
Job Waits and iDoctor for iSeries Job Watcher White Paper

This is version 3.0 of this White Paper.

Running and Waiting

All “units of work” 1 in a system at any instant in time are in one of three states:

1. “on” a CPU 2 (a.k.a. “dispatched to a processor”, “using CPU”, “running”,
“active”)

2. ready to use CPU, but waiting for a processor to become available (a.k.a. “ready”,
“CPU queued”)

3. waiting for something or someone (a.k.a. “blocked”, “idle”)

A thread’s Run/Wait Signature might look like:

How much time a unit of work spends in state 1 depends on the program design and how
much work it’s requested to perform.

How much time a unit of work spends in state 2 is a function of the amount of CPU
competition it experiences while getting its work done.

How much time a unit of work spends in state 3 depends on many factors. But at this
point we need to differentiate two types of waits:

A. Waiting for a work request to arrive (a.k.a. idle)
B. Waits that occur while performing a work request (a.k.a. blocked)

Type A waits, for example, in interactive work would be considered “key/think time”.
These waits are typically not a “problem”. Or if they ARE a problem, it’s usually one
external to the machine they are observed on (e.g. a communications problem causing
slow arrival of work requests). Note: batch work rarely has any type A waits, unless the
batch work is driven, for example, by a data queue… and the data queue is empty.

1 A “unit of work” is a single threaded job, each thread in a multi-threaded job or a system task.
2 Hardware multithreading raises the issue of differences between the “time dispatched to a processor” and
“CPU Time”. More on this later.

CPU (1) CPUq (2) Waits (3)

Elapsed time

Type B waits are the interesting ones. While it’s debatable whether or not all these types
of waits should be considered “problems”, the following is a safe and valid statement:

“Outside of CPU usage and contention, type B waits are the reason jobs/threads take as
long as they to do complete their work.”

So, a more refined Run/Wait Signature for an interactive job/thread might look like:

And a typical batch type job/thread would look like:

Level set

This discussion applies to individual units of work… single threaded jobs and individual
job threads. Many modern application engines involve the use of more than one job
and/or more than one thread to process each “transaction”. The ideas presented in this
document still apply in those cases, but each unit of work must be individually analyzed.
There’s an additional burden placed on the analysis process to tie together the flow of
work across the multiple jobs/threads. And, to be honest, such modern transaction
engines frequently make it difficult to differentiate between type A and type B waits.

The Mysteries of Waiting

The waiting component of a job/thread’s life is easy to compute, but rarely discussed and
scrutinized.

For batch type work:

Waits = Elapsed Time – CPU Time3

For interactive type work:

Waits = Elapsed Time – CPU Time – Key/Think Time 4

3 Assumes CPU Queuing is not significant
4 ditto 3

CPU CPUq Waits (B) Key/Think (A)

CPU CPUq Waits (B)

What is the reason why waits have historically been ignored, unless they become so
severe that the elapsed time difference becomes painfully obvious? Suggested answer:
because little instrumentation or tools exist to measure and provide detail on waits. Waits
are the “slightly off” relative that lives in the basement. Unless his demand for food
becomes excessive, or the music gets too loud, he is best ignored. You certainly don’t
want to talk about him with friends.

Are waits “bad”?

This paper contends the answer is “yes”. (We are obviously talking about type B waits.)
There’s a common misconception that a job/thread that “uses high CPU” is intrinsically
bad. It MIGHT be bad. For example: If a work process normally takes 2 hours to
complete with 45 minutes of CPU and, after a software or data change, now takes 4 hours
with 3 hours of CPU, that IS bad. But just looking at a job/thread (in a non-comparative
way) that uses a high percentage of CPU, and declaring it “bad” misses the point that “the
lack or minimal occurrences of type B waits is a GOOD thing”. For batch type work (that
does not have type A waits, where it is waiting for work to arrive), if the type B waits are
reduced/eliminated, the job/thread’s “CPU Density” 5 increases. Ultimately, it could use
100% of a processor6.

Let’s take an example: A batch job that runs for 6 hours and uses 117 minutes of CPU.
The first thing to consider is how much time of the “wasted” 243 minutes of elapsed time
was CPU queuing (i.e. contending/waiting for a processor). This paper will go on to
demonstrate how this value, and all the waits, can be measured in great detail. But for this
example, let’s suppose that 71 minutes of CPU queuing was involved. This means that
the job was in type B waits 172 minutes. This means that the job could potentially run in
3 hours and 8 minutes… if the type B waits were completely eliminated. Contrast this
with how the job might perform if the CPU speeds on the machine were doubled. One
would expect the CPU minutes and CPU queuing minutes to be halved, yielding a job run
time of 4.5 hours. Summary: eliminating the type B waits could have the job run in 3
hours 8 minutes. Doubling the CPU capacity could have the job run in 4 hours, 30
minutes. Conclusion: wait analysis and reduction can be a very powerful, cost-
effective way of improving response time and throughput.

A last word on the badness of waits: An IBM “eBusiness poster” spotted outside the
iSeries Benchmark Center in Rochester Minnesota contained this phrase:

5 If a single thread consumes all of a single processor for a period of time, it is 100% CPU dense. If it
consumes 1/8th of a process for the same period, it is 12.5% CPU dense. This is true regardless of the
number of processors on the system or in the partition. For systems with more than one CPU in the
partition, CPU density is NOT what is seen on WRKACTJOB or WRKSYSACT commands. But can be
computed from those, knowing how many CPUs are available to the job.
6 DB2 Multitasking can make a job/thread appear to use more than 100% of a processor, as the background
assisting tasks promote their CPU consumption numbers into the client job/thread. Note: this can also make
accurate capacity planning more difficult.

