Job Waits and iDoctor for iSeries Job Watcher White Paper

Thisisversion 2.0 of thisWhite Paper and contains changes specific to i5/0S V5RS3.

Simplistic Running and Waiting

One of the main purposes of the iDoctor for iSeries Job Watcher tool isto, innear real
time, quantify the amount of “wall time” athread/task spends “running” and the amount
of time it spends “waiting”. Thisfirst section introduces the concepts of running and
waiting in a rather simplistic environment. The real world complexities of iSeries
processor sharing, LPAR considerations, etc will be delayed until the Wait Bucket
descriptions later in the paper.

All “units of work” * in a system at any instant in time are in one of three states:

1. “on” aCPU ? (ak.a “dispatched to a processor”, “using CPU”, “running”,
“active’)

2. ready to use aCPU, but waiting for a processor to become available (ak.a
1] rajyﬂ , 1] CPlJ quww”)

3. waliting for something or someone (a.k.a. “blocked”, “idle”)

A thread’s Run/Wait Sgnature might look like:

CPU() CPUa@ Waits (3)

< Elapsed time >

How much time a unit of work spends in state 1 depends on the program design and how
muchwork it’'s requested to perform as well as more complex factors such as a
processor’ s efficiency and/or processor sharing competition (e.g. LPAR shared/partial
pprocessors).

How much time a unit of work spends in state 2 is a function of the amount of CPU
competition it experiences while getting its work done.

How much time a unit of work spends in state 3 deperds on many factors. But at this
point we need to differentiate two types of waits:

LA “unit of work” isasingle threaded job, each thread in a multi-threaded job or a system task.
2 Hardware multithreading raises the issue of differences between the “time dispatched to a processor” and
“CPU Time". Moreon thislater.

A. Waiting for awork request to arrive (a.k.a. idle)
B. Waits that occur while performing awork request (a.k.a. blocked)

Type A waits, for example, in interactive work would be considered “key/think time”.
These waits are typically not a*“problem”. Or if they ARE a problem, it's usually one
external to the machine they are observed on (e.g. a communications problem causing
dow arrival of work requests). Note: batch work rarely has any type A waits, unless the
batch work is driven, for example, by a data queue... and the data queue is empty.

Type B waits are the interesting ones. While it’ s debatable whether or not al these types
of waits should be considered “problems’, the following is a safe and valid statement:

“ Outside of CPU usage and contention, type B waits are the reason jobs/threads take as
long as they to do complete their work.”

So, a more refined Run/Wait Signature for an interactive job/thread might look like:

Key/Think (A) CPU CPUq Waits (B)

And atypica batch type job/thread would look like:

CPU CPUq Waits (B)

L evel set

This discussion appliesto individual units of work... single threaded jobs and individual
job threads. Many modern application engines involve the use of more than one job
and/or more than one thread to process each “transaction”. The ideas presented in this
document still apply in those cases, but each unit of work must be individually analyzed.
There’ s an additional burden placed on the analysis process to tie together the flow of
work across the multiple jobs/threads. And, to be honest, such modern transaction
engines frequently make it difficult to differentiate between type A and type B waits.

The Mysteries of Waiting

The waiting component of a job/thread’s life is easy to compute, but rarely discussed and
scrutinized.

For batch type work:

Waits = Elapsed Time — CPU Time®
For interactive type work:

Waits = Elapsed Time — CPU Time — Key/Think Time *

What is the reason why waits have historically been ignored, unless they become so
severe that the elapsed time difference becomes painfully obvious? Suggested answer:
because little instrumentation or tools exist to measure and provide detail on waits. Waits
are the “dlightly off” relative that lives in the basement. Unless his demand for food
becomes excessive, or the music gets too loud, he is best ignored. You certainly don’t
want to talk about him with friends.

Arewaits“bad” ?

This paper contends the answer is “yes’. (We are obvioudy talking about type B waits.)
There’'s a common misconception that a job/thread that *uses high CPU” isintrinsically
bad. It MIGHT be bad. For example: If awork process normally takes 2 hours to
complete with 45 minutes of CPU and, after a software or data change, now takes 4 hours
with 3 hours of CPU, that IS bad. But just looking at a job/thread (in a non-comparative
way) that uses a high percentage of CPU, and declaring it “bad” misses the point that “the
lack or minimal occurrences of type B waitsisa GOOD thing”. For batch type work (that
does not have type A waits, where it is waiting for work to arrive), if the type B waits are
reduced/eliminated, the job/thread’s “CPU Density” > increases. Ultimately, it could use
100% of a processor®.

Let' s take an example: A batch job that runs for 6 hours and uses 117 minutes of CPU.
The first thing to consider is how much time of the “wasted” 243 minutes of elapsed time
was CPU gueuing (i.e. contending/waiting for a processor). This paper will go on to
demonstrate how this value, and all the waits, can be measured in great detail. But for this
example, let’s suppose that 71 minutes of CPU queuing was involved. This means that
the job was in type B waits 172 minutes. This means that the job could potentially runin
3 hours and 8 minutes... if the type B waits were completely eliminated. Contrast this
with how the job might perform if the CPU speeds on the machine were doubled. One
would expect the CPU minutes and CPU queuing minutes to be halved, yielding ajob run

3 Assumes CPU Queuing is not significant

* ditto 3

® If asingle thread consumes all of a single processor for a period of time, it is 100% CPU dense. If it
consumes 1/8" of a process for the same period, it is 12.5% CPU dense. Thisistrue regardless of the
number of processors on the system or in the partition. For systems with more than one CPU in the
partition, CPU density isNOT what is seen on WRKACTJOB or WRKSY SACT commands. But can be
computed from those, knowing how many CPUs are available to the job.

6 DB2 Mulltitasking can make a job/thread appear to use more than 100% of a processor, as the background
assisting tasks promote their CPU consumption numbers into the client job/thread. Note: this can also make
accurate capacity planning more difficult.

time of 4.5 hours. Summary: eliminating the type B waits could have thejob runin 3
hours 8 minutes. Doubling the CPU capacity could have the job run in 4 hours, 30
minutes. Conclusion: wait analysis and reduction can be a very powerful, cost-
effective way of improving response time and thr oughput.

A last word on the badness of waits: An IBM “eBusiness poster” spotted outside the
iSeries Benchmark Center in Rochester Minnesota contained this phrase:

All computers wait at the same speed.

