
Job Waits and iDoctor for IBM i White Paper
(for IBM i 7.2 or higher)

Version 6.0 – June 1st, 2023

Table of Contents

1.0 Running and Waiting .. 2
1.1 Level set .. 3
1.2 The Mysteries of Waiting ... 3
1.3 Are waits “bad”? ... 4

2.0 Detailing Waits ... 5

3.0 Wait Analysis on IBM i .. 6

3.1 Job Watcher .. 7
3.2 Wait Buckets ... 7

3.2.1 Do Wait Buckets defeat the purpose of many block points? 8

3.2.3 Wait Points (“enums”) and Wait Buckets .. 8
3.3 The Wait Bucket Mapping for IBM i ... 9

3.3.1 Bucket 1 – Dispatched CPU .. 10

3.3.2 Bucket 2 – CPU Queuing ... 13
3.3.3 Bucket 3 – RESERVED .. 14

3.3.4 Bucket 4 – Other Waits .. 14
3.3.5 Bucket 5 – Disk page faults ... 15
3.3.6 Bucket 6 – Disk non fault reads ... 16

3.3.7 Bucket 7 - Disk space usage contention .. 16
3.3.8 Bucket 8 – Disk op-start contention... 17

3.3.9 Bucket 9 - Disk writes.. 17
3.3.10 Bucket 10 – Disk other .. 17

3.3.11 Bucket 11 - Journaling ... 19
3.3.12 Bucket 12 - Semaphore contention .. 19

3.3.13 Bucket 13 - Mutex contention.. 19
3.3.14 Bucket 14 – Machine level gate serialization .. 20
3.3.15 Bucket 15 - Seize contention ... 20

3.3.16 Bucket 16 - Database record lock contention .. 21
3.3.17 Bucket 17 – Object lock contention ... 21
3.3.18 Bucket 18 - Ineligible waits ... 22

3.3.19 Bucket 19 – Main storage pool overcommitment .. 23
3.3.20 Bucket 20 – Journal save while active ... 23

3.3.21 Bucket 21 - RESERVED ... 23
3.3.22 Bucket 22 - RESERVED ... 23
3.3.23 Bucket 23 – RESERVED... 23
3.3.24 Bucket 24 - Socket transmits ... 23
3.3.25 Bucket 25 - Socket receives ... 24

3.3.26 Bucket 26 - Socket other .. 24
3.3.28 Bucket 28 - PASE .. 25
3.3.29 Bucket 29 - Data queue receives .. 26

3.3.30 Bucket 30 - Idle/waiting for work .. 26

3.3.31 Bucket 31 - Synchronization token contention .. 27

3.3.32 Bucket 32 – Abnormal contention ... 27
Additional resources: .. 28

1.0 Running and Waiting
All “units of work” 1 in a system at any instant in time are in one of three states:

Q. CPU Queuing: ready to use CPU, but waiting for a processor to become

available (a.k.a. “ready”, “CPU queued”, "CPUq")

C. Dispatched CPU: (a.k.a. “dispatched to a CPU/processor”, “on a CPU”,

“running”, “running and sharing a processor”). Note: Dispatched CPU time

very frequently differs significantly from CPU utilization or CPU time due to

multithreading (hardware or software), virtual processors, or background

assisting tasks. This is normal! More on that later.

W. Waiting for something or someone (a.k.a. “blocked”, “idle”)

A thread’s Run/Wait Time Signature might look like:

How much time a unit of work spends in state Q is a function of the amount of CPU

competition it experiences while getting its work done. However, note that the CPU

queuing described here reflects the amount of time spent waiting to become dispatched to

a processor.

How much time a unit of work spends in state C depends on the program design and how

much work it’s requested to perform. Factors such as hardware/software multithreading

settings, and the amount of CPU that's been assigned to the partition will affect how

much dispatched CPU time is spent sharing the processor with other threads.

How much time a unit of work spends in state W depends on many factors. But at this

point we need to differentiate two types of waits:

A. Waiting for a work request to arrive (a.k.a. idle)

B. Waits that occur while performing a work request (a.k.a. blocked)

1 A “unit of work” is a single threaded job, each thread in a multi-threaded job or a system task.

Waits (W) Dispatched CPU (C)

Elapsed time

CPUq (Q)

Type A waits, for example, in interactive work would be considered “key/think time”.

These waits are typically not a “problem”. Or if they ARE a problem, it’s usually one

external to the machine they are observed on (e.g. a communications problem causing

slow arrival of work requests). Note: batch work rarely has any type A waits, unless the

batch work is driven, for example, by a data queue… and the data queue is empty.

Type B waits are the interesting ones. While it’s debatable whether or not all these types

of waits should be considered “problems”, the following is a safe and valid statement:

“Outside of CPU usage and contention, type B waits are the reason jobs/threads take as

long as they to do complete their work.”

So, a more refined Run/Wait Signature for an interactive job/thread might look like:

And a typical batch type job/thread would look like:

1.1 Level set
This discussion applies to individual units of work… single threaded jobs and individual

job threads. Many modern application engines involve the use of more than one job

and/or more than one thread to process each “transaction”. The ideas presented in this

document still apply in those cases, but each unit of work must be individually analyzed.

There’s an additional burden placed on the analysis process to tie together the flow of

work across the multiple jobs/threads. And such modern transaction engines frequently

make it difficult to differentiate between type A and type B waits.

1.2 The Mysteries of Waiting
The waiting component of a job/thread’s life is easy to compute, but rarely discussed and

scrutinized.

For batch type work:

Waits = Elapsed Time – CPU Time2

For interactive type work:

2 Assumes CPU Queuing is not significant

Dispatched CPU CPUq Waits (B) Key/Think Waits (A)

Dispatched CPU CPUq Waits (B)

Waits = Elapsed Time – CPU Time – Key/Think Time3

What is the reason why waits have historically been ignored, unless they become so

severe that the elapsed time difference becomes painfully obvious? Suggested answer:

because little instrumentation or tools exist to measure and provide detail on waits.

1.3 Are waits “bad”?
This paper contends the answer is “yes”. (We are obviously talking about type B waits).

There’s a common misconception that a job/thread that “uses high CPU” is intrinsically

bad. It MIGHT be bad. For example: If a work process normally takes 2 hours to

complete with 45 minutes of CPU and, after a software or data change, now takes 4 hours

with 3 hours of CPU, that IS bad. But just looking at a job/thread (in a non-comparative

way) that uses a high percentage of CPU, and declaring it “bad” misses the point that “the

lack or minimal occurrences of type B waits is a GOOD thing”. For batch type work (that

does not have type A waits, where it is waiting for work to arrive), if the type B waits are

reduced/eliminated, the job/thread’s “CPU Density” 4 increases. Ultimately, it could use

100% of a processor5.