All computers wait at the same speed.

Think about it.

Detailing Waits

Up to here, this paper has made the case that wait analysis (and resulting “corrective
actions”) could lead to happiness. What is the first step in wait analysis? It begins with
obtaining details on the individual waits.

Refresher: a summary Run/Wait Signature for a typical batch type job/thread might look
like:

Wait analysis begins by bringing out details in the “Waits (B)” component.

For example:

This represents the first phase of detailing: the raw amount of time spent in different
types of waits. The next obvious metric needed is the number of each type of wait:

Computed averages are next. Suppose the durations / counts / averages were as follows:

CPU CPUq Waits (B)

CPU CPUq Waits (B)

DASD reads DASD writes Rec Locks Journal

DASD reads
3,523

DASD writes
17,772

Rec Locks
355

Journal
5,741

DASD reads
42s

3,523
0.012s

DASD writes
73s

17,772
0.004s

Rec Locks
45s
355

0.126s

Journal
44s

5,741
0.007s

This is already enough information to begin contemplating actions. Some of the questions
it raises include:

How many of the DASD reads are page faults? Would main memory/pool changes help?
What objects are being read from DASD?
What programs are causing the reads?
How could those DASD reads be reduced, eliminated, or made asynchronous?
Could the DASD read response time be better?
What objects are being written to DASD?
What programs are causing the writes?
How could those DASD writes be reduce, eliminated or made asynchronous?
Could the DASD write response time be better?
What DB2 files are involved with the record locks?
What programs are requesting the record locks?
What other jobs/threads are causing the record lock contention?
What files are being journaled?
What journals are involved?
Are the journals needed and optimally configured?
Could COMMIT cycles or the Journal PRPQ used to reduce this wait component?
Is the DASD I/O subsystem write cache(s) large enough?
Is the DASD configuration well balanced, in terms of IOPs, IOAs, busses, RAID
configurations?

Unfortunately it is beyond the scope of this paper to delve into details of how to tackle
the wait “corrective actions”.

iDoctor for iSeries Job Watcher (JW)

All preceding material was a generic discussion of wait analysis. Now we’ll focus on
such capabilities that are built into JW.

JW is a sampling based performance tool. At specified time intervals, or “as fast as
possible”, a JW command/function will sample anywhere from 1 thread/job to all
threads/jobs on an iSeries system. It gathers a large variety of performance data, much of
it beyond the scope of this paper. But one of the main reasons for the creation of JW, was
to capitalize on wait metrics first introduced into the system in Version 5 Release 1 of the
Licensed Internal Code (LIC).

Remember back to the statement that a job/thread is either running on a processor,
waiting for a processor to become available, or waiting for someone or something? The
LIC has assigned an identifier to ALL7 the points in LIC code that actually enter the wait

7 Some types of waits are identified with greater granularity than are other points. For example:. Locks and
Seizes have more individual wait points identified than do other types of waits that tend to share block
points.

state. 8 In Version 5 Release 3, there are about 199 wait points. In Version 5 Release 4,
there are about 203 such wait points. Each individual wait point is sometimes referred to
as an “enum”. “Enum” is shorthand for the C++ programming language’s “enumerated
value” and simply means a fixed set of items. When a V5R4 job/thread is in the wait state,
it IS in one of the 203 possible wait points. The “current wait” of a job/thread can be
referred to by the numerical value of the “enum” (e.g. 51), or by a 3 character eye catcher
that has been assigned to each enum (e.g. “JBw”) or by a text string associated with each
(e.g. “JOBUNDLEWAIT”).

Wait Point Groupings, a.k.a. “Wait Buckets”

A large number of individual wait points is great from a data-empowerment point of view.
However, when it comes to keeping track of them on a wait-point by wait-point basis, for
every unit of work, it presents challenges to efficient implementation. An ideal design
would be for each of the possible wait points (203 in V5R4) to have its own set of data
associated with it, for each unit of work (job/thread/task). The minimum amount of
accounting data that would be needed includes:

Ø Occurrence count
Ø Total time accumulator

It was determined that keeping 203 pairs of these numbers associated with every
job/thread/task on a machine was simply too much overhead (mainly in the area of main
storage footprint).

On the iSeries, a compromise was reached that allows for a potentially very large number
of individual wait points to be mapped into a modest sized set of accounting data. The
modest sized set of accounting numbers is called the Wait Buckets. There are 32 such
buckets, but 3 of them have special purposes, so there are 29 buckets available to map the
203 wait points. Again, these buckets exist on a per unit of work basis.

Aside: Do Wait Buckets defeat the purpose of many block points?

One might ask: “What’s the value in having a large number of unique block points (203,
in V5R4), if all this detail is going to be lost when they get crammed into 29 Wait
Buckets?” That’s a fair question. The real loss of granularity is felt with sampling based
tools, like Job Watcher. But even with JW, there’s good use of the high wait point counts:

At any given instant in time, the full granularity afforded by all the wait points is
available to sampling based tools. For example: “At this particular moment in time,

8 At the actual run/wait nitty gritty level, only LIC code can truly enter a wait. If an application or OS/400
program enters a wait state, it does so in LIC code it has caused to run on its behalf.

thread XYZ is waiting in block point enum 114. And it has been waiting there for n
microseconds.”

Trace based tools, e.g. PEX Analyzer, (which are beyond the scope of this paper) can
“see” every wait transition, and effectively do the accounting on a per-enum basis,
making full use of the granularity provided.

For these two reasons, maximizing wait point granularity is a good thing to do.