Think about it.

Detailing Waits

Up to here, this paper has made the case that wait analysis (and resulting “corrective
actions’) could lead to happiness. What is the first step in wait analysis? It begins with
obtaining details on the individual waits.

Refresher: a summary Run/Wait Signature for atypical batch type job/thread might ook
like:

- SR CPU(q - menes @
Wait analysis begins by bringing out details in the “Waits (B)” component.
For example:

- "SRy CPUq - miveenBim

DASDfeads ~ DASBNifites ~ RecliScks Jolifal

This represents the first phase of detailing: the raw amount of time spent in different
types of waits. The next obvious metric needed is the number of each type of wait:

A O

Computed averages are next. Suppose the durations / counts / averages were as follows:

Thisis aready enough information to begin contemplating actions. Some of the questions
it raises include:

How many of the DASD reads are page faults? Would main memory/pool changes help?
What objects are being read from DASD?

What programs are causing the reads?

How could those DASD reads be reduced, eliminated, or made asynchronous?
Could the DASD read response time be better?

What objects are being written to DASD?

What programs are causing the writes?

How could those DASD writes be reduce, eliminated or made asynchronous?
Could the DASD write response time be better?

What DB2 files are involved with the record locks?

What programs are requesting the record locks?

What other jobs/threads are causing the record lock contention?

What files are being journaled?

What journals are involved?

Are the journas needed and optimally configured?

Could COMMIT cycles or the Journal PRPQ used to reduce this wait component?
Isthe DASD /0O subsystem write cache(s) large enough?

Isthe DASD configuration well balanced, in terms of 10Ps, IOAS, busses, RAID
configurations?

Unfortunately it is beyond the scope of this paper to delve into details of how to tackle
the walit “corrective actions”.

iDoctor for iSeriesJob Watcher (JW)

All preceding material was a generic discussion of wait analysis. Now we'll focus on
such capabilities that are built into JW.

JW is a sampling based performance tool. At specified time intervals, or “asfast as
possible’, a JIW command/function will sample anywhere from 1 thread/job to all
threads/jobs on an iSeries system. It gathers alarge variety of performance data, much of
it beyond the scope of this paper. But one of the main reasons for the creation of W, was
to capitalize on wait metrics first introduced into the system in Version 5 Release 1 of the
Licensed Internal Code (LIC).

Remember back to the statement that a job/thread is either running on a processor,
waiting for a processor to become available, or waiting for someone or something? The
LIC has assigned an identifier to ALL’ the pointsin LIC code that actually enter the wait
state. ® In Version 5 Release 2, there are about 165 wait points. In Version 5 Release 3,
there are about 199 such wait points. Each individual wait point is sometimes referred to
asan “enum”. “Enum” is shorthand for the C++ programming language's “ enumerated
value” and simply means a fixed set of items. When aV5R3 job/thread is in the wait state,
it 1ISin one of the 199 possible wait points. The “current wait” of ajob/thread can be
referred to by the numerical value of the “enum” (e.g. 51), or by a 3 character eye catcher
that has been assigned to each enum (e.g. “JBwW”) or by atext string associated with each
(e.g. “JOBUNDLEWAIT").

Wait Point Groupings, ak.a. “Wait Buckets”

A large number of individual wait points is great from a data-empowerment point of view.
However, when it comes to keeping track of them on a wait-point by wait-point basis, for
every unit of work, it presents challenges to efficient implementation. An ideal design
would be for each of the possible wait points (199 in V5R3) to have its own set of data
associated with it, for each unit of work (job/thread/task). The minimum amount of
accounting data that would be needed includes:

» Occurrence count
> Tota time accumulator

It was determined that keeping 199 pairs of these numbers associated with every
job/thread/task on a machine was ssmply too much overhead (mainly in the area of main
storage footprint).

On the iSeries, a compromise was reached that alows for a potentially very large number
of individual wait points to be mapped into a modest sized set of accounting data. The
modest sized set of accounting numbersis called the Wait Buckets. There are 32 such
buckets, but 3 of them have special purposes, so there are 29 buckets available to map the
199 wait points. Again, these buckets exist on a per unit of work basis.

Aside: Do Wait Buckets defeat the purpose of many block points?

One might ask: “What’s the value in having a large number of unique block points (199,
in V5R3), if al this detail is going to be lost when they get crammed into 29 Wait

" Some types of waits are identified with greater granularity than are other points. For example:. Locks and

Seizes have more individual wait points identified than do other types of waits that tend to share block
0ints.

g)At the actual run/wait nitty gritty level, only LIC code can truly enter await. If an application or OS/400

program enters await state, it does soin LIC code it has caused to run onits behalf.

Buckets?” That'safair question. The real loss of granularity is felt with sampling based
tools, like Job Watcher. But evenwith JW, there’s good use of the high wait point counts:

At any given instant in time, the full granularity afforded by al the wait pointsis
available to sampling based tools. For example: “At this particular moment in time,
thread XY Z iswaiting in block point enum 114. And it has been waiting there for n
microseconds.”

Trace based tools, e.g. PEX Analyzer, (which are beyond the scope of this paper) can
“see” every wait transition, and effectively do the accounting on a per-enum basis,
making full use of the granularity provided.

For these two reasons, maximizing wait point granularity is a good thing to do.

JW Wait Points (“enums’) and Wait Buckets

As mentioned earlier, wait accounting is the core functionality of the Job Watcher tool.
The LI1C sypports remapping of enums to buckets. As a V5R3 iSeries system ships, not
al of the 32 buckets are utilized; all enums are assigned within the first 16 buckets.® Jw
performs a remapping when it starts to utilize most of the 32 buckets, thereby
maximizing the granularity of wait identification.

The bucket definitions JW uses in V5R3'° are as follows:

DISPATCHED TIME

CPU QUEUEING TIME

TOTAL BLOCK TIME

(RESERVED)

DASD (PAGE FAULTS)

DASD (NON FAULT READS)

DASD SPACE USAGE CONTENTION
IDLE / WAITING FOR WORK

. DASD WRITES

10. DASD (OTHER READS OR WRITES)
11. DASD OPERATION START CONTENTION
12. MUTEX/SEMAPHORE CONTENTION
13. JOURNAL SERIALIZATION

WoOoNOU~WNEF

® There's agood reason for this. Collection Services also harvests Wait Bucket information, for every
thread on the system. As mentioned earlier, thereisapair of numbers associated with each bucket
(occurrence count, total time). By restricting the default mapping to live within the first 16 buckets,
collection services reduces the number of DASD bytes required to hold the job/thread information. Keeping
this amount-per-thread down is very important. Collection Servicesis designed so that it can berun 24 x 7
x 365 days. In that type of environment, every dataitem gathered on a“ per-thread” basisincreasesthe
DASD space requirement for Collection Services.