Let’s take an example: A batch job that runs for 6 hours and uses 117 minutes of CPU.

The first thing to consider is how much time of the “wasted” 243 minutes of elapsed time

was CPU queuing (i.e. contending/waiting for a processor). This paper will go on to

demonstrate how this value, and all the waits, can be measured in great detail. But for this

example, let’s suppose that 71 minutes of CPU queuing was involved. This means that

the job was in type B waits 172 minutes. This means that the job could potentially run in

3 hours and 8 minutes… if the type B waits were completely eliminated. Contrast this

with how the job might perform if the CPU speeds on the machine were doubled. One

would expect the CPU minutes and CPU queuing minutes to be halved, yielding a job run

time of 4.5 hours. Summary: eliminating the type B waits could have the job run in 3

hours 8 minutes. Doubling the CPU capacity could have the job run in 4 hours, 30

minutes. Conclusion: wait analysis and reduction can be a very powerful, cost-

effective way of improving response time and throughput.

A last word on the badness of waits: An IBM poster spotted outside the Benchmark

Center in Rochester Minnesota contained this phrase:

All computers wait at the same speed.

3 Assumes CPU Queuing is not significant
4 If a single thread consumes all of a single processor for a period of time, it is 100% CPU dense. If it

consumes 1/8th of a process for the same period, it is 12.5% CPU dense. This is true regardless of the

number of processors on the system or in the partition. For systems with more than one CPU in the

partition, CPU density is NOT what is seen on WRKACTJOB or WRKSYSACT commands. But can be

computed from those, knowing how many CPUs are available to the job.
5 DB2 Multitasking can make a job/thread appear to use more than 100% of a processor, as the background

assisting tasks promote their CPU consumption numbers into the client job/thread. Note: this can also make

accurate capacity planning more difficult.

Think about it.

2.0 Detailing Waits
Up to here, this paper has made the case that wait analysis (and resulting “corrective

actions”) could lead to happiness. What is the first step in wait analysis? It begins with

obtaining details on the individual waits.

Refresher: a summary Run/Wait Time Signature for a typical batch type job/thread might

look like:

Wait analysis begins by bringing out details in the “Waits (B)” component.

For example:

This represents the first phase of detailing: the raw amount of time spent in different

types of waits. The next obvious metric needed is the number of each type of wait:

Computed averages are next. Suppose the durations / counts / averages were as follows:

Dispatched CPU CPUq Waits (B)

Dispatched CPU CPUq Waits (B)

DASD reads DASD writes Rec Locks Journal

DASD reads
3,523

DASD writes
17,772

Rec Locks
355

Journal
5,741

This is already enough information to begin contemplating actions. Some of the questions

it raises include:

How many of the DASD reads are page faults? Would main memory/pool changes help?

What objects are being read from DASD?

What programs are causing the reads?

How could those DASD reads be reduced, eliminated, or made asynchronous?

Could the DASD read response time be better?

What objects are being written to DASD?

What programs are causing the writes?

How could those DASD writes be reduced, eliminated or made asynchronous?

Could the DASD write response time be better?

What DB2 files are involved with the record locks?

What programs are requesting the record locks?

What other jobs/threads are causing the record lock contention?

What files are being journaled?

What journals are involved?

Are the journals needed and optimally configured?

Could COMMIT cycles or the Journal PRPQ used to reduce this wait component?

Is the DASD I/O subsystem write cache(s) large enough?

Is the DASD configuration well balanced, in terms of IOPs, IOAs, busses, RAID

configurations?

Unfortunately it is beyond the scope of this paper to delve into details of how to tackle

the wait “corrective actions”.

3.0 Wait Analysis on IBM i
All preceding material was a generic discussion of wait analysis. Now we’ll focus on

such capabilities that are built into IBM i with 6.1 and higher.

Remember back to the statement that a job/thread is either running on a processor,

waiting for a processor to become available, or waiting for someone or something? The

LIC has assigned an identifier to ALL6 the points in LIC code that actually enter the wait

state. 7 In V5R1 there were about 120 such wait points. In 6.1 there are over 260. Each

6 Some types of waits are identified with greater granularity than are other points. For example:. Locks and

Seizes have more individual wait points identified than do other types of waits that tend to share block

points.
7 At the actual run/wait nitty gritty level, only LIC code can truly enter a wait. If an application or OS/400

program enters a wait state, it does so in LIC code it has caused to run on it’s behalf.

DASD reads
42s

3,523
0.012s

DASD writes
73s

17,772
0.004s

Rec Locks
45s
355

0.126s

Journal
44s

5,741
0.007s

individual wait point is sometimes referred to as an “enum”. “Enum” is shorthand for the

C++ programming language’s “enumerated value” and simply means a fixed set of items.

When a job/thread is in the wait state, it IS in one of the 260+ possible wait points. The

“current wait” of a job/thread can be referred to by the numerical value of the “enum”

(e.g. 51), or by a 3 character eye catcher that has been assigned to each enum (e.g. “JBw”)

or by a text string associated with each (e.g. “JOBUNDLEWAIT”).

All jobs/tasks/threads on a system have instrumented wait 'buckets' which are used to

keep track of the different types of waits each thread or task is experiencing over time.

Because there are hundreds of different possible wait points known to the system we've

reduced this down to a more manageable set of 32 wait buckets. Both Job Watcher and

Collection Services Investigator surface these same wait bucket statistics (times and

counts) for the 32 wait buckets found on the system.

3.1 Job Watcher
Job Watcher is a sampling based performance tool included with IBM i at 6.1 (see

commands ADDJWDFN, STRJW.) At specified time intervals, or “as fast as possible”, a

STRJW will sample anywhere from 1 thread/job to all threads/jobs on a system. It

gathers a large variety of performance data, much of it beyond the scope of this paper.

But one of the main reasons for the creation of Job Watcher, was to capitalize on wait

points first introduced into the system in V5R1.

3.2 Wait Buckets
A large number of individual wait points is great from a data-empowerment point of view.

However, when it comes to keeping track of them on a wait-point by wait-point basis, for

every unit of work, it presents challenges to efficient implementation. An ideal design

would be for each of the possible wait points to have its own set of data associated with it,

for each unit of work (job/thread/task). The minimum amount of accounting data that

would be needed includes:

➢ Occurrence count

➢ Total time accumulator

It was determined that keeping 260+ pairs of these numbers associated with every

job/thread/task on a machine was simply too much overhead (mainly in the area of main

storage footprint).