JW Wait Points (“enums”) and Wait Buckets

As mentioned earlier, wait accounting is the core functionality of the Job Watcher tool.
The LIC supports remapping of enums to buckets. As a V5R4 iSeries system ships, not
all of the 32 buckets are utilized; all enums are assigned within the first 16 buckets.9 JW
performs a remapping when it starts to utilize most of the 32 buckets, thereby
maximizing the granularity of wait identification.

The bucket definitions JW uses in V5R410 are as follows:

1. DISPATCHED TIME
2. CPU QUEUEING TIME
3. TOTAL BLOCK TIME
4. (RESERVED)
5. DASD (PAGE FAULTS)
6. DASD (NON FAULT READS)
7. DASD SPACE USAGE CONTENTION
8. IDLE / WAITING FOR WORK
9. DASD WRITES
10. DASD (OTHER READS OR WRITES)
11. DASD OPERATION START CONTENTION
12. MUTEX/SEMAPHORE CONTENTION
13. JOURNAL SERIALIZATION
14. MACHINE LEVEL GATE SERIALIZATION
15. SEIZE CONTENTION
16. DATABASE RECORD LOCK CONTENTION
17. OBJECT LOCK CONTENTION
18. OTHER WAITS

9 There’s a good reason for this. Collection Services also harvests Wait Bucket information, for every
thread on the system. As mentioned earlier, there is a pair of numbers associated with each bucket
(occurrence count, total time). By restricting the default mapping to live within the first 16 buckets,
collection services reduces the number of DASD bytes required to hold the job/thread information. Keeping
this amount-per-thread down is very important. Collection Services is designed so that it can be run 24 x 7
x 365 days. In that type of environment, every data item gathered on a “per-thread” basis increases the
DASD space requirement for Collection Services.
10 It can and does vary with different VRMs of the operating system.

19. MAIN STORAGE POOL OVERCOMMITMENT
20. JAVA USER (INCLUDING LOCKS)
21. JAVA JVM
22. JAVA (OTHER)
23. SOCKET ACCEPTS
24. SOCKET TRANSMITS
25. SOCKET RECEIVES
26. SOCKET (OTHER)
27. IFS PIPE
28. IFS (OTHER)
29. DATA QUEUE RECEIVES
30. MI QUEUE (OTHER)
31. MI WAIT ON EVENTS
32. ABNORMAL CONTENTION

Additional details on the buckets and the enums that are assigned to each follow.

LIC Queuing Primitives and More Granular Wait Points

Each of the 203 block points in the system is some flavor of one of approximately 20
different LIC Queuing Primitives. Individual block points may be reported (i.e. assigned
an enum) that is one of the Primitives’ enums (which is the default assignment), OR
(preferably) the specific block-owning LIC component can chose to “invent” another,
more descriptive enum for the block point.

For example, consider synchronous DASD I/O READ wait. The author is not certain, but
it is likely that the wait (block) that occurs in a job/thread while a synchronous DASD
read is in progress is probably implemented with a LIC Queuing Primitive known as a
“Single Task Blocker” (eye catcher QTB, enum number 4). That is, when LIC blocks a
job/thread due to waiting for a synchronous DASD read to complete, it uses a QTB wait
primitive/mechanism. If the component that owns this function (Storage Management)
had done no further “IDing”, that is how such waits would report (QTB, enum 4). That is
OK, except there are probably a lot of other block points that ALSO use QTB. Therefore,
it would be difficult/impossible to differentiate DASD READ blocks from other blocks.
Fortunately, Storage Management, realizing how important it is to quantify DASD op
waits, have invented a different eye catcher and enum (SRd, 158) that overrides QTB,4.
Before you start to read this section on the Wait Buckets and their enums, you might
want to read the description of Bucket 18 first. Bucket 18 contains many of the default,
LIC Queuing Primitives enums.

Disclaimer

The following discussion will include opinion. It will also, more than likely, be far less
complete than many people (including the author) would like it to be. There’s probably

no single person that knows all the nuances of the 203 wait points in V5R4. Also, in spite
of 203 individual points, many of these remain “general” and “generic” to some
degree…preventing them from categorically being declared “normal/OK” or “bad”. This
discussion should be viewed as:

v Potentially in error
v Potentially out-of-date
v One person’s opinion
v As a starting point, guideline to interpreting wait points and buckets, not as the

“last/only word”

Bucket 1 – Dispatched Time (used to be ‘CPU’)

This accumulates the amount of time a thread or task has been “dispatched” to a
processor. “Dispatched to a processor” means the thread or task has been assigned a
processor”, so it can begin execution of machine instructions. No wait points are
assigned or mapped, because a dispatched thread/task is not waiting. Job Watcher,
unfortunately, uses the misleading title of ‘CPU’ for this bucket. “CPU” is misleading
because “Dispatched Time” very frequently differs from “CPU Used Time”. This
graphic demonstrates the relationship between “Dispatched Time” and “CPU Time”.

The dispatched time value can differ from the “CPU Time” measure by other means
(DSPJOB, WRKACTJOB, WRKSYSACT, job accounting, the DELTACPU field in Job
Watcher itself). The difference can be large. The main factors that cause these
discrepancies are:

§ Processor Hardware Multi Threading (HMT) feature. This can cause bucket 1’s

time to be larger than the actual CPU time. HMT is when more than one thread or
task can be simultaneously assigned to the same physical processor. In that
scenario, they share the processor’s cycles, mainly during long “off chip”
operations, like memory fetches. Job Watcher’s Bucket 1 will record the elapsed

Bucket 1 Time
CPU Time

d
i
s
p
a
t
c
h
e
d

b
l
o
c
k
s

Job/Thread A

d
i
s
p
a
t
c
h
e
d

b
l
o
c
k
s

Job/Thread B

time a thread or task has been dispatched. The real CPU value will only include
the exact number of cycles used by the thread or task while it was dispatched.

