:00.118 2012

DFSJVM00: Process ID:::::::: PID =2175

DFSJVM00: Parent Process ID: PPID=1

DFSJVM00: Process Group ID:: PGID=2175

This makes it easy to send signals to the JVM with the kill command in

order to create heap dumps in the format required for the IBM

HeapAnalyzer.

4. Issue the kill -QUIT or kill -3 command with the PID from the IMS job log.

The messages shown in the following example will display in the IMS job

log. It indicates the successful creation of the PHD Heapdump file and other

diagnostic information.

Example 6. Output indicating the creation of a successful heap dump

JVMDUMP039I Processing dump event "user", detail "" at 2012/07/03

15:35:58 - please wait.

JVMDUMP032I JVM requested System dump using

© Copyright IBM Corporation 2021.

135 © Copyright IBM Corporation 2021.

'GAEBLER.JVM.TDUMP.CJTSTMPP.D120703.T153558' in response to an event

IEATDUMP in progress with options

SDATA=(LPA,GRSQ,LSQA,NUC,PSA,RGN,SQA,SUM,SWA,TRT)

IEATDUMP success for DSN='GAEBLER.JVM.TDUMP.CJTSTMPP.D120703.T153558'

JVMDUMP010I System dump written to

GAEBLER.JVM.TDUMP.CJTSTMPP.D120703.T153558

JVMDUMP032I JVM requested Heap dump using

'/u/gaebler/heapdump.20120703.153558..50334771.0003.phd' in response to

an event

JVMDUMP010I Heap dump written to

/u/gaebler/heapdump.20120703.153558.50334771.0003.phd

JVMDUMP032I JVM requested Java dump using

'/u/gaebler/javacore.20120703.153558.50334771.0004.txt' in response to

an event

JVMDUMP010I Java dump written to

/u/gaebler/javacore.20120703.153558.50334771.0004.txt' in response to

an

JVMDUMP013I Processed dump event "user", detail "".

5. The .phd file can now be downloaded in binary format and loaded into the

IBM HeapAnalyzer.

6. Start the IBM Support Assistant, and click Launch Activity -> Analyze

Problem, select HeapAnalyzer and click Launch.

7. Select a heap dump file in the local file system by clicking Browse and

choose the file under the Remote Artifact Browse tab as shown in the

following figure.

8. Select the heap dump file from the directory where the binary download of

the .phd file was stored, and select the .phd file.

9. Click Next and the analysis will start. The IBM HeapAnalyzer will start and

display a summary view of the data gathered.

Figure 27. Select the heap dump pdf file location

136 Supercharge IMS Business Applications with Java

Figure 28. Summary view of IBM HeapAnalyzer

This example shows how a JVM running attached to IMS can be analyzed with

standard tooling just like any other JVM.

7.1.4. Rational Agent Controller, Rational Profiling, and HealthCenter

plugin

Starting with Rational Application Developer V9, both trace-based profiling

and sample-based profiling are available. Both require the activation of JVM

tool interface-based (JVMTI-based) libraries on z/OS and use the Rational

Agent Controller address space on z/OS. The benefit is that not every IMS

region requires its own port (like with using -Xhealthcenter parameter);

instead, Rational Agent Controller has only one port and allows you to select

the JVMs based on the process id (please remember that the process id of the

JVM is printed in the IMS job log after the program is started).

For information on how to download and install the Rational Agent Controller

V9, refer to: https://www.ibm.com/support/pages/node/313945

Please note that it is required to start the Java class in the IMS region by running

the program as either batch or online program. It is not possible to start the

program or the Java class execution from the Rational Application Developer

Wizards.

https://www.ibm.com/support/pages/node/313945

© Copyright IBM Corporation 2021.

137 © Copyright IBM Corporation 2021.

The profiling is also available from IBM Developer for z/OS, but it requires

the license and the installation version that includes Rational Application

Developer.

7.1.5. JConsole

Another way to perform diagnostics is to use JConsole. It is a free graphical

tool that is available with the standard JDKs that allows you to monitor the

behavior of Java applications. The JDK provides the functionality to allow

JConsole to connect to it.

JConsole is a utility that is part of the standard JDKs on distributed platforms.

However, the server part that delivers the information is also implemented in

the JDK for z/OS.

7.1.5.1. Starting and running JConsole:

JConsole can be activated by adding the JVM options to the JVM configuration

in the IMS region. JVM options required to activate JConsole are as follows:

-Djavax.management.builder.initial=

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.port=1099

When JVM is active, switch to the workstation. Look for the Java home

directory of a Java SDK (the JRE does not come with JConsole) and go to the

<JAVA_HOME>/bin directory. In that directory locate an executable called

jconsole.exe or jconsole on UNIX platforms. It can be invoked by double

clicking it or it can be invoked from the command line. Once it is invoked, a

window opens for a new connection.

7.1.5.2. JConsole New Connection wizard

You need to enter the host name or IP address and the port number that was

defined in the IMS regions JVM properties. The port should not be shared

between multiple IMS regions. Each region requires its own port. Username

and password are not required here because the security has been disabled

with the configuration settings mentioned earlier. New versions try to connect

using SSL, but when fail they ask to switch to the non-secured connection and

it works.

After the connection is finished, the graphical interface opens. You can look at

certain things in the JVM, such as heap, threads, and others.

Initially the Overview display opens.

138 Supercharge IMS Business Applications with Java

For more information about what diagnostics are possible with JConsole, refer

to the documentation at:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-using-

jconsole

Restriction: Not all functions that the JConsole provides can be used while connected

to an JVM that was written by IBM and runs on z/OS.

Figure 29. Summary view from JConsole while running some workload

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-using-jconsole
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-using-jconsole

© Copyright IBM Corporation 2021.

139 © Copyright IBM Corporation 2021.

7.2. Integrated tooling

Debugging is often done directly in the integrated development environment

(IDE). In this section we provide an example on how to debug an IMS Java

batch application running on the mainframe using IBM Developer for z/OS.

The debugging of an IMS online application is similar.

7.2.1. IBM Developer for z/OS Java debugging

In order to enable debugging two additional Java configuration switches are

required for JVM:

• Turn on the debug option and tell the JVM to be the server for the debug

session

• Suspend execution of JVM until after a debug connection socket from the

client is attached

The following steps show how to debug a Java BMP (batch message

processing) region:

1. Issue the -Xdebug option to tell JVM to turn on debug mode and then issue

the -X runjdwp option with the parameters: server=y, suspend=y,

address=7778, as shown in the following example.

Example 7: JVM option for JVM wait

-Xdebug

-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=7778

These parameters tell the JVM that there is a server waiting for an incoming

socket connections on port 7778 for a debugging session and to suspend

any work until the debugging session with the Eclipse client (can also be

RAD or RDz for Java debugging) is established. This means that without a

connection the JVM will not do any work. Depending on the Eclipse

version, it is possible that the JVM is initially suspended and will not start

executing until resume has been clicked.

2. After the configuration change, start the IMS BMP. It will produce the

following output:

Listening for transport dt_socket at address: 7778

We used a PSB which points to a program called SimpleRuleEngineRunner.

Then it is required to select the Java class source in the RDz workspace.

3. Select Debug As > Debug Configurations. The Debug Configurations

window opens.

140 Supercharge IMS Business Applications with Java

Figure 30. Debug Configurations window

4. Fill out the server hostname or IP address and the port number. Select

Socket Attach as the connection type, and check Allow termination of the

remote VM to avoid hanging IMS BMPs at the end of program execution or

if the debug session socket breaks.

5. Click Apply to save the values and then click Debug to connect to the

waiting JVM on z/OS.

© Copyright IBM Corporation 2021.

141 © Copyright IBM Corporation 2021.

Figure 31. Remote Java application properties

Figure 32. Remote debug connection

Initially because there is no breakpoint specified, the Java program will

start running as soon as the debug client has connected to the JVM. If the

network connection is slow enough or the suspend icon is clicked fast

enough, the execution will be suspended and it can be determined where in

the source code the execution has been suspended.

Note: If there is no automatic switch to the debug perspective within RDz then

switch the perspective manually and the debug session will show up as shown in

Figure 2-3.

142 Supercharge IMS Business Applications with Java

Figure 33. Suspended remote JVM execution

6. Scroll down to the uppermost level class. You can see where in the

programs source code the execution has been suspended. It also

displays the current state/values of variables/objects.

Figure 34. Suspended remote Java program with source code position and variable/object
values

© Copyright IBM Corporation 2021.

143 © Copyright IBM Corporation 2021.

7. When the execution is suspended or stopped at a breakpoint, the

values of objects and variables can also be seen by moving the mouse

over variables/objects.

Figure 35. Context sensitive source code view of current variable/object values at
suspend/breakpoint time

144 Supercharge IMS Business Applications with Java

8. When breakpoints are set and reached, the execution stops at the

breakpoint and the line of code is displayed in the source view.

Figure 36. Debug session suspended at breakpoint with source code view

9. When the step through ends, the JVM and the BMP on z/OS will

terminate and the debug session ends.

7.2.2. Debugging with IBM z/OS Debugger (successor of IBM Debug Tool

for z/OS)

IBM z/OS Debugger is a separately priced tool. At the time of this writing, the

current Version is 14. It’s the successor of IBM Debug Tool V13. It has both a

3270 user interface and an eclipse GUI plugin.

The COBOL side of the application usually also requires some sort of

debugging. This can be done with the delayed debugging option of z/OS

Debugger and by using the z/OS Debugger Eclipse plugin.

By default, Debug Tool starts a debug session at the first entry compile unit of

the initial load module of an application. However, there are cases where the

problem is in some compile unit (for example, prog1) inside the application

that needs debugging.

© Copyright IBM Corporation 2021.

145 © Copyright IBM Corporation 2021.

Currently, you enter AT ENTRY prog1 and GO commands when the debug

session starts.

However, in some complex applications, such as doing debugging after

some JNI calls (COBOL to Java), it can take some significant time before

prog1 appears. In this case, you can use the delay debug mode to delay the

starting of the debug session until Debug Tool recognizes prog1.

Debug Tool is in a dormant state during the delay debug mode and monitors

only a few events. When Debug Tool recognizes prog1, Debug Tool comes out

of the delay debug mode, completes the initialization, and starts the debug

session.

Details on how to use the Debug Tool Delay debugging are covered in the z/OS

Debugger Documentation:

https://www.ibm.com/docs/en/debug-tool-for-zos/13.1?topic=spica-using-

delay-debug-mode-delay-starting-debug-session

Information on how to download and install the Debug Tool plugin for Eclipse

are covered here:

https://www.ibm.com/docs/en/debug-tool-for-zos/13.1?topic=guide-installing-

debug-tool-plug-ins

Please note that using Debug Tool also requires setup on z/OS in order to be

able to connect to z/OS Debugger from the z/OS Debugger Eclipse plugin.

This is how the debug session with a COBOL program looks like:

https://www.ibm.com/docs/en/debug-tool-for-zos/13.1?topic=spica-using-delay-debug-mode-delay-starting-debug-session
https://www.ibm.com/docs/en/debug-tool-for-zos/13.1?topic=spica-using-delay-debug-mode-delay-starting-debug-session
https://www.ibm.com/docs/en/debug-tool-for-zos/13.1?topic=guide-installing-debug-tool-plug-ins
https://www.ibm.com/docs/en/debug-tool-for-zos/13.1?topic=guide-installing-debug-tool-plug-ins

146 Supercharge IMS Business Applications with Java

Figure 37. Debug session with a COBOL program

7.2.3. Looking at Performance with IBM Application Performance

Analyzer for z/OS

IBM Application Performance Analyzer is a separately priced tool which current

Version is 14. It has both a 3270 user interface and an eclipse GUI plugin.

The IBM Application Performance Analyzer Plugin can be installed in any

Eclipse Development environment and connect to z/OS. Please refer for

instructions to: https://ibm.github.io/mainframe-downloads/eclipse-tools.html

Please note that using IBM Application Performance Analyzer also requires

setup on z/OS in order to be able to connect to it from the IBM Application

Performance Analyzer Eclipse plugin.

Note: If JVM Debugging from Eclipse and z/OS Debugger Debugging for COBOL is

active at the same time, you might need to switch between the perspectives to see

which debugging part/language is currently active.

https://ibm.github.io/mainframe-downloads/eclipse-tools.html

© Copyright IBM Corporation 2021.

147 © Copyright IBM Corporation 2021.

This is how the Eclipse plugin will display the results:

Figure 38. IBM Application Performance Analyzer Eclipse plugin

There are similar views on the ISPF views which display the same data as the

Eclipse plugin.