A compromise was reached that allows for a potentially very large number of individual

wait points to be mapped into a modest sized set of accounting data. The modest sized set

of accounting numbers is called the Wait Buckets. There are 32 such buckets, but 3 of

them have special purposes, so there are 29 buckets available to map the 260+ wait points.

Again, these buckets exist on a per unit of work basis.

3.2.1 Do Wait Buckets defeat the purpose of many block points?

One might ask: “What’s the value in having a large number of unique block points, if all

this detail is going to be lost when they get crammed into 29 Wait Buckets?” That’s a

fair question. The real loss of granularity is felt with sampling based tools, like Job

Watcher. But even with JW, there’s good use of the high wait point counts:

At any given instant in time, the full granularity afforded by all the wait points is

available to sampling based tools. For example: “At this particular moment in time,

thread XYZ is waiting in block point enum 114. And it has been waiting there for n

microseconds.”

Trace based tools, e.g. PEX Analyzer, (which are beyond the scope of this paper) can

“see” every wait transition, and effectively do the accounting on a per-enum basis,

making full use of the granularity provided.

For these two reasons, maximizing wait point granularity is a good thing to do.

3.2.3 Wait Points (“enums”) and Wait Buckets

As mentioned earlier, wait accounting is the core functionality of the Job Watcher tool.

The LIC supports remapping of enums to buckets though this is very rarely done

anymore at 6.1 and higher. At previous releases remapping the buckets was done by Job

Watcher because the system was shipped with only 16 wait buckets used (instead of the

32 available). However, at each new release, the bucket mapping could change.

Note: There were no changes to the buckets between 6.1 and 7.1 but there were changes

to the buckets between 7.1 and 7.2. The wait buckets have not changed since 7.2

although new enums were added at later releases. These newer enums are highlighted in

yellow below.

The Wait Buckets defined on the system at 7.2 or higher are:

1. Dispatched CPU

2. CPU queueing

3. Reserved

4. Other waits

5. Disk page faults

6. Disk non fault reads

7. Disk space usage contention

8. Disk op-start contention

9. Disk writes

10. Disk other

11. Journaling

12. Semaphore contention

13. Mutex contention

14. Machine level gate serialization

15. Seize contention

16. Database record lock contention

17. Object lock contention

18. Ineligible waits

19. Main storage pool overcommitment

20. Journal save while active

21. Reserved

22. Reserved

23. Reserved

24. Socket transmits

25. Socket receives

26. Socket other

27. IFS

28. PASE

29. Data queue receives

30. Idle/waiting for work

31. Synchronization token contention

32. Abnormal contention

Additional details on the buckets and the enums that are assigned each follow.

3.3 The Wait Bucket Mapping for IBM i
Each of the 300+ block points in the system is some flavor of one of approximately 20

different LIC Queuing Primitives. Individual block points may be reported (i.e. assigned

an enum) that is one of the Primitives’ enums (which is the default assignment), OR

(preferably) the specific block-owning LIC component can chose to “invent” another,

more descriptive enum for the block point.

For example, synchronous DASD I/O READ wait. The author is not certain, but it is

likely that the wait (block) that occurs in a job/thread while a synchronous DASD read is

in progress is probably implemented with a LIC Queuing Primitive known as a “Single

Task Blocker” (eye catcher QTB, enum number 4). That is, when LIC blocks a job/thread

due to waiting for a synchronous DASD read to complete, it uses a QTB wait

primitive/mechanism. If the component that owns this function (Storage Management)

had done no further “IDing”, that is how such waits would report (QTB, enum 4). That is

OK, except there are probably a lot of other block points that ALSO use QTB. Therefore,

it would be difficult/impossible to differentiate DASD READ blocks from other blocks.

Fortunately, Storage Management, realizing how important it is to quantify DASD op

waits, have invented a different eye catcher and enum (SRd, 158) that overrides QTB,4.

Before you start to read this section on the Wait Buckets and their enums, you might

want to read the description of Bucket 4 (Other Waits) first. Bucket 4 contains many of

the default, LIC Queuing Primitives enums.

Disclaimer

The following discussion will include opinion. It will also, more than likely, be far less

complete than many people (including the author) would like it to be. There’s probably

no single person that knows all the nuances of the 300+ wait points in IBM i. Also, in

spite of 300+ individual points, many of these remain “general” and “generic” to some

degree…preventing them from categorically being declared “normal/OK” or “bad”. This

discussion should be viewed as:

❖ Potentially in error

❖ Potentially out-of-date

❖ One person’s opinion

❖ As a starting point, guideline to interpreting wait points and buckets, not as the

“last/only word”

3.3.1 Bucket 1 – Dispatched CPU

This accumulates the amount of time a thread or task has been “dispatched” to a virtual

processor. “Dispatched to a virtual processor” means the thread or task has been assigned

a virtual processor so it can begin execution of machine instructions.

Note 1: Dispatched CPU is not equal to CPU utilization or CPU used time as normally

seen in WRKJOB, WRKACTJOB, etc. Dispatched CPU time includes time dispatched

to a virtual processor but not necessarily burning CPU cycles; it includes time sharing the

virtual processor with other threads due to multithreading (SMT/HMT), time due to

LPAR shared virtual processors, as well as time for memory and cache fetches, etc.

Therefore, Dispatched CPU is often much greater than the CPU used time because this

CPU waiting/sharing time is included in Dispatched CPU.

iDoctor divides Dispatched CPU time into 2 parts (active and wait):

1. Dispatched CPU active

2. Dispatched CPU wait

These values will be shown if the Report Visibility - Advanced mode setting is enabled

and a red box will be drawn around the 2 columns in the graph legend to help indicate

that their sum makes up Dispatched CPU time. This breakdown is currently NOT

available in Graph History data, in PEX Analyzer or if Report Visibility is set to

Intermediate or Basic.

Think of Dispatched CPU wait as Dispatched CPU sharing if it makes you or your

customer less concerned. This is normal system behavior!

Note 2: In May 2023, iDoctor changed the calculation for Dispatched CPU wait time to

be JBVPDLY (Job virtual CPU delay from QAPMJOBMI). Dispatched CPU active is

JWTM01 (QAPMJOBWT) – JBVPDLY (QAPMJOBMI).

Collection overview time signature showing Dispatched CPU wait (yellow)

In some rare cases, Job CPU time (JBCPU) can exceed Dispatched CPU time

(JWTM01). In those situations, system tasks have completed and transferred CPU time

back to the job where work had recently finished. This extra time where JBCPU is

greater than JWTM01 is known as “Transferred CPU” and will rarely be shown on

iDoctor graphs. This is not a true wait bucket.