§ Background assisting tasks, like those used in the DB Multi-Tasking Feature.
Background assisting tasks, which promote (add) their CPU usage back into the
client job/thread, will cause the client thread’s bucket 1 value to be smaller than
the measured CPU time.11

§ LPAR shared/partial processors. This is where the tricky concept of Virtual
Processors comes into play. Bucket 1 actually records the elapsed time a thread or
task is dispatched to a Virtual Processor, not (necessarily) a Physical Processor.
Similar to HMT mentioned above, a Virtual Processor can be shared across LPAR
partitions. If that occurs while a thread or task is dispatched to one of these, the
bucket 1 time will be greater than the CPU time, because it will include time the
thread/task is dispatched, but is “waiting for it’s turn” at the physical processor
behind the virtual one.

Bucket 2 – CPU QUEUEING

No wait points assigned, waiting for a processor is a special kind of wait. This is simply
the number of microseconds a thread/task has waited… ready to run… for a processor to
become available.

Note: there may always be miniscule amounts of time reported in this bucket. It’s an
artifact of the fact that SOME tiny, finite amount of time transpires between when a
thread becomes “ready to run” and when it is dispatched to a processor.

Bucket 3 – TOTAL BLOCK TIME

This is artificial sum of all the occurrence counts and total block times for buckets 4-32.

Bucket 4 – (RESERVED)

No wait points assigned.

Bucket 5 – DASD (PAGE FAULTS)

These are the waits associated with implicit (page faults) DASD reads.

Page faults are frequently (but not exclusively) caused by having “too many jobs/threads
running concurrently in too small of a main store pool”. If the faulted-on object type is a

11 Conversely, bucket 1’s value for the assisting tasks themselves would be larger (over time) than the CPU
time as measured/seen by WRKSYSACT or Collection Services.

‘1AEF’ (Temporary Process Control Space), then that is a likely cause. There are other
types of activity, though, where page faults are expected or “normal”:

§ When a program or application first starts up in a job/thread.
§ DB2 Access Paths (keyed parts of physical files, or Logical Files)… these tend to

be referenced in a highly unpredictable way, and “faulting in” pages of access
paths is considered “normal”.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
161 SFt MAINSTORE/LOGICAL-DASD-IO: PAGE FAULT
162 SFP MAINSTORE/LOGICAL-DASD-IO: PAGE FAULT IO PENDING
164 GRf MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP READ FOR FAULT
165 SRR MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP READ FOR FAULT IO
PENDING

Bucket 6 – DASD (NON FAULT READS)

These are simply the waits associated with explicit (“read this from DASD for me”)
synchronous DASD reads.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
158 SRd MAINSTORE/LOGICAL-DASD-IO: DASD READ
159 SRQ MAINSTORE/LOGICAL-DASD-IO: DASD READ IO PENDING

Bucket 7 – DASD SPACE USAGE CONTENTION

When an object, or internal LIC object is created or extended, and free DASD space has
to be located to satisfy the request, there is some level of serialization performed. This is
done on an ASP-by ASP and unit-by-unit basis. Normally, one would expect to see little,
if any, of these types of waits. If they are present in significant percentages, it usually
means the OS/LIC is being asked (by applications) to perform a very high RATE of
object creates/extends/truncates or deletes. (Note: Opening a DB2 file causes a create.)
The SIZE of the DASD space requests is not relevant to these blocks; it’s the RATE of
requests that is relevant.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
145 ASM DASD SPACE MANAGER: CONCURRENCY CONTENTION
146 ASM DASD SPACE MANAGER: ASP FREE SPACE DIRECTORY
147 ASM DASD SPACE MANAGER: RR FREE SPACE LOCK

148 ASM DASD SPACE MANAGER: GP FREE SPACE LOCK
149 ASM DASD SPACE MANAGER: PERMANENT DIRECTORY LOCK
180 ASM DASD SPACE MANAGER: TEMPORARY DIRECTORY LOCK
181 ASM DASD SPACE MANAGER: PERSISTENT STORAGE LOCK
182 ASM DASD SPACE MANAGER: STATIC DIRECTORY LOCK
183 ASM VIRTUAL ADDRESS MANAGER: BIG SEGMENT ID LOCK
184 ASM VIRTUAL ADDRESS MANAGER: LITTLE SEGMENT ID LOCK
185 ASM DASD SPACE MANAGER: IASP LOCK
186 ASM DASD SPACE MANAGER: MOVE CHAIN
187 ASM DASD SPACE MANAGER: HYPERSPACE LOCK
188 ASM DASD SPACE MANAGER: NON PERSISTENT DATA LOCK
189 ASM VIRTUAL ADDRESS MANAGER: TEMPORARY SEGMENT ID RANGE MAPPER LOCK
190 ASM VIRTUAL ADDRESS MANAGER: PERMANENT SEGMENT ID RANGE MAPPER LOCK
191 ASM VIRTUAL ADDRESS MANAGER: IASP SEGMENT ID RANGE MAPPER LOCK

Bucket 8 – IDLE / WAITING FOR WORK

These are the waits on MI queue associated with each OS job known as the “MI
Response Queue”. Normally, for 5250 type interactive applications, this would reflect the
key/think time. Other possible uses would be APPC/APPN SNA type communications
waits.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
340 QMr IDLE WAIT, MI RESPONSE QUEUE WAIT