7.3. Understanding JNI problems

In most cases JNI problems occur because wrong parameter types, wrong

amount of parameters, or Strings that are not UTF-8 are passed as input

parameters to the JNI calls.

Most of those mentioned problems can be found with the -Xcheck:jni JVM

option and its sub-options. The sub-options are referenced here:

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=jni-debugging

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=jni-debugging

148 Supercharge IMS Business Applications with Java

On a JNI check, the JVM might terminate, which can cause address spaces to

terminate in some environments. The pedantic check also displays warnings

that normally would just execute the call, but nevertheless, it’s a good idea to

fix all those errors before moving in production. There have been cases where

errors or warnings cause exceptions with a new release of Java, and/or the JNI

calls suddenly don’t work anymore.

7.4. List of known problems and solutions

This section is about problems and error conditions that were experienced

working with customers on Java interoperability projects during testing,

development, and production phases.

7.4.1. Recommended maintenance based on experiences

The following list of APARs should be applied. This information is based on

the experience at the time of this writing and is not complete and provided as

is and without warranty.

• APAR PI56284 for z/OS LE runtime (memory leak with COBOL CANCEL)

• APAR PI37886 for z/OS LE runtime (NODLL link of COBOL with JNI fails)

• APAR PI36777 (5.1)/PI36780 (5.2) for Enterprise COBOL (NODLL link of

COBOL with JNI fails)

• APAR PI29595 for IMS (on module not found S806 condition, the module

that is not found should be printed)

• APAR PI61759 (V13), PI61769 (V14) for IMS (JMP performance degradation

over time)

• APAR PI63800 for adding the UMASK parameter

• APAR PI64142 for adding 64bit JVM support for JMP and JBP applications

• APAR PI63952 (V5.1), PI44915 (V5.2, V6.1) for Enterprise COBOL (latest

JNI.CPY)

• APAR PI59142 for Enterprise PL/I (latest IBMZJNI include)

• APAR PI40084 for z/OS Language Environment (high CPU usage for

CEEPIPI with XPLINK)

• For ESAF thread pooling/connection pooling between IMS and Db2:

o APARs PI60400 and PI69365 (IMS V14)

o APARs PI61982, PI61983, PI64956, PI67609, PI69765, PI73734 and

PI75155 (Db2 V11)

o APARs PI66963, PI74192, PI74193, PI74243, and PI79119 (Db2 V12)

o APARs PI67610 (JCC V4.21.40), PI76338 (JCC V4.22.37), PI67609 (JCC

© Copyright IBM Corporation 2021.

149 © Copyright IBM Corporation 2021.

V3.71.32) and PI76340 (JCC V3.72.30)

7.4.2. IGZ0032S at j9sl_close_shared_library with COBOL DLLs in call

chain

If a COBOL-to-Java-to-COBOL calling chain is implemented, which requires

the COBOL called by Java to start with a COBOL DLL, on shutdown of the IMS

region, an IGZ0032S error is produced.

Check that the Enterprise COBOL V4.2 PTF UK90600 (APAR PM72434) is

applied.

7.5. Summary

During your project development lifecycle, it’s important to check and apply

the latest maintenance to avoid unnecessary problems. When problems occur,

you can use IBM Support Assistant and various tools that can be plugged into

IBM Support Assistant to help gather and analyze data. JConsole that comes

with the Java JDK is a handy tool for monitoring the behavior of Java

applications. You can also use the Java debugging functions in your IDE.

150 Supercharge IMS Business Applications with Java

 C H A P T E R 8

8. Case study: Bringing Java to a COBOL-based

banking system

Introducing JavaTM in IMSTM MPRs and BMPs is the way to establish Java as the

next-generation language for the Mainframe. It is a natural evolution instead

of revolution, allowing an organization to “evolve over time“ from a mainly

COBOL-based system to a mainly Java-based system without disruption.

Fiducia & GAD IT AG (Fiducia & GAD) provides IT services to all 1,100

cooperative banks in Germany and also to private banks and companies in

other industries. Our strategy is to introduce Java in IMS as an additional

programming language, with the goal to evolve from a COBOL-based system

to a Java-based system with minimum cost. We introduced Java alongside

COBOL in IBM® IMS on IBM Z to accelerate the creation of new services and

extend the life and value of our existing applications.

In this chapter, we will describe such a modernization project in a large

banking system. From functional requirements, the infrastructure landscape,

environment settings, to application development and security, we will share

our experience, provide examples and highlight the lessons learned.

8.1. Introducing Java in existing IMS MPRs and BMPs

With the long-term goal of evolving our mainframe application infrastructure

from COBOL-centric to Java-centric in mind, we started out by identifying our

strategies and functional prerequisites. We also examined our existing IMS

landscape to identify the parts that must be Java-enabled.

8.1.1. Strategies

Our short-term and mid-term strategies are:

• Expand the existing application set through:

o Reuse of existing services

o Implementing new functions in Java and using it everywhere

o Use of third-party software inside IMS

• Use technologies and languages where skill is widely available and new

generation is willing to use.

• Seek every opportunity to build applications which, over time, would

© Copyright IBM Corporation 2021.

151 © Copyright IBM Corporation 2021.

become platform independent.

8.1.2. Functional prerequisites

The following functional prerequisites are identified to ensure calls across

systems can be supported efficiently.

• IMS must handle the Unit of Work (UOW) over IMS DB, Db2® for z/OS®

and IBM MQ for both access types: from COBOL to Java, and Java to

COBOL. This means issuing a DL/I call, a Db2 static call, a Db2

dynamic call, and an MQ call from COBOL, and a JDBC type 2 call or

an MQ JMS call from Java, is all handled by the same Unit of Work.

• Must have the ability to do cascading calls (from COBOL to Java to

COBOL to Java).

• Must have the ability to exchange data between COBOL and Java in an

efficient way (JNI-based).

• Output from COBOL (DISPLAY statements) and Java (printf()

statements) must appear chronologically in the same output DD

statement. The JVM settings -Djzos.merge.sysout=true must be

in effect to enable it.

• Errors in the JVM context must be percolated back to IMS. This is

enabled with the JVM option

Xsignal:userConditionHandler=percolate. We will discuss

more about JVM options in Section 8.2.3 on page 158.

8.1.3. Technical overview of the existing IMS landscape that must be Java-

enabled

Our environment has the following characteristics:

• All transactions are written in COBOL with some assembler routines.

• All programs are 31-bit enabled.

• All transactions are stateless (no 3270, no scratchpad area, etc.).

• All online transactions are accessed via IMS Connect or the MQ-OTMA

bridge.

Those transactions are classified in 3 categories: high performance transactions,

standard performance transactions, and batch programs (BMPs).

8.1.3.1. High performance Transactions

These transactions are written reentrant, reusable. This means that the next

consecutive execution of the same transaction in one message processing

region (MPR) reuses the heap memory as it was left by the precedent

execution. As a result, the transaction and all used programs inside must

ensure that the memory (heap) is properly initialized at the beginning. These

transactions are executed in either wait for input (WFI) or pseudo-WFI MPRs.

152 Supercharge IMS Business Applications with Java

8.1.3.2. Standard performance transactions

Standard transactions are transactions that are expected to be executed in a

cleaned environment. After each transaction execution, the LE enclave is

canceled and rebuilt at the next execution. This approach leads to a clean LE

heap.

8.1.3.3. Batch processing (BMP)

Batch procession programs define the major and critical workload of the

system. These programs need to perform fast with a focus on elapsed time.

Due to the nature of batch processing, no LE environment cleanup is necessary.

8.2. Enabling IMS for Java: Experiences and how-to’s

With our strategies, functional prerequisites, and existing IMS landscape that

must be Java-enabled clearly identified, we were ready to embark on our Java

enablement journey. This section covers environment settings and helpful tips

in various areas, including RACF, UNIX System Services (USS), JVM, MPRs,

and BMPs, as well as release management for JVM and JDBC drivers.

8.2.1. How Java is embedded in classic IMS regions

The introduction of Java to MPRs and BMPs leads to several technical changes

inside the regions and might cause behavior changes of exiting transactions.

For example, the JVM has to stay resident inside the MPR. It is started during

the initialization phase of the MPR. IBM uses the LE (CEEPIPI) mechanism to

implement it. Because the JVM itself conforms to the POSIX standard, the

address spaces must be in the POSIX(ON) mode.

8.2.2. Environment enablement

To enable the environment for Java, you might find the following setup

helpful.

8.2.2.1. Minimizing I/Os on RACF datasets

To minimize the I/Os on RACF datasets, you can reduce writing of RACF

statistics and switch to a daily processing mode. If you omit this step, RACF

will write LOGON statistics for every Db2 request that is issued from IMS via

External Subsystem Attach Facility (ESAF).

• Configure the usage of the IMSID or any other constant (not spaces) in the

APPL field of the RACROUTE macro in DFSDCxxx (parameter

SAPPLID=).

© Copyright IBM Corporation 2021.

153 © Copyright IBM Corporation 2021.

• For OTMA/IMS Connect requests, apply the fix for APAR PI64496 to also

reuse ESAF/Db2 threads.

• Within the RACF APPLDATA field of that APPL profile, specify RACF-

INITSTATS(DAILY). If RACF-INITSTATS(DAILY) is not defined in the

APPLDATA field, recording of statistics is done as directed by the

SETROPTS INITSTATS setting.

• APPL class must be active and RACLIST’ed to have consistent results due

to ACEE caching.

• The Db2 Sign-on exit routine DSN3@SGN must be modified to exploit the

APPL field.

8.2.2.2. POSIX(ON) and ALL31(ON) related issues

The POSIX(ON) setting has its side effects. Switching to the POSIX(ON) mode

leads to differences in condition handling that are now no longer z/OS- but

UNIX-conforming, and new and different abends can occur. The ALL31(ON)

LE runtime option presumes your application no longer contains modules with

AMODE(24). Those must become AMODE(31).

8.2.2.3. UNIX System Services settings

z/OS UNIX System Services (OMVS subsystem) settings must be taken care of,

especially the MAXPROCUSER setting. MAXPROCUSER specifies the

maximum number of processes that a single OMVS user ID (UID) is allowed to

have active at the same time, regardless of how the process became a USS

process. The range is 3 to 32 767.

The following sample shows all options that were set:

z/OS Console Command: D OMVS,O

Output:

RESPONSE=MVSx

BPXO043I 14.18.49 DISPLAY OMVS 952

OMVS 0011 ACTIVE OMVS=(PA,P2,20,V0)

CURRENT UNIX CONFIGURATION SETTINGS:

MAXPROCSYS = 1500 MAXPROCUSER = 1000

MAXFILEPROC = 64000 MAXFILESIZE = NOLIMIT

MAXCPUTIME = 2147483647 MAXUIDS = 200

MAXPTYS = 256 MAXIOBUFUSER = 2048

MAXMMAPAREA = 4096 MAXASSIZE = 2147483647

MAXTHREADS = 500 MAXTHREADTASKS = 500

154 Supercharge IMS Business Applications with Java

MAXCORESIZE = 4194304 MAXSHAREPAGES = 32768000

IPCMSGQBYTES = 2147483647 IPCMSGQMNUM = 10000

IPCMSGNIDS = 500 IPCSEMNIDS = 4096

IPCSEMNOPS = 32767 IPCSEMNSEMS = 50

IPCSHMMPAGES = 25600 IPCSHMNIDS = 500

IPCSHMNSEGS = 1000 IPCSHMSPAGES = 786432

SUPERUSER = BPXROOT FORKCOPY = COPY

STEPLIBLIST = /etc/steplib

USERIDALIASTABLE=

PRIORITYPG VALUES: NONE

PRIORITYGOAL VALUES: NONE

MAXQUEUEDSIGS = 1000 SHRLIBRGNSIZE = 67108864

KERNELSTACKS = BELOW

The following sample shows the system-wide parmlib limits:

Command: D OMVS,L

Output:

RESPONSE=MVSR

BPXO051I 17.51.00 DISPLAY OMVS 624

OMVS 0011 ACTIVE OMVS=(22,V0)

SYSTEM WIDE LIMITS: LIMMSG=NONE

CURRENT HIGHWATER SYSTEM

USAGE USAGE LIMIT

MAXPROCSYS 620 774 1210

MAXUIDS 61 78 200

MAXPTYS 0 2 256

MAXMMAPAREA 138 138 4096

MAXSHAREPAGES 1050 1050 32768000

IPCMSGNIDS 4 5 500

IPCSEMNIDS 1 1 4096

IPCSHMNIDS 3 3 500

IPCSHMSPAGES 228 228 786432

IPCMSGQBYTES --- 1204 262144

IPCMSGQMNUM --- 3 10000

IPCSHMMPAGES --- 75 25600

SHRLIBRGNSIZE 67108864 67108864 67108864

SHRLIBMAXPAGES 0 0 4096

MAXUSERMOUNTSYS 13 13 100

MAXUSERMOUNTUSER 2 6 10

MAXPIPES 76 533 15360

© Copyright IBM Corporation 2021.