10|t can and does vary with different VRMs of the operating system.

14. MACHINE LEVEL GATE SERIALIZATION
15. SEIZE CONTENTION

16. DATABASE RECORD LOCK CONTENTION
17. OBJECT LOCK CONTENTION

18. OTHER WAITS

19. MAIN STORAGE POOL OVERCOMMITMENT
20. JAVA USER (INCLUDING LOCKS)

21. JAVA WM

22. JAVA (OTHER)

23. SOCKET ACCEPTS

24. SOCKET TRANSMITS

25. SOCKET RECEIVES

26. SOCKET (OTHER)

27. IFS PIPE

28. IFS (OTHER)

29. DATA QUEUE RECEIVES

30. M| QUEUE (OTHER)

31. Ml WAIT ON EVENTS

32. ABNORMAL CONTENTION

Additional details on the buckets and the enums that are assigned to each follow.

L1C Queuing Primitivesand More Granular Wait Points

Each of the 199 block points in the system is some flavor of one of approximately 20
different LIC Queuing Primitives. Individual block points may be reported (i.e. assigned
an enum) that is one of the Primitives’ enums (which is the default assignment), OR
(preferably) the specific block-owning L1C component can chose to “invent” another,
more descriptive enum for the block point.

For example, consider synchronous DASD 1/0O READ wait. The author is not certain, but
itislikely that the wait (block) that occurs in a job/thread while a synchronous DASD
read isin progress is probably implemented with a LIC Queuing Primitive known as a
“Single Task Blocker” (eye catcher QTB, enum number 4). That is, when LIC blocks a
job/thread due to waiting for a synchronous DASD read to complete, it uses a QTB wait
primitive/mechanism. If the component that owns this function (Storage Management)
had done no further “IDing”, that is how such waits would report (QTB, enum 4). That is
OK, except there are probably alot of other block points that ALSO use QTB. Therefore,
it would be difficult/impossible to differentiate DASD READ blocks from other blocks.
Fortunately, Storage Management, realizing how important it is to quantify DASD op
walits, have invented a different eye catcher and enum (SRd, 158) that overrides QTB,4.
Before you start to read this section on the Wait Buckets and their enums, you might
want to read the description of Bucket 18 first. Bucket 18 contains many of the default,
L1C Queuing Primitives enums.

Disclaimer

The following discussion will include opinion. It will aso, more than likely, be far less
complete than many people (including the author) would like it to be. There's probably
no single person that knows all the nuances of the 199 wait pointsin V5R3. Also, in spite
of 199 individua points, many of these remain “genera” and “generic’ to some
degree...preventing them from categorically being declared “normal/OK” or “bad”. This
discussion should be viewed as:

X/
°

Potentially in error

Potentially out-of-date

One person’ s opinion

As a starting point, guideline to interpreting wait points and buckets, not as the
“last/only word”

X3

S

X3

AS

X/
°e

Bucket 1 —Dispatched Time (used to be ‘CPU’)

This accumulates the amount of time a thread or task has been “dispatched” to a
processor. “Dispatched to a processor” means the thread or task has been assigned a
processor”, so it can begin execution of machine instructiors. No wait points are
assigned or mapped, because a dispatched thread/task is not waiting. Job Watcher,
unfortunately, uses the mideading title of ‘CPU’ for this bucket. “CPU” is mideading
because “Dispatched Time” very frequently differs from “CPU Used Time”. This
graphic demonstrates the relationship between “Dispatched Time” and “CPU Time".

—o

Job/Thread A

»w xo o

QOTOTPT O A

- a

Job/Thread B

QaoTOo 9TV
»wxo0o0 —oT

Bucket 1 Time
CPU Time

The dispatched time value can differ from the “CPU Time” measure by other means
(DSPJOB, WRKACTJOB, WRKSY SACT, job accounting, the DELTACPU field in Job
Watcher itself). The difference can be large. The main factors that cause these
discrepancies are:

» Processor Hardware Multi Threading (HMT) feature. This can cause bucket 1's
time to be larger than the actual CPU time. HMT is when more than one thread or
task can be simultaneously assigned to the same physical processor. In that
scenario, they share the processor’s cycles, mainly during long “off chip”
operations, like memory fetches. Job Watcher’s Bucket 1 will record the elapsed
time a thread or task has been dispatched. The real CPU value will only include
the exact number of cycles used by the thread or task while it was dispatched.

= Background assisting tasks, like those used in the DB Multi-Tasking Feature.
Background assisting tasks, which promote (add) their CPU usage back into the
client job/thread, will cause the client thread’ s bucket 1 value to be smaller than
the measured CPU time.**

» LPAR shared/partia processors. Thisiswhere the tricky concept of Virtual
Processors comes into play. Bucket 1 actually records the elapsed time a thread or
task is dispatched to a Virtual Processor, not (necessarily) a Physical Processor.
Similar to HMT mentioned above, a Virtual Processor can be shared across LPAR
partitions. If that occurs while athread or task is dispatched to one of these, the
bucket 1 time will be greater than the CPU time, because it will include time the
thread/task is dispatched, but is “waiting for it’sturn” at the physical processor
behind the virtual one.

Let'srevisit the Simplistic Running and Waiting introduction to this paper. Iniit,
this diagram was presented:

CPU (1) CPYG(2) ~Waits (3)

< Elapsed time >

After the discussion above, the diagram should now look like:

Time Dispatehed (1) CPUg(2) - Waits (3)

< Elapsed time >

1 Conversely, bucket 1’ s value for the assisting tasks themselves would be larger (over time) than the CPU
time as measured/seen by WRKSY SACT or Collection Services.