Bucket 9 – DASD WRITES

These are the waits associated with synchronous DASD writes, or waiting for
asynchronous DASD writes to complete.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
167 SWt MAINSTORE/LOGICAL-DASD-IO: DASD WRITE
168 SWP MAINSTORE/LOGICAL-DASD-IO: DASD WRITE IO PENDING
170 SWp MAINSTORE/LOGICAL-DASD-IO: PAGE OUT WRITE
171 GPg MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP PURGE
172 GPP MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP PURGE IO PENDING
174 GTA MAINSTORE/LOGICAL-DASD-IO: GENERIC ASYNC IO TRACKER WAIT
175 GTS MAINSTORE/LOGICAL-DASD-IO: GENERIC SINGLE TASK BLOCKER WAIT
176 GTT MAINSTORE/LOGICAL-DASD-IO: GENERIC TIMED TASK BLOCKER

Bucket 10 – DASD (OTHER READS OR WRITES)

The enums with the ‘DSM’ eye-catcher deal primarily with actions taken to do DASD
unit configuration and setup and should rarely be seen in “production jobs/threads”.

The other enums with an eye-catcher other than ‘DSM’ are DASD op waits that can’t be
differentiated by read or write type of operations. These should rarely occur.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
60 DSM DASD MANAGEMENT OPS: FIND COMPRESSION GROUP
61 DSM DASD MANAGEMENT OPS: DEALLOCATE COMPRESS GROUP
62 DSM DASD MANAGEMENT OPS: READ COMPRESSION DIRECTORY
63 DSM DASD MANAGEMENT OPS: WRITE COMPRESSION DIRECTORY
64 DSM DASD MANAGEMENT OPS: INIT COMPRESSION START REORG
65 DSM DASD MANAGEMENT OPS: MIRROR READ SYNC
66 DSM DASD MANAGEMENT OPS: MIRROR REASSIGN SYNC
67 DSM DASD MANAGEMENT OPS: MIRROR WRITE VERIFY SYNC
68 DSM DASD MANAGEMENT OPS: READ
69 DSM DASD MANAGEMENT OPS: READ DIAG
70 DSM DASD MANAGEMENT OPS: VERIFY
71 DSM DASD MANAGEMENT OPS: VERIFY DIAG
72 DSM DASD MANAGEMENT OPS: WRITE
73 DSM DASD MANAGEMENT OPS: WRITE DIAG
74 DSM DASD MANAGEMENT OPS: WRITE VERIFY
75 DSM DASD MANAGEMENT OPS: WRITE VERIFY DIAG
76 DSM DASD MANAGEMENT OPS: REASSIGN
77 DSM DASD MANAGEMENT OPS: REASSIGN DIAG
78 DSM DASD MANAGEMENT OPS: ALLOCATE
79 DSM DASD MANAGEMENT OPS: ALLOCATE DIAG
80 DSM DASD MANAGEMENT OPS: DEALLOCATE
81 DSM DASD MANAGEMENT OPS: DEALLOCATE DIAG
82 DSM DASD MANAGEMENT OPS: ENABLE AUTO ALLOCATE
83 DSM DASD MANAGEMENT OPS: DISABLE AUTO ALLOCATE
84 DSM DASD MANAGEMENT OPS: QUERY COMPRESSION METRICS
85 DSM DASD MANAGEMENT OPS: QUERY COMPRESSION METRICS DIAG
86 DSM DASD MANAGEMENT OPS: COMPRESSION SCAN READ
87 DSM DASD MANAGEMENT OPS: COMPRESSION SCAN READ DIAG
88 DSM DASD MANAGEMENT OPS: COMPRESSION DISCARD TEMP DATA
89 DSM DASD MANAGEMENT OPS: COMPRESSION DISCARD TEMP DATA DIAG
150 STv MAINSTORE/LOGICAL-DASD-IO: SAR NOT SET
151 SRv MAINSTORE/LOGICAL-DASD-IO: REMOVE
152 SRP MAINSTORE/LOGICAL-DASD-IO: REMOVE IO PENDING
153 SCl MAINSTORE/LOGICAL-DASD-IO: CLEAR
154 SCP MAINSTORE/LOGICAL-DASD-IO: CLEAR IO PENDING
156 SUp MAINSTORE/LOGICAL-DASD-IO: UNPIN
157 SUP MAINSTORE/LOGICAL-DASD-IO: UNPIN IO PENDING
177 SMP MAINSTORE/LOGICAL-DASD-IO: POOL CONFIGURATION
178 SMC MAINSTORE/LOGICAL-DASD-IO: POOL CONFIGURATION CHANGE

Bucket 11 – DASD OPERATION START CONTENTION

These waits occur when a DASD operation start is delayed due to a very high rate of
concurrent DASD operations in progress at the moment it is requested.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
49 QRR QURESSTACKMSGPOOL, ABNORMAL DASD OP START CONTENTION

Bucket 12 – MUTEX/SEMAPHORE CONTENTION

These are the block points used by C/C++ programming language (both operating system
code, LPP and application code), usually in the POSIX environment, to implement Mutex
and Semaphore waits.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
15 QMG QUMUTEXGATE, NOT OTHERWISE IDENTIFIED
16 QSm QUSEMAPHORE, NOT OTHERWISE IDENTIFIED
350 Mmw QUMUTEXGATE, MUTEX WAITS
351 Mcw QUCOUNTER, CONDITION WAITS
352 Mtw QUCOUNTER, SYNRHONIZATION TOKEN WAITS
353 Msw QUSEMAPHORE, SEMAPHORE WAITS

Bucket 13 - JOURNAL SERIALIZATION

The waits associated with DB2 Journaling are in this bucket.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
50 JBo JOURNAL BUNDLE OWNER WAIT FOR DASD COMPLETION
51 JBw JOURNAL BUNDLE WAIT FOR DASD COMPLETION
260 EFJ EPFS: WAIT FOR OS TO FINISH APPLY JOURNAL CHANGES
261 ERJ EPFS: WAIT FOR OS REQUEST TO APPLY JOURNAL CHANGES

Enum 50 is the wait in the thread that is actually performing the DASD write(s) to the
journal. It is the wait for DASD journal writes to complete. Journal uses some fancy
approaches to DASD ops to do their writes absolutely as efficiently as possible. That is
why DASD writes to journals do not fall in the “DASD Write” bucket below (this is a
good thing for performance analysis, to have these journal writes differentiated).