155 © Copyright IBM Corporation 2021.

The following example shows the current parmlib limits for process ID

16777456: Command: D OMVS,L,PID=nnnnnnnn
Output:

BPXO051I

OMVS

USER

17.55.40 DISPLAY

0011 ACTIVE

JOBNAME ASID

OMVS 874

OMVS=(22,V0)

PID PPID STATE

START

CT_SECS

XCK2034 XCK20348 0407 67437668 67437273 1CI----- 17.55.00 .0

LATCHWAITPID= 0 CMD=obrowse

PROCESS LIMITS: LIMMSG=NONE

 CURRENT HIGHWATER PROCESS

 USAGE USAGE LIMIT

MAXFILEPROC

3 11

64000

MAXFILESIZE --- --- NOLIMIT

MAXPROCUSER 3 7 500

MAXQUEUEDSIGS 0 1 1000

MAXTHREADS 0 0 10000

MAXTHREADTASKS 0 0 10000

IPCSHMNSEGS 0 0 1000

MAXCORESIZE --- --- 4194304

MAXMEMLIMIT 10M 10M 4096M

IPCSHMNSEGS

0

500

 0

MAXCORESIZE ---

--- 4194304

MAXMEMLIMIT 0

0 16383P

8.2.3. JVM

As of this writing, for IMS 13, only 31-bit JVM can fit in IMS MPRs and IMS

BMPs. For IMS 14, 64-bit JVM is enabled for JMP and JBP applications through

APAR PI64142.

8.2.3.1. Setting a z/OS-wide default Java version

To gain flexibility in the management of the environment, one key lesson we

learned through the process is that it is best to install Java in a dedicated file

system that conforms to agree-upon naming rules. Users and application

developers would use only aliases and symbolic links in their application (or

JCL, etc.). For example, they can use a symbolic link such as

/prod/java/inuse that would result in the physical name, for example,
/prod/java/J8.0.3

For more discussions, see “JVM release management” later in this chapter.

156 Supercharge IMS Business Applications with Java

8.2.3.2. JVM version

The following examples show a symbolic link of Java in /prod/java/inuse, and

how Java version is identified.

… >cd /prod/java/inuse/bin

MVSR:/prod/java/inuse/bin >./java -version

java version "1.8.0"

Java(TM) SE Runtime Environment (build pmz3180sr3fp20-20161019_02(SR3

FP20))

IBM J9 VM (build 2.8, JRE 1.8.0 z/OS s390-31 20161013_322271 (JIT

enabled, AOT enabled)

J9VM - R28_Java8_SR3_20161013_1635_B322271

JIT - tr.r14.java.green_20161011_125790

GC - R28_Java8_SR3_20161013_1635_B322271

J9CL - 20161013_322271)

JCL - 20161018_01 based on Oracle jdk8u111-b14

MVSR:/prod/java/inuse/bin >

8.2.3.3. IMS settings

Java-related IMS settings are spread over two configuration members,

DDname ENVIRON and JVMOPMAS, and a USS file that is specified through

the Xoptionfile option. These settings are described below.

8.2.3.3.1. IMS JVM settings for high-performance transactions

For high-performance transactions, we have the ENVIRON member set with

the PATH, LIBPATH and JVMOPTIONS as follows:

PATH=/bin:/prod/java/inuse/bin:.

LIBPATH=/lib:/usr/lib:/prod/java/inuse/lib:>

/prod/java/inuse/lib/s390:>

/prod/java/inuse/lib/s390/classic:>

/prod/db21/jdbc/lib:>

/prod/jvmti_path

CANCEL_PGM=N

With CANCEL_PGM set to No, IMS will not clean up the program and all its

subprograms that it invokes during execution. This means the working storage

area will remain intact for the next program execution.

For the member in the IMS.PROCLIB data set that’s specified in the

JVMOPMAS parameter, we set the JVM options as follow:

-Xoptionsfile=/entw/appl/imsq/jbf/env/jvmParmIMS_endevor

© Copyright IBM Corporation 2021.

157 © Copyright IBM Corporation 2021.

-Djzos.merge.sysout=true

The -Djzos.merge.sysout=true option guarantees that at any point of

time the COBOL DISPLAY output and Java printf() output are visible

in the “OUTPUT” DDname.

The –Xoptionsfile option points to the JVM properties file, in our case,

jvmParmIMS_endevor. This USS file contains the class path and the Java

related option. Here is an example of the JVM properties file:

-Xgcpolicy:gencon

-Xmx256M

-Xmso512k

-Xss256k

-Xms32M

-Xsignal:userConditionHandler=percolate

-Xnoagent

In the above example:

● -Xgcpolicy:gencon specifies short garbage collections to limit the impact

on the active transaction. Short-lived objects are handled differently than

objects that are long-lived. Applications that have many short-lived objects

can see shorter pause times with this policy.

● -Xsignal:userConditionHandler=percolate specifies that, in case of

error, the JVM gives the control back to the caller, so the region terminates

as usual in case of errors (comprehensible DUMP). Without this option, the

JVM tries to handle the error itself and this leads to uncomprehensive error.

● -Xnoagent is the default, and disables support for the old JDB debugger.

8.2.3.3.2. IMS JVM settings for standard transactions

For standard transactions, our ENVIRON member setting is different:

PATH=/bin:/prod/java/inuse/bin:.

LIBPATH=/lib:/usr/lib:/prod/java/inuse/lib:>

/prod/java/inuse/lib/s390:>

/prod/java/inuse/lib/s390/classic:>

/prod/db21/jdbc/lib:>

/prod/jvmti_path

CANCEL_PGM=Y,EXCLUDE=JVMEXCL

IMS CANCEL_PGM is set to Yes, and the JVMEXCL member contains a list of

load modules that are not “deleted” and “loaded.” Keeping load modules in

158 Supercharge IMS Business Applications with Java

this list means that its working storage will not be deleted and reinitialized.

Therefore the values of the precedent execution of those modules will be kept.

The JVM options are set identically as those for the high performance transactions:

DFSJVM00: -Xgcpolicy:gencon

DFSJVM00: -Xmx256M

DFSJVM00: -Xmso512k

DFSJVM00: -Xss256k

DFSJVM00: -Xms32M

DFSJVM00: -Xsignal:userConditionHandler=percolate

DFSJVM00: -Xnoagent

8.2.3.3.3. IMS JVM settings for BMP regions

The ENVIRON member for BMPs has PATH, LIBPATH and JVMOPTIONS set

as follows:

PATH=/bin:/prod/java/inuse/bin:.

LIBPATH=/lib:/usr/lib:/prod/java/inuse/lib:>

/prod/java/inuse/lib/s390:>

/prod/java/inuse/lib/s390/classic:>

/prod/db21/jdbc/lib:>

/prod/jvmti_path

CANCEL_PGM=Y,EXCLUDE=JVMEXCL

Likewise, IMS CANCEL_PGM is set to Yes, and the member JVMEXCL

contains a list of load modules that are not “deleted” and “loaded”.

CANCEL_PGM has no effect on BMPs because the main COBOL program

stays active for the whole execution of the BMP.

JVM options are set as follows:

DFSJVM00: -Xgcpolicy:optthruput

DFSJVM00: -Xmx256M

DFSJVM00: -Xmso512k

DFSJVM00: -Xss256k

DFSJVM00: -Xms32M

DFSJVM00: -Xsignal:userConditionHandler=percolate

DFSJVM00: -Xnoagent

● -Xgcpolicy:optthruput specifies the garbage collection policy to

optimize the throughput.

● -Xsignal:userConditionHandler=percolate specifies that, in case of

error, the JVM gives the control back to the caller, so the region terminates

as usual in case of errors (comprehensible DUMP). Without this option,

© Copyright IBM Corporation 2021.

159 © Copyright IBM Corporation 2021.

the JVM tries to handle the error itself and this leads to uncomprehensive

error.

● -Xnoagent is the default.

8.2.4. Message Processing Region settings

The LE settings must be adapted depending on your environment. The

following settings fulfills our requirements. The same LE settings are used for

both high performance and standard transactions.

8.2.4.1. MPRs settings for high performance transactions (production settings)

8.2.4.1.1. LE (language Environment)

ANYHEAP(2M,1M,ANY,KEEP)

HEAP(80M,4M,ANY,FREE,1M,512K)

HEAPPOOLS(ON,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,

10,0,10,0,10,0,10,0,10)

STACK(64K,64K,ANY,KEEP,512K,256K)

STORAGE(00,NONE,NONE,8K)

THREADSTACK(OFF,64K,16K,ANY,KEEP,128K,128K)

TERMTHDACT(UAIMM)

RPTOPTS(OFF)

RPTSTG(OFF)

● HEAP(80M,4M,ANY,FREE,1M,512K): 80M is the minimal footprint to start

a JVM free to guarantee that the memory will not be too much fragmented

over time (using “KEEP” instead of “FREE” might lead to errors when there

is not enough contiguous memory available to fulfill a getheap request).

• STORAGE(00,NONE,NONE,8K): Sets to 00 in production to force a

memory initialization to x’00’. This setting causes no issue in

production because it is used to initialize the storage when a module is

loaded. This initialization happens exactly once as each module is

loaded exactly once and then reused (according to the

CANCEL_PGM=NO behavior). In this context, this setting neither

impact response time nor resource consumption.

• RPTOPTS(OFF): Reports the LE settings at normal region termination

(at enclave termination). Enable this option when needed, such as for

debugging.

● RPTSTG(OFF): Reports storage utilization. It generates a lot of output and

should only be used for tracing purposes. Enable this option when

needed, such as for debugging.

160 Supercharge IMS Business Applications with Java

8.2.4.1.2. IMS-related region setting

Our region setting is as follows:

STD PWFI=Y

STD PREINIT= …

RGN=768M

…

JVMOPMAS=JVAENDVR

ENVIRON=,

CEEJAVA= CEEJVM00

STD PWFI=Y

STD PREINIT=

…

//CEEOPTS DD DSN=SCD.IMSQ000.A.PROCLIB(&CEEJAVA),DISP=SHR

Our region size is currently set to 768M. This size is adjusted depending on the

situation and real needs. LE settings are injected via a CEEOPTS DDNAME.

8.2.4.2. MPRs settings for standard transactions (production settings)

In the following sections we will describe our MPR settings in the production

environment for standard transactions.

8.2.4.2.1. Language Environment (LE)

The same settings for high performance transactions are used for standard

transactions, but they lead to a different behavior (see STORAGE).

ANYHEAP(2M,1M,ANY,KEEP)

HEAP(80M,4M,ANY,FREE,1M,512K)

HEAPPOOLS(ON,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,

10,0,10,0,10,0,10,0,10)

STACK(64K,64K,ANY,KEEP,512K,256K)

STORAGE(00,NONE,NONE,8K)

THREADSTACK(OFF,64K,16K,ANY,KEEP,128K,128K)

TERMTHDACT(UAIMM)

RPTOPTS(OFF)

RPTSTG(OFF)

• HEAP(80M,4M,ANY,FREE,1M,512K): 80M is the minimal footprint to

start a JVM free to guarantee that the memory will not be too much

fragmented over time (using KEEP instead of FREE might lead to errors

when there is not enough contiguous memory available to fulfill a

getheap request).

© Copyright IBM Corporation 2021.

161 © Copyright IBM Corporation 2021.

• STORAGE(00,NONE,NONE,8K): Sets to 00 to force a memory

initialization to x’00’. After each transaction execution, the memory

(heap) is freed, but it still contains the values from the last execution.

Setting 00 ensures that memory is initialized by this value when

getheap occurs. Avoiding this initialization might lead to errors when

programs expect to deal with zeroed memory areas.

Be aware that this initialization happens for each transaction that is

executed. In this context, this initialization process happens after each

transaction execution, which means it leads to a higher resource

consumption and also might marginally impact the transaction

duration. If you have identified and are very sure that certain

transactions don’t need to be initialized, that means those transactions

fulfill the requirements to be executed in the high performance

environment (transactions that are programmed as reentrant and

reusable).

• RPTOPTS(OFF): Reports the LE settings at normal region termination

(at enclave termination).

• RPTSTG(OFF): Reports storage utilization. This setting generates a lot

of output and should only be used for tracing purposes.