Figure A depicts the benefits of two dispatched threads sharing a physical processor.

Each thread’s actual CPU processing is overlapped with the other thus keeping the

processor busy. One thread can be executing instructions during the time where the other

might be waiting upon a memory or cache fetch.

Dispatched CPU helps account for all of a job’s elapsed time. The sum of Dispatched

CPU plus CPU queuing plus the sum of the Wait time found in the other wait buckets

will explain where time is being spent for the duration of the job/thread or for a time

period under study or investigation. Substituting CPU for Dispatched CPU will generally

cause the elapsed time result to be understated.

Figure A: The relationship between Dispatched CPU time and CPU time where two

threads are sharing the same physical processor

The dispatched time value can differ from the “CPU Time” measured by other means

(DSPJOB, WRKACTJOB, WRKSYSACT, job accounting, the DELTACPU field in Job

Watcher itself). The difference can be large. The main factors that cause these

discrepancies are:

1. Processor Hardware Multi Threading (HMT) feature. This can cause bucket 1’s

time to be larger than the actual CPU time. HMT is when more than one thread or

task can be simultaneously assigned to the same physical processor. In that

scenario, they share the processor’s cycles, mainly during long “off chip”

operations, like memory fetches. The Dispatched CPU bucket will record the

elapsed time a thread or task has been dispatched. The real CPU value will only

include the exact number of cycles used by the thread or task while it was

dispatched.

2. Simultaneous Multithreading (SMT). This is used on POWER5+ processors and

also causes bucket 1’s time to be larger than the actual CPU time. Like HMT,

multiple threads of execution can execute on the same processor at the same time

although the mechanics at the processor and cache levels are different. Newer

Power systems will often utilize SMT4 or SMT8. For a more thorough discussion

of SMT and HMT, see the following white papers authored by Mark Funk: (1)

Simultaneous Multi-Threading on eServer iSeries POWER5 (2) Simultaneous

Multi-Threading on POWER7 Processors. Further discussion and links to

additional articles can also be found at Dawn May’s i Can blog.

3. Background assisting tasks, like those used in the DB Multi-Tasking Feature.

Background assisting tasks, which promote (add) their CPU usage back into the

d
i
s
p
a
t
c
h
e
d
.

b
l
o
c
k
e
d
.

d
i
s
p
a
t
c
h
e
d
.

Thread A

Thread B

Bucket 1 (Dispatched CPU Time)
CPU Time

b
l
o
c
k
e
d
.

http://watsonwalker.s3.amazonaws.com/ww/wp-content/uploads/2016/01/28155903/systems_i_advantages.pdf
https://public.dhe.ibm.com/services/us/igsc/idoctor/perf/SMT4_On_P7.pdf
https://public.dhe.ibm.com/services/us/igsc/idoctor/perf/SMT4_On_P7.pdf
https://dawnmayi.com/2010/02/08/use-power7-features-with-ibm-i-6-1-1/

client job/thread, will cause the client thread’s Dispatched CPU value to be

smaller than the measured CPU time.8

4. LPAR shared/partial processors. This is where the tricky concept of Virtual

Processors comes into play. The Dispatched CPU bucket actually records the

elapsed time a thread or task is dispatched to a Virtual Processor, not

(necessarily) a Physical Processor. Similar to HMT mentioned above, a Virtual

Processor can be shared across LPAR partitions. If that occurs while a thread or

task is dispatched to one of these, the bucket 1 time will be greater than the CPU

time, because it will include time the thread/task is dispatched, but is “waiting for

its turn” at the physical processor behind the virtual one.

3.3.2 Bucket 2 – CPU Queuing

No wait points assigned, waiting for a virtual processor is a special kind of wait. This is

simply the number of microseconds a thread/task has waited… ready to run… for a

virtual processor to become available. As stated above, a unit of work may have to wait

for a physical processor even when in bucket 1 state.

Note: there may always be miniscule amounts of time reported in this bucket. It’s an

artifact of the fact that SOME tiny, finite amount of time transpires between when a

thread becomes “ready to run” and when it is dispatched to a processor.

When workload capping times exist, then iDoctor will optionally divide the CPU

Queuing bucket into 2 parts defined as:

1. CPU queuing remainder

2. CPU queuing - Workload capping delay

A green box is drawn around these columns in the graph legend to help indicate that the

sum of these 2 values makes up the CPU queuing wait bucket.

8 Conversely, the Dispatched CPU time value for the assisting tasks themselves would be larger (over time)

than the CPU time as measured/seen by WRKSYSACT or Collection Services.

Collection overview time signature with workload capping example

3.3.3 Bucket 3 – RESERVED

This bucket is not currently used. It may have numbers in it but it’s best to ignore them

unless directed by IBM service.

3.3.4 Bucket 4 – Other Waits

The dreaded “other” word! Yes, even wait accounting must have a “catch all bucket”.

The enums assigned are:

Enum Eye

Catcher
Description

1 QCo Qu counter

4 QTB Qu single task blocker

5 QUW Qu unblock when done, not otherwise identified

6 QQu Qu queue, not otherwise identified

7 QTQ Qu tree queue, not otherwise identified

9 QPo Qu pool, not otherwise identified

10 QMP Qu message pool, not otherwise identified

11 QMP Qu simple message pool, not otherwise identified

12 QSP Qu stackless message pool, not otherwise identified

13 QSC Qu state counter, not otherwise identified

17 QSB Qu system blocker, not otherwise identified

18 QMC Qu maso condition, not otherwise identified

19 QRQ Qu resident queue, not otherwise identified

43 QCo QuCounterServerReceive

143 Rsv Seize/lock: service

201 JSL JAVA: J9 wait for request response

240 RCA LIC CHAIN FUNCTIONS: SMART CHAIN ACCESS

241 RCI LIC CHAIN FUNCTIONS: SMART CHAIN ITERATOR

242 RCM LIC CHAIN FUNCTIONS: CHAIN MUTATOR

243 RCB LIC CHAIN FUNCTIONS: SMART CHAIN PRIORITY BUMP 1

244 RCB LIC CHAIN FUNCTIONS: SMART CHAIN PRIORITY BUMP 2

245 RCE LIC CHAIN FUNCTIONS: CHAIN ACCESS EXTENDED

246 RCX LIC CHAIN FUNCTIONS: ADAPTABLE SMART CHAIN ACCESS

330 EMw MI EVENT WAIT

342 QMo OTHER MI QUEUE WAIT

406 DBX DB default wait timer sleep

407 Qco DB_Allocate_Gate (7.5)

408 Qco DB_Allocate_Queue (7.5)

409 Qco DB_Validate_Queue (7.5)

430 XXX SM_SarClearRequestIPOW (qu_dasd_io) (7.5)

432 XXX SM_SarSarFaultRequestIPOW (7.5)

The above enums with eye catchers beginning with a ‘Q’ are the generic wait points…

the low level LIC blocks that have not (yet) been uniquely identified. These enums will

be seen when LIC code blocks that has not gone out of its way to uniquely identify the

block point. The only identification that exists is the differentiation afforded by the type

of LIC blocking primitive used. A few words/opinions can be offered for some of them:

QCo is frequently used for timed waits. The wait used at the core of the DLY JOB

command is a QCo wait. It is also used by POSIX Condition Variable waits.