Enum 51 is the wait that occurs in threads other than the one that’s performing the DASD
write(s). For efficiency, multiple jobs/threads can “ride along” the journal DASD writes
performed by other jobs/threads.

Bucket 14 - MACHINE LEVEL GATE SERIALIZATION

The enums associated with this bucket are:

 Eye
Enum Catcher Description
2 QGa QUGATE, NOT OTHERWISE IDENTIFIED
3 QTG QUTRYGATE, NOT OTHERWISE IDENTIFIED

QGa is a very high performance, low-overhead serialization primitive used by LIC. It is
the type of primitive in which there can be one and only one “holder”. Normally, QGa is
used in areas in which the anticipated wait time, if any, is very small (microseconds).
Note: there are some related block points (QGb, QGc, QGd) that are later covered in the
bucket named “ABNORMAL CONTENTION”.

Bucket 15 - SEIZE CONTENTION

Think of seizes as the Licensed Internal Code’s (LIC’s) equivalent of Locks. A seize
almost always occurs on/against an MI object (DB2 physical file member, Data Queue,
Program, Library…). Seizes can conflict with Locks and can cause Lock conflicts. There
is a large variety of seizes: shared, exclusive, “fair”, and “intent-exclusive”. It’s beyond
the scope of this paper to explain all there is to know about seizes. They are, after all,
internal LIC primitives that are subject to change at any time. If seizes are a significant
percentage of a Run/Wait Signature, examining the call stack, “wait object” and “holding
task/thread” (if any) are probably necessary to understand what is causing the contention.

Seizes are frequently (but not exclusively) associated with data base objects and
operations. Concurrent activities in multiple jobs such as opens, closes, journal sync
points, access path building, etc might lead to seize waits. Other actions/objects that can
experience seize waits include libraries and user profiles, during high rates of concurrent
Create/Delete activity in multiple jobs.

This bucket was the first time that the term “holding task/thread” was mentioned.
However, Job Watcher has that ability to determine the “holder” for more than just seize
waits. It can do so for Locks, Data Base Record Locks and other wait enums based on a
low level serialization primitive called a “gate”.

In the area of waiters and holders, it needs to be pointed out that the waiter… the
job/thread that is experiencing the wait is frequently the victim, not the culprit.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
100 Rex SEIZE: EXCLUSIVE
101 Rex SEIZE: LONG RUNNING EXCLUSIVE
102 Rsh SEIZE: SHARED
103 Rix SEIZE: INTENT EXCLUSIVE
104 Ris SEIZE: INTENT SHARED
105 Rfa SEIZE: FLUSH ALL
106 Rdx SEIZE: DATABASE EXCLUSIVE
107 Rii SEIZE: INTERNAL INTENT EXCLUSIVE

108 Rot SEIZE: OTHER
109 Rlk SEIZE: LOCK CONFLICT
112 RXX SEIZE/LOCK IMPOSSIBLE
125 Rsp SEIZE: OFF-LINE IASP
126 Rra SEIZE: RELEASE ALL
127 Rrs SEIZE: RELEASE
133 Rss SEIZE/LOCK: INTERNAL SERVICE TOOLS HASH CLASS GATE
135 Rmf SEIZE: MONITORED FREE
141 Rcu SEIZE: CLEANUP
143 Rsv SEIZE/LOCK: SERVICE
320 SOo COMMON MI OBJECT CHECKER: SEIZE OBJECT
321 SOi COMMON MI OBJECT CHECKER: SEIZE FOR IPL NUMBER CHECK

Bucket 16 - DATABASE RECORD LOCK CONTENTION

Hopefully these enums are self-explanatory.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
110 RDr DB RECORD LOCK: READ
111 RDu DB RECORD LOCK: UPDATE
123 RDw DB RECORD LOCK: WEAK
134 Rxf DB RECORD LOCK: TRANSFER
136 Rck DB RECORD LOCK: CHECK
139 Rcx DB RECORD LOCK: CONFLICT EXIT

Bucket 17 - OBJECT LOCK CONTENTION

These are the conflicts between threads involving objects. The OS frequently
needs/obtains locks during such operations as:

§ Opening a DB2 file
§ Creating/deleting an object into a library
§ Moving an object to a different library
§ Ownership changes

The operating system can also use “symbolic locks” as a serialization mechanism. These
are called “space location locks”.

Lastly, application code can explicitly use locks via the ALCOBJ CL command.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
113 RIr LOCK: SHARED READ
114 RIo LOCK: SHARED READ ONLY
115 RIu LOCK: SHARED UPDATE
116 RIa LOCK: EXCLUSIVE ALLOW READ

117 RIe LOCK: EXCLUSIVE NO READ
118 RMr LOCK: SEIZE CONFLICT, EXCLUSIVE
119 RMo LOCK: SEIZE CONFLICT, SHARED
120 RMu LOCK: SEIZE CONFLICT, INTENT EXCLUSIVE
121 RMa LOCK: SEIZE CONFLICT, INTENT SHARED
122 RMe LOCK: SEIZE CONFLICT, INTERNAL INTENT EXCLUSIVE
124 RMm LOCK: MATERIALIZE
128 Rdo LOCK: DESTROY OBJECT
129 Rdp LOCK: DESTROY PROCESS
130 Rdt LOCK: DESTROY THREAD
131 Rdx LOCK: DESTROY TRXM
132 Rar LOCK: ASYNC RETRY
137 Rtr LOCK: TRACE
138 Rul LOCK: UNLOCK
140 Rlc LOCK: LOCK COUNT
142 Rpi LOCK: PROCESS INTERRUPT

Note: the enums with the word “SEIZE” in the description are lock conflicts caused by
existing seizes on an object.