8.2.4.2.2. Region settings

Our default region settings are shown in the following JCL:

RGN=768M

…

JVMOPMAS=JVAENDVR

ENVIRON=,

CEEJAVA= CEEJVM00

STD PWFI=Y

STD PREINIT=

…

//CEEOPTS DD DSN=SCD.IMSQ000.A.PROCLIB(&CEEJAVA),DISP=SHR

Region size is currently set to 768M. This size is adjusted depending on the real

needs. LE settings are injected via a CEEOPTS DDNAME.

8.2.5. BMP settings

Our BMP settings are described below.

8.2.5.1. LE (Language Environment)

PATH=/bin:/prod/java/inuse/bin:.

LIBPATH=/lib:/usr/lib:/prod/java/inuse/lib:>

/prod/java/inuse/lib/s390:>

162 Supercharge IMS Business Applications with Java

/prod/java/inuse/lib/s390/classic:>

/prod/db21/jdbc/lib:>

/prod/jvmti_path

IBM_HEAPDUMP=true

JAVA_DUMP_TDUMP_PATTERN=HCA00.DUMP.A.%job.D%y%m%d.T%H%M%S.N&DS

8.2.5.2. Region setting

Our default region settings are shown in the following JCL:

RGN=768M

…

JVMOPMAS= JVA000QA

ENVIRON= JVE0B0Q0,

CEEJAVA= CEEJVM00

…

//CEEOPTS DD DSN=SCD.IMSQ000.A.PROCLIB(&CEEJAVA),DISP=SHR

The default region size is currently set to 768M, but it can be increased up to

1.85GB to handle multiple jobs. This is the maximum amount authorized.

Never use 0M, as in case of memory shortage errors, the system would not be

able to find any memory for abend handling, potentially leading to severe

problems.

8.2.6. Specific settings for development regions

For development regions, we use the same settings as in production for

standard transactions as the baseline for test regions. One difference is the

STORAGE setting is set to X’DB’ instead of X’00’.

• STORAGE(DB,NONE,NONE,8K): Sets to DB in the test environment to

force a memory initialization to x’DB’. Setting the storage to a non-

zero value (for example , “STORAGE(DB…)”) in test environments helps

you identify in the dump, in case of errors, the areas that were not

correctly handled by some programs. This setting will help you

identify the origin of errors more effectively.

8.2.7. JVM release management

The JVM is installed in a USS path by your system administrator. You have to

configure those paths, PATH, LIBPATH, and CLASSPATH, in your IMS

configuration. Assuming that you want to activate a new version of the JVM in

the whole system, you would use links and system symbols. This approach

gives your system administrator the opportunity to replace an old version with

a new one without any change in your JCLs or PROCs. The system

administrator only has to modify the setting of the symbolic link and system

© Copyright IBM Corporation 2021.

163 © Copyright IBM Corporation 2021.

symbols.

You can make this change at any time. However, you must restart all concerned

MPRs and other running processes after the change to use the newest JVM.

8.2.7.1. Simplifying system-wide JVM upgrades

To simplify the JVM upgrades, build an alias composed of system symbols that

points to the physical Java file system. Don’t use a direct symbolic link (such as

/prod/java/inuse linking to /prod/java/J8.0.3); Instead, compose the

symbolic link name with system symbols.

For example, /prod/java/inuse is a symbolic link on $SYSSYMR/&JAVAVERS

and &JAVAVERS = "J8.0.3"

By simply modifying the settings of the &JAVAVERS symbol, you are able to

point instantly to another version of the JVM.

This mechanism allows a switch to another version of the JVM in concurrency to

the execution of active JVMs. Recycle all long-running processes using this

symbolic link to avoid errors.

8.2.8. JDBC driver and release management

8.2.8.1. JDBC driver

Identifying JDBC related issues due to the invocation of an incorrect version or a

misconfigured version can be difficult. Here is a sample job that identifies the

installed version.

//JCCIMSQ EXEC PGM=IKJEFT01,REGION=512M

//SYSTSPRT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD *

BPXBATCH SH cd /prod/db2u/jdbc/classes ; +

java -cp ./db2jcc.jar com.ibm.db2.jcc.DB2Jcc -version

/*

The output prints out the version of the JDBC driver, such as “The IBM Data
Server Driver for JDBC and SQLJ 3.69.66.”

8.2.8.2. Simplifying system-wide JDBD driver upgrades

To simply system-wide JDBC driver upgrades, you can use similar

mechanisms as those for JVM management.

164 Supercharge IMS Business Applications with Java

8.2.9. Defining a validation suite

To guarantee the immediate identification of configuration problems and its

origin, define a validation suite with very simple test cases that must be

executed before and after each change in Java-related configuration. Hand this

suite out to those responsible for software changes. Use it whenever

configuration changes are made in Java/JZOS, IMS, Db2/JDBC, and even z/OS.

This suite can consist of a batch job or a BMP with several steps to execute

commands to display the configuration and typical application check points.

For example:

1. Use the java –version and DB2Jcc -version commands to display the

version.

2. Use a simple “echo” to validate Java.

3. Use a Db2 call via JDBC to validate Db2 and JDBC.

4. Use a crypto call via a defined cryptography provider to validate Java

access to the cryptography hardware.

Take care to use the standard defined symbolic links and environment

variables as they are set in the appropriate environment.

8.2.10. IMS class/region concept

Depending on your environment, you might have to adjust your concept of a

region.

For IMS 13, since it only supports 31-bit JVM, you have to consider the size a

region might get when a lot of things are loaded (non-Java modules, Java

classes, heap for Java, and so on).

The following aspects would influence the new region concept.

● Connection pooling. New ESAF connection pooling supports 50

connections per MPR.

● Length of the Java class path. It makes sense to isolate functional blocks and

manage a dedicated class path for each block. So a class path should

contain exactly the JAR files that are needed for the execution of the

transactions associated with a given IMS class. Those block-based class

paths must be as small as possible (no unused overhead).

● The release model (versioning concepts) you want to support.

To implement a long-term viable solution, make a comparison with micro

services. Each IMS class has to fulfill the following expectations, as compared

to micro services.

● The API is the IMS input and output messages. All published versions of a

transaction must be supported, that is, downward compatibility.

© Copyright IBM Corporation 2021.

165 © Copyright IBM Corporation 2021.

● The set of transactions contained in an IMS class can be separately released,

independently from any other business services (hosted in other IMS

classes).

8.3. Connecting COBOL with Java

We will now dive into COBOL and Java interoperability by providing a

COBOL sample that calls a Java program, and a sample procedure for

compiling the COBOL program. We will also discuss some tips and tricks from

our experience.

8.3.1. Sample for COBOL calling Java that conforms to our specifications

8.3.1.1. Coding the COBOL parts

The sample consists of four files as shown in the following table.

Table 3. Sample files for COBOL calling Java

Program/file Description

COBMAIN.cbl The main program that will execute some Java code

(JNIHelper.java). It calls JNIFIND using INIFINDI and

INIFINDO.

JNIFIND.cbl A subprogram to get the needed class and method

references per JNI services.

JNIFINDI.cpy The input copy for JNIFIND.cbl.

JNIFINDO.cpy The output copy for JNIFIND.cbl. It returns the

determined class or method reference.

8.3.1.1.1. COBMAIN.cbl

This is the main program that will execute some Java. The determination of the

class and method reference, which is needed when we don’t want to use

INVOKE, will be done by the JNIFIND.cbl program in the Init sections of

COBMAIN.cbl.

After the references for the Java class and method are available, you can call

the method via a JNI call such as CallStatic<type>Method” or if you created

anobjectCall<type>Method(replace<type> withthereturnvaluetype,Void if

none). This happens in the CALLING-RETURNDATA section.

Note that you can put the code with the JNI service calls in a subprogram so

you have a clean separation of native COBOL and COBOL with JNI services.

166 Supercharge IMS Business Applications with Java

cbl map,lib,pgmname(longmixed)

Identification division.

Program-ID. "COBMAIN".

Environment division.

Configuration section.

Repository.

Class jmethodid is 'jmethodid'

Class jclass is 'jclass'

Class jbyteArray is 'jbyteArray'

Class jException is 'java.lang.Exception'

.

Data Division.

**

* W O R K I N G S T O R A G E S E C T I O N

**

Working-Storage Section.

**

* JNIFIND

**

77 JNIFIND PIC X(08) Value 'JNIFIND'.

01 JNIFIND-IN.

Copy JNIFINDI.

01 JNIFIND-OUT.

Copy JNIFINDO.

**

* buffer fields for JNIFIND call

**

77 WK-TEMP-NAME PIC X(64).

77 WK-TEMP-SIG PIC X(7).

**

* JNIHelper

© Copyright IBM Corporation 2021.

167 © Copyright IBM Corporation 2021.

**

01 JNIHelper-Methods.

05 returnData.

49 returnData-data-id PIC S9(09) COMP-5.

49 returnData-data Object Reference jbyteArray.

77 Array-Size PIC S9(09) COMP-5.

77 JavaException Object Reference jException.

01 COBMAINX External.

05 COBMAINX-PEST PIC X(08).

05 COBMAINX-Referenzen.

10 COBMAINX-Class Object Reference jclass.

10 COBMAINX-returnData Object Reference jmethodid.

77 COBMAIN-DATA PIC X(20).

77 COBMAIN-DATA-PTR POINTER.

**

* L I N K A G E S E C T I O N

**

Linkage Section.

Copy JNI.

**

* P R O C E D U R E D I V I S I O N

**

Procedure Division.

BEGIN Section.

Set Address Of JNIEnv To JNIEnvPtr

Set Address Of JNINativeInterface To JNIEnv

Set COBMAIN-DATA-PTR To Address Of COBMAIN-DATA

If COBMAINX-PEST Not = 'COBMAIN' Then

* Init just once

Perform A05

Move 'COBMAIN' To COBMAINX-PEST

End-If

Perform PROCESSING

.

BEGINZ.

Goback

168 Supercharge IMS Business Applications with Java

.

**

* Getting the method and class references

**

INIT Section.

Perform INIT-PTR

Set FC-ClassRef To True

Perform INIT-CLASS

Set FC-MethodRef To True

Set ObjectRef To Address Of COBMAINX-Class

Perform INIT-RETURNDATA

.

INITZ.

Exit

.

**

* Init temporary fields

**

INIT-PTR Section.

Set ClassName To Address Of WK-TEMP-NAME

Set MethodName To Address Of WK-TEMP-NAME

Set Signature To Address Of WK-TEMP-SIG

.

INIT-PTRZ.

Exit

.

**

* Init Class JNIHelper

**

INIT-CLASS Section.

Move 1 To ClassNameLen

String 'com/example/JNIHelper'

Delimited By Size

Into WK-TEMP-NAME

With Pointer ClassNameLen

End-String

Subtract 1 From ClassNameLen

Set Ref To Address Of COBMAINX-Class

Call JNIFIND Using JNIFIND-IN

© Copyright IBM Corporation 2021.

169 © Copyright IBM Corporation 2021.

JNIFIND-OUT

Display 'COBMAIN : Getting reference for'

WK-TEMP-NAME(1:ClassNameLen)

' successful'

.

INIT-CLASSZ.

Exit

.

**

* Init Method returnData

**

INIT-RETURNDATA Section.

* set methodname

Move 1 To MethodNameLen

String 'returnData'

Delimited By Size

Into WK-TEMP-NAME

With Pointer MethodNameLen

End-String

Subtract 1 From MethodNameLen

* set methodsignature

Move 1 To SignatureLen

String '(I)[B'

Delimited By Size

Into WK-TEMP-SIG

With Pointer SignatureLen

End-String

Subtract 1 From SignatureLen

Set Ref To Address Of COBMAINX-returnData

Call JNIFIND Using JNIFIND-IN

JNIFIND-OUT

Display 'COBMAIN : getting reference for '

WK-TEMP-NAME(1: MethodNameLen)

WK-TEMP-SIG (1: SignatureLen)

' successful'

.

INIT-RETURNDATAZ.

Exit

.

**

* Execute Java

170 Supercharge IMS Business Applications with Java

**

PROCESSING Section.

Move Zero To Return-Code

Perform Varying Tally From 1 By 1

Until Tally > 10 Or Return-Code > 0

Perform CALLING-RETURNDATA

Display COBMAIN-DATA

End-Perform

.

PROCESSINGZ.

Exit

.

**

* Execute returnData

**

CALLING-RETURNDATA Section.

* Init data-id

Move Tally To returnData-data-id

**

* call method returnData

**

Call CallStaticObjectMethod

Using By Value JNIEnvPtr

COBMAINX-Class

COBMAINX-returnData

returnData-data-id

Returning returnData-data

Perform CHECK-EXCEPTION

**

* read return value returnData-data

**

Call GetArrayLength

Using By Value JNIEnvPtr

returnData-data

Returning Array-Size

Perform CHECK-EXCEPTION

If returnData-data = null Then

* Getting a null Pointer from Java

Move 8 To Return-Code

© Copyright IBM Corporation 2021.