Further breakdown of (1), which we can now label Bucket 1, might look like:

e i e

I mportant:

Time Dispatehed (B1) CPUa(B2)

The Job Waits Accounting Buckets used by Job Watcher do NOT break down Bucket 1
into the constituent parts shown above. However, much of the time, an additional metric
gathered per interval can quantify the first “True CPU Usecs Used” part. The additional
metric gathered is smply the CPU Time Used. (Again, thisis a value separate from
Bucket 1). Whenisit NOT true thet this additional metric can be used to quantify the
True CPU UsecsUsed part of Bucket 1?7 Answer: if the thread being examined is having
work done on its behalf by worker/assist LIC tasks. Those tasks promote/move their CPU
usecs used (and several other metrics, such as DASD 1/O counts, exception counts etc)
back into the requesting thread’ s metrics. In those cases, the True CPU usecs used will be
much larger than just what the thread itself had used, making it even more difficult to
accurately quantify it's CPU usage. Note: worker/assist LIC tasks do NOT promote their
Wait Bucket counts and times into the requesting thread... good thing!

Bucket 2 - CPU QUEUEING

No wait points assigned, waiting for a processor is a special kind of wait. Thisis simply
the number of microseconds a thread/task has waited... ready to run... for a processor to
become available.

Update:

After just having read the rather long, complex description of Bucket 1 (Time
Dispatched), one learned that Time Dispatched can also in include “sharing” delays. This
raises the natural question:

What' s the difference between the QPRCMLTTSK/LPAR “ sharing” that is part of Bucket
1 and the “ queuing” that is reported in Bucket 2? After all, “ queuing” and “ sharing”
are nearly synonymous.

The simple answer is “there is not much difference’. In particular the LPAR sharing part
of Bucket 1 and all of Bucket 2 reflect wall time delays in the execution of work due to
having to share a processor with other units of work. In the LPAR case, the sharing is
occurring with units of work in other partitions. Bucket 2 time is the sharing time with
other units of work in the same partition. QPRCMLTTSK “sharing” is somewhat more
of an accounting shift, rather than true queuing/sharing.

Bucket 1 Sharing Timesvs. Bucket 2 Analogy

Bucket 2 is similar to the time spent waiting in line to gain entrance to a convention hall.
Bucket 1's “sharing time’ is the time spent, after one isin side the convention, waiting in
short lines to view particular booths.

Note: even if there is little-to-no actual processor competition/sharing occurring within a
partition while a thread is running, there may aways be miniscule amounts of time
reported in this bucket. It's an artifact of the fact that SOME tiny, finite amount of time
transpires between when a thread becomes “ready to run” and when it is dispatched to a
processor.

Bucket 3—- TOTAL BLOCK TIME

Thisisartificia sum of al the occurrence counts and total block times for buckets 4-32.

Bucket 4 — (RESERVED)

No wait points assigned.

Bucket 5—DASD (PAGE FAULTYS)
These are the waits associated with implicit (page faults) DASD reads.

Page faults are frequently (but not exclusively) caused by having “too many jobs/threads
running concurrently in too small of ameain store pool”. If the faulted-on object typeisa
“1AEF (Temporary Process Control Space), then that is alikely cause. There are other
types of activity, though, where page faults are expected or “normal”:

= When aprogram or application first starts up in ajob/thread.

= DB2 Access Paths (keyed parts of physical files, or Logical Files)... these tend to
be referenced in a highly unpredictable way, and “faulting in” pages of access
paths is considered “normal”.

The enums associated with this bucket are:

Eye

Enum Catcher Description

161 SFt MAI NSTORE/ LOd CAL- DASD- | O PAGE FAULT

162 SFP MAI NSTORE/ LOG CAL- DASD- 1 O PAGE FAULT | O PENDI NG

164 GRf MAI NSTORE/ LOG CAL- DASD- 1 O ACCESS GROUP READ FOR FAULT
165 SRR MAI NSTORE/ LOd CAL- DASD- | O ACCESS GROUP READ FOR FAULT IO
PENDI NG

Bucket 6 - DASD (NON FAULT READYS)

These are simply the waits associated with explicit (“read this from DASD for me”)
synchronous DASD reads.

The enums associated with this bucket are:

Eye
Enum Catcher Description
158 SRd MAI NSTORE/ LOd CAL- DASD- | O DASD READ
159 SRQ MAI NSTORE/ LOQ CAL- DASD- | G DASD READ | O PENDI NG

Bucket 7—- DASD SPACE USAGE CONTENTION

When an object, or internal LIC object is created or extended, and free DASD space has
to be located to satisfy the request, there is some level of seriaization performed. Thisis
done on an ASP-by ASP and unit-by-unit basis. Normally, one would expect to see little,
if any, of these types of waits. If they are present in significant percentages, it usualy
means the OS/LIC is being asked (by applications) to perform avery high RATE of
object creates/extends/truncates or deletes. (Note: Opening a DB2 file causes a create.)
The SIZE of the DASD space requests is not relevant to these blocks; it's the RATE of
requests that is relevant.

The enums associated with this bucket are:

Eye
Enum Catcher Description
145 ASM DASD SPACE MANAGER CONCURRENCY CONTENTI ON
146 ASM DASD SPACE MANAGER ASP FREE SPACE DI RECTORY
147 ASM DASD SPACE MANAGER RR FREE SPACE LOCK
148 ASM DASD SPACE MANAGER GP FREE SPACE LOCK
149 ASM DASD SPACE MANAGER: PERVANENT DI RECTORY LOCK
180 ASM DASD SPACE MANAGER: TEMPORARY DI RECTORY LOCK
181 ASM DASD SPACE MANAGER: PERSI STENT STORAGE LOCK
182 ASM DASD SPACE MANACER: STATI C DI RECTORY LOCK
183 ASM VI RTUAL ADDRESS MANAGER: BI G SEGQVENT | D LOCK
184 ASM VI RTUAL ADDRESS MANAGER: LI TTLE SEGVENT | D LOCK
185 ASM DASD SPACE MANAGER: | ASP LOCK
186 ASM DASD SPACE MANAGER: MOVE CHAI N
187 ASM DASD SPACE MANAGER: HYPERSPACE LOCK
188 ASM DASD SPACE MANAGER: NON PERSI STENT DATA LOCK
189 ASM VI RTUAL ADDRESS MANAGER: TEMPORARY SEGVENT | D RANGE MAPPER LOCK
190 ASM VI RTUAL ADDRESS MANAGER: PERVANENT SEGVENT | D RANGE MAPPER LOCK

191 ASM VI RTUAL ADDRESS MANAGER: | ASP SEGMVENT | D RANGE MAPPER LOCK

Bucket 8— IDLE / WAITING FOR WORK

These are the waits on M| queue associated with each OS job known as the “MI
Response Queue’. Normally, for 5250 type interactive applications, this would reflect the
key/think time. Other possible uses would be APPC/APPN SNA type communications
waits.