QTB is a wait primitive used for many purposes (unfortunately). About the only generic

statement that can be made on it is that is used when a thread/task is waiting for a specific

action to happen on its behalf… explicitly for THAT thread/task. For example, waiting

for synchronous DASD reads and writes to complete use QTB blocks. Fortunately,

DASD reads and writes have further been identified, so they are covered by their own

unique buckets, they are not lumped into QTB (see later Buckets).

3.3.5 Bucket 5 – Disk page faults

These are the waits associated with implicit (page faults) DASD reads.

Page faults are frequently (but not exclusively) caused by having “too many jobs/threads

running concurrently in too small of a main store pool”. If the faulted-on object type is a

‘1AEF’ (Temporary Process Control Space), then that is a likely cause. There are other

types of activity though, where page faults are expected or “normal”:

• When a program or application first starts up in a job/thread.

• DB2 Access Paths (keyed parts of physical files, or Logical Files)… these tend to

be referenced in a highly unpredictable way, and “faulting in” pages of access

paths is considered “normal”.

• Access pending faults (enum 165) refers to waits that did not, itself, issue a disk

read, but is waiting on SOME in-progress disk read that might have been started

asynchronously in this task/thread, or synchronously or asynchronsously in some

other task/thread.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

161 SFt MAINSTORE/LOGICAL-DASD-IO: PAGE FAULT

162 SFP MAINSTORE/LOGICAL-DASD-IO: PAGE FAULT IO PENDING

164 GRf MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP READ FOR FAULT

165 SRR
MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP READ FOR FAULT IO
PENDING

3.3.6 Bucket 6 – Disk non fault reads

These are simply the waits associated with explicit (“read this from DASD for me”)

synchronous DASD reads.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

158 SRd MAINSTORE/LOGICAL-DASD-IO: DASD READ

159 SRQ MAINSTORE/LOGICAL-DASD-IO: DASD READ IO PENDING

3.3.7 Bucket 7 - Disk space usage contention

When an object, or internal LIC object is created or extended, and free DASD space has

to be located to satisfy the request, there is some level of serialization performed. This is

done on an ASP-by ASP and unit-by-unit basis. Normally, one would expect to see little,

if any, of these types of waits. If they are present in significant percentages, it usually

means the OS/LIC is being asked (by applications) to perform a very high RATE of

object creates/extends/truncates or deletes. (Note: opening a DB2 file causes a create).

The SIZE of the DASD space requests is not relevant to these blocks; it’s the RATE of

requests that is relevant.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

145 ASM DASD space manager: CONCURRENCY CONTENTION

146 ASM DASD space manager: ASP FREE SPACE DIRECTORY

147 ASM DASD space manager: RR FREE SPACE LOCK

148 ASM DASD space manager: GP FREE SPACE LOCK

149 ASM DASD space manager: PERMANENT DIRECTORY LOCK

180 ASM DASD SPACE MANAGER: TEMPORARY DIRECTORY LOCK

181 ASM DASD SPACE MANAGER: PERSISTENT STORAGE LOCK

182 ASM DASD SPACE MANAGER: STATIC DIRECTORY LOCK

183 ASM VIRTUAL ADDRESS MANAGER: BIG SEGMENT ID LOCK

184 ASM VIRTUAL ADDRESS MANAGER: LITTLE SEGMENT ID LOCK

185 ASM DASD SPACE MANAGER: IASP LOCK

186 ASM DASD SPACE MANAGER: MOVE CHAIN

187 ASM DASD SPACE MANAGER: HYPERSPACE LOCK

188 ASM DASD SPACE MANAGER: NON PERSISTENT DATA LOCK

189 ASM
VIRTUAL ADDRESS MANAGER: TEMPORARY SEGMENT ID RANGE MAPPER
LOCK

190 ASM
VIRTUAL ADDRESS MANAGER: PERMANENT SEGMENT ID RANGE MAPPER
LOCK

191 ASM VIRTUAL ADDRESS MANAGER: IASP SEGMENT ID RANGE MAPPER LOCK

3.3.8 Bucket 8 – Disk op-start contention

These waits occur when a DASD operation start is delayed due to a very high rate of

concurrent DASD operations in progress at the moment it is requested.

Enum Eye

Catcher
Description

49 QRR Qu res stack message pool, Abnormal DASD op-start contention

3.3.9 Bucket 9 - Disk writes

These are the waits associated with synchronous DASD writes, or waiting for

asynchronous DASD writes to complete.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

167 SWt MAINSTORE/LOGICAL-DASD-IO: DASD WRITE

168 SWP MAINSTORE/LOGICAL-DASD-IO: DASD WRITE IO PENDING

170 SWp MAINSTORE/LOGICAL-DASD-IO: PAGE OUT WRITE

171 GPg MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP PURGE

172 GPP MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP PURGE IO PENDING

174 GTA MAINSTORE/LOGICAL-DASD-IO: GENERIC ASYNC IO TRACKER WAIT

175 GTS MAINSTORE/LOGICAL-DASD-IO: GENERIC SINGLE TASK BLOCKER WAIT

176 GTT MAINSTORE/LOGICAL-DASD-IO: GENERIC TIMED TASK BLOCKER

3.3.10 Bucket 10 – Disk other

This bucket includes waits for a variety of disk operations including the following:

• Waits that "mark disk locations" during Create, Extend, Truncate or Destroy of

PERMANENT objects.

• Most bulk reads and writes performed during Save/Restore.