171 © Copyright IBM Corporation 2021.

Go To CALLING-RETURNDATAZ

End-If

If Length Of COBMAIN-DATA < Array-Size

Then

Move 4 To Return-Code

Display 'Field is too small to hold array data'

Display 'Fieldsize: ' Length Of COBMAIN-DATA

Display 'Arraysize: ' Array-Size

Move Length Of COBMAIN-DATA To Array-Size

End-If

Call GetByteArrayRegion

Using By Value JNIEnvPtr

returnData-data

0

Array-Size

COBMAIN-DATA-PTR

Perform CHECK-EXCEPTION

Call DeleteLocalRef

Using By Value JNIEnvPtr

returnData-data

Perform CHECK-EXCEPTION

.

CALLING-RETURNDATAZ.

Exit

.

**

* Exceptionhandling

**

CHECK-EXCEPTION Section.

Call ExceptionOccurred

Using By Value JNIEnvPtr

Returning JavaException

If JavaException Not = Null Then

Call ExceptionDescribe

Using By Value JNIEnvPtr

Call ExceptionClear

Using By Value JNIEnvPtr

Move 16 To Return-Code

GOBACK

End-If

.

CHECK-EXCEPTIONZ.

172 Supercharge IMS Business Applications with Java

Exit

.

End Program "COBMAIN".

8.3.1.1.2. JNIFIND.cbl

This is a subprogram to get the needed class and method references per JNI

services.

It has three functions:

1. FC-ClassRef: Uses the JNI service FindClass to get the java class

reference

2. FC-MethodRef: Uses the JNI service GetStaticMethodID to search for the

named method. It needs the class reference, which can be determined with

the FC-ClassRef function.

3. FC-MethodID-NonStatic: Uses the JNI service GetMethodID and needs

the class reference in the same way as the GetStaticMethodID service.

Identification Division.

Program-Id. "JNIFIND".

* PROGRAMM JNIFIND

*

Environment Division.

Configuration Section.

Repository.

Class jexception Is 'java.lang.Exception'

Class jclass Is 'jclass'

Class jmethodid Is 'jmethodID'.

Data Division.

Working-Storage Section.

01 booleanResult Pic X.

88 boolean-true Value X'01' Through X'FF'.

88 boolean-false Value X'00'.

* *

* FindClass Section

* *

Note: When using this sample, replace the XXXX in the encoding section with the

encoding of your runtime.

© Copyright IBM Corporation 2021.

173 © Copyright IBM Corporation 2021.

77 Class-LocalRef Object Reference jclass.

77 Class-NameLen Pic S9(04) Comp-5.

* *

* Encoding EBCDIC to Modified UTF-8

* *

01 Encoding.

05 Enc-String Pic X(9999) Value Spaces.

05 Enc-UTF16 Pic N(9999) Usage National

Value Spaces.

05 Enc-MethodName Pic X(9999) Value Spaces.

01 Ex Object Reference jexception.

Linkage Section.

77 L-ClassRef Object Reference jclass.

77 L-MethodID Object Reference jmethodid.

*--- Encoding Section

77 L-String Pic X(9999).

77 L-StringLen Pic S9(04) Comp-5.

*--- FindClass Section

77 L-ClassName Pic X(9999).

77 L-ClassNameLen Pic S9(04) Comp-5.

01 JNIFIND-IN.

Copy JNIFINDI.

01 JNIFIND-OUT.

Copy JNIFINDO.

Copy JNI.

Procedure Division Using JNIFIND-IN

JNIFIND-OUT.

BEGIN-Entry Section.

BEGINA.

Set Address Of JNIenv To JNIEnvPtr

Set Address Of JNINativeInterface To JNIenv

Perform PROCESSING

.

BEGINZ.

Goback

.

174 Supercharge IMS Business Applications with Java

* *

* Steuerung durch Funktionscode

* *

PROCESSING Section.

Evaluate True

When FC-ClassRef

Set Address Of L-ClassName To ClassName

Set Address Of L-ClassNameLen To Address Of ClassNameLen

Set Address Of L-ClassRef To Ref

Perform FindClass

When FC-MethodRef

Set Address Of L-ClassRef To ObjectRef

Set Address Of L-MethodID To Ref

Perform GetStaticMethodID

When FC-MethodID-Nonstatic

Set Address Of L-ClassRef To ObjectRef

Set Address Of L-MethodID To Ref

Perform U15-GetMethodID

When Other

Move 8 To Return-Code

End-Evaluate

.

PROCESSINGZ.

Exit

.

FindClass Section.

Set Address Of L-String To Address Of L-ClassName

Set Address Of L-StringLen To Address Of L-ClassNameLen

Perform Encoding

Call FindClass

Using By Value JNIEnvPtr

Address Of Enc-String

Returning Class-LocalRef

Perform Check-Exception

Call NewGlobalRef

Using By Value JNIEnvPtr

Class-LocalRef

Returning L-ClassRef

Perform Check-Exception

© Copyright IBM Corporation 2021.

175 © Copyright IBM Corporation 2021.

Call DeleteLocalRef

Using By Value JNIEnvPtr

Class-LocalRef

Perform Check-Exception

.

FindClassZ.

Exit

.

GetStaticMethodID Section.

Set Address Of L-String To MethodName

Set Address Of L-StringLen To

Address Of MethodNameLen

Perform Encoding

Move Enc-String To Enc-MethodName

Set Address Of L-String To Signature

Set Address Of L-StringLen To

Address Of SignatureLen

Perform Encoding

Call GetStaticMethodID

Using By Value JNIEnvPtr

L-ClassRef

Address Of Enc-MethodName

Address Of Enc-String

Returning L-MethodID

Perform Check-Exception

.

GetStaticMethodIDZ.

Exit

.

GetMethodID Section.

Set Address Of L-String To MethodName

Set Address Of L-StringLen To

Address Of MethodNameLen

Perform Encoding

Move Enc-String To Enc-MethodName

Set Address Of L-String To Signature

Set Address Of L-StringLen To

Address Of SignatureLen

Perform Encoding

176 Supercharge IMS Business Applications with Java

Call GetMethodID

Using By Value JNIEnvPtr

L-ClassRef

Address Of Enc-MethodName

Address Of Enc-String

Returning L-MethodID

Perform Check-Exception

.

GetMethodIDZ

Exit

.

Encoding Section.

* replace the encoding XXXX with your codepage

String Function National-Of(L-String(1:L-StringLen) XXXX)

Delimited By Size

Into Enc-UTF16

End-String

String Function Display-Of(Enc-UTF16(1:L-StringLen) 1208)

Delimited By Size

x'00' Delimited By Size

Into Enc-String

End-String

.

EncodingZ.

Exit

.

Check-Exception Section.

Call ExceptionCheck Using By Value JNIEnvPtr

Returning booleanResult

If boolean-true

Call ExceptionOccurred Using By Value JNIEnvPtr

Returning Ex

Call ExceptionDescribe Using By Value JNIEnvPtr

Call ExceptionClear Using By Value JNIEnvPtr

Move 16 To Return-Code

Goback

End-If

.

Check-ExceptionZ.

© Copyright IBM Corporation 2021.

177 © Copyright IBM Corporation 2021.

Exit

.

End Program "JNIFIND".

8.3.1.1.3. JNIFINDI.cpy

This is the input copy for JNIFIND.cbl.

For FC-CLASSREF, only CLASSNAME and CLASSNAMELEN need to be

filled.

For FC-METHODREF and FC-METHODID-NONSTATIC, you need to fill

SIGNATURE, METHODNAME and their length fields. Also, OBJECTREF

needs to be set to the Java class from which the method comes.

05 FC VALUE 'C'

PIC X(01).

88 FC-CLASSREF VALUE 'C'.

88 FC-METHODREF VALUE 'M'.

88 FC-METHODID-NONSTATIC VALUE 'N'.

05 CLASSNAME USAGE POINTER VALUE NULL.

05 CLASSNAMELEN VALUE +0 USAGE COMP-5

PIC S9(04).

05 METHODNAME USAGE POINTER VALUE NULL.

05 METHODNAMELEN VALUE +0 USAGE COMP-5

PIC S9(04).

05 SIGNATURE USAGE POINTER VALUE NULL.

05 SIGNATURELEN VALUE +0 USAGE COMP-5

PIC S9(04).

05 OBJECTREF USAGE POINTER VALUE NULL.

8.3.1.1.4. JNIFINDO.cpy

This is the output copy for JNIFIND.cbl. It returns the determined class or

method reference.

05 REF USAGE POINTER VALUE NULL.

8.3.1.2. Compiling the COBOL stuff

8.3.1.2.1. Procedure COMPJNI

In the compile procedure, set the variables to the right data sets and execute it

with the member name you want to compile. This procedure uses the

178 Supercharge IMS Business Applications with Java

INCLUDE statement to include two members, IGZCJAVA and LIBJVM, in

LLQ.SYSDEFSD.DATA.

//COMPJNI PROC MEMBER=, < Name MEMBER-Member

// SRCLIB='LLQ.SOURCE.CNTL', < MEMBER Library

// LOADLIB='LLQ.TEST.LIB', < SYSLMOD

// DBRMLIB='LLQ.TEST.DBRMLIB',

// SYSDEBUG='LLQ.SYSDEBUG.DATA',

// SYSDEFSD='LLQ.SYSDEFSD.DATA',

// SYSLIB='LLQ.TEST.SYSLIB',

// COPYLIB='LLQ.COPYBOOK.LIB'

//***

//* Compile

//***

//COMPILE EXEC PGM=IGYCRCTL,PARM=OPTFILE

//SYSLIN DD DSN=&LOADS,SPACE=(CYL,(10,2)),

// STORCLAS=ALTEMP,DISP=(,PASS)

//SYSIN DD DISP=SHR,DSN=&SRCLIB.(&MEMBER.)

//SYSOPTF DD *

NOADV,APOST,FLAG(I,W),NOC(E),LIB,MAP,RENT,NOTERM,

NOSEQ,XREF,AWO,CP(273),NOOPT,DATA(31),SIZE(50000K),

TEST(NOHOOK,SEP),OFFSET

//SYSPRINT DD SYSOUT=*

//DBRMLIB DD DSN=&DBRMLIB.(&MEMBER.),DISP=SHR

//SYSDEBUG DD DISP=SHR,DSN=&SYSDEBUG.(&MEMBER.)

//STEPLIB DD DSN=SCD.DB2U888.A.DSNEXIT,DISP=SHR

// DD DSN=SCD.DB2U888.A.DSNLOAD,DISP=SHR

// DD DSN=SYS1.IGY.V421.SIGYCOMP,DISP=SHR

//SYSLIB DD DISP=SHR,DSN=©LIB.

// DD DSN=SYS1.CEE.SCEESAMP,DISP=SHR

//SYSJAVA DD PATH='/prod/vjh/jbf/jni/src/&MEMBER..java',

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIRWXG,SIRWXO),

// FILEDATA=TEXT

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))

//***

*

//* PRELINK

© Copyright IBM Corporation 2021.

179 © Copyright IBM Corporation 2021.

//***

*

//PRELINK EXEC PGM=EDCPRLK

//STEPLIB DD DISP=SHR,DSN=SYS1.CEE.SCEERUN

//SYSMSGS DD DISP=SHR,DSN=SYS1.CEE.SCEEMSGP(EDCPMSGE)

//INCLIB2 DD DSN=&SYSDEFSD.,DISP=SHR

//SYSIN DD DISP=(OLD,DELETE),

// DSN=&LOADS

// DD DDNAME=SYSIN2

//SYSMOD DD DISP=(NEW,PASS),

// DSN=&LOADS2,

// UNIT=VIO,

// SPACE=(32000,(30,30)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSIN2 DD *

INCLUDE INCLIB2(IGZCJAVA)

INCLUDE INCLIB2(LIBJVM)

//***

//* Link

//***

//LINK EXEC PGM=IEWL,PARM=('RENT,LIST,LET,DYNAM(DLL),CASE(MIXED)',

// 'AMODE=31,RMODE=ANY,REUS')

//SYSLIB DD DSN=&SYSLIB.,DISP=SHR

// DD DSN=SYS1.CEE.SCEELKED,DISP=SHR

// DD DSN=SYS1.CEE.SCEELKEX,DISP=SHR

// DD DISP=SHR,DSN=SYS1.CSSLIB

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//SYSLMOD DD DISP=SHR,

// DSN=&LOADLIB.(&MEMBER.)