The enums associated with this bucket are:

Eye
Enum Catcher Description
340 Qu IDLE WAI T, M RESPONSE QUEUE WAI T

Bucket 9—-DASD WRITES

These are the waits associated with synchronous DASD writes, or_waiting for
asynchronous DASD writes to complete.

The enums associated with this bucket are:

Eye
Enum Catcher Description
167 SW MAI NSTORE/ LOG CAL- DASD- | O DASD WRI TE
168 SWP MAI NSTORE/ LOd CAL- DASD- 1 O DASD WRI TE | O PENDI NG
170 SW MAI NSTORE/ LOd CAL- DASD | O PAGE QUT WRI TE
171 GPg MAI NSTORE/ LOG CAL- DASD- | O ACCESS GROUP PURGE
172 GPP MAI NSTORE/ LOd CAL- DASD- | O ACCESS GROUP PURCGE | O PENDI NG
174 GTA MAI NSTORE/ LOd CAL- DASD | & GENERI C ASYNC | O TRACKER WAI T
175 GIS MAI NSTORE/ LOd CAL- DASD | O GENERI C SI NGLE TASK BLOCKER WAI T
176 GIT MAI NSTORE/ LOd CAL- DASD- | O GENERI C TI MED TASK BLOCKER

Bucket 10 —DASD (OTHER READS OR WRITEYS)

The enums with the ‘DSM’ eye-catcher deal primarily with actions taken to do DASD
unit configuration and setup and should rarely be seen in * production jobs/threads’.

The other enums with an eye-catcher other than ‘DSM’ are DASD op waits that can’'t be
differentiated by read or write type of operations. These should rarely occur.

The enums associated with this bucket are:

Eye
Enum Catcher Description
60 DSM DASD MANAGEMENT OPS: FI ND COVWPRESSI ON GRCUP
61 DSM DASD MANAGEMENT OPS: DEALLOCATE COWPRESS GROUP
62 DSM DASD MANAGEMENT OPS: READ COWPRESSI ON DI RECTORY

63 DSM DASD MANAGEMENT OPS: WRI TE COVPRESSI ON DI RECTORY

64 DSM DASD MANAGEMENT CPS: | NI T COVPRESSI ON START RECRG

65 DSM DASD MANAGEMENT CPS: M RROR READ SYNC

66 DSM DASD MANAGEMENT OPS: M RROR REASSI GN SYNC

67 DSM DASD MANAGEMENT CPS: M RROR WRI TE VERI FY SYNC

68 DSM DASD MANAGEMENT OPS: READ

69 DSM DASD MANAGEMENT OPS: READ DI AG

70 DSM DASD MANAGEMENT OPS: VERI FY

71 DSM DASD MANAGEMENT OPS: VERI FY DI AG

72 DSM DASD MANAGEMENT OPS: WRI TE

73 DSM DASD MANAGEMENT CPS: WRI TE DI AG

74 DSM DASD MANAGEMENT COPS: WRI TE VERI FY

75 DSM DASD MANAGEMENT OPS: WRI TE VERI FY DI AG

76 DSM DASD MANAGEMENT OPS: REASSI GN

77 DSM DASD MANAGEMENT OPS: REASSI GN DI AG

78 DSM DASD MANAGEMENT OPS: ALLOCATE

79 DSM DASD MANAGEMENT OPS: ALLOCATE DI AG

80 DSM DASD MANAGEMENT OPS: DEALLOCATE

81 DSM DASD MANAGEMENT OPS: DEALLOCATE DI AG

82 DSM DASD MANAGEMENT OPS: ENABLE AUTO ALLOCATE

83 DSM DASD MANAGEMENT OPS: DI SABLE AUTO ALLOCATE

84 DSM DASD MANAGEMENT OPS: QUERY COVPRESSI ON METRI CS

85 DSM DASD MANAGEMENT OPS: QUERY COVPRESSI ON METRI CS DI AG
86 DSM DASD MANAGEMENT OPS: COWPRESSI ON SCAN READ

87 DSM DASD MANAGEMENT OPS: COWPRESSI ON SCAN READ DI AG

88 DSM DASD MANAGEMENT OPS: COVPRESSI ON DI SCARD TEMP DATA
89 DSM DASD MANAGEMENT OPS: COVPRESSI ON DI SCARD TEMP DATA DI AG
150 STv MAI NSTORE/ LOG CAL- DASD- 1 O SAR NOT SET

151 SRv MAI NSTORE/ LOG CAL- DASD- | O REMOVE

152 SRP MAI NSTORE/ LOd CAL- DASD- | O REMOVE | O PENDI NG

153 sa MAI NSTORE/ LOG CAL- DASD- | O CLEAR

154 SCP MAI NSTORE/ LOG CAL- DASD- 1 O CLEAR | O PENDI NG

156 SUp MAI NSTORE/ LOG CAL- DASD- 1 O UNPI' N

157 SuUP MAI NSTORE/ LOG CAL- DASD- 1 G UNPI N | O PENDI NG

177 SWP MAI NSTORE/ LOG CAL- DASD- | O POOL CONFI GURATI ON

178 SMC MAI NSTORE/ LOd CAL- DASD- | O POOL CONFI GURATI ON CHANGE

Bucket 11 —DASD OPERATION START CONTENTION

These waits occur when a DASD operation start is delayed due to a very high rate of
concurrent DASD operations in progress at the moment it is requested.

The enums associated with this bucket are:

Eye
Enum Catcher Description
49 RR QURESSTACKMSGPOOL, ABNORVAL DASD OP START CONTENTI ON

Bucket 12 -MUTEX/SEMAPHORE CONTENTION

These are the block points used by C/C++ programming language (both operating system
code, LPP and application code), usualy in the POSIX environment, to implement Mutex
and Semaphore waits.