• Rarely seen waits found during disk unit configuration and setup.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

60 DSM DASD management: find compression group

61 DSM DASD management: deallocate compression group

62 DSM DASD management: read compression directory

63 DSM DASD management: write compression directory

64 DSM DASD management: initialize compression start reorg

65 DSM DASD management: mirror read sync

66 DSM DASD management: mirror reassign sync

67 DSM DASD management: mirror write verify sync

68 DSM DASD management: read

69 DSM DASD management: read diag

70 DSM DASD management: verify

71 DSM DASD management: verify diag

72 DSM DASD management: write

73 DSM DASD management: write diag

74 DSM DASD management: write verify

75 DSM DASD management: write verify diag

76 DSM DASD management: reassign

77 DSM DASD management: reassign diag

78 DSM DASD management: allocate

79 DSM DASD management: allocate diag

80 DSM DASD management: deallocate

81 DSM DASD management: deallocate diag

82 DSM DASD management: enable auto allocate

83 DSM DASD management: disable auto allocate

84 DSM DASD management: query compression metrics

85 DSM DASD management: query compression metrics diag

86 DSM DASD management: compression scan read

87 DSM DASD management: compression scan read diag

88 DSM DASD management: compression discard temp data

89 DSM DASD management: compression discard temp data diag

150 STv MAINSTORE/LOGICAL-DASD-IO: SAR NOT SET

151 SRv MAINSTORE/LOGICAL-DASD-IO: REMOVE

152 SRP MAINSTORE/LOGICAL-DASD-IO: REMOVE IO PENDING

153 SCl MAINSTORE/LOGICAL-DASD-IO: CLEAR

154 SCP MAINSTORE/LOGICAL-DASD-IO: CLEAR IO PENDING

156 SUp MAINSTORE/LOGICAL-DASD-IO: UNPIN

157 SUP MAINSTORE/LOGICAL-DASD-IO: UNPIN IO PENDING

177 SMP MAINSTORE/LOGICAL-DASD-IO: POOL CONFIGURATION

178 SMC MAINSTORE/LOGICAL-DASD-IO: POOL CONFIGURATION CHANGE

3.3.11 Bucket 11 - Journaling

The waits associated with DB2 Journaling fall in this bucket.

The enums associated with this bucket are:

Enum Eye
Catcher

Description

50 JBo Journal bundle owner wait for DASD completion

51 JBw Journal bundle wait for DASD completion

270 EFJ EPFS: Wait for OS to finish apply journaled changes

Enum 50 is the wait in the thread that is actually performing the DASD write(s) to the

journal. It is the wait for DASD Journal writes to complete. Journal uses some fancy

approaches to DASD ops, to do their writes absolutely as efficiently as possible. That is

why DASD writes to Journals do not fall in the “DASD Write” bucket below (this is a

good thing for performance analysis, to have these Journal writes differentiated).

Enum 51 is the wait that occurs in threads other than the one that’s performing the DASD

write(s). For efficiency, multiple jobs/threads can “ride along” the journal DASD writes

performed by other jobs/threads.

3.3.12 Bucket 12 - Semaphore contention

These are the block points used by C/C++ programming language (both operating system

code, LPP and application code), usually in the POSIX environment, to implement

Semaphore waits.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

16 QSm Qu semaphore

353 Msw Semaphore wait

3.3.13 Bucket 13 - Mutex contention

These are the block points used by C/C++ programming language (both operating system

code, LPP and application code), usually in the POSIX environment, to implement Mutex

waits.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

15 QMG Qu mutex gate

350 Mmw Mutex wait

3.3.14 Bucket 14 – Machine level gate serialization

The enums associated with this bucket are:

Enum Eye
Catcher

Description

2 QGa Qu gate - high performance

3 QTG Qu retry gate

QGa is a very high performance, low-overhead serialization primitive used by LIC. It is

the type of primitive in which there can be one and only one “holder”. Normally, QGa is

used in areas in which the anticipated wait time, if any, is very small (microseconds).

Note: there are some related block points (QGb, QGc, QGd) that are later covered in the

bucket named “ABNORMAL CONTENTION”.

3.3.15 Bucket 15 - Seize contention

Think of seizes as the Licensed Internal Code’s (LIC’s) equivalent of Locks. A seize

almost always occurs on/against an MI object (DB2 physical file member, Data Queue,

Program, Library…). Seizes can conflict with Locks and can cause Lock conflicts. There

is a large variety of seizes: shared, exclusive, “fair”, and “intent-exclusive”. It’s beyond

the scope of this paper to explain all there is to know about seizes. They are, after all,

internal LIC primitives that are subject to change at any time. If seizes are a significant

percentage of a Run/Wait Signature, examining the call stack, “wait object” and “holding

task/thread” (if any) are probably necessary to understand what is causing the contention.

Seizes are frequently (but not exclusively) associated with data base objects and

operations. Concurrent activities in multiple jobs such as opens, closes, journal sync

points, access path building, etc might lead to seize waits. Other actions/objects that can

experience seize waits include libraries and user profiles, during high rates of concurrent

Create/Delete activity in multiple jobs.

This bucket was the first time that the term “holding task/thread” was mentioned.

However, Job Watcher has that ability to determine the “holder” for more than just seize

waits. It can do so for Locks, Data Base Record Locks and other wait enums based on a

low level serialization primitive called a “gate”.

In the area of waiters and holders, it needs to be pointed out that the waiter… the

job/thread that is experiencing the wait is frequently the victim, not the culprit.

The enums associated with this bucket are:

Enum Eye

Catcher
Description

100 Rex Seize: exclusive

101 Rex Seize: long running exclusive

102 Rsh Seize: shared

103 Rix Seize: intent exclusive

104 Ris Seize: intent shared

105 Rfa Seize: flush all

106 Rdx Seize: database exclusive

107 Rii Seize: internal intent exclusive

108 Rot Seize: other

109 Rlk Seize: lock conflict

112 RXX Seize/lock impossible

125 Rsp Seize: off-line IASP

126 Rra Seize: release all

127 Rrs Seize: release

133 Rss Seize/lock: internal service tools hash class gate

135 Rmf Seize: monitored free

141 Rcu Seize: cleanup

320 SOo COMMON MI OBJECT CHECKER: SEIZE OBJECT

321 SOi COMMON MI OBJECT CHECKER: SEIZE FOR IPL NUMBER CHECK

421 Rsl Seize: shared inhibit locks

422 Rfl Seize: fair lock blocker

3.3.16 Bucket 16 - Database record lock contention

The enums associated with this bucket are:

Enum Eye

Catcher
Description

110 RDr DB record lock: read

111 RDu DB record lock: update

123 RDw DB record lock: weak

134 Rxf DB record lock: transfer

136 Rck DB record lock: check

139 Rcx DB record lock: conflict exit

A database weak record lock is only acquired thread-scoped and it only conflicts with

update record locks which are thread-scoped to a different thread. The weak record lock

does not conflict in any other situation. Weak record locks are used by SQE.