//SYSDEFSD DD DUMMY

//SYSLIN DD DSN=&LOADS2,UNIT=WORK1,DISP=(OLD,DELETE)

8.3.1.2.2. Content of IGZCJAVA

IMPORT CODE,IGZCJAVA,'GetClassObject'

IMPORT CODE,IGZCJAVA,'GetEnvPtr'

Note: LLQ.SYSDEFSD.DATA contains the two members IGZCJAVA and LIBJVM (delivered

by IBM)

180 Supercharge IMS Business Applications with Java

IMPORT CODE,IGZCJAVA,'GetInstanceData'

IMPORT CODE,IGZCJAVA,'GetJVMPtr'

8.3.1.2.3. Content of LIBJVM

IMPORT CODE,'libjvm.so','addHarmonyPortLibToVMArgs'

IMPORT CODE,'libjvm.so','deregisterj9scarWithTrace'

IMPORT CODE,'libjvm.so','exitHook'

IMPORT CODE,'libjvm.so','findDirContainingFile'

IMPORT CODE,'libjvm.so','findDirUplevelToDirContainingFile'

IMPORT DATA,'libjvm.so','g_sigaction'

IMPORT CODE,'libjvm.so','getj9bin'

IMPORT CODE,'libjvm.so','initializeSyscallInterruptMechanism'

IMPORT CODE,'libjvm.so','isFileInDir'

IMPORT CODE,'libjvm.so','jio_fprintf'

IMPORT CODE,'libjvm.so','jio_snprintf'

IMPORT CODE,'libjvm.so','jio_vfprintf'

IMPORT CODE,'libjvm.so','jio_vsnprintf'

IMPORT DATA,'libjvm.so','j9copyright'

IMPORT DATA,'libjvm.so','j9scar_group0'

IMPORT DATA,'libjvm.so','j9scar_group1'

IMPORT DATA,'libjvm.so','j9scar_group2'

IMPORT DATA,'libjvm.so','j9scar_group3'

IMPORT DATA,'libjvm.so','j9scar_group4'

IMPORT DATA,'libjvm.so','j9scar_group5'

IMPORT DATA,'libjvm.so','j9scar_tpids0'

IMPORT DATA,'libjvm.so','j9scar_tpids1'

IMPORT DATA,'libjvm.so','j9scar_tpids2'

IMPORT DATA,'libjvm.so','j9scar_tpids3'

IMPORT DATA,'libjvm.so','j9scar_tpids4'

IMPORT DATA,'libjvm.so','j9scar_UtActive'

IMPORT DATA,'libjvm.so','j9scar_UtLevels'

IMPORT DATA,'libjvm.so','j9scar_UtModuleInfo'

IMPORT DATA,'libjvm.so','j9scar_UtTraceVersionInfo'

IMPORT CODE,'libjvm.so','post_block'

IMPORT CODE,'libjvm.so','postInterruptFileOperation'

IMPORT CODE,'libjvm.so','pre_block'

IMPORT CODE,'libjvm.so','preInterruptFileOperation'

IMPORT CODE,'libjvm.so','registerj9scarWithTrace'

IMPORT CODE,'libjvm.so','registerInterruptable'

IMPORT CODE,'libjvm.so','shutdownSyscallInterruptMechanism'

IMPORT CODE,'libjvm.so','unregisterInterruptable'

IMPORT CODE,'libjvm.so','z_compareAndSwapUDATA'

IMPORT CODE,'libjvm.so','z_compareAndSwapU32'

© Copyright IBM Corporation 2021.

181 © Copyright IBM Corporation 2021.

IMPORT CODE,'libjvm.so','z_issueReadBarrier'

IMPORT CODE,'libjvm.so','z_issueReadWriteBarrier'

IMPORT CODE,'libjvm.so','z_issueWriteBarrier'

IMPORT CODE,'libjvm.so','z_CX8Field'

IMPORT CODE,'libjvm.so','CX8Field'

IMPORT CODE,'libjvm.so','DestroyJavaVM'

IMPORT CODE,'libjvm.so','DLLinit'

IMPORT CODE,'libjvm.so','GetStringPlatform'

IMPORT CODE,'libjvm.so','GetStringPlatformLength'

IMPORT CODE,'libjvm.so','GetXUsage'

IMPORT CODE,'libjvm.so','JNI_a2e_vsprintf'

IMPORT CODE,'libjvm.so','JNI_CreateJavaVM'

IMPORT CODE,'libjvm.so','JNI_GetCreatedJavaVMs'

IMPORT CODE,'libjvm.so','JNI_GetDefaultJavaVMInitArgs'

IMPORT CODE,'libjvm.so','JVM_Accept'

IMPORT CODE,'libjvm.so','JVM_ActiveProcessorCount'

IMPORT CODE,'libjvm.so','JVM_AllocateNewArray'

IMPORT CODE,'libjvm.so','JVM_AllocateNewObject'

IMPORT CODE,'libjvm.so','JVM_Available'

IMPORT CODE,'libjvm.so','JVM_ClassDepth'

IMPORT CODE,'libjvm.so','JVM_ClassLoaderDepth'

IMPORT CODE,'libjvm.so','JVM_Close'

IMPORT CODE,'libjvm.so','JVM_Connect'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetClassAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetClassAtIfLoaded'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetDoubleAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetFieldAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetFieldAtIfLoaded'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetFloatAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetIntAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetLongAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetMemberRefInfoAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetMethodAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetMethodAtIfLoaded'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetSize'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetStringAt'

IMPORT CODE,'libjvm.so','JVM_ConstantPoolGetUTF8At'

IMPORT CODE,'libjvm.so','JVM_CurrentClassLoader'

IMPORT CODE,'libjvm.so','JVM_CurrentLoadedClass'

IMPORT CODE,'libjvm.so','JVM_CurrentTimeMillis'

IMPORT CODE,'libjvm.so','JVM_CX8Field'

IMPORT CODE,'libjvm.so','JVM_DefineClassWithSource'

IMPORT CODE,'libjvm.so','JVM_DumpThreads'

IMPORT CODE,'libjvm.so','JVM_ExpandFdTable'

182 Supercharge IMS Business Applications with Java

IMPORT CODE,'libjvm.so','JVM_FindLibraryEntry'

IMPORT CODE,'libjvm.so','JVM_FindSignal'

IMPORT CODE,'libjvm.so','JVM_FreeMemory'

IMPORT CODE,'libjvm.so','JVM_GetAllThreads'

IMPORT CODE,'libjvm.so','JVM_GetCallerClass'

IMPORT CODE,'libjvm.so','JVM_GetClassAccessFlags'

IMPORT CODE,'libjvm.so','JVM_GetClassAnnotations'

IMPORT CODE,'libjvm.so','JVM_GetClassConstantPool'

IMPORT CODE,'libjvm.so','JVM_GetClassContext'

IMPORT CODE,'libjvm.so','JVM_GetClassField'

IMPORT CODE,'libjvm.so','JVM_GetClassLoader'

IMPORT CODE,'libjvm.so','JVM_GetClassMethod'

IMPORT CODE,'libjvm.so','JVM_GetClassName'

IMPORT CODE,'libjvm.so','JVM_GetClassSignature'

IMPORT CODE,'libjvm.so','JVM_GetEnclosingMethodInfo'

IMPORT CODE,'libjvm.so','JVM_GetInterfaceVersion'

IMPORT CODE,'libjvm.so','JVM_GetLastErrorString'

IMPORT CODE,'libjvm.so','JVM_GetManagement'

IMPORT CODE,'libjvm.so','JVM_GetPortLibrary'

IMPORT CODE,'libjvm.so','JVM_GetSystemPackage'

IMPORT CODE,'libjvm.so','JVM_GetSystemPackages'

IMPORT CODE,'libjvm.so','JVM_GetThreadInterruptEvent'

IMPORT CODE,'libjvm.so','JVM_GC'

IMPORT CODE,'libjvm.so','JVM_GCNoCompact'

IMPORT CODE,'libjvm.so','JVM_Halt'

IMPORT CODE,'libjvm.so','JVM_InitializeSocketLibrary'

IMPORT CODE,'libjvm.so','JVM_InvokeMethod'

IMPORT CODE,'libjvm.so','JVM_IsNaN'

IMPORT CODE,'libjvm.so','JVM_LatestUserDefinedLoader'

IMPORT CODE,'libjvm.so','JVM_Listen'

IMPORT CODE,'libjvm.so','JVM_LoadLibrary'

IMPORT CODE,'libjvm.so','JVM_Lseek'

IMPORT CODE,'libjvm.so','JVM_MaxMemory'

IMPORT CODE,'libjvm.so','JVM_MaxObjectInspectionAge'

IMPORT CODE,'libjvm.so','JVM_MonitorNotify'

IMPORT CODE,'libjvm.so','JVM_MonitorNotifyAll'

IMPORT CODE,'libjvm.so','JVM_MonitorWait'

IMPORT CODE,'libjvm.so','JVM_NanoTime'

IMPORT CODE,'libjvm.so','JVM_NativePath'

IMPORT CODE,'libjvm.so','JVM_NewInstanceFromConstructor'

IMPORT CODE,'libjvm.so','JVM_OnExit'

IMPORT CODE,'libjvm.so','JVM_Open'

IMPORT CODE,'libjvm.so','JVM_RaiseSignal'

IMPORT CODE,'libjvm.so','JVM_RawAllocate'

© Copyright IBM Corporation 2021.

183 © Copyright IBM Corporation 2021.

IMPORT CODE,'libjvm.so','JVM_RawCalloc'

IMPORT CODE,'libjvm.so','JVM_RawFree'

IMPORT CODE,'libjvm.so','JVM_RawMonitorCreate'

IMPORT CODE,'libjvm.so','JVM_RawMonitorDestroy'

IMPORT CODE,'libjvm.so','JVM_RawMonitorEnter'

IMPORT CODE,'libjvm.so','JVM_RawMonitorExit'

IMPORT CODE,'libjvm.so','JVM_RawRealloc'

IMPORT CODE,'libjvm.so','JVM_Read'

IMPORT CODE,'libjvm.so','JVM_Recv'

IMPORT CODE,'libjvm.so','JVM_RecvFrom'

IMPORT CODE,'libjvm.so','JVM_RegisterSignal'

IMPORT CODE,'libjvm.so','JVM_RegisterUnsafeMethods'

IMPORT CODE,'libjvm.so','JVM_Send'

IMPORT CODE,'libjvm.so','JVM_SendTo'

IMPORT CODE,'libjvm.so','JVM_SetLength'

IMPORT CODE,'libjvm.so','JVM_Sleep'

IMPORT CODE,'libjvm.so','JVM_Socket'

IMPORT CODE,'libjvm.so','JVM_SocketAvailable'

IMPORT CODE,'libjvm.so','JVM_SocketClose'

IMPORT CODE,'libjvm.so','JVM_Startup'

IMPORT CODE,'libjvm.so','JVM_SupportsCX8'

IMPORT CODE,'libjvm.so','JVM_Sync'

IMPORT CODE,'libjvm.so','JVM_Timeout'

IMPORT CODE,'libjvm.so','JVM_TotalMemory'

IMPORT CODE,'libjvm.so','JVM_TraceInstructions'

IMPORT CODE,'libjvm.so','JVM_TraceMethodCalls'

IMPORT CODE,'libjvm.so','JVM_UcsOpen'

IMPORT CODE,'libjvm.so','JVM_Write'

IMPORT CODE,'libjvm.so','JVM_ZipHook'

IMPORT CODE,'libjvm.so','NewStringPlatform'

8.3.1.3. Coding Java

This is the Java class that provides COBMAIN.cbl with the needed data. As a

simple example, this class returns selected data from a String array back to its

caller.

8.3.1.3.1. JNIHelper.java

package com.example;

public class JNIHelper

{

private static final String[] data = {

"Datafield1",

184 Supercharge IMS Business Applications with Java

"Datafield2",

"Datafield3",

"Datafield4",

"Datafield5",

"Datafield6",

"Datafield7",

"Datafield8",

"Datafield9",

"Datafield10"};

public static byte[] returnData(int dataPos)

{

if (dataPos > data.length || dataPos < 1)

{

return null;

}

return data[dataPos - 1].getBytes();

}

}

8.3.1.4. Lessons learned: Avoid using DLLs

Restrictions for calling DLL programs are, among other things, mainly an LE

restriction of calling the same program from non-DLL and DLL, or simply the

need to make a static call. To remove these restrictions and creating a non-DLL

program with JNI calls you need to avoid using the INVOKE statement. This is

the only statement which requires the DLL option.

8.3.1.5. Lessons learned: Avoid using INVOKE

INVOKE is a convenient method to call Java but is at the same time expensive.