Bucket 18 - OTHER WAITS

The dreaded “other” word! Yes, even JW’s wait accounting has to have a “catch all
bucket”.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
1 QCo QUCOUNTER, NOT OTHERWISE IDENTIFIED
4 QTB QUSINGLETASKBLOCKER, NOT OTHERWISE IDENTIFIED
5 QUW QUUNBLOCKWHENDONE, NOT OTHERWISE IDENTIFIED
6 QQu QUQUEUE, NOT OTHERWISE IDENTIFIED
7 QTQ QUTREEQUEUE, NOT OTHERWISE IDENTIFIED
9 QPo QUPOOL, NOT OTHERWISE IDENTIFIED
10 QMP QUMESSAGEPOOL, NOT OTHERWISE IDENTIFIED
11 QMP QUSIMPLEMSGPOOL, NOT OTHERWISE IDENTIFIED
12 QSP QUSTACKLESSMSGPOOL, NOT OTHERWISE IDENTIFIED
13 QSC QUSTATECOUNTER, NOT OTHERWISE IDENTIFIED
17 QSB QUSYSTEMBLOCKER, NOT OTHERWISE IDENTIFIED
240 RCA LIC CHAIN FUNCTIONS: SMART CHAIN ACCESS
241 RCI LIC CHAIN FUNCTIONS: SMART CHAIN ITERATOR
242 RCM LIC CHAIN FUNCTIONS: CHAIN MUTATOR
243 RCB LIC CHAIN FUNCTIONS: SMART CHAIN PRIORITY BUMP 1
244 RCB LIC CHAIN FUNCTIONS: SMART CHAIN PRIORITY BUMP 2
245 RCE LIC CHAIN FUNCTIONS: CHAIN ACCESS EXTENDED

The above enums with eye catchers beginning with a ‘Q’ are the generic wait points…
the low level LIC blocks that have not (yet) been uniquely identified. These enums will
be seen when LIC code blocks that has not gone out of its way to uniquely identify the
block point. The only identification that exists is the differentiation afforded by the type
of LIC blocking primitive used. A few words/opinions can be offered for some of them:

QCo is frequently used for timed waits. The wait used at the core of the DLY JOB
command is a QCo wait. It is also used by POSIX Condition Variable waits.

QTB is a wait primitive used for many purposes (unfortunately). About the only generic
statement that can be made on it is that is used when a thread/task is waiting for a specific
action to happen on its behalf… explicitly for THAT thread/task. For example, waiting
for synchronous DASD reads and writes to complete use QTB blocks. Fortunately,
DASD reads and writes have further been identified, so they are covered by their own
unique buckets, they are not lumped into QTB (see other buckets).

Bucket 19 - MAIN STORAGE POOL OVERCOMMITMENT

These waits indicate one or more main storage pools are currently overcommitted.
Regular operations, like explicit DASD reads or page faults, are being delayed in order to
locate “free” main storage page frames to hold the new incoming data.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
155 GCP MAINSTORE/LOGICAL-DASD-IO: CLEAR PAGE OUT WAIT
160 GRQ MAINSTORE/LOGICAL-DASD-IO: DASD READ PAGE OUT WAIT
163 GFP MAINSTORE/LOGICAL-DASD-IO: PAGE FAULT PAGE OUT WAIT
166 GRR MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP READ FOR FAULT PAGE OUT
169 GWP MAINSTORE/LOGICAL-DASD-IO: DASD WRITE PAGE OUT WAIT
173 SPw MAINSTORE/LOGICAL-DASD-IO: PAGE OUT WAIT, POOL OVERCOMMITMENT

Bucket 20 - JAVA USER (INCLUDING LOCKS)

The enums associated with this bucket are:

 Eye
Enum Catcher Description
200 JUW JAVA: USER WAIT
201 JSL JAVA: USER SLEEP
203 JSU JAVA: SUSPEND WAIT
209 JOL JAVA: OBJECT LOCK
304 JSG JAVA: SYNCHRONOUS GARBAGE COLLECTOR WAIT
305 JSF JAVA: SYNCHRONOUS FINALIZATION WAIT

Bucket 21 – JAVA JVM

The enums associated with this bucket are:

 Eye
Enum Catcher Description
302 JWH JAVA: GARBAGE COLLECTOR WAIT HANDSHAKE WAIT
303 JPH JAVA: PRIMARY GC THREAD WAIT FOR HELPER THREADS DURING SWEEP
306 JGW JAVA: GARBAGE COLLECTOR WAITING FOR WORK
307 JFW JAVA: FINALIZATION WAITING FOR WORK
308 JVW JAVA: VERBOSE WAITING FOR WORK

Bucket 22 - JAVA (OTHER)

The enums associated with this bucket are:

 Eye
Enum Catcher Description
202 JWC JAVA: WAIT FOR COUNT
204 JEA JAVA: END ALL THREADS
205 JDE JAVA: DESTROY WAIT
206 JSD JAVA: SHUTDOWN
207 JCL JAVA: CLASS LOAD WAIT
208 JSL JAVA: SIMPLE LOCK
300 JGG JAVA: GARBAGE COLLECTOR GATE GUARD WAIT
301 JAB JAVA: GARBAGE COLLECTOR ABORT WAIT
309 JGD JAVA: GARBAGE COLLECTION DISABLE WAIT
310 JGE JAVA: GARBAGE COLLECTION ENABLE WAIT

Bucket 23 - SOCKET ACCEPTS

These are socket op block points associated with the socket accept() API call. Normally,
but not always, these represent a thread “waiting for work”.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
210 STA COMM/SOCKETS: SHORT WAIT FOR ACCEPT
211 LTA COMM/SOCKETS: LONG WAIT FOR ACCEPT

Bucket 24 - SOCKET TRANSMITS

These are waits associated with Socket APIs calls that are sending/transmitting data.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
212 STS COMM/SOCKETS: SHORT WAIT FOR TCP SEND
213 LTS COMM/SOCKETS: LONG WAIT FOR TCP SEND
216 SUS COMM/SOCKETS: SHORT WAIT FOR UDP SEND
217 LUS COMM/SOCKETS: LONG WAIT FOR UDP SEND

Bucket 25 - SOCKET RECEIVES

These are waits associated with Socket APIs calls that are receiving data.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
214 STR COMM/SOCKETS: SHORT WAIT FOR TCP RECEIVE
215 LTR COMM/SOCKETS: LONG WAIT FOR TCP RECEIVE
218 SUR COMM/SOCKETS: SHORT WAIT FOR UDP RECEIVE
219 LUR COMM/SOCKETS: LONG WAIT FOR UDP RECEIVE

Bucket 26 - SOCKET (OTHER)

The primary wait points that should be seen from this bucket involve the SELECT socket
API. That API can be used by an application for a variety of complex waiting scenarios.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
220 SAS COMM/SOCKETS: SHORT WAIT FOR IO COMPLETION
221 LAS COMM/SOCKETS: LONG WAIT FOR IO COMPLETION
222 SSW COMM/SOCKETS: SELECT SHORT WAIT
223 SLW COMM/SOCKETS: SELECT LONG WAIT

Bucket 27 - IFS PIPE

These waits are due to Integrated File System (IFS) “pipe” operations.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
252 PPC IFS/PIPE: MAIN PIPE COUNT
253 PRP IFS/PIPE: READ END OF PIPE
254 PWP IFS/PIPE: WRITE END OF PIPE
255 PRW IFS/PIPE: PIPE READ WAITERS
256 PWW IFS/PIPE: PIPE WRITE WAITERS

Bucket 28 - IFS (OTHER)

Hopefully, the descriptions on these IFS blocks points need no further elaborations.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
250 PRL IFS/PIPE: FILE TABLE ENTRY EXCLUSIVE LOCK
251 PRC IFS/PIPE: LIC REFERENCE COUNT

Bucket 29 - DATA QUEUE RECEIVES

These are the waits on MI Data Queue objects.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
341 QMd DATA QUEUE WAIT

Bucket 30 - MI QUEUE (OTHER)

These are waits on MI Queue objects other than the two preceding types. In general,
these would be internal OS operations 12 or User Queue dequeue waits.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
342 QMo OTHER MI QUEUE WAIT

Bucket 31 - MI WAIT ON EVENTS

Event waits are used mainly across jobs, by internal OS programs.

The enums associated with this bucket are:

 Eye
Enum Catcher Description
330 EMw MI EVENT WAIT

Bucket 32 - ABNORMAL CONTENTION

These waits reflect a high rate of concurrent waits/releases occurring against a wide
variety of many of the other wait points listed previously. There are two types of these
waits:

a. Unsuccessful wakeup retries (QGb, QGc, QGd)
b. Waiting in line to buy a ticket that gets you into the main wait line (QWL)

The enums associated with this bucket are:

 Eye

12 For example, most subsystem monitor jobs’ normal wait point is a dequeue on an MI queue (that is
neither the MI Response Queue nor a Data Queue).

Enum Catcher Description
8 QRP QURESSTACKMSGPOOL, NOT OTHERWISE IDENTIFIED
14 QWL QUWAITLIST, WAITING FOR ACCESS TO A WAIT LIST
40 QGb QUGATEB, ABNORMAL QUGATE CONTENTION, FIRST RETRY
41 QGc QUGATEC, ABNORMAL QUGATE CONTENTION, SECOND RETRY
42 QGd QUGATED, ABNORMAL QUGATE CONTENTION, THIRD RETRY

Trademarks and Disclaimers

© IBM Corporation 1994-2004. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends
to make them available in every country.

The following terms are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both:

AS/400 e-business on demand OS/400
IBM IBM (logo) iSeries
eServer iDoctor for iSeries

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.
Microsoft and Windows NT are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.
SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction
LLC.
C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers
have used IBM products and the results they may have achieved. Actual environmental
costs and performance characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these
products, published announcement material, or other publicly available sources and does
not constitute an endorsement of such products by IBM. Sources for non-IBM list prices
and performance numbers are taken from publicly available information, including
vendor announcements and vendor worldwide homepages. IBM has not tested these
products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be
addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or
withdrawal without notice, and represent goals and objectives only. Contact your local
IBM office or IBM authorized reseller for the full text of the specific Statement of
Direction.

Some information addresses anticipated future capabilities. Such information is not
intended as a definitive statement of a commitment to specific levels of performance,
function or delivery schedules with respect to any future products. Such commitments
are only made in IBM product announcements. The information is presented here to
communicate IBM's current investment and development activities as a good faith effort
to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of
multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in
production models.