The enums associated with this bucket are:

Eye
Enum Catcher Description
15 QMG QUWUTEXGATE, NOT OTHERW SE | DENTI FI ED
16 @m QUSEMAPHORE, NOT OTHERW SE | DENTI FI ED
Bucket 13- JOURNAL SERIALIZATION
The waits associated with DB2 Journaling are in this bucket.

The enums associated with this bucket are:

Eye
Enum Catcher Description
50 JBo JOURNAL BUNDLE OWNER WAI T FOR DASD COVPLETI ON
51 JBw JOURNAL BUNDLE WAIT FOR DASD COVPLETI ON
260 EFJ EPFS: WAIT FOR OS TO FI Nl SH APPLY JOURNAL CHANGES
261 ERJ EPFS: WAIT FOR OS REQUEST TO APPLY JOURNAL CHANGES

Enum 50 is the wait in the thread that is actually performing the DASD write(s) to the
journd. It is the wait for DASD journa writes to complete. Journal uses some fancy
approaches to DASD ops to do their writes absolutely as efficiently as possible. That is
why DASD writes to journals do not fall in the “DASD Write” bucket below (thisisa
good thing for performance analysis, to have these journal writes differentiated).

Enum 51 is the wait that occurs in threads other than the one that’ s performing the DASD

write(s). For efficiency, multiple jobs/threads can “ride along” the journal DASD writes
performed by other jobs/threads.

Bucket 14 - MACHINE LEVEL GATE SERIALIZATION

The enums associated with this bucket are:

Eye
Enum Catcher Description
2 QG QUGATE, NOT OTHERW SE | DENTI FI ED
3 qQrG QUTRYGATE, NOT OTHERW SE | DENTI FI ED

QGais a very high performance, low-overhead serialization primitive used by LIC. Itis
the type of primitive in which there can be one and only one “holder”. Normally, QGais
used in areas in which the anticipated wait time, if any, is very small (microseconds).
Note: there are some related block points (QGb, QGc, QGd) that are later covered in the
bucket named “ABNORMAL CONTENTION".

Bucket 15 - SEIZE CONTENTION

Think of seizes asthe Licensed Internal Code's (LIC’s) equivalent of Locks. A seize
almost always occurs on/against an M1 object (DB2 physical file member, Data Queue,
Program, Library...). Seizes can conflict with Locks and can cause Lock conflicts. There
isalarge variety of seizes. shared, exclusive, “fair”, and “intent-exclusive’. It's beyond
the scope of this paper to explain all there is to know about seizes. They are, after all,
internal LIC primitives that are subject to change at any time. If seizes are a significant
percentage of a Run/Wait Signature, examining the call stack, “wait object” and “holding
task/thread” (if any) are probably necessary to understand what is causing the contention.

Seizes are frequently (but not exclusively) associated with data base objects and
operations. Concurrent activities in multiple jobs such as opens, closes, journal sync
points, access path building, etc might lead to seize waits. Other actions/objects that can
experience seize waits include libraries and user profiles, during high rates of concurrent
Create/Delete activity in multiple jobs.

This bucket was the first time that the term “holding task/thread” was mentioned.
However, Job Watcher has that ability to determine the “holder” for more than just seize
walits. It can do so for Locks, Data Base Record Locks and other wait enums based on a
low level serialization primitive called a“ gate”.

In the area of waiters and holders, it needs to be pointed out that the waiter... the
job/thread that is experiencing the wait... is frequently the victim, not the cul prit.

The enums associated with this bucket are:

Eye
Enum Catcher Description
100 Rex SEl ZE: EXCLUSI VE
101 Rex SElI ZE: LONG RUNNI NG EXCLUSI VE
102 Rsh SElI ZE: SHARED
103 Ri x SEI ZE: | NTENT EXCLUSI VE
104 Ris SEl ZE: | NTENT SHARED
105 Rf a SEl ZE: FLUSH ALL
106 Rdx SElI ZE: DATABASE EXCLUSI VE
107 Rii SEI ZE: | NTERNAL | NTENT EXCLUSI VE
108 Rot SEl ZE: OTHER
109 Rl k SElI ZE: LOCK CONFLI CT
112 RXX SEl ZE/ LOCK | MPCSSI BLE
125 Rsp SElI ZE: OFF- LI NE | ASP
126 Rra SElI ZE: RELEASE ALL
127 Rrs SEl ZE: RELEASE
133 Rss SEI ZE/ LOCK: | NTERNAL SERVI CE TOOLS HASH CLASS GATE
135 Rnf SEI ZE: MONI TORED FREE
141 Rcu SEl ZE: CLEANUP
143 Rsv SEl ZE/ LOCK: SERVI CE
320 SCo COWON M OBJECT CHECKER: SElI ZE OBJECT
321 SO COMVON M OBJECT CHECKER SEI ZE FOR | PL NUMBER CHECK

Bucket 16 - DATABASE RECORD LOCK CONTENTION

Hopefully these enums are self-explanatory.

The enums associated with this bucket are:

Eye
Enum Catcher Description
110 RDr DB RECORD LOCK: READ
111 RDu DB RECORD LOCK: UPDATE
123 RDw DB RECORD LOCK: WEAK
134 Rxf DB RECORD LOCK: TRANSFER
136 Reck DB RECORD LOCK: CHECK
139 Rex DB RECORD LOCK: CONFLICT EXIT

Bucket 17 - OBJECT LOCK CONTENTION

These are the conflicts between threads involving objects. The OS frequently
needs/obtains locks during such operations as:

= Opening aDB2 file

= Creating/deleting an object into alibrary
= Moving an object to adifferent library

= Ownership changes

The operating system can aso use “symbolic locks’ as a serialization mechanism. These
are called “space location locks’.

Lastly, application code can explicitly use locks viathe ALCOBJ CL command.