If you remove the INVOKE statement, you need to call Java another way. That

means you have to use JNI services such as FindClass, GetStaticMethodID

and GetMethodID.

The downside of this is, you have to write a lot more code if you replace

INVOKE with JNI calls, and you have to do the encoding from EBCDIC to

UTF-8 yourself, which is normally handled by INVOKE. But just because you

have more to write yourself, it doesn’t mean you need more CPU resources to

access Java. On the contrary, you can now cache the references of your classes

and methods so you don’t need to make unnecessary JNI calls, which INVOKE

does every time.

© Copyright IBM Corporation 2021.

185 © Copyright IBM Corporation 2021.

8.3.1.6. Lessons learned: Use static Java methods

Why should you use static methods, instead of object methods? Because

creating objects via JNI is more troublesome than just calling a static method.

As an example, we try to call a method with no parameters or return values.

What you now need to do first is the same procedure regardless of static or no

static (except for the JNI service you need to call GetStaticMethodID or

GetMethodID), you need to get the references for the class and the method you

want to call via JNI services.

Now if you want to call the static method, congratulations-- you have

everything you need. Just use the JNI service CallStatic<type>Method with

the right references and the method will be executed (we replace <type> with

Void because we have no return value).

Call CallStaticVoidMethod

Using By Value JNIEnvPtr

Class-Ref

Static-Method-Ref

If you don’t, then you need to take some additional steps. First you need to

create an object from the class. An object is created when you call the

constructor from this specific class. To call the constructor you have to get the

reference via JNI service GetMethodID with the method name <init> and the

right signature.

Move '<init>' To Method-Name

* No parameters for constructor => (),

* return value always V => void

Move '()V' To Signature

* Now convert from EBCDIC to UTF-8

…

Call GetMethodID

Using By Value JNIEnvPtr

Class-Ref

Method-Name-UTF8-Ptr

Signature-UTF8-Ptr

returning Constructor-Ref

When you have the constructor, you have to create a new object with the

NewObject service, which needs the constructor and the parameters.

Call NewObject

Using By Value JNIEnvPtr

186 Supercharge IMS Business Applications with Java

Class-Ref

Constructor-Ref

returning Local-Object-Ref

* Add constructor parameters here if needed

After these steps you can finally call the method you want by using the JNI

service Call<type>Method (just like the Call<type>StaticMethod, we

replace <type> with Void).

Call CallVoidMethod

Using By Value JNIEnvPtr

Object-Ref

Method-Ref

Call NewGlobalRef

Using By Value JNIEnvPtr

Local-Object-Ref

Returning Object-Ref

…

Call DeleteLocalRef

Using By Value JNIEnvPtr

Local-Object-Ref

8.3.2. Handling Java exceptions in COBOL

After each JNI service you need to check if an Exception occurred by using

ExceptionCheck. If that is the case, you need to retrieve the exception via

ExceptionOccurred and use ExceptionClear to signal to the JVM that the

Exception was handled nicely. Optionally, you can print the stack trace via

ExceptionDescribe.

Check-Exception Section.

Call ExceptionCheck Using By Value JNIEnvPtr

Returning booleanResult

Note: If you want to use your Object again, make it global via the JNI service

NewGlobalRef and remove the local reference with DeleteLocalRef because local

references are freed after the return of the native method.

© Copyright IBM Corporation 2021.

187 © Copyright IBM Corporation 2021.

If boolean-true

Call ExceptionOccurred Using By Value JNIEnvPtr

Returning Ex

Call ExceptionDescribe Using By Value JNIEnvPtr

Call ExceptionClear Using By Value JNIEnvPtr

Move 16 To Return-Code

Goback

End-If

.

Check-ExceptionZ.

Exit

.

8.3.3. Wrapping JNI with our own static converters

In our initial attempt, we tried to hide the complexity by generating wrapper

code using our own static converters.

8.3.3.1. Hiding the JNI complexity

Generating the JNI calls for COBOL is one way to hide the complexity. You

could use Java classes with annotations to fill necessary information for the

generator, or you generate the COBOL as well as the Java classes via your own

domain-specific language (DSL).

8.3.3.2. Lessons learned

Figure 39. Generating Java and COBOL wrapper code

188 Supercharge IMS Business Applications with Java

The disadvantage of this method is that you generate many artifacts that

you will have to manage. If you want to, for example, change something in

your generated code, you would have to keep track of all your generated

applications with JNI calls, regenerate your code, and test it. This restriction

imposes higher code management efforts.

8.3.4. Wrapping JNI using a roll-your-own dynamic converter

8.3.4.1. Reasoning for writing and using a custom converter

With our first attempt to combine COBOL and Java, we learned that we lose

some flexibility in Java if we do not enhance things on the COBOL side. In Java

it is common to use collections such as lists. A list has no limits in the number

of elements it can store. In COBOL you can use tables with OCCURS

statements, but you must define the largest number of elements you can store

in the table. If you want to map a Java list to a COBOL table, you have to set

limitations on the Java side.

This is the reason why we implemented a COBOL representation of a list as a

subprogram. The COBOL list has no limitations in the number of stored

elements and matches perfectly to the Java list.

To be able to map our COBOL data to Java with flexibility and vice versa, we

designed our own mapping framework that is aware of the rules of how we

store our data in COBOL.

8.3.4.2. Implementation

First of all, we designed a XML-based modelling language to describe our data

models. Based on these model we generate the COBOL representation based

on a copybook and the Java representation based on the Plain Old Java Object

(POJO) programming model.

Our generator also produces a description of the memory layout of the COBOL

copybook. The description enables us to do introspection on the COBOL side.

Figure 40. Mapping framework for a custom converter

© Copyright IBM Corporation 2021.

189 © Copyright IBM Corporation 2021.

Figure 41. Generating COBOL and Java representations using the modelling language

It is also accessible on the Java side and used to map the data from COBOL to

Java and back.

8.3.5. Other important information

8.3.5.1. Data type designations

The following table contains a list of the JNI data types and their corresponding

representations in Java and COBOL.

Table 4. Data type mapping from JNI to Java and COBOL

JNI designation Java designation COBOL object

designation

COBOL

declaration

B byte jbyte PIC X

S short jshort PIC S9(04)

I int jint PIC S9(09)

J long jlong PIC S9(18)

Z boolean jboolean PIC X1

F float jfloat COMP-1

D double jdouble COMP-2

C char jchar PIC N

L Object jobject Object Reference2

S String jstring Object Reference

[…3 …[] j…Array Object Reference

1 Two boolean conditions (“true“ and “false“) are represented by hex-values. x’00’ = false, x’01’ to x’FF’ = true

2 Reference to the COBOL object e.g.: „Object Reference jbyteArray“

190 Supercharge IMS Business Applications with Java

8.3.5.2. Sample JNI in COBOL using FindClass

The following example demonstrates how a JNI function is called from a

COBOL program, as well as the declarations of the variables.

…

Environment Division.

Configuration Section.

Repository.

Class jclass Is 'jclass'

…

.

…

Working-Storage Section.

…

77 X-ClassRef Object Reference jclass.

77 UTF-String Pic X(9999).

Procedure Division Using …

…

Call FindClass using by value JNIEnvPtr

address of UTF-String

returning X-ClassRef

The following figure shows how the JNI function is mapped to a COBOL call.

8.4. Additional considerations for production usage

3 „…” represents any element in the same column. For example, [… = [J, j…Array = jlongArray, …[] =

long[]

Figure 42. Mapping FindClass to a COBOL call

© Copyright IBM Corporation 2021.

191 © Copyright IBM Corporation 2021.

In this section, we will describe challenges that need to be taken into

consideration when this technology is staged into a production environment.

Some things to consider include error handling and usage statistics.

8.4.1. Error handling in production

In a production environment, dumps will become larger, which means storage

pools (DFSMS) sizing should be observed and eventually increased. In addition,

new error codes as a result of the mandatory LE setting with POSIX(ON) need

to be handled.

You will want to consider using a product, for example, IBM Fault Analyzer, to

analyze the dump, and provide a how-to cookbook for the programmer who

needs to analyze the issues.

8.4.2. Identifying CPU, zIIP, and zIIP on CPU (zICP) usage

When Java is used substantially in your systems, the processing resource

consumption is mainly on zIIP engines. z/OS Workload Manager (WLM)

assigns CPU cycles when not enough zIIP resources are available. As a result,

you have to monitor the zIIP-eligible workload that was executed on CPUs,

and based on the workload, consider acquiring additional zIIP(s).

There are several ways to identify the zIIP and zICP.

8.4.2.1. Joboutpout statistics

You can show the resources on a job basis by enhancing the IEFACTRT exit.

By default those values are not reported in the job output.

CPU + zIIP consumed time

zICP time

zIIP consumed time

Figure 43. Output from the IEFACTRT exit

192 Supercharge IMS Business Applications with Java

8.4.2.2. Real-time alerting when thresholds are reached

You could use a commercial product or your own implementation to analyze

the zIIP and zICP usage. In our environment, based on BMC MainView

information, a real-time alerting solution is implemented. A typical message

issued looks as follows:

Figure 44. Real-time alerting messages

8.4.2.3. Statistics view on IIP and ICP

You could use a commercial product or your own implementation to analyze

the IIP and ICP usage. One such product is EPV for z/OS. This product gives

you a view of the IIP workload. You can also define thresholds that initiate

events you want to capture.

Figure 45. EPV for z/OS

The following chart shows the number of IIP eligible workload executed on

CPUs.

© Copyright IBM Corporation 2021.

193 © Copyright IBM Corporation 2021.

Figure 46. IIP eligible workload in EPV for z/OS

8.4.3. Accounting: New SMF records 29 & 121

For IMS V14, JVM usage statistics are captured as type-29, subtype-2 records in

z/OS System Management Facility (SMF). Use the SMF 29 record to find Java-

related data collected in an IMS V14 environment. Use the SMFINTERVAL

parameter for the DFSJVMEV member or IMS procedures to specify the time

interval in milliseconds to log JVM statistics.

SMF record type 121 covers the JZOS-based jobs, recording z/OS Java runtime

performance statistics.

Values captured in the record are used by IBM and various third party vendor

products for near-real-time analysis as well as reporting purposes.

8.5. Security considerations

All accesses to z/OS UNIX System Services files should be controlled via access

control lists (ACLs) for security purposes. It is critical that you:

• Identify the roles that you need. Define those as RACF groups.

• Implement the adequate ACLs for the defined groups.

• Connect the RACF user to the adequate group(s).

8.5.1. Roles classification

When identifying user roles, you must consider all environments, from

development, test, integration test, pre-production, to production. The

following roles were identified in our environment:

194 Supercharge IMS Business Applications with Java

1. Application development and testing. This role is for application

development and testing.

2. Application deployment. This role is responsible for deploying

the Java software and applications in the adequate

environments

3. Application execution. This user role needs IMS region RACF

USERID(s) in order to run Java applications.

4. Operational control. This role is responsible for operational

tasks, such as starting IMS MPRs and controlling operations,

and usually provides the first-level support.

5. Second- and third-level support. This role has the ability to

access for a short time (a few minutes to a few hours) the

production environment for problem determination purposes.

A prerequisite for the implementation of adequate role-based security

mechanism is an adequate structure of your file system and path naming

conventions.

8.5.2. Separation of concerns

A prerequisite for the implementation of adequate role-based security

mechanism is an adequate structure of your file system and path naming

conventions. Having separate directories and paths with a naming convention

that clearly indicates the user roles not only facilitates access control, but also

reduces confusion and eases support.

8.5.3. Transaction execution security

All transactions are executed under the USERID(s) set by the IMS Connect

client. In our environment, the IMS OTMA security level is set to CHECK,

which means for access to the requested transaction, the user ID is verified and

checked against RACF for authorization in the control region.

Another thing to note is that both the USERID under which the MPRs are

started and the USERID used for the transaction execution need an OMVS

segment. Previously the USERID for transaction execution must have write

access to the home file system of the USERID under which the region was

started. With IMS V14 APAR PI64496, this requirement is lifted.

8.5.4. Accessing Db2

All access to Db2 is done with the technical user ID that is assigned to the IMS

transaction by the IMS Connect client. Those users have to be granted on all

related resources (views, tables, and so on).

© Copyright IBM Corporation 2021.

195 © Copyright IBM Corporation 2021.

8.6. Summary

We introduced Java in IMS to accelerate the creation of new services and

extend the life and value of existing applications, with the goal to evolve from

a COBOL-based system to a Java-based system. We set out on the

modernization journey by identifying our strategies, carefully examining our

existing infrastructure and environments, and clearly identifying our

functional requirements. Through this project, we learned how to embed Java

in classic IMS regions, what environment setting changes are involved, how

Java and COBOL differences can be handled, what security issues should be

considered, and how performance and processing resources can be

monitored.