3.3.17 Bucket 17 – Object lock contention

These are the conflicts between threads involving objects. The OS frequently

needs/obtains locks during such operations as:

▪ Opening a DB2 file

▪ Creating/deleting an object into a library

▪ Moving an object to a different library

▪ Ownership changes

▪ Etc

IBM i can also use “symbolic locks” as a serialization mechanism. These are called

“space location locks”.

Lastly, application code can explicitly use locks via the ALCOBJ CL command.

The enums in this bucket are:

Enum Eye

Catcher
Description

113 RIr Lock: shared read

114 RIo Lock: shared read only

115 RIu Lock: shared update

116 RIa Lock: exclusive allow read

117 RIe Lock: exclusive no read

118 RMr Lock: seize conflict

119 RMo Lock: seize conflict

120 RMu Lock: seize conflict

121 RMa Lock: seize conflict

122 RMe Lock: seize conflict

124 RMm Lock: materialize

128 Rdo Lock: destroy object

129 Rdp Lock: destroy process

130 Rdt Lock: destroy thread

131 Rdx Lock: destroy TRXM

132 Rar Lock: async retry

137 Rtr Lock: trace

138 Rul Lock: unlock

140 Rlc Lock: lock count

142 Rpi Lock: process interrupt

Note: the enums with the word “SEIZE” in the description are lock conflicts caused by

existing seizes on an object.

3.3.18 Bucket 18 - Ineligible waits

This bucket simply quantifies the amount of time a thread has been in ineligible wait. A

complete discussion of ineligible waits (and the control for it, "Max Active") is beyond

the scope of this paper. But in general, if a system memory pool is configured with the

correct maximum activity level, ineligible waits should not be occurring

The enums in this bucket are:

Enum Eye

Catcher
Description

280 WTI RMPR: Wait to ineligible

281 ATI RMPR: Active to ineligible

3.3.19 Bucket 19 – Main storage pool overcommitment

These waits indicate one or more main storage pools are currently overcommitted.

Regular operations, like explicit DASD reads or page faults, are being delayed in order to

locate “free” main storage page frames to hold the new incoming data.

The enums in this bucket are:

Enum Eye

Catcher
Description

155 GCP MAINSTORE/LOGICAL-DASD-IO: CLEAR PAGE OUT WAIT

160 GRQ MAINSTORE/LOGICAL-DASD-IO: DASD READ PAGE OUT WAIT

163 GFP MAINSTORE/LOGICAL-DASD-IO: PAGE FAULT PAGE OUT WAIT

166 GRR
MAINSTORE/LOGICAL-DASD-IO: ACCESS GROUP READ FOR FAULT PAGE
OUT WAIT

169 GWP MAINSTORE/LOGICAL-DASD-IO: DASD WRITE PAGE OUT WAIT

173 SPw MAINSTORE/LOGICAL-DASD-IO: PAGE OUT WAIT

3.3.20 Bucket 20 – Journal save while active

The enums in this bucket are:

Enum Eye

Catcher
Description

52 JSW Journal save while active wait

3.3.21 Bucket 21 - RESERVED

3.3.22 Bucket 22 - RESERVED

3.3.23 Bucket 23 – RESERVED

3.3.24 Bucket 24 - Socket transmits

These are waits associated with Socket APIs calls that are sending/transmitting data.

The enums in this bucket are:

Enum Eye

Catcher
Description

212 STS COMM/SOCKETS: SHORT WAIT FOR TCP SEND

213 LTS COMM/SOCKETS: LONG WAIT FOR TCP SEND

216 SUS COMM/SOCKETS: SHORT WAIT FOR UDP SEND

217 LUS COMM/SOCKETS: LONG WAIT FOR UDP SEND

224 SRS COMM/SOCKETS: SHORT WAIT FOR RDMA SEND

225 LRS COMM/SOCKETS: LONG WAIT FOR RDMA SEND

3.3.25 Bucket 25 - Socket receives

These are waits associated with Socket APIs calls that are receiving data.

The enums in this bucket are:

Enum Eye

Catcher
Description

214 STR COMM/SOCKETS: SHORT WAIT FOR TCP RECEIVE

215 LTR COMM/SOCKETS: LONG WAIT FOR TCP RECEIVE

218 SUR COMM/SOCKETS: SHORT WAIT FOR UDP RECEIVE

219 LUR COMM/SOCKETS: LONG WAIT FOR UDP RECEIVE

226 SDR COMM/SOCKETS: SHORT WAIT FOR RDMA RECEIVE

227 LDR COMM/SOCKETS: LONG WAIT FOR RDMA RECEIVE

3.3.26 Bucket 26 - Socket other

The primary wait points that should be seen from this bucket involve the SELECT socket

API. That API can be used by an application for a variety of complex waiting scenarios.

The enums in this bucket are:

Enum Eye Catcher Description

220 SAS COMM/SOCKETS: SHORT WAIT FOR IO COMPLETION

221 LAS COMM/SOCKETS: LONG WAIT FOR IO COMPLETION

222 SSW COMM/SOCKETS: SELECT SHORT WAIT

223 SLW COMM/SOCKETS: SELECT LONG WAIT

228 SRG COMM/SOCKETS: SHORT WAIT FOR RDMA GET BUFFER

229 LRG COMM/SOCKETS: LONG WAIT FOR RDMA GET BUFFER

230 SRG COMM/SOCKETS: SHORT WAIT FOR RDMA SEND BUFFER

231 SSB COMM/SOCKETS: LONG WAIT FOR RDMA SEND BUFFER

232 LSB COMM/SOCKETS: SHORT WAIT FOR RDMA RECV BUFFER

233 LRB COMM/SOCKETS: LONG WAIT FOR RDMA RECV BUFFER

3.3.27 Bucket 27 – IFS

These waits are due to Integrated File System (IFS) “pipe” operations.

The enums in this bucket are:

Enum Eye

Catcher
Description

250 PRL IFS/PIPE: File table entry exclusive lock

251 PRC IFS/PIPE: LIC reference count

252 PPC IFS/PIPE: Main pipe count

253 PRP IFS/PIPE: Read end of pipe

254 PWP IFS/PIPE: Write end of pipe

255 PRW IFS/PIPE: Pipe read waiters

256 PWW IFS/PIPE: Pipe write waiters

257 PR1 IFS/PIPE: Read data lock 1

258 PR2 IFS/PIPE: Read data lock 2

259 PW1 IFS/PIPE: Write data lock 1

260 PW2 R610 - IFS/PIPE: Write data lock 2

261 PW3 R610 - IFS/PIPE: Write data lock 3

262 PW4 R610 - IFS/PIPE: Write data lock 4

263 PS1 IFS/PIPE: Stat lock

264 PA1 IFS/PIPE: Set attribute lock

265 PP1 IFS/PIPE: Poll lock

266 PA1 IFS/PIPE: Add reference lock

267 PL1 IFS/PIPE: Release reference lock

3.3.28 Bucket 28 - PASE

This bucket contains waits for PASE (Portable Application Solutions Environment).