The enums associated with this bucket are:

Eye
Enum Catcher Description
113 Rir LOCK: SHARED READ
114 Rl o LOCK: SHARED READ ONLY
115 Riu LOCK: SHARED UPDATE
116 Rl a LOCK: EXCLUSI VE ALLOW READ
117 Ri e LOCK: EXCLUSI VE NO READ
118 Rwr LOCK: SEI ZE CONFLI CT, EXCLUSI VE
119 Rvb LOCK: SEI ZE CONFLI CT, SHARED
120 RwuU LOCK: SEI ZE CONFLI CT, | NTENT EXCLUSI VE
121 Rva LOCK: SElI ZE CONFLI CT, | NTENT SHARED
122 RMve LOCK: SEI ZE CONFLI CT, | NTERNAL | NTENT EXCLUSI VE
124 RvVim LOCK: MATERI ALI ZE
128 Rdo LOCK: DESTROY OBJECT
129 Rdp LOCK: DESTROY PROCESS
130 Rdt LOCK: DESTROY THREAD
131 Rdx LOCK: DESTROY TRXM
132 Rar LOCK: ASYNC RETRY
137 Rt r LOCK: TRACE
138 Rul LOCK: UNLOCK
140 Rl c LOCK: LOCK COUNT
142 Rpi LOCK: PROCESS | NTERRUPT

Note: the enums with the word “ SEIZE” in the description are lock conflicts caused by
existing seizes on an object.

Bucket 18 - OTHER WAITS

The dreaded “other” word! Yes, even JW’s wait accounting has to have a “ catch all
bucket”.

The enums associated with this bucket are:

Eye
Enum Catcher Description
1 QCo QUCOUNTER, NOT OTHERW SE | DENTI FI ED
4 QrB QUSI NGLETASKBLOCKER, NOT OTHERW SE | DENTI FI ED
5 QUW QUUNBLOCKWHENDONE, NOT OTHERW SE | DENTI FI ED
6 Qu QUQUEUE, NOT OTHERW SE | DENTI FI ED
7 QrQ QUTREEQUEUE, NOT OTHERW SE | DENTI FI ED
9 QPo QUPOOL, NOT OTHERW SE | DENTI FI ED

10 Qw QUMESSAGEPOCL, NOT OTHERW SE | DENTI FI ED

11 Qw QUSI MPLEMSGPOCL, NOT OTHERW SE | DENTI FI ED

12 QP QUSTACKLESSMSGPOOL, NOT OTHERW SE | DENTI FI ED

13 QsC QUSTATECOUNTER, NOT OTHERW SE | DENTI FI ED

17 sB QUSYSTEMBLOCKER, NOT OTHERW SE | DENTI FI ED

240 RCA LI C CHAI N FUNCTI ONS: SMART CHAI N ACCESS

241 RCl LI C CHA N FUNCTI ONS: SMART CHAI N | TERATCOR

242 RCM LI C CHAI N FUNCTI ONS: CHAI N MUTATCR

243 RCB LI C CHAI N FUNCTI ONS: SMART CHAIN PRICRITY BUWP 1
244 RCB LI C CHAI N FUNCTI ONS: SMART CHAIN PRI ORI TY BUMP 2
245 RCE LI C CHAI N FUNCTI ONS: CHAI N ACCESS EXTENDED

The above enums with eye catchers beginning with a‘Q’ are the generic wait points...
the low level L1C blocks that have not (yet) been uniquely identified. These enums will
be seen when LIC code blocks that has not gone out of its way to uniquely identify the
block point. The only identification that exists is the differentiation afforded by the type
of LIC blocking primitive used. A few words/opinions can be offered for some of them:

QCo isfreguently used for timed waits. The wait used at the core of the DLY JOB
command isa QCo wait. Itisalso used by POSIX Condition Variable waits.

QTB isawait primitive used for many purposes (unfortunately). About the only generic
statement that can be made on it is that is used when athread/task is waiting for a specific
action to happen on its behalf... explicitly for THAT thread/task. For example, waiting
for synchronous DA SD reads and writes to complete use QTB blocks. Fortunately,
DASD reads and writes have further been identified, so they are covered by their own
unique buckets, they are not lumped into QTB (see other buckets).

Bucket 19 - MAIN STORAGE POOL OVERCOMMITMENT
These waits indicate one or more main storage pools are currently overcommitted.

Regular operations, like explicit DASD reads or page faults, are being delayed in order to
locate “free” main storage page frames to hold the new incoming data.

The enums associated with this bucket are:

Enum Cat cher

155
160
163
166
169
173

Eye

GCP
RQ
GFP
GRR
GWP
SPw

Description

MAI NSTORE/ LOG CAL-DASD- | O CLEAR PAGE OUT WAI T

MAI NSTORE/ LOd CAL- DASD- | O DASD READ PAGE OUT WAI T

MAI NSTORE/ LOG CAL- DASD- | O PAGE FAULT PAGE OUT WAIT

MAI NSTORE/ LOG CAL- DASD- 1 O ACCESS GROUP READ FOR FAULT PAGE QUT
MAI NSTORE/ LOd CAL- DASD- | O DASD WRI TE PAGE OUT WAI'T

MAI NSTORE/ LOG CAL- DASD- | O PAGE QUT WAI' T, POCL OVERCOWVM TMENT

Bucket 20 - JAVA USER (INCLUDING LOCKYS)

The enums associated with this bucket are:

Enum Cat cher

200
201
203
209
304
305

Eye

JUW
JSL
JSU
JaL
JSG
JSF

Description

JAVA:
JAVA:
JAVA:
JAVA:

JAVA:

JAVA:

USER WAI T

USER SLEEP

SUSPEND WAI T

OBJECT LOCK

SYNCHRONOUS GARBAGE COLLECTOR WAI T
SYNCHRONOUS FI NALI ZATI ON WAI' T

Bucket 21 —JAVA JVM

The enums associated with this bucket are:

Enum Catcher

302
303
306
307
308

Eye

JVH
JPH

JGV
JFW
Ivw

Description

JAVA:
JAVA:
JAVA:
JAVA:
JAVA:

GARBACGE COLLECTOR WAI T HANDSHAKE WAI T

PRI MARY GC THREAD WAI T FOR HELPER THREADS DURI NG SWEEP
GARBAGE COLLECTOR WAI TI NG FOR WORK

FI NALI ZATI ON WAl TI NG FOR WORK

VERBOSE WAI TI NG FOR WORK

Bucket 22 - JAVA (OTHER)

The enums associated with this bucket are:

Enum Cat cher

202
204
205
206
207
208
300
301
309

Eye

JWC
JEA
JDE
JSD
JCL
JSL
JGG
JAB
JGD

Description

JAVA:
JAVA:
JAVA:
JAVA:
JAVA:
JAVA:
JAVA:
JAVA:
JAVA:

WAI T FOR COUNT

END ALL THREADS

DESTROY WAI T

SHUTDOWN

CLASS LOAD WAI T

SI MPLE LOCK

GARBAGE COLLECTOR GATE GUARD WAI' T
GARBAGE COLLECTOR ABORT WAI T
GARBAGE COLLECTI ON DI SABLE WAI T

310 JCE JAVA: GARBAGE CCLLECTI ON ENABLE WAI'T

Bucket 23 - SOCKET ACCEPTS

These are socket op block points associated with the socket accept() API call. Normally,
but not always, these represent a thread “waiting for work”.