196 Supercharge IMS Business Applications with Java

Notices

This information was developed for products and services offered in the

US. This material might be available from IBM in other languages.

However, you may be required to own a copy of the product or product

version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this

document in other countries. Consult your local IBM representative for

information on the products and services currently available in your area.

Any reference to an IBM product, program, or service is not intended to state

or imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the

user's responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject

matter described in this document. The furnishing of this document does not

give you any license to these patents. You can send license inquiries, in

writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the publication. IBM may make

improvements and/or changes in the product(s) and/or the program(s)

described in this set of information at any time without notice.

Any references in this information to non-IBM websites are provided for

convenience only and do not in any manner serve as an endorsement of those

websites. The materials at those websites are not part of the materials for this

IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2021.

197 © Copyright IBM Corporation 2021.

The performance data and client examples cited are presented for

illustrative purposes only. Actual performance results may vary

depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE

This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms.

You may copy, modify, and distribute these sample programs in any form

without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of

these programs. The sample programs are provided "AS IS", without warranty

of any kind. IBM shall not be liable for any damages arising out of your use of

the sample programs.

Trademarks

are trademarks or registered trademarks of International Business Machines

Corp., registered in the United States, other countries, or both: IBM, the IBM

logo, and ibm.com® , IMS, z/OS, WebSphere, Rational, CICS, Db2, and RACF.

Other product and service names might be trademarks of IBM or other

companies. A current list of IBM trademarks is available on the web at

"Copyright and trademark information" at

http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

http://www.ibm.com/legal/copytrade.shtml

198 Supercharge IMS Business Applications with Java

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and

other countries.

	Preface
	Change history
	1. Introduction
	1.1. Aligning IT strategies for the future
	1.2. Java on IBM Z primer
	1.2.1. IBM SDK for z/OS, Java Technology edition
	1.2.2. Java object and native code compilation process
	1.2.3. Java on IBM Z strength

	1.3. Motivations and business values
	1.4. Decision guidance and checklist
	1.5. Summary
	1.6. Related resources

	2. Architectural considerations
	2.1. Application migration versus application integration
	2.2. Application integration decisions
	2.2.1. Java containers on z/OS
	2.2.2. Integration depth, interaction intensity, and component granularity
	2.2.3. Integration programming pattern
	2.2.3.1. A JNI-based language integration pattern
	2.2.3.2. WOLA-based language integration pattern
	2.2.3.2.1. Calls from IMS into WebSphere Application Server for z/OS
	2.2.3.2.2. Calls from WebSphere Application Server for z/OS into IMS
	2.2.3.2.3. User delegation:
	2.2.3.2.4. Two-phase commit:
	2.2.3.2.5. IMS outbound: COBOL to Java data flow with WOLA
	2.2.3.2.6. IMS inbound: Java to COBOL data flow with WOLA

	2.2.3.3. Network integration patterns

	2.2.4. Data access pattern
	2.2.4.1. Db2 access from Java
	2.2.4.2. IMS DB access
	2.2.4.3. VSAM access
	2.2.4.4. MVS data set access

	2.2.5. Transaction or compensation model

	2.3. Summary

	3. Managing requirements and cost
	3.1. Cost and savings
	3.1.1. Requirements
	3.1.2. Non-functional requirements
	3.1.2.1. Availability, robustness, reliability, recovery and resiliency
	3.1.2.2. Change and deployment
	3.1.2.3. Maintainability
	3.1.2.4. Manageability
	3.1.2.5. People and skills
	3.1.2.6. Performance and scalability
	3.1.2.7. Security, auditability, and compliance
	3.1.2.8. Usability

	3.1.3. Functional requirements

	3.2. Best-fit application placement
	3.3. Summary

	4. Application development
	4.1. Development environments
	4.2. Writing and testing Java applications outside IMS
	4.3. Bridging from Java to COBOL (or PL/I or Assembler)
	4.3.1. Java calls COBOL
	4.3.2. COBOL calls (invokes) Java
	4.3.3. COBOL INVOKE v.s. JNI
	4.3.4. Getting started with JNI?
	4.3.5. Options to pass data between languages
	4.3.5.1. Direct byte buffers

	4.4. Accessing Db2 from mixed-language applications
	4.5. Using pureQuery for SQL-like access to Db2
	4.6. Accessing IBM MQ from mixed-language applications
	4.7. COBOL Version 4, 5, and 6 considerations
	4.7.1. Generating methods from Java to copybook structures
	4.7.1.1. Strings
	4.7.1.2. JZOS Record Generator
	4.7.1.3. Rational CICS/IMS Data Binding Wizard (J2C)

	4.8. Special application requirements
	4.8.1. Preload or initialization for Java objects on JVM startup

	4.9. Summary
	4.10. Related resources

	5. Bridging from Java to business languages
	5.1. What is JNI?
	5.2. How JNI works
	5.2.1. JNI services and API
	5.2.2. Making the connection

	5.3. Connecting Java and COBOL
	5.3.1. The main method
	5.3.2. Working with 'wrapper' OO COBOL classes
	5.3.3. Accessing JNI services
	5.3.4. Compiling and linking for COBOL
	5.3.4.1. Java and COBOL under z/OS UNIX
	5.3.4.1.1. Java invoking OO COBOL with class definition on USS
	5.3.4.1.2. OO COBOL application calling Java

	5.3.4.2. Java and COBOL under MVS (JCL or TSO/E)
	5.3.4.2.1. OO COBOL calling Java via INVOKE

	5.4. Invoking Java from native COBOL
	5.5. Considerations using native COBOL with JNI
	5.5.1. Generating JNI code
	5.5.2. Framework
	5.5.3. Using static methods

	5.6. Connecting Java and PL/I
	5.7. Examples
	5.7.1. Example 1: “Hello world” from COBOL
	5.7.2. Example 2: Java calling procedural COBOL with JNI service calls (USS)
	5.7.3. Example 3: Java calling OO COBOL with class definition (USS)
	5.7.4. Example 4: OO COBOL application invoking Java using INVOKE (USS)
	5.7.5. Example 5: Java calling procedural COBOL (MVS)
	5.7.6. Example 6: Java calling OO COBOL with class definition (MVS)
	5.7.7. Example 7: COBOL invoking Java via INVOKE (MVS)

	5.8. Summary
	5.9. Related resources

	6. Infrastructure, setup, and scenarios
	6.1. Environment description
	6.1.1. JVM startup
	6.1.2. JVM persistency and abend penalties
	6.1.3. Language Environment restrictions for Java interoperability
	6.1.4. Abend and error handling
	6.1.5. z/OS memory configuration (IEFUSI)
	6.1.6. Is CANCEL_PGM required?
	6.1.7. Unit of work and unit of recovery

	6.2. IMS TM classic scenario
	6.2.1. Data to collect for the initial configuration
	6.2.2. IMS JVM configuration
	6.2.2.1. IMS JVM environment member
	6.2.2.2. IMS JVM configuration member
	6.2.2.3. Alternate Environment and JVM configuration with STDENV
	6.2.2.4. IMS JVM configuration file

	6.2.3. IMS JVM related Language Environment configuration

	6.3. Db2, ESAF connection pooling, and plans
	6.3.1. Db2 connection pooling for IMS
	6.3.2. Sample IMS setup for using Db2 in a mixed mode environment

	6.4. IMS Connect
	6.4.1. Security related to Db2 access and USS permissions

	6.5. Language Environment
	6.6. z/OS UNIX System Services (USS)
	6.6.1. Threads and tasks

	6.7. IMS DB and DL/I
	6.8. Db2 Java stored procedures
	6.9. IMS synchronous program switch
	6.10. IMS Java Dependent Region resource adapter
	6.11. WebSphere Optimized Local Adapters
	6.12. Summary

	7. Problem determination
	7.1. Gathering data
	7.1.1. IBM Support Assistant
	7.1.2. IBM Health Center
	7.1.3. IBM HeapAnalyzer
	7.1.4. Rational Agent Controller, Rational Profiling, and HealthCenter plugin
	7.1.5. JConsole
	7.1.5.1. Starting and running JConsole:
	7.1.5.2. JConsole New Connection wizard

	7.2. Integrated tooling
	7.2.1. IBM Developer for z/OS Java debugging
	7.2.2. Debugging with IBM z/OS Debugger (successor of IBM Debug Tool for z/OS)
	7.2.3. Looking at Performance with IBM Application Performance Analyzer for z/OS

	7.3. Understanding JNI problems
	7.4. List of known problems and solutions
	7.4.1. Recommended maintenance based on experiences
	7.4.2. IGZ0032S at j9sl_close_shared_library with COBOL DLLs in call chain

	7.5. Summary

	8. Case study: Bringing Java to a COBOL-based banking system
	8.1. Introducing Java in existing IMS MPRs and BMPs
	8.1.1. Strategies
	8.1.2. Functional prerequisites
	8.1.3. Technical overview of the existing IMS landscape that must be Java- enabled
	8.1.3.1. High performance Transactions
	8.1.3.2. Standard performance transactions
	8.1.3.3. Batch processing (BMP)

	8.2. Enabling IMS for Java: Experiences and how-to’s
	8.2.1. How Java is embedded in classic IMS regions
	8.2.2. Environment enablement
	8.2.2.1. Minimizing I/Os on RACF datasets
	8.2.2.2. POSIX(ON) and ALL31(ON) related issues
	8.2.2.3. UNIX System Services settings

	8.2.3. JVM
	8.2.3.1. Setting a z/OS-wide default Java version
	8.2.3.2. JVM version
	8.2.3.3. IMS settings
	8.2.3.3.1. IMS JVM settings for high-performance transactions
	8.2.3.3.2. IMS JVM settings for standard transactions
	8.2.3.3.3. IMS JVM settings for BMP regions

	8.2.4. Message Processing Region settings
	8.2.4.1. MPRs settings for high performance transactions (production settings)
	8.2.4.1.1. LE (language Environment)
	8.2.4.1.2. IMS-related region setting

	8.2.4.2. MPRs settings for standard transactions (production settings)
	8.2.4.2.1. Language Environment (LE)
	8.2.4.2.2. Region settings

	8.2.5. BMP settings
	8.2.5.1. LE (Language Environment)
	8.2.5.2. Region setting

	8.2.6. Specific settings for development regions
	8.2.7. JVM release management
	8.2.7.1. Simplifying system-wide JVM upgrades

	8.2.8. JDBC driver and release management
	8.2.8.1. JDBC driver
	8.2.8.2. Simplifying system-wide JDBD driver upgrades

	8.2.9. Defining a validation suite
	8.2.10. IMS class/region concept

	8.3. Connecting COBOL with Java
	8.3.1. Sample for COBOL calling Java that conforms to our specifications
	8.3.1.1. Coding the COBOL parts
	8.3.1.1.1. COBMAIN.cbl
	8.3.1.1.2. JNIFIND.cbl
	8.3.1.1.3. JNIFINDI.cpy
	8.3.1.1.4. JNIFINDO.cpy

	8.3.1.2. Compiling the COBOL stuff
	8.3.1.2.1. Procedure COMPJNI
	8.3.1.2.2. Content of IGZCJAVA
	8.3.1.2.3. Content of LIBJVM

	8.3.1.3. Coding Java
	8.3.1.3.1. JNIHelper.java

	8.3.1.4. Lessons learned: Avoid using DLLs
	8.3.1.5. Lessons learned: Avoid using INVOKE

	8.3.2. Handling Java exceptions in COBOL
	8.3.3. Wrapping JNI with our own static converters
	8.3.3.1. Hiding the JNI complexity
	8.3.3.2. Lessons learned

	8.3.4. Wrapping JNI using a roll-your-own dynamic converter
	8.3.4.1. Reasoning for writing and using a custom converter
	8.3.4.2. Implementation

	8.3.5. Other important information
	8.3.5.1. Data type designations
	8.3.5.2. Sample JNI in COBOL using FindClass

	8.4. Additional considerations for production usage
	8.4.1. Error handling in production
	8.4.2. Identifying CPU, zIIP, and zIIP on CPU (zICP) usage
	8.4.2.1. Joboutpout statistics
	8.4.2.2. Real-time alerting when thresholds are reached
	8.4.2.3. Statistics view on IIP and ICP

	8.4.3. Accounting: New SMF records 29 & 121

	8.5. Security considerations
	8.5.1. Roles classification
	8.5.2. Separation of concerns
	8.5.3. Transaction execution security
	8.5.4. Accessing Db2

	8.6. Summary

	Notices
	COPYRIGHT LICENSE
	Trademarks