PASE is a solution that allows AIX applications to be ported to IBM i. Java applications

using the new J9 JVM (IBM Technology for Java) will have their wait times shown as

one of these PASE waits.

The enums in this bucket are:

Enum Eye

Catcher
Description

360 U60 PASE: fork

361 U61 PASE: msleep

362 U62 PASE: nsleep

363 U63 PASE: pause

364 U64 PASE: private tsleep event

365 U65 PASE: private wait lock

366 U66 PASE: ptrace PT attach

367 U67 PASE: ptrace PT delay att

368 U68 PASE: ptrace ttrcsig

369 U69 PASE: ptrace target

370 U70 PASE: sig suspend

371 U71 PASE: thread set sched

372 U72 PASE: thread set state

373 U73 PASE: thread set state fast

374 U74 PASE: thread tsleep

375 U75 PASE: thread tsleep event

376 U76 PASE: thread wait lock

377 U77 PASE: thread wait lock local

378 U78 PASE: core dump

379 U79 PASE: thread stopped

380 U80 PASE: run PASE thread

381 U81 PASE: run PASE thread attach

382 U82 PASE: termination serializer

383 U83 PASE: wait for exit

384 U84 PASE: PDC kernel map

385 U85 PASE: PDC prepare module

386 U86 PASE: close

387 U87 PASE: wait PID

388 U88 PASE: loader IPL

389 U89 PASE: loader lock

390 U90 PASE: ptrace lock

3.3.29 Bucket 29 - Data queue receives

These are the waits on MI Data Queue objects.

The enums in this bucket are:

Enum Eye

Catcher
Description

341 QMd DATA QUEUE WAIT

3.3.30 Bucket 30 - Idle/waiting for work

These waits generally reflect an application that is either idle or waiting for additional

work to perform for the user.

For legacy applications, such as 5250 I/O, this bucket truly does represent "idle time".

However, for more modern applications, that might not be true. The time spent in this

bucket might indicate a problem somewhere in the partition, or perhaps in some outboard

system/LPAR COMM attached. For example, a thread might be waiting on a Socket

Accept... waiting for a new unit of work to arrive. If some external issue was preventing

the work from arriving, this is where the delay would be accounted for. Likewise, if a

thread is waiting for work from another thread in the same partition, the same would be

true, but in that case perhaps the wait buckets in the other thread would indicate the root

of the problem.

The enums in this bucket are:

Enum Eye

Catcher
Description

37 Gai QuGate idle

38 TGi QuGate idle retry

39 MGi QuMutexGate idle

200 JUW JAVA: J9 wait for request

210 STA COMM/SOCKETS: SHORT WAIT FOR ACCEPT

211 LTA COMM/SOCKETS: LONG WAIT FOR ACCEPT

271 ERJ EPFS: Wait for OS request to apply journaled changes

340 QMr IDLE WAIT

351 Mcw Condition wait

Enum 340 contains waits on a MI queue associated with each OS job known as the “MI

Response Queue”. Normally, for 5250 type interactive applications, this would reflect the

key/think time. Other possible uses would be APPC/APPN SNA type communications

waits.

3.3.31 Bucket 31 - Synchronization token contention

These waits are a special type of wait used by C/C++ applications.

The enums in this bucket are:

Enum Eye

Catcher
Description

352 Mtw Synchronization token wait

3.3.32 Bucket 32 – Abnormal contention

These waits reflect a high rate of concurrent waits/releases occurring against a wide

variety of many of the other wait points listed previously. There are two types of these

waits:

a. Unsuccessful wakeup retries (QGb, QGc, QGd)

b. Waiting in line to buy a ticket that gets you into the main wait line (QWL)

The enums in this bucket are:

Enum Eye

Catcher
Description

8 QRP Qu res stack message pool

14 QWL Qu wait list - waiting for access to a wait list (abnormal contention)

40 QGb QuGateB

41 QGc QuGateC

42 QGd QuGateD

192 TLB ASM TLB throttle segment destroy

193 TLB ASM TLB throttle reserved

400 DMS DB monitored seize timer sleep - Indicates long held seize in query that is

monitored by some request to get an exclusive seize.

401 DEC DB enforce constraint timer sleep

402 IMS DB index build monitored seize timer sleep

403 CAS Common function atomic update timer sleep

404 IMC DB index build message cleanup timer sleep

405 IZE DB index size estimate timer sleep

Additional resources:

Performance FAQ: https://www.ibm.com/downloads/cas/QWXA9XKN

Trademarks and Disclaimers

© IBM Corporation 1994-2023. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends

to make them available in every country.

The following terms are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both:

AS/400 e-business on demand OS/400

IBM IBM (logo) IBM i

eServer iDoctor for IBM i IBM iDoctor for IBM i

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction

LLC.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers

have used IBM products and the results they may have achieved. Actual environmental

costs and performance characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these

products, published announcement material, or other publicly available sources and does

https://www.ibm.com/downloads/cas/QWXA9XKN

not constitute an endorsement of such products by IBM. Sources for non-IBM list prices

and performance numbers are taken from publicly available information, including

vendor announcements and vendor worldwide homepages. IBM has not tested these

products and cannot confirm the accuracy of performance, capability, or any other claims

related to non-IBM products. Questions on the capability of non-IBM products should be

addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or

withdrawal without notice, and represent goals and objectives only. Contact your local

IBM office or IBM authorized reseller for the full text of the specific Statement of

Direction.

Some information addresses anticipated future capabilities. Such information is not

intended as a definitive statement of a commitment to specific levels of performance,

function or delivery schedules with respect to any future products. Such commitments

are only made in IBM product announcements. The information is presented here to

communicate IBM's current investment and development activities as a good faith effort

to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks

in a controlled environment. The actual throughput or performance that any user will

experience will vary depending upon considerations such as the amount of

multiprogramming in the user's job stream, the I/O configuration, the storage

configuration, and the workload processed. Therefore, no assurance can be given that an

individual user will achieve throughput or performance improvements equivalent to the

ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in

production models.