The enums associated with this bucket are:

Eye
Enum Catcher Description
210 STA COW SCOCKETS: SHORT WAI T FOR ACCEPT
211 LTA COW SOCKETS: LONG WAI T FOR ACCEPT

Bucket 24 - SOCKET TRANSMITS
These are waits associated with Socket APIs calls that are sending/transmitting data.

The enums associated with this bucket are:

Eye
Enum Catcher Description
212 STS COWM SOCKETS: SHORT WAI T FOR TCP SEND
213 LTS COW SOCKETS: LONG WAIT FOR TCP SEND
216 SUS COW SOCKETS: SHORT WAI T FOR UDP SEND
217 LUS COVM SOCKETS: LONG WAI T FOR UDP SEND

Bucket 25 - SOCKET RECEIVES
These are waits associated with Socket APIs calls that are receiving data.

The enums associated with this bucket are:

Eye
Enum Catcher Description
214 STR COW SOCKETS: SHORT WAI T FOR TCP RECEI VE
215 LTR COW SOCKETS: LONG WAI T FOR TCP RECEI VE
218 SUR COMM SOCKETS: SHORT WAIT FOR UDP RECEI VE
219 LUR COVM SOCKETS: LONG WAI T FOR UDP RECEI VE

Bucket 26 - SOCKET (OTHER)

The primary wait points that should be seen from this bucket involve the SELECT socket
API. That API can be used by an application for avariety of complex waiting scenarios.

The enums associated with this bucket are:

Eye
Enum Catcher Description

220 SAS COW SOCKETS: SHORT WAIT FOR | O COVPLETI ON
221 LAS COW SOCKETS: LONG WAIT FOR | O COVPLETI ON
222 SSW COVM SOCKETS: SELECT SHORT WAI T

223 SLW COW SOCKETS: SELECT LONG WAI T

Bucket 27 - IFS PIPE
These waits are due to Integrated File System (IFS) “pipe’ operations.

The enums associated with this bucket are:

Eye
Enum Catcher Description
252 PPC | FS/ PI PE: MAI N Pl PE COUNT
253 PRP | FS/ PI PE: READ END OF PI PE
254 PWP | FS/ PI PE: WRI TE END OF PI PE
255 PRW | FS/ PI PE: Pl PE READ WAI TERS
256 PWNV | FS/ PI PE: Pl PE WRI TE WAl TERS

Bucket 28 - IFS (OTHER)
Hopefully, the descriptions on these IFS blocks points need no further elaborations.

The enums associated with this bucket are:

Eye
Enum Catcher Description
250 PRL | FS/ PI PE: FI LE TABLE ENTRY EXCLUSI VE LOCK
251 PRC | FS/ PI PE: LI C REFERENCE COUNT

Bucket 29 - DATA QUEUE RECEIVES
These are the waits on M| Data Queue objects.

The enums associated with this bucket are:

Eye
Enum Catcher Description
341 Qwl DATA QUEUE WAI T

Bucket 30 - M| QUEUE (OTHER)

These are waits on M| Queue objects other than the two preceding types. In general,
these would be internal OS operations*? or User Queue dequeue waits.

The enums associated with this bucket are:

Eye
Enum Catcher Description
342 Qvo OTHER M QUEUE WAI T

Bucket 31 - Ml WAIT ON EVENTS
Event waits are used mainly across jobs, by internal OS programs.

The enums associated with this bucket are:

Eye
Enum Catcher Description
330 EMwv M EVENT WAIT

Bucket 32 - ABNORMAL CONTENTION

These waits reflect a high rate of concurrent waits/releases occurring against awide
variety of many of the other wait points listed previously. There are two types of these
walits:

a. Unsuccessful wakeup retries (QGb, QGc, QGd)
b. Waiting in lineto buy aticket that gets you into the main wait line (QWL)

The enums associated with this bucket are:

Eye
Enum Catcher Description

8 rRP QURESSTACKMSGPOOL, NOT OTHERW SE | DENTI FI ED

14 QL QUWAI TLI ST, WAI TI NG FOR ACCESS TO A WVAI T LIST

40 o QUGATEB, ABNORMAL QUGATE CONTENTI ON, FI RST RETRY
41 (0€ QUGATEC, ABNORVAL QUGATE CONTENTI ON, SECOND RETRY
42 d QUGATED, ABNORMAL QUGATE CONTENTI ON, THI RD RETRY

12 For example, most subsystem monitor jobs' normal wait point is a dequeue on an M1 queue (that is
neither the M1 Response Queue nor a Data Queue).

Trademarksand Disclaimers

© IBM Corporation 1994-2004. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends
to make them available in every country.

The following terms are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both:

AS/400 e-business on demand 0S5/400
IBM IBM (logo) iSeries
eServer iDoctor for iSeries

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and dl Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction
LLC.

C-busis atrademark of Corallary, Inc. in the United States, other countries, or both.
UNIX is aregistered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers
have used IBM products and the results they may have achieved. Actua environmental
costs and performance characteristics may vary by customer.

Information concerning nont1BM products was obtained from a supplier of these
products, published announcement material, or other publicly available sources and does
not constitute an endorsement of such products by IBM. Sources for non-1BM list prices
and performance numbers are taken from publicly available information, including
vendor announcements and vendor worldwide homepages. 1BM has not tested these
products and cannot confirm the accuracy of performance, capability, or any other claims
related to nonIBM products. Questions on the capability of nonIBM products should be
addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or
withdrawal without notice, and represent goals and objectives only. Contact your local
IBM office or IBM authorized reseller for the full text of the specific Statement of
Direction.

Some information addresses anticipated future capabilities. Such information is not
intended as a definitive statement of a commitment to specific levels of performance,
function or delivery schedules with respect to any future products. Such commitments
are only made in IBM product announcements. The information is presented here to
communicate IBM's current investment and development activities as a good faith effort
to help with our customers future planning.

Performance is based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of
multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in
production models.

